These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Small intestinal bacterial overgrowth syndrome  

PubMed Central

Human intestinal microbiota create a complex polymicrobial ecology. This is characterised by its high population density, wide diversity and complexity of interaction. Any dysbalance of this complex intestinal microbiome, both qualitative and quantitative, might have serious health consequence for a macro-organism, including small intestinal bacterial overgrowth syndrome (SIBO). SIBO is defined as an increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract. There are several endogenous defence mechanisms for preventing bacterial overgrowth: gastric acid secretion, intestinal motility, intact ileo-caecal valve, immunoglobulins within intestinal secretion and bacteriostatic properties of pancreatic and biliary secretion. Aetiology of SIBO is usually complex, associated with disorders of protective antibacterial mechanisms (e.g. achlorhydria, pancreatic exocrine insufficiency, immunodeficiency syndromes), anatomical abnormalities (e.g. small intestinal obstruction, diverticula, fistulae, surgical blind loop, previous ileo-caecal resections) and/or motility disorders (e.g. scleroderma, autonomic neuropathy in diabetes mellitus, post-radiation enteropathy, small intestinal pseudo-obstruction). In some patients more than one factor may be involved. Symptoms related to SIBO are bloating, diarrhoea, malabsorption, weight loss and malnutrition. The gold standard for diagnosing SIBO is still microbial investigation of jejunal aspirates. Non-invasive hydrogen and methane breath tests are most commonly used for the diagnosis of SIBO using glucose or lactulose. Therapy for SIBO must be complex, addressing all causes, symptoms and complications, and fully individualised. It should include treatment of the underlying disease, nutritional support and cyclical gastro-intestinal selective antibiotics. Prognosis is usually serious, determined mostly by the underlying disease that led to SIBO. PMID:20572300

Bures, Jan; Cyrany, Jiri; Kohoutova, Darina; Förstl, Miroslav; Rejchrt, Stanislav; Kvetina, Jaroslav; Vorisek, Viktor; Kopacova, Marcela

2010-01-01

2

Mucin Dynamics in Intestinal Bacterial Infection  

PubMed Central

Background Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract. Methodology/Principal Findings Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17) in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05). Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon. Conclusion Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection. PMID:19088856

Lindén, Sara K.; Florin, Timothy H. J.; McGuckin, Michael A.

2008-01-01

3

Synergy between bacterial infection and genetic predisposition in intestinal dysplasia  

E-print Network

Synergy between bacterial infection and genetic predisposition in intestinal dysplasia Yiorgos intestinal stem cells (SCs) and progenitors drive cancer initiation, mainte- nance, and metastasis elusive. Using a Drosophila model of gut pathogenesis, we show that intestinal infection with Pseudomonas

Perrimon, Norbert

4

Campylobacter jejuni Outer Membrane Vesicles Play an Important Role in Bacterial Interactions with Human Intestinal Epithelial Cells  

PubMed Central

Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world; however, the molecular basis of pathogenesis is unclear. Secretion of virulence factors is a key mechanism by which enteric bacterial pathogens interact with host cells to enhance survival and/or damage the host. However, C. jejuni lacks the virulence-associated secretion systems possessed by other enteric pathogens. Many bacterial pathogens utilize outer membrane vesicles (OMVs) for delivery of virulence factors into host cells. In the absence of prototypical virulence-associated secretion systems, OMVs could be an important alternative for the coordinated delivery of C. jejuni proteins into host cells. Proteomic analysis of C. jejuni 11168H OMVs identified 151 proteins, including periplasmic and outer membrane-associated proteins, but also many determinants known to be important in survival and pathogenesis, including the cytolethal distending toxin (CDT). C. jejuni OMVs contained 16 N-linked glycoproteins, indicating a delivery mechanism by which these periplasm-located yet immunogenic glycoproteins can interact with host cells. C. jejuni OMVs possess cytotoxic activity and induce a host immune response from T84 intestinal epithelial cells (IECs), which was not reduced by OMV pretreatment with proteinase K or polymyxin B prior to coincubation with IECs. Pretreatment of IECs with methyl-beta-cyclodextrin partially blocks OMV-induced host immune responses, indicating a role for lipid rafts in host cell plasma membranes during interactions with C. jejuni OMVs. OMVs isolated from a C. jejuni 11168H cdtA mutant induced interleukin-8 (IL-8) to the same extent as did wild-type OMVs, suggesting OMV induction of IL-8 is independent of CDT. PMID:22966047

Elmi, Abdi; Watson, Eleanor; Sandu, Pamela; Gundogdu, Ozan; Mills, Dominic C.; Inglis, Neil F.; Manson, Erin; Imrie, Lisa; Bajaj-Elliott, Mona; Wren, Brendan W.; Smith, David G. E.

2012-01-01

5

Diversity of the Human Intestinal Microbial Flora  

Microsoft Academic Search

The human endogenous intestinal microflora is an essential ``organ'' in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to

Paul B. Eckburg; Elisabeth M. Bik; Charles N. Bernstein; Elizabeth Purdom; Les Dethlefsen; Michael Sargent; Steven R. Gill; Karen E. Nelson; David A. Relman

2005-01-01

6

[Human intestinal spirochetosis].  

PubMed

A characteristic feature of human intestinal spirochetosis (IS) is the colonization of the mucosa of the large intestine with intestinal spirochetes of the genus Brachyspira. The joining of the brachyspirae with the apical cellular membrane of enterocytes resembles in histological slides a false brush border of the intestinal mucosa. Various symptoms related to the involvement of the large gut were found with invasive IS. From the cultures of these cases were isolated Brachyspira aalborgii and B. pilosicoli. The frequency of the incidence of brachyspirae depended on the socio-economic living conditions of people. Colonization of the mucosa of the large gut was found more often in human populations in the developing countries; it was fairly rare in countries with high hygienic standards. An exception were men of homosexual orienation and patients presenting with a HIV infection. Isolation of brachyspirae from the faeces and biopsy of the mucosa of the large gut are fairly demanding jobs, especially with B. aalborgii. Most documented IS cases of this aetiology were diagnosed using immunohistochemical methods and amplification of the genus-specific region of the gene 16S rRNA. Isolation of B. pilosicoli tends to be simpler, it requires anaerobic incubation on selective blood agars for a period of 3-6 days at 37 degrees C. When manual haemoculture systems were used, patients in a critical state presented a translocation of brachyspirae into blood circulation, while automatic systems don't necessarily diagnose spirochetaemia. In the management of described cases of invasive IS particularly successful proved metronidazole and beta-lactam antibiotics. In isolated B. pilosicoli, in vitro tests confirmed sensitivity to metronidazole, ceftriaxone, meropenem, tetracycline, moxifloxacine and chloramphenicol. A varying frequency of resistance was found with clindamycin and amoxicillin, which how ever was efficacious in combination with clavulanic acid. PMID:15146383

Cízek, Alois; Lobová, Dana

2004-04-01

7

The role of small intestinal bacterial overgrowth in Parkinson's disease.  

PubMed

Parkinson's disease is associated with gastrointestinal motility abnormalities favoring the occurrence of local infections. The aim of this study was to investigate whether small intestinal bacterial overgrowth contributes to the pathophysiology of motor fluctuations. Thirty-three patients and 30 controls underwent glucose, lactulose, and urea breath tests to detect small intestinal bacterial overgrowth and Helicobacter pylori infection. Patients also underwent ultrasonography to evaluate gastric emptying. The clinical status and plasma concentration of levodopa were assessed after an acute drug challenge with a standard dose of levodopa, and motor complications were assessed by Unified Parkinson's Disease Rating Scale-IV and by 1-week diaries of motor conditions. Patients with small intestinal bacterial overgrowth were treated with rifaximin and were clinically and instrumentally reevaluated 1 and 6 months later. The prevalence of small intestinal bacterial overgrowth was significantly higher in patients than in controls (54.5% vs. 20.0%; P?=?.01), whereas the prevalence of Helicobacter pylori infection was not (33.3% vs. 26.7%). Compared with patients without any infection, the prevalence of unpredictable fluctuations was significantly higher in patients with both infections (8.3% vs. 87.5%; P?=?.008). Gastric half-emptying time was significantly longer in patients than in healthy controls but did not differ in patients based on their infective status. Compared with patients without isolated small intestinal bacterial overgrowth, patients with isolated small intestinal bacterial overgrowth had longer off time daily and more episodes of delayed-on and no-on. The eradication of small intestinal bacterial overgrowth resulted in improvement in motor fluctuations without affecting the pharmacokinetics of levodopa. The relapse rate of small intestinal bacterial overgrowth at 6 months was 43%. © 2013 Movement Disorder Society. PMID:23712625

Fasano, Alfonso; Bove, Francesco; Gabrielli, Maurizio; Petracca, Martina; Zocco, Maria Assunta; Ragazzoni, Enzo; Barbaro, Federico; Piano, Carla; Fortuna, Serena; Tortora, Annalisa; Di Giacopo, Raffaella; Campanale, Mariachiara; Gigante, Giovanni; Lauritano, Ernesto Cristiano; Navarra, Pierluigi; Marconi, Stefano; Gasbarrini, Antonio; Bentivoglio, Anna Rita

2013-08-01

8

Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue.  

PubMed

Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs) are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn's disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time that certain Giardia infections may attenuate PMN accumulation by decreasing the expression of the mediators responsible for their recruitment. PMID:25289678

Cotton, James A; Motta, Jean-Paul; Schenck, L Patrick; Hirota, Simon A; Beck, Paul L; Buret, Andre G

2014-01-01

9

Small Intestine Bacterial Overgrowth and Metabolic Bone Disease  

Microsoft Academic Search

Small intestine bacterial overgrowth is a malabsorption syndrome and, therefore, it may contribute to the occurrence of metabolic bone disease. However, studies that evaluate the magnitude of this problem and the potential underlying mechanisms are still needed. Fourteen patients with bacterial overgrowth and 22 comparable healthy volunteers took part in this study. All patients were affected by conditions known to

Michele Di Stefano; Graziamaria Veneto; Simona Malservisi; Gino Roberto Corazza

2001-01-01

10

Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences  

PubMed Central

This report is a summary of the symposium on Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences, organized by National Institute on Alcohol Abuse and Alcoholism, Office of Dietary Supplements, and National Institute of Diabetes and Digestive and Kidney Diseases of National Institutes of Health in Rockville, Maryland, October 11, 2006. Alcohol exposure can promote the growth of Gram negative bacteria in the intestine which may result in accumulation of endotoxin. In addition, alcohol metabolism by Gram negative bacteria and intestinal epithelial cells can result in accumulation of acetaldehyde, which in turn can increase intestinal permeability to endotoxin by increasing tyrosine phosphorylation of tight junction and adherens junction proteins. Alcohol-induced generation of nitric oxide may also contribute to increased permeability to endotoxin by reacting with tubulin, which may cause damage to microtubule cytoskeleton and subsequent disruption of intestinal barrier function. Increased intestinal permeability can lead to increased transfer of endotoxin from the intestine to the liver and general circulation where endotoxin may trigger inflammatory changes in the liver and other organs. Alcohol may also increase intestinal permeability to peptidoglycan which can initiate inflammatory response in liver and other organs. In addition, acute alcohol exposure may potentiate the effect of burn injury on intestinal bacterial growth and permeability. Decreasing the number of Gram negative bacteria in the intestine can result in decreased production of endotoxin as well as acetaldehyde which is expected to decrease intestinal permeability to endotoxin. In addition, intestinal permeability may be preserved by administering epidermal growth factor, L-glutamine, oats supplementation, or zinc thereby preventing the transfer of endotoxin to the general circulation. Thus reducing the number of intestinal Gram negative bacteria and preserving intestinal permeability to endotoxin may attenuate alcoholic liver and other organ injuries. PMID:18504085

Purohit, Vishnudutt; Bode, J. Christian; Bode, Christiane; Brenner, David A.; Choudhry, Mashkoor A.; Hamilton, Frank; Kang, Y. James; Keshavarzian, Ali; Rao, Radhakrishna; Sartor, R. Balfour; Swanson, Christine; Turner, Jerrold R.

2008-01-01

11

Bacterial, archaeal, and eukaryal diversity in the intestines of Korean people  

Microsoft Academic Search

The bacterial, archaeal, and eukaryal diversity in fecal samples from ten Koreans were analyzed and compared by using the\\u000a PCR-fingerprinting method, denaturing gradient gel electrophoresis (DGGE). The bacteria all belonged to the Firmicutes and Bacteroidetes phyla, which were known to be the dominant bacterial species in the human intestine. Most of the archaeal sequences belonged\\u000a to the methane-producing archaea but

Young-Do Nam; Ho-Won Chang; Kyoung-Ho Kim; Seong Woon Roh; Min-Soo Kim; Mi-Ja Jung; Si-Woo Lee; Jong-Yeol Kim; Jung-Hoon Yoon; Jin-Woo Bae

2008-01-01

12

Enteric infection meets intestinal function: how bacterial pathogens cause diarrhoea  

Microsoft Academic Search

Infectious diarrhoea is a significant contributor to morbidity and mortality worldwide. In bacterium-induced diarrhoea, rapid loss of fluids and electrolytes results from inhibition of the normal absorptive function of the intestine as well as the activation of secretory processes. Advances in the past 10 years in the fields of gastrointestinal physiology, innate immunity and enteric bacterial virulence mechanisms highlight the

V. K. Viswanathan; Kim Hodges; Gail Hecht

2008-01-01

13

Bacterial populations contaminating the upper gut in patients with small intestinal bacterial overgrowth syndrome  

Microsoft Academic Search

OBJECTIVE:Small intestinal bacterial overgrowth syndrome (SIBOS) is characterized by an abnormally high bacterial population level in the upper gut, exceeding 105 organisms\\/ml (5 log colony-forming unit (CFU)\\/ml). To understand its origin and select an appropriate antibiotic treatment, we have analyzed the bacterial populations contaminating the upper gut in SIBOS patients.METHODS:Jejunal samples of 63 consecutive patients with diarrhea or malabsorption and

Yoram Bouhnik; Sophie Alain; Alain Attar; Bernard Flourié; Laurent Raskine; Marie José Sanson-Le Pors; Jean-Claude Rambaud

1999-01-01

14

Bacterial populations contaminating the upper gut in patients with small intestinal bacterial overgrowth syndrome  

Microsoft Academic Search

Objective:Small intestinal bacterial overgrowth syndrome (SIBOS) is characterized by an abnormally high bacterial population level in the upper gut, exceeding 105 organisms\\/ml (5 log colony-forming unit (CFU)\\/ml). To understand its origin and select an appropriate antibiotic treatment, we have analyzed the bacterial populations contaminating the upper gut in SIBOS patients.Methods:Jejunal samples of 63 consecutive patients with diarrhea or malabsorption and

Yoram Bouhnik; Sophie Alain; Alain Attar; Bernard Flourié; Laurent Raskine; Marie José Sanson-Le Pors; Jean-Claude Rambaud

1999-01-01

15

Emerging insights on intestinal dysbiosis during bacterial infections?  

PubMed Central

Infection of the gastrointestinal tract is commonly linked to pathological imbalances of the resident microbiota, termed dysbiosis. In recent years, advanced high-throughput genomic approaches have allowed us to examine the microbiota in an unprecedented manner, revealing novel biological insights about infection-associated dysbiosis at the community and individual species levels. A dysbiotic microbiota is typically reduced in taxonomic diversity and metabolic function, and can harbour pathobionts that exacerbate intestinal inflammation or manifest systemic disease. Dysbiosis can also promote pathogen genome evolution, while allowing the pathogens to persist at high density and transmit to new hosts. A deeper understanding of bacterial pathogenicity in the context of the intestinal microbiota should unveil new approaches for developing diagnostics and therapies for enteropathogens. PMID:24581695

Pham, Tu Anh N; Lawley, Trevor D

2014-01-01

16

Link between hypothyroidism and small intestinal bacterial overgrowth  

PubMed Central

Altered gastrointestinal (GI) motility is seen in many pathological conditions. Reduced motility is one of the risk factors for development of a small intestinal bacterial overgrowth (SIBO). Hypothyroidism is associated with altered GI motility. The aim of this article was to study the link between hypothyroidism, altered GI motility and development of SIBO. Published literature was reviewed to study the association of altered GI motility, SIBO and hypothyroidism. Altered GI motility leads to SIBO. SIBO is common in patients with hypothyroidism. Patients with chronic GI symptoms in hypothyroidism should be evaluated for the possibility of SIBO. Both antibiotics and probiotics have been studied and found to be effective in management of SIBO. PMID:24944923

Patil, Anant D.

2014-01-01

17

Structural insights into bacterial recognition of intestinal mucins.  

PubMed

The mucosal layer covering our gut epithelium represents the first line of host defenses against the luminal content, while enabling contacts between the resident microbiota and the host. Mucus is mainly composed of mucins, large glycoproteins containing a protein core and a high number of O-linked oligosaccharides. Mucin glycans act as binding sites or carbon sources for the intestinal microbes, thereby functioning as a host-specific determinant affecting the microbiota composition and human health. Reflecting the structural diversity of mucin glycans and their prime location, commensal and pathogenic microbes have evolved a range of adhesins allowing their interaction with the host. However, despite the recognised importance of mucin glycans in modulating intestinal homeostasis, information on carbohydrate-binding proteins from gut bacteria is disparate. This review is focussed on recent structural insights into host-microbe interactions mediated by mucins. PMID:25106027

Etzold, Sabrina; Juge, Nathalie

2014-10-01

18

Regulation of Bacterial Pathogenesis by Intestinal Short-Chain Fatty Acids  

PubMed Central

The human gut microbiota is inextricably linked to health and disease. One important function of the commensal organisms living in the intestine is to provide colonization resistance against invading enteric pathogens. Because of the complex nature of the interaction between the microbiota and its host, multiple mechanisms likely contribute to resistance. In this review, we dissect the biological role of short-chain fatty acids (SCFA), which are fermentation end products of the intestinal microbiota, in host–pathogen interactions. SCFA exert an extensive influence on host physiology through nutritional, regulatory, and immunomodulatory functions and can also affect bacterial fitness as a form of acid stress. Moreover, SCFA act as a signal for virulence gene regulation in common enteric pathogens. Taken together, these studies highlight the importance of the chemical environment where the biology of the host, the microbiota, and the pathogen intersects, which provides a basis for designing effective infection prevention and control. PMID:23942149

Sun, Yvonne; O’Riordan, Mary X. D.

2013-01-01

19

The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract.  

PubMed

A 16S rRNA-targeted probe, MUC-1437, was designed and validated in order to determine the presence and numbers of cells of Akkermansia muciniphila, a mucin degrader, in the human intestinal tract. As determined by fluorescent in situ hybridization, A. muciniphila accounted more than 1% of the total fecal cells and was shown to be a common bacterial component of the human intestinal tract. PMID:18083887

Derrien, Muriel; Collado, M Carmen; Ben-Amor, Kaouther; Salminen, Seppo; de Vos, Willem M

2008-03-01

20

Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats  

NASA Astrophysics Data System (ADS)

The intestinal bacteria of vertebrates form a close relationship with their host. External and internal conditions of the host, including its habitat, affect the intestinal bacterial community. Similarly, the intestinal bacterial community can, in turn, influence the host, particularly with respect to disease resistance. We compared the intestinal bacterial communities of grass carp that were collected from farm-ponds or a lake. We conducted denaturing gradient gel electrophoresis of amplified 16S rRNA genes, from which 66 different operational taxonomic units were identified. Using both the unweighted pair-group method with arithmetic means clustering and principal component analysis ordination, we found that the intestinal bacterial communities from the two groups of pond fish were clustered together and inset into the clusters of wild fish, except for DF-7, and there was no significant correlation between genetic diversity of grass carp and their intestinal bacterial communities (Mantel one-tailed test, R=0.157, P=0.175). Cetobacterium appeared more frequently in the intestine of grass carp collected from pond. A more thorough understanding of the role played by intestinal microbiota on fish health would be of considerable benefit to the aquaculture industry.

Ni, Jiajia; Yu, Yuhe; Zhang, Tanglin; Gao, Lei

2012-09-01

21

Intestinal Epithelial Serum Amyloid A Modulates Bacterial Growth In Vitro and Pro-Inflammatory Responses in Mouse Experimental Colitis  

PubMed Central

Background Serum Amyloid A (SAA) is a major acute phase protein of unknown function. SAA is mostly expressed in the liver, but also in other tissues including the intestinal epithelium. SAA reportedly has anti-bacterial effects, and because inflammatory bowel diseases (IBD) result from a breakdown in homeostatic interactions between intestinal epithelia and bacteria, we hypothesized that SAA is protective during experimental colitis. Methods Intestinal SAA expression was measured in mouse and human samples. Dextran sodium sulfate (DSS) colitis was induced in SAA 1/2 double knockout (DKO) mice and in wildtype controls. Anti-bacterial effects of SAA1/2 were tested in intestinal epithelial cell lines transduced with adenoviral vectors encoding the CE/J SAA isoform or control vectors prior to exposure to live Escherichia coli. Results Significant levels of SAA1/SAA2 RNA and SAA protein were detected by in situ hybridization and immunohistochemistry in mouse colonic epithelium. SAA3 expression was weaker, but similarly distributed. SAA1/2 RNA was present in the ileum and colon of conventional mice and in the colon of germfree mice. Expression of SAA3 was strongly regulated by bacterial lipopolysaccharides in cultured epithelial cell lines, whereas SAA1/2 expression was constitutive and not LPS inducible. Overexpression of SAA1/2 in cultured epithelial cell lines reduced the viability of co-cultured E. coli. This might partially explain the observed increase in susceptibility of DKO mice to DSS colitis. SAA1/2 expression was increased in colon samples obtained from Crohn's Disease patients compared to controls. Conclusions Intestinal epithelial SAA displays bactericidal properties in vitro and could play a protective role in experimental mouse colitis. Altered expression of SAA in intestinal biopsies from Crohn's Disease patients suggests that SAA is involved in the disease process.. PMID:21067563

2010-01-01

22

Characterization of epithelial cell shedding from human small intestine  

Microsoft Academic Search

Intestinal epithelial cells migrate from the base of the crypt to the villi where they are shed. However, little is known about the cell shedding process. We have studied the role of apoptosis and wound healing mechanisms in cell shedding from human small intestinal epithelium. A method preparing paraffin sections of human small intestine that preserves cell shedding was developed.

Tim F Bullen; Sharon Forrest; Fiona Campbell; Andrew R Dodson; Michael J Hershman; D Mark Pritchard; Jerrold R Turner; Marshall H Montrose; Alastair J M Watson

2006-01-01

23

Pregnancy specific ? 1 -glycoprotein in human intestine  

Microsoft Academic Search

Pregnancy-specific ß1-glycoprotein (PSG) transcripts have been identified in a number of placental and non-placental tissues. Using a placental PSG cDNA probe to screen a normal human intestinal cDNA library we have isolated 22 hybridizing clones. These clones could be divided into four groups. Nucleotide sequence analysis showed that one group of clones correspond to functional and another group correspond to

W. Lesley Shupert; Wai-Yee Chan

1993-01-01

24

Composition, Diversity, and Origin of the Bacterial Community in Grass Carp Intestine  

PubMed Central

Gut microbiota has become an integral component of the host, and received increasing attention. However, for many domestic animals, information on the microbiota is insufficient and more effort should be exerted to manage the gastrointestinal bacterial community. Understanding the factors that influence the composition of microbial community in the host alimentary canal is essential to manage or improve the microbial community composition. In the present study, 16S rRNA gene sequence-based comparisons of the bacterial communities in the grass carp (Ctenopharyngodon idellus) intestinal contents and fish culture-associated environments are performed. The results show that the fish intestinal microbiota harbors many cellulose-decomposing bacteria, including sequences related to Anoxybacillus, Leuconostoc, Clostridium, Actinomyces, and Citrobacter. The most abundant bacterial operational taxonomic units (OTUs) in the grass carp intestinal content are those related to feed digestion. In addition, the potential pathogens and probiotics are important members of the intestinal microbiota. Further analyses show that grass carp intestine holds a core microbiota composed of Proteobacteria, Firmicutes, and Actinobacteria. The comparison analyses reveal that the bacterial community in the intestinal contents is most similar to those from the culture water and sediment. However, feed also plays significant influence on the composition of gut microbiota. PMID:22363439

Wu, Shangong; Wang, Guitang; Angert, Esther R.; Wang, Weiwei; Li, Wenxiang; Zou, Hong

2012-01-01

25

Bacterial Population in Intestines of the Black Tiger Shrimp (Penaeus monodon) under Different Growth Stages  

PubMed Central

Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length?=?442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities. PMID:23577162

Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

2013-01-01

26

Comparative analysis of the composition of intestinal bacterial communities in Dastarcus helophoroides fed different diets.  

PubMed

The diversity of the intestinal bacterial communities in Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) larvae and adults was assayed by PCR-DGGE to determine whether different artificial diets could influence these bacterial communities. Two diets were used for feeding the larvae and four for the adults. Escherichia, Desemzia, Staphylococcus, Asticcacaulis, Cellvibrio, Aurantimonas, and Planomicrobium were isolated from the gut of the adults, with Escherichia and Staphylococcus being the main bacterial communities, and the quantities of intestinal bacterial were different in the adults fed different diets. Specifically, the amount of intestinal bacteria from the adults fed different diets had the following ranking according to the major component of the diet: ant powder > darkling beetle pupa powder > cricket powder > silkworm pupa powder. Escherichia, Bacillus, Staphylococcus, Kurthia, Planococcaceae, Ralstonia, Leptothrix, Acinetobacter, and Pseudomonas were isolated from the gut of the larvae. The quantity of intestinal bacteria from the larvae fed the darkling beetle pupae was greater than that from the larvae fed other artificial diets. This study, for the first time, investigated the effect of artificial diets on the bacterial community and the intestinal microbial diversity of D. helophoroides. PMID:25373234

Wang, Wei-Wei; He, Cai; Cui, Jun; Wang, Hai-Dong; Li, Meng-Lou

2014-01-01

27

Comparative analysis of the composition of intestinal bacterial communities in Dastarcus helophoroides fed different diets.  

PubMed

The diversity of the intestinal bacterial communities in Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) larvae and adults was assayed by PCR-DGGE to determine whether different artificial diets could influence these bacterial communities. Two diets were used for feeding the larvae and four for the adults. Escherichia, Desemzia, Staphylococcus, Asticcacaulis, Cellvibrio, Aurantimonas, and Planomicrobium were isolated from the gut of the adults, with Escherichia and Staphylococcus being the main bacterial communities, and the quantities of intestinal bacterial were different in the adults fed different diets. Specifically, the amount of intestinal bacteria from the adults fed different diets had the following ranking according to the major component of the diet: ant powder > darkling beetle pupa powder > cricket powder > silkworm pupa powder. Escherichia, Bacillus, Staphylococcus, Kurthia, Planococcaceae, Ralstonia, Leptothrix, Acinetobacter, and Pseudomonas were isolated from the gut of the larvae. The quantity of intestinal bacteria from the larvae fed the darkling beetle pupae was greater than that from the larvae fed other artificial diets. This study, for the first time, investigated the effect of artificial diets on the bacterial community and the intestinal microbial diversity of D. helophoroides. PMID:25199878

Wang, Wei-Wei; He, Cai; Cui, Jun; Wang, Hai-Dong; Li, Meng-Lou

2014-01-01

28

Comparative Analysis of the Composition of Intestinal Bacterial Communities in Dastarcus helophoroides Fed Different Diets  

PubMed Central

The diversity of the intestinal bacterial communities in Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) larvae and adults was assayed by PCR-DGGE to determine whether different artificial diets could influence these bacterial communities. Two diets were used for feeding the larvae and four for the adults. Escherichia, Desemzia, Staphylococcus, Asticcacaulis, Cellvibrio, Aurantimonas, and Planomicrobium were isolated from the gut of the adults, with Escherichia and Staphylococcus being the main bacterial communities, and the quantities of intestinal bacterial were different in the adults fed different diets. Specifically, the amount of intestinal bacteria from the adults fed different diets had the following ranking according to the major component of the diet: ant powder > darkling beetle pupa powder > cricket powder > silkworm pupa powder. Escherichia, Bacillus, Staphylococcus, Kurthia, Planococcaceae, Ralstonia, Leptothrix, Acinetobacter, and Pseudomonas were isolated from the gut of the larvae. The quantity of intestinal bacteria from the larvae fed the darkling beetle pupae was greater than that from the larvae fed other artificial diets. This study, for the first time, investigated the effect of artificial diets on the bacterial community and the intestinal microbial diversity of D. helophoroides. PMID:25199878

Wang, Wei-Wei; He, Cai; Cui, Jun; Wang, Hai-Dong; Li, Meng-Lou

2014-01-01

29

The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor ? in the pathogenesis of non-alcoholic steatohepatitis  

PubMed Central

BACKGROUND—Small intestinal bacterial overgrowth may contribute to the development of non-alcoholic steatohepatitis, perhaps by increasing intestinal permeability and promoting the absorption of endotoxin or other enteric bacterial products.?AIMS—To investigate the prevalence of small intestinal bacterial overgrowth, increased intestinal permeability, elevated endotoxin, and tumour necrosis factor ? (TNF-?) levels in patients with non-alcoholic steatohepatitis and in control subjects.?PATIENTS AND METHODS—Twenty two patients with non-alcoholic steatohepatitis and 23 control subjects were studied. Small intestinal bacterial overgrowth was assessed by a combined 14C-D-xylose and lactulose breath test. Intestinal permeability was assessed by a dual lactulose-rhamnose sugar test. Serum endotoxin levels were determined using the limulus amoebocyte lysate assay and TNF-? levels using an ELISA.?RESULTS—Small intestinal bacterial overgrowth was present in 50% of patients with non-alcoholic steatosis and 22% of control subjects (p=0.048). Mean TNF-? levels in non-alcoholic steatohepatitis patients and control subjects were 14.2 and 7.5 pg/ml, respectively (p=0.001). Intestinal permeability and serum endotoxin levels were similar in the two groups.?CONCLUSIONS—Patients with non-alcoholic steatohepatitis have a higher prevalence of small intestinal bacterial overgrowth, as assessed by the 14C-D-xylose-lactulose breath test, and higher TNF-? levels in comparison with control subjects. This is not accompanied by increased intestinal permeability or elevated endotoxin levels.???Keywords: non-alcoholic steatohepatitis; small intestinal bacterial overgrowth; intestinal permeability; endotoxin; tumour necrosis factor ? PMID:11156641

Wigg, A; Roberts-Thomson, I; Dymock, R; McCarthy, P; Grose, R; Cummins, A

2001-01-01

30

Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome  

Microsoft Academic Search

OBJECTIVES:Irritable bowel syndrome is the most common gastrointestinal diagnosis. The symptoms of irritable bowel syndrome are similar to those of small intestinal bacterial overgrowth. The purpose of this study was to test whether overgrowth is associated with irritable bowel syndrome and whether treatment of overgrowth reduces their intestinal complaints.METHODS:Two hundred two subjects in a prospective database of subjects referred from

Mark Pimentel; Evelyn J. Chow; Henry C. Lin

2000-01-01

31

Interaction of bacteria and bacterial toxins with intestinal epithelial cells  

Microsoft Academic Search

The epithelium of the intestinal tract is a key barrier between the external environment and the internal body environment.\\u000a Intestinal epithelial cells are targets for luminal bacteria and viruses and must discriminate between pathogenic and nonpathogenic\\u000a commensal organisms. Pathogenic bacteria and their secreted products influence epithelial cell function and induce diarrhea\\u000a by numerous mechanisms that range from an effect on

Asma Nusrat; Shanthi V. Sitaraman; Andrew Neish

2001-01-01

32

Identification of a Core Bacterial Community within the Large Intestine of the Horse  

PubMed Central

The horse has a rich and complex microbial community within its gastrointestinal tract that plays a central role in both health and disease. The horse receives much of its dietary energy through microbial hydrolysis and fermentation of fiber predominantly in the large intestine/hindgut. The presence of a possible core bacterial community in the equine large intestine was investigated in this study. Samples were taken from the terminal ileum and 7 regions of the large intestine from ten animals, DNA extracted and the V1-V2 regions of 16SrDNA 454-pyrosequenced. A specific group of OTUs clustered in all ileal samples and a distinct and different signature existed for the proximal regions of the large intestine and the distal regions. A core group of bacterial families were identified in all gut regions with clear differences shown between the ileum and the various large intestine regions. The core in the ileum accounted for 32% of all sequences and comprised of only seven OTUs of varying abundance; the core in the large intestine was much smaller (5-15% of all sequences) with a much larger number of OTUs present but in low abundance. The most abundant member of the core community in the ileum was Lactobacillaceae, in the proximal large intestine the Lachnospiraceae and in the distal large intestine the Prevotellaceae. In conclusion, the presence of a core bacterial community in the large intestine of the horse that is made up of many low abundance OTUs may explain in part the susceptibility of horses to digestive upset. PMID:24204908

Dougal, Kirsty; de la Fuente, Gabriel; Harris, Patricia A.; Girdwood, Susan E.; Pinloche, Eric; Newbold, C. Jamie

2013-01-01

33

Nutrient regulation of human intestinal sugar transporter (SGLT1) expression  

Microsoft Academic Search

BACKGROUND: The activity of most intestinal nutrient transporters is adaptively regulated by the type and amounts of nutrients entering the intestinal lumen. The concentration and activity of the intestinal Na+\\/glucose cotransporter (SGLT1) are regulated by dietary sugars in most animal species. The activity and abundance of SGLT1 in biopsy specimens removed from human jejunal regions exposed to, and having limited

J Dyer; K B Hosie; S P Shirazi-Beechey

1997-01-01

34

Human small intestinal motor activity and postprandial glycemia after dietary  

E-print Network

Human small intestinal motor activity and postprandial glycemia after dietary fiber intake. C, DF may also change motility in the small intestine and im- provement of glucose tolerance may of the small intestine and glycemia after ingestion of 3 different DF. Electromyographic activity in the first

Paris-Sud XI, Université de

35

Oligoclonality of human intestinal intraepithelial T cells  

PubMed Central

T cells bearing the T cell receptor alpha/beta (TCR-alpha/beta) are the predominant lymphocyte population in the human intestinal epithelium. To examine if normal intestinal intraepithelial lymphocytes (IEL) have a TCR repertoire distinct from the TCR-alpha/beta repertoire in peripheral blood lymphocytes (PBL), comparative analysis of relative V beta gene usage in IEL and PBL was performed by quantitative polymerase chain reaction. In each of the six individuals examined, one to three V beta families made up more than 40% of the total V beta transcripts detected in the IEL, whereas there was a more even distribution of V beta gene usage in the paired PBL. The predominant V beta families, especially V beta 1, V beta 2, V beta 3, and V beta 6, were frequently shared among IEL of different individuals. PCR cloning and sequence analysis of the predominant V beta 6 family in two individuals revealed an identical V-D-J-C sequence in 13 of 21 clones obtained from one donor, and a different repeated sequence in 18 of 27 clones examined in the second donor. These data suggest that the V beta skewing in IEL is due to an oligoclonal T cell expansion and may reflect the response of the intestinal mucosal immune system to a restricted set of as yet undefined antigens present in the gut. PMID:1730926

1992-01-01

36

Human intestinal microbial metabolism of naringin.  

PubMed

Naringin, a major flavonoid in citrus fruits, has been proved to be a promising antitussive candidate. It undertakes complicated metabolism. In this study, human intestinal microbial metabolism of naringin was studied in vitro. Six persons' fecal water, which have intestinal microbial enzyme, were used in the first experiment. Naringin was metabolized by fecal water into naringenin. Subsequently, 3-(4-hydroxyphenyl)propionic acid (4-HPPA) was produced with naringenin degradation by a person's fecal water. However, 4-HPPA was not detected after naringenin degradation by the other 5 subjects' fecal water and the reason might be that the degrading velocity of 4-HPPA exceeded the producing velocity. To confirm the difference in degrading 4-HPPA among human feces, 22 healthy persons' feces were used for incubation. In this second experiment, 15 persons' feces could degrade 4-HPPA, but the other 7 subjects' could not. Human feces showed different ability of degrading 4-HPPA, and there are no gender differences. These results may be helpful for explaining findings in pharmacological and toxicological studies and are groundwork for clinical studies. PMID:24935725

Zou, Wei; Luo, Yulong; Liu, Menghua; Chen, Si; Wang, Sheng; Nie, Yichu; Cheng, Guohua; Su, Weiwei; Zhang, Kejian

2014-06-17

37

The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens.  

PubMed

As it is known that food waste can be reduced by the larvae of Hermetia illucens (Black soldier fly, BSF), the scientific and commercial value of BSF larvae has increased recently. We hypothesised that the ability of catabolic degradation by BSF larvae might be due to intestinal microorganisms. Herein, we analysed the bacterial communities in the gut of BSF larvae by pyrosequencing of extracting intestinal metagenomic DNA from larvae that had been fed three different diets. The 16S rRNA sequencing results produced 9737, 9723 and 5985 PCR products from larval samples fed food waste, cooked rice and calf forage, respectively. A BLAST search using the EzTaxon program showed that the bacterial community in the gut of larvae fed three different diets was mainly composed of the four phyla with dissimilar proportions. Although the composition of the bacterial communities depended on the different nutrient sources, the identified bacterial strains in the gut of BSF larvae represented unique bacterial species that were unlike the intestinal microflora of other insects. Thus, our study analysed the structure of the bacterial communities in the gut of BSF larvae after three different feedings and assessed the application of particular bacteria for the efficient degradation of organic compounds. PMID:21267722

Jeon, Hyunbum; Park, Soyoung; Choi, Jiyoung; Jeong, Gilsang; Lee, Sang-Beom; Choi, Youngcheol; Lee, Sung-Jae

2011-05-01

38

The Role of Milk Sialyllactose in Intestinal Bacterial Colonization123  

PubMed Central

Milk oligosaccharides influence the composition of intestinal microbiota and thereby mucosal inflammation. Some of the major milk oligosaccharides are ?2,3-sialyllactose (3SL) and ?2,6-sialyllactose, which are mainly produced by the sialyltransferases ST3GAL4 and ST6GAL1, respectively. Recently, we showed that mice fed milk deficient in 3SL were more resistant to dextran sulfate sodium-induced colitis. By contrast, the exposure to milk containing or deficient in 3SL had no impact on the development of mucosal leukocyte populations. Milk 3SL mainly affected the colonization of the intestine by clostridial cluster IV bacteria. PMID:22585928

Weiss, G. Adrienne; Hennet, Thierry

2012-01-01

39

Salmonella?infected crypt?derived intestinal organoid culture system for host–bacterial interactions  

PubMed Central

Abstract The in vitro analysis of bacterial–epithelial interactions in the intestine has been hampered by a lack of suitable intestinal epithelium culture systems. Here, we report a new experimental model using an organoid culture system to study pathophysiology of bacterial–epithelial interactions post Salmonella infection. Using crypt?derived mouse intestinal organoids, we were able to visualize the invasiveness of Salmonella and the morphologic changes of the organoids. Importantly, we reported bacteria?induced disruption of epithelial tight junctions in the infected organoids. In addition, we showed the inflammatory responses through activation of the NF??B pathway in the organoids. Moreover, our western blot, PCR, and immunofluorescence data demonstrated that stem cell markers (Lgr5 and Bmi1) were significantly decreased by Salmonella infection (determined using GFP?labeled Lgr5 organoids). For the first time, we created a model system that recapitulated a number of observations from in vivo studies of the Salmonella?infected intestine, including bacterial invasion, altered tight junctions, inflammatory responses, and decreased stem cells. We have demonstrated that the Salmonella?infected organoid culture system is a new experimental model suitable for studying host–bacterial interactions. PMID:25214524

Zhang, Yong?Guo; Wu, Shaoping; Xia, Yinglin; Sun, Jun

2014-01-01

40

Salmonella-infected crypt-derived intestinal organoid culture system for host-bacterial interactions.  

PubMed

The in vitro analysis of bacterial-epithelial interactions in the intestine has been hampered by a lack of suitable intestinal epithelium culture systems. Here, we report a new experimental model using an organoid culture system to study pathophysiology of bacterial-epithelial interactions post Salmonella infection. Using crypt-derived mouse intestinal organoids, we were able to visualize the invasiveness of Salmonella and the morphologic changes of the organoids. Importantly, we reported bacteria-induced disruption of epithelial tight junctions in the infected organoids. In addition, we showed the inflammatory responses through activation of the NF-?B pathway in the organoids. Moreover, our western blot, PCR, and immunofluorescence data demonstrated that stem cell markers (Lgr5 and Bmi1) were significantly decreased by Salmonella infection (determined using GFP-labeled Lgr5 organoids). For the first time, we created a model system that recapitulated a number of observations from in vivo studies of the Salmonella-infected intestine, including bacterial invasion, altered tight junctions, inflammatory responses, and decreased stem cells. We have demonstrated that the Salmonella-infected organoid culture system is a new experimental model suitable for studying host-bacterial interactions. PMID:25214524

Zhang, Yong-Guo; Wu, Shaoping; Xia, Yinglin; Sun, Jun

2014-09-01

41

A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices.  

PubMed

A reliable prediction of the oral bioavailability in humans is crucial and of high interest for pharmaceutical and food industry. The predictive value of currently used in silico methods, in vitro cell lines, ex vivo intestinal tissue and/or in vivo animal studies for human intestinal absorption, however, is often insufficient, especially when food-drug interactions are evaluated. Ideally, for this purpose healthy human intestinal tissue is used, but due to its limited availability there is a need for alternatives. The aim of this study was to evaluate the applicability of healthy porcine intestinal tissue mounted in a newly developed InTESTine™ system to predict human intestinal absorption of compounds with different chemical characteristics, and within biorelevant matrices. To that end, first, a representative set of compounds was chosen of which the apparent permeability (Papp) data in both Caco-2 cells and human intestinal tissue mounted in the Ussing chamber system, and absolute human oral bioavailability were reported. Thereafter, Papp values of the subset were determined in both porcine jejunal tissue and our own Caco-2 cells. In addition, the feasibility of this new approach to study regional differences (duodenum, jejunum, and ileum) in permeability of compounds and to study the effects of luminal factors on permeability was also investigated. For the latter, a comparison was made between the compatibility of porcine intestinal tissue, Caco-2 cells, and Caco-2 cells co-cultured with the mucin producing HT29-MTX cells with biorelevant samples as collected from an in vitro dynamic gastrointestinal model (TIM). The results demonstrated that for the paracellularly transported compounds atenolol, cimetidine, mannitol and ranitidine porcine Papp values are within 3-fold difference of human Papp values, whereas the Caco-2 Papp values are beyond 3-fold difference. Overall, the porcine intestinal tissue Papp values are more comparable to human Papp values (9 out of 12 are within 3-fold difference), compared to Caco-2 Papp values (4 out of 12 are within 3-fold difference). In addition, for the selected hydrophilic compounds a significant increase in the permeability was observed from duodenum to ileum. Finally, this study indicated that porcine jejunal tissue segments can be used with undiluted luminal samples to predict human intestinal permeability and the effect of biorelevant matrices on this. In conclusion, viable porcine intestinal tissue mounted in the InTESTine™ system can be applied as a reliable tool for the assessment of intestinal permeability in the absence and presence of biorelevant samples. This would enable an accessible opportunity for a reliable prediction of human intestinal absorption, and the effect of luminal compounds such as digested foods, early in drug development. PMID:25046168

Westerhout, Joost; van de Steeg, Evita; Grossouw, Dimitri; Zeijdner, Evelijn E; Krul, Cyrille A M; Verwei, Miriam; Wortelboer, Heleen M

2014-10-15

42

In vitro activity of rifaximin against isolates from patients with small intestinal bacterial overgrowth.  

PubMed

Rifaximin, a non-absorbable rifamycin derivative, has published clinical efficacy in the alleviation of symptoms in patients with irritable bowel syndrome (IBS). Small intestinal bacterial overgrowth (SIBO) is associated with the pathogenesis of IBS. This study describes for the first time the antimicrobial effect of rifaximin against SIBO micro-organisms from humans. Fluid was aspirated from the third part of the duodenum from 567 consecutive patients; quantitative cultures diagnosed SIBO in 117 patients (20.6%). A total of 170 aerobic micro-organisms were isolated and the in vitro efficacy of rifaximin was studied by (i) minimum inhibitory concentration (MIC) testing by a microdilution technique and (ii) time-kill assays using bile to simulate the small intestinal environment. At a breakpoint of 32 ?g/mL, rifaximin inhibited in vitro 85.4% of Escherichia coli, 43.6% of Klebsiella spp., 34.8% of Enterobacter spp., 54.5% of other Enterobacteriaceae spp., 82.6% of non-Enterobacteriaceae Gram-negative spp., 100% of Enterococcus faecalis, 100% of Enterococcus faecium and 100% of Staphylococcus aureus. For the time-kill assays, 11 E. coli, 15 non-E. coli Gram-negative enterobacteria and three E. faecalis isolates were studied. Rifaximin produced a >3 log10 decrease in the starting inoculum against most of the tested isolates at 500 ?g/mL after 24h of growth. The results indicate that rifaximin has a potent effect on specific small bowel flora associated with SIBO. This conclusion should be regarded in light of the considerable time-kill effect at concentrations lower than those achieved in the bowel lumen after administration of conventional doses in humans. PMID:24461710

Pistiki, Aikaterini; Galani, Irene; Pyleris, Emmanouel; Barbatzas, Charalambos; Pimentel, Mark; Giamarellos-Bourboulis, Evangelos J

2014-03-01

43

Surface Expression of Toll-Like Receptor 9 Is Upregulated on Intestinal Epithelial Cells in Response to Pathogenic Bacterial DNA  

Microsoft Academic Search

Colonic epithelial cells are constantly exposed to high levels of bacterial DNA in the intestinal lumen and must recognize and respond appropriately to pathogens, while they maintain a tolerance to non- pathogenic commensal bacterial strains. Bacterial DNA is recognized by Toll-like receptor 9 (TLR9). The aim of this study was to investigate TLR9 expression and localization in colonic epithelial cells

Julia B. Ewaschuk; Jody L. Backer; Thomas A. Churchill; Florian Obermeier; Denis O. Krause; Karen L. Madsen

2007-01-01

44

The effect of bacterial enterotoxins implicated in SIDS on the rabbit intestine.  

PubMed

The aim of this project was to characterise the type of damage caused to the intestine of the infant rabbit by bacterial enterotoxins implicated in sudden infant death syndrome (SIDS). Samples of the duodenum, jejunum, ileum, caecum and large intestine exposed to the toxins for up to 6 hours were examined by scanning (SEM) and transmission electron microscopy (TEM). The damage was quantitatively assessed (% villi damaged) by SEM and qualitatively by SEM and TEM. Clostridium perfringens enterotoxin, staphylococcal enterotoxin B and Clostridium difficile toxin A + toxin B combined all caused severe damage to the villi in the small intestine (80-90% damage). Clostridium difficile toxin B caused only slight damage (17% to the jejunum, 26% to the caecum). Clostridium perfringens alpha-toxin caused moderate damage to the small intestine (duodenum 34%, caecum 35%), and Escherichia coli STa caused significant damage to the small (53-70%) and large intestine (51%). The level of toxin damage increased with time, the small intestine being more susceptible generally to damage than the large intestine. Each toxin differed in its ability to damage the villi, microvilli, enterocytes and lamina propria. PMID:11358052

Kamaras, J; Murrell, W G

2001-05-01

45

The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation  

PubMed Central

Highly diverse bacterial populations inhabit the gastrointestinal tract and modulate host inflammation and promote immune tolerance. In allogeneic hematopoietic stem cell transplantation (allo-HSCT), the gastrointestinal mucosa is damaged, and colonizing bacteria are impacted, leading to an impaired intestinal microbiota with reduced diversity. We examined the impact of intestinal diversity on subsequent mortality outcomes following transplantation. Fecal specimens were collected from 80 recipients of allo-HSCT at the time of stem cell engraftment. Bacterial 16S rRNA gene sequences were characterized, and microbial diversity was estimated using the inverse Simpson index. Subjects were classified into high, intermediate, and low diversity groups and assessed for differences in outcomes. Mortality outcomes were significantly worse in patients with lower intestinal diversity; overall survival at 3 years was 36%, 60%, and 67% for low, intermediate, and high diversity groups, respectively (P = .019, log-rank test). Low diversity showed a strong effect on mortality after multivariate adjustment for other clinical predictors (transplant related mortality: adjusted hazard ratio, 5.25; P = .014). In conclusion, the diversity of the intestinal microbiota at engraftment is an independent predictor of mortality in allo-HSCT recipients. These results indicate that the intestinal microbiota may be an important factor in the success or failure in allo-HSCT. PMID:24939656

Jenq, Robert R.; Perales, Miguel-Angel; Littmann, Eric R.; Morjaria, Sejal; Ling, Lilan; No, Daniel; Gobourne, Asia; Viale, Agnes; Dahi, Parastoo B.; Ponce, Doris M.; Barker, Juliet N.; Giralt, Sergio; van den Brink, Marcel; Pamer, Eric G.

2014-01-01

46

Probiotics in the intestinal tract of juvenile whiteleg shrimp Litopenaeus vannamei: modulation of the bacterial community.  

PubMed

Molecular analysis of the 16S rDNA of the intestinal microbiota of whiteleg shrimp Litopenaeus vannamei was examined to investigate the effect of a Bacillus mix (Bacillus endophyticus YC3-b, Bacillus endophyticus C2-2, Bacillus tequilensisYC5-2) and the commercial probiotic (Alibio(®)) on intestinal bacterial communities and resistance to Vibrio infection. PCR and single strain conformation polymorphism (SSCP) analyses were then performed on DNA extracted directly from guts. Injection of shrimp with V. parahaemolyticus at 2.5 × 10(5) CFU g(-1) per shrimp followed 168 h after inoculation with Bacillus mix or the Alibio probiotic or the positive control. Diversity analyses showed that the bacterial community resulting from the Bacillus mix had the highest diversity and evenness and the bacterial community of the control had the lowest diversity. The bacterial community treated with probiotics mainly consisted of ?- and ?-proteobacteria, fusobacteria, sphingobacteria, and flavobacteria, while the control mainly consisted of ?-proteobacteria and flavobacteria. Differences were grouped using principal component analyses of PCR-SSCP of the microbiota, according to the time of inoculation. In Vibrio parahaemolyticus-infected shrimp, the Bacillus mix (~33 %) induced a significant increase in survival compared to Alibio (~21 %) and the control (~9 %). We conclude that administration of the Bacillus mix induced modulation of the intestinal microbiota of L. vannamei and increased its resistance to V. parahaemolyticus. PMID:23161451

Luis-Villaseñor, Irasema E; Castellanos-Cervantes, Thelma; Gomez-Gil, Bruno; Carrillo-García, Angel E; Campa-Córdova, Angel I; Ascencio, Felipe

2013-02-01

47

A Revised Model for Dosimetry in the Human Small Intestine  

SciTech Connect

A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents.

John Poston; Nasir U. Bhuiyan; R. Alex Redd; Neil Parham; Jennifer Watson

2005-02-28

48

[Bacterial community structure in intestine of the white shrimp, Litopenaeus vannamei].  

PubMed

The composition of bacterial community in the intestine of the white shrimp, Litopenaeus vannamei under laboratory culture condition was determined using the 16S rDNA clone library. 16s rRNA gene was amplified and a library was constructed by using the genomic DNA extracted from the bacteria in the shrimp intestine as template. 12 different RFLP patterns of the clones were obtained by restriction fragment length polymorphism analysis using Afa I and Msp I. Compared with the published sequences in GenBank database, sequencing results of cloned 16S rDNA amplicons revealed a diverse community including gamma-proteobacteria and Firmicutes in the intestine of artificial diet-fed shrimp. Results showed that the Firmicutes group can be a dominant component (75.4%) in the shrimp intestinal microflora and other clones belong to gamma-proteobacteria (24.6%) which were identified as Shewanella sp., Pantoea sp., Aranicola sp., Pseudomonas sp. and Vibrio sp., respectively. These results provide the first comprehensive description of microbial diversity of the white shrimp intestine and suggest that most of the bacteria associated with shrimp intestine are uncultured and novel species. PMID:17944366

Li, Ke; Zheng, Tian-ling; Tian, Yun; Yuan, Jian-jun

2007-08-01

49

Scientists Grow, Implant Human Intestinal Tissue in Mice  

MedlinePLUS

... Cells SUNDAY, Oct. 19, 2014 (HealthDay News) -- New stem cell-based research could improve understanding of intestinal diseases and eventually lead to new treatments, a new study suggests. Scientists used stem cells to grow "organoids" of functioning human intestinal tissue ...

50

The Intestinal Bacterial Community in the Food Waste-Reducing Larvae of Hermetia illucens  

Microsoft Academic Search

As it is known that food waste can be reduced by the larvae of Hermetia illucens (Black soldier fly, BSF), the scientific and commercial value of BSF larvae has increased recently. We hypothesised that\\u000a the ability of catabolic degradation by BSF larvae might be due to intestinal microorganisms. Herein, we analysed the bacterial\\u000a communities in the gut of BSF larvae

Hyunbum Jeon; Soyoung Park; Jiyoung Choi; Gilsang Jeong; Sang-Beom Lee; Youngcheol Choi; Sung-Jae Lee

2011-01-01

51

[The aerobic bacterial intestinal flora of various wintering geese species].  

PubMed

The aerobic fecal flora of wintering Brent Goos (Branta bernicla), Barnacle Goose (Branta leucopsis), Greylag Goose (Anser anser), White-fronted Goose (Anser albifrons), Pink-footed Goose (Anser brachyrhynchus), and Bean Goose (Anser fabalis) was studied. There were no specific differences between the various geese. Bacterial counts were in the range of 10(5)-10(7) CPU per gram of feces. Neither pathogenic bacteria nor rotavirus could be detected in the fecal samples of the wintering geese, so that a contamination of the environment with those pathogenic organisms could be excluded. The majority of the isolated bacteria belonged to the genera Bacillus and Pseudomonas; enterobacteria and streptococci were less common. The observations are discussed regarding their epidemiological and ecological significance. PMID:7136353

Holländer, R

1982-07-01

52

Development of Fatal Intestinal Inflammation in MyD88 Deficient Mice Co-infected with Helminth and Bacterial Enteropathogens  

PubMed Central

Infections with intestinal helminth and bacterial pathogens, such as enteropathogenic Escherichia coli, continue to be a major global health threat for children. To determine whether and how an intestinal helminth parasite, Heligomosomoides polygyrus, might impact the TLR signaling pathway during the response to a bacterial enteropathogen, MyD88 knockout and wild-type C57BL/6 mice were infected with H. polygyrus, the bacterial enteropathogen Citrobacter rodentium, or both. We found that MyD88 knockout mice co-infected with H. polygyrus and C. rodentium developed more severe intestinal inflammation and elevated mortality compared to the wild-type mice. The enhanced susceptibility to C. rodentium, intestinal injury and mortality of the co-infected MyD88 knockout mice were found to be associated with markedly reduced intestinal phagocyte recruitment, decreased expression of the chemoattractant KC, and a significant increase in bacterial translocation. Moreover, the increase in bacterial infection and disease severity were found to be correlated with a significant downregulation of antimicrobial peptide expression in the intestinal tissue in co-infected MyD88 knockout mice. Our results suggest that the MyD88 signaling pathway plays a critical role for host defense and survival during helminth and enteric bacterial co-infection. PMID:25010669

Su, Libo; Qi, Yujuan; Zhang, Mei; Weng, Meiqian; Zhang, Xichen; Su, Chienwen; Shi, Hai Ning

2014-01-01

53

Wnt2 inhibits enteric bacterial-induced inflammation in intestinal epithelial cells  

PubMed Central

Background Wnt signaling plays an essential role in gastrointestinal epithelial proliferation. Most investigations have focused on developmental and immune responses. Bacterial infection can be chronic and increases the risk of inflammatory bowel disease and colitis-associated cancer. However, we lack studies on how bacteria regulate Wnt proteins and how Wnts modulate the host responses to enteric bacteria. This study investigated the effects of Salmonella and E. coli on Wnt2, one of the Wnt family members, in intestinal epithelia cells. Methodology/Findings Using cultured epithelial cells, a Salmonella-colitis mouse model, and a gnotobiotic mouse model, we found that Wnt2 mRNA and protein expression levels were elevated after bacterial infection. Enteric bacteria regulate Wnt2 location in the intestine. Furthermore, we found that elevation of Wnt2 was a strategy for host defense by inhibiting cell apoptosis and inflammatory responses to infection. Using Wnt2 siRNA analysis, we show enhanced inflammatory cytokine IL-8 in epithelial cells. Cells over-expressed Wnt2 had less bacterial-induced IL-8 secretion. AvrA is a bacterial protein that inhibits inflammation by stabilizing beta-catenin, the down-stream target of Wnt. We found that the stabilization of Wnt2 was regulated through ubiquitination. Moreover, the bacterial protein AvrA from Salmonella and E. coli stabilized Wnt2 protein expression in vivo. In an ex-germ-free system, E. coli F18 expressing AvrA increased Wnt2 expression and changed Wnt2 distribution in intestine. Conclusion Wnt2 contributes to host protection in response to enteric bacteria. Our findings thus reveal a previously undefined role of Wnt for host-pathogen interaction and inflammation. PMID:21674728

Liu, Xingyin; Lu, Rong; Wu, Shaoping; Zhang, Yong-guo; Xia, Yinglin; Sartor, R. Balfour; Sun, Jun

2012-01-01

54

In vitro evaluation of effects of gut region and fiber structure on the intestinal dominant bacterial diversity and functional bacterial species.  

PubMed

Understanding the intestinal bacteria in ruminants and their population kinetics is essential for their ecological function, as well as their interaction with the host. In this in vitro study, we aimed to determine whether gut region and fiber structure can influence bacterial diversity and functional bacterial population, together with the kinetics of functional bacterial species in the cecal inocula using PCR-DGGE and qPCR. A split plot design was conducted with gut regions (jejunum, ileum, cecum and colon) as main plot, and substrates (neutral detergent fiber (NDF) and cellulose (CEL)) as subplot. Incubation time and gut region affected dominant bacterial diversity. The numbers of total bacteria, cellulolytic bacteria, genus Prevotella and amylolytic bacteria in the hindgut inocula were greater (P < 0.05) than those in the small intestinal inocula. Fiber structure did not significantly influence the dominant bacterial diversity and the numbers of most examined functional bacterial species. The greatest increase rate of cellulolytic bacteria occurred earlier than amylolytic bacteria except for R. albus incubated with NDF. Changes in cellulolytic bacterial populations were not coordinative with alteration of fiber disappearance as well as CMCase and xylanase activities. All these suggest that the hindgut contents have greater potential to digest fiber than small intestinal contents, and cellulolytic bacteria are of significant value at the initial stage of fiber digestion among the fiber digestive microbes in the intestine. PMID:24972096

Jiao, Jinzhen; Lu, Qi; Tan, Zhiliang; Guan, Leluo; Zhou, Chuanshe; Tang, Shaoxun; Han, Xuefeng

2014-08-01

55

Microbiology of bacterial translocation in humans  

Microsoft Academic Search

Background—Gut translocation of bacteria has been shown in both animal and human studies. Evidence from animal studies that links bacterial translocation to the development of postoperative sepsis and multiple organ failure has yet to be confirmed in humans.Aims—To examine the spectrum of bacteria involved in translocation in surgical patients undergoing laparotomy and to determine the relation between nodal migration of

C J O’Boyle; J MacFie; C J Mitchell; D Johnstone; P M Sagar; P C Sedman

1998-01-01

56

Diversity and Contribution of the Intestinal Bacterial Community to the Development of Musca domestica (Diptera: Muscidae) Larvae  

E-print Network

of Musca domestica (Diptera: Muscidae) Larvae L. ZUREK, C. SCHAL, AND D. W. WATSON Department of Entomology The bacterial diversity in the intestinal tract of Musca domestica L. was examined in larvae collected from turkey bedding and corn silage. Aerobic culturing yielded 25 bacterial species, including 11 from larvae

57

Commensal Bacterial Communities Regulate Antiviral Immunity.  

E-print Network

??Alterations in the composition of commensal bacterial communities in the human intestine are associated with enhanced susceptibility to multiple inflammatory diseases. Further, studies in murine… (more)

Abt, Michael Christopher

2012-01-01

58

Three-Dimensional Coculture Of Human Small-Intestine Cells  

NASA Technical Reports Server (NTRS)

Complex three-dimensional masses of normal human epithelial and mesenchymal small-intestine cells cocultured in process involving specially designed bioreactors. Useful as tissued models for studies of growth, regulatory, and differentiation processes in normal intestinal tissues; diseases of small intestine; and interactions between cells of small intestine and viruses causing disease both in small intestine and elsewhere in body. Process used to produce other tissue models, leading to advances in understanding of growth and differentiation in developing organisms, of renewal of tissue, and of treatment of myriad of clinical conditions. Prior articles describing design and use of rotating-wall culture vessels include "Growing And Assembling Cells Into Tissues" (MSC-21559), "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), and "In Vitro, Matrix-Free Formation Of Solid Tumor Spheroids" (MSC-21843).

Wolf, David; Spaulding, Glen; Goodwin, Thomas J.; Prewett, Tracy

1994-01-01

59

Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases.  

PubMed

Mycotoxins are fungal metabolites able to affect the functions of numerous tissues and organs in animals and humans, including intestinal and immune systems. However, the potential link between exposure to some mycotoxins and human chronic intestinal inflammatory diseases, such as celiac and Crohn's diseases or ulcerative colitis, has not been investigated. Instead, several theories based on bacterial, immunological or neurological events have been elaborated to explain the etiology of these pathologies. Here we reviewed the literature on mycotoxin-induced intestinal dysfunctions and compared these perturbations to the impairments of intestinal functions typically observed in human chronic intestinal inflammatory diseases. Converging evidence based on various cellular and animal studies show that several mycotoxins induce intestinal alterations that are similar to those observed at the onset and during the progression of inflammatory bowel diseases. Although epidemiologic evidence is still required, existing data are sufficient to suspect a role of some food-associated mycotoxins in the induction and/or persistence of human chronic intestinal inflammatory diseases in genetically predisposed patients. PMID:20466014

Maresca, Marc; Fantini, Jacques

2010-09-01

60

Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans.  

PubMed

Almonds and almond skins are rich in fiber and other components that have potential prebiotic properties. In this study we investigated the prebiotic effects of almond and almond skin intake in healthy humans. A total of 48 healthy adult volunteers consumed a daily dose of roasted almonds (56 g), almond skins (10 g), or commercial fructooligosaccharides (8 g) (as positive control) for 6 weeks. Fecal samples were collected at defined time points and analyzed for microbiota composition and selected indicators of microbial activity. Different strains of intestinal bacteria had varying degrees of growth sensitivity to almonds or almond skins. Significant increases in the populations of Bifidobacterium spp. and Lactobacillus spp. were observed in fecal samples as a consequence of almond or almond skin supplementation. However, the populations of Escherichia coli did not change significantly, while the growth of the pathogen Clostridum perfringens was significantly repressed. Modification of the intestinal microbiota composition induced changes in bacterial enzyme activities, specifically a significant increase in fecal ?-galactosidase activity and decreases in fecal ?-glucuronidase, nitroreductase and azoreductase activities. Our observations suggest that almond and almond skin ingestion may lead to an improvement in the intestinal microbiota profile and a modification of the intestinal bacterial activities, which would induce the promotion of health beneficial factors and the inhibition of harmful factors. Thus we believe that almonds and almond skins possess potential prebiotic properties. PMID:24315808

Liu, Zhibin; Lin, Xiuchun; Huang, Guangwei; Zhang, Wen; Rao, Pingfan; Ni, Li

2014-04-01

61

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.  

PubMed

The use of diclofenac (DCF), a nonsteroidal anti-inflammatory drug, is associated with a high prevalence of gastrointestinal side effects. In vivo studies in rodents suggested that reactive metabolites of DCF produced by the liver or the intestine might be responsible for this toxicity. In the present study, precision-cut intestinal slices (PCIS) prepared from the jejunum of 18 human donors were used as an ex vivo model to investigate whether DCF intestinal metabolites are responsible for its intestinal toxicity in man. PCIS were incubated with a concentration range of DCF (0-600 µM) up to 24 h. DCF (?400 µM) caused direct toxicity to the intestine as demonstrated by ATP depletion, morphological damage, caspase 3 activation, and lactate dehydrogenase leakage. Three main metabolites produced by PCIS (4'-hydroxy DCF, 5-hydroxy DCF, and DCF acyl glucuronide) were detected by HPLC. Protein adducts were detected by immunohistochemical staining and showed correlation with the intestinal metabolites. DCF induced similar toxicity to each of the samples regardless of the variation in metabolism among them. Less metabolites were produced by slices incubated with 400 µM DCF than with 100 µM DCF. The addition of the metabolic inhibitors such as ketoconazole, cimetidine, or borneol decreased the metabolite formation but increased the toxicity. The results suggest that DCF can induce intestinal toxicity in human PCIS directly at therapeutically relevant concentrations, independent of the reactive metabolites 4'-OH DCF, 5-OH DCF, or diclofenac acylglucuronide produced by the liver or formed in the intestine. PMID:24770551

Niu, Xiaoyu; de Graaf, Inge A M; Langelaar-Makkinje, Miriam; Horvatovich, Peter; Groothuis, Geny M M

2014-04-26

62

Interaction of Campylobacter spp. and human probiotics in chicken intestinal mucus.  

PubMed

Campylobacter is the most common cause of bacterial food-borne diarrhoeal disease throughout the world. The principal risk of human contamination is handling and consumption of contaminated poultry meat. To colonize poultry, Campylobacter adheres to and persists in the mucus layer that covers the intestinal epithelium. Inhibiting adhesion to the mucus could prevent colonization of the intestine. The aim of this study was to investigate in vitro the protective effect of defined commercial human probiotic strains on the adhesion of Campylobacter spp. to chicken intestinal mucus, in a search for alternatives to antibiotics to control this food-borne pathogen. The probiotic strains Lactobacillus rhamnosus GG and Propionibacterium freudenreichii ssp. shermanii JS and a starter culture strain Lactococcus lactis ssp. lactis adhered well to chicken intestinal mucus and were able to reduce the binding of Campylobacter spp. when the mucus was colonized with the probiotic strain before contacting the pathogen. Human-intended probiotics could be useful as prophylactics in poultry feeding for controlling Campylobacter spp. colonization. PMID:22672405

Ganan, M; Martinez-Rodriguez, A J; Carrascosa, A V; Vesterlund, S; Salminen, S; Satokari, R

2013-03-01

63

In silico vs. in vivo human intestinal permeability.  

PubMed

The aim of this research is to calculate human intestinal permeability in silico and correlate results with those measured in vivo. Optimized human intestinal permeability values were calculated for 16 drugs by de-convolution of human plasma profiles using Parameter Estimation module of SimCYP program V13. Results showed high in silico-in vivo correlation coefficient of 0.89 for drugs with high/low permeability values. In silico permeability, if properly optimized, can be used as surrogate for in vivo permeability for BCS class I drugs and hence is suggested that such methodology could be employed as a support for waiver of in vivo studies. PMID:24515934

Idkaidek, N M; Najib, N

2014-12-01

64

Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human intestinal bacteria.  

PubMed

Sudan azo dyes are banned for food usage in most countries, but they are illegally used to maintain or enhance the color of food products due to low cost, bright staining, and wide availability of the dyes. In this report, we examined the toxic effects of these azo dyes and their potential reduction metabolites on 11 prevalent human intestinal bacterial strains. Among the tested bacteria, cell growth of 2, 3, 5, 5, and 1 strains was inhibited by Sudan I, II, III, IV, and Para Red, respectively. At the tested concentration of 100 ?M, Sudan I and II inhibited growth of Clostridium perfringens and Lactobacillus rhamnosus with decrease of growth rates from 14 to 47%. Sudan II also affected growth of Enterococcus faecalis. Growth of Bifidobacterium catenulatum, C. perfringens, E. faecalis, Escherichia coli, and Peptostreptococcus magnus was affected by Sudan III and IV with decrease in growth rates from 11 to 67%. C. perfringens was the only strain in which growth was affected by Para Red with 47 and 26% growth decreases at 6 and 10 h, respectively. 1-Amino-2-naphthol, a common metabolite of the dyes, was capable of inhibiting growth of most of the tested bacteria with inhibition rates from 8 to 46%. However, the other metabolites of the dyes had no effect on growth of the bacterial strains. The dyes and their metabolites had less effect on cell viability than on cell growth of the tested bacterial strains. Clostridium indolis and Clostridium ramosum were the only two strains with about a 10 % decrease in cell viability in the presence of Sudan azo dyes. The present results suggested that Sudan azo dyes and their metabolites potentially affect the human intestinal bacterial ecology by selectively inhibiting some bacterial species, which may have an adverse effect on human health. PMID:22634331

Pan, Hongmiao; Feng, Jinhui; He, Gui-Xin; Cerniglia, Carl E; Chen, Huizhong

2012-08-01

65

Effects of Intrapartum Penicillin Prophylaxis on Intestinal Bacterial Colonization in Infants  

PubMed Central

Early-onset group B streptococcal (GBS) infections remain a leading cause of morbidity and mortality in infants. To prevent the vertical transmission of GBS and neonatal GBS infection, guidelines recommend intrapartum penicillin or amoxicillin prophylaxis. This intrapartum antibiotic prophylaxis (IAP) is suspected to favor colonization by antibiotic-resistant bacteria. However, the effects of this prophylaxis on the patterns of acquisition of gastrointestinal bacterial flora in infants have never been studied. We collected stool samples from 3-day-old infants born to mothers who received intrapartum amoxicillin (antibiotic-exposed group; n = 25) and to untreated mothers (non-antibiotic-exposed group; n = 25). The groups were matched for factors known to affect intestinal microbial colonization: gestational age, type of delivery, and type of feeding. Qualitative and quantitative differential analyses of the bacterial flora in stool samples were performed. Similar numbers of infants in the non-antibiotic-exposed and antibiotic-exposed groups were colonized by aerobic bacteria and amoxicillin-resistant enterobacteria (75 and 77%, respectively) (P = 0.79). In contrast, significantly fewer infants in the antibiotic-exposed group than in the non-antibiotic-exposed group were colonized by anaerobic bacteria, especially Clostridium (12 and 40%, respectively) (P < 0.05). Regarding intestinal bacterial colonization, the differences between antibiotic-exposed and non-antibiotic-exposed infants were remarkably few. The only statistically significant effect was the reduced initial bacterial colonization by Clostridium in the antibiotic-exposed group. In our study, the use of IAP did not favor colonization by ?-lactam-resistant bacteria. However, further evaluations are required to highlight the potential risks of the widespread use of antibiotics to prevent early-onset GBS infection. PMID:15528713

Jauréguy, Françoise; Carton, Mathieu; Panel, Pierre; Foucaud, Pierre; Butel, Marie-José; Doucet-Populaire, Florence

2004-01-01

66

Imprint cytology detects floating Brachyspira in human intestinal spirochetosis.  

PubMed

Human intestinal spirochetosis is a colorectal infectious disease caused by 2 Brachyspira species. Its diagnosis is established by histology, culture, and polymerase chain reaction, but the value of cytologic examination in routine practice remains unclear. In this study, imprint cytology of biopsy specimens was examined for cytologic features specific to human intestinal spirochetosis. Specimens were obtained from 65 colorectal regions (1-3 regions from each case) in 25 ultrastructurally and/or genetically confirmed human intestinal spirochetosis cases (20 with Brachyspira aalborgi, 3 with B pilosicoli, 2 with both genotypes). In cytologic specimens, spirochetes tended to be floating freely within the mucus and intestinal fluid, whereas the "fringe formation" of spirochetes typically observed in histologic specimens was indistinct in cytologic specimens. Spirochetes were identified in 58 regions (89.2%) and 23 cases (92.0%) by cytology, against in 50 regions (76.9%) and 22 cases (88.0%) by histology (no significant differences). In 6 of 8 regions exhibiting positive cytology and negative histology, B pilosicoli was present within the mucus. Hence, B pilosicoli may tend to float in the mucus. In conclusion, cytologic examination would be useful for the routine identification of human intestinal spirochetosis, especially if B pilosicoli is involved. Further, we suggest the existence of differences in biological behavior between these spirochetes. PMID:19836054

Ogata, Sho; Higashiyama, Masaaki; Adachi, Yoshikazu; Ohara, Ichiyo; Nishiyama, Junichiro; Okusa, Yasushi; Takeo, Hiroaki; Sato, Kimiya; Nakanishi, Kuniaki; Kawai, Toshiaki

2010-02-01

67

Methane production and small intestinal bacterial overgrowth in children living in a slum  

PubMed Central

AIM: To analyze small intestinal bacterial overgrowth in school-aged children and the relationship between hydrogen and methane production in breath tests. METHODS: This transversal study included 85 children residing in a slum and 43 children from a private school, all aged between 6 and 10 years, in Osasco, Brazil. For characterization of the groups, data regarding the socioeconomic status and basic housing sanitary conditions were collected. Anthropometric data was obtained in children from both groups. All children completed the hydrogen (H2) and methane (CH4) breath test in order to assess small intestinal bacterial overgrowth (SIBO). SIBO was diagnosed when there was an increase in H2 ? 20 ppm or CH4 ? 10 ppm with regard to the fasting value until 60 min after lactulose ingestion. RESULTS: Children from the slum group had worse living conditions and lower nutritional indices than children from the private school. SIBO was found in 30.9% (26/84) of the children from the slum group and in 2.4% (1/41) from the private school group (P = 0.0007). Greater hydrogen production in the small intestine was observed in children from the slum group when compared to children from the private school (P = 0.007). A higher concentration of hydrogen in the small intestine (P < 0.001) and in the colon (P < 0.001) was observed among the children from the slum group with SIBO when compared to children from the slum group without SIBO. Methane production was observed in 63.1% (53/84) of the children from the slum group and in 19.5% (8/41) of the children from the private school group (P < 0.0001). Methane production was observed in 38/58 (65.5%) of the children without SIBO and in 15/26 (57.7%) of the children with SIBO from the slum. Colonic production of hydrogen was lower in methane-producing children (P = 0.017). CONCLUSION: Children who live in inadequate environmental conditions are at risk of bacterial overgrowth and methane production. Hydrogen is a substrate for methane production in the colon. PMID:23139610

Mello, Carolina Santos; Tahan, Soraia; Melli, Lígia Cristina FL; Rodrigues, Mirian Silva do Carmo; de Mello, Ricardo Martin Pereira; Scaletsky, Isabel Cristina Affonso; de Morais, Mauro Batista

2012-01-01

68

Metronidazole improves intestinal microcirculation in septic rats independently of bacterial burden.  

PubMed

To explore the effects of metronidazole (Me) on intestinal microcirculation in septic rats, intravital microscopy (IVM) following 16 hours of colon ascendens stent peritonitis (CASP model) was used. Four groups of animals were studied: control group (sham operation) and CASP group, each with and without Me treatment (10 mg/kg i.v.). In order to investigate the substance-specific effects of Me independently of the antibacterial effects within a pathologically altered microcirculation, a second experimental series with lipopolysaccharide challenge (LPS model) was carried out. The LPS model consisted of the four groups (control animals and LPS animals (15 mg/kg i.v. LPS from E. coli) with and without Me). IVM in the LPS experiments was performed following a two hour observation period. Me treated CASP or LPS animals, as compared with untreated, demonstrated significant improvement of functional capillary density (FCD) of the intestinal wall. The increase in the number of leukocytes firmly adhered to the endothelium (leukocyte sticking) in the untreated CASP or LPS animals within the V1 venules of the intestinal submucosal layer, was significantly reduced in the Me treated animals. In conclusion, Me exerts beneficial anti-bacterial and anti-inflammatory effects within the septic microcirculation. PMID:16614467

Lehmann, Ch; Bac, V H; Pavlovic, D; Lustig, M; Maier, S; Feyerherd, F; Usichenko, T-I; Meissner, K; Haase, H; Jünger, M; Wendt, M; Heidecke, C-D; Gründling, M

2006-01-01

69

Molecular Characterisation of Bacterial Community Structure along the Intestinal Tract of Zebrafish (Danio rerio): A Pilot Study  

PubMed Central

The bacterial composition along the intestinal tract of Danio rerio was investigated by cultivation-independent analysis of the 16S rRNA gene. Clone libraries were constructed for three compartments of the intestinal tract of individual fish. 566 individual clones were differentiated by amplified 16S rRNA gene restriction analysis (ARDRA), and clone representatives from each operational taxonomic unit (OTU) were sequenced. As reported in other studies, we found that Proteobacteria was the most prominent phylum among clone libraries from different fish. Data generated from this pilot study indicated some compositional differences in bacterial communities. Two dominant classes, Gammaproteobacteria and Bacilli, displayed different levels of abundance in different compartments; Gammaproteobacteria increased along the intestinal tract, while Bacilli decreased its abundance along the proximal-distal axis. Less obvious spatial patterns were observed for other classes. In general, bacterial diversity in the intestinal bulb was greater than that in the posterior intestine. Interindividual differences in bacterial diversity and composition were also noted in this study. PMID:23724326

Lan, Chuan-Ching; Love, Donald R.

2012-01-01

70

Spatial organization of bacterial flora in normal and inflamed intestine: A fluorescence in situ hybridization study in mice  

PubMed Central

AIM: To study the role of intestinal flora in inflammatory bowel disease (IBD). METHODS: The spatial organization of intestinal flora was investigated in normal mice and in two models of murine colitis using fluorescence in situ hybridization. RESULTS: The murine small intestine was nearly bacteria-free. The normal colonic flora was organized in three distinct compartments (crypt, interlaced, and fecal), each with different bacterial compositions. Crypt bacteria were present in the cecum and proximal colon. The fecal compartment was composed of homogeneously mixed bacterial groups that directly contacted the colonic wall in the cecum but were separated from the proximal colonic wall by a dense interlaced layer. Beginning in the middle colon, a mucus gap of growing thickness physically separated all intestinal bacteria from contact with the epithelium. Colonic inflammation was accompanied with a depletion of bacteria within the fecal compartment, a reduced surface area in which feces had direct contact with the colonic wall, increased thickness and spread of the mucus gap, and massive increases of bacterial concentrations in the crypt and interlaced compartments. Adhesive and infiltrative bacteria were observed in inflamed colon only, with dominant Bacteroides species. CONCLUSION: The proximal and distal colons are functionally different organs with respect to the intestinal flora, representing a bioreactor and a segregation device. The highly organized structure of the colonic flora, its specific arrangement in different colonic segments, and its specialized response to inflammatory stimuli indicate that the intestinal flora is an innate part of host immunity that is under complex control. PMID:15754393

Swidsinski, Alexander; Loening-Baucke, Vera; Lochs, Herbert; Hale, Laura P.

2005-01-01

71

Comparative Analysis of the Intestinal Bacterial and RNA Viral Communities from Sentinel Birds Placed on Selected Broiler Chicken Farms  

PubMed Central

There is a great deal of interest in characterizing the complex microbial communities in the poultry gut, and in understanding the effects of these dynamic communities on poultry performance, disease status, animal welfare, and microbes with human health significance. Investigations characterizing the poultry enteric virome have identified novel poultry viruses, but the roles these viruses play in disease and performance problems have yet to be fully characterized. The complex bacterial community present in the poultry gut influences gut development, immune status, and animal health, each of which can be an indicator of overall performance. The present metagenomic investigation was undertaken to provide insight into the colonization of specific pathogen free chickens by enteric microorganisms under field conditions and to compare the pre-contact intestinal microbiome with the altered microbiome following contact with poultry raised in the field. Analysis of the intestinal virome from contact birds (“sentinels”) placed on farms revealed colonization by members of the Picornaviridae, Picobirnaviridae, Reoviridae, and Astroviridae that were not present in pre-contact birds or present in proportionally lower numbers. Analysis of the sentinel gut bacterial community revealed an altered community in the post-contact birds, notably by members of the Lachnospiracea/Clostridium and Lactobacillus families and genera. Members of the avian enteric Reoviridae and Astroviridae have been well-characterized and have historically been implicated in poultry enteric disease; members of the Picobirnaviridae and Picornaviridae have only relatively recently been described in the poultry and avian gut, and their roles in the recognized disease syndromes and in poultry performance in general have not been determined. This metagenomic analysis has provided insight into the colonization of the poultry gut by enteric microbes circulating in commercial broiler flocks, and has identified enteric viruses and virus communities that warrant further study in order to understand their role(s) in avian gut health and disease. PMID:25635690

Day, J. Michael; Oakley, Brian B.; Seal, Bruce S.; Zsak, Laszlo

2015-01-01

72

Comparative analysis of the intestinal bacterial and RNA viral communities from sentinel birds placed on selected broiler chicken farms.  

PubMed

There is a great deal of interest in characterizing the complex microbial communities in the poultry gut, and in understanding the effects of these dynamic communities on poultry performance, disease status, animal welfare, and microbes with human health significance. Investigations characterizing the poultry enteric virome have identified novel poultry viruses, but the roles these viruses play in disease and performance problems have yet to be fully characterized. The complex bacterial community present in the poultry gut influences gut development, immune status, and animal health, each of which can be an indicator of overall performance. The present metagenomic investigation was undertaken to provide insight into the colonization of specific pathogen free chickens by enteric microorganisms under field conditions and to compare the pre-contact intestinal microbiome with the altered microbiome following contact with poultry raised in the field. Analysis of the intestinal virome from contact birds ("sentinels") placed on farms revealed colonization by members of the Picornaviridae, Picobirnaviridae, Reoviridae, and Astroviridae that were not present in pre-contact birds or present in proportionally lower numbers. Analysis of the sentinel gut bacterial community revealed an altered community in the post-contact birds, notably by members of the Lachnospiracea/Clostridium and Lactobacillus families and genera. Members of the avian enteric Reoviridae and Astroviridae have been well-characterized and have historically been implicated in poultry enteric disease; members of the Picobirnaviridae and Picornaviridae have only relatively recently been described in the poultry and avian gut, and their roles in the recognized disease syndromes and in poultry performance in general have not been determined. This metagenomic analysis has provided insight into the colonization of the poultry gut by enteric microbes circulating in commercial broiler flocks, and has identified enteric viruses and virus communities that warrant further study in order to understand their role(s) in avian gut health and disease. PMID:25635690

Day, J Michael; Oakley, Brian B; Seal, Bruce S; Zsak, Laszlo

2015-01-01

73

Identification of Paneth cells in pyloric glands associated with gastric and intestinal mixed-type intestinal metaplasia of the human stomach  

Microsoft Academic Search

We have proposed that intestinal metaplasia (IM) of the human stomach be divided into two types on the basis of cell differentiation status: a gastric and intestinal (GI) mixed type and a solely intestinal (I) type. In the GI mixed type, gastric (foveolar epithelial and pyloric gland cells) and intestinal (goblet, intestinal absorptive, and Paneth cells) phenotype cells coexist in

Ken-ichi Inada; Harunari Tanaka; Hayao Nakanishi; Tetsuya Tsukamoto; Yuzuru Ikehara; Keiko Tatematsu; Shigeo Nakamura; Edith Martin Porter; Masae Tatematsu

2001-01-01

74

Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing.  

PubMed

Gut microbiota is increasingly regarded as an integral component of the host, due to important roles in the modulation of the immune system, the proliferation of the intestinal epithelium and the regulation of the dietary energy intake. Understanding the factors that influence the composition of these microbial communities is essential to health management, and the application to aquatic animals still requires basic investigation. In this study, we compared the bacterial communities harboured in the intestines and in the rearing water of grass carp (Ctenopharyngodon idellus), crucian carp (Carassius cuvieri), and bighead carp (Hypophthalmichthys nobilis), by using 454-pyrosequencing with barcoded primers targeting the V4 to V5 regions of the bacterial 16S rRNA gene. The specimens of the three species were cohabiting in the same pond. Between 6,218 and 10,220 effective sequences were read from each sample, resulting in a total of 110,398 sequences for 13 samples from gut microbiota and pond water. In general, the microbial communities of the three carps were dominated by Fusobacteria, Firmicutes, Proteobacteria and Bacteroidetes, but the abundance of each phylum was significantly different between species. At the genus level, the overwhelming group was Cetobacterium (97.29?±?0.46 %) in crucian carp, while its abundance averaged c. 40 and 60 % of the sequences read in the other two species. There was higher microbial diversity in the gut of filter-feeding bighead carp than the gut of the two other species, with grazing feeding habits. The composition of intestine microbiota of grass carp and crucian carp shared higher similarity when compared with bighead carp. The principal coordinates analysis (PCoA) with the weighted UniFrac distance and the heatmap analysis suggested that gut microbiota was not a simple reflection of the microbial community in the local habitat but resulted from species-specific selective pressures, possibly dependent on behavioural, immune and metabolic characteristics. PMID:25145494

Li, Tongtong; Long, Meng; Gatesoupe, François-Joël; Zhang, Qianqian; Li, Aihua; Gong, Xiaoning

2015-01-01

75

Reprogramming of the human intestinal epigenome by surgical tissue transposition  

PubMed Central

Extracellular cues play critical roles in the establishment of the epigenome during development and may also contribute to epigenetic perturbations found in disease states. The direct role of the local tissue environment on the post-development human epigenome, however, remains unclear due to limitations in studies of human subjects. Here, we use an isogenic human ileal neobladder surgical model and compare global DNA methylation levels of intestinal epithelial cells pre- and post-neobladder construction using the Infinium HumanMethylation450 BeadChip. Our study is the first to quantify the effect of environmental cues on the human epigenome and show that the local tissue environment directly modulates DNA methylation patterns in normal differentiated cells in vivo. In the neobladder, the intestinal epithelial cells lose their tissue-specific epigenetic landscape in a time-dependent manner following the tissue’s exposure to a bladder environment. We find that de novo methylation of many intestine-specific enhancers occurs at the rate of 0.41% per month (P < 0.01, Pearson = 0.71), while demethylation of primarily non-intestine-specific transcribed regions occurs at the rate of ?0.37% per month (P < 0.01, Pearson = ?0.57). The dynamic resetting of the DNA methylome in the neobladder not only implicates local environmental cues in the shaping and maintenance of the epigenome but also illustrates an unexpected cross-talk between the epigenome and the cellular environment. PMID:24515120

Lay, Fides D.; Triche, Timothy J.; Tsai, Yvonne C.; Su, Sheng-Fang; Martin, Sue Ellen; Daneshmand, Siamak; Skinner, Eila C.; Liang, Gangning; Chihara, Yoshitomo; Jones, Peter A.

2014-01-01

76

Sequence and characterization of the human intestinal alkaline phosphatase gene.  

PubMed

At least four genes encode the human alkaline phosphatases (ALPs). The genes encoding three of these proteins (intestinal, placental, and placental-like ALPs), are linked on the long arm of chromosome 2, while the fourth gene (encoding liver/bone/kidney ALP) is located on chromosome 1. One of the linked genes, intestinal alkaline phosphatase, has been isolated on two overlapping phage clones and sequenced in its entirety. The gene is composed of 11 exons interrupted by 10 introns. Introns in intestinal, placental, and liver/bone/kidney ALPs occur at analogous positions (see accompanying articles), confirming that these genes arose from a single ancestral ALP gene. Multiple intestinal ALP mRNA species can be detected in RNA isolated from adult and fetal intestine and from cell line RNAs. In cell line RNA, the various species are the result of differential use of at least three of the four polyadenylation signals present in the intestinal ALP gene. A 125-base pair fragment located 5' to the first exon can function as a promoter in mammalian cells. This region contains two putative transcription signals, a TATA-like sequence and a consensus binding site for the transcription factor Sp1. PMID:2841341

Henthorn, P S; Raducha, M; Kadesch, T; Weiss, M J; Harris, H

1988-08-25

77

Intestinal-fatty acid binding protein and lipid transport in human intestinal epithelial cells  

SciTech Connect

Intestinal-fatty acid binding protein (I-FABP) is a 14-15 kDa cytoplasmic molecule highly expressed in the enterocyte. Although different functions have been proposed for various FABP family members, the specific function of I-FABP in human intestine remains unclear. Here, we studied the role of I-FABP in molecularly modified normal human intestinal epithelial cells (HIEC-6). cDNA transfection resulted in 90-fold I-FABP overexpression compared to cells treated with empty pQCXIP vector. The high-resolution immunogold technique revealed labeling mainly in the cytosol and confirmed the marked phenotype abundance of I-FABP in cDNA transfected cells. I-FABP overexpression was not associated with alterations in cell proliferation and viability. Studies using these transfected cells cultured with [{sup 14}C]oleic acid did not reveal higher efficiency in de novo synthesis or secretion of triglycerides, phospholipids, and cholesteryl esters compared to cells treated with empty pQCXIP vector only. Similarly, the incubation with [{sup 35}S]methionine did not disclose a superiority in the biogenesis of apolipoproteins (apo) A-I, A-IV, B-48, and B-100. Finally, cells transfected with I-FABP did not exhibit an increased production of chylomicrons, VLDL, LDL, and HDL. Our observations establish that I-FABP overexpression in normal HIEC-6 is not related to cell proliferation, lipid esterification, apo synthesis, and lipoprotein assembly, and, therefore, exclude its role in intestinal fat transport.

Montoudis, Alain [Department of Nutrition, Universite de Montreal and Research Center, CHU Sainte Justine, 3175 Cote Ste-Catherine, Montreal, Que., H3T 1C5 (Canada); Delvin, Edgard [Department of Biochemistry, Universite de Montreal and Research Center, CHU Sainte Justine, 3175 Cote Ste-Catherine, Montreal, Que., H3T 1C5 (Canada); Canadian Institute of Health Research, Group of the Functional Development and Physiopathology of the Digestive Tract, and Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Que., Canada J1H 5N4 (Canada); Menard, Daniel [Department of Pathology and Cell Biology, Universite de Montreal and Research Center, CHU Sainte Justine, 3175 Cote Ste-Catherine, Montreal, Que., H3T 1C5 (Canada); Canadian Institute of Health Research, Group of the Functional Development and Physiopathology of the Digestive Tract, and Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Que., J1H 5N4 (Canada)] (and others)

2006-01-06

78

Human Ghrelin Mitigates Intestinal Injury and Mortality after Whole Body Irradiation in Rats  

PubMed Central

Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury. PMID:25671547

Wang, Zhimin; Yang, Weng Lang; Jacob, Asha; Aziz, Monowar; Wang, Ping

2015-01-01

79

The influence of fruit ingestion before meals upon the bacterial flora of stomach and large intestine and on food allergins  

Microsoft Academic Search

HE influence of various fruits upon gastro-intestinal function has been studied in this laboratory for the past few years. The intra-alimentary contents, from the oral cavity to the anal opening, depend upon the materials ingested, the fluids secreted, and the bacterial flora in the lumen of this tract. We have been particularly interested in the bacterial flora and the acid-base

Olaf Bergeim; Arthur Hanszen; Lloyd Arnold

1936-01-01

80

Role of Ankaferd on bacterial translocation and inflammatory response in an experimental rat model of intestinal obstruction  

PubMed Central

Intestinal obstruction (IO) is an important risk factor for the development of bacteria translocation (BT), a serious condition associated with sepsis and potential mortality. Ankaferd is an herbal extract that is reported to exert anti-hemorrhagic, anti-oxidant, anti-microbial, and anti-inflammatory, effects in the intestine. In this study, we employed an animal model of intestinal obstruction to evaluate the effects of Ankaferd in the prevention of bacterial translocation and the suppression of the inflammatory response. Thirty male Wistar Albino rats were allocated randomly to three groups: Group 1 (sham) underwent ileal manipulation alone; Group 2 (intestinal obstruction, IO) underwent complete ileal ligation; Group 3 (intestinal obstruction + Ankaferd blood stopper, ABS) underwent complete ileal ligation and intraperitoneal Ankaferd injection. All rats were euthanized after 24 hours. Blood samples were collected for the measurement of serum oxidative stress parameters and cytokine expression. In addition, liver, mesenteric lymph node (MLN), spleen, and ileal specimens were obtained for microbiological culture to determine the rate of bacterial translocation. Liver and ileal tissues were collected for histopathological examination. A reduction in oxidative damage, inflammatory cytokine expression and bacterial translocation was observed in the ABS treatment group relative to the IO group (p<0.05). Furthermore, histopathological examination demonstrated a reduction in obstruction-induced mucosal injury in Ankaferd-treated rats. Data derived from this study provided the first evidence that Ankaferd treatment limits bacterial translocation and enhances intestinal barrier function in mice undergoing intestinal obstruction. Ankaferd may be useful in the prevention of BT associated with IO. PMID:25356125

?en, Velat; Uluca, Ünal; Ece, Ayd?n; Güne?, Ali; Zeytun, Hikmet; Arslan, Serkan; Kaplan, ?brahim; Türkçü, Gül; Tekin, Recep

2014-01-01

81

Intestinal fluid and electrolyte transport in human cholera  

PubMed Central

The site, nature, magnitude, and duration of fluid and electrolyte loss into the small intestine during the acute and recovery phase of human cholera was defined in 27 Indian patients. 11 subjects without cholera served as controls. The marker perfusion technique employed was shown, in preliminary experiments, to measure accurately jejunal and ileal fluid and electrolyte transmucosal transport rates under conditions of cholera diarrhea. Fluid loss into the lumen occurred from jejunal and ileal mucosa. The fluid was isotonic in both regions. Bicarbonate concentration was significantly higher in ileal than jejunal fluid during all phases of the disease. Bicarbonate concentration in both regions was significantly higher in acute cholera than during convalescence. Fluid loss into the intestinal lumen ranged from 0.07 to 10.9 ml/hr per cm. Losses were significantly greater from jejunum than ileum. Net ileal absorption was recorded in five of 10 acute cholera studies. During the acute phase of the disease, net jejunal fluid transport showed a positive correlation with fasting intestinal flow rate and stool output. Stool output was also positively correlated with jejunal fasting intestinal flow rates. Recovery of normal fluid and electrolyte absorptive function was usually complete in both jejunum and ileum by the sixth day after admission. These findings in human cholera validate the animal models of choleraic diarrhea and suggest that similar measurements of small intestinal secretory function in other nonspecific diarrheal diseases using the marker perfusion technique may be rewarding. PMID:5409804

Banwell, John G.; Pierce, Nathaniel F.; Mitra, Rupak C.; Brigham, Kenneth L.; Caranasos, George J.; Keimowitz, Robert I.; Fedson, David S.; Thomas, Jacob; Gorbach, Sherwood L.; Sack, R. Bradley; Mondal, Arabindo

1970-01-01

82

Consumption of milk from transgenic goats expressing human lysozyme in the mammary gland results in the modulation of intestinal microflora.  

PubMed

Lysozyme is a key antimicrobial component of human milk that has several health-promoting functions including the development of a healthy intestinal tract. However, levels of lysozyme in the milk of dairy animals are negligible. We have generated transgenic dairy goats that express human lysozyme (HLZ) in their milk in an attempt to deliver the benefits of human milk in a continual fashion. To test the feasibility of this transgenic approach to achieve a biological impact at the level of the intestine, feeding trials were conducted in two animal models. Pasteurized milk from HLZ transgenic animals was fed to both kid goats (ruminant model) and young pigs (human model), and the numbers of total coliforms and Escherichia coli present in the small intestine were determined. Data from this proof-of-principle study demonstrate that milk from transgenic animals was capable of modulating the bacterial population of the gut in both animal models. Pigs that consumed pasteurized milk from HLZ transgenic goats had fewer numbers of coliforms and E. coli in their intestine than did those receiving milk from non-transgenic control animals. The opposite effect was seen in goats. Milk from these transgenic animals not only represent one of the first transgenic food products with the potential of benefiting human health, but are also a unique model to study the development and role of intestinal microflora on health, well-being and resistance to disease. PMID:16906451

Maga, Elizabeth A; Walker, Richard L; Anderson, Gary B; Murray, James D

2006-08-01

83

Quantitation of small intestinal permeability during normal human drug absorption  

PubMed Central

Background Understanding the quantitative relationship between a drug’s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorption in humans was determined by deconvolution and related to the intestinal permeability by the use of a new 3 parameter model function (“Averaged Model” (AM)). The theoretical validity of this AM model was evaluated by comparing it to the standard diffusion-convection model (DC). This analysis was applied to 90 drugs using previously published data. Only drugs that were administered in oral solution form to fasting subjects were considered so that the rate of gastric emptying was approximately known. All the calculations are carried out using the freely available routine PKQuest Java (http://www.pkquest.com) which has an easy to use, simple interface. Results Theoretically, the AM permeability provides an accurate estimate of the intestinal DC permeability for solutes whose absorption ranges from 1% to 99%. The experimental human AM permeabilities determined by deconvolution are similar to those determined by direct human jejunal perfusion. The small intestinal pH varies with position and the results are interpreted in terms of the pH dependent octanol partition. The permeability versus partition relations are presented separately for the uncharged, basic, acidic and charged solutes. The small uncharged solutes caffeine, acetaminophen and antipyrine have very high permeabilities (about 20 x 10-4?cm/sec) corresponding to an unstirred layer of only 45??m. The weak acid aspirin also has a large AM permeability despite its low octanol partition at pH?7.4, suggesting that it is nearly completely absorbed in the first part of the intestine where the pH is about 5.4. Conclusions The AM deconvolution method provides an accurate estimate of the human intestinal permeability. The results for these 90 drugs should provide a useful benchmark for evaluating QSAR models. PMID:23800230

2013-01-01

84

Human intestinal diamine oxidase: Substrate specificity and comparative inhibitor study  

Microsoft Academic Search

For an 80-fold purified preparation of human intestinal diamine oxidase the optimum conditions of incubation, the substrate and the inhibitor specificity were tested. Putrescine was the most favoured substrate butN?-methylhistamine and 2-methylhistamine were metabolized at optimum conditions with nearly the same velocity. Histamine reached about 50% of the reaction velocity of putrescine.

T. Biega?ski; J. Kusche; K.-D. Feußner; R. Hesterberg; H. Richter; W. Lorenz

1980-01-01

85

Bacterial Diversity in Human Subgingival Plaque  

PubMed Central

The purpose of this study was to determine the bacterial diversity in the human subgingival plaque by using culture-independent molecular methods as part of an ongoing effort to obtain full 16S rRNA sequences for all cultivable and not-yet-cultivated species of human oral bacteria. Subgingival plaque was analyzed from healthy subjects and subjects with refractory periodontitis, adult periodontitis, human immunodeficiency virus periodontitis, and acute necrotizing ulcerative gingivitis. 16S ribosomal DNA (rDNA) bacterial genes from DNA isolated from subgingival plaque samples were PCR amplified with all-bacterial or selective primers and cloned into Escherichia coli. The sequences of cloned 16S rDNA inserts were used to determine species identity or closest relatives by comparison with sequences of known species. A total of 2,522 clones were analyzed. Nearly complete sequences of approximately 1,500 bases were obtained for putative new species. About 60% of the clones fell into 132 known species, 70 of which were identified from multiple subjects. About 40% of the clones were novel phylotypes. Of the 215 novel phylotypes, 75 were identified from multiple subjects. Known putative periodontal pathogens such as Porphyromonas gingivalis, Bacteroides forsythus, and Treponema denticola were identified from multiple subjects, but typically as a minor component of the plaque as seen in cultivable studies. Several phylotypes fell into two recently described phyla previously associated with extreme natural environments, for which there are no cultivable species. A number of species or phylotypes were found only in subjects with disease, and a few were found only in healthy subjects. The organisms identified only from diseased sites deserve further study as potential pathogens. Based on the sequence data in this study, the predominant subgingival microbial community consisted of 347 species or phylotypes that fall into 9 bacterial phyla. Based on the 347 species seen in our sample of 2,522 clones, we estimate that there are 68 additional unseen species, for a total estimate of 415 species in the subgingival plaque. When organisms found on other oral surfaces such as the cheek, tongue, and teeth are added to this number, the best estimate of the total species diversity in the oral cavity is approximately 500 species, as previously proposed. PMID:11371542

Paster, Bruce J.; Boches, Susan K.; Galvin, Jamie L.; Ericson, Rebecca E.; Lau, Carol N.; Levanos, Valerie A.; Sahasrabudhe, Ashish; Dewhirst, Floyd E.

2001-01-01

86

Exopolysaccharides Produced by Intestinal Bifidobacterium Strains Act as Fermentable Substrates for Human Intestinal Bacteria ?  

PubMed Central

Eleven exopolysaccharides (EPS) isolated from different human intestinal Bifidobacterium strains were tested in fecal slurry batch cultures and compared with glucose and the prebiotic inulin for their abilities to act as fermentable substrates for intestinal bacteria. During incubation, the increases in levels of short-chain fatty acids (SCFA) were considerably more pronounced in cultures with EPS, glucose, and inulin than in controls without carbohydrates added, indicating that the substrates assayed were fermented by intestinal bacteria. Shifts in molar proportions of SCFA during incubation with EPS and inulin caused a decrease in the acetic acid-to-propionic acid ratio, a possible indicator of the hypolipidemic effect of prebiotics, with the lowest values for this parameter being obtained for EPS from the species Bifidobacterium longum and from Bifidobacterium pseudocatenulatum strain C52. This behavior was contrary to that found with glucose, a carbohydrate not considered to be a prebiotic and for which a clear increase of this ratio was obtained during incubation. Quantitative real-time PCR showed that EPS exerted a moderate bifidogenic effect, which was comparable to that of inulin for some polymers but which was lower than that found for glucose. PCR-denaturing gradient gel electrophoresis of 16S rRNA gene fragments using universal primers was employed to analyze microbial groups other than bifidobacteria. Changes in banding patterns during incubation with EPS indicated microbial rearrangements of Bacteroides and Escherichia coli relatives. Moreover, the use of EPS from B. pseudocatenulatum in fecal cultures from some individuals accounted for the prevalence of Desulfovibrio and Faecalibacterium prausnitzii, whereas incubation with EPS from B. longum supported populations close to Anaerostipes, Prevotella, and/or Oscillospira. Thus, EPS synthesized by intestinal bifidobacteria could act as fermentable substrates for microorganisms in the human gut environment, modifying interactions among intestinal populations. PMID:18539803

Salazar, Nuria; Gueimonde, Miguel; Hernández-Barranco, Ana María; Ruas-Madiedo, Patricia; de los Reyes-Gavilán, Clara G.

2008-01-01

87

Molecular Epidemiology of Human Intestinal Amoebas in Iran  

PubMed Central

Many microscopic-based epidemiological surveys on the prevalence of human intestinal pathogenic and non-pathogenic protozoa including intestinal amoeba performed in Iran show a high prevalence of human intestinal amoeba in different parts of Iran. Such epidemiological studies on amoebiasis are confusing, mainly due to recently appreciated distinction between the Entamoeba histolytica, E. dispar and E. moshkovskii. Differential diagnosis can be done by some methods such as PCR-based methods, monoclonal antibodies and the analysis of isoenzyme typing, however the molecular study of these protozoa in Iran is low. Based on molecular studies, it seems that E. dispar is predominant species especially in the central and northern areas of Iran and amoebiasis due to E. histolytica is a rare infection in the country. It is suggested that infection with E. moshkovskii may be common among Iranians. Considering the importance of molecular epidemiology of amoeba in Iran and also the current data, the present study reviews the data currently available on the molecular distribution of intestinal human amoeba in Iran. PMID:23193500

Hooshyar, H; Rostamkhani, P; Rezaian, M

2012-01-01

88

Microbial contact during pregnancy, intestinal colonization and human disease.  

PubMed

Interaction with colonizing intestinal bacteria is essential for healthy intestinal and immunological development in infancy. Advances in understanding early host-microbe interactions indicate that this early microbial programming begins in utero and is substantially modulated by mode of birth, perinatal antibiotics and breastfeeding. Furthermore, it has become evident that this stepwise microbial colonization process, as well as immune and metabolic programming by the microbiota, might have a long-lasting influence on the risk of not only gastrointestinal disease, but also allergic, autoimmune and metabolic disease, in later life. Modulating early host-microbe interaction by maternal probiotic intervention during pregnancy and breastfeeding offers a promising novel tool to reduce the risk of disease. In this Review, we describe the current body of knowledge regarding perinatal microbial contact, initial intestinal colonization and its association with human disease, as well as means of modulating early host-microbe interaction to reduce the risk of disease in the child. PMID:22890113

Rautava, Samuli; Luoto, Raakel; Salminen, Seppo; Isolauri, Erika

2012-10-01

89

Selective intestinal decontamination with norfloxacin reduces bacterial translocation in ascitic cirrhotic rats exposed to hemorrhagic shock.  

PubMed

Bacterial translocation (BT) can be involved in the pathogenesis of severe infections due to bacteria of enteric origin that complicates bleeding cirrhotic patients. To assess the effect of hemorrhagic shock (HS) on the incidence of BT and if selective intestinal decontamination (SID) reduces this incidence, we studied six groups of Sprague-Dawley rats: ascitic rats, ascitic rats exposed to HS with and without previous norfloxacin prophylaxis, healthy rats, and healthy shocked rats with and without previous norfloxacin prophylaxis. BT tended to be higher in ascitic rats with shock than without shock (69% vs. 41%, P = .15) and was significantly higher in healthy rats with than without shock (50 percent vs. 0 percent, P = .01). Norfloxacin significantly reduced translocation in ascitic shocked rats in comparison with nondecontaminated ascitic shocked rats (31 percent vs. 69 percent, P = .038). This effect was due mainly to a reduction of gram-negative BT (O percent vs. 37 percent, P = .008). In addition, norfloxacin prevented translocation in healthy shocked rats. Accordingly, aerobic gram-negative bacteria disappeared from fecal flora in all rats administered norfloxacin, except for Klebsiella species in one control rat. Cecal severe submucosal edema, chronic inflammatory infiltrate, and intestinal lymphangiectasia were significantly more frequent in ascitic rats than in control rats. Intestinal mucosal injury related with HS, particularly subepithelial cecal edema, was observed only in ascitic shocked rats. In conclusion, HS increases the incidence of BT both in ascitic cirrhotic and healthy rats. Norfloxacin reduces significantly the incidence of translocation after shock, especially in those cases caused by aerobic gram-negative bacilli. PMID:8666332

Llovet, J M; Bartolí, R; Planas, R; Viñado, B; Pérez, J; Cabré, E; Arnal, J; Ojanguren, I; Ausina, V; Gassull, M A

1996-04-01

90

Intermittent fasting promotes bacterial clearance and intestinal IgA production in Salmonella typhimurium-infected mice.  

PubMed

The impact of intermittent fasting versus ad libitum feeding during Salmonella typhimurium infection was evaluated in terms of duodenum IgA levels, bacterial clearance and intestinal and extra-intestinal infection susceptibility. Mice that were intermittently fasted for 12 weeks or fed ad libitum were infected with S. typhimurium and assessed at 7 and 14 days post-infection. Next, we evaluated bacterial load in the faeces, Peyer's patches, spleen and liver by plate counting, as well as total and specific intestinal IgA and plasmatic corticosterone levels (by immunoenzymatic assay) and lamina propria IgA levels in plasma cells (by cytofluorometry). Polymeric immunoglobulin receptor, ?- and J-chains, Pax-5 factor, pro-inflammatory cytokine (tumour necrosis factor-? and interferon-?) and anti-inflammatory cytokine (transforming growth factor-?) mRNA levels were assessed in mucosal and liver samples (by real-time PCR). Compared with the infected ad libitum mice, the intermittently fasted infected animals had (1) lower intestinal and systemic bacterial loads; (2) higher SIgA and IgA plasma cell levels; (3) higher mRNA expression of most intestinal parameters; and (4) increased or decreased corticosterone levels on day 7 and 14 post-infection, respectively. No contribution of liver IgA was observed at the intestinal level. Apparently, the changes following metabolic stress induced by intermittent fasting during food deprivation days increased the resistance to S. typhimurium infection by triggering intestinal IgA production and presumably, pathogen elimination by phagocytic inflammatory cells. PMID:24612255

Godínez-Victoria, M; Campos-Rodriguez, R; Rivera-Aguilar, V; Lara-Padilla, E; Pacheco-Yepez, J; Jarillo-Luna, R A; Drago-Serrano, M E

2014-05-01

91

Human dendritic cell culture and bacterial infection.  

PubMed

Dendritic cells (DC) play a key role in the development of natural immunity to microbes. The DC form a bridge between the innate and adaptive immune system by providing key instructions particularly to antigen naïve T-cells. The interaction of DC with T lymphocytes involves three signals: (1) antigen processing and presentation in context of MHC Class I and/or II, (2) expression of T cell co-stimulatory molecules, and (3) cytokine production. Studying the interactions of DCs with specific pathogens allows for better understanding of how protective immunity is generated, and may be particularly useful for assessing vaccine components. In this chapter, we describe methods to generate human monocyte-derived DCs and assess their maturation, activation, and function, using interaction with the gram-negative bacterial pathogen Neisseria meningitidis as a model. PMID:21993649

Jones, Hannah E; Klein, Nigel; Dixon, Garth L J

2012-01-01

92

Genome sequence of Victivallis vadensis ATCC BAA-548, an anaerobic bacterium from the phylum Lentisphaerae, isolated from the human gastro-intestinal tract  

SciTech Connect

Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastro-intestinal tract.

Van Passel, Mark W.J. [Wageningen University and Research Centre, The Netherlands; Kant, Ravi [University of Helsinki; Palva, Airi [University of Helsinki; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Sims, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Richardson, Paul [U.S. Department of Energy, Joint Genome Institute; De Vos, Willem M. [Wageningen University and Research Centre, The Netherlands; Smidt, Hauke [Wageningen University and Research Centre, The Netherlands; Zoetendal, Erwin G. [Wageningen University and Research Centre, The Netherlands

2011-01-01

93

[Interaction between humans and intestinal bacteria as a determinant for intestinal health : Intestinal microbiome and inflammatory bowel diseases].  

PubMed

Recent scientific results underline the importance of the intestinal microbiome, the totality of all intestinal microbes and their genes, for the health of the host organism. The intestinal microbiome can therefore be considered as a kind of "external organ". It has been shown that the intestinal microbiota is a complex and dynamic ecosystem that influences host immunity and metabolism beyond the intestine. The composition and functionality of the intestinal microbiota is of major importance for the development and maintenance of intestinal functions. Inflammatory bowel diseases (IBD) are characterized by dysregulated interactions between the host and its microbiota.The present contribution summarizes current knowledge of the composition and development of the intestinal microbiome and gives an overview of the bidirectional interaction between host and microbiota. The contribution informs about insights regarding the role of the intestinal microbiota in IBD and finally discusses the protective potential of microbial therapies in the context of IBD. PMID:25566836

Haller, Dirk; Hörmannsperger, G

2015-02-01

94

Intestinal mucosal inflammation associated with human immunodeficiency virus infection  

Microsoft Academic Search

The role of the human immunodeficiency virus type-1 (HIV) in producing intestinal disease was studied prospectively in 74 HIV-infected individuals with (43) or without (31) the acquired immunodeficiency syndrome (AIDS). Thirty-one subjects had enteric infections; all but one had AIDS. Alteration in bowell habits was the most common symptom and occurred independently of enteric infections. Abnormal histopathology was present in

Donald P. Kotler; Safak Reka; Frederic Clayton

1993-01-01

95

Evolution of Symbiotic Bacteria in the Distal Human Intestine  

PubMed Central

The adult human intestine contains trillions of bacteria, representing hundreds of species and thousands of subspecies. Little is known about the selective pressures that have shaped and are shaping this community's component species, which are dominated by members of the Bacteroidetes and Firmicutes divisions. To examine how the intestinal environment affects microbial genome evolution, we have sequenced the genomes of two members of the normal distal human gut microbiota, Bacteroides vulgatus and Bacteroides distasonis, and by comparison with the few other sequenced gut and non-gut Bacteroidetes, analyzed their niche and habitat adaptations. The results show that lateral gene transfer, mobile elements, and gene amplification have played important roles in affecting the ability of gut-dwelling Bacteroidetes to vary their cell surface, sense their environment, and harvest nutrient resources present in the distal intestine. Our findings show that these processes have been a driving force in the adaptation of Bacteroidetes to the distal gut environment, and emphasize the importance of considering the evolution of humans from an additional perspective, namely the evolution of our microbiomes. PMID:17579514

Ley, Ruth E; Lozupone, Catherine A; Hamady, Micah; Martens, Eric C; Henrissat, Bernard; Coutinho, Pedro M; Minx, Patrick; Latreille, Philippe; Cordum, Holland; Van Brunt, Andrew; Kim, Kyung; Fulton, Robert S; Fulton, Lucinda A; Clifton, Sandra W; Wilson, Richard K; Knight, Robin D; Gordon, Jeffrey I

2007-01-01

96

Dual system of intestinal thiamine transport in humans  

SciTech Connect

The transport of thiamine across the intestine has been characterized in rats but has not been adequately studied in humans. To determine the kinetics of thiamine intestinal transport directly in humans, mucosal tissues were obtained during routine endoscopy from normal-appearing sites at the second portion of the duodenum. With 3H-dextran as the marker of adherent volume, the uptake of 14C-thiamine hydrochloride by the excised mucosa was measured in vitro. By this method thiamine uptake was linear with tissue weight and with incubation time up to 5 min. Results showed that at low thiamine concentrations (0.2 to 2.0 microM), uptake was saturable whereas at high concentrations (5 to 50 microM), uptake was linear with thiamine concentrations. Pyrithiamine, anoxia, N-ethylmaleimide, and replacement of sodium chloride by mannitol reduced the uptake of 0.5 microM thiamine by 42%, 37%, 32% and 35%, respectively (p less than 0.05) but had no effect on the uptake of 20 microM thiamine. These data suggest that, as in the rat, the intestinal transport of thiamine in humans proceeds by a coexistent dual system. At physiologic concentrations, thiamine is transported primarily by an energy-requiring, sodium-dependent active process, whereas at higher pharmacologic concentrations thiamine uptake is predominantly a passive process.

Hoyumpa, A.M. Jr.; Strickland, R.; Sheehan, J.J.; Yarborough, G.; Nichols, S.

1982-05-01

97

Intestinal epithelial CD98 directly modulates the innate host response to enteric bacterial pathogens.  

PubMed

CD98 is a type II transmembrane glycoprotein whose expression increases in intestinal epithelial cells (IECs) during intestinal inflammation. Enteropathogenic Escherichia coli (EPEC) is a food-borne human pathogen that attaches to IECs and injects effector proteins directly into the host cells, thus provoking an inflammatory response. In the present study, we investigated CD98 and EPEC interactions in vitro and ex vivo and examined FVB wild-type (WT) and villin-CD98 transgenic mice overexpressing human CD98 in IECs (hCD98 Tg mice) and infected with Citrobacter rodentium as an in vivo model. In vivo studies indicated that CD98 overexpression, localized to the apical domain of colonic cells, increased the attachment of C. rodentium in mouse colons and resulted in increased expression of proinflammatory markers and decreased expression of anti-inflammatory markers. The proliferative markers Ki-67 and cyclin D1 were significantly increased in the colonic tissue of C. rodentium-infected hCD98 Tg mice compared to that of WT mice. Ex vivo studies correlate with the in vivo data. Small interfering RNA (siRNA) studies with Caco2-BBE cells showed a decrease in adherence of EPEC to Caco2 cells in which CD98 expression was knocked down. In vitro surface plasmon resonance (SPR) experiments showed direct binding between recombinant hCD98 and EPEC/C. rodentium proteins. We also demonstrated that the partial extracellular loop of hCD98 was sufficient for direct binding to EPEC/C. rodentium. These findings demonstrate the importance of the extracellular loop of CD98 in the innate host defense response to intestinal infection by attaching and effacing (A/E) pathogens. PMID:23297381

Charania, Moiz A; Laroui, Hamed; Liu, Hongchun; Viennois, Emilie; Ayyadurai, Saravanan; Xiao, Bo; Ingersoll, Sarah A; Kalman, Daniel; Merlin, Didier

2013-03-01

98

Protective effects of terminal ileostomy against bacterial translocation in a rat model of intestinal ischemia/reperfusion injury  

PubMed Central

AIM: To investigate the effects of terminal ileostomy on bacterial translocation (BT) and systemic inflammation after intestinal ischemia/reperfusion (I/R) injury in rats. METHODS: Thirty-two rats were assigned to either the sham-operated group, I/R group, I/R + resection and anastomosis group, or the I/R + ileostomy group. The superior mesenteric artery was occluded for 60 min. After 4 h, tissue samples were collected for analysis. BT was assessed by bacteriologic cultures, intestinal permeability and serum levels of endotoxin; systemic inflammation was assessed by serum levels of tumor necrosis factor (TNF)-?, interleukin (IL)-6 and IL-10, as well as by the activity of myeloperoxidase (MPO) and by intestinal histopathology. RESULTS: Intestinal I/R injury not only caused morphologic damage to ileal mucosa, but also induced BT, increased MPO activity and promoted the release of TNF-?, IL-6, and IL-10 in serum. BT and ileal mucosa injuries were significantly improved and levels of TNF-? and IL-6 in serum were decreased in the I/R + ileostomy group compared with the I/R + resection and anastomosis group. CONCLUSION: Terminal ileostomy can prevent the detrimental effects of intestinal I/R injury on BT, intestinal tissue, and inflammation.

Lin, Zhi-Liang; Yu, Wen-Kui; Tan, Shan-Jun; Duan, Kai-Peng; Dong, Yi; Bai, Xiao-Wu; Xu, Lin; Li, Ning

2014-01-01

99

Drosophila melanogaster as a model for human intestinal infection and pathology  

PubMed Central

Recent findings concerning Drosophila melanogaster intestinal pathology suggest that this model is well suited for the study of intestinal stem cell physiology during aging, stress and infection. Despite the physiological divergence between vertebrates and insects, the modeling of human intestinal diseases is possible in Drosophila because of the high degree of conservation between Drosophila and mammals with respect to the signaling pathways that control intestinal development, regeneration and disease. Furthermore, the genetic amenability of Drosophila makes it an advantageous model species. The well-studied intestinal stem cell lineage, as well as the tools available for its manipulation in vivo, provide a promising framework that can be used to elucidate many aspects of human intestinal pathology. In this Perspective, we discuss recent advances in the study of Drosophila intestinal infection and pathology, and briefly review the parallels and differences between human and Drosophila intestinal regeneration and disease. PMID:21183483

Apidianakis, Yiorgos; Rahme, Laurence G.

2011-01-01

100

Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis  

PubMed Central

Patients with inflammatory bowel diseases (IBD) harbour intestinal bacterial communities with altered composition compared with healthy counterparts; however, it is unknown whether changes in the microbiota are associated with genetic susceptibility of individuals for developing disease or instead reflect other changes in the intestinal environment related to the disease itself. Since deficiencies in the innate immune receptors Nod1 and Nod2 are linked to IBD, we tested the hypothesis that Nod-signaling alters intestinal immune profiles and subsequently alters bacterial community structure. We used qPCR to analyze expression patterns of selected immune mediators in the ileum and cecum of Nod-deficient mice compared with their Nod-sufficient littermates and assessed the relative abundance of major bacterial groups sampled from the ileum, cecum and colon. The Nod1-deficient ileum exhibited significantly lower expression of Nod2, Muc2, ?- and ?-defensins and keratinocyte-derived chemokine (KC), suggesting a weakened epithelial barrier compared with WT littermates; however, there were no significant differences in the relative abundance of targeted bacterial groups, indicating that Nod1-associated immune differences alone do not promote dysbiosis. Furthermore, Nod2-deficient mice did not display any changes in the expression of immune markers or bacterial communities. Shifts in bacterial communities that were observed in this study correlated with housing conditions and were independent of genotype. These findings emphasize the importance of using F2 littermate controls to minimize environmental sources of variation in microbial analyses, to establish baseline conditions for host-microbe homeostasis in Nod-deficient mice and to strengthen models for testing factors contributing to microbial dysbiosis associated with IBD. PMID:23549220

Robertson, Susan J.; Zhou, Jun Yu; Geddes, Kaoru; Rubino, Stephen J.; Cho, Joon Ho; Girardin, Stephen E.; Philpott, Dana J.

2013-01-01

101

Intestinal Adaptation Following Small Bowel Resection in Human Infants  

PubMed Central

Purpose In animal models, the small intestine responds to massive small bowel resection (SBR) through a compensatory process termed adaptation, characterized by increases in both villus height and crypt depth. This study seeks to determine whether similar morphologic alterations occur in humans following SBR. Methods Clinical data and pathologic specimens of infants who had both a SBR for necrotizing enterocolitis (NEC) and an ostomy takedown from 1999–2009 were reviewed. Small intestine mucosal morphology was compared in the same patients at the time of SBR and the time of ostomy takedown. Results For all samples, there was greater villus height (453.6±20.4 vs. 341.2±12.4 ?m, p<0.0001) and crypt depth (178.6±7.2 vs. 152.6±6 ?m, p<0.01) in the ostomy specimens compared to the SBR specimens. In infants with paired specimens, there was an increase of 31.7±8.3% and 22.1±10.0% in villus height and crypt depth, respectively. There was a significant correlation between the amount of intestine resected and the percent change in villus height (r=0.36, p<0.05). Conclusion Mucosal adaptation after SBR in human infants is similar to what is observed in animal models. These findings validate the use of animal models of SBR utilized to understand the molecular mechanisms of this important response. PMID:21683196

McDuffie, Lucas A.; Bucher, Brian T.; Erwin, Christopher R.; Wakeman, Derek; White, Francis V.; Warner, Brad W.

2011-01-01

102

Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in Humans  

PubMed Central

Background The human intestinal microbiota is a crucial factor in the pathogenesis of various diseases, such as metabolic syndrome or inflammatory bowel disease (IBD). Yet, knowledge about the role of environmental factors such as smoking (which is known to influence theses aforementioned disease states) on the complex microbial composition is sparse. We aimed to investigate the role of smoking cessation on intestinal microbial composition in 10 healthy smoking subjects undergoing controlled smoking cessation. Methods During the observational period of 9 weeks repetitive stool samples were collected. Based on abundance of 16S rRNA genes bacterial composition was analysed and compared to 10 control subjects (5 continuing smokers and 5 non-smokers) by means of Terminal Restriction Fragment Length Polymorphism analysis and high-throughput sequencing. Results Profound shifts in the microbial composition after smoking cessation were observed with an increase of Firmicutes and Actinobacteria and a lower proportion of Bacteroidetes and Proteobacteria on the phylum level. In addition, after smoking cessation there was an increase in microbial diversity. Conclusions These results indicate that smoking is an environmental factor modulating the composition of human gut microbiota. The observed changes after smoking cessation revealed to be similar to the previously reported differences in obese compared to lean humans and mice respectively, suggesting a potential pathogenetic link between weight gain and smoking cessation. In addition they give rise to a potential association of smoking status and the course of IBD. PMID:23516617

Biedermann, Luc; Zeitz, Jonas; Mwinyi, Jessica; Sutter-Minder, Eveline; Rehman, Ateequr; Ott, Stephan J.; Steurer-Stey, Claudia; Frei, Anja; Frei, Pascal; Scharl, Michael; Loessner, Martin J.; Vavricka, Stephan R.; Fried, Michael; Schreiber, Stefan; Schuppler, Markus; Rogler, Gerhard

2013-01-01

103

Identification of bacterial isolates obtained from intestinal contents associated with 12,000-year-old mastodon remains.  

PubMed

Mastodon (Mammut americanum) remains unearthed during excavation of ancient sediments usually consist only of skeletal material, due to postmortem decomposition of soft tissues by microorganisms. Two recent excavations of skeletal remains in anoxic sediments in Ohio and Michigan, however, have uncovered organic masses which appear to be remnants of the small and large intestines, respectively. Macrobotanical examinations of the composition of these masses revealed assemblages of plant material radiocarbon dated to approximately 11,500 years before the present and thought to be incompletely digested food remains from this extinct mammal. We attempted to cultivate and identify bacteria from the intestinal contents, bone-associated sediments, and sediments not in proximity to the remains using a variety of general and selective media. In all, 295 isolates were cultivated, and 38 individual taxa were identified by fatty acid-methyl ester (FAME) profiles and biochemical characteristics (API-20E). The taxonomic positions of selected enteric and obligately anaerobic bacteria were confirmed by 16S ribosomal DNA (rDNA) sequencing. Results indicate that the intestinal and bone-associated samples contained the greatest diversity of bacterial taxa and that members of the family Enterobacteriaceae represented 41% of all isolates and were predominant in the intestinal masses and sediments in proximity to the skeleton but were uncommon in the background sediments. Enterobacter cloacae was the most commonly identified isolate, and partial rDNA sequencing revealed that Rahnella aquatilis was the correct identity of strains suggested by FAME profiles to be Yersinia enterocolitica. No Bacteroides spp. or expected intestinal anaerobes were recovered. The only obligate anaerobes recovered were clostridia, and these were not recovered from the small intestinal masses. Microbiological evidence from this study supports other, macrobotanical data indicating the intestinal origin of these masses. Whether these organisms are direct descendants of the original intestinal microbiota, however, cannot be established. PMID:9464403

Rhodes, A N; Urbance, J W; Youga, H; Corlew-Newman, H; Reddy, C A; Klug, M J; Tiedje, J M; Fisher, D C

1998-02-01

104

Identification of Bacterial Isolates Obtained from Intestinal Contents Associated with 12,000-Year-Old Mastodon Remains  

PubMed Central

Mastodon (Mammut americanum) remains unearthed during excavation of ancient sediments usually consist only of skeletal material, due to postmortem decomposition of soft tissues by microorganisms. Two recent excavations of skeletal remains in anoxic sediments in Ohio and Michigan, however, have uncovered organic masses which appear to be remnants of the small and large intestines, respectively. Macrobotanical examinations of the composition of these masses revealed assemblages of plant material radiocarbon dated to approximately 11,500 years before the present and thought to be incompletely digested food remains from this extinct mammal. We attempted to cultivate and identify bacteria from the intestinal contents, bone-associated sediments, and sediments not in proximity to the remains using a variety of general and selective media. In all, 295 isolates were cultivated, and 38 individual taxa were identified by fatty acid-methyl ester (FAME) profiles and biochemical characteristics (API-20E). The taxonomic positions of selected enteric and obligately anaerobic bacteria were confirmed by 16S ribosomal DNA (rDNA) sequencing. Results indicate that the intestinal and bone-associated samples contained the greatest diversity of bacterial taxa and that members of the family Enterobacteriaceae represented 41% of all isolates and were predominant in the intestinal masses and sediments in proximity to the skeleton but were uncommon in the background sediments. Enterobacter cloacae was the most commonly identified isolate, and partial rDNA sequencing revealed that Rahnella aquatilis was the correct identity of strains suggested by FAME profiles to be Yersinia enterocolitica. No Bacteroides spp. or expected intestinal anaerobes were recovered. The only obligate anaerobes recovered were clostridia, and these were not recovered from the small intestinal masses. Microbiological evidence from this study supports other, macrobotanical data indicating the intestinal origin of these masses. Whether these organisms are direct descendants of the original intestinal microbiota, however, cannot be established. PMID:9464403

Rhodes, A. N.; Urbance, J. W.; Youga, H.; Corlew-Newman, H.; Reddy, C. A.; Klug, M. J.; Tiedje, J. M.; Fisher, D. C.

1998-01-01

105

Loss of Sirt1 Function Improves Intestinal Anti-Bacterial Defense and Protects from Colitis-Induced Colorectal Cancer  

PubMed Central

Dysfunction of Paneth and goblet cells in the intestine contributes to inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Here, we report a role for the NAD+-dependent histone deacetylase SIRT1 in the control of anti-bacterial defense. Mice with an intestinal specific Sirt1 deficiency (Sirt1int?/?) have more Paneth and goblet cells with a consequent rearrangement of the gut microbiota. From a mechanistic point of view, the effects on mouse intestinal cell maturation are mediated by SIRT1-dependent changes in the acetylation status of SPDEF, a master regulator of Paneth and goblet cells. Our results suggest that targeting SIRT1 may be of interest in the management of IBD and CAC. PMID:25013930

Lo Sasso, Giuseppe; Ryu, Dongryeol; Mouchiroud, Laurent; Fernando, Samodha C.; Anderson, Christopher L.; Katsyuba, Elena; Piersigilli, Alessandra; Hottiger, Michael O.; Schoonjans, Kristina; Auwerx, Johan

2014-01-01

106

Neutralization of bacterial lipopolysaccharides by human plasma.  

PubMed Central

To quantify the neutralization of bacterial lipopolysaccharide (LPS) by human plasma, dilutions of Escherichia coli O113 LPS were incubated with plasma, followed by the addition of Limulus amebocyte lysate (LAL). The reaction between the LPS and LAL was monitored spectrophotometrically, and the concentration of LPS resulting in 50% lysate response (LR50) was determined. Analysis of 145 outdated plasma samples yielded a range of LR50 between 6 and 1,500 ng/ml. Pools of plasma with high and low LR50 were prepared. The pool with high LR50 neutralized 166-fold more E. coli 0113 LPS, 190-fold more E. coli 0111B4 LPS, 42-fold more Klebsiella pneumoniae LPS, and 29-fold more Salmonella typhimurium LPS than did the pool with low LR50. Each pool had similar immunoglobulin G (IgG) and IgM antibody levels to homologous LPS, measured by an enzyme-linked immunosorbent assay. Analysis of 212 fresh-frozen plasma units revealed a range of LR50 between 48 and 6,000 ng/ml. Incubation of LPS in a pool of fresh-frozen plasma with high LR50 elicited significantly less fever in the rabbit pyrogen test than did LPS incubated in plasma with low LR50 (fever index, 2.68 +/- 0.61 degrees C X h and 3.52 +/- 0.66 degrees C X h, respectively; P = 0.003). We conclude that there is a 100-fold range in the endotoxin-neutralizing capacity of human plasma and that this variation is not due to LPS-specific IgG or IgM antibodies. Further investigations are needed to determine whether differing susceptibility of patients to the effects of LPS is due to differences in the endotoxin-neutralizing capacity of their plasma and whether plasma screened for high endotoxin-neutralizing capacity may be therapeutically useful in endotoxemia. PMID:3908471

Warren, H S; Novitsky, T J; Ketchum, P A; Roslansky, P F; Kania, S; Siber, G R

1985-01-01

107

Trichuriasis is an infection of the large intestine caused by the human whipworm (Trichuris trichi-  

E-print Network

Trichuriasis is an infection of the large intestine caused by the human whipworm (Trichuris trichi feces. Once inside the body, whipworm eggs migrate to the small intestine and hatch into adult worms which embed themselves in the lining of the large intestine and colon. Adult whipworms can live

Davis, Richard E.

108

A model for Vibrio cholerae colonization of the human intestine Anna Maria Spagnuolo a  

E-print Network

A model for Vibrio cholerae colonization of the human intestine Anna Maria Spagnuolo a , Victor Di that has re-emerged as a new threat since the early 1990s. V. cholerae colonizes the upper, small intestine). The dynamics of colonization by the bacteria of the intestines are largely unknown. Although a large initial

Kirschner, Denise

109

A Layered Model of a Virtual Human Intestine for Surgery Simulation  

E-print Network

A Layered Model of a Virtual Human Intestine for Surgery Simulation L. France a , J. Lenoir b , A propose a new approach to simulate the small intestine in a context of laparoscopic surgery. The ultimate the intestine to reach hidden areas of the abdomen. The main problem posed by this kind of simulation

Paris-Sud XI, Université de

110

A model for Vibrio cholerae colonization of the human intestine Anna Maria Spagnuolo a,n  

E-print Network

A model for Vibrio cholerae colonization of the human intestine Anna Maria Spagnuolo a,n , Victor intestine where it produces a toxin that leads to watery diarrhea, characterizing the disease (Kahn et al., 1988). The dynamics of colonization by the bacteria of the intestines are largely unknown. Although

Kirschner, Denise

111

A comparative analysis of the intestinal metagenomes present in guinea pigs (Cavia porcellus) and humans (Homo sapiens)  

PubMed Central

Background Guinea pig (Cavia porcellus) is an important model for human intestinal research. We have characterized the faecal microbiota of 60 guinea pigs using Illumina shotgun metagenomics, and used this data to compile a gene catalogue of its prevalent microbiota. Subsequently, we compared the guinea pig microbiome to existing human gut metagenome data from the MetaHIT project. Results We found that the bacterial richness obtained for human samples was lower than for guinea pig samples. The intestinal microbiotas of both species were dominated by the two phyla Bacteroidetes and Firmicutes, but at genus level, the majority of identified genera (320 of 376) were differently abundant in the two hosts. For example, the guinea pig contained considerably more of the mucin-degrading Akkermansia, as well as of the methanogenic archaea Methanobrevibacter than found in humans. Most microbiome functional categories were less abundant in guinea pigs than in humans. Exceptions included functional categories possibly reflecting dehydration/rehydration stress in the guinea pig intestine. Finally, we showed that microbiological databases have serious anthropocentric biases, which impacts model organism research. Conclusions The results lay the foundation for future gastrointestinal research applying guinea pigs as models for humans. PMID:23020652

2012-01-01

112

A novel method for the culture and polarized stimulation of human intestinal mucosa explants.  

PubMed

Few models currently exist to realistically simulate the complex human intestine's micro-environment, where a variety of interactions take place. Proper homeostasis directly depends on these interactions, as they shape an entire immunological response inducing tolerance against food antigens while at the same time mounting effective immune responses against pathogenic microbes accidentally ingested with food. Intestinal homeostasis is preserved also through various complex interactions between the microbiota (including food-associated beneficial bacterial strains) and the host, that regulate the attachment/degradation of mucus, the production of antimicrobial peptides by the epithelial barrier, and the "education" of epithelial cells' that controls the tolerogenic or immunogenic phenotype of unique, gut-resident lymphoid cells' populations. These interactions have been so far very difficult to reproduce with in vitro assays using either cultured cell lines or peripheral blood mononuclear cells. In addition, mouse models differ substantially in components of the intestinal mucosa (mucus layer organization, commensal bacteria community) with respect to the human gut. Thus, studies of a variety of treatments to be brought in the clinics for important stress-related or pathological conditions such as irritable bowel syndrome, inflammatory bowel disease or colorectal cancer have been difficult to carry out. To address these issues, we developed a novel system that enables us to stimulate explants of human intestinal mucosa that retain their in situ conditioning by the host microbiota and immune response, in a polarized fashion. Polarized apical stimulation is of great importance for the outcome of the elicited immune response. It has been repeatedly shown that the same stimuli can produce completely different responses when they bypass the apical face of the intestinal epithelium, stimulating epithelial cells basolaterally or coming into direct contact with lamina propria components, switching the phenotype from tolerogenic to immunogenic and causing unnecessary and excessive inflammation in the area. We achieved polarized stimulation by gluing a cave cylinder which delimited the area of stimulation on the apical face of the mucosa as will be described in the protocol. We used this model to examine, among others, differential effects of three different Lactobacilli strains. We show that this model system is very powerful to assess the immunomodulatory properties of probiotics in healthy and disease conditions. PMID:23666550

Tsilingiri, Katerina; Sonzogni, Angelica; Caprioli, Flavio; Rescigno, Maria

2013-01-01

113

Computational approaches for modeling human intestinal absorption and permeability  

PubMed Central

Human intestinal absorption (HIA) is an important roadblock in the formulation of new drug substances. Computational models are needed for the rapid estimation of this property. The measurements are determined via in vivo experiments or in vitro permeability studies. We present several computational models that are able to predict the absorption of drugs by the human intestine and the permeability through human Caco-2 cells. The training and prediction sets were derived from literature sources and carefully examined to eliminate compounds that are actively transported. We compare our results to models derived by other methods and find that the statistical quality is similar. We believe that models derived from both sources of experimental data would provide greater consistency in predictions. The performance of several QSPR models that we investigated to predict outside the training set for either experimental property clearly indicates that caution should be exercised while applying any of the models for quantitative predictions. However, we are able to show that the qualitative predictions can be obtained with close to a 70% success rate. Electronic Supplementary Material Supplementary material is available for this article at http://dx.doi.org/10.1007/s00894-005-0065-z. PMID:16583199

Subramanian, Govindan

2006-01-01

114

Effects of laxative and N-acetylcysteine on mucus accumulation, bacterial load, transit, and inflammation in the cystic fibrosis mouse small intestine.  

PubMed

The accumulation of mucus in affected organs is characteristic of cystic fibrosis (CF). The CF mouse small intestine has dramatic mucus accumulation and exhibits slower interdigestive intestinal transit. These factors are proposed to play cooperative roles that foster small intestinal bacterial overgrowth (SIBO) and contribute to the innate immune response of the CF intestine. It was hypothesized that decreasing the mucus accumulation would reduce SIBO and might improve other aspects of the CF intestinal phenotype. To test this, solid chow-fed CF mice were treated with an osmotic laxative to improve gut hydration or liquid-fed mice were treated orally with N-acetylcysteine (NAC) to break mucin disulfide bonds. Treatment with laxative or NAC reduced mucus accumulation by 43% and 50%, respectively, as measured histologically as dilation of the intestinal crypts. Laxative and NAC also reduced bacterial overgrowth in the CF intestine by 92% and 63%, respectively. Treatment with laxative normalized small intestinal transit in CF mice, whereas NAC did not. The expression of innate immune response-related genes was significantly reduced in laxative-treated CF mice, whereas there was no significant effect in NAC-treated CF mice. In summary, laxative and NAC treatments of CF mice reduced mucus accumulation to a similar extent, but laxative was more effective than NAC at reducing bacterial load. Eradication of bacterial overgrowth by laxative treatment was associated with normalized intestinal transit and a reduction in the innate immune response. These results suggest that both mucus accumulation and slowed interdigestive small intestinal transit contribute to SIBO in the CF intestine. PMID:17615175

De Lisle, Robert C; Roach, Eileen; Jansson, Kyle

2007-09-01

115

Inhibition of Intestinal Bacterial Translocation with Rifaximin Modulates Lamina propria Monocytic Cells Reactivity and Protects against Inflammation in a Rodent Model of Colitis  

Microsoft Academic Search

Background: A modification of the intestinal flora and an increased bacterial translocation is a common finding in patients with inflammatory bowel disease as well as in animal model of colitis. Rifaximin, a non-absorbable derivative of rifamycin, is an effective antibiotic that acts by inhibiting bacterial ribonucleic acid synthesis. Aims: In the present study, we investigated the effect of the administration

Stefano Fiorucci; Eleonora Distrutti; Andrea Mencarelli; Miriam Barbanti; Ernesto Palazzini; Antonio Morelli

2002-01-01

116

Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells.  

PubMed

Rotaviruses attach to intestinal cells in a process that requires glycan recognition. Some bacteria from the gut microflora have been shown to modify cell-surface glycans. In this study, human intestinal cultured cells were incubated with bacteria-derived soluble factors and infected with rotavirus. Results show that only bacterial soluble factors that increase cell-surface galactose namely, those of Bacteroides thetaiotaomicron and Lactobacillus casei were able to efficiently block rotavirus infections. Increasing cell-surface galactose using galactosyltransferase resulted in a similar blockage of rotavirus infections. These results indicate that manipulation of cell-surface intestinal glycans by bacterial soluble factors can prevent rotavirus infection in a species-specific manner, and should now be considered a potential therapeutic approach against rotavirus infection. PMID:22079149

Varyukhina, Svetlana; Freitas, Miguel; Bardin, Sabine; Robillard, Emilie; Tavan, Emmanuelle; Sapin, Catherine; Grill, Jean-Pierre; Trugnan, Germain

2012-03-01

117

Use of Stable Isotopes To Measure the Metabolic Activity of the Human Intestinal Microbiota?  

PubMed Central

The human intestinal microbiota is a complex biological system comprising a vast repertoire of microbes with considerable metabolic activity relevant to both bacterial growth and host health. Greater strides have been made in the analysis of microbial diversity than in the measurement of functional activity, particularly in vivo. Stable isotope probing offers a new approach by coupling measurements of metabolic activity with microbial identification. Using a low-enrichment labeling strategy in vitro, this study has identified metabolically active bacterial groups via magnetic-bead capture methodology and stable isotope ratio analysis. Using five probes (EUB338, Bac303, Bif164, EREC482, and Clep866), changes in the activities of key intestinal microbial groups were successfully measured by exploiting tracers of de novo RNA synthesis. Perturbation of the nutrient source with oligofructose generated changes in the activity of bifidobacteria as expected, but also in the Bacteroides-Prevotella group, the Eubacterium rectale-Clostridium coccoides group, and the Clostridium leptum subgroup. Changes in activity were also observed in response to the medium type. This study suggests that changes in the functional activity of the gut microbiota can be assessed using tracers of de novo nucleic acid synthesis combined with measurement of low isotopic enrichment in 16S rRNA. Such tracers potentially limit substrate bias because they are universally available to bacteria. This low-enrichment labeling approach does not depend on the commercial availability of specific labeled substrates and can be easily translated to in vivo probing experiments of the functional activity of the microbiota in the human gut. PMID:21948826

Reichardt, Nicole; Barclay, Andrew R.; Weaver, Lawrence T.; Morrison, Douglas J.

2011-01-01

118

Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens.  

PubMed

Two independent trials were conducted to evaluate the utilization of rye as energy source on bacterial translocation (BT), intestinal viscosity, gut integrity, gut microbiota composition, and bone mineralization, when compared with a traditional cereal (corn) in broiler chickens. In each experiment, day-of-hatch, broiler chickens were randomly assigned to either a corn or a rye diet (n = 20 chickens/group). At 10 d of age, in both experiments, 12 chickens/group were randomly selected, and given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood samples were collected to determine the passage of FITC-d. The liver was collected from each bird to evaluate BT. Duodenum, ileum, and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with rye showed increased (p < 0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that chickens fed with rye had increased the number of total lactic acid bacteria in all three sections of the gastrointestinal tract evaluated when compared to chickens fed with corn. Chickens fed with rye also had significantly higher coliforms in duodenum and ileum, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in chickens fed with rye when compared with corn fed chickens. In conclusion, rye evoked mucosal damage in chickens that alter the intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition as well as bone mineralization. Studies to evaluate dietary inclusion of selected DFM candidates that produce exogenous enzymes in rye fed chickens are currently being evaluated. PMID:25309584

Tellez, Guillermo; Latorre, Juan D; Kuttappan, Vivek A; Kogut, Michael H; Wolfenden, Amanda; Hernandez-Velasco, Xochitl; Hargis, Billy M; Bottje, Walter G; Bielke, Lisa R; Faulkner, Olivia B

2014-01-01

119

Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora.  

PubMed

A previous study had established that anaerobic continuous-flow (CF) cultures of conventional mouse cecal flora were able to maintain the in vivo ecological balance among the indigenous bacterial species tested. This paper describes experiments designed to determine the mechanisms which control the population sizes of these species in such CF cultures. One strain each of Escherichia coli, Fusobacterium sp., and Eubacterium sp. were studied. Growth of these strains in filtrates of CF cultures was considerably more rapid than in the CF cultures themselves, indicating that the inhibitory activity had been lost in the process of filtration. Growth rates to match those in CF cultures could be obtained, however, by restoring the original levels of H(2)S in the culture filtrates. The inhibitory effect of H(2)S in filtrates and in dialysates of CF cultures could be abolished by adding glucose or pyruvate, but not formate or lactate. The fatty acids present in CF cultures matched those in the cecum of conventional mice in both quality and concentration. These acids could not account for the slow rates of growth of the tested strains in CF cultures, but they did cause a marked increase in the initial lag phase of E. coli growth. The results obtained are compatible with the hypothesis that the populations of most indigenous intestinal bacteria are controlled by one or a few nutritional substrates which a given strain can utilize most efficiently in the presence of H(2)S and at the prevailing conditions of pH and anaerobiosis. This hypothesis consequently implies that the populations of enterobacteria, such as the E. coli strain tested, and those of the predominant anaerobes are controlled by analogous mechanisms. PMID:6339388

Freter, R; Brickner, H; Botney, M; Cleven, D; Aranki, A

1983-02-01

120

Antibiotic residues and drug resistance in human intestinal flora.  

PubMed Central

The effect of residual levels of ampicillin on the drug resistance of fecal flora was studied in human volunteers given 1.5 mg of ampicillin orally per day for 21 days. This treatment failed to have any significant reproducible effect on the number of resistant Escherichia coli in their feces. The effect of continuous administration of small doses of ampicillin, chlortetracycline, or streptomycin in the drinking water was studied in gnotobiotic mice inoculated with a human fecal flora. In this animal model, which is free of many interfering factors, an increase in the fecal concentration of resistant E. coli was observed when the mice were given 0.5 microgram of ampicillin or chlortetracycline per ml of water. This model is therefore a sensitive system for testing the effect of antimicrobial drugs on the resistance characteristics of the intestinal flora. PMID:3300533

Corpet, D E

1987-01-01

121

Acetate kinase Activity and Kinetic Properties of the Enzyme in Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9 Intestinal Bacterial Strains  

PubMed Central

Activity of acetate kinase in cell-free extracts and individual fractions and the kinetic properties of the enzyme obtained from the Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9 intestinal bacterial strains were presented at the first time. The highest activity of the enzyme was measured in the cell-free extracts (1.52 ± 0.163 and 0.46 ± 0.044 U × mg-1 protein for D. piger Vib-7 and Desulfomicrobium sp. Rod-9, respectively) compared to other fractions. The specific activity of acetate kinase in the extracts of both bacterial strains was determined at different temperature and pH. Analysis of the kinetic properties of the purified acetate kinase was carried out. The acetate kinase activity, initial (instantaneous) reaction rate (V0) and maximum rate of the acetate kinase reaction (Vmax) in D. piger Vib-7 and Desulfomicrobium sp. Rod-9 intestinal bacterial strains were defined. Michaelis constants (KmAcetyl phosphate and KmADP) of the enzyme reaction (2.54 ± 0.26 and 2.39 ± 0.24 mM for D. piger Vib-7 as well as 2.68 ± 0.25 and 2.47 ± 0.27 mM for Desulfomicrobium sp. Rod-9, respectively) were calculated. The described results of acetate kinase, an important enzyme in the process of organic compounds oxidation and dissimilatory sulfate reduction would be perspective and useful for clarification of the etiological role of these bacteria in the development of inflammatory bowel diseases in humans and animals. PMID:25598851

Kushkevych, Ivan V

2014-01-01

122

Adherence and Cytokine Induction in Caco-2 Cells by Bacterial Populations from a Three-Stage Continuous-Culture Model of the Large Intestine?  

PubMed Central

Adherence of bacteria to epithelial cells is an important step in colonization and immune modulation in the large bowel. The aims of this study were to use a three-stage continuous-culture system (CCS) to investigate how environmental factors affect bacterial attachment to Caco-2 cells and modulation of cytokine expression by gut microorganisms, including a probiotic Bifidobacterium longum strain, DD2004. The CCS simulated environmental conditions in the proximal large intestine (vessel 1 [V1]) and distal colon (V2 and V3) at two different system retention times (R) within the range of normal colonic transits (20 and 60 h). The model was inoculated with human fecal material, and fluorescence in situ hybridization (FISH) was used to characterize microbial populations and to assess bacterial attachment to Caco-2 cells. Real-time quantitative PCR (qPCR) was employed to measure cytokine gene expression following challenge with bacteria from different components of the CCS in the presence and absence of B. longum. At an R of 60 h, bacterial adherence increased from V1 to V3, but this trend was reversed at an R of 20 h. Atopobia were the predominant adherent organisms detected at both system retention times in each culture vessel. Modulation of transforming growth factor ?1 (TGF-?1), interleukin 6 (IL-6), and IL-18 gene expression by CCS bacteria was marked at an R of 60 h, while at an R of 20 h, IL-4, IL-10, TGF-?2, IL-1?, and tumor necrosis factor alpha (TNF-?) were significantly affected. The addition of B. longum affected cytokine expression significantly at both retention times. This study demonstrates that environmental determinants regulate the adherence properties of intestinal bacteria and their abilities to regulate cytokine synthesis. PMID:21378047

Bahrami, Bahram; Child, Matthew W.; Macfarlane, Sandra; Macfarlane, George T.

2011-01-01

123

Regulatory T cells promote a protective Th17-associated immune response to intestinal bacterial infection with C. rodentium.  

PubMed

Intestinal infection with the mouse pathogen Citrobacter rodentium induces a strong local Th17 response in the colon. Although this inflammatory immune response helps to clear the pathogen, it also induces inflammation-associated pathology in the gut and thus, has to be tightly controlled. In this project, we therefore studied the impact of Foxp3(+) regulatory T cells (Treg) on the infectious and inflammatory processes elicited by the bacterial pathogen C. rodentium. Surprisingly, we found that depletion of Treg by diphtheria toxin in the Foxp3(DTR) (DEREG) mouse model resulted in impaired bacterial clearance in the colon, exacerbated body weight loss, and increased systemic dissemination of bacteria. Consistent with the enhanced susceptibility to infection, we found that the colonic Th17-associated T-cell response was impaired in Treg-depleted mice, suggesting that the presence of Treg is crucial for the establishment of a functional Th17 response after the infection in the gut. As a consequence of the impaired Th17 response, we also observed less inflammation-associated pathology in the colons of Treg-depleted mice. Interestingly, anti-interleukin (IL)-2 treatment of infected Treg-depleted mice restored Th17 induction, indicating that Treg support the induction of a protective Th17 response during intestinal bacterial infection by consumption of local IL-2. PMID:24646939

Wang, Z; Friedrich, C; Hagemann, S C; Korte, W H; Goharani, N; Cording, S; Eberl, G; Sparwasser, T; Lochner, M

2014-11-01

124

Analysis of the intestinal bacterial microbiota in maize- or sorghum-fed broiler chickens using real-time PCR.  

PubMed

Abstract 1. An experiment was conducted to study the effect of two different diets on zootechnical performance and the major bacterial groups in association with the host mucosa and dispersed in the lumen contents of the small intestine of broiler chickens. 2. The two experimental diets were maize or sorghum-based. In addition to the total bacteria, bacterial groups belonging to the Enterobacteriaceae (Enterococcus and Lactobacillus) were quantified by real-time PCR. 3. There were no differences in body weight gain and feed intake, but feed conversion ratio increased for sorghum-fed broilers at 21 and 42 d of age. 4. The Enterococcus group decreased in all gut segments from 7 to 42 d, while the Lactobacillus group increased in both ecosystems. In the ileal mucosa, the enterobacterial counts decreased from 7 to 42 d in the maize-based diet, but remained stable in the sorghum-based diet. 5. The results shed light on the spatial and temporal distribution of bacterial groups that play important physiological roles in the small intestine of chickens. Specifically, the increased Enterobacteria population in the ileum is consistent with the relatively poor feed conversion in sorghum-fed broilers. PMID:25358544

Lunedo, R; Fernandez-Alarcon, M F; Carvalho, F M S; Furlan, L R; Macari, M

2014-12-01

125

Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.  

PubMed

Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. PMID:24316190

Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P

2014-03-01

126

Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis.  

PubMed

A plethora of pathogenic viruses colonize bats. However, bat bacterial flora and its zoonotic threat remain ill defined. In a study initially conducted as a quantitative metagenomic analysis of the fecal bacterial flora of the Daubenton's bat in Finland, we unexpectedly detected DNA of several hemotrophic and ectoparasite-transmitted bacterial genera, including Bartonella. Bartonella spp. also were either detected or isolated from the peripheral blood of Daubenton's, northern, and whiskered bats and were detected in the ectoparasites of Daubenton's, northern, and Brandt's bats. The blood isolates belong to the Candidatus-status species B. mayotimonensis, a recently identified etiologic agent of endocarditis in humans, and a new Bartonella species (B. naantaliensis sp. nov.). Phylogenetic analysis of bat-colonizing Bartonella spp. throughout the world demonstrates a distinct B. mayotimonensis cluster in the Northern Hemisphere. The findings of this field study highlight bats as potent reservoirs of human bacterial pathogens. PMID:24856523

Veikkolainen, Ville; Vesterinen, Eero J; Lilley, Thomas M; Pulliainen, Arto T

2014-06-01

127

Screening of exopolysaccharide-producing Lactobacillus and Bifidobacterium strains isolated from the human intestinal microbiota.  

PubMed

Using phenotypic approaches, we have detected that 17% of human intestinal Lactobacillus and Bifidobacterium strains could be exopolysaccharide (EPS) producers. However, PCR techniques showed that only 7% harbored genes related to the synthesis of heteropolysaccharides. This is the first work to screen the human intestinal ecosystem for the detection of EPS-producing strains. PMID:17483284

Ruas-Madiedo, Patricia; Moreno, José Antonio; Salazar, Nuria; Delgado, Susana; Mayo, Baltasar; Margolles, Abelardo; de Los Reyes-Gavilán, Clara G

2007-07-01

128

DBETH: A Database of Bacterial Exotoxins for Human  

PubMed Central

Pathogenic bacteria produce protein toxins to survive in the hostile environments defined by the host's defense systems and immune response. Recent progresses in high-throughput genome sequencing and structure determination techniques have contributed to a better understanding of mechanisms of action of the bacterial toxins at the cellular and molecular levels leading to pathogenicity. It is fair to assume that with time more and more unknown toxins will emerge not only by the discovery of newer species but also due to the genetic rearrangement of existing bacterial genomes. Hence, it is crucial to organize a systematic compilation and subsequent analyses of the inherent features of known bacterial toxins. We developed a Database for Bacterial ExoToxins (DBETH, http://www.hpppi.iicb.res.in/btox/), which contains sequence, structure, interaction network and analytical results for 229 toxins categorized within 24 mechanistic and activity types from 26 bacterial genuses. The main objective of this database is to provide a comprehensive knowledgebase for human pathogenic bacterial toxins where various important sequence, structure and physico-chemical property based analyses are provided. Further, we have developed a prediction server attached to this database which aims to identify bacterial toxin like sequences either by establishing homology with known toxin sequences/domains or by classifying bacterial toxin specific features using a support vector based machine learning techniques. PMID:22102573

Chakraborty, Abhijit; Ghosh, Sudeshna; Chowdhary, Garisha; Maulik, Ujjwal; Chakrabarti, Saikat

2012-01-01

129

Long-term monitoring of the human intestinal microbiota composition.  

PubMed

The microbiota that colonizes the human intestinal tract is complex and its structure is specific for each of us. In this study we expand the knowledge about the stability of the subject-specific microbiota and show that this ecosystem is stable in short-term intervals (?10 years). The faecal microbiota composition of five unrelated and healthy subjects was analysed using a comprehensive and highly reproducible phylogenetic microarray, the HITChip. The results show that the use of antibiotics, application of specific dietary regimes and distant travelling have limited impact on the microbiota composition. Several anaerobic genera, including Bifidobacterium and a number of genera within the Bacteroidetes and the Firmicutes phylum, exhibit significantly higher similarity than the total microbiota. Although the gut microbiota contains subject-specific species, the presence of which is preserved throughout the years, their relative abundance changes considerably. Consequently, the recently proposed enterotype status appears to be a varying characteristic of the microbiota. Our data show that the intestinal microbiota contains a core community of permanent colonizers, and that environmentally introduced changes of the microbiota throughout adulthood are primarily affecting the abundance but not the presence of specific microbial species. PMID:23286720

Rajili?-Stojanovi?, Mirjana; Heilig, Hans G H J; Tims, Sebastian; Zoetendal, Erwin G; de Vos, Willem M

2012-10-15

130

A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets  

PubMed Central

Background Next generation sequencing (NGS) technologies can be applied in complex microbial ecosystems for metatranscriptome analysis by employing direct cDNA sequencing, which is known as RNA sequencing (RNA-seq). RNA-seq generates large datasets of great complexity, the comprehensive interpretation of which requires a reliable bioinformatic pipeline. In this study, we focus on the development of such a metatranscriptome pipeline, which we validate using Illumina RNA-seq datasets derived from the small intestine microbiota of two individuals with an ileostomy. Results The metatranscriptome pipeline developed here enabled effective removal of rRNA derived sequences, followed by confident assignment of the predicted function and taxonomic origin of the mRNA reads. Phylogenetic analysis of the small intestine metatranscriptome datasets revealed a strong similarity with the community composition profiles obtained from 16S rDNA and rRNA pyrosequencing, indicating considerable congruency between community composition (rDNA), and the taxonomic distribution of overall (rRNA) and specific (mRNA) activity among its microbial members. Reproducibility of the metatranscriptome sequencing approach was established by independent duplicate experiments. In addition, comparison of metatranscriptome analysis employing single- or paired-end sequencing methods indicated that the latter approach does not provide improved functional or phylogenetic insights. Metatranscriptome functional-mapping allowed the analysis of global, and genus specific activity of the microbiota, and illustrated the potential of these approaches to unravel syntrophic interactions in microbial ecosystems. Conclusions A reliable pipeline for metatransciptome data analysis was developed and evaluated using RNA-seq datasets obtained for the human small intestine microbiota. The set-up of the pipeline is very generic and can be applied for (bacterial) metatranscriptome analysis in any chosen niche. PMID:23915218

2013-01-01

131

Small bowel bacterial overgrowth  

MedlinePLUS

Overgrowth - intestinal bacteria; Bacterial overgrowth - intestine ... Unlike the large intestine, the small intestine does not have a high number of bacteria. When there are too many bacteria in the ...

132

Helicobacter pylori infection but not small intestinal bacterial overgrowth may play a pathogenic role in rosacea  

PubMed Central

Background and aims Recent studies suggest a potential relationship between rosacea and Helicobacter pylori (H. pylori) infection or small intestinal bacterial overgrowth (SIBO), but there is no firm evidence of an association between rosacea and H. pylori infection or SIBO. We performed a prospective study to assess the prevalence of H. pylori infection and/or SIBO in patients with rosacea and evaluated the effect of H. pylori or SIBO eradication on rosacea. Methods We enrolled 90 patients with rosacea from January 2012 to January 2013 and a control group consisting of 90 patients referred to us because of mapping of nevi during the same period. We used the 13C Urea Breath Test and H. pylori stool antigen (HpSA) test to assess H. pylori infection and the glucose breath test to assess SIBO. Patients infected by H. pylori were treated with clarithromycin-containing sequential therapy. Patients positive for SIBO were treated with rifaximin. Results We found that 44/90 (48.9%) patients with rosacea and 24/90 (26.7%) control subjects were infected with H. pylori (p?=?0.003). Moreover, 9/90 (10%) patients with rosacea and 7/90 (7.8%) subjects in the control group had SIBO (p?=?0.6). Within 10 weeks from the end of antibiotic therapy, the skin lesions of rosacea disappeared or decreased markedly in 35/36 (97.2%) patients after eradication of H. pylori and in 3/8 (37.5%) patients who did not eradicate the infection (p?

Federico, A; Ruocco, E; Lo Schiavo, A; Masarone, M; Tuccillo, C; Peccerillo, F; Miranda, A; Romano, L; de Sio, C; de Sio, I; Persico, M; Ruocco, V; Riegler, G; Loguercio, C; Romano, M

2015-01-01

133

Lipoteichoic acid from Lactobacillus plantarum inhibits Pam2CSK4-induced IL-8 production in human intestinal epithelial cells.  

PubMed

Lactobacilli are probiotic bacteria that are considered to be beneficial in the gastrointestinal tract of humans. Although lactobacilli are well known to alleviate intestinal inflammation, the molecular basis of this phenomenon is poorly understood. In this study, we investigated the effect of Lactobacillus plantarum lipoteichoic acid (Lp.LTA), which is a major cell wall component of this species, on the production of interleukin (IL)-8 in human intestinal epithelial Caco-2 cells. Treatment with Pam2CSK4, a synthetic lipopeptide that is known to mimic Gram-positive bacterial lipoproteins as an important virulence factor, significantly induced IL-8 expression in Caco-2 cells. However, neither heat-inactivated L. plantarum nor L. plantarum peptidoglycan inhibited Pam2CSK4-induced IL-8 mRNA expression. In addition, both a deacylated form and a dealanylated form of Lp.LTA failed to inhibit Pam2CSK4-induced IL-8 expression, indicating that the lipid and D-alanine moieties are critical for Lp.LTA-mediated inhibition. Moreover, Lp.LTA inhibited Pam2CSK4-induced activation of p38 kinase, JNK, and NF-?B transcription factor by suppressing toll-like receptor 2 activation. Collectively, these results suggest that Lp.LTA exerts anti-inflammatory effects on human intestinal epithelial cells by blocking IL-8 production. PMID:25481370

Noh, Su Young; Kang, Seok-Seong; Yun, Cheol-Heui; Han, Seung Hyun

2015-03-01

134

C-ring cleavage of flavonoids by human intestinal bacteria.  

PubMed Central

Four hitherto undescribed Clostridium strains capable of cleaving the C ring of quercetin, kaempferol, and naringenin at C-3-C-4 were isolated from the fecal flora of humans. None of the strains cleaved catechin. C-ring fission occurred when the substrate was either in solution or in suspension. Mixed cultures of flavonoid-hydrolyzing bacteria, flavonoid-cleaving bacteria, and Escherichia coli, which was used to provide the anaerobic environment, rapidly metabolized rutin to 3,4-dihydroxyphenylacetic acid, indicating that the intestinal half-life of the biologically active aglycone is short. The cleaving strains shared many phenotypic characteristics, including their inability to ferment sugars, but they differed sufficiently to indicate that they represent different species. Images PMID:2757380

Winter, J; Moore, L H; Dowell, V R; Bokkenheuser, V D

1989-01-01

135

Direct In Vivo Human Intestinal Permeability (Peff ) Determined with Different Clinical Perfusion and Intubation Methods.  

PubMed

Regional in vivo human intestinal effective permeability (Peff ) is calculated by measuring the disappearance rate of substances during intestinal perfusion. Peff is the most relevant parameter in the prediction of rate and extent of drug absorption from all parts of the intestine. Today, human intestinal perfusions are not performed on a routine basis in drug development. Therefore, it would be beneficial to increase the accuracy of the in vitro and in silico tools used to evaluate the intestinal Peff of novel drugs. This review compiles historical Peff data from 273 individual measurements of 80 substances from 61 studies performed in all parts of the human intestinal tract. These substances include: drugs, monosaccharaides, amino acids, dipeptides, vitamins, steroids, bile acids, ions, fatty acids, and water. The review also discusses the determination and prediction of Peff using in vitro and in silico methods such as quantitative structure-activity relationship, Caco-2, Ussing chamber, animal intestinal perfusion, and physiologically based pharmacokinetic (PBPK) modeling. Finally, we briefly outline how to acquire accurate human intestinal Peff data by deconvolution of plasma concentration-time profiles following regional intestinal bolus dosing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci. PMID:25410736

Dahlgren, David; Roos, Carl; Sjögren, Erik; Lennernäs, Hans

2014-11-19

136

Fluoroquinolone (ciprofloxacin) secretion by human intestinal epithelial (Caco-2) cells  

PubMed Central

Human intestinal epithelial Caco-2 cells were used to investigate the mechanistic basis of transepithelial secretion of the fluoroquinolone antibiotic ciprofloxacin. Net secretion and cellular uptake of ciprofloxacin (at 0.1?mM) were not subject to competitive inhibition by sulphate, thiosulphate, oxalate, succinate and para-amino hippurate, probenecid (10?mM), taurocholate (100??M) or bromosulphophthalein (100??M). Similarly tetraethylammonium and N-?methylnicotinamide (10?mM) were without effect. Net secretion of ciprofloxacin was inhibited by the organic exchange inhibitor 4,4?-diisothiocyanostilbene-2-2?-disulphonic acid (DIDS, 400??M). Net secretion of ciprofloxacin was partially inhibited by 100??M verapamil, whilst net secretion of the P-glycoprotein substrate vinblastine was totally abolished under these conditions. Ciprofloxacin secretion was unaltered after preincubation of cells with two anti-P-glycoprotein antibodies (UIC2 and MRK16), which both significantly reduced secretory vinblastine flux (measured in the same cell batch). Ciprofloxacin (3?mM) failed to inhibit vinblastine net secretion in Caco-2 epithelia, and was not itself secreted by the P-glycoprotein expressing and vinblastine secreting dog kidney cell line, MDCK. Net secretion and cellular uptake of ciprofloxacin (at 0.1?mM) were not subject to alterations of either cytosolic or medium pH, or dependent on the presence of medium Na+, Cl? or K+ in the bathing media. The substrate specificity of the ciprofloxacin secretory transport in Caco-2 epithelia is distinct from both the renal organic anion and cation transport. A role for P-glycoprotein in ciprofloxacin secretion may also be excluded. A novel transport mechanism, sensitive to both DIDS and verapamil mediates secretion of ciprofloxacin by human intestinal Caco-2 epithelia. PMID:9283689

Cavet, M E; West, M; Simmons, N L

1997-01-01

137

Initial insights into bacterial succession during human decomposition.  

PubMed

Decomposition is a dynamic ecological process dependent upon many factors such as environment, climate, and bacterial, insect, and vertebrate activity in addition to intrinsic properties inherent to individual cadavers. Although largely attributed to microbial metabolism, very little is known about the bacterial basis of human decomposition. To assess the change in bacterial community structure through time, bacterial samples were collected from several sites across two cadavers placed outdoors to decompose and analyzed through 454 pyrosequencing and analysis of variable regions 3-5 of the bacterial 16S ribosomal RNA (16S rRNA) gene. Each cadaver was characterized by a change in bacterial community structure for all sites sampled as time, and decomposition, progressed. Bacteria community structure is variable at placement and before purge for all body sites. At bloat and purge and until tissues began to dehydrate or were removed, bacteria associated with flies, such as Ignatzschineria and Wohlfahrtimonas, were common. After dehydration and skeletonization, bacteria associated with soil, such as Acinetobacter, were common at most body sites sampled. However, more cadavers sampled through multiple seasons are necessary to assess major trends in bacterial succession. PMID:25431049

Hyde, Embriette R; Haarmann, Daniel P; Petrosino, Joseph F; Lynne, Aaron M; Bucheli, Sibyl R

2014-11-28

138

A metagenomic ?-glucuronidase uncovers a core adaptive function of the human intestinal microbiome  

PubMed Central

In the human gastrointestinal tract, bacterial ?-D-glucuronidases (BG; E.C. 3.2.1.31) are involved both in xenobiotic metabolism and in some of the beneficial effects of dietary compounds. Despite their biological significance, investigations are hampered by the fact that only a few BGs have so far been studied. A functional metagenomic approach was therefore performed on intestinal metagenomic libraries using chromogenic glucuronides as probes. Using this strategy, 19 positive metagenomic clones were identified but only one exhibited strong ?-D-glucuronidase activity when subcloned into an expression vector. The cloned gene encoded a ?-D-glucuronidase (called H11G11-BG) that had distant amino acid sequence homologies and an additional C terminus domain compared with known ?-D-glucuronidases. Fifteen homologs were identified in public bacterial genome databases (38–57% identity with H11G11-BG) in the Firmicutes phylum. The genomes identified derived from strains from Ruminococcaceae, Lachnospiraceae, and Clostridiaceae. The genetic context diversity, with closely related symporters and gene duplication, argued for functional diversity and contribution to adaptive mechanisms. In contrast to the previously known ?-D-glucuronidases, this previously undescribed type was present in the published microbiome of each healthy adult/child investigated (n = 11) and was specific to the human gut ecosystem. In conclusion, our functional metagenomic approach revealed a class of BGs that may be part of a functional core specifically evolved to adapt to the human gut environment with major health implications. We propose consensus motifs for this unique Firmicutes ?-D-glucuronidase subfamily and for the glycosyl hydrolase family 2. PMID:20615998

Gloux, Karine; Berteau, Olivier; El oumami, Hanane; Béguet, Fabienne; Leclerc, Marion; Doré, Joël

2011-01-01

139

Autonomous replication in human cells of multimers of specific human and bacterial DNA sequences.  

PubMed Central

Using modules of a specific 2,712-bp human DNA sequence and a specific 2,557-bp Escherichia coli DNA sequence, we created plasmids containing between 1 and 12 modules of single or chimeric sequence composition and tested them in human cells for their autonomous replication ability. We found that replication efficiency per generation increased with successive addition of human modules, to essentially 100% by six copies. Although a single copy of the bacterial module had negligible replication ability, the replication efficiency per generation of 12 bacterial modules was 66%. Chimeras composed of human and bacterial modules displayed intermediate replication levels. We also used two-dimensional gel electrophoresis to physically map where replication initiated on a half human-half E. coli plasmid. Our results suggest that autonomous replication in human cells is stimulated by simple sequence features which occur frequently in human DNA but are more rare in bacterial DNA. Images PMID:8386315

Krysan, P J; Smith, J G; Calos, M P

1993-01-01

140

Human and simulated intestinal fluids as solvent systems to explore food effects on intestinal solubility and permeability.  

PubMed

The mixed micelles and vesicles present in the intraluminal environment of the postprandial state exhibit suitable solubilizing capacities for lipophilic drugs. This increase in solubility, however, is accompanied by a decrease in the free fraction caused by micellar entrapment of these lipophilic compounds. In this study, both simulated and aspirated human intestinal fluids of fasted and fed state conditions were used to evaluate the influence of food on the intestinal disposition of a series of structurally related ?-blockers, with varying logP values. Using the in situ intestinal perfusion technique with mesenteric blood sampling in rats, it was demonstrated that fed state conditions significantly decreased the absorptive flux of the more lipophilic compounds metoprolol, propranolol and carvedilol, whereas the influence on the flux of the hydrophilic ?-blocker atenolol was limited. The solubility of BCS class II compound carvedilol was found to increase significantly in simulated and aspirated media of the fed state. Intestinal perfusions using intestinal media saturated with carvedilol, revealed a higher flux in the fasted state compared to the fed state, despite the higher solubility in the fed state. This study underscores the importance of addressing the complex nature of the behavior of compounds in the intraluminal environment in fasted and fed state conditions. Moreover, our data point out the value of studying the effect of food on both solubility and permeability using biorelevant experimental conditions. PMID:25063035

Stappaerts, Jef; Wuyts, Benjamin; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

2014-10-15

141

Cloning and expression of the human vasoactive intestinal peptide receptor.  

PubMed Central

Vasoactive intestinal peptide (VIP) is a neuroendocrine mediator found in the central and peripheral nervous system. Distinct subsets of neural, respiratory, gastrointestinal, and immune cells bear specific high-affinity receptors for VIP, which are associated with a guanine nucleotide-binding (G) protein capable of activating adenylate cyclase. A cDNA clone (GPRN1) encoding the human VIP receptor was identified in libraries prepared from the Nalm 6 line of leukemic pre-B lymphoblasts and the HT-29 line of colon carcinoma cells. The deduced 362-amino acid polypeptide sequence encoded by GPRN1 shares a seven-transmembrane-segment hydropathicity profile with other G protein-coupled receptors. Northern blot analyses identified a 2.7-kilobase transcript of the VIP receptor in Nalm 6 and HT-29 cells as well as in tissues from rat brain, colon, heart, lung, kidney, spleen, and small intestine. COS-6 cells transfected with GPRN1 bound 125I-labeled VIP specifically with a dissociation constant (Kd) of 2.5 nM. VIP--and less effectively secretin, peptide histidine isoleucine (PHI), and glucagon competitively displaced bound 125I-VIP from transfected COS-6 cells, with potencies in the order VIP greater than secretin = PHI much greater than glucagon. VIP stimulated adenylate cyclase activity in stably transfected Chinese hamster ovary K1 cells, inducing a 3-fold increase in the intracellular level of cAMP. When the antisense orientation of the VIP receptor clone was introduced into HT-29 cells, there was a 50% suppression of the specific binding of 125I-VIP and of the VIP-induced increase in cAMP level, relative to untransfected cells. The VIP receptor cloned exhibits less than or equal to 24% homology with other receptors in the same superfamily and thus represents a subset of G protein-coupled receptors for peptide ligands. Images PMID:1675791

Sreedharan, S P; Robichon, A; Peterson, K E; Goetzl, E J

1991-01-01

142

Cloning and expression of the human vasoactive intestinal peptide receptor  

SciTech Connect

Vasoactive intestinal peptide (VIP) is a neuroendocrine mediator found in the central and peripheral nervous systems. Distinct subsets of neural, respiratory, gastrointestinal, and immune cells bear specific high-affinity receptors for VIP, which are associated with a guanine nucleotide-binding (G) protein capable of activatingadenylate cyclase. A cDNA clone (GPRN1) encoding the human VIP receptor was identified in librares prepared from the Nalm 6 line of leukemic pre-B lymphoblasts and the HT-29 line of colon carcinoma cells. The deduced 362-amino acid polypeptide sequence encoded by GPRN1 shares a seven-transmembrane-segment hydropathicity profile with other G protein-coupled receptors. Northern blot analyses identified a 2.7-kilobase transcript of the VIP receptor in Nalm 6 and HT-29 cells as well as in tissues from rat brain, colon, heart, lung, kidney, spleen, and small intestine. COS-6 cells transfected with GPRN1 bound {sup 125}I-labeled VIP specifically with a dissociation constant (K{sub d}) of 2.5 nM. VIP--and less effectively secretin, peptide histidine isoleucine (PHI), and glucagon competitively displaced bound {sup 125}I-VIP from transfected COS-6 cells, with potencies in the order VIP > secretin = PHI >> glucagon. VIP stimulated adenylate cyclase activity in stably transfected Chinese hanster ovary K1 cells, indicing a 3-fold increase in the intracellular level of cAMP. The VIP receptor cloned exhibits {le}24% homology with other receptors in the same superfamily and thus represents a subset of G protein-coupled receptors for peptide ligands.

Sreedharan, S.P.; Robichon, A.; Peterson, K.E.; Goetzl, E.J. (Univ. of California Medical Center, San Francisco (United States))

1991-06-01

143

Mathematical analysis of clinical data reveals a homunculus of bacterial mimotopes protecting from autoimmunity via oral tolerance in human.  

PubMed

Oral tolerance (OT) means systemic immunological unresponsiveness to harmless antigens present in the gastrointestinal tract. We presumed that tolerance to these antigens may also protect self-proteins that show immunological similarity to the intestinal normal flora. To investigate the existence and in vivo relevance of such a tolerogenic molecular mimicry, we focused our attention to Autoimmune Polyendocrine Syndrome type 1 (APS1) and Hemolysis, Elevated Liver Enzymes, Low Platelet count (HELLP) syndrome. APS1 is a human form of Autoimmune Regulator (AIRE) dysfunction with severely impaired central immunotolerance to a specific set of autoantigens, allowing investigation of tolerogenic mimicry by itself, without a disturbing background. HELLP syndrome is a mediocre manifestation of thrombotic microangiopathy, complicating pregnancy, with platelet-fibrin deposits in small blood vessels and transient development of autoantibodies. Impaired microcirculation in the liver is well described, while intestinal ischemia is possible but has not yet been studied. As the harmless nature of an antigen is essential for OT, ischemia-induced bacterial microinvasion represses this process. In case that oral tolerance to a bacterial homunculus is an existing way of self-protection and has an in vivo relevance when central tolerance is intact, significant intestinal ischemia--if present--is expected to promote autoimmunity in HELLP syndrome. We used an experimentally validated, highly reliable mathematical algorithm to predict the extent of immunological similarity between a certain autoantigen and intestinal bacteria. We found a strong negative correlation between the similarity of autoantigens to intestinal bacteria and the production of specific autoantibodies in APS1 (R=-0.70, P=0.002), while a positive correlation was observed in patients with predominantly the severe/moderately severe form of HELLP syndrome according to Mississippi classification (R=0.94, P=0.005). Autoantigen length inversely correlated with the production of autoantibodies in APS1 (R=-0.68, P=0.004). As a longer chain with more epitopes associates with an increased possibility of mimicry to any proteome, molecular mimicry in general--regarding at least major tissue-specific autoantigens--seems to be rather protective. Our calculations support the hypothesis that OT to an intestinal "bacterial homunculus" is an in vivo relevant mechanism of self-protection in humans, furthermore, HELLP syndrome presumably associates with significant intestinal ischemia and leak, resulting in transient autoimmunity via loss of OT. PMID:19286262

Kristóf, Katalin; Madách, Krisztina; Czaller, Ibolya; Bajtay, Zsuzsa; Erdei, Anna

2009-05-01

144

Melatonin reduces bacterial translocation by preventing damage to the intestinal mucosa in an experimental severe acute pancreatitis rat model  

PubMed Central

Recent studies have demonstrated that melatonin significantly decreased all studied acute pancreatitis-associated inflammatory parameters, in addition to reducing apoptosis and necrosis associated with pancreatic injury. However, the effect of melatonin on gut barrier dysfunction and bacterial translocation has not been fully elucidated. This study aimed to investigate the protective effects of melatonin on intestinal integrity in a rat model of severe acute pancreatitis (SAP) to evaluate whether melatonin prevented intestine barrier dysfunction and reduced bacterial translocation. Forty male Sprague Dawley (SD) rats were randomly divided into three groups, with 8 rats in the sham operation (SO) group, 18 rats in the SAP group and 14 SAP rats in the melatonin treatment (MT) group. SAP was induced by retrograde injection of 4% taurocholate into the biliopancreatic duct. Melatonin was administered 30 min prior to taurocholate injection in the melatonin-treated rats. All rats were sacrificed 24 h subsequent to pancreatitis induction. Real-time fluorescence quantitative polymerase chain reaction was used to detect and quantify Escherichia coli (E. coli) O157 in postcava blood. The microvilli structure was also analyzed with transmission electron microscopy. The level of E. coli DNA in the MT group was significantly lower than in rats in the SAP group. No E. coli DNA was detected in the control group. Villus height and crypt depth in the ileum were significantly higher in the MT and control groups compared to the SAP group, and were significantly higher in the MT group than in the SAP group. These results suggested that melatonin prevented gut barrier dysfunction and reduced bacterial translocation, resulting in reduced pancreatic-associated infections and decreased early mortality rates. PMID:24255660

SUN, XUECHENG; SHAO, YINGYING; JIN, YIN; HUAI, JIAPING; ZHOU, QIONG; HUANG, ZHIMING; WU, JIANSHENG

2013-01-01

145

Exploration of bacterial community classes in major human habitats  

PubMed Central

Background Determining bacterial abundance variation is the first step in understanding bacterial similarity between individuals. Categorization of bacterial communities into groups or community classes is the subsequent step in describing microbial distribution based on abundance patterns. Here, we present an analysis of the groupings of bacterial communities in stool, nasal, skin, vaginal and oral habitats in a healthy cohort of 236 subjects from the Human Microbiome Project. Results We identify distinct community group patterns in the anterior nares, four skin sites, and vagina at the genus level. We also confirm three enterotypes previously identified in stools. We identify two clusters with low silhouette values in most oral sites, in which bacterial communities are more homogeneous. Subjects sharing a community class in one habitat do not necessarily share a community class in another, except in the three vaginal sites and the symmetric habitats of the left and right retroauricular creases. Demographic factors, including gender, age, and ethnicity, significantly influence community composition in several habitats. Community classes in the vagina, retroauricular crease and stool are stable over approximately 200 days. Conclusion The community composition, association of demographic factors with community classes, and demonstration of community stability deepen our understanding of the variability and dynamics of human microbiomes. This also has significant implications for experimental designs that seek microbial correlations with clinical phenotypes. PMID:24887286

2014-01-01

146

Ileocecal valve dysfunction in small intestinal bacterial overgrowth: A pilot study  

PubMed Central

AIM: To explore whether patients with a defective ileocecal valve (ICV)/cecal distension reflex have small intestinal bacterial overgrowth. METHODS: Using a colonoscope, under conscious sedation, the ICV was intubated and the colonoscope was placed within the terminal ileum (TI). A manometry catheter with 4 pressure channels, spaced 1 cm apart, was passed through the biopsy channel of the colonoscope into the TI. The colonoscope was slowly withdrawn from the TI while the manometry catheter was advanced. The catheter was placed across the ICV so that at least one pressure port was within the TI, ICV and the cecum respectively. Pressures were continuously measured during air insufflation into the cecum, under direct endoscopic visualization, in 19 volunteers. Air was insufflated to a maximum of 40 mmHg to prevent barotrauma. All subjects underwent lactulose breath testing one month after the colonoscopy. The results of the breath tests were compared with the results of the pressures within the ICV during air insufflation. RESULTS: Nineteen subjects underwent colonoscopy with measurements of the ICV pressures after intubation of the ICV with a colonoscope. Initial baseline readings showed no statistical difference in the pressures of the TI and ICV, between subjects with positive lactulose breath tests and normal lactulose breath tests. The average peak ICV pressure during air insufflation into the cecum in subjects with normal lactulose breath tests was significantly higher than cecal pressures during air insufflation (49.33 ± 7.99 mmHg vs 16.40 ± 2.14 mmHg, P = 0.0011). The average percentage difference of the area under the pressure curve of the ICV from the cecum during air insufflations in subjects with normal lactulose breath tests was significantly higher (280.72% ± 43.29% vs 100% ± 0%, P = 0.0006). The average peak ICV pressure during air insufflation into the cecum in subjects with positive lactulose breath tests was not significantly different than cecal pressures during air insufflation 21.23 ± 3.52 mmHg vs 16.10 ± 3.39 mmHg. The average percentage difference of the area under the pressure curve of the ICV from the cecum during air insufflation was not significantly different 101.08% ± 7.96% vs 100% ± 0%. The total symptom score for subjects with normal lactulose breath tests and subjects with positive lactulose breath tests was not statistically different (13.30 ± 4.09 vs 24.14 ± 6.58). The ICV peak pressures during air insufflations were significantly higher in subjects with normal lactulose breath tests than in subjects with positive lactulose breath tests (P = 0.005). The average percent difference of the area under the pressure curve in the ICV from cecum was significantly higher in subjects with normal lactulose breath tests than in subjects with positive lactulose breath tests (P = 0.0012). Individuals with positive lactulose breath tests demonstrated symptom scores which were significantly higher for the following symptoms: not able to finish normal sized meal, feeling excessively full after meals, loss of appetite and bloating. CONCLUSION: Compared to normal, subjects with a positive lactulose breath test have a defective ICV cecal distension reflex. These subjects also more commonly have higher symptom scores. PMID:23239918

Miller, Larry S; Vegesna, Anil K; Sampath, Aiswerya Madanam; Prabhu, Shital; Kotapati, Sesha Krishna; Makipour, Kian

2012-01-01

147

Differentiation-dependent regulation of intestinal vitamin B(2) uptake: studies utilizing human-derived intestinal epithelial Caco-2 cells and native rat intestine.  

PubMed

Intestinal epithelial cells undergo differentiation as they move from the crypt to the villi, a process that is associated with up- and downregulation in expression of a variety of genes, including those involved in nutrient absorption. Whether the intestinal uptake process of vitamin B(2) [riboflavin (RF)] also undergoes differentiation-dependent regulation and the mechanism through which this occurs are not known. We used human-derived intestinal epithelial Caco-2 cells and native rat intestine as models to address these issues. Caco-2 cells showed a significantly higher carrier-mediated RF uptake in post- than preconfluent cells. This upregulation was associated with a significantly higher level of protein and mRNA expression of the RF transporters hRFVT-1 and hRFVT-3 in the post- than preconfluent cells; it was also accompanied with a significantly higher rate of transcription of the respective genes (SLC52A1 and SLC52A3), as indicated by the higher level of expression of heterogeneous nuclear RNA and higher promoter activity in post- than preconfluent cells. Studies with native rat intestine also showed a significantly higher RF uptake by epithelial cells of the villus tip than epithelial cells of the crypt; this again was accompanied by a significantly higher level of expression of the rat RFVT-1 and RFVT-3 at the protein, mRNA, and heterogeneous nuclear RNA levels. These findings show, for the first time, that the intestinal RF uptake process undergoes differentiation-dependent upregulation and suggest that this is mediated (at least in part) via transcriptional mechanisms. PMID:23413253

Subramanian, Veedamali S; Ghosal, Abhisek; Subramanya, Sandeep B; Lytle, Christian; Said, Hamid M

2013-04-15

148

Protective effect of glutamine on intestinal injury and bacterial community in rats exposed to hypobaric hypoxia environment  

PubMed Central

AIM: To investigate the protective effect of glutamine (Gln) on intestinal injury and the bacterial community in rats exposed to hypobaric hypoxia environment. METHODS: Sprague-Dawley rats were divided into control, hypobaric hypoxia (HH), and hypobaric hypoxia + Gln (5.0 g/kg BW·d) (HG) groups. On the first 3 d, all rats were placed in a normal environment. After the third day, the HH and HG groups were transferred into a hypobaric chamber at a simulated elevation of 7000 m for 5 d. The rats in the HG group were given Gln by gavage daily for 8 d. The rats in the control and HH groups were treated with the same volume of saline. The intestinal morphology, serum levels of malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-6 (IL-6), tumor necrosis factor-? (TNF-?), interferon-gamma (IFN-?) and diamino oxidase (DAO) were examined. We also evaluated the expression levels of occludin, toll-like receptor 4 (TLR4), nuclear factor-?B p65 (NF-?B p65) and myeloid differentiation factor 88 (MyD88), and examined the bacterial community in caecal contents. RESULTS: Hypobaric hypoxia induced the enlargement of the heart, liver, lung and kidney, and caused spleen atrophy. Intestinal villi damage was also observed in the HH group. Supplementation with Gln significantly alleviated hypobaric-induced damage to main organs including the intestine, increased serum SOD (1.14 ± 0.03 vs 0.88 ± 0.04, P < 0.05) and MDA (8.35 ± 1.60, P < 0.01) levels and decreased serum IL-6 (1172.13±30.49 vs 1407.05 ± 34.36, P < 0.05), TNF-? (77.46 ± 0.78 vs 123.70 ± 3.03, P < 0.001), IFN-? (1355.42 ± 72.80 vs 1830.16 ± 42.07, P < 0.01) and DAO (629.30 ± 9.15 vs 524.10 ± 13.34, P < 0.001) levels. Moreover, Gln significantly increased occludin (0.72 ± 0.05 vs 0.09 ± 0.01, P < 0.001), TLR4 (0.15 ± 0.05 vs 0.30 ±0.09, P < 0.05), MyD88 (0.32 ± 0.08 vs 0.71 ± 0.06, P < 0.01), and NF-?B p65 (0.16 ± 0.04 vs 0.44 ± 0.03, P < 0.01) expression levels and improved the intestinal bacterial community. CONCLUSION: Gln treatment protects from intestinal injury and regulates the gut flora imbalance in hypoxia environment. These effects may be related to the TLR4/MyD88/NF-?B signaling pathway. PMID:24782618

Xu, Chun-Lan; Sun, Rui; Qiao, Xiang-Jin; Xu, Cui-Cui; Shang, Xiao-Ya; Niu, Wei-Ning

2014-01-01

149

Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells  

Microsoft Academic Search

Monolayers of a well differentiated human intestinal epithelial cell line, Caco-2, were used as a model to study passive drug absorption across the intestinal epithelium. Absorption rate constants (expressed as apparent permeability coefficients) were determined for 20 drugs and peptides with different structural properties. The permeability coefficients ranged from approximately 5 x 10{sup - 8} to 5 x 10{sup -

P. Artursson; J. Karlsson

1991-01-01

150

Bacterial expression of human kynurenine 3-monooxygenase: Solubility, activity, purification?  

PubMed Central

Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington’s disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. PMID:24316190

Wilson, K.; Mole, D.J.; Binnie, M.; Homer, N.Z.M.; Zheng, X.; Yard, B.A.; Iredale, J.P.; Auer, M.; Webster, S.P.

2014-01-01

151

Topographic diversity of fungal and bacterial communities in human skin.  

PubMed

Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14?skin sites in 10?healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis. PMID:23698366

Findley, Keisha; Oh, Julia; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; Kong, Heidi H; Segre, Julia A

2013-06-20

152

Novel inhibitors of human intestinal N-terminal maltase-glucoamylase and influenza virus A neuraminidase.  

E-print Network

??This thesis work deals with the syntheses and biological evaluation of novel inhibitors of two clinically relevant glycosidases, namely, human intestinal N-terminal maltase-glucoamylase (ntMGAM) and… (more)

Mohan, Sankar

2010-01-01

153

Human intestinal absorption--neutral molecules and ionic species.  

PubMed

Analysis of percentage human intestinal absorption (%HIA) for 280 drugs shows that an excellent fit can be obtained using only three descriptors for neutral molecules with a SD of 13.9%. Use of descriptors for individual cations and anions does not lead to any better goodness-of-fit. It is noted that diffusion coefficients in water for ionized molecules are almost identical to those for the corresponding neutral molecules. Comparison of equation coefficients for HIA with those for other processes shows that HIA resembles diffusion in water but does not resemble permeation through biological bilayers. It is shown that compound substituent effects on HIA are near those for diffusion but are far away from substituent effects on permeation through a typical bilayer. Calculations indicate that rates of permeation through an unstirred mucosal layer are of the same order as experimental rates of permeation in HIA. It is concluded that for the 280 compound set, diffusion through the unstirred mucosal layer is the rate determining step. The effect on pK(a) in transfer of acids and bases from water to another solvent, and of diffusion past a negative charge in a phase/bilayer is also considered. PMID:24902952

Abraham, Michael H

2014-07-01

154

Vasoactive intestinal peptide binding autoantibodies in autoimmune humans and mice.  

PubMed

Autoantibodies capable of binding the immunoregulatory neuropeptide vasoactive intestinal peptide (VIP) were detected in the sera of a mouse strain prone to autoimmune disease due to the lpr mutation (MRL/lpr). The autoantibodies were not present in control wildtype MRL/lpr mice, but they were readily detected in humans without autoimmune disease. The binding was due to low affinity VIP recognition. Increased VIP binding activity was evident in patients with systemic lupus erythematosus but not systemic sclerosis, Sjögren's syndrome (SS), rheumatoid arthritis or autoimmune thyroiditis. Recombinant VIP binding Fv clones (fragment variable; the variable domains of the light and heavy chains antibody subunits joined with a peptide linker) were isolated from a phage display library prepared from lupus patients. One Fv clone displaying VIP-selective binding and several clones displaying cross-reactivity with unrelated peptides were identified. Replacement mutations in the VIP-selective clone were preferentially localized in the regions known to make contacts with the antigen, i.e. the complementarity determining regions, suggesting that the selective binding activity is due to immunological maturation of the antibodies. Frequent occurrences of autoantibody responses to VIP indicate that immunological tolerance to this neuropeptide can be readily broken. The depletion of VIP by specific antibodies in autoimmune disease may interfere with VIP regulation of T cells and inflammatory cells and result in further amplification of autoreactive immunological responses. PMID:12535706

Bangale, Yogesh; Cavill, Dana; Gordon, Tom; Planque, Stephanie; Taguchi, Hiroaki; Bhatia, Gita; Nishiyama, Yasuhiro; Arnett, Frank; Paul, Sudhir

2002-12-01

155

Permeability of rhynchophylline across human intestinal cell in vitro  

PubMed Central

Rhynchophylline (Rhy) is the major component of Uncaria species, which is used in Chinese traditional medicine for the treatment of central nervous system disorders. However, its oral bioavailability has not been known. This study aims to investigate the intestinal permeability and related mechanisms of Rhy using cultured human epithelial Caco-2 cells. The cytotoxicity of Rhy on Caco-2 cells was evaluated with MTT assay. The effect of Rhy on the integrity of Caco-2 cell monolayer was assayed with transepithelial electrical resistance. The permeability of Rhy across cell monolayer was assayed by measuring Rhy quantity in received side with HPLC. The effect of Rhy on the expression of P-glycoprotein and MDR1 was detected with Western blot and flow cytometry, respectively. In the concentration of Rhy, which did not produce toxicity on cell viability and integrity of Caco-2 cell monolayer, Rhy crossed the monolayer with velocity 2.76~5.57×10^-6 cm/sec and 10.68~15.66×10^-6 cm/sec from apical to basolateral side and from basolateral to apical side, respectively. The permeability of Rhy was increased by verapamil, a P-glycoprotein inhibitor, or rhodamine123, a P-glycoprotein substrate. Rhy revealed an induction effect on P-glycoprotein expression in Caco-2 cells. These results demonstrate the low permeability of Rhy in intro, and suggest that P-glycoprotein may underlie the mechanism. PMID:24966905

Ma, Bo; Wang, Jing; Sun, Jing; Li, Ming; Xu, Huibo; Sun, Guibo; Sun, Xiaobo

2014-01-01

156

Intestinal immune gene response to bacterial challenge in rainbow trout (Oncorhynchus mykiss)  

Technology Transfer Automated Retrieval System (TEKTRAN)

The mucosal immune system of fish is poorly understood and defined models for studying this system are lacking. The objective of this study was to evaluate different challenge paradigms and pathogens to examine the magnitude of change in intestinal immune gene expression. Rainbow trout were expos...

157

Focused Specificity of Intestinal Th17 Cells towards Commensal Bacterial Antigens  

PubMed Central

T-helper-17 (Th17) cells have critical roles in mucosal defense and in autoimmune disease pathogenesis 1-3. They are most abundant in the small intestine lamina propria (SILP), where their presence requires colonization of mice with microbiota 4-7. Segmented Filamentous Bacteria (SFB) are sufficient to induce Th17 cells and to promote Th17-dependent autoimmune disease in animal models 8-14. However, the specificity of Th17 cells, the mechanism of their induction by distinct bacteria, and the means by which they foster tissue-specific inflammation remain unknown. Here we show that the T cell receptor (TCR) repertoire of intestinal Th17 cells in SFB-colonized mice has minimal overlap with that of other intestinal CD4+ T cells and that most Th17 cells, but not other T cells, recognize antigens encoded by SFB. T cells with antigen receptors specific for SFB-encoded peptides differentiated into ROR?t-expressing Th17 cells, even if SFB-colonized mice also harbored a strong Th1 cell inducer, Listeria monocytogenes, in their intestine. The match of T cell effector function with antigen specificity is thus determined by the type of bacteria that produce the antigen. These findings have significant implications for understanding how commensal microbiota contribute to organ-specific autoimmunity and for developing novel mucosal vaccines. PMID:24739972

Yang, Yi; Torchinsky, Miriam B.; Gobert, Michael; Xiong, Huizhong; Xu, Mo; Linehan, Jonathan L.; Alonzo, Francis; Ng, Charles; Chen, Alessandra; Lin, Xiyao; Sczesnak, Andrew; Liao, Jia-Jun; Torres, Victor J.; Jenkins, Marc K.; Lafaille, Juan J.; Littman, Dan R.

2014-01-01

158

Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver ?-glucosidase activity  

Microsoft Academic Search

Flavonoid and isoflavonoid glycosides are common dietary phenolics which may be absorbed from the small intestine of humans. The ability of cell-free extracts from human small intestine and liver to deglycosylate various (iso)flavonoid glycosides was investigated. Quercetin 4?-glucoside, naringenin 7-glucoside, apigenin 7-glucoside, genistein 7-glucoside and daidzein 7-glucoside were rapidly deglycosylated by both tissue extracts, whereas quercetin 3,4?-diglucoside, quercetin 3-glucoside, kaempferol

Andrea J Day; M. Susan DuPont; Saxon Ridley; Mike Rhodes; Michael J. C Rhodes; Michael R. A Morgan; Gary Williamson

1998-01-01

159

Detection of Mycobacterium avium subsp. paratuberculosis in intestinal and lymph node tissues of water buffaloes ( Bubalus bubalis) by PCR and bacterial culture  

Microsoft Academic Search

The efficacy of bacterial culture and IS900-specific polymerase chain reaction (PCR) was compared for the detection of Mycobacterium avium subsp. paratuberculosis (MAP) from the intestinal and mesenteric lymph node tissues of water buffaloes (Bubalus bubalis) showing lesions of paratuberculosis (Johne's disease). Out of 20 (4.9%) animals showing histological lesions suggestive of paratuberculosis, 14 (70%) and 6 (30%) were positive in

P. Sivakumar; B. N. Tripathi; Nem Singh

2005-01-01

160

Characterization of intracellular pteroylpolyglutamate hydrolase (PPH) from human intestinal mucosa  

SciTech Connect

There are two forms of pteroylpolyglutamate hydrolase (PPH) in the human intestinal mucosa, one in the brush border membrane and the other intracellular; brush border PPH is an exopeptidase with optimal activity at pH 6.5 and a requirement for zinc. The presence study characterized human intracellular PPH and compared its properties to those of brush border PPH. Intracellular PPH was purified 30-fold. The enzyme had a MW of 75,000 by gel filtration, was optimally active at pH 4.5, and had an isoelectric point at pH 8.0. In contrast to brush border PPH, intracellular PPH was unstable at increasing temperatures, was unaffected by dialysis against chelating agents and showed no requirement for Zn/sup 2 +/. Using PteGlu/sub 2/(/sup 14/C)Glu as substrate, they demonstrated a K/sub m/ of 1.2 ..mu..M and increasing affinity for folates with longer glutamate chains. Intracellular PPH required the complete folic acid (PteGlu) moiety and a ..gamma..-glutamyl linkage for activity. Using ion exchange chromatography and an HPLC method to determine the hydrolytic products of the reaction, they found intracellular PPH could cleave both internal and terminal ..gamma..-glutamyl linkages, with PteGlu as an end product. After subcellular fractionation of the mucosa, PPH was found in the lysosomes. In summary, the distinct characteristics of brush border and intracellular PPH suggest that the two hydrolases serve different roles in folate metabolism.

Wang, T.T.Y.; Chandler, C.J.; Halsted, C.H.

1986-03-01

161

Evaluating the efficacy of probiotic on treatment in patients with small intestinal bacterial overgrowth (SIBO) - A pilot study  

PubMed Central

Background & objectives: Small intestinal bacterial overgrowth (SIBO) leads to several gastrointestinal (GI) problems and complications leading to malabsorption. The effectiveness of probiotics in the treatment of SIBO syndrome has not been well studied. This pilot study was aimed to assess the efficacy of a probiotic consisting of lactobacilli in the treatment of SIBO. Methods: In this study, 30 cases suffering from chronic abdominal pain or diarrhoea and with a positive hydrogen breath test were randomized in a double-blind manner into two groups: probiotic drug user and control group. After an initial 3-week aggressive therapy with broad-spectrum antibiotics, a 15-day maintenance antibiotic therapy with lactol was administered for the study group and the same regimen without lactol for the control group. After six months the HBT result and the GI symptoms were analyzed and compared between the two groups. Results: The result of hydrogen breath test and the clinical symptoms in patients receiving the maintenance regimen with lactol probiotic showed a better response. The hydrogen breath test turned negative in 93.3 per cent of those receiving lactol compared to 66.7 per cent of the controls. In all the cases receiving lactol, the abdominal pain disappeared completely (P=0.002). In addition, other GI problems including flatulence, belching and diarrhoea significantly improved in the study group (P<0.05). Interpretation & conclusions: Based on the preliminary data it seems that adding lactol probiotic to the maintenance therapy of small intestinal bacterial overgrowth patients on routine antibiotic therapy will be beneficial in preventing the complications of this syndrome. PMID:25579140

Khalighi, A.R.; Khalighi, M.R.; Behdani, R.; Jamali, J.; Khosravi, A.; Kouhestani, Sh.; Radmanesh, H.; Esmaeelzadeh, S.; Khalighi, N.

2014-01-01

162

Laminin Receptor 37/67LR Regulates Adhesion and Proliferation of Normal Human Intestinal Epithelial Cells  

PubMed Central

Interactions between the cell basal membrane domain and the basement membrane are involved in several cell functions including proliferation, migration and differentiation. Intestinal epithelial cells can interact with laminin, a major intestinal basement membrane glycoprotein, via several cell-surface laminin-binding proteins including integrin and non-integrin receptors. The 37/67kDa laminin receptor (37/67LR) is one of these but its role in normal epithelial cells is still unknown. The aim of this study was to characterise the expression pattern and determine the main function of 37/67LR in the normal human small intestinal epithelium. Immunolocalization studies revealed that 37/67LR was predominantly present in the undifferentiated/proliferative region of the human intestinal crypt in both the immature and adult intestine. Using a human intestinal epithelial crypt (HIEC) cell line as experimental model, we determined that 37/67LR was expressed in proliferative cells in both the cytoplasmic and membrane compartments. Small-interfering RNA-mediated reduction of 37/67LR expression led to HIEC cell-cycle reduction and loss of the ability to adhere to laminin-related peptides under conditions not altering ribosomal function. Taken together, these findings indicate that 37/67LR regulates proliferation and adhesion in normal intestinal epithelial cells independently of its known association with ribosomal function. PMID:23991217

Khalfaoui, Taoufik; Groulx, Jean-François; Sabra, Georges; GuezGuez, Amel; Basora, Nuria; Vermette, Patrick; Beaulieu, Jean-François

2013-01-01

163

Safety and risk assessment of the genetically modified Lactococci on rats intestinal bacterial flora  

Microsoft Academic Search

The interaction between Lactococcus lactis NZ9000\\/pNZPNK and intestinal microflora was evaluated as a method to assess safety of genetically modified microorganisms (GMMs). L. lactis NZ9000\\/pNZPNK is one kind of GMM and able to produce the intracellular subtilisin NAT (nattokinase) under induction with nisin. The host strain L. lactis NZ9000 was a generally recognized as safe (GRAS) microorganism. Six groups of

Kai-Chien Lee; Chin-Feng Liu; Tzu-Hsing Lin; Tzu-Ming Pan

2010-01-01

164

1 | P a g e Characterization of Bacterial Community Structure in Human Skin  

E-print Network

1 | P a g e Characterization of Bacterial Community Structure in Human Skin Chris Cefalu Bacteria have developed an inveterate relationship with humans and play a vital role in homeostasis, given-human interaction pertains to the bacterial ecology of the human skin. Skin serves as the largest organ in the human

Christner, Brent C.

165

Evolution of antibiotic resistance by human and bacterial niche construction.  

PubMed

Antibiotic treatment by humans generates strong viability selection for antibiotic-resistant bacterial strains. The frequency of host antibiotic use often determines the strength of this selection, and changing patterns of antibiotic use can generate many types of behaviors in the population dynamics of resistant and sensitive bacterial populations. In this paper, we present a simple model of hosts dimorphic for their tendency to use/avoid antibiotics and bacterial pathogens dimorphic in their resistance/sensitivity to antibiotic treatment. When a constant fraction of hosts uses antibiotics, the two bacterial strain populations can coexist unless host use-frequency is above a critical value; this critical value is derived as the ratio of the fitness cost of resistance to the fitness cost of undergoing treatment. When strain frequencies can affect host behavior, the dynamics may be analyzed in the light of niche construction. We consider three models underlying changing host behavior: conformism, the avoidance of long infections, and adherence to the advice of public health officials. In the latter two, we find that the pathogen can have quite a strong effect on host behavior. In particular, if antibiotic use is discouraged when resistance levels are high, we observe a classic niche-construction phenomenon of maintaining strain polymorphism even in parameter regions where it would not be expected. PMID:15856691

Boni, Maciej F; Feldman, Marcus W

2005-03-01

166

Bacterial communities on classroom surfaces vary with human contact  

PubMed Central

Background Humans can spend the majority of their time indoors, but little is known about the interactions between the human and built-environment microbiomes or the forces that drive microbial community assembly in the built environment. We sampled 16S rRNA genes from four different surface types throughout a university classroom to determine whether bacterial assemblages on each surface were best predicted by routine human interactions or by proximity to other surfaces within the classroom. We then analyzed our data with publicly-available datasets representing potential source environments. Results Bacterial assemblages from the four surface types, as well as individual taxa, were indicative of different source pools related to the type of human contact each surface routinely encounters. Spatial proximity to other surfaces in the classroom did not predict community composition. Conclusions Our results indicate that human-associated microbial communities can be transferred to indoor surfaces following contact, and that such transmission is possible even when contact is indirect, but that proximity to other surfaces in the classroom does not influence community composition. PMID:24602274

2014-01-01

167

Association between the ABO blood group and the human intestinal microbiota composition  

PubMed Central

Background The mucus layer covering the human intestinal epithelium forms a dynamic surface for host-microbial interactions. In addition to the environmental factors affecting the intestinal equilibrium, such as diet, it is well established that the microbiota composition is individually driven, but the host factors determining the composition have remained unresolved. Results In this study, we show that ABO blood group is involved in differences in relative proportion and overall profiles of intestinal microbiota. Specifically, the microbiota from the individuals harbouring the B antigen (secretor B and AB) differed from the non-B antigen groups and also showed higher diversity of the Eubacterium rectale-Clostridium coccoides (EREC) and Clostridium leptum (CLEPT) -groups in comparison with other blood groups. Conclusions Our novel finding indicates that the ABO blood group is one of the genetically determined host factors modulating the composition of the human intestinal microbiota, thus enabling new applications in the field of personalized nutrition and medicine. PMID:22672382

2012-01-01

168

Characterization of two cysteine proteases secreted by Blastocystis ST7, a human intestinal parasite.  

PubMed

Blastocystis spp. are unicellular anaerobic intestinal parasites of both humans and animals and the most prevalent ones found in human stool samples. Their association with various gastrointestinal disorders raises the questions of its pathogenicity and of the molecular mechanisms involved. Since secreted proteases are well-known to be implicated in intestinal parasite virulence, we intended to determine whether Blastocystis spp. possess such pathogenic factors. In silico analysis of the Blastocystis subtype 7 (ST7) genome sequence highlighted 22 genes coding proteases which were predicted to be secreted. We characterized the proteolytic activities in the secretory products of Blastocystis ST7 using specific protease inhibitors. Two cysteine proteases, a cathepsin B and a legumain, were identified in the parasite culture supernatant by gelatin zymographic SDS-PAGE gel and MS/MS analysis. These proteases might act on intestinal cells and disturb gut function. This work provides serious molecular candidates to link Blastocystis spp. and intestinal disorders. PMID:22402106

Wawrzyniak, Ivan; Texier, Catherine; Poirier, Philippe; Viscogliosi, Eric; Tan, Kevin S W; Delbac, Frédéric; El Alaoui, Hicham

2012-09-01

169

Mechanism of conjugated linoleic acid and vaccenic acid formation in human faecal suspensions and pure cultures of intestinal bacteria.  

PubMed

Faecal bacteria from four human donors and six species of human intestinal bacteria known to metabolize linoleic acid (LA) were incubated with LA in deuterium oxide-enriched medium to investigate the mechanisms of conjugated linoleic acid (CLA) and vaccenic acid (VA) formation. The main CLA products in faecal suspensions, rumenic acid (cis-9,trans-11-CLA; RA) and trans-9,trans-11-CLA, were labelled at C-13, as were other 9,11 geometric isomers. Traces of trans-10,cis-12-CLA formed were labelled to a much lower extent. In pure culture, Bifidobacterium breve NCFB 2258 formed labelled RA and trans-9,trans-11-CLA, while Butyrivibrio fibrisolvens 16.4, Roseburia hominis A2-183T, Roseburia inulinivorans A2-192T and Ruminococcus obeum-like strain A2-162 converted LA to VA, labelled in a manner indicating that VA was formed via C-13-labelled RA. Propionibacterium freudenreichii subsp. shermanii DSM 4902T, a possible probiotic, formed mainly RA with smaller amounts of trans-10,cis-12-CLA and trans-9,trans-11-CLA, labelled the same as in the mixed microbiota. Ricinoleic acid (12-OH-cis-9-18 : 1) did not form CLA in the mixed microbiota, in contrast to CLA formation described for Lactobacillus plantarum. These results were similar to those reported for the mixed microbiota of the rumen. Thus, although the bacterial genera and species responsible for biohydrogenation in the rumen and the human intestine differ, and a second route of RA formation via a 10-OH-18 : 1 is present in the intestine, the overall labelling patterns of different CLA isomers formation are common to both gut ecosystems. A hydrogen-abstraction enzymic mechanism is proposed that may explain the role of a 10-OH-18 : 1 intermediate in 9,11-CLA formation in pure and mixed cultures. PMID:19118369

McIntosh, Freda M; Shingfield, Kevin J; Devillard, Estelle; Russell, Wendy R; Wallace, R John

2009-01-01

170

Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages.  

PubMed

LL-37/hCAP-18 is the only human member of the cathelicidin family and plays an important role in killing various pathogens, as well as in immune modulation. In this study, we investigated the effect of LL-37 on bacterial phagocytosis by macrophages and demonstrate that LL-37 enhances phagocytosis of IgG-opsonized Gram-negative and Gram-positive bacteria in a dose- and time-dependent manner by dTHP-1 cells. In addition, LL-37 enhanced phagocytosis of nonopsonized Escherichia coli by human macrophages. Consistently, LL-37 elevated the expression of Fc?Rs on macrophages but not the complement receptors CD11b and -c. Further studies revealed that the expression of TLR4 and CD14 is also increased on LL-37-treated macrophages. Several lines of evidence indicated that the FPR2/ALX receptor mediated LL-37-induced phagocytosis. However, TLR4 signaling was also coupled to the phagocytic response, as a specific TLR4 antibody significantly suppressed phagocytosis of IgG-opsonized E. coli and nonopsonized E. coli by dTHP-1 cells. Finally, macrophages from Cnlp(-/-) mice exhibited diminished bacterial phagocytosis compared with macrophages from their WT littermates. In conclusion, we demonstrate a novel, immune-modulatory mechanism of LL-37, which may contribute to bacterial clearance. PMID:24550523

Wan, Min; van der Does, Anne M; Tang, Xiao; Lindbom, Lennart; Agerberth, Birgitta; Haeggström, Jesper Z

2014-06-01

171

Enteropathogenic Escherichia coli inhibits intestinal vitamin B1 (thiamin) uptake: studies with human-derived intestinal epithelial Caco-2 cells.  

PubMed

Infection with the gram-negative enteropathogenic Escherichia coli (EPEC), a food-borne pathogen, represents a significant risk to human health. Whereas diarrhea is a major consequence of this infection, malnutrition also occurs especially in severe and prolonged cases, which may aggravate the health status of the infected hosts. Here we examined the effect of EPEC infection on the intestinal uptake of the water-soluble vitamin B1 (thiamin) using an established human intestinal epithelial Caco-2 cell model. The results showed that infecting Caco-2 cells with wild-type EPEC (but not with nonpathogenic E. coli, killed EPEC, or filtered supernatant) leads to a significant (P < 0.01) inhibition in thiamin uptake. Kinetic parameters of both the nanomolar (mediated by THTR-2) and the micromolar (mediated by THTR-1) saturable thiamin uptake processes were affected by EPEC infection. Cell surface expression of hTHTR-1 and -2 proteins, (determined by the biotinylation method) showed a significantly (P < 0.01) lower expression in EPEC-treated cells compared with controls. EPEC infection also affected the steady-state mRNA levels as well as promoter activity of the SLC19A2 and SLC19A3 genes. Infecting Caco-2 cells with EPEC mutants that harbor mutations in the escN gene (which encodes a putative ATPase for the EPEC type III secretion system, TTSS) or the espA, espB, or espD genes (which encode structural components of the TTSS) did not affect thiamin uptake. On the other hand, mutations in espF and espH genes (which encode effector proteins) exhibited partial inhibition in thiamin uptake. These results demonstrate for the first time that EPEC infection of human intestinal epithelial cells leads to inhibition in thiamin uptake via effects on physiological and molecular parameters of hTHTR-1 and -2. Furthermore, the inhibition appears to be dependent on a functional TTSS of EPEC. PMID:19628653

Ashokkumar, Balasubramaniem; Kumar, Jeyan S; Hecht, Gail A; Said, Hamid M

2009-10-01

172

Combining flagellin and human ?-defensin-3 to combat bacterial infections  

PubMed Central

The discovery and therapeutic use of antibiotics made a major contribution to the reduction of human morbidity and mortality. However, the growing resistance to antibiotics has become a matter of huge concern. In this study we aimed to develop an innovative approach to treat bacterial infections utilizing two components: the human antibacterial peptide ?-defensin-3 (BD3) and the bacterial protein flagellin (F). This combination was designed to provide an efficient weapon against bacterial infections with the peptide killing the bacteria directly, while the flagellin protein triggers the immune system and acts against bacteria escaping from the peptide’s action. We designed, expressed and purified the fusion protein flagellin BD3 (FBD3) and its two components, the F protein and the native BD3 peptide. FBD3 fusion protein and native BD3 peptide had antibacterial activity in vitro against various bacterial strains. FBD3 and F proteins could also recognize their receptor expressed on target cells and stimulated secretion of IL-8. In addition, F and FBD3 proteins had a partial protective effect in mice infected by pathogenic Escherichia coli bacteria that cause a lethal disease. Moreover, we were able to show partial protection of mice infected with E. coli using a flagellin sequence from Salmonella. We also explored flagellin’s basic mechanisms of action, focusing on its effects on CD4+ T cells from healthy donors. We found that F stimulation caused an increase in the mRNA levels of the Th1 response cytokines IL12A and IFN?. In addition, F stimulation affected its own receptor. PMID:25538693

Sabag, Ofra; Lorberboum-Galski, Haya

2014-01-01

173

Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents.  

PubMed

A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

Liévin-Le Moal, Vanessa; Servin, Alain L

2014-04-01

174

Lactobacillus plantarum—survival, functional and potential probiotic properties in the human intestinal tract  

Microsoft Academic Search

Lactobacillus plantarum is a versatile lactic acid bacterium that is encountered in a range of environmental niches, has a proven ability to survive gastric transit, and can colonize the intestinal tract of human and other mammals. Several studies describe the effects of L. plantarum consumption on human physiology. The availability of the complete genome sequence of L. plantarum WCFS1 makes

Maaike C. de Vries; Elaine E. Vaughan; Michiel Kleerebezem; Willem M. de Vos

2006-01-01

175

Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine  

E-print Network

Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine Hamid M. Subramanian, and Jonathan S. Marchant. Expression and func- tional contribution of hTHTR-2 in thiamin and relative contribution of human thiamin transporter (hTHTR)-2 toward overall carrier-mediated thiamin uptake

Marchant, Jonathan

176

Survival of Lactic Acid Bacteria in the Human Stomach and Adhesion to Intestinal Cells  

Microsoft Academic Search

The survival of four strains of lactic acid bacteria in human gastric juice, in vivo and in vitro, and in buffered saline, pH 1 to 5, has been investigated. The strains studied include two Lactobacillus acidophilus strains, Lactobacillus bul- garicus, and Streptococcus thermophilus. In addition, the adhesion of these strains to freshly collected human and pig small intestinal cells and

P. L. Conway; S. L. Gorbach; B. R. Goldin

1987-01-01

177

Draft Genome Sequence of Lactobacillus hominis Strain CRBIP 24.179T, Isolated from Human Intestine  

E-print Network

- cillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, and Lactobacillus plantarumDraft Genome Sequence of Lactobacillus hominis Strain CRBIP 24.179T, Isolated from Human Intestine genome sequence of the strain Lactobacillus hominis CRBIP 24.179T, isolated from a human clinical sample

Paris-Sud XI, Université de

178

Expression and promoter analysis of SLC19A2 in the human intestine.  

PubMed

The molecular mechanism and regulation of the intestinal uptake process of dietary thiamine is not well understood. Previous studies have established the involvement of a carrier-mediated system for thiamine uptake in the human intestine. Recently a human thiamine transporter, SLC19A2, was cloned from a number of human tissues. Little, however, is known about expression of the SLC19A2 message along the native human gastrointestinal tract, and no analysis of its promoter in intestinal tissue is available. Therefore, the current studies were aimed at investigating the expression of SLC19A2 in the human gastrointestinal tract and at analyzing the promoter of this potential intestinal thiamine transporter. First we cloned SLC19A2 cDNA from a human intestinal cell line (Caco-2) by reverse transcriptase-polymerase chain reaction, then used this cDNA as a probe in Northern blot analysis. SLC19A2 message was found to be expressed in all gastrointestinal tissues in the following order: liver>stomach>duodenum>jejunum>colon>cecum>rectum>ileum. SLC19A2 was also expressed at the protein level in Caco-2 cells and in native human small intestine by Western blot analysis. We also cloned the 5'-regulatory region of the SLC19A2 gene and confirmed activity of its promoter following transfection into intestinal epithelial Caco-2 cells. Furthermore, we identified the minimal promoter region required for basal activity of SLC19A2 in these cells which was found to be mainly encoded in a sequence between -356 and -36, and included multiple cis-regulatory elements. Transcription initiation sites of the SLC19A2 gene in intestinal epithelial Caco-2 cells were also identified by 5'-rapid amplification of cDNA ends. These results demonstrate that SLC19A2 is expressed in various regions of the human gastrointestinal tract. In addition, the results provide the first characterization of the SLC19A2 promoter. These findings raise the possibility that SLC19A2 may play a role in the normal intestinal thiamine absorption process. PMID:11997118

Reidling, Jack C; Subramanian, Veedamali S; Dudeja, Pradeep K; Said, Hamid M

2002-04-12

179

Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats.  

PubMed

The objective of the present study was to evaluate the consequence of Camembert consumption on the composition and metabolism of human intestinal microbiota. Camembert cheese was compared with milk fermented by yoghurt starters and Lactobacillus casei as a probiotic reference. The experimental model was the human microbiota-associated (HM) rat. HM rats were fed a basal diet (HMB group), a diet containing Camembert made from pasteurised milk (HMCp group) or a diet containing fermented milk (HMfm group). The level of micro-organisms from dairy products was measured in faeces using cultures on a specific medium and PCR-temporal temperature gradient gel electrophoresis. The metabolic characteristics of the caecal microbiota were also studied: SCFA, NH3, glycosidase and reductase activities, and bile acid degradations. The results showed that micro-organisms from cheese comprised 10(5)-10(8) bacteria/g faecal sample in the HMCp group. Lactobacillus species from fermented milk were detected in HMfm rats. Consumption of cheese and fermented milk led to similar changes in bacterial metabolism: a decrease in azoreductase activity and NH3 concentration and an increase in mucolytic activities. However, specific changes were observed: in HMCp rats, the proportion of ursodeoxycholic resulting from chenodeoxycholic epimerisation was higher; in HMfm rats, alpha and beta-galactosidases were higher than in other groups and both azoreductases and nitrate reductases were lower. The results show that, as for fermented milk, Camembert consumption did not greatly modify the microbiota profile or its major metabolic activities. Ingested micro-organisms were able to survive in part during intestinal transit. These dairy products exert a potentially beneficial influence on intestinal metabolism. PMID:15469646

Lay, Christophe; Sutren, Malène; Lepercq, Pascale; Juste, Catherine; Rigottier-Gois, Lionel; Lhoste, Evelyne; Lemée, Riwanon; Le Ruyet, Pascale; Doré, Joël; Andrieux, Claude

2004-09-01

180

Human Intestinal Tissue with Adult Stem Cell Properties Derived from Pluripotent Stem Cells  

PubMed Central

Summary Genetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many applications are limited due to the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. Here, using an endogenous LGR5-GFP reporter, we derived adult stem cells from hPSCs that gave rise to functional human intestinal tissue comprising all major cell types of the intestine. Histological and functional analyses revealed that such human organoid cultures could be derived with high purity and with a composition and morphology similar to those of cultures obtained from human biopsies. Importantly, hPSC-derived organoids responded to the canonical signaling pathways that control self-renewal and differentiation in the adult human intestinal stem cell compartment. This adult stem cell system provides a platform for studying human intestinal disease in vitro using genetically engineered hPSCs. PMID:24936470

Forster, Ryan; Chiba, Kunitoshi; Schaeffer, Lorian; Regalado, Samuel G.; Lai, Christine S.; Gao, Qing; Kiani, Samira; Farin, Henner F.; Clevers, Hans; Cost, Gregory J.; Chan, Andy; Rebar, Edward J.; Urnov, Fyodor D.; Gregory, Philip D.; Pachter, Lior; Jaenisch, Rudolf; Hockemeyer, Dirk

2014-01-01

181

Tspan-1 interacts with the thiamine transporter-1 in human intestinal epithelial cells and modulates its stability.  

PubMed

The human thiamine transporter-1 (hTHTR-1) contributes to intestinal thiamine uptake, and its function is regulated at both the transcriptional and posttranscriptional levels. Nothing, however, is known about the protein(s) that may interact with hTHTR-1 and affects its cell biology and physiology. We addressed this issue in the present investigation using a bacterial two-hybrid system to screen a human intestinal cDNA library with the complete coding sequence of hTHTR-1 as a bait. Our results showed that a member of the tetraspanin family of proteins, Tspan-1, interacts with hTHTR-1. Coimmunoprecipitation and glutathione S-transferase (GST)-pulldown assays confirmed the existence of such an interaction between hTspan-1 and hTHTR-1 in human intestinal epithelial Caco-2 cells. Furthermore, live cell confocal imaging demonstrated that hTspan-1 and hTHTR-1 colocalize in human intestinal epithelial HuTu-80 cells. The importance of the interaction between hTspan-1 and hTHTR-1 for cell biology of the thiamine transporter was examined in HuTu-80 cells stably expressing hTHTR-1. Coexpression of hTspan-1 in these cells led to a significant decrease in the rate of degradation of hTHTR-1 compared with cells expressing the hTHTR-1 alone; in fact the half-life of the hTHTR-1 protein was twice longer in the former cell type compared with the latter cell type (12 h vs. 6 h, respectively). This finding was also confirmed at the functional level when a significantly higher thiamine uptake was observed in cycloheximide-treated (6 h) cells expressing hTHTR-1 together with hTspan-1 compared with those expressing hTHTR-1 alone. These studies demonstrate for the first time that Tspan-1 is an interacting partner with hTHTR-1 and that this interaction affects hTHTR-1 stability. PMID:21836059

Nabokina, Svetlana M; Senthilkumar, Sundar Rajan; Said, Hamid M

2011-11-01

182

Culture-based and denaturing gradient gel electrophoresis analysis of the bacterial community structure from the intestinal tracts of earthworms(Eisenia fetida).  

PubMed

The bacterial communities in the intestinal tracts of earthworm were investigated by culture-dependent and - independent approaches. In total, 72 and 55 pure cultures were isolated from the intestinal tracts of earthworms under aerobic and anaerobic conditions, respectively. Aerobic bacteria were classified as Aeromonas (40%), Bacillus (37%), Photobacterium (10%), Pseudomonas (7%), and Shewanella (6%). Anaerobic bacteria were classified as Aeromonas (52%), Bacillus (27%), Shewanella (12%), Paenibacillus (5%), Clostridium (2%), and Cellulosimicrobium (2%). The dominant microorganisms were Aeromonas and Bacillus species under both aerobic and anaerobic conditions. In all, 39 DNA fragments were identified by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Aeromonas sp. was the dominant microorganism in feeds, intestinal tracts, and casts of earthworms. The DGGE band intensity of Aeromonas from feeds, intestinal tracts, and casts of earthworms was 12.8%, 14.7%, and 15.1%, respectively. The other strains identified were Bacillus, Clostridium, Enterobacter, Photobacterium, Pseudomonas, Shewanella, Streptomyces, uncultured Chloroflexi bacterium, and uncultured bacterium. These results suggest that PCR-DGGE analysis was more efficient than the culture-dependent approach for the investigation of bacterial diversity and the identification of unculturable microorganisms. PMID:21952364

Hong, Sung Wook; Kim, In Su; Lee, Ju Sam; Chung, Kun Sub

2011-09-01

183

Duodenal Aspirates for Small Intestine Bacterial Overgrowth: Yield, PPIs, and Outcomes after Treatment at a Tertiary Academic Medical Center  

PubMed Central

Duodenal aspirates are not commonly collected, but they can be easily used in detection of small intestinal bacterial overgrowth (SIBO). Proton pump inhibitor (PPI) use has been proposed to contribute to the development of SIBO. We aimed to determine the yield of SIBO-positive cultures detected in duodenal aspirates, the relationship between SIBO and PPI use, and the clinical outcomes of patients identified by this method. In a retrospective study, we analyzed electronic medical records from 1263 consecutive patients undergoing upper endoscopy at a tertiary medical center. Aspirates were collected thought out the third and fourth portions of the duodenum, and cultures were considered to be positive for SIBO if they produced more than 100,000?cfu/mL. Culture analysis of duodenal aspirates identified SIBO in one-third of patients. A significantly higher percentage of patients with SIBO use PPIs than patients without SIBO, indicating a possible association. Similar proportions of patients with SIBO improved whether or not they received antibiotic treatment, calling into question the use of this expensive therapy for this disorder. PMID:25694782

Franco, Diana L.; Disbrow, Molly B.; Kahn, Allon; Koepke, Laura M.; Harris, Lucinda A.; Ramirez, Francisco C.

2015-01-01

184

Human Oral Isolate Lactobacillus fermentum AGR1487 Reduces Intestinal Barrier Integrity by Increasing the Turnover of Microtubules in Caco-2 Cells  

PubMed Central

Lactobacillus fermentum is found in fermented foods and thought to be harmless. In vivo and clinical studies indicate that some L. fermentum strains have beneficial properties, particularly for gastrointestinal health. However, L. fermentum AGR1487 decreases trans-epithelial electrical resistance (TEER), a measure of intestinal barrier integrity. The hypothesis was that L. fermentum AGR1487 decreases the expression of intestinal cell tight junction genes and proteins, thereby reducing barrier integrity. Transcriptomic and proteomic analyses of Caco-2 cells (model of human intestinal epithelial cells) treated with L. fermentum AGR1487 were used to obtain a global view of the effect of the bacterium on intestinal epithelial cells. Specific functional characteristics by which L. fermentum AGR1487 reduces intestinal barrier integrity were examined using confocal microscopy, cell cycle progression and adherence bioassays. The effects of TEER-enhancing L. fermentum AGR1485 were investigated for comparison. L. fermentum AGR1487 did not alter the expression of Caco-2 cell tight junction genes (compared to L. fermentum AGR1485) and tight junction proteins were not able to be detected. However, L. fermentum AGR1487 increased the expression levels of seven tubulin genes and the abundance of three microtubule-associated proteins, which have been linked to tight junction disassembly. Additionally, Caco-2 cells treated with L. fermentum AGR1487 did not have defined and uniform borders of zona occludens 2 around each cell, unlike control or AGR1485 treated cells. L. fermentum AGR1487 cells were required for the negative effect on barrier integrity (bacterial supernatant did not cause a decrease in TEER), suggesting that a physical interaction may be necessary. Increased adherence of L. fermentum AGR1487 to Caco-2 cells (compared to L. fermentum AGR1485) was likely to facilitate this cell-to-cell interaction. These findings illustrate that bacterial strains of the same species can cause contrasting host responses and suggest that food-safe status should be given to individual strains not species. PMID:24244356

Anderson, Rachel C.; Young, Wayne; Clerens, Stefan; Cookson, Adrian L.; McCann, Mark J.; Armstrong, Kelly M.; Roy, Nicole C.

2013-01-01

185

Heterogeneity of detergent-insoluble membranes from human intestine containing caveolin-1 and ganglioside GM1  

PubMed Central

In intestinal epithelia, cholera and related toxins elicit a cAMP-dependent chloride secretory response fundamental to the pathogenesis of toxigenic diarrhea. We recently proposed that specificity of cholera toxin (CT) action in model intestinal epithelia may depend on the toxin's cell surface receptor ganglioside GM1. Binding GM1 enabled the toxin to elicit a response, but forcing the toxin to enter the cell by binding the closely related ganglioside GD1a rendered the toxin inactive. The specificity of ganglioside function correlated with the ability of GM1 to partition CT into detergent-insoluble glycosphingolipid-rich membranes (DIGs). To test the biological plausibility of these hypotheses, we examined native human intestinal epithelia. We show that human small intestinal epithelia contain DIGs that distinguish between toxin bound to GM1 and GD1a, thus providing a possible mechanism for enterotoxicity associated with CT. We find direct evidence for the presence of caveolin-1 in DIGs from human intestinal epithelia but find that these membranes are heterogeneous and that caveolin-1 is not a structural component of apical membrane DIGs that contain CT. PMID:10859219

BADIZADEGAN, KAMRAN; DICKINSON, BONNY L.; WHEELER, HEIDI E.; BLUMBERG, RICHARD S.; HOLMES, RANDALL K.; LENCER, WAYNE I.

2010-01-01

186

Intestinal absorption of vitamins.  

PubMed

This article provides an overview of advances in understanding the cellular and molecular mechanisms and regulation of intestinal absorption processes of vitamins. The vitamins covered are the water-soluble vitamins folic acid, cobalamin (vitamin B12), biotin, pantothenic acid, and thiamine (vitamin B1) and the lipid-soluble vitamin A. For folate, significant advances have been made in regard to i) digestion of dietary folate polyglutamates to folate monoglutamates by the cloning of the responsible enzyme; ii) identification of the cDNA responsible for the intestinal folate transporter; iii) delineation of intracellular mechanisms that regulate small intestinal folate uptake; and iv) identification and characterization of a specific, pH-dependent, carrier-mediated system for folate uptake at the luminal (apical) membrane of human colonocytes. Studies on cobalamine have focused on cellular and molecular characterization of the intrinsic factor and its receptor. Studies on biotin transport in the small intestine have shown that the uptake process is shared by another water-soluble vitamin, pantothenic acid. Furthermore, a Na-dependent, carrier-mediated biotin uptake system that is also shared with pantothenic acid has been identified at the apical membrane of human colonocytes. This carrier is believed to be responsible for the absorption of the bacterially synthesized biotin and pantothenic acid in the large intestine. Also, preliminary studies have reported the cloning of a biotin transporter from the small intestine. As for thiamine intestinal transport, a study has shown thiamine uptake by small intestinal biopsy specimens to be via a carrier-mediated, Na-independent mechanism, which appears to be up-regulated in thiamine deficiency. Studies on vitamin A intestinal absorption have shown the existence of a receptor-mediated mechanism for the uptake of retinol bound to retinol-binding protein in the small intestine of suckling rats. Another study has shown that retinoic acid increases the mRNA level of the cellular retinol binding protein II and the rate of retinol uptake by Caco-2 intestinal epithelial cells. The study suggested that retinoids may play a role in the regulation of vitamin A intestinal absorption. PMID:17023940

Said, H M; Kumar, C

1999-03-01

187

Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function  

PubMed Central

Patients with protein-losing enteropathy (PLE) fail to maintain intestinal epithelial barrier function and develop an excessive and potentially fatal efflux of plasma proteins. PLE occurs in ostensibly unrelated diseases, but emerging commonalities in clinical observations recently led us to identify key players in PLE pathogenesis. These include elevated IFN-?, TNF-?, venous hypertension, and the specific loss of heparan sulfate proteoglycans from the basolateral surface of intestinal epithelial cells during PLE episodes. Here we show that heparan sulfate and syndecan-1, the predominant intestinal epithelial heparan sulfate proteoglycan, are essential in maintaining intestinal epithelial barrier function. Heparan sulfate– or syndecan-1–deficient mice and mice with intestinal-specific loss of heparan sulfate had increased basal protein leakage and were far more susceptible to protein loss induced by combinations of IFN-?, TNF-?, and increased venous pressure. Similarly, knockdown of syndecan-1 in human epithelial cells resulted in increased basal and cytokine-induced protein leakage. Clinical application of heparin has been known to alleviate PLE in some patients but its unknown mechanism and severe side effects due to its anticoagulant activity limit its usefulness. We demonstrate here that non-anticoagulant 2,3-de-O-sulfated heparin could prevent intestinal protein leakage in syndecan-deficient mice, suggesting that this may be a safe and effective therapy for PLE patients. PMID:18064305

Bode, Lars; Salvestrini, Camilla; Park, Pyong Woo; Li, Jin-Ping; Esko, Jeffrey D.; Yamaguchi, Yu; Murch, Simon; Freeze, Hudson H.

2007-01-01

188

A review of drug solubility in human intestinal fluids: implications for the prediction of oral absorption.  

PubMed

The purpose of this paper is to collate all recently published solubility data of orally administered drugs in human intestinal fluids (HIF) that were aspirated from the upper small intestine (duodenum and jejunum). The data set comprises in total 102 solubility values in fasted state HIF and 37 solubility values in fed state HIF, covering 59 different drugs. Despite differences in the protocol for HIF sampling and subsequent handling, this summary of HIF solubilities provides a critical reference data set to judge the value of simulated media for intestinal solubility estimation. In this regard, the review includes correlations between the reported solubilizing capacity of HIF and fasted or fed state simulated intestinal fluid (FaSSIF/FeSSIF). Correlating with HIF solubilities enables the optimal use of solubility measurements in simulated biorelevant media to obtain accurate estimates of intestinal solubility during drug development. Considering the fraction of poorly soluble new molecular entities in contemporary drug discovery, adequate prediction of intestinal solubility is critical for efficient lead optimization, early candidate profiling, and further development. PMID:23994640

Augustijns, Patrick; Wuyts, Benjamin; Hens, Bart; Annaert, Pieter; Butler, James; Brouwers, Joachim

2014-06-16

189

Secretion of human intestinal angiotensin-converting enzyme and its association with the differentiation state of intestinal cells.  

PubMed Central

Human angiotensin I-converting enzyme (ACE) exists in intestinal epithelial cells as a membrane-bound (ACEm) and secretory glycoprotein (ACEsec). The electrophoretic mobilities of ACEsec and ACEm on SDS/polyacrylamide gels are similar; the N-deglycosylated ACEsec and ACEm, in contrast, display slight differences in their apparent molecular masses, indicating that the carbohydrate contents of ACEsec and ACEm are different. Moreover, ACEsec is solely N-glycosylated whereas ACEm is N- and O-glycosylated, assessed by lectin binding studies. Spontaneous release of ACEsec is achieved by incubation of brush border membranes at 37 degrees C. Aprotinin, leupeptin and EDTA partly inhibit the generation of ACEsec, strongly suggesting that ACEsec is generated from ACEm by proteolytic cleavage. The expression levels of ACEsec in the intestine may be associated with the differentiation state of mucosal cells. Thus ACEsec is more abundant than ACEm in immature non-epithelial crypt cells of patients with coeliac disease. Well-differentiated epithelial cells, by contrast, contain predominantly ACEm. The variations in the proportions of cleaved ACEsec in differentiated and non-differentiated cells may be due to varying levels of the cleaving protease. Alternatively, because epithelial cell differentiation is accompanied by alterations in the levels of oligosaccharyltransferases, the results suggest a critical role for the glycosylation pattern of ACEm in its susceptibility to the putative cleaving protease. PMID:8645215

Naim, H Y

1996-01-01

190

Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo  

PubMed Central

Background There is limited knowledge on the extent and dynamics of the mucosal response to commensal and probiotic species in the human intestinal lumen. This study aimed to identify the acute, time-dependent responses of intestinal mucosa to commensal Lactobacillus plantarum WCFS1 in vivo in two placebo-controlled human intervention studies in healthy volunteers. Transcriptional changes in duodenal mucosa upon continuous intraduodenal infusion of L. plantarum WCFS1 for one- and six h, respectively, were studied using oro- and nasogastric intubations with dedicated orogastric catheters and tissue sampling by standard flexible gastroduodenoscopy. Results One- and six-h exposure of small intestinal mucosa to L. plantarum WCFS1 induced differential expression of 669 and 424 gene reporters, respectively. While short-term exposure to L. plantarum WCFS1 inhibited fatty acid metabolism and cell cycle progression, cells switched to a more proliferative phase after prolonged exposure with an overall expression profile characterized by upregulation of genes involved in lipid metabolism, cellular growth and development. Cell death and immune responses were triggered, but cell death-executing genes or inflammatory signals were not expressed. Proteome analysis showed differential expression of several proteins. Only the microsomal protein 'microsomal triglyceride transfer protein' was regulated on both the transcriptional and the protein level in all subjects. Conclusion Overall, this study showed that intestinal exposure to L. plantarum WCFS1 induced consistent, time-dependent transcriptional responses in healthy intestinal mucosa. This extensive exploration of the human response to L. plantarum WCFS1 could eventually provide molecular support for specific or probiotic activity of this strain or species, and exemplifies the strength of the applied technology to identify the potential bio-activity of microbes in the human intestine. PMID:18681965

Troost, Freddy J; van Baarlen, Peter; Lindsey, Patrick; Kodde, Andrea; de Vos, Willem M; Kleerebezem, Michiel; Brummer, Robert-Jan M

2008-01-01

191

Molecular cloning of a human small intestinal apolipoprotein B mRNA editing protein.  

PubMed

Mammalian small intestinal apolipoprotein B (apo B) mRNA undergoes posttranscriptional cytidine deamination with the production of an in frame stop codon and the translation of apo B48. We have isolated a cDNA from human jejunum which mediates in vitro editing of a synthetic apo B RNA template upon complementation with chicken intestinal S100 extracts. The cDNA specifies a 236 residue protein which is 69% identical to the apo B mRNA editing protein (REPR) cloned from rat small intestine [Teng, B., Burant, C. F. and Davidson, N. O. (1993) Science 260, 1816-1819] and which, by analogy, is referred to as HEPR. HEPR does not contain the carboxyl-terminus leucine zipper motif identified in REPR but contains consensus phosphorylation sites as well as the conserved histidine and both cysteine residues identified as a Zn2+ binding motif in other cytidine deaminases. The distribution of HEPR mRNA was predominantly confined to the adult small intestine with lower levels detectable by reverse-transcription polymerase chain reaction amplification in the stomach, colon and testis. These differences in the structure and distribution of the human as compared to the rat apo B mRNA editing protein suggest an important evolutionary adaptation in the mechanisms restricting apo B48 production to the small intestine. PMID:8208612

Hadjiagapiou, C; Giannoni, F; Funahashi, T; Skarosi, S F; Davidson, N O

1994-05-25

192

Identification of an intestine-specific promoter and inducible expression of bacterial ?-galactosidase in mammalian cells by a lac operon system  

PubMed Central

Background ?-galactosidase has been widely used in animal husbandry to reduce anti-nutritional factors (such as ?-galactoside) in feed. Intestine-specific and substrate inducible expression of ?-galactosidase would be highly beneficial for transgenic animal production. Methods To achieve the intestine-specific and substrate inducible expression of ?-galactosidase, we first identified intestine-specific promoters by comparing the transcriptional activity and tissue specificity of four intestine-specific promoters from human intestinal fatty acid binding protein, rat intestinal fatty acid binding protein, human mucin-2 and human lysozyme. We made two chimeric constructs combining the promoter and enhancer of human mucin-2, rat intestinal trefoil factor and human sucrase-isomaltase. Then a modified lac operon system was constructed to investigate the induction of ?-galactosidase expression and enzyme activity by isopropyl ?-D-1-thiogalactopyranoside (IPTG) and an ?-galactosidase substrate, ?-lactose. We declared that the research carried out on human (Zhai Yafeng) was in compliance with the Helsinki Declaration, and experimental research on animals also followed internationally recognized guidelines. Results The activity of the human mucin-2 promoter was about 2 to 3 times higher than that of other intestine-specific promoters. In the lac operon system, the repressor significantly decreased (P < 0.05) luciferase activity by approximately 6.5-fold and reduced the percentage of cells expressing green fluorescent protein (GFP) by approximately 2-fold. In addition, the expression level of ?-galactosidase mRNA was decreased by 6-fold and ?-galactosidase activity was reduced by 8-fold. In line with our expectations, IPTG and ?-lactose supplementation reversed (P < 0.05) the inhibition and produced a 5-fold increase of luciferase activity, an 11-fold enhancement in the percentage of cells with GFP expression and an increase in ?-galactosidase mRNA abundance (by about 5-fold) and ?-galactosidase activity (by about 7-fold). Conclusions We have successfully constructed a high specificity inducible lac operon system in an intestine-derived cell line, which could be of great value for gene therapy applications and transgenic animal production. PMID:23111091

2012-01-01

193

Toxicological and biochemical effects of different beverages on human intestinal cells  

Microsoft Academic Search

The objective of the present study was to examine and compare the effects of frequently consumed beverages on the human intestinal cell line, Caco-2, in terms of toxicity, growth, and differentiation. For this purpose, Caco-2 cells were incubated for 24 h in the presence of: a mineral water, fresh orange juice, packaged orange juice, a cola drink, an energy drink,

Cem Ekmekcioglu; Gerhard Strauss-Blasche; Valentin J. Leibetseder; Wolfgang Marktl

1999-01-01

194

Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice.  

PubMed

Dendritic cells (DCs) that orchestrate mucosal immunity have been studied in mice. Here we characterized human gut DC populations and defined their relationship to previously studied human and mouse DCs. CD103(+)Sirp?(-) DCs were related to human blood CD141(+) DCs and to mouse intestinal CD103(+)CD11b(-) DCs and expressed markers of cross-presenting DCs. CD103(+)Sirp?(+) DCs aligned with human blood CD1c(+) DCs and mouse intestinal CD103(+)CD11b(+) DCs and supported the induction of regulatory T cells. Both CD103(+) DC subsets induced the TH17 subset of helper T cells, while CD103(-)Sirp?(+) DCs induced the TH1 subset of helper T cells. Comparative analysis of transcriptomes revealed conserved transcriptional programs among CD103(+) DC subsets and identified a selective role for the transcriptional repressors Bcl-6 and Blimp-1 in the specification of CD103(+)CD11b(-) DCs and intestinal CD103(+)CD11b(+) DCs, respectively. Our results highlight evolutionarily conserved and divergent programming of intestinal DCs. PMID:24292363

Watchmaker, Payal B; Lahl, Katharina; Lee, Mike; Baumjohann, Dirk; Morton, John; Kim, Sun Jung; Zeng, Ruizhu; Dent, Alexander; Ansel, K Mark; Diamond, Betty; Hadeiba, Husein; Butcher, Eugene C

2014-01-01

195

Autoradiographic quantification of vasoactive intestinal peptide binding sites in sections from human blood mononuclear cell pellets  

Microsoft Academic Search

Quantitative autoradiographic methods were utilized to characterize specific, high-affinity vasoactive intestinal peptide binding sites (Kd = 310 +\\/- 60 pmol\\/L; Bmax = 93 +\\/- 11 fmol\\/mg protein) in frozen sections obtained from a mononuclear cell pellet derived from 20 ml of human blood. The method is at least one order of magnitude more sensitive than conventional membrane binding techniques, and

J. S. Gutkind; M. Kurihara; E. Castren; J. M. Saavedra

1988-01-01

196

Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant)  

Technology Transfer Automated Retrieval System (TEKTRAN)

Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal ...

197

Microb Ecol . Author manuscript Human intestinal microbiota gene risk factors for antibiotic-associated  

E-print Network

Microb Ecol . Author manuscript Page /1 8 Human intestinal microbiota gene risk factors to be relevant. Complex statistical analyses provided further information: amid the bacteria 16S rRNA genes important to the least. Using these markers, AAD risk could be estimated with an error of 2 . This molecular

Paris-Sud XI, Université de

198

Short chain fatty acids in human large intestine, portal, hepatic and venous blood  

Microsoft Academic Search

Evidence for the occurrence of microbial breakdown of carbohydrate in the human colon has been sought by measuring short chain fatty acid (SCFA) concentrations in the contents of all regions of the large intestine and in portal, hepatic and peripheral venous blood obtained at autopsy of sudden death victims within four hours of death. Total SCFA concentration (mmol\\/kg) was low

J H Cummings; E W Pomare; W J Branch; C P Naylor; G T Macfarlane

1987-01-01

199

Profiling human gut bacterial metabolism and its kinetic using [U-(13)C]glucose and NMR  

Microsoft Academic Search

This study introduces a stable-isotope metabolic approach employing [U-(13)C]glucose that, as a novelty, allows selective profiling of the human intestinal microbial metabolic products of carbohydrate food components, as well as the measurement of the kinetics of their formation pathways, in a single experiment. A well-established, validated in vitro model of human intestinal fermentation was inoculated with standardized gastrointestinal microbiota from

Albert A. de Graaf; Annet Maathuis; Pieter de Waard; Nicolaas E. P. Deutz; Cor Dijkema; Vos de W. M; Koen Venema

2010-01-01

200

Environmental contaminants and intestinal function  

PubMed Central

The environmental contaminants which have their major effects on the small intestine may be classified into five major categories: (1) bacterial, viral, and parasitic agents, (2) food and plant substances, (3) environmental and industrial products, (4) pharmaceutical agents, and (5) toxic agents whose metabolic effects are dependent on interreaction with intestinal bacterial flora, other physical agents (detergents), human intestinal enzyme deficiency states, and the nutritional state of the host. Bacterial, viral, and parasitic agents are the most important of all such agents, being responsible for significant mortality and morbidity in association with diarrheal diseases of adults and children. Several plant substances ingested as foods have unique effects on the small bowel as well as from contaminants such as fungi on poorly preserved grains and cereals. Environmental and industrial products, in spite of their widespread prevalence in industrial societies as contaminants, are less important unless unexpectedly intense exposure occurs to the intestinal tract. Pharmaceutical agents of several types interreact with the small bowel mucosa causing impairment of transport processes for fluid and electrolytes, amino acid, lipid and sugars as well as vitamins. These interreactions may be dependent on bacterial metabolic activity, association with detergents, mucosal enzyme deficiency state (disaccharidases), and the state of nutrition of the subject. PMID:540611

Banwell, John G.

1979-01-01

201

Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine  

PubMed Central

Intestinal microbiota plays an important role in human health, and its composition is determined by several factors, such as diet and host genotype. However, thus far it has remained unknown which host genes are determinants for the microbiota composition. We studied the diversity and abundance of dominant bacteria and bifidobacteria from the faecal samples of 71 healthy individuals. In this cohort, 14 were non-secretor individuals and the remainders were secretors. The secretor status is defined by the expression of the ABH and Lewis histo-blood group antigens in the intestinal mucus and other secretions. It is determined by fucosyltransferase 2 enzyme, encoded by the FUT2 gene. Non-functional enzyme resulting from a nonsense mutation in the FUT2 gene leads to the non-secretor phenotype. PCR-DGGE and qPCR methods were applied for the intestinal microbiota analysis. Principal component analysis of bifidobacterial DGGE profiles showed that the samples of non-secretor individuals formed a separate cluster within the secretor samples. Moreover, bifidobacterial diversity (p<0.0001), richness (p<0.0003), and abundance (p<0.05) were significantly reduced in the samples from the non-secretor individuals as compared with those from the secretor individuals. The non-secretor individuals lacked, or were rarely colonized by, several genotypes related to B. bifidum, B. adolescentis and B. catenulatum/pseudocatenulatum. In contrast to bifidobacteria, several bacterial genotypes were more common and the richness (p<0.04) of dominant bacteria as detected by PCR-DGGE was higher in the non-secretor individuals than in the secretor individuals. We showed that the diversity and composition of the human bifidobacterial population is strongly associated with the histo-blood group ABH secretor/non-secretor status, which consequently appears to be one of the host genetic determinants for the composition of the intestinal microbiota. This association can be explained by the difference between the secretor and non-secretor individuals in their expression of ABH and Lewis glycan epitopes in the mucosa. PMID:21625510

Wacklin, Pirjo; Mäkivuokko, Harri; Alakulppi, Noora; Nikkilä, Janne; Tenkanen, Heli; Räbinä, Jarkko; Partanen, Jukka; Aranko, Kari; Mättö, Jaana

2011-01-01

202

Human ecology and behavior and sexually transmitted bacterial infections.  

PubMed Central

The three direct determinants of the rate of spread of sexually transmitted diseases (STDs) are sexual behaviors, the mean duration of infectiousness, and the mean efficiency of sexual transmission of each STD. Underlying ecological and behavioral factors that operate through one or more of these direct determinants lie on a continuum, ranging from those most proximate back to those more remote (in time or mechanism) from the direct determinants. Most remote and least modifiable are the historical stages of economic development that even today conspicuously influence patterns of sexual behavior. Next are the distribution and changing patterns of climate, hygiene, and population density; the global population explosion and stages of the demographic transition; and ongoing changes in human physiology (e.g., menarche at younger age) and culture (e.g., later marriage). More proximate on the continuum are war, migration, and travel; and current policies for economic development and social welfare. Most recent or modifiable are technologic and commercial product development (e.g., oral contraceptives); circumcision, condom, spermicide, and contraception practices; patterns of illicit drug use that influence sexual behaviors; and the accessibility, quality, and use of STD health care. These underlying factors help explain why the curable bacterial STDs are epidemic in developing countries and why the United States is the only industrialized country that has failed to control bacterial STDs during the AIDS era. Images PMID:8146138

Holmes, K K

1994-01-01

203

Transcriptomic profiling of intestinal epithelial cells in response to human, bovine and commercial bovine lactoferrins.  

PubMed

Lactoferrin (Lf) is an iron-binding glycoprotein present in high concentration in human milk. It is a pleiotropic protein and involved in diverse bioactivities, such as stimulation of cell proliferation and immunomodulatory activities. Lf is partly resistant to proteolysis in the gastrointestinal tract. Thus, Lf may play important roles in intestinal development. Due to differences in amino acid sequences and isolation methods, Lfs from human and bovine milk as well as commercially available bovine Lf (CbLf) may differ functionally or exert their functions via various mechanisms. To provide a potential basis for further applications of CbLf, we compared effects of Lfs on intestinal transcriptomic profiling using an intestinal epithelial cell model, human intestinal epithelial crypt-like cells (HIEC). All Lfs significantly stimulated proliferation of HIEC and no significant differences were found among these three proteins. Microarray assays were used to investigate transcriptomic profiling of intestinal epithelial cells in response to Lfs. Selected genes were verified by RT-PCR with a high validation rate. Genes significantly regulated by hLf, bLf, and CbLf were 150, 395 and 453, respectively. Fifty-four genes were significantly regulated by both hLf and CbLf, whereas 129 genes were significantly modulated by bLf and CbLf. Although only a limited number of genes were regulated by all Lfs, the three Lfs positively influenced cellular development and immune functions based on pathway analysis using IPA (Ingenuity). Lfs stimulate cellular and intestinal development and immune functions via various signaling pathways, such as Wnt/?-catenin signaling, interferon signaling and IL-8 signaling. PMID:24831230

Jiang, Rulan; Lönnerdal, Bo

2014-10-01

204

Human Cytomegalovirus: Bacterial Artificial Chromosome (BAC) Cloning and Genetic Manipulation  

PubMed Central

Our understanding of human cytomegalovirus (HCMV) biology was long hindered by the inability to perform efficient viral genetic analysis. This hurdle was recently overcome when the genomes of multiple HCMV strains were cloned as infectious bacterial artificial chromosomes (BACs). The BAC system takes advantage of the single-copy F plasmid of E. coli that can stably carry large pieces of foreign DNA. In this system, a recombinant HCMV virus carrying a modified F plasmid is first generated in eukaryotic cells. Recombinant viral genomes are then isolated and recovered in E. coli as BAC clones. BAC-captured viral genomes can be manipulated using prokaryotic genetics, and recombinant virus can be reconstituted from BAC transfection in eukaryotic cells. The BAC reverse genetic system provides a reliable and efficient method to introduce genetic alterations into the viral genome in E.coli and subsequently analyze their effects on virus biology in eukaryotic cells. PMID:22307551

Paredes, Anne M.; Yu, Dong

2011-01-01

205

Chromosomal localization of the human apolipoprotein B gene and detection of homologous RNA in monkey intestine  

SciTech Connect

A cDNA clone of the human apolipoprotein B-100 was used as a hybridization probe to detect homologous sequences in both flow-sorted and in situ metaphase chromosomes. The results indicate that the gene encoding this protein is on the distal end of the short arm of chromosome 2 (2p23-2p24). RNA isolated from monkey small intestine contained sequences (6.5 and 18 kilobases) homologous to the cDNA of apolipoprotein B-100. These results are consistent with the hypothesis that one gene codes for both the intestinal (B-48) and the hepatic (B-100) forms.

Deeb, S.S.; Disteche, C.; Motulsky, A.G.; Lebo, R.V.; Kan, Y.W.

1986-01-01

206

Frequency of Small Intestinal Bacterial Overgrowth in Patients with Irritable Bowel Syndrome and Chronic Non-Specific Diarrhea  

PubMed Central

Introduction Small intestinal bacterial overgrowth (SIBO) occurs in varying frequency in irritable bowel syndrome (IBS). We studied the frequency of SIBO in IBS and chronic non-specific diarrhea (CNSD). Methods 129 patients with IBS (Manning's criteria), 73 with CNSD (? 4 weeks diarrhea with two of these tests normal [urine D-xylose, fecal fat and duodenal biopsy]) and 51 healthy controls (HC) were evaluated for SIBO using glucose hydrogen breath test (GHBT). Diarrhea-predominant IBS (D-IBS) was grouped into CNSD. Rise in breath hydrogen 12 ppm above basal following 100 g glucose was diagnostic of SIBO. Results Of 129 patients with IBS, 7 were constipation (C-IBS), and 122 were of indeterminate type (I-IBS). Patients with IBS were younger than HC and CNSD (IBS vs. HC: 36.6 yr ± 11.4 vs. 44.1 yr ± 13.6, p = 0.001; IBS vs. CNSD: 36.6 yr ± 11.4 vs. 42 yr ± 14.5, p = 0.003). Patients with CNSD were comparable to HC in age (42 yr ± 14.5 vs. 44.1 yr ± 13.6, p = ns). Patients with IBS were more often male than HC [108/129 (83.7%) vs. 34/51 (66.7%) p = 0.02]; gender of CNSD and HC was comparable [male 39/73 (53.4%) vs. 34/51 (66.7%) p = ns]. SIBO was commoner in CNSD than HC [16 (21.9%) vs. 1 (2%), p = 0.003], but was comparable in IBS and HC [11 (8.5%) vs. 1 (2%), p = 0.18]. Patients with CNSD more often had SIBO than IBS [16 (21.9%) vs. 11 (8.5%), p = 0.007]. Conclusions SIBO was more common in CNSD including D-IBS than other types of IBS and HC. PMID:20535325

Kumar, Sunil; Mehrotra, Mansi; Lakshmi, CP; Misra, Asha

2010-01-01

207

Exploring the Diversity of the Bifidobacterial Population in the Human Intestinal Tract?  

PubMed Central

Although the health-promoting roles of bifidobacteria are widely accepted, the diversity of bifidobacteria among the human intestinal microbiota is still poorly understood. We performed a census of bifidobacterial populations from human intestinal mucosal and fecal samples by plating them on selective medium, coupled with molecular analysis of selected rRNA gene sequences (16S rRNA gene and internally transcribed spacer [ITS] 16S-23S spacer sequences) of isolated colonies. A total of 900 isolates were collected, of which 704 were shown to belong to bifidobacteria. Analyses showed that the culturable bifidobacterial population from intestinal and fecal samples include six main phylogenetic taxa, i.e., Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bifidobacterium adolescentis, Bifidobacterium pseudolongum, Bifidobacterium breve, and Bifidobacterium bifidum, and two species mostly detected in fecal samples, i.e., Bifidobacterium dentium and Bifidobacterium animalis subp. lactis. Analysis of bifidobacterial distribution based on age of the subject revealed that certain identified bifidobacterial species were exclusively present in the adult human gut microbiota whereas others were found to be widely distributed. We encountered significant intersubject variability and composition differences between fecal and mucosa-adherent bifidobacterial communities. In contrast, a modest diversification of bifidobacterial populations was noticed between different intestinal regions within the same individual (intrasubject variability). Notably, a small number of bifidobacterial isolates were shown to display a wide ecological distribution, thus suggesting that they possess a broad colonization capacity. PMID:19168652

Turroni, Francesca; Foroni, Elena; Pizzetti, Paola; Giubellini, Vanessa; Ribbera, Angela; Merusi, Paolo; Cagnasso, Patrizio; Bizzarri, Barbara; de'Angelis, Gian Luigi; Shanahan, Fergus; van Sinderen, Douwe; Ventura, Marco

2009-01-01

208

Characterization of bacterial community shift in human Ulcerative Colitis patients revealed by Illumina based 16S rRNA gene amplicon sequencing  

PubMed Central

Background The healthy human intestine is represented by the presence of bacterial communities predominantly belonging to obligate anaerobes; however disparity and dysanaerobiosis in intestinal microflora may lead to the progression of ulcerative colitis (UC). The foremost aim of this study is to consider and compare the gut microbiota composition in patients suffering from different stages of UC. Methods This study represents data from the biopsy samples of six individuals suffering from UC. The samples were collected by colonoscopy and were processed immediately for isolation of DNA. Mucosal microbiota was analyzed by means of 16S rRNA gene-based Illumina high throughput sequencing. Quantitative real-time PCR (qPCR) was performed to determine total bacterial abundances. Results Analysis of 23,927 OTUs demonstrated a significant reduction of bacterial diversity consistently from phylum to species level (p?bacterial count was detected in patients suffering from severe inflammatory stage (2.98 +/-0.49 E?+?09/ml) when compared with patients with moderate (1.03+/-0.29 E?+?08/ml) and mild (1.76 +/-0.34 E?+?08/ml) stages of inflammation. Conclusion The reduction of bacterial diversity with an increase in the total bacterial count indicates a shift of bacterial communities which signifies dysbiosis and dysanaerobiosis at the mucosal level for patients suffering from UC. PMID:25018784

2014-01-01

209

Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine.  

PubMed

Intestinal transporters are crucial determinants in the oral absorption of many drugs. We therefore studied the mRNA expression (N = 33) and absolute protein content (N = 10) of clinically relevant transporters in healthy epithelium of the duodenum, the proximal and distal jejunum and ileum, and the ascending, transversal, descending, and sigmoidal colon of six organ donors (24-54 years). In the small intestine, the abundance of nearly all studied proteins ranged between 0.2 and 1.6 pmol/mg with the exception of those of OCT3 (<0.1 pmol/mg) and PEPT1 (2.6-4.9 pmol/mg) that accounted for ?50% of all measured transporters. OATP1A2 was not detected in any intestinal segment. ABCB1, ABCG2, PEPT1, and ASBT were significantly more abundant in jejunum and ileum than in colon. In contrast to this, the level of expression of ABCC2, ABCC3, and OCT3 was found to be highest in colon. Site-dependent differences in the levels of gene and protein expression were observed for ABCB1 and ASBT. Significant correlations between mRNA and protein levels have been found for ABCG2, ASBT, OCT3, and PEPT1 in the small intestine. Our data provide further physiological pieces of the puzzle required to predict intestinal drug absorption in humans. PMID:25158075

Drozdzik, Marek; Gröer, Christian; Penski, Jette; Lapczuk, Joanna; Ostrowski, Marek; Lai, Yurong; Prasad, Bhagwat; Unadkat, Jashvant D; Siegmund, Werner; Oswald, Stefan

2014-10-01

210

Human, rat and chicken small intestinal Na+-Cl?-creatine transporter: functional, molecular characterization and localization  

PubMed Central

In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+- and Cl?-dependent, with a probable stoichiometry of 2 Na+: 1 Cl?: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 ?m. [14C]Creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, ?-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na+- and Cl?-dependent, apical creatine uptake. PMID:12433955

Peral, M J; García-Delgado, M; Calonge, M L; Durán, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundáin, A A

2002-01-01

211

Human, rat and chicken small intestinal Na+ - Cl- -creatine transporter: functional, molecular characterization and localization.  

PubMed

In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [(14)C] creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na(+)- and Cl(-)-dependent, with a probable stoichiometry of 2 Na(+): 1 Cl(-): 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a K(m) for creatine of 29 microM. [(14)C] creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, beta-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na(+)- and Cl(-)-dependent, apical creatine uptake. PMID:12433955

Peral, M J; García-Delgado, M; Calonge, M L; Durán, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundáin, A

2002-11-15

212

Human small intestinal epithelial cells differentiated from adult intestinal stem cells as a novel system for predicting oral drug absorption in humans.  

PubMed

Adult intestinal stem cells (ISCs) possess both a long-term proliferation ability and differentiation capability into enterocytes. As a novel in vitro system for the evaluation of drug absorption, we characterized a human small intestinal epithelial cell (HIEC) monolayer that differentiated from adult ISCs. Continuous proliferation/differentiation from ISCs consistently conferred the capability of maturation of enterocytes to HIECs over 25 passages. The morphologically matured HIEC monolayer consisted of polarized columnar epithelia with dense microvilli, tight junctions, and desmosomes 8 days after seeding onto culture inserts. Transepithelial electrical resistance across the monolayer was 9-fold lower in HIECs (98.9 ? × cm(2)) than in Caco-2 cells (900 ? × cm(2)), which indicated that the looseness of the tight junctions in the HIEC monolayer was similar to that in the human small intestine (approximately 40 ? × cm(2)). No significant differences were observed in the overall gene expression patterns of the major drug-metabolizing enzymes and transporters between the HIEC and Caco-2 cell monolayers. Furthermore, the functions of P-glycoprotein and breast cancer resistance protein in the HIEC monolayer were confirmed by the vectorial transport of marker substrates and their disappearance in the presence of specific inhibitors. The apparent drug permeability values of paracellularly transported compounds (fluorescein isothiocyanate-dextran 4000, atenolol, and terbutaline) and nucleoside transporter substrates (didanosine, ribavirin, and doxifluridine) in the HIEC monolayer were markedly higher than those of Caco-2 cells, whereas transcellularly transported drugs (pindolol and midazolam) were equally well permeated. In conclusion, the HIEC monolayer can serve as a novel and superior alternative to the conventional Caco-2 cell monolayer for predicting oral absorption in humans. PMID:25200868

Takenaka, Toru; Harada, Naomoto; Kuze, Jiro; Chiba, Masato; Iwao, Takahiro; Matsunaga, Tamihide

2014-11-01

213

Electromagnetic radiation from ingested sources in the human intestine between 150 MHz and 1.2 GHz  

Microsoft Academic Search

The conventional method of diagnosing disorders of the human gastro-intestinal (GI) tract is by sensors embedded in cannulae that are inserted through the anus, mouth, or nose. However, these cannulae cause significant patient discomfort and cannot be used in the small intestine. As a result, there is considerable ongoing work in developing wireless sensors that can be used in the

Lawrence C. Chirwa; Paul A. Hammond; Scott Roy; David R. S. Cumming

2003-01-01

214

Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens  

Microsoft Academic Search

BACKGROUND: The influence of diet on intestinal microflora has been investigated mainly using conventional microbiological approaches. Although these studies have advanced knowledge on human intestinal microflora, it is imperative that new methods are applied to facilitate scientific progress. Culture-independent molecular fingerprinting method of Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE) has been used to study microbial communities in

Merlin W Ariefdjohan; Dennis A Savaiano; Cindy H Nakatsu

2010-01-01

215

Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine.  

PubMed

The aim of this study was to investigate expression and relative contribution of human thiamin transporter (hTHTR)-2 toward overall carrier-mediated thiamin uptake by human intestinal epithelial cells. Northern blot analysis showed that the message of the hTHTR-2 is expressed along the native human gastrointestinal tract with highest expression being in the proximal part of small intestine. hTHTR-2 protein was found, by Western blot analysis, to be expressed at the brush-border membrane (BBM), but not at the basolateral membrane, of native human enterocytes. This pattern of expression was confirmed in studies using a fusion protein of hTHTR-2 with the enhanced green fluorescent protein (hTHTR2-EGFP) expressed in living Caco-2 cells grown on filter. Pretreating Caco-2 cells (which also express the hTHTR-2 at RNA and protein levels) with hTHTR-2 gene-specific small interfering RNA (siRNA) led to a significant (P < 0.01) and specific inhibition (48%) in carrier-mediated thiamin uptake. Similarly, pretreating Caco-2 cells with siRNA that specifically target hTHTR-1 (which is expressed in Caco-2 cells) also significantly (P < 0.01) and specifically inhibited (by 56%) carrier-mediated thiamin uptake. When Caco-2 cells were pretreated with siRNAs against both hTHTR-2 and hTHTR-1 genes, an almost complete inhibition in carrier-mediated thiamin uptake was observed. These results show that the message of hTHTR-2 is expressed along the human gastrointestinal tract and that expression of its protein in intestinal epithelia is mainly localized to the apical BBM domain. In addition, results show that this transporter plays a significant role in carrier-mediated thiamin uptake in human intestine. PMID:14615284

Said, Hamid M; Balamurugan, Krishnaswamy; Subramanian, Veedamali S; Marchant, Jonathan S

2004-03-01

216

Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota  

PubMed Central

The human small intestine is a key site for interactions between the intestinal microbiota and the mucosal immune system. Here we investigated the immunomodulatory properties of representative species of commonly dominant small-intestinal microbial communities, including six streptococcal strains (four Streptococcus salivarius, one S. equinus, one S. parasanguinis) one Veillonella parvula strain, one Enterococcus gallinarum strain, and Lactobacillus plantarum WCFS1 as a bench mark strain on human monocyte-derived dendritic cells. The different streptococci induced varying levels of the cytokines IL-8, TNF-?, and IL-12p70, while the V. parvula strain showed a strong capacity to induce IL-6. E. gallinarum strain was a potent inducer of cytokines and TLR2/6 signalling. As Streptococcus and Veillonella can potentially interact metabolically and frequently co-occur in ecosystems, immunomodulation by pair-wise combinations of strains were also tested for their combined immunomodulatory properties. Strain combinations induced cytokine responses in dendritic cells that differed from what might be expected on the basis of the results obtained with the individual strains. A combination of (some) streptococci with Veillonella appeared to negate IL-12p70 production, while augmenting IL-8, IL-6, IL-10, and TNF-? responses. This suggests that immunomodulation data obtained in vitro with individual strains are unlikely to adequately represent immune responses to mixtures of gut microbiota communities in vivo. Nevertheless, analysing the immune responses of strains representing the dominant species in the intestine may help to identify immunomodulatory mechanisms that influence immune homeostasis. PMID:25479553

Zoetendal, Erwin G.; Wells, Jerry M.; Kleerebezem, Michiel

2014-01-01

217

Bacterial translocation secondary to small intestinal mucosal ischemia during cardiopulmonary bypass. Measurement by diamine oxidase and peptidoglycanq  

Microsoft Academic Search

Objective: To demonstrate that small intestinal mucosal ischemia occurs during cardiopulmonary bypass by measuring serum diamine oxidase activity, an index of small intestinal mucosal ischemia, in perioerative patients undergoing cardiovascular surgery with and without cardiopulmonary bypass. Methods: Twelve successive patients who underwent coronary artery bypass grafting with cardiopulmonary bypass (Group I) were compared to 10 patients who underwent off-pump coronary

Nobuo Tsunooka; Kazutaka Maeyama; Yoshihiro Hamada; Hiroshi Imagawa; Shinji Takano; Yuji Watanabe; Kanji Kawachi

2010-01-01

218

Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes  

Microsoft Academic Search

The molecular diversity of the microflora present within the equine large intestine was investigated through the analysis of PCR-amplified 16S ribosomal RNA gene sequences. Total genomic DNA, recovered from samples of large intestinal wall tissue and lumen contents, was used to generate 272 random clones that were subjected to comparative phylogenetic analysis. The 272 sequences were classified into 168 operational

Kristian Daly; Colin S. Stewart; Harry J. Flint; Soraya P. Shirazi-Beechey

2001-01-01

219

Bacterial translocation secondary to small intestinal mucosal ischemia during cardiopulmonary bypass. Measurement by diamine oxidase and peptidoglycan  

Microsoft Academic Search

Objective: To demonstrate that small intestinal mucosal ischemia occurs during cardiopulmonary bypass by measuring serum diamine oxidase activity, an index of small intestinal mucosal ischemia, in perioerative patients undergoing cardiovascular surgery with and without cardiopulmonary bypass. Methods: Twelve successive patients who underwent coronary artery bypass grafting with cardiopulmonary bypass (Group I) were compared to 10 patients who underwent off-pump coronary

Nobuo Tsunooka; Kazutaka Maeyama; Yoshihiro Hamada; Hiroshi Imagawa; Shinji Takano; Yuji Watanabe; Kanji Kawachi

2004-01-01

220

Type I Collagen as an Extracellular Matrix for the In Vitro Growth of Human Small Intestinal Epithelium  

PubMed Central

Background We previously reported in vitro maintenance and proliferation of human small intestinal epithelium using Matrigel, a proprietary basement membrane product. There are concerns over the applicability of Matrigel-based methods for future human therapies. We investigated type I collagen as an alternative for the culture of human intestinal epithelial cells. Methods Human small intestine was procured from fresh surgical pathology specimens. Small intestinal crypts were isolated using EDTA chelation. Intestinal subepithelial myofibroblasts were isolated from a pediatric sample and expanded in vitro. After suspension in Matrigel or type I collagen gel, crypts were co-cultured above a confluent layer of myofibroblasts. Crypts were also grown in monoculture with exposure to myofibroblast conditioned media; these were subsequently sub-cultured in vitro and expanded with a 1?2 split ratio. Cultures were assessed with light microscopy, RT-PCR, histology, and immunohistochemistry. Results Collagen supported viable human epithelium in vitro for at least one month in primary culture. Sub-cultured epithelium expanded through 12 passages over 60 days. Histologic sections revealed polarized columnar cells, with apical brush borders and basolaterally located nuclei. Collagen-based cultures gave rise to monolayer epithelial sheets at the gel-liquid interface, which were not observed with Matrigel. Immunohistochemical staining identified markers of differentiated intestinal epithelium and myofibroblasts. RT-PCR demonstrated expression of ?-smooth muscle actin and vimentin in myofibroblasts and E-Cadherin, CDX2, villin 1, intestinal alkaline phosphatase, chromogranin A, lysozyme, and Lgr5 in epithelial cells. These markers were maintained through several passages. Conclusion Type I collagen gel supports long-term in vitro maintenance and expansion of fully elaborated human intestinal epithelium. Collagen-based methods yield familiar enteroid structures as well as a new pattern of sheet-like growth, and they eliminate the need for Matrigel for in vitro human intestinal epithelial growth. Future research is required to further develop this cell culture system for tissue engineering applications. PMID:25222024

Jabaji, Ziyad; Brinkley, Garrett J.; Khalil, Hassan A.; Sears, Connie M.; Lei, Nan Ye; Lewis, Michael; Stelzner, Matthias; Martín, Martín G.; Dunn, James C. Y.

2014-01-01

221

Hydrolysis of Pyrethroids by Human and Rat Tissues: Examination of Intestinal, Liver and Serum Carboxylesterases  

PubMed Central

Hydrolytic metabolism of pyrethroid insecticides in humans is one of the major catabolic pathways that clear these compounds from the body. Rodent models are often used to determine the disposition and clearance rates of these esterified compounds. In this study the distribution and activities of esterases that catalyze pyrethroid metabolism have been investigated in vitro using several human and rat tissues, including small intestine, liver, and serum. The major esterase in human intestine is carboxylesterase 2 (hCE2). We found that the pyrethroid trans-permethrin is effectively hydrolyzed by a sample of pooled human intestinal microsomes (5 individuals), while deltamethrin and bioresmethrin are not. This result correlates well with the substrate specificity of recombinant hCE2 enzyme. In contrast, a sample of pooled rat intestinal microsomes (5 animals) hydrolyze trans-permethrin 4.5-fold slower than the sample of human intestinal microsomes. Furthermore, it is demonstrated that pooled samples of cytosol from human or rat liver are ~2-fold less hydrolytically active (normalized per mg protein) than the corresponding microsomal fraction toward pyrethroid substrates; however, the cytosolic fractions do have significant amounts (~40%) of the total esteratic activity. Moreover, a 6-fold interindividual variation in carboxylesterase 1 protein expression in human hepatic cytosols was observed. Human serum was shown to lack pyrethroid hydrolytic activity, but rat serum has hydrolytic activity that is attributed to a single CE isozyme. We purified the serum CE enzyme to homogeneity to determine its contribution to pyrethroid metabolism in the rat. Both trans-permethrin and bioresmethrin were effectively cleaved by this serum CE, but deltamethrin, esfenvalerate, alpha-cypermethrin, and cis-permethrin were slowly hydrolyzed. Lastly, two model lipase enzymes were examined for their ability to hydrolyze pyrethroids. However, no hydrolysis products could be detected. Together, these results demonstrate that extrahepatic esterolytic metabolism of specific pyrethroids may be significant. Moreover, hepatic cytosolic and microsomal hydrolytic metabolism should each be considered during the development of pharmacokinetic models that predict the disposition of pyrethroids and other esterified compounds. PMID:17442360

Crow, J. Allen; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K.

2009-01-01

222

Hydrolysis of pyrethroids by human and rat tissues: Examination of intestinal, liver and serum carboxylesterases  

SciTech Connect

Hydrolytic metabolism of pyrethroid insecticides in humans is one of the major catabolic pathways that clear these compounds from the body. Rodent models are often used to determine the disposition and clearance rates of these esterified compounds. In this study the distribution and activities of esterases that catalyze pyrethroid metabolism have been investigated in vitro using several human and rat tissues, including small intestine, liver and serum. The major esterase in human intestine is carboxylesterase 2 (hCE2). We found that the pyrethroid trans-permethrin is effectively hydrolyzed by a sample of pooled human intestinal microsomes (5 individuals), while deltamethrin and bioresmethrin are not. This result correlates well with the substrate specificity of recombinant hCE2 enzyme. In contrast, a sample of pooled rat intestinal microsomes (5 animals) hydrolyze trans-permethrin 4.5-fold slower than the sample of human intestinal microsomes. Furthermore, it is demonstrated that pooled samples of cytosol from human or rat liver are {approx} 2-fold less hydrolytically active (normalized per mg protein) than the corresponding microsomal fraction toward pyrethroid substrates; however, the cytosolic fractions do have significant amounts ({approx} 40%) of the total esteratic activity. Moreover, a 6-fold interindividual variation in carboxylesterase 1 protein expression in human hepatic cytosols was observed. Human serum was shown to lack pyrethroid hydrolytic activity, but rat serum has hydrolytic activity that is attributed to a single CE isozyme. We purified the serum CE enzyme to homogeneity to determine its contribution to pyrethroid metabolism in the rat. Both trans-permethrin and bioresmethrin were effectively cleaved by this serum CE, but deltamethrin, esfenvalerate, alpha-cypermethrin and cis-permethrin were slowly hydrolyzed. Lastly, two model lipase enzymes were examined for their ability to hydrolyze pyrethroids. However, no hydrolysis products could be detected. Together, these results demonstrate that extrahepatic esterolytic metabolism of specific pyrethroids may be significant. Moreover, hepatic cytosolic and microsomal hydrolytic metabolism should each be considered during the development of pharmacokinetic models that predict the disposition of pyrethroids and other esterified compounds.

Crow, J. Allen [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100 Mississippi State, MS 39762-6100 (United States); Borazjani, Abdolsamad [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100 Mississippi State, MS 39762-6100 (United States); Potter, Philip M. [Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 North Lauderdale Memphis, TN 38105 (United States); Ross, Matthew K. [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100 Mississippi State, MS 39762-6100 (United States)]. E-mail: mross@cvm.msstate.edu

2007-05-15

223

Comparative genomics analysis of Streptococcus isolates from the human small intestine reveals their adaptation to a highly dynamic ecosystem.  

PubMed

The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine. PMID:24386196

Van den Bogert, Bartholomeus; Boekhorst, Jos; Herrmann, Ruth; Smid, Eddy J; Zoetendal, Erwin G; Kleerebezem, Michiel

2013-01-01

224

Comparative Genomics Analysis of Streptococcus Isolates from the Human Small Intestine Reveals their Adaptation to a Highly Dynamic Ecosystem  

PubMed Central

The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine. PMID:24386196

Van den Bogert, Bartholomeus; Boekhorst, Jos; Herrmann, Ruth; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel

2013-01-01

225

[Effect of doxycycline and isoconazole nitrate on human intestinal fungal flora].  

PubMed

29 patients from an outpatient department for pulmonary diseases were treated in randomized order with both doxycycline alone and in combination with 1-(2,4-dichloro-beta-(2,6-dichlorobenzyloxy)-phenethyl)-imidazole nitrate (isoconazole nitrate, Gyno-Travogen) 300 mg/day as well as 600 mg/day for 14 days. In 15 of the 29 patients, it was possible to detect Candida albicans in the stool before the beginning of therapy 10 patients being on a cortisone therapy with an average duration of 32.9 months. Under doxycycline monotherapy, a proliferation of the human intestinal flora by yeast-spp. did not occur. Furthermore, it was not possible to detect an effect of isoconazole nitrate on the human fecal intestinal flora. PMID:6682669

Höffken, G; Lode, H; Kessler, H J

1983-01-01

226

Generation of L-cells in mouse and human small intestine organoids  

PubMed Central

Upon a nutrient challenge, L-cells produce glucagon-like peptide 1 (GLP-1), a powerful stimulant of insulin release. Strategies to augment endogenous GLP-1 production include promoting L-cell differentiation and increasing L-cell number. Here we present a novel in vitro platform to generate functional L-cells from 3D cultures of mouse and human intestinal crypts. We show that short-chain fatty acids (SCFAs) selectively increase the number of L-cells resulting in an elevation of GLP-1 release. This is accompanied by up-regulation of transcription factors, associated with the endocrine lineage of intestinal stem cell development. Thus, our platform allows us to study and modulate the development of L-cells in mouse and human crypts as a potential basis for novel therapeutic strategies in type 2 diabetes. PMID:24130334

Petersen, Natalia; Reimann, Frank; Bartfeld, Sina; Farin, Henner F.; Ringnalda, Femke C.; Vries, Robert G. J.; van den Brink, Stieneke; Clevers, Hans; Gribble, Fiona M.; de Koning, Eelco J. P.

2015-01-01

227

Metabolomics Analysis of Cistus monspeliensis Leaf Extract on Energy Metabolism Activation in Human Intestinal Cells  

PubMed Central

Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469

Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

2012-01-01

228

Transglutaminase 2 expression is enhanced synergistically by interferon-? and tumour necrosis factor-? in human small intestine.  

PubMed

Transglutaminase 2 (TG2) is expressed ubiquitously, has multiple physiological functions and has also been associated with inflammatory diseases, neurodegenerative disorders, autoimmunity and cancer. In particular, TG2 is expressed in small intestine mucosa where it is up-regulated in active coeliac disease (CD). The aim of this work was to investigate the induction of TG2 expression by proinflammatory cytokines [interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-?, interferon (IFN)-? and IL-15] and the signalling pathways involved, in human epithelial and monocytic cells and in intestinal tissue from controls and untreated CD patients. Here we report that IFN-? was the most potent inducer of TG2 expression in the small intestinal mucosa and in four [Caco-2, HT-29, Calu-6 and human acute monocytic leukaemia cell line (THP-1)] of five cell lines tested. The combination of TNF-? and IFN-? produced a strong synergistic effect. The use of selective inhibitors of signalling pathways revealed that induction of TG2 by IFN-? was mediated by phosphoinositide 3-kinase (PI3K), while c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were required for TNF-? activation. Quantitative polymerase chain reaction (PCR), flow cytometry and Western blot analysis showed that TG2 expression was blocked completely when stimulation by either TNF-? or IFN-? was performed in the presence of nuclear factor (NF)-?B inhibitors (sulphasalazine and BAY-117082). TG2 was up-regulated substantially by TNF-? and IFN-? in intestinal mucosa in untreated CD compared with controls. This study shows that IFN-?, a dominant cytokine in intestinal mucosa in active CD, is the most potent inducer of TG2, and synergism with TNF-? may contribute to exacerbate the pathogenic mechanism of CD. Selective inhibition of signalling pathways may be of therapeutic benefit. PMID:22385244

Bayardo, M; Punzi, F; Bondar, C; Chopita, N; Chirdo, F

2012-04-01

229

Butyrate blocks interferon-?-inducible protein-10 release in human intestinal subepithelial myofibroblasts  

Microsoft Academic Search

Background. Interferon (IFN)-?-inducible protein (IP)10 is a chemoattractant for CXCR 3-expressing T lymphocytes and monocytes. IP-10 has been reported to mediate chronic inflammation such as that in inflammatory bowel disease (IBD). However, the local secretion of IP-10 in the intestine remains unclear. In this study, we investigated IP-10 secretion in human colonic subepithelial myofibroblasts (SEMFs). Methods. IP-10 secretion was determined

Osamu Inatomi; Akira Andoh; Ken-ichi Kitamura; Hirofumi Yasui; Zhuobin Zhang; Yoshihide Fujiyama

2005-01-01

230

Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense.  

PubMed

Microbial penetration of the intestinal epithelial barrier triggers inflammatory responses that include induction of the bactericidal C-type lectin RegIII?. Systemic administration of flagellin, a bacterial protein that stimulates Toll-like receptor 5 (TLR5), induces epithelial expression of RegIII? and protects mice from intestinal colonization with antibiotic-resistant bacteria. Flagellin-induced RegIII? expression is IL-22 dependent, but how TLR signaling leads to IL-22 expression is incompletely defined. By using conditional depletion of lamina propria dendritic cell (LPDC) subsets, we demonstrated that CD103(+)CD11b(+) LPDCs, but not monocyte-derived CD103(-)CD11b(+) LPDCs, expressed high amounts of IL-23 after bacterial flagellin administration and drove IL-22-dependent RegIII? production. Maximal expression of IL-23 subunits IL-23p19 and IL-12p40 occurred within 60 min of exposure to flagellin. IL-23 subsequently induced a burst of IL-22 followed by sustained RegIII? expression. Thus, CD103(+)CD11b(+) LPDCs, in addition to promoting long-term tolerance to ingested antigens, also rapidly produce IL-23 in response to detection of flagellin in the lamina propria. PMID:22306017

Kinnebrew, Melissa A; Buffie, Charlie G; Diehl, Gretchen E; Zenewicz, Lauren A; Leiner, Ingrid; Hohl, Tobias M; Flavell, Richard A; Littman, Dan R; Pamer, Eric G

2012-02-24

231

Subversion of human intestinal mucosa innate immunity by a Crohn's disease-associated E. coli.  

PubMed

Adherent-invasive Escherichia coli (AIEC), associated with Crohn's disease, are likely candidate contributory factors in the disease. However, signaling pathways involved in human intestinal mucosa innate host response to AIEC remain unknown. Here we use a 3D model of human intestinal mucosa explant culture to explore the effects of the AIEC strain LF82 on two innate immunity platforms, i.e., the inflammasome through evaluation of caspase-1 status, and NF?B signaling. We showed that LF82 bacteria enter and survive within a few intestinal epithelial cells and macrophages, without altering the mucosa overall architecture. Although 4-h infection with a Salmonella strain caused crypt disorganization, caspase-1 activation, and mature IL-18 production, LF82 bacteria were unable to activate caspase-1 and induce IL-18 production. In parallel, LF82 bacteria activated NF?B signaling in epithelial cells through I?B? phosphorylation, NF?Bp65 nuclear translocation, and TNF? secretion. In addition, NF?B activation was crucial for the maintenance of epithelial homeostasis upon LF82 infection. In conclusion, here we decipher at the whole-mucosa level the mechanisms of the LF82-induced subversion of innate immunity that, by maintaining host cell integrity, ensure intracellular bacteria survival.Mucosal Immunology advance online publication, 1 October 2014; doi:10.1038/mi.2014.89. PMID:25269707

Jarry, A; Crémet, L; Caroff, N; Bou-Hanna, C; Mussini, J M; Reynaud, A; Servin, A L; Mosnier, J F; Liévin-Le Moal, V; Laboisse, C L

2014-10-01

232

Effects of Antibiotics on Bacterial Species Composition and Metabolic Activities in Chemostats Containing Defined Populations of Human Gut Microorganisms  

PubMed Central

The composition and metabolic activities of the human colonic microbiota are modulated by a number of external factors, including diet and antibiotic therapy. Changes in the structure and metabolism of the gut microbiota may have long-term consequences for host health. The large intestine harbors a complex microbial ecosystem comprising several hundreds of different bacterial species, which complicates investigations on intestinal physiology and ecology. To facilitate such studies, a highly simplified microbiota consisting of 14 anaerobic and facultatively anaerobic organisms (Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bifidobacterium longum, Bifidobacterium infantis, Bifidobacterium pseudolongum, Bifidobacterium adolescentis, Clostridium butyricum, C. perfringens, C. bifermentans, C. innocuum, Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Lactobacillus acidophilus) was used in this investigation. Ampicillin [9.2 ?g (ml culture)?1] was added to two chemostats operated at different dilution rates (D; 0.10 h?1 and 0.21 h?1), and metronidazole [76.9 ?g (ml culture)?1] was added to a third vessel (D = 0.21 h?1). Perturbations in bacterial physiology and metabolism were sampled over a 48-h period. Lactobacillus acidophilus and C. bifermentans populations did not establish in the fermentors under the imposed growth conditions. Ampicillin resulted in substantial reductions in bacteroides and C. perfringens populations at both dilution rates. Metronidazole strongly affected bacteroides communities but had no effect on bifidobacterial communities. The bacteriostatic effect of ampicillin on bifidobacterial species was growth rate dependent. Several metabolic activities were affected by antibiotic addition, including fermentation product formation and enzyme synthesis. The growth of antibiotic-resistant bifidobacteria in the large bowel may enable them to occupy ecological niches left vacant after antibiotic administration, preventing colonization by pathogenic species. PMID:23403424

Newton, Dorothy F.; Macfarlane, George T.

2013-01-01

233

Molecular and histological identification of the acanthocephalan Bolbosoma cf. capitatum from the human small intestine.  

PubMed

Acanthocephalans of the genus Bolbosoma are intestinal parasites of marine mammals with a lifecycle similar to that of anisakid nematodes. Several cases of Bolbosoma infection in humans have been reported, but no species identification has been made. Here, we report a case of Bolbosoma infection, in which the worm was found in histological sections of the partially resected small intestine of a Japanese man. Morphological features of the worm reconstructed from serial sectioning indicated that the worm was most likely to be a sexually immature female of Bolbosoma capitatum. DNA extraction from paraffin-embedded sections and ITS1-5.8S rRNA-ITS2 sequencing showed that this species formed a monophyletic group with Bolbosoma nipponicum, and was clearly distinguishable from Corynosoma spp. or Polymorphus spp. These results may provide a reference for identifying and characterizing unknown acanthocephalans found in histological sections. PMID:22634485

Arizono, Naoki; Kuramochi, Toshiaki; Kagei, Noboru

2012-12-01

234

Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel.  

PubMed

Calcium-activated chloride channels (CaCCs) are widely expressed in mammalian tissues, including intestinal epithelia, where they facilitate fluid secretion. Potent, selective CaCC inhibitors have not been available. We established a high-throughput screen for identification of inhibitors of a human intestinal CaCC based on inhibition of ATP/carbachol-stimulated iodide influx in HT-29 cells after lentiviral infection with the yellow fluorescent halide-sensing protein YFP-H148Q/I152L. Screening of 50,000 diverse, drug-like compounds yielded six classes of putative CaCC inhibitors, two of which, 3-acyl-2-aminothiophenes and 5-aryl-2-aminothiazoles, inhibited by >95% iodide influx in HT-29 cells in response to multiple calcium-elevating agonists, including thapsigargin, without inhibition of calcium elevation, calcium-calmodulin kinase II activation, or cystic fibrosis transmembrane conductance regulator chloride channels. These compounds also inhibited calcium-dependent chloride secretion in T84 human intestinal epithelial cells. Patch-clamp analysis indicated inhibition of CaCC gating, which, together with the calcium-calmodulin data, suggests that the inhibitors target the CaCC directly. Structure-activity relationships were established from analysis of more than 1800 analogs, with IC(50) values of the best analogs down to approximately 1 muM. Small-molecule CaCC inhibitors may be useful in pharmacological dissection of CaCC functions and in reducing intestinal fluid losses in CaCC-mediated secretory diarrheas. PMID:18083779

De La Fuente, Ricardo; Namkung, Wan; Mills, Aaron; Verkman, A S

2008-03-01

235

Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans.  

PubMed

Due to the rapid turnover of the small intestinal epithelia, the rate at which enterocyte renewal occurs plays an important role in determining the level of drug-metabolizing enzymes in the gut wall. Current physiologically based pharmacokinetic (PBPK) models consider enzyme and enterocyte recovery as a lumped first-order rate. An assessment of enterocyte turnover would enable enzyme and enterocyte renewal to be modeled more mechanistically. A literature review together with statistical analysis was employed to establish enterocyte turnover in human and preclinical species. A total of 85 studies was identified reporting enterocyte turnover in 1602 subjects in six species. In mice, the geometric weighted combined mean (WX) enterocyte turnover was 2.81 ± 1.14 days (n = 169). In rats, the weighted arithmetic mean enterocyte turnover was determined to be 2.37 days (n = 501). Humans exhibited a geometric WX enterocyte turnover of 3.48 ± 1.55 days for the gastrointestinal epithelia (n = 265), displaying comparable turnover to that of cytochrome P450 enzymes in vitro (0.96-4.33 days). Statistical analysis indicated humans to display longer enterocyte turnover as compared with preclinical species. Extracted data were too sparse to support regional differences in small intestinal enterocyte turnover in humans despite being indicated in mice. The utilization of enterocyte turnover data, together with in vitro enzyme turnover in PBPK modeling, may improve the predictions of metabolic drug-drug interactions dependent on enzyme turnover (e.g., mechanism-based inhibition and enzyme induction) as well as absorption of nanoparticle delivery systems and intestinal metabolism in special populations exhibiting altered enterocyte turnover. PMID:25233858

Darwich, Adam S; Aslam, Umair; Ashcroft, Darren M; Rostami-Hodjegan, Amin

2014-12-01

236

Human intestinal parasites in non-biting synanthropic flies in Ogun State, Nigeria.  

PubMed

Filth-feeding and breeding, non-biting synanthropic flies have been incriminated in the dissemination of human enteropathogens in the environment. This study determined the species of non-biting synanthropic flies associated with four filthy sites in Ilishan, Ogun State, southwest Nigeria, and assessed their potentials for mechanical transmission of human intestinal parasites. 7190 flies identified as Musca domestica (33.94%), Chrysomya megacephala (26.01%), Musca sorbens (23.23%), Lucilia cuprina (8.76%), Calliphora vicina (4.59%), Sarcophaga sp. (2.78%) and Fannia scalaris (0.70%) were examined for human intestinal parasites by the formol-ether concentration and modified Ziehl-Neelsen techniques. Eggs of the following parasites: Ascaris lumbricoides (34.08%), Trichuris trichiura (25.87%), hookworms (20.45%), Taenia sp. (2.36%), Hymenolepis nana (1.11%), Enterobius vermicularis (0.56%), Strongyloides stercoralis (larvae; 3.89%) and cysts of Entamoeba histolytica/dispar (27.26%), Entamoeba coli (22.67%), Giardia lamblia (3.34%) and Cryptosporidium sp. (1.81%) were isolated from the body surfaces and or gut contents of 75.24% of 719 pooled fly batches. The helminths A. lumbricoides and T. trichiura and the protozoans, E. histolytica/dispar and E. coli were the dominant parasites detected, both on body surfaces and in the gut contents of flies. C. megacephala was the highest carrier of parasites (diversity and number). More parasites were isolated from the gut than from body surfaces (P < 0.05). Flies from soiled ground often carried more parasites than those from abattoir, garbage or open-air market. Synanthropic fly species identified in this study can be of potential epidemiological importance as mechanical transmitters of human intestinal parasites acquired naturally from filth and carried on their body surfaces and or in the gut, because of their vagility and feeding mechanisms. PMID:23290716

Adenusi, Adedotun Adesegun; Adewoga, Thomas O Sunday

2013-01-01

237

A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion.  

PubMed Central

Pathogenic bacteria that penetrate the intestinal epithelial barrier stimulate an inflammatory response in the adjacent intestinal mucosa. The present studies asked whether colon epithelial cells can provide signals that are important for the initiation and amplification of an acute mucosal inflammatory response. Infection of monolayers of human colon epithelial cell lines (T84, HT29, Caco-2) with invasive strains of bacteria (Salmonella dublin, Shigella dysenteriae, Yersinia enterocolitica, Listeria monocytogenes, enteroinvasive Escherichia coli) resulted in the coordinate expression and upregulation of a specific array of four proinflammatory cytokines, IL-8, monocyte chemotactic protein-1, GM-CSF, and TNF alpha, as assessed by mRNA levels and cytokine secretion. Expression of the same cytokines was upregulated after TNF alpha or IL-1 stimulation of these cells. In contrast, cytokine gene expression was not altered after infection of colon epithelial cells with noninvasive bacteria or the noninvasive protozoan parasite, G. lamblia. Notably, none of the cell lines expressed mRNA for IL-2, IL-4, IL-5, IL-6, IL-12p40, IFN-gamma, or significant levels of IL-1 or IL-10 in response to the identical stimuli. The coordinate expression of IL-8, MCP-1, GM-CSF and TNF alpha appears to be a general property of human colon epithelial cells since an identical array of cytokines, as well as IL-6, also was expressed by freshly isolated human colon epithelial cells. Since the cytokines expressed in response to bacterial invasion or other proinflammatory agonists have a well documented role in chemotaxis and activation of inflammatory cells, colon epithelial cells appear to be programmed to provide a set of signals for the activation of the mucosal inflammatory response in the earliest phases after microbial invasion. Images PMID:7814646

Jung, H C; Eckmann, L; Yang, S K; Panja, A; Fierer, J; Morzycka-Wroblewska, E; Kagnoff, M F

1995-01-01

238

D-cycloserine uses an active transport mechanism in the human intestinal cell line Caco 2.  

PubMed Central

In a previous study we have shown that cultured epithelial cell lines can be used to measure the transepithelial passage of antimicrobial agents across the intestine and to obtain information on the mechanisms of transport utilized and predict the bioavailability of the antimicrobial agents after oral administration. In particular, among the drugs investigated, D-cycloserine had been shown to be transported in a polarized manner only in the intestinal cells. In the present work, further characterization of the transport of D-cycloserine in the human intestinal cell line Caco 2 has shown that this occurs in the apical-to-basolateral direction by an active mechanism which is energy dependent but only partially sodium dependent. Competition studies have also indicated that the transport of D-cycloserine occurs via a carrier for imino acids, amino acids with aliphatic side chains (L-Ala, D-Ala, and beta Ala), and L-Trp, L-Tyr, L-Cys, and alpha-amino isobutyric acid. This system may correspond to a proton-dependent system for L-proline and beta-alanine recently described for Caco 2 cells. In contrast with the cephalosporins, which are taken up by the Caco 2 cells via a dipeptide carrier, D-cycloserine transport cannot be inhibited by either cephalexin (a member of the class of cephalosporins) or dipeptides. PMID:8092820

Ranaldi, G; Islam, K; Sambuy, Y

1994-01-01

239

Identification of NF-?B Modulation Capabilities within Human Intestinal Commensal Bacteria  

PubMed Central

The intestinal microbiota plays an important role in modulation of mucosal immune responses. To seek interactions between intestinal epithelial cells (IEC) and commensal bacteria, we screened 49 commensal strains for their capacity to modulate NF-?B. We used HT-29/kb-seap-25 and Caco-2/kb-seap-7 intestinal epithelial cells and monocyte-like THP-1 blue reporter cells to measure effects of commensal bacteria on cellular expression of a reporter system for NF-?B. Bacteria conditioned media (CM) were tested alone or together with an activator of NF-?B to explore its inhibitory potentials. CM from 8 or 10 different commensal species activated NF-?B expression on HT-29 and Caco-2 cells, respectively. On THP-1, CM from all but 5 commensal strains stimulated NF-?B. Upon challenge with TNF-? or IL-1?, some CM prevented induced NF-?B activation, whereas others enhanced it. Interestingly, the enhancing effect of some CM was correlated with the presence of butyrate and propionate. Characterization of the effects of the identified bacteria and their implications in human health awaits further investigations. PMID:21765633

Lakhdari, Omar; Tap, Julien; Béguet-Crespel, Fabienne; Le Roux, Karine; de Wouters, Tomas; Cultrone, Antonietta; Nepelska, Malgorzata; Lefèvre, Fabrice; Doré, Joël; Blottière, Hervé M.

2011-01-01

240

Composition and Metabolic Activities of Bacterial Biofilms Colonizing Food Residues in the Human Gut  

Microsoft Academic Search

Bacteria growing in the human large intestine live in intimate association with the host and play an important role in host digestive processes, gut physiology, and metabolism. Fecal bacteria have been investi- gated extensively, but few studies have been done on biofilms that form on digestive wastes in the large bowel. The aims of this investigation were to investigate the

Sandra Macfarlane; George T. Macfarlane

2006-01-01

241

The Single IgG IL-1 related receptor (Sigirr) controls Toll-like receptor responses in differentiated human intestinal epithelial cells  

PubMed Central

Intestinal epithelial cells (IEC) are constantly exposed to enteric microbes. Although IECs express TLRs that recognize bacterial products, activation of these TLRs is strictly controlled through poorly understood mechanisms, producing a state of hypo-responsiveness and preventing unwanted inflammation. The Single IgG IL-1 related receptor (Sigirr) is a negative regulator of TLRs that is expressed by IEC and recently shown to inhibit experimental colitis. However, the importance of Sigirr in IEC hyporesponsiveness and its distribution within the human colon is unknown. In this study, we investigated the role of Sigirr in regulating epithelial specific TLR responses and characterize its expression in colonic biopsies. Transformed and non-transformed human IEC were cultured as monolayers. Transient gene silencing and stable over-expression of Sigirr was performed to assess innate IEC responses. Sigirr expression in human colonic biopsies was examined by immunohistochemistry. Bacterial infection of IEC and exposure to flagellin transiently decreased Sigirr protein expression, concurrent with secretion of the neutrophil chemokine IL-8. Sigirr gene silencing augmented chemokine responses to bacterial flagellin, Pam3Cys and the cytokine IL-1?. Conversely, stable over-expression of Sigirr diminished NF-?B mediated IL-8 responses to TLR ligands. We also found that Sigirr expression increased as IECs differentiated in culture. This observation was confirmed in biopsy sections, where Sigirr expression within colonic crypts was prominent in IECs at the apex and diminished at the base. Our findings show that Sigirr broadly regulates innate responses in differentiated human IEC, and may therefore modulate epithelial involvement in infectious and inflammatory bowel diseases. PMID:20130217

Khan, Mohammed A.; Sham, Ho Pan; Bergstrom, Kirk; Huang, Jingtian T.; Steiner, Theodore S.; Assi, Kiran; Salh, Bill; Tai, Isabella T.; Li, Xiaoxia; Vallance, Bruce A.

2013-01-01

242

Intestinal parasite co-infection among pulmonary tuberculosis cases without human immunodeficiency virus infection in a rural county in China.  

PubMed

Epidemiologic studies of co-infection with tuberculosis (TB) and intestinal parasites in humans have not been extensively investigated in China. A cross-section study was conducted in a rural county of Henan Province, China. Pulmonary TB (PTB) case-patients receiving treatment for infection with Mycobacterium tuberculosis and healthy controls matched for geographic area, age, and sex were surveyed by using questionnaires. Fecal and blood specimens were collected for detection of intestinal parasites, routine blood examination, and infection with human immunodeficiency virus. The chi-square test was used for univariate analysis and multivariate logistic regression models were used to adjust for potential confounding factors. A total of 369 persons with PTB and 366 healthy controls were included; all participants were negative for human immunodeficiency virus. The overall prevalence of intestinal parasites in persons with PTB was 14.9%, including intestinal protozoa (7.9%) and helminthes (7.6%). The infection spectrum of intestinal parasites was Entamoeba spp. (1.4%), Blastocystis hominis (6.2%), Trichomonas hominis (0.3%), Clonorchis sinensis (0.3%), Ascaris lumbricoides (0.5%), Trichuris trichiura (2.2%), and hookworm (4.6%). The prevalence of intestinal parasites showed no significant difference between persons with PTB and healthy controls after adjusting for potential confounding factors. There was no factor that affected infection rates for intestinal parasites between the two groups. Infection with intestinal parasites of persons with PTB was associated with female sex (adjusted odds ratio [AOR] = 2.05, 95% confidence interval [CI] = 1.01-4.17), body mass index ? 19 (AOR = 3.02, 95% CI = 1.47-6.20), and anemia (AOR = 2.43, 95% CI = 1.17-5.03). Infection of healthy controls was only associated with an annual labor time in farmlands > 2 months (AOR = 4.50, 95% CI = 2.03-10.00). In addition, there was no significant trend between rates of infection with intestinal parasites and duration of receiving treatment for infection with M. tuberculosis in persons with PTB. The prevalence of intestinal parasites was not higher in persons with PTB, and there was no evidence that PTB increased susceptibility to intestinal parasites in this study. However, for patients with PTB, women and patients with comorbidities were more likely to be infected with intestinal parasites. PMID:24166044

Li, Xin-Xu; Chen, Jia-Xu; Wang, Li-Xia; Tian, Li-Guang; Zhang, Yu-Ping; Dong, Shuang-Pin; Hu, Xue-Guang; Liu, Jian; Wang, Feng-Feng; Wang, Yue; Yin, Xiao-Mei; He, Li-Jun; Yan, Qiu-Ye; Zhang, Hong-Wei; Xu, Bian-Li; Zhou, Xiao-Nong

2014-01-01

243

Intestinal Parasite Co-infection among Pulmonary Tuberculosis Cases without Human Immunodeficiency Virus Infection in a Rural County in China  

PubMed Central

Epidemiologic studies of co-infection with tuberculosis (TB) and intestinal parasites in humans have not been extensively investigated in China. A cross-section study was conducted in a rural county of Henan Province, China. Pulmonary TB (PTB) case-patients receiving treatment for infection with Mycobacterium tuberculosis and healthy controls matched for geographic area, age, and sex were surveyed by using questionnaires. Fecal and blood specimens were collected for detection of intestinal parasites, routine blood examination, and infection with human immunodeficiency virus. The chi-square test was used for univariate analysis and multivariate logistic regression models were used to adjust for potential confounding factors. A total of 369 persons with PTB and 366 healthy controls were included; all participants were negative for human immunodeficiency virus. The overall prevalence of intestinal parasites in persons with PTB was 14.9%, including intestinal protozoa (7.9%) and helminthes (7.6%). The infection spectrum of intestinal parasites was Entamoeba spp. (1.4%), Blastocystis hominis (6.2%), Trichomonas hominis (0.3%), Clonorchis sinensis (0.3%), Ascaris lumbricoides (0.5%), Trichuris trichiura (2.2%), and hookworm (4.6%). The prevalence of intestinal parasites showed no significant difference between persons with PTB and healthy controls after adjusting for potential confounding factors. There was no factor that affected infection rates for intestinal parasites between the two groups. Infection with intestinal parasites of persons with PTB was associated with female sex (adjusted odds ratio [AOR] = 2.05, 95% confidence interval [CI] = 1.01–4.17), body mass index ? 19 (AOR = 3.02, 95% CI = 1.47–6.20), and anemia (AOR = 2.43, 95% CI = 1.17–5.03). Infection of healthy controls was only associated with an annual labor time in farmlands > 2 months (AOR = 4.50, 95% CI = 2.03–10.00). In addition, there was no significant trend between rates of infection with intestinal parasites and duration of receiving treatment for infection with M. tuberculosis in persons with PTB. The prevalence of intestinal parasites was not higher in persons with PTB, and there was no evidence that PTB increased susceptibility to intestinal parasites in this study. However, for patients with PTB, women and patients with comorbidities were more likely to be infected with intestinal parasites. PMID:24166044

Li, Xin-Xu; Chen, Jia-Xu; Wang, Li-Xia; Tian, Li-Guang; Zhang, Yu-Ping; Dong, Shuang-Pin; Hu, Xue-Guang; Liu, Jian; Wang, Feng-Feng; Wang, Yue; Yin, Xiao-Mei; He, Li-Jun; Yan, Qiu-Ye; Zhang, Hong-Wei; Xu, Bian-Li; Zhou, Xiao-Nong

2014-01-01

244

Bacterial Urease and its Role in Long-Lasting Human Diseases  

PubMed Central

Urease is a virulence factor found in various pathogenic bacteria. It is essential in colonization of a host organism and in maintenance of bacterial cells in tissues. Due to its enzymatic activity, urease has a toxic effect on human cells. The presence of ureolytic activity is an important marker of a number of bacterial infections. Urease is also an immunogenic protein and is recognized by antibodies present in human sera. The presence of such antibodies is connected with progress of several long-lasting diseases, like rheumatoid arthritis, atherosclerosis or urinary tract infections. In bacterial ureases, motives with a sequence and/or structure similar to human proteins may occur. This phenomenon, known as molecular mimicry, leads to the appearance of autoantibodies, which take part in host molecules destruction. Detection of antibodies-binding motives (epitopes) in bacterial proteins is a complex process. However, organic chemistry tools, such as synthetic peptide libraries, are helpful in both, epitope mapping as well as in serologic investigations. In this review, we present a synthetic report on a molecular organization of bacterial ureases - genetic as well as structural. We characterize methods used in detecting urease and ureolytic activity, including techniques applied in disease diagnostic processes and in chemical synthesis of urease epitopes. The review also provides a summary of knowledge about a toxic effect of bacterial ureases on human body and about occurrence of anti-urease antibodies in long-lasting diseases. PMID:23305365

Konieczna, Iwona; ?arnowiec, Paulina; Kwinkowski, Marek; Kolesi?ska, Beata; Fr?czyk, Justyna; Kami?ski, Zbigniew; Kaca, Wies?aw

2012-01-01

245

More than 9,000,000 Unique Genes in Human Gut Bacterial Community: Estimating Gene Numbers Inside a Human Body  

Microsoft Academic Search

BackgroundEstimating the number of genes in human genome has been long an important problem in computational biology. With the new conception of considering human as a super-organism, it is also interesting to estimate the number of genes in this human super-organism.Principal FindingsWe presented our estimation of gene numbers in the human gut bacterial community, the largest microbial community inside the

Xing Yang; Lu Xie; Yixue Li; Chaochun Wei; Stefan Bereswill

2009-01-01

246

Bacterial RNA Extraction and Purification from Whole Human Blood Using Isotachophoresis  

E-print Network

Bacterial RNA Extraction and Purification from Whole Human Blood Using Isotachophoresis Anita- chemical extraction and isotachophoresis-based purification of 16S rRNA from whole human blood infected and high pH.13-15 Careful decontami- nation together with assay standardization or automation can mitigate

Santiago, Juan G.

247

Gut microbiota, tight junction protein expression, intestinal resistance, bacterial translocation and mortality following cholestasis depend on the genetic background of the host.  

PubMed

Failure of the intestinal barrier is a characteristic feature of cholestasis. We have previously observed higher mortality in C57BL/6J compared with A/J mice following common bile duct ligation (CBDL). We hypothesized the alteration in gut barrier function following cholestasis would vary by genetic background. Following one week of CBDL, jejunal TEER was significantly reduced in each ligated mouse compared with their sham counterparts; moreover, jejunal TEER was significantly lower in both sham and ligated C57BL/6J compared with sham and ligated A/J mice, respectively. Bacterial translocation to mesenteric lymph nodes was significantly increased in C57BL/6J mice vs. A/J mice. Four of 15 C57BL/6J mice were bacteremic; whereas, none of the 17 A/J mice were. Jejunal IFN-? mRNA expression was significantly elevated in C57BL/6J compared with A/J mice. Western blot analysis demonstrated a significant decrease in occludin protein expression in C57BL/6J compared with A/J mice following both sham operation and CBDL. Only C57BL/6J mice demonstrated a marked decrease in ZO-1 protein expression following CBDL compared with shams. Pyrosequencing of the 16S rRNA gene in fecal samples showed a dysbiosis only in C57BL/6J mice following CBDL when compared with shams. This study provides evidence of strain differences in gut microbiota, tight junction protein expression, intestinal resistance and bacterial translocation which supports the notion of a genetic predisposition to exaggerated injury following cholestasis. PMID:23652772

Alaish, Samuel M; Smith, Alexis D; Timmons, Jennifer; Greenspon, Jose; Eyvazzadeh, Daniel; Murphy, Ebony; Shea-Donahue, Terez; Cirimotich, Shana; Mongodin, Emmanuel; Zhao, Aiping; Fasano, Alessio; Nataro, James P; Cross, Alan

2013-01-01

248

Gut microbiota, tight junction protein expression, intestinal resistance, bacterial translocation and mortality following cholestasis depend on the genetic background of the host  

PubMed Central

Failure of the intestinal barrier is a characteristic feature of cholestasis. We have previously observed higher mortality in C57BL/6J compared with A/J mice following common bile duct ligation (CBDL). We hypothesized the alteration in gut barrier function following cholestasis would vary by genetic background. Following one week of CBDL, jejunal TEER was significantly reduced in each ligated mouse compared with their sham counterparts; moreover, jejunal TEER was significantly lower in both sham and ligated C57BL/6J compared with sham and ligated A/J mice, respectively. Bacterial translocation to mesenteric lymph nodes was significantly increased in C57BL/6J mice vs. A/J mice. Four of 15 C57BL/6J mice were bacteremic; whereas, none of the 17 A/J mice were. Jejunal IFN-? mRNA expression was significantly elevated in C57BL/6J compared with A/J mice. Western blot analysis demonstrated a significant decrease in occludin protein expression in C57BL/6J compared with A/J mice following both sham operation and CBDL. Only C57BL/6J mice demonstrated a marked decrease in ZO-1 protein expression following CBDL compared with shams. Pyrosequencing of the 16S rRNA gene in fecal samples showed a dysbiosis only in C57BL/6J mice following CBDL when compared with shams. This study provides evidence of strain differences in gut microbiota, tight junction protein expression, intestinal resistance and bacterial translocation which supports the notion of a genetic predisposition to exaggerated injury following cholestasis. PMID:23652772

Alaish, Samuel M.; Smith, Alexis D.; Timmons, Jennifer; Greenspon, Jose; Eyvazzadeh, Daniel; Murphy, Ebony; Shea-Donahue, Terez; Cirimotich, Shana; Mongodin, Emmanuel; Zhao, Aiping; Fasano, Alessio; Nataro, James P.; Cross, Alan S

2013-01-01

249

Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin  

SciTech Connect

AB{sub 5} toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target-cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB{sub 5} toxin secreted by Shiga toxigenic Escherichia coli (STEC), which causes serious gastrointestinal disease in humans. SubAB causes haemolytic uraemic syndrome-like pathology in mice through SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesized in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite lack of Neu5Gc biosynthesis in humans, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, and the lack of Neu5Gc-containing body fluid competitors in humans, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin's receptor is generated by metabolic incorporation of an exogenous factor derived from food.

Byres, Emma; Paton, Adrienne W.; Paton, James C.; Löfling, Jonas C.; Smith, David F.; Wilce, Matthew C.J.; Talbot, Ursula M.; Chong, Damien C.; Yu, Hai; Huang, Shengshu; Chen, Xi; Varki, Nissi M.; Varki, Ajit; Rossjohn, Jamie; Beddoe, Travis (Emory-MED); (UCD); (Adelaide); (Monash)

2009-01-30

250

Sugars Increase Non-Heme Iron Bioavailability in Human Epithelial Intestinal and Liver Cells  

PubMed Central

Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55) increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions. PMID:24340076

Christides, Tatiana; Sharp, Paul

2013-01-01

251

Human Pathogens Abundant in the Bacterial Metagenome of Cigarettes  

PubMed Central

Background Many studies have evaluated chemical, heavy metal, and other abiotic substances present in cigarettes and their roles in the development of lung cancer and other diseases, yet no studies have comprehensively evaluated bacterial diversity of cigarettes and the possible impacts of these microbes on respiratory illnesses in smokers and exposed nonsmokers. Objectives The goal of this study was to explore the bacterial metagenomes of commercially available cigarettes. Methods A 16S rRNA-based taxonomic microarray and cloning and sequencing were used to evaluate total bacterial diversity of four brands of cigarettes. Normalized microarray data were compared using principal component analysis and hierarchical cluster analysis to evaluate potential differences in microbial diversity across cigarette brands. Results Fifteen different classes of bacteria and a broad range of potentially pathogenic organisms were detected in all cigarette samples. Most notably, we detected Acinetobacter, Bacillus, Burkholderia, Clostridium, Klebsiella, Pseudomonas aeruginosa, and Serratia in ? 90% of all cigarette samples. Other pathogenic bacteria detected included Campylobacter, Enterococcus, Proteus, and Staphylococcus. No significant variability in bacterial diversity was observed across the four different cigarette brands. Conclusions Previous studies have shown that smoking is associated with colonization by pathogenic bacteria and an increased risk of lung infections. However, this is the first study to show that cigarettes themselves could be the direct source of exposure to a wide array of potentially pathogenic microbes among smokers and other people exposed to secondhand smoke. The overall public health implications of these findings are unclear at this time, and future studies are necessary to determine whether bacteria in cigarettes could play important roles in the development of both infectious and chronic respiratory diseases. PMID:20064769

Sapkota, Amy R.; Berger, Sibel; Vogel, Timothy M.

2010-01-01

252

Molecular mechanisms involved in the adaptive regulation of human intestinal biotin uptake: A study of the hSMVT system.  

PubMed

Biotin, a water-soluble micronutrient, is vital for cellular functions, including growth and development. The human intestine utilizes the human sodium-dependent multivitamin transporter (hSMVT) for biotin uptake. Evidence exists showing that the intestinal biotin uptake process is adaptively regulated during biotin deficiency. Nothing, however, is known about molecular mechanism(s) involved during this adaptive regulation. This study compared two human-derived intestinal epithelial cell lines (HuTu-80 and Caco-2) during biotin-deficient or biotin-sufficient states and with an approach that assessed carrier-mediated biotin uptake, hSMVT protein and RNA levels, RNA stability, and hSMVT promoter activity. The results showed that during biotin deficiency, a significant and specific upregulation in carrier-mediated biotin uptake occurred in both human intestinal epithelial cell lines and that this increase was associated with an induction in protein and mRNA levels of hSMVT. The increase in mRNA levels was not due to an increase in RNA stability but was associated with an increase in activity of the hSMVT promoter in transfected human intestinal cells. Using promoter deletion constructs and mutational analysis in transiently transfected HuTu-80 and Caco-2 cells, a biotin deficiency-responsive region was mapped to a 103-bp area within the hSMVT promoter that contains gut-enriched Kruppel-like factor (GKLF) sites that confer the response to biotin deficiency. These results confirm that human intestinal biotin uptake is adaptively regulated and provide novel evidence demonstrating that the upregulation is not mediated via changes in hSMVT RNA stability but rather is due to transcriptional regulatory mechanism(s) that likely involve GKLF sites in the hSMVT promoter. PMID:16959947

Reidling, Jack C; Nabokina, Svetlana M; Said, Hamid M

2007-01-01

253

Chemically induced intestinal damage models in zebrafish larvae.  

PubMed

Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described. PMID:23448252

Oehlers, Stefan H; Flores, Maria Vega; Hall, Christopher J; Okuda, Kazuhide S; Sison, John Oliver; Crosier, Kathryn E; Crosier, Philip S

2013-06-01

254

Intestinal Bacteria And The Hydrolysis Of Glycosidic Bonds  

Microsoft Academic Search

WITH the development of effective anaerobic techniques, the composition of the human intestinal bacterial flora is now more clearly understood. Although the detailed composition is dependent on the nature of the diet (see, for example, Hill et al., 1971), in all cases studied the predominant faecal bacteria are those of the non-sporing strictly anaerobic groups. The metabolic significance of the

GABRIELLE HAWKSWORTH; B. S. Drasar; M. J. Hili

1971-01-01

255

Free fucose is a danger signal to human intestinal epithelial cells.  

PubMed

Fucose is present in foods, and it is a major component of human mucin glycoproteins and glycolipids. l-Fucose can also be found at the terminal position of many cell-surface oligosaccharide ligands that mediate cell-recognition and adhesion-signalling pathways. Mucin fucose can be released through the hydrolytic activity of pathogens and indigenous bacteria, leading to the release of free fucose into the intestinal lumen. The immunomodulating effects of free fucose on intestinal epithelial cells (enterocyte-like Caco-2) were investigated. It was found that the presence of l-fucose up regulated genes and secretion of their encoded proteins that are involved in both the innate and adaptive immune responses, possibly via the toll-like receptor-2 signalling pathway. These include TNFSF5, TNFSF7, TNF-alpha, IL12, IL17 and IL18. Besides modulating immune reactions in differentiated Caco-2 cells, fucose induced a set of cytokine genes that are involved in the development and proliferation of immune cells. These include the bone morphogenetic proteins (BMP) BMP2, BMP4, IL5, thrombopoietin and erythropoietin. In addition, the up regulated gene expression of fibroblast growth factor-2 may help to promote epithelial cell restitution in conjunction with the enhanced expression of transforming growth factor-beta mRNA. Since the exogenous fucose was not metabolised by the differentiated Caco-2 cells as a carbon source, the reactions elicited were suggested to be a result of the direct interaction of fucose and differentiated Caco-2 cells. The presence of free fucose may signal the invasion of mucin-hydrolysing microbial cells and breakage of the mucosal barrier. The intestinal epithelial cells respond by up regulation and secretion of cytokines, pre-empting the actual invasion of pathogens. PMID:17697405

Chow, Wai Ling; Lee, Yuan Kun

2008-03-01

256

Humanized Mouse Model to Study Bacterial Infections Targeting the Microvasculature  

PubMed Central

Neisseria meningitidis causes a severe, frequently fatal sepsis when it enters the human blood stream. Infection leads to extensive damage of the blood vessels resulting in vascular leak, the development of purpuric rashes and eventual tissue necrosis. Studying the pathogenesis of this infection was previously limited by the human specificity of the bacteria, which makes in vivo models difficult. In this protocol, we describe a humanized model for this infection in which human skin, containing dermal microvessels, is grafted onto immunocompromised mice. These vessels anastomose with the mouse circulation while maintaining their human characteristics. Once introduced into this model, N. meningitidis adhere exclusively to the human vessels, resulting in extensive vascular damage, inflammation and in some cases the development of purpuric rash. This protocol describes the grafting, infection and evaluation steps of this model in the context of N. meningitidis infection. The technique may be applied to numerous human specific pathogens that infect the blood stream. PMID:24747976

Melican, Keira; Aubey, Flore; Duménil, Guillaume

2014-01-01

257

Degradation of endogenous bacterial cell wall polymers by the muralytic enzyme mutanolysin prevents hepatobiliary injury in genetically susceptible rats with experimental intestinal bacterial overgrowth.  

PubMed Central

Jejunal self-filling blind loops with subsequent small bowel bacterial overgrowth (SBBO) induce hepatobiliary injury in genetically susceptible Lewis rats. Lesions consist of portal tract inflammation, bile duct proliferation, and destruction. To determine the pathogenesis of SBBO-induced hepatobiliary injury, we treated Lewis rats with SBBO by using several agents with different mechanisms of activity. Buffer treatment, ursodeoxycholic acid, prednisone, methotrexate, and cyclosporin A failed to prevent SBBO-induced injury as demonstrated by increased plasma aspartate aminotransferase (AST) and elevated histology scores. However, hepatic injury was prevented by mutanolysin, a muralytic enzyme whose only known activity is to split the beta 1-4 N-acetylmuramyl-N-acetylglucosamine linkage of peptidoglycan-polysaccharide (PG-PS), a bacterial cell wall polymer with potent inflammatory and immunoregulatory properties. Mutanolysin therapy started on the day blind loops were surgically created and continued for 8 wk significantly diminished AST (101 +/- 37 U/liter) and liver histology scores (2.2 +/- 2.7) compared to buffer-treated rats (228 +/- 146 U/liter, P < 0.05, 8.2 +/- 1.9, P < 0.001 respectively). Mutanolysin treatment started during the early phase of hepatic injury, 16-21 d after surgery, decreased AST in 7 of 11 rats from 142 +/- 80 to 103 +/- 24 U/liter contrasted to increased AST in 9 of 11 buffer-treated rats from 108 +/- 52 to 247 +/- 142 U/liter, P < 0.05. Mutanolysin did not change total bacterial numbers within the loop, eliminate Bacteroides sp., have in vitro antibiotic effects, or diminish mucosal PG-PS transport. However, mutanolysin treatment prevented elevation of plasma anti-PG antibodies and tumor necrosis factor-alpha (TNF alpha) levels which occurred in buffer treated rats with SBBO and decreased TNF alpha production in isolated Kupffer cells stimulated in vitro with PG-PS. Based on the preventive and therapeutic activity of this highly specific muralytic enzyme, we conclude that systemic uptake of PG-PS derived from endogenous enteric bacteria contributes to hepatobiliary injury induced by SBBO in susceptible rat strains. PMID:1401067

Lichtman, S N; Okoruwa, E E; Keku, J; Schwab, J H; Sartor, R B

1992-01-01

258

Kudoa septempunctata invasion increases the permeability of human intestinal epithelial monolayer.  

PubMed

Kudoa septempunctata is a myxosporean parasite of Paralichthys olivaceus (olive flounder) and causes a foodborne illness that affects more than 100 cases in Japan each year. We previously reported that the consumption of raw olive flounder meat containing a high concentration of K. septempunctata spores induces transient but severe diarrhea and emesis through an unknown mechanism. Here, we demonstrate that K. septempunctata sporoplasm plays an important role in mediating the toxicity of K. septempunctata. When K. septempunctata spores were inoculated in Caco-2 human intestinal cells, K. septempunctata sporoplasms were released from spores, and they invaded the cells. Electron microscopic observations revealed that the sporoplasm invasion severely damaged the Caco-2 cells. The inoculation of K. septempunctata spores eliminated the transepithelial electrical resistance (TER) across the cell monolayer. Inhibiting the invasion of the sporoplasms prevented the observed loss in cell layer integrity, as illustrated by the rapid elimination of the TER. These results suggest that the invasion by sporoplasms severely damaged individual intestinal cells, resulting in a loss of cell monolayer integrity. PMID:23373474

Ohnishi, Takahiro; Kikuchi, Yutaka; Furusawa, Hiroko; Kamata, Yoichi; Sugita-Konishi, Yoshiko

2013-02-01

259

Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner.  

PubMed

Opiates are among the most prescribed drugs for pain management. However, morphine use or abuse results in significant gut bacterial translocation and predisposes patients to serious infections with gut origin. The mechanism underlying this defect is still unknown. In this report, we investigated the mechanisms underlying compromised gut immune function and bacterial translocation following morphine treatment. We demonstrate significant bacterial translocation to mesenteric lymph node (MLN) and liver following morphine treatment in wild-type (WT) animals that was dramatically and significantly attenuated in Toll-like receptor (TLR2 and 4) knockout mice. We further observed significant disruption of tight junction protein organization only in the ileum but not in the colon of morphine treated WT animals. Inhibition of myosin light chain kinase (MLCK) blocked the effects of both morphine and TLR ligands, suggesting the role of MLCK in tight junction modulation by TLR. This study conclusively demonstrates that morphine induced gut epithelial barrier dysfunction and subsequent bacteria translocation are mediated by TLR signaling and thus TLRs can be exploited as potential therapeutic targets for alleviating infections and even sepsis in morphine-using or abusing populations. PMID:23349783

Meng, Jingjing; Yu, Haidong; Ma, Jing; Wang, Jinghua; Banerjee, Santanu; Charboneau, Rick; Barke, Roderick A; Roy, Sabita

2013-01-01

260

Evaluation of fasted and fed state simulated and human intestinal fluids as solvent system in the Ussing chambers model to explore food effects on intestinal permeability.  

PubMed

The Ussing chambers model is almost exclusively used in the presence of plain aqueous phosphate buffers as solvent system. In an attempt to further elucidate the effect of luminal ingredients and postprandial conditions on intestinal permeability, pooled fasted and fed state human intestinal fluids (FaHIFpool, FeHIFpool) were used. In addition, simulated intestinal fluids of both nutritional states (FaSSIF, FeSSIF) were evaluated as possible surrogate media for HIF. The use of FaHIFpool generated a broad range of Papp values for a series of 16 model drugs, ranging from 0.03×10(-6)cm/s (carvedilol) to 33.8×10(-6)cm/s (naproxen). A linear correlation was observed between Papp values using FaSSIF and FaHIFpool as solvent system (R=0.990), justifying the use of FaSSIF as surrogate medium for FaHIF in the Ussing chambers. In exclusion of the outlier carvedilol, a strong sigmoidal relationship was found between Papp and fahuman of 15 model drugs, illustrated by correlation coefficients of 0.961 and 0.936 for FaHIFpool and FaSSIF, respectively. When addressing food effects on intestinal permeability, the use of FeHIFpool resulted in a significantly lower Papp value for nine out of sixteen compounds compared to fasting conditions. FeSSIF as solvent system significantly overestimated Papp values in FeHIFpool. To conclude, the optimized Ussing chambers model using biorelevant media as apical solvent system holds great potential to investigate food effects in a more integrative approach, taking into account drug solubilisation, supersaturation and formulation effects. PMID:25510602

Wuyts, Benjamin; Riethorst, Danny; Brouwers, Joachim; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

2015-01-30

261

Human intestinal Vdelta1+ lymphocytes recognize tumor cells of epithelial origin  

PubMed Central

gammadelta T cells can be grouped into discrete subsets based upon their expression of T cell receptor (TCR) variable (V) region families, their tissue distribution, and their specificity. Vdelta2+ T cells constitute the majority of gammadelta T cells in peripheral blood whereas Vdelta1+T cells reside preferentially in skin epithelium and in the intestine. gammadelta T cells are envisioned as first line host defense mechanisms capable of providing a source of immune effector T cells and immunomodulating cytokines such as interleukin (IL) 4 or interferon (IFN) gamma. We describe here the fine specificity of three distinct gammadelta+ tumor-infiltrating lymphocytes (TIL) obtained from patients with primary or metastatic colorectal cancer, that could be readily expanded in vitro in the presence of IL-1beta and IL-7. Irrespective of donor, these individual gammadelta T cells exhibited a similar pattern of reactivity defined by recognition of autologous and allogeneic colorectal cancer cells, renal cell cancer, pancreatic cancer, and a freshly isolated explant from human intestine as measured by cytolytic T cell responses and by IFN-gamma release. In contrast, tumors of alternate histologies were not lysed, including lung cancer, squamous cell cancer, as well as the natural/lymphocyte-activated killer cell-sensitive hematopoietic cell lines T2, C1R, or Daudi. The cell line K562 was only poorly lysed when compared with colorectal cancer targets. Target cell reactivity mediated by Vdelta1+ T cells was partially blocked with Abs directed against the TCR, the beta2 or beta7 integrin chains, or fibronectin receptor. Marker analysis using flow cytometry revealed that all three gammadelta T cell lines exhibit a similar phenotype. Analysis of the gammadelta TCR junctional suggested exclusive usage of the Vdelta1/Ddelta3/Jdelta1 TCR segments with extensive (< or = 29 bp) N/P region diversity. T cell recognition of target cells did not appear to be a major histocompatibility complex restricted or to be correlated with target cell expression of heat- shock proteins. Based on the ability of some epithelial tumors, including colorectal, pancreatic, and renal cell cancers to effectively cold target inhibit the lysis of colorectal cancer cell lines by these Vdelta1+ T cell lines, we suggest that intestinal Vdelta1+ T cell lines, we suggest that intestinal Vdelta1+ T cells are capable of recognizing cell surface Ag(s) shared by tumors of epithelial origin. PMID:8666926

1996-01-01

262

Activation of intestinal human pregnane X receptor protects against azoxymethane/dextran sulfate sodium-induced colon cancer.  

PubMed

The role of intestinal human pregnane X receptor (PXR) in colon cancer was determined through investigation of the chemopreventive role of rifaximin, a specific agonist of intestinal human PXR, toward azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colon cancer. Rifaximin treatment significantly decreased the number of colon tumors induced by AOM/DSS treatment in PXR-humanized mice, but not wild-type or Pxr-null mice. Additionally, rifaximin treatment markedly increased the survival rate of PXR-humanized mice, but not wild-type or Pxr-null mice. These data indicated a human PXR-dependent therapeutic chemoprevention of rifaximin toward AOM/DSS-induced colon cancer. Nuclear factor ?-light-chain-enhancer of activated B cells-mediated inflammatory signaling was upregulated in AOM/DSS-treated mice, and inhibited by rifaximin in PXR-humanized mice. Cell proliferation and apoptosis were also modulated by rifaximin treatment in the AOM/DSS model. In vitro cell-based assays further revealed that rifaximin regulated cell apoptosis and cell cycle in a human PXR-dependent manner. These results suggested that specific activation of intestinal human PXR exhibited a chemopreventive role toward AOM/DSS-induced colon cancer by mediating anti-inflammation, antiproliferation, and proapoptotic events. PMID:25277138

Cheng, Jie; Fang, Zhong-Ze; Nagaoka, Kenjiro; Okamoto, Minoru; Qu, Aijuan; Tanaka, Naoki; Kimura, Shioko; Gonzalez, Frank J

2014-12-01

263

Expression of Epstein–Barr virus-induced gene 3 and other interleukin-12-related molecules by human intestinal epithelium  

PubMed Central

Antigen-presenting cells, including dendritic cells, monocytes and macrophages, produce members of the interleukin-12 (IL-12) family that are important in initiating and maintaining cell-mediated immune responses. These include IL-12p35 and p19 that dimerize with IL-12p40 to form IL-12 (also termed IL-12p75) and IL-23, respectively, and Epstein–Barr virus-induced gene 3 (EBI3) protein (a protein related to IL-12p40), that forms a dimer with p28, termed IL-27. Intestinal epithelial cells, which are the initial site of contact between the host and enteric pathogens, can act as antigen-presenting cells, and are known to express mediators important in inflammatory and immune responses. In the current studies, we hypothesized that intestinal epithelial cells express members of the IL-12 family, which can function as an early signalling system important in mucosal immunity. Using in vitro and in vivo model systems of human intestinal epithelium, we demonstrate the regulated expression of EBI3, IL-12p35 and p19 by human intestinal epithelial cells. However, intestinal epithelial cells do not coexpress IL-12p40 or p28 that are required to generate heterodimeric IL-12p75, IL-23 and IL-27. To the extent that IL-12p35, p19 and EBI3 cannot form IL-12p75, IL-23 or IL-27 heterodimers in intestinal epithelial cells, these data suggest that those cells may express other, currently unknown, molecules that can associate with EBI3, IL-12p35 and/or p19 or, alternatively, intestinal epithelial cells may release IL-12-related molecules that by themselves, or in combination with other molecules in the mucosal microenvironment, mediate biological activities. PMID:15196212

Maaser, Christian; Egan, Laurence J; Birkenbach, Mark P; Eckmann, Lars; Kagnoff, Martin F

2004-01-01

264

Biofilm vs. planktonic bacterial mode of growth: which do human macrophages prefer?  

PubMed

Although the natural mode of bacterial growth in nature is as biofilm, almost all antimicrobial and immunological tests are routinely developed using planktonic inoculums. Bacterial biofilms protect the microbial community from external damage and promote the persistence of chronic infections. In this study, interactions between human macrophages and bacterial inoculums of planktonic and biofilm modes of growth have been explored using Escherichia coli (E. coli) K12. Human macrophages phagocytize planktonic E. coli more efficiently than bacteria grown in a biofilm. Moreover, they prefer to phagocytize planktonic bacteria. In this context, CD64 expression is involved. Our data indicate that bacteria with "a biofilm background" avoid phagocytosis by naïve macrophages, which could create a favorable environment for chronic infection. Our findings were corroborated in a clinical O25b-ST131 ESBL-producer E. coli isolate, which caused urinary tract infections. PMID:24239884

Hernández-Jiménez, Enrique; Del Campo, Rosa; Toledano, Victor; Vallejo-Cremades, Maria Teresa; Muñoz, Aurora; Largo, Carlota; Arnalich, Francisco; García-Rio, Francisco; Cubillos-Zapata, Carolina; López-Collazo, Eduardo

2013-11-29

265

Degradation Products of Bran Phytate Formed during Digestion in the Human Small Intestine: Effect of Extrusion Cooking on Digestibility1  

Microsoft Academic Search

To investigate the digestion of phytate in the stomach and small intestine in humans, studies were performed in subjects with established ileostomy. A re cently developed high performance liquid chromatography method made it possible to analyze phytate and its deg radation products in food and digesta. The digestibility of phytate in raw bran and extruded bran was investigated in seven

ANN-SOFIE SANDBERG; NILS-GUNNAR CARLSSON

266

GIARDIA LAMBLIA: STIMULATION OF GROWTH BY HUMAN INTESTINAL MUCUS AND EPITHELIAL CELLS IN SERUMFREE MEDIUM (JOURNAL VERSION)  

EPA Science Inventory

Giardia lamblia trophozoites specifically colonize the upper human small intestine which is normally serum-free, but grow in vitro only in medium supplemented with serum or serum fractions. Recently, biliary lipids were shown to support the growth of G. lamblia without serum. Now...

267

Complete Genomic Sequence of the Equol-Producing Bacterium Eggerthella sp. Strain YY7918, Isolated from Adult Human Intestine  

PubMed Central

Eggerthella sp. strain YY7918 was isolated from the intestinal flora of a healthy human. It metabolizes daidzein (a soybean isoflavonoid) and produces S-equol, which has stronger estrogenic activities than daidzein. Here, we report the finished and annotated genomic sequence of this organism. PMID:21914883

Yokoyama, Shin-ichiro; Oshima, Kenshiro; Nomura, Izumi; Hattori, Masahira; Suzuki, Tohru

2011-01-01

268

Effects of dietary antibiotic growth promoter and Saccharomyces cerevisiae fermentation product on production, intestinal bacterial community, and nonspecific immunity of hybrid tilapia (Oreochromis niloticus female x Oreochromis aureus male).  

PubMed

To investigate the effects of a dietary antibiotic growth promoter (florfenicol) and a Saccharomyces cerevisiae fermentation product (DVAQUA) on growth, G:F, daily feed intake, intestinal bacterial community, and nonspecific immunity of hybrid tilapia (Oreochromis niloticus ? × Oreochromis aureus ?), a 16-wk feeding trial was conducted in a recirculating aquaculture system. Four feeding regimens were evaluated: control, dietary florenicol (0.02 g/kg; 16 wk), dietary DVAQUA (0.5 g/kg; 16 wk), and sequential use of florenicol (0.02 g/kg; 8 wk), and DVAQUA (0.5 g/kg; 8 wk). Each regimen had 4 replicate tanks (0.5 × 0.5 × 0.5 m) and each tank contained 12 fish (initial BW: 46.88 ± 0.38 g). Dietary florfenicol improved growth (P = 0.089), G:F (P = 0.036), and serum complement component concentrations (P < 0.001) of hybrid tilapia. However, the compound decreased the estimated intestinal bacterial count estimated by rpoB quantitative PCR (P < 0.001) and bacterial diversity (visual band numbers, Shannon diversity index, and Shannon equitability index based on 16S rDNA V3 denaturing gradient gel electrophoresis fingerprints) compared with the control. Although sequential use of florfenicol and DVAQUA improved growth and G:F numerically to a similar extent as dietary florfenicol, and increased intestinal bacterial count to normal quantities, the sequential use of florenicol and DVAQUA decreased intestinal bacterial diversity (visual band numbers, Shannon diversity index, and Shannon equitability index) as well as serum complement component concentrations (P < 0.001) compared with their respective use and the control. These findings might be negatively related to disease control and host defense, and the sequential use of florenicol and DVAQUA should be practiced with caution. Feeding DAVQUA to the fish improved nonspecific immunity and increased intestinal bacterial count and bacterial diversity, but further research, including challenge studies, should be conducted before recommendation of DVAQUA supplementation to hybrid tilapia diets. PMID:20852079

He, S; Zhou, Z; Meng, K; Zhao, H; Yao, B; Ringø, E; Yoon, I

2011-01-01

269

Detection and Localization of Viruses in Human Fetal Intestinal Organ Cultures by Immunofluorescence  

PubMed Central

Viral antigens from viruses belonging to four different viral groups were detected directly in human fetal intestinal organ cultures by the application of immunofluorescent techniques. The time of appearance and the cellular localization of fluorescent-stainable antigen varied with the type of virus under investigation. After infection with adenovirus or with adeno-associated virus, fluorescent-stainable antigen was seen in the epithelial cells of the explants, though no light microscopic changes could be observed. In infection with herpes simplex virus and echovirus, fluorescence was noted in both the epithelium and the lamina propria, along with histological changes throughout the organ culture. These techniques offer promise for the investigation of possible viral agents implicated in gastrointestinal disease. Images PMID:4344634

Dolin, Raphael; Blacklow, Neil R.; Wyatt, Richard G.; Sereno, Mitzi M.

1972-01-01

270

Localization of ABCG5 and ABCG8 proteins in human liver, gall bladder and intestine  

PubMed Central

Background The molecular mechanisms that regulate the entry of dietary sterols into the body and their removal via hepatobiliary secretion are now beginning to be defined. These processes are specifically disrupted in the rare autosomal recessive disease, Sitosterolemia (MIM 210250). Mutations in either, but not both, of two genes ABCG5 or ABCG8, comprising the STSL locus, are now known to cause this disease and their protein products are proposed to function as heterodimers. Under normal circumstances cholesterol, but not non-cholesterol sterols, is preferentially absorbed from the diet. Additionally, any small amounts of non-cholesterol sterols that are absorbed are rapidly taken up by the liver and preferentially excreted into bile. Based upon the defects in sitosterolemia, ABCG5 and ABCG8 serve specifically to exclude non-cholesterol sterol entry at the intestinal level and are involved in sterol excretion at the hepatobiliary level. Methods Here we report the biochemical and immuno-localization of ABCG5 and ABCG8 in human liver, gallbladder and intestine using cell fractionation and immunohistochemical analyses. Results We raised peptide antibodies against ABCG5 and ABCG8 proteins. Using human liver samples, cell fractionation studies showed both proteins are found in membrane fractions, but they did not co-localize with caveolin-rafts, ER, Golgi or mitochondrial markers. Although their distribution in the sub-fractions was similar, they were not completely contiguous. Immunohistochemical analyses showed that while both proteins were readily detectable in the liver, ABCG5 was found predominately lining canalicular membranes, whereas ABCG8 was found in association with bile duct epithelia. At the cellular level, ABCG5 appeared to be apically expressed, whereas ABCG8 had a more diffuse expression pattern. Both ABCG5 and ABCG8 appeared to localize apically as shown by co-localization with MRP2. The distribution patterns of ABCG5 and ABCG8 in the gallbladder were very similar to each other. In the small intestine both ABCG5 and ABCG8 appear to line the brush border. However, at the level of the enterocyte, the cellular distribution patterns of ABCG5 and ABCG8 differed, such that ABCG5 was more diffuse, but ABCG8 was principally apical. Using standard deglycosylation methods, ABCG5 and ABCG8 do not appear to be glycosylated, suggesting a difference between human and mouse proteins. Conclusion We report the distribution patterns of ABCG5 and ABCG8 in human tissues. Cell fractionation studies showed that both proteins co-fractionated in general, but could also be found independent of each other. As predicted, they are expressed apically in both intestine and liver, although their intracellular expression patterns are not completely congruent. These studies support the concept of heterodimerization of ABCG5 and ABCG8, but also support the notion that these proteins may have an independent function. PMID:15383151

Klett, Eric L; Lee, Mi-Hye; Adams, David B; Chavin, Kenneth D; Patel, Shailendra B

2004-01-01

271

Cholinergic interactions between donepezil and prucalopride in human colon: potential to treat severe intestinal dysmotility  

PubMed Central

BACKGROUND AND PURPOSE Cholinesterase inhibitors such as neostigmine are used for acute colonic pseudo-obstruction, but cardio-bronchial side-effects limit use. To minimize side-effects, lower doses could be combined with a 5-HT4 receptor agonist, which also facilitates intestinal cholinergic activity. However, safety concerns, especially in the elderly, require drugs with good selectivity of action. These include the AChE inhibitor donepezil (used for Alzheimer's disease, with reduced cardio-bronchial liability) and prucalopride, the first selective, clinically available 5-HT4 receptor agonist. This study examined their individual and potential synergistic activities in human colon. EXPERIMENTAL APPROACH Neuronally mediated muscle contractions and relaxations of human colon were evoked by electrical field stimulation (EFS) and defined phenotypically as cholinergic, nitrergic or tachykinergic using pharmacological tools; the effects of drugs were determined as changes in ‘area under the curve’. KEY RESULTS Prucalopride increased cholinergically mediated contractions (EC50 855 nM; 33% maximum increase), consistent with its ability to stimulate intestinal motility; donepezil (477%) and neostigmine (2326%) had greater efficacy. Concentrations of donepezil (30–100 nM) found in venous plasma after therapeutic doses had minimal ability to enhance cholinergic activity. However, donepezil (30 nM) together with prucalopride (3, 10 ?M) markedly increased EFS-evoked contractions compared with prucalopride alone (P = 0.04). For example, the increases observed with donepezil and prucalopride 10 ?M together or alone were, respectively, 105 ± 35%, 4 ± 6% and 35 ± 21% (n = 3–7, each concentration). CONCLUSIONS AND IMPLICATIONS Potential synergy between prucalopride and donepezil activity calls for exploration of this combination as a safer, more effective treatment of colonic pseudo-obstruction. PMID:24032987

Broad, J; Kung, V W S; Boundouki, G; Aziz, Q; De Maeyer, J H; Knowles, C H; Sanger, G J

2013-01-01

272

Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine.  

PubMed

Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²? by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals. PMID:25147231

Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

2014-10-01

273

Toxicity, genotoxicity and proinflammatory effects of amorphous nanosilica in the human intestinal Caco-2 cell line.  

PubMed

Silica (SiO2) in its nanosized form is now used in food applications although the potential risks for human health need to be evaluated in further detail. In the current study, the uptake of 15 and 55nm colloidal SiO2 NPs in the human intestinal Caco-2 cell line was investigated by transmission electron microscopy. The ability of these NPs to induce cytotoxicity (XTT viability test), genotoxicity (?H2Ax and micronucleus assay), apoptosis (caspase 3), oxidative stress (oxidation of 2,7-dichlorodihydrofluorescein diacetate probe) and proinflammatory effects (interleukin IL-8 secretion) was evaluated. Quartz DQ12 was used as particle control. XTT and cytokinesis-block micronucleus assays revealed size- and concentration-dependent effects on cell death and chromosome damage following exposure to SiO2 nanoparticles, concomitantly with generation of reactive oxygen species (ROS), SiO2-15nm particles being the most potent. In the same way, an increased IL-8 secretion was only observed with SiO2-15nm at the highest tested dose (32?g/ml). TEM images showed that both NPs were localized within the cytoplasm but did not enter the nucleus. SiO2-15nm, and to a lower extent SiO2-55nm, exerted toxic effects in Caco-2 cells. The observed genotoxic effects of these NPs are likely to be mediated through oxidative stress rather than a direct interaction with the DNA. Altogether, our results indicate that exposure to SiO2 NPs may induce potential adverse effects on the intestinal epithelium in vivo. PMID:25448807

Tarantini, Adeline; Lanceleur, Rachelle; Mourot, Annick; Lavault, Marie-Thérèse; Casterou, Gérald; Jarry, Gérard; Hogeveen, Kevin; Fessard, Valérie

2015-03-01

274

Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells  

PubMed Central

Small intestinal epithelial cells (sIECs) have a significant share in whole body metabolism as they perform enzymatic digestion and absorption of nutrients. Furthermore, the diet plays a key role in a number of complex diseases including obesity and diabetes. The impact of diet and altered genetic backgrounds on human metabolism may be studied by using computational modeling. A metabolic reconstruction of human sIECs was manually assembled using the literature. The resulting sIEC model was subjected to two different diets to obtain condition-specific metabolic models. Fifty defined metabolic tasks evaluated the functionalities of these models, along with the respective secretion profiles, which distinguished between impacts of different dietary regimes. Under the average American diet, the sIEC model resulted in higher secretion flux for metabolites implicated in metabolic syndrome. In addition, enzymopathies were analyzed in the context of the sIEC metabolism. Computed results were compared with reported gastrointestinal (GI) pathologies and biochemical defects as well as with biomarker patterns used in their diagnosis. Based on our simulations, we propose that (i) sIEC metabolism is perturbed by numerous enzymopathies, which can be used to study cellular adaptive mechanisms specific for such disorders, and in the identification of novel co-morbidities, (ii) porphyrias are associated with both heme synthesis and degradation and (iii) disturbed intestinal gamma-aminobutyric acid synthesis may be linked to neurological manifestations of various enzymopathies. Taken together, the sIEC model represents a comprehensive, biochemically accurate platform for studying the function of sIEC and their role in whole body metabolism. PMID:23492669

Sahoo, Swagatika; Thiele, Ines

2013-01-01

275

Bacterial vaginosis is associated with uterine cervical human papillomavirus infection: a meta-analysis  

Microsoft Academic Search

BACKGROUND: Bacterial vaginosis (BV), an alteration of vaginal flora involving a decrease in Lactobacilli and predominance of anaerobic bacteria, is among the most common cause of vaginal complaints for women of childbearing age. It is well known that BV has an influence in acquisition of certain genital infections. However, association between BV and cervical human papillomavirus (HPV) infection has been

Evy Gillet; Joris FA Meys; Hans Verstraelen; Carolyne Bosire; Philippe De Sutter; Marleen Temmerman; Davy Vanden Broeck

2011-01-01

276

Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan  

PubMed Central

Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

2014-01-01

277

Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan.  

PubMed

Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

2014-01-01

278

Vasoactive Intestinal Peptide Induction by Ciliary Neurotrophic Factor in Donor Human Corneal Endothelium in situ  

PubMed Central

After peripheral nerve axotomy, vasoactive intestinal peptide (VIP) gene expression is upregulated in neurons, whereas ciliary neurotrophic factor (CNTF) accumulates extracellularly at the lesion site. Although CNTF-induced VIP gene expression has been reported in cultured sympathetic neurons and neuroblastoma cells, it still remains to be determined if CNTF and VIP play interrelated roles in nerve injury. The corneal endothelium, like sympathetic neurons, derives from the neural crest. Previously, we demonstrated that a sublethal-level of oxidative stress induces CNTF release from corneal endothelial (CE) cells in situ. Here, we show that human CE cells express the 53kDa ligand-binding ? subunit of the CNTF receptor (CNTFR?). We further demonstrate that CNTF induces VIP immunoreactivity in human donor corneas. To determine if the increase in VIP immunoreactivity was reflected by an increase in gene expression, donor human corneas were bisected and treated with CNTF or vehicle, and analyzed by real-time RT-qPCR. Two experiments using different sets of bisected corneas indicated that CNTF induced increases in VIP mRNA levels of 6.5-fold ±2.2 (N=7 corneas) and 2.3-fold ±0.6 (N=10 corneas), (mean±SEM), respectively. Whereas VIP is produced as a CE autocrine factor against oxidative stress, the present study suggested that oxidative stress-released CNTF plays a role in protecting CE cells against oxidative stress injury by upregulating VIP expression. PMID:17692461

Koh, Shay-Whey M.; Guo, Yan; Bernstein, Steve L.; Waschek, James A.; Liu, Xiuhuai; Symes, Aviva J

2007-01-01

279

Differential modulation of human intestinal bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink.  

PubMed

Bifidobacteria are gaining increasing interest as health-promoting bacteria. Nonetheless, the genus comprises several species, which can exert different effects on human host. Previous studies showed that wild blueberry drink consumption could selectively increase intestinal bifidobacteria, suggesting an important role for the polyphenols and fiber present in wild blueberries. This study evaluated the modulation of the most common and abundant bifidobacterial taxonomic groups inhabiting the human gut in the same fecal samples. The analyses carried out showed that B. adolescentis, B. breve, B. catenulatum/pseudocatelulatum, and B. longum subsp. longum were always present in the group of subjects enrolled, whereas B. bifidum and B. longum subsp. infantis were not. Furthermore, it was found that the most predominant bifidobacterial species were B. longum subsp. longum and B. adolescentis. The results obtained revealed a high interindividual variability; however, a significant increase of B. longum subsp. infantis cell concentration was observed in the feces of volunteers after the wild blueberry drink treatment. This bifidobacterial group was shown to possess immunomodulatory abilities and to relieve symptoms and promote the regression of several gastrointestinal disorders. Thus, an increased cell concentration of B. longum subsp. infantis in the human gut could be considered of potential health benefit. In conclusion, wild blueberry consumption resulted in a specific bifidogenic effect that could positively affect certain populations of bifidobacteria with demonstrated health-promoting properties. PMID:23883473

Guglielmetti, Simone; Fracassetti, Daniela; Taverniti, Valentina; Del Bo', Cristian; Vendrame, Stefano; Klimis-Zacas, Dorothy; Arioli, Stefania; Riso, Patrizia; Porrini, Marisa

2013-08-28

280

Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds.  

PubMed

Regeneration of articular cartilage damage is an area of great interest due to the limited ability of cartilage to self-repair. The latest cartilage repair strategies are dependent on access to biomaterials to which chondrocytes can attach and in which they can migrate and proliferate, producing their own extracellular matrix. In the present study, engineered porous bacterial cellulose (BC) scaffolds were prepared by fermentation of Acetobacter xylinum (A. xylinum) in the presence of slightly fused wax particles with a diameter of 150-300 microm, which were then removed by extrusion. This porous material was evaluated as a scaffold for cartilage regeneration. Articular chondrocytes from young adult patients as well as neonatal articular chondrocytes were seeded with various seeding techniques onto the porous BC scaffolds. Scanning electron microscopy (SEM) analysis and confocal microscopy analysis showed that cells entered the pores of the scaffolds and that they increasingly filled out the pores over time. Furthermore, DNA analysis implied that the chondrocytes proliferated within the porous BC. Alcian blue van Gieson staining revealed glycosaminoglycan (GAG) production by chondrocytes in areas where cells were clustered together. With some further development, this novel biomaterial can be a suitable candidate for cartilage regeneration applications. PMID:20694979

Andersson, Jessica; Stenhamre, Hanna; Bäckdahl, Henrik; Gatenholm, Paul

2010-09-15

281

Interferon Gamma-Dependent Intestinal Pathology Contributes to the Lethality in Bacterial Superantigen-Induced Toxic Shock Syndrome  

PubMed Central

Toxic shock syndrome (TSS) caused by the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes is characterized by robust T cell activation, profound elevation in systemic levels of multiple cytokines, including interferon-? (IFN-?), followed by multiple organ dysfunction and often death. As IFN-? possesses pro- as well as anti-inflammatory properties, we delineated its role in the pathogenesis of TSS. Antibody-mediated in vivo neutralization of IFN-? or targeted disruption of IFN-? gene conferred significant protection from lethal TSS in HLA-DR3 transgenic mice. Following systemic high dose SEB challenge, whereas the HLA-DR3.IFN-?+/+ mice became sick and succumbed to TSS, HLA-DR3.IFN-??/? mice appeared healthy and were significantly protected from SEB-induced lethality. SEB-induced systemic cytokine storm was significantly blunted in HLA-DR3.IFN-??/? transgenic mice. Serum concentrations of several cytokines (IL-4, IL-10, IL-12p40 and IL-17) and chemokines (KC, rantes, eotaxin and MCP-1) were significantly lower in HLA-DR3.IFN-??/? transgenic mice. However, SEB-induced T cell expansion in the spleens was unaffected and expansion of SEB-reactive TCR V?8+ CD4+ and CD8+ T cells was even more pronounced in HLA-DR3.IFN-??/? transgenic mice when compared to HLA-DR3.IFN-?+/+ mice. A systematic histopathological examination of several vital organs revealed that both HLA-DR3.IFN-?+/+ and HLA-DR3.IFN-??/? transgenic mice displayed comparable severe inflammatory changes in lungs, and liver during TSS. Remarkably, whereas the small intestines from HLA-DR3.IFN-?+/+ transgenic mice displayed significant pathological changes during TSS, the architecture of small intestines in HLA-DR3.IFN-??/? transgenic mice was preserved. In concordance with these histopathological changes, the gut permeability to macromolecules was dramatically increased in HLA-DR3.IFN-?+/+ but not HLA-DR3.IFN-??/? mice during TSS. Overall, IFN-? seemed to play a lethal role in the immunopathogenesis of TSS by inflicting fatal small bowel pathology. Our study thus identifies the important role for IFN-? in TSS. PMID:21304813

Tilahun, Ashenafi Y.; Holz, Marah; Wu, Tsung-Teh; David, Chella S.; Rajagopalan, Govindarajan

2011-01-01

282

Characterization of the diversity and temporal stability of bacterial communities in human milk.  

PubMed

Recent investigations have demonstrated that human milk contains a variety of bacterial genera; however, as of yet very little work has been done to characterize the full diversity of these milk bacterial communities and their relative stability over time. To more thoroughly investigate the human milk microbiome, we utilized microbial identification techniques based on pyrosequencing of the 16S ribosomal RNA gene. Specifically, we characterized the bacterial communities present in milk samples collected from 16 women at three time-points over four weeks. Results indicated that milk bacterial communities were generally complex; several genera represented greater than 5% of the relative community abundance, and the community was often, yet not always, stable over time within an individual. These results support the conclusion that human milk, which is recommended as the optimal nutrition source for almost all healthy infants, contains a collection of bacteria more diverse than previously reported. This finding begs the question as to what role this community plays in colonization of the infant gastrointestinal tract and maintaining mammary health. PMID:21695057

Hunt, Katherine M; Foster, James A; Forney, Larry J; Schütte, Ursel M E; Beck, Daniel L; Abdo, Zaid; Fox, Lawrence K; Williams, Janet E; McGuire, Michelle K; McGuire, Mark A

2011-01-01

283

Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk  

PubMed Central

Recent investigations have demonstrated that human milk contains a variety of bacterial genera; however, as of yet very little work has been done to characterize the full diversity of these milk bacterial communities and their relative stability over time. To more thoroughly investigate the human milk microbiome, we utilized microbial identification techniques based on pyrosequencing of the 16S ribosomal RNA gene. Specifically, we characterized the bacterial communities present in milk samples collected from 16 women at three time-points over four weeks. Results indicated that milk bacterial communities were generally complex; several genera represented greater than 5% of the relative community abundance, and the community was often, yet not always, stable over time within an individual. These results support the conclusion that human milk, which is recommended as the optimal nutrition source for almost all healthy infants, contains a collection of bacteria more diverse than previously reported. This finding begs the question as to what role this community plays in colonization of the infant gastrointestinal tract and maintaining mammary health. PMID:21695057

Hunt, Katherine M.; Foster, James A.; Forney, Larry J.; Schütte, Ursel M. E.; Beck, Daniel L.; Abdo, Zaid; Fox, Lawrence K.; Williams, Janet E.; McGuire, Michelle K.; McGuire, Mark A.

2011-01-01

284

The equilibria that allow bacterial persistence in human hosts  

E-print Network

organisms has evolved within the changing contexts of variation in effective human population size for both host and transmission. At the macroscopic scale, host evolutionary changes occur1 . We propose be considered as a `holobiont'6 (that is, organisms living together in symbiosis), regardless of whether

Kirschner, Denise

285

Construction and Characterization of a Human Bacterial Artificial Chromosome Library  

Microsoft Academic Search

We have constructed an arrayed human genomic BAC library with approximately 4× coverage that is represented by 96,000 BAC clones with average insert size of nearly 140 kb. A new BAC vector that allows color-based positive screening to identify transformants with inserts has increased BAC cloning efficiency. The library was gridded onto hybridization filters at high density for efficient identification

Ung-Jin Kim; Bruce W. Birren; Tatiana Slepak; Valeria Mancino; Cecilie Boysen; Hyung-Lyun Kang; Melvin I. Simon; Hiroaki Shizuya

1996-01-01

286

Development of a 13C-glycocholic acid blood test to assess bacterial metabolic activity of the small intestine in canines  

PubMed Central

Abstract The objectives of this study were to establish optimal doses of 13C-glycocolic acid (GCA) for use in a GCA blood test as a marker for canine small intestinal bacterial metabolic activity. Four doses of GCA were administered orally to 8 healthy dogs. Blood samples were collected at various time points up to 480 min. The percent dose/min of 13C administered as GCA (PCD) and cumulative PCD (CUMPCD) were determined by fractional mass spectrometry. No dog showed any clinically obvious side effects. Doses of 1 and 2 mg/kg of bodyweight (BW) led to a significant increase in PCD and CUMPCD (P < 0.001). The mean CUMPCD was significantly higher for the 1 mg/kg BW dose compared with the 2 and 4 mg/kg BW doses (P < 0.05). Administration of 1 mg/kg BW of 13C-glycocholic acid led to an increase in CUMPCD over baseline in gas extracted from blood samples and appears to be the best parameter to evaluate for future clinical studies. PMID:16479732

2005-01-01

287

Immunomodulation of human intestinal T cells by the synthetic CD80 antagonist RhuDex®  

PubMed Central

Deregulated activation of mucosal lamina propria T cells plays a central role in the pathogenesis of intestinal inflammation. One of the means to attenuate T cell activation is by blocking the CD28/CD80 co-stimulatory pathway. Here we investigate RhuDex®, a small molecule that binds to human CD80, for its effects on the activation of lamina propria T cells employing a gut-culture model of inflammation. To this end, lamina propria leukocytes (LPL) and peripheral blood lymphocytes (PBL) were stimulated either through the CD3/T-cell-receptor complex or the CD2-receptor (CD2) employing agonistic monoclonal antibodies. Co-stimulatory signals were provided by CD80/CD86 present on lamina propria myeloid cells or LPS-activated peripheral blood monocytes. Results show that RhuDex® caused a profound reduction of LPL and PBL proliferation, while Abatacept (CTLA-4-Ig) inhibited LPL proliferation to a small degree, and had no effect on PBL proliferation. Furthermore, Abatacept significantly inhibited IL-2, TNF-?, and IFN-? release from LPL, primarily produced by CD4+ T cells, where IL-2 blockage was surprisingly strong, suggesting a down-regulating effect on regulatory T cells. In contrast, in the presence of RhuDex®, secretion of IL-17, again mostly by CD4+ T cells, and IFN-? was inhibited in LPL and PBL, yet IL-2 remained unaffected. Thus, RhuDex® efficiently inhibited lamina propria and peripheral blood T-cell activation in this pre-clinical study making it a promising drug candidate for the treatment of intestinal inflammation. PMID:25505551

Heninger, Anne-Kristin; Wentrup, Sabine; Al-Saeedi, Mohammed; Schiessling, Serin; Giese, Thomas; Wartha, Florian; Meuer, Stefan; Schröder-Braunstein, Jutta

2014-01-01

288

Antibodies to bacterial vaccines demonstrating specificity for human choriogonadotropin (hCG) and immunochemical detection of hCG-like factor in subcellular bacterial fractions.  

PubMed Central

Investigations were done to determine whether vaccines prepared with chemically killed Staphylococcus haemolyticus RU1 and Streptococcus bovis AV46 (bacteria that have been demonstrated to express human choriogonadotropin [hCG]-like material on their surface) elicited antibodies in rabbits with specificity for hCG determinants. In addition, the anatomical locus of the hCG-like factor was determined by separation of bacterial subcellular fractions. The results demonstrated that these bacterial vaccines elicited antibodies immunologically similar to those antibodies produced in response to the whole human trophoblastic hormone, a similarity extending even to cross-reactivity with human luteinizing hormone. The bacterial hCG-like material appeared to be localized in the membranes of the cell wall, and most was present in the soluble membranous and cytoplasmic constituents. Its expression in bacteria was a strain characteristic and not a species characteristic. Images PMID:3721581

Domingue, G J; Acevedo, H F; Powell, J E; Stevens, V C

1986-01-01

289

LPS-induced IL8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes  

Microsoft Academic Search

BACKGROUND: The release of LPS by bacteria stimulates both immune and specific epithelial cell types to release inflammatory mediators. It is known that LPS induces the release of IL-8 by intestinal mucosal cells. Because it is now emerging that bacteria may induce alteration of epigenetic patterns in host cells, we have investigated whether LPS-induced IL-8 activation in human intestinal epithelial

Tiziana Angrisano; Raffaela Pero; Silvia Peluso; Simona Keller; Silvana Sacchetti; Carmelo B Bruni; Lorenzo Chiariotti; Francesca Lembo

2010-01-01

290

Bacterial adaptation to the gut environment favors successful colonization  

PubMed Central

Rodent models harboring a simple yet functional human intestinal microbiota provide a valuable tool to study the relationships between mammals and their bacterial inhabitants. In this study, we aimed to develop a simplified gnotobiotic mouse model containing 10 easy-to-grow bacteria, readily available from culture repositories, and of known genome sequence, that overall reflect the dominant commensal bacterial makeup found in adult human feces. We observed that merely inoculating a mix of fresh bacterial cultures into ex-germ free mice did not guarantee a successful intestinal colonization of the entire bacterial set, as mice inoculated simultaneously with all strains only harbored 3 after 21 d. Therefore, several inoculation procedures were tested and levels of individual strains were quantified using molecular tools. Best results were obtained by inoculating single bacterial strains into individual animals followed by an interval of two weeks before allowing the animals to socialize to exchange their commensal microbes. Through this procedure, animals were colonized with almost the complete bacterial set (9/10). Differences in the intestinal composition were also reflected in the urine and plasma metabolic profiles, where changes in lipids, SCFA, and amino acids were observed. We conclude that adaptation of bacterial strains to the host’s gut environment (mono-colonization) may predict a successful establishment of a more complex microbiota in rodents. PMID:22157236

Rezzonico, Enea; Mestdagh, Renaud; Delley, Michèle; Combremont, Séverine; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy; Bibiloni, Rodrigo

2011-01-01

291

Molecular paleoparasitological hybridization approach as effective tool for diagnosing human intestinal parasites from scarce archaeological remains.  

PubMed

Paleoparasitology is the science that uses parasitological techniques for diagnosing parasitic diseases in the past. Advances in molecular biology brought new insights into this field allowing the study of archaeological material. However, due to technical limitations a proper diagnosis and confirmation of the presence of parasites is not always possible, especially in scarce and degraded archaeological remains. In this study, we developed a Molecular Paleoparasitological Hybridization (MPH) approach using ancient DNA (aDNA) hybridization to confirm and complement paleoparasitological diagnosis. Eight molecular targets from four helminth parasites were included: Ascaris sp., Trichuris trichiura, Enterobius vermicularis, and Strongyloides stercoralis. The MPH analysis using 18th century human remains from Praça XV cemetery (CPXV), Rio de Janeiro, Brazil, revealed for the first time the presence E. vermicularis aDNA (50%) in archaeological sites of Brazil. Besides, the results confirmed T. trichiura and Ascaris sp. infections. The prevalence of infection by Ascaris sp. and E. vermicularis increased considerably when MPH was applied. However, a lower aDNA detection of T. trichiura (40%) was observed when compared to the diagnosis by paleoparasitological analysis (70%). Therefore, based on these data, we suggest a combination of Paleoparasitological and MPH approaches to verify the real panorama of intestinal parasite infection in human archeological samples. PMID:25162694

Jaeger, Lauren Hubert; Iñiguez, Alena Mayo

2014-01-01

292

In vitro glucuronidation of five rhubarb anthraquinones by intestinal and liver microsomes from humans and rats.  

PubMed

Anthraquinones naturally distribute in many plants including rhubarb and have widespread applications throughout industry and medicine. Recent studies provided new insights in potential applications of these traditional laxative constituents. Glucuronidation was the main metabolic pathway of rhubarb anthraquinones in vivo. This study examined the activity and regioselectivity of glucuronidation of rhubarb anthraquinones (aloe-emodin, emodin, chrysophanol, physcion, rhein) in liver and intestinal microsomes from rats and humans, by comparing with the core structure danthron. All anthraquinones formed mono-glucuronides and, except for rhein, the conjugation sites of the main metabolites were unambiguously identified. Two minor glucuronides of emodin were first reported together with the dominant emodin-3-O-?-d-glucuronide. The substitution on the anthraquinone ring was crucial to the activity and regioselectivity of glucuronidation. In general, the activity was decreased greatly with a ?-COOH (rhein), while enhanced dramatically with a ?-OH (emodin). Glucuronidation showed an absolute preference towards ?-OH, followed by ?-OH and ?-alcoholic OH. The glucuronidation activity and regioselectivity also varied slightly with organs and species. All glucuronides of aloe-emodin, emodin, chrysophanol and physcion were formed by multiple human UGT isoforms with 1A9 being the most prominent in most cases. The UGT2B subfamily (2B7 and 2B15) only showed high activity towards a ?-OH. In conclusion, the substitution at the anthraquinone ring was crucial to the rate and preference of glucuronidation. The high glucuronidation activity of UGT1A9 towards anthraquinones highlighted potential drug interactions. PMID:24854283

Wu, Wenjin; Hu, Nan; Zhang, Qingwen; Li, Yaping; Li, Peng; Yan, Ru; Wang, Yitao

2014-08-01

293

Effect of broad-spectrum parenteral antibiotics on "colonization resistance" of intestinal microflora of humans.  

PubMed Central

Studies with animals have shown that the normal intestinal microflora protects against colonization by new strains ("colonization resistance") and that this protective effect may be related to the anaerobic component of the microflora. However, colonization resistance has not been shown in humans. We administered cefoxitin, piperacillin, cefoperazone, and aztreonam intravenously to healthy subjects for 9 days and monitored the acquisition of new isolates in the fecal flora. Seven of sixteen antibiotic-treated subjects but none of four untreated controls became colonized by gram-negative bacilli. However, there was no correlation between colonization and the particular drug given or the extent of suppression of anaerobes or of any other component of the fecal microflora. Cefoxitin and piperacillin were associated with the greatest increases in the numbers of drug-resistant bacteria and in fecal beta-lactamase content. The results of this study support the concept that colonization resistance occurs in humans and is diminished by antibiotic administration but fail to support the hypothesis that resistance is related to the anaerobic microflora. PMID:3496848

Barza, M; Giuliano, M; Jacobus, N V; Gorbach, S L

1987-01-01

294

Molecular Paleoparasitological Hybridization Approach as Effective Tool for Diagnosing Human Intestinal Parasites from Scarce Archaeological Remains  

PubMed Central

Paleoparasitology is the science that uses parasitological techniques for diagnosing parasitic diseases in the past. Advances in molecular biology brought new insights into this field allowing the study of archaeological material. However, due to technical limitations a proper diagnosis and confirmation of the presence of parasites is not always possible, especially in scarce and degraded archaeological remains. In this study, we developed a Molecular Paleoparasitological Hybridization (MPH) approach using ancient DNA (aDNA) hybridization to confirm and complement paleoparasitological diagnosis. Eight molecular targets from four helminth parasites were included: Ascaris sp., Trichuris trichiura, Enterobius vermicularis, and Strongyloides stercoralis. The MPH analysis using 18th century human remains from Praça XV cemetery (CPXV), Rio de Janeiro, Brazil, revealed for the first time the presence E. vermicularis aDNA (50%) in archaeological sites of Brazil. Besides, the results confirmed T. trichiura and Ascaris sp. infections. The prevalence of infection by Ascaris sp. and E. vermicularis increased considerably when MPH was applied. However, a lower aDNA detection of T. trichiura (40%) was observed when compared to the diagnosis by paleoparasitological analysis (70%). Therefore, based on these data, we suggest a combination of Paleoparasitological and MPH approaches to verify the real panorama of intestinal parasite infection in human archeological samples. PMID:25162694

Jaeger, Lauren Hubert; Iñiguez, Alena Mayo

2014-01-01

295

Vasoactive intestinal polypeptide stimulates cell proliferation and adenylate cyclase activity of cultured human keratinocytes.  

PubMed Central

An increasing body of evidence has suggested trophic effects of peripheral nerves. In this study, the growth stimulatory properties of the sensory neuropeptides vasoactive intestinal polypeptide (VIP), substance P (SP), calcitonin generelated peptide (CGRP), and somatostatin (SOM) on cultured human keratinocytes were investigated. It was shown that VIP, in the presence of lethally treated 3T3 fibroblast feeder cells and epidermal growth factor (EGF), stimulated proliferation of keratinocytes in a dose-dependent manner, whereas SP, CGRP, and SOM were ineffective. VIP stimulated adenylate cyclase activity in membranes obtained from cultured keratinocytes in a dose-dependent manner, indicating an involvement of cAMP as second messenger in this reaction. Furthermore, 125I-labeled VIP was shown to bind to cultured keratinocytes and this binding could be displaced by addition of unlabeled VIP, suggesting the presence of specific receptors. It is therefore possible that VIP, released from sensory nerve endings in the skin, may act as a local mitogenic factor for human keratinocytes by stimulating adenylate cyclase activity via specific VIP receptors. Images PMID:2474824

Haegerstrand, A; Jonzon, B; Dalsgaard, C J; Nilsson, J

1989-01-01

296

Challenges of Culturing Human Norovirus in Three-Dimensional Organoid Intestinal Cell Culture Models  

PubMed Central

Human noroviruses are the most common cause of acute gastroenteritis worldwide. Recently, cell culture systems have been described using either human embryonic intestinal epithelial cells (Int-407) or human epithelial colorectal adenocarcinoma cells (Caco-2) growing on collagen-I porous micro carrier beads in a rotating bioreactor under conditions of physiological fluid shear. Here, we describe the efforts from two independent laboratories to implement this three dimensional (3D) cell culture system for the replication of norovirus. Int-407 and Caco-2 were grown in a rotating bioreactor for up to 28 days. Prior to infection, cells were screened for the presence of microvilli by electron microscopy and stained for junction proteins (zonula occludens-1, claudin-1, and ?-catenin). Differentiated 3D cells were transferred to 24-well plates and infected with bacteria-free filtrates of various norovirus genotypes (GI.1, GI.3, GI.8, GII.2, GII.4, GII.7, and GII.8). At 12 h, 24 h, and 48 h post inoculation, viral RNA from both cells and supernatants were collected and analyzed for norovirus RNA by real-time reverse transcription PCR. Despite observations of high expression of junction proteins and microvilli development in stained thin sections, our data suggest no significant increase in viral titer based on norovirus RNA copy number during the first 48 h after inoculation for the different samples and virus culture conditions tested. Our combined efforts demonstrate that 3D cell culture models using Int-407 or Caco-2 cells do not support norovirus replication and highlight the complexity and difficulty of developing a reproducible in vitro cell culture system for human norovirus. PMID:23755105

Papafragkou, Efstathia; Hewitt, Joanne; Park, Geun Woo; Greening, Gail; Vinjé, Jan

2013-01-01

297

Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens  

PubMed Central

Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella Quintana, and Acinetobacter baumannii. PMID:25688336

Coulaud, Pierre-Julien; Lepolard, Catherine; Bechah, Yassina; Berenger, Jean-Michel; Raoult, Didier; Ghigo, Eric

2015-01-01

298

Preparation and properties of brush-border membrane vesicles from human small intestine.  

PubMed

This study describes a simple and rapid method for the preparation of brush-border membrane vesicles from intestinal biopsies. The specific activities of sucrase, amino peptidase N, and alkaline phosphatase in these vesicles were the same as those in vesicles prepared from intestinal segments. The vesicles from all the regions of the small intestine can transport D-glucose in an Na+-dependent manner. The rates of transport of D-glucose presented here are far higher than previously reported. The method should have a wide applicability to studies of transport mechanisms and the distribution of transport processes within the intestine. PMID:2298371

Shirazi-Beechey, S P; Davies, A G; Tebbutt, K; Dyer, J; Ellis, A; Taylor, C J; Fairclough, P; Beechey, R B

1990-03-01

299

Selective antimicrobial modulation of the intestinal tract by norfloxacin in human volunteers and in gnotobiotic mice associated with a human fecal flora.  

PubMed Central

Intestinal endogenous members of the family Enterobacteriaceae were eliminated in 12 human volunteers treated with 400 or 800 mg of oral norfloxacin per day for 5 days. No clones resistant to quinolone derivatives were isolated. Counts of aerotolerant streptococci were affected to various degrees, depending on their susceptibility to norfloxacin. During treatment, counts of anaerobes remained above 9.8 log10 CFU/g of feces. A total of 932 anaerobic isolates from the predominant flora (over 10(9) CFU/g) in fecal samples obtained before or during norfloxacin treatment were classified by a simple morphological and physiological scheme. The composition of this flora was fairly stable from one sample to another before treatment and was not substantially modified by norfloxacin. Intestinal resistance to colonization by exogenous microorganisms was studied in gnotobiotic mice associated with a human fecal flora. The composition of the fecal flora of the human donor and the fecal concentrations of norfloxacin in the volunteers were reproduced in the intestine of the mice. Resistance to colonization by exogenous microorganisms was reduced by norfloxacin for only 2 of 14 (14%) of the strains tested. These results suggest that norfloxacin is a good candidate for selective antimicrobial modulation of the intestinal tract in humans. PMID:3729360

Pecquet, S; Andremont, A; Tancrède, C

1986-01-01

300

Dietary glycosaminoglycans interfere in bacterial adhesion and gliadin-induced pro-inflammatory response in intestinal epithelial (Caco-2) cells.  

PubMed

Dietary components may have an important role in maintaining a balanced gut microbiota composition. Celiac disease is an autoimmune enteropathy caused by gliadins, and has been associated with a reduced proportion of Bifidobacterium in gut microbiota. This study evaluates the influence of glycosaminoglycans (GAGs) on bacterial adhesion and their contribution in the gliadins-induced inflammatory response. The adhesion of potential probiotic (Bifidobacterium longum CECT 7347 and Bifidobacterium bifidum CECT 7365), commensal (Escherichia coli and Bacteroides fragilis) and pathogenic (Salmonella enterica CECT 443 and Listeria monocytogenes CECT 935) bacteria to mucin and Caco-2 cell cultures was determined. Gliadins were subjected to in vitro digestion (pepsin/pancreatin-bile), with/out GAGs, and the presence or not of cell suspensions of B. longum (10(8) CFU/ml). B. longum, E. coli, and L. monocytogenes, markedly interact with the high-sulphur-containing fraction of GAGs. The GAGs reduced the gliadins-mediated production of interleukin-1?, but not tumour necrosis factor-?. The results suggest that GAGs may ameliorate gliadin-induced inflammatory response, though they also slightly interfere with the action of B. longum. PMID:20637226

Laparra, J M; López-Rubio, A; Lagaron, J M; Sanz, Y

2010-11-01

301

Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut  

PubMed Central

Bacterial viruses (phages) are the most abundant biological group on Earth and are more genetically diverse than their bacterial prey/hosts. To characterize their role as agents shaping gut microbial community structure, adult germ-free mice were colonized with a consortium of 15 sequenced human bacterial symbionts, 13 of which harbored one or more predicted prophages. One member, Bacteroides cellulosilyticus WH2, was represented by a library of isogenic transposon mutants that covered 90% of its genes. Once assembled, the community was subjected to a staged phage attack with a pool of live or heat-killed virus-like particles (VLPs) purified from the fecal microbiota of five healthy humans. Shotgun sequencing of DNA from the input pooled VLP preparation plus shotgun sequencing of gut microbiota samples and purified fecal VLPs from the gnotobiotic mice revealed a reproducible nonsimultaneous pattern of attack extending over a 25-d period that involved five phages, none described previously. This system allowed us to (i) correlate increases in specific phages present in the pooled VLPs with reductions in the representation of particular bacterial taxa, (ii) provide evidence that phage resistance occurred because of ecological or epigenetic factors, (iii) track the origin of each of the five phages among the five human donors plus the extent of their genome variation between and within recipient mice, and (iv) establish the dramatic in vivo fitness advantage that a locus within a B. cellulosilyticus prophage confers upon its host. Together, these results provide a defined community-wide view of phage–bacterial host dynamics in the gut. PMID:24259713

Reyes, Alejandro; Wu, Meng; McNulty, Nathan P.; Rohwer, Forest L.; Gordon, Jeffrey I.

2013-01-01

302

Molecular Mechanisms of Superoxide Production by Complex III: A Bacterial versus Human Mitochondrial Comparative Case Study  

PubMed Central

In this minireview, we briefly survey the molecular processes that lead to reactive oxygen species (ROS) production by the respiratory complex III (CIII or cytochrome bc1). In particular, we discuss the “forward” and “reverse” electron transfer pathways that lead to superoxide generation at the quinol oxidation (Qo) site of CIII, and the components that affect these reactions. We then describe and compare the properties of a bacterial (Rhodobacter capsulatus) mutant enzyme producing ROS with its mitochondrial (human cybrids) counterpart associated with a disease. The mutation under study is located at a highly conserved tyrosine residue of cytochrome b (Y302 in R. capsulatus and Y278 in human mitochondria) that is at the heart of the quinol oxidation (Qo) site of CIII. Similarities of the major findings of bacterial and human mitochondrial cases, including decreased catalytic activity of CIII, enhanced ROS production and ensuing cellular responses and damages, are remarkable. This case illustrates the usefulness of undertaking parallel and complementary studies using biologically different yet evolutionarily related systems, such as ?-proteobacteria and human mitochondria. It progresses our understanding of CIII mechanism of function and ROS production, and underlines the possible importance of supra molecular organization of bacterial and mitochondrial respiratory chains (i. e., respirasomes) and their potential disease-associated protective roles. PMID:23542447

Lanciano, Pascal; Khalfaoui-Hassani, Bahia; Selamoglu, Nur; Ghelli, Anna; Rugolo, Michela; Daldal, Fevzi

2013-01-01

303

Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans  

PubMed Central

Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900

Caza, Mélissa; Kronstad, James W.

2013-01-01

304

Host Response to Respiratory Bacterial Pathogens as Identified by Integrated Analysis of Human Gene Expression Data  

PubMed Central

Respiratory bacterial pathogens are one of the leading causes of infectious death in the world and a major health concern complicated by the rise of multi-antibiotic resistant strains. Therapeutics that modulate host genes essential for pathogen infectivity could potentially avoid multi-drug resistance and provide a wider scope of treatment options. Here, we perform an integrative analysis of published human gene expression data generated under challenges from the gram-negative and Gram-positive bacteria pathogens, Pseudomonas aeruginosa and Streptococcus pneumoniae, respectively. We applied a previously described differential gene and pathway enrichment analysis pipeline to publicly available host mRNA GEO datasets resulting from exposure to bacterial infection. We found 72 canonical human pathways common between four GEO datasets, representing P. aeruginosa and S. pneumoniae. Although the majority of these pathways are known to be involved with immune response, we found several interesting new interactions such as the SUMO1 pathway that might have a role in bacterial infections. Furthermore, 36 host-bacterial pathways were also shared with our previous results for respiratory virus host gene expression. Based on our pathway analysis we propose several drug-repurposing opportunities supported by the literature. PMID:24086587

Smith, Steven B.; Magid-Slav, Michal; Brown, James R.

2013-01-01

305

Identification of Bacterial DNA Markers for the Detection of Human Fecal Pollution in Water? †  

PubMed Central

We used genome fragment enrichment and bioinformatics to identify several microbial DNA sequences with high potential for use as markers in PCR assays for detection of human fecal contamination in water. Following competitive solution-phase hybridization of total DNA from human and pig fecal samples, 351 plasmid clones were sequenced and were determined to define 289 different genomic DNA regions. These putative human-specific fecal bacterial DNA sequences were then analyzed by dot blot hybridization, which confirmed that 98% were present in the source human fecal microbial community and absent from the original pig fecal DNA extract. Comparative sequence analyses of these sequences suggested that a large number (43.5%) were predicted to encode bacterial secreted or surface-associated proteins. Deoxyoligonucleotide primers capable of annealing to a subset of 26 of the candidate sequences predicted to encode factors involved in interactions with host cells were then used in the PCR and did not amplify markers in DNA from any additional pig fecal specimens. These 26 PCR assays exhibited a range of specificity in tests with 11 other animal sources, with more than half amplifying markers only in specimens from dogs or cats. Four assays were more specific, detecting markers only in specimens from humans, including those from 18 different human populations examined. We then demonstrated the potential utility of these assays by using them to detect human fecal contamination in several impacted watersheds. PMID:17209067

Shanks, Orin C.; Domingo, Jorge W. Santo; Lu, Jingrang; Kelty, Catherine A.; Graham, James E.

2007-01-01

306

Production of corticotropin-releasing factor and urocortin from human monocyte-derived dendritic cells is stimulated by commensal bacteria in intestine  

PubMed Central

AIM: To examine whether commensal bacteria are a contributing cause of stress-related mucosal inflammation. METHODS: Human peripheral blood monocyte-derived dendritic cells (MoDCs) were stimulated by commensal bacterial strains, including Escherichia coli, Clostridium clostridioforme, Bacteroides vulgatus (B. vulgatus), Fusobacterium varium (F. varium), and Lactobacillus delbrueckii subsp. bulgaricus. After incubation, corticotropin-releasing factor (CRF) and urocortin 1 (UCN1) mRNA in the cells was examined by real-time reverse transcription polymerase chain reaction. Supernatants from the cells were tested for CRF and UCN1 using an enzyme-linked immunosorbent assay. RESULTS: Both CRF and UCN1 were significantly augmented by B. vulgatus and F. varium at both the mRNA and protein levels. In particular, B. vulgatus stimulated human MoDCs, resulting in extremely high levels of CRF and UCN1. CONCLUSION: Stimulation of MoDCs by B. vulgatus and F. varium may be associated with CRF/UCN1-related intestinal disorders, such as irritable bowel syndrome and inflammatory bowel disease. PMID:25339828

Koido, Shigeo; Ohkusa, Toshifumi; Kan, Shin; Takakura, Kazuki; Saito, Keisuke; Komita, Hideo; Ito, Zensho; Kobayashi, Hiroko; Takami, Shinichiro; Uchiyama, Kan; Arakawa, Hiroshi; Ito, Masaki; Okamoto, Masato; Kajihara, Mikio; Homma, Sadamu; Tajiri, Hisao

2014-01-01

307

Novel resveratrol-based substrates for human hepatic, renal, and intestinal UDP-glucuronosyltransferases.  

PubMed

Trans-Resveratrol (tRes) has been shown to have powerful antioxidant, anti-inflammatory, anticarcinogenic, and antiaging properties; however, its use as a therapeutic agent is limited by its rapid metabolism into its conjugated forms by UDP-glucuronosyltransferases (UGTs). The aim of the current study was to test the hypothesis that the limited bioavailability of tRes can be improved by modifying its structure to create analogs which would be glucuronidated at a lower rate than tRes itself. In this work, three synthetic stilbenoids, (E)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)acrylic acid (NI-12a), (E)-2,4-dimethoxy-6-(4-methoxystyryl)benzaldehyde oxime (NI-ST-05), and (E)-4-(3,5-dimethoxystyryl)-2,6-dinitrophenol (DNR-1), have been designed based on the structure of tRes and synthesized in our laboratory. UGTs recognize and glucuronidate tRes at each of the 3 hydroxyl groups attached to its aromatic rings. Therefore, each of the above compounds was designed with the majority of the hydroxyl groups blocked by methylation and the addition of other novel functional groups as part of a drug optimization program. The activities of recombinant human UGTs from the 1A and 2B families were examined for their capacity to metabolize these compounds. Glucuronide formation was identified using HPLC and verified by ?-glucuronidase hydrolysis and LC-MS/MS analysis. NI-12a was glucuronidated at both the -COOH and -OH functions, NI-ST-05 formed a novel N-O-glucuronide, and no product was observed for DNR-1. NI-12a is primarily metabolized by the hepatic and renal enzyme UGT1A9, whereas NI-ST-05 is primarily metabolized by an extrahepatic enzyme, UGT1A10, with apparent Km values of 240 and 6.2 ?M, respectively. The involvement of hepatic and intestinal UGTs in the metabolism of both compounds was further confirmed using a panel of human liver and intestinal microsomes, and high individual variation in activity was demonstrated between donors. In summary, these studies clearly establish that modified, tRes-based stilbenoids may be preferable alternatives to tRes itself due to increased bioavailability via altered conjugation. PMID:24571610

Greer, Aleksandra K; Madadi, Nikhil R; Bratton, Stacie M; Eddy, Sarah D; Mazerska, Zofia; Hendrickson, Howard P; Crooks, Peter A; Radominska-Pandya, Anna

2014-04-21

308

Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease  

PubMed Central

Objectives The aim of this study was to investigate the relationship between aquaporin (AQP) water channel expression and the pathological features of early untreated inflammatory bowel disease (IBD) in humans. Methods Patients suspected to have IBD on the basis of predefined symptoms, including abdominal pain, diarrhea, and/or blood in stool for more than 10 days, were examined at the local hospital. Colonoscopy with biopsies was performed and blood samples were taken. Patients who did not meet the diagnostic criteria for IBD and who displayed no evidence of infection or other pathology in the gut were included as symptomatic non-IBD controls. AQP1, 3, 4, 5, 7, 8, and 9 messenger RNA (mRNA) levels were quantified in biopsies from the distal ileum and colon by quantitative real-time polymerase chain reaction. Protein expression of selected AQPs was assessed by confocal microscopy. Through multiple alignments of the deduced amino acid sequences, the putative three-dimensional structures of AQP1, 3, 7, and 8 were modeled. Results AQP1, 3, 7, and 8 mRNAs were detected in all parts of the intestinal mucosa. Notably, AQP1 and AQP3 mRNA levels were reduced in the ileum of patients with Crohn’s disease, and AQP7 and AQP8 mRNA levels were reduced in the ileum and the colon of patients with ulcerative colitis. Immunofluorescence confocal microscopy showed localization of AQP3, 7, and 8 at the mucosal epithelium, whereas the expression of AQP1 was mainly confined to the endothelial cells and erythrocytes. The reduction in the level of AQP3, 7, and 8 mRNA was confirmed by immunofluorescence, which also indicated a reduction of apical immunolabeling for AQP8 in the colonic surface epithelium and crypts of the IBD samples. This could indicate loss of epithelial polarity in IBD, leading to disrupted barrier function. Conclusion AQPs 1 and 8 and the aquaglyceroporins AQPs 3 and 7 are the AQPs predominantly expressed in the lower intestinal tract of humans. Their expression is significantly reduced in patients with IBD, and they are differentially expressed in specific bowel segments in patients with Crohn’s disease and ulcerative colitis. The data present a link between gut inflammation and water/solute homeostasis, suggesting that AQPs may play a significant role in IBD pathophysiology.

Ricanek, Petr; Lunde, Lisa K; Frye, Stephan A; Støen, Mari; Nygård, Ståle; Morth, Jens P; Rydning, Andreas; Vatn, Morten H; Amiry-Moghaddam, Mahmood; Tønjum, Tone

2015-01-01

309

Generation of primary human intestinal T cell transcriptomes reveals differential expression at genetic risk loci for immune-mediated disease  

PubMed Central

Objective Genome-wide association studies (GWAS) have identified genetic variants within multiple risk loci as predisposing to intestinal inflammatory diseases, including Crohn's disease, ulcerative colitis and coeliac disease. Most risk variants affect regulation of transcription, but a critical challenge is to identify which genes and which cell types these variants affect. We aimed to characterise whole transcriptomes for each common T lymphocyte subset resident within the gut mucosa, and use these to infer biological insights and highlight candidate genes of interest within GWAS risk loci. Design We isolated the four major intestinal T cell populations from pinch biopsies from healthy subjects and generated transcriptomes for each. We computationally integrated these transcriptomes with GWAS data from immune-related diseases. Results Robust, high quality transcriptomic data were generated from 1?ng of RNA from precisely sorted cell subsets. Gene expression patterns clearly differentiated intestinal T cells from counterparts in peripheral blood and revealed distinct signalling pathways for each intestinal T cell subset. Intestinal-specific T cell transcripts were enriched in GWAS risk loci for Crohn's disease, ulcerative colitis and coeliac disease, but also specific extraintestinal immune-mediated diseases, allowing prediction of novel candidate genes. Conclusions This is the first report of transcriptomes for minimally manipulated intestinal T lymphocyte subsets in humans. We have demonstrated that careful processing of mucosal biopsies allows the generation of transcriptomes from as few as 1000 highly purified cells with minimal interindividual variation. Bioinformatic integration of transcriptomic data with recent GWAS data identified specific candidate genes and cell types for inflammatory pathologies. PMID:24799394

Raine, Tim; Liu, Jimmy Z; Anderson, Carl A; Parkes, Miles; Kaser, Arthur

2015-01-01

310

Nuclear localization of vasoactive intestinal peptide (VIP) receptors in human breast cancer.  

PubMed

Vasoactive intestinal peptide (VIP) and its receptors (VPACs) are involved in proliferation, survival, and differentiation in human breast cancer cells. Its mechanism of action is traditionally thought to be through specific plasma membrane receptors. There is compelling evidence for a novel intracrine mode of genomic regulation by G-protein-coupled receptors (GPCRs) that implies both endocytosis and nuclear translocation of peripheral GPCR and/or the activation of nuclear-located GPCRs by endogenously-produced, non-secreted ligands. Regarding to VPAC receptors, which are GPCRs, there is only a report suggesting them as a dynamic system for signaling from plasma membrane and nuclear membrane complex. In this study, we show that VPAC(1) receptor is localized in cell nuclear fraction whereas VPAC(2) receptor presents an extranuclear localization and its protein expression is lower than that of VPAC(1) receptor in human breast tissue samples. Both receptors as well as VIP are overexpressed in breast cancer as compared to non-tumor tissue. Moreover, we report the markedly nuclear localization of VPAC(1) receptors in estrogen-dependent (T47D) and independent (MDA-MB-468) human breast cancer cell lines. VPAC(1) receptors are functional in plasma membrane and nucleus as shown by VIP stimulation of cAMP production in both cell lines. In addition, VIP increases its own intracellular and extracellular levels, and could be involved in the regulation of VPAC(1)-receptor traffic from the plasma membrane to the nucleus. These results support new concepts on function and regulation of nuclear GPCRs which could have an impact on development of new therapeutic drugs. PMID:20691743

Valdehita, Ana; Bajo, Ana M; Fernández-Martínez, Ana B; Arenas, M Isabel; Vacas, Eva; Valenzuela, Pedro; Ruíz-Villaespesa, Antonio; Prieto, Juan C; Carmena, María J

2010-11-01

311

Human dental pulp stem cell behavior using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine.  

PubMed

Adhesion and Viability study with human dental pulp stem cell using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine are presented at first time in this work. Nanotolith, are osteoinductors, i.e., they stimulate bone regeneration, enabling higher cells migration for bone tissue regeneration formation. This is mainly because nanotoliths are rich minerals present in the internal ear of bony fish. In addition, are part of a system which acts as a depth sensor and balance, acting as a sound vibrations detector and considered essential for the bone mineralization process, as in hydroxiapatites. Nanotoliths influence in bacterial cellulose was analyzed using transmission infrared spectroscopy (FTIR). Results shows that fermentation process and nanotoliths agglomeration decrease initial human dental pulp stem cell adhesion however tested bionanocomposite behavior has cell viability increase over time. PMID:23926803

Olyveira, Gabriel Molina; Acasigua, Gerson Arisoly Xavier; Costa, Ligia Maria Manzine; Scher, Cristiane Regina; Xavier Filho, Lauro; Pranke, Patricia Helena Lucas; Basmaji, Pierre

2013-08-01

312

Disease-Dependent Adhesion of Lactic Acid Bacteria to the Human Intestinal Mucosa  

Microsoft Academic Search

Their adhesion to the intestinal mucosa is considered one of the main reasons for the beneficial health effects of specific lactic acid bacteria (LAB). However, the influence of disease on the mucosal adhesion is largely unknown. Adhesion of selected LAB to resected colonic tissue and mucus was determined in patients with three major intestinal diseases (i.e., diverticulitis, rectal carcinoma, and

Arthur C. Ouwehand; Seppo Salminen; Peter J. Roberts; Jari Ovaska; Eeva Salminen

2003-01-01

313

Reduced set of virulence genes allows high accuracy prediction of bacterial pathogenicity in humans.  

PubMed

Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of 814 different virulence-related genes among more than 600 finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes (120) is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at http : ==bacfier:googlecode:com=files=Bacfier v1 0:zip), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

2012-01-01

314

Comparative Study of Bacterial Groups within the Human Cecal and Fecal Microbiota  

PubMed Central

The composition of the human cecal microbiota is poorly known because of sampling difficulties. Samples of cecal fluid from eight subjects were collected via an intestinal tube. Feces were also collected. Total anaerobes, facultative anaerobes, bifidobacteria, and Bacteroides were enumerated by culture methods, and the predominant phylogenetic groups were quantified by molecular hybridization using a set of six rRNA-targeted probes. The numbers of strict anaerobes, bifidobacteria, Bacteroides, and members of the Clostridium coccoides group and Clostridium leptum subgroup were lower in the cecum. Facultative anaerobes represented 25% of total bacteria in the cecum versus 1% in the feces. PMID:11571208

Marteau, Philippe; Pochart, Philippe; Doré, Joël; Béra-Maillet, Christel; Bernalier, Annick; Corthier, Gérard

2001-01-01

315

From Environment to Man: Genome Evolution and Adaptation of Human Opportunistic Bacterial Pathogens  

PubMed Central

Environment is recognized as a huge reservoir for bacterial species and a source of human pathogens. Some environmental bacteria have an extraordinary range of activities that include promotion of plant growth or disease, breakdown of pollutants, production of original biomolecules, but also multidrug resistance and human pathogenicity. The versatility of bacterial life-style involves adaptation to various niches. Adaptation to both open environment and human specific niches is a major challenge that involves intermediate organisms allowing pre-adaptation to humans. The aim of this review is to analyze genomic features of environmental bacteria in order to explain their adaptation to human beings. The genera Pseudomonas, Aeromonas and Ochrobactrum provide valuable examples of opportunistic behavior associated to particular genomic structure and evolution. Particularly, we performed original genomic comparisons among aeromonads and between the strictly intracellular pathogens Brucella spp. and the mild opportunistic pathogens Ochrobactrum spp. We conclude that the adaptation to human could coincide with a speciation in action revealed by modifications in both genomic and population structures. This adaptation-driven speciation could be a major mechanism for the emergence of true pathogens besides the acquisition of specialized virulence factors. PMID:24704914

Aujoulat, Fabien; Roger, Frédéric; Bourdier, Alice; Lotthé, Anne; Lamy, Brigitte; Marchandin, Hélène; Jumas-Bilak, Estelle

2012-01-01

316

Pattern of lipofuscin pigmentation in nitrergic and non-nitrergic, neurofilament immunoreactive myenteric neuron types of human small intestine  

Microsoft Academic Search

Lipofuscin, an autofluorescent age pigment, occurs in enteric neurons. Due to its broad excitation and emission spectra, it overlaps with commonly used fluorophores in immunohistochemistry. We investigated the pattern of lipofuscin pigmentation in neurofilament (NF)-reactive nitrergic and non-nitrergic human myenteric neuron types. Subsequently, we tested two methods for reduction of lipofuscin-like autofluorescence. Myenteric plexus\\/longitudinal muscle wholemounts of small intestines of

Axel Brehmer; Barbara Blaser; Gerhard Seitz; Falk Schrödl; Winfried Neuhuber

2004-01-01

317

Isolation of Nitrofurantoin-Resistant Mutants of Nitroreductase Producing Clostridium sp. Strains from the Human Intestinal Tract  

Microsoft Academic Search

Five spontaneous nitrofurantoin-resistant mutants (one each of Clostridium leptum, Clostridium paraputrifi- cum, two other Clostridium spp. strains from the human intestinal microflora, and Clostridium perfringens ATCC 3626) were selected by growth on a nitrofurantoin-containing medium. All of the Clostridium wild-type and mutant strains produced nitroreductase, as was shown by the conversion of 4-nitrobenzoic acid to 4-aminobenzoic acid. High-performance liquid chromatography

FATEMEH RAFII

1998-01-01

318

Topical capsaicin pretreatment inhibits axon reflex vasodilatation caused by somatostatin and vasoactive intestinal polypeptide in human skin  

PubMed Central

1 Wheal and flare reactions are described following intradermal injections of somatostatin, vasoactive intestinal polypeptide, substance P and histamine in normal human forearm skin. Bombesin failed to produce a significant wheal and flare. 2 Pretreatment of skin with capsaicin in all cases dramatically inhibited the flare but not the wheal. This result is in accord with the hypothesis that capsaicin blocks the effector side of the axon reflex, perhaps by depleting nerve terminals of vasodilatory peptide(s). PMID:6133573

Anand, P.; Bloom, S.R.; McGregor, G.P.

1983-01-01

319

Oral administration of the probiotic combination Lactobacillus rhamnosus GR1 and L. fermentum RC14 for human intestinal applications  

Microsoft Academic Search

Lactobacillus rhamnosus GR-1 and L. fermentum RC-14, previously characterized as urogenital probiotics were evaluated for human intestinal applications. RC-14 and GR-1 were tolerant to 0.3 and 0.5% (w\\/v) bile, respectively. Both strains were suspended in skim milk, stored as a frozen concentrate and administered in combination to five healthy women twice daily for 14 days. Faecal samples were analyzed and

Gillian E. Gardiner; Christine Heinemann; Miren L. Baroja; Andrew W. Bruce; Dee Beuerman; Joaqu??n Madrenas; Gregor Reid

2002-01-01

320

Arsenic Thiolation and the Role of Sulfate-Reducing Bacteria from the Human Intestinal Tract  

PubMed Central

Background: Arsenic (As) toxicity is primarily based on its chemical speciation. Although inorganic and methylated As species are well characterized in terms of metabolism and formation in the human body, the origin of thiolated methylarsenicals is still unclear. Objectives: We sought to determine whether sulfate-reducing bacteria (SRB) from the human gut are actively involved in the thiolation of monomethylarsonic acid (MMAV). Methods: We incubated human fecal and colon microbiota in a batch incubator and in a dynamic gut simulator with a dose of 0.5 mg MMAV in the absence or presence of sodium molybdate, an SRB inhibitor. We monitored the conversion of MMAV into monomethyl monothioarsonate (MMMTAV) and other As species by high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry analysis. We monitored the sulfate-reducing activity of the SRB by measuring hydrogen sulfide (H2S) production. We used molecular analysis to determine the dominant species of SRB responsible for As thiolation. Results: In the absence of sodium molybdate, the SRB activity—primarily derived from Desulfovibrio desulfuricans (piger)—was specifically and proportionally correlated (p < 0.01) to MMAV conversion into MMMTAV. Inactivating the SRB with molybdate did not result in MMAV thiolation; however, we observed that the microbiota from a dynamic gut simulator were capable of demethylating 4% of the incubated MMAV into arsenous acid (iAsIII), the trivalent and more toxic form of arsenic acid (iAsV). Conclusion: We found that SRB of human gastrointestinal origin, through their ability to produce H2S, were necessary and sufficient to induce As thiolation. The toxicological consequences of this microbial As speciation change are not yet clear. However, given the efficient epithelial absorption of thiolated methylarsenicals, we conclude that the gut microbiome—and SRB activity in particular—should be incorporated into toxicokinetic analysis carried out after As exposure. Citation: DC.Rubin SS, Alava P, Zekker I, Du Laing G, Van de Wiele T. 2014. Arsenic thiolation and the role of sulfate-reducing bacteria from the human intestinal tract. Environ Health Perspect 122:817–822;?http://dx.doi.org/10.1289/ehp.1307759 PMID:24833621

Alava, Pradeep; Zekker, Ivar; Du Laing, Gijs

2014-01-01

321

Modulation of chromatin remodelling induced by the freshwater cyanotoxin cylindrospermopsin in human intestinal caco-2 cells.  

PubMed

Cylindrospermopsin (CYN) is a cyanotoxin that has been recognised as an emerging potential public health risk. Although CYN toxicity has been demonstrated, the mechanisms involved have not been fully characterised. To identify some key pathways related to this toxicity, we studied the transcriptomic profile of human intestinal Caco-2 cells exposed to a sub-toxic concentration of CYN (1.6 µM for 24hrs) using a non-targeted approach. CYN was shown to modulate different biological functions which were related to growth arrest (with down-regulation of cdkn1a and uhrf1 genes), and DNA recombination and repair (with up-regulation of aptx and pms2 genes). Our main results reported an increased expression of some histone-modifying enzymes (histone acetyl and methyltransferases MYST1, KAT5 and EHMT2) involved in chromatin remodelling, which is essential for initiating transcription. We also detected greater levels of acetylated histone H2A (Lys5) and dimethylated histone H3 (Lys4), two products of these enzymes. In conclusion, CYN overexpressed proteins involved in DNA damage repair and transcription, including modifications of nucleosomal histones. Our results highlighted some new cell processes induced by CYN. PMID:24921660

Huguet, Antoine; Hatton, Aurélie; Villot, Romain; Quenault, Hélène; Blanchard, Yannick; Fessard, Valérie

2014-01-01

322

Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions  

PubMed Central

Purpose Membrane transporters mediate many biological effects of chemicals and play a major role in pharmacokinetics and drug resistance. The selection of viable drug candidates among biologically active compounds requires the assessment of their transporter interaction profiles. Methods Using public sources, we have assembled and curated the largest, to our knowledge, human intestinal transporter database (>5,000 interaction entries for >3,700 molecules). This data was used to develop thoroughly validated classification Quantitative Structure-Activity Relationship (QSAR) models of transport and/or inhibition of several major transporters including MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1, OCT1, and MCT1. Results & Conclusions QSAR models have been developed with advanced machine learning techniques such as Support Vector Machines, Random Forest, and k Nearest Neighbors using Dragon and MOE chemical descriptors. These models afforded high external prediction accuracies of 71–100% estimated by 5-fold external validation, and showed hit retrieval rates with up to 20-fold enrichment in the virtual screening of DrugBank compounds. The compendium of predictive QSAR models developed in this study can be used for virtual profiling of drug candidates and/or environmental agents with the optimal transporter profiles. PMID:23269503

Sedykh, Alexander; Fourches, Denis; Duan, Jianmin; Hucke, Oliver; Garneau, Michel; Zhu, Hao; Bonneau, Pierre; Tropsha, Alexander

2013-01-01

323

The prediction of human intestinal absorption based on the molecular structure.  

PubMed

Human Intestinal Absorption (HIA) has been modeled many times by using classification models. However, regression models are scarce. Here, Artificial Neural Networks (ANNs) are implemented for this purpose. A dataset of structurally diverse chemicals with their respective experimental HIA were used to design robust, true predictive and widespread applicable ANN models. An input variables pool was made up of structural invariants calculated by using either Dragon or our software Desmol 1. The selection of best variables was performed following three steps using the entire dataset of molecules. Firstly, variables poorly correlated with the experimental data were eliminated. Secondly, input variable selection was performed by stepwise multilinear regression. Thirdly, correlation matrix in the set of selected variables was then obtained to eliminate those variables strongly intercorrelated. Backpropagation ANNs were trained for these variables finally selected as inputs, and HIA as output. The training and selection procedure to find robust models consisted of randomly partitioning the dataset into three sets: training set, with 50% of the population, test set with 25%, and validation set with the other 25%. With each partitioning, diverse numbers of hidden nodes were assayed to optimize the performance in the prediction for the three sets. Models with r(2) greater than 0.6 for the three sets were considered as robust. A randomization test following all these steps was performed, and the poor results obtained confirm the validity of the method presented in this paper to predict HIA for datasets of structurally diverse organic compounds. PMID:24909422

de Julian-Ortiz, J Vicente; Zanni, Riccardo; Galvez-Llompart, Maria; Garcia-Domenech, Ramon

2014-01-01

324

Heparin induces the expression of specific matrix proteins by human intestinal smooth muscle cells  

SciTech Connect

Human intestinal smooth muscle (HISM) cells have recently been identified as the major cell type responsible for stricture formation in Crohn's disease. Heparin, a sulfated glycosaminoglycan, has been shown to be a key modulator of vascular smooth muscle cell (VSMC) growth both in vivo and in vitro and to affect the phenotypic expression of proteins made by VSMC. Heparin has also been shown to effect the growth of HISM cells and in this report the authors demonstrate that heparin also has very specific effects on proteins released by HISM cells in vitro. Examination of the proteins in the culture medium of heparin-treated HISM cells observed at 3 time points following sparse plating and proliferation revealed an increase in /sup 35/S-methionine-labeled 200, 37, and 35 kd proteins. A transient effect on a 48 kd protein was observed in substrate-attached material left on the culture dish after the cells were removed with EGTA. No effects on intracellular labeled proteins could be demonstrated. The protein phenotype of HISM cells exposed to heparin appears very similar to that observed in VSMC. The release of specific proteins following exposure to heparin does not appear to be species specific. This response to heparin may reflect a significant influence of this glycosaminoglycan on the phenotypic expression of these cells.

Cochran, D.L.; Perr, H.; Graham, M.F.; Diegelmann, R.F.

1986-03-01

325

In vitro DNA-damaging effects of intestinal and related tetrapyrroles in human cancer cells  

PubMed Central

Epidemiological studies report a negative association between circulating bilirubin concentrations and the risk for cancer and cardiovascular disease. Structurally related tetrapyrroles also possess in vitro anti-genotoxic activity and may prevent mutation prior to malignancy. Furthermore, few data suggest that tetrapyrroles exert anti-carcinogenic effects via induction of cell cycle arrest and apoptosis. To further investigate whether tetrapyrroles provoke DNA-damage in human cancer cells, they were tested in the single cell gel electrophoresis assay (SCGE). Eight tetrapyrroles (unconjugated bilirubin, bilirubin ditaurate, biliverdin, biliverdin-/bilirubin dimethyl ester, urobilin, stercobilin and protoporphyrin) were added to cultured Caco2 and HepG2 cells and their effects on comet formation (% tail DNA) were assessed. Flow cytometric assessment (apoptosis/necrosis, cell cycle, intracellular radical species generation) assisted in revealing underlying mechanisms of intracellular action. Cells were incubated with tetrapyrroles at concentrations of 0.5, 5 and 17 ?M for 24 h. Addition of 300 ?M tertiary-butyl hydroperoxide to cells served as a positive control. Tetrapyrrole incubation mostly resulted in increased DNA-damage (comet formation) in Caco2 and HepG2 cells. Tetrapyrroles that are concentrated within the intestine, including protoporphyrin, urobilin and stercobilin, led to significant comet formation in both cell lines, implicating the compounds in inducing DNA-damage and apoptosis in cancer cells found within organs of the digestive system. PMID:23246570

Mölzer, Christine; Pfleger, Barbara; Putz, Elisabeth; Roßmann, Antonia; Schwarz, Ursula; Wallner, Marlies; Bulmer, Andrew C.; Wagner, Karl-Heinz

2013-01-01

326

Purification and characterization of 7 beta-hydroxysteroid dehydrogenase from Ruminococcus sp. of human intestine.  

PubMed

7 beta-Hydroxysteroid dehydrogenase (7 beta-HSD) was produced by Ruminococcus sp. PO1-3 obtained from among human intestinal bacteria. The enzyme was purified from a crude extract by ammonium sulfate fractionation, and Butyl-Toyopearl 650M, Sephadex G-150, Matrex Red A and Octyl-Sepharose chromatographies. The purified enzyme was obtained as a single band on polyacrylamide gel electrophoresis with enzyme activity staining and as one band corresponding to a molecular weight of 30,000 on SDS-polyacrylamide gel electrophoresis. On gel filtration, its apparent molecular weight was estimated to be 60,000. The enzyme had a sulfhydryl group(s) in its active site. Substrate specificity studies revealed that the enzyme showed absolute specificity for the beta-configuration of a hydroxyl group at the 7 position of bile acids, and required NADP+ and NADPH as cosubstrates. The Km values for ursodeoxycholic acid, 7-k etolithocholic acid, NADP+, and NADPH were 5.0, 8.5, 7.7, and 24 microM, respectively. PMID:3480890

Akao, T; Akao, T; Kobashi, K

1987-09-01

327

Intestine Transplant  

MedlinePLUS

... Lung Kidney Pancreas Kidney/Pancreas Liver Intestine Intestine Transplant Although it is possible for a living donor to donate an intestine segment, most intestine transplants involve a whole organ from a deceased donor. ...

328

Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease  

PubMed Central

Fibrosis is a serious condition complicating chronic inflammatory processes affecting the intestinal tract. Advances in this field that rely on human studies have been slow and seriously restricted by practical and logistic reasons. As a consequence, well-characterized animal models of intestinal fibrosis have emerged as logical and essential systems to better define and understand the pathophysiology of fibrosis. In point of fact, animal models allow the execution of mechanistic studies as well as the implementation of clinical trials with novel, pathophysiology-based therapeutic approaches. This review provides an overview of the currently available animal models of intestinal fibrosis, taking into consideration the methods of induction, key characteristics of each model, and underlying mechanisms. Currently available models will be classified into seven categories: spontaneous, gene-targeted, chemical-, immune-, bacteria-, and radiation-induced as well as postoperative fibrosis. Each model will be discussed in regard to its potential to create research opportunities to gain insights into the mechanisms of intestinal fibrosis and stricture formation and assist in the development of effective and specific antifibrotic therapies. PMID:22878121

Rieder, Florian; Kessler, Sean; Sans, Miquel

2012-01-01

329

PDX1 regulation of FABP1 and novel target genes in human intestinal epithelial Caco-2 cells.  

PubMed

The transcription factor pancreatic and duodenal homeobox 1 (PDX1) plays an essential role in pancreatic development and in maintaining proper islet function via target gene regulation. Few intestinal PDX1 targets, however, have been described. We sought to define novel PDX1-regulated intestinal genes. Caco-2 human intestinal epithelial cells were engineered to overexpress PDX1 and gene expression profiles relative to control cells were assessed. Expression of 80 genes significantly increased while that of 49 genes significantly decreased more than 4-fold following PDX1 overexpression in differentiated Caco-2 cells. Analysis of the differentially regulated genes with known functional annotations revealed genes encoding transcription factors, growth factors, kinases, digestive glycosidases, nutrient transporters, nutrient binding proteins, and structural components. The gene for fatty acid binding protein 1, liver, FABP1, is repressed by PDX1 in Caco-2 cells. PDX1 overexpression in Caco-2 cells also results in repression of promoter activity driven by the 0.6kb FABP1 promoter. PDX1 regulation of promoter activity is consistent with the decrease in FABP1 RNA abundance resulting from PDX1 overexpression and identifies FABP1 as a candidate PDX1 target. PDX1 repression of FABP1, LCT, and SI suggests a role for PDX1 in patterning anterior intestinal development. PMID:22640736

Chen, Chin; Fang, Rixun; Chou, Lin-Chiang; Lowe, Anson W; Sibley, Eric

2012-06-22

330

The angiogenic effect of probiotic Bacillus polyfermenticus on human intestinal microvascular endothelial cells is mediated by IL-8  

PubMed Central

Angiogenesis is required for wound healing and repair, but dysregulated angiogenesis is involved in gastrointestinal inflammation. Bacillus polyfermenticus (B.P.) is a probiotic bacterium clinically used for a variety of intestinal disorders in East Asia. Here we investigated the effect of B.P. on angiogenesis of human intestinal microvascular endothelial cells (HIMECs) and wound healing in intestinal mucosa. Exposure of HIMECs to the conditioned medium of B.P. cultures (B.P. CM) increased cell migration, permeability, and tube formation. Production of the proangiogenic cytokine IL-8 was increased by B.P. CM, and neutralizing antibodies against IL-8 or IL-8 receptor CXCR2 reduced tube formation as well as actin stress fiber formation. B.P. CM also increased NF-?B activation, and inhibitors of NF-?B suppressed B.P. CM-induced tube formation and IL-8 production. Furthermore, B.P. facilitated recovery of mice from colitis as shown by increased body weight and reduced rectal bleeding and histological severity. B.P. also increased angiogenesis and mouse IL-8 production in the mucosal layer. Collectively, these results show that B.P. increases angiogenesis of HIMECs in a NF-?B/IL-8/CXCR2-dependent manner. Moreover, B.P. promotes angiogenesis in the mucosa during recovery of mice from colitis, suggesting that this probiotic may be clinically used to facilitate intestinal wound healing. PMID:20501448

Choi, Yoon Jeong; Kim, Cho Hee; Fiocchi, Claudio; Pothoulakis, Charalabos

2009-01-01

331

Bile acid metabolism, bacterial bowel flora and intestinal function following ileal pouch-anal anastomosis in dogs, with reference to the influence of administration of ursodeoxycholic acid.  

PubMed

The pathophysiology following a total colectomy with ileal pouch-anal anastomosis (IPAA) has not been sufficiently clarified yet. We investigated bile acid metabolism, bacterial bowel flora and transit of the alimentary tract after IPAA, with reference to administration of ursodeoxycholic acid (UDCA) in dogs undergoing IPAA. Ten adult beagle dogs underwent IPAA at one stage, and were observed for 12 months. UDCA (100 mg/day) was administered orally to five dogs, and the other five did not. In the UDCA(+) group, UDCA replaced other bile acids, especially cholic acid, accounting for 16.5% of gallbladder bile at 12 months after surgery. Both plasma levels and postprandial increase of total bile acids remained unchanged in the UDCA(+) group, but decreased in the UDCA(-) group at 12 months. Fecal excretion of bile acids tended to be smaller in the UDCA(+) group, and the ratio of secondary to primary bile acids was larger in the UDCA(-) group. Almost all the bile acids were in free form in stool, and UDCA constituted 19% in the UDCA(+) group. The transit time of the whole alimentary tract was elongated by administering UDCA, especially at an early period after IPAA. Although both anaerobic and aerobic bacteria decreased after IPAA, the latter decreased more in stool, resulting in an increase in the ratio of total anaerobes/total aerobes, especially in the UDCA(-) group. The decrease in Bacteroidaceae and Lactobacillus after IPAA was slightly smaller in the UDCA(+) group. Administration of UDCA following IPAA was efficient to induce rapid intestinal adaptation and also to keep the bile acid fraction in the ileal pouch less harmful. PMID:10770619

Imamura, M; Nakajima, H; Takahashi, H; Yamauchi, H; Seo, G

2000-02-01

332

Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract.  

PubMed

Purified human mucins from different parts of the intestinal tract (ileum, cecum, transverse and sigmoid colon and rectum) were isolated from two individuals with blood group ALe(b) (A-Lewis(b)). After alkaline borohydride treatment the released oligosaccharides were structurally characterized by nano-ESI Q-TOF MS/MS (electrospray ionization quadrupole time-of-flight tandem MS) without prior fractionation or derivatization. More than 100 different oligosaccharides, with up to ten monosaccharide residues, were identified using this technique. Oligosaccharides based on core 3 structures, GlcNAc(beta1-3)GalNAc (where GlcNAc is N-acetyl-D-glucosamine and GalNAc is N-acetylgalactosamine), were widely distributed in human intestinal mucins. Core 5 structures, GalNAc(alpha1-3)GalNAc, were also recovered in all fractions. Moreover, a comparison of the oligosaccharide repertoire, with respect to size, diversity and expression of glycans and terminal epitopes, showed a high level of mucin-specific glycosylation: highly fucosylated glycans, found specifically in the small intestine, were mainly based on core 4 structures, GlcNAc-(beta1-3)[GlcNAc(beta1-6)]GalNAc, whereas the sulpho-Le(X) determinant carrying core 2 glycans, Gal(beta1-3)[GlcNAc(beta1-6)]-GalNAc (where Gal is galactose), was recovered mainly in the distal colon. Blood group H and A antigenic determinants were present exclusively in the ileum and cecum, whereas blood group Sd(a)/Cad related epitopes, GalNAc(beta1-4)[NeuAc(alpha2-3)]Gal (where NeuAc is N-acetylneuraminate), were found to increase along the length of the colon. Our findings suggest that mucins create an enormous repertoire of potential binding sites for micro-organisms that could explain the regio-specific colonization of bacteria in the human intestinal tract. PMID:15361072

Robbe, Catherine; Capon, Calliope; Coddeville, Bernadette; Michalski, Jean-Claude

2004-12-01

333

Species difference in the effect of grapefruit juice on intestinal absorption of talinolol between human and rat.  

PubMed

Bioavailability of talinolol, a beta(1)-adrenergic receptor antagonist, was enhanced by coadministration with grapefruit juice (GFJ) in rats, whereas GFJ ingestion markedly reduced the absorption of talinolol in humans. Because our recent study indicated that the inhibitory effect of GFJ on organic anion-transporting polypeptide (Oatp)- and P-gp-mediated talinolol absorption depends on the concentration of naringin in ingested GFJ, the apparent inconsistent findings may be explained by the species difference in the affinity of naringin for OATP/Oatp and P-gp multidrug resistance 1 (MDR1/Mdr1) between humans and rats. Although human MDR1-mediated talinolol transport was not inhibited by 2000 microM naringin, naringin inhibited human OATP1A2-, rat Oatp1a5-, and rat Mdr1a-mediated talinolol transport with IC(50) values of 343, 12.7, and 604 microM, respectively, in LLC-PK1 cell and Xenopus laevis oocyte systems. Because the naringin concentration in commercially prepared GFJ was found to be approximately 1200 microM, these results suggested that GFJ would reduce the intestinal absorption of talinolol through inhibition of OATP1A2-mediated talinolol uptake in humans, whereas an increase of talinolol absorption is mainly through inhibition of Mdr1a-mediated efflux in rats. The rat intestinal permeability of talinolol measured by the in situ closed loop method was indeed significantly increased in the presence of GFJ, whereas a significant decrease was observed with 6-fold diluted GFJ, in which the naringin concentration was approximately 200 microM. The present study indicated that the species difference in the effect of GFJ on intestinal absorption of talinolol between humans and rats may be due to differences in the affinity of naringin for OATP/Oatp and MDR1/Mdr1 transporters between the two species. PMID:19779132

Shirasaka, Yoshiyuki; Kuraoka, Erika; Spahn-Langguth, Hildegard; Nakanishi, Takeo; Langguth, Peter; Tamai, Ikumi

2010-01-01

334

Lactic acid bacterial colonization and human rotavirus infection influence distribution and frequencies of monocytes/macrophages and dendritic cells in neonatal gnotobiotic pigs  

PubMed Central

Despite accumulating knowledge of porcine macrophages and dendritic cells (DCs) from in vitro studies, information regarding monocytes/macrophages and DCs in lymphoid tissues of enteric pathogen-infected neonatal animals in vivo is limited. In this study we evaluated the influence of commensal bacterial [two strains of lactic acid bacteria (LAB), Lactobacillus acidophilus and L. reuteri] colonization and rotavirus infection on distribution and frequencies of monocytes/macrophages and conventional DCs (cDCs) in ileum, spleen and blood. Gnotobiotic pigs were inoculated with LAB and virulent Wa strain human rotavirus (HRV) (LAB+HRV+), HRV only (LAB?HRV+), LAB only (LAB+HRV?) or mock (LAB?HRV?). The cDCs were characterized as SWC3+CD11R1+, whereas monocytes/macrophages were identified as SWC3+CD11R1? by flow cytometry in the gnotobiotic pigs at 10 days of age. Infection with HRV alone activated/recruited significantly more monocytes/macrophages to the intestine than LAB colonization and 56% versus 28% of these cells expressed CD14. Colonization with LAB alone also significantly increased the frequencies of monocytes/macrophages and cDCs and the CD14 expression on monocytes/macrophages in ileum and spleen compared to the controls. LAB colonization plus HRV infection significantly reduced macrophage and cDC frequencies in spleen compared to LAB colonization or HRV infection alone, suggesting that LAB colonization down-regulated HRV? infection-induced monocyte/macrophage activation/recruitment at the systemic lymphoid tissue. These results illustrated the distribution of porcine monocytes/macrophages and cDCs and the frequencies of CD14 expression on these cells in intestinal and systemic lymphoid tissues in the early stage of immune responses to intestinal colonization by LAB versus infection by an enteric pathogen HRV and will facilitate further in vivo studies on functional characterization of these immune cells in neonates. PMID:18006076

Zhang, Wei; Wen, Ke; Azevedo, Marli S.P.; Gonzalez, Ana; Saif, Linda J.; Li, Guohua; Yousef, Ahmed E.; Yuan, Lijuan

2007-01-01

335

Development of an online-SPE-LC-MS method for the investigation of the intestinal absorption of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PHIP) and its bacterial metabolite PHIP-M1 in a Caco-2 Transwell system.  

PubMed

Heterocyclic aromatic amines such as PHIP are formed during the heat processing of food. PHIP undergoes bacterial metabolism leading to 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3',2':4,5]imidazo[1,2-a]pyrimidin-5-ium chloride (PHIP-M1) as main metabolite. We developed an LC-MS method with automated sample preparation by online-solid-phase-extraction for the simultaneous quantification of PHIP and its mammalian and bacterial metabolites N-hydroxy-PHIP, 4-OH-PHIP and PHIP-M1 in biological samples. The method was used to investigate the transport of PHIP-M1 through a Caco-2 cell monolayer. The experiments show that PHIP-M1 rapidly crosses the cell monolayer and that PHIP-M1 is a substrate for P-glycoprotein and the multiple drug resistance 2 transporter. The intestinal absorption of PHIP-M1 is comparable with that of PHIP and a moderate to high bioavailability has to be expected. Thus, not only the human metabolites of PHIP but also the bacterial metabolite PHIP-M1 formed in the gut could contribute to the toxic effects of PhIP. PMID:25053091

Willenberg, Ina; von Elsner, Leonie; Steinberg, Pablo; Schebb, Nils Helge

2015-01-01

336

Impact of Experimental Human Pneumococcal Carriage on Nasopharyngeal Bacterial Densities in Healthy Adults  

PubMed Central

Colonization of the nasopharynx by Streptococcus pneumoniae is a necessary precursor to pneumococcal diseases that result in morbidity and mortality worldwide. The nasopharynx is also host to other bacterial species, including the common pathogens Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis. To better understand how these bacteria change in relation to pneumococcal colonization, we used species-specific quantitative PCR to examine bacterial densities in 52 subjects 7 days before, and 2, 7, and 14 days after controlled inoculation of healthy human adults with S. pneumoniae serotype 6B. Overall, 33 (63%) of subjects carried S. pneumoniae post-inoculation. The baseline presence and density of S. aureus, H. influenzae, and M. catarrhalis were not statistically associated with likelihood of successful pneumococcal colonization at this study’s sample size, although a lower rate of pneumococcal colonization in the presence of S. aureus (7/14) was seen compared to that in the presence of H. influenzae (12/16). Among subjects colonized with pneumococci, the number also carrying either H. influenzae or S. aureus fell during the study and at 14 days post-inoculation, the proportion carrying S. aureus was significantly lower among those who were colonized with S. pneumoniae (p?=?0.008) compared to non-colonized subjects. These data on bacterial associations are the first to be reported surrounding experimental human pneumococcal colonization and show that co-colonizing effects are likely subtle rather than absolute. PMID:24915552

Shak, Joshua R.; Cremers, Amelieke J. H.; Gritzfeld, Jenna F.; de Jonge, Marien I.; Hermans, Peter W. M.; Vidal, Jorge E.; Klugman, Keith P.; Gordon, Stephen B.

2014-01-01

337

Intestinal Epithelial Barrier Disruption through Altered Mucosal MicroRNA Expression in Human Immunodeficiency Virus and Simian Immunodeficiency Virus Infections  

PubMed Central

ABSTRACT Epithelial barrier dysfunction during human immunodeficiency virus (HIV) infection has largely been attributed to the rapid and severe depletion of CD4+ T cells in the gastrointestinal (GI) tract. Although it is known that changes in mucosal gene expression contribute to intestinal enteropathy, the role of small noncoding RNAs, specifically microRNA (miRNA), has not been investigated. Using the simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV pathogenesis, we investigated the effect of viral infection on miRNA expression in intestinal mucosa. SIV infection led to a striking decrease in the expression of mucosal miRNA compared to that in uninfected controls. This decrease coincided with an increase in 5?-3?-exoribonuclease 2 protein and alterations in DICER1 and Argonaute 2 expression. Targets of depleted miRNA belonged to molecular pathways involved in epithelial proliferation, differentiation, and immune response. Decreased expression of several miRNA involved in maintaining epithelial homeostasis in the gut was localized to the proliferative crypt region of the intestinal epithelium. Our findings suggest that SIV-induced decreased expression of miRNA involved in epithelial homeostasis, disrupted expression of miRNA biogenesis machinery, and increased expression of XRN2 are involved in the development of epithelial barrier dysfunction and gastroenteropathy. IMPORTANCE MicroRNA (miRNA) regulate the development and function of intestinal epithelial cells, and many viruses disrupt normal host miRNA expression. In this study, we demonstrate that SIV and HIV disrupt expression of miRNA in the small intestine during infection. The depletion of several key miRNA is localized to the proliferative crypt region of the gut epithelium. These miRNA are known to control expression of genes involved in inflammation, cell death, and epithelial maturation. Our data indicate that this disruption might be caused by altered expression of miRNA biogenesis machinery during infection. These findings suggest that the disruption of miRNA in the small intestine likely plays a role in intestinal enteropathy during HIV infection. PMID:24672033

Gaulke, Christopher A.; Porter, Matthew; Han, Yan-Hong; Sankaran-Walters, Sumathi; Grishina, Irina; George, Michael D.; Dang, Angeline T.; Ding, Shou-Wei; Jiang, Guochun; Korf, Ian

2014-01-01

338

Antibacterial screening of traditional herbal plants and standard antibiotics against some human bacterial pathogens.  

PubMed

Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent. PMID:24191314

Awan, Uzma Azeem; Andleeb, Saiqa; Kiyani, Ayesha; Zafar, Atiya; Shafique, Irsa; Riaz, Nazia; Azhar, Muhammad Tehseen; Uddin, Hafeez

2013-11-01

339

Human defensins facilitate local unfolding of thermodynamically unstable regions of bacterial protein toxins.  

PubMed

Defensins are short cationic, amphiphilic, cysteine-rich peptides that constitute the front-line immune defense against various pathogens. In addition to exerting direct antibacterial activities, defensins inactivate several classes of unrelated bacterial exotoxins. To date, no coherent mechanism has been proposed to explain defensins' enigmatic efficiency toward various toxins. In this study, we showed that binding of neutrophil ?-defensin HNP1 to affected bacterial toxins caused their local unfolding, potentiated their thermal melting and precipitation, exposed new regions for proteolysis, and increased susceptibility to collisional quenchers without causing similar effects on tested mammalian structural and enzymatic proteins. Enteric ?-defensin HD5 and ?-defensin hBD2 shared similar toxin-unfolding effects with HNP1, albeit to different degrees. We propose that protein susceptibility to inactivation by defensins is contingent to their thermolability and conformational plasticity and that defensin-induced unfolding is a key element in the general mechanism of toxin inactivation by human defensins. PMID:25517613

Kudryashova, Elena; Quintyn, Royston; Seveau, Stephanie; Lu, Wuyuan; Wysocki, Vicki H; Kudryashov, Dmitri S

2014-11-20

340

Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus).  

PubMed

There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one A. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and B. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. PMID:23415850

Leydet, Brian F; Liang, Fang-Ting

2013-04-01

341

Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus)  

PubMed Central

There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one Am. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and Bo. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. PMID:23415850

Leydet, Brian F.; Liang, Fang-Ting

2013-01-01

342

Effects of Gamma Irradiation on Bacterial Microflora Associated with Human Amniotic Membrane  

PubMed Central

Human amniotic membrane is considered a promising allograft material for the treatment of ocular surface reconstruction, burns, and other skin defects. In order to avoid the transmission of any diseases, grafts should be perfectly sterile. Twenty-five amniotic sacs were collected to determine the microbiological quality of human amniotic membrane, to analyze the radiation sensitivity pattern of the microorganism, and to detect the radiation decimal reduction dose (D10) values. All the samples were found to be contaminated, and the bioburden was ranged from 3.4 × 102 to 1.2 × 105?cfu/g. Initially, a total fifty bacterial isolates were characterized according to their cultural, morphological, and biochemical characteristics and then tested for the radiation sensitivity in an incremental series of radiation doses from 1 to 10?KGy. The results depict gradual decline in bioburden with incline of radiation doses. Staphylococcus spp. were the most frequently isolated bacterial contaminant in tissue samples (44%). The D10 values of the bacterial isolates were ranged from 0.6 to 1.27?KGy. Streptococcus spp. were found to be the highest radioresistant strain with the radiation sterilization dose (RSD) of 11.4?KGy for a bioburden level of 1000. To compare the differences, D10 values were also calculated by graphical evaluations of the data with two of the representative isolates of each bacterial species which showed no significant variations. Findings of this study indicate that lower radiation dose is quite satisfactory for the sterilization of amniotic membrane grafts. Therefore, these findings would be helpful to predict the efficacy of radiation doses for the processing of amniotic membrane for various purposes. PMID:24063009

Binte Atique, Fahmida; Ahmed, Kazi Tahsin; Asaduzzaman, S. M.; Hasan, Kazi Nadim

2013-01-01

343

Salmonella enterica Serovar Typhi Uses Type IVB Pili To Enter Human Intestinal Epithelial Cells  

PubMed Central

DNA sequencing upstream of the Salmonella enterica serovar Typhi pilV and rci genes previously identified in the ca. 118-kb major pathogenicity island (X.-L. Zhang, C. Morris, and J. Hackett, Gene 202:139–146, 1997) identified a further 10 pil genes apparently forming a pil operon. The product of the pilS gene, prePilS protein (a putative type IVB structural prepilin) was purified, and an anti-prePilS antiserum was raised in mice. Mutants of serovar Typhi either lacking the whole pil operon or with an insertion mutation in the pilS gene were constructed, as was a strain in which the pilN to pilV genes were driven by the tac promoter. The pil+ strains synthesized type IVB pili, as judged by (i) visualization in the electron microscope of thin pili in culture supernatants of one such strain and (ii) the presence of PilS protein (smaller than the prePilS protein by removal of the leader peptide) on immunoblotting of material pelleted by high-speed centrifugation of either the culture supernatant or sonicates of pil+ strains. Control pil mutants did not express the PilS protein. A pilS mutant of serovar Typhi entered human intestinal INT407 cells in culture to levels only 5 to 25% of those of the wild-type strain, and serovar Typhi entry was strongly inhibited by soluble prePilS protein (50% inhibition of entry at 1.4 ?M prePilS). PMID:10816445

Zhang, Xiao-Lian; Tsui, Inez S. M.; Yip, Cecilia M. C.; Fung, Ada W. Y.; Wong, Danny K.-H.; Dai, Xiaoyun; Yang, Yanhua; Hackett, Jim; Morris, Christina

2000-01-01

344

Regulation of apical transporter of L-DOPA in human intestinal Caco-2 cells.  

PubMed

The present study examined the nature of the apical inward L-3,4-dihydroxyphenylalanine (L-DOPA) transporter in human intestinal epithelial Caco-2 cells, and whether protein kinases modulate the activity of this transporter. The apical inward transfer of L-DOPA was promoted through an energy-dependent and sodium-insensitive transporter (Km=33 microM; Vmax=2932 pmol/mg protein/6 min). This transporter was insensitive to N-(methylamino)-isobutyric acid, but competitively inhibited by 2-aminobicyclo(2,2,1)-heptane-2-carboxylic acid (BCH; IC50=83 microM). The organic cation inhibitor decynium 24 failed to affect the accumulation of L-DOPA, whereas the organic anion inhibitor 4,4'-diisothiocynatostilbene-2,2'-disulphonic acid (DIDS) competitively inhibited L-DOPA uptake (IC50=83 microM). However, the apical-to-basal and basal-to-apical transepithelial transport and the cell accumulation of [3H]-PAH was close to that of [14C]-sorbitol and insensitive to DIDS (300 microM). Modulators of protein kinase A (PKA) [cyclic adenosine monophosphate (cAMP), forskolin, H-89 and cholera toxin], protein kinase G (PKG) [cyclic guanosine monophosphate (GMP), zaprinast, LY 83583 and sodium nitroprusside] and protein kinase C (PKC) (phorbol 12,13-dibutirate and chelerythrine) failed to affect the accumulation of L-DOPA. The Ca2+/calmodulin inhibitors calmidazolium and trifluoperazine inhibited L-DOPA uptake (IC50s of 53 and 252 microM, respectively), but the rise of intracellular Ca2+ by A23187 (1 microM) and thapsigargin (1 microM) played no role on L-DOPA uptake. It is concluded that Caco-2 cells take up L-DOPA over the apical cell border through the sodium-independent and pH-sensitive L-type amino acid transporter. PMID:12028130

Fraga, S; Sampaio-Maia, B; Serrão, M P; Soares-da-Silva, P

2002-06-01

345

Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium.  

PubMed

The diversity of mucin-degrading bacteria in the human intestine was investigated by combining culture and 16S rRNA-dependent approaches. A dominant bacterium, strain MucT, was isolated by dilution to extinction of faeces in anaerobic medium containing gastric mucin as the sole carbon and nitrogen source. A pure culture was obtained using the anaerobic soft agar technique. Strain MucT was a Gram-negative, strictly anaerobic, non-motile, non-spore-forming, oval-shaped bacterium that could grow singly and in pairs. When grown on mucin medium, cells produced a capsule and were found to aggregate. Strain MucT could grow on a limited number of sugars, including N-acetylglucosamine, N-acetylgalactosamine and glucose, but only when a protein source was provided and with a lower growth rate and final density than on mucin. The G + C content of DNA from strain MucT was 47.6 mol%. 16S rRNA gene sequence analysis revealed that the isolate was part of the division Verrucomicrobia. The closest described relative of strain MucT was Verrucomicrobium spinosum (92 % sequence similarity). Remarkably, the 16S rRNA gene sequence of strain MucT showed 99 % similarity to three uncultured colonic bacteria. According to the data obtained in this work, strain MucT represents a novel bacterium belonging to a new genus in subdivision 1 of the Verrucomicrobia; the name Akkermansia muciniphila gen. nov., sp. nov. is proposed; the type strain is MucT (= ATCC BAA-835T = CIP 107961T). PMID:15388697

Derrien, Muriel; Vaughan, Elaine E; Plugge, Caroline M; de Vos, Willem M

2004-09-01

346

Enterotoxigenic Escherichia coli infection and intestinal thiamin uptake: studies with intestinal epithelial Caco-2 monolayers.  

PubMed

Infections with enteric pathogens like enterotoxigenic Escherichia coli (ETEC) is a major health issue worldwide and while diarrhea is the major problem, prolonged, severe, and dual infections with multiple pathogens may also compromise the nutritional status of the infected individuals. There is almost nothing currently known about the effect of ETEC infection on intestinal absorptions of water-soluble vitamins including thiamin. We examined the effect of ETEC infection on intestinal uptake of the thiamin using as a model the human-derived intestinal epithelial Caco-2 cells. The results showed that infecting confluent Caco-2 monolayers with live ETEC (but not with boiled/killed ETEC or nonpathogenic E. coli) or treatment with bacterial culture supernatant led to a significant inhibition in thiamin uptake. This inhibition appears to be caused by a heat-labile and -secreted ETEC component and is mediated via activation of the epithelial adenylate cyclase system. The inhibition in thiamin uptake by ETEC was associated with a significant reduction in expression of human thiamin transporter-1 and -2 (hTHTR1 and hTHTR2) at the protein and mRNA levels as well as in the activity of the SLC19A2 and SLC19A3 promoters. Dual infection of Caco-2 cells with ETEC and EPEC (enteropathogenic E. coli) led to compounded inhibition in intestinal thiamin uptake. These results show for the first time that infection of human intestinal epithelial cells with ETEC causes a significant inhibition in intestinal thiamin uptake. This inhibition is mediated by a secreted heat-labile toxin and is associated with a decrease in the expression of intestinal thiamin transporters. PMID:24133060

Ghosal, Abhisek; Chatterjee, Nabendu S; Chou, Tristan; Said, Hamid M

2013-12-01

347

Enterotoxigenic Escherichia coli infection and intestinal thiamin uptake: studies with intestinal epithelial Caco-2 monolayers  

PubMed Central

Infections with enteric pathogens like enterotoxigenic Escherichia coli (ETEC) is a major health issue worldwide and while diarrhea is the major problem, prolonged, severe, and dual infections with multiple pathogens may also compromise the nutritional status of the infected individuals. There is almost nothing currently known about the effect of ETEC infection on intestinal absorptions of water-soluble vitamins including thiamin. We examined the effect of ETEC infection on intestinal uptake of the thiamin using as a model the human-derived intestinal epithelial Caco-2 cells. The results showed that infecting confluent Caco-2 monolayers with live ETEC (but not with boiled/killed ETEC or nonpathogenic E. coli) or treatment with bacterial culture supernatant led to a significant inhibition in thiamin uptake. This inhibition appears to be caused by a heat-labile and -secreted ETEC component and is mediated via activation of the epithelial adenylate cyclase system. The inhibition in thiamin uptake by ETEC was associated with a significant reduction in expression of human thiamin transporter-1 and -2 (hTHTR1 and hTHTR2) at the protein and mRNA levels as well as in the activity of the SLC19A2 and SLC19A3 promoters. Dual infection of Caco-2 cells with ETEC and EPEC (enteropathogenic E. coli) led to compounded inhibition in intestinal thiamin uptake. These results show for the first time that infection of human intestinal epithelial cells with ETEC causes a significant inhibition in intestinal thiamin uptake. This inhibition is mediated by a secreted heat-labile toxin and is associated with a decrease in the expression of intestinal thiamin transporters. PMID:24133060

Ghosal, Abhisek; Chatterjee, Nabendu S.; Chou, Tristan

2013-01-01

348

Utility of in vitro systems and preclinical data for the prediction of human intestinal first-pass metabolism during drug discovery and preclinical development.  

PubMed

A growing awareness of the risks associated with extensive intestinal metabolism has triggered an interest in developing robust methods for its quantitative assessment. This study explored the utility of intestinal S9 fractions, human liver microsomes, and recombinant cytochromes P450 to quantify CYP3A-mediated intestinal extraction in humans for a selection of marketed drugs that are predominantly metabolized by CYP3A4. A simple competing rates model is used to estimate the fraction of drug escaping gut wall metabolism (fg) from in vitro intrinsic clearance in humans. The fg values extrapolated from the three in vitro systems used in this study, together with literature-derived fg from human intestinal microsomes, were validated against fg extracted from human in vivo pharmacokinetic (PK) profiles using a generic whole-body physiologically-based pharmacokinetic (PBPK) model. The utility of the rat as a model for human CYP3A-mediated intestinal metabolism was also evaluated. Human fg from PBPK compares well with that from the grapefruit juice method, justifying its use for the evaluation of human in vitro systems. Predictive performance of all human in vitro systems was comparable [root mean square error (RMSE) = 0.22-0.27; n = 10]. Rat fg derived from in vivo PK profiles using PBPK has the lowest RMSE (0.19; n = 11) for the prediction of human fg for the selected compounds, most of which have a fraction absorbed close to 1. On the basis of these evaluations, the combined use of fg from human in vitro systems and rats is recommended for the estimation of CYP3A4-mediated intestinal metabolism in lead optimization and preclinical development phases. PMID:23918667

Karlsson, Fredrik H; Bouchene, Salim; Hilgendorf, Constanze; Dolgos, Hugues; Peters, Sheila Annie

2013-12-01

349

Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue.  

PubMed Central

Lymphocyte homing to normal tissues and recruitment to inflammatory tissue sites are controlled, in part, by the selective expression of chemokines, pro-inflammatory cytokines and mediators, and various adhesion proteins and molecules. In the mouse, mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is selectively expressed on endothelium of high endothelial venules in gut and gut-associated lymphoid tissue. By interaction with its integrin ligand, alpha 4 beta 7, lymphocytes presumed to be involved in mucosal immunity are selectively recruited to these intestinal sites. After generating monoclonal antibodies against a murine cell line expressing recombinant human MAdCAM-1, we qualitatively and semiquantitatively assessed MAdCAM-1 expression in human tissue sections from various normal and inflammatory disorders. We found that human MAdCAM-1, as in the mouse, is expressed in a tissue-selective manner. In normal tissues, MAdCAM-1 is constitutively expressed to endothelium of venules of intestinal lamina propria. Interestingly, using computer-assisted morphometric analysis, the proportion of venular endothelium within lamina propria that expresses MAdCAM-1 is increased, compared with normal tissues, at inflammatory foci associated with ulcerative colitis and Crohn's disease. Moreover, for the most part, MAdCAM-1 is not detected in the majority of normal or inflamed extra-intestinal tissues, including those with mucosal surfaces. These results are consistent with a role, as originally defined in the mouse, for human MAdCAM-1 in the localization of alpha 4 beta 7+ lymphocytes in the gastrointestinal tract and associated lymphoid tissue. As such, the pathway defined by MAdCAM-1/alpha 4 beta 7 may be a relevant tissue-specific therapeutic target for the modulation of inflammatory bowel disease activity. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9212736

Briskin, M.; Winsor-Hines, D.; Shyjan, A.; Cochran, N.; Bloom, S.; Wilson, J.; McEvoy, L. M.; Butcher, E. C.; Kassam, N.; Mackay, C. R.; Newman, W.; Ringler, D. J.

1997-01-01

350

Solubilization of the active vasoactive intestinal peptide receptor from human colonic adenocarcinoma cells.  

PubMed

The non-ionic detergent n-octyl-beta-D-glucopyranoside was used to solubilize the VIP (vasoactive intestinal peptide) receptor from human colonic adenocarcinoma cell line HT29-D4. The binding of monoiodinated 125I-VIP to the solubilized receptor was specific, time-dependent, and reversible. Scatchard analysis of data obtained from competitive displacement of monoiodinated 125I-VIP by native VIP suggested the presence of two classes of VIP binding sites with Kd values of 0.32 and 46.7 nM. The binding capacities of these two classes were 1.7 x 10(10) and 30.2 x 10(10) sites/mg of proteins, respectively. The solubilized receptor retained the specificity of the human VIP receptor towards the peptides of the VIP/secretin/glucagon family. The order of potency in inhibiting monoiodinated 125I-VIP binding was VIP (IC50 = 1.0 x 10(-9) M) much greater than peptide histidine methionine amide (IC50 = 10(-7) M) greater than growth hormone-releasing factor (IC50 = 3 x 10(-7) M) greater than secretin (IC50 greater than 10(-6) M); glucagon had no effect on VIP binding. The reducing agent dithiothreitol inhibited in a dose-dependent manner the binding of 125I-VIP. Covalent cross-linking experiments between the solubilized receptor and 125I-VIP showed that after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography two major and one minor polypeptides of Mr 67,000, 72,000, and 83,000 were specifically labeled. When analyzed by gel filtration, the n-octyl-beta-D-glucopyranoside-solubilized 125I-VIP-receptor complex was resolved into two major peaks with molecular mass in the range of 60-70 and 270-300 kDa. Thus, the soluble form of the VIP receptor was probably a multimeric complex in which disulfide bonds may play an important role to hold the receptor in an active configuration. PMID:2846575

el Battari, A; Martin, J M; Luis, J; Pouzol, O; Secchi, J; Marvaldi, J; Pichon, J

1988-11-25

351

Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans?  

PubMed Central

In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines. PMID:21603205

Bargieri, Daniel Y.; Soares, Irene S.; Costa, Fabio T. M.; Braga, Catarina J.; Ferreira, Luis C. S.; Rodrigues, Mauricio M.

2011-01-01

352

Characterization of a large human transgene following invasin-mediated delivery in a bacterial artificial chromosome  

PubMed Central

Bacterial artificial chromosomes (BACs) are widely used in transgenesis, particularly for the humanization of animal models. Moreover, due to their extensive capacity, BACs provide attractive tools to study distal regulatory elements associated with large gene loci. However, despite their widespread use, little is known about the integration dynamics of these large transgenes in mammalian cells. Here, we investigate the post-integration structure of a ~260 kb BAC carrying the cystic fibrosis transmembrane conductance regulator (CFTR) locus following delivery by bacterial invasion and compare this to the outcome of a more routine lipid-based delivery method. We find substantial variability in integrated copy number and expression levels of the BAC CFTR transgene after bacterial invasion-mediated delivery. Furthermore, we frequently observed variation in the representation of different regions of the CFTR transgene within individual cell clones, indicative of BAC fragmentation. Finally, using fluorescence in situ hybridization (FISH), we observed that the integrated BAC forms extended, megabase-scale structures in some clones that are apparently stably maintained at cell division. These data demonstrate that the utility of large BACs to investigate cis-regulatory elements in the genomic context may be limited by recombination events that complicate their use. PMID:23749207

Gillen, Austin E.; Lucas, Catherine A.; Haussecker, Pei Ling; Kosak, Steven T.; Harris, Ann

2013-01-01

353

Large intestine  

NSDL National Science Digital Library

The large intestine is larger and shorter than the small intestine and connects to the small intestine and the anus. Nutrient deficient material from the small intestine travels through the large intestine to the anus. This material is called feces and is excreted. Feces is made up of material that our bodies cannot break down into smaller parts to be used by the body.

Katie Hale (CSUF; )

2007-08-18

354

The l-3,4-dihydroxyphenylalanine transporter in human and rat epithelial intestinal cells is a type 2 hetero amino acid exchanger  

Microsoft Academic Search

Information on the intestinal transport of l-3,4-dihydroxyphenylalanine (l-DOPA) is scarce. We present here the functional characteristics and regulation of the apical inward l-DOPA transport in two intestinal epithelial cell lines (human Caco-2 and rat IEC-6). The inward transfer of l-DOPA and l-leucine was promoted through an energy-driven system but with different sensitivity to extracellular Na+ concentration: a minor component of

Sónia Fraga; Maria Paula Serrão; Patr??cio Soares-da-Silva

2002-01-01

355

Persistence and Toxin Production by Clostridium difficile within Human Intestinal Organoids Result in Disruption of Epithelial Paracellular Barrier Function.  

PubMed

Clostridium difficile is the leading cause of infectious nosocomial diarrhea. The pathogenesis of C. difficile infection (CDI) results from the interactions between the pathogen, intestinal epithelium, host immune system, and gastrointestinal microbiota. Previous studies of the host-pathogen interaction in CDI have utilized either simple cell monolayers or in vivo models. While much has been learned by utilizing these approaches, little is known about the direct interaction of the bacterium with a complex host epithelium. Here, we asked if human intestinal organoids (HIOs), which are derived from pluripotent stem cells and demonstrate small intestinal morphology and physiology, could be used to study the pathogenesis of the obligate anaerobe C. difficile. Vegetative C. difficile, microinjected into the lumen of HIOs, persisted in a viable state for up to 12 h. Upon colonization with C. difficile VPI 10463, the HIO epithelium is markedly disrupted, resulting in the loss of paracellular barrier function. Since similar effects were not observed when HIOs were colonized with the nontoxigenic C. difficile strain F200, we directly tested the role of toxin using TcdA and TcdB purified from VPI 10463. We show that the injection of TcdA replicates the disruption of the epithelial barrier function and structure observed in HIOs colonized with viable C. difficile. PMID:25312952

Leslie, Jhansi L; Huang, Sha; Opp, Judith S; Nagy, Melinda S; Kobayashi, Masayuki; Young, Vincent B; Spence, Jason R

2015-01-01

356

Persistence and Toxin Production by Clostridium difficile within Human Intestinal Organoids Result in Disruption of Epithelial Paracellular Barrier Function  

PubMed Central

Clostridium difficile is the leading cause of infectious nosocomial diarrhea. The pathogenesis of C. difficile infection (CDI) results from the interactions between the pathogen, intestinal epithelium, host immune system, and gastrointestinal microbiota. Previous studies of the host-pathogen interaction in CDI have utilized either simple cell monolayers or in vivo models. While much has been learned by utilizing these approaches, little is known about the direct interaction of the bacterium with a complex host epithelium. Here, we asked if human intestinal organoids (HIOs), which are derived from pluripotent stem cells and demonstrate small intestinal morphology and physiology, could be used to study the pathogenesis of the obligate anaerobe C. difficile. Vegetative C. difficile, microinjected into the lumen of HIOs, persisted in a viable state for up to 12 h. Upon colonization with C. difficile VPI 10463, the HIO epithelium is markedly disrupted, resulting in the loss of paracellular barrier function. Since similar effects were not observed when HIOs were colonized with the nontoxigenic C. difficile strain F200, we directly tested the role of toxin using TcdA and TcdB purified from VPI 10463. We show that the injection of TcdA replicates the disruption of the epithelial barrier function and structure observed in HIOs colonized with viable C. difficile. PMID:25312952

Leslie, Jhansi L.; Huang, Sha; Opp, Judith S.; Nagy, Melinda S.; Kobayashi, Masayuki; Young, Vincent B.

2014-01-01

357

Comparative Analysis of the Cytotoxic Effects of Okadaic Acid-Group Toxins on Human Intestinal Cell Lines  

PubMed Central

The phycotoxin, okadaic acid (OA) and dinophysistoxin 1 and 2 (DTX-1 and -2) are protein phosphatase PP2A and PP1 inhibitors involved in diarrhetic shellfish poisoning (DSP). Data on the toxicity of the OA-group toxins show some differences with respect to the in vivo acute toxicity between the toxin members. In order to investigate whether OA and congeners DTX-1 and -2 may induce different mechanisms of action during acute toxicity on the human intestine, we compared their toxicological effects in two in vitro intestinal cell models: the colorectal adenocarcinoma cell line, Caco-2, and the intestinal muco-secreting cell line, HT29-MTX. Using a high content analysis approach, we evaluated various cytotoxicity parameters, including apoptosis (caspase-3 activation), DNA damage (phosphorylation of histone H2AX), inflammation (translocation of NF-?B) and cell proliferation (Ki-67 production). Investigation of the kinetics of the cellular responses demonstrated that the three toxins induced a pro-inflammatory response followed by cell cycle disruption in both cell lines, leading to apoptosis. Our results demonstrate that the three toxins induce similar effects, as no major differences in the cytotoxic responses could be detected. However DTX-1 induced cytotoxic effects at five-fold lower concentrations than for OA and DTX-2. PMID:25196936

Ferron, Pierre-Jean; Hogeveen, Kevin; Fessard, Valérie; Le Hégarat, Ludovic

2014-01-01

358

Probiotic Lactobacillus rhamnosus GG mono-association suppresses human rotavirus-induced autophagy in the gnotobiotic piglet intestine  

PubMed Central

Background Human rotavirus (HRV) is the most important cause of severe diarrhea in infants and young children. Probiotic Lactobacillus rhamnosus GG (LGG) reduces rotavirus infection and diarrhea. However, the molecular mechanisms of LGG-mediated protection from rotavirus infection are poorly understood. Autophagy plays an essential role in responses to microbial pathogens. However, the role of autophagy in HRV infection and LGG treatment is unknown. We hypothesize that rotavirus gastroenteritis activates autophagy and that LGG suppresses virus-induced autophagy and prevents intestinal damage in infected piglets. Methods We used LGG feeding to combat viral gastroenteritis in the gnotobiotic pig model of virulent HRV infection. Results We found that LGG feeding did not increase autophagy, whereas virus infection induced autophagy in the piglet intestine. Virus infection increased the protein levels of the autophagy markers ATG16L1 and Beclin-1 and the autophagy regulator mTOR. LGG treatment during viral gastroenteritis reduced autophagy marker expression to normal levels, induced apoptosis and partially prevented virus-induced tissue damage. Conclusion Our study provides new insights into virus-induced autophagy and LGG suppression of uncontrolled autophagy and intestinal injury. A better understanding of the antiviral activity of LGG will lead to novel therapeutic strategies for infant infectious diseases. PMID:23924832

2013-01-01

359

Intestinal transplantation: living related  

Microsoft Academic Search

The use of live donors in intestinal transplantation could potentially both reduce the severity of rejection responses against this highly immunogenic organ by better tissue matching and also reduce cold ischaemia times. These two advantages over cadaveric grafts could preserve mucosal integrity and reduce the risk of systemic sepsis from bacterial translocation. The disadvantages of live donation are the inherent

Stephen G Pollard

360

Induction of sister chromatid exchanges and bacterial revertants by organic extracts of airborne particles. [Humans  

SciTech Connect

The genotoxicities of organic extracts of airborne particles have been studied extensively in the Salmonella/mammalian microsome (Ames) test, but in few other bioassays. In these studies, we tested benzene-acetone extracts of particulate pollutants collected in Lexington, Kentucky, for capacity to induce increases in sister chromatid exchanges (SCE) in human lumphocytes and V79 cells, as well as in the Ames assay. Extracts induced linear dose-related increases in SCE in human lumphocytes and in bacterial revertants.However, variable responses were observed in SCE assays in V79 cells with and without activation by rat liver S9 or feeder layers of irradiated Syrian hamster fetal cells. We conclude that the SCE assay in human lumphocytes may be a useful indicator of the potential risks to humans of airborne particulate pollutants, as it utilizes human cells recently taken from the host, is rapid and economical, and requires small quantities of test materials. However, thorough studies of the quantitative relationships between SCE induction and mutagenicity in human cells are needed.

Lockard, J.M. (Thomas Hunt Morgan School of Biological Sciences, Lexington, KY); Viau, C.J.; Lee-Stephens, C.; Caldwell, J.C.; Wojciechowski, J.P.; Enoch, H.G.; Sabharwal, P.S.

1981-01-01

361

Changes in the intestinal microbiota from adulthood through to old age.  

PubMed

The human intestinal microbiota comprises a complex community whose composition has been resolved in fine detail by recent culture-independent methodologies. The adult intestinal microbiota is stable within individuals, and individual specific when examined at high resolution. Infants and older persons, however, represent stages of life in which the microbiota is in flux. Since changes in the intestinal microbiota are associated with certain diseases or health issues, we have examined the composition and function of the intestinal microbiota in 500 subjects over 65 years of age in Ireland. Medical, biochemical and immunological parameters were measured for all subjects. Faecal microbiota was measured by amplicon pyrosequencing. The data revealed significant inter-individual variation, especially in the proportions of some major bacterial phyla, and significant differences in the microbiota compared with younger adults. These data support the notion of modulating the intestinal microbiota of older people to promote enhanced nutrition utilization and to improve general health. PMID:22647048

O'Toole, P W

2012-07-01

362

Transcriptional regulation of the human Na{sup +}/H{sup +} exchanger NHE3 by serotonin in intestinal epithelial cells  

SciTech Connect

Serotonin (5-HT) decreases NHE2 and NHE3 activities under acute conditions in human intestinal epithelial cells. Here, we have investigated the effects of 5-HT on expression of the human NHE3 gene and the mechanisms underlying its transcriptional regulation in differentiated C2BBe1 cells. Treatment of the human intestinal epithelial cell line, C2BBe1, with 5-HT (20 {mu}M) resulted in a significant decrease in NHE3 mRNA and protein expression. In transient transfection studies, 5-HT repressed the NHE3 promoter activity by {approx}55%. The repression of the NHE3 promoter activity in response to 5-HT was accompanied by reduced DNA-binding activity of transcription factors Sp1 and Sp3 to the NHE3 promoter without alteration in their nuclear levels. Pharmacological inhibitors of protein kinase C reversed the inhibitory effect of 5-HT on the promoter activity. Our data indicate that 5-HT suppresses the transcriptional activity of the NHE3 promoter and this effect may be mediated by PKC{alpha} and modulation of DNA-binding affinities of Sp1 and Sp3.

Amin, Md Ruhul; Ghannad, Leda; Othman, Ahmad; Gill, Ravinder K. [Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612 (United States)] [Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612 (United States); Dudeja, Pradeep K.; Ramaswamy, Krishnamurthy [Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612 (United States) [Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612 (United States); Jesse Brown VAMC, Chicago, IL 60612 (United States); Malakooti, Jaleh, E-mail: malakoot@uic.edu [Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612 (United States)] [Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612 (United States)

2009-05-08

363

Intestinal Cancer  

MedlinePLUS

... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

364

13-Desmethyl spirolide-c and 13,19-didesmethyl spirolide-c trans-epithelial permeabilities: Human intestinal permeability modelling  

Microsoft Academic Search

Human intestinal permeability prediction is an increasingly important field that helps to explain how efficient the absorption of drugs is. Spirolides, cyclic imines produced by dinoflagellates from the genera Alexandrium, can be accumulated in mollusks usually consumed by humans. These compounds exert neurological symptoms when injected intra-peritoneally in mice, although they seem to be less toxic by oral administration. In

Begoña Espiña; Paz Otero; M. Carmen Louzao; Amparo Alfonso; Luis M. Botana

2011-01-01

365

The importance of the viable but non-culturable state in human bacterial pathogens  

PubMed Central

Many bacterial species have been found to exist in a viable but non-culturable (VBNC) state since its discovery in 1982. VBNC cells are characterized by a loss of culturability on routine agar, which impairs their detection by conventional plate count techniques. This leads to an underestimation of total viable cells in environmental or clinical samples, and thus poses a risk to public health. In this review, we present recent findings on the VBNC state of human bacterial pathogens. The characteristics of VBNC cells, including the similarities and differences to viable, culturable cells and dead cells, and different detection methods are discussed. Exposure to various stresses can induce the VBNC state, and VBNC cells may be resuscitated back to culturable cells under suitable stimuli. The conditions that trigger the induction of the VBNC state and resuscitation from it are summarized and the mechanisms underlying these two processes are discussed. Last but not least, the significance of VBNC cells and their potential influence on human health are also reviewed. PMID:24917854

Li, Laam; Mendis, Nilmini; Trigui, Hana; Oliver, James D.; Faucher, Sebastien P.

2014-01-01

366

The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens.  

PubMed

During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host. PMID:25578955

van der Veen, Stijn; Tang, Christoph M

2015-02-01

367

Transport mechanisms of nicotine across the human intestinal epithelial cell line Caco-2.  

PubMed

Ulcerative colitis is a disease more commonly seen in nonsmokers. Because nicotine was postulated to be a beneficial component of tobacco smoke for ulcerative colitis, various formulations of nicotine have been developed to improve the local bioavailability within the gastrointestinal tissue. In the present study, to characterize the disposition of nicotine in the intestines, we investigated intestinal nicotine transport using Caco-2 cells. Nicotine was predominantly transported across Caco-2 cell monolayers in a unidirectional mode, corresponding to intestinal secretion, by pH-dependent specific transport systems. The specific uptake systems appear to be distinct from organic cation transporters and the transport system for tertiary amines, in terms of its substrate specificity and the pattern of the interaction. These transport systems could play a role in the intestinal accumulation of nicotine from plasma and could also be responsible for the topical delivery of nicotine for ulcerative colitis therapy. These findings could provide useful information for the design of effective nicotine delivery. PMID:12130712

Fukada, Atsuko; Saito, Hideyuki; Inui, Ken-Ichi

2002-08-01

368

Sitagliptin, a DPP-4 inhibitor, acutely inhibits intestinal lipoprotein particle secretion in healthy humans.  

PubMed

The dipeptidyl peptidase-4 inhibitor sitagliptin, an antidiabetic agent, which lowers blood glucose levels, also reduces postprandial lipid excursion after a mixed meal. The underlying mechanism of this effect, however, is not clear. This study examined the production and clearance of triglyceride-rich lipoprotein particles from the liver and intestine in healthy volunteers in response to a single oral dose of sitagliptin. Using stable isotope tracer techniques and with control of pancreatic hormone levels, the kinetics of lipoprotein particles of intestinal and hepatic origin were measured. Compared with placebo, sitagliptin decreased intestinal lipoprotein concentration by inhibiting particle production, independent of changes in pancreatic hormones, and circulating levels of glucose and free fatty acids. Fractional clearance of particles of both intestinal and hepatic origin, and production of particles of hepatic origin, were not affected. This pleiotropic effect of sitagliptin may explain the reduction in postprandial lipemia seen in clinical trials of this agent and may provide metabolic benefits beyond lowering of glucose levels. PMID:24584549

Xiao, Changting; Dash, Satya; Morgantini, Cecilia; Patterson, Bruce W; Lewis, Gary F

2014-07-01

369

Human intestinal diamine oxidase (DAO) activity in Crohn's disease: A new marker for disease assessment?  

Microsoft Academic Search

The key-enzyme for the metabolism of diamines in man is diamine oxidase (DAO). Its highest activities are in the intestinal mucosa, localized in the cytoplasm of the mature enterocytes of the small and large bowel. If the gut is affected by inflammation in Crohn's disease macroscopical changes are observed. This prospective study investigated if these mucosal alterations are also reflected

W. U. Schmidt; J. Sattler; R. Hesterberg; H. D. Röher; Th. Zoedler; H. Sitter; W. Lorenz

1990-01-01

370

Vasoactive intestinal peptide induction by ciliary neurotrophic factor in donor human corneal endothelium in situ  

Microsoft Academic Search

After peripheral nerve axotomy, vasoactive intestinal peptide (VIP) gene expression is upregulated in neurons, whereas ciliary neurotrophic factor (CNTF) accumulates extracellularly at the lesion site. Although CNTF-induced VIP gene expression has been reported in cultured sympathetic neurons and neuroblastoma cells, it still remains to be determined if CNTF and VIP play interrelated roles in nerve injury. The corneal endothelium, like

Shay-Whey M. Koh; Yan Guo; Steve L. Bernstein; James A. Waschek; Xiuhuai Liu; Aviva J. Symes

2007-01-01

371

Activity of Quinolone CP-115,955 Against Bacterial and Human Type II Topoisomerases Is Mediated by Different Interactions.  

PubMed

CP-115,955 is a quinolone with a 4-hydroxyphenyl at C7 that displays high activity against both bacterial and human type II topoisomerases. To determine the basis for quinolone cross-reactivity between bacterial and human enzymes, the activity of CP-115,955 and a series of related quinolones and quinazolinediones against Bacillus anthracis topoisomerase IV and human topoisomerase II? was analyzed. Results indicate that the activity of CP-115,955 against the bacterial and human enzymes is mediated by different interactions. On the basis of the decreased activity of quinazolinediones against wild-type and resistant mutant topoisomerase IV and the low activity of quinolones against resistant mutant enzymes, it appears that the primary interaction of CP-115,955 with the bacterial system is mediated through the C3/C4 keto acid and the water-metal ion bridge. In contrast, the drug interacts with the human enzyme primarily through the C7 4-hydroxyphenyl ring and has no requirement for a substituent at C8 in order to attain high activity. Despite the fact that the human type II enzyme is unable to utilize the water-metal ion bridge, quinolones in the CP-115,955 series display higher activity against topoisomerase II? in vitro and in cultured human cells than the corresponding quinazolinediones. Thus, quinolones may be a viable platform for the development of novel drugs with anticancer potential. PMID:25586498

Aldred, Katie J; Schwanz, Heidi A; Li, Gangqin; Williamson, Benjamin H; McPherson, Sylvia A; Turnbough, Charles L; Kerns, Robert J; Osheroff, Neil

2015-02-10

372

Adaptive regulation of human intestinal thiamine uptake by extracellular substrate level: a role for THTR-2 transcriptional regulation.  

PubMed

The intestinal thiamine uptake process is adaptively regulated by the level of vitamin in the diet, but the molecular mechanism involved is not fully understood. Here we used the human intestinal epithelial Caco-2 cells exposed to different levels of extracellular thiamine to delineate the molecular mechanism involved. Our results showed that maintaining Caco-2 cells in a thiamine-deficient medium resulted in a specific and significant increase of [3H]thiamine uptake compared with cell exposure to a high level of thiamine (1 mM). This adaptive regulation was also associated with a higher level of mRNA expression of thiamine transporter-2 (THTR-2), but not thiamine transporter-1 (THTR-1), in the deficient condition and a higher level of promoter activity of gene encoding THTR-2 (SLC19A3). Using 5'-truncated promoter-luciferase constructs, we identified the thiamine level-responsive region in the SLC19A3 promoter to be between -77 and -29 (using transcriptional start site as +1). By means of mutational analysis, a key role for a stimulating protein-1 (SP1)/guanosine cytidine box in mediating the effect of extracellular thiamine level on SLC19A3 promoter was established. Furthermore, extracellular level of thiamine was found to affect SP1 protein expression and binding pattern to the thiamine level-responsive region of SLC19A3 promoter in Caco-2 cells as shown by Western blotting and electrophoretic mobility shift assay analysis, respectively. These studies demonstrate that the human intestinal thiamine uptake is adaptively regulated by the extracellular substrate level via transcriptional regulation of the THTR-2 system, and report that SP1 transcriptional factor is involved in this regulation. PMID:23989004

Nabokina, Svetlana M; Subramanian, Veedamali S; Valle, Judith E; Said, Hamid M

2013-10-15

373

Short-Chain Fructo-Oligosaccharides Modulate Intestinal Microbiota and Metabolic Parameters of Humanized Gnotobiotic Diet Induced Obesity Mice  

PubMed Central

Prebiotic fibres like short-chain fructo-oligosaccharides (scFOS) are known to selectively modulate the composition of the intestinal microbiota and especially to stimulate Bifidobacteria. In parallel, the involvement of intestinal microbiota in host metabolic regulation has been recently highlighted. The objective of the study was to evaluate the effect of scFOS on the composition of the faecal microbiota and on metabolic parameters in an animal model of diet-induced obesity harbouring a human-type microbiota. Forty eight axenic C57BL/6J mice were inoculated with a sample of faecal human microbiota and randomly assigned to one of 3 diets for 7 weeks: a control diet, a high fat diet (HF, 60% of energy derived from fat)) or an isocaloric HF diet containing 10% of scFOS (HF-scFOS). Mi