Science.gov

Sample records for human knee joint

  1. Computational Poromechanics of Human Knee Joint

    NASA Astrophysics Data System (ADS)

    Kazemi, Mojtaba; Li, LePing

    2012-02-01

    Extensive computer modeling has been performed in the recent decade to investigate the mechanical response of the healthy and repaired knee joints. Articular cartilages and menisci have been commonly modeled as single-phase elastic materials in the previous 3D simulations. A comprehensive study considering the interplay of the collagen fibers and fluid pressurization in the tissues in situ remains challenging. We have developed a 3D model of the human knee accounting for the mechanical function of collagen fibers and fluid flow in the cartilages and menisci. An anatomically accurate structure of the human knee was used for this purpose including bones, articular cartilages, menisci and ligaments. The fluid pressurization in the femoral cartilage and menisci under combined creep loading was investigated. Numerical results showed that fluid flow and pressure in the tissues played an important role in the mechanical response of the knee joint. The load transfer in the joint was clearly seen when the fluid pressure was considered.

  2. In vivo human knee joint dynamic properties as functions of muscle contraction and joint position.

    PubMed

    Zhang, L Q; Nuber, G; Butler, J; Bowen, M; Rymer, W Z

    1998-01-01

    Information on the dynamic properties (joint stiffness, viscosity and limb inertia) of the human knee joint is scarce in the literature, especially for actively contracting knee musculature. A joint driving device was developed to apply small-amplitude random perturbations to the human knee at several flexion angles with the subject maintaining various levels of muscle contraction. It was found that joint stiffness and viscosity increased with muscle contraction substantially, while limb inertia was constant. Stiffness produced by the quadriceps was highest at 30 degrees flexion and decreased with increasing or decreasing flexion angle, while knee flexors produced highest stiffness at 90 degree flexion. When knee flexion was < 60 degrees, stiffness produced by the quadriceps was higher than that of the hamstrings and gastrocnemius at the same level of background muscle torque, while knee flexor muscles produced higher stiffnesses than the quadriceps at 90 degree flexion. Similar but less obvious trends were observed for joint viscosity. Passive joint stiffness at full knee extension was significantly higher than in more flexed positions. Surprisingly, as the knee joint musculature changed from relaxed to contracting at 50% MVC, system damping ratio remained at about 0.2. This outcome potentially simplifies neuromuscular control of the knee joint. In contrast, the natural undamped frequency increased more than twofold, potentially making the knee joint respond more quickly to the central nervous system commands. The approach described here provides us with a potentially valuable tool to quantify in vivo dynamic properties of normal and pathological human knee joints. PMID:9596540

  3. Mathematical modeling of the human knee joint

    SciTech Connect

    Ricafort, Juliet

    1996-05-01

    A model was developed to determine the forces exerted by several flexor and extensor muscles of the human knee under static conditions. The following muscles were studied: the gastrocnemius, biceps femoris, semitendinosus, semimembranosus, and the set of quadricep muscles. The tibia and fibula were each modeled as rigid bodies; muscles were modeled by their functional lines of action in space. Assumptions based on previous data were used to resolve the indeterminacy.

  4. Interpolation function for approximating knee joint behavior in human gait

    NASA Astrophysics Data System (ADS)

    Toth-Taşcǎu, Mirela; Pater, Flavius; Stoia, Dan Ioan

    2013-10-01

    Starting from the importance of analyzing the kinematic data of the lower limb in gait movement, especially the angular variation of the knee joint, the paper propose an approximation function that can be used for processing the correlation among a multitude of knee cycles. The approximation of the raw knee data was done by Lagrange polynomial interpolation on a signal acquired using Zebris Gait Analysis System. The signal used in approximation belongs to a typical subject extracted from a lot of ten investigated subjects, but the function domain of definition belongs to the entire group. The study of the knee joint kinematics plays an important role in understanding the kinematics of the gait, this articulation having the largest range of motion in whole joints, in gait. The study does not propose to find an approximation function for the adduction-abduction movement of the knee, this being considered a residual movement comparing to the flexion-extension.

  5. Knee joint replacement

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002974.htm Knee joint replacement To use the sharing features on this page, please enable JavaScript. Knee joint replacement is a surgery to replace a knee ...

  6. Recent Advances in Computational Mechanics of the Human Knee Joint

    PubMed Central

    Kazemi, M.; Dabiri, Y.; Li, L. P.

    2013-01-01

    Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling. PMID:23509602

  7. A Study of Knee Joint Kinematics and Mechanics using a Human FE Model.

    PubMed

    Kitagawa, Yuichi; Hasegawa, Junji; Yasuki, Tsuyoshi; Iwamoto, Masami; Miki, Kazuo

    2005-11-01

    Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices. The purposes of this study are first to understand the kinematics of the knee joint during flexion, and second to characterize the mechanics of the knee joint under anterior-posterior loading. A finite element model of the knee joint, extracted from the Total Human Model for Safety (THUMS), was used to analyze the mechanism. The model was validated against kinematics and mechanical responses of the human knee joint. By tracking the relative positions and angles between the patella and the tibia in a knee flexing simulation, the magnitude of the tibial anterior protuberance was described as a function of the knee joint angle. The model revealed that the mechanics of the knee joint was characterized as a combination of stiffness of the patella-femur structure and the PCL It was also found that the magnitude of the tibial anterior protuberance determined the amount of initial stretch of the PCL in anterior-posterior loading. Based on the knee joint kinematics and mechanics, an interference boundary was proposed for different knee flexion angles, so

  8. Self-adjusting, isostatic exoskeleton for the human knee joint.

    PubMed

    Cai, Viet Anh Dung; Bidaud, Philippe; Hayward, Vincent; Gosselin, Florian; Desailly, Eric

    2011-01-01

    A knee-joint exoskeleton design that can apply programmable torques to the articulation and that self-adjusts to its physiological movements is described. Self-adjustment means that the articular torque is automatically produced around the rotational axis of the joint. The requirements are first discussed and the conditions under which the system tracks the spatial relative movements of the limbs are given. If these conditions are met, the torque applied to the joint takes into account the possible relative movements of the limbs without introducing constraints. A prototype was built to demonstrate the applicability of these principles and preliminary tests were carried out to validate the design. PMID:22254384

  9. Knee joint replacement - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100088.htm Knee joint replacement - series—Normal anatomy To use the sharing ... of 4 Overview The knee is a complex joint. It contains the distal end of the femur ( ...

  10. Parameters Estimation For A Patellofemoral Joint Of A Human Knee Using A Vector Method

    NASA Astrophysics Data System (ADS)

    Ciszkiewicz, A.; Knapczyk, J.

    2015-08-01

    Position and displacement analysis of a spherical model of a human knee joint using the vector method was presented. Sensitivity analysis and parameter estimation were performed using the evolutionary algorithm method. Computer simulations for the mechanism with estimated parameters proved the effectiveness of the prepared software. The method itself can be useful when solving problems concerning the displacement and loads analysis in the knee joint.

  11. Parameters Estimation for the Spherical Model of the Human Knee Joint Using Vector Method

    NASA Astrophysics Data System (ADS)

    Ciszkiewicz, A.; Knapczyk, J.

    2014-08-01

    Position and displacement analysis of a spherical model of a human knee joint using the vector method was presented. Sensitivity analysis and parameter estimation were performed using the evolutionary algorithm method. Computer simulations for the mechanism with estimated parameters proved the effectiveness of the prepared software. The method itself can be useful when solving problems concerning the displacement and loads analysis in the knee joint

  12. Knee joint replacement

    MedlinePlus

    The results of a total knee replacement are often excellent. The operation relieves pain for most people. Most people do not need help walking after they fully recover. Most artificial knee joints last 10 ...

  13. Dynamic and static control of the human knee joint in abduction-adduction.

    PubMed

    Zhang, L Q; Wang, G

    2001-09-01

    It is unclear whether humans can voluntarily control dynamic and static properties in knee abduction-adduction, which may be important in performing functional tasks and preventing injuries, whether the main load is about the abduction axis or not. A joint-driving device was used to perturb the knee in abduction-adduction at full knee extension under both passive (muscle relaxed) and active (muscle contracted in abduction or adduction) conditions. Dynamic control properties in knee abduction-adduction were characterized by joint stiffness, viscosity, and limb inertia, and quasi-static knee torque-angle relationship was characterized by knee abduction-adduction laxity and quasi-static stiffness (at a 20Nm moment). It was found that the subjects were capable of generating net abduction and adduction moment through differential co-contraction of muscles crossing the medial and lateral sides of the knee, which helped to reduce the abduction-adduction joint laxity (p< or =0.01) and increase stiffness (p<0.027) and viscous damping. Knee abduction laxity was significantly lower than adduction laxity (p=0.043) and the quasi-static abduction stiffness was significantly higher than adduction stiffness (p<0.001). The knee joint showed significantly higher stiffness and viscosity in abduction-adduction than their counterparts in knee flexion-extension at comparable levels of joint torque (p<0.05). Similar to dynamic flexion-extension properties, the system damping ratio remained constant over different levels of contraction, indicating simplified control tasks for the central nervous system; while the natural undamped frequency increased considerably with abduction-adduction muscle contraction, presumably making the knee a quicker system during strenuous tasks involving strong muscle contraction. PMID:11506781

  14. Computational study of thermal effects of large blood vessels in human knee joint.

    PubMed

    Xue, Xu; He, Zhi Zhu; Liu, Jing

    2013-01-01

    This paper is dedicated to present a comprehensive investigation on the thermal effects of large blood vessels of human knee joint during topical cooling and fomentation treatment. A three-dimensional (3D) finite element analysis by taking full use of the anatomical CAD model of human knee joint was developed to accurately simulate the treatment process. Based on the classical Pennes bio-heat transfer equation, the time evolution of knee joint's temperature distribution and heat flux from large blood vessels was obtained. In addition, we compared several influencing factors and obtained some key conclusions which cannot be easily acquired through clinical experiments. The results indicated that the thermal effects of large blood vessels could remarkably affect the temperature distribution of knee joint during treatment process. Fluctuations of blood flow velocity and metabolic heat production rate affect little on the thermal effects of large blood vessels. Changing the temperature of blood and regimes of treatment could effectively regulate this phenomenon, which is important for many physiological activities. These results provide a guideline to the basic and applied research for the thermally significant large blood vessels in the knee organism. PMID:23196147

  15. 21 CFR 888.3570 - Knee joint femoral (hemi-knee) metallic uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint femoral (hemi-knee) metallic uncemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3570 Knee joint femoral (hemi-knee) metallic uncemented prosthesis. (a) Identification. A knee joint femoral...

  16. 21 CFR 888.3570 - Knee joint femoral (hemi-knee) metallic uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint femoral (hemi-knee) metallic uncemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3570 Knee joint femoral (hemi-knee) metallic uncemented prosthesis. (a) Identification. A knee joint femoral...

  17. 21 CFR 888.3570 - Knee joint femoral (hemi-knee) metallic uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint femoral (hemi-knee) metallic uncemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3570 Knee joint femoral (hemi-knee) metallic uncemented prosthesis. (a) Identification. A knee joint femoral...

  18. Behavioral effect of knee joint motion on body's center of mass during human quiet standing.

    PubMed

    Yamamoto, Akio; Sasagawa, Shun; Oba, Naoko; Nakazawa, Kimitaka

    2015-01-01

    The balance control mechanism during upright standing has often been investigated using single- or double-link inverted pendulum models, involving the ankle joint only or both the ankle and hip joints, respectively. Several studies, however, have reported that knee joint motion during quiet standing cannot be ignored. This study aimed to investigate the degree to which knee joint motion contributes to the center of mass (COM) kinematics during quiet standing. Eight healthy adults were asked to stand quietly for 30s on a force platform. Angular displacements and accelerations of the ankle, knee, and hip joints were calculated from kinematic data obtained by a motion capture system. We found that the amplitude of the angular acceleration was smallest in the ankle joint and largest in the hip joint (ankle < knee < hip). These angular accelerations were then substituted into three biomechanical models with or without the knee joint to estimate COM acceleration in the anterior-posterior direction. Although the "without-knee" models greatly overestimated the COM acceleration, the COM acceleration estimated by the "with-knee" model was similar to the actual acceleration obtained from force platform measurement. These results indicate substantial effects of knee joint motion on the COM kinematics during quiet standing. We suggest that investigations based on the multi-joint model, including the knee joint, are required to reveal the physiologically plausible balance control mechanism implemented by the central nervous system. PMID:25248799

  19. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.

    PubMed

    Sartori, Massimo; Maculan, Marco; Pizzolato, Claudio; Reggiani, Monica; Farina, Dario

    2015-10-01

    This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during overground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion. PMID:26245321

  20. Development of the meniscus of the knee joint in human fetuses.

    PubMed

    Fukazawa, Ikuo; Hatta, Toshihisa; Uchio, Yuji; Otani, Hiroki

    2009-03-01

    Discoid meniscus of the knee joint occurs at a higher incidence in the lateral than in the medial menisci. Although its developmental origin has been suggested, it remains unclear. To verify the developmental etiology, we examined the meniscus of the knee joint in 41 human fetuses (from 14 to 30 weeks of gestation) and 14 adults (from 56 to 91 years of age) comparatively. The articular surfaces of the tibia and meniscus of the left knees in 40 fetuses and 14 adults were photographed and each area was measured by Scion Image (Scion; http://www.scioncorp.com). Morphometric analyses revealed that the proportion of the area of meniscus to that of the plateau was continuously higher in the lateral side than in the medial side. The right knee joints of seven fetuses were histologically observed, and the layered structure of fibers developed earlier in the lateral meniscus than in the medial in fetuses. The observed differential development of lateral and medial sides of the meniscus may be involved in the etiology of discoid meniscus. PMID:19243414

  1. Dynamic simulation of contact in the knee joint during human movements

    NASA Astrophysics Data System (ADS)

    Bei, Yanhong

    2003-07-01

    The knee is one of the most important joints in the human body. Degenerative damage in this joint sometimes results in function loss, and leads to total knee replacements (TKR). However, mild wear of ultra-high-molecular-weight-polyethylene (UHMWPE) tibial inserts greatly affects the longevity of TKRs. To understand the dynamics of the natural knee and to improve TKR implant designs, it is essential to develop proper tools to study the contact and wear mechanism of the knee. This dissertation provides the conceptual and computational details of a methodology for investigating contact and wear in the knee during human movements. It includes four steps: articular geometry preparation, efficient surface-surface distance evaluation, three-dimensional contact model development, and dynamic contact model construction. The geometry of the articular surfaces is obtained from CT and MRI images for the natural knee or from CAD models for the implant designs. The contact model is incorporated into the dynamic simulation system. The dynamic simulation is driven by in vivo fluoroscopy data of gait or stair. Wear is predicted by a computational wear model using the dynamic contact solutions. Sample analyses compare well to experiment results and TKR insert retrievals with reliable accuracy within reasonable CPU time. This methodology is applied to the study of wear sensitivity of TKR polyethylene to insert thickness and patient body mass. The simulations of twenty five combinations of insert thickness (6, 8, 10, 12 and 14 mm) and body mass (50, 75, 100, 125 and 150 kg) are performed in the neighborhood of a nominal simulation that predicts in vivo damage well both quantitatively and qualitatively. Each simulation predicts maximum wear, creep, and damage depth, along with damage area and volume lost. When the polyethylene thickness increases, maximum wear depth, creep depth, damage depth, and volume lost decrease while wear area increases. The regression equations are fit to the

  2. A spectroscopic approach to imaging and quantification of cartilage lesions in human knee joints

    NASA Astrophysics Data System (ADS)

    Johansson, A.; Sundqvist, T.; Kuiper, J.-H.; Öberg, P. Å.

    2011-03-01

    We have previously described a technology based on diffuse reflectance of broadband light for measuring joint articular cartilage thickness, utilizing that optical absorption is different in cartilage and subchondral bone. This study is the first evaluation of the technology in human material. We also investigated the prospects of cartilage lesion imaging, with the specific aim of arthroscopic integration. Cartilage thickness was studied ex vivo in a number of sites (n = 87) on human knee joint condyles, removed from nine patients during total knee replacement surgery. A reflectance spectrum was taken at each site and the cartilage thickness was estimated using the blue, green, red and near-infrared regions of the spectrum, respectively. Estimated values were compared with reference cartilage thickness values (taken after sample slicing) using an exponential model. Two-dimensional Monte Carlo simulations were performed in a theoretical analysis of the experimental results. The reference cartilage thickness of the investigated sites was 1.60 ± 1.30 mm (mean ± SD) in the range 0-4.2 mm. Highest correlation coefficients were seen for the calculations based on the near-infrared region after normalization to the red region (r = 0.86) and for the green region (r = 0.80).

  3. Exercise and the Knee Joint.

    ERIC Educational Resources Information Center

    Clarke, H. Harrison, Ed.

    1976-01-01

    This report by the President's Council on Physical Fitness and Sports examines the effects of various forms of physical exercise on the knee joint which, because of its vulnerability, is especially subject to injury. Discussion centers around the physical characteristics of the joint, commonly used measurements for determining knee stability,…

  4. Biomechanics of knee joint — A review

    NASA Astrophysics Data System (ADS)

    Madeti, Bhaskar Kumar; Chalamalasetti, Srinivasa Rao; Bolla Pragada, S. K. Sundara siva rao

    2015-06-01

    The present paper is to know how the work is carried out in the field of biomechanics of knee. Various model formulations are discussed and further classified into mathematical model, two-dimensional model and three-dimensional model. Knee geometry is a crucial part of human body movement, in which how various views of knee is shown in different planes and how the forces act on tibia and femur are studied. It leads to know the forces acting on the knee joint. Experimental studies of knee geometry and forces acting on knee shown by various researchers have been discussed, and comparisons of results are made. In addition, static and dynamic analysis of knee has been also discussed respectively to some extent.

  5. Techniques for assessing knee joint pain in arthritis

    PubMed Central

    Neugebauer, Volker; Han, Jeong S; Adwanikar, Hita; Fu, Yu; Ji, Guangchen

    2007-01-01

    The assessment of pain is of critical importance for mechanistic studies as well as for the validation of drug targets. This review will focus on knee joint pain associated with arthritis. Different animal models have been developed for the study of knee joint arthritis. Behavioral tests in animal models of knee joint arthritis typically measure knee joint pain rather indirectly. In recent years, however, progress has been made in the development of tests that actually evaluate the sensitivity of the knee joint in arthritis models. They include measurements of the knee extension angle struggle threshold, hind limb withdrawal reflex threshold of knee compression force, and vocalizations in response to stimulation of the knee. A discussion of pain assessment in humans with arthritis pain conditions concludes this review. PMID:17391515

  6. Spacesuit mobility knee joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1979-01-01

    Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  7. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus.

    PubMed

    Akizuki, S; Mow, V C; Müller, F; Pita, J C; Howell, D S; Manicourt, D H

    1986-01-01

    The flow-independent (intrinsic) tensile modulus of the extracellular matrix of human knee joint cartilage has been measured for normal, fibrillated, and osteoarthritic (removed from total knee joint replacements) cartilage. The modulus was determined in our isometric tensile apparatus and measured at equilibrium. We found a linear equilibrium stress-strain behavior up to approximately 15% strain. The modulus was measured for tissues from the high and low weight-bearing areas of the joint surfaces, the medial femoral condyle and lateral patello femoral groove, and from different zones (surface, subsurface, middle, and middle-deep) within the tissue. For all specimens, the intrinsic tensile modulus was always less than 30 MPa. Tissues from low weight-bearing areas (LWA) are stiffer than those from high weight-bearing areas (HWA). The tensile modulus of the ECM correlates strongly with the collagen/proteoglycan ratio; it is higher for LWA than for HWA. Osteoarthritic cartilage from total knee replacement procedures has a tensile stiffness less than 2 MPa. PMID:3783297

  8. Knee joint replacement prosthesis (image)

    MedlinePlus

    A prosthesis is a device designed to replace a missing part of the body, or to make a part of the body work better. The metal prosthetic device in knee joint replacement surgery replaces cartilage and bone which is damaged from disease or aging.

  9. Kinematic and dynamic analysis of an anatomically based knee joint.

    PubMed

    Lee, Kok-Meng; Guo, Jiajie

    2010-05-01

    This paper presents a knee-joint model to provide a better understanding on the interaction between natural joints and artificial mechanisms for design and control of rehabilitation exoskeletons. The anatomically based knee model relaxes several commonly made assumptions that approximate a human knee as engineering pin-joint in exoskeleton design. Based on published MRI data, we formulate the kinematics of a knee-joint and compare three mathematical approximations; one model bases on two sequential circles rolling a flat plane; and the other two are mathematically differentiable ellipses-based models with and without sliding at the contact. The ellipses-based model taking sliding contact into accounts shows that the rolling-sliding ratio of a knee-joint is not a constant but has an average value consistent with published measurements. This knee-joint kinematics leads to a physically more accurate contact-point trajectory than methods based on multiple circles or lines, and provides a basis to derive a knee-joint kinetic model upon which the effects of a planar exoskeleton mechanism on the internal joint forces and torque during flexion can be numerically investigated. Two different knee-joint kinetic models (pin-joint approximation and anatomically based model) are compared against a condition with no exoskeleton. The leg and exoskeleton form a closed kinematic chain that has a significant effect on the joint forces in the knee. Human knee is more tolerant than pin-joint in negotiating around a singularity but its internal forces increase with the exoskeleton mass-to-length ratio. An oversimplifying pin-joint approximation cannot capture the finite change in the knee forces due to the singularity effect. PMID:20189182

  10. Indian Hedgehog in Synovial Fluid Is a Novel Marker for Early Cartilage Lesions in Human Knee Joint

    PubMed Central

    Zhang, Congming; Wei, Xiaochun; Chen, Chongwei; Cao, Kun; Li, Yongping; Jiao, Qiang; Ding, Juan; Zhou, Jingming; Fleming, Braden C.; Chen, Qian; Shang, Xianwen; Wei, Lei

    2014-01-01

    To determine whether there is a correlation between the concentration of Indian hedgehog (Ihh) in synovial fluid (SF) and the severity of cartilage damage in the human knee joints, the knee cartilages from patients were classified using the Outer-bridge scoring system and graded using the Modified Mankin score. Expression of Ihh in cartilage and SF samples were analyzed with immunohistochemistry (IHC), western blot, and enzyme-linked immunosorbent assay (ELISA). Furthermore, we detected and compared Ihh protein levels in rat and mice cartilages between normal control and surgery-induced osteoarthritis (OA) group by IHC and fluorescence molecular tomography in vivo respectively. Ihh expression was increased 5.2-fold in OA cartilage, 3.1-fold in relative normal OA cartilage, and 1.71-fold in OA SF compared to normal control samples. The concentrations of Ihh in cartilage and SF samples was significantly increased in early-stage OA samples when compared to normal samples (r = 0.556; p < 0.001); however, there were no significant differences between normal samples and late-stage OA samples. Up-regulation of Ihh protein was also an early event in the surgery-induced OA models. Increased Ihh is associated with the severity of OA cartilage damage. Elevated Ihh content in human knee joint synovial fluid correlates with early cartilage lesions. PMID:24786088

  11. Knee joint replacement - series (image)

    MedlinePlus

    ... than 3 blocks because of knee pain Loose knee prosthesis Some knee fractures ... an incision over the affected knee. The patella (knee cap) is moved ... helps the prosthesis to adhere better. The two parts of the ...

  12. Rothia prosthetic knee joint infection.

    PubMed

    Trivedi, Manish N; Malhotra, Prashant

    2015-08-01

    Rothia species - Gram-positive pleomorphic bacteria that are part of the normal oral and respiratory flora - are commonly associated with dental cavities and periodontal disease although systemic infections have been described. We describe a 53-year-old female with rheumatoid arthritis complicated by prosthetic knee joint infection due to Rothia species, which was successfully treated by surgical removal of prosthesis and prolonged antimicrobial therapy. The issue of antibiotic prophylaxis before dental procedures among patients with prosthetic joint replacements is discussed. PMID:23357608

  13. The elephant knee joint: morphological and biomechanical considerations

    PubMed Central

    Weissengruber, G E; Fuss, F K; Egger, G; Stanek, G; Hittmair, K M; Forstenpointner, G

    2006-01-01

    Elephant limbs display unique morphological features which are related mainly to supporting the enormous body weight of the animal. In elephants, the knee joint plays important roles in weight bearing and locomotion, but anatomical data are sparse and lacking in functional analyses. In addition, the knee joint is affected frequently by arthrosis. Here we examined structures of the knee joint by means of standard anatomical techniques in eight African (Loxodonta africana) and three Asian elephants (Elephas maximus). Furthermore, we performed radiography in five African and two Asian elephants and magnetic resonance imaging (MRI) in one African elephant. Macerated bones of 11 individuals (four African, seven Asian elephants) were measured with a pair of callipers to give standardized measurements of the articular parts. In one Asian and three African elephants, kinematic and functional analyses were carried out using a digitizer and according to the helical axis concept. Some peculiarities of healthy and arthrotic knee joints of elephants were compared with human knees. In contrast to those of other quadruped mammals, the knee joint of elephants displays an extended resting position. The femorotibial joint of elephants shows a high grade of congruency and the menisci are extremely narrow and thin. The four-bar mechanism of the cruciate ligaments exists also in the elephant. The main motion of the knee joint is extension–flexion with a range of motion of 142°. In elephants, arthrotic alterations of the knee joint can lead to injury or loss of the cranial (anterior) cruciate ligament. PMID:16420379

  14. Automatically Locking/Unlocking Orthotic Knee Joint

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1994-01-01

    Proposed orthotic knee joint locks and unlocks automatically, at any position within range of bend angles, without manual intervention by wearer. Includes tang and clevis, locks whenever wearer transfers weight to knee and unlocks when weight removed. Locking occurs at any angle between 45 degrees knee bend and full extension.

  15. 21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be...

  16. 21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be...

  17. 21 CFR 888.3580 - Knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint patellar (hemi-knee) metallic... § 888.3580 Knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis is a device made...

  18. 21 CFR 888.3580 - Knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint patellar (hemi-knee) metallic... § 888.3580 Knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis is a device made...

  19. 21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be...

  20. 21 CFR 888.3580 - Knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint patellar (hemi-knee) metallic... § 888.3580 Knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis is a device made...

  1. 21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be...

  2. 21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be...

  3. Automatic locking knee brace joint

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1995-01-01

    This invention is an apparatus for controlling the pivotal movement of a knee brace comprising a tang-and-clevis joint that has been uniquely modified. Both the tang and the clevis have a set of teeth that, when engaged, can lock the tang and the clevis together. In addition, the tang is biased away from the clevis. Consequently, when there is no axial force (i.e., body weight) on the tang, the tang is free to pivot within the clevis. However, when an axial force is exerted on the tang, the tang is pushed into the clevis, both sets of teeth engage, and the tang and the clevis lock together.

  4. Nonlinear dynamic behavior of the human knee joint--Part II: Time-domain analyses: effects of structural damage in postmortem experiments.

    PubMed

    Dortmans, L; Jans, H; Sauren, A; Huson, A

    1991-11-01

    A description is given of the results obtained for step excitation for two human knee joint specimens using a time-domain analysis technique. As was expected from the results of a previous study, the magnitude of the dynamic load applied has a marked influence upon the stiffness and damping values for the two observed vibration modes. Deliberate damaging of selected joint elements also yields a well observable change in the dynamic behavior of the joint although these changes are difficult to interpret. Here the use of a nonlinear dynamic numerical model of the knee joint seems indispensable. An important observation is, however, that the experimental method discussed here enables to quantify the behavior of the joint and therefore may provide a valuable tool for validation of such a model. PMID:1762435

  5. Cryotherapy impairs knee joint position sense.

    PubMed

    Oliveira, R; Ribeiro, F; Oliveira, J

    2010-03-01

    The effects of cryotherapy on joint position sense are not clearly established; however it is paramount to understand its impact on peripheral feedback to ascertain the safety of using ice therapy before resuming exercise on sports or rehabilitation settings. Thus, the aim of the present study was to determine the effects of cryotherapy, when applied over the quadriceps and over the knee joint, on knee position sense. This within-subjects repeated-measures study encompassed fifteen subjects. Knee position sense was measured by open kinetic chain technique and active positioning at baseline and after cryotherapy application. Knee angles were determined by computer analysis of the videotape images. Twenty-minute ice bag application was applied randomly, in two sessions 48 h apart, over the quadriceps and the knee joint. The main effect for cryotherapy application was significant (F (1.14)=7.7, p=0.015) indicating an increase in both absolute and relative angular errors after the application. There was no significant main effect for the location of cryotherapy application, indicating no differences between the application over the quadriceps and the knee joint. In conclusion, cryotherapy impairs knee joint position sense in normal knees. This deleterious effect is similar when cryotherapy is applied over the quadriceps or the knee joint. PMID:20221997

  6. Knee joint forces: prediction, measurement, and significance

    PubMed Central

    D’Lima, Darryl D.; Fregly, Benjamin J.; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W.

    2011-01-01

    Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461

  7. Knee joint forces: prediction, measurement, and significance.

    PubMed

    D'Lima, Darryl D; Fregly, Benjamin J; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W

    2012-02-01

    Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461

  8. Effects of Anterior-Posterior Constraint on Injury Patterns in the Human Knee During Tibial-Femoral Joint Loading from Axial Forces through the Tibia.

    PubMed

    Jayaraman, V M; Sevensma, E T; Kitagawa, M; Haut, R C

    2001-11-01

    According to the National Accident Sampling System (NASS), 10% of all automobile accident injuries involve the knee. These injuries involve bone fracture and/or "soft tissue" injury. Previous investigators have determined the tibial-femoral (TF) joint failure load for an experimentally constrained human knee at 90 degrees flexion. In these experiments bone fractures have been documented. During TF joint compression, however, anterior motion of the tibia has been noted by others. It was therefore the objectives of this study to document effects of flexion angle and anterior-posterior joint constraint on the nature and severity of knee injury during TF compression loading via axial loads in the tibia. The effect of flexion angle was examined using 10 unconstrained human knees from 5 cadavers aged 73.2+/-9.4 years. The tibial-femoral joint was loaded in compression as a result of axial loading along the tibia using a servo-hydraulic testing machine until gross failure with the knee flexed 60 degrees or 120 degrees . Pressure sensitive film measured the distribution of internal TF joint loads. Both 60 degrees and 120 degrees flexed preparations failed by rupture of the anterior cruciate ligament (ACL) at 4.6+/-1.2 kN, and the internal joint loads were significantly higher (2.6+/-1.5 kN) on the medial versus the lateral (0.4+/-0.5 kN) aspect of the tibial plateau. The effect of anterior-posterior (AP) constraint of the femur along the longitudinal axis of the femur was investigated in a second series of tests using the same TF joint loading protocol on 6 pairs of human joints (74.3+/-10.5 years) flexed at 90 degrees . The primary mode of failure for the AP constrained joints was fracture of bone via the femoral condyle at a maximum load of 9.2+/-2.6 kN. The mode of failure for unconstrained joints was primarily due to rupture of the ACL at a maximum load of 5.8+/-2.9 kN. Again, the pressure film indicated an unequal internal TF load distribution for the unconstrained

  9. Cosmetic effect of knee joint in a knee disarticulation prosthesis.

    PubMed

    de Laat, Fred A; van der Pluijm, Mark J; van Kuijk, Annette A; Geertzen, Jan H; Roorda, Leo D

    2014-01-01

    Despite numerous advantages, knee disarticulations (KDs) are rarely performed because of the anticipated KD prosthesis fitting problems that include the positioning of the knee joint distally from the KD socket. This results in lengthening of the thigh and subsequent shortening of the shank. The objective of this study was to assess the cosmetic effect of the knee joint in a KD prosthesis by determining the extent of the lengthening of the thigh and the shortening of the shank. This lengthening and shortening were measured through an experimental setup using laser techniques. These measurements were made of 18 knee joints used in KD prostheses. Lengthening of the thigh varied between 23 and 92 mm, and shortening of the shank varied between 3 and 50 mm. The polycentric knees Medi KH6 and Medi KHF1 showed the least lengthening of the thigh, and the polycentric knees Teh Lin Prosthetic & Orthotic Co. Ltd Graph-Lite and Medi KP5 showed the least shortening of the shank. PMID:25856500

  10. Unsupervised definition of the tibia-femoral joint regions of the human knee and its applications to cartilage analysis

    NASA Astrophysics Data System (ADS)

    Tamez-Peña, José G.; Barbu-McInnis, Monica; Totterman, Saara

    2006-03-01

    Abnormal MR findings including cartilage defects, cartilage denuded areas, osteophytes, and bone marrow edema (BME) are used in staging and evaluating the degree of osteoarthritis (OA) in the knee. The locations of the abnormal findings have been correlated to the degree of pain and stiffness of the joint in the same location. The definition of the anatomic region in MR images is not always an objective task, due to the lack of clear anatomical features. This uncertainty causes variance in the location of the abnormality between readers and time points. Therefore, it is important to have a reproducible system to define the anatomic regions. This works present a computerized approach to define the different anatomic knee regions. The approach is based on an algorithm that uses unique features of the femur and its spatial relation in the extended knee. The femur features are found from three dimensional segmentation maps of the knee. From the segmentation maps, the algorithm automatically divides the femur cartilage into five anatomic regions: trochlea, medial weight bearing area, lateral weight bearing area, posterior medial femoral condyle, and posterior lateral femoral condyle. Furthermore, the algorithm automatically labels the medial and lateral tibia cartilage. The unsupervised definition of the knee regions allows a reproducible way to evaluate regional OA changes. This works will present the application of this automated algorithm for the regional analysis of the cartilage tissue.

  11. [Arthritis of the Medial Knee Joint Compartment].

    PubMed

    Matziolis, G; Röhner, E

    2015-10-01

    23 % of all persons older than 65 years suffer from osteoarthritis of the medial compartment of the knee joint, a very common situation in orthopaedic practice 1. As a result of the demographic trend the number of patients is expected to increase in the future. Based on specific joint biomechanics and kinematics the medial knee joint compartment is more frequently affected than the lateral. Only an understanding of the functional anatomy and underlying pathology allows a critical evaluation of different available conservative and operative treatment options. This article gives an overview of diagnostic and therapeutic strategies of osteoarthritis of the medial knee joint. Frequently performed surgeries, e.g. high tibial osteotomy (HTO), unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) will be presented in a comparative manner. The actual scientific evidence will be given with the goal of an evidence based therapy that is adopted to stage and pathology of osteoarthritis of the medial compartment of the knee joint. PMID:26451864

  12. [Biomechanics of the knee joint].

    PubMed

    Witzel, U

    1993-01-01

    The capsular and ligamentous structures as control system of a healthy knee-joint supported by the muscular system are responsible for the rolling and gliding motion of the femoral condyles on the tibial plateau. Both the condyles and the tibial plateau have individually developed but to each other adjusted shapes and fine structures thereby. These structures consist of hyaline cartilage at their three-dimensional surfaces and of closely packed fibrils (lamina splendens) as the final gliding zone for tensile load. The orientation of the collagenous fibres can be made visible by split lines. The chondral surfaces are indirectly in contact to each other and orthogonally stressed at the particular point of contact. The indirect contact of the cartilaginous surfaces happens under interposition of the menisci. The meniscus serves to reduce and equalize the surface pressure by its own projected surface on the one hand and by maintaining of a hydraulic pressure of the synovial fluid on the other hand. Deviations of the condylar position as a result on ligamentous instabilities or ruptures with a following occurring loss of congruence, meniscal lesions or traumatic ruptures lead to a rapid discharge of the synovial fluid under load. The result is a hydraulic head loss with direct contact of the chondral surfaces under stress leading to arthrotic deformations. Severe arthrotic deformations or very much every meniscectomy produce intraarticular lumped loads resulting in a hyper-physiologic chondral pressure and malnutrition thereby. Further on there develop subchondral stress concentrations (caused by the lumped loads) leading to osseous damages, too. MR-pictures can make visible these damages. Chondromalacia, fissure or even chondrolysis are arthroscopically detectable sometimes. As after-effects of deficient knee ligaments occur pathological deviations of the femoral condyles and resulting destructions of the articular surfaces under stress enormously intensified by

  13. Improved Automatically Locking/Unlocking Orthotic Knee Joint

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1995-01-01

    Proposed orthotic knee joint improved version of one described in "Automatically Locking/Unlocking Orthotic Knee Joint" (MFS-28633). Locks automatically upon initial application of radial force (wearer's weight) and unlocks automatically, but only when all loads (radial force and bending) relieved. Joints lock whenever wearer applies weight to knee at any joint angle between full extension and 45 degree bend. Both devices offer increased safety and convenience relative to conventional orthotic knee joints.

  14. Comparative Study on Strength of Knee Joint Using Various Material Models

    NASA Astrophysics Data System (ADS)

    Yang, Zhengzhi; Ding, Zhiwei; Liu, Zishun; Swaddiwudhipong, Somsak; Tan, Yi Min; Lee, Kevin

    2012-06-01

    In this study, we adopt different material models to study the strength and stiffness of menisci of the knee joint using finite element method. The three-dimensional (3-D) knee joint finite element model is constructed based on the Magnetic Resonance (MR) images of a human knee joint, and the strength of menisci is analyzed under a specific vertical loading case. In this paper we categorize and implement three types of appropriate material properties, namely isotropic linearly elastic, transversely isotropic elastic and isotropic hyperelastic for menisci of the knee joint. Different strain energy models are also studied and compared under hyperelastic category. The comparative study demonstrates that the hyperelastic model with Ogden form is more appropriate in modeling menisci of the knee joint. By referring to the test data of different material properties from earlier studies by various researchers, we hope to provide a comparative study leading to appropriate menisci material models and properties for finite element analyses of knee joint structures.

  15. The Knee Joint Loose Body as a Source of Viable Autologous Human Chondrocytes

    PubMed Central

    Melrose, J.

    2016-01-01

    Loose bodies are fragments of cartilage or bone present in the synovial fluid. In the present study we assessed if loose bodies could be used as a source of autologous human chondrocytes for experimental purposes. Histochemical examination of loose bodies and differential enzymatic digestions were undertaken, the isolated cells were cultured in alginate bead microspheres and immunolocalisations were undertaken for chondrogenic markers such as aggrecan, and type II collagen. Isolated loose body cells had high viability (≥90% viable), expressed chondrogenic markers (aggrecan, type II collagen) but no type I collagen. Loose bodies may be a useful source of autologous chondrocytes of high viability. PMID:27349321

  16. [Chronic sports injuries of the knee joint].

    PubMed

    Mannil, M; Andreisek, G; Weishaupt, D; Fischer, M A

    2016-05-01

    Chronic sports injuries of the knee joint are common and mainly caused by repetitive (micro) trauma and exertion. Chronic insertion tendinopathies and avulsion fractures and symptoms related to entrapment, friction and impingement can be pathophysiologically distinguished in athletes. In this review, we depict the characteristic magnetic resonance imaging (MRI) findings of the most commonly occurring pathologies. PMID:27118369

  17. Review: Modelling of meniscus of knee joint during soccer kicking

    NASA Astrophysics Data System (ADS)

    Azrul Hisham Mohd Adib, Mohd; Firdaus Jaafar, Mohd

    2013-12-01

    Knee is a part of the body that located between thigh and shank is one of the most complicated and largest joints in the human body. The common injuries that occur are ligaments, meniscus or bone fracture. During soccer games, the knee is the most critical part that will easily injure due to the shock from an external impact. Torn meniscus is one of the effects. This study will investigate the effect towards the meniscus within the knee joint during soccer ball kicking. We conduct a literary review of 14 journals that discuss the general view of meniscus and also soccer kicking. The selected topics for this review paper are meniscal function, meniscal movement, meniscal tears and also instep kick. As a finding, statistics show that most meniscal tears (73%) occurred in athletes who were soccer players, basketball players or skiers. The tear is frequently happening at the medial side rather than lateral side with a percentage of 70%.

  18. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. 888.3500 Section 888.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3500 Knee joint femorotibial...

  19. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite non-constrained cemented prosthesis. 888.3490 Section 888.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3490 Knee joint femorotibial...

  20. A Novel Approach to the Dissection of the Human Knee

    ERIC Educational Resources Information Center

    Clemente, F. Richard; Fabrizio, Philip A.; Shumaker, Michael

    2009-01-01

    The knee is one of the most frequently injured joints of the human body with injuries affecting the general population and the athletic population of many age groups. Dissection procedures for the knee joint typically do not allow unobstructed visualization of the anterior cruciate or posterior cruciate ligaments without sacrificing the collateral…

  1. Elastic properties of an intact and ACL-ruptured knee joint: measurement, mathematical modelling, and haptic rendering.

    PubMed

    Frey, Martin; Riener, Robert; Michas, Christian; Regenfelder, Felix; Burgkart, Rainer

    2006-01-01

    An analytical, dynamic model of the human knee joint has been developed to simulate the unloaded knee joint behaviour in 6 degrees of freedom. It is based on extensive robot-based measurements of the elastic properties of a human cadaver knee joint. The measured data are compared with data from the literature to ensure that a proper database for modelling is used. The analytical modelling of the passive elastic joint properties is done with Local Linear Model Trees. The deduced knee joint model incorporates passive elastic properties of the internal knee joint structures, passive elastic muscle forces, damping forces, gravitational forces, and external forces. There are two sets of parameters, one simulating the movement of the intact knee joint, and a second simulating the knee joint with ruptured anterior cruciate ligament. The dynamic model can be easily processed in real-time. It is implemented in the haptic display of the Munich Knee Joint Simulator (MKS), which enables a person to move a plastic leg driven by a robot manipulator and feel the simulated knee joint force. Orthopaedic physicians judged the performance of the dynamic knee joint model by executing physical knee joint tests at the MKS. PMID:16039659

  2. Joint Line Reconstruction in Navigated Total Knee Arthroplasty Revision

    ClinicalTrials.gov

    2012-05-16

    Revision Total Knee Arthroplasty Because of; Loosening; Instability; Impingement; or Other Reasons Accepted as Indications for TKA Exchange.; The Focus is to Determine the Precision of Joint Line Restoration in Navigated vs. Conventional Revision Total Knee Arthroplasty

  3. Refractory Arthrographis kalrae native knee joint infection

    PubMed Central

    Boan, Peter; Arthur, Ian; Golledge, Clay; Ellis, David

    2012-01-01

    Rare reports of infection with Arthrographis kalrae have often demonstrated a protracted clinical course. We describe refractory infection of the native knee with Arthrographis kalrae after a penetrating injury and Yttrium synovectomy, finally controlled with two stage joint revision and combination antifungal therapy. The paucity of worldwide data about such uncommon invasive fungal infections contributes to the diagnostic and therapeutic challenges of these cases. PMID:24371754

  4. Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism.

    PubMed

    Sun, Yuanxi; Ge, Wenjie; Zheng, Jia; Dong, Dianbiao

    2015-11-01

    This paper presents the mechanical design, dynamics analysis and ankle trajectory analysis of a prosthetic knee joint using the geared five-bar mechanism. Compared with traditional four-bar or six-bar mechanisms, the geared five-bar mechanism is better at performing diverse movements and is easy to control. This prosthetic knee joint with the geared five-bar mechanism is capable of fine-tuning its relative instantaneous center of rotation and ankle trajectory. The centrode of this prosthetic knee joint, which is mechanically optimized according to the centrode of human knee joint, is better in the bionic performance than that of a prosthetic knee joint using the four-bar mechanism. Additionally, the stability control of this prosthetic knee joint during the swing and stance phase is achieved by a motor. By adjusting the gear ratio of this prosthetic knee joint, the ankle trajectories of both unilateral and bilateral amputees show less deviations from expected than that of the four-bar knee joint. PMID:25675463

  5. Taking care of your new knee joint

    MedlinePlus

    Knee arthroplasty - precautions; Knee replacement - precautions ... After you have knee replacement surgery , you will need to be careful about how you move your knee, especially for the first few months after ...

  6. Pure Varus Injury to the Knee Joint.

    PubMed

    Yoo, Jae Ho; Lee, Jung Ha; Chang, Chong Bum

    2015-06-01

    A 30-year-old male was involved in a car accident. Radiographs revealed a depressed marginal fracture of the medial tibial plateau and an avulsion fracture of the fibular head. Magnetic resonance imaging showed avulsion fracture of Gerdy's tubercle, injury to the posterior cruciate ligament (PCL), posterior horn of the medial meniscus, and the attachments of the lateral collateral ligament and the biceps femoris tendon. The depressed fracture of the medial tibial plateau was elevated and stabilized using a cannulated screw and washer. The injured lateral and posterolateral corner (PLC) structures were repaired and augmented by PLC reconstruction. However, the avulsion fracture of Gerdy's tubercle was not fixed because it was minimally displaced and the torn PCL was also not repaired or reconstructed. We present a unique case of pure varus injury to the knee joint. This case contributes to our understanding of the mechanism of knee injury and provides insight regarding appropriate treatment plans for this type of injury. PMID:26217477

  7. Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model.

    PubMed

    Jung, Yihwan; Phan, Cong-Bo; Koo, Seungbum

    2016-02-01

    Joint contact forces measured with instrumented knee implants have not only revealed general patterns of joint loading but also showed individual variations that could be due to differences in anatomy and joint kinematics. Musculoskeletal human models for dynamic simulation have been utilized to understand body kinetics including joint moments, muscle tension, and knee contact forces. The objectives of this study were to develop a knee contact model which can predict knee contact forces using an inverse dynamics-based optimization solver and to investigate the effect of joint constraints on knee contact force prediction. A knee contact model was developed to include 32 reaction force elements on the surface of a tibial insert of a total knee replacement (TKR), which was embedded in a full-body musculoskeletal model. Various external measurements including motion data and external force data during walking trials of a subject with an instrumented knee implant were provided from the Sixth Grand Challenge Competition to Predict in vivo Knee Loads. Knee contact forces in the medial and lateral portions of the instrumented knee implant were also provided for the same walking trials. A knee contact model with a hinge joint and normal alignment could predict knee contact forces with root mean square errors (RMSEs) of 165 N and 288 N for the medial and lateral portions of the knee, respectively, and coefficients of determination (R2) of 0.70 and -0.63. When the degrees-of-freedom (DOF) of the knee and locations of leg markers were adjusted to account for the valgus lower-limb alignment of the subject, RMSE values improved to 144 N and 179 N, and R2 values improved to 0.77 and 0.37, respectively. The proposed knee contact model with subject-specific joint model could predict in vivo knee contact forces with reasonable accuracy. This model may contribute to the development and improvement of knee arthroplasty. PMID:26720762

  8. Pathological Knee Joint Motion Analysis By High Speed Cinephotography

    NASA Astrophysics Data System (ADS)

    Baumann, Jurg U.

    1985-02-01

    The use of cinephotography for evaluation of disturbed knee joint function was compared in three groups of patients. While a sampling rate of 50 images per second was adequate for patients with neuromuscular disorders, a higher frequency of around 300 i.p.s. is necessary in osteoarthritis and ligamentous knee joint injuries, but the task of digitizing is prohibitive unless automated.

  9. The behavior of reinforced concrete knee joints under earthquake loads

    NASA Astrophysics Data System (ADS)

    Angelakos, Bill

    The poor performance of knee joint connections during recent earthquakes motivated a number of experimental investigations of knee joint behavior under reversed cyclic loading. In this work the knee joint design problem is studied through a collective evaluation of the available experimental results and analytical modeling. The objective is to identify the critical response variables controlling the mechanics of knee joints under earthquake loads and to quantify the influence they have on the strength and deformation capacity of the joint. A knee joint model is derived from simple mechanical constructs of equilibrium and compatibility. The parametric dependence of knee joint behavior is investigated for critical design parameters such as concrete strength, amounts and yield strengths of horizontal and vertical transverse reinforcement, and bond demand. Three different limiting equations are developed from the model limiting the joint shear resistance according with the three alternative modes of joint shear failure. These are: (i) yielding of horizontal and vertical transverse reinforcement, (ii) and (iii) yielding in either of the two principal reinforcing directions accompanied by crushing of the concrete in compression (here the softening influence of orthogonal tensile deformations is considered). For those test specimens from the experimental database that experienced a joint shear failure, the simple knee joint model predicts their joint shear capacity well. Consistent with observations from interior connections it is shown that anchorage of the main reinforcement in the knee joint region prevails as the determining factor of the response of the joint panel. In addition, the same basic physical model that describes the source of resistance in interior connections also applies to knee joints; truss action, and diagonal strut action. By favorably anchoring the beam and column bars it is possible to develop the joint shear strength which is associated with one

  10. The influence of joint line position on knee stability after condylar knee arthroplasty.

    PubMed

    Martin, J W; Whiteside, L A

    1990-10-01

    Using a special knee-testing device, ten knees obtained at autopsy were subjected to varus-valgus, anterior-posterior, and flexion-rotation analysis in the intact state and after total knee arthroplasty. The ten knees showed no significant change in stability after knee replacement when the joint line was maintained in its natural position. When the femoral component was repositioned 5 mm proximally and 5 mm anteriorly, a significant increase in laxity occurred during midflexion. When the joint line was shifted 5 mm distal and 5 mm posterior to its anatomic location, significant tightening occurred in midrange of motion. Coupled rotation of the tibia with knee flexion was decreased after surgery in all knees with no specific relationship to joint line position. Coupled rotation with varus-valgus testing, however, remained within the normal range through the first 30 degrees of flexion only when the joint line was restored to its normal anatomic position. Stability in condylar knee arthroplasty is in part dependent on position of the joint line. Surgical techniques that rely on restoring the flexion and extension gap without regard to joint line position may result in alteration of varus-valgus or anterior-posterior displacement in midrange flexion. PMID:2208849

  11. 21 CFR 888.3480 - Knee joint femorotibial metallic constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint femorotibial metallic constrained... Knee joint femorotibial metallic constrained cemented prosthesis. (a) Identification. A knee joint... knee joint. The device prevents dislocation in more than one anatomic plane and has components that...

  12. 21 CFR 888.3480 - Knee joint femorotibial metallic constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint femorotibial metallic constrained... Knee joint femorotibial metallic constrained cemented prosthesis. (a) Identification. A knee joint... knee joint. The device prevents dislocation in more than one anatomic plane and has components that...

  13. 21 CFR 888.3480 - Knee joint femorotibial metallic constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint femorotibial metallic constrained... Knee joint femorotibial metallic constrained cemented prosthesis. (a) Identification. A knee joint... knee joint. The device prevents dislocation in more than one anatomic plane and has components that...

  14. Knee osteoarthritis affects the distribution of joint moments during gait.

    PubMed

    Zeni, Joseph A; Higginson, Jill S

    2011-06-01

    Alterations in lower extremity kinetics have been shown to exist in persons with knee osteoarthritis (OA), however few investigations have examined how the intersegmental coordination of the lower extremity kinetic chain varies in the presence of knee joint pathology. The objective of this study was to evaluate how knee OA and walking speed affect total support moment and individual joint contributions to the total support moment. Fifteen healthy subjects and 30 persons with knee OA participated in 3D walking analysis at constrained (1.0 m/s), self-selected and fastest tolerable walking speeds. Individual joint contributions to total support moment were analyzed using separate ANOVAs with one repeated measure (walking speed). Linear regression analysis was used to evaluate the relationship between walking speed and joint contribution. Persons with knee OA reduced the contribution of the knee joint when walking at constrained (p = 0.04) and self-selected walking speeds (p = 0.009). There was a significant increase in the ankle contribution and a significant decrease in the hip contribution when walking speed was increased (p < 0.004), however individual walking speeds were not significantly related to joint contributions. This suggests that the relationship between walking speed and joint contribution is dependent on the individual's control strategy and we cannot estimate the joint contribution solely based on walking speed. The slower gait speed observed in persons with knee OA is not responsible for the reduction in knee joint moments, rather this change is likely due to alterations in the neuromuscular strategy of the lower extremity kinetic chain in response to joint pain or muscle weakness. PMID:20510618

  15. Development of a hinge compatible with the kinematics of the knee joint.

    PubMed

    Bertomeu, José María Baydal; Lois, Juan Manuel Belda; Guillem, Ricard Barberà; Pozo, Alvaro Page Del; Lacuesta, Javiersanchez; Mollà, Carme Gimeno; Luna, Pedro Vera; Pastor, Jaime Prat

    2007-12-01

    This study aims to present a new concept of a knee hinge based on a crossed four-bar linkage mechanism which has been designed to optimally follow a motion curve representing the knee kinematics in the position at which the knee hinge should be placed. The methodology used to determine the optimal knee hinge is based on the optimization of certain variables of the crossed four-bar mechanism using genetic algorithms in order to follow a certain motion curve, which was determined using a biomechanical model of the knee motion. Two current, commercially available knee hinges have been used to theoretically determine their motion by means of the path performed by their instantaneous helical axis. Comparison between these two different knee hinges, Optimal Knee Hinge and the theoretical motion performed by a human knee reveals that a common monocentric hinge has a maximum misalignment of up to 27.2 mm; a polycentric hinge has a maximum misalignment of 23.9 mm. In contrast, the maximum misalignment produced by the Optimal Knee Hinge is 1.99 mm. The orthotic joint presented significantly improves the kinematical compatibility and the adjustment between orthotic and human joint motion, and should provide several advantages in terms of comfort and safety. Furthermore, the determination of the instantaneous helical axis for a particular user, by means of human movement measurement techniques, will enable the optimal crossed four-bar mechanisms to be determined in a customized and personalized manner. As a consequence, this new concept of orthotic knee joint design may improve the adaptability of lower limb orthoses for the user, and may lead to significant advantages in the field of orthotics for the lower limb. PMID:18050008

  16. Abnormal loading of the major joints in knee osteoarthritis and the response to knee replacement.

    PubMed

    Metcalfe, Andrew; Stewart, Caroline; Postans, Neil; Barlow, David; Dodds, Alexander; Holt, Cathy; Whatling, Gemma; Roberts, Andrew

    2013-01-01

    Knee osteoarthritis is common and patients frequently complain that they are 'overloading' the joints of the opposite leg when they walk. However, it is unknown whether moments or co-contractions are abnormal in the unaffected joints of patients with single joint knee osteoarthritis, or how they change following treatment of the affected knee. Twenty patients with single joint medial compartment knee osteoarthritis were compared to 20 asymptomatic control subjects. Gait analysis was performed for normal level gait and surface EMG recordings of the medial and lateral quadriceps and hamstrings were used to investigate co-contraction. Patients were followed up 12 months post-operatively and the analysis was repeated. Results are presented for the first 14 patients who have attended follow-up. Pre-operatively, adduction moment impulses were elevated at both knees and the contra-lateral hip compared to controls. Co-contraction of hamstrings and quadriceps was elevated bilaterally. Post-operatively, moment waveforms returned to near-normal levels at the affected knee and co-contraction fell in the majority of patients. However, abnormalities persisted in the contra-lateral limb with partial or no recovery of both moment waveforms and co-contraction in the majority. Patients with knee osteoarthritis do experience abnormal loads of their major weight bearing joints bilaterally, and abnormalities persist despite treatment of the affected limb. Further treatment may be required if we are to protect the other major joints following joint arthroplasty. PMID:22841587

  17. KNEE-JOINT LOADING IN KNEE OSTEOARTHRITIS: INFLUENCE OF ABDOMINAL AND THIGH FAT

    PubMed Central

    Messier, Stephen P.; Beavers, Daniel P.; Loeser, Richard F.; Carr, J. Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J.; Hunter, David J.; DeVita, Paul

    2014-01-01

    Purpose Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee-joint loads in older overweight and obese adults with knee osteoarthritis (OA). Methods Fat depots were quantified using computed tomography and total lean and fat mass determined with dual energy x-ray absorptiometry in 176 adults (age = 66.3 yr., BMI = 33.5 kg·m−2) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Results Higher total body mass was significantly associated (p ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (p < 0.0001), patellofemoral forces (p< 0.006), and knee extensor moments (p = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (p = 0.0001), shear (p < 0.001), and patellofemoral forces (p = 0.01) and knee extension moment (p = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (p = 0.002). A regression model that included total thigh and total abdominal fat found both were significantly associated with knee compressive and shear forces (p ≤ 0.04). Thigh fat was associated with the knee abduction (p = 0.03) and knee extension moment (p = 0.02). Conclusions Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA. PMID:25133996

  18. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee

    PubMed Central

    Chan, Deva D.; Cai, Luyao; Butz, Kent D.; Trippel, Stephen B.; Nauman, Eric A.; Neu, Corey P.

    2016-01-01

    The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment. PMID:26752228

  19. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee

    NASA Astrophysics Data System (ADS)

    Chan, Deva D.; Cai, Luyao; Butz, Kent D.; Trippel, Stephen B.; Nauman, Eric A.; Neu, Corey P.

    2016-01-01

    The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment.

  20. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee.

    PubMed

    Chan, Deva D; Cai, Luyao; Butz, Kent D; Trippel, Stephen B; Nauman, Eric A; Neu, Corey P

    2016-01-01

    The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment. PMID:26752228

  1. Treatment and Rehabilitation of Knee Joints Straight Stiffness After Burns.

    PubMed

    Tang, Jinshu; Xu, Minghuo; Wu, Wenwen; Hu, Yuan; Shi, Xiuxiu; Hou, Shuxun

    2015-12-01

    The knee release surgery and postoperative rehabilitation of patients after burns and knee straight stiffness were investigated. Eleven patients were treated for 16 side burns and knee stiffness who consisted of nine males and two females, aged 19 to 54 years (mean = 33.2). The duration of the patients' knee stiffness ranged from 8 to 26 months, with an average of 12.6 months. Their preoperative flexion ranged from 5° to 50°, with an average of 26.2°. Their preoperative Hospital for Special Surgery (HSS) knee scores ranged from 46 to 72 points, with an average of 55.8 points. All stiff knees were treated with release surgery, along with total release of intra-articular adhesion and excision of vastus intermedius. After the arthrolysis of the stiff knee joint, the tight skin was completely loose in the adhesions. The soft tissue contracture was not grafted, but the shade fascia was freed to increase skin ductility. All knee joints were released to more than 90° of flexion in the operation, and reversed fascia flaps were used to suture the loss of the deep fascia at the position of flexion of 90°. After the operation, the knee joint was fixed in flexion for 72 h while being actively cared for by early rehabilitation. Subsequently, the patient's skin coverage, joint motion, and joint function recovery were observed. Based on the follow-up of the patients for the following 16 to 36 months (mean = 25.7), the knee flexion of the patients ranged from 110° to 135°, with an average of 122.2° and 96° increase (P < 0.01). Furthermore, the patients had better skin ductility to meet the increase in joint flexion. HSS knee function scores at the end of follow-up ranged from 93 to 100 points, with an average of 97.5 points and an increase of 41.7 points (P < 0.01). The joint function improved significantly. The arthrolysis of straight stiff knee joints after burns can ease muscle contracture and free the shade fascia, thus avoiding the need to

  2. Influence of Different Hip Joint Centre Locations on Hip and Knee Joint Kinetics and Kinematics During the Squat

    PubMed Central

    Sinclair, Jonathan; Atkins, Stephen; Vincent, Hayley

    2014-01-01

    Identification of the hip joint centre (HJC) is important in the biomechanical examination of human movement. However, there is yet to be any published information regarding the influence of different HJC locations on hip and knee joint kinetics during functional tasks. This study aimed to examine the influence of four different HJC techniques on 3-D hip and knee joint kinetics/kinematics during the squat. Hip and knee joint kinetics/kinematics of the squat were obtained from fifteen male participants using an eight camera motion capture system. The 3-D kinetics/kinematics of the squat were quantified using four hip joint centre estimation techniques. Repeated measures ANOVAs were used to compare the discrete parameters as a function of each HJC location. The results show that significant differences in joint angles and moment parameters were evident at both the hip and knee joint in the coronal and transverse planes. These observations indicate that when calculating non-sagittal joint kinetics/kinematics during the squat, researchers should carefully consider their HJC method as it may significantly affect the interpretation of their data. PMID:25713661

  3. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint.

    PubMed

    Shim, Jin-Hyung; Jang, Ki-Mo; Hahn, Sei Kwang; Park, Ju Young; Jung, Hyuntae; Oh, Kyunghoon; Park, Kyeng Min; Yeom, Junseok; Park, Sun Hwa; Kim, Sung Won; Wang, Joon Ho; Kim, Kimoon; Cho, Dong-Woo

    2016-03-01

    The use of cell-rich hydrogels for three-dimensional (3D) cell culture has shown great potential for a variety of biomedical applications. However, the fabrication of appropriate constructs has been challenging. In this study, we describe a 3D printing process for the preparation of a multilayered 3D construct containing human mesenchymal stromal cells with a hydrogel comprised of atelocollagen and supramolecular hyaluronic acid (HA). This construct showed outstanding regenerative ability for the reconstruction of an osteochondral tissue in the knee joints of rabbits. We found that the use of a mechanically stable, host-guest chemistry-based hydrogel was essential and allowed two different types of extracellular matrix (ECM) hydrogels to be easily printed and stacked into one multilayered construct without requiring the use of potentially harmful chemical reagents or physical stimuli for post-crosslinking. To the best of our knowledge, this is the first study to validate the potential of a 3D printed multilayered construct consisting of two different ECM materials (atelocollagen and HA) for heterogeneous tissue regeneration using an in vivo animal model. We believe that this 3D printing-based platform technology can be effectively exploited for regeneration of various heterogeneous tissues as well as osteochondral tissue. PMID:26844597

  4. Examination of knee joint moments on the function of knee-ankle-foot orthoses during walking.

    PubMed

    Andrysek, Jan; Klejman, Susan; Kooy, John

    2013-08-01

    The goal of this study was to investigate clinically relevant biomechanical conditions relating to the setup and alignment of knee-ankle-foot orthoses and the influence of these conditions on knee extension moments and orthotic stance control during gait. Knee moments were collected using an instrumented gait laboratory and concurrently a load transducer embedded at the knee-ankle-foot orthosis knee joint of four individuals with poliomyelitis. We found that knee extension moments were not typically produced in late stance-phase of gait. Adding a dorsiflexion stop at the orthotic ankle significantly decreased the knee flexion moments in late stance-phase, while slightly flexing the knee in stance-phase had a variable effect. The findings suggest that where users of orthoses have problems initiating swing-phase flexion with stance control orthoses, an ankle dorsiflexion stop may be used to enhance function. Furthermore, the use of stance control knee joints that lock while under flexion may contribute to more inconsistent unlocking of the stance control orthosis during gait. PMID:23182738

  5. [Synovial hemangioma of the knee joint. A case report].

    PubMed

    Lassoued, S; Billey, T; Ould-Henia, A; Aziz-Alaoui, M; Fardou, H; Jacobzone, D

    2002-11-01

    Synovial hemangioma of the knee joint was diagnosed in a young woman 15 years after the first signs. The principal clinical manifestation involved repeated episodes of hemorrhagic joint effusion. MRI is the exploration of choice for this vascular tumor of the synovial membrane, although a pathology study is needed to confirm the diagnosis. Cure is achieved with surgical resection. PMID:12457119

  6. Biomechanics of the knee joint: a critical review.

    PubMed

    Hirokawa, S

    1993-01-01

    The literature concerning kinematic and kinetic studies on the knee joint is comprehensively reviewed in this article. Also reviewed are studies of etiology and operative treatment of injury, as well as chronic disease such as dislocation, arthritis, and ligamentous rupture. This paper formulates experimental study and mathematical model analysis of the tibio-femoral and patello-femoral joints, respectively. The sections on experimental study cover the following: the tibio-femoral joint including load bearing capacity, knee laxity, ligamentous strain, articular geometry, and multiaxial movement; the patello-femoral joint including forces and stresses and patellar tracking patterns. Further, three items, considered as future problems, are discussed briefly: individual variations in material properties of the soft tissue and biphasic cartilage-bone structures, quantitative description of bone geometry, and quantitative determination of extreme tensions and distortions in connective tissues surrounding the knee. PMID:8243091

  7. Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement

    PubMed Central

    Rasnick, Robert; Standifird, Tyler; Reinbolt, Jeffrey A.; Cates, Harold E.

    2016-01-01

    Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p<0.05). No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups. PMID:27258086

  8. Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement.

    PubMed

    Rasnick, Robert; Standifird, Tyler; Reinbolt, Jeffrey A; Cates, Harold E; Zhang, Songning

    2016-01-01

    Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p<0.05). No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups. PMID:27258086

  9. Lateral dislocation of the knee joint after total knee arthroplasty: a case report

    PubMed Central

    Ugutmen, Ender; Ozkan, Korhan; Unay, Koray; Mahirogullari, Mahir; Eceviz, Engin; Taser, Omer

    2008-01-01

    Background Total knee arthroplasty (TKA) is a successful therapy for functional improvement and pain relief in advanced symptomatic degeneration of the knee joint. But it can be associated with many complications, one of which is instability. Case presentation A 70-year-old woman was referred to our hospital because of right knee dislocation after TKA was performed on her right knee due to severe varus deformity and flexion contracture. This instability was caused by persistent MCL tightness and iatrogenic lateral collateral, arcuate ligament, and popliteus tendon injury. The torn lateral collateral ligament and arcuate ligament were sutured with no. 2 non-absorbable (Ethibond) sutures with plication of the posterolateral knee capsule. A deep-dish liner was inserted to optimize soft tissue tension. Conclusion This is a very severe complication, and surgeons must be cautious about ligament balancing and soft tissue resection during TKA for severe varus and valgus deformities. PMID:18687153

  10. Modeling the Human Knee for Assistive Technologies

    PubMed Central

    Sartori, Massimo; Reggiani, Monica; Pagello, Enrico; Lloyd, David G.

    2013-01-01

    In this paper, we use motion capture technology together with an EMG-driven musculoskeletal model of the knee joint to predict muscle behavior during human dynamic movements. We propose a muscle model based on infinitely stiff tendons and show this allows speeding up 250 times the computation of muscle force and the resulting joint moment calculation with no loss of accuracy with respect to the previously developed elastictendon model. We then integrate our previously developed method for the estimation of 3-D musculotendon kinematics in the proposed EMG-driven model. This new code enabled the creation of a standalone EMG-driven model that was implemented and run on an embedded system for applications in assistive technologies such as myoelectrically controlled prostheses and orthoses. PMID:22911539

  11. Motion analysis of knee joint using dynamic volume images

    NASA Astrophysics Data System (ADS)

    Haneishi, Hideaki; Kohno, Takahiro; Suzuki, Masahiko; Moriya, Hideshige; Mori, Sin-ichiro; Endo, Masahiro

    2006-03-01

    Acquisition and analysis of three-dimensional movement of knee joint is desired in orthopedic surgery. We have developed two methods to obtain dynamic volume images of knee joint. One is a 2D/3D registration method combining a bi-plane dynamic X-ray fluoroscopy and a static three-dimensional CT, the other is a method using so-called 4D-CT that uses a cone-beam and a wide 2D detector. In this paper, we present two analyses of knee joint movement obtained by these methods: (1) transition of the nearest points between femur and tibia (2) principal component analysis (PCA) of six parameters representing the three dimensional movement of knee. As a preprocessing for the analysis, at first the femur and tibia regions are extracted from volume data at each time frame and then the registration of the tibia between different frames by an affine transformation consisting of rotation and translation are performed. The same transformation is applied femur as well. Using those image data, the movement of femur relative to tibia can be analyzed. Six movement parameters of femur consisting of three translation parameters and three rotation parameters are obtained from those images. In the analysis (1), axis of each bone is first found and then the flexion angle of the knee joint is calculated. For each flexion angle, the minimum distance between femur and tibia and the location giving the minimum distance are found in both lateral condyle and medial condyle. As a result, it was observed that the movement of lateral condyle is larger than medial condyle. In the analysis (2), it was found that the movement of the knee can be represented by the first three principal components with precision of 99.58% and those three components seem to strongly relate to three major movements of femur in the knee bend known in orthopedic surgery.

  12. Modelling and Simulation of the Knee Joint with a Depth Sensor Camera for Prosthetics and Movement Rehabilitation

    NASA Astrophysics Data System (ADS)

    Risto, S.; Kallergi, M.

    2015-09-01

    The purpose of this project was to model and simulate the knee joint. A computer model of the knee joint was first created, which was controlled by Microsoft's Kinect for Windows. Kinect created a depth map of the knee and lower leg motion independent of lighting conditions through an infrared sensor. A combination of open source software such as Blender, Python, Kinect SDK and NI_Mate were implemented for the creation and control of the simulated knee based on movements of a live physical model. A physical size model of the knee and lower leg was also created, the movement of which was controlled remotely by the computer model and Kinect. The real time communication of the model and the robotic knee was achieved through programming in Python and Arduino language. The result of this study showed that Kinect in the modelling of human kinematics and can play a significant role in the development of prosthetics and other assistive technologies.

  13. Robotic control in knee joint replacement surgery.

    PubMed

    Davies, B L; Rodriguez y Baena, F M; Barrett, A R W; Gomes, M P S F; Harris, S J; Jakopec, M; Cobb, J P

    2007-01-01

    A brief history of robotic systems in knee arthroplasty is provided. The place of autonomous robots is then discussed and compared to more recent 'hands-on' robotic systems that can be more cost effective. The case is made for robotic systems to have a clear justification, with improved benefits compared to those from cheaper navigation systems. A number of more recent, smaller, robot systems for knee arthroplasty are also described. A specific example is given of an active constraint medical robot, the ACROBOT system, used in a prospective randomized controlled trial of unicondylar robotic knee arthroplasty in which the robot was compared to conventional surgery. The results of the trial are presented together with a discussion of the need for measures of accuracy to be introduced so that the efficacy of the robotic surgery can be immediately identified, rather than have to wait for a number of years before long-term clinical improvements can be demonstrated. PMID:17315770

  14. Arthroscopic Management of Pigmented Villonodular Synovitis of the Knee Joint

    PubMed Central

    Dwidmuthe, Samir; Barick, Devashis; Rathi, Tarun

    2015-01-01

    Introduction: Pigmented Villonodular Synovitis (PVNS) of knee joint is a rare disorder of Synovium. Hip and knee joint are commonly affected joints. The knee PVNS presents as a localized or diffuse form. Diagnosis if often delayed and permanent joint damage occurs with advanced disease. Ultrasound examination shows fluid collection and synovial hypertrophy. Magnetic resonance imaging helps in clinching the diagnosis. Final confirmation of PVNS is done with histopathological examination of synovial tissue removed. Post operative radiation has shown to reduce the rate of recurrent disease. Case Report: 25 years male presented to us with painless swelling of left knee joint of 3 months duration. Radiographs were normal. MRI showed synovial hypertrophy with changes suggestive of PVNS. We did arthroscopic six portal synovectomy. The patient regained his function and was asymptomatic at 2 year follow up. Conclusion: We want to emphasize that early diagnosis and well done arthroscopic Synovectomy gives good clinical outcome with low recurrence rate. Radiotherapy should be reserved for recurrent disease. PMID:27299033

  15. Three dimensional patient-specific collagen architecture modulates cartilage responses in the knee joint during gait.

    PubMed

    Räsänen, Lasse P; Mononen, Mika E; Lammentausta, Eveliina; Nieminen, Miika T; Jurvelin, Jukka S; Korhonen, Rami K

    2016-08-01

    Site-specific variation of collagen fibril orientations can affect cartilage stresses in knee joints. However, this has not been confirmed by 3-D analyses. Therefore, we present a novel method for evaluation of the effect of patient-specific collagen architecture on time-dependent mechanical responses of knee joint cartilage during gait. 3-D finite element (FE) models of a human knee joint were created with the collagen architectures obtained from T2 mapped MRI (patient-specific model) and from literature (literature model). The effect of accuracy of the implementation of collagen fibril architecture into the model was examined by using a submodel with denser FE mesh. Compared to the literature model, fibril strains and maximum principal stresses were reduced especially in the superficial/middle regions of medial tibial cartilage in the patient-specific model after the loading response of gait (up to -413 and -26%, respectively). Compared to the more coarsely meshed joint model, the patient-specific submodel demonstrated similar strain and stress distributions but increased values particularly in the superficial cartilage regions (especially stresses increased >60%). The results demonstrate that implementation of subject-specific collagen architecture of cartilage in 3-D modulates location- and time-dependent mechanical responses of human knee joint cartilage. Submodeling with more accurate implementation of collagen fibril architecture alters cartilage stresses particularly in the superficial/middle tissue. PMID:26714834

  16. An improved OpenSim gait model with multiple degrees of freedom knee joint and knee ligaments.

    PubMed

    Xu, Hang; Bloswick, Donald; Merryweather, Andrew

    2015-08-01

    Musculoskeletal models are widely used to investigate joint kinematics and predict muscle force during gait. However, the knee is usually simplified as a one degree of freedom joint and knee ligaments are neglected. The aim of this study was to develop an OpenSim gait model with enhanced knee structures. The knee joint in this study included three rotations and three translations. The three knee rotations and mediolateral translation were independent, with proximodistal and anteroposterior translations occurring as a function of knee flexion/extension. Ten elastic elements described the geometrical and mechanical properties of the anterior and posterior cruciate ligaments (ACL and PCL), and the medial and lateral collateral ligaments (MCL and LCL). The three independent knee rotations were evaluated using OpenSim to observe ligament function. The results showed that the anterior and posterior bundles of ACL and PCL (aACL, pACL and aPCL, pPCL) intersected during knee flexion. The aACL and pACL mainly provided force during knee flexion and adduction, respectively. The aPCL was slack throughout the range of three knee rotations; however, the pPCL was utilised for knee abduction and internal rotation. The LCL was employed for knee adduction and rotation, but was slack beyond 20° of knee flexion. The MCL bundles were mainly used during knee adduction and external rotation. All these results suggest that the functions of knee ligaments in this model approximated the behaviour of the physical knee and the enhanced knee structures can improve the ability to investigate knee joint biomechanics during various gait activities. PMID:24611807

  17. Alpha 5 Integrin Mediates Osteoarthritic Changes in Mouse Knee Joints

    PubMed Central

    Candela, Maria Elena; Wang, Chao; Gunawardena, Aruni T.; Zhang, Kairui; Cantley, Leslie; Yasuhara, Rika; Usami, Yu; Francois, Noelle; Iwamoto, Masahiro; van der Flier, Arjan; Zhang, Yejia; Qin, Ling; Han, Lin; Enomoto-Iwamoto, Motomi

    2016-01-01

    Osteoarthritis (OA) is one of most common skeletal disorders and can affect synovial joints such as knee and ankle joints. α5 integrin, a major fibronectin receptor, is expressed in articular cartilage and has been demonstrated to play roles in synovial joint development and in the regulation of chondrocyte survival and matrix degradation in articular cartilage. We hypothesized that α5 integrin signaling is involved in pathogenesis of OA. To test this, we generated compound mice that conditionally ablate α5 integrin in the synovial joints using the Gdf5Cre system. The compound mice were born normally and had an overall appearance similar to the control mice. However, when the mutant mice received the OA surgery, they showed stronger resistance to osteoarthritic changes than the control. Specifically the mutant knee joints presented lower levels of cartilage matrix and structure loss and synovial changes and showed stronger biomechanical properties than the control knee joints. These findings indicate that α5 integrin may not be essential for synovial joint development but play a causative role in induction of osteoarthritic changes. PMID:27280771

  18. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a...

  19. 21 CFR 888.3550 - Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint patellofemorotibial polymer/metal/metal... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a...

  20. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  1. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a...

  2. 21 CFR 888.3530 - Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint femorotibial metal/polymer semi... § 888.3530 Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer semi-constrained cemented prosthesis is a device...

  3. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint femorotibial metal/composite semi... § 888.3500 Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite semi-constrained cemented prosthesis is a...

  4. 21 CFR 888.3550 - Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint patellofemorotibial polymer/metal/metal... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a...

  5. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a...

  6. 21 CFR 888.3520 - Knee joint femorotibial metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint femorotibial metal/polymer non... § 888.3520 Knee joint femorotibial metal/polymer non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer non-constrained cemented prosthesis is a device intended...

  7. 21 CFR 888.3530 - Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint femorotibial metal/polymer semi... § 888.3530 Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer semi-constrained cemented prosthesis is a device...

  8. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Knee joint femorotibial metal/composite semi... § 888.3500 Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite semi-constrained cemented prosthesis is a...

  9. 21 CFR 888.3520 - Knee joint femorotibial metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint femorotibial metal/polymer non... § 888.3520 Knee joint femorotibial metal/polymer non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer non-constrained cemented prosthesis is a device intended...

  10. 21 CFR 888.3550 - Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint patellofemorotibial polymer/metal/metal... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a...

  11. 21 CFR 888.3520 - Knee joint femorotibial metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint femorotibial metal/polymer non... § 888.3520 Knee joint femorotibial metal/polymer non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer non-constrained cemented prosthesis is a device intended...

  12. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint femorotibial metal/composite semi... § 888.3500 Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite semi-constrained cemented prosthesis is a...

  13. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint femorotibial metal/composite semi... § 888.3500 Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite semi-constrained cemented prosthesis is a...

  14. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  15. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  16. 21 CFR 888.3530 - Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint femorotibial metal/polymer semi... § 888.3530 Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer semi-constrained cemented prosthesis is a device...

  17. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a...

  18. 21 CFR 888.3520 - Knee joint femorotibial metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer non... § 888.3520 Knee joint femorotibial metal/polymer non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer non-constrained cemented prosthesis is a device intended...

  19. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  20. 21 CFR 888.3530 - Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer semi... § 888.3530 Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer semi-constrained cemented prosthesis is a device...

  1. 21 CFR 888.3520 - Knee joint femorotibial metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Knee joint femorotibial metal/polymer non... § 888.3520 Knee joint femorotibial metal/polymer non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer non-constrained cemented prosthesis is a device intended...

  2. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  3. 21 CFR 888.3530 - Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Knee joint femorotibial metal/polymer semi... § 888.3530 Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer semi-constrained cemented prosthesis is a device...

  4. Taking care of your new knee joint

    MedlinePlus

    ... Avoid putting your pants on while standing up. Sit on a chair or the edge of your ... When you are sitting: Try not to sit in the same position for more than 45 to 60 minutes at a time. Keep your feet and knees pointed straight ahead, not ...

  5. Elbow and knee joint for hard space suits

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    An elbow or knee joint for a hard space suit or similar usage is formed of three serially connected rigid sections which have truncated spherical configurations. The ends of each section form solid geometric angles, and the sections are interconnected by hermetically sealed ball bearings. The outer two sections are fixed together for rotation in a direction opposite to rotation of the center section. A preferred means to make the outer sections track each other in rotation comprises a rotatable continuous bead chain which engages sockets circumferentially spaced on the facing sides of the outer races of the bearings. The joint has a single pivot point and the bearing axes are always contained in a single plane for any articulation of the joint. Thus flexure of the joint simulates the coplanar flexure of the knee or elbow and is not susceptible to lockup.

  6. The effect of knee joint angle on torque control.

    PubMed

    Sosnoff, Jacob J; Voudrie, Stefani J; Ebersole, Kyle T

    2010-01-01

    The purpose of the author's investigation was to examine the effect of knee joint angle on torque control of the quadriceps muscle group. In all, 12 healthy adults produced maximal voluntary contractions and submaximal torque (15, 30, and 45% MVC [maximal voluntary contraction]) at leg flexion angles of 15 degrees , 30 degrees , 60 degrees , and 90 degrees below the horizontal plane. As expected, MVC values changed with respect to joint angle with maximum torque output being greatest at 60 degrees and least at 15 degrees . During the submaximal tasks, participants appropriately scaled their torque output to the required targets. Absolute variability (i.e., standard deviation) of torque output was greatest at 60 degrees and 90 degrees knee flexion. However, relative variability as indexed by coefficient of variation (CV) decreased as joint angle increased, with the greatest CV occurring at 15 degrees . These results are congruent with the hypothesis that joint angle influences the control of torque. PMID:19906637

  7. Electrical noise to a knee joint stabilizes quiet bipedal stance.

    PubMed

    Kimura, Tetsuya; Kouzaki, Motoki

    2013-04-01

    Studies have shown that a minute, noise-like electrical stimulation (ES) of a lower limb joint stabilizes one-legged standing (OS), possibly due to the noise-enhanced joint proprioception. To demonstrate the practical utility of this finding, we assessed whether the bipedal stance (BS), relatively stable and generally employed in daily activities, is also stabilized by the same ES method. Twelve volunteers maintained quiet BS with or without an unperceivable, noise-like ES of a knee joint. The results showed that the average amplitude, peak-to-peak amplitude, and standard deviation of the foot center of pressure in the anteroposterior direction were significantly attenuated by the ES (P<0.05). These results indicate that the BS also can be stabilized by an unperceivable, noise-like ES of a knee joint. PMID:23044409

  8. An acoustic startle alters knee joint stiffness and neuromuscular control.

    PubMed

    DeAngelis, A I; Needle, A R; Kaminski, T W; Royer, T R; Knight, C A; Swanik, C B

    2015-08-01

    Growing evidence suggests that the nervous system contributes to non-contact knee ligament injury, but limited evidence has measured the effect of extrinsic events on joint stability. Following unanticipated events, the startle reflex leads to universal stiffening of the limbs, but no studies have investigated how an acoustic startle influences knee stiffness and muscle activation during a dynamic knee perturbation. Thirty-six individuals were tested for knee stiffness and muscle activation of the quadriceps and hamstrings. Subjects were seated and instructed to resist a 40-degree knee flexion perturbation from a relaxed state. During some trials, an acoustic startle (50 ms, 1000 Hz, 100 dB) was applied 100 ms prior to the perturbation. Knee stiffness, muscle amplitude, and timing were quantified across time, muscle, and startle conditions. The acoustic startle increased short-range (no startle: 0.044 ± 0.011 N·m/deg/kg; average startle: 0.047 ± 0.01 N·m/deg/kg) and total knee stiffness (no startle: 0.036 ± 0.01 N·m/deg/kg; first startle 0.027 ± 0.02 N·m/deg/kg). Additionally, the startle contributed to decreased [vastus medialis (VM): 13.76 ± 33.6%; vastus lateralis (VL): 6.72 ± 37.4%] but earlier (VM: 0.133 ± 0.17 s; VL: 0.124 ± 0.17 s) activation of the quadriceps muscles. The results of this study indicate that the startle response can significantly disrupt knee stiffness regulation required to maintain joint stability. Further studies should explore the role of unanticipated events on unintentional injury. PMID:25212407

  9. Experimental joint immobilization in guinea pigs. Effects on the knee joint

    NASA Technical Reports Server (NTRS)

    Marcondesdesouza, J. P.; Machado, F. F.; Sesso, A.; Valeri, V.

    1980-01-01

    In young and adult guinea pigs, the aftermath experimentally induced by the immobilization of the knee joint in hyperextended forced position was studied. Joint immobilization which varied from one to nine weeks was attained by plaster. Eighty knee joints were examined macro and microscopically. Findings included: (1) muscular hypotrophy and joint stiffness in all animals, directly proportional to the length of immobilization; (2) haemoarthrosis in the first week; (3) intra-articular fibrous tissue proliferation ending up with fibrous ankylosis; (4) hyaline articular cartilage erosions; (5) various degrees of destructive menisci changes. A tentative explanation of the fibrous tissue proliferation and of the cartilage changes is offered.

  10. Decreased Knee Joint Loading Associated With Early Knee Osteoarthritis After Anterior Cruciate Ligament Injury

    PubMed Central

    Wellsandt, Elizabeth; Gardinier, Emily S.; Manal, Kurt; Axe, Michael J.; Buchanan, Thomas S.; Snyder-Mackler, Lynn

    2015-01-01

    Background Anterior cruciate ligament (ACL) injury predisposes individuals to early-onset knee joint osteoarthritis (OA). Abnormal joint loading is apparent after ACL injury and reconstruction. The relationship between altered joint biomechanics and the development of knee OA is unknown. Hypothesis Altered knee joint kinetics and medial compartment contact forces initially after injury and reconstruction are associated with radiographic knee OA 5 years after reconstruction. Study Design Case-control study; Level of evidence, 3. Methods Individuals with acute, unilateral ACL injury completed gait analysis before (baseline) and after (posttraining) preoperative rehabilitation and at 6 months, 1 year, and 2 years after reconstruction. Surface electromyographic and knee biomechanical data served as inputs to an electromyographically driven musculoskeletal model to estimate knee joint contact forces. Patients completed radiographic testing 5 years after reconstruction. Differences in knee joint kinetics and contact forces were compared between patients with and those without radiographic knee OA. Results Patients with OA walked with greater frontal plane interlimb differences than those without OA (nonOA) at baseline (peak knee adduction moment difference: 0.00 ± 0.08 N·m/kg·m [nonOA] vs −0.15 ± 0.09 N·m/kg·m [OA], P = .014; peak knee adduction moment impulse difference: −0.001 ± 0.032 N·m·s/kg·m [nonOA] vs −0.048 ± 0.031 N·m·s/kg·m [OA], P = .042). The involved limb knee adduction moment impulse of the group with osteoarthritis was also lower than that of the group without osteoarthritis at baseline (0.087 ± 0.023 N·m·s/kg·m [nonOA] vs 0.049 ± 0.018 N·m·s/kg·m [OA], P = .023). Significant group differences were absent at posttraining but reemerged 6 months after reconstruction (peak knee adduction moment difference: 0.02 ± 0.04 N·m/kg·m [nonOA] vs −0.06 ± 0.11 N·m/kg·m [OA], P = .043). In addition, the OA group walked with lower peak

  11. Rothia prosthetic knee joint infection: report and mini-review

    PubMed Central

    Mahobia, N; Chaudhary, P; Kamat, Y

    2013-01-01

    Rothia spp. are gram-positive pleomorphic bacteria that are part of the normal oral microflora. They are associated with dental and periodontal disease, although systemic infections have also been reported. We describe the case of a 75-year-old lady with rheumatoid arthritis who presented with prosthetic knee joint infection due to Rothia aeria. We discuss its identification and the evidence regarding association of dental disease with Rothia spp. joint infections based on available literature. PMID:25356316

  12. Biomechanical reasons for the divergent morphology of the knee joint and the distal epiphyseal suture in hominoids.

    PubMed

    Preuschoft, H; Tardieu, C

    1996-01-01

    The obliquity of the femoral diaphysis accounts for the valgus position of the human knee joint and reduces bending moments in the frontal plane. A high angle of obliquity is considered a hallmark of hominid bipedality, but its functional importance has rarely been identified correctly. A biostatic investigation of the knee joint in various realistic positions unveils resultant joint forces which do not deviate greatly from the long axis of the femoral shaft. This is due to the length of the femur and to the shortness of the human foot. The flat epiphyseal suture is more or less perpendicular to these joint forces, and the equal size of the femoral condyles reflects the even distribution of forces between them. In great apes the resultant forces acting in the knee joint vary considerably in dependence on the degree of flexion and rotation of the knee joint. The resultant joint force may be line with the femur shaft or diverge. The epiphyseal surfaces offer facets to all joint forces found in the course of the study. Due to the pronounced varus position of the knee joint, the joint itself and the adjacent part of the femur are under medially concave bending moments, which lead to higher compressive forces at the medial than at the lateral condyle. The enlarged medial condyle allows the distribution of medially displaced joint forces over a relatively large area, and the elliptic cross-section yields high bending resistance in the frontal plane. A human-like angle of obliquity is present in the early australopithecines, the values being mostly within the range of variation of children. The valgus position of the australopithecine knee joint is considered to be a functional, and epigenetic consequence of habitual bipedality. It is particularly pronounced because of the short length of the femur and the great bitrochanteric width. PMID:8953752

  13. Sex Differences in Proximal Control of the Knee Joint

    PubMed Central

    Mendiguchia, Jurdan; Ford, Kevin R.; Quatman, Carmen E.; Alentorn-Geli, Eduard; Hewett, Timothy E.

    2014-01-01

    Following the onset of maturation, female athletes have a significantly higher risk for anterior cruciate ligament (ACL) injury compared with male athletes. While multiple sex differences in lower-extremity neuromuscular control and biomechanics have been identified as potential risk factors for ACL injury in females, the majority of these studies have focused specifically on the knee joint. However, increasing evidence in the literature indicates that lumbopelvic (core) control may have a large effect on knee-joint control and injury risk. This review examines the published evidence on the contributions of the trunk and hip to knee-joint control. Specifically, the sex differences in potential proximal controllers of the knee as risk factors for ACL injury are identified and discussed. Sex differences in trunk and hip biomechanics have been identified in all planes of motion (sagittal, coronal and transverse). Essentially, female athletes show greater lateral trunk displacement, altered trunk and hip flexion angles, greater ranges of trunk motion, and increased hip adduction and internal rotation during sport manoeuvres, compared with their male counterparts. These differences may increase the risk of ACL injury among female athletes. Prevention programmes targeted towards trunk and hip neuromuscular control may decrease the risk for ACL injuries. PMID:21688868

  14. [Osteosynthesis after periprosthetic fractures of the knee joint].

    PubMed

    von Matthey, F; Ruchholtz, S; Biberthaler, P; Hanschen, M

    2016-04-01

    Periprosthetic fractures around the knee joint are of increasing relevance due to increasing numbers of total knee replacements and increasing life expectations. These fractures can be a real challenge due to an often limited patient compliance, reduced bone quality and impaired bone perfusion of potential intramedullary shafts resulting in poor healing and lack of fixation options for screws. These fractures necessitate special knowledge and approaches, which are systematically dealt with in this article, beginning with the correct diagnostics through to the most recent developments in the field of osteosynthetic techniques. The trends of minimally invasive techniques are presented and the options and limitations are described. PMID:26992714

  15. A parallel framework for the FE-based simulation of knee joint motion.

    PubMed

    Wawro, Martin; Fathi-Torbaghan, Madjid

    2004-08-01

    We present an object-oriented framework for the finite-element (FE)-based simulation of the human knee joint motion. The FE model of the knee joint is acquired from the patients in vivo by using magnetic resonance imaging. The MRI images are converted into a three-dimensional model and finally an all-hexahedral mesh for the FE analysis is generated. The simulation environment uses nonlinear finite-element analysis (FEA) and is capable of handling contact of the model to handle the complex rolling/sliding motion of the knee joint. The software strictly follows object-oriented concepts of software engineering in order to guarantee maximum extensibility and maintainability. The final goal of this work-in-progress is the creation of a computer-based biomechanical model of the knee joint which can be used in a variety of applications, ranging from prosthesis design and treatment planning (e.g., optimal reconstruction of ruptured ligaments) over surgical simulation to impact computations in crashworthiness simulations. PMID:15311837

  16. Raman spectroscopy of dried synovial fluid droplets as a rapid diagnostic for knee joint damage

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Mandair, Gurjit S.; Raaii, Farhang; Roessler, Blake J.; Morris, Michael D.

    2008-02-01

    Human synovial fluid droplets were investigated using drop deposition in combination with Raman spectroscopy. Following informed consent, synovial fluid was obtained from forty human patients with various severities of knee pain and/or osteoarthritis at the time of knee arthroscopy or total joint replacement. Synovial fluid was aspirated from the knee joint of each patient and stored at -80°C until examination by near-infrared Raman spectroscopy. Synovial fluid aspirates from the knee joint of each patient were deposited onto a clean fused silica microscope slide and the droplet dried under ambient laboratory conditions. Each droplet was illuminated by a line-focused or a ring-focused 785 nm laser. As the droplet dries, biofluid components segregated based on solubility differences and a deposit that is spatially heterogeneous was made. Spectra taken from the droplet edges and center were dominated by protein bands and showed the presence of at least two protein moieties in the droplet. Band area and band height ratios (1410 cm -1/1450 cm -1) showed the greatest change between specimens from patients with mild/early osteoarthritis compared to those with severe/late stage osteoarthritis. The greatest differences were found in the center of the droplet, which contains more soluble protein components than the edges.

  17. Role of Agnikarma in Sandhigata Vata (osteoarthritis of knee joint)

    PubMed Central

    Jethava, Nilesh G.; Dudhamal, Tukaram S.; Gupta, Sanjay Kumar

    2015-01-01

    Introduction: Sandhigata Vata is one of Vata Vyadhi characterized by the symptoms such as Sandhishoola (joint pain) and Sandhishopha (swelling of joint). Osteoarthritis (OA) is degenerative joint disorder, represents failure of the diarthrodial (movable, synovial-lined) joint. OA of knee joint comes under the inflammatory group which is almost identical to Sandhigata Vata described in Ayurveda with respect to etiology, pathology, and clinical features. Agnikarma (therapeutic heat burn) is one which gives instant relief from pain by balancing local Vata and Kapha Dosha without any untoward effects. Aim: To evaluate the efficacy of Agnikarma with Rajata and Loha Dhatu Shalaka in the management of Janugata Sandhivata (OA of knee joint). Materials and Methods: A total of 28 diagnosed patients of Janugata Sandhivata were registered and randomly divided into two groups. In Group-A, Agnikarma was done with Rajata Shalaka while in Group-B Agnikarma was performed by Loha Shalaka in four sittings. Assessment in relief of signs and symptoms was done by weekly interval, and Student's t-test was applied for statistical analysis. Results: Group-A provided 76.31% relief in pain while Group-B provided 83.77% relief. Relief from crepitus was observed in 57.13% of patients of Group-A, while 57.92% of patients of Group-B. There was statistically insignificant difference between both the groups. Loha Shalaka provided better result in pain relief than Rajata Shalaka. Conclusion: Agnikarma is effective nonpharmacological, parasurgical procedure for pain management in Sandhigata Vata (OA of knee joint). PMID:26730134

  18. Designing prosthetic knee joints with bio-inspired bearing surfaces.

    PubMed

    Qiu, Mingfeng; Chyr, Anthony; Sanders, Anthony P; Raeymaekers, Bart

    2014-09-01

    It has long been known that articular cartilage exhibits a surface microtexture with shallow indentations. By contrast, prosthetic joints consist of ultra-smooth bearing surfaces, the longevity of which does not reach that of natural cartilage. We show that adding a microtexture to the smooth femoral component of a prosthetic knee joint reduces friction by increasing the lubricant film thickness between the bearing surfaces of the knee. We have implemented an elastohydrodynamic lubrication model to optimize the geometry of the microtexture, while taking into account the deformation of the polyethylene tibial insert. We have manufactured several microtexture designs on a surrogate femoral component, and experimentally demonstrate that the microtexture reduces friction between the surrogate femoral component and tibial insert. PMID:25049441

  19. Risk factors for renal dysfunction after total knee joint replacement.

    PubMed

    Hassan, Basim K; Sahlström, Arne; Dessau, Ram B

    2015-12-01

    Renal injury and dysfunction are serious complications after major surgery, which may lead to increased morbidity and mortality. The objective of our study was to identify the possible risk factors for renal dysfunction after total knee joint replacement. A retrospective study was conducted among 702 consecutive primary knee joint replacements performed between January 2009 and December 2012 in our department. Increased postoperative serum creatinine was considered indicative of postoperative renal injury according to RIFLE criteria. Sixty three patients (9.7%) had significant moderate or severe postoperative renal dysfunction in which 8 patients (1.2%) ended with severe and permanent renal impairment. Advanced age, low intraoperative blood pressure, hypertension, general anaesthesia, and prophylactic dicloxacillin were identified as significant risk factors. Male gender and BMI were independent risk factors for postoperative increase in serum creatinine. Smoking, female gender, diabetes mellitus and duration of surgery were not identified as significant risk factors. PMID:26790786

  20. Diagnosis of Periprosthetic Joint Infection Following Hip and Knee Arthroplasty.

    PubMed

    Parvizi, Javad; Fassihi, Safa Cyrus; Enayatollahi, Mohammad A

    2016-07-01

    The diagnosis of periprosthetic joint infection (PJI) following total hip arthroplasty and total knee arthroplasty has been one of the major challenges in orthopedic surgery. As there is no single absolute test for diagnosis of PJI, diagnostic criteria for PJI have been proposed that include using several diagnostic modalities. Focused history, physical examination, plain radiographs, and initial serologic tests should be followed by joint aspiration and synovial analysis. Newer diagnostic techniques, such as alpha-defensin and interleukin-6, hold great promise in the future diagnosis of equivocal infections. PMID:27241375

  1. Response of knee fibrocartilage to joint destabilization

    PubMed Central

    Dyment, N.A; Hagiwara, Y.; Jiang, X.; Huang, J.; Adams, D.J.; Rowe, D.W.

    2015-01-01

    Objective A major challenge to understanding osteoarthritis pathology is identifying the cellular events that precede the onset of cartilage damage. The objective of this study is to determine the effect of joint destabilization on early changes to fibrocartilage in the joint. Design/Methods The anterior cruciate ligament was transected in collagen reporter mice (Col1GFP and ColXRFP). Mineralization labels were given every two weeks to measure new mineralized cartilage apposition. Novel fluorescent histology of mineralized tissue was used to characterize the changes in fibrocartilage at 2 and 4 weeks post-injury. Results Changes in fibrocartilaginous structures of the joint occur as early as two weeks after injury and are well developed by four weeks. The alterations are seen in multiple entheses and in the medial surface of the femoral and tibial condyles. In the responding entheses, mineral apposition towards the ligament midsubstance results in thickening of the mineralize fibrocartilage. These changes are associated with increases in ColX-RFP, Col1-CFP reporter activity and alkaline phosphatase enzyme activity. Mineral apposition also occurs in the fibrocartilage of the non-articular regions of the medial condyles by 2 weeks and develops into osteophytes by 4 weeks post-injury. An unexpected observation is punctate expression of tartrate resistant acid phosphatase activity in unmineralized fibrochondrocytes adjacent to active appositional mineralization. Discussion These observations suggest that fibrocartilage activates prior to degradation of the articular cartilage. Thus clinical and histological imaging of fibrocartilage may be an earlier indicator of disease initiation and may indicate a more appropriate time to start preventative treatment. PMID:25680653

  2. Relationship between foot function and medial knee joint loading in people with medial compartment knee osteoarthritis

    PubMed Central

    2013-01-01

    Background Dynamic joint loading, particularly the external knee adduction moment (KAM), is an important surrogate measure for the medio-lateral distribution of force across the knee joint in people with knee osteoarthritis (OA). Foot motion may alter the load on the medial tibiofemoral joint and hence affect the KAM. Therefore, this study aimed to investigate the relationship between tibia, rearfoot and forefoot motion in the frontal and transverse planes and the KAM in people with medial compartment knee OA. Method Motion of the knee, tibia, rearfoot and forefoot and knee moments were evaluated in 32 patients with clinically and radiographically-confirmed OA, predominantly in the medial compartment. Pearson’s correlation coefficient was used to investigate the association between peak values of tibia, rearfoot and forefoot motion in the frontal and transverse planes and 1st peak KAM, 2nd peak KAM, and the knee adduction angular impulse (KAAI). Results Lateral tilt of the tibia was significantly associated with increased 1st peak KAM (r = 0.60, p < 0.001), 2nd peak KAM (r = 0.67, p = 0.001) and KAAI (r = 0.82, p = 0.001). Increased peak rearfoot eversion was significantly correlated with decreased 2nd peak KAM (r = 0.59, p < 0.001) and KAAI (r = 0.50, p = 0.004). Decreased rearfoot internal rotation was significantly associated with increased 2nd peak KAM (r = −0.44, p = 0.01) and KAAI (r = −0.38, p = 0.02), while decreased rearfoot internal rotation relative to the tibia was significantly associated with increased 2nd peak KAM (r = 0.43, p = 0.01). Significant negative correlations were found between peak forefoot eversion relative to the rearfoot and 2nd peak KAM (r = −0.53, p = 0.002) and KAAI (r = −0.51, p = 0.003) and between peak forefoot inversion and 2nd peak KAM (r = −0.54, p = 0.001) and KAAI (r = −0.48, p = 0.005). Conclusion Increased rearfoot

  3. Design of a Model of Knee Joint for Educational Purposes

    ERIC Educational Resources Information Center

    Jastaniah, Saddig; Alganmi, Ohud

    2016-01-01

    Uses of models play an important role by simulating the bone, obviating the need to experiment on humans or animals. The aim of the present study was to access local materials as gypsum and wax is to be tested for performing a knee model matching bone in the density also to explore how students can come to understand function through a model-based…

  4. Analysis of Joint Sounds in the Diagnosis of Knee Disorders

    ClinicalTrials.gov

    2015-07-22

    Healthy Patients; No Knee Complaints; No Knee Injuries; No Knee Surgeries; No Neurological Problems; Patients Undergoing Knee Arthroscopy, Who Has a Pre-op MRI; Age Groups of 20,40 and 60 Years of Age.

  5. Extra-Articular Ganglion Cysts around the Knee Joint

    PubMed Central

    Park, Sang-Eun; Panchal, Karnav; Kim, Young-Yul; Ji, Jong-Hun; Park, Sung-Ryeoll; Park, Min-Kyu

    2015-01-01

    Purpose The purpose of this study was to report clinical results of open excision of extra-articular ganglion cysts around the knee joint combined with arthroscopic management of intra-articular pathologies if present. Materials and Methods Of the total 107 cases of cystic lesions around the knee, 23 cases of extra-articular ganglion cysts were reviewed between January 2006 and July 2011. There were 13 males and 10 females with a mean age of 48 years (range, 30 to 73 years). The mean follow-up duration was 40 months (range, 30 to 60 months). Preoperative magnetic resonance imaging (MRI) scan was done in all cases. Open surgical excision of the cyst was performed after arthroscopic management of intra-articular pathologies in all but 1 case. At the last follow-up, Lysholm and International Knee Documentation Committee (IKDC) scores were evaluated and MRI was conducted to detect recurrence. Results The mean Lysholm and IKDC scores showed significant improvement (p=0.005 and 0.013, respectively).The location of the cysts was anterior in 9, lateral in 7, medial in 6, and posterosuperior in 1. Intra-articular pathologies were found in 16/23 cases (69.6%). In 10/23 cases (43%), the cyst was connected to the knee joint. Three months postoperative MRI did not show any recurrence of ganglion cysts except for 1 case. Conclusions In the treatment of extra-articular ganglion cysts, MRI can be useful for detecting intra-articular lesions and connecting orifices, and arthroscopic management of intra-articular pathologies with open excision of the cyst should be considered as a viable treatment option. PMID:26672721

  6. Prevention of Periprosthetic Joint Infections of the Hip and Knee.

    PubMed

    Levy, David M; Wetters, Nathan G; Levine, Brett R

    2016-01-01

    Periprosthetic joint infection (PJI) is a rare but devastating complication of arthroplasty. Research has been dedicated to minimizing the incidence of PJI, leading to the development of a comprehensive perioperative approach. Multiple preoperative, intraoperative, and postoperative factors can increase patient risk. From medical management and skin sterilization to wound sterility and blood management, multiple issues must be considered in a well-rounded prevention protocol. In this literature review, we consolidate the current information that orthopedic surgeons can use to minimize PJI after total knee arthroplasty and total hip arthroplasty. PMID:27552468

  7. A new method to measure post-traumatic joint contractures in the rabbit knee.

    PubMed

    Hildebrand, Kevin A; Holmberg, Michael; Shrive, Nigel

    2003-12-01

    A new device and method to measure rabbit knee joint angles are described. The method was used to measure rabbit knee joint angles in normal specimens and in knee joints with obvious contractures. The custom-designed and manufactured gripping device has two clamps. The femoral clamp sits on a pinion gear that is driven by a rack attached to a materials testing system. A 100 N load cell in series with the rack gives force feedback. The tibial clamp is attached to a rotatory potentiometer. The system allows the knee joint multiple degrees-of-freedom (DOF). There are two independent DOF (compression-distraction and internal-external rotation) and two coupled motions (medial-lateral translation coupled with varus-valgus rotation; anterior-posterior translation coupled with flexion-extension rotation). Knee joint extension-flexion motion is measured, which is a combination of the materials testing system displacement (converted to degrees of motion) and the potentiometer values (calibrated to degrees). Internal frictional forces were determined to be at maximum 2% of measured loading. Two separate experiments were performed to evaluate rabbit knees. First, normal right and left pairs of knees from four New Zealand White (NZW) rabbits were subjected to cyclic loading. An extension torque of 0.2 Nm was applied to each knee. The average change in knee joint extension from the first to the fifth cycle was 1.9 deg +/- 1.5 deg (mean +/- sd) with a total of 49 tests of these eight knees. The maximum extension of the four left knees (tested 23 times) was 14.6 deg +/- 7.1 deg, and of the four right knees (tested 26 times) was 12.0 deg +/- 10.9 deg. There was no significant difference in the maximum extension between normal left and right knees. In the second experiment, nine skeletally mature NZW rabbits had stable fractures of the femoral condyles of the right knee that were immobilized for five, six or 10 weeks. The left knee served as an unoperated control. Loss of knee joint

  8. The patellofemoral joint in total knee prostheses. Design considerations.

    PubMed

    Freeman, M A; Samuelson, K M; Elias, S G; Mariorenzi, L J; Gokcay, E I; Tuke, M

    1989-01-01

    Some desirable design features of the patellofemoral joint in a total knee arthroplasty condylar prosthesis are proposed. These are that the femoral element should be grooved, have a high anterior flange, and be circular as viewed from the side. The groove should be about 5 mm deep and have relatively vertical walls. The patellar component should have a saddle-shaped articular surface matching the femur and should be countersunk into the patella. The components should be placed so as to position the joint automatically. Results with such a design are reported; loosening, wear, dislocation, and fracture have been rare. Osteolysis of the patella has not been seen after 9 years, so that the cementless press-fit fixation of an H.D.P. patellar prosthesis to date seems safe and efficacious. PMID:2584990

  9. Design of a knee joint mechanism that adapts to individual physiology.

    PubMed

    Jiun-Yih Kuan; Pasch, Kenneth A; Herr, Hugh M

    2014-01-01

    This paper describes the design of a new knee joint mechanism, called the Adaptive Coupling Joint (ACJ). The new mechanism has an adaptive trajectory of the center of rotations (COR) that automatically matches those of the attached biological joint. The detailed design is presented as well as characterization results of the ACJ. Conventional exoskeleton and assistive devices usually consider limb joints as a one to three degrees of freedom (DOFs) joint synthesized by multiple one-DOF hinge joints in a single plane. However, the biological joints are complex and usually rotate with respect to a changing COR. As a result, the mismatch between limb joint motion and mechanical interface motion can lead to forces that cause undesired ligament and muscle length changes and internal mechanical changes. These undesired changes contribute to discomfort, as well as to the slippage and sluggish interaction between humans and devices. It is shown that the ACJ can transmit planetary torques from either active or passive devices to the limbs without altering the normal biological joint motion. PMID:25570389

  10. Knee joint immobilization decreases aggrecan gene expression in the meniscus.

    PubMed

    Djurasovic, M; Aldridge, J W; Grumbles, R; Rosenwasser, M P; Howell, D; Ratcliffe, A

    1998-01-01

    Aggrecan is the major proteoglycan of the meniscus, and its primary function is to give the meniscus its viscoelastic compressive properties. The objective of this study was to determine the effect of joint immobilization on aggrecan gene expression in the meniscus. The right hindlimbs of six mature beagles were knee cast-immobilized in 90 degrees of flexion and supported by a sling to prevent weightbearing, while the contralateral limb was left free to bear weight. The animals were sacrificed at 4 weeks, and the anterior and posterior halves of the medial and lateral menisci were analyzed separately. Analysis of aggrecan gene expression by quantitative polymerase chain reaction showed decreased aggrecan gene expression in menisci from immobilized knees (P < 0.01, two-way analysis of variance). Aggrecan gene expression decreased by a factor of 2 to 5.5 in the different regions examined. Analysis of the composition of the meniscus also showed decreased proteoglycan content and increased water content with immobilization (P < 0.05, two-way analysis of variance). These results show that joint immobilization can significantly affect meniscal cellular activity and composition and can therefore potentially affect meniscal function. PMID:9617414

  11. Apparent Skin Discoloration about the Knee Joint: A Rare Sequela of Metallosis after Total Knee Replacement

    PubMed Central

    Jayasekera, Narlaka; Gouk, Conor; Patel, Amit; Eyres, Keith

    2015-01-01

    Introduction. Metallosis is a phenomenon most commonly associated with hip replacement. However it can occur in any metallic implant subject to wear. Wear creates metal debris, which is deposited in the surrounding soft tissue. This leads to many local adverse reactions including, but not limited to, implant loosening/osteolysis, pain, and effusion. In the deeper joints, for example, the hip, metal deposits are mostly only seen intraoperatively. Case Study. A 74-year-old lady represented to orthopaedic outpatient clinic. Her principle complaint was skin discolouration, associated with pain and swelling over the left knee, on the background of a previous total knee replacement with a metal backed patella resurfacing six years. A plain radiograph revealed loosening of the patellar prosthesis. A diagnosis of metallosis was made; the patient underwent debridement of the stained soft tissue and primary revision of the prosthesis. She remained symptom-free five years after revision. Discussion. Metallosis results in metallic debris which causes tissue staining, often hidden within the soft tissue envelope of the hip, but more apparent in the knee. Metallosis may cause pain, effusion, and systemic symptoms because of raised levels of serum-metal ions. Surgical intervention with revision and debridement can have good functional results. PMID:25878914

  12. Phenotypic characteristics of joint fluid cells from patients with continuous joint effusion after total knee arthroplasty.

    PubMed

    Niki, Yasuo; Matsumoto, Hideo; Otani, Toshiro; Yatabe, Taku; Funayama, Atsushi; Maeno, Shinichi; Tomatsu, Taisuke; Toyama, Yoshiaki

    2006-03-01

    Joint effusion after total joint arthroplasty (TJA) is a manifestation of inflammatory reactions within the prosthetic joint. Among the various causes for joint effusion following TJA, deep infection (DI), wear particle-induced synovitis (PS) and metal sensitivity to the implant should be excluded as soon as possible, as these may result in the failure of TJA. The present study analyzed joint fluid cells from patients after total knee arthroplasty (TKA) using fluorescence-activated cell sorter (FACS), and examined the feasibility of using FACS to exclude the possibility of biomaterial-related complication. A total of 72TKAs from 64 patients suffering from joint effusion were examined in this study. Joint fluid was aspirated in outpatient clinics and applied to FACS. The results indicated that patients could be clearly classified into four types based on forward/side scatter profiles. Analysis of specific CD markers revealed that leukocytes were selectively recruited from blood to inflamed prosthetic joints. Dominant cell types were CD16+neutrophils in DI and increased rheumatoid activity, CD14+macrophages in PS, and CD3+CD45RO+T cells in metal sensitivity. These findings suggest the feasibility of diagnosing joint effusion by analyzing dominant cell type recruited using FACS. In conclusion, FACS may offer a useful tool for analyzing joint fluid cells from post-TJA patients and for excluding biomaterial-related complication following TJA. PMID:16183112

  13. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint femorotibial (uni-compartmental) metal... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  14. 21 CFR 888.3560 - Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint patellofemorotibial polymer/metal... Devices § 888.3560 Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/polymer...

  15. 21 CFR 888.3560 - Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint patellofemorotibial polymer/metal... Devices § 888.3560 Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/polymer...

  16. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint femorotibial (uni-compartmental) metal... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  17. 21 CFR 888.3560 - Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint patellofemorotibial polymer/metal... Devices § 888.3560 Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/polymer...

  18. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint femorotibial (uni-compartmental) metal... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  19. Quasi-stiffness of the knee joint in flexion and extension during the golf swing.

    PubMed

    Choi, Ahnryul; Sim, Taeyong; Mun, Joung Hwan

    2015-01-01

    Biomechanical understanding of the knee joint during a golf swing is essential to improve performance and prevent injury. In this study, we quantified the flexion/extension angle and moment as the primary knee movement, and evaluated quasi-stiffness represented by moment-angle coupling in the knee joint. Eighteen skilled and 23 unskilled golfers participated in this study. Six infrared cameras and two force platforms were used to record a swing motion. The anatomical angle and moment were calculated from kinematic and kinetic models, and quasi-stiffness of the knee joint was determined as an instantaneous slope of moment-angle curves. The lead knee of the skilled group had decreased resistance duration compared with the unskilled group (P < 0.05), and the resistance duration of the lead knee was lower than that of the trail knee in the skilled group (P < 0.01). The lead knee of the skilled golfers had greater flexible excursion duration than the trail knee of the skilled golfers, and of both the lead and trail knees of the unskilled golfers. These results provide critical information for preventing knee injuries during a golf swing and developing rehabilitation strategies following surgery. PMID:25651162

  20. Migration of trochanteric cerclage cable debris to the knee joint

    PubMed Central

    Kollitz, Kathleen M.; Dale, Jarrod; Richardson, Michael L.

    2015-01-01

    Migrating orthopedic hardware has widely been reported in the literature. Most reported cases of migrating hardware involve smooth Kirschner wires or loosening/fracture of hardware involved with joint stabilization/fixation. It is unusual for hardware to migrate within the soft tissues. In some cases, smooth Kirschner wires have migrated within the thoracic cage—a proposed mechanism for this phenomenon is the negative intrathoracic pressure. While wires have also been reported to gain access to circulation, transporting them over larger distances, the majority of broken or retained wires remain local. We report a case of a 34-year-old man in whom numerous fragments of braided cable migrated from the hip to the knee. PMID:27186254

  1. Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players.

    PubMed

    Rozzi, S L; Lephart, S M; Gear, W S; Fu, F H

    1999-01-01

    Anterior cruciate ligament injuries are occurring at a higher rate in female athletes compared with their male counterparts. Research in the area of anterior cruciate ligament injury has increasingly focused on the role of joint proprioception and muscle activity in promoting knee joint stability. We measured knee joint laxity, joint kinesthesia, lower extremity balance, the amount of time required to generate peak torque of the knee flexor and extensor musculature, and electromyographically assessed muscle activity in 34 healthy, collegiate-level athletes (average age, 19.6 +/- 1.5 years) who played soccer or basketball or both. Independent t-tests were used to determine significant sex differences. Results revealed that women inherently possess significantly greater knee joint laxity values, demonstrate a significantly longer time to detect the knee joint motion moving into extension, possess significantly superior single-legged balance ability, and produce significantly greater electromyographic peak amplitude and area of the lateral hamstring muscle subsequent to landing a jump. The excessive joint laxity of women appears to contribute to diminished joint proprioception, rendering the knee less sensitive to potentially damaging forces and possibly at risk for injury. Unable to rely on ligamentous structures, healthy female athletes appear to have adopted compensatory mechanisms of increased hamstring activity to achieve functional joint stabilization. PMID:10352766

  2. An electro-acoustical technique for the detection of knee joint noise.

    PubMed

    Chu, M L; Gradisar, I A; Railey, M R; Bowling, G F

    1976-01-01

    Distinguishing acoustical signatures of sound emitted by normal and pathological knee joints are picked up using a double microphone-differential amplifier setup. Extraneous background noise is minimized using the principle of "noise cancellation". Two identical sensitive condenser microphones and an F.M. recorder with flat responses in the audio range were used. Preliminary studies covering normal and diseased knee joints showed that their respective waveforms and spectral patterns are unique and proved to be a promising nondestructive diagnostic tool for early detection of knee joint cartilage damage. PMID:957922

  3. Radiosynovectomy of Painful Synovitis of Knee Joints Due to Rheumatoid Arthritis by Intra-Articular Administration of (177)Lu-Labeled Hydroxyapatite Particulates: First Human Study and Initial Indian Experience.

    PubMed

    Shinto, Ajit S; Kamaleshwaran, K K; Chakraborty, Sudipta; Vyshakh, K; Thirumalaisamy, S G; Karthik, S; Nagaprabhu, V N; Vimalnath, K V; Das, Tapas; Banerjee, Sharmila

    2015-01-01

    The aim of this study is to assess the effectiveness of Radiosynovectomy (RSV) using (177)Lu-labeled hydroxyapatite ((177)Lu-HA) in the treatment of painful synovitis and recurrent joint effusion of knee joints in rheumatoid arthritis (RA). Ten patients, diagnosed with RA and suffering from chronic painful resistant synovitis of the knee joints were referred for RSV. The joints were treated with 333 ± 46 MBq of (177)Lu-HA particles administered intra-articularly. Monitoring of activity distribution was performed by static imaging of knee joint and whole-body gamma imaging. The patients were evaluated clinically before RSV and at 6 months after the treatment by considering the pain improvement from baseline values in terms of a 100-point visual analog scale (VAS), the improvement of knee flexibility and the pain remission during the night. RSV response was classified as poor (VAS < 25), fair (VAS ≥ 25-50), good (VAS ≥ 50-75) and excellent (VAS ≥ 75), with excellent and good results considered to be success, while fair and poor as failure and also by range of motion. Three phase bone scan (BS) was repeated after 6 months and changes in the second phase of BS3 were assessed visually, using a four-degree scale and in the third phase, semiquantitatively with J/B ratio to see the response. Biochemical analysis of C-reactive protein (CRP) and fibrinogen was repeated after 48 h, 4 and 24 weeks. In all 10 patients, no leakage of administered activity to nontarget organs was visible in the whole-body scan. Static scans of the joint at 1 month revealed complete retention of (177)Lu-HA in the joints. All patients showed decreased joint swelling and pains, resulting in increased joint motion after 6 months. The percentage of VAS improvement from baseline values was 79.5 ± 20.0% 6 months after RS and found to be significantly related to patients' age (P = 0.01) and duration of the disease (P = 0.03). Knees with Steinbrocker's Grades 0 and I responded better than those

  4. Radiosynovectomy of Painful Synovitis of Knee Joints Due to Rheumatoid Arthritis by Intra-Articular Administration of 177Lu-Labeled Hydroxyapatite Particulates: First Human Study and Initial Indian Experience

    PubMed Central

    Shinto, Ajit S.; Kamaleshwaran, K. K.; Chakraborty, Sudipta; Vyshakh, K.; Thirumalaisamy, S. G.; Karthik, S.; Nagaprabhu, V. N.; Vimalnath, K. V.; Das, Tapas; Banerjee, Sharmila

    2015-01-01

    The aim of this study is to assess the effectiveness of Radiosynovectomy (RSV) using 177Lu-labeled hydroxyapatite (177Lu-HA) in the treatment of painful synovitis and recurrent joint effusion of knee joints in rheumatoid arthritis (RA). Ten patients, diagnosed with RA and suffering from chronic painful resistant synovitis of the knee joints were referred for RSV. The joints were treated with 333 ± 46 MBq of 177Lu-HA particles administered intra-articularly. Monitoring of activity distribution was performed by static imaging of knee joint and whole-body gamma imaging. The patients were evaluated clinically before RSV and at 6 months after the treatment by considering the pain improvement from baseline values in terms of a 100-point visual analog scale (VAS), the improvement of knee flexibility and the pain remission during the night. RSV response was classified as poor (VAS < 25), fair (VAS ≥ 25-50), good (VAS ≥ 50-75) and excellent (VAS ≥ 75), with excellent and good results considered to be success, while fair and poor as failure and also by range of motion. Three phase bone scan (BS) was repeated after 6 months and changes in the second phase of BS3 were assessed visually, using a four-degree scale and in the third phase, semiquantitatively with J/B ratio to see the response. Biochemical analysis of C-reactive protein (CRP) and fibrinogen was repeated after 48 h, 4 and 24 weeks. In all 10 patients, no leakage of administered activity to nontarget organs was visible in the whole-body scan. Static scans of the joint at 1 month revealed complete retention of 177Lu-HA in the joints. All patients showed decreased joint swelling and pains, resulting in increased joint motion after 6 months. The percentage of VAS improvement from baseline values was 79.5 ± 20.0% 6 months after RS and found to be significantly related to patients' age (P = 0.01) and duration of the disease (P = 0.03). Knees with Steinbrocker's Grades 0 and I responded better than those with more

  5. Increased joint loads during walking--a consequence of pain relief in knee osteoarthritis.

    PubMed

    Henriksen, Marius; Simonsen, Erik B; Alkjaer, Tine; Lund, Hans; Graven-Nielsen, Thomas; Danneskiold-Samsøe, Bente; Bliddal, Henning

    2006-12-01

    Joint pain is a primary symptom in knee osteoarthritis (OA), but the effect of pain and pain relief on the knee joint mechanics of walking is not clear. In this study, the effects of local knee joint analgesia on knee joint loads during walking were studied in a group of knee osteoarthritis patients. A group of healthy subjects was included as a reference group. The joint loads were calculated from standard gait analysis data obtained with standardised walking speed (4 km/h). The gait analyses were performed before and after pain relief by intra-articular injections of 10 mL lidocaine (1%). Pre-injection measurements revealed lower joint loads in the OA group compared to the reference group. Following injections pain during walking decreased significantly and the joint loads increased in the OA group during the late single support phase to a level comparable to the reference group. Although the patients walked with less compressive knee joint forces compared to the reference group, the effects of pain relief may accelerate the degenerative changes. PMID:17011194

  6. Characterisation of a knee-joint energy harvester powering a wireless communication sensing node

    NASA Astrophysics Data System (ADS)

    Kuang, Yang; Zhu, Meiling

    2016-05-01

    Human-based energy harvesters are attractive as sustainable replacements for batteries to power wearable or implantable devices and body sensor networks. In the work presented here, a knee-joint energy harvester (KEH) was introduced to power a customer-built wireless communication sensing node (WCSN). The KEH used a mechanical plucking technique to provide sufficient frequency up-conversion—from a few Hz to the resonant frequency of the KEH—so as to generate the high power required. It was actuated by a knee-joint simulator, which reproduced the knee-joint motion of human gaits at a walking frequency of 0.9 Hz. The energy generated was first stored in a reservoir capacitor and then released to the WCSN in a burst mode with the help of an energy aware interface. The WCSN was deployed with a three-axis accelerometer, a temperature sensor, and a light detector for data sensing. A Jennic microcontroller was utilised to collect and transmit the measured data to a base station placed at a distance of 4 m. The energy generation by the KEH and the energy distribution in the system was characterised in real time by an in-house-built set-up. The results showed that the KEH generated an average power output of 1.76 mW when powering the WCSN. After charging the reservoir capacitor for 28.4 s, the KEH can power the WCSN for a 46 ms period every 1.25 s. The results also clearly illustrated how the energy generated by the KEH was distributed in the system and highlighted the importance of using a high performance power management approach to improve the performance of the whole system.

  7. Therapeutic Experience on Stance Control Knee-Ankle-Foot Orthosis With Electromagnetically Controlled Knee Joint System in Poliomyelitis

    PubMed Central

    Kim, Jung-Hwan; Ji, Sang-Goo; Jung, Kang-Jae

    2016-01-01

    A 54-year-old man with poliomyelitis had been using a conventional, passive knee-ankle-foot orthosis (KAFO) with a drop ring lock knee joint for about 40 years. A stance control KAFO (SCKAFO) with an electromagnetically controlled (E-MAG) knee joint system was prescribed. To correct his gait pattern, he also underwent rehabilitation therapy, which included muscle re-education, neuromuscular electrical stimulation, strengthening exercises for the lower extremities, and balance training twice a week for about 4 months. Both before and after rehabilitation, we conducted a gait analysis and assessed the physiological cost index in energy expended during walking in a locked-knee state and while he wore a SCKAFO with E-MAG. When compared with the pre-rehabilitation data, the velocity, step length, stride length, and knee kinematic data were improved after rehabilitation. Although the SCKAFO with E-MAG system facilitated the control of knee motion during ambulation, appropriate rehabilitative therapy was also needed to achieve a normal gait pattern. PMID:27152288

  8. Therapeutic Experience on Stance Control Knee-Ankle-Foot Orthosis With Electromagnetically Controlled Knee Joint System in Poliomyelitis.

    PubMed

    Kim, Jung-Hwan; Ji, Sang-Goo; Jung, Kang-Jae; Kim, Jae-Hyung

    2016-04-01

    A 54-year-old man with poliomyelitis had been using a conventional, passive knee-ankle-foot orthosis (KAFO) with a drop ring lock knee joint for about 40 years. A stance control KAFO (SCKAFO) with an electromagnetically controlled (E-MAG) knee joint system was prescribed. To correct his gait pattern, he also underwent rehabilitation therapy, which included muscle re-education, neuromuscular electrical stimulation, strengthening exercises for the lower extremities, and balance training twice a week for about 4 months. Both before and after rehabilitation, we conducted a gait analysis and assessed the physiological cost index in energy expended during walking in a locked-knee state and while he wore a SCKAFO with E-MAG. When compared with the pre-rehabilitation data, the velocity, step length, stride length, and knee kinematic data were improved after rehabilitation. Although the SCKAFO with E-MAG system facilitated the control of knee motion during ambulation, appropriate rehabilitative therapy was also needed to achieve a normal gait pattern. PMID:27152288

  9. The Complexity of Human Walking: A Knee Osteoarthritis Study

    PubMed Central

    Kotti, Margarita; Duffell, Lynsey D.; Faisal, Aldo A.; McGregor, Alison H.

    2014-01-01

    This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1–3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis subjects exhibit more

  10. Ambulatory estimation of knee-joint kinematics in anatomical coordinate system using accelerometers and magnetometers.

    PubMed

    Kun, Liu; Inoue, Yoshio; Shibata, Kyoko; Enguo, Cao

    2011-02-01

    Knee-joint kinematics analysis using an optimal sensor set and a reliable algorithm would be useful in the gait analysis. An original approach for ambulatory estimation of knee-joint angles in anatomical coordinate system is presented, which is composed of a physical-sensor-difference-based algorithm and virtual-sensor-difference-based algorithm. To test the approach, a wearable monitoring system composed of accelerometers and magnetometers was developed and evaluated on lower limb. The flexion/extension (f/e), abduction/adduction (a/a), and inversion/extension (i/e) rotation angles of the knee joint in the anatomical joint coordinate system were estimated. In this method, since there is no integration of angular acceleration or angular velocity, the result is not distorted by offset and drift. The three knee-joint angles within the anatomical coordinate system are independent of the orders, which must be considered when Euler angles are used. Besides, since there are no physical sensors implanted in the knee joint based on the virtual-sensor-difference-based algorithm, it is feasible to analyze knee-joint kinematics with less numbers and types of sensors than those mentioned in some others methods. Compared with results from the reference system, the developed wearable sensor system is available to do gait analysis with fewer sensors and high degree of accuracy. PMID:21257363

  11. Mechanical characterization and validation of poly (methyl methacrylate)/multi walled carbon nanotube composite for the polycentric knee joint.

    PubMed

    Arun, S; Kanagaraj, S

    2015-10-01

    Trans femoral amputation is one of the most uncomfortable surgeries in patient׳s life, where the prosthesis consisting of a socket, knee joint, pylon and foot is used to do the walking activities. The artificial prosthetic knee joint imitates the functions of human knee to achieve the flexion-extension for the above knee amputee. The objective of present work is to develop a light weight composite material for the knee joint to reduce the metabolic cost of an amputee. Hence, an attempt was made to study the mechanical properties of multi walled carbon nanotubes (MWCNT) reinforced Poly (methyl methacrylate) (PMMA) prepared through melt mixing technique and optimize the concentration of reinforcement. The PMMA nanocomposites were prepared by reinforcing 0, 0.1, 0.2, 0.25, 0.3 and 0.4 wt% of MWCNT using injection moulding machine via twin screw extruder. It is observed that the tensile and flexural strength of PMMA, which were studied as per ASTM D638 and D790, respectively, were increased by 32.9% and 26.3% till 0.25 wt% reinforcement of MWCNT. The experimental results of strength and modulus were compared with theoretical prediction, where a good correlation was noted. It is concluded that the mechanical properties of PMMA were found to be increased to maximum at 0.25 wt% reinforcement of MWCNT, where the Pukanszky model and modified Halpin-Tsai model are suggested to predict the strength and modulus, respectively, of the PMMA/MWCNT composite, which can be opted as a suitable materiel for the development of polycentric knee joint. PMID:26099200

  12. [Total endoprosthesis of knee joint for the severe deformity of the femoral and tibial condyles].

    PubMed

    Ternovoĭ, N K; Zazirnyĭ, I M; Kosiakov, A N; Dubok, V A; Ul'ianich, N V; Kikhniakevich, T G; Evseenko, V G

    2000-06-01

    The method of knee joint endoprosthesis for its pronounced deformity was proposed. As a transplant there was applied the ceramic hydroxiapatite, manufactured according to special technology. The implant was fixed on the transplant adjusted. PMID:11288279

  13. Abdominal muscle activity according to knee joint angle during sit-to-stand

    PubMed Central

    Eom, Juri; Rhee, Min-Hyung; Kim, Laurentius Jongsoon

    2016-01-01

    [Purpose] This study assessed the activity of the abdominal muscles according to the angle of the knee joints during sit-to-stand. [Subjects and Methods] Thirty healthy adult males participated in this study. Subjects initiated sit-to-stand at knee joint angles of 60°, 90°, or 120°. An electromyography system was used to measure the maximum voluntary isometric contraction of the rectus abdominis, external oblique, and internal oblique and transverse abdominis muscles. [Results] Percent contraction differed significantly among the three knee joint angles, most notably for the internal oblique and transverse abdominis muscles. [Conclusion] Wider knee joint angles more effectively activate the abdominal muscles, especially those in the deep abdomen, than do narrower angles. PMID:27390431

  14. Effect of Prophylactic Knee Bracing on Balance and Joint Position Sense

    PubMed Central

    Kaminski, Thomas W.; Perrin, David H.

    1996-01-01

    Prophylactic knee braces are designed to prevent and reduce the severity of ligamentous injuries to the knee. Conflicting evidence is reported concerning their efficacy. The purpose of this study was to determine the effect of prophylactic knee bracing on the proprioceptive parameters of balance and joint position sense. Active and passive joint position sense were assessed using the Cybex II + Isokinetic Dynamometer (Cybex Division of Lumex, Inc, Ronkonkoma, NY). Sway index and center of balance were assessed using the Chattecx Dynamic Balance System (Chattanooga Group, Hixson, TN). Thirty-six male subjects were measured with and without prophylactic knee braces. Joint position sense was measured in degrees of error from four preselected target angles. Sway index and center of balance measures were recorded in centimeters under the following platform conditions: stable, plantar flexion/dorsiflexion, and inversion/eversion. Separate repeated measures ANOVAs were performed to determine if there were differences between the braced and unbraced conditions for center of balance, sway index, and joint position sense. Center of balance with the platform moving in a dorsi/plantar flexion direction was improved while wearing the knee braces. In addition, differences in both center of balance and sway were recorded across the three platform conditions with and without knee bracing. Bracing did not affect joint position sense. The results of this study suggest that prophylactic knee braces have very little impact on proprioceptive feedback mechanisms. ImagesFig 1.Fig 2.Fig 4. PMID:16558386

  15. Knee joint secondary motion accuracy improved by quaternion-based optimizer with bony landmark constraints.

    PubMed

    Wang, Hongsheng; Zheng, Naiqaun Nigel

    2010-12-01

    Skin marker-based motion analysis has been widely used in biomechanical studies and clinical applications. Unfortunately, the accuracy of knee joint secondary motions is largely limited by the nonrigidity nature of human body segments. Numerous studies have investigated the characteristics of soft tissue movement. Utilizing these characteristics, we may improve the accuracy of knee joint motion measurement. An optimizer was developed by incorporating the soft tissue movement patterns at special bony landmarks into constraint functions. Bony landmark constraints were assigned to the skin markers at femur epicondyles, tibial plateau edges, and tibial tuberosity in a motion analysis algorithm by limiting their allowed position space relative to the underlying bone. The rotation matrix was represented by quaternion, and the constrained optimization problem was solved by Fletcher's version of the Levenberg-Marquardt optimization technique. The algorithm was validated by using motion data from both skin-based markers and bone-mounted markers attached to fresh cadavers. By comparing the results with the ground truth bone motion generated from the bone-mounted markers, the new algorithm had a significantly higher accuracy (root-mean-square (RMS) error: 0.7 ± 0.1 deg in axial rotation and 0.4 ± 0.1 deg in varus-valgus) in estimating the knee joint secondary rotations than algorithms without bony landmark constraints (RMS error: 1.7 ± 0.4 deg in axial rotation and 0.7 ± 0.1 deg in varus-valgus). Also, it predicts a more accurate medial-lateral translation (RMS error: 0.4 ± 0.1 mm) than the conventional techniques (RMS error: 1.2 ± 0.2 mm). The new algorithm, using bony landmark constrains, estimates more accurate secondary rotations and medial-lateral translation of the underlying bone. PMID:21142329

  16. Synovial haemangioma of the knee joint: an unusual cause of knee pain in a 14-month old girl.

    PubMed

    Wen, D W; Tan, T J; Rasheed, S

    2016-06-01

    We report a histologically proven case of synovial haemangioma of the knee in a 14-month old girl who presented to the emergency department with an acute 1-day history of refusing to weight-bear on the right leg and a preceding 3-week history of a right knee lump. Physical examination revealed a non-tender, soft lump over the lateral infrapatellar region. Radiographs revealed a poorly defined soft tissue density over the infrapatellar fat pad and a suprapatellar joint effusion. Ultrasound was used to confirm the presence of a vascular soft tissue mass compatible with a synovial haemangioma within the infrapatellar fat pad which showed both intra-articular and extra-articular extension. There was good correlation of the ultrasound findings with magnetic resonance imaging (MRI), highlighting the potential clinical utility of ultrasound as an alternative imaging modality in establishing the pre-operative diagnosis and extent of a synovial haemangioma about the knee joint. PMID:26960422

  17. Biphasic Finite Element Contact Analysis of the Knee Joint using an Augmented Lagrangian Method

    PubMed Central

    Guo, Hongqiang; Maher, Suzanne A.; Spilker, Robert L.

    2013-01-01

    Biphasic contact analysis is essential to obtain a more complete understanding of soft tissue biomechanics; however, only a limited number of studies have addressed these types of problems. In this paper, a theoretically consistent biphasic finite element solution of the 2D axisymmetric human knee was developed, and an augmented Lagrangian method was used to enforce the biphasic continuity across the contact interface. The interaction between the fluid and solid matrices of the soft tissues of the knee joint, the stress and strain distributions within the meniscus, and the changes in stress and strain distributions in the articular cartilage of the femur and tibia after complete meniscectomy were investigated. It was found that (i) the fluid phase carries more than 60% of the load, which reinforces the need for the biphasic model for knee biomechanics; (ii) the inner third and outer two-thirds of the meniscus had different strain distributions; and (iii) the distributions of both maximum shear stress and maximum principal strain in articular cartilage changed after complete meniscectomy - with peak values increasing by over 350%. PMID:23498852

  18. Lipoma arborescens arising in the extra-articular bursa of the knee joint

    PubMed Central

    Minami, Shinji; Miyake, Yusuke; Kinoshita, Hirofumi

    2016-01-01

    Lipoma arborescens arising in the extra-articular bursa of the knee joint is extremely rare. We describe an 11-year-old boy who complained of a gradual swelling mass of the lateral knee joint. Magnetic resonance imaging (MRI) showed a high signal intensity tumor on T1- and T2-weighted images with a thickened septa and nodular lesion that showed low signal intensity. The radiologist suggested the possible differential diagnosis of well-differentiated liposarcoma. At operation, the tumor was found under the iliotibial tract and was not in contact with the knee joint. Histopathologically, this lesion was diagnosed as lipoma arborescens arising in the extra-articular bursa of the knee joint. On MRI, the appearance of lipoma arborescens arising in the extra-articular bursa of the knee joint differed from that of conventional intra-articular lipoma arborescens. In this report, we describe a case of extra-articular lipoma arborescens of the knee joint bursa and discuss the diagnosis and etiology. PMID:27382924

  19. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study

    PubMed Central

    Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël

    2016-01-01

    The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a “soft” constraint using a penalty-based method, this elastic joint description challenges the strictness of “hard” constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO. PMID:27314586

  20. Hip rotation angle is associated with frontal plane knee joint mechanics during running.

    PubMed

    Sakaguchi, Masanori; Shimizu, Norifumi; Yanai, Toshimasa; Stefanyshyn, Darren J; Kawakami, Yasuo

    2015-02-01

    Inability to control lower extremity segments in the frontal and transverse planes resulting in large knee abduction angle and increased internal knee abduction impulse has been associated with patellofemoral pain (PFP). However, the influence of hip rotation angles on frontal plane knee joint kinematics and kinetics remains unclear. The purpose of this study was to explore how hip rotation angles are related to frontal plane knee joint kinematics and kinetics during running. Seventy runners participated in this study. Three-dimensional marker positions and ground reaction forces were recorded with an 8-camera motion analysis system and a force plate while subjects ran along a 25-m runway at a speed of 4m/s. Knee abduction, hip rotation and toe-out angles, frontal plane lever arm at the knee, internal knee abduction moment and impulse, ground reaction forces and the medio-lateral distance from the ankle joint center to the center of pressure (AJC-CoP) were quantified. The findings of this study indicate that greater hip external rotation angles were associated with greater toe-out angles, longer AJC-CoP distances, smaller internal knee abduction impulses with shorter frontal plane lever arms and greater knee abduction angles. Thus, there appears to exist a conflict between kinematic and kinetic risk factors of PFP, and hip external rotation angle may be a key factor to control frontal plane knee joint kinematics and kinetics. These results may help provide an appropriate manipulation and/or intervention on running style to reduce the risk of PFP. PMID:25572723

  1. Gait kinematics and passive knee joint range of motion in children with hypermobility syndrome.

    PubMed

    Fatoye, Francis A; Palmer, Shea; van der Linden, Marietta L; Rowe, Philip J; Macmillan, Fiona

    2011-03-01

    Hypermobility syndrome (HMS) is characterised by generalised joint laxity and musculoskeletal complaints. Gait abnormalities have been reported in children with HMS but have not been empirically investigated. The extent of passive knee joint range of motion (ROM) has also not been well reported in children with HMS. This study evaluated gait kinematics and passive knee joint ROM in children diagnosed with HMS and healthy controls. Thirty-seven healthy children (mean age±SD=11.5±2.6 years) and 29 children with HMS (mean age±SD=11.9±1.8 years) participated. Sagittal knee motion and gait speed were evaluated using a VICON 3D motion analysis system. Passive knee ROM was measured with a manual goniometer. Independent t-tests compared the values of sagittal knee motion and gait speed between the two groups. Mann-Whitney U tests compared passive knee ROM between groups. Passive ROM (extension and flexion) was significantly higher (both p<0.001) in children with HMS than the healthy controls. Peak knee flexion (during loading response and swing phase) during walking was significantly lower (both p<0.001) in children with HMS. Knee extension in mid stance during walking was significantly increased (p<0.001) in children with HMS. However, gait speed was not statistically (p=0.496) different between the two groups. Children with HMS had higher passive knee ROM than healthy children and also demonstrated abnormal knee motion during gait. Gait re-education and joint stability exercise programmes may be of value to children with HMS. PMID:21300548

  2. Using a statistically calibrated biphasic finite element model of the human knee joint to identify robust designs for a meniscal substitute.

    PubMed

    Leatherman, Erin R; Guo, Hongqiang; Gilbert, Susannah L; Hutchinson, Ian D; Maher, Suzanne A; Santner, Thomas J

    2014-07-01

    This paper describes a methodology for selecting a set of biomechanical engineering design variables to optimize the performance of an engineered meniscal substitute when implanted in a population of subjects whose characteristics can be specified stochastically. For the meniscal design problem where engineering variables include aspects of meniscal geometry and meniscal material properties, this method shows that meniscal designs having simultaneously large radial modulus and large circumferential modulus provide both low mean peak contact stress and small variability in peak contact stress when used in the specified subject population. The method also shows that the mean peak contact stress is relatively insensitive to meniscal permeability, so the permeability used in the manufacture of a meniscal substitute can be selected on the basis of manufacturing ease or cost. This is a multiple objective problem with the mean peak contact stress over the population of subjects and its variability both desired to be small. The problem is solved by using a predictor of the mean peak contact stress across the tibial plateau that was developed from experimentally measured peak contact stresses from two modalities. The first experimental modality provided computed peak contact stresses using a finite element computational simulator of the dynamic tibial contact stress during axial dynamic loading. A small number of meniscal designs with specified subject environmental inputs were selected to make computational runs and to provide training data for the predictor developed below. The second experimental modality consisted of measured peak contact stress from a set of cadaver knees. The cadaver measurements were used to bias-correct and calibrate the simulator output. Because the finite element simulator is expensive to evaluate, a rapidly computable (calibrated) Kriging predictor was used to explore extensively the contact stresses for a wide range of meniscal engineering

  3. Effects of changing speed on knee and ankle joint load during walking and running.

    PubMed

    de David, Ana Cristina; Carpes, Felipe Pivetta; Stefanyshyn, Darren

    2015-01-01

    Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s(-1) ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes. PMID:25105739

  4. Altered Knee Joint Mechanics in Simple Compression Associated with Early Cartilage Degeneration

    PubMed Central

    Dabiri, Y.; Li, L. P.

    2013-01-01

    The progression of osteoarthritis can be accompanied by depth-dependent changes in the properties of articular cartilage. The objective of the present study was to determine the subsequent alteration in the fluid pressurization in the human knee using a three-dimensional computer model. Only a small compression in the femur-tibia direction was applied to avoid numerical difficulties. The material model for articular cartilages and menisci included fluid, fibrillar and nonfibrillar matrices as distinct constituents. The knee model consisted of distal femur, femoral cartilage, menisci, tibial cartilage, and proximal tibia. Cartilage degeneration was modeled in the high load-bearing region of the medial condyle of the femur with reduced fibrillar and nonfibrillar elastic properties and increased hydraulic permeability. Three case studies were implemented to simulate (1) the onset of cartilage degeneration from the superficial zone, (2) the progression of cartilage degeneration to the middle zone, and (3) the progression of cartilage degeneration to the deep zone. As compared with a normal knee of the same compression, reduced fluid pressurization was observed in the degenerated knee. Furthermore, faster reduction in fluid pressure was observed with the onset of cartilage degeneration in the superficial zone and progression to the middle zone, as compared to progression to the deep zone. On the other hand, cartilage degeneration in any zone would reduce the fluid pressure in all three zones. The shear strains at the cartilage-bone interface were increased when cartilage degeneration was eventually advanced to the deep zone. The present study revealed, at the joint level, altered fluid pressurization and strains with the depth-wise cartilage degeneration. The results also indicated redistribution of stresses within the tissue and relocation of the loading between the tissue matrix and fluid pressure. These results may only be qualitatively interesting due to the small

  5. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.

    PubMed

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F; Fregly, Benjamin J; Delp, Scott L; Banks, Scott A; Pandy, Marcus G; D'Lima, Darryl D; Lloyd, David G

    2013-11-15

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. PMID:24074941

  6. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces

    PubMed Central

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F.; Fregly, Benjamin J.; Delp, Scott L.; Banks, Scott A.; Pandy, Marcus G.; D’Lima, Darryl D.; Lloyd, David G.

    2013-01-01

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. PMID:24074941

  7. Biomechanical comparison of frontal plane knee joint moment arms during normal and Tai Chi walking

    PubMed Central

    Jagodinsky, Adam; Fox, John; Decoux, Brandi; Weimar, Wendi; Liu, Wei

    2015-01-01

    [Purpose] Medial knee osteoarthritis, a degenerative joint disease, affects adults. The external knee adduction moment, a surrogate knee-loading measure, has clinical implications for knee osteoarthritis patients. Tai Chi is a promising intervention for pain alleviation in knee osteoarthritis; however, the characteristics of external knee adduction moment during Tai Chi have not been established. [Subjects and Methods] During normal and Tai Chi walking, a gait analysis was performed to compare the external knee adduction moment moment-arm characteristics and paired t-tests to compare moment-arm magnitudes. [Results] A significant difference was observed in the average lateral direction of moment-arm magnitude during Tai Chi walking (−0.0239 ± 0.011 m) compared to that during normal walking (−0.0057 ± 0.004 m). No significant difference was found between conditions in average medial direction of moment-arm magnitude (normal walking: 0.0143 ± 0.010 m; Tai Chi walking: 0.0098 ± 0.014 m). [Conclusion] Tai Chi walking produced a larger peak lateral moment-arm value than normal walking during the stance phase, whereas Tai Chi walking and normal walking peak medial moment-arm values were similar, suggesting that medial knee joint loading may be avoided during Tai Chi walking. PMID:26504334

  8. Distribution and Alteration of Lymphatic Vessels in Knee Joints of Normal and Osteoarthritic Mice

    PubMed Central

    Shi, Jixiang; Liang, Qianqian; Zuscik, Michael; Shen, Jie; Chen, Di; Xu, Hao; Wang, Yong-Jun; Chen, Yan; Wood, Ronald W.; Li, Jia; Boyce, Brendan F.; Xing, Lianping

    2014-01-01

    Objective To investigate the distribution and alteration of lymphatic vessels and draining function in knee joints of normal and osteoarthritic mice. Methods For the mouse models of osteoarthritis (OA), we used mice with meniscal-ligamentous injury or mice with conditional knockout of the gene for cartilage transforming growth factor β (TGF β) type II receptor. The severity of cartilage loss and joint destruction was assessed histologically. Capillary and mature lymphatic vessels were identified and analyzed using double immunofluorescence staining and a whole-slide digital imaging system. Lymphatic drainage of knee joints was examined using near-infrared lymphatic imaging. Patient joint specimens obtained during total knee or hip arthroplasty were evaluated to verify the content validity of the mouse findings. Results Lymphatic vessels were distributed in soft tissues (mainly around the joint capsule, ligaments, fat pads, and muscles of normal knees). The number of lymphatic vessels, particularly the number of capillaries, was significantly increased in joints of mice with mild OA, while the number of mature lymphatic vessels was markedly decreased in joints of mice with severe OA. OA knees exhibited significantly decreased lymph clearance. The number of both capillary and mature lymphatic vessels was significantly decreased in the joints of patients with OA. Conclusion The whole-slide digital imaging system is a powerful tool, enabling the identification and assessment of lymphatic microvasculature in the entire mouse knee. Lymphatic capillaries and mature vessels are present in various soft tissues around articular spaces. Abnormalities of lymphatic vessels and draining function, including significantly reduced numbers of mature vessels and impaired clearance, are present in OA joints. PMID:24574226

  9. Assessment of safety and efficacy of methylsulfonylmethane on bone and knee joints in osteoarthritis animal model.

    PubMed

    Ezaki, Junko; Hashimoto, Miyuki; Hosokawa, Yu; Ishimi, Yoshiko

    2013-01-01

    Methylsulfonylmethane (MSM), which is one of the popular ingredients of so-called health foods in Japan, is expected to relieve inflammation in arthritis and allergies. However, there is no scientific evidence to confirm the efficacy and safety of MSM in detail. In this study, we examined the effects of MSM on cartilage formation in growing rats (G) and cartilage degradation in STR/Ort mice (A), an accepted human osteoarthritis (OA) model. For cartilage formation study, 6-week-old growing male Wister rats were assigned to four groups to receive a control or MSM-containing diet. To examine the efficacy of MSM on the cartilage of OA model mouse, 10-week-old male STR/OrtCrlj mice were assigned to three groups to receive a control or MSM-containing diet. The dosages used were amounts equal to the recommended supplements for humans [0.06 g/kg body weight (BW)/day: MSM1G and MSM1A], 10 fold higher (0.6 g/kg BW/day: MSM10G and MSM10A), and 100 fold higher (6 g/kg BW/day: MSM100G). Intake of MSM for 4 weeks did not affect cartilage formation in the knee joint in growing rats. Body, liver, and spleen weight in the MSM100G group were significantly lower than those in the control group. Intake of MSM for 13 weeks decreased degeneration of the cartilage at the joint surface in the knee joints in STR/Ort mice in a dose-dependent manner. These results suggest that appropriate intake of MSM is possibly effective in OA model mice; however, intake of large amounts of MSM induced atrophy of several organs. PMID:23011466

  10. Inside-Out Trans-Arthroscopic Drain Application During Knee Joint Arthroscopy

    PubMed Central

    Salzmann, Gian M.; Preiss, Stefan; Harder, Laurent P.; Naal, Florian D.

    2015-01-01

    Although knee joint arthroscopy is one of the most frequently performed surgical procedures worldwide, there is no consensus on how to apply a drain in the joint if it is decided to use one. Therefore we describe a simple technique to safely apply a drain intra-articularly under full arthroscopic control, avoiding placement of the drain through the arthroscopic portal. PMID:26870639

  11. Patterns of compensation of functional deficits of the knee joint in patients with juvenile idiopathic arthritis

    PubMed Central

    Księżopolska-Orłowska, Krystyna

    2015-01-01

    Objectives Juvenile idiopathic arthritis (JIA) is a group of pathological syndromes of unknown aetiology, observed at the developmental age. Their common feature is sustained chronic arthritis with flares and remissions. Clinical signs and symptoms include joint pain, periarticular tissue oedema or articular exudate, frequently associated with hypertrophy of the synovial membrane. The intra- and extra-articular structural damage impairs the motion range and smoothness. The disease process may involve any joint. The knee joint is the most frequently affected in oligo- and polyarthritis. The aim of the study was to determine a direct correlation between disorders of knee joint function and the change in the range of motion of the ankle and hip joints of both lower extremities, and the so-called indirect impact of these changes on patients’ posture. Material and methods The study included 36 JIA patients and 56 healthy controls aged 8–16 years. The evaluation was based on physical examination. Results The results showed differences in the values of quality and range of motion between patients and controls. In the patient group pes planovalgus was more frequently associated with knee joint dysfunction along with the inherent restriction of dorsal flexion of the foot. Shortening of the iliotibial band, increased outward rotation of the right lower extremity with enlarged joint contour and augmented inward rotation of the contralateral healthy extremity all proved significant. Changes in motion range in the joints below and over the knee were associated with alterations of antero-posterior spine curvatures and vertebral rotation along the long spinal axis. Based on the results, the mechanism of the compensation is outlined. Conclusions The observed differences in the range and quality of motion in the ankle, hip and spinal joints between patients and healthy children provide evidence that dysfunction of the knee joint affects the function of the other above

  12. Resultant knee joint moments for lateral movement tasks on sliding and non-sliding sport surfaces.

    PubMed

    Nigg, Benno M; Stefanyshyn, Darren J; Rozitis, Antra I; Mundermann, Annegret

    2009-03-01

    The aim of this study was to compare ankle and knee joint moments observed when playing on sport surfaces that slide slightly relative to the ground with the moments observed when playing on conventional sport surfaces. Three-dimensional resultant internal joint moments and kinematic characteristics of the lower extremity were quantified for 21 university basketball players when performing v-cut and side-shuffle tasks on three types of sliding surface (interlocking tiles) and on two types of conventional surface (maple wood and rolled vinyl). Translational and rotational friction between the five test surfaces and a test shoe were also quantified. The five sport surfaces moved horizontally between 0.2 and 1.6 mm during the landing phase of the two tasks. The medio-lateral ground reaction forces were lowest for the surfaces with the highest horizontal movement. Resultant ankle joint moments were lower and resultant knee moments were higher on the sliding surfaces than the conventional surfaces. Sport surfaces that allow a few millimetres of horizontal movement during ground contact may reduce joint loading at the ankle joint, but increase joint loading at the knee joint, when compared with conventional sport surfaces, and thus may influence the prevalence of knee injuries. PMID:19253080

  13. Influences of Alignment and Obesity on Knee Joint Loading in Osteoarthritic Gait

    PubMed Central

    Messier, Stephen P.; Pater, Mackenzie; Beavers, Daniel P.; Legault, Claudine; Loeser, Richard F.; Hunter, David J.; DeVita, Paul

    2014-01-01

    Objective To determine the influences of frontal plane knee alignment and obesity on knee joint loads in older, overweight and obese adults with knee osteoarthritis. Methods Cross-sectional investigation of alignment and obesity on knee joint loads using community dwelling older adults (age ≥ 55 yrs.; 27 kg·m−2 ≥ BMI ≤ 41 kg·m−2; 69% female) with radiographic knee osteoarthritis that were a subset of participants (157 out of 454) enrolled in the Intensive Diet and Exercise for Arthritis (IDEA) clinical trial. Results A higher BMI was associated with greater (p = 0.0006) peak knee compressive forces [overweight, 2411 N (2182, 2639), class 1 obesity, 2772 N (2602, 2943), class 2+ obesity, 2993 N (2796, 3190)] and greater (p = 0.004) shear forces [overweight, 369 N (322, 415), class 1 obesity, 418 N (384, 453), class 2+ obesity, 472 N (432, 513)], independent of alignment, and varus alignment was associated (p < 0.0001) with greater peak external knee adduction moments, independent of BMI [valgus, 18.7 Nm (15.1, 22.4), neutral, 27.7 Nm (24.0, 31.4), varus, 37.0 Nm (34.4, 39.7)]. Conclusion BMI and alignment were associated with different joint loading measures; alignment was more closely associated with the asymmetry or imbalance of loads across the medial and lateral knee compartments as reflected by the frontal plane external adduction moment, while BMI was associated with the magnitude of total tibio-femoral force. These data may be useful in selecting treatment options for knee osteoarthritis patients (e.g., diet to reduce compressive loads or bracing to change alignment). PMID:24857973

  14. The Effects of Common Footwear on Joint Loading in Osteoarthritis of the Knee

    PubMed Central

    Shakoor, Najia; Sengupta, Mondira; Foucher, Kharma C.; Wimmer, Markus A.; Fogg, Louis F.; Block, Joel A.

    2010-01-01

    Objective Elevated joint loads during walking have been associated with the severity and progression of osteoarthritis (OA) of the knee. Footwear may have the potential to alter these loads. This study compared the effects of several common shoe types on knee loading in subjects with OA of the knee. Methods 31 subjects (10 men, 21 women) with radiographic and symptomatic knee OA underwent gait analyses using an optoelectronic camera system and multi-component force plate. In each case, gait was evaluated barefoot and while wearing 4 different shoes: 1) clogs (Dansko®), 2) stability shoes (Brooks Addiction®), 3) flat walking shoes (Puma H Street®), and 4) flip-flops. Peak knee loads were compared between the different footwear conditions. Results Overall, the clogs and stability shoes, resulted in a significantly higher peak knee adduction moment (3.1±0.7 and 3.0±0.7 %BW*ht, respectively, ~15% higher, p<0.05)) compared with that of flat walking shoes (2.8±0.7%BW*ht), flip-flops (2.7±0.8%BW*ht) and barefoot walking (2.7±0.7%BW*ht). There were no statistically significant differences in knee loads with the flat walking shoes and flip-flops compared to barefoot walking. Conclusions These data confirm that footwear may have significant effects on knee loads during walking in subjects with OA of the knee. Flexibility and heel height may be important differentiating characteristics of shoes which affect knee loads. In light of the strong relationship between knee loading and OA, the design and biomechanical effects of modern footwear should be more closely evaluated in terms of their effects on the disease. PMID:20191571

  15. Effect of patient positions on measurement errors of the knee-joint space on radiographs

    NASA Astrophysics Data System (ADS)

    Gilewska, Grazyna

    2001-08-01

    Osteoarthritis (OA) is one of the most important health problems these days. It is one of the most frequent causes of pain and disability of middle-aged and old people. Nowadays the radiograph is the most economic and available tool to evaluate changes in OA. Error of performance of radiographs of knee joint is the basic problem of their evaluation for clinical research. The purpose of evaluation of such radiographs in my study was measuring the knee-joint space on several radiographs performed at defined intervals. Attempt at evaluating errors caused by a radiologist of a patient was presented in this study. These errors resulted mainly from either incorrect conditions of performance or from a patient's fault. Once we have information about size of the errors, we will be able to assess which of these elements have the greatest influence on accuracy and repeatability of measurements of knee-joint space. And consequently we will be able to minimize their sources.

  16. Measurement of force sense reproduction in the knee joint: application of a new dynamometric device

    PubMed Central

    Zavieh,, Minoo Khalkhali; Amirshakeri,, Bahram; Rezasoltani,, Asghar; Talebi,, Ghadam Ali; Kalantari,, Khosro Khademi; Nedaey,, Vahab; Baghban,, Alireza Akbarzadeh

    2016-01-01

    [Purpose] The aim of this study was to determine the reliability of a newly designed dynamometric device for use in frequent force producing/reproducing tasks on the knee joint. [Subjects and Methods] In this cross-sectional study (Development & Reliability), 30 young healthy males and females (age 23.4 ± 2.48 years) were selected among students of Tabriz University of Medical Sciences by simple randomized selection. The study instrument was designed to measure any isometric contraction force exerted by the knee joint flexor/extensor muscles, known as the ipsilateral and contralateral methods. Participant knees were fixed in 60° flexion, and each participant completed the entire set of measurements twice, 72 hours apart. [Results] The findings showed a good intraclass correlation coefficient of 0.73 to 0.81 for all muscle groups. The standard error of measurement and smallest detectable difference for flexor muscle groups were 0.37 and 1.02, respectively, while the values increased to standard error of measurement=0.38 and smallest detectable difference=1.05 for extensor muscle groups. [Conclusion] The device designed could quantify the forces producing/reproducing tasks on the knee joint with a high rate of reliability, and can probably be applied for outcome measurements in proprioceptive assessment of the knee joint.

  17. Design of a wearable perturbator for human knee impedance estimation during gait.

    PubMed

    Tucker, Michael R; Moser, Adrian; Lambercy, Olivier; Sulzer, James; Gassert, Roger

    2013-06-01

    Mechanical impedance modulation is the key to natural, stable and efficient human locomotion. An improved understanding of this mechanism is necessary for the development of the next generation of intelligent prosthetic and orthotic devices. This paper documents the design methodologies that were employed to realize a knee perturbator that can experimentally estimate human knee impedance during gait through the application of angular velocity perturbations. The proposed experiment requires a light, transparent, wearable, and remotely actuated device that closely follows the movement of the biological joint. A genetic algorithm was used to design a polycentric hinge whose instantaneous center of rotation is optimized to be kinematically compatible with the human knee. A wafer disc clutch was designed to switch between a high transparency passive mode and a high impedance actuated mode. A remote actuation and transmission scheme was designed to enable high power output perturbations while minimizing the device's mass. Position and torque sensors were designed for device control and to provide data for post-processing and joint impedance estimation. Pending the fabrication and mechanical testing of the device, we expect this knee perturbator to be a valuable tool for experimental investigation of locomotive joint impedance modulation. PMID:24187191

  18. Interlimb communication to the knee flexors during walking in humans

    PubMed Central

    Stevenson, Andrew J T; Geertsen, Svend S; Andersen, Jacob B; Sinkjær, Thomas; Nielsen, Jens B; Mrachacz-Kersting, Natalie

    2013-01-01

    A strong coordination between the two legs is important for maintaining a symmetric gait pattern and adapting to changes in the external environment. In humans as well as animals, receptors arising from the quadriceps muscle group influence the activation of ipsilateral muscles. Moreover, strong contralateral spinal connections arising from quadriceps and hamstring afferents have been shown in animal models. Therefore, the aims of the present study were to assess if such connections also exist in humans and to elucidate on the possible pathways. Contralateral reflex responses were investigated in the right leg following unexpected unilateral knee joint rotations during locomotion in either the flexion or extension direction. Strong reflex responses in the contralateral biceps femoris (cBF) muscle with a mean onset latency of 76 ± 6 ms were evoked only from ipsilateral knee extension joint rotations in the late stance phase. To investigate the contribution of a transcortical pathway to this response, transcranial magnetic and electrical stimulation were applied. Motor evoked potentials elicited by transcranial magnetic stimulation, but not transcranial electrical stimulation, were facilitated when elicited at the time of the cBF response to a greater extent than the algebraic sum of the cBF reflex and motor evoked potentials elicited separately, indicating that a transcortical pathway probably contributes to this interlimb reflex. The cBF reflex response may therefore be integrated with other sensory input, allowing for responses that are more flexible. We hypothesize that the cBF reflex response may be a preparation of the contralateral leg for early load bearing, slowing the forward progression of the body to maintain dynamic equilibrium during walking. PMID:23918771

  19. 21 CFR 888.3560 - Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis. 888.3560 Section 888.3560 Food and Drugs FOOD AND DRUG... Devices § 888.3560 Knee joint patellofemorotibial polymer/metal/polymer semi-constrained...

  20. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .../polymer porous-coated uncemented prosthesis. 888.3535 Section 888.3535 Food and Drugs FOOD AND DRUG... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  1. 21 CFR 888.3560 - Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis. 888.3560 Section 888.3560 Food and Drugs FOOD AND DRUG... Devices § 888.3560 Knee joint patellofemorotibial polymer/metal/polymer semi-constrained...

  2. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .../polymer porous-coated uncemented prosthesis. 888.3535 Section 888.3535 Food and Drugs FOOD AND DRUG... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  3. Effects of Specialized Footwear on Joint Loads in Osteoarthritis of the Knee

    PubMed Central

    Shakoor, Najia; Lidtke, Roy H.; Sengupta, Mondira; Fogg, Louis F.; Block, Joel A.

    2013-01-01

    Objective Elevated dynamic joint loads have been associated with the severity and progression of osteoarthritis (OA) of the knee. This study compared the effects of a specialized shoe (the mobility shoe) designed to lower dynamic loads at the knee with self-chosen conventional walking shoes and with a commercially available walking shoe as a control. Methods Subjects with knee OA were evaluated in 2 groups. Group A (n = 28) underwent gait analyses with both their self-chosen walking shoes and the mobility shoes. Group B (n = 20) underwent gait analyses with a control shoe and the mobility shoe. Frontal plane knee loads were compared between the different footwear conditions. Results Group A demonstrated an 8% reduction in the peak external knee adduction moment with the mobility shoe compared with self-chosen walking shoes (mean ± SD 49 ± 0.80 versus 2.71 ± 0.84 %BW × H; P < 0.05). Group B demonstrated a 12% reduction in the peak external knee adduction moment with the mobility shoe compared with the control shoe (mean ± SD 2.66 ± 0.69 versus 3.07 ± 0.75 %BW × H; P < 0.05). Conclusion Specialized footwear can effectively reduce joint loads in subjects with knee OA, compared with self-chosen shoes and control walking shoes. Footwear may represent a therapeutic target for the treatment of knee OA. The types of shoes worn by subjects with knee OA should be evaluated more closely in terms of their effects on the disease. PMID:18759313

  4. Intra-Articular Giant Synovial Osteochondroma: Case Reports of the Ankle and Knee Joint

    PubMed Central

    Fornaciari, Paolo; Schai, Pascal A.; Niehaus, Richard; Exner, Ulrich G.

    2015-01-01

    Two cases of giant intra-articular osteochondromas (knee and ankle joint) are reported; pathologically they are rare representations of synovial chondromatosis. A 17-year-old man presented with a tumorous mass which had been localized in his left ankle for many years, increasing in volume during the last months. The lesion was removed by posteromedial ankle arthrotomy. The second case was observed in a 39-year-old woman with a slow-growing mass in her right knee joint. The lesion was removed from the Hoffa fat pad by open anteromedial arthrotomy. PMID:25785214

  5. Intra-articular giant synovial osteochondroma: case reports of the ankle and knee joint.

    PubMed

    Fornaciari, Paolo; Schai, Pascal A; Niehaus, Richard; Exner, Ulrich G

    2015-01-01

    Two cases of giant intra-articular osteochondromas (knee and ankle joint) are reported; pathologically they are rare representations of synovial chondromatosis. A 17-year-old man presented with a tumorous mass which had been localized in his left ankle for many years, increasing in volume during the last months. The lesion was removed by posteromedial ankle arthrotomy. The second case was observed in a 39-year-old woman with a slow-growing mass in her right knee joint. The lesion was removed from the Hoffa fat pad by open anteromedial arthrotomy. PMID:25785214

  6. The impact of joint line restoration on functional results after hinged knee prosthesis

    PubMed Central

    Yilmaz, Serdar; Cankaya, Deniz; Deveci, Alper; Firat, Ahmet; Ozkurt, Bulent; Bozkurt, Murat

    2016-01-01

    Background: Hinged knee prosthesis is an effective treatment method as a salvage procedure in marked ligamentous insufficiency and severe bone defects. Joint line determination and restoration are difficult due to large bone defects and distorted anatomy. We evaluated the impact of joint line alteration on the outcome in rotating hinge knee arthroplasty (RHKA). Materials and Methods: 35 patients who had rotating hinged knee prosthesis applied between 2008 and 2013 were evaluated in this retrospective study. The patients were studied radiologically and clinically. Five patients were lost to followup and two patients died, leaving a total of 28 (7 male, 21 female) patients for final evaluation. The average age of the patients was 66.19 ± 8.35 years (range 52–83 years). The patients were evaluated clinically with Knee Society knee and functional score and patellar score. The joint line positions were evaluated radiographically with femoral epicondylar ratio method. The outcomes were also evaluated according to age, body weight and gender. Student's t-test, independent t-test, and the Wilcoxon signed rank test were used in the statistical analysis. Results: The mean Knee Society knee and functional score significantly improved from preoperative 19.52 ± 11.77 and 12.5 ± 15.66 respectively to 72.46 ± 14.01 and 70.36 ± 9.22 respectively postoperatively (P < 0.001). The mean range of motion of the knee improved from 55.95° ± 25.08° preoperatively to 92.14° ± 13.47° postoperatively (P < 0.001). Joint line position was restored in 20 patients (71.4%). Joint line alteration did not affect Knee Society Scores (KSSs) in contrast to patellar scores. Additionally, KSS was better in the patients with body mass index ≤30 at followup (P = 0.022 and P = 0.045). Conclusion: RHKA is an effective salvage procedure for serious instability and large bone defects. Restoration of the joint line improves the patellar score although it had no effect on the clinical outcome

  7. The Waist Width of Skis Influences the Kinematics of the Knee Joint in Alpine Skiing.

    PubMed

    Zorko, Martin; Nemec, Bojan; Babič, Jan; Lešnik, Blaz; Supej, Matej

    2015-09-01

    Recently alpine skis with a wider waist width, which medially shifts the contact between the ski edge and the snow while turning, have appeared on the market. The aim of this study was to determine the knee joint kinematics during turning while using skis of different waist widths (65mm, 88mm, 110mm). Six highly skilled skiers performed ten turns on a predefined course (similar to a giant slalom course). The relation of femur and tibia in the sagital, frontal and coronal planes was captured by using an inertial motion capture suit, and Global Navigation Satellite System was used to determine the skiers' trajectories. With respect of the outer ski the knee joint flexion, internal rotation and abduction significantly decreased with the increase of the ski waist width for the greatest part of the ski turn. The greatest abduction with the narrow ski and the greatest external rotation (lowest internal rotation) with the wide ski are probably the reflection of two different strategies of coping the biomechanical requirements in the ski turn. These changes in knee kinematics were most probably due to an active adaptation of the skier to the changed biomechanical conditions using wider skis. The results indicated that using skis with large waist widths on hard, frozen surfaces could bring the knee joint unfavorably closer to the end of the range of motion in transversal and frontal planes as well as potentially increasing the risk of degenerative knee injuries. Key pointsThe change in the skis' waist width caused a change in the knee joint movement strategies, which had a tendency to adapt the skier to different biomechanical conditions.The use of wider skis or, in particular, skis with a large waist width, on a hard or frozen surface, could unfavourably bring the knee joint closer to the end of range of motion in transversal and frontal planes as well as may potentially increase the risk of degenerative knee injuries.The overall results of the abduction and internal

  8. The Waist Width of Skis Influences the Kinematics of the Knee Joint in Alpine Skiing

    PubMed Central

    Zorko, Martin; Nemec, Bojan; Babič, Jan; Lešnik, Blaz; Supej, Matej

    2015-01-01

    Recently alpine skis with a wider waist width, which medially shifts the contact between the ski edge and the snow while turning, have appeared on the market. The aim of this study was to determine the knee joint kinematics during turning while using skis of different waist widths (65mm, 88mm, 110mm). Six highly skilled skiers performed ten turns on a predefined course (similar to a giant slalom course). The relation of femur and tibia in the sagital, frontal and coronal planes was captured by using an inertial motion capture suit, and Global Navigation Satellite System was used to determine the skiers’ trajectories. With respect of the outer ski the knee joint flexion, internal rotation and abduction significantly decreased with the increase of the ski waist width for the greatest part of the ski turn. The greatest abduction with the narrow ski and the greatest external rotation (lowest internal rotation) with the wide ski are probably the reflection of two different strategies of coping the biomechanical requirements in the ski turn. These changes in knee kinematics were most probably due to an active adaptation of the skier to the changed biomechanical conditions using wider skis. The results indicated that using skis with large waist widths on hard, frozen surfaces could bring the knee joint unfavorably closer to the end of the range of motion in transversal and frontal planes as well as potentially increasing the risk of degenerative knee injuries. Key points The change in the skis’ waist width caused a change in the knee joint movement strategies, which had a tendency to adapt the skier to different biomechanical conditions. The use of wider skis or, in particular, skis with a large waist width, on a hard or frozen surface, could unfavourably bring the knee joint closer to the end of range of motion in transversal and frontal planes as well as may potentially increase the risk of degenerative knee injuries. The overall results of the abduction and

  9. Effect of Sri Lankan traditional medicine and Ayurveda on Sandhigata Vata (osteoarthritis of knee joint).

    PubMed

    Perera, Pathirage Kamal; Perera, Manaram; Kumarasinghe, Nishantha

    2014-01-01

    Reported case was a 63-year-old female with end-stage osteoarthritis (OA) (Sandhigata Vata) of the left knee joint accompanied by exostoses. Radiology (X-ray) report confirmed it as a Kellgren-Lawrence grade III or less with exostoses. At the beginning, the Knee Society Rating System scores of pain, movement and stability were poor, and function score was fair. Srilankan traditional and Ayurveda medicine treatment was given in three regimens for 70 days. After 70 days, external treatment of oleation and 2 capsules of Shallaki (Boswellia serrata Triana and Planch) and two tablets of Jeewya (comprised of Emblica officinalis Gaertn., Tinospora cordifolia [Willd.] Millers. and Terminalia chebula Retz.), twice daily were continued over 5 months. Visual analogue scale for pain, knee scores in the Knee Society online rating system and a Ayurveda clinical assessment criteria was used to evaluate the effects of treatments in weekly basis. After treatment for 70 days, the Knee Society Rating System scores of pain, movement and stability were also improved up to good level and function score was improved up to excellent level. During the follow-up period, joint symptoms and signs and the knee scores were unchanged. In conclusion, this OA patient's quality of life was improved by the combined treatment of Sri Lankan traditional medicine and Ayurveda. PMID:26195904

  10. The Effects of a Lateral Wedge Insole on Knee and Ankle Joints During Slope Walking.

    PubMed

    Uto, Yuki; Maeda, Tetsuo; Kiyama, Ryoji; Kawada, Masayuki; Tokunaga, Ken; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Yoshimoto, Yoichi; Yone, Kazunori

    2015-12-01

    The purpose of this study was to determine whether a lateral wedge insole reduces the external knee adduction moment during slope walking. Twenty young, healthy subjects participated in this study. Subjects walked up and down a slope using 2 different insoles: a control flat insole and a 7° lateral wedge insole. A three-dimensional motion analysis system and force plate were used to examine the knee adduction moment, the ankle valgus moment, and the moment arm of the ground reaction force to the knee joint center in the frontal plane. The lateral wedge insole significantly decreased the moment arm of the ground reaction force, resulting in a reduction of the knee adduction moment during slope walking, similar to level walking. The reduction ratio of knee adduction moment by the lateral wedge insole during the early stance of up-slope walking was larger than that of level walking. Conversely, the lateral wedge insole increased the ankle valgus moment during slope walking, especially during the early stance phase of up-slope walking. Clinicians should examine the utilization of a lateral wedge insole for knee osteoarthritis patients who perform inclined walking during daily activity, in consideration of the load on the ankle joint. PMID:26252560

  11. Sodium Inversion Recovery MRI of the Knee Joint In Vivo at 7T

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Inati, Souheil; Jerschow, Alexej; Regatte, Ravinder R.

    2010-01-01

    The loss of proteoglycans in the articular cartilage is an early signature of osteoarthritis. The ensuing changes in the fixed charge density in the cartilage can be directly linked to sodium concentration via charge balance. Sodium ions in the knee joint appear in two pools: in the synovial fluids or joint effusion where the ions are in free motion and bound within the cartilage tissue where the Na+ ions have a restricted motion. The ions in these two compartments have therefore different T1 and T2 relaxation times. The purpose of this study is to demonstrate the feasibility of a fluid-suppressed 3D ultrashort TE radial sodium sequence by implementing an inversion recovery (IR) preparation of the magnetization at 7T. This method could allow a more accurate and more sensitive quantification of loss of PG in patients with OA. It is shown that adiabatic pulses offer significantly improved performance in terms of robustness to B1 and B0 inhomogeneities when compared to the hard pulse sequence. Power deposition considerations further pose a limit to the RF inversion power, and we demonstrate in simulations and experiments how a practical compromise can be struck between clean suppression of fluid signals and power deposition levels. Two IR sequences with different types of inversion pulses (a rectangular pulse and an adiabatic pulse) were tested on a liquid phantom, ex vivo on a human knee cadaver and then in vivo on 5 healthy volunteers, with a (Nyquist) resolution of ~3.6 mm and a signal-to-noise ratio of ~30 in cartilage without IR and ~20 with IR. Due to specific absorption rate limitations, the total acquisition time was ~17 min for the 3D radial sequence without inversion or with the rectangular IR, and 24:30 min for the adiabatic IR sequence. It is shown that the adiabatic IR sequence generates a more uniform fluid suppression over the whole sample than the rectangular IR sequence. PMID:20813569

  12. Knee Injuries and Disorders

    MedlinePlus

    Your knee joint is made up of bone, cartilage, ligaments and fluid. Muscles and tendons help the knee joint move. When any of these structures is hurt or diseased, you have knee problems. Knee problems can cause pain and difficulty ...

  13. The effectiveness of ridetherapy in children with benign joint hypermobility syndrome during articulatory changes in the knee joint.

    PubMed

    Mosulishvili, T; Loria, M

    2013-02-01

    Taking into account the biomechanical peculiarities of ridetherapy, the specific methodology of ridetherapy developed by us is given in this paper, also the data of treatment have been studied in the dynamics. Based on the results obtained the reliable advantage of ridetherapy method is determined as compared with therapeutic exercises. It has been established that in children with benign joint hypermobility syndrome during articulatory changes in the knee the use of ridetherapy provides an increase in muscle strength, to a certain degree their hypertrophy, the development of joint-muscular perception, the increase of proprioreception, the minimizing of excessive joint movement, the antinociceptive effect and the avoidance of secondary developed complications. PMID:23482367

  14. Functional assessments of the knee joint biomechanics by using pendulum test in adults with Down syndrome.

    PubMed

    Casabona, Antonino; Valle, Maria Stella; Pisasale, Mariangela; Pantò, Maria Rosita; Cioni, Matteo

    2012-12-01

    In this study, we assessed kinematics and viscoelastic features of knee joint in adults with Down syndrome (DS) by means of the Wartenberg pendulum test. This test allows the measuring of the kinematics of the knee joint during passive pendular motion of leg under the influence of gravity. In addition, by a combination of kinematic and anthropometric data, pendulum test provides estimates of joint viscoelastic properties by computing damping and stiffness coefficients. To monitor the occurrences of muscle activation, the surface electromyogram (EMG) of muscle rectus femoris was recorded. The experimental protocol was performed in a group of 10 adults with DS compared with 10 control adults without DS. Joint motion amplitude, velocity, and acceleration of the leg during the first knee flexion significantly decreased in persons with DS with respect to those without DS. This behavior was associated with the activation of rectus femoris in subjects with DS that resulted in increasing of joint resistance shortly after the onset of the first leg flexion. The EMG bursts mostly occurred between 50 and 150 ms from the leg flexion onset. During the remaining cycles of pendular motion, persons with DS exhibited passive leg oscillations with low tonic EMG activity and reduced damping coefficient compared with control subjects. These results suggest that adults with DS might perform preprogrammed contractions to increase joint resistance and compensate for inherent joint instability occurring for quick and unpredictable perturbations. The reduction of damping coefficients observed during passive oscillations could be a predictor of muscle hypotonia. PMID:22995394

  15. Functional assessments of the knee joint biomechanics by using pendulum test in adults with Down syndrome

    PubMed Central

    Casabona, Antonino; Valle, Maria Stella; Pisasale, Mariangela; Pantò, Maria Rosita

    2012-01-01

    In this study, we assessed kinematics and viscoelastic features of knee joint in adults with Down syndrome (DS) by means of the Wartenberg pendulum test. This test allows the measuring of the kinematics of the knee joint during passive pendular motion of leg under the influence of gravity. In addition, by a combination of kinematic and anthropometric data, pendulum test provides estimates of joint viscoelastic properties by computing damping and stiffness coefficients. To monitor the occurrences of muscle activation, the surface electromyogram (EMG) of muscle rectus femoris was recorded. The experimental protocol was performed in a group of 10 adults with DS compared with 10 control adults without DS. Joint motion amplitude, velocity, and acceleration of the leg during the first knee flexion significantly decreased in persons with DS with respect to those without DS. This behavior was associated with the activation of rectus femoris in subjects with DS that resulted in increasing of joint resistance shortly after the onset of the first leg flexion. The EMG bursts mostly occurred between 50 and 150 ms from the leg flexion onset. During the remaining cycles of pendular motion, persons with DS exhibited passive leg oscillations with low tonic EMG activity and reduced damping coefficient compared with control subjects. These results suggest that adults with DS might perform preprogrammed contractions to increase joint resistance and compensate for inherent joint instability occurring for quick and unpredictable perturbations. The reduction of damping coefficients observed during passive oscillations could be a predictor of muscle hypotonia. PMID:22995394

  16. Knee joint examinations by magnetic resonance imaging: The correlation of pathology, age, and sex

    PubMed Central

    Avcu, Serhat; Altun, Ersan; Akpinar, Ihsan; Bulut, Mehmet Deniz; Eresov, Kemal; Biren, Tugrul

    2010-01-01

    Aims: The aim of our study was to investigate the incidence and coexistence of multiple knee joint pathologies and the distribution of knee joint pathologies according to age and sex. Patients and Methods: A retrospective analysis was performed using the clinical data of patients evaluated with magnetic resonance imaging (MRI) of the knee joint. Data from 308 patients examined between August 2002 and July 2003 were included into this study. A Pearson correlation analysis was performed to examine the relationship between the pathological findings and the age and sex of the patients. Results: The ages of the patients ranged between 1 and 74 years (mean: 43.3 years). Age was significantly correlated with meniscal degeneration and tears, medial collateral ligament degeneration, parameniscal cyst, and chondromalacia patellae. There was a significant correlation between male gender and anterior cruciate ligament injury. Meniscal injury was significantly correlated with bursitis, as well as medial collateral ligament injury. Bone bruise was significantly correlated with medial collateral ligament injury, lateral collateral ligament injury, Baker's cyst, and anterior cruciate ligament injury. Chondromalacia patellae was significantly correlated with anterior cruciate ligament injury, patellae alta, and osteochondral lesion. Bursitis (in 53.2% of the patients) followed by grade-II meniscal degeneration (in 43% of the patients) were the most common knee pathologies observed by MRI. Conclusions: MRI findings of select knee pathologies are significantly correlated with each other and the age and sex of the patient. PMID:22624141

  17. Isolated hamstrings fatigue alters hip and knee joint coordination during a cutting maneuver.

    PubMed

    Samaan, Michael A; Hoch, Matthew C; Ringleb, Stacie I; Bawab, Sebastian; Weinhandl, Joshua T

    2015-04-01

    The aim of this study was to determine the effects of hamstrings fatigue on lower extremity joint coordination variability during a sidestep cutting maneuver. Twenty female recreational athletes performed five successful trials of a sidestep cutting task pre- and postfatigue. Each participant completed an isolated hamstrings fatigue protocol consisting of isokinetic maximum effort knee flexion and passive extension contractions. Vector coding was used to examine hip and knee joint couplings (consisting of various planar motions) during the impact and weight acceptance phases of the sidestep cut stance phase. Paired t tests were used to analyze differences of each phase as an effect of fatigue, where alpha was set a priori at .05. The hip rotation/knee rotation coupling exhibited a significant decrease in coordination variability as a function of fatigue in both the impact (P = .015) and weight acceptance phases (P = .043). Similarly, the hip adduction-abduction/knee rotation coupling exhibited a significant decrease in coordination variability in the weight acceptance phase (P = .038). Hamstrings fatigue significantly decreased coordination variability within specific lower extremity joint couplings that included knee rotation. Future studies should be conducted to determine if this decrease in coordination variability is related to lower extremity injury mechanisms. PMID:25411821

  18. Human temporomandibular joint morphogenesis.

    PubMed

    Carini, Francesco; Scardina, Giuseppe Alessandro; Caradonna, Carola; Messina, Pietro; Valenza, Vincenzo

    2007-01-01

    Temporomandibular joint morphogenesis was studied. Ranging in age of fetuses examined was from 6 to14 weeks' gestation. Our results showed the condyle so first element that appear between 6 degrees and 8 degrees week (condylar blastema). After a week appear temporal elements. Disk appear at the same time of glenoid blastema and it reaches an advanced differentation before of the condyle and temporal element, so these don't effect machanical compression on mesenchyma where we find the disk. So we think that the disk result of genetic expression and it isn't the result of mechanical compression. The inferior joint cavity appear to 12 week. The superior joint cavity appear to 13-14 week. In conclusion, the appearance of the condyle is the first event during TMJ morphogenesis, with its initial bud, in form of a mesenchymal thickening, becoming detectable between the sixth and eight week of development, when all the large joints of the limbs are already well defined. PMID:18333411

  19. Iranian Joint Registry (Iranian National Hip and Knee Arthroplasty Registry)

    PubMed Central

    Aslani, Hamidreza; Nourbakhsh, Seyed Taghi; Lahiji, Farivar A.; Heydarian, Keykavoos; Jabalameli, Mahmood; Ghazavi, Mohammad Taghi; Tahmasebi, Mohammad Naghi; Fayyaz, Mahmoud Reza; Sazegari, Mohammad Ali; Mohaddes, Maziar; Rajabpour, Mojtaba; Emami, Mohammad; Jazayeri, Seyyed Mohammad; Madadi, Firooz; Farahini, Hossein; Mirzatoloee, Fardin; Gharahdaghi, Mohammad; Ebrahimzadeh, Mohammad Hossein; Ebrahimian, Mohammadreza; Mirvakili, Hossein; Bashti, Kaveh; Almasizadeh, Mohtasham; Abolghasemian, Mansour; Taheriazam, Afshin; Motififard, Mehdi; Yazdi, Hamidreza; Mobarakeh, Mahmood Karimi; Shayestehazar, Masoud; Moghtadae, Mehdi; Siavashi, Babak; Sajjadi, Mohammadreza M.; Rasi, Alireza Manafi; Chabok, Seyyed Kazem; Zafarani, Zohreh; Salehi, Shahin; Ahmadi, Monireh; Mohammadi, Amin; Shahsavand, Mohammad Ebrahim

    2016-01-01

    Periodic evaluation and monitoring the health and economic outcome of joint replacement surgery is a common and popular process under the territory of joint registries in many countries. In this article we introduce the methodology used for the foundation of the National Iranian Joint Registry (IJR) with a joint collaboration of the Social Security Organization (SSO) and academic research departments considering the requirements of the Iran’s Ministry of Health and Education. PMID:27200403

  20. Practical approach to subject-specific estimation of knee joint contact force.

    PubMed

    Knarr, Brian A; Higginson, Jill S

    2015-08-20

    Compressive forces experienced at the knee can significantly contribute to cartilage degeneration. Musculoskeletal models enable predictions of the internal forces experienced at the knee, but validation is often not possible, as experimental data detailing loading at the knee joint is limited. Recently available data reporting compressive knee force through direct measurement using instrumented total knee replacements offer a unique opportunity to evaluate the accuracy of models. Previous studies have highlighted the importance of subject-specificity in increasing the accuracy of model predictions; however, these techniques may be unrealistic outside of a research setting. Therefore, the goal of our work was to identify a practical approach for accurate prediction of tibiofemoral knee contact force (KCF). Four methods for prediction of knee contact force were compared: (1) standard static optimization, (2) uniform muscle coordination weighting, (3) subject-specific muscle coordination weighting and (4) subject-specific strength adjustments. Walking trials for three subjects with instrumented knee replacements were used to evaluate the accuracy of model predictions. Predictions utilizing subject-specific muscle coordination weighting yielded the best agreement with experimental data; however this method required in vivo data for weighting factor calibration. Including subject-specific strength adjustments improved models' predictions compared to standard static optimization, with errors in peak KCF less than 0.5 body weight for all subjects. Overall, combining clinical assessments of muscle strength with standard tools available in the OpenSim software package, such as inverse kinematics and static optimization, appears to be a practical method for predicting joint contact force that can be implemented for many applications. PMID:25952546

  1. Cartilage degeneration in different human joints.

    PubMed

    Kuettner, K E; Cole, A A

    2005-02-01

    Variations among joints in the initiation and progression of degeneration may be explained, in part, by metabolic, biochemical and biomechanical differences. Compared to the cartilage in the knee joint, ankle cartilage has a higher content of proteoglycans and water, as well as an increased rate of proteoglycan turnover and synthesis, all of which are responsible for its increased stiffness and reduced permeability. Chondrocytes within ankle cartilage have a decreased response to catabolic factors such as interleukin-1 and fibronectin fragments, compared to the chondrocytes of knee cartilage. Moreover, in response to damage, ankle chondrocytes synthesize proteoglycans at a higher rate than that found in knee cartilage chondrocytes, which suggests a greater capacity for repair. In addition to the cartilages of the two joints, the underlying bones also respond differently to degenerative changes. Taken together, these metabolic, biochemical and biomechanical differences may provide protection to the ankle. PMID:15694570

  2. The differential effects of gender, anthropometry, and prior hormonal state on frontal plane knee joint stiffness

    PubMed Central

    Cammarata, Martha L.; Dhaher, Yasin Y.

    2012-01-01

    Background Gender differences in passive frontal plane knee stiffness may contribute to the increased anterior cruciate ligament injury rate in females. Gender-based stiffness differences have been attributed to anthropometric variations, but little data exist describing this relationship. Furthermore, sex hormone levels appear to influence joint stiffness, but the differential effects of instantaneous and prior hormonal concentrations remain unknown. This study sought to explore the effect of gender, prior hormonal status, and anthropometry on passive frontal plane knee joint stiffness. Methods Twelve males and 31 females participated. Females were grouped by hormonal contraceptive use (non users [n=11], monophasic contraceptive users [n=11], and triphasic contraceptive users [n=9]) and tested at the same point in the menstrual cycle. Subjects’ right knee was passively stretched ±7° in the frontal plane at 3°/s. Stiffness was estimated at three loading levels and normalized by body size to minimize anthropometric biases. A 4 (group) × 3 (load) repeated measures analysis of variance was performed for both raw and normalized stiffness. Linear regression analyses were preformed between stiffness estimates and knee diameter and quadriceps femoris angle. Findings Males displayed significantly greater (P<0.05) frontal plane stiffness than females. When normalized, males displayed significantly greater stiffness in valgus (P<0.05), but not varus (P>0.05) than females. No significant effect (P>0.05) of prior hormonal state was found; however, when normalized, varus stiffness was significantly less for triphasic contraceptive users than the other female groups (P<0.05). Quadriceps femoris angle was negatively correlated and knee diameter was positively correlated to knee stiffness. Interpretation Consistent with earlier in vitro findings, our data may indicate that ligament material properties are gender specific. A deficit in passive knee joint stiffness may place a

  3. Topographical variation within the articular cartilage and subchondral bone of the normal ovine knee joint: a histological approach.

    PubMed

    Armstrong, S J; Read, R A; Price, R

    1995-03-01

    Topographical variation in the articular cartilage and subchondral bone of the normal ovine knee was examined using histological techniques. The articular cartilage was examined grossly, then histological sections were cut and the cartilage thickness and chondrocyte density were measured. Bone mineral density, thickness of the subchondral bone plate (SBP) and volume and surface histomorphometrical parameters and mineral apposition rate were calculated for the subchondral bone. It was found that the articular cartilage on the tibial plateaux was thicker, less cellular, and overlay a thicker SBP than that on the femoral condyles. Similarly, the cartilage in the medial joint compartments was thicker, less cellular and overlying a thicker less dense SBP than that in the lateral joint compartments. There was no variation in bone histomorphometric parameters or mineral apposition rate between regions. Biomechanical testing has shown that loading is not uniform throughout the normal human knee joint. The present results suggest that loading within the ovine knee is also nonuniform, with the central regions of the tibial plateaux bearing greater loads than the femoral condyles, and the medial joint compartment being loaded more than the lateral one. The articular cartilage and subchondral bone have adapted in order to best withstand these variations in loading. These histological findings, plus the topographical variations in cartilage biochemistry reported by Read et al. (Topographical variation in composition, PG-biosynthesis and swelling pressure of cartilages of loaded tibio-femoral joints (Abstract). Proceedings of the Combined Meeting of the Orthopaedic Research Societies of USA, Japan and Canada.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7719953

  4. Anthropometric measurements of knee joints in Thai population: correlation to the sizing of current knee prostheses.

    PubMed

    Chaichankul, Chaiyos; Tanavalee, Aree; Itiravivong, Pibul

    2011-01-01

    Anthropometric data on the distal femoral condyle and the proximal tibia of 200 knees in 200 Thai subjects were measured using magnetic resonance imaging (MRI). The data including the resected femoral anterior-posterior (AP) length, the resected femoral medial-lateral (ML) width, the resected tibial AP length and the resected tibial ML width were measured. A characterization of the aspect ratio (the ML to AP dimensions) was made for the distal part of the femur and the aspect ratio (the AP to ML dimensions) was made for the proximal part of the tibia. All parameters were compared to the size of the total knee prosthesis with four prosthetic systems which currently used in Thailand: NexGen (Zimmer), P.F.C. Sigma (Depuy-Johnson & Johnson), Genesis II (Smith & nephew), and Scorpio (Stryker). The results of this study could provide fundamental data for the design of knee prostheses suitable for the Thai population. PMID:20133135

  5. What role do periodontal pathogens play in osteoarthritis and periprosthetic joint infections of the knee?

    PubMed

    Ehrlich, Garth D; Hu, Fen Z; Sotereanos, Nicholas; Sewicke, Jeffrey; Parvizi, Javad; Nara, Peter L; Arciola, Carla Renata

    2014-01-01

    Through the use of polymerase chain reaction (PCR)-electron spray ionization (ESI)-time of flight (TOF)-mass spectrometry (MS), we identified multiple periodontal pathogens within joint tissues of individuals undergoing replacement arthroplasties of the knee. The most prevalent of the periodontal pathogens were Treponema denticola and Enterococcus faecalis, the latter of which is commonly associated with apical periodontitis. These findings were unique to periprosthetic joint infections (PJI) of the knee and were never observed for PJIs of other lower extremity joints (hip and ankle) or upper extremity joints (shoulder and elbow). These data were confirmed by multiple independent methodologies including fluorescent in situ hybridization (FISH) which showed the bacteria deeply penetrated inside the diseased tissues, and 454-based deep 16S rDNA sequencing. The site-specificity, the tissue investment, and the identical findings by multiple nucleic-acid-based techniques strongly suggests the presence of infecting bacteria within these diseased anatomic sites. Subsequently, as part of a control program using PCR-ESI-TOF-MS, we again detected these same periodontal pathogens in aspirates from patients with osteoarthritis who were undergoing primary arthroplasty of the knee and thus who had no history of orthopedic implants. This latter finding raises the question of whether hematogenic spread of periodontal pathogens to the knee play a primary or secondary-exacerbatory role in osteoarthritis. PMID:24921460

  6. Quantifying in vivo laxity in the anterior cruciate ligament and individual knee joint structures.

    PubMed

    Westover, L M; Sinaei, N; Küpper, J C; Ronsky, J L

    2016-11-01

    A custom knee loading apparatus (KLA), when used in conjunction with magnetic resonance imaging, enables in vivo measurement of the gross anterior laxity of the knee joint. A numerical model was applied to the KLA to understand the contribution of the individual joint structures and to estimate the stiffness of the anterior-cruciate ligament (ACL). The model was evaluated with a cadaveric study using an in situ knee loading apparatus and an ElectroForce test system. A constrained optimization solution technique was able to predict the restraining forces within the soft-tissue structures and joint contact. The numerical model presented here allowed in vivo prediction of the material stiffness parameters of the ACL in response to applied anterior loading. Promising results were obtained for in vivo load sharing within the structures. The numerical model overestimated the ACL forces by 27.61-92.71%. This study presents a novel approach to estimate ligament stiffness and provides the basis to develop a robust and accurate measure of in vivo knee joint laxity. PMID:27058613

  7. Can combined use of low-level lasers and hyaluronic acid injections prolong the longevity of degenerative knee joints?

    PubMed Central

    Ip, David; Fu, Nga Yue

    2015-01-01

    Background This study evaluated whether half-yearly hyaluronic acid injection together with low-level laser therapy in addition to standard conventional physical therapy can successfully postpone the need for joint replacement surgery in elderly patients with bilateral symptomatic tricompartmental knee arthritis. Methods In this prospective, double-blind, placebo-controlled study, 70 consecutive unselected elderly patients with bilateral tricompartmental knee arthritis were assigned at random to either one of two conservative treatment protocols to either one of the painful knees. Protocol A consisted of conventional physical therapy plus a sham light source plus saline injection, and protocol B consisted of protocol A with addition of half-yearly hyaluronic acid injection as well as low-level laser treatment instead of using saline and a sham light source. Treatment failure was defined as breakthrough pain necessitating joint replacement. Results Among the 140 painful knees treated with either protocol A or protocol B, only one of the 70 painful knees treated by protocol B required joint replacement, whereas 15 of the 70 painful knees treated by protocol A needed joint replacement surgery (P<0.05). Conclusion We conclude that half-yearly hyaluronic acid injections together with low-level laser therapy should be incorporated into the standard conservative treatment protocol for symptomatic knee arthritis, because it may prolong the longevity of the knee joint without the need for joint replacement. PMID:26346122

  8. Effects of Knee and Ankle Movements on Foot Impact Forces in Human Walking

    NASA Astrophysics Data System (ADS)

    Tagawa, Yoshihiko; Shiba, Naoto; Miyazaki, Kenichiro; Matsuo, Shigeaki; Inoue, Akio; Yamashita, Tadashi

    Excessive repetitive impacts in human walking lead to lower extremity orthopaedic disorders such as degenerative joint disease and prosthetic loosening. In this study, two planar models, corresponding to free or fixed ankle joints, were used to examine movements of the knee and ankle joints that affect foot impact forces and their attenuation during level walking. A kinetic approach was used to describe the relationship between the landing style of the leg and the impact at heel contact. Human subjects with free and fixed ankle joints were studied to verify the models. Free and fixed ankle groups showed a significant difference with regard to acceleration (p<0.005). The attenuation capacity of acceleration for healthy subjects with a freed ankle joint was 59.9±12.1 (mean ±SD)%, while the capacity for the same subjects with a fixed joint was 27.4±28.9%. The movements of the knee and ankle joints at landing on the ground played important roles in attenuating impulsive force.

  9. 3D reconstruction of bony elements of the knee joint and finite element analysis of total knee prosthesis obtained from the reconstructed model

    PubMed Central

    Djoudi, Farid

    2013-01-01

    Two separate themes are presented in this paper. Aims The first theme is to present a graphical modeling approach of human anatomical structures namely, the femur and the tibia. The second theme involves making a finite element analysis of stresses, displacements and deformations in prosthetic implants (the femoral implant and the polyethylene insert). Objectives The graphical modeling approach comes in two parts. The first is the segmentation of MRI scanned images, retrieved in DICOM format for edge detection. In the second part, 3D-CAD models are generated from the results of the segmentation stage. The finite element analysis is done by first extracting the prosthetic implants from the reconstructed 3D-CAD model, then do a finite element analysis of these implants under objectively determined conditions such as; forces, allowed displacements, the materials composing implant, and the coefficient of friction. Conclusion The objective of this work is to implement an interface for exchanging data between 2D MRI images obtained from a medical diagnosis of a patient and the 3D-CAD model used in various applications, such as; the extraction of the implants, stress analysis at the knee joint and can serve as an aid to surgery, also predict the behavior of the prosthetic implants vis-a-vis the forces acting on the knee joints. PMID:24396234

  10. Registration of knee joint surfaces for the in vivo study of joint injuries based on magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.

    2006-03-01

    In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.

  11. A neglected case of giant synovial chondromatosis in knee joint.

    PubMed

    Serbest, Sancar; Tiftikçi, Ugur; Karaaslan, Fatih; Tosun, Haci Bayram; Sevinç, Hüseyin Fatih; Balci, Mahi

    2015-01-01

    Synovial chondromatosis is a rare benign condition arising from the synovial membrane of the joints, synovial sheaths or bursae around the joints. Primary synovial chondromatosis typically affects the large joints in the third to fifth decade of life. The purpose of this case report is to document this rare synovial pathology, which required open synovectomy and debridement to eradicate it. In our case, the biggest sized SOC was 20x19x6 cm, although there were many joint mice. Our case had the biggest SOC ever extracted, which to the best of my knowledge has not been reported earlier. PMID:26600905

  12. A neglected case of giant synovial chondromatosis in knee joint

    PubMed Central

    Serbest, Sancar; Tiftikçi, Ugur; Karaaslan, Fatih; Tosun, Haci Bayram; Sevinç, Hüseyin Fatih; Balci, Mahi

    2015-01-01

    Synovial chondromatosis is a rare benign condition arising from the synovial membrane of the joints, synovial sheaths or bursae around the joints. Primary synovial chondromatosis typically affects the large joints in the third to fifth decade of life. The purpose of this case report is to document this rare synovial pathology, which required open synovectomy and debridement to eradicate it. In our case, the biggest sized SOC was 20x19x6 cm, although there were many joint mice. Our case had the biggest SOC ever extracted, which to the best of my knowledge has not been reported earlier. PMID:26600905

  13. The effect of action observation training on knee joint function and gait ability in total knee replacement patients

    PubMed Central

    Park, Seong Doo; Song, Hyun Seung; Kim, Jin Young

    2014-01-01

    The purpose of this study is to investigate that effect of action observation training (AOT) on knee joint function and balance in total knee replacement (TKR) patients. The subjects consisted of eighteen post-TKR patients. All participants underwent conventional physical therapy. In addition, patients in the AOT group (n= 9) were asked to observe video clips showing daily actions and to imitate them afterward. Patients in the control group (n= 9) were asked to execute the same actions as patients in the AOT group. Outcome measures Western Ontario and Mc-Master Universities Osteoarthritis Index (WOMAC) included pain, stiffness, function and Timed Up and Go (TUG) test. After intervention, patients in the AOT group score better than patients in the control group. After TUG test, patients in the AOT group and control group were no significant difference between two groups. In addition to conventional physical therapy, AOT is effective in the rehabilitation of post-TKR patients. Action observation training is considered conducive to improving knee functions and ameliorating pain and stiffness, of patients who underwent TKR. PMID:25061596

  14. First Case of Lyme Arthritis Involving a Prosthetic Knee Joint

    PubMed Central

    Wright, William F.; Oliverio, James A.

    2016-01-01

    Borrelia burgdorferi sensu stricto is the most common tick-borne illness in the United States. Arthritis is usually a mani­festation of late dis­ease but has not been associated with cases of periprosthetic joint infections. We report on a patient who was first diagnosed with periprosthetic joint infection and subsequently Lyme arthritis. PMID:27419168

  15. [Development of a testing device for knee joint kinematics parameters of patients with strokes].

    PubMed

    Xu, Xiulin; Ji, Xuefei; Xu, Xijiao; Zhao, Hongyao

    2013-04-01

    This article is aimed to present a design of a testing device for knee joint kinematics parameters of patients with strokes. We used Auto CAD to design the knee joint sensor device, and applied multifunction data acquisition card to collect sensor data. Then we transferred the data to the computer to quantitatively detect and analyze the joint angle, angular velocity and other parameters. The software system used Visual C+ + MFC frame and shared database Access, and used ADO technology to realize the collection between the software system and patient information system. After a preliminary test of 20 healthy subjects, the result showed that intraclass correlation coefficient (ICC) was more than 0.8, indicating a good reliability of the instrument. PMID:23858756

  16. A viscoelastic poromechanical model of the knee joint in large compression.

    PubMed

    Kazemi, M; Li, L P

    2014-08-01

    The elastic response of the knee joint in various loading and pathological conditions has been investigated using anatomically accurate geometry. However, it is still challenging to predict the poromechanical response of the knee in realistic loading conditions. In the present study, a viscoelastic, poromechanical model of the knee joint was developed for soft tissues undergoing large deformation. Cartilages and menisci were modeled as fibril-reinforced porous materials and ligaments were considered as fibril-reinforced hyperelastic solids. Quasi-linear viscoelasticty was formulated for the collagen network of these tissues and nearly incompressible Neo-Hookean hyperelasticity was used for the non-fibrillar matrix. The constitutive model was coded with a user defined FORTRAN subroutine, in order to use ABAQUS for the finite element analysis. Creep and stress relaxation were investigated with large compression of the knee in full extension. The contact pressure distributions were found similar in creep and stress relaxation. However, the load transfer in the joint was completely different in these two loading scenarios. During creep, the contact pressure between cartilages decreased but the pressure between cartilage and meniscus increased with time. This led to a gradual transfer of some loading from the central part of cartilages to menisci. During stress relaxation, however, both contact pressures decreased monotonically. PMID:24933338

  17. A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity.

    PubMed

    Harris, Michael D; Cyr, Adam J; Ali, Azhar A; Fitzpatrick, Clare K; Rullkoetter, Paul J; Maletsky, Lorin P; Shelburne, Kevin B

    2016-08-01

    Modeling complex knee biomechanics is a continual challenge, which has resulted in many models of varying levels of quality, complexity, and validation. Beyond modeling healthy knees, accurately mimicking pathologic knee mechanics, such as after cruciate rupture or meniscectomy, is difficult. Experimental tests of knee laxity can provide important information about ligament engagement and overall contributions to knee stability for development of subject-specific models to accurately simulate knee motion and loading. Our objective was to provide combined experimental tests and finite-element (FE) models of natural knee laxity that are subject-specific, have one-to-one experiment to model calibration, simulate ligament engagement in agreement with literature, and are adaptable for a variety of biomechanical investigations (e.g., cartilage contact, ligament strain, in vivo kinematics). Calibration involved perturbing ligament stiffness, initial ligament strain, and attachment location until model-predicted kinematics and ligament engagement matched experimental reports. Errors between model-predicted and experimental kinematics averaged <2 deg during varus-valgus (VV) rotations, <6 deg during internal-external (IE) rotations, and <3 mm of translation during anterior-posterior (AP) displacements. Engagement of the individual ligaments agreed with literature descriptions. These results demonstrate the ability of our constraint models to be customized for multiple individuals and simultaneously call attention to the need to verify that ligament engagement is in good general agreement with literature. To facilitate further investigations of subject-specific or population based knee joint biomechanics, data collected during the experimental and modeling phases of this study are available for download by the research community. PMID:27306137

  18. Patient characteristics affecting the prognosis of total hip and knee joint arthroplasty: a systematic review

    PubMed Central

    Santaguida, Pasqualina L.; Hawker, Gillian A.; Hudak, Pamela L.; Glazier, Richard; Mahomed, Nizar N.; Kreder†, Hans J.; Coyte, Peter C.; Wright, James G.

    2008-01-01

    Background Total joint arthroplasty is a highly efficacious and cost-effective procedure for moderate to severe arthritis in the hip and knee. Although patient characteristics are considered to be important determinants of who receives total joint arthroplasty, no systematic review has addressed how they affect the outcomes of total joint arthroplasty. This study addresses how patient characteristics influence the outcomes of hip and knee arthroplasty in patients with osteoarthritis. Methods We searched 4 bibliographic databases (MEDLINE 1980–2001, CINAHL 1982–2001, EMBASE 1980–2001, HealthStar 1998–1999) for studies involving more than 500 patients with osteoarthritis and 1 or more of the following outcomes after total joint arthroplasty: pain, physical function, postoperative complications (short-and long-term) and time to revision. Prognostic patient characteristics of interest included age, sex, race, body weight, socioeconomic status and work status. Results Sixty-four of 14 276 studies were eligible for inclusion and had extractable data. Younger age (variably defined) and male sex increased the risk of revision 3-fold to 5-fold for hip and knee arthroplasty. The influence of weight on the risk of revision was contradictory. Mortality was greatest in the oldest age group and among men. Function for older patients was worse after hip arthroplasty (particularly in women). Function after knee arthroplasty was worse for obese patients. Conclusion Although further research is required, our findings suggest that, after total joint arthroplasty, younger age and male sex are associated with increased risk of revision, older age and male sex are associated with increased risk of mortality, older age is related to worse function (particularly among women), and age and sex do not influence the outcome of pain. Despite these findings, all subgroups derived benefit from total joint arthroplasty, suggesting that surgeons should not restrict access to these

  19. The effect of angle and moment of the hip and knee joint on iliotibial band hardness.

    PubMed

    Tateuchi, Hiroshige; Shiratori, Sakiko; Ichihashi, Noriaki

    2015-02-01

    Although several studies have described kinematic deviations such as excessive hip adduction in patients with iliotibial band (ITB) syndrome, the factors contributing to increased ITB hardness remains undetermined, owing to lack of direct in vivo measurement. The purpose of this study was to clarify the factors contributing to an increase in ITB hardness by comparing the ITB hardness between the conditions in which the angle, moment, and muscle activity of the hip and knee joint are changed. Sixteen healthy individuals performed the one-leg standing under five conditions in which the pelvic and trunk inclination were changed in the frontal plane. The shear elastic modulus in the ITB was measured as an indicator of the ITB hardness using shear wave elastography. The three-dimensional joint angle and external joint moment in the hip and knee joints, and muscle activities of the gluteus maximus, gluteus medius, tensor fasciae latae, and vastus lateralis, which anatomically connect to the ITB, were also measured. ITB hardness was significantly increased in the posture with pelvic and trunk inclination toward the contralateral side of the standing leg compared with that in all other conditions (increase of approximately 32% compared with that during normal one-leg standing). This posture increased both the hip adduction angle and external adduction moment at the hip and knee joint, although muscle activities were not increased. Our findings suggest that coexistence of an increased adduction moment at the hip and knee joints with an excessive hip adduction angle lead to an increase in ITB hardness. PMID:25542398

  20. Prediction of medial and lateral contact force of the knee joint during normal and turning gait after total knee replacement.

    PubMed

    Purevsuren, Tserenchimed; Dorj, Ariunzaya; Kim, Kyungsoo; Kim, Yoon Hyuk

    2016-04-01

    The computational modeling approach has commonly been used to predict knee joint contact forces, muscle forces, and ligament loads during activities of daily living. Knowledge of these forces has several potential applications, for example, within design of equipment to protect the knee joint from injury and to plan adequate rehabilitation protocols, although clinical applications of computational models are still evolving and one of the limiting factors is model validation. The objective of this study was to extend previous modeling technique and to improve the validity of the model prediction using publicly available data set of the fifth "Grand Challenge Competition to Predict In Vivo Knee Loads." A two-stage modeling approach, which combines conventional inverse dynamic analysis (the first stage) with a multi-body subject-specific lower limb model (the second stage), was used to calculate medial and lateral compartment contact forces. The validation was performed by direct comparison of model predictions and experimental measurement of medial and lateral compartment contact forces during normal and turning gait. The model predictions of both medial and lateral contact forces showed strong correlations with experimental measurements in normal gait (r = 0.75 and 0.71) and in turning gait trials (r = 0.86 and 0.72), even though the current technique over-estimated medial compartment contact forces in swing phase. The correlation coefficient, Sprague and Geers metrics, and root mean squared error indicated that the lateral contact forces were predicted better than medial contact forces in comparison with the experimental measurements during both normal and turning gait trials. PMID:26908641

  1. Differences in Injury Pattern and Prevalence of Cartilage Lesions in Knee and Ankle Joints: A Retrospective Cohort Study

    PubMed Central

    Aurich, Matthias; Hofmann, Gunther O.; Rolauffs, Bernd; Gras, Florian

    2014-01-01

    Osteoarthritis (OA) is more common in the knee compared to the ankle joint. This can not be explained exclusively by anatomical and biomechanical differences. The aim of this study is to analyze and compare the injury pattern (clinically) and the cartilage lesions (arthroscopically) of knee and ankle joints in a cohort of patients from the same catchment area. A retrospective study of the clinical data of 3122 patients (2139 outpatients and 983 inpatients) was performed, who were treated due to an injury of the knee and ankle joint. Statistical analysis was performed using SigmaStat 3.0 (SPSS Inc, Chicago, USA). There is a higher prevalence of injuries in the ankle as compared to the knee joint in this population from the same catchment area. In contrast, high-grade cartilage lesions are more prevalent in the knee, whereas low grade cartilage lesions are equally distributed between knee and ankle. From this data it can be concluded that the frequency of injuries and the injury pattern of knee versus ankle joints do not correlate with the severity of cartilage lesions and may therefore have no direct influence on the differential incidence of OA in those two joints. PMID:25568732

  2. Differences in injury pattern and prevalence of cartilage lesions in knee and ankle joints: a retrospective cohort study.

    PubMed

    Aurich, Matthias; Hofmann, Gunther O; Rolauffs, Bernd; Gras, Florian

    2014-10-27

    Osteoarthritis (OA) is more common in the knee compared to the ankle joint. This can not be explained exclusively by anatomical and biomechanical differences. The aim of this study is to analyze and compare the injury pattern (clinically) and the cartilage lesions (arthroscopically) of knee and ankle joints in a cohort of patients from the same catchment area. A retrospective study of the clinical data of 3122 patients (2139 outpatients and 983 inpatients) was performed, who were treated due to an injury of the knee and ankle joint. Statistical analysis was performed using SigmaStat 3.0 (SPSS Inc, Chicago, USA). There is a higher prevalence of injuries in the ankle as compared to the knee joint in this population from the same catchment area. In contrast, high-grade cartilage lesions are more prevalent in the knee, whereas low grade cartilage lesions are equally distributed between knee and ankle. From this data it can be concluded that the frequency of injuries and the injury pattern of knee versus ankle joints do not correlate with the severity of cartilage lesions and may therefore have no direct influence on the differential incidence of OA in those two joints. PMID:25568732

  3. Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life.

    PubMed

    Tognetti, Alessandro; Lorussi, Federico; Carbonaro, Nicola; de Rossi, Danilo

    2015-01-01

    Human motion analysis is crucial for a wide range of applications and disciplines. The development and validation of low cost and unobtrusive sensing systems for ambulatory motion detection is still an open issue. Inertial measurement systems and e-textile sensors are emerging as potential technologies for daily life situations. We developed and conducted a preliminary evaluation of an innovative sensing concept that combines e-textiles and tri-axial accelerometers for ambulatory human motion analysis. Our sensory fusion method is based on a Kalman filter technique and combines the outputs of textile electrogoniometers and accelerometers without making any assumptions regarding the initial accelerometer position and orientation. We used our technique to measure the flexion-extension angle of the knee in different motion tasks (monopodalic flexions and walking at different velocities). The estimation technique was benchmarked against a commercial measurement system based on inertial measurement units and performed reliably for all of the various tasks (mean and standard deviation of the root mean square error of 1:96 and 0:96, respectively). In addition, the method showed a notable improvement in angular estimation compared to the estimation derived by the textile goniometer and accelerometer considered separately. In future work, we will extend this method to more complex and multi-degree of freedom joints. PMID:26569249

  4. Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life

    PubMed Central

    Tognetti, Alessandro; Lorussi, Federico; Carbonaro, Nicola; de Rossi, Danilo

    2015-01-01

    Human motion analysis is crucial for a wide range of applications and disciplines. The development and validation of low cost and unobtrusive sensing systems for ambulatory motion detection is still an open issue. Inertial measurement systems and e-textile sensors are emerging as potential technologies for daily life situations. We developed and conducted a preliminary evaluation of an innovative sensing concept that combines e-textiles and tri-axial accelerometers for ambulatory human motion analysis. Our sensory fusion method is based on a Kalman filter technique and combines the outputs of textile electrogoniometers and accelerometers without making any assumptions regarding the initial accelerometer position and orientation. We used our technique to measure the flexion-extension angle of the knee in different motion tasks (monopodalic flexions and walking at different velocities). The estimation technique was benchmarked against a commercial measurement system based on inertial measurement units and performed reliably for all of the various tasks (mean and standard deviation of the root mean square error of 1.96 and 0.96∘, respectively). In addition, the method showed a notable improvement in angular estimation compared to the estimation derived by the textile goniometer and accelerometer considered separately. In future work, we will extend this method to more complex and multi-degree of freedom joints. PMID:26569249

  5. Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications

    NASA Astrophysics Data System (ADS)

    Pozzi, Michele; Zhu, Meiling

    2012-05-01

    Wearable medical and electronic devices demand a similarly wearable electrical power supply. Human-based piezoelectric energy harvesters may be the solution, but the mismatch between the typical frequencies of human activities and the optimal operating frequencies of piezoelectric generators calls for the implementation of a frequency up-conversion technique. A rotary piezoelectric energy harvester designed to be attached to the knee-joint is here implemented and characterized. The wearable harvester is based on the plucking method of frequency up-conversion, where a piezoelectric bimorph is deflected by a plectrum and permitted to vibrate unhindered upon release. Experiments were conducted to characterize the energy produced by the rotary piezoelectric energy harvester with different electric loads and different excitation speeds, covering the range between 0.1 and 1 rev s-1 to simulate human gait speeds. The electrical loads were connected to the generator either directly or through a rectifying bridge, as would be found in most power management circuits. The focus of the paper is to study the capability of energy generation of the harvester for knee-joint wearable applications, and study the effects of the different loads and different excitation speeds. It is found that the energy harvested is around 160-490 µJ and strongly depends on the angular speed, the connected electric loads and also the manufacturing quality of the harvester. Statistical analysis is used to predict the potential energy production of a harvester manufactured to tighter tolerances than the one presented here.

  6. Acceleration-based joint stability parameters for total knee arthroplasty that correspond with patient-reported instability.

    PubMed

    Roberts, Dustyn; Khan, Humera; Kim, Joo H; Slover, James; Walker, Peter S

    2013-10-01

    There is no universally accepted definition of human joint stability, particularly in nonperiodic general activities of daily living. Instability has proven to be a difficult parameter to define and quantify, since both spatial and temporal measures need to be considered to fully characterize joint stability. In this preliminary study, acceleration-based parameters were proposed to characterize the joint stability. Several time-statistical parameters of acceleration and jerk were defined as potential stability measures, since anomalous acceleration or jerk could be a symptom of poor control or stability. An inertial measurement unit attached at the level of the tibial tubercle of controls and patients following total knee arthroplasty was used to determine linear acceleration of the knee joint during several activities of daily living. The resulting accelerations and jerks were compared with patient-reported instability as determined through a standard questionnaire. Several parameters based on accelerations and jerks in the anterior/posterior direction during the step-up/step-down activity were significantly different between patients and controls and correlated with patient reports of instability in that activity. The range of the positive to negative peak acceleration and infinity norm of acceleration, in the anterior/posterior direction during the step-up/step-down activity, proved to be the best indicators of instability. As time derivatives of displacement, these acceleration-based parameters represent spatial and temporal information and are an important step forward in developing a definition and objective quantification of human joint stability that can complement the subjective patient report. PMID:23886970

  7. Early diagnosis and treatment of trauma in knee joints accompanied with popliteal vascular injury

    PubMed Central

    Xu, Yun-Qin; Li, Qiang; Shen, Tu-Gang; Su, Pei-Hua; Zhu, Ya-Zhong

    2015-01-01

    Objective: The objective of the present study was to investigate the early diagnosis and treatment of trauma in the knee joints accompanied with popliteal vascular injury. Methods: Fifteen cases of patients with trauma in knee joints accompanied with popliteal vascular injury. These patients included 8 males and 6 females between the ages of 27 and 62, the average age being 39.2. Data of clinical symptoms and signs; blood oxygen saturation, color Doppler examination; vascular intervention by DSA angiography; and surgical operations were analyzed to clearly identify their role in early diagnosis and treatment. Results: In the patient group for this study there were: 1 death case; 4 stage I amputation cases; 4 stage II amputation cases due to failure to salvage limbs; and 6 cases with patients who had successful limb salvage. The six cases of limb survival patients were followed up for 12 to 60 months, with an average follow up time of 28.3 months. The excellent rate of joint function of these patients with successful limb salvage was 83.3%. Conclusions: For patients with injured limbs, unclear dorsalis pedis artery palpation, decreased skin temperature, and decreased oxygen saturation of the toes, clinical manifestations combined with proper auxiliary inspection (such as color Doppler and blood vessel angiography of interventional DSA) enabled early diagnose of peripheral trauma in the knee joint accompanied with popliteal vascular injury. PMID:26309604

  8. Effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction.

    PubMed

    Shim, Jae-Kwang; Choi, Ho-Suk; Shin, Jun-Ho

    2015-12-01

    [Purpose] This study examined the effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction. [Subjects and Methods] The subjects were 16 adults who underwent arthroscopic anterior cruciate reconstruction and neuromuscular training. The Lysholm scale was used to assess functional disorders on the affected knee joint. A KT-2000 arthrometer was used to measure anterior displacement of the tibia against the femur. Surface electromyography was used to detect the muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus before and after neuromuscular training. [Results] There was significant relaxation in tibial anterior displacement of the affected and sound sides in the supine position before neuromuscular training. Furthermore, the difference in the tibial anterior displacement of the affected knee joints in the standing position was reduced after neuromuscular training. Moreover, the variation of the muscle activation evoked higher muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus. [Conclusion] Neuromuscular training may improve functional joint stability in patients with orthopedic musculoskeletal injuries in the postoperative period. PMID:26834316

  9. Reduced knee joint moment in ACL deficient patients at a cost of dynamic stability during landing.

    PubMed

    Oberländer, Kai Daniel; Brüggemann, Gert-Peter; Höher, Jürgen; Karamanidis, Kiros

    2012-05-11

    The current study aimed to examine the effect of anterior cruciate ligament deficiency (ACLd) on joint kinetics and dynamic stability control after a single leg hop test (SLHT). Twelve unilateral ACLd patients and a control subject group (n=13) performed a SLHT over a given distance with both legs. The calculation of joint kinetics was done by means of a soft-tissue artifact optimized rigid full-body model. Margin of stability (MoS) was quantified by the difference between the base of support and the extrapolated center of mass. During landing, the ACLd leg showed lower external knee flexion moments but demonstrated higher moments at the ankle and hip compared to controls (p<0.05). The main reason for the joint moment redistribution in the ACLd leg was a more anterior position of the ground reaction force (GRF) vector, which affected the moment arms of the GRF acting about the joints (p<0.05). For the ACLd leg, trunk angle was more flexed over the entire landing phase compared to controls (p<0.05) and we found a significant correlation between moment arms at the knee joint and trunk angle (r² = 0.48;p<0.01). The consequence of this altered landing strategy in ACLd legs was a more anterior position of the center of mass reducing the MoS (p<0.05). The results illustrate the interaction between trunk angle, joint kinetics and dynamic stability during landing maneuvers and provide evidence of a feedforward adaptive adjustment in ACLd patients (i.e. more flexed trunk angle) aimed at reducing knee joint moments at the cost of dynamic stability control. PMID:22440611

  10. Using a surrogate contact pair to evaluate polyethylene wear in prosthetic knee joints.

    PubMed

    Sanders, Anthony P; Lockard, Carly A; Weisenburger, Joel N; Haider, Hani; Raeymaekers, Bart

    2016-01-01

    With recent improvements to the properties of ultra-high molecular weight polyethylene (UHMWPE) used in joint replacements, prosthetic knee and hip longevity may extend beyond two decades. However, it is difficult and costly to replicate such a long in vivo lifetime using clinically relevant in vitro wear testing approaches such as walking gait joint simulators. We advance a wear test intermediate in complexity between pin-on-disk and knee joint simulator tests. The test uses a surrogate contact pair, consisting of a surrogate femoral and tibial specimen that replicate the contact mechanics of any full-scale knee condyle contact pair. The method is implemented in a standard multi-directional pin-on-disk wear test machine, and we demonstrate its application via a two-million-cycle wear test of three different UHMWPE formulations. Further, we demonstrate the use of digital photography and image processing to accurately quantify fatigue damage based on the reduced transmission of light through a damage area in a UHMWPE specimen. The surrogate contact pairs replicate the knee condyle contact areas within -3% to +12%. The gravimetric wear test results reflect the dose of crosslinking radiation applied to the UHMWPE: 35 kGy yielded a wear rate of 7.4 mg/Mcycles, 55 kGy yielded 1.0 mg/Mcycles, and 75 kGy (applied to a 0.1% vitamin E stabilized UHMWPE) yielded 1.5 mg/Mcycles. A precursor to spalling fatigue is observed and precisely measured in the radiation-sterilized (35 kGy) and aged UHMWPE specimen. The presented techniques can be used to evaluate the high-cycle fatigue performance of arbitrary knee condyle contact pairs under design-specific contact stresses, using existing wear test machines. This makes the techniques more economical and well-suited to standardized comparative testing. PMID:25677393

  11. Isokinetic Identification of Knee Joint Torques before and after Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Czaplicki, Adam; Jarocka, Marta; Walawski, Jacek

    2015-01-01

    The aim of this study was to evaluate the serial change of isokinetic muscle strength of the knees before and after anterior cruciate ligament reconstruction (ACLR) in physically active males and to estimate the time of return to full physical fitness. Extension and flexion torques were measured for the injured and healthy limbs at two angular velocities approximately 1.5 months before the surgery and 3, 6, and 12 months after ACLR. Significant differences (p ≤ 0.05) in peak knee extension and flexion torques, hamstring/quadriceps (H/Q) strength ratios, uninvolved/involved limb peak torque ratios, and the normalized work of these muscles between the four stages of rehabilitation were identified. Significant differences between extension peak torques for the injured and healthy limbs were also detected at all stages. The obtained results showed that 12 months of rehabilitation were insufficient for the involved knee joint to recover its strength to the level of strength of the uninvolved knee joint. The results helped to evaluate the progress of the rehabilitation and to implement necessary modifications optimizing the rehabilitation training program. The results of the study may also be used as referential data for physically active males of similar age. PMID:26646385

  12. Isokinetic Identification of Knee Joint Torques before and after Anterior Cruciate Ligament Reconstruction.

    PubMed

    Czaplicki, Adam; Jarocka, Marta; Walawski, Jacek

    2015-01-01

    The aim of this study was to evaluate the serial change of isokinetic muscle strength of the knees before and after anterior cruciate ligament reconstruction (ACLR) in physically active males and to estimate the time of return to full physical fitness. Extension and flexion torques were measured for the injured and healthy limbs at two angular velocities approximately 1.5 months before the surgery and 3, 6, and 12 months after ACLR. Significant differences (p ≤ 0.05) in peak knee extension and flexion torques, hamstring/quadriceps (H/Q) strength ratios, uninvolved/involved limb peak torque ratios, and the normalized work of these muscles between the four stages of rehabilitation were identified. Significant differences between extension peak torques for the injured and healthy limbs were also detected at all stages. The obtained results showed that 12 months of rehabilitation were insufficient for the involved knee joint to recover its strength to the level of strength of the uninvolved knee joint. The results helped to evaluate the progress of the rehabilitation and to implement necessary modifications optimizing the rehabilitation training program. The results of the study may also be used as referential data for physically active males of similar age. PMID:26646385

  13. Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking

    NASA Astrophysics Data System (ADS)

    Kuang, Yang; Yang, Zhihao; Zhu, Meiling

    2016-08-01

    Piezoelectric energy harvesting from human motion is challenging because of the low energy conversion efficiency at a low-frequency excitation. Previous studies by the present authors showed that mechanical plucking of a piezoelectric bimorph cantilever was able to provide frequency up-conversion from a few hertz to the resonance frequency of the cantilever, and that a piezoelectric knee-joint energy harvester (KEH) based on this mechanism was able to generate sufficient energy to power a wireless sensor node. However, the direct contact between the bimorph and the plectra leads to reduced longevity and considerable noise. To address these limitations, this paper introduces a magnetic plucking mechanism to replace the mechanical plucking in the KEH, where primary magnets (PM) actuated by knee-joint motion excite the bimorphs through a secondary magnet (SM) fixed on the bimorphs tip and so achieve frequency up-conversion. The key parameters of the new KEH that affect the energy output of a plucked bimorph were investigated. It was found that the bimorph plucked by a repulsive magnetic force produced a higher energy output than an attractive force. The energy output peaked at 32 PMs and increased with a decreasing gap between PM and SM as well as an increasing rotation speed of the PMs. Based on these investigations, a KEH with high energy output was prototyped, which featured 8 piezoelectric bimorphs plucked by 32 PMs through repulsive magnetic forces. The gap between PM and SM was set to 1.5 mm with a consideration on both the energy output and longevity of the bimorphs. When actuated by knee-joint motion of 0.9 Hz, the KEH produced an average power output of 5.8 mW with a life time >7.3 h (about 3.8 × 105 plucking excitations).

  14. Joint line and patellar height restoration after revision total knee arthroplasty

    PubMed Central

    Seon, Jong-Keun; Song, Eun-Kyoo

    2016-01-01

    Background: Restoration of proper joint line (JL) position and patellar height in revision total knee arthroplasty (TKA) is essential in the recovery of knee function and kinematics. We determined whether the JL position and patellar height could be restored in patients undergoing septic and aseptic revision TKA. Materials and Methods: We retrospectively reviewed 70 patients (74 knees) who had revision TKA between September 2004 and December 2010. Forty seven knees had a two stage revision for infected TKA and 27 knees for aseptic failure. The JL position, patellar height and patellar tendon (PT) length were measured and compared between primary TKA and post revision. The clinical scores including a hospital for special surgery (HSS), Knee Society Score (KSS), Western Ontario and McMaster Universities (WOMAC) and range of motion (ROM) were compared. Results: The overall JL increased from 17.51 mm to 18.37 mm post revision, the Insall-Salvati (IS) ratio declined from 0.98 to 0.92, and the PT length declined from 42.92 mm to 39.45 mm. 9 of the 21 patellar baja knees improved to normal patellar height. After revision, the JL in the septic group (17.02 mm) was significantly lower than the aseptic group (20.74 mm). The changes of the JL position and IS ratio in the septic group were significantly larger than the aseptic groups (P < 0.05). JL position had a positive correlation to the IS ratio and PT length post revision. The knee function scores including HSS, KSS, WOMAC scores, and ROM all improved post revision compared to pre revision (P < 0.05), and the septic group had a lower knee function compared to the aseptic group. JL position and IS ratio post revision had no correlation to the HSS, KSS, WOMAC scores, and ROM. Conclusions: JL position can be sufficiently restored with appropriate distal femoral augment reconstruction after revision TKA, but the patellar height cannot be well improved, especially in the septic revision with obvious PT contracture. No

  15. The effect of hip joint muscle exercise on muscle strength and balance in the knee joint after meniscal injury.

    PubMed

    Park, Sun Ja; Kim, Young Mi; Kim, Ha Roo

    2016-04-01

    [Purpose] This study aimed to evaluate the effect of hip muscle strengthening on muscle strength and balance in the knee joint after a meniscal injury. [Subjects and Methods] This randomized control study enrolled 24 patients who had undergone arthroscopic treatment after a meniscal injury and began a rehabilitative exercise program 8 weeks after surgery. Subjects were divided into 2 groups of 12 subjects each: gluteus medius resistance exercise group and control group. This study investigated muscle strength and balance in the knee joint flexor, extensor, and abductor during an 8-week period. [Results] Measurements of knee extensor muscle strength revealed no significant difference between the control group and the experimental group. Measurements of abductor muscle strength, however, identified a significant difference between the 2 groups. The groups did not differ significantly with regard to balance measurements. [Conclusion] The results of this study suggest that this subject should be approached in light of the correlation between the hip abductor and injury to the lower extremities. PMID:27190461

  16. The effect of hip joint muscle exercise on muscle strength and balance in the knee joint after meniscal injury

    PubMed Central

    Park, Sun Ja; Kim, Young Mi; Kim, Ha Roo

    2016-01-01

    [Purpose] This study aimed to evaluate the effect of hip muscle strengthening on muscle strength and balance in the knee joint after a meniscal injury. [Subjects and Methods] This randomized control study enrolled 24 patients who had undergone arthroscopic treatment after a meniscal injury and began a rehabilitative exercise program 8 weeks after surgery. Subjects were divided into 2 groups of 12 subjects each: gluteus medius resistance exercise group and control group. This study investigated muscle strength and balance in the knee joint flexor, extensor, and abductor during an 8-week period. [Results] Measurements of knee extensor muscle strength revealed no significant difference between the control group and the experimental group. Measurements of abductor muscle strength, however, identified a significant difference between the 2 groups. The groups did not differ significantly with regard to balance measurements. [Conclusion] The results of this study suggest that this subject should be approached in light of the correlation between the hip abductor and injury to the lower extremities. PMID:27190461

  17. Sodium inversion recovery MRI of the knee joint in vivo at 7T

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Lee, Jae-Seung; Inati, Souheil; Jerschow, Alexej; Regatte, Ravinder R.

    2010-11-01

    The loss of proteoglycans (PG) in the articular cartilage is an early signature of osteoarthritis (OA). The ensuing changes in the fixed charge density in the cartilage can be directly linked to sodium concentration via charge balance. Sodium ions in the knee joint appear in two pools: in the synovial fluids or joint effusion where the ions are in free motion and bound within the cartilage tissue where the Na+ ions have a restricted motion. The ions in these two compartments have therefore different T1 and T2 relaxation times. The purpose of this study is to demonstrate the feasibility of a fluid-suppressed 3D ultrashort TE radial sodium sequence by implementing an inversion recovery (IR) preparation of the magnetization at 7T. This method could allow a more accurate and more sensitive quantification of loss of PG in patients with OA. It is shown that adiabatic pulses offer significantly improved performance in terms of robustness to B1 and B0 inhomogeneities when compared to the hard pulse sequence. Power deposition considerations further pose a limit to the RF inversion power, and we demonstrate in simulations and experiments how a practical compromise can be struck between clean suppression of fluid signals and power deposition levels. Two IR sequences with different types of inversion pulses (a rectangular pulse and an adiabatic pulse) were tested on a liquid phantom, ex vivo on a human knee cadaver and then in vivo on five healthy volunteers, with a (Nyquist) resolution of ∼3.6 mm and a signal-to-noise ratio of ∼30 in cartilage without IR and ∼20 with IR. Due to specific absorption rate limitations, the total acquisition time was ∼17 min for the 3D radial sequence without inversion or with the rectangular IR, and 24:30 min for the adiabatic IR sequence. It is shown that the adiabatic IR sequence generates a more uniform fluid suppression over the whole sample than the rectangular IR sequence.

  18. The Basic Science of Human Knee Menisci

    PubMed Central

    Fox, Alice J. S.; Bedi, Asheesh; Rodeo, Scott A.

    2012-01-01

    Context: Information regarding the structure, composition, and function of the knee menisci has been scattered across multiple sources and fields. This review contains a concise, detailed description of the knee menisci—including anatomy, etymology, phylogeny, ultrastructure and biochemistry, vascular anatomy and neuroanatomy, biomechanical function, maturation and aging, and imaging modalities. Evidence Acquisition: A literature search was performed by a review of PubMed and OVID articles published from 1858 to 2011. Results: This study highlights the structural, compositional, and functional characteristics of the menisci, which may be relevant to clinical presentations, diagnosis, and surgical repairs. Conclusions: An understanding of the normal anatomy and biomechanics of the menisci is a necessary prerequisite to understanding the pathogenesis of disorders involving the knee. PMID:23016106

  19. Three-dimensional anatomy of the ostrich (Struthio camelus) knee joint

    PubMed Central

    Regnault, Sophie; Allen, Vivian; Hutchinson, John R.

    2014-01-01

    The three-dimensional anatomy of the ostrich (Struthio camelus) knee (femorotibial, femorofibular, and femoropatellar) joint has scarcely been studied, and could elucidate certain mechanobiological properties of sesamoid bones. The adult ostrich is unique in that it has double patellae, while another similar ratite bird, the emu, has none. Understanding why these patellae form and what purpose they may serve is dually important for future studies on ratites as well as for understanding the mechanobiological characteristics of sesamoid bone development. For this purpose, we present a three-dimensional anatomical study of the ostrich knee joint, detailing osteology, ligaments and menisci, and myology. We have identified seven muscles which connect to the two patellae and compare our findings to past descriptions. These descriptions can be used to further study the biomechanical loading and implications of the double patella in the ostrich. PMID:25551024

  20. Three-dimensional anatomy of the ostrich (Struthio camelus) knee joint.

    PubMed

    Chadwick, Kyle P; Regnault, Sophie; Allen, Vivian; Hutchinson, John R

    2014-01-01

    The three-dimensional anatomy of the ostrich (Struthio camelus) knee (femorotibial, femorofibular, and femoropatellar) joint has scarcely been studied, and could elucidate certain mechanobiological properties of sesamoid bones. The adult ostrich is unique in that it has double patellae, while another similar ratite bird, the emu, has none. Understanding why these patellae form and what purpose they may serve is dually important for future studies on ratites as well as for understanding the mechanobiological characteristics of sesamoid bone development. For this purpose, we present a three-dimensional anatomical study of the ostrich knee joint, detailing osteology, ligaments and menisci, and myology. We have identified seven muscles which connect to the two patellae and compare our findings to past descriptions. These descriptions can be used to further study the biomechanical loading and implications of the double patella in the ostrich. PMID:25551024

  1. Effects of electrical noise to a knee joint on quiet bipedal stance and treadmill walking.

    PubMed

    Kimura, T; Taki, C; Shiozawa, N; Kouzaki, M

    2013-01-01

    The present study assessed whether an unperceivable, noise-like electrical stimulation of a knee joint enhances the stability of quiet bipedal stance and treadmill walking in young subjects. The results showed that the slow postural sway measures in quiet bipedal stance were significantly reduced by the electrical noise (P<0.05). In the treadmill walking, low frequency component (below 1 Hz) of mediolateral acceleration, measured at the third lumbar vertebra, significantly decreased with the electrical noise (P<0.05), while there were no changes in the anteroposterior and vertical directions. These results indicate that the electrical noise to a knee joint can be applied to enhance postural control in quiet bipedal stance and treadmill walking. PMID:24110917

  2. An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis.

    PubMed

    Kim, Keo Sik; Seo, Jeong Hwan; Kang, Jin U; Song, Chul Gyu

    2009-05-01

    Vibroarthrographic (VAG) signals, generated by human knee movement, are non-stationary and multi-component in nature and their time-frequency distribution (TFD) provides a powerful means to analyze such signals. The objective of this paper is to improve the classification accuracy of the features, obtained from the TFD of normal and abnormal VAG signals, using segmentation by the dynamic time warping (DTW) and denoising algorithm by the singular value decomposition (SVD). VAG and knee angle signals, recorded simultaneously during one flexion and one extension of the knee, were segmented and normalized at 0.5 Hz by the DTW method. Also, the noise within the TFD of the segmented VAG signals was reduced by the SVD algorithm, and a back-propagation neural network (BPNN) was used to classify the normal and abnormal VAG signals. The characteristic parameters of VAG signals consist of the energy, energy spread, frequency and frequency spread parameter extracted by the TFD. A total of 1408 segments (normal 1031, abnormal 377) were used for training and evaluating the BPNN. As a result, the average classification accuracy was 91.4 (standard deviation +/-1.7) %. The proposed method showed good potential for the non-invasive diagnosis and monitoring of joint disorders such as osteoarthritis. PMID:19217685

  3. [Rotation movements of the knee joint. A mathematical-kinematic model].

    PubMed

    Lengsfeld, M

    1989-01-01

    The kinematics of rotational motion of the knee joint is described by a three-dimensional mathematical model. It is on principle supposed, that cruciate ligaments interact in concert to guide motion. This concept is based on the idea to explain movement in the sagittal and horizontal plane by a four-bar kinematic chain. The path of the instantaneous centers of rotation is shown with the help of this concept. PMID:2735111

  4. Clinical laboratory parameters in osteoarthritic knee-joint effusions correlated to trace element concentrations.

    PubMed

    Krachler, M; Domej, W

    2001-02-01

    Interactions of clinical laboratory parameters with trace elements in knee-joint effusions might turn out to be potential diagnostic tool, increasing our pathophysiological understanding and knowledge on knee-joint effusions. Thus, the 11 clinical laboratory parameters, total protein, albumin, glucose, lactate dehydrogenase, uric acid, pH, rheumatoid factor, antistreptolysin, C-reactive protein, leukocyte, and erythrocyte counts were determined in 39 osteoarthritic knee-joint effusions and in corresponding sera. Additionally, concentrations of the 17 trace elements barium, beryllium, calcium, cadmium, cesium, copper, lanthanum, lithium, magnesium, molybdenum, lead, rubidium, antimony, tin, strontium, thallium, and zinc in both effusions and corresponding sera were quantified by inductively coupled plasma-mass spectrometry. Concentrations of most laboratory parameters in synovial fluid were within the normal ranges for serum. However, concentrations of total protein and albumin in effusions were distinctly lower than in sera of healthy adults. Results for rheumatoid factor, antistreptolysin, and C-reactive protein in the effusions were below their corresponding threshold values for serum. An indicator for inflammation, the leukocyte count had a median < 6.3 G/L. The erythrocyte count (median: < 0.06 T/L) revealed a very low presence of red blood cells in the effusions. Total protein concentrations and lactate dehydrogenase activity in the effusions correlated positively with effusion copper (r = 0.61 and 0.66) and effusion zinc (r = 0.71 and 0.49). For cesium, a negative correlation in both sera (r = -0.44) and effusions (r = -0.44) with LDH activity could be established. Concentrations of rubidium, strontium, and cesium responded to albumin concentrations in sera and in effusions, establishing an inverse correlation. All other trace elements showed no or only weak associations with the clinical laboratory parameters determined. Although distinct relationships

  5. Impact of decline-board squat exercises and knee joint angles on the muscle activity of the lower limbs

    PubMed Central

    Lee, Daehee; Lee, Sangyong; Park, Jungseo

    2015-01-01

    [Purpose] This study aims to investigate how squat exercises on a decline board and how the knee joint angles affect the muscle activity of the lower limbs. [Subjects] The subjects were 26 normal adults. [Methods] A Tumble Forms wedge device was used as the decline board, and the knee joint angles were measured with a goniometer. To examine the muscle activity of the biceps femoris, rectus femoris, gastrocnemius lateralis, and tibialis anterior of the lower limbs, a comparison analysis with electromyography was conducted. [Results] The muscle activity of the biceps femoris, rectus femoris, gastrocnemius lateralis, and tibialis anterior increased with increased knee joint angles, both for squat exercises on the decline board and on a flat floor. When the knee joint angle was 45°, 60°, and 90°, the muscle activity of the rectus femoris was significantly higher and that of the tibialis anterior was significantly lower during squat exercises on the decline board than on the flat floor. When the knee joint angle was 90°, the muscle activity of the gastrocnemius lateralis was significantly lower. [Conclusion] Squat exercises on a decline board are an effective intervention to increase the muscle activity of the rectus femoris with increased knee joint angles. PMID:26357447

  6. Weakly supervised automatic segmentation and 3D modeling of the knee joint from MR images

    NASA Astrophysics Data System (ADS)

    Amami, Amal; Ben Azouz, Zouhour

    2013-12-01

    Automatic segmentation and 3D modeling of the knee joint from MR images, is a challenging task. Most of the existing techniques require the tedious manual segmentation of a training set of MRIs. We present an approach that necessitates the manual segmentation of one MR image. It is based on a volumetric active appearance model. First, a dense tetrahedral mesh is automatically created on a reference MR image that is arbitrary selected. Second, a pairwise non-rigid registration between each MRI from a training set and the reference MRI is computed. The non-rigid registration is based on a piece-wise affine deformation using the created tetrahedral mesh. The minimum description length is then used to bring all the MR images into a correspondence. An average image and tetrahedral mesh, as well as a set of main modes of variations, are generated using the established correspondence. Any manual segmentation of the average MRI can be mapped to other MR images using the AAM. The proposed approach has the advantage of simultaneously generating 3D reconstructions of the surface as well as a 3D solid model of the knee joint. The generated surfaces and tetrahedral meshes present the interesting property of fulfilling a correspondence between different MR images. This paper shows preliminary results of the proposed approach. It demonstrates the automatic segmentation and 3D reconstruction of a knee joint obtained by mapping a manual segmentation of a reference image.

  7. Trends in hip and knee joint replacement: socioeconomic inequalities and projections of need

    PubMed Central

    Dixon, T; Shaw, M; Ebrahim, S; Dieppe, P

    2004-01-01

    Objectives: To examine trends in primary and revision joint (hip and knee) replacement in England between 1991 and 2000. Methods: Analysis of hospital episodes statistics between 1 April 1991 and 30 March 2001 for total hip replacement (THR) and total knee replacement (TKR). Descriptive statistics and regression modelling were used to summarise patients' demographic and clinical characteristics and to explore variations in joint surgery rates by age, sex, and deprivation. Results: Between 1991 and 2000, the incidence of primary THR increased by 18%, while the incidence of revision THR more than doubled. The incidence of primary TKR doubled, with revision TKR increasing by 300%. Over the 10 year period, the proportion of THR episodes that involved revision operations rose from 8% to 20%. Substantial variations in operation rates by socioeconomic status were seen, with the most deprived fifth of the population experiencing significantly lower rates. Projections estimate that primary THR numbers could rise by up to 22% by the year 2010, with primary TKR numbers rising by up to 63%. Conclusions: Provision of joint replacement surgery in English NHS hospitals has increased substantially over the past decade. Revision operations in particular have increased markedly. The growth in primary operations has mostly occurred among those aged 60 years and over; rates among young people have changed very little. There is a significant deprivation based gradient in rates. If current trends continue there would be almost 47 000 primary hip and 54 000 primary knee operations annually by 2010. PMID:15194578

  8. Magnetic resonance knee arthrography. Enhanced contrast by gadolinium complex in the rabbit and in humans.

    PubMed

    Engel, A

    1990-01-01

    This study contains the fundamentals and the technique of the intraarticular application of an MRI contrast agent in connection with magnetic resonance imaging (MRI arthrography). It also presents the resulting clinical relevance for knee joint diagnostics. The significance of MRI arthrography is linked above all to the central question of whether or not it is possible to depict the hyaline cartilage, its surface and its thickness with the help of MRI arthrography. MRI arthrography was used for in vitro examinations of rabbit knee joint cartilage and human joint cartilage. The in vivo application was carried out in 73 patients. Apart from the metric evaluation and the assessment of the information content of the MRI image, the corresponding histologic sections were made in 20 knee joints in order to compare the cartilage surface and the thickness of the cartilage with the results in the MRI image. The optimum amount of contrast agent for visualization was determined, the uptake and clearance of the contrast agent from the cartilage were assessed, and trace elements from the cartilage were also analyzed. The examination showed that the molecular structure of the contrast agent (gadolinium-DTPA) does not prevent the uptake of the contrast agent into the matrix of the hyaline cartilage. But this process is reversible. Thus, 14 hours after the intraarticular application of the contrast agent no measurable traces of gadolinium-DTPA could be established. The intraarticular application of the contrast agent also made it possible to achieve a constant and reproducible visualization of all joint structures. This affected mainly the surface of the hyaline cartilage. The best imaging quality was achieved with intraarticular application of 30 to 40 mL of a 2 mmolar solution of gadolinium-DTPA. The technique used for the intraarticular application is the same as for the common procedures of knee joint aspiration. The clinical importance of MRI arthrography lies in the fact that

  9. Interposition of the Posterior Cruciate Ligament into the Medial Compartment of the Knee Joint on Coronal Magnetic Resonance Imaging

    PubMed Central

    Kim, Hyun Su; Park, Ki Jeong; Wang, Joon Ho; Choe, Bong-Keun

    2016-01-01

    Objective The purpose of our study was to evaluate the overall prevalence and clinical significance of interposition of the posterior cruciate ligament (PCL) into the medial compartment of the knee joint in coronal magnetic resonance imaging (MRI). Materials and Methods We retrospectively reviewed 317 consecutive patients referred for knee MRI at our institution between October 2009 and December 2009. Interposition of the PCL into the medial compartment of the knee joint on proton coronal MRI was evaluated dichotomously (i.e., present or absent). We analyzed the interposition according to its prevalence as well as its relationship with right-left sidedness, gender, age, and disease categories (osteoarthritis, anterior cruciate ligament tear, and medial meniscus tear). Results Prevalence of interposition of PCL into the medial compartment of the knee joint was 47.0% (149/317). There was no right (50.0%, 83/166) to left (43.7%, 66/151) or male (50.3%, 87/173) to female (43.1%, 62/144) differences in the prevalence. There was no significant association between the prevalence and age, or the disease categories. Conclusion Interposition of the PCL into the medial compartment of the knee joint is observed in almost half of patients on proton coronal MRI of the knee. Its presence is not associated with any particular factors including knee pathology and may be regarded as a normal MR finding. PMID:26957909

  10. The effects of joint immobilization on articular cartilage of the knee in previously exercised rats

    PubMed Central

    Maldonado, Diogo Correa; da Silva, Marcelo Cavenaghi Pereira; Neto, Semaan El-Razi; Souza, Mônica Rodrigues; Souza, Romeu Rodrigues

    2013-01-01

    Studies have determined the effects of joint immobilization on the articular cartilage of sedentary animals, but we are not aware of any studies reporting the effects of joint immobilization in previously trained animals. The objective of the present study was to determine whether exercise could prevent degeneration of the articular cartilage that accompanies joint immobilization. We used light microscopy to study the thickness, cell density, nuclear size, and collagen density of articular cartilage of the femoral condyle of Wistar rats subjected to aerobic physical activity on an adapted treadmill five times per week. Four groups of Wistar rats were used: a control group (C), an immobilized group (I), an exercised group (E), and an exercised and then immobilized group (EI). The right knee joints from rats in groups I and EI were immobilized at 90 °C of flexion using a plastic cast for 8 weeks. Cartilage thickness decreased significantly in group I (mean, 120.14 ± 15.6 μm, P < 0.05), but not in group EI (mean, 174 ± 2.25), and increased significantly in group E (mean, 289.49 ± 9.15) compared with group C (mean, 239.20 ± 6.25). The same results were obtained for cell density, nuclear size, and collagen density (in all cases, P < 0.05). We concluded that exercise can prevent degenerative changes in femoral articular cartilage caused by immobilization of the knee joint. PMID:23480127

  11. Reductions in knee joint forces with weight loss are attenuated by gait adaptations in class III obesity.

    PubMed

    DeVita, Paul; Rider, Patrick; Hortobágyi, Tibor

    2016-03-01

    A consensus exists that high knee joint forces are a precursor to knee osteoarthritis and weight loss reduces these forces. Because large weight loss also leads to increased step length and walking velocity, knee contact forces may be reduced less than predicted by the magnitude of weight loss. The purpose was to determine the effects of weight loss on knee muscle and joint loads during walking in Class III obese adults. We determined through motion capture, force platform measures and biomechanical modeling the effects of weight loss produced by gastric bypass surgery over one year on knee muscle and joint loads during walking at a standard, controlled velocity and at self-selected walking velocities. Weight loss equaling 412N or 34% of initial body weight reduced maximum knee compressive force by 824N or 67% of initial body weight when walking at the controlled velocity. These changes represent a 2:1 reduction in knee force relative to weight loss when walking velocity is constrained to the baseline value. However, behavioral adaptations including increased stride length and walking velocity in the self-selected velocity condition attenuated this effect by ∼50% leading to a 392N or 32% initial body weight reduction in compressive force in the knee joint. Thus, unconstrained walking elicited approximately 1:1 ratio of reduction in knee force relative to weight loss and is more indicative of walking behavior than the standard velocity condition. In conclusion, massive weight loss produces dramatic reductions in knee forces during walking but when patients stride out and walk faster, these favorable reductions become substantially attenuated. PMID:26979878

  12. Accurate joint space quantification in knee osteoarthritis: a digital x-ray tomosynthesis phantom study

    NASA Astrophysics Data System (ADS)

    Sewell, Tanzania S.; Piacsek, Kelly L.; Heckel, Beth A.; Sabol, John M.

    2011-03-01

    The current imaging standard for diagnosis and monitoring of knee osteoarthritis (OA) is projection radiography. However radiographs may be insensitive to markers of early disease such as osteophytes and joint space narrowing (JSN). Relative to standard radiography, digital X-ray tomosynthesis (DTS) may provide improved visualization of the markers of knee OA without the interference of superimposed anatomy. DTS utilizes a series of low-dose projection images over an arc of +/-20 degrees to reconstruct tomographic images parallel to the detector. We propose that DTS can increase accuracy and precision in JSN quantification. The geometric accuracy of DTS was characterized by quantifying joint space width (JSW) as a function of knee flexion and position using physical and anthropomorphic phantoms. Using a commercially available digital X-ray system, projection and DTS images were acquired for a Lucite rod phantom with known gaps at various source-object-distances, and angles of flexion. Gap width, representative of JSW, was measured using a validated algorithm. Over an object-to-detector-distance range of 5-21cm, a 3.0mm gap width was reproducibly measured in the DTS images, independent of magnification. A simulated 0.50mm (+/-0.13) JSN was quantified accurately (95% CI 0.44-0.56mm) in the DTS images. Angling the rods to represent knee flexion, the minimum gap could be precisely determined from the DTS images and was independent of flexion angle. JSN quantification using DTS was insensitive to distance from patient barrier and flexion angle. Potential exists for the optimization of DTS for accurate radiographic quantification of knee OA independent of patient positioning.

  13. Hip and knee joint loading during vertical jumping and push jerking

    PubMed Central

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony MJ

    2014-01-01

    Background The internal joint contact forces experienced at the lower limb have been frequently studied in activities of daily living and rehabilitation activities. In contrast, the forces experienced during more dynamic activities are not well understood, and those studies that do exist suggest very high degrees of joint loading. Methods In this study a biomechanical model of the right lower limb was used to calculate the internal joint forces experienced by the lower limb during vertical jumping, landing and push jerking (an explosive exercise derived from the sport of Olympic weightlifting), with a particular emphasis on the forces experienced by the knee. Findings The knee experienced mean peak loadings of 2.4-4.6 × body weight at the patellofemoral joint, 6.9-9.0 × body weight at the tibiofemoral joint, 0.3-1.4 × body weight anterior tibial shear and 1.0-3.1 × body weight posterior tibial shear. The hip experienced a mean peak loading of 5.5-8.4 × body weight and the ankle 8.9-10.0 × body weight. Interpretation The magnitudes of the total (resultant) joint contact forces at the patellofemoral joint, tibiofemoral joint and hip are greater than those reported in activities of daily living and less dynamic rehabilitation exercises. The information in this study is of importance for medical professionals, coaches and biomedical researchers in improving the understanding of acute and chronic injuries, understanding the performance of prosthetic implants and materials, evaluating the appropriateness of jumping and weightlifting for patient populations and informing the training programmes of healthy populations. PMID:23146164

  14. THE EFFECT OF CONSERVATIVELY TREATED ACL INJURY ON KNEE JOINT POSITION Sense

    PubMed Central

    Herrington, Lee

    2016-01-01

    ABSTRACT Background Proprioception is critical for effective movement patterns. However, methods of proprioceptive measurement in previous research have been inconsistent and lacking in reliability statistics making it applications to clinical practice difficult. Researchers have suggested that damage to the anterior cruciate ligament (ACL) can alter proprioceptive ability due to a loss of functioning mechanoreceptors. The majority of patients opt for reconstructive surgery following this injury. However, some patients chose conservative rehabilitation options rather than surgical intervention. Purpose The purpose of this study was to determine the effect of ACL deficiency on knee joint position sense following conservative, non-operative treatment and return to physical activity. A secondary purpose was to report the reliability and measurement error of the technique used to measure joint position sense, (JPS) and comment on the clinical utility of this measurement. Study Design Observational study design using a cross-section of ACL deficient patients and matched uninjured controls. Methods Twenty active conservatively treated ACL deficient patients who had returned to physical activity and twenty active matched controls were included in the study. Knee joint position sense was measured using a seated passive-active reproductive angle technique. The average absolute angle of error score, between 10 °-30 ° of knee flexion was determined. This error score was derived from the difference between the target and repositioning angle. Results The ACL deficient patients had a greater error score (7.9 °±3.6) and hence poorer static proprioception ability that both the contra-lateral leg (2.0 °±1.6; p = 0.0001) and the control group (2.6 °±0.9; p = 0.0001). The standard error of the mean (SEM) of this JPS technique was 0.5 ° and 0.2 ° and the minimum detectable change (MDC) was 1.3 ° and 0.4 ° on asymptomatic and symptomatic subjects

  15. Three-dimensional knee joint loading in alpine skiing: a comparison between a carved and a skidded turn.

    PubMed

    Klous, Miriam; Müller, Erich; Schwameder, Hermann

    2012-12-01

    Limited data exists on knee biomechanics in alpine ski turns despite the high rate of injuries associated with this maneuver. The purpose of the current study was to compare knee joint loading between a carved and a skidded ski turn and between the inner and outer leg. Kinetic data were collected using Kistler mobile force plates. Kinematic data were collected with five synchronized, panning, tilting, and zooming cameras. Inertial properties of the segments were calculated using an extended version of the Yeadon model. Knee joint forces and moments were calculated using inverse dynamics analysis. The obtained results indicate that knee joint loading in carving is not consistently greater than knee joint loading in skidding. In addition, knee joint loading at the outer leg is not always greater than at the inner leg. Differentiation is required between forces and moments, the direction of the forces and moments, and the phase of the turn that is considered. Even though the authors believe that the analyzed turns are representative, results have to be interpreted with caution due to the small sample size. PMID:22660886

  16. Helical Axis Data Visualization and Analysis of the Knee Joint Articulation.

    PubMed

    Millán Vaquero, Ricardo Manuel; Vais, Alexander; Dean Lynch, Sean; Rzepecki, Jan; Friese, Karl-Ingo; Hurschler, Christof; Wolter, Franz-Erich

    2016-09-01

    We present processing methods and visualization techniques for accurately characterizing and interpreting kinematical data of flexion-extension motion of the knee joint based on helical axes. We make use of the Lie group of rigid body motions and particularly its Lie algebra for a natural representation of motion sequences. This allows to analyze and compute the finite helical axis (FHA) and instantaneous helical axis (IHA) in a unified way without redundant degrees of freedom or singularities. A polynomial fitting based on Legendre polynomials within the Lie algebra is applied to provide a smooth description of a given discrete knee motion sequence which is essential for obtaining stable instantaneous helical axes for further analysis. Moreover, this allows for an efficient overall similarity comparison across several motion sequences in order to differentiate among several cases. Our approach combines a specifically designed patient-specific three-dimensional visualization basing on the processed helical axes information and incorporating computed tomography (CT) scans for an intuitive interpretation of the axes and their geometrical relation with respect to the knee joint anatomy. In addition, in the context of the study of diseases affecting the musculoskeletal articulation, we propose to integrate the above tools into a multiscale framework for exploring related data sets distributed across multiple spatial scales. We demonstrate the utility of our methods, exemplarily processing a collection of motion sequences acquired from experimental data involving several surgery techniques. Our approach enables an accurate analysis, visualization and comparison of knee joint articulation, contributing to the evaluation and diagnosis in medical applications. PMID:27367532

  17. The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load

    NASA Astrophysics Data System (ADS)

    Pozzi, Michele; Aung, Min S. H.; Zhu, Meiling; Jones, Richard K.; Goulermas, John Y.

    2012-07-01

    The reduced power requirements of miniaturized electronics offer the opportunity to create devices which rely on energy harvesters for their power supply. In the case of wearable devices, human-based piezoelectric energy harvesting is particularly difficult due to the mismatch between the low frequency of human activities and the high-frequency requirements of piezoelectric transducers. We propose a piezoelectric energy harvester, to be worn on the knee-joint, that relies on the plucking technique to achieve frequency up-conversion. During a plucking action, a piezoelectric bimorph is deflected by a plectrum; when released due to loss of contact, the bimorph is free to vibrate at its resonant frequency, generating electrical energy with the highest efficiency. A prototype, featuring four PZT-5H bimorphs, was built and is here studied in a knee simulator which reproduces the gait of a human subject. Biomechanical data were collected with a marker-based motion capture system while the subject was carrying a selection of backpack loads. The paper focuses on the energy generation of the harvester and how this is affected by the backpack load. By altering the gait, the backpack load has a measurable effect on performance: at the highest load of 24 kg, a minor reduction in energy generation (7%) was observed and the output power is reduced by 10%. Both are so moderate to be practically unimportant. The average power output of the prototype is 2.06 ± 0.3 mW, which can increase significantly with further optimization.

  18. Evaluation of knee joint proprioception and balance of young female volleyball players: a pilot study

    PubMed Central

    Şahin, Neşe; Bianco, Antonino; Patti, Antonino; Paoli, Antonio; Palma, Antonio; Ersöz, Gülfem

    2015-01-01

    [Purpose] The main purpose of our study was the evaluation of the effects of long-term volleyball practice on knee joint proprioception and balance of young female athletes. [Subjects and Methods] An observational case-control study was performed. The study enrolled 19 female volleyball players in the experimental group and 19 sedentary counterparts as controls. A Biodex balance system and dynamometer were used for the evaluations. The paired t-test was used to determine the significance of differences between the performance of athletes and controls. [Results] The knee proprioception analysis showed a significant difference at 60° joint position in active and passive tests. A similar trend, but without significance, was found for the 20° joint position. In the postural stability tests both groups showed similar results with no significant differences between them. [Conclusion] In conclusion, the results indicate a significant influence on joint proprioception is elicited by long-term exposure to a team sport like volleyball. However, the postural stability indexes showed similar trends in both groups, highlighting the analogous ontogenesis of the subjects investigated and the low influence of volleyball practice on postural stability. PMID:25729185

  19. The effect of osteoarthritis of the knee on the biomechanics of other joints in the lower limbs.

    PubMed

    Metcalfe, A J; Stewart, C; Postans, N; Dodds, A L; Holt, C A; Roberts, A P

    2013-03-01

    The aim of this study was to examine the loading of the other joints of the lower limb in patients with unilateral osteoarthritis (OA) of the knee. We recruited 20 patients with no other symptoms or deformity in the lower limbs from a consecutive cohort of patients awaiting knee replacement. Gait analysis and electromyographic recordings were performed to determine moments at both knees and hips, and contraction patterns in the medial and lateral quadriceps and hamstrings bilaterally. The speed of gait was reduced in the group with OA compared with the controls, but there were only minor differences in stance times between the limbs. Patients with OA of the knee had significant increases in adduction moment impulse at both knees and the contralateral hip (adjusted p-values: affected knee: p < 0.01, unaffected knee p = 0.048, contralateral hip p = 0.03), and significantly increased muscular co-contraction bilaterally compared with controls (all comparisons for co-contraction, p < 0.01). The other major weight-bearing joints are at risk from abnormal biomechanics in patients with unilateral OA of the knee. PMID:23450019

  20. Histopathological changes in the periphery of the sciatic nerve of rats after knee joint immobilization.

    PubMed

    Yoshida, Shinya; Matsuzaki, Taro; Kamijo, Akio; Araki, Yoshitaka; Sakamoto, Makoto; Moriyama, Shigenori; Hoso, Masahiro

    2013-05-01

    [Purpose] This study was performed to investigate the histological changes that occur in the periphery of the sciatic nerve in rats undergoing knee immobilization. [Subjects and Methods] 29 male 9-week-old Wistar rats were divided randomly into a control group (C group, n = 7) and an immobilized group (I group, n = 22). The animals in the I group had the left knee joint immobilized in maximal flexion with plaster casts for two weeks. After the experimental period, we obtained cross-sections of tissues from the center of the left thigh, and the periphery of the sciatic nerve was observed under an optical microscope after hematoxylin-eosin staining. [Results] In contrast to the rats of C group, the rats in I group showed adherence between the bundle of nerve fibers and perineurium, as well as thickening of the perineurium. These histological changes were statistically significant. [Conclusions] Immobilization of the knee joints of rats resulted in characteristic histological changes in the connective tissue around the sciatic nerve. PMID:24259816

  1. [Pharmacokinetic studies following 2 and 4-week Felbinac gel administration to the knee joint].

    PubMed

    Bolten, W; Waldorf-Bolten, E; Sarfert, D; Lehmann, W; Miehlke, W

    1990-01-01

    Twelve patients with osteoarthrosis were locally treated with Felbinac Gel (biphenyl acetic acid (BPAA) 3%) three times daily for 14 days (five patients), 28 days (six patients) or 42 days (one patient) before elective knee joint surgery. BPAA plasma concentrations as of the seventh day of treatment were steady at between 423 and 1040 ng/ml. In surgery, synovial and tissue samples were taken to determine BPAA concentrations. Moderate and sometimes higher synovial BPAA levels in the treated knee joint compared to the contralateral knee seem to indicate a combined direct and systemic absorption. The highest BPAA concentrations (1497-13939 ng/g) were measured in the skin. Drug levels in the synovial membrane (36-994 ng/g), the synovia (104-768 ng/ml), tendon (less than 10-197 ng/g), cartilage (less than 10-109 ng/g), muscle (12-101 ng/g), and subcutis (16-97 ng/g) were lower. BPAA neither accumulates in the skin, nor in any other peri-articular tissue. A steady state was reached as of the 14th day of treatment at the latest. None of the patients reported any local or systemic side effects. PMID:2085060

  2. New Joints, Same Old Weight: Weight Changes After Total Hip and Knee Arthroplasty.

    PubMed

    Hurwit, Daniel J; Trehan, Samir K; Cross, Michael B

    2016-07-01

    Obesity is a well-known risk factor for postoperative complications following total joint arthroplasty. However, because the operation is often successful, orthopedic surgeons continue to operate on obese individuals, and many surgeons do so under the assumption that patients will lose weight after they are able to walk and exercise without pain. In this article, we review a recent study by Ast et al., who performed a retrospective review, using a single-center institutional registry, to determine (1) whether patients do actually lose weight after total hip and/or total knee arthroplasty, (2) whether there are predictors of postoperative weight change, and (3) whether postoperative weight changes affect patient-reported clinical outcomes. The principle conclusion was that most patients maintained their body mass index (BMI) after total hip and total knee arthroplasty (73 and 69%, respectively). However, patients undergoing total knee arthroplasty, patients who had a higher preoperative BMI, and female patients were more likely to lose weight postoperatively. When examined in the context of the current literature, this study provides valuable information for the preoperative counseling of total joint arthroplasty candidates, especially in the setting of obesity. PMID:27385952

  3. Application of a Novel Measure of In Vivo Knee Joint Laxity.

    PubMed

    Küpper, J C; Westover, L; Frayne, R; Ronsky, J L

    2016-10-01

    Current measures of knee joint laxity, such as those found clinically using the KT-2000 arthrometer, are not highly repeatable or reliable by Huber et al. (1997, "Intratester and Intertester Reliability of the KT-1000 Arthrometer in the Assessment of Posterior Laxity of the Knee," Am. J. Sports Med., 25(4), pp. 479-485). In this study, a noninvasive in vivo magnetic resonance (MR) imaging-based measure of laxity, the knee loading apparatus (KLA) with anterior positioning frame, was evaluated with five normal subjects (repeatability study, n = 3). Effects of hormones and muscle guarding were considered. When compared to the KT-2000, the KLA was found to be more precise (±0.33 mm versus ±1.17 mm) but less reliable (Cronbach's alpha > 0.70 in 0/8 versus 5/8 load levels). Improved control of the initial subject position is recommended for future design iterations. The KLA shows promise as an accurate and reliable tool for measuring in vivo joint and ligament laxity. PMID:27427900

  4. A neural network approach for determining gait modifications to reduce the contact force in knee joint implant.

    PubMed

    Ardestani, Marzieh Mostafavizadeh; Chen, Zhenxian; Wang, Ling; Lian, Qin; Liu, Yaxiong; He, Jiankang; Li, Dichen; Jin, Zhongmin

    2014-10-01

    There is a growing interest in non-surgical gait rehabilitation treatments to reduce the loading in the knee joint. In particular, synergetic kinematic changes required for joint offloading should be determined individually for each subject. Previous studies for gait rehabilitation designs are typically relied on a "trial-and-error" approach, using multi-body dynamic (MBD) analysis. However MBD is fairly time demanding which prevents it to be used iteratively for each subject. This study employed an artificial neural network to develop a cost-effective computational framework for designing gait rehabilitation patterns. A feed forward artificial neural network (FFANN) was trained based on a number of experimental gait trials obtained from literature. The trained network was then hired to calculate the appropriate kinematic waveforms (output) needed to achieve desired knee joint loading patterns (input). An auxiliary neural network was also developed to update the ground reaction force and moment profiles with respect to the predicted kinematic waveforms. The feasibility and efficiency of the predicted kinematic patterns were then evaluated through MBD analysis. Results showed that FFANN-based predicted kinematics could effectively decrease the total knee joint reaction forces. Peak values of the resultant knee joint forces, with respect to the bodyweight (BW), were reduced by 20% BW and 25% BW in the midstance and the terminal stance phases. Impulse values of the knee joint loading patterns were also decreased by 17% BW*s and 24%BW*s in the corresponding phases. The FFANN-based framework suggested a cost-effective forward solution which directly calculated the kinematic variations needed to implement a given desired knee joint loading pattern. It is therefore expected that this approach provides potential advantages and further insights into knee rehabilitation designs. PMID:25066584

  5. Articular cartilage thickness and glycosaminoglycan distribution in the young canine knee joint after remobilization of the immobilized limb.

    PubMed

    Kiviranta, I; Tammi, M; Jurvelin, J; Arokoski, J; Säämänen, A M; Helminen, H J

    1994-03-01

    The recovery of articular cartilage from atrophy induced by joint immobilization was investigated in immature dogs. In a previous study, we showed that 11 weeks of immobilization of the knee (stifle) joint of young dogs reduced the concentration of articular cartilage glycosaminoglycans (GAGs) by 13-47%. In the present study, right hindlimbs from six female beagles were immobilized for 11 weeks, as in the previous study, and then were remobilized for 15 weeks. Cartilage from the knee joint was compared with cartilage from nonimmobilized knees of eight age-matched control beagles. Histological samples taken from 11 different locations of the knee joint were stained with safranin O, and microspectrophotometry was used to demonstrate distribution of GAGs in the tissue. After remobilization, GAG concentration was restored in the patellofemoral region and tibial condyles. On the summits of the femoral condyles, and especially at the periphery of the femoral condyles, GAG concentration remained 8-26% less than the control values. On the summits, the thickness of the uncalcified cartilage was as much as 15% less than in the age-matched controls. Consequently, the changes induced by unloading were reversible to a great extent, but a full restoration of articular cartilage was not obtained at all sites of the knee joint within the 15 weeks of remobilization. Immobilization of the skeletally immature joint therefore may affect the development of articular cartilage in such a way that very slow recovery or permanent alterations are induced. PMID:8164087

  6. The effect of co-stabilizer muscle activation on knee joint position sense: a single group pre-post test

    PubMed Central

    Nam, Yeongyo; Lee, Ho Jun; Choi, Myongryol; Chung, Sangmi; Park, Junhyung; Yu, Jaeho

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effect of co-stabilizer muscle activation on knee joint position sense. [Subjects and Methods] This study was a pre-post, single-blinded randomly controlled trial (angle sequence randomly selected) design. Seven healthy adults with no orthopaedic or neurological problems participated in this study. Knee joint position sense was measured by a target matching test at target angles of 30°, 45° and 80° of knee flexion a using digital inclinometer under two conditions: erect sitting, which is known to highly activate co-stabilizer muscle and slump sitting, which is known to little activate the co-stabilizer muscle. [Results] A significant difference in joint position matching error at the knee flexion angle of 45° was founded between two conditions erect sitting: (3.83 ± 1.47) and slump sitting: (1.00 ± 0.63). There were no significant differences in joint position matching error at the other target angles. [Conclusion] Knee joint position sense at 45° is likely to be affected by activation of co-stabilizer muscle, and this value is suitable for facilitation of joint position sense with skilled movement. PMID:27512279

  7. Recent advances and future directions in the management of knee osteoarthritis: Can biological joint reconstruction replace joint arthroplasty and when?

    PubMed Central

    Paschos, Nikolaos K

    2015-01-01

    In this article, a concise description of the recent advances in the field of osteoarthritis management is presented. The main focus is to highlight the most promising techniques that emerge in both biological joint replacement and artificial joint arthroplasty. A critical view of high quality evidence regarding outcome and safety profile of these techniques is presented. The potential role of kinematically aligned total knee replacement, navigation, and robotic-assisted surgery is outlined. A critical description of both primary and stem cell-based therapies, the cell homing theory, the use of biologic factors and recent advancements in tissue engineering and regenerative medicine is provided. Based on the current evidence, some thoughts on a realistic approach towards answering these questions are attempted. PMID:26495242

  8. Recent advances and future directions in the management of knee osteoarthritis: Can biological joint reconstruction replace joint arthroplasty and when?

    PubMed

    Paschos, Nikolaos K

    2015-10-18

    In this article, a concise description of the recent advances in the field of osteoarthritis management is presented. The main focus is to highlight the most promising techniques that emerge in both biological joint replacement and artificial joint arthroplasty. A critical view of high quality evidence regarding outcome and safety profile of these techniques is presented. The potential role of kinematically aligned total knee replacement, navigation, and robotic-assisted surgery is outlined. A critical description of both primary and stem cell-based therapies, the cell homing theory, the use of biologic factors and recent advancements in tissue engineering and regenerative medicine is provided. Based on the current evidence, some thoughts on a realistic approach towards answering these questions are attempted. PMID:26495242

  9. Knee joint position sense of roller hockey players: a comparative study.

    PubMed

    Venâncio, João; Lopes, Diogo; Lourenço, Joaquim; Ribeiro, Fernando

    2016-06-01

    This study aimed to compare knee joint position sense of roller hockey players with an age-matched group of non-athletes. Forty-three male participants voluntarily participated in this cross-sectional study: 21 roller hockey players (mean age: 23.2 ± 4.2 years old, mean weight: 81.8 ± 9.8 kg, mean height: 180.5 ± 4.1 cm) and 22 age-matched non-athletes (mean age: 23.7 ± 3.9 years old, mean weight: 85.0 ± 6.2 kg, mean height: 181.5 ± 5.0 cm). Knee joint position sense of the dominant limb was evaluated using a technique of open-kinetic chain and active knee positioning. Joint position sense was reported using absolute, relative and variable angular errors. The main results indicated that the group of roller hockey players showed significantly lower absolute (2.4 ± 1.2º vs. 6.5 ± 3.2º, p ≤ 0.001) and relative (1.7 ± 2.1º vs. 5.8 ± 4.4º, p ≤ 0.001) angular errors in comparison with the non-athletes group. In conclusion, the results from this present study suggest that proprioceptive acuity, assessed by measuring joint position sense, is increased in roller hockey players. The enhanced proprioception of the roller hockey players could contribute to injury prevention and improved performance during sporting activities. PMID:27111126

  10. Reconstruction of knee joint soft tissue and patellar tendon defects using a composite anterolateral thigh flap with vascularized fascia lata.

    PubMed

    Kuo, Yur-Ren; An, Po-Chung; Kuo, Mei-Hui; Kueh, Nai-Siong; Yao, Sheng-Fa; Jeng, Seng-Feng

    2008-01-01

    Reconstruction of a complex knee trauma with knee joint exposure and composite soft tissue and patellar tendon deficiency remains a challenging task. Multiple-stage reconstruction is time-consuming and produces considerable suffering for patients. Early mobilization following knee reconstruction has achieved good outcomes. Herein, we reported one-stage reconstruction with an ALT myocutaneous flap with vascularized fascia lata was utilized for one patient with a large complex knee joint soft tissue defect, and segmental deficiency of the patellar tendon. The fascia lata sheet was rolled to mimic a patellar tendon. The exposed knee joint was obturated by the vastus lateralis muscle of the ALT myocutaneous flap. The skin and soft tissue defect was reconstructed using the skin paddle of the ALT flap. The patient's postoperative course was uneventful. An MRI examination demonstrated good continuity of the reconstructed patellar tendon. The active ROM of the injured knee reached 100 degrees (extension deficiency 20 degrees and flexion 120 degrees ) at 5 years. Objective functional assessment of the patella-femoral joint utilized a kinetic communicator machine (Kin-Com 500H, Chattecx, Chattanooga, TN, USA) revealed still mild extension insufficiency. However, the patient reported that he was able to perform normal daily activities without difficulty at 5-year follow-up. PMID:18215803

  11. Computed Tomographic Image Analysis Based on FEM Performance Comparison of Segmentation on Knee Joint Reconstruction

    PubMed Central

    Jang, Seong-Wook; Seo, Young-Jin; Yoo, Yon-Sik

    2014-01-01

    The demand for an accurate and accessible image segmentation to generate 3D models from CT scan data has been increasing as such models are required in many areas of orthopedics. In this paper, to find the optimal image segmentation to create a 3D model of the knee CT data, we compared and validated segmentation algorithms based on both objective comparisons and finite element (FE) analysis. For comparison purposes, we used 1 model reconstructed in accordance with the instructions of a clinical professional and 3 models reconstructed using image processing algorithms (Sobel operator, Laplacian of Gaussian operator, and Canny edge detection). Comparison was performed by inspecting intermodel morphological deviations with the iterative closest point (ICP) algorithm, and FE analysis was performed to examine the effects of the segmentation algorithm on the results of the knee joint movement analysis. PMID:25538950

  12. Computed tomographic image analysis based on FEM performance comparison of segmentation on knee joint reconstruction.

    PubMed

    Jang, Seong-Wook; Seo, Young-Jin; Yoo, Yon-Sik; Kim, Yoon Sang

    2014-01-01

    The demand for an accurate and accessible image segmentation to generate 3D models from CT scan data has been increasing as such models are required in many areas of orthopedics. In this paper, to find the optimal image segmentation to create a 3D model of the knee CT data, we compared and validated segmentation algorithms based on both objective comparisons and finite element (FE) analysis. For comparison purposes, we used 1 model reconstructed in accordance with the instructions of a clinical professional and 3 models reconstructed using image processing algorithms (Sobel operator, Laplacian of Gaussian operator, and Canny edge detection). Comparison was performed by inspecting intermodel morphological deviations with the iterative closest point (ICP) algorithm, and FE analysis was performed to examine the effects of the segmentation algorithm on the results of the knee joint movement analysis. PMID:25538950

  13. Knee Problems

    MedlinePlus

    ... cartilage, a tough, elastic material that helps absorb shock and allows the knee joint to move smoothly. ... The two menisci in each knee act as shock absorbers, cushioning the lower part of the leg ...

  14. Knee Joint Laxity and Its Cyclic Variation Influence Tibiofemoral Motion during Weight Acceptance

    PubMed Central

    Shultz, Sandra J.; Schmitz, Randy J.; Nguyen, Anh-Dung; Levine, Beverly; Kim, Hyunsoo; Montgomery, Melissa M.; Shimokochi, Yohei; Beynnon, Bruce D.; Perrin, David H.

    2010-01-01

    Purpose To better understand how sex differences in anterior knee joint laxity (AKL) impact knee joint biomechanics, we examined the consequence of greater absolute baseline (males and females) and cyclic increases in AKL during the menstrual cycle (females) on anterior tibial translation (ATT) as the knee transitioned from non-weight bearing (NWB) to weight bearing (WB) conditions, while also controlling for genu recurvatum (GR). Methods Males and females (71F,48M;18-30 years) were measured for AKL and GR, and underwent measurement of ATT. Females were tested on the days of their cycle when AKL was at its minimum (T1) and maximum (T2); males were matched in time to a female with similar AKL. Linear regressions examined relationships between absolute baseline (AKLT1, GRT1) and cyclic changes (Δ=T2-T1; AKLΔ, GRΔ)(females only) in knee laxity with ATT as measured at T1 and T2, and Δ (T2-T1) (females only). Results AKL and GR increased in females, but not males, from T1 to T2. Greater AKLT1 and GRT1 predicted greater ATTT1 and ATTT2 in males (R2=21.0, P<.007). The combination of greater AKLT1, AKLΔ and less GRΔ predicted greater ATTT1 and ATTT2 in females (R2=12.5-13.1, P<.05), with AKLΔ being a stronger predictor (coefficient, P-value) of ATTT2 (0.864, P=.027) compared to ATTT1 (0.333, P=.370). AKLΔ was the sole predictor of ATTΔ (R2=.104; 0.740, P=.042). Conclusions Greater absolute baseline and cyclic increases in AKL were consistently associated with greater ATT produced by transition of the knee from NWB to WB. As the ACL is the primary restraint to ATT, these findings provide insight into possible mechanisms by which greater AKL may be associated with at risk knee biomechanics during the weight acceptance phase of dynamic tasks. PMID:20581718

  15. Depression and the Overall Burden of Painful Joints: An Examination among Individuals Undergoing Hip and Knee Replacement for Osteoarthritis.

    PubMed

    Gandhi, Rajiv; Zywiel, Michael G; Mahomed, Nizar N; Perruccio, Anthony V

    2015-01-01

    The majority of patients with hip or knee osteoarthritis (OA) report one or more symptomatic joints apart from the one targeted for surgical care. Therefore, the purpose of the present study was to investigate the association between the burden of multiple symptomatic joints and self-reported depression in patients awaiting joint replacement for OA. Four hundred and seventy-five patients at a single centre were evaluated. Patients self-reported joints that were painful and/or symptomatic most days of the previous month on a homunculus, with nearly one-third of the sample reporting 6 or more painful joints. The prevalence of depression was 12.2% (58/475). When adjusted for age, sex, education level, hip or knee OA, body mass index, chronic condition count, and joint-specific WOMAC scores, each additional symptomatic joint was associated with a 19% increased odds (odds ratio: 1.19 (95% CI: 1.08, 1.31, P < 0.01)) of self-reported depression. Individuals reporting 6 or more painful joints had 2.5-fold or greater odds of depression when compared to those patients whose symptoms were limited to the surgical joint. A focus on the surgical joint alone is likely to miss a potentially important determinant of postsurgical patient-reported outcomes in patients undergoing hip or knee replacement. PMID:25861476

  16. Depression and the Overall Burden of Painful Joints: An Examination among Individuals Undergoing Hip and Knee Replacement for Osteoarthritis

    PubMed Central

    Gandhi, Rajiv; Zywiel, Michael G.; Mahomed, Nizar N.; Perruccio, Anthony V.

    2015-01-01

    The majority of patients with hip or knee osteoarthritis (OA) report one or more symptomatic joints apart from the one targeted for surgical care. Therefore, the purpose of the present study was to investigate the association between the burden of multiple symptomatic joints and self-reported depression in patients awaiting joint replacement for OA. Four hundred and seventy-five patients at a single centre were evaluated. Patients self-reported joints that were painful and/or symptomatic most days of the previous month on a homunculus, with nearly one-third of the sample reporting 6 or more painful joints. The prevalence of depression was 12.2% (58/475). When adjusted for age, sex, education level, hip or knee OA, body mass index, chronic condition count, and joint-specific WOMAC scores, each additional symptomatic joint was associated with a 19% increased odds (odds ratio: 1.19 (95% CI: 1.08, 1.31, P < 0.01)) of self-reported depression. Individuals reporting 6 or more painful joints had 2.5-fold or greater odds of depression when compared to those patients whose symptoms were limited to the surgical joint. A focus on the surgical joint alone is likely to miss a potentially important determinant of postsurgical patient-reported outcomes in patients undergoing hip or knee replacement. PMID:25861476

  17. Radiological study of the knee joint line position measured from the fibular head and proximal tibial landmarks.

    PubMed

    Havet, Eric; Gabrion, Antoine; Leiber-Wackenheim, Frederic; Vernois, Joël; Olory, Bruno; Mertl, Patrice

    2007-06-01

    Restoring the joint line level is one of the surgical challenges during revision of total knee arthroplasty. The position of the tibial surface is commonly estimated by its distance to the apex of fibular head, but no study evaluating this distance accurately has been published yet. The purpose of this work was to study the distance between the knee joint line and the apex of the fibular head and the proximal tibia, particularly the tibial tuberosity. Variability with clinical data and relations with other local measurements have been evaluated on knee radiographs (an antero-posterior view, a medio-lateral view and an anteroposterior full length view) of 100 subjects (125 knees). Results showed no correlation between the joint line-fibular head apex distance and any clinical data of the patients, or any other performed measurements. Relations between tibial measurements and the sexe or the height of the subjects were noted. Besides, the review of the 25 bilateral cases did not show statistically significant side difference but the descriptive analysis showed too large discrepancies for the joint line-fibular head apex distance to be used as a landmark. We conclude that the fibular head apex cannot be used as a morphologic landmark to determine the knee joint line position. Its interest in clinical and surgical practice must be discussed. PMID:17440678

  18. A Case Report of Synovial Chondromatosis of the Knee Joint arising from the Marginal Synovium

    PubMed Central

    Kukreja, Sunil

    2013-01-01

    Introduction: Synovial chondromatosis is a rare benign condition arising from the synovial membrane of the joints, synovial sheaths or bursae around the joints. Primary synovial chondromatosis typically affects the large joints in the third to fifth decade of life, although involvement of smaller joints and presentation in younger age group is also documented. The purpose of this case report is to document this rare synovial pathology especially in an adolescent age group, which required open synovectomy and debridement to eradicate it. Metaplastic growth from the marginal synovium fixed to the adjacent cartilage was atypical feature in this case, which to the best of my knowledge has not been reported earlier. Case Report: A sixteen year old boy presented with one year history of pain, swelling and restriction of left knee joint. After the clinical and radiological assessment open synovectomy, removal of loose bodies and thorough joint debridement procedure was performed. Histopathological study confirmed the findings of synovial chondromatosis. Conclusion: Synovial chondromatosis is a rare benign condition very rarely seen in adolescent age group. Metaplastic growth arising from marginal synovium was an atypical feature which is occasionally seen. Complete synovectomy offers reliable cure rate. PMID:27298888

  19. Report of a group developing a virtual reality simulator for arthroscopic surgery of the knee joint.

    PubMed

    Cannon, W Dilworth; Eckhoff, Donald G; Garrett, William E; Hunter, Robert E; Sweeney, Howard J

    2006-01-01

    Apprenticeship training of surgical skills is time consuming and can lead to surgical errors. Our group is developing an arthroscopic virtual reality knee simulator for training orthopaedic residents in arthroscopic surgery before live-patient operating room experience. The simulator displays realistic human knee anatomy derived from the Visible Human Dataset developed by the National Library of Medicine and incorporates active force-feedback haptic technology. Our premise is that postgraduate year 2 residents completing a formal virtual education program who are trained to reach a proficiency standard in the techniques and protocol for an arthroscopic knee examination will complete a diagnostic arthroscopy on an actual patient in less time with greater accuracy, less iteration of movement of the arthroscope, and less damage to the patient's tissue compared with residents in the control group learning and practicing the arthroscopic knee examination procedures through the residency program's established education and training program. The validation study, done at eight orthopaedic residency programs, will commence in early 2006 and will take one year to complete. We anticipate that proficiency obtained on the simulator will transfer to surgical skills in the operating room. PMID:16394734

  20. Comparative study on isokinetic capacity of knee and ankle joints by functional injury

    PubMed Central

    Jeon, Kyoungkyu; Seo, Byoung-Do; Lee, Sang-Ho

    2016-01-01

    [Purpose] To collect basic data for exercise programs designed to enhance functional knee and ankle joint stability based on isokinetic measurement and muscle strength evaluations in normal and impaired functional states. [Subjects and Methods] Twenty-four subjects were randomly assigned to the athlete group and the control group (n = 12 each). Data were collected of isokinetic knee extensor and flexor strength at 60°/sec, 180°/sec, and 240°/sec and ankle plantar and dorsiflexor strength at 30°/sec and 120°/sec. [Results] Significant intergroup differences were observed in peak torque of the right extensors at 60°/sec, 180°/sec, and 240°/sec and the right flexors at 240°/sec. Significant differences were observed in peak torque/body weight in the right extensors at 60°/sec, 180°/sec, and 240°/sec and in the right flexors at 180°/sec and 240°/sec. Significant peak torque differences were noted in the left ankle joint dorsiflexor at 30°/sec and 120°/sec, right plantar flexor at 120°/sec, left plantar flexor at 30°/sec, left dorsiflexor at 30°/sec and 120°/sec, and right dorsiflexor at 120°/sec. [Conclusion] Isokinetic evaluation stimulates muscle contraction at motion-dependent speeds and may contribute to the development of intervention programs to improve knee and ankle joint function and correct lower-extremity instability. PMID:26957768

  1. Correlation study of knee joint proprioception test results using common test methods

    PubMed Central

    Li, Lin; Ji, Zhong-Qiu; Li, Yan-Xia; Liu, Wei-Tong

    2016-01-01

    [Purpose] To study the correlation of the results obtained from different proprioception test methods, namely, the joint angle reset method, the motion minimum threshold measurement method, and the force sense reproduction method, performed on the same subjects’ knees. [Subjects and Methods] Different proprioception test methods, the joint angle reset method, the motion minimum threshold measurement method and the force sense reproduction method were used to test the knees of 30 healthy young men. [Results] Correlations were found in the following descending order from strong to weak: the correlation between the joint angle reset method and the force sense reproduction method (correlation coefficient of 0.41), the correlation between the joint angle reset method and the motion minimum threshold measurement method (correlation coefficient of 0.29), the correlation between the motion minimum threshold measurement method and the force sense reproduce method (correlation coefficient of 0.15). [Conclusion] No correlation was found among the results obtained using the joint angle reset method, the motion minimum threshold measurement method and the force sense reproduction method. Therefore, no correlation was found among the position sense, the motion sense and the force sense represented by these methods. Using the results of only one of the test methods to represent proprioception is one-sided. Force sensation depends more on the sensory input of information from the Golgi tendon organs, motion sense depends more on the input information of the muscle spindles, and position sense relies on the double input information of the muscle spindles and the Golgi tendon organs. PMID:27065533

  2. High systemic bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: The MOST study

    PubMed Central

    Nevitt, Michael C.; Zhang, Yuqing; Javaid, M. Kassim; Neogi, Tuhina; Curtis, Jeffrey R.; Niu, Jingbo; McCulloch, Charles E.; Segal, Neil A.; Felson, David T.

    2010-01-01

    Objectives Previous studies suggest that high systemic bone mineral density (BMD) is associated with incident knee OA defined by osteophytes, but not with joint space narrowing (JSN), and are inconsistent regarding BMD and progression of existing OA. We tested the association of BMD with incident and progressive tibiofemoral OA in a large, prospective study of men and women ages 50–79 with, or at risk for, knee OA. Methods Baseline and 30-month weight-bearing PA and lateral knee x-rays were scored for K–L grade, JSN and osteophytes. Incident OA was defined as the development of K–L grade ≥2 at follow-up. All knees were classified for increases in grade of JSN and osteophytes from baseline. The association of gender-specific quartiles of baseline BMD with risk of incident and progressive OA was analyzed using logistic regression, adjusting for covariates. Results The mean age of 1,754 subjects was 63.2 (SD, 7.8) and BMI 29.9 (SD, 5.4). In knees without baseline OA, higher femoral neck and whole body BMD were associated with an increased risk of incident OA and increases in grade of JSN and osteophytes (p < 0.01 for trends); adjusted odds were 2.3 to 2.9-fold greater in the highest vs. the lowest BMD quartiles. In knees with existing OA, progression was not significantly related to BMD. Conclusions In knees without OA, higher systemic BMD was associated with a greater risk of the onset of JSN and K–L grade ≥2. The role of systemic BMD in early knee OA pathogenesis warrants further investigation. PMID:19147619

  3. Can Structural Joint Damage Measured with MR Imaging Be Used to Predict Knee Replacement in the Following Year?

    PubMed Central

    Kwoh, C. Kent; Hannon, Michael J.; Hunter, David J.; Eckstein, Felix; Wang, Zhijie; Boudreau, Robert M.; John, Markus R.; Nevitt, Michael C.; Guermazi, Ali

    2015-01-01

    Purpose To assess whether magnetic resonance (MR) imaging–based cross-sectional measures of structural joint damage can be used to predict knee replacement during the following year. Materials and Methods Participants were drawn from the Osteoarthritis Initiative, a longitudinal observational study that includes 4796 participants who have knee osteoarthritis or are at risk. The HIPAA-compliant protocol was approved by the institutional review boards of all participating centers, and written informed consent was obtained from all participants. During the 5 years of follow-up, 199 knees underwent knee replacement and were matched with 199 control knees that did not undergo knee replacement. Knees were matched according to radiographic disease stage and patient sex and age. All knees that underwent knee replacement and had MR images available from the year before surgery were included. MR images were assessed for cartilage damage, bone marrow lesions, meniscal damage, meniscal extrusion, synovitis, and effusion prior to reported knee replacement. Conditional logistic regression was applied to assess the risk of knee replacement. Analyses were performed on a compartmental and knee level. Results Participants had a mean age ± standard deviation of 64.2 years ± 8.4 (range, 47–82 years) and were predominantly women (232 of 398 participants, 58.3%). Risk for knee replacement was significantly increased for knees that exhibited two or more subregions with severe cartilage loss (odds ratio [OR], 16.5; 95% confidence interval [CI]: 3.96, 68.76), more than two subregions with bone marrow lesions (OR, 4.00; 95% CI: 1.75, 9.16), medial meniscal maceration (OR, 1.84; 95% CI: 1.13, 2.99), effusion (OR, 4.75; 95% CI: 2.55, 8.85), or synovitis (OR, 2.17; 95% CI: 1.33, 3.56), but not extrusion (OR, 1.00; 95% CI: 0.60,1.67), when compared with knees that did not exhibit these features as the reference standard. Conclusion Apart from meniscal extrusion, all features of tissue

  4. Effects of soft tissue artifacts on differentiating kinematic differences between natural and replaced knee joints during functional activity.

    PubMed

    Lin, Cheng-Chung; Lu, Tung-Wu; Lu, Hsuan-Lun; Kuo, Mei-Ying; Hsu, Horng-Chaung

    2016-05-01

    Functional performance of total knee replacement (TKR) is often assessed using skin marker-based stereophotogrammetry, which can be affected by soft tissue artifacts (STA). The current study aimed to compare the STA and their effects on the kinematics of the knee between twelve patients with TKR and twelve healthy controls during sit-to-stand, and to assess the effects of STA on the statistical between-group comparisons. Each subject performed the sit-to-stand task while motions of the skin markers and the knees were measured by a motion capture system integrated with a three-dimensional fluoroscopy technique. The bone motions measured by the three-dimensional fluoroscopy were taken as the gold standard, with respect to which the STA of the markers were obtained. The STA were found to affect the calculated segmental poses and knee kinematics between the groups differently. The STA resulted in artefactual posterior displacements of the knee joint center, with magnitudes significantly greater in TKR than controls (p<0.01). The STA-induced knee external rotations in TKR were smaller than those in controls with mean differences of 2.3-3.0°. These between-group differences in the STA effects on knee kinematics in turn concealed the true between-group differences in the anterior-posterior translation and internal/external rotation of knee while leading to false significant between-group differences in the abduction/adduction and proximal-distal translation. PMID:27131194

  5. Multi-Joint Compensatory Effects of Unilateral Total Knee Arthroplasty During High-Demand Tasks.

    PubMed

    Gaffney, Brecca M; Harris, Michael D; Davidson, Bradley S; Stevens-Lapsley, Jennifer E; Christiansen, Cory L; Shelburne, Kevin B

    2016-08-01

    Patients with total knee arthroplasty (TKA) demonstrate quadriceps weakness and functional limitations 1 year after surgery during daily tasks such as walking and stair climbing. Most biomechanical analyses of patients after TKA focus on quadriceps function and rarely investigate other lower-extremity muscles or high-demand ambulatory activities of daily living. The purpose of this investigation was to quantify lower-extremity muscle forces in patients with unilateral TKA during high-demand tasks of pivoting and descending stairs. Five patients with unilateral TKA and five age and sex-matched controls performed three bilateral high-demand tasks: (1) step down from an 8-inch platform, (2) inside pivot: 90° direction change toward planted limb, and (3) outside pivot: 90° direction change away from planted limb. Subject-specific musculoskeletal simulations were created in OpenSim to determine joint angles, moments, and lower-extremity muscle forces. The results indicate that patients with TKA adopt compensatory strategies at both the hip and knee. Patients with TKA demonstrated increased hip external rotation, decreased knee flexion, decreased quadriceps force, and decreased hip abductor force in all three tasks. These strategies are likely a result of quadriceps avoidance, which may stem from instability after TKA or a habitual strategy developed during the late stages of osteoarthritis. PMID:26666227

  6. Postural control and torque of the knee joint after healed tibial shaft fracture.

    PubMed

    Karladani, A H; Svantesson, U; Granhed, H; Styf, J

    2001-01-01

    Muscular atrophy occurs as a consequence of trauma and immobilisation. This cohort comparison study was conducted to evaluate the limb function after healed tibial shaft fractures, which were treated by casting versus nailing. Balance (as centre of pressure) and muscle strength (as torque of the knee joint during knee extension) have been measured in 27 patients with tibial shaft fractures with a mean age of 39 (19-73) years, 1 year after fracture healing. Fourteen patients were treated by intramedullary nailing 'nailed group' and 13 by plaster cast with or without minimal internal fixation 'casted group'. Centre of pressure was measured on a force platform. Knee extension torque was measured during isometric and concentric muscle actions by an isokinetic dynamometer. Centre of pressure tended to be more towards the uninjured leg in patients who had been treated by plaster cast (P<0.05). Side-to-side differences for isometric torque were significantly higher within the casted group (P<0.05). Patients with tibial shaft fractures treated by intramedullary nailing showed better postural control, one-leg standing test, and side-to-side differences for isometric muscle strength compared with patients treated by cast. Therefore, we recommend intramedullary nailing as a better method of treatment for tibial shaft fractures, with regard to recovery of muscle function. PMID:11164404

  7. Preliminary study on verifying the detection of gait intention based on knee joint anterior displacement of gait slopes.

    PubMed

    Yu, Changho; Kang, Seung Rok; Yang, Giltae; Hong, Chul Un; Lee, Hyung Jong; Oh, Do Young; Kwon, Tae Kyu

    2015-01-01

    This study investigated the feasibility of the Infrared (IR) sensor-based walking aids for detecting the gait intention. To compensate for the defects of Force Sensing Resistors (FSRs) or force sensors, such as the velocity control problem on gait slopes, we used IR sensors to investigate knee joint anterior displacement in order to recognize the gait intention. We also measure leg muscle activities and foot pressure, in order to verify our investigation. We placed two IR sensors on the rollator center to sense left and right leg walking intentions. We took EMG signals of four leg muscles, and analyzed them. Foot pressure analysis parameters were the measured force and mean pressure. We conducted experiments on twenty young healthy adults. The results show that knee joint anterior displacement increases according to gait slope and velocity. We confirm similar results of knee joint anterior displacement through the IR sensors. PMID:26406052

  8. Evaluation of distance maps from fast GRE MRI as a tool to study the knee joint space

    NASA Astrophysics Data System (ADS)

    Tamez-Pena, Jose G.; Lerner, Amy L.; Yao, Jiang; Salo, Arthur D.; Totterman, Saara

    2003-05-01

    A new three-dimensional (3D) method of evaluating the joint space from fast GRE MRI has been developed that allows the reconstruction of the two dimensional (2D) distance map between the femur and the tibia bone plates. This method uses the MRI data, an automated 3D segmentation, and an unsupervised joint space extraction algorithm that identify the medial and lateral compartments of the knee joint. The extracted medial and lateral compartments of the tibia-femur joint space were analyzed by 2D distance maps, where visual as well quantitative information was extracted. This method was applied to study the dynamic behavior of the knee joint space under axial load. Three healthy volunteers' knees were imaged using fast GRE sequences in a clinical scanner under unloaded (normal) conditions and with an axial load that mimics the person's standing load. Furthermore, one volunteer's knee was imaged at four regular time intervals while the load was applied and at four regular intervals without load. The results show that changes of 50 microns in the average distance between bones can be measured and that normal axial loads reduce the joint space width significantly and can be detected by this method.

  9. Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings

    PubMed Central

    Malfait, Bart; Dingenen, Bart; Smeets, Annemie; Staes, Filip; Pataky, Todd; Robinson, Mark A.; Vanrenterghem, Jos; Verschueren, Sabine

    2016-01-01

    Purpose The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ). Methods Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping. Results The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001). Conclusion This study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an

  10. [Arthroscopic meniscus plasty of the discoid cartilage of the knee joint].

    PubMed

    Chen, Y; Sun, C J; Zhang, W

    2000-04-28

    From 1989 to 1998, arthroscopic discoid lateral meniscus plasty was performed in twenty-eight patients(thirty-one joints), and evaluated in a short follow-up term. The mean age was 21.5(6-42) years. The average follow-up period lasted 8.4 months. The results were assessed by the Ikeuchi's grading, 87.1% joints had excellent and good results, including all incomplete types and 77.8% complete type of discoid meniscus. It is suggested that arthroscopic meniscus plasty plays an important role in the treatment of discoid meniscus of knee, and should be performed possibly as soon as the disease was diagnosed by arthroscopic examination. PMID:12212212

  11. Evaluation of the Degree of Knee Joint Osteoarthritis in Patients with Early Gray Hair

    PubMed Central

    Kazemi, Behrooz; Ashraf, Alireza; Namazi, Mohammad Reza; Zarei, Fariba; Foruzi, Shima

    2013-01-01

    Background: Osteoarthritis (OA) is the most common form of arthritis and one of the causes of pain and disability. The hair graying characteristic correlates strictly with chronological aging and take places to varying degrees in all individuals, disregarding gender or race. Aims: Comparison of the degrees of clinical and radiologic severity of the knee OA in individuals with early hair graying compared to ordinary individuals. Materials and Methods: A total of 60 patients with knee OA and similar demographic characteristics were enrolled in this study. All patients were classified in to 3 age subgroups in each of the case and control groups (30-40 year, 41-50 year, 51-60 year). In the case group, the patients must had early hair graying, too. Knee OA were classified using the Kellgren-Lawrence (KL) grading scale. Western Ontario McMaster University Osteoarthritis index (WOMAC) was applied to assess clinical severity of the knee OA. Results: The mean ± SD of WOMAC index in the case group was 60.7 ± 15.9 and in the control group was 55.3 ± 15.3 (P = 0.1). The mean rank of KL scale in case group was 35.3 and in the control group was 25.6 (P = 0.02). Conclusion: Even at the same age of OA onset, the rate of progression of radiological findings and the grade of joint destruction in individuals with early hair graying are greater than normal individuals. However, clinical and functional relevant remain unclear. PMID:24403769

  12. A comprehensive joint replacement program for total knee arthroplasty: a descriptive study

    PubMed Central

    Cook, Jon R; Warren, Meghan; Ganley, Kathleen J; Prefontaine, Paul; Wylie, Jack W

    2008-01-01

    Background Total knee arthroplasty (TKA) is a commonly performed surgical procedure in the US. It is important to have a comprehensive inpatient TKA program which maximizes outcomes while minimizing adverse events. The purpose of this study was to describe a TKA program – the Joint Replacement Program (JRP) – and report post-surgical outcomes. Methods 74 candidates for a primary TKA were enrolled in the JRP. The JRP was designed to minimize complications and optimize patient-centered outcomes using a team approach including the patient, patient's family, and a multidisciplinary team of health professionals. The JRP consisted of a pre-operative class, standard pathways for medical care, comprehensive peri-operative pain management, aggressive physical therapy (PT), and proactive discharge planning. Measures included functional tests, knee range of motion (ROM), and medical record abstraction of patient demographics, length of stay, discharge disposition, and complications over a 6-month follow-up period. Results All patients achieved medical criteria for hospital discharge. The patients achieved the knee flexion ROM goal of 90° (91.7 ± 5.4°), but did not achieve the knee extension ROM goal of 0° (2.4 ± 2.6°). The length of hospital stay was two days for 53% of the patients, with 39% and 7% discharged in three and four days, respectively. All but three patients were discharged home with functional independence. 68% of these received outpatient physical therapy compared with 32% who received home physical therapy immediately after discharge. Two patients (< 3%) had medical complications during the inpatient hospital stay, and 9 patients (12%) had complications during the 6-month follow-up period. Conclusion The comprehensive JRP for TKA was associated with satisfactory clinical outcomes, short lengths of stay, a high percentage of patients discharged home with outpatient PT, and minimal complications. This JRP may represent an efficient, effective and safe

  13. Non-invasive, non-radiological quantification of anteroposterior knee joint ligamentous laxity

    PubMed Central

    Russell, D. F.; Deakin, A. H.; Fogg, Q. A.; Picard, F.

    2013-01-01

    Objectives We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting. Methods A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency. Results Reliability and precision within the individual invasive and non-invasive systems was acceptable throughout the range of flexion tested (intra-class correlation coefficient 0.88, CR 1.6 mm). Agreement between the two systems was acceptable measuring AP laxity between full extension and 40° knee flexion (LOA 2.9 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (LOA > 3 mm). Conclusions These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard validated commercial system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative evaluation of ACL pathology. Cite this article: Bone Joint Res 2013;2:233–7. PMID:24184443

  14. Transfer of mechanical energy between ankle and knee joints by gastrocnemius and plantaris muscles during cat locomotion.

    PubMed

    Prilutsky, B I; Herzog, W; Leonard, T

    1996-04-01

    The purposes of this study were (1) to define and estimate the direction and amount of the energy transfer between the knee and ankle through gastrocnemius (GA) and plantaris (PL) muscles during cat locomotion, and (2) to test the assumption that the force and activity patterns of soleus (SO), GA, and PL are mechanically and physiologically advantageous for providing the transfer of energy between these joints. The direction, amount and rate of the energy transfer through a two-joint muscle were defined using a theoretical analysis of movements in two adjacent joints spanned by the two-joint muscle. The energy transferred between the ankle and the knee was calculated using the time integration of the difference between the power developed by the moments of SO, GA, and PL at the ankle joint and the total power of these muscles. The total power of SO, GA, and PL muscles, and the power of their movements about the ankle and knee, were obtained using the experimentally determined muscle forces, the rates of change in muscle length, and the angular velocities at the knee and ankle which were calculated from the kinematics and the geometry of the cat hindlimb. Muscular forces and hindlimb kinematics of the cats were recorded during normal walking and trotting on a treadmill at speeds of 0.4, 0.8, 1.2, 1.5, and 1.8 ms-1 using 'E'-shaped tendon transducers and high-speed video, respectively. It was found that during the early phase of support, there was a transfer of mechanical energy from the ankle to the knee through GA and PL. During the late phase of support, mechanical energy was transferred from the knee to the ankle. The amount of energy transferred increased with increasing speeds of locomotion. The energy transferred from the ankle to the knee was 3-60 mJ (7-22% of the negative work done by the moments of SO, GA, and PL at the ankle), and the energy transferred from the knee to the ankle was 10-67 mJ (7-14% of the positive work done by the moments of SO, GA, and

  15. Feature selection and classification methodology for the detection of knee-joint disorders.

    PubMed

    Nalband, Saif; Sundar, Aditya; Prince, A Amalin; Agarwal, Anita

    2016-04-01

    Vibroarthographic (VAG) signals emitted from the knee joint disorder provides an early diagnostic tool. The nonstationary and nonlinear nature of VAG signal makes an important aspect for feature extraction. In this work, we investigate VAG signals by proposing a wavelet based decomposition. The VAG signals are decomposed into sub-band signals of different frequencies. Nonlinear features such as recurrence quantification analysis (RQA), approximate entropy (ApEn) and sample entropy (SampEn) are extracted as features of VAG signal. A total of twenty-four features form a vector to characterize a VAG signal. Two feature selection (FS) techniques, apriori algorithm and genetic algorithm (GA) selects six and four features as the most significant features. Least square support vector machines (LS-SVM) and random forest are proposed as classifiers to evaluate the performance of FS techniques. Results indicate that the classification accuracy was more prominent with features selected from FS algorithms. Results convey that LS-SVM using the apriori algorithm gives the highest accuracy of 94.31% with false discovery rate (FDR) of 0.0892. The proposed work also provided better classification accuracy than those reported in the previous studies which gave an accuracy of 88%. This work can enhance the performance of existing technology for accurately distinguishing normal and abnormal VAG signals. And the proposed methodology could provide an effective non-invasive diagnostic tool for knee joint disorders. PMID:27000292

  16. The sense of position and movement in the knee joint during voluntary movements.

    PubMed

    Iwańska, Dagmara; Urbanik, Czesław

    2013-01-01

    The aim of the paper was to assess body position reproduction as well as jump height during an intended movement, together with an assessment of the influence of factors that disturb this process. Factors disturbing the jump were related to with the reproduction of different knee joint angles (90° or 120°); different muscle activity in performed jumps: SJ with no countermovement and CMJ with countermovement; as well as with and without visual (VC) of control movement (nVC) - eyes covered. Nineteen subjects aged twenty-one years participated in the experiment. Jump height (h) was calculated on the basis of a reaction force (R) of the base, as registered with a tensometric platform. Two-dimensional cinematographic analysis was used to assess the reproduction of angular position in the knee joint. A significant factor determining the level of position reproduction during voluntary movements was the imposed angle as well as the character of muscle activity. The biggest difficulty of developing maximum heights occurred during jumps with disturbed visual control (eyes shut). PMID:24215321

  17. Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion.

    PubMed

    Cai, Suxian; Yang, Shanshan; Zheng, Fang; Lu, Meng; Wu, Yunfeng; Krishnan, Sridhar

    2013-01-01

    Analysis of knee joint vibration (VAG) signals can provide quantitative indices for detection of knee joint pathology at an early stage. In addition to the statistical features developed in the related previous studies, we extracted two separable features, that is, the number of atoms derived from the wavelet matching pursuit decomposition and the number of significant signal turns detected with the fixed threshold in the time domain. To perform a better classification over the data set of 89 VAG signals, we applied a novel classifier fusion system based on the dynamic weighted fusion (DWF) method to ameliorate the classification performance. For comparison, a single leastsquares support vector machine (LS-SVM) and the Bagging ensemble were used for the classification task as well. The results in terms of overall accuracy in percentage and area under the receiver operating characteristic curve obtained with the DWF-based classifier fusion method reached 88.76% and 0.9515, respectively, which demonstrated the effectiveness and superiority of the DWF method with two distinct features for the VAG signal analysis. PMID:23573175

  18. Representation of fluctuation features in pathological knee joint vibroarthrographic signals using kernel density modeling method.

    PubMed

    Yang, Shanshan; Cai, Suxian; Zheng, Fang; Wu, Yunfeng; Liu, Kaizhi; Wu, Meihong; Zou, Quan; Chen, Jian

    2014-10-01

    This article applies advanced signal processing and computational methods to study the subtle fluctuations in knee joint vibroarthrographic (VAG) signals. Two new features are extracted to characterize the fluctuations of VAG signals. The fractal scaling index parameter is computed using the detrended fluctuation analysis algorithm to describe the fluctuations associated with intrinsic correlations in the VAG signal. The averaged envelope amplitude feature measures the difference between the upper and lower envelopes averaged over an entire VAG signal. Statistical analysis with the Kolmogorov-Smirnov test indicates that both of the fractal scaling index (p=0.0001) and averaged envelope amplitude (p=0.0001) features are significantly different between the normal and pathological signal groups. The bivariate Gaussian kernels are utilized for modeling the densities of normal and pathological signals in the two-dimensional feature space. Based on the feature densities estimated, the Bayesian decision rule makes better signal classifications than the least-squares support vector machine, with the overall classification accuracy of 88% and the area of 0.957 under the receiver operating characteristic (ROC) curve. Such VAG signal classification results are better than those reported in the state-of-the-art literature. The fluctuation features of VAG signals developed in the present study can provide useful information on the pathological conditions of degenerative knee joints. Classification results demonstrate the effectiveness of the kernel feature density modeling method for computer-aided VAG signal analysis. PMID:25096412

  19. Sodium inversion recovery MRI on the knee joint at 7 T with an optimal control pulse

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Xia, Ding; Madelin, Guillaume; Regatte, Ravinder R.

    2016-01-01

    In the field of sodium magnetic resonance imaging (MRI), inversion recovery (IR) is a convenient and popular method to select sodium in different environments. For the knee joint, IR has been used to suppress the signal from synovial fluids, which improves the correlation between the sodium signal and the concentration of glycosaminoglycans (GAGs) in cartilage tissues. For the better inversion of the magnetization vector under the spatial variations of the B0 and B1 fields, the IR sequence usually employ adiabatic pulses as the inversion pulse. On the other hand, it has been shown that RF shapes robust against the variations of the B0 and B1 fields can be generated by numerical optimization based on optimal control theory. In this work, we compare the performance of fluid-suppressed sodium MRI on the knee joint in vivo, between one implemented with an adiabatic pulse in the IR sequence and the other with the adiabatic pulse replaced by an optimal-control shaped pulse. While the optimal-control pulse reduces the RF power deposited to the body by 58%, the quality of fluid suppression and the signal level of sodium within cartilage are similar between two implementations.

  20. Knee Joint Distraction Compared to Total Knee Arthroplasty for Treatment of End Stage Osteoarthritis: Simulating Long-Term Outcomes and Cost-Effectiveness

    PubMed Central

    van der Woude, J. A. D.; Nair, S. C.; Custers, R. J. H.; van Laar, J. M.; Kuchuck, N. O.; Lafeber, F. P. J. G.; Welsing, P. M. J.

    2016-01-01

    Objective In end-stage knee osteoarthritis the treatment of choice is total knee arthroplasty (TKA). An alternative treatment is knee joint distraction (KJD), suggested to postpone TKA. Several studies reported significant and prolonged clinical improvement of KJD. To make an appropriate decision regarding the position of this treatment, a cost-effectiveness and cost-utility analysis from healthcare perspective for different age and gender categories was performed. Methods A treatment strategy starting with TKA and a strategy starting with KJD for patients of different age and gender was simulated. To extrapolate outcomes to long-term health and economic outcomes a Markov (Health state) model was used. The number of surgeries, QALYs, and treatment costs per strategy were calculated. Costs-effectiveness is expressed using the cost-effectiveness plane and cost-effectiveness acceptability curves. Results Starting with KJD the number of knee replacing procedures could be reduced, most clearly in the younger age categories; especially revision surgery. This resulted in the KJD strategy being dominant (more effective with cost-savings) in about 80% of simulations (with only inferiority in about 1%) in these age categories when compared to TKA. At a willingness to pay of 20.000 Euro per QALY gained, the probability of starting with KJD to be cost-effective compared to starting with a TKA was already found to be over 75% for all age categories and over 90–95% for the younger age categories. Conclusion A treatment strategy starting with knee joint distraction for knee osteoarthritis has a large potential for being a cost-effective intervention, especially for the relatively young patient. PMID:27171268

  1. Does joint line elevation after revision knee arthroplasty affect tibio-femoral kinematics, contact pressure or collateral ligament lengths? An in vitro analysis

    PubMed Central

    Kowalczewski, Jacek B.; Chevalier, Yan; Okon, Tomasz; Innocenti, Bernardo; Bellemans, Johan

    2015-01-01

    Introduction Correct restoration of the joint line is generally considered as crucial when performing total knee arthroplasty (TKA). During revision knee arthroplasty however, elevation of the joint line occurs frequently. The general belief is that this negatively affects the clinical outcome, but the reasons are still not well understood. Material and methods In this cadaveric in vitro study the biomechanical consequences of joint line elevation were investigated using a previously validated cadaver model simulating active deep knee squats and passive flexion-extension cycles. Knee specimens were sequentially tested after total knee arthroplasty with joint line restoration and after 4 mm joint line elevation. Results The tibia rotated internally with increasing knee flexion during both passive and squatting motion (range: 17° and 7° respectively). Joint line elevation of 4 mm did not make a statistically significant difference. During passive motion, the tibia tended to become slightly more adducted with increasing knee flexion (range: 2°), while it went into slighlty less adduction during squatting (range: –2°). Neither of both trends was influenced by joint line elevation. Also anteroposterior translation of the femoral condyle centres was not affected by joint line elevation, although there was a tendency for a small posterior shift (of about 3 mm) during squatting after joint line elevation. In terms of kinetics, ligaments lengths and length changes, tibiofemoral contact pressures and quadriceps forces all showed the same patterns before and joint line elevation. No statistically significant changes could be detected. Conclusions Our study suggests that joint line elevation by 4 mm in revision total knee arthroplasty does not cause significant kinematic and kinetic differences during passive flexion/extension movement and squatting in the tibio-femoral joint, nor does it affect the elongation patterns of collateral ligaments. Therefore, clinical

  2. Total knee arthroplasty in human immunodeficiency virus-infected hemophiliacs.

    PubMed

    Unger, A S; Kessler, C M; Lewis, R J

    1995-08-01

    Twenty-six knee arthroplasties were performed in 15 patients with hemophilia A and human immunodeficiency virus infection from 1984 to 1991. Patient age range was 27 to 48 years. After an average follow-up period of 6.4 years (range, 1-9 years) all patients were alive and none of the implants had become infected. T4 lymphocyte counts showed some deterioration, which was not clinically significant. All of the patients were improved following surgery. Nineteen implants were rated excellent, four good, and three fair. Infection with human immunodeficiency virus did not adversely affect the clinical outcome of knee arthroplasty at follow-up periods up to 9 years. PMID:8523002

  3. The mechanics of activated semitendinosus are not representative of the pathological knee joint condition of children with cerebral palsy.

    PubMed

    Ateş, Filiz; Temelli, Yener; Yucesoy, Can A

    2016-06-01

    Characteristic cerebral palsy effects in the knee include a restricted joint range of motion and forcefully kept joint in a flexed position. To show whether the mechanics of activated spastic semitendinosus muscle are contributing to these effects, we tested the hypothesis that the muscle's joint range of force exertion is narrow and force production capacity in flexed positions is high. The isometric semitendinosus forces of children with cerebral palsy (n=7, mean (SD)=7years (8months), GMFCS levels III-IV, 12 limbs tested) were measured intra-operatively as a function of knee angle, from flexion (120°) to full extension (0°). Peak force measured in the most flexed position was considered as the benchmark. However, peak force (mean (SD)=112.4N (54.3N)) was measured either at intermediate or even full knee extension (three limbs) indicating no narrow joint range of force exertion. Lack of high force production capacity in flexed knee positions (e.g., at 120° negligible or below 22% of the peak force) was shown except for one limb. Therefore, our hypothesis was rejected for a vast majority of the limbs. These findings and those reported for spastic gracilis agree, indicating that the patients' pathological joint condition must rely on a more complex mechanism than the mechanics of individual spastic muscles. PMID:27128957

  4. Effects of Series Elasticity on the Human Knee Extension Torque-Angle Relationship in Vivo

    ERIC Educational Resources Information Center

    Kubo, Keitaro; Ohgo, Kazuya; Takeishi, Ryuichi; Yoshinaga, Kazunari; Tsunoda, Naoya; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2006-01-01

    The purpose of this study was to investigate the effects of series elasticity on the torque-angle relationship of the knee extensors in vivo. Forty-two men volunteered to take part in the present study. The participants performed maximal voluntary isometric contractions at eight knee-joint angles (40, 50, 60, 70, 80, 90, 100, 110[degree]). The…

  5. Meat consumption and risk of primary hip and knee joint replacement due to osteoarthritis: a prospective cohort study

    PubMed Central

    2011-01-01

    Background There is emerging evidence for a beneficial effect of meat consumption on the musculoskeletal system. However, whether it affects the risk of knee and hip osteoarthritis is unknown. We performed a prospective cohort study to examine the relationship between meat consumption and risk of primary hip and knee replacement for osteoarthritis. Methods Eligible 35,331 participants were selected from the Melbourne Collaborative Cohort Study recruited during 1990-1994. Consumption of fresh red meat, processed meat, chicken, and fish was assessed using a food frequency questionnaire. Primary hip and knee replacement for osteoarthritis during 2001-2005 was determined by linking the cohort records to the Australian National Joint Replacement Registry. Results There was a negative dose-response relationship between fresh red meat consumption and the risk of hip replacement (hazard ratio (HR) 0.94 per increase in intake of one time/week, 95% confidence interval (CI) 0.89-0.98). In contrast, there was no association with knee replacement risk (HR 0.98, 95% CI 0.94-1.02). Consumption of processed meat, chicken and fish were not associated with risk of hip or knee replacement. Conclusion A high level consumption of fresh red meat was associated with a decreased risk of hip, but not knee, joint replacement for osteoarthritis. One possible mechanism to explain these differential associations may be via an effect of meat intake on bone strength and hip shape. Further confirmatory studies are warranted. PMID:21235820

  6. Relationship Between Functional Knee Joint Position Sense and Functional Performance Scores Following Anterior Cruciate Ligament Reconstruction (Pilot Study)

    PubMed Central

    Kafa, Nihan; Ataoglu, Muhammed Baybars; Hazar, Zeynep; Citaker, Seyit; Ozer, Mustafa

    2014-01-01

    Objectives: The aim of this study was to assess the relationship between functional knee joint position sense (JPS) and functional performance following ACL reconstruction Methods: Seven male patients (mean age=32,66 ±6,47) who had undergone ACL reconstruction and 10 male healthy control subjects participated in the study. Knee joint position sense was evaluated by reproduction of 20° knee flexion angle in weight-bearing position with single and bilateral limb movement into flexion and extension. The deviations in the angle were recorded and compared to both noninjured side and healthy controls’. Functional performance was evaluated with Single Leg Hop Test in both injured and non-injured sides. The scores were also compared with healthy controls and non-injured sides. Relationship between measured values was tested with Spearman Correlation Analysis. Results: There was no significant difference in knee joint position sense in functional position between the operated and uninjured knees of patients or between patients and healthy controls (p>0,05). However, there is significant difference in Single Leg Hop test scores between operated and non-operated or between patients and healthy controls (p=0,037; p<0,05). There was no significant correlation between Single Leg Hop test scores and knee joint position sense (p>0,05). Conclusion: There was no evidence of impaired joint position sense in weight-bearing positions in subjects with ACL reconstruction but there was a decrease in functional performance. This decrease in functional performance may depend on the other parameters except proprioceptive deficits.

  7. Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load.

    PubMed

    Hartmann, Hagen; Wirth, Klaus; Klusemann, Markus

    2013-10-01

    It has been suggested that deep squats could cause an increased injury risk of the lumbar spine and the knee joints. Avoiding deep flexion has been recommended to minimize the magnitude of knee-joint forces. Unfortunately this suggestion has not taken the influence of the wrapping effect, functional adaptations and soft tissue contact between the back of thigh and calf into account. The aim of this literature review is to assess whether squats with less knee flexion (half/quarter squats) are safer on the musculoskeletal system than deep squats. A search of relevant scientific publications was conducted between March 2011 and January 2013 using PubMed. Over 164 articles were included in the review. There are no realistic estimations of knee-joint forces for knee-flexion angles beyond 50° in the deep squat. Based on biomechanical calculations and measurements of cadaver knee joints, the highest retropatellar compressive forces and stresses can be seen at 90°. With increasing flexion, the wrapping effect contributes to an enhanced load distribution and enhanced force transfer with lower retropatellar compressive forces. Additionally, with further flexion of the knee joint a cranial displacement of facet contact areas with continuous enlargement of the retropatellar articulating surface occurs. Both lead to lower retropatellar compressive stresses. Menisci and cartilage, ligaments and bones are susceptible to anabolic metabolic processes and functional structural adaptations in response to increased activity and mechanical influences. Concerns about degenerative changes of the tendofemoral complex and the apparent higher risk for chondromalacia, osteoarthritis, and osteochondritis in deep squats are unfounded. With the same load configuration as in the deep squat, half and quarter squat training with comparatively supra-maximal loads will favour degenerative changes in the knee joints and spinal joints in the long term. Provided that technique is learned accurately

  8. Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos

    PubMed Central

    Roddy, Karen A.; Prendergast, Patrick J.; Murphy, Paula

    2011-01-01

    Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint. PMID:21386908

  9. [Osteotomy for approaches to the knee joint. Tibial tubercle, lateral epicondyle of the femur and head of the fibula].

    PubMed

    Lorbach, O; Anagnostakos, K; Kohn, D

    2013-05-01

    The present article summarizes the different osteotomy techniques for an extension of standard surgical approaches to the knee joint in selected patients. The aim is to achieve satisfactory exposure and reduce potential postoperative complications compared to alternative techniques, such as the V-Y plasty or the quadriceps snip procedures. Osteotomy of the tibial tubercle is a reasonable extension of the anteromedial or the anterolateral surgical approach in selected patients undergoing revision total knee replacement. This osteotomy will provide excellent surgical exposure of the knee without the risk of avulsion of the patellar tendon and will preserve the blood supply of the patella and the surrounding soft tissue. Moreover, functional clinical outcome will be improved by minimizing damage to the extensor mechanism. Osteotomy of the lateral femoral condyle gives excellent exposure of the posterolateral aspect of the knee joint which might be necessary in some patients with fractures of the posterolateral tibial plateau as well as patients undergoing open allograft transplantation of the lateral meniscus. An alternative option for an extended exposure to the posterolateral knee joint is accomplished by osteotomy or partial resection of the fibular head which is also described as having good clinical results and a low complication rate. PMID:23632649

  10. The effect of instability training on knee joint proprioception and core strength.

    PubMed

    Cuğ, Mutlu; Ak, Emre; Ozdemir, Recep Ali; Korkusuz, Feza; Behm, David G

    2012-01-01

    Although there are many studies demonstrating increased trunk activation under unstable conditions, it is not known whether this increased activation would translate into meaningful trunk strength with a prolonged training program. Additionally, while balance-training programs have been shown to improve stability, their effect on specific joint proprioception is not clear. Thus the objective of this study was to examine training adaptations associated with a 10-week instability-training program. Participants were tested pre- and post-training for trunk extension and flexion strength and knee proprioception. Forty-three participants participated in either a 10-week (3 days per week) instability-training program using Swiss balls and body weight as resistance or a control group (n = 17). The trained group increased (p < 0. 05) trunk extension peak torque/body weight (23.6%) and total work output (20.1%) from pre- to post-training while the control group decreased by 6.8% and 6.7% respectively. The exercise group increased their trunk flexion peak torque/body weight ratios by 18.1% while the control group decreased by 0.4%. Knee proprioception (combined right and left joint repositioning) improved 44.7% from pre- to post-training (p = 0.0006) and persisted (21.5%) for 9 months post-training. In addition there was a side interaction with the position sense of the right knee at 9 months showing 32.1% (p = 0.03) less deviation from the reference angle than the right knee during pre-testing. An instability-training program using Swiss balls with body weight as resistance can provide prolonged improvements in joint proprioception and core strength in previously untrained individuals performing this novel training stress which would contribute to general health. Key pointsAlthough traditional free weight resistance exercises have been recommended as most beneficial for improving strength and power in athletes (Behm et al., 2010b), an IT program using Swiss balls and body

  11. Exercise in children with joint hypermobility syndrome and knee pain: a randomised controlled trial comparing exercise into hypermobile versus neutral knee extension

    PubMed Central

    2013-01-01

    Background Knee pain in children with Joint Hypermobility Syndrome (JHS) is traditionally managed with exercise, however the supporting evidence for this is scarce. No trial has previously examined whether exercising to neutral or into the hypermobile range affects outcomes. This study aimed to (i) determine if a physiotherapist-prescribed exercise programme focused on knee joint strength and control is effective in reducing knee pain in children with JHS compared to no treatment, and (ii) whether the range in which these exercises are performed affects outcomes. Methods A prospective, parallel-group, randomised controlled trial conducted in a tertiary hospital in Sydney, Australia compared an 8 week exercise programme performed into either the full hypermobile range or only to neutral knee extension, following a minimum 2 week baseline period without treatment. Randomisation was computer-generated, with allocation concealed by sequentially numbered opaque sealed envelopes. Knee pain was the primary outcome. Quality of life, thigh muscle strength, and function were also measured at (i) initial assessment, (ii) following the baseline period and (iii) post treatment. Assessors were blinded to the participants’ treatment allocation and participants blinded to the difference in the treatments. Results Children with JHS and knee pain (n=26) aged 7-16 years were randomly assigned to the hypermobile (n=12) or neutral (n=14) treatment group. Significant improvements in child-reported maximal knee pain were found following treatment, regardless of group allocation with a mean 14.5 mm reduction on the visual analogue scale (95% CI 5.2 – 23.8 mm, p=0.003). Significant differences between treatment groups were noted for parent-reported overall psychosocial health (p=0.009), specifically self-esteem (p=0.034), mental health (p=0.001) and behaviour (p=0.019), in favour of exercising into the hypermobile range (n=11) compared to neutral only (n=14). Conversely, parent

  12. ["Plica disease" (synovial folds) of the knee-joint: arthroscopic and histological findings, with suggestions for treatment (author's transl)].

    PubMed

    Klein, W; Schulitz, K P; Huth, F

    1979-09-01

    A mediopatellar plica (synovial fold) of the knee-joint may develop without recognisable cause in adolescents or young adults, predominantly females. It leads to pain on pressure over the medial knee compartment, sudden or "springing" intraarticular movements and pseudolocking of the joint. Similar plicae occur after traumatic joint contusion, with meniscus disease, or more rarely with arthrosis deformans. Histologically they are characterized by band-like fibrosed evaginations of the synovial membrane and of the synovial fat and connective tissue into the joint spaces. The following therapeutic suggestions, based on the personal experience of 15 cases, are made in the knowledge that significant inflammatory or proliferative arthritic changes can be excluded: the plica can be cut through under arthroscopy; chondromalacial defects, directly or indirectly caused by plical rubbing, of the medial femoral condyle and the medial patella can be removed, also under arthroscopic control, with an electric razor. Arthrotomy is no longer needed in most cases. PMID:477536

  13. [The ultrasonography of the capsular ligamentous apparatus of the knee joint in the early stages of rheumatoid arthritis].

    PubMed

    Herasymenko, S I; Huzhevs'kyĭ, I V; Vovchenko, H Ia; Babko, A N

    1999-07-01

    With the purpose of finding out informative value of the ultrasound investigation designed to study the capsular and ligamentous apparatus of the knee joint in its instability during the early stages of rheumatoid arthritis and correlating clinical symptoms with ultrasonographic findings an examination was done of twenty joints of patients in early stages of rheumatoid arthritis presenting with clinical signs of anterior-medial instability. Sonography confirmed the presence of instability and permitted the qualitative assessment of its degree to be done. The method allows us to disclose relative incompetence of the anterior-medial sector of the knee joint in those patients presenting with early stages of rheumatoid arthritis, which is one of causes of instability, with the cruciate and lateral ligaments remaining uninjured. Ultrasonography makes it possible to perform a quantitative assessment of the degree of instability of the joint irrespective of the clinical test used and experience of the orthopedist. PMID:10822686

  14. Neuromuscular exercise prior to joint arthroplasty in patients with osteoarthritis of the hip or knee.

    PubMed

    Villadsen, Allan

    2016-04-01

    Osteoarthritis (OA) is a degenerative joint disease affecting the whole joint and peri-articular structures like the muscles. The hallmark of OA is cartilage loss. The main symptoms are pain and decreased physical function leading to a reduced quality of life. OA ranks eight in leading causes of disability worldwide and it generates a heavy economic burden for society. The prevalence of OA increases with age and 10-18% aged above 60 years are affected. Currently there is no cure for OA and the various treatment modalities aim at addressing symptoms, i.e. reducing pain, improving physical function and preventing further progression of the disease. Exercise has proven to be a viable treatment option with regard to reducing pain and improving physical function in patients with mild to moderate knee OA and is today regarded a cornerstone in the treatment. The documentation is less clear for hip OA. Patients with severe OA of the hip or knee are treated with total joint arthroplasty (TJA). Although, in general, it is a very successful procedure, there are still challenges to overcome in this patient group, as approximately 10% of those having hip arthroplasty and 20% of those having knee arthroplasty have persistent symptoms. The evidence on the efficacy of exercise prior to TJA is sparse. It is based on insufficiently powered trials and with interventions of questionable validity. Two recent systematic reviews and meta-analyses reach conflicting conclusions and highlight the need for high quality trials with sufficient sample sizes. In this dissertation, I wanted to evaluate the effects of an individualised neuromuscular exercise programme (NEMEX-TJR) when administered prior to joint arthroplasty in patients with severe OA of the hip or knee joint. This intervention was previously found to be feasible with regard to pain level during exercise and it was possible to progress the training level in this patient group. The main question asked was: Does the addition of

  15. A novel testing platform for assessing knee joint mechanics: a parallel robotic system combined with an instrumented spatial linkage.

    PubMed

    Atarod, Mohammad; Rosvold, Joshua M; Frank, Cyril B; Shrive, Nigel G

    2014-05-01

    Assessing joint function following trauma and its inter-relation with degenerative changes requires an understanding of the normal state of structural loading in the joint. Very few studies have attempted to reproduce joint specific in vivo motions in vitro to quantify the actual loads carried by different tissues within the knee joint. The most significant challenge in this area is the very high sensitivity of the loads in joint structures to motion reproduction accuracy. A novel testing platform for assessing knee joint mechanics is described, comprised of a highly accurate (0.3 ± 0.1 mm, 0.3 ± 0.1°) six-degree-of-freedom (6-DOF) instrumented spatial linkage (ISL) for in vivo joint kinematic assessments and a unique 6-DOF parallel robotic manipulator. A position feedback system (ISL and position controller) is used for accurate reproduction of in vivo joint motions and estimation of "in situ" joint/tissue loads. The parallel robotic manipulator provides excellent stiffness and repeatability in reproducing physiological motions in 6-DOF, compared to the commonly used serial robots. The position feedback system provides real-time feedback data to the robot to reproduce in vivo motions and significantly enhances motion reproduction accuracy by adjusting for robot end-effector movements. Using this combined robot-ISL system, in vivo motions can be reproduced in vitro with very high accuracy (0.1 mm, 0.1°). Our results indicate that this level of accuracy is essential for meaningful estimation of tissue loads during gait. Using this novel testing platform, we have determined the normal load-carrying characteristics of different tissues within the ovine knee joint. The application of this testing system will continue to increase our understanding of normal and pathological joint states. PMID:24519725

  16. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.

    PubMed

    Knaepen, Kristel; Beyl, Pieter; Duerinck, Saartje; Hagman, Friso; Lefeber, Dirk; Meeusen, Romain

    2014-11-01

    Until today it is not entirely clear how humans interact with automated gait rehabilitation devices and how we can, based on that interaction, maximize the effectiveness of these exoskeletons. The goal of this study was to gain knowledge on the human-robot interaction, in terms of kinematics and muscle activity, between a healthy human motor system and a powered knee exoskeleton (i.e., KNEXO). Therefore, temporal and spatial gait parameters, human joint kinematics, exoskeleton kinetics and muscle activity during four different walking trials in 10 healthy male subjects were studied. Healthy subjects can walk with KNEXO in patient-in-charge mode with some slight constraints in kinematics and muscle activity primarily due to inertia of the device. Yet, during robot-in-charge walking the muscular constraints are reversed by adding positive power to the leg swing, compensating in part this inertia. Next to that, KNEXO accurately records and replays the right knee kinematics meaning that subject-specific trajectories can be implemented as a target trajectory during assisted walking. No significant differences in the human response to the interaction with KNEXO in low and high compliant assistance could be pointed out. This is in contradiction with our hypothesis that muscle activity would decrease with increasing assistance. It seems that the differences between the parameter settings of low and high compliant control might not be sufficient to observe clear effects in healthy subjects. Moreover, we should take into account that KNEXO is a unilateral, 1 degree-of-freedom device. PMID:24846650

  17. A prosthetic knee using magnetorhelogical fluid damper for above-knee amputees

    NASA Astrophysics Data System (ADS)

    Park, Jinhyuk; Choi, Seung-Bok

    2015-04-01

    A prosthetic knee for above-knee (AK) amputees is categorized into two types; namely a passive and an active type. The passive prosthetic knee is generally made by elastic materials such as carbon fiber reinforced composite material, titanium and etc. The passive prosthetic knee easy to walk. But, it has disadvantages such that a knee joint motion is not similar to ordinary people. On the other hand, the active prosthetic knee can control the knee joint angle effectively because of mechanical actuator and microprocessor. The actuator should generate large damping force to support the weight of human body. But, generating the large torque using small actuator is difficult. To solve this problem, a semi-active type prosthetic knee has been researched. This paper proposes a semi-active prosthetic knee using a flow mode magneto-rheological (MR) damper for AK amputees. The proposed semi-active type prosthetic knee consists of the flow mode MR damper, hinge and prosthetic knee body. In order to support weight of human body, the required energy of MR damper is smaller than actuator of active prosthetic leg. And it can control the knee joint angle by inducing the magnetic field during the stance phase.

  18. Fungal Periprosthetic Joint Infection in Total Knee Arthroplasty: A Systematic Review

    PubMed Central

    Jakobs, Oliver; Schoof, Benjamin; Klatte, Till Orla; Schmidl, Stefan; Fensky, Florian; Guenther, Daniel; Frommelt, Lars; Gehrke, Thorsten; Gebauer, Matthias

    2015-01-01

    Fungal periprosthetic joint infection (PJI) is a rare but devastating complication following total knee arthroplasty (TKA). A standardized procedure regarding an accurate treatment of this serious complication of knee arthroplasty is lacking. In this systematic review, we collected data from 36 studies with a total of 45 reported cases of a TKA complicated by a fungal PJI. Subsequently, an analysis focusing on diagnostic, medicaments and surgical procedures in the pre-, intra- and postoperative period was performed. Candida spp. accounts for about 80% (36 out of 45 cases) of fungal PJIs and is therefore the most frequently reported pathogen. A systemic antifungal therapy was administered in all but one patient whereas a local antifungal therapy, e.g. the use of an impregnated spacer, is of inferior relevance. Resection arthroplasty with delayed re-implantation (two-stage revision) was the surgical treatment of choice. However, in 50% of all reported cases the surgical therapy was heterogeneous. The outcome under a combined therapy was moderate with recurrent fungal PJI in 11 patients and subsequent bacterial PJI as a main complication in 5 patients. In summary, this systematic review integrates data from up to date 45 reported cases of a fungal PJI of a TKA. On the basis of the current literature strategies for the treatment of this devastating complication after TKA are discussed. PMID:25874061

  19. Thickening of the knee joint cartilage in elite weightlifters as a potential adaptation mechanism.

    PubMed

    Grzelak, Piotr; Domzalski, Marcin; Majos, Agata; Podgórski, Michal; Stefanczyk, Ludomir; Krochmalski, Marek; Polguj, Michal

    2014-09-01

    Thickening and increase of area of cartilage have been proposed as two alternative mechanisms of cartilage functional adaptation. The latter has been reported in endurance sportsmen. In weightlifters, extreme strain applied to the articular surfaces can result in other forms of adaptation. The aim of this research is to determine whether cartilage thickness is greater in elite weightlifters than in physically inactive men. Weightlifters (13) and 20 controls [age and body mass index (BMI) matched] underwent knee Magnetic Resonance Imaging (MRI). A single sagittal slice of the knee was taken and cartilage thickness was measured in five and six regions of the medial and lateral femoral condyles, respectively. The analyzed segments represented weight-bearing and nonweight-bearing regions. The tibia cartilage in the weight-bearing area was also measured. The time of training onset and its duration in the weightlifter group were recorded. The cartilage was found to be significantly thicker in weightlifters in most of the analyzed regions. The distribution of cartilage thickness on the medial and lateral femoral condyles was similar in both groups. The duration of training was not associated with cartilage thickness, but the time of training onset correlated inversely with cartilage thickness. It is possible that in high-strain sports, joint cartilage can undergo functional adaptation by thickening. Thus, mechanical loading history could exert a postnatal influence on cartilage morphology. PMID:24648385

  20. Treatment of seawater immersion-complicated open-knee joint fracture.

    PubMed

    Ai, J G; Zhao, F; Gao, Z M; Dai, W; Zhang, L; Chen, H B; Zhou, J G

    2014-01-01

    The current study aimed to select suitable remedies for seawater immersion-complicated open-knee joint fracture by exploring the effects of different treatment methods. Forty adult rabbits weighing 2.20 ± 0.25 kg were divided equally into internal fracture fixation group (A), seawater-immersed group with primary internal fixation (B), seawater-immersed group with secondary internal fixation (C), and seawater-immersed group with external fixation (D), using the random-digit table method. Open-femoral internal condylar fracture models were established. Group A was left untreated for 2 h, whereas the other three groups were subjected to seawater immersion for 2 h. Afterwards, groups A and B underwent debridement and steel plate and screw internal fixation. Group C underwent debridement and external fixation, which was followed by secondary steel plate and screw internal fixation after the wound healed. Group D underwent transarticular arthrodesis. Wound infection, joint functional rehabilitation, and radiological and histopathological changes in fracture healing in each group were assessed. The results showed that delayed internal fixation effectively reduces the infection rate of seawater immersion-complicated open fracture and benefits joint function rehabilitation. PMID:25117308

  1. Minimum detectable change for knee joint contact force estimates using an EMG-driven model

    PubMed Central

    Gardinier, Emily S.; Manal, Kurt; Buchanan, Thomas S.; Snyder-Mackler, Lynn

    2013-01-01

    Adequate test–retest reliability of model estimates is a necessary precursor to examining treatment effects or longitudinal changes in individuals. Purpose The purpose of this study was to establish thresholds for minimal detectable change (MDC) for joint contact forces obtained using a patient specific EMG-driven musculoskeletal model of the knee. Design A sample of young, active individuals was selected for this study, and subjects were tested on 2 separate days. Three-dimensional motion analysis with electromyography (EMG) was used to obtain data from each subject during gait for model input. An EMG-driven modeling approach was used to estimate joint contact forces at each session. Results MDC’s for contact force variables ranged from 0.30 to 0.66 BW. The lowest MDC was for peak medial compartment force (0.30 BW) and the highest was for peak tibiofemoral contact force (0.66 BW). Test–retest reliability coefficients were also reported for comparison with previous work. Conclusions Using the present model, changes in joint contact forces between baseline and subsequent measurements that are greater than these MDCs are greater than typical day-to-day variation and can be identified as real change. PMID:23601782

  2. Spinal GABA-B receptor modulates neutrophil recruitment to the knee joint in zymosan-induced arthritis.

    PubMed

    Bassi, Gabriel S; do C Malvar, David; Cunha, Thiago M; Cunha, Fernando Q; Kanashiro, Alexandre

    2016-08-01

    Recent studies have demonstrated that the central nervous system controls inflammatory responses by activating complex efferent neuroimmune pathways. The present study was designed to evaluate the role that central gamma-aminobutyric acid type B (GABA-B) receptor plays in neutrophil migration in a murine model of zymosan-induced arthritis by using different pharmacological tools. We observed that intrathecal administration of baclofen, a selective GABA-B agonist, exacerbated the inflammatory response in the knee after zymosan administration characterized by an increase in the neutrophil recruitment and knee joint edema, whereas saclofen, a GABA-B antagonist, exerted the opposite effect. Intrathecal pretreatment of the animals with SB203580 (an inhibitor of p38 mitogen-activated protein kinase) blocked the pro-inflammatory effect of baclofen. On the other hand, systemic administration of guanethidine, a sympatholytic drug that inhibits catecholamine release, and nadolol, a beta-adrenergic receptor antagonist, reversed the effect of saclofen. Moreover, saclofen suppressed the release of the pro-inflammatory cytokines into the knee joint (ELISA) and pain-related behaviors (open field test). Since the anti-inflammatory effect of saclofen depends on the sympathetic nervous system integrity, we observed that isoproterenol, a beta-adrenergic receptor agonist, mimics the central GABA-B blockade decreasing knee joint neutrophil recruitment. Together, these results demonstrate that the pharmacological manipulation of spinal GABAergic transmission aids control of neutrophil migration to the inflamed joint by modulating the activation of the knee joint-innervating sympathetic terminal fibers through a mechanism dependent on peripheral beta-adrenergic receptors and central components, such as p38 MAPK. PMID:27106212

  3. Gender Dimorphic ACL Strain In Response to Combined Dynamic 3D Knee Joint Loading: Implications for ACL Injury Risk

    PubMed Central

    Mizuno, Kiyonori; Andrish, Jack T.; van den Bogert, Antonie J.; McLean, Scott G.

    2009-01-01

    While gender-based differences in knee joint anatomies/laxities are well documented, the potential for them to precipitate gender-dimorphic ACL loading and resultant injury risk has not been considered. To this end, we generated gender-specific models of ACL strain as a function of any six degrees of freedom (6DOF) knee joint load state via a combined cadaveric and analytical approach. Continuously varying joint forces and torques were applied to five male and five female cadaveric specimens and recorded along with synchronous knee flexion and ACL strain data. All data (~10,000 samples) were submitted to specimen-specific regression analyses, affording ACL strain predictions as a function of the combined 6 DOF knee loads. Following individual model verifications, generalized gender-specific models were generated and subjected to 6 DOF external load scenarios consistent with both a clinical examination and a dynamic sports maneuver. The ensuing model-based strain predictions were subsequently examined for gender-based discrepancies. Male and female specimen specific models predicted ACL strain within 0.51% ± 0.10% and 0.52% ± 0.07% of the measured data respectively, and explained more than 75% of the associated variance in each case. Predicted female ACL strains were also significantly larger than respective male values for both of simulated 6 DOF load scenarios. Outcomes suggest that the female ACL will rupture in response to comparatively smaller external load applications. Future work must address the underlying anatomical/laxity contributions to knee joint mechanical and resultant ACL loading, ultimately affording prevention strategies that may cater to individual joint vulnerabilities. PMID:19464897

  4. [Capsular ligament lesions of the knee joint. Conservative and surgical treatment].

    PubMed

    Gradinger, R; Haller, W; Rodammer, G; Rechl, H

    1989-02-28

    On the basis of our experience with more than 600 reconstructed capsular ligament injuries of the knee joint, we conclude that conservative functional treatment should be preserved for patients with capsular ligament lesions with no loss of stability. On an individual basis, it must be decided whether, in the event of a more or less large degree of instability presenting, conservative mobilising treatment (patients older than 45 years), or surgical reconstructive treatment should be provided. Surgical procedures aim at achieving anatomical reconstruction, which is only approximately possible with secondary reconstruction in the presence of chronic instability. For the reconstruction of the anterior cruciate ligament, the use of the semitendinosus tendon for reinforcement with possible reattachment of the cruciate ligament can be recommended. Otherwise, the free patellar ligament transplant, as far as possible with additional synovialisation--which permits better revitalisation of the ligament--should be employed. PMID:2703203

  5. [High-resolution 3-D imaging in MR tomographic knee joint diagnosis. Correlation with arthroscopy].

    PubMed

    Högerle, S; Sievers, K W; Albrecht, T; Letsch, R; Löhr, E

    1994-10-01

    84 knee joints were examined by a 3-dimensional MR method and the results correlated with subsequent arthroscopy. The findings showed good demonstration of the normal anatomical structures and excellent reliability for the diagnosis of meniscus tears (sensitivity 91%, specificity 95%), cruciate ligament lesions (sensitivity 90%, specificity 99%) and serious cartilage damage (sensitivity 100%, specificity 100%). Demonstration of mild cartilage damage (sensitivity 60%, specificity 99%) was better than with a spin echo technique but is not yet optimal. It is concluded that, by using a 3-dimensional technique, time-consuming spin echo sequences can be abandoned. Significant advantages of the 3-D method are the speed of the examination, narrow section thickness, marked flexibility in contrast rendering and the ability for multiplanar reconstruction. PMID:7948981

  6. Magnetoledtherapy in the treatment of wounds after surgical procedures of the knee joint

    PubMed Central

    Pasek, Jarosław; Pasek, Tomasz; Sieroń, Aleksander

    2014-01-01

    The intense development of methods of physical medicine has been noted recently. The new methods are treatment methods, which in many cases allow a reduction of treatment time and positively influence the quality of life of patients undergoing treatment. This applies to illnesses and injuries of the locomotor system and diseases affecting soft tissues, as well as chronic wounds. This article discusses the positive results of the treatment of a 63-year-old woman with a persisting chronic wound of her right lower extremity after knee joint endoprosthesis surgery. The physical medicine method applied, in the form of magnetoledtherapy, contributed to complete wound healing and alleviation of pain suffered, as well as improvement of the quality of life of the treated patient. PMID:25214792

  7. Muscle force production during bent-knee, bent-hip walking in humans.

    PubMed

    Foster, Adam D; Raichlen, David A; Pontzer, Herman

    2013-09-01

    Researchers have long debated the locomotor posture used by the earliest bipeds. While many agree that by 3-4 Ma (millions of years ago), hominins walked with an extended-limb human style of bipedalism, researchers are still divided over whether the earliest bipeds walked like modern humans, or walked with a more bent-knee, bent-hip (BKBH) ape-like form of locomotion. Since more flexed postures are associated with higher energy costs, reconstructing early bipedal mechanics has implications for the selection pressures that led to upright walking. The purpose of this study is to determine how modern human anatomy functions in BKBH walking to clarify the links between morphology and energy costs in different mechanical regimes. Using inverse dynamics, we calculated muscle force production at the major limb joints in humans walking in two modes, both with extended limbs and BKBH. We found that in BKBH walking, humans must produce large muscle forces at the knee to support body weight, leading to higher estimated energy costs. However, muscle forces at the hip remained similar in BKBH and extended limb walking, suggesting that anatomical adaptations for hip extension in humans do not necessarily diminish the effective mechanical advantage at the hip in more flexed postures. We conclude that the key adaptations for economical walking, regardless of joint posture, seem to center on maintaining low muscle forces at the hip, primarily by keeping low external moments at the hip. We explore the implications of these results for interpreting locomotor energetics in early hominins, including australopithecines and Ardipithecus ramidus. PMID:23928351

  8. Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis.

    PubMed

    Mootanah, R; Imhauser, C W; Reisse, F; Carpanen, D; Walker, R W; Koff, M F; Lenhoff, M W; Rozbruch, S R; Fragomen, A T; Dewan, Z; Kirane, Y M; Cheah, K; Dowell, J K; Hillstrom, H J

    2014-01-01

    A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 65°-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligament-tuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between FE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning. PMID:24786914

  9. Repair of articular osteochondral defects of the knee joint using a composite lamellar scaffold

    PubMed Central

    Lv, Y. M.; Yu, Q. S.

    2015-01-01

    Objectives The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility. Methods The bone–cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid–hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated. Results After 12 weeks of implantation, defects in the experimental group were filled with white semi-translucent tissue, protruding slightly over the peripheral cartilage surface. After 24 weeks, the defect space in the experimental group was filled with new cartilage tissues, finely integrated into surrounding normal cartilage. The lamellar scaffold of ß-TCP/col I/col II was gradually degraded and absorbed, while new cartilage tissue formed. In the control group, the defects were not repaired. Conclusion This method can be used as a suitable scaffold material for the tissue-engineered repair of articular cartilage defects. Cite this article: Bone Joint Res 2015;4:56–64 PMID:25837672

  10. Provocative mechanical tests of the peripheral nervous system affect the joint torque-angle during passive knee motion.

    PubMed

    Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P

    2015-06-01

    This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P < 0.05). Upper trunk positioning had an effect on the knee submaximal torque (P < 0.05), observed as an increase in the knee passive submaximal torque when the cervical and thoracic spines were flexed (P < 0.05). In conclusion, other apparently mechanical unrelated body segments influence torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension. PMID:24941915

  11. Assessment of the responsibility between a road traffic accident and medical defects after the traffic accident injury of knee joint.

    PubMed

    Chen, Jiemin; Xia, Wentao

    2012-04-01

    A 48-year-old Chinese woman was hit by a car in a road traffic accident. Local county hospital considered that her right knee was injured, but didn't find any sign of fracture from X-ray imaging. Then the hospital gave diagnosis of soft tissue contusion and the patient started to exercise with burden 21 days after her right lower limb was fixed by plaster slab. Four months later, she had to go back to the county hospital for recheck due to persistent pain on her right knee. Then, the right tibia outer plateau fracture was found. The patient rejected the advice of open reduction and internal fixation of right tibia plateau fracture. Instead, she accepted the unicompartmental knee arthroplasty in a hospital affiliated to a medical college. The patient felt the knee pain alleviated after surgery However, the joint dysfunction was aggravated even more. The patient used the legal procedure for personal compensation. Both driver and the insurance company disputed that the final consequence of the injured knee was due to not only the traffic accident, but also poor medical practice involved. Therefore the court consigned us to make judicial judgment of expertise. After investigation, we found the earliest X-ray graph after the accident had shown the fracture of right tibia outer plateau and right knee valgum, with articular surface involvement, and the traffic accident was considered as the primary cause of sequelae. At the same time, the county hospital missed the diagnosis of fracture, and led to insufficient fixation of right lower limb, which was not good for rehabilitation from fracture and joint injury. This was the secondary cause of sequelae. Additionally, instead of the standard therapy, the affiliated hospital of medical college made the unicompartmental knee arthroplasty four months later, which also had a little defect. It was the minor reason for the result. PMID:22391004

  12. Responses of bone and joint blood vessels in cats and rabbits to electrical stimulation of nerves supplying the knee.

    PubMed Central

    Ferrell, W R; Khoshbaten, A; Angerson, W J

    1990-01-01

    1. Experiments were performed to assess the extent to which knee joint blood flow in cats and rabbits is affected by electrical stimulation of the nerve supply to the knee. 2. Absolute changes in blood flow were measured using the radiolabelled microsphere (approximately 15 microns) technique whilst relative changes in blood flow were assessed using laser Doppler flowmetry. 3. Despite deep general anaesthesia, sympathetic nerve fibres innervating cat knee joint blood vessels showed marked 'tone'. 4. Blood flow to the joint capsule (synovium and overlying fibrous and areolar tissues) was substantially reduced (by approximately 90% in the cat and approximately 45% in the rabbit) during electrical stimulation of the articular nerve supply. 5. The percentage change in the laser Doppler flowmeter signal did not differ significantly from the percentage change in blood flow measured by microsphere technique. 6. Blood vessels in the cancellous bone of the distal femur (condyles) and proximal tibia (plateau) appear to be innervated by vasoconstrictor fibres which reach their effectors via the articular nerves. However, the cortical bone and red marrow of the diaphysis of the femur do not receive such innervation. 7. The potency of the vasoconstrictor influences acting on joint blood vessels could be of relevance in the pathogenesis of inflammatory joint diseases. PMID:2100317

  13. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability

    PubMed Central

    Nam, Seung-min; Kim, Won-bok; Yun, Chang-kyo

    2016-01-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability. PMID:27313386

  14. The relation of MRI-detected structural damage in the medial and lateral patellofemoral joint to knee pain: The Multicenter and Framingham Osteoarthritis Studies

    PubMed Central

    Stefanik, Joshua J.; Gross, K. Douglas; Guermazi, Ali; Felson, David T.; Roemer, Frank W.; Zhang, Yuquing; Niu, Jingbo; Segal, Neil A.; Lewis, Cora E.; Nevitt, Michael; Neogi, Tuhina

    2015-01-01

    Objective To examine the relation of cartilage loss and bone marrow lesions (BMLs) in the medial and lateral patellofemoral joint (PFJ) to knee pain. Methods We categorized the location of full-thickness cartilage loss and BMLs in the PFJ on knee MRIs from the Multicenter Osteoarthritis (MOST) and Framingham Osteoarthritis (FOA) Studies as no damage, isolated medial, isolated lateral, or both medial and lateral (mixed). We determined the relation of MRI lesions in each PFJ region to prevalent knee pain. Differences in knee pain severity were compared among categories of PFJ full-thickness cartilage loss and BMLs using quantile regression. Results In MOST (n=1137 knees), compared with knees without full-thickness cartilage loss, knees with isolated lateral or mixed PFJ full-thickness cartilage loss had 1.9 (1.3, 2.8) and 1.9 (1.2, 2.9) times the odds of knee pain, respectively, while isolated medial cartilage loss had no association with knee pain.. BMLs in both the medial and lateral PFJ had 1.5 (1.1, 2.0) times the odds of knee pain compared with knees without BMLs. Knee pain severity was lowest in knees with isolated medial PFJ cartilage loss or BMLs. In FOA (n=934 knees), neither isolated medial nor lateral cartilage loss was associated with knee pain, whereas isolated BMLs in either region were associated with pain. Conclusions Results were not completely concordant but suggest that knee pain risk and severity is greatest with cartilage loss isolated to (MOST) or inclusive of (MOST and FOA) the lateral PFJ. While BMLs in either the medial or lateral PFJ are related to pain. PMID:25575967

  15. Associations between joint effusion in the knee and gene expression levels in the circulation: a meta-analysis

    PubMed Central

    Peters, Marjolein J.; Ramos, Yolande F.M.; den Hollander, Wouter; Schiphof, Dieuwke; Hofman, Albert; Uitterlinden, André G.; Oei, Edwin H.G.; Slagboom, P. Eline; Kloppenburg, Margreet; Bloem, Johan L.; Bierma-Zeinstra, Sita M.A.; Meulenbelt, Ingrid; van Meurs, Joyce B.J.

    2016-01-01

    Objective: To identify molecular biomarkers for early knee osteoarthritis (OA), we examined whether joint effusion in the knee associated with different gene expression levels in the circulation. Materials and Methods: Joint effusion grades measured with magnetic resonance (MR) imaging and gene expression levels in blood were determined in women of the Rotterdam Study (N=135) and GARP (N=98). Associations were examined using linear regression analyses, adjusted for age, fasting status, RNA quality, technical batch effects, blood cell counts, and BMI. To investigate enriched pathways and protein-protein interactions, we used the DAVID and STRING webtools. Results: In a meta-analysis, we identified 257 probes mapping to 189 unique genes in blood that were nominally significantly associated with joint effusion grades in the knee. Several compelling genes were identified such as C1orf38 and NFATC1. Significantly enriched biological pathways were: response to stress, gene expression, negative regulation of intracellular signal transduction, and antigen processing and presentation of exogenous pathways. Conclusion: Meta-analyses and subsequent enriched biological pathways resulted in interesting candidate genes associated with joint effusion that require further characterization. Associations were not transcriptome-wide significant most likely due to limited power. Additional studies are required to replicate our findings in more samples, which will greatly help in understanding the pathophysiology of OA and its relation to inflammation, and may result in biomarkers urgently needed to diagnose OA at an early stage. PMID:27134727

  16. Joint unloading implant modifies subchondral bone trabecular structure in medial knee osteoarthritis: 2-year outcomes of a pilot study using fractal signature analysis

    PubMed Central

    Miller, Larry E; Sode, Miki; Fuerst, Thomas; Block, Jon E

    2015-01-01

    Background Knee osteoarthritis (OA) is largely attributable to chronic excessive and aberrant joint loading. The purpose of this pilot study was to quantify radiographic changes in subchondral bone after treatment with a minimally invasive joint unloading implant (KineSpring® Knee Implant System). Methods Nine patients with unilateral medial knee OA resistant to nonsurgical therapy were treated with the KineSpring System and followed for 2 years. Main outcomes included Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain, function, and stiffness subscores and independent core laboratory determinations of joint space width and fractal signature of the tibial cortex. Results WOMAC scores, on average, improved by 92% for pain, 91% for function, and 79% for stiffness over the 2-year follow-up period. Joint space width in the medial compartment of the treated knee significantly increased from 0.9 mm at baseline to 3.1 mm at 2 years; joint space width in the medial compartment of the untreated knee was unchanged. Fractal signatures of the vertically oriented trabeculae in the medial compartment decreased by 2.8% in the treated knee and increased by 2.1% in the untreated knee over 2 years. No statistically significant fractal signature changes were observed in the horizontally oriented trabeculae in the medial compartment or in the horizontal or vertical trabeculae of the lateral compartment in the treated knee. Conclusion Preliminary evidence suggests that the KineSpring System may modify knee OA disease progression by increasing joint space width and improving subchondral bone trabecular integrity, thereby reducing pain and improving joint function. PMID:25670891

  17. Pilot Study of Cartilage Repair in the Knee Joint with Multiply Incised Chondral Allograft

    PubMed Central

    Vancsodi, Jozsef; Farkas, Boglarka; Fazekas, Adam; Nagy, Szilvia Anett; Bogner, Peter; Vermes, Csaba; Than, Peter

    2015-01-01

    Background Focal cartilage lesions in the knee joint have limited capacity to heal. Current animal experiments show that incisions of the deep zone of a cartilage allograft allow acceptable integration for the graft. Questions/Purposes We performed this clinical study to determine (1) if the multiply incised cartilage graft is surgically applicable for focal cartilage lesions, (2) whether this allograft has a potential to integrate to the repair site, and (3) if patients show clinical improvement. Patients and Methods Seven patients with 8 chondral lesions were enrolled into the study. Symptomatic lesions between 2 and 8 cm2 were accepted. Additional injuries were allowed but were addressed simultaneously. Grafts were tailored to match and the deep zone of the cartilage was multiply incised to augment the basal integration before securing in place. Rigorous postoperative physiotherapy followed. At 12 and 24 months the patients’ satisfaction were measured and serial magnetic resonance imaging (MRI) was performed in 6 patients. Results Following the implantations no adverse reaction occurred. MRI evaluation postoperatively showed the graft in place in 5 out of 6 patients. In 1 patient, MRI suggested partial delamination at 1 year and graft degeneration at 2 years. Short Form–36 health survey and the Lysholm knee score demonstrated a significant improvement in the first year; however, by 2 years there was a noticeable drop in the scores. Conclusions. Multiply incised pure chondral allograft used for cartilage repair appears to be a relatively safe method. Further studies are necessary to assess its potential in cartilage repair before its clinical use. PMID:26069710

  18. A Robust System for Longitudinal Knee Joint Edema and Blood Flow Assessment Based on Vector Bioimpedance Measurements.

    PubMed

    Hersek, Sinan; Töreyin, Hakan; Inan, Omer T

    2016-06-01

    We present a robust vector bioimpedance measurement system for longitudinal knee joint health assessment, capable of acquiring high resolution static (slowly varying over the course of hours to days) and dynamic (rapidly varying on the order of milli-seconds) bioresistance and bioreactance signals. Occupying an area of 78×90 mm(2) and consuming 0.25 W when supplied with ±5 V, the front-end achieves a dynamic range of 345 Ω and noise floor of 0.018 mΩrms (resistive) and 0.055 mΩrms (reactive) within a bandwidth of 0.1-20 Hz. A microcontroller allows real-time calibration to minimize errors due to environmental variability (e.g., temperature) that can be experienced outside of lab environments, and enables data storage on a micro secure digital card. The acquired signals are then processed using customized physiology-driven algorithms to extract musculoskeletal (edema) and cardiovascular (local blood volume pulse) features from the knee joint. In a feasibility study, we found statistically significant differences between the injured and contralateral static knee impedance measures for two subjects with recent unilateral knee injury compared to seven controls. Specifically, the impedance was lower for the injured knees, supporting the physiological expectations for increased edema and damaged cell membranes. In a second feasibility study, we demonstrate the sensitivity of the dynamic impedance measures with a cold-pressor test, with a 20 mΩ decrease in the pulsatile resistance associated with increased downstream peripheral vascular resistance. The proposed system will serve as a foundation for future efforts aimed at quantifying joint health status continuously during normal daily life. PMID:26841413

  19. The medial and lateral epicondyle as a reliable landmark for intra-operative joint line determination in revision knee arthroplasty

    PubMed Central

    Sen, T.; Cankaya, D.; Kendir, S.; Basarır, K.; Tabak, Y.

    2016-01-01

    Objectives The purpose of this study was to develop an accurate, reliable and easily applicable method for determining the anatomical location of the joint line during revision knee arthroplasty. Methods The transepicondylar width (TEW), the perpendicular distance between the medial and lateral epicondyles and the distal articular surfaces (DMAD, DLAD) and the distance between the medial and lateral epicondyles and the posterior articular surfaces (PMAD, DLAD) were measured in 40 knees from 20 formalin-fixed adult cadavers (11 male and nine female; mean age at death 56.9 years, sd 9.4; 34 to 69). The ratios of the DMAD, PMAD, DLAD and PLAD to TEW were calculated. Results The mean TEW, DMAD, PMAD, DLAD and PLAD were 82.76 mm (standard deviation (sd) 7.74), 28.95 mm (sd 3.3), 28.57 mm (sd 3), 23.97 mm (sd 3.27) and 24.42 mm (sd 3.14), respectively. The ratios between the TEW and the articular distances (DMAD/TEW, DLAD/TEW, PMAD/TEW and PLAD/TEW) were calculated and their means were 0.35 (sd 0.02), 0.34 (sd 0.02), 0.28 (sd 0.03) and 0.29 (sd 0.03), respectively. Conclusion This method provides a simple, reproducible and reliable technique enabling accurate anatomical joint line restoration during revision total knee arthroplasty. Cite this article: B. Ozkurt, T. Sen, D. Cankaya, S. Kendir, K. Basarır, Y. Tabak. The medial and lateral epicondyle as a reliable landmark for intra-operative joint line determination in revision knee arthroplasty. Bone Joint Res 2016;5:280–286. DOI: 10.1302/2046-3758.57.BJR-2016-0002.R1. PMID:27388715

  20. Pharmacological characterization of receptor types mediating the dilator action of anandamide on blood vessels of the rat knee joint.

    PubMed

    Lam, Francis F Y; Luk, Phoebe W S; Ng, Ethel S K

    2007-03-27

    This study investigates the actions of N-(2-hydroxyethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (anandamide) on blood flow of the rat knee joint. Topical bolus administration of anandamide (10-1000 nmol) onto the exposed knee joint capsules produced dose-dependent increases in the knee joint blood flow. Various antagonists were tested on the vasodilator response to 100 nmol anandamide. Capsazepine (N-[2-(4-chlorophenyl)ethyl]-1,3,4,5-tetrahydro-7,8-dihydroxy-2H-2-benzazepine-2-carbothioamide), an antagonist of the transient receptor potential vanilloid type 1 (TRPV1) receptor, given at 10 and 100 nmol, suppressed the response by a maximum of 71%. A cannabinoid CB(1) receptor antagonist AM281 (10 nmol) and a CB(2) receptor antagonist AM630 (10 nmol) shortened its duration from 15 min to 5 min. O-1918 (1 nmol), an antagonist of the putative endothelial anandamide/abnormal-cannabidiol receptor, on its own or combined with capsazepine and the two cannabinoid receptor antagonists produced 38% and 24% inhibition on the peak vasodilator response to anandamide, respectively. URB597 (1 nmol), an inhibitor of fatty acid amide hydrolase (FAAH) suppressed the response by 40%, and an anandamide transporter inhibitor [N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide] (AM404; 1 nmol) or a cyclo-oxygenase (COX) inhibitor flurbiprofen (20 nmol) abolished the response. These findings suggest the vasodilator action of anandamide in the rat knee joint involved hydrolysis of the compound by FAAH, production of COX-derived eicosanoid(s), activation of TRPV1 receptors, and a small component involved activation of endothelial anandamide/abnormal-cannabidiol receptors; a minor delayed dilator response was mediated by activation of conventional cannabinoid receptors. PMID:17275857

  1. Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity.

    PubMed

    Dumas, R; Cheze, L

    2008-08-01

    Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses. PMID:18206375

  2. Ipsilateral lower extremity joint involvement increases the risk of poor pain and function outcomes after hip or knee arthroplasty

    PubMed Central

    2013-01-01

    Background Poor pain and function outcomes are undesirable after an elective surgery such as total hip or knee arthroplasty (THA/TKA). Recent studies have indicated that the presence of contralateral joint influences outcomes of THA/TKA, however the impact of ipsilateral knee/hip involvement on THA/TKA outcomes has not been explored. The objective of this study was to assess the association of ipsilateral knee/hip joint involvement on short-term and medium-term pain and function outcomes after THA/TKA. Methods In this retrospective study of prospectively collected data, we used the data from the Mayo Clinic Total Joint Registry to assess the association of ipsilateral knee or hip joint involvement with moderate to severe pain and moderate to severe activity limitation at 2-year and 5-year follow-up after primary and revision THA and TKA using multivariable-adjusted logistic regression analyses. Results At 2 years, 3,823 primary THA, 4,701 primary TKA, 1,218 revision THA and 725 revision TKA procedures were studied. After adjusting for multiple covariates, ipsilateral knee pain was significantly associated with outcomes after primary THA (all P values <0.01): (1) moderate to severe pain: at 2 years, odds ratio (OR), 2.3 (95% confidence interval (CI) 1.5 to 3.6); at 5 years, OR 1.8 (95% CI 1.1 to 2.7); (2) moderate to severe activity limitation: at 2 years, OR 3.1 (95% CI 2.3 to 4.3); at 5 years, OR 3.6 (95% CI 2.6 to 5.0). Ipsilateral hip pain was significantly associated with outcomes after primary TKA (all P values <0.01): (1) moderate to severe pain: at 2 years, OR 3.3 (95% CI 2.3 to 4.7); at 5 years, OR 1.8 (95% CI 1.1 to 2.7); (2) moderate to severe activity limitation: at 2 years, OR 3.6 (95% CI 2.6 to 4.9); at 5 years, OR 2.2 (95% CI 1.6 to 3.2). Similar associations were noted for revision THA and TKA patients. Conclusions To the best of our knowledge, this is the first study showing that the presence of ipsilateral joint involvement after THA or TKA is

  3. Contact pressure prediction in total knee joint replacements. Part 1: General elasticity solution for elliptical layered contacts.

    PubMed

    Jin, Z M; Dowson, D; Fisher, J

    1995-01-01

    A general elasticity contact theory has been developed to predict the contact area and the contact pressure in total knee joint replacements with elliptical contacts where the thickness of ultra high molecular weight polyethylene (UHMWPE) is similar or less than the contact half width. The interfacial boundary condition between the UHMWPE component and the underlying metal substrate has been considered to be either perfectly bonded or perfectly unbonded in the model. Poisson's ratio for UHMWPE has been assumed to be 0.3 or 0.4. The effect of the thickness of the UHMWPE layer on the contact area and the contact pressure has been examined. The predictions of the maximum contact pressure and the contact area have been presented in non-dimensional forms and can readily be applied for typical design configurations of current total knee joint replacements. Furthermore, the present results can readily be applied to design considerations for total knee joint replacements to reduce contact stresses within the UHMWPE component. PMID:7669116

  4. 2-stage revision recommended for treatment of fungal hip and knee prosthetic joint infections

    PubMed Central

    2013-01-01

    Background and purpose Fungal prosthetic joint infections are rare and difficult to treat. This systematic review was conducted to determine outcome and to give treatment recommendations. Patients and methods After an extensive search of the literature, 164 patients treated for fungal hip or knee prosthetic joint infection (PJI) were reviewed. This included 8 patients from our own institutions. Results Most patients presented with pain (78%) and swelling (65%). In 68% of the patients, 1 or more risk factors for fungal PJI were found. In 51% of the patients, radiographs showed signs of loosening of the arthroplasty. Candida species were cultured from most patients (88%). In 21% of all patients, fungal culture results were first considered to be contamination. There was co-infection with bacteria in 33% of the patients. For outcome analysis, 119 patients had an adequate follow-up of at least 2 years. Staged revision was the treatment performed most often, with the highest success rate (85%). Interpretation Fungal PJI resembles chronic bacterial PJI. For diagnosis, multiple samples and prolonged culturing are essential. Fungal species should be considered to be pathogens. Co-infection with bacteria should be treated with additional antibacterial agents. We found no evidence that 1-stage revision, debridement, antibiotics, irrigation, and retention (DAIR) or antifungal therapy without surgical treatment adequately controls fungal PJI. Thus, staged revision should be the standard treatment for fungal PJI. After resection of the prosthesis, we recommend systemic antifungal treatment for at least 6 weeks—and until there are no clinical signs of infection and blood infection markers have normalized. Then reimplantation can be performed. PMID:24171675

  5. Treating Osteoarthritis of the Knee

    MedlinePlus

    ... osteotomy may need knee replacement surgery in the future. Arthroplasty is also called joint or knee replacement therapy. A surgeon removes the part of the knee damaged by osteoarthritis and replaces it with an artificial joint made from metals and plastic. All or part of the knee joint may ...

  6. Application of Computational Lower Extremity Model to Investigate Different Muscle Activities and Joint Force Patterns in Knee Osteoarthritis Patients during Walking

    PubMed Central

    Nha, Kyung Wook; Shin, Jun Ho; Kim, Jong In; Kwon, Jae Ho; Kim, Yoon Hyuk

    2013-01-01

    Many experimental and computational studies have reported that osteoarthritis in the knee joint affects knee biomechanics, including joint kinematics, joint contact forces, and muscle activities, due to functional restriction and disability. In this study, differences in muscle activities and joint force patterns between knee osteoarthritis (OA) patients and normal subjects during walking were investigated using the inverse dynamic analysis with a lower extremity musculoskeletal model. Extensor/flexor muscle activations and torque ratios and the joint contact forces were compared between the OA and normal groups. The OA patients had higher extensor muscle forces and lateral component of the knee joint force than normal subjects as well as force and torque ratios of extensor and flexor muscles, while the other parameters had little differences. The results explained that OA patients increased the level of antagonistic cocontraction and the adduction moment on the knee joint. The presented findings and technologies provide insight into biomechanical changes in OA patients and can also be used to evaluate the postoperative functional outcomes of the OA treatments. PMID:24302973

  7. Estimation of three-dimensional knee joint movement using bi-plane x-ray fluoroscopy and 3D-CT

    NASA Astrophysics Data System (ADS)

    Haneishi, Hideaki; Fujita, Satoshi; Kohno, Takahiro; Suzuki, Masahiko; Miyagi, Jin; Moriya, Hideshige

    2005-04-01

    Acquisition of exact information of three-dimensional knee joint movement is desired in plastic surgery. Conventional X-ray fluoroscopy provides dynamic but just two-dimensional projected image. On the other hand, three-dimensional CT provides three-dimensional but just static image. In this paper, a method for acquiring three-dimensional knee joint movement using both bi-plane, dynamic X-ray fluoroscopy and static three-dimensional CT is proposed. Basic idea is use of 2D/3D registration using digitally reconstructed radiograph (DRR) or virtual projection of CT data. Original ideal is not new but the application of bi-plane fluoroscopy to natural bones of knee is reported for the first time. The technique was applied to two volunteers and successful results were obtained. Accuracy evaluation through computer simulation and phantom experiment with a knee joint of a pig were also conducted.

  8. Measures and procedures utilized to determine the added value of microprocessor-controlled prosthetic knee joints: a systematic review

    PubMed Central

    2013-01-01

    Background The effectiveness of microprocessor-controlled prosthetic knee joints (MPKs) has been assessed using a variety of outcome measures in a variety of health and health-related domains. However, if the patient is to receive a prosthetic knee joint that enables him to function optimally in daily life, it is vital that the clinician has adequate information about the effects of that particular component on all aspects of persons’ functioning. Especially information concerning activities and participation is of high importance, as this component of functioning closely describes the person’s ability to function with the prosthesis in daily life. The present study aimed to review the outcome measures that have been utilized to assess the effects of microprocessor-controlled prosthetic knee joints (MPK), in comparison with mechanically controlled prosthetic knee joints, and aimed to classify these measures according to the components and categories of functioning defined by the International Classification of Functioning, Disability and Health (ICF). Subsequently, the gaps in the scientific evidence regarding the effectiveness of MPKs were determined. Methods A systematic literature search in 6 databases (i.e. PubMed, CINAHL, Cochrane Library, Embase, Medline and PsychInfo) identified scientific studies that compared the effects of using MPKs with mechanically controlled prosthetic knee joints on persons’ functioning. The outcome measures that have been utilized in those studies were extracted and categorized according to the ICF framework. Also, a descriptive analysis regarding all studies has been performed. Results A total of 37 studies and 72 outcome measures have been identified. The majority (67%) of the outcome measures that described the effects of using an MPK on persons’ actual performance with the prosthesis covered the ICF body functions component. Only 31% of the measures on persons’ actual performance investigated how an MPK may affect

  9. Controllable Compliance Joint For Human Oriented Robots

    NASA Astrophysics Data System (ADS)

    Tsveov, Mihail; Chakarov, Dimitar

    2013-03-01

    In the paper, different approaches for compliance control for human oriented robots are revealed. The approaches based on the non- antagonistic and antagonistic actuation are compared. In addition, an approach is investigated in this work for the compliance and the position control in the joint by means of antagonistic actuation. It is based on the capability of the joint with torsion leaf springs to adjust its stiffness. Models of joint stiffness are presented in this paper with antagonistic and non-antagonistic influence of the spring forces on the joint motion. The stiffness and the position control possibilities are investigated and the opportunity for their decoupling as well. Some results of numerical experiments are presented in the paper too.

  10. Platelet-rich plasma therapy for knee joint problems: review of the literature, current practice and legal perspectives in Korea.

    PubMed

    Park, Yong-Geun; Han, Seung Beom; Song, Sang Jun; Kim, Tae Jin; Ha, Chul-Won

    2012-06-01

    Platelet-rich plasma (PRP) is a concentrate extract of platelets from autologous blood, and represents a possible treatment option for the stimulation and acceleration of soft-tissue healing and regeneration in orthopedics. Currently, the availability of devices for outpatient preparation and delivery contributes to the increase in the clinical use of PRP therapy in practical setting of orthopedic fields. However, there is still paucity of scientific evidence in the literature to prove efficacy of PRP therapy for the treatment of ligament or tendon problems around the knee joint. Moreover, strong evidence from well-designed clinical trials to support the PRP therapy for osteoarthritis of the knee joint is yet scanty in the literature. Scientific studies need to be performed to assess clinical indications, efficacy, and safety of PRP, and this will require high powered randomized controlled trials. Nonetheless, some hospitals exaggeratedly advertise PRP procedures as the ultimate treatment and a novel technology with abundant scientific evidence for the treatment of knee problems. As a matter of fact, PRP protocols are currently approved only for use in clinical trials and research, and are not allowed for treatment purpose by any institutions in Korea. At present, clinical use of PRP therapy for ligament or tendon problems or osteoarthritis of knee joint is defined as illegal medical practice, regardless of whether it is performed as a sole procedure or as a part of prolotherapy, because the safety and validity are not yet approved by the Ministry of Health and Welfare and Health Insurance Review and Assessment Service. Practicing physicians should remember that injection of PRP to patients by imposing medical charge is still illegal as per the current medical law in Korea. PMID:22708106

  11. Stem cell application for osteoarthritis in the knee joint: A minireview.

    PubMed

    Uth, Kristin; Trifonov, Dimitar

    2014-11-26

    Knee osteoarthritis is a chronic, indolent disease that will affect an ever increasing number of patients, especially the elderly and the obese. It is characterized by degeneration of the cartilage substance inside the knee which leads to pain, stiffness and tenderness. By some estimations in 2030, only in the United States, this medical condition will burden 67 million people. While conventional treatments like physiotherapy or drugs offer temporary relief of clinical symptoms, restoration of normal cartilage function has been difficult to achieve. Moreover, in severe cases of knee osteoarthritis total knee replacement may be required. Total knee replacements come together with high effort and costs and are not always successful. The aim of this review is to outline the latest advances in stem cell therapy for knee osteoarthritis as well as highlight some of the advantages of stem cell therapy over traditional approaches aimed at restoration of cartilage function in the knee. In addition to the latest advances in the field, challenges associated with stem cell therapy regarding knee cartilage regeneration and chondrogenesis in vitro and in vivo are also outlined and analyzed. Furthermore, based on their critical assessment of the present academic literature the authors of this review share their vision about the future of stem cell applications in the treatment of knee osteoarthritis. PMID:25426260

  12. Topical Tranexamic Acid Use in Knee Periprosthetic Joint Infection Is Safe and Effective.

    PubMed

    Waddell, Bradford S; Zahoor, Talal; Meyer, Mark; Ochsner, Lock; Chimento, George

    2016-07-01

    Tranexamic acid (TXA) has been shown to decrease hemoglobin loss and reduce the need for transfusions in primary hip and knee arthroplasty. Our study evaluated the safety and efficacy of topical TXA in revision TKA for periprosthetic joint infection (PJI). We performed a retrospective review of patients who underwent removal of hardware with antibiotic spacer placement (stage 1) and/or revision TKA (stage 2) for PJI at our institution between September 2007 and July 2013. During that time, 49 patients underwent stage-1 procedures (20 knees with TXA, 29 without TXA) and 47 patients underwent stage-2 revisions (28 with TXA, 19 without TXA). We evaluated hemoglobin loss, need for transfusion, reinfection rate, length of stay (LOS), complications, and mortality with and without the use of TXA in these patients. All data sets were analyzed with a two-sample t-test. Average follow-up was 3.15 years (range, 1-7 years). TXA use led to a significantly lower percentage drop in the postoperative lowest hemoglobin compared with the preoperative hemoglobin in stage-1 surgeries (19.8 vs. 30.05%, p = 0.0004) and stage-2 revisions (24.5 vs 32.01%, p = 0.01). In both groups, TXA use was associated with a significant reduction in transfusion rates (stage-1, 25 vs 51.7%, p = 0.04; stage-2, 25 vs. 52.6%, p = 0.05). There was a nonstatistical decreased LOS in both groups in which TXA was used (stage 1, 5.15 vs. 6.72 days, p = 0.055; stage 2, 5.21 vs. 6.84 days, p = 0.09). There was no difference in the reinfection rate (4 vs. 4, p = 0.56) or mortality rate between groups (0 vs. 2 non-TXA group). A single upper extremity deep vein thrombosis occurred in a stage-1 patient who received TXA, and no pulmonary embolism occurred. We show that topical TXA is safe and effective for use in both stages of revision TKA for PJI. Previous studies have shown TXA to aggravate a staphylococcal infection in mice; however, topical TXA doesn't appear to negatively effect on the

  13. Anterior tibial artery perforator plus flaps for reconstruction of post-burn flexion contractures of the knee joint

    PubMed Central

    Adhikari, S.; Bandyopadhyay, T.; Saha, J.K.

    2012-01-01

    Summary Background. Post-burn flexion contractures of the knee may arise even with adequate treatment of the burn injury. After release of the contracture, most of these defects require flap coverage. Here we describe the application of the perforator plus flap concept in the management of these contractures. Method. Between December 2010 and December 2011 five female and two male patients with knee contractures were operated on using a perforator plus flap from the anterior tibia artery perforator. In one patient both sides were operated on and the rest had unilateral surgeries. All patients had mature scars and the aetiology was thermal burn injury. All these contractures were categorized as Category 4 and Level 3 by the ICIDH guidelines with an average contracture angle of 87.5 degrees. The flap was raised after release of the defect and a Doppler study located the perforator below the fibular head. The base of the flap was kept intact at all times. The flap was then transposed towards the defect and inset in a tensionless manner. Results. All flaps survived well with marginal necrosis in only one flap, providing stable coverage to the knee joint. The average residual contracture was around 10 degrees and the average range of flexion was 10-120 degrees. Conclusion. The perforator plus flap can be an excellent choice in defects over the posterior aspect of the knee where important neurovascular structures and tendons are exposed. Level of evidence: Level IV. PMID:23233827

  14. A Novel Methodology for the Simulation of Athletic Tasks on Cadaveric Knee Joints with Respect to In Vivo Kinematics.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2015-10-01

    Six degree of freedom (6-DOF) robotic manipulators have simulated clinical tests and gait on cadaveric knees to examine knee biomechanics. However, these activities do not necessarily emulate the kinematics and kinetics that lead to anterior cruciate ligament (ACL) rupture. The purpose of this study was to determine the techniques needed to derive reproducible, in vitro simulations from in vivo skin-marker kinematics recorded during simulated athletic tasks. Input of raw, in vivo, skin-marker-derived motion capture kinematics consistently resulted in specimen failure. The protocol described in this study developed an in-depth methodology to adapt in vivo kinematic recordings into 6-DOF knee motion simulations for drop vertical jumps and sidestep cutting. Our simulation method repeatably produced kinetics consistent with vertical ground reaction patterns while preserving specimen integrity. Athletic task simulation represents an advancement that allows investigators to examine ACL-intact and graft biomechanics during motions that generate greater kinetics, and the athletic tasks are more representative of documented cases of ligament rupture. Establishment of baseline functional mechanics within the knee joint during athletic tasks will serve to advance the prevention, repair and rehabilitation of ACL injuries. PMID:25869454

  15. Ten-Year Follow-Up of Desarthrodesis of the Knee Joint 41 Years after Original Arthrodesis for a Bone Tumor

    PubMed Central

    Kassem Abdelaal, Ahmed Hamed; Yamamoto, Norio; Hayashi, Katsuhiro; Takeuchi, Akihiko; Miwa, Shinji; Inatani, Hiroyuki; Tsuchiya, Hiroyuki

    2015-01-01

    Introduction. The main indication for knee arthrodesis in tumor surgery is a tumor that requires an extensive resection in which the joint surface cannot be preserved. We report a patient that had knee desarthrodesis 41 years after giant cell tumor resection followed by a knee arthrodesis. This is the longest reported follow-up after desarthrodesis and conversion to total knee arthroplasty (TKA), almost ten years. Case Report. A 71-year-old man with a distal femoral giant cell tumor had undergone a resection of the distal femur and knee arthrodesis using Kuntscher nail in 1962. In July 2003 he experienced gradually increasing pain of his left knee. We performed a desarthrodesis and conversion to TKA in 2005. The postoperative period passed uneventfully as his pain and gait improved, with gradually increasing range of motion (ROM) and no infection. He now walks independently, with no brace or contractures. Conclusion. Desarthrodesis of the knee joint and conversion to TKA are a difficult surgical choice with a high complication risk. However, our patient's life style has improved, he has no pain, and he can ascend and descend stairs more easily. The surgeon has to be very meticulous in selecting a patient for knee arthrodesis and counseling them to realize that their expectations may not be achievable. PMID:26688766

  16. The effects of kinesiology taping therapy on degenerative knee arthritis patients’ pain, function, and joint range of motion

    PubMed Central

    Lee, Kwansub; Yi, Chae-Woo; Lee, Sangyong

    2016-01-01

    [Purpose] The purpose of the present study was to examine the effects of kinesiology taping therapy on degenerative knee arthritis patients’ pain, function, and joint range of motion. [Subjects] To conduct the experiment in the present study, 30 patients with degenerative knee arthritis were divided into a control group (the conservative treatment group) of 15 patients, who received conservative physical therapy, and an experimental group (the kinesiology taping group) of 15 patients, who received kinesiology taping therapy. [Methods] All patients received treatment three times per week for four weeks. The kinesiology taping group had elastic tapes applied to the hamstring muscles, anterior tibialis, quadriceps femoris, and gastrocnemius. The range of motion was measured using joint goniometers, pain was measured using visual analog scales, and functional evaluation was conducted using the Korean Western Ontario and McMaster Universities Osteoarthritis Index. [Results] In intragroup comparisons of the kinesiology taping group and the conservative treatment group, the visual analog scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores significantly decreased, and the range of motion increased more than significantly. In intergroup comparisons, the kinesiology taping group showed significantly lower visual analog scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores and significantly larger ranges of motion than the conservative treatment group. [Conclusion] Kinesiology taping therapy is considered to be an effective nonsurgical intervention method for pain relief, daily living activities, and range of motion of degenerative knee arthritis patients. PMID:26957729

  17. Muscle Activation Differs between Three Different Knee Joint-Angle Positions during a Maximal Isometric Back Squat Exercise

    PubMed Central

    Jarbas da Silva, Josinaldo; Jon Schoenfeld, Brad; Nardi, Priscyla Silva Monteiro; Pecoraro, Silvio Luis; D'Andréa Greve, Julia Maria; Hartigan, Erin

    2016-01-01

    The purpose of this study was to compare muscle activation of the lower limb muscles when performing a maximal isometric back squat exercise over three different positions. Fifteen young, healthy, resistance-trained men performed an isometric back squat at three knee joint angles (20°, 90°, and 140°) in a randomized, counterbalanced fashion. Surface electromyography was used to measure muscle activation of the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), and gluteus maximus (GM). In general, muscle activity was the highest at 90° for the three quadriceps muscles, yet differences in muscle activation between knee angles were muscle specific. Activity of the GM was significantly greater at 20° and 90° compared to 140°. The BF and ST displayed similar activation at all joint angles. In conclusion, knee position alters muscles activation of the quadriceps and gluteus maximus muscles. An isometric back squat at 90° generates the highest overall muscle activation, yet an isometric back squat at 140° generates the lowest overall muscle activation of the VL and GM only. PMID:27504484

  18. Comparisons of knee and ankle joint angles and ground reaction force according to functional differences during single-leg drop landing

    PubMed Central

    Kim, Kewwan; Jeon, Kyoungkyu

    2016-01-01

    [Purpose] The purpose of this study was to determine potential predictors of functional instability of the knee and ankle joints during single-leg drop landing based on the prior history of injury. [Subjects and Methods] The subjects were 24 collegiate soccer players without pain or dysfunction. To compare the differences between the stable and unstable sides during single-leg drop landing, 8 motion analysis cameras and a force plate were used. The Cortex 4 software was used for a biomechanical analysis of 3 events. An independent t-test was used for statistical comparison between both sides; p<0.05 indicated significance. [Results] The knee joint movements showed gradual flexion in the sagittal plane. The unstable-side ankle joint showed plantar flexion of approximately 2° relative to the stable side. In the coronal plane, the unstable-side knee joint differed from the stable side in its tendency for valgus movement. The unstable-side ankle joint showed contrasting movement compared with the stable side, and the difference was significant. Regarding the vertical ground reaction force, the stable side showed maximum knee flexion that was approximately 0.1 BW lower than that of the unstable side. [Conclusion] Increasing the flexion angle of the knee joint can help prevent injury during landing. PMID:27190444

  19. Association of the type of trauma, occurrence of bone bruise, fracture and joint effusion with the injury to the menisci and ligaments in MRI of knee trauma

    PubMed Central

    Pezeshki, Sina; Vogl, Thomas J.; Pezeshki, Mohammad Zakaria; Daghighi, Mohammad Hossein; Pourisa, Masoud

    2016-01-01

    Summary Background magnetic resonance imaging (MRI) as a noninvasive diagnostic tool may help clinicians in the evaluation of injuries to menisci and ligaments. Purpose this study assessed the associations between type of trauma to knee joint, bone bruise, fracture and pathological joint effusion with injuries to menisci and ligaments of knee joint. Methods we reviewed knee joint MRI of 175 patients aged less than 45 years old who were referred to MRI center of our University. Results statistical analysis showed that tearing of medial meniscus (MM) is significantly more common in sport related trauma (p= 0.045) but tearing of medial collateral ligament (MCL) is significantly more common in non-sport related trauma (p= 0.005). Existence of bone bruise in knee MRI is negatively associated with tearing of medial meniscus (MM) (p=0.004) and positively associated with tearing of anterior cruciate ligament (ACL) (p=0.00047) and medial collateral ligament (MCL) (p = 0.0001). Existence of fracture is associated with decreased risk of the tearing of ACL and MM (p=0.04, p=0.001 respectively). Pathologic joint effusion is significantly more common in ACL and MCL tearing (p=0.0001, p=0.004 respectively). Conclusions as diagnostic clues, bone bruise, fracture and joint effusion may help radiologists for better assessment of injury to menisci and ligaments in MRI of patients with knee trauma. PMID:27331046

  20. Preventing effects of joint contracture by high molecular weight hyaluronan injections in a rat immobilized knee model

    PubMed Central

    Kanazawa, Kenji; Hagiwara, Yoshihiro; Tsuchiya, Masahiro; Yabe, Yutaka; Sonofuchi, Kazuaki; Koide, Masashi; Sekiguchi, Takuya; Itaya, Nobuyuki; Ando, Akira; Saijo, Yoshifumi; Itoi, Eiji

    2015-01-01

    Purpose: To elucidate preventive effects of high molecular weight hyaluronan (HMWHA) on the joint capsule of immobilized knees in rats. Materials and Methods: Unilateral knee joints of rats were immobilized with an internal fixator. Either 50 μl of HMWHA (Im-HA group) or 50 μl of saline (control group) was administered intra-articularly once a week after surgery. Sagittal sections were prepared from the medial midcondylar region of the knee joints and assessed by histological, histomorphometric, and immunohistochemical methods. Gene expressions related to inflammation, fibrotic conditions, and hypoxia were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Tissue elasticity of the capsule from both groups was examined using a scanning acoustic microscope (SAM). Results: CD68 positive cells decreased in adhesion areas of the synovial membrane after 1 week in both groups. The length of the superficial layer in the synovial membrane of the Im-HA group was significantly longer than those in the control group over a period of 4 to 8 weeks with significantly small numbers of CD68 positive cells. The gene expressions of IL-6, IL-1β, TGF-β, CTGF, COL1a1, COL3a1, SPARC, and HIF1-α were significantly lower in the Im-HA group compared to those in the control group. The sound speed of the anterior and posterior synovial membrane increased significantly (a reduction in elasticity) in the control group compared to those in the Im-HA group during weeks 1 to 4. Conclusions: This study demonstrated that HMWHA injections suppressed inflammatory, fibrotic, and hypoxic conditions observed in the immobilized joint capsule. PMID:26097527

  1. A Normative Study of the Synovial Fluid Proteome from Healthy Porcine Knee Joints

    PubMed Central

    2015-01-01

    Synovial fluid in an articulating joint contains proteins derived from the blood plasma and proteins that are produced by cells within the joint tissues, such as synovium, cartilage, ligament, and meniscus. The proteome composition of healthy synovial fluid and the cellular origins of many synovial fluid components are not fully understood. Here, we present a normative proteomics study using porcine synovial fluid. Using our optimized method, we identified 267 proteins with high confidence in healthy synovial fluid. We also evaluated mRNA expression data from tissues that can contribute to the synovial fluid proteome, including synovium, cartilage, blood, and liver, to better estimate the relative contributions from these sources to specific synovial fluid components. We identified 113 proteins in healthy synovial fluid that appear to be primarily derived from plasma transudates, 37 proteins primarily derived from synovium, and 11 proteins primarily derived from cartilage. Finally, we compared the identified synovial fluid proteome to the proteome of human plasma, and we found that the two body fluids share many similarities, underlining the detected plasma derived nature of many synovial fluid components. Knowing the synovial fluid proteome of a healthy joint will help to identify mechanisms that cause joint disease and pathways involved in disease progression. PMID:25160569

  2. Image based weighted center of proximity versus directly measured knee contact location during simulated gait.

    PubMed

    Wang, Hongsheng; Chen, Tony; Koff, Matthew F; Hutchinson, Ian D; Gilbert, Susannah; Choi, Dan; Warren, Russell F; Rodeo, Scott A; Maher, Suzanne A

    2014-07-18

    To understand the mechanical consequences of knee injury requires a detailed analysis of the effect of that injury on joint contact mechanics during activities of daily living. Three-dimensional (3D) knee joint geometric models have been combined with knee joint kinematics to dynamically estimate the location of joint contact during physiological activities-using a weighted center of proximity (WCoP) method. However, the relationship between the estimated WCoP and the actual location of contact has not been defined. The objective of this study was to assess the relationship between knee joint contact location as estimated using the image-based WCoP method, and a directly measured weighted center of contact (WCoC) method during simulated walking. To achieve this goal, we created knee specific models of six human cadaveric knees from magnetic resonance imaging. All knees were then subjected to physiological loads on a knee simulator intended to mimic gait. Knee joint motion was captured using a motion capture system. Knee joint contact stresses were synchronously recorded using a thin electronic sensor throughout gait, and used to compute WCoC for the medial and lateral plateaus of each knee. WCoP was calculated by combining knee kinematics with the MRI-based knee specific model. Both metrics were compared throughout gait using linear regression. The anteroposterior (AP) location of WCoP was significantly correlated with that of WCoC on both tibial plateaus in all specimens (p<0.01, 95% confidence interval of Pearson׳s coefficient r>0), but the correlation was not significant in the mediolateral (ML) direction for 4/6 knees (p>0.05). Our study demonstrates that while the location of joint contact obtained from 3D knee joint contact model, using the WCoP method, is significantly correlated with the location of actual contact stresses in the AP direction, that relationship is less certain in the ML direction. PMID:24837219

  3. Effects of Intensive Diet and Exercise on Knee Joint Loads, Inflammation, and Clinical Outcomes Among Overweight and Obese Adults With Knee Osteoarthritis

    PubMed Central

    Messier, Stephen P.; Mihalko, Shannon L.; Legault, Claudine; Miller, Gary D.; Nicklas, Barbara J.; DeVita, Paul; Beavers, Daniel P.; Hunter, David J.; Lyles, Mary F.; Eckstein, Felix; Williamson, Jeff D.; Carr, J. Jeffery; Guermazi, Ali; Loeser, Richard F.

    2015-01-01

    IMPORTANCE Knee osteoarthritis (OA), a common cause of chronic pain and disability, has biomechanical and inflammatory origins and is exacerbated by obesity. OBJECTIVE To determine whether a ≥10% reduction in body weight induced by diet, with or without exercise, would improve mechanistic and clinical outcomes more than exercise alone. DESIGN, SETTING, AND PARTICIPANTS Single-blind, 18-month, randomized clinical trial at Wake Forest University between July 2006 and April 2011. The diet and exercise interventions were center-based with options for the exercise groups to transition to a home-based program. Participants were 454 overweight and obese older community-dwelling adults (age ≥55 years with body mass index of 27–41) with pain and radiographic knee OA. INTERVENTIONS Intensive diet-induced weight loss plus exercise, intensive diet-induced weight loss, or exercise. MAIN OUTCOMES AND MEASURES Mechanistic primary outcomes: knee joint compressive force and plasma IL-6 levels; secondary clinical outcomes: self-reported pain (range, 0–20), function (range, 0–68), mobility, and health-related quality of life (range, 0–100). RESULTS At 18 months, 399 participants (88%) completed the study. Compared with exercise participants, knee compressive forces were lower in diet participants and IL-6 levels were lower in diet and diet + exercise participants. 18-mo Outcomes, Mean (95% CI) Exercise(E) Diet (D) D + E Difference,E vs D Difference, Evs D+E Weight loss, kg −1.8(−5.7to1.8) −8.9(−12.4 to −5.3) −10.6(−14.1 to −7.1) Knee compressiveforces, N 2687(2590 to 2784) 2487(2393 to 2581) 2543(2448 to 2637) 200(55 to 345)a 144(1 to 287) IL-6, pg/mL 3.1(2.9 to 3.4) 2.7(2.4 to 3.0) 2.7(2.5 to 3.0) 0.43(0.01 to 0.85)a 0.39(−0.03 to 0.81)a Pain 4.7(4.2 to 5.1) 4.8(4.3 to 5.2) 3.6(3.2 to 4.1) −0.11(−0.81 to 0.59) 1.02(0.33 to 1.71)a Function 18.4(16.9 to 19.9) 17.4(15.9 to 18.9) 14.1(12.6 to 15.6) 0.98(−1.24 to 3.20) 4.29(2.07 to 6.50)a SF-36

  4. Relationship between soy milk intake and radiographic knee joint space narrowing and osteophytes.

    PubMed

    Li, Hui; Zeng, Chao; Wei, Jie; Yang, Tuo; Gao, Shu-Guang; Li, Yu-Sheng; Luo, Wei; Xiao, Wen-Feng; Xiong, Yi-Lin; Lei, Guang-Hua

    2016-09-01

    The purpose of this study was to examine the cross-sectional association between dietary soy milk intake and the prevalence of radiographic knee joint space narrowing (JSN) and osteophytes (OST). Soy milk intake was assessed using a validated semiquantitative food frequency questionnaire and classified into three categories: never,

  5. Microfracture for the treatment of cartilage defects in the knee joint - A golden standard?

    PubMed

    Erggelet, Christoph; Vavken, P

    2016-01-01

    The evidence for the effectiveness of the microfracture procedure is largely derived from case series and few randomized trials. Clinical outcomes improve with microfracture for the most part, but in some studies these effects are not sustained. The quality of cartilage repair following microfracture is variable and inconsistent due to unknown reasons. Younger patients have better clinical outcomes and quality of cartilage repair than older patients. When lesion location was shown to affect microfracture outcome, patients with lesions of the femoral condyle have the best clinical improvements and quality of cartilage repair compared with patients who had lesions in other areas. Patients with smaller lesions have better clinical improvement than patients with larger lesions. The necessity of long postoperative CPM and restricted weight bearing is widely accepted but not completely supported by solid data. Maybe new developments like the scaffold augmented microfracture(6) will show even more consistent clinical and biological results as well as faster rehabilitation for the treatment of small to medium sized cartilage defects in younger individuals. All in all there is limited evidence that micro fracture should be accepted as gold standard for the treatment of cartilage lesions in the knee joint. There is no study available which compares empty controls or non-surgical treatment/physiotherapy with microfracture. According to the literature there is even evidence for self regeneration of cartilage lesions. The natural history of damaged cartilage seems to be written e.g. by inflammatory processes, genetic predisposition and other factors. Possibly that explains the large variety of the clinical outcome after micro fracture and possibly the standard tools for evaluation of new technologies (randomized controlled trials, case series, etc.) are not sufficient (anymore). Future technologies will be evaluated by big data from international registries for earlier

  6. Military Exercises, Knee and Ankle Joint Position Sense, and Injury in Male Conscripts: A Pilot Study

    PubMed Central

    Mohammadi, Farshid; Azma, Kamran; Naseh, Iman; Emadifard, Reza; Etemadi, Yasaman

    2013-01-01

    Context: The high incidence of lower limb injuries associated with physical exercises in military conscripts suggests that fatigue may be a risk factor for injuries. Researchers have hypothesized that lower limb injuries may be related to altered ankle and knee joint position sense (JPS) due to fatigue. Objective: To evaluate if military exercises could alter JPS and to examine the possible relation of JPS to future lower extremity injuries in military service. Design: Cohort study. Setting: Laboratory. Patients or Other Participants: A total of 50 male conscripts (age = 21.4 ± 2.3 years, height = 174.5 ± 6.4 cm, mass = 73.1 ± 6.3 kg) from a unique military base were recruited randomly. Main Outcome Measure(s): Participants performed 8 weeks of physical activities at the beginning of a military course. In the first part of the study, we instructed participants to recognize predetermined positions before and after military exercises so we could examine the effects of military exercise on JPS. The averages of the absolute error and the variable error of 3 trials were recorded. We collected data on the frequency of lower extremity injuries over 8 weeks. Next, the participants were divided into 2 groups: injured and uninjured. Separate 2 × 2 × 2 (group-by-time-by-joint) mixed-model analyses of variance were used to determine main effects and interactions of these factors for each JPS measure. In the second part of the study, we examined whether the effects of fatigue on JPS were related to the development of injury during an 8-week training program. We calculated Hedges effect sizes for JPS changes postexercise in each group and compared change scores between groups. Results: We found group-by-time interactions for all JPS variables (F range = 2.86–4.05, P < .01). All participants showed increases in JPS errors postexercise (P < .01), but the injured group had greater changes for all the variables (P < .01). Conclusions: Military conscripts who sustained lower

  7. Co-simulation of neuromuscular dynamics and knee mechanics during human walking.

    PubMed

    Thelen, Darryl G; Won Choi, Kwang; Schmitz, Anne M

    2014-02-01

    This study introduces a framework for co-simulating neuromuscular dynamics and knee joint mechanics during gait. A knee model was developed that included 17 ligament bundles and a representation of the distributed contact between a femoral component and tibial insert surface. The knee was incorporated into a forward dynamics musculoskeletal model of the lower extremity. A computed muscle control algorithm was then used to modulate the muscle excitations to drive the model to closely track measured hip, knee, and ankle angle trajectories of a subject walking overground with an instrumented knee replacement. The resulting simulations predicted the muscle forces, ligament forces, secondary knee kinematics, and tibiofemoral contact loads. Model-predicted tibiofemoral contact forces were of comparable magnitudes to experimental measurements, with peak medial (1.95 body weight (BW)) and total (2.76 BW) contact forces within 4-17% of measured values. Average root-mean-square errors over a gait cycle were 0.26, 0.42, and 0.51 BW for the medial, lateral, and total contact forces, respectively. The model was subsequently used to predict variations in joint contact pressure that could arise by altering the frontal plane joint alignment. Small variations (±2 deg) in the alignment of the femoral component and tibial insert did not substantially affect the location of contact pressure, but did alter the medio-lateral distribution of load and internal tibia rotation in swing. Thus, the computational framework can be used to virtually assess the coupled influence of both physiological and design factors on in vivo joint mechanics and performance. PMID:24390129

  8. Osteochondritis dissecans of the lateral femoral condyle of the knee joint.

    PubMed

    Mitsuoka, T; Shino, K; Hamada, M; Horibe, S

    1999-01-01

    Differences in the features of osteochondritis dissecans (OCD) affecting the lateral and medial femoral condyles were investigated in 13 patients (14 knees) treated from 1991 to 1994. OCD affected the lateral femoral condyle in 6 knees (lateral group) and the medial condyle in 8 knees (medial group). The lateral group was younger (mean age, 14 v. 20 years). The radiological stage (Brückl) of the lateral group was stage 2 in 3 knees and stage 3 in 3. The lateral menisci were all discoid and the condylar articular surface of the lesions was normal in two knees, softened in 3 and detached in 1. The medial group comprised 1 knee in stage 2, 1 in stage 3, 1 in stage 4, and 5 in stage 5. The OCD lesion showed softening in 2 knees and detachment in 6. Repetitive abnormal stress on weaker osteochondral structures in the growing period produced by a discoid meniscus during growth may cause OCD of the lateral femoral condyle. PMID:10024029

  9. The Pathophysiology of Osteoarthritis: A Mechanical Perspective on the Knee Joint

    PubMed Central

    Vincent, Kevin R.; Conrad, Bryan P.; Fregly, Benjamin J.; Vincent, Heather K.

    2013-01-01

    Osteoarthritis (OA) is the most frequent cause of disability in the United States, with the medial compartment of the knee being the most commonly affected.1 The initiation and progression of knee OA is influenced by many factors including kinematics. In response to loading during weight bearing, cartilage in healthy knees demonstrates spatial adaptations in morphology and mechanical properties. These adaptations allow certain regions of the cartilage to respond to loading while other regions are less well suited to accommodate loading. Alterations in normal knee kinematics shift loading from those cartilage regions adapted for loading to regions less well suited. This leads to the initiation and progression of degenerative processes consistent with knee OA. Kinematic variables associated with the development, progression and severity of knee OA are the adduction moment (Madd) and tibiofemoral rotation. Due to its strong correlation with disease progression and pain, the peak Madd during gait has been identified as a target for treatment design. Gait modification offers a non-invasive option for seeking significant reductions. Gait modification has the potential to reduce pain and slow the progression of medial compartment knee OA. PMID:22632700

  10. Knee braces - unloading

    MedlinePlus

    ... is caused by wear and tear inside your knee joints. Cartilage, the firm, rubbery tissue that cushions all of your bones and joints, lets the bones glide over one another. If ... the knee become weaker. Over time, your whole knee becomes ...

  11. Some new evidence on human joint lubrication.

    PubMed Central

    Unsworth, A; Dowson, D; Wright, V

    1975-01-01

    Theoretical consideration has been given to the use of pendulum machines which are used to examine the frictional properties of human joints by incorporating them as fulcra. As a result, a new type of pendulum machine has been built which incorporates the facility to apply sudden loads to the joint on starting the swinging motion, and also the ability to measure directly the frictional torque experienced by the joint. The results obtained from natural hip joints indicate the presence of squeeze film lubrication under conditions of sudden loading of a joint. In addition, a self-generated fluid film process was observed at low loads while at higher loads boundary lubrication appeared to be important. These results have been used to describe the lubrication regimens occurring in a normal activity such as walking. A single experiment carried out on a hip from a patient suffering from severe rheumatoid arthritis has also been reported and the frictional resistance was seen to be increased fifteenfold compared to a normal hip. Images PMID:1190847

  12. [Stress analysis of artificial bionic knee joint based on UG6.0 NX NASTRAN].

    PubMed

    Shi, Gengqiang

    2014-02-01

    This article introduces the basic principles of finite element analysis in biomechanics, focusing on the basic principles of a variety of finite element analysis software, and their respective characteristics. In addition, it also de scribes the basic stress analysis of UGNX6.0 NASTRAN analysis for artificial knee process, i. e. the choice of the type, material definition, the set of constants, finite element mesh division and the finite element results of the analysis. Finite element analysis and evaluation of the design of personalized artificial knee were carried out, so that the rationality of the geometric design of the structure of the experimental design of artificial knee has been verified. PMID:24804498

  13. A Preclinical Physiological Assay to Test Modulation of Knee Joint Pain in the Spinal Cord: Effects of Oxycodone and Naproxen

    PubMed Central

    Miranda, Jason A.; Stanley, Phil; Gore, Katrina; Turner, Jamie; Dias, Rebecca; Rees, Huw

    2014-01-01

    Sensory processing in the spinal cord during disease states can reveal mechanisms for novel treatments, yet very little is known about pain processing at this level in the most commonly used animal models of articular pain. Here we report a test of the prediction that two clinically effective compounds, naproxen (an NSAID) and oxycodone (an opiate), are efficacious in reducing the response of spinal dorsal horn neurons to noxious knee joint rotation in the monosodium iodoacetate (MIA) sensitized rat. The overall objective for these experiments was to develop a high quality in vivo electrophysiology assay to confidently test novel compounds for efficacy against pain. Given the recent calls for improved preclinical experimental quality we also developed and implemented an Assay Capability Tool to determine the quality of our assay and ensure the quality of our results. Spinal dorsal horn neurons receiving input from the hind limb knee joint were recorded in anesthetized rats 14 days after they were sensitized with 1 mg of MIA. Intravenous administered oxycodone and naproxen were each tested separately for their effects on phasic, tonic, ongoing and afterdischarge action potential counts in response to innocuous and noxious knee joint rotation. Oxycodone reduced tonic spike counts more than the other measures, doing so by up to 85%. Tonic counts were therefore designated the primary endpoint when testing naproxen which reduced counts by up to 81%. Both reductions occurred at doses consistent with clinically effective doses for osteoarthritis. These results demonstrate that clinically effective doses of standard treatments for osteoarthritis reduce pain processing measured at the level of the spinal cord for two different mechanisms. The Assay Capability Tool helped to guide experimental design leading to a high quality and robust preclinical assay to use in discovering novel treatments for pain. PMID:25157947

  14. Robotic Joints Support Horses and Humans

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A rehabilitative device first featured in Spinoff 2003 is not only helping human patients regain the ability to walk, but is now helping our four-legged friends as well. The late James Kerley, a prominent Goddard Space Flight Center researcher, developed cable-compliant mechanisms in the 1980s to enable sounding rocket assemblies and robots to grip or join objects. In cable-compliant joints (CCJs), short segments of cable connect structural elements, allowing for six directions of movement, twisting, alignment, and energy damping. Kerley later worked with Goddard s Wayne Eklund and Allen Crane to incorporate the cable-compliant mechanisms into a walker for human patients to support the pelvis and imitate hip joint movement.

  15. Technique determinants of knee joint loads during cutting in female soccer players.

    PubMed

    Jones, Paul A; Herrington, Lee C; Graham-Smith, Philip

    2015-08-01

    The aim of this study was to investigate the relationships between technique characteristics and knee abduction moments during 90° cuts. A cross sectional design involving 26 elite and sub-elite female soccer players (mean ± SD; age: 21 ± 3.2 years, height: 1.68 ± 0.07 m, and mass: 59.1 ± 6.8 kg) was used to explore relationships between pre-determined technical factors on knee abduction moments during cutting. Three dimensional motion analyses of 90° cuts on the right leg were performed using 'Qualisys Pro Reflex' infrared cameras (240 Hz). Ground reaction forces were collected from two AMTI force platforms (1200 Hz) embedded into the running track to examine 2nd last and last footfalls. Pearson's correlation coefficients, co-efficients of determination and hierarchical multiple regression were used to explore relationships between a range of technique parameters and peak knee abduction moments. Significance was set at p < .05. Hierarchical multiple regression revealed that initial knee abduction angle, lateral leg plant distance and initial lateral trunk lean could explain 67% (62% adjusted) of the variation in peak knee abduction moments (F(1,22) = 8.869, p = .007). These findings reveal potential modifiable technical factors to lower peak knee abduction moments during cutting. PMID:26057866

  16. Teaching knee joint aspiration to medical students-an effective training with long-term benefits.

    PubMed

    Watson, Pippa; Hamilton, Louise; Simpson, Klaudine; Riley, Nicola; Lillicrap, Mark

    2010-08-01

    The objective of this study was to assess the effectiveness of undergraduate training in knee aspiration and to determine the impact this had on subsequent postgraduate clinical practice. This paper is a cohort study of undergraduate training with a cross-sectional questionnaire study of postgraduate practice. The study was held at the University of Cambridge and NHS hospitals in the Eastern Region Postgraduate Deanery (England). The main outcome measures are the undergraduate competence in practical skills in a simulated setting and the differences in postgraduate practice with or without prior undergraduate training in knee aspiration. Implementing an undergraduate training programme in knee aspiration resulted in student competence in this skill. Undergraduate teaching of knee aspiration also improved postgraduate clinical practice, significantly increasing trainee doctor confidence and also increasing the frequency with which knee aspiration was undertaken. Postgraduate reinforcement of learning was identified as an additional requirement. Undergraduate teaching of knee aspiration not only results in competent performance in end of course assessments but also improves postgraduate confidence that potentially translates into improved clinical practice. PMID:20361225

  17. Evaluation of occupational knee-joint stress using liquid crystal thermography: a case study.

    PubMed

    Habes, D J; Bhattacharya, A; Milliron, M

    1994-04-01

    This paper describes a method to detect knee stress using liquid crystal thermography and presents the results of a case study in which the system was applied to two carpet installers. The method involves placing heat-sensitive sheets of film on the knees of workers at various intervals during the work day. The thermographic sheets react to variations in heat by changing colour. The measurements are taken with the worker's knee positioned in an illuminated, enclosed box. Once the patch stabilizes, the exhibited colours are recorded with an 8 mm video camera. The colour pattern, ranging from brown to blue, provides a thermal record of what is believed to be knee stress resulting from installing carpet. The thermographic records are stored in computer memory for subsequent analysis using an AT&T TARGA 16 video board. Custom software allows computation of the area of each distinct colour pattern as a percentage of total patch size. These records provide a characterization of knee response (inflammation) resulting from the biomechanical load sustained by the knee during the carpet installation task. PMID:15676958

  18. The biomechanics and energetics of human running using an elastic knee exoskeleton.

    PubMed

    Elliott, Grant; Sawicki, Gregory S; Marecki, Andrew; Herr, Hugh

    2013-06-01

    While the effects of series compliance on running biomechanics are well documented, the effects of parallel compliance are known only for the simpler case of hopping. As many practical exoskeletal and orthotic designs act in parallel with the leg, it is desirable to understand the effects of such an intervention. Spring-like forces offer a natural choice of perturbation for running, as they are both biologically motivated and energetically inexpensive to implement. To this end, we investigate the hypothesis that the addition of an external elastic element at the knee during the stance phase of running results in a reduction in knee extensor activation so that total joint quasi-stiffness is maintained. An exoskeletal knee brace consisting of an elastic element engaged by a clutch is used to provide this stance phase extensor torque. Motion capture of five subjects is used to investigate the consequences of running with this device. No significant change in leg stiffness or total knee stiffness is observed due to the activation of the clutched parallel knee spring. However, this pilot data suggests differing responses between casual runners and competitive long-distance runners, whose total knee torque is increased by the device. Such a relationship between past training and effective utilization of an external force is suggestive of limitations on the applicability of assistive devices. PMID:24187237

  19. Segmentation of knee joints in x-ray images using decomposition-based sweeping and graph search

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Liu, Xiaomin; Luan, Shuang; Heintz, Philip H.; Mlady, Gary W.; Chen, Danny Z.

    2011-03-01

    Plain radiography (i.e., X-ray imaging) provides an effective and economical imaging modality for diagnosing knee illnesses and injuries. Automatically segmenting and analyzing knee radiographs is a challenging problem. In this paper, we present a new approach for accurately segmenting the knee joint in X-ray images. We first use the Gaussian high-pass filter to remove homogeneous regions which are unlikely to appear on bone contours. We then presegment the bones and develop a novel decomposition-based sweeping algorithm for extracting bone contour topology from the filtered skeletonized images. Our sweeping algorithm decomposes the bone structures into several relatively simple components and deals with each component separately based on its geometric characteristics using a sweeping strategy. Utilizing the presegmentation, we construct a graph to model the bone topology and apply an optimal graph search algorithm to optimize the segmentation results (with respect to our cost function defined on the bone boundaries). Our segmented results match well with the manual tracing results by radiologists. Our segmentation approach can be a valuable tool for assisting radiologists and X-ray technologists in clinical practice and training.

  20. The Effects of NMDA Antagonists on Neuronal Activity in Cat Spinal Cord Evoked by Acute Inflammation in the Knee Joint.

    PubMed

    Schaible, Hans-Georg; Grubb, Blair D.; Neugebauer, Volker; Oppmann, Maria

    1991-01-01

    In alpha-chloralose-anaesthetized, spinalized cats we examined the effects of NMDA antagonists on the discharges of 71 spinal neurons which had afferent input from the knee joint. These neurons were rendered hyperexcitable by acute arthritis in the knee induced by kaolin and carrageenan. They were located in the deep dorsal and ventral horn and some of them had ascending axons. The N-methyl-d-aspartate (NMDA) antagonists ketamine and d-2-amino-5-phosphonovalerate (AP5), were administered ionophoretically, and ketamine was also administered intravenously. In some of the experiments the antagonists were tested against the agonists NMDA and quisqualate. The effects of the NMDA antagonists consisted of a significant reduction in the resting activity of neurons and/or the responses of the same neurons to mechanical stimulation of the inflamed knee. Intravenous ketamine was most effective in suppressing the resting and mechanically evoked activity in 25 of 26 neurons tested. Ionophoretically applied ketamine had a suppressive effect in 11 of 21 neurons, and AP5 decreased activity in 17 of 24 cells. The reduction in the resting and/or the mechanically evoked discharges was achieved with doses of the antagonists which suppressed the responses to NMDA but not those to quisqualate. These results suggest that NMDA receptors are involved in the enhanced responses and basal activity of spinal neurons induced by inflammation in the periphery. PMID:12106256

  1. Knee arthroscopy - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100117.htm Knee arthroscopy - series To use the sharing features on ... 5 out of 5 Normal anatomy Overview The knee is a complex joint made up of the ...

  2. Knee braces - unloading

    MedlinePlus

    ... most people talk about the arthritis in their knees, they are referring to a type of arthritis ... is caused by wear and tear inside your knee joints. Cartilage, the firm, rubbery tissue that cushions ...

  3. A Practical Strategy for sEMG-Based Knee Joint Moment Estimation During Gait and Its Validation in Individuals With Cerebral Palsy

    PubMed Central

    Kwon, Suncheol; Stanley, Christopher J.; Kim, Jung; Kim, Jonghyun; Damiano, Diane L.

    2013-01-01

    Individuals with cerebral palsy have neurological deficits that may interfere with motor function and lead to abnormal walking patterns. It is important to know the joint moment generated by the patient’s muscles during walking in order to assist the suboptimal gait patterns. In this paper, we describe a practical strategy for estimating the internal moment of a knee joint from surface electromyography (sEMG) and knee joint angle measurements. This strategy requires only isokinetic knee flexion and extension tests to obtain a relationship between the sEMG and the knee internal moment, and it does not necessitate comprehensive laboratory calibration, which typically requires a 3-D motion capture system and ground reaction force plates. Four estimation models were considered based on different assumptions about the functions of the relevant muscles during the isokinetic tests and the stance phase of walking. The performance of the four models was evaluated by comparing the estimated moments with the gold standard internal moment calculated from inverse dynamics. The results indicate that an optimal estimation model can be chosen based on the degree of cocontraction. The estimation error of the chosen model is acceptable (normalized root-mean-squared error: 0.15–0.29, R: 0.71–0.93) compared to previous studies (Doorenbosch and Harlaar, 2003; Doorenbosch and Harlaar, 2004; Doorenbosch, Joosten, and Harlaar, 2005), and this strategy provides a simple and effective solution for estimating knee joint moment from sEMG. PMID:22410952

  4. Abrasion resistance of oxidized zirconium in comparison with CoCrMo and titanium nitride coatings for artificial knee joints.

    PubMed

    Galetz, Mathias C; Fleischmann, Ernst W; Konrad, Christian H; Schuetz, Adelheid; Glatzel, Uwe

    2010-04-01

    Most total knee replacement joints consist of a metal femoral component made from a cobalt-chromium- molybdenum (CoCrMo)-alloy and a tibial component with an ultrahigh molecular weight polyethylene (UHMWPE) bearing surface. Wear of the UHMWPE remains the primary disadvantage of these implants. The allergic potential ascribed to CoCrMo-alloys is a further concern. Other metallic alloys with and without ceramic coatings are clinically used to avoid these problems. This study compared the mechanical surface properties of an oxidized zirconium alloy with those of cast and wrought CoCrMo and TiAlV6-4. Additionally, the influence of a titanium nitride (TiN)-plasma coating on the surface properties was investigated. The composition of the oxidized zirconium layer was analyzed. Micro- and macrohardness tests as well as adhesion tests were used to reveal material differences in terms of their abrasive wear potential in artificial joints. PMID:20162723

  5. Good validity and reliability of the forgotten joint score in evaluating the outcome of total knee arthroplasty.

    PubMed

    Thomsen, Morten G; Latifi, Roshan; Kallemose, Thomas; Barfod, Kristoffer W; Husted, Henrik; Troelsen, Anders

    2016-06-01

    Background and purpose - When evaluating the outcome after total knee arthroplasty (TKA), increasing emphasis has been put on patient satisfaction and ability to perform activities of daily living. To address this, the forgotten joint score (FJS) for assessment of knee awareness has been developed. We investigated the validity and reliability of the FJS. Patients and methods - A Danish version of the FJS questionnaire was created according to internationally accepted standards. 360 participants who underwent primary TKA were invited to participate in the study. Of these, 315 were included in a validity study and 150 in a reliability study. Correlation between the Oxford knee score (OKS) and the FJS was examined and test-retest evaluation was performed. A ceiling effect was defined as participants reaching a score within 15% of the maximum achievable score. Results - The validity study revealed a strong correlation between the FJS and the OKS (intraclass correlation coefficient (ICC) = 0.81, 95% CI: 0.77-0.85; p < 0.001). The test-retest evaluation showed almost perfect reliability for the FJS total score (ICC = 0.91, 95% CI: 0.88-0.94) and substantial reliability or better for individual items of the FJS (ICC? 0.79). We found a high level of internal consistency (Cronbach's? = 0.96). The ceiling effect for the FJS was 16%, as compared to 37% for the OKS. Interpretation - The FJS showed good construct validity and test-retest reliability. It had a lower ceiling effect than the OKS. The FJS appears to be a promising tool for evaluation of small differences in knee performance in groups of patients with good clinical results after TKA. PMID:26937689

  6. Good validity and reliability of the forgotten joint score in evaluating the outcome of total knee arthroplasty

    PubMed Central

    Thomsen, Morten G; Latifi, Roshan; Kallemose, Thomas; Barfod, Kristoffer W; Husted, Henrik; Troelsen, Anders

    2016-01-01

    Background and purpose When evaluating the outcome after total knee arthroplasty (TKA), increasing emphasis has been put on patient satisfaction and ability to perform activities of daily living. To address this, the forgotten joint score (FJS) for assessment of knee awareness has been developed. We investigated the validity and reliability of the FJS. Patients and methods A Danish version of the FJS questionnaire was created according to internationally accepted standards. 360 participants who underwent primary TKA were invited to participate in the study. Of these, 315 were included in a validity study and 150 in a reliability study. Correlation between the Oxford knee score (OKS) and the FJS was examined and test-retest evaluation was performed. A ceiling effect was defined as participants reaching a score within 15% of the maximum achievable score. Results The validity study revealed a strong correlation between the FJS and the OKS (intraclass correlation coefficient (ICC) = 0.81, 95% CI: 0.77–0.85; p < 0.001). The test-retest evaluation showed almost perfect reliability for the FJS total score (ICC = 0.91, 95% CI: 0.88–0.94) and substantial reliability or better for individual items of the FJS (ICC? 0.79). We found a high level of internal consistency (Cronbach’s? = 0.96). The ceiling effect for the FJS was 16%, as compared to 37% for the OKS. Interpretation The FJS showed good construct validity and test-retest reliability. It had a lower ceiling effect than the OKS. The FJS appears to be a promising tool for evaluation of small differences in knee performance in groups of patients with good clinical results after TKA. PMID:26937689

  7. Computational investigation of the time-dependent contact behaviour of the human tibiofemoral joint under body weight

    PubMed Central

    Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-01-01

    The knee joint is one of the most common sites for osteoarthritis, the onset and progression of which are believed to relate to the mechanical environment of cartilage. To understand this environment, it is necessary to take into account the complex biphasic contact interactions of the cartilage and menisci. In this study, the time-dependent contact behaviour of an intact and a meniscectomized human tibiofemoral joint was characterized under body weight using a computational model. Good agreement in the contact area and femoral displacement under static loads were found between model predictions of this study and published experimental measurements. The time-dependent results indicated that as loading time progressed, the contact area and femoral vertical displacement of both intact and meniscectomized joints increased. More load was transferred to the cartilage–cartilage interface over time. However, the portions of load borne by the lateral and medial compartments did not greatly vary with time. Additionally, during the whole simulation period, the maximum compressive stress in the meniscectomized joint was higher than that in the intact joint. The fluid pressure in the intact and meniscectomized joints remained remarkably high at the condyle centres, but the fluid pressure at the cartilage–meniscus interface decreased faster than that at the condyle centres as loading time progressed. The above findings provide further insights into the mechanical environment of the cartilage and meniscus within the human knee joint. PMID:25500864

  8. Modulation of the Relationship Between External Knee Adduction Moments and Medial Joint Contact Forces Across Subjects and Activities

    PubMed Central

    Trepczynski, Adam; Kutzner, Ines; Bergmann, Georg; Taylor, William R; Heller, Markus O

    2014-01-01

    Objective The external knee adduction moment (EAM) is often considered a surrogate measure of the distribution of loads across the tibiofemoral joint during walking. This study was undertaken to quantify the relationship between the EAM and directly measured medial tibiofemoral contact forces (Fmed) in a sample of subjects across a spectrum of activities. Methods The EAM for 9 patients who underwent total knee replacement was calculated using inverse dynamics analysis, while telemetric implants provided Fmed for multiple repetitions of 10 activities, including walking, stair negotiation, sit-to-stand activities, and squatting. The effects of the factors “subject” and “activity” on the relationships between Fmed and EAM were quantified using mixed-effects regression analyses in terms of the root mean square error (RMSE) and the slope of the regression. Results Across subjects and activities a good correlation between peak EAM and Fmed values was observed, with an overall R2 value of 0.88. However, the slope of the linear regressions varied between subjects by up to a factor of 2. At peak EAM and Fmed, the RMSE of the regression across all subjects was 35% body weight (%BW), while the maximum error was 127 %BW. Conclusion The relationship between EAM and Fmed is generally good but varies considerably across subjects and activities. These findings emphasize the limitation of relying solely on the EAM to infer medial joint loading when excessive directed cocontraction of muscles exists and call for further investigations into the soft tissue–related mechanisms that modulate the internal forces at the knee. PMID:24470261

  9. Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization.

    PubMed

    Ohnishi, Takashi; Suzuki, Masahiko; Kobayashi, Tatsuya; Naomoto, Shinji; Sukegawa, Tomoyuki; Nawata, Atsushi; Haneishi, Hideaki

    2013-01-01

    Previously, we proposed a 2D/3D registration method that uses Powell's algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell's algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell's algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell's algorithm with the Nelder-Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell's algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell's algorithm alone. PMID:23138929

  10. Neuro-sliding mode control with modular models for control of knee-joint angle using quadriceps electrical stimulation.

    PubMed

    Ajoudani, Arash; Erfanian, Abbas

    2007-01-01

    In this paper, we propose a control methodology which is based on synergistic combination of a single-neuron controller with sliding mode control (SMC) for control of knee-joint position in paraplegic subjects with quadriceps stimulation. The control law will be switched from the sliding mode control to neural control, when the state trajectory of system enters in some boundary layer around the sliding surface. The main drawback of the standard sliding modes is mostly related to the so-called chattering caused by the high-frequency control switching. The value of switching gain depends on the bounds of system uncertainties. The system with large uncertainties needs to use a higher switching gain. This will, however, result in the high-frequency control switching and chattering across the sliding surface. To avoid such a condition, it is necessary to decrease the system uncertainty. To decrease the uncertainty, an accurate model of the system is required. For this purpose, we present a modular approach to modeling the knee-joint dynamics. Extensive experiments on healthy and paraplegic subjects are provided to demonstrate the robustness, stability and tracking accuracy of the neuro-SMC. The experimental results show that the neuro-SMC provides excellent tracking control for different reference trajectories and could generate control signals to compensate the muscle fatigue. PMID:18002483

  11. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis

    PubMed Central

    Pauli, C.; Grogan, S.P.; Patil, S.; Otsuki, S.; Hasegawa, A.; Koziol, J.; Lotz, M.K.; D’Lima, D.D.

    2011-01-01

    Objective Meniscus lesions following trauma or associated with osteoarthritis (OA) have been described, yet meniscus aging has not been systematically analyzed. The objectives of this study were to (i) establish standardized protocols for representative macroscopic and microscopic analysis, (ii) improve existing scoring systems, and (iii) apply these techniques to a large number of human menisci. Design Medial and lateral menisci from 107 human knees were obtained and cut in two different planes (triangle/crossection and transverse/horizontal) in three separate locations (mid portion, anterior and posterior horns). All sections included vascular and avascular regions and were graded for i) surface integrity, ii) cellularity, iii) matrix/fiber organization and collagen alignment, and iv) Safranin-O staining intensity. The cartilage in all knee compartments was also scored. Results The new macroscopic and microscopic grading systems showed high inter-reader and intra-reader intraclass correlation coefficients. The major age-related changes in menisci in joints with no or minimal OA included increased Safranin-O staining intensity, decreased cell density, the appearance of acellular zones, and evidence of mucoid degeneration with some loss of collagen fiber organization. The earliest meniscus changes occurred predominantly along the inner rim. Menisci from OA joints showed severe fibrocartilaginous separation of the matrix, extensive fraying, tears and calcification. Abnormal cell arrangements included decreased cellularity, diffuse hypercellularity along with cellular hypertrophy and abnormal cell clusters. In general, the anterior horns of both medial and lateral menisci were less affected by age and OA. Conclusions New standardized protocols and new validated grading systems allowed us to conduct a more systematic evaluation of changes in aging and OA menisci at a macroscopic and microscopic level. Several meniscus abnormalities appear to be specific to aging in

  12. Detection of cracks in polyethylene components of retrieved knee joint prostheses.

    PubMed

    Koizumi, M; Tomita, N; Tamai, S; Oonishi, H; Ikada, Y

    1998-01-01

    Subsurface cracks that had formed in polyethylene artificial knee components were observed nondestructively with a new method, scanning acoustic tomography (SAT). Standardization of the SAT observation was done by in-vitro rolling fatigue testing on an unimplanted ultra high molecular weight polyethylene (UHMWPE) knee component. Retrieved knee components were of two types; KOM (Kyocera, Kyoto, Japan) sterilized with ethylene oxide gas, and MG (Zimmer, IN, USA) sterilized with gamma-irradiation. The SAT images revealed cracks in all the retrieved components, and these existed mainly 0. 3-1.0 mm from the surface. Comparison of crack formation in each portion of the contact area of the polyethylene components showed that the middle portion of the MG type had the highest concentration of cracks. When the distribution of compressive stress on the polyethylene components was assessed by mechanical testing, the strongest compressive stress was seen in the middle portion of MG type components. PMID:9811985

  13. Research on Human-Robot Joint System for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    The lunar exploration in China is in progress. In order to reduce human workload and costs, and conduct researches more effectively and efficiently, human-robot joint systems are necessary for lunar exploration. The concept of human-robot joint system for lunar exploration is studied in this paper. The possible collaborative ways between human and robots and the collaborative activities which can be conducted for lunar exploration are discussed. Moreover, the preliminary configuration of a human-robot joint system is presented.

  14. The effects of neuromuscular exercise on medial knee joint load post-arthroscopic partial medial meniscectomy: ‘SCOPEX’ a randomised control trial protocol

    PubMed Central

    2012-01-01

    Background Meniscectomy is a risk factor for knee osteoarthritis, with increased medial joint loading a likely contributor to the development and progression of knee osteoarthritis in this group. Therefore, post-surgical rehabilitation or interventions that reduce medial knee joint loading have the potential to reduce the risk of developing or progressing osteoarthritis. The primary purpose of this randomised, assessor-blind controlled trial is to determine the effects of a home-based, physiotherapist-supervised neuromuscular exercise program on medial knee joint load during functional tasks in people who have recently undergone a partial medial meniscectomy. Methods/design 62 people aged 30–50 years who have undergone an arthroscopic partial medial meniscectomy within the previous 3 to 12 months will be recruited and randomly assigned to a neuromuscular exercise or control group using concealed allocation. The neuromuscular exercise group will attend 8 supervised exercise sessions with a physiotherapist and will perform 6 exercises at home, at least 3 times per week for 12 weeks. The control group will not receive the neuromuscular training program. Blinded assessment will be performed at baseline and immediately following the 12-week intervention. The primary outcomes are change in the peak external knee adduction moment measured by 3-dimensional analysis during normal paced walking and one-leg rise. Secondary outcomes include the change in peak external knee adduction moment during fast pace walking and one-leg hop and change in the knee adduction moment impulse during walking, one-leg rise and one-leg hop, knee and hip muscle strength, electromyographic muscle activation patterns, objective measures of physical function, as well as self-reported measures of physical function and symptoms and additional biomechanical parameters. Discussion The findings from this trial will provide evidence regarding the effect of a home-based, physiotherapist

  15. The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs.

    PubMed

    Petit, Philippe; Trosseille, Xavier; Dufaure, Nicolas; Dubois, Denis; Potier, Pascal; Vallancien, Guy

    2014-11-01

    In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur. This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome. In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler). The mass of the equipped sled was 74.5 kg. The test matrix was designed to perform 4 tests in 4 configurations combining two upper body masses (either 0 or 3 kg) and two knee angles (0 or 20 degrees) at 40 kph (11 m/s) plus 2 tests at 9 m/s. Autopsies were performed on the lower limbs and an injury assessment was established. The findings of this study were first that the increase of the upper body mass resulted in more severe injuries, second that an initial flexion of the knee, corresponding to its natural position during the gait cycle, decreased the severity of the injuries, and third that based on the injury outcome, a test conducted with no upper body mass and the knee fully extended was as severe as a test conducted with a 3 kg upper body mass and an initial knee flexion of 20°. PMID:26192955

  16. Clinical and Instrumented Measurements of Hip Laxity and Their Associations With Knee Laxity and General Joint Laxity

    PubMed Central

    Fan, Lixia; Copple, Timothy J.; Tritsch, Amanda J.; Shultz, Sandra J.

    2014-01-01

    Context: Hip-joint laxity may be a relevant anterior cruciate ligament injury risk factor. With no devices currently available to measure hip laxity, it is important to determine if clinical measurements sufficiently capture passive displacement of the hip. Objective: To examine agreement between hip internal-external–rotation range of motion measured clinically (HIERROM) versus internal-external–rotation laxity measured at a fixed load (HIERLAX) and to determine their relationships with knee laxity (anterior-posterior [KAPLAX], varus-valgus [KVVLAX], and internal-external rotation [KIERLAX]) and general joint laxity (GJL). Design Cross-sectional study. Setting: Controlled research laboratory. Patients or Other Participants: Thirty-two healthy adults (16 women, 16 men; age = 25.56 ± 4.08 years, height = 170.94 ± 10.62 cm, weight = 68.86 ± 14.89 kg). Main Outcome Measure(s): Participants were measured for HIERROM, HIERLAX at 0° and 30° hip flexion (−10 Nm, 7 Nm), KAPLAX (−90 N to 133 N), KVVLAX (±10 Nm), KIERLAX (±5 Nm), and GJL. We calculated Pearson correlations and 95% limits of agreement between HIERROM and HIERLAX_0° and HIERLAX_30°. Correlation analyses examined the strength of associations between hip laxity, knee laxity, and GJL. Results: The HIERROM and HIERLAX had similar measurement precision and were strongly correlated (r > 0.78). However, HIERROM was systematically smaller in magnitude than HIERLAX at 0° (95% limits of agreement = 29.0° ± 22.3°) and 30° (21.4° ± 19.3°). The HIERROM (r = 0.51–0.66), HIERLAX_0° (r = 0.52–0.69) and HIERLAX_30° (r = 0.53–0.76) were similarly correlated with knee laxity measures and GJL. The combinations of KVVLAX and either HIERROM, HIERLAX_0°, or HIERLAX_30° (R2 range, 0.42–0.44) were the strongest predictors of GJL. Conclusions: Although HIERROM and HIERLAX differed in magnitude, they were measured with similar consistency and precision and were similarly correlated with knee laxity

  17. Distinct horizontal patterns in the spatial organization of superficial zone chondrocytes of human joints

    PubMed Central

    Rolauffs, Bernd; Williams, James M.; Grodzinsky, Alan J.; Kuettner, Klaus E.; Cole, Ada A.

    2008-01-01

    A better understanding of the unique cellular and functional properties of the superficial zone of articular cartilage may aid current strategies in tissue engineering which attempts a layered design for the repair of cartilage lesions to avert or postpone the onset of osteoarthritis. However, data pertaining to the cellular organization of non-degenerated superficial zone of articular cartilage is not available for most human joints. The present study analyzed the arrangement of chondrocytes of non-degenerated human joints (shoulder, elbow, knee, and ankle) by using fluorescence microscopy of the superficial zone in a top-down view. The resulting horizontal chondrocyte arrangements were tested for randomness, homogeneity or a significant grouping via point pattern analysis and were correlated with the joint type in which they occurred. The present study demonstrated that human superficial chondrocytes occurred in four distinct patterns of strings, clusters, pairs or single chondrocytes. Those patterns represented a significant grouping (p<0.0001) with horizontal alignment. Each articular joint surface was dominated by only one of these four patterns (p<0.001). Specific patterns correlated with specific diarthrodial joint types (p<0.001). Further studies need to establish whether these organizational patterns are a consequence of their surrounding environment or whether they are linked to a functional purpose. PMID:18325787

  18. Distinct horizontal patterns in the spatial organization of superficial zone chondrocytes of human joints.

    PubMed

    Rolauffs, Bernd; Williams, James M; Grodzinsky, Alan J; Kuettner, Klaus E; Cole, Ada A

    2008-05-01

    A better understanding of the unique cellular and functional properties of the superficial zone of articular cartilage may aid current strategies in tissue engineering which attempts a layered design for the repair of cartilage lesions to avert or postpone the onset of osteoarthritis. However, data pertaining to the cellular organization of non-degenerated superficial zone of articular cartilage is not available for most human joints. The present study analyzed the arrangement of chondrocytes of non-degenerated human joints (shoulder, elbow, knee, and ankle) by using fluorescence microscopy of the superficial zone in a top-down view. The resulting horizontal chondrocyte arrangements were tested for randomness, homogeneity or a significant grouping via point pattern analysis and were correlated with the joint type in which they occurred. The present study demonstrated that human superficial chondrocytes occurred in four distinct patterns of strings, clusters, pairs or single chondrocytes. Those patterns represented a significant grouping (p < 0.0001) with horizontal alignment. Each articular joint surface was dominated by only one of these four patterns (p < 0.001). Specific patterns correlated with specific diarthrodial joint types (p < 0.001). Further studies need to establish whether these organizational patterns are a consequence of their surrounding environment or whether they are linked to a functional purpose. PMID:18325787

  19. A low cost wearable optical-based goniometer for human joint monitoring

    NASA Astrophysics Data System (ADS)

    Lim, Chee Kian; Luo, Zhiqiang; Chen, I.-Ming; Yeo, Song Huat

    2011-03-01

    Widely used in the fields of physical and occupational therapy, goniometers are indispensible when it comes to angular measurement of the human joint. In both fields, there is a need to measure the range of motion associated with various joints and muscle groups. For example, a goniometer may be used to help determine the current status of the range of motion in bend the arm at the elbow, bending the knee, or bending at the waist. The device can help to establish the range of motion at the beginning of the treatment series, and also allow the therapist to monitor progress during subsequent sessions. Most commonly found are the mechanical goniometers which are inexpensive but bulky. As the parts are mechanically linked, accuracy and resolution are largely limited. On the other hand, electronic and optical fiberbased goniometers promise better performance over its mechanical counterpart but due to higher cost and setup requirements does not make it an attractive proposition as well. In this paper, we present a reliable and non-intrusive design of an optical-based goniometer for human joint measurement. This device will allow continuous and longterm monitoring of human joint motion in everyday setting. The proposed device was benchmarked against mechanical goniometer and optical based motion capture system to validate its performance. From the empirical results, it has been proven that this design can be use as a robust and effective wearable joint monitoring device.

  20. Analysis of human knee osteoarthritic cartilage using polarization sensitive second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Grønhaug, Kirsten M.; Romijn, Elisabeth I.; Drogset, Jon O.; Lilledahl, Magnus B.

    2014-05-01

    Osteoarthritis is one of the most prevalent joint diseases in the world. Although the cause of osteoarthritis is not exactly clear, the disease results in a degradation of the quality of the articular cartilage including collagen and other extracellular matrix components. We have investigated alterations in the structure of collagen fibers in the cartilage tissue of the human knee using mulitphoton microscopy. Due to inherent high nonlinear susceptibility, ordered collagen fibers present in the cartilage tissue matrix produces strong second harmonic generation (SHG) signals. Significant morphological differences are found in different Osteoarthritic grades of cartilage by SHG microscopy. Based on the polarization analysis of the SHG signal, we find that a few locations of hyaline cartilage (mainly type II collagen) is being replaced by fibrocartilage (mainly type I cartilage), in agreement with earlier literature. To locate the different types and quantify the alteration in the structure of collagen fiber, we employ polarization-SHG microscopic analysis, also referred to as _-tensor imaging. The image analysis of p-SHG image obtained by excitation polarization measurements would represent different tissue constituents with different numerical values at pixel level resolution.

  1. Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models

    PubMed Central

    van IJsseldijk, E. A.; Valstar, E. R.; Stoel, B. C.; Nelissen, R. G. H. H.; Baka, N.; van’t Klooster, R.

    2016-01-01

    Objectives An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. Materials and Methods A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans. Results The SSM-based measurement method was more robust (consistent output for a wide range of input data/consistent output under varying measurement circumstances) than the conventional 2D method, showing that the 3D reconstruction indeed reduces the influence of patient positioning. However, the SSM-based method showed comparable sensitivity to changes in the mJSW with respect to the conventional method. The CT-based measurement was more accurate than the SSM-based measurement (smallest detectable differences 0.55 mm versus 0. 82 mm, respectively). Conclusion The proposed measurement method is not a substitute for the conventional 2D measurement due to limitations in the SSM model accuracy. However, further improvement of the model accuracy and optimisation technique can be obtained. Combined with the promising options for applications using quantitative information on bone morphology, SSM based 3D reconstructions of natural knees are attractive for further development. Cite this article: E. A. van IJsseldijk, E. R. Valstar, B. C. Stoel, R. G. H. H. Nelissen, N. Baka, R. van

  2. Effects of muscle strength asymmetry between left and right on isokinetic strength of the knee and ankle joints depending on athletic performance level

    PubMed Central

    Jeon, Kyoungkyu; Chun, Sungyung; Seo, Byoungdo

    2016-01-01

    [Purpose] The aim of this study was to collect basic data on the effect of asymmetry on the muscle strength of the left and right knee and ankle joints of soccer players at varying athletic performance levels, to guide the development of improved exercise programs. [Subjects and Methods] Forty-nine soccer players at three athletic performance levels participated: 15 professional, 16 amateur, and 18 college. Knee extensor and flexor strength were measured at 60°/sec and 180°/sec, and ankle plantar flexor and dorsiflexor strength were measured at 30°/sec and at 120°/sec. Variables were analyzed by one-way ANOVA. [Results] College soccer players showed greater muscle strength at 60°/sec and 180°/sec in the knee extension muscles of both the right and the left sides, lower muscle strength at 30°/sec and 120°/sec in the dorsiflexor of the right ankle, and similar levels of asymmetry between left and right. The maximum muscle strength on the same side significantly differed in the right ankle joint, with asymmetry between left and right at 30°/sec and 120°/sec. [Conclusion] These findings suggest that muscle strength asymmetry in the ankle joint may lead to counterbalancing muscle strengthening of the knee joint to maintain the center of body mass. PMID:27190469

  3. Effects of muscle strength asymmetry between left and right on isokinetic strength of the knee and ankle joints depending on athletic performance level.

    PubMed

    Jeon, Kyoungkyu; Chun, Sungyung; Seo, Byoungdo

    2016-04-01

    [Purpose] The aim of this study was to collect basic data on the effect of asymmetry on the muscle strength of the left and right knee and ankle joints of soccer players at varying athletic performance levels, to guide the development of improved exercise programs. [Subjects and Methods] Forty-nine soccer players at three athletic performance levels participated: 15 professional, 16 amateur, and 18 college. Knee extensor and flexor strength were measured at 60°/sec and 180°/sec, and ankle plantar flexor and dorsiflexor strength were measured at 30°/sec and at 120°/sec. Variables were analyzed by one-way ANOVA. [Results] College soccer players showed greater muscle strength at 60°/sec and 180°/sec in the knee extension muscles of both the right and the left sides, lower muscle strength at 30°/sec and 120°/sec in the dorsiflexor of the right ankle, and similar levels of asymmetry between left and right. The maximum muscle strength on the same side significantly differed in the right ankle joint, with asymmetry between left and right at 30°/sec and 120°/sec. [Conclusion] These findings suggest that muscle strength asymmetry in the ankle joint may lead to counterbalancing muscle strengthening of the knee joint to maintain the center of body mass. PMID:27190469

  4. Kinematics of the human knee using an open chain cadaver model.

    PubMed

    Blaha, J David; Mancinelli, Corrie A; Simons, William H; Kish, Vincent L; Thyagarajan, Ganesh

    2003-05-01

    There continues to be controversy about the kinematics of the human knee. This study used seven knees from cadavers moved by pulling on the quadriceps tendon in an open chain fashion using video motion analysis to determine the instantaneous helical axis of movement. Computed tomography scans of the specimens allowed the axes to be related to condyles. The parameter beta was defined by the relationship of the helical axis to the center of the condyle (pure spinning motion) and the contact point of the condyle on the tibia (pure rolling motion). Axes above the center of the condyle represent countertranslation, those between the center and the contact point combined spinning and rolling, and those below represent concordant translation. If the motion of the knee is guided by the crossed four-bar link then this model, that allows the knee to 'seek its own path' throughout the range of motion, should show the rollback that commonly is thought to be an important feature of knee motion. The results of this study show that the medial side of the knee stays stable in spinning kinematics whereas the lateral side has a rolling motion in full flexion progressing to a spinning motion in midflexion and counter-translation near full extension. The kinematics that would be expected from rollback were not observed. PMID:12771814

  5. 75% success rate after open debridement, exchange of tibial insert, and antibiotics in knee prosthetic joint infections

    PubMed Central

    Thórhallsdóttir, Valdís Gudrún; Robertsson, Otto; W-Dahl, Annette; Stefánsdóttir, Anna

    2015-01-01

    Background and purpose Prosthetic joint infection (PJI) is a leading cause of early revision after total knee arthroplasty (TKA). Open debridement with exchange of tibial insert allows treatment of infection with retention of fixed components. We investigated the success rate of this procedure in the treatment of knee PJIs in a nationwide material, and determined whether the results were affected by microbiology, antibiotic treatment, or timing of debridement. Patients and methods 145 primary TKAs revised for the first time, due to infection, with debridement and exchange of the tibial insert were identified in the Swedish Knee Arthroplasty Register (SKAR). Staphylococcus aureus was the most common pathogen (37%) followed by coagulase-negative staphylococci (CNS) (23%). Failure was defined as death before the end of antibiotic treatment, revision of major components due to infection, life-long antibiotic treatment, or chronic infection. Results The overall healing rate was 75%. The type of infecting pathogen did not statistically significantly affect outcome. Staphylococcal infections treated without a combination of antibiotics including rifampin had a higher failure rate than those treated with rifampin (RR = 4, 95% CI: 2–10). In the 16 cases with more than 3 weeks of symptoms before treatment, the healing rate was 62%, as compared to 77% in the other cases (p = 0.2). The few patients with a revision model of prosthesis at primary operation had a high failure rate (5 of 8). Interpretation Good results can be achieved by open debridement with exchange of tibial insert. It is important to use an antibiotic combination including rifampin in staphylococcal infections. PMID:25753311

  6. Morphological variants of lateral meniscus of the knee: a cadaveric study in South Indian human fetuses.

    PubMed

    Murlimanju, B V; Nair, Narga; Ray, Biswabina; Pai, Mangala M; Amin, Soumya; Pai, Shakuntala R

    2011-06-01

    In the present study, the objectives were to study the morphology of the lateral menisci (LMs) in human fetuses from a South Indian population and to verify the developmental etiology of the discoid lateral meniscus (DLM). The study included 106 fetal knee joints which were fixed in 10% formalin. After dissecting the joints, the morphological variants of the shapes of the LMs were macroscopically noted and classified as discoid and nondiscoid. The nondiscoids were subdivided into C-shaped and crescentic. The discoid lateral menisci (DLMs) were divided into complete and incomplete discoid. From our observations, 82.1% of the LMs were found to be nondiscoid. Among them, 62.3% were C-shaped and 19.8% were crescentic. The remaining 17.9% of the LMs had a discoid shape, and among these, 14.1% were incomplete discoid and 3.8% were completely discoid. Bilaterality of the discoid shape was observed in 26.6% of the cases. There was a female preponderance (11:8) among LMs with discoid morphology. In conclusion, the prevalence of DLM according to the present study was estimated as 17.9%. Our findings favor Kaplan's theory, as the majority of the fetuses of various gestational ages had nondiscoid LMs. Even the youngest fetus (CRL 88 mm, 14 weeks of gestation) exhibited a lateral tibial plateau that was incompletely covered by the meniscus, which did not exhibit a discoid shape. We believe that the DLM is anomalous and arises through variant morphogenesis. PMID:20549581

  7. Altered knee joint neuromuscular control during landing from a jump in 10-15 year old children with Generalised Joint Hypermobility. A substudy of the CHAMPS-study Denmark.

    PubMed

    Junge, Tina; Wedderkopp, Niels; Thorlund, Jonas Bloch; Søgaard, Karen; Juul-Kristensen, Birgit

    2015-06-01

    Generalised Joint Hypermobility (GJH) is considered an intrinsic risk factor for knee injuries. Knee neuromuscular control during landing may be altered in GJH due to reduced passive stability. The aim was to identify differences in knee neuromuscular control during landing of the Single-Leg-Hop-for-Distance test (SLHD) in 25 children with GJH compared to 29 children without GJH (controls), all 10-15years. Inclusion criteria for GJH: Beighton score⩾5/9 and minimum one hypermobile knee. EMG was recorded from the quadriceps, the hamstring and the calf muscles, presented relative to Maximum Voluntary Electrical activity (MVE). There was no difference in jump length between groups. Before landing, GJH had 33% lower Semitendinosus, but 32% higher Gastrocnemius Medialis activity and 39% higher co contraction of the lateral knee muscles, than controls. After landing, GJH had 36% lower Semitendinosus activity than controls, all significant findings. Although the groups performed equally in SLHD, GJH had a Gastrocnemius Medialis dominated neuromuscular strategy before landing, plausibly caused by reduced Semitendinosus activity. Reduced Semitendinosus activity was seen in GJH after landing, but with no compensatory Gastrocnemius Medialis activity. Reduced pre and post-activation of the Semitendinosus may present a risk factor for traumatic knee injuries as ACL ruptures in GJH with knee hypermobility. PMID:25801907

  8. Osteoarthritis-like pathologic changes in the knee joint induced by environmental disruption of circadian rhythms is potentiated by a high-fat diet

    PubMed Central

    Kc, Ranjan; Li, Xin; Forsyth, Christopher B.; Voigt, Robin M.; Summa, Keith C.; Vitaterna, Martha Hotz; Tryniszewska, Beata; Keshavarzian, Ali; Turek, Fred W.; Meng, Qing-Jun; Im, Hee-Jeong

    2015-01-01

    A variety of environmental factors contribute to progressive development of osteoarthritis (OA). Environmental factors that upset circadian rhythms have been linked to various diseases. Our recent work establishes chronic environmental circadian disruption - analogous to rotating shiftwork-associated disruption of circadian rhythms in humans - as a novel risk factor for the development of OA. Evidence suggests shift workers are prone to obesity and also show altered eating habits (i.e., increased preference for high-fat containing food). In the present study, we investigated the impact of chronic circadian rhythm disruption in combination with a high-fat diet (HFD) on progression of OA in a mouse model. Our study demonstrates that when mice with chronically circadian rhythms were fed a HFD, there was a significant proteoglycan (PG) loss and fibrillation in knee joint as well as increased activation of the expression of the catabolic mediators involved in cartilage homeostasis. Our results, for the first time, provide the evidence that environmental disruption of circadian rhythms plus HFD potentiate OA-like pathological changes in the mouse joints. Thus, our findings may open new perspectives on the interactions of chronic circadian rhythms disruption with diet in the development of OA and may have potential clinical implications. PMID:26584570

  9. Effects of exercise on knee joints with osteoarthritis: a pilot study of biologic markers

    NASA Technical Reports Server (NTRS)

    Bautch, J. C.; Malone, D. G.; Vailas, A. C.

    1997-01-01

    OBJECTIVE: To determine the effects of low intensity weight-bearing exercise on osteoarthritis (OA) of the knee. METHODS: Synovial fluid keratan sulfate (KS) and hydroxyproline were measured as markers of cartilage degradation. The Arthritis Impact Measurement Scales (AIMS) were used to measure health status, and a visual analog scale for pain assessment was used before and after intervention. An exercise (EX) group (n = 15) received a thrice-weekly 12-week low intensity exercise program and a weekly educational program, and a minimal treatment (Min RX) group (n = 15) received only the education program. RESULTS: Pain levels declined in the EX group, and the Min RX group showed improvement on the AIMS. Synovial fluid was obtained in 11 subjects before and after the intervention. Levels of KS and hydroxyproline did not change. CONCLUSION: Further study of exercise effects should include both clinical and biologic parameters to examine the outcome of exercise as a therapeutic intervention in OA of the knee.

  10. A new approach to implant alignment and ligament balancing in total knee arthroplasty focussing on joint loads.

    PubMed

    Zimmermann, Frauke; Schwenninger, Christoph; Nolten, Ulrich; Firmbach, Franz Peter; Elfring, Robert; Radermacher, Klaus

    2012-08-01

    Preservation and recovery of the mechanical leg axis as well as good rotational alignment of the prosthesis components and well-balanced ligaments are essential for the longevity of total knee arthroplasty (TKA). In the framework of the OrthoMIT project, the genALIGN system, a new navigated implantation approach based on intra-operative force-torque measurements, has been developed. With this system, optical or magnetic position tracking as well as any fixation of invasive rigid bodies are no longer necessary. For the alignment of the femoral component along the mechanical axis, a sensor-integrated instrument measures the torques resulting from the deviation between the instrument's axis and the mechanical axis under manually applied axial compression load. When both axes are coaxial, the resulting torques equal zero, and the tool axis can be fixed with respect to the bone. For ligament balancing and rotational alignment of the femoral component, the genALIGN system comprises a sensor-integrated tibial trial inlay measuring the amplitude and application points of the forces transferred between femur and tibia. Hereby, the impact of ligament tensions on knee joint loads can be determined over the whole range of motion. First studies with the genALIGN system, including a comparison with an imageless navigation system, show the feasibility of the concept. PMID:22868781

  11. Energy expended and knee joint load accumulated when walking, running, or standing for the same amount of time.

    PubMed

    Miller, Ross H; Edwards, W Brent; Deluzio, Kevin J

    2015-01-01

    Evidence suggests prolonged bouts of sitting are unhealthy, and some public health messages have recently recommended replacing sitting with more standing. However, the relative benefits of replacing sitting with standing compared to locomotion are not known. Specifically, the biomechanical consequences of standing compared to other sitting-alternatives like walking and running are not well known and are usually not considered in studies on sitting. We compared the total knee joint load accumulated (TKJLA) and the total energy expended (TEE) when performing either walking, running, or standing for a common exercise bout duration (30 min). Walking and running both (unsurprisingly) had much more TEE than standing (+300% and +1100%, respectively). TKJLA was similar between walking and standing and 74% greater in running. The results suggest that standing is a poor replacement for walking and running if one wishes to increases energy expenditure, and may be particularly questionable for use in individuals at-risk for knee osteoarthritis due to its surprisingly high TKJLA (just as high as walking, 56% of the load in running) and the type of loading (continuous compression) it places on cartilage. However, standing has health benefits as an "inactivity interrupter" that extend beyond its direct energy expenditure. We suggest that future studies on standing as an inactivity intervention consider the potential biomechanical consequences of standing more often throughout the day, particularly in the case of prolonged bouts of standing. PMID:25455208

  12. Histochemical study on the atrophy of the quadriceps femoris muscle caused by knee joint injuries of rats.

    PubMed

    Okada, Y

    1989-03-01

    Atrophy developing in the quadriceps femoris muscle following knee injury is one of the serious problems not only in the field of orthopedics but also of rehabilitation. However the pathogenesis of this atrophy has not yet been elucidated. The author therefore produced a complex ligament injury model using the knee joints of rats in order to study the pathogenesis of this atrophy. After severing the anterior cruciate ligament, the medial collateral ligament and tibial insertion of the medial meniscus of rats, these animals were sacrificed at 4, 8 and 12 weeks. After removing the vastus lateralis muscle, vastus medialis muscle, and rectus femoris muscle, specimens of these muscles were stained for ATPase. The transection area of the muscle fibers was measured and the fiber type composition was determined. At 4 weeks the vastus medialis muscle and at 12 weeks the vastus lateralis muscle showed marked atrophy. The rectus femoris muscle exhibited the least atrophy throughout the entire observation period. In examining the atrophy of the quadriceps femoris muscle by muscle fiber type, the degree of atrophy was found to differ among the venters and even the same venter showed a different reaction depending on the elapsed time after sustaining the injury. Neither changes in the fiber type composition not neurogenic findings could be observed. PMID:2526800

  13. Compartment Syndrome Following Arthroscopic Removal of a Bullet in the Knee Joint after a Low-Velocity Gunshot Injury

    PubMed Central

    Yalçin, Sercan; Oltulu, İsmail; Erdil, Mehmet Emin; Örmeci, Tuğrul

    2016-01-01

    Gunshot injuries are getting more frequently reported while the civilian (nongovernmental) armament increases in the world. A 42-year-old male patient presented to emergency room of Istanbul Medipol University Hospital due to a low-velocity gunshot injury. We detected one entry point on the posterior aspect of the thigh, just superior to the popliteal groove. No exit wound was detected on his physical examination. There was swelling around the knee and range of motion was limited due to pain and swelling. Neurological and vascular examinations were intact. Following the initial assessment, the vascular examination was confirmed by doppler ultrasonography of the related extremity. There were no signs of compartment syndrome in the preoperative physical examination. A bullet was detected in the knee joint on the initial X-rays. Immediately after releasing the tourniquet, swelling of the anterolateral compartment of the leg and pulse deficiency was detected on foot in the dorsalis pedis artery. Although the arthroscopic removal of intra-articular bullets following gunshot injuries seems to have low morbidity rates, it should always be considered that the articular capsule may have been ruptured and the fluids used during the operation may leak into surrounding tissues and result in compartment syndrome. PMID:26929809

  14. Effect of physical exercise and age on knee joint position sense.

    PubMed

    Ribeiro, Fernando; Oliveira, José

    2010-01-01

    This study aimed to test the hypotheses that knee position sense declines with age and that regular exercise can attenuate that decline. This cross-sectional study encompassed 69 older and 60 young adults divided in four groups (exercised-old, N=31; non-exercised-old, N=38; exercised-young, N=35; non-exercised-young, N=25) according to chronological age and exercise practice in the past year. Knee position sense was measured by open kinetic chain technique and active positioning and is reported as the absolute and relative angular error. Knee angles were determined by computer analysis of videotape images using the Ariel Performance Analysis System. Compared to their non-exercised counterparts, exercised-young and -old showed lower absolute and relative angular errors. The absolute (1.62+/-0.71 degrees) and relative errors (0.02+/-1.65 degrees) for exercised-young were lower than all other groups (p<0.001). The absolute and relative errors of exercised-old (4.27+/-2.49 degrees and 5.51+/-3.42 degrees) were similar to non-exercised-young (4.74+/-2.67 degrees and 4.18+/-3.40 degrees). The non-exercised-old exhibited higher absolute (9.35+/-4.34 degrees) and relative errors (9.73+/-5.15 degrees) than all other groups (p<0.001). The present data indicates that age has deleterious effects on knee position sense although regular exercise can attenuate that age-related decline. PMID:19716189

  15. Comparison of tumor curettage and resection for treatment of giant cell tumor of the bone around the knee joint

    PubMed Central

    Zhang, Sheng; Zhang, Jianhua; Wang, Xin

    2016-01-01

    Objective: To analyze the efficacies of tumor curettage and resection for treatment of giant cell tumor of the bone (GCTB) around the knee joint (KJ). Methods: A total of 126 KJ-GCTB cases were treated at our department from August 2011 to February 2015. These cases were divided into two groups (A and B) according to treatment methods. Group A underwent tumor curettage, while group B underwent tumor resection. Results: The relapse rates did not differ significantly between the groups (P>0.05), while the complication rate in group A was significantly lower than that in group B (P<0.05). In addition, the Enneking score for group A was significantly higher than that for group B (P<0.05); in addition, postoperative local recurrence, histopathological grading according to Jaffe, and radiographic imaging-based Campanacci’s staging positively correlated (P<0.05). Conclusion: Tumor curettage was the preferred surgical approach for patients with KJ-GCTB.

  16. Altered Spinal MicroRNA-146a and the MicroRNA-183 Cluster Contribute to Osteoarthritic Pain in Knee Joints

    PubMed Central

    Li, Xin; Kroin, Jeffrey S; Kc, Ranjan; Gibson, Gary; Chen, Di; Corbett, Grant T; Pahan, Kalipada; Fayyaz, Sana; Kim, Jae-Sung; van Wijnen, Andre J.; Suh, Joon; Kim, Su-Gwan; Im, Hee-Jeong

    2015-01-01

    Objective Examine whether altered expression of microRNAs in central nervous system components is pathologically linked to chronic knee joint pain in osteoarthritis. Methods A surgical animal model for knee joint OA was generated by medial meniscus transection in rats followed by behavioral pain tests. Relationships between pathological changes in knee joint and development of chronic joint pain were examined by histology and imaging analyses. Alterations in microRNAs associated with OA-evoked pain sensation were determined in bilateral lumbar dorsal root ganglia (DRG) and the spinal dorsal horn by microRNA array followed by individual microRNA analyses. Gain- and loss-of-function studies of selected microRNAs (miR-146a and miR-183 cluster) were conducted to identify target pain mediators regulated by these selective microRNAs in glial cells. Results The ipsilateral hind leg displayed significantly increased hyperalgesia after 4 weeks of surgery and sensitivity was sustained for the remainder of the 8 week experimental period (F=341, P<0.001). The development of OA-induced chronic pain was correlated with pathological changes in the knee joints as assessed by histological and imaging analyses. MicroRNA analyses showed that miR-146a and the miR-183 cluster were markedly reduced in the sensory neurons in DRG (L4/L5) and spinal cord from animals experiencing knee joint OA pain. The downregulation of miR-146a and/or the miR-183 cluster in the central compartments (DRG and spinal cord) are closely associated with the upregulation of inflammatory pain mediators. The corroboration between decreases in these signature microRNAs and their specific target pain mediators were further confirmed by gain- and loss-of-function analyses in glia, the major cellular component of the central nervous system (CNS). Conclusion MicroRNA therapy using miR-146a and the miR-183 cluster could be powerful therapeutic intervention for OA in alleviating joint pain and concomitantly regenerating

  17. Differences Regarding Branded HA in Italy, Part 2: Data from Clinical Studies on Knee, Hip, Shoulder, Ankle, Temporomandibular Joint, Vertebral Facets, and Carpometacarpal Joint

    PubMed Central

    Migliore, A.; Bizzi, E.; De Lucia, O.; Delle Sedie, A.; Tropea, S.; Bentivegna, M.; Mahmoud, A.; Foti, C.

    2016-01-01

    OBJECTIVES The aim of the current study is to collect scientific data on all branded hyaluronic acid (HA) products in Italy that are in use for intra-articular (IA) injection in osteoarthritis (OA) compared with that reported in the leaflet. METHODS An extensive literature research was performed for all articles reporting data on the IA use of HA in OA. Selected studies were taken into consideration only if they are related to products based on HAs that are currently marketed in Italy with the specific joint indication for IA use in patients affected by OA. RESULTS Sixty-two HA products are marketed in Italy: 30 products are indicated for the knee but only 8 were proved with some efficacy; 9 products were effective for the hip but only 6 had hip indication; 7 products proved to be effective for the shoulder but only 3 had the indication; 5 products proved effective for the ankle but only one had the indication; 6 products were effective for the temporomandibular joint but only 2 had the indication; only 2 proved effective for vertebral facet joints but only 1 had the indication; and 5 products proved effective for the carpometacarpal joint but only 2 had the indication. CONCLUSIONS There are only a few products with some evidences, while the majority of products remain without proof. Clinicians and regulators should request postmarketing studies from pharmaceuticals to corroborate with that reported in the leaflet and to gather more data, allowing the clinicians to choose the adequate product for the patient. PMID:27279754

  18. Contributions of biarticular myogenic components to the limitation of the range of motion after immobilization of rat knee joint

    PubMed Central

    2014-01-01

    Background Muscle atrophy caused by immobilization in the shortened position is characterized by a decrease in the size or cross-sectional area (CSA) of myofibers and decreased muscle length. Few studies have addressed the relationship between limitation of the range of motion (ROM) and the changes in CSA specifically in biarticular muscles after atrophy because of immobilization. We aimed to determine the contribution of 2 distinct muscle groups, the biarticular muscles of the post thigh (PT) and those of the post leg (PL), to the limitation of ROM as well as changes in the myofiber CSAs after joint immobilization surgery. Methods Male Wistar rats (n = 40) were randomly divided into experimental and control groups. In the experimental group, the left knee was surgically immobilized by external fixation for 1, 2, 4, 8, or 16 weeks (n = 5 each) and sham surgery was performed on the right knee. The rats in the control groups (n = 3 per time point) did not undergo surgery. After the indicated immobilization periods, myotomy of the PT or PL biarticular muscles was performed and the ROM was measured. The hamstrings and gastrocnemius muscles from the animals operated for 1 or 16 weeks were subjected to morphological analysis. Results In immobilized knees, the relative contribution of the PT biarticular myogenic components to the total restriction reached 80% throughout the first 4 weeks and decreased thereafter. The relative contribution of the PL biarticular myogenic components remained <20% throughout the immobilization period. The ratio of the myofiber CSA of the immobilized to that of the sham-operated knees was significantly lower at 16 weeks after surgery than at 1 week after surgery only in the hamstrings. Conclusions The relative contribution of the PT and PL components to myogenic contracture did not significantly change during the experimental period. However, the ratio of hamstrings CSAs to the sham side was larger than the ratio of medial

  19. Finite element analysis of human joints

    SciTech Connect

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.

  20. In vivo conductivity imaging of human knee using 3 mA injection current in MREIT

    NASA Astrophysics Data System (ADS)

    Jeong, W. C.; Kim, Y. T.; Minhas, A. S.; Lee, T. H.; Kim, H. J.; Nam, H. S.; Kwon, O.; Woo, E. J.

    2010-04-01

    Recent in vivo human leg MREIT experiments showed successful conductivity image reconstructions using carbon-hydrogel electrodes and optimized RF coils. However, it is still difficult to perform in vivo human and disease model animal experiments primarily due to a long scan time and high injection current of about 9 mA. Compared to previous MREIT pulse sequences, a newly developed multi-echo pulse sequence provides a higher SNR of MR magnitude image and better quality of magnetic flux density data. Unlike the human calf, the knee has sensitive nerve bundles and mainly consists of the bone. In this study, we tried to obtain high-resolution conductivity images of in vivo human knees using the multi-echo pulse sequence. We injected as much as 3 mA current in the form of an 81 ms pulse into the knee without producing a painful sensation and motion artifacts. Reconstructed conductivity images well distinguish different parts of the subcutaneous adipose tissue, muscle, synovial capsule, cartilage and bone inside the knee. Considering clinical applications, future work should be focused on in vivo human and disease model animal experiments.

  1. Photoacoustic tomography of small-animal and human peripheral joints

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Chamberland, David L.; Fowlkes, J. Brian; Carson, Paul L.; Jamadar, David A.

    2008-02-01

    As an emerging imaging technology that combines the merits of both light and ultrasound, photoacoustic tomography (PAT) holds promise for screening and diagnosis of inflammatory joint diseases such as rheumatoid arthritis. In this study, the feasibility of PAT in imaging small-animal joints and human peripheral joints in a noninvasive manner was explored. Ex vivo rat tail and fresh cadaveric human finger joints were imaged. Based on the intrinsic optical contrast, intra- and extra-articular tissue structures in the joints were visualized successfully. Using light in the near-infrared region, the imaging depth of PAT is sufficient for cross-sectional imaging of a human peripheral joint as a whole organ. PAT, as a novel imaging modality with unique advantages, may contribute significantly to the early diagnosis of inflammatory joint disorders and accurate monitoring of disease progression and response to therapy.

  2. Fibronectin Splice Variation in Human Knee Cartilage, Meniscus and Synovial Membrane: Observations in Osteoarthritic Knee

    PubMed Central

    Scanzello, Carla R.; Markova, Dessislava Z.; Chee, Ana; Xiu, Yan; Adams, Sherrill L.; Anderson, Greg; Zgonis, Miltiadis; Qin, Ling; An, Howard S.; Zhang, Yejia

    2014-01-01

    Objective Fibronectin (FN) is a widely expressed molecule that can participate in development of osteoarthritis (OA) affecting cartilage, meniscus, and synovial membrane (SM). The alternatively spliced isoforms of FN in joint tissues other than cartilage have not been extensively studied previously. The present study compares FN splice variation in patients with varying degrees of osteoarthritic change. Design Joint tissues were collected from asymptomatic donors and patients undergoing arthroscopic procedures. Total RNA was amplified by PCR using primers flanking alternatively spliced Extra Domain A (EDA), Extra Domain B (EDB) and Variable (V) regions. Results EDB+, EDB− and EDA− and V+ variants were present in all joint tissues, while the EDA+ variant was rarely detected. Expression levels of EDB+ and EDV+ variants were similar in cartilage, synovium and meniscal tissues. Synovial expression of V+ FN in arthroscopy patients varied with degree of cartilage degeneration. Two V− isoforms, previously identified in cartilage, were also present in SM and meniscus. Conclusions Fibronectin splicing in meniscus and SM bears striking resemblance to that of cartilage. Expression levels of synovial V+ FN varied with degree of cartilage degeneration. V+ FN should be investigated as a potential biomarker of disease stage or progression in larger populations. PMID:25410897

  3. Composition of joint fluid in patients undergoing total knee replacement and revision arthroplasty: correlation with flow properties.

    PubMed

    Mazzucco, Dan; Scott, Richard; Spector, Myron

    2004-08-01

    The protein, phospholipid and hyaluronic acid (HA) contents of joint fluid samples were determined in specimens obtained from patients undergoing total knee arthroplasty (TKA) and revision TKA. It was hypothesized that these components would vary widely among patients undergoing TKA, and that the composition of joint fluid in patients undergoing revision would differ from that in patients undergoing revision. It was further hypothesized that HA concentration and molecular weight would principally determine the flow properties previously reported. Biochemical assays were used to assess protein and phospholipid content, and size exclusion chromatography was used to determine HA concentration and molecular weight. Sixty samples were included in the study. HA, protein, and phospholipid concentrations all varied widely in patients undergoing index TKA and revision TKA. HA concentration was lower in patients undergoing revision arthroplasty due to wear-related failure compared to patients undergoing the index procedure (0.9 +/- 0.4 mg/ml versus 1.3 +/- 0.5 mg/ml, mean +/- standard deviation, p = 0.04). Other components were not different between the groups. Flow properties at high shear rates were correlated with HA concentration and, to a lesser extent, HA molecular weight, but neither protein nor phospholipid concentration. The composition of joint fluid is highly variable in the context of arthroplasty. Much of the variation in flow properties, especially at high shear rate, is explained by large variation in HA concentration and small variation in HA molecular weight. The variation in composition and lower HA concentration in joints necessitating revision may relate to variation in arthroplasty lubrication leading to highly variable wear rates and clinical outcomes. PMID:15046934

  4. A comparison of optimisation methods and knee joint degrees of freedom on muscle force predictions during single-leg hop landings.

    PubMed

    Mokhtarzadeh, Hossein; Perraton, Luke; Fok, Laurence; Muñoz, Mario A; Clark, Ross; Pivonka, Peter; Bryant, Adam L

    2014-09-22

    The aim of this paper was to compare the effect of different optimisation methods and different knee joint degrees of freedom (DOF) on muscle force predictions during a single legged hop. Nineteen subjects performed single-legged hopping manoeuvres and subject-specific musculoskeletal models were developed to predict muscle forces during the movement. Muscle forces were predicted using static optimisation (SO) and computed muscle control (CMC) methods using either 1 or 3 DOF knee joint models. All sagittal and transverse plane joint angles calculated using inverse kinematics or CMC in a 1 DOF or 3 DOF knee were well-matched (RMS error<3°). Biarticular muscles (hamstrings, rectus femoris and gastrocnemius) showed more differences in muscle force profiles when comparing between the different muscle prediction approaches where these muscles showed larger time delays for many of the comparisons. The muscle force magnitudes of vasti, gluteus maximus and gluteus medius were not greatly influenced by the choice of muscle force prediction method with low normalised root mean squared errors (<48%) observed in most comparisons. We conclude that SO and CMC can be used to predict lower-limb muscle co-contraction during hopping movements. However, care must be taken in interpreting the magnitude of force predicted in the biarticular muscles and the soleus, especially when using a 1 DOF knee. Despite this limitation, given that SO is a more robust and computationally efficient method for predicting muscle forces than CMC, we suggest that SO can be used in conjunction with musculoskeletal models that have a 1 or 3 DOF knee joint to study the relative differences and the role of muscles during hopping activities in future studies. PMID:25129166

  5. Efficacy of radiation synovectomy (radiosynovectomy or radiosynoviorthesis) with yttrium-90 in exudative inflammation of synovial membrane of knee joints in patients with rheumatic diseases – preliminary report

    PubMed Central

    Węgierska, Małgorzata; Barczyńska, Tacjana; Waszczak, Marzena; Żuchowski, Paweł; Jeka, Sławomir

    2016-01-01

    Objectives Hypertrophic and exudative synovitis of the knee is one of the earliest symptoms in rheumatic diseases. In the case of pharmacotherapy failure, other methods which directly remove the inflamed synovial membrane are used – synovectomies. Radiosynovectomy (RSV) is the radiopharmaceutical application of colloidal solution to joint cavities. In this study, the authors assessed the efficacy of knee radiosynovectomy with yttrium-90 (Y-90) in several groups of patients divided into certain rheumatic diseases. Material and methods The study group consisted of 70 patients aged from 29 to 65 years with hypertrophic and exudative synovitis of the knee in rheumatic diseases such as rheumatoid arthritis, osteoarthrosis and spondyloarthropathies. Radiopharmaceutical colloid of Y-90, with a radiation dose of 185-222 MBq in a volume of 2-3 ml, was administered to joint. Then the knee joint was immobilized for 72 h. During visits V1, V2, V3 and V4, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were measured and ultrasound of the knee was performed. Disease activity was evaluated by the WOMAC scale, HAQ and 100-mm visual analog scale (VAS). Results The most significant difference of synovial hypertrophy, before and after the procedure, was obtained in patients with rheumatoid arthritis. Variability of effusion before and after the procedure in all groups was comparable and statistically significant. The greatest improvement in variability of inflammatory parameters, before and 4 weeks after radiosynovectomy, was observed in patients with rheumatoid arthritis. Conclusions In the therapeutic algorithm radiosynovectomy should be located between conservative treatment and operative procedures. Radiosynovectomy does not require hospitalization or prolonged rehabilitation. Radiosynoviorthesis affects the patient's general condition, which is associated with eliminating pain and restoring joint function. PMID:27407269

  6. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction

    PubMed Central

    Mastbergen, Simon C; Jones, Elena; Calder, Stuart J; Lafeber, Floris P J G; McGonagle, Dennis

    2016-01-01

    Objectives Knee joint distraction (KJD) is a novel, but poorly understood, treatment for osteoarthritis (OA) associated with remarkable ‘spontaneous’ cartilage repair in which resident synovial fluid (SF) multipotential mesenchymal stromal cells (MSCs) may play a role. We hypothesised that SF hyaluronic acid (HA) inhibited the initial interaction between MSCs and cartilage, a key first step to integration, and postulate that KJD environment favoured MSC/cartilage interactions. Methods Attachment of dual-labelled SF-MSCs were assessed in a novel in vitro human cartilage model using OA and rheumatoid arthritic (RA) SF. SF was digested with hyaluronidase (hyase) and its effect on adhesion was observed using confocal microscopy. MRI and microscopy were used to image autologous dual-labelled MSCs in an in vivo canine model of KJD. SF-HA was investigated using gel electrophoresis and densitometry. Results Osteoarthritic-synovial fluid (OA-SF) and purified high molecular weight (MW) HA inhibited SF-MSC adhesion to plastic, while hyase treatment of OA-SF but not RA-SF significantly increased MSC adhesion to cartilage (3.7-fold, p<0.05) These differences were linked to the SF mediated HA-coat which was larger in OA-SF than in RA-SF. OA-SF contained >9 MDa HA and this correlated with increases in adhesion (r=0.880). In the canine KJD model, MSC adhesion to cartilage was evident and also dependent on HA MW. Conclusions These findings highlight an unappreciated role of SF-HA on MSC interactions and provide proof of concept that endogenous SF-MSCs are capable of adhering to cartilage in a favourable biochemical and biomechanical environment in OA distracted joints, offering novel one-stage strategies towards joint repair. PMID:25948596

  7. Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes.

    PubMed

    Williamson, R; Andrews, B J

    2001-05-01

    Knee joint angle and angular velocity were calculated in real time during standing up and sitting down. Two small modules comprising rate gyroscopes and accelerometers were attached to the thigh and shank of two able-bodied volunteers and one T5 ASIA(A) paraplegic assisted by functional electrical stimulation (FES). The offset and drift of the rate gyroscopes was compensated for by auto-resetting and auto-nulling algorithms. The tilt of the limb segments was calculated by combining the signals of the accelerometer and the rate gyroscope. The joint angle was calculated as the difference in tilt of the segments. The modules were also tested on a two-dimensional model. The mean differences between the rate gyroscope-accelerometer system and the reference goniometer for the model, able-bodied and paraplegic standing trials were 2.1 degrees, 2.4 degrees and 2.3 degrees respectively for knee angle and 2.3 degrees s(-1), 5.0 degrees s(-1) and 11.8 degrees s(-1) respectively for knee velocity. The rate gyroscope-accelerometer system was more accurate than using the accelerometer as a tilt meter, possibly due to the greater bandwidth of the rate gyroscope-accelerometer system. PMID:11465883

  8. Hip or knee replacement - after - what to ask your doctor

    MedlinePlus

    ... PA: Elsevier Mosby; 2012:chap 7. Read More Hip joint replacement Hip pain Knee joint replacement Knee pain ... joint replacement - discharge Taking care of your new hip joint Update Date 3/5/2015 Updated by: C. ...

  9. Hip or knee replacement - before - what to ask your doctor

    MedlinePlus

    ... PA: Elsevier Mosby; 2012:chap 7. Read More Hip joint replacement Hip pain Knee joint replacement Knee pain ... joint replacement - discharge Taking care of your new hip joint Update Date 3/5/2015 Updated by: C. ...

  10. Wear Testing of Moderate Activities of Daily Living Using In Vivo Measured Knee Joint Loading

    PubMed Central

    Reinders, Jörn; Sonntag, Robert; Vot, Leo; Gibney, Christian; Nowack, Moritz; Kretzer, Jan Philippe

    2015-01-01

    Resumption of daily living activities is a basic expectation for patients provided with total knee replacements. However, there is a lack of knowledge regarding the impact of different activities on the wear performance. In this study the wear performance under application of different daily activities has been analyzed. In vivo load data for walking, walking downstairs/upstairs, sitting down/standing up, and cycling (50 W & 120 W) has been standardized for wear testing. Wear testing of each activity was carried out on a knee wear simulator. Additionally, ISO walking was tested for reasons of comparison. Wear was assessed gravimetrically and wear particles were analyzed. In vivo walking produced the highest overall wear rates, which were determined to be three times higher than ISO walking. Moderate wear rates were determined for walking upstairs and downstairs. Low wear rates were determined for standing up/sitting down and cycling at power levels of 50 W and 120 W. The largest wear particles were observed for cycling. Walking based on in vivo data has been shown to be the most wear-relevant activity. Highly demanding activities (stair climbing) produced considerably less wear. Taking into account the expected number of loads, low-impact activities like cycling may have a greater impact on articular wear than highly demanding activities. PMID:25811996

  11. Heterotopic Ossification Circumferentia Articularis (HOCA) of Both Knee Joints After Guillain-Barré Syndrome

    PubMed Central

    Vaishya, Raju; Vijay, Vipul; Vaish, Abhishek

    2016-01-01

    Heterotopic ossification (HO) is the abnormal development of bone within soft tissue. It is a frequent complication after traumatic as well as atraumatic central nervous system (CNS) insult. It has rarely been found to be associated with Guillain-Barré syndrome (GBS). Only a few cases of HO associated with GBS have been reported so far in medical literature. We present a 30-year-old female patient with severe bilateral knee stiffness following axonal polyneuropathy type of GBS that developed 10 months ago in her immediate post-partum period. She was put on mechanical ventilation for two weeks. She was diagnosed as HO based on clinical and radiological studies. This is an extremely unusual presentation of HO encircling both the knees following GBS without any other well-known risk factors. We have coined a new nomenclature—Heterotopic Ossification Circumferentia Articularis (HOCA)—for this type of presentation. In our patient, various factors such as prolonged ICU stay, mechanical ventilation, hypoxia, and long-standing hypomobility could be attributed to the development of this severe form of HO. PMID:27004157

  12. Multibody dynamic simulation of knee contact mechanics

    PubMed Central

    Bei, Yanhong; Fregly, Benjamin J.

    2006-01-01

    Multibody dynamic musculoskeletal models capable of predicting muscle forces and joint contact pressures simultaneously would be valuable for studying clinical issues related to knee joint degeneration and restoration. Current three-dimensional multi-body knee models are either quasi-static with deformable contact or dynamic with rigid contact. This study proposes a computationally efficient methodology for combining multibody dynamic simulation methods with a deformable contact knee model. The methodology requires preparation of the articular surface geometry, development of efficient methods to calculate distances between contact surfaces, implementation of an efficient contact solver that accounts for the unique characteristics of human joints, and specification of an application programming interface for integration with any multibody dynamic simulation environment. The current implementation accommodates natural or artificial tibiofemoral joint models, small or large strain contact models, and linear or nonlinear material models. Applications are presented for static analysis (via dynamic simulation) of a natural knee model created from MRI and CT data and dynamic simulation of an artificial knee model produced from manufacturer’s CAD data. Small and large strain natural knee static analyses required 1 min of CPU time and predicted similar contact conditions except for peak pressure, which was higher for the large strain model. Linear and nonlinear artificial knee dynamic simulations required 10 min of CPU time and predicted similar contact force and torque but different contact pressures, which were lower for the nonlinear model due to increased contact area. This methodology provides an important step toward the realization of dynamic musculoskeletal models that can predict in vivo knee joint motion and loading simultaneously. PMID:15564115

  13. Horses and cows might teach us about human knees

    NASA Astrophysics Data System (ADS)

    Holland, C.; Vollrath, F.; Gill, H. S.

    2014-04-01

    Our comparative study of the knees of horses and cows (paraphrased as highly evolved joggers and as domesticated couch-potatoes, respectively) demonstrates significant differences in the posterior sections of bovine and equine tibial cartilage, which are consistent with specialisation for gait. These insights were possible using a novel analytical measuring technique based on the shearing of small biopsy samples, called dynamic shear analysis. We assert that this technique could provide a powerful new tool to precisely quantify the pathology of osteoarthritis for the medical field.

  14. Bone loss during revision of unicompartmental to total knee arthroplasty: an analysis of implanted polyethylene thickness from the National Joint Registry data.

    PubMed

    Sarraf, Khaled M; Konan, Sujith; Pastides, Philip S; Haddad, Fares S; Oussedik, Sam

    2013-10-01

    Using the National Joint Registry (UK) database, we compared the thickness of polyethylene (PE) and the level of constraint used during primary total knee arthroplasty (TKA) versus the revision of unicondylar knee arthroplasty (UKA) to TKA. A total of 251,803 TKA procedures and 374 revision UKA-TKA procedures between 2003 and 2009 were reviewed. The commonest PE size used in TKA was 10mm, compared to 12.79 mm in the revision group. The use of constrained knee implant was required in 2.15% of primary TKA and 4.19% of UKA to TKA revisions. The revision of UKA to TKA is a more complex procedure compared to primary TKA, with a higher incidence of using constrained implants and thicker PE inserts. These findings may be useful for surgeons in their decision making. PMID:23538124

  15. The mechanics and energetics of human walking and running: a joint level perspective

    PubMed Central

    Farris, Dominic James; Sawicki, Gregory S.

    2012-01-01

    Humans walk and run at a range of speeds. While steady locomotion at a given speed requires no net mechanical work, moving faster does demand both more positive and negative mechanical work per stride. Is this increased demand met by increasing power output at all lower limb joints or just some of them? Does running rely on different joints for power output than walking? How does this contribute to the metabolic cost of locomotion? This study examined the effects of walking and running speed on lower limb joint mechanics and metabolic cost of transport in humans. Kinematic and kinetic data for 10 participants were collected for a range of walking (0.75, 1.25, 1.75, 2.0 m s−1) and running (2.0, 2.25, 2.75, 3.25 m s−1) speeds. Net metabolic power was measured by indirect calorimetry. Within each gait, there was no difference in the proportion of power contributed by each joint (hip, knee, ankle) to total power across speeds. Changing from walking to running resulted in a significant (p = 0.02) shift in power production from the hip to the ankle which may explain the higher efficiency of running at speeds above 2.0 m s−1 and shed light on a potential mechanism behind the walk–run transition. PMID:21613286

  16. Three year joint space narrowing predicts long term incidence of knee surgery in patients with osteoarthritis: an eight year prospective follow up study

    PubMed Central

    Bruyere, O; Richy, F; Reginster, J

    2005-01-01

    Objective: To assess the clinical relevance of mean and minimum femorotibial joint space narrowing (JSN) for predicting future osteoarthritis related surgery in patients with knee osteoarthritis. Methods: 126 subjects with primary knee osteoarthritis were followed prospectively for a mean eight years. Minimum and mean joint space width (JSW) were assessed from standard x rays at baseline and after a follow up of three years. The rate of knee osteoarthritis related surgery was recorded for the following five years. Results: After a mean follow up of eight years, 16 patients (12.7%) had received osteoarthritis related joint surgery. The areas under the curves (AUC) resulting from the receiver operating characteristic curve analyses for predicting osteoarthritis surgery were 0.73 (p = 0.006) for minimum JSN and 0.55 (p = 0.54) for mean JSN. The cut off for minimum JSN maximising sensitivity and specificity for predicting future surgery was a change of 0.7 mm or more in minimum joint space width over a period of three years. However, no meaningful differences were observed for cut off values between 0.5 and 0.8 mm The relative risk (adjusted for age, body mass index, baseline symptoms, and baseline JSW) of experiencing osteoarthritis related surgery during the eight year of follow up was 5.15 (95% confidence interval, 1.70 to 15.60) (p = 0.004) in patients with a minimum joint space narrowing of 0.7 mm or more during the first three years of the study. Conclusions: A cut off of 0.5 to 0.8 mm in minimum JSN, measured on standard x rays, reflects a clinically relevant progression in patients with knee osteoarthritis. PMID:15843444

  17. Multi-Disciplinary Antimicrobial Strategies for Improving Orthopaedic Implants to Prevent Prosthetic Joint Infections in Hip and Knee

    PubMed Central

    Getzlaf, Matthew A.; Lewallen, Eric A.; Kremers, Hilal M.; Jones, Dakota L.; Bonin, Carolina A.; Dudakovic, Amel; Thaler, Roman; Cohen, Robert C.; Lewallen, David G.; van Wijnen, Andre J.

    2016-01-01

    Like any foreign object, orthopaedic implants are susceptible to infection when introduced into the human body. Without additional preventative measures, the absolute number of annual prosthetic joint infections will continue to rise, and may exceed the capacity of health care systems in the near future. Bacteria are difficult to eradicate from synovial joints due to their exceptionally diverse taxonomy, complex mechanistic attachment capabilities, and tendency to evolve antibiotic resistance. When a primary orthopaedic implant fails from prosthetic joint infection, surgeons are generally challenged by limited options for intervention. In this review, we highlight the etiology and taxonomic groupings of bacteria known to cause prosthetic joint infections, and examine their key mechanisms of attachment. We propose that antimicrobial strategies should focus on the most harmful bacteria taxa within the context of occurrence, taxonomic diversity, adhesion mechanisms, and implant design. Patient-specific identification of organisms that cause prosthetic joint infections will permit assessment of their biological vulnerabilities. The latter can be targeted using a range of antimicrobial techniques that exploit different colonization mechanisms including implant surface attachment, biofilm formation, and/or hematogenous recruitment. We anticipate that customized strategies for each patient, joint, and prosthetic component will be most effective at reducing prosthetic joint infections, including those caused by antibiotic-resistant and polymicrobial bacteria. PMID:26449208

  18. Multi-disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee.

    PubMed

    Getzlaf, Matthew A; Lewallen, Eric A; Kremers, Hilal M; Jones, Dakota L; Bonin, Carolina A; Dudakovic, Amel; Thaler, Roman; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-02-01

    Like any foreign object, orthopaedic implants are susceptible to infection when introduced into the human body. Without additional preventative measures, the absolute number of annual prosthetic joint infections will continue to rise, and may exceed the capacity of health care systems in the near future. Bacteria are difficult to eradicate from synovial joints due to their exceptionally diverse taxonomy, complex mechanistic attachment capabilities, and tendency to evolve antibiotic resistance. When a primary orthopaedic implant fails from prosthetic joint infection, surgeons are generally challenged by limited options for intervention. In this review, we highlight the etiology and taxonomic groupings of bacteria known to cause prosthetic joint infections, and examine their key mechanisms of attachment. We propose that antimicrobial strategies should focus on the most harmful bacteria taxa within the context of occurrence, taxonomic diversity, adhesion mechanisms, and implant design. Patient-specific identification of organisms that cause prosthetic joint infections will permit assessment of their biological vulnerabilities. The latter can be targeted using a range of antimicrobial techniques that exploit different colonization mechanisms including implant surface attachment, biofilm formation, and/or hematogenous recruitment. We anticipate that customized strategies for each patient, joint, and prosthetic component will be most effective at reducing prosthetic joint infections, including those caused by antibiotic-resistant and polymicrobial bacteria. PMID:26449208

  19. Metabolic and structural changes in newly synthesized proteoglycans induced by implantation of a polyethylene sheet in the rabbit knee joint.

    PubMed

    Ribault, D; Garcia, F; Riera, H; Mritovic, D R

    1993-07-01

    A sheet of polyethylene was surgically implanted in a rabbit right patello-femoral joint and changes in the structure and chemical composition of newly synthesized articular cartilage proteoglycans (PGs) were studied 1 month after surgery. The articular cartilage from implanted and sham-operated control knee joints was labeled in vitro with 3H-glycine and 35S-SO4 and then extracted with 4 M guanidinium chloride (GuHCl) solution. Labeled extracts were analyzed by dissociative CsCl gradient centrifugation and by Sepharose CL-2B column chromatography. The labeled glycosaminoglycan side chains were analyzed by Sephadex G-200 column chromatography and specific enzymatic digestions. Compared with sham-operation, the trochlear articular cartilage of operated joints incorporated more 35S-SO4 and 3H-glycine into newly synthesized PGs and proteins. It also synthesized a higher proportion of extractable, hydrodynamically large and high density 35S-PG monomers with increased proportion of molecules, able to interact with exogeneous hyaluronan (HA). The fibro-cartilagenous 'osteo-chondrophytic' spurs, compared with trochlear hyaline articular cartilages, incorporated less 35S-SO4 and 3H-glycine and synthesized less extractable high density 35S-PG monomers able to interact with exogenous HA. Their 35S-GAG side chains were more heterogeneous and segregated into three distinct peaks as shown by Sephadex G-200 column chromatography. The results of the present studies demonstrate that, in response to the implant, there was an increase in the biosynthetic capacity of chondrocytes which synthetized larger PG monomers able to interact wih HA. PMID:15449426

  20. Effects of Nd:YAG laser on the meniscus of the knee joint

    NASA Astrophysics Data System (ADS)

    Fronek, Jan; Krakaver, Joel; Colwell, Clifford W.

    1990-06-01

    The use of laser energy for arthroscopic surgery of the meniscus has been fraught with difficult problems which include excessive tissue penetration and the need for a gas medium. The use of the Neodynium : Yttrium Aluminum Garnet (Nd:YAG) laser offers better control of the penetration depth as well as the opportunity to operate the laser in a liquid medium. Twenty-two excised menisci and twenty cadaver knee menisci were exposed to contact Nd:YAG laser radiation of a power density at 1 .064 microns. The operating parameters included a range of power levels of 5 to 60 watts and exposure time of 0.5 to 1 0.0 seconds. The laser-induced dissection yielded reproducible layers of cavitation and necrosis, proportional to the power and duration of the beam. Carbonized debris was noted on the edge of the cut surface, particularly at the higher power setting. The more peripheral zone of coagulation remained at constant depth and width when tested within the parameters noted above. The Nd:YAG laser has been observed to section the meniscus cartilage in a very controlled, accurate and safe fashion. For the best tissue effect, impulses of 1 5 - 20 watts applied for 2-4 seconds offer the most efficacious combination for the knee menisectomy. While these findings are promising for the clinical utilization of Nd:YAG laser in arthroscopic surgery, additional work is required on both the technical aspects of the sapphire tip design as well as the longterm sequellae of the laser treated cartilage.

  1. [Partial replacement of the knee joint with patient-specific instruments and implants (ConforMIS iUni, iDuo)].

    PubMed

    Beckmann, J; Steinert, A; Zilkens, C; Zeh, A; Schnurr, C; Schmitt-Sody, M; Gebauer, M

    2016-04-01

    Knee arthroplasty is a successful standard procedure in orthopedic surgery; however, approximately 20 % of patients are dissatisfied with the clinical results as they suffer pain and can no longer achieve the presurgery level of activity. According to the literature the reasons are inexact fitting of the prosthesis or too few anatomically formed implants resulting in less physiological kinematics of the knee joint. Reducing the number of dissatisfied patients and the corresponding number of revisions is an important goal considering the increasing need for artificial joints. In this context, patient-specific knee implants are an obvious alternative to conventional implants. For the first time implants are now matched to the individual bone and not vice versa to achieve the best possible individual situation and geometry and more structures (e.g. ligaments and bone) are preserved or only those structures are replaced which were actually destroyed by arthrosis. According to the authors view, this represents an optimal and pioneering addition to conventional implants. Patient-specific implants and the instruments needed for correct alignment and fitting can be manufactured by virtual 3D reconstruction and 3D printing based on computed tomography (CT) scans. The portfolio covers medial as well as lateral unicondylar implants, medial as well as lateral bicompartmental implants (femorotibial and patellofemoral compartments) and cruciate ligament-preserving as well as cruciate ligament-substituting total knee replacements; however, it must be explicitly emphasized that the literature is sparse and no long-term data are available. PMID:26984107

  2. Auto-aggressive metallic mercury injection around the knee joint: a case report

    PubMed Central

    2011-01-01

    Background Accidental or intentional subcutaneous and/or intramuscular injection of metallic mercury is an uncommon form of poisoning. Although it does not carry the same risk as mercury vapour inhalation, it may cause destructive early and late reactions. Case Presentation Herein we present the case of a 29-year-old male patient who developed an obsessive-compulsive disorder causing auto-aggressive behaviour with injection of elemental mercury and several other foreign bodies into the soft tissues around the left knee about 15 years before initial presentation. For clinical examination X-rays and a CT-scan of the affected area were performed. Furthermore, blood was taken to determine the mercury concentration in the blood, which showed a concentration 17-fold higher than recommended. As a consequence, the mercury depots and several foreign bodies were resected marginally. Conclusion Blood levels of mercury will decrease rapidly following surgery, especially in combination with chelating therapy. In case of subcutaneous and intramuscular injection of metallic mercury we recommend marginal or wide excision of all contaminated tissue to prevent migration of mercury and chronic inflammation. Nevertheless, prolonged clinical and biochemical monitoring should be performed for several years to screen for chronic intoxication. PMID:22093686

  3. Effect of Aging on Adipose Tissue Inflammation in the Knee Joints of F344BN Rats.

    PubMed

    Fu, Yao; Huebner, Janet L; Kraus, Virginia B; Griffin, Timothy M

    2016-09-01

    The infrapatellar fat pad (IFP) secretes inflammatory mediators in osteoarthritic knees, but the effect of aging on IFP inflammation is unknown. We tested the hypothesis that aging increases basal and interleukin-1β (IL-1β)-stimulated IFP inflammation in 10-, 20-, and 30-month-old male F344BN F1-hybrid rats. IFPs were cultured ex vivo for 24 hours and treated ±1ng/mL IL-1β to simulate injury-induced inflammation. IFP inflammation was evaluated by measuring secreted cytokine concentrations and by quantitative expression of immunoregulatory and pro- and anti-adipogenic genes. With age, osteoarthritis pathology increased and IFP mass decreased. Although adipocyte size did not change with age, variation in adipocyte size was positively associated with synovial thickness independent of age whereas associations with cartilage damage were age dependent. In the absence of IL-1β, aging was associated with a significant increase in IFP secretion of tumor necrosis factor α by 67% and IL-13 by 35% and a reduction in the expression of immunoregulatory M2 macrophage genes. However, following an IL-1β challenge, adipogenesis markers decreased and pro- and anti-inflammatory cytokines increased independent of age. The lone exception was leptin, which decreased >70% with age. Thus, although aging promotes osteoarthritis risk by increasing basal inflammation, our findings also revealed a potentially protective effect of aging by decreasing IL-1β-stimulated leptin production. PMID:26450946

  4. Patient-related medical risk factors for periprosthetic joint infection of the hip and knee

    PubMed Central

    Eka, Aleeson

    2015-01-01

    Despite advancements and improvements in methods for preventing infection, periprosthetic joint infection (PJI) is a significant complication following total joint arthroplasty (TJA). Prevention is the most important strategy to deal with this disabling complication, and prevention should begin with identifying patient-related risk factors. Medical risk factors, such as morbid obesity, malnutrition, hyperglycemia, uncontrolled diabetes mellitus, rheumatoid arthritis (RA), preoperative anemia, cardiovascular disorders, chronic renal failure, smoking, alcohol abuse and depression, should be evaluated and optimized prior to surgery. Treating patients to get laboratory values under a specified threshold or cessation of certain modifiable risk factors can decrease the risk of PJI. Although significant advances have been made in past decades to identify these risk factors, there remains some uncertainty regarding the risk factors predisposing TJA patients to PJI. Through a review of the current literature, this paper aims to comprehensively evaluate and provide a better understanding of known medical risk factors for PJI after TJA. PMID:26539450

  5. 3D skin length deformation of lower body during knee joint flexion for the practical application of functional sportswear.

    PubMed

    Choi, Jiyoung; Hong, Kyunghi

    2015-05-01

    With the advent of 3D technology in the design process, a tremendous amount of scanned data is available. However, it is difficult to trace the quantitative skin deformation of a designated location on the 3D body surface data during movement. Without identical landmarks or reflective markers, tracing the same reference points on the different body postures is not easy because of the complex shape change of the body. To find the least deformed location on the body, which is regarded as the optimal position of seams for the various lengths of functional compression pants, landmarks were directly marked on the skin of six subjects and scanned during knee joint flexion. Lines of non-extension (LoNE) and maximum stretch (LoMS) were searched for, both by tracing landmarks and newly drawn guidelines based on ratio division in various directions. Considering the waist as the anchoring position of the pants, holistic changes were quantified and visualized from the waistline in lengthwise and curvilinear deformation along the dermatomes of the lower body for various lengths of pants. Widthwise and unit area skin deformation data of the skin were also provided as guidelines for further use such as streamlined pants or design of other local wearing devices. PMID:25683546

  6. Symptom interval of osteosarcoma around the knee joint: an analysis of 82 patients of a single institute.

    PubMed

    Li, H; Zheng, S; Yu, W; Huang, W; Yao, Y; Shen, Z; Sun, Y

    2016-09-01

    The time from first onset of symptoms or signs to a definitive diagnosis and initiation of treatment is defined as symptom interval (SI), the impact of SI on prognosis of patient with osteosarcoma (OS) remains unclear. A total medical records of 52 male and 30 female aged between 8 and 61 (median, 17) with OS around the knee joint were reviewed. Two components of SI, patient delay and professional delay were analysed. The median total SI was 2 months (range from 0.2 to 13.2 months). The median patient delay was 1.05 months (range from 0 to 12.5), and median professional delay was 0.45 months. Total SI and patient delay were not significantly different when patients were grouped by gender, age, tumour size and response to chemotherapy. Younger patients (<18 years) had shorter professional delay than older patients (≥18 years) (P = 0.02). Although there was a trend for longer time to lung metastasis in patients of SI <3 months, there was no significant difference compared with patients of SI ≥3 months (P = 0.15). In this study, younger patients had shorter professional delay than older patients. There was no significant correlation between SI and time to lung metastasis. PMID:26568464

  7. Hepatitis B Virus Infection Is a Risk Factor for Periprosthetic Joint Infection Among Males After Total Knee Arthroplasty

    PubMed Central

    Kuo, Shu-Jui; Huang, Po-Hua; Chang, Chien-Chun; Kuo, Feng-Chih; Wu, Cheng-Ta; Hsu, Horng-Chaung; Lin, Che-Chen

    2016-01-01

    Abstract Periprosthetic joint infection (PJI) is a grave complication that can affect patients undergoing total knee arthroplasty (TKA). In this study, we aim to determine whether hepatitis B virus (HBV) infection is a risk factor for PJIs. All patients (1184 males, 3435 females) undergoing primary TKA in Taiwan from 2001 to 2010 were recruited for analysis. The incidence of PJI was 523 among the males with HBV infection and 110 among the males without HBV (per 10,000 person-years, P < 0.001). The males with HBV infection had a 4.32-fold risk of PJI compared with the males without HBV. HBV infection and diabetes were the risk factors for PJI among males. The incidence of PJI was 58.8 among the females with HBV infection and 75.2 among the females without HBV (per 10,000 person-years, P = 0.67). The risk of PJI was higher for the males with HBV infection than for the males without 0.5 to 1 year after TKA (hazard ratio [HR] = 18.7, 95% confidence interval (CI) = 1.90–184) and >1 year after TKA (HR = 4.80, 95% CI = 1.57–14.7). HBV infection is a risk factor for PJI after TKA among males. PMID:27258517

  8. Mechanisms of quadriceps muscle weakness in knee joint osteoarthritis: the effects of prolonged vibration on torque and muscle activation in osteoarthritic and healthy control subjects

    PubMed Central

    2011-01-01

    Introduction A consequence of knee joint osteoarthritis (OA) is an inability to fully activate the quadriceps muscles, a problem termed arthrogenic muscle inhibition (AMI). AMI leads to marked quadriceps weakness that impairs physical function and may hasten disease progression. The purpose of the present study was to determine whether γ-loop dysfunction contributes to AMI in people with knee joint OA. Methods Fifteen subjects with knee joint OA and 15 controls with no history of knee joint pathology participated in this study. Quadriceps and hamstrings peak isometric torque (Nm) and electromyography (EMG) amplitude were collected before and after 20 minutes of 50 Hz vibration applied to the infrapatellar tendon. Between-group differences in pre-vibration torque were analysed using a one-way analysis of covariance, with age, gender and body mass (kg) as the covariates. If the γ-loop is intact, vibration should decrease torque and EMG levels in the target muscle; if dysfunctional, then torque and EMG levels should not change following vibration. One-sample t tests were thus undertaken to analyse whether percentage changes in torque and EMG differed from zero after vibration in each group. In addition, analyses of covariance were utilised to analyse between-group differences in the percentage changes in torque and EMG following vibration. Results Pre-vibration quadriceps torque was significantly lower in the OA group compared with the control group (P = 0.005). Following tendon vibration, quadriceps torque (P < 0.001) and EMG amplitude (P ≤0.001) decreased significantly in the control group but did not change in the OA group (all P > 0.299). Hamstrings torque and EMG amplitude were unchanged in both groups (all P > 0.204). The vibration-induced changes in quadriceps torque and EMG were significantly different between the OA and control groups (all P < 0.011). No between-group differences were observed for the change in hamstrings torque or EMG (all P > 0

  9. Research into automatic recognition of joints in human symmetrical movements

    NASA Astrophysics Data System (ADS)

    Fan, Yifang; Li, Zhiyu

    2008-03-01

    High speed photography is a major means of collecting data from human body movement. It enables the automatic identification of joints, which brings great significance to the research, treatment and recovery of injuries, the analysis to the diagnosis of sport techniques and the ergonomics. According to the features that when the adjacent joints of human body are in planetary motion, their distance remains the same, and according to the human body joint movement laws (such as the territory of the articular anatomy and the kinematic features), a new approach is introduced to process the image thresholding of joints filmed by the high speed camera, to automatically identify the joints and to automatically trace the joint points (by labeling markers at the joints). Based upon the closure of marking points, automatic identification can be achieved through thresholding treatment. Due to the screening frequency and the laws of human segment movement, when the marking points have been initialized, their automatic tracking can be achieved with the progressive sequential images.Then the testing results, the data from three-dimensional force platform and the characteristics that human body segment will only rotate around the closer ending segment when the segment has no boding force and only valid to the conservative force all tell that after being analyzed kinematically, the approach is approved to be valid.

  10. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee.

    PubMed

    Frisbie, D D; Cross, M W; McIlwraith, C W

    2006-01-01

    Histological measurements of the thickness of non-calcified and calcified cartilage, as well as the subchondral bone plate in five locations on the femoral trochlea and medial femoral condyles of species were used in preclinical studies of articular cartilage and compared to those of the human knee. Cadaver specimens were obtained of six human knees, as well as six equine, six goat, six dog, six sheep and six rabbit stifle joints (the animal equivalent of the human knee). Specimens were taken from the lateral trochlear ridge, medial trochlear ridge and medial femoral condyle. After histopathological processing, the thickness of non-calcified and calcified cartilage layers, as well as the subchondral bone plate, was measured. Average articular cartilage thickness over five locations were 2.2-2.5 mm for human, 0.3 mm for rabbit, 0.4-0.5 mm for sheep, 0.6-1.3 mm for dog, 0.7-1.5 mm for goat and 1.5-2 mm for horse. The horse provides the closest approximation to humans in terms of articular cartilage thickness, and this approximation is considered relevant in pre-clinical studies of cartilage healing. PMID:16971996

  11. Age-Related Changes in Strength, Joint Laxity, and Walking Patterns: Are They Related to Knee Osteoarthritis?

    PubMed Central

    Rudolph, Katherine S; Schmitt, Laura C; Lewek, Michael D

    2008-01-01

    Background and Purpose Aging is associated with musculoskeletal changes and altered walking patterns. These changes are common in people with knee osteoarthritis (OA) and may precipitate the development of OA. We examined age-related changes in musculoskeletal structures and walking patterns to better understand the relationship between aging and knee OA. Methods Forty-four individuals without OA (15 younger, 15 middle-aged, 14 older adults) and 15 individuals with medial knee OA participated. Knee laxity, quadriceps femoris muscle strength (force-generating capacity), and gait were assessed. Results Medial laxity was greater in the OA group, but there were no differences between the middle-aged and older control groups. Quadriceps femoris strength was less in the older control group and in the OA group. During the stance phase of walking, the OA group demonstrated less knee flexion and greater knee adduction, but there were no differences in knee motion among the control groups. During walking, the older control group exhibited greater quadriceps femoris muscle activity and the OA group used greater muscle co-contraction. Discussion and Conclusion Although weaker, the older control group did not use truncated motion or higher co-contraction. The maintenance of movement patterns that were similar to the subjects in the young control group may have helped to prevent development of knee OA. Further investigation is warranted regarding age-related musculoskeletal changes and their influence on the development of knee OA. PMID:17785376

  12. Phenotypical expression of reduced mobility during limb ontogeny in frogs: the knee-joint case.

    PubMed

    Ponssa, Maria Laura; Abdala, Virginia

    2016-01-01

    Movement is one of the most important epigenetic factors for normal development of the musculoskeletal system, particularly during genesis and joint development. Studies regarding alterations to embryonic mobility, performed on anurans, chickens and mammals, report important phenotypical similarities as a result of the reduction or absence of this stimulus. The precise stage of development at which the stimulus modification generates phenotypic modifications however, is yet to be determined. In this work we explore whether the developmental effects of abnormal mobility can appear at any time during development or whether they begin to express themselves in particular phases of tadpole ontogeny. We conducted five experiments that showed that morphological abnormalities are not visible until Stages 40-42. Morphology in earlier stages remains normal, probably due to the fact that the bones/muscles/tendons have not yet developed and therefore are not affected by immobilization. These results suggest the existence of a specific period of phenotypical expression in which normal limb movement is necessary for the correct development of the joint tissue framework. PMID:26925340

  13. Phenotypical expression of reduced mobility during limb ontogeny in frogs: the knee-joint case

    PubMed Central

    Abdala, Virginia

    2016-01-01

    Movement is one of the most important epigenetic factors for normal development of the musculoskeletal system, particularly during genesis and joint development. Studies regarding alterations to embryonic mobility, performed on anurans, chickens and mammals, report important phenotypical similarities as a result of the reduction or absence of this stimulus. The precise stage of development at which the stimulus modification generates phenotypic modifications however, is yet to be determined. In this work we explore whether the developmental effects of abnormal mobility can appear at any time during development or whether they begin to express themselves in particular phases of tadpole ontogeny. We conducted five experiments that showed that morphological abnormalities are not visible until Stages 40–42. Morphology in earlier stages remains normal, probably due to the fact that the bones/muscles/tendons have not yet developed and therefore are not affected by immobilization. These results suggest the existence of a specific period of phenotypical expression in which normal limb movement is necessary for the correct development of the joint tissue framework. PMID:26925340

  14. [APPLICATION OF PREPARATION OF COCARNIT FOR PATIENTS AFTER ENDOPROSTHESIS OF HIP AND KNEE JOINTS].

    PubMed

    Korzh, N A; Filippenko, V A; Leont'eva, F S; Tulyakov, V A; Bondarenko, S E

    2015-01-01

    In the article the results of clinical researches of efficiency of preparation of Cocarnit are resulted for patients after endoprosthesis of large joints. It is routine that for patients, receiving preparation of Cocarnit after the operation period there was a decline in the amount of complaints of patients on the total somatical state. Preparation of Ccocarnit was positively estimated outside patients, meaningful by-reactions, serving reason of abolition of preparation, was not marked. At the reception preparation of Cocarnit greater part of investigational laboratory indexes (table of contents of glucose, β-lipoproteines, total chondroitisulfates, TBC-productes (malonic dyaldehyde), activity of aspartataminotransferase, alkaline phosphatase and β-glutamyltranspeptidase), the indexes of clinical blood test and leucocytar indexes during a supervision did not have reliable differences from such as the persons of the control group, that confirms good bearab leness of the indicated preparation. Application preparation of Cocarnit for patients in composition the chart of treatment of patients after endoprosthesis of large joints brought maintenance over of cholesterol to the decline, glycoproteins, TBC-products (malonic dyaldehyde), activity of alaninaminotransferase, that specifies on normalizing influence of the indicated preparation in relation to the basic types of exchange of matters. PMID:27089730

  15. How human gait responds to muscle impairment in total knee arthroplasty patients: Muscular compensations and articular perturbations.

    PubMed

    Ardestani, Marzieh M; Moazen, Mehran

    2016-06-14

    Post-surgical muscle weakness is prevalent among patients who undergo total knee arthroplasty (TKA). We conducted a probabilistic multi-body dynamics (MBD) to determine whether and to what extent habitual gait patterns of TKA patients may accommodate strength deficits in lower extremity muscles. We analyzed muscular and articular compensations in response to various muscle impairments, and the minimum muscle strength requirements needed to preserve TKA gait patterns in its habitual status. Muscle weakness was simulated by reducing the strength parameter of muscle models in MBD analysis. Using impaired models, muscle and joint forces were calculated and compared versus those from baseline gait i.e. TKA habitual gait before simulating muscle weakness. Comparisons were conducted using a relatively new statistical approach for the evaluation of gait waveforms, i.e. Spatial Parameter Mapping (SPM). Principal component analysis was then conducted on the MBD results to quantify the sensitivity of every joint force component to individual muscle impairment. The results of this study contain clinically important, although preliminary, suggestions. Our findings suggested that: (1) hip flexor and ankle plantar flexor muscles compensated for hip extensor weakness; (2) hip extensor, hip adductor and ankle plantar flexor muscles compensated for hip flexor weakness; (3) hip and knee flexor muscles responded to hip abductor weakness; (4) knee flexor and hip abductor balanced hip adductor impairment; and (5) knee extensor and knee flexor weakness were compensated by hip extensor and hip flexor muscles. Future clinical studies are required to validate the results of this computational study. PMID:27063251

  16. [Meniscus plasty of the discoid cartilage of the knee joint. Report of 32 cases].

    PubMed

    Yong, Y M

    1989-07-01

    During the time period from 1982 to 1987, 32 patients, 17 females and 15 males, aging 14 to 47, had their lateral discoid menisci reshaped operatively into nearly normal configuration. Final results of the treatment were both subjectively and objectively satisfactory confirmed at the time of re-examinations, 3 to 48 months (25 pts. had been over one year) after operation. Reshaping the discoid meniscus not only brought about normal pattern of it, got rid of symptoms and signs caused by the discoid meniscus-itself, but also by eliminating the horizontal shearing force produced by non-physiological motion of the discoid meniscus, reasonably prevent, at least delay the development of osteoarthritis of that joint. PMID:2598749

  17. Biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel for knee meniscus applications, including comparison with human donor samples.

    PubMed

    Hayes, Jennifer C; Curley, Colin; Tierney, Paul; Kennedy, James E

    2016-03-01

    The primary objective of this research was the biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel, in order to assess its potential for use as an artificial meniscal implant. Aqueous polyvinyl alcohol (PVA) was treated with a sodium sulphate (Na2SO4) solution to precipitate out the polyvinyl alcohol resulting in a pliable hydrogel. The freeze-thaw process, a strictly physical method of crosslinking, was employed to crosslink the hydrogel. Development of a meniscal shaped mould and sample housing unit allowed the production of meniscal shaped hydrogels for direct comparison to human meniscal tissue. Results obtained show that compressive responses were slightly higher in PVA/Na2SO4 menisci, displaying maximum compressive loads of 2472N, 2482N and 2476N for samples having undergone 1, 3 and 5 freeze-thaw cycles respectively. When compared to the human meniscal tissue tested under the same conditions, an average maximum load of 2467.5N was observed. This suggests that the PVA/Na2SO4 menisci are mechanically comparable to the human meniscus. Biocompatibility analysis of PVA/Na2SO4 hydrogels revealed no acute cytotoxicity. The work described herein has innovative potential in load bearing applications, specifically as an alternative to meniscectomy as replacement of critically damaged meniscal tissue in the knee joint where repair is not viable. PMID:26700574

  18. Analysis of the Relationship between Peak Stress and Proteoglycan Loss Following Injurious Compression of Human Post-mortem Knee and Ankle Cartilage

    PubMed Central

    Patwari, Parth; Cheng, Debbie M.; Cole, Ada A.; Kuettner, Klaus E.; Grodzinsky, Alan J.

    2009-01-01

    While traumatic joint injuries are known to increase the risk of osteoarthritis (OA), the mechanism is not known. Models for injurious compression of cartilage may identify predictors of injury that suggest a clinical mechanism. We investigated the relationship between peak stress during compression and glycosaminoglycan (GAG) loss after injury for knee and ankle cartilages. Human cartilage explant disks were harvested post-mortem from the knee and ankle of three organ donors with no history of OA and subjected to injurious compression to 65% strain in uniaxial unconfined compression at 2 mm/s (400%/s). The GAG content of the conditioned medium was measured three days after injury. After injury of knee cartilage disks, damage was visible in 18 of 39 disks (46%). Three days after injury, the increase in GAG loss to the medium (GAG loss from injured disks minus GAG loss from location-matched uncompressed controls) was 1.5 ± 0.3 μg/disk (mean ± SEM). With final strain and compression velocity held constant, we observed that increasing peak stress during injury was associated with less GAG loss after injury (p<0.001). In contrast, ankle cartilage appeared damaged after injury in only one of 16 disks (6%), there was no increase in GAG loss (0.0 ± 0.3 μg/disk), and no relationship between peak stress and increase in GAG loss was detected (p=0.51). By itself, increasing peak stress did not appear to be an important cause of GAG loss from human cartilage in our injurious compression model. However, we observed further evidence for differences in the response of knee and ankle cartilages to injury. PMID:16715319

  19. Analysis of the relationship between peak stress and proteoglycan loss following injurious compression of human post-mortem knee and ankle cartilage.

    PubMed

    Patwari, Parth; Cheng, Debbie M; Cole, Ada A; Kuettner, Klaus E; Grodzinsky, Alan J

    2007-01-01

    While traumatic joint injuries are known to increase the risk of osteoarthritis (OA), the mechanism is not known. Models for injurious compression of cartilage may identify predictors of injury that suggest a clinical mechanism. We investigated the relationship between peak stress during compression and glycosaminoglycan (GAG) loss after injury for knee and ankle cartilages. Human cartilage explant disks were harvested post-mortem from the knee and ankle of three organ donors with no history of OA and subjected to injurious compression to 65% strain in uniaxial unconfined compression at 2 mm/s (400%/s). The GAG content of the conditioned medium was measured 3 days after injury. After injury of knee cartilage disks, damage was visible in 18 of 39 disks (36%). Three days after injury, the increase in GAG loss to the medium (GAG loss from injured disks minus GAG loss from location-matched uncompressed controls) was 1.5+/-0.3 microg/disk (mean +/- SEM). With final strain and compression velocity held constant, we observed that increasing peak stress during injury was associated with less GAG loss after injury (P<0.001). In contrast, ankle cartilage appeared damaged after injury in only 1 of 16 disks (6%), there was no increase in GAG loss (0.0+/-0.3 microg/disk), and no relationship between peak stress and increase in GAG loss was detected (P=0.51). By itself, increasing peak stress did not appear to be an important cause of GAG loss from human cartilage in our injurious compression model. However, we observed further evidence for differences in the response of knee and ankle cartilages to injury. PMID:16715319

  20. Regulating knee joint position by combining electrical stimulation with a controllable friction brake.

    PubMed

    Durfee, W K; Hausdorff, J M

    1990-01-01

    Hybrid FES gait restoration systems which combine stimulation with controllable mechanical damping elements at the joints show promise for providing good control of limb motion despite variations in muscle properties. In this paper we compared three controllers for position tracking of the free swinging shank in able-bodied subjects. The controllers were open-loop (OL), proportional-derivative closed-loop (PD), and bang-bang plus controlled-brake control (CB). Both OL and PD controllers contained a forward path element, which inverted a model of the electrically stimulated muscle and limb system. The CB control was achieved by maximally activating the appropriate muscle group and controlling the brake to be a "moving-wall" against which the limb pushed. The CB control resulted in superior tracking performance for a wide range of position tracking tasks and muscle fatigue states but required no calibration or knowledge of muscle properties. The disadvantages of CB control include excess mechanical power dissipation in the brake and impact forces applied to the skeletal system. PMID:2281882

  1. Biological Reconstruction of the Knee Joint in a Case of Giant Cell Tumor of the Tibia of 15yrs Followup- A Case Report

    PubMed Central

    Ravindranath, V S; Sastri, V.R.K.

    2014-01-01

    Introduction: A 40 year old male patient presented to us with Giant Cell Tumor of upper end of Tibia involving both condyles with a breach in the posterior cortex. In this case report we tried to retain the joint function by biological reconstruction using the Patella after the wide excision of the tumor mass. Case Report: A radical excision of the upper end of the Tibia was done. The Patella was used as an articular surface supported by ipsilateral Fibula as struts, thus the joint was reconstructured biologically. The case was followed for 15years. Conclusion: The tumor was excised in toto, the knee joint was restored by the Patella and the Fibular struts. The results were discussed in details. PMID:27299004

  2. Development of gait performance and dynamic hip and knee joint loading after containment improving surgery in patients with Legg-Calvé-Perthes disease.

    PubMed

    Stief, Felix; Schmidt, André; Adolf, Stefanie; Kremer, Laura; Brkic, Moamer; Meurer, Andrea

    2016-06-01

    Current surgery outcome evaluations in patients with Legg-Calvé-Perthes disease (LCPD) are usually based on static radiological changes. The aim of the present study was to assess the development of characteristic gait parameters and passive hip range of motion (ROM) measurements during the postoperative period up to healed stage of the femoral head represented by Stulberg classification. Twelve children (10 male, 2 female) with unilateral diagnosis of LCPD and 19 healthy control subjects at the same age participated in this prospective longitudinal study. Instrumented gait analysis was performed preoperatively, 13.4 (±1.7), and 28.0 (±4.4) months postoperatively. At final follow-up, the mean leg length of the involved side was reduced by 1.10 (±0.53)cm compared to the non-involved side. In addition, a significant reduction in maximum knee flexion (-26%, p=0.037) and knee flexion/extension ROM (-26%, p=0.017) in stance was still present in the patient group compared to controls indicating a "stiff knee gait pattern". In contrast, the sagittal plane hip parameters, the ipsilateral trunk lean toward the involved stance limb, and the knee and hip joint loading during gait normalized during the postoperative period. The results of the present study should motivate further exploration if patients with LCPD stiffen their knees to compensate for leg length discrepancy. Besides the standard radiological evaluation of the surgery outcome, instrumented gait analysis is a valuable method of recording functional deficits and early recognition of the need for physiotherapeutic treatment or insole supply in patients with LCPD. PMID:27264403

  3. Biomechanics of the natural, arthritic, and replaced human ankle joint

    PubMed Central

    2014-01-01

    The human ankle joint complex plays a fundamental role in gait and other activities of daily living. At the same time, it is a very complicated anatomical system but the large literature of experimental and modelling studies has not fully described the coupled joint motion, position and orientation of the joint axis of rotation, stress and strain in the ligaments and their role in guiding and stabilizing joint motion, conformity and congruence of the articular surfaces, patterns of contact at the articular surfaces, patterns of rolling and sliding at the joint surfaces, and muscle lever arm lengths. The present review article addresses these issues as described in the literature, reporting the most recent relevant findings. PMID:24499639

  4. Intra-articular methylprednisolone acetate injection at the knee joint and the hypothalamic-pituitary-adrenal axis: a randomized controlled study.

    PubMed

    Habib, George; Jabbour, Adel; Artul, Suheil; Hakim, Geries

    2014-01-01

    The objective of this study was to evaluate the effect of intra-articular corticosteroid injection (IACI) of methylprednisolone acetate (MPA) on the hypothalamic-pituitary-adrenal (HPA) axis in patients with osteoarthritis of the knee. Patients with symptomatic osteoarthritis of the knee who failed to respond to nonsteroidal anti-inflammatory medications and physical therapy were randomized between group 1 and group 2. Group 1 patients had an IACI of 80 mg of MPA at the knee joint and group 2 patients had an intra-articular injection (IAI) of 6 ml (60 mg) of sodium hyaluronate (control group). Immediately prior to the IAI and on weeks 1, 2, 3, 4, and 8 following IAI, patients from both groups underwent a low-dose (1 μg) adrenocorticotropin hormone (ACTH) stimulation test. Demographic, clinical, laboratory, and radiologic variables were documented in all patients. Both criteria of <7 μg/dl increase in the serum cortisol level and absolute levels of <18 μg/dl 30 min following the ACTH stimulation test were used to define secondary adrenal insufficiency (SAI). Twenty patients were randomized in each group. In group 1, 25 % of patients had SAI vs. none in group 2 (p = 0.0471). The earliest SAI was observed at week 2, and latest SAI was observed at week 4. SAI was observed at one time point, two consecutive time points, or two separate time points in the same patient. There was no correlation between SAI and any of the demographic, clinical, or laboratory variables. An IACI of 80 mg MPA at the knee joint induced a transient SAI in 25 % of the patients, an effect that was observed between week 2 and week 4 following the IACI. PMID:23982564

  5. Combined magnetic resonance imaging approach for the assessment of in vivo knee joint kinematics under full weight-bearing conditions.

    PubMed

    Al Hares, Ghaith; Eschweiler, Jörg; Radermacher, Klaus

    2015-06-01

    The development of detailed and specific knowledge on the biomechanical behavior of loaded knee structures has received increased attention in recent years. Stress magnetic resonance imaging techniques have been introduced in previous work to study knee kinematics under load conditions. Previous studies captured the knee movement either in atypical loading supine positions, or in upright positions with help of inclined supporting backrests being insufficient for movement capture under full-body weight-bearing conditions. In this work, we used a combined magnetic resonance imaging approach for measurement and assessment in knee kinematics under full-body weight-bearing in single legged stance. The proposed method is based on registration of high-resolution static magnetic resonance imaging data acquired in supine position with low-resolution data, quasi-static upright-magnetic resonance imaging data acquired in loaded positions for different degrees of knee flexion. The proposed method was applied for the measurement of tibiofemoral kinematics in 10 healthy volunteers. The combined magnetic resonance imaging approach allows the non-invasive measurement of knee kinematics in single legged stance and under physiological loading conditions. We believe that this method can provide enhanced understanding of the loaded knee kinematics. PMID:25979443

  6. Effects of neuromuscular fatigue on perceptual-cognitive skills between genders in the contribution to the knee joint loading during side-stepping tasks.

    PubMed

    Khalid, Abdul Jabbar; Harris, Sujae Ian; Michael, Loke; Joseph, Hamill; Qu, Xingda

    2015-01-01

    This study investigated whether neuromuscular fatigue affects the neuromuscular control of an athlete within a sports context setting and whether these effects were more pronounced in the females. Lower limb joint kinetics of 6 male and 6 female inter-varsity soccer players performing side-stepping tasks in non-fatigue versus fatigue and anticipated versus unanticipated conditions were quantified using 10 Motion Analysis Corporation cameras and a Kistler(™) force platform. The Yo-Yo intermittent recovery Level 1 fatigue protocol was employed. Stance foot initial contact and peak forces, and peak joint knee moments of the lower limb were submitted to a 3-way mixed-model repeated measure ANOVA. The results suggested that males tend to elicit significantly higher knee joint loadings when fatigued. In addition, males elicited significantly higher pe