Sample records for human liver chlordecone

  1. Effects of chlordecone and its alteration products on isolated rat liver mitochondria.

    PubMed

    Soileau, S D; Moreland, D E

    1983-01-01

    Partitioning of chlordecone, chlordecone alcohol, monohydrochlordecone, and dihydrochlordecone (2 to 100 microM) into isolated rat liver mitochondria altered the permeability properties of the inner membrane as evidenced by: inhibition of valinomycin-induced swelling, induction of passive swelling, oxidation of exogenous NADH, and induction of lysis. Associated with the increase in permeability were stimulation of state 4 and inhibition of state 3 respiration for the oxidation of both succinate and glutamate. Except for the inhibition of valinomycin-induced swelling, the following order of potency for all assays was obtained: chlordecone alcohol greater than or equal to chlordecone greater than monohydrochlordecone much greater than dihydrochlordecone. Mirex, a 12-chlorine analog of chlordecone, and a dioxolane-chlordecone adduct did not affect any of the reactions at saturating concentrations of 40 and 100 microM, respectively. The hydrated ketone, or a hydroxyl moiety, and a high chlorine content appear to be responsible for lytic and inhibitory activity. Lysis resulted in the leakage of water-soluble matrix enzymes from the mitochondria, but not in the solubilization of integral proteins.

  2. Molecular cloning of two human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder.

    PubMed Central

    Deyashiki, Y; Ogasawara, A; Nakayama, T; Nakanishi, M; Miyabe, Y; Sato, K; Hara, A

    1994-01-01

    Human liver contains two dihydrodiol dehydrogenases, DD2 and DD4, associated with 3 alpha-hydroxysteroid dehydrogenase activity. We have raised polyclonal antibodies that cross-reacted with the two enzymes and isolated two 1.2 kb cDNA clones (C9 and C11) for the two enzymes from a human liver cDNA library using the antibodies. The clones of C9 and C11 contained coding sequences corresponding to 306 and 321 amino acid residues respectively, but lacked 5'-coding regions around the initiation codon. Sequence analyses of several peptides obtained by enzymic and chemical cleavages of the two purified enzymes verified that the C9 and C11 clones encoded DD2 and DD4 respectively, and further indicated that the sequence of DD2 had at least additional 16 residues upward from the N-terminal sequence deduced from the cDNA. There was 82% amino acid sequence identity between the two enzymes, indicating that the enzymes are genetic isoenzymes. A computer-based comparison of the cDNAs of the isoenzymes with the DNA sequence database revealed that the nucleotide and amino acid sequences of DD2 and DD4 are virtually identical with those of human bile-acid binder and human chlordecone reductase cDNAs respectively. Images Figure 1 PMID:8172617

  3. Quantitative analysis of multiple high-resolution mass spectrometry images using chemometric methods: quantitation of chlordecone in mouse liver.

    PubMed

    Mohammadi, Saeedeh; Parastar, Hadi

    2018-05-15

    In this work, a chemometrics-based strategy is developed for quantitative mass spectrometry imaging (MSI). In this regard, quantification of chlordecone as a carcinogenic organochlorinated pesticide (C10Cll0O) in mouse liver using the matrix-assisted laser desorption ionization MSI (MALDI-MSI) method is used as a case study. The MSI datasets corresponded to 1, 5 and 10 days of mouse exposure to the standard chlordecone in the quantity range of 0 to 450 μg g-1. The binning approach in the m/z direction is used to group high resolution m/z values and to reduce the big data size. To consider the effect of bin size on the quality of results, three different bin sizes of 0.25, 0.5 and 1.0 were chosen. Afterwards, three-way MSI data arrays (two spatial and one m/z dimensions) for seven standards and four unknown samples were column-wise augmented with m/z values as the common mode. Then, these datasets were analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) using proper constraints. The resolved mass spectra were used for identification of chlordecone in the presence of a complex background and interference. Additionally, the augmented spatial profiles were post-processed and 2D images for each component were obtained in calibration and unknown samples. The sum of these profiles was utilized to set the calibration curve and to obtain the analytical figures of merit (AFOMs). Inspection of the results showed that the lower bin size (i.e., 0.25) provides more accurate results. Finally, the obtained results by MCR for three datasets were compared with those of gas chromatography-mass spectrometry (GC-MS) and MALDI-MSI. The results showed that the MCR-assisted method gives a higher amount of chlordecone than MALDI-MSI and a lower amount than GC-MS. It is concluded that a combination of chemometric methods with MSI can be considered as an alternative way for MSI quantification.

  4. Microbial Degradation of a Recalcitrant Pesticide: Chlordecone.

    PubMed

    Chaussonnerie, Sébastien; Saaidi, Pierre-Loïc; Ugarte, Edgardo; Barbance, Agnès; Fossey, Aurélie; Barbe, Valérie; Gyapay, Gabor; Brüls, Thomas; Chevallier, Marion; Couturat, Loïc; Fouteau, Stéphanie; Muselet, Delphine; Pateau, Emilie; Cohen, Georges N; Fonknechten, Nuria; Weissenbach, Jean; Le Paslier, Denis

    2016-01-01

    Chlordecone (Kepone®) is a synthetic organochlorine insecticide (C 10 Cl 10 O) used worldwide mostly during the 1970 and 1980s. Its intensive application in the French West Indies to control the banana black weevil Cosmopolites sordidus led to a massive environmental pollution. Persistence of chlordecone in soils and water for numerous decades even centuries causes global public health and socio-economic concerns. In order to investigate the biodegradability of chlordecone, microbial enrichment cultures from soils contaminated by chlordecone or other organochlorines and from sludge of a wastewater treatment plant have been conducted. Different experimental procedures including original microcosms were carried out anaerobically over long periods of time. GC-MS monitoring resulted in the detection of chlorinated derivatives in several cultures, consistent with chlordecone biotransformation. More interestingly, disappearance of chlordecone (50 μg/mL) in two bacterial consortia was concomitant with the accumulation of a major metabolite of formula C 9 Cl 5 H 3 (named B1) as well as two minor metabolites C 10 Cl 9 HO (named A1) and C 9 Cl 4 H 4 (named B3). Finally, we report the isolation and the complete genomic sequences of two new Citrobacter isolates, closely related to Citrobacter amalonaticus , and that were capable of reproducing chlordecone transformation. Further characterization of these Citrobacter strains should yield deeper insights into the mechanisms involved in this transformation process.

  5. Microbial Degradation of a Recalcitrant Pesticide: Chlordecone

    PubMed Central

    Chaussonnerie, Sébastien; Saaidi, Pierre-Loïc; Ugarte, Edgardo; Barbance, Agnès; Fossey, Aurélie; Barbe, Valérie; Gyapay, Gabor; Brüls, Thomas; Chevallier, Marion; Couturat, Loïc; Fouteau, Stéphanie; Muselet, Delphine; Pateau, Emilie; Cohen, Georges N.; Fonknechten, Nuria; Weissenbach, Jean; Le Paslier, Denis

    2016-01-01

    Chlordecone (Kepone®) is a synthetic organochlorine insecticide (C10Cl10O) used worldwide mostly during the 1970 and 1980s. Its intensive application in the French West Indies to control the banana black weevil Cosmopolites sordidus led to a massive environmental pollution. Persistence of chlordecone in soils and water for numerous decades even centuries causes global public health and socio-economic concerns. In order to investigate the biodegradability of chlordecone, microbial enrichment cultures from soils contaminated by chlordecone or other organochlorines and from sludge of a wastewater treatment plant have been conducted. Different experimental procedures including original microcosms were carried out anaerobically over long periods of time. GC-MS monitoring resulted in the detection of chlorinated derivatives in several cultures, consistent with chlordecone biotransformation. More interestingly, disappearance of chlordecone (50 μg/mL) in two bacterial consortia was concomitant with the accumulation of a major metabolite of formula C9Cl5H3 (named B1) as well as two minor metabolites C10Cl9HO (named A1) and C9Cl4H4 (named B3). Finally, we report the isolation and the complete genomic sequences of two new Citrobacter isolates, closely related to Citrobacter amalonaticus, and that were capable of reproducing chlordecone transformation. Further characterization of these Citrobacter strains should yield deeper insights into the mechanisms involved in this transformation process. PMID:28066351

  6. Chlordecone (Kepone)

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 07 / 004F www.epa.gov / iris TOXICOLOGICAL REVIEW OF CHLORDECONE ( KEPONE ) ( CAS No . 143 - 50 - 0 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2009 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has

  7. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver.

    PubMed

    Deyashiki, Y; Tamada, Y; Miyabe, Y; Nakanishi, M; Matsuura, K; Hara, A

    1995-08-01

    Human liver cytosol contains multiple forms of 3 alpha-hydroxysteroid dehydrogenase and dihydrodiol dehydrogenase with hydroxysteroid dehydrogenase activity, and multiple cDNAs for the enzymes have been cloned from human liver cDNA libraries. To understand the relationship of the multiple enzyme froms to the genes, a cDNA, which has been reported to code for an isoenzyme of human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase, was expressed in Escherichia coli. The recombinant enzyme showed structural and functional properties almost identical to those of the isoenzyme purified from human liver. In addition, the recombinant isoenzyme efficiently reduced 5 alpha-dihydrotestosterone and 5 beta-dihydrocortisone, the known substrates of human liver 3 alpha-hydroxysteroid dehydrogenase and chlordecone reductase previously purified, which suggests that these human liver enzymes are identical. Furthermore, the steady-state kinetic data for NADP(+)-linked (S)-1-indanol oxidation by the recombinant isoenzyme were consistent with a sequential ordered mechanism in which NADP+ binds first. Phenolphthalein inhibited this isoenzyme much more potently than it did the other human liver dihydrodiol dehydrogenases, and was a competitive inhibitor (Ki = 20 nM) that bound to the enzyme-NADP+ complex.

  8. Effect of home food processing on chlordecone (organochlorine) content in vegetables.

    PubMed

    Clostre, Florence; Letourmy, Philippe; Thuriès, Laurent; Lesueur-Jannoyer, Magalie

    2014-08-15

    Decades after their use and their ban, organochlorine pesticides still pollute soil, water and food and lead to human and ecosystem exposure. In the case of chlordecone, human exposure is mainly due to the consumption of polluted food. We studied the effect of preparation and cooking in five vegetable products, three root vegetables (yam, dasheen and sweet potato) and two cucurbits (cucumber and pumpkin), among the main contributors to exposure to chlordecone in food in the French West Indies. Boiling the vegetables in water had no effect on chlordecone content of the vegetables and consequently on consumer exposure. The peel was three to 40-fold more contaminated than the pulp except cucumber, where the difference was less contrasted. The edible part is thus significantly less contaminated and peeling is recommended after rinsing to reduce consumer exposure, particularly for food grown in home gardens with contaminated soils. The type of soil had no consistent effect on CLD distribution but plot did. Peel and pulp composition (lipids and fibers) appear to partially account for CLD distribution in the product. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Vitellogenin and vitellogenin receptor gene expression and 20-hydroxyecdysone concentration in Macrobrachium rosenbergii exposed to chlordecone.

    PubMed

    Lafontaine, Anne; Hanikenne, Marc; Boulangé-Lecomte, Céline; Forget-Leray, Joëlle; Thomé, Jean-Pierre; Gismondi, Eric

    2016-10-01

    Chlordecone is a persistent organochlorine pesticide widely used in Guadeloupe (French West Indies) to control the banana weevil Cosmopolites sordidus. Although it was previously highlighted that chlordecone may affect the reproduction and growth of vertebrate species, little information is available on the chlordecone effects in invertebrates. The present study investigated the effects of chlordecone on a hormone and a protein having key roles in reproduction and growth of the decapod crustacean Macrobrachium rosenbergii, by measuring the 20-hydroxyecdysone concentration, vitellogenin, and vitellogenin receptor gene expression, as well as the bioconcentration of chlordecone in exposed prawns. First, the results revealed that chlordecone was accumulated in M. rosenbergii. Then, it was found that Vg and VgR gene expression were increased in male and female M. rosenbergii exposed to chlordecone for 90 and 240 days, while the 20-hydroxyecdysone concentrations were decreased. This work suggests that chlordecone accumulates in prawn tissues and could affect key molecules involved in the reproduction and the growth of the invertebrate M. rosenbergii. However, many questions remain unresolved regarding the impacts of chlordecone on growth and reproduction and the signaling pathways responsible for these effects, as well as the potential role of confounding factors present in in situ studies.

  10. Bioaccumulation, distribution and elimination of chlordecone in the giant freshwater prawn Macrobrachium rosenbergii: Field and laboratory studies.

    PubMed

    Lafontaine, Anne; Gismondi, Eric; Dodet, Nathalie; Joaquim-Justo, Célia; Boulangé-Lecomte, Céline; Caupos, Fanny; Lemoine, Soazig; Lagadic, Laurent; Forget-Leray, Joëlle; Thomé, Jean-Pierre

    2017-10-01

    Chlordecone is a persistent organochlorine pesticide that has been widely used in Guadeloupe (French West Indies) to control the banana weevil Cosmopolites sordidus from 1972 to 1993. A few years after its introduction, widespread contamination of soils, rivers, wild animals and aquatic organisms was reported. Although high chlordecone concentrations have been reported in several crustacean species, its uptake, internal distribution, and elimination in aquatic species have never been described. This study aimed at investigating the accumulation and tissue distribution of chlordecone in the giant freshwater prawn Macrobrachium rosenbergii, using both laboratory (30 days exposure) and field (8 months exposure) approaches. In addition, depuration in chlordecone-free water was studied. Results showed that chlordecone bioconcentration in prawns was dose-dependent and time-dependent. Moreover, females appeared to be less contaminated than males after 5 and 7 months of exposure, probably due to successive spawning leading in the elimination of chlordecone through the eggs. Chlordecone distribution in tissues of exposed prawns showed that cephalothorax organs, mainly represented by the hepatopancreas, was the most contaminated. Results also showed that chlordecone was accumulated in cuticle, up to levels of 40% of the chlordecone body burden, which could be considered as a depuration mechanism since chlordecone is eliminated with the exuviae during successive moults. Finally, this study underlined the similarity of results obtained in laboratory and field approaches, which highlights their complementarities in the chlordecone behaviour understanding in M. rosenbergii. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Comparative effects of chlordecone and mirex on rat cardiac ATPases and binding of 3H-catecholamines.

    PubMed

    Desaiah, D

    1980-08-01

    The effects of chlordecone and mirex on the rat myocardial ATPases and binding of 3H-dopamine and 3H-norepinephrine to the NAK-fraction were determined both by in vitro and in vivo treatment. The in vitro data showed that chlordecone significantly inhibited mitochondrial Mg2+ ATPase and Na+--K+ ATPase in a concentration dependent manner with ID50 values of 5 x 10(-8) and 2 x 10(-6) M, respectively. Mitrex, a close structural analog of chlordecone did not inhibit mitochondrial Mg2+ ATPase but inhibited about 15% of N+--K+ ATPase activity. Rats treated with symptomatogenic doses of chlordecone showed a marked and significant decrease of myocardial Na+--K+ ATPase and the residual Mg2+ ATPase activities. The decrease in the enzyme activities was dose dependent and significant. However, mirex treated rats showed a slight decrease in the myocardial Na+--K+ ATPase. The potency of chlordecone to inhibit the ATPase system was parallel to its ability to decrease the dopamine and norepinephrine binding of the myocardial NAK-fraction. Preincubation of the NAK-fraction with various concentrations of chlordecone resulted in a decreased binding of dopamine and norepinephrine. The decrease was significant and concentration dependent. Similar findings were observed in rats pretreated with chlordecone. Mirex did not show any effect, either in vitro or in vivo treatment, on the binding of dopamine or norepinephrine to the myocardial NAK-fraction. These results suggest that chlordecone may be altering the sodium pump activity by inhibiting both ATP hydrolysis and ATP synthesis and thus reducing other cellular events such as catecholamine uptake.

  12. Expression of biotransformation and oxidative stress genes in the giant freshwater prawn Macrobrachium rosenbergii exposed to chlordecone.

    PubMed

    Gaume, Béatrice; Dodet, Nathalie; Thomé, Jean-Pierre; Lemoine, Soazig

    2015-06-01

    Chlordecone is a persistent organochlorine pesticide widely used between 1972 and 1993 in the French West Indies to control the root borer in banana fields. Chlordecone use resulted in long-term pollution of soils, contamination of waters, of aquatic organisms, and of fields. Chlordecone is known to be neurotoxic, to increase prostate cancer, and to have negative effects on cognitive and motor development during infancy. In Guadeloupe, most of the freshwater species living in contaminated rivers exceed the French legal limit of 20 μg·kg(-1) wet weight. In the present study, we chose a transcriptomic approach to study the cellular effects of chlordecone in the giant freshwater prawn Macrobrachium rosenbergii, an important economical species in Guadeloupe. Quantitative PCR revealed an induction of genes involved in defense mechanism against oxidative stress (catalase and selenium-dependent glutathione peroxidase) in prawns exposed to low environmental concentrations of chlordecone after 12 and 24 h of exposure. In prawns reared in a contaminated farm, transcription of genes involved in the biotransformation process (cytochrome P450 and glutathione-S-transferase (GST)) were induced after 8 days of exposure. Our results provide information on the mechanims of defense induced by chlordecone in aquatic crustacean species. This gene expression study of selected genes should be further strengthened by proteomic analyses and enzymatic activity assays to confirm the response of these biomarkers of stress in crustaceans and to give new insights into the mechanism of toxicity by chlordecone.

  13. Public health and chronic low chlordecone exposures in Guadeloupe; Part 2: Health impacts, and benefits of prevention.

    PubMed

    Nedellec, Vincent; Rabl, Ari; Dab, William

    2016-07-19

    Inhabitants of Guadeloupe are chronically exposed to low doses of chlordecone via local food due to its past use in banana plantations. The corresponding health impacts have not been quantified. We develop a quantitative method and present the results in two articles: 1. Hazard identification, exposure-response functions, and exposure, 2. Health impacts, and benefits of a program to reduce the exposure of the population. Here is the second article. The exposure-response functions derived in Part 1 (for liver and prostate cancer, renal dysfunction and cognitive development) are combined with the exposure data to calculate the impacts. The corresponding costs are calculated via DALY's and VOLY. A no-effect threshold is included via the marginal fraction of the collective exposure above the reference dose. The health benefits are the impacts in 2002 (before the exposure reduction program) minus the impacts in 2006 (since the program). They are compared to the costs, namely the public annual expenditures for reducing the population exposure. Without threshold, estimated annual cases of liver cancer, prostate cancer and renal dysfunction are respectively 5.4, 2.8, 0.10 in 2002; and 2.0, 1.0, 0.04 in 2006. Annual IQ points lost (cognitive development) are respectively: 1 173 and 1 003. The annual cost of total impacts is 38.3 Million Euros (M€) in 2002 and 23.7 M€ in 2006. Comparing the benefit of 14.6 M€ with the 3.25 M€ spent for prevention, the program appears well justified. With threshold, the costs of the impacts are lower, respectively: 26.5 M€ in 2002 and 12.8 M€ in 2006, but the benefit is not very different: 13.7 M€. This is the first study that quantified chronic non genotoxic effects of chlordecone exposures in Guadeloupe. According to our results, preventive actions should be focused on pregnant women because of the high social cost of development impairment and also because their exposures decreased less rapidly than others. Prevention

  14. Compost addition reduces porosity and chlordecone transfer in soil microstructure.

    PubMed

    Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie

    2016-01-01

    Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity.

  15. Chlordecone disappearance in tissues of growing goats after a one month decontamination period--effect of body fatness on chlordecone retention.

    PubMed

    Lastel, Marie-Laure; Lerch, Sylvain; Fournier, Agnès; Jurjanz, Stefan; Mahieu, Maurice; Archimède, Harry; Feidt, Cyril; Rychen, Guido

    2016-02-01

    Chlordecone (CLD) is an organochlorine pesticide whose extended use led to the contamination of at least 20% of agricultural soils from the French West Indies. Livestock reared on polluted areas are involuntary contaminated by CLD and their level of contamination may exceed the threshold values set by the European Union. Thus, characterizing the CLD behaviour in farm animals appear as a real issue in terms of food safety for local populations. The aim of this experiment was (i) to characterize the CLD disappearance in various tissues after exposure cessation and (ii) to evaluate the potential effect of body fatness on this process. Two groups of eight growing goats were submitted to either a basal diet or a high energy diet for 50 days before being intravenously contaminated with 1 mg CLD kg(-1) body weight. Two days after CLD contamination, half of the kids of each experimental group were slaughtered in order to determine pollutant levels in the serum, liver, adipose tissues, and empty carcass. The remaining animals were submitted to a 30-day decontamination period before slaughtering and measurements as described above. The implemented nutritional plan resulted in both groups of kids with significant differences in terms of body fatness. CLD was mainly concentrated in the liver of animals as described in the literature. It was found also in kids' empty carcass and adipose tissues; however its levels in the empty carcass (muscles and bones) were unexpected since they were higher than in fat. These results indicate that the lipophilic pollutant CLD is found mainly in liver but also in muscles and fat. Concerning the animals' depuration, a 30-d decontamination period was sufficient to observe a decrease of CLD levels by more than 75% in both experimental groups and neither CLD concentrations nor CLD amounts were significantly affected by kids' body fatness.

  16. The invasive lionfish, Pterois volitans, used as a sentinel species to assess the organochlorine pollution by chlordecone in Guadeloupe (Lesser Antilles).

    PubMed

    Charlotte, Dromard R; Yolande, Bouchon-Navaro; Cordonnier, Sebastien; Claude, Bouchon

    2016-06-15

    In Guadeloupe, many marine organisms are affected by an organochlorine pollution used in the past by the banana industry to fight against the banana weevil. In the present study, we evaluated the level of contamination of the invasive Indo-Pacific lionfish, Pterois volitans, all around the island. Concentrations of chlordecone varied from 3 to 144μg.kg(-1) wet weight. The highest concentrations were recorded when samples were captured in the marine zones located downstream of the previous banana plantations. This contamination seemed to decrease rapidly with the distance from the coast. Mean concentration of chlordecone in Pterois volitans was higher than that of five other fish species collected in similar sites. Due to its position at the top of the trophic web, lionfish was affected by bioaccumulation of chlordecone and can be used as a sentinel species to assess and control the level of contamination of the marine environment by chlordecone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR CHLORDECONE (KEPONE) (2009 FINAL)

    EPA Science Inventory

    EPA is announcing the release of the final report, Toxicological Review of Chlorodecone (kepone): in support of the Integrated Risk Information System (IRIS). The updated Summary for Chlordecone (kepone) and accompanying Quickview have also been added to the IRIS Database....

  18. Comparative fate of an organochlorine, chlordecone, and a related compound, chlordecone-5b-hydro, in soils and plants.

    PubMed

    Clostre, Florence; Cattan, Philippe; Gaude, Jean-Marie; Carles, Céline; Letourmy, Philippe; Lesueur-Jannoyer, Magalie

    2015-11-01

    We address the problem of the comparative environmental fate of a pesticide, chlordecone (CLD), and a related compound, chlordecone-5b-hydro (CLD-5b-hydro). We used a large database including data from two types of contaminated volcanic soils, andosol and nitisol, and thirteen crops grown in the French West Indies in historically polluted soils. We performed in-depth statistical analysis of the effect of different parameters (soil type, crop, organ, etc.) on the ratio of CLD-5b-hydro to CLD in both soils and plants. The environmental fate of the two compounds differed depending on the type of soil. Proportionally, more CLD-5b-hydro than CLD was measured in nitisols than in andosols. Compared to CLD, we also found a preferential transfer of CLD-5b-hydro from the soil to the plant. Finally, mobilization of the two compounds differed according to the species of crop but also within the plant, with increasing ratios from the roots to the top of the plant. The properties of the compound played a key role in the underlying processes. Because CLD-5b-hydro is more soluble in water and has a lower K(ow) than CLD, CLD-5b-hydro (1) was more easily absorbed from soils by plants, (2) was less adsorbed onto plant tissues and (3) was transported in greater quantities through the transpiration stream. Due to the amounts of CLD-5b-hydro we measured in some plant parts such as cucurbit fruits, an assessment of the toxicity of this CLD monodechlorinated product is recommended. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. COMPARATIVE TISSUE DISTRIBUTION OF MIREX AND CHLORDECONE IN FETAL AND NEONATAL RATS

    EPA Science Inventory

    The transport of mirex and chlordecone (Kepone) across the placental during late gestation and through the milk during lactation was investigated in the rat. In the placental transport study, doses of 5 mg/kg were administrered on Day 15, 18 or 20 of gestation and animals were ki...

  20. Chlordecone altered hepatic disposition of [14C]cholesterol and plasma cholesterol distribution but not SR-BI or ABCG8 proteins in livers of C57BL/6 mice.

    PubMed

    Lee, Junga; Scheri, Richard C; Curtis, Lawrence R

    2008-06-15

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [(14)C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [(14)C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [(14)C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [(14)C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [(14)C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [(14)C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism.

  1. Kinetic study of chlordecone orally given to laying hens (Gallus domesticus).

    PubMed

    Jondreville, Catherine; Fournier, Agnès; Mahieu, Maurice; Feidt, Cyril; Archimède, Harry; Rychen, Guido

    2014-11-01

    The former use of chlordecone (CLD) in the French West Indies has resulted in long-term pollution of soils. In this area, CLD may be transferred into eggs of hens reared outdoors, through soil ingestion. In order to assess this risk, a kinetic study involving the contamination of laying hens (22 weeks of age) with a diet containing 500 μg CLD kg(-1) during 42 d, followed by a depuration period of 35 d was carried out. Forty-four hens were sequentially slaughtered all over the experimental period and their liver, egg, abdominal fat and serum were collected. Two additional edible tissues, pectoral and leg muscles, were collected in hens slaughtered at the end of the contamination period. The depuration half-life of CLD in liver, egg, abdominal fat and serum was estimated at 5.0 ± 0.38 (mean ± SE), 5.5 ± 0.29, 5.3 ± 0.37 and 5.1 ± 0.66 d, respectively. CLD concentration at the end of the contamination period reached 1640 ± 274, 460 ± 41, 331 ± 23, and 213 ± 8.5 μg kg(-1) fresh matter (FM), respectively. The corresponding concentrations in pectoral and leg muscles were 119 ± 8.4, 127 ± 11 μg kg(-1) FM, respectively. The steady state carry over rate of CLD in eggs reached 43 ± 7.6%. This experiment demonstrates the preferential accumulation of CLD in liver, its significant transfer to eggs and its quite short half-life. It is concluded that raising hens on even mildly contaminated areas would lead to products exceeding the regulatory maximum residue limit of 20 μg CLD kg(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Activated carbon, a useful medium to bind chlordecone in soil and limit its transfer to growing goat kids.

    PubMed

    Yehya, Sarah; Delannoy, Matthieu; Fournier, Agnès; Baroudi, Moomen; Rychen, Guido; Feidt, Cyril

    2017-01-01

    Chlordecone (Kepone) (CLD) is a highly persistent pesticide which was extensively used in the French West Indies; high levels of CLD can still currently be found in large agricultural areas. As CLD transfers from soil to animals mainly via involuntary ingestion, the consumption of foodstuffs derived from animals raised in contaminated areas may significantly contribute to exposure of humans to CLD. The present study was designed to test the efficacy of two different activated carbons (ACs) sources in limiting CLD transfer from soil to animal. Three soils (ASs) were prepared according to the OECD guideline 207. One standard soil (SS) lacking AC, and two modified preparations of SS supplemented with 2% coconut-based activated carbon (ORBO), SSO or with 2% lignite-based one (DARCO), SSD. All three soils were spiked with 10 μg of kepone per g of dry matter and aged for three weeks. This study involved 15 goat kids randomly assigned to the 3 experimental groups (n = 5/group), which were fed the experimental matrices at an exposure dose of 10 μg CLD per kg of body weight per day. After 21 d of oral exposure, CLD in adipose tissue and liver were analysed by LC-MS-MS. A significant decrease of 63.7% and 74.7% of CLD concentrations in adipose tissue and liver, respectively, were obtained from animals exposed using SS containing DARCO as compared to those receiving only SS. Decreases in CLD levels of 98.2% (adipose tissue) and 98.7% (liver) were obtained for animals exposed using SS containing ORBO. This study leads us to conclude that (i) the presence of AC in CLD-contaminated soil strongly reduces CLD bioavailability, and (ii) the efficacy depends on the nature and characteristics of the AC used.

  3. Activated carbon, a useful medium to bind chlordecone in soil and limit its transfer to growing goat kids

    PubMed Central

    Yehya, Sarah; Delannoy, Matthieu; Fournier, Agnès; Baroudi, Moomen; Rychen, Guido; Feidt, Cyril

    2017-01-01

    Chlordecone (Kepone) (CLD) is a highly persistent pesticide which was extensively used in the French West Indies; high levels of CLD can still currently be found in large agricultural areas. As CLD transfers from soil to animals mainly via involuntary ingestion, the consumption of foodstuffs derived from animals raised in contaminated areas may significantly contribute to exposure of humans to CLD. The present study was designed to test the efficacy of two different activated carbons (ACs) sources in limiting CLD transfer from soil to animal. Three soils (ASs) were prepared according to the OECD guideline 207. One standard soil (SS) lacking AC, and two modified preparations of SS supplemented with 2% coconut-based activated carbon (ORBO), SSO or with 2% lignite-based one (DARCO), SSD. All three soils were spiked with 10 μg of kepone per g of dry matter and aged for three weeks. This study involved 15 goat kids randomly assigned to the 3 experimental groups (n = 5/group), which were fed the experimental matrices at an exposure dose of 10 μg CLD per kg of body weight per day. After 21 d of oral exposure, CLD in adipose tissue and liver were analysed by LC-MS-MS. A significant decrease of 63.7% and 74.7% of CLD concentrations in adipose tissue and liver, respectively, were obtained from animals exposed using SS containing DARCO as compared to those receiving only SS. Decreases in CLD levels of 98.2% (adipose tissue) and 98.7% (liver) were obtained for animals exposed using SS containing ORBO. This study leads us to conclude that (i) the presence of AC in CLD-contaminated soil strongly reduces CLD bioavailability, and (ii) the efficacy depends on the nature and characteristics of the AC used. PMID:28723966

  4. Tolerance of aged Fischer 344 rats against chlordecone-amplified carbon tetrachloride toxicity.

    PubMed

    Murali, B; Korrapati, M C; Warbritton, Alan; Latendresse, John R; Mehendale, Harihara M

    2004-06-01

    We have investigated the effects of chlordecone 1(CD)+CCl4 combination in adult (3 months), middle aged (14 months), and old aged (24 months) male Fischer 344 (F344) rats. After a non-toxic dietary regimen of CD (10 ppm) or normal powdered diet for 15 days, rats received a single non-toxic dose of CCl4 (100 microl/kg, i.p., 1:4 in corn oil) or corn oil (500 microl/kg, i.p.) alone on day 16. Liver injury was assessed by plasma ALT, AST, and histopathology during a time course of 0-96 h. Liver tissue repair was measured by [3H-CH3]-thymidine (3H-T) incorporation into hepatic nuclear DNA and proliferating cell nuclear antigen (PCNA) immunohistochemistry. Hepatomicrosomal CYP2E1 protein, enzyme activity, and covalent binding of 14CCl4-derived radiolabel were measured in normal and CD fed rats. Exposure to CCl4 alone caused modest liver injury only in 14- and 24-month-old rats but neither progression of injury nor mortality. The CD+CCl4 combination led to 100% mortality in 3-month-old rats by 72 h, whereas none of the 14- and 24-month-old rats died. Both 3- and 14-month-old rats exposed to CD+Cl4 had identical liver injury up to 36 h indicating that bioactivation-mediated CCl4 injury was the same in the two age groups. Thereafter, liver injury escalated only in 3-month-old while it declined in 14-month-old rats. In 24-month-old rats initial liver injury at 6 h was similar to the 3- and 14-month-old rats and thereafter did not develop to the level of the other two age groups, recovering from injury by 96 h as in the 14-month-old rats. Neither hepatomicrosomal CYP2E1 protein nor the associated p-nitrophenol hydroxylase activity or covalent binding of 14CCl4-derived radiolabel to liver tissue differed between the age groups or diet regimens 2 h after the administration of 14CCl4. Compensatory liver tissue repair (3H-T, PCNA) was prompt and robust soon after CCl4 liver injury in the 14- and 24-month-old rats. In stark contrast, in the 3-month-old rats it failed allowing

  5. Chlordecone Altered Hepatic Disposition of [14C]Cholesterol and Plasma Cholesterol Distribution but not SR-BI or ABCG8 Proteins in Livers of C57BL/6 Mice

    PubMed Central

    Lee, Junga; Scheri, Richard C.; Curtis, Lawrence R.

    2011-01-01

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [14C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [14C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [14C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [14C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [14C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [14C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATPbinding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism. PMID:18387646

  6. AMPLIFICATION OF CCL4 TOXICITY BY CHLORDECONE: DESTRUCTION OF RAT HEPATIC MICROSOMAL CYTOCHROME P-450 SUBPOPULATION

    EPA Science Inventory

    Previous work has shown that chlordecone (CD)-amplified CCl4 hepatoxicity and lethality can be mitigated by pretreatment with (+)-cyanidanol. hese studies also revealed that stimulated hepatocellular regeneration might play an important role in the cyanidanol protection of CD amp...

  7. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils

    USDA-ARS?s Scientific Manuscript database

    Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14C-labeled contaminants, the hydrophobic chlordecone (CLD) and the readily water-soluble sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). Th...

  8. Growth parameters influencing uptake of chlordecone by Miscanthus species.

    PubMed

    Liber, Yohan; Létondor, Clarisse; Pascal-Lorber, Sophie; Laurent, François

    2018-05-15

    Because of its high persistence in soils, t 1/2 =30years, chlordecone (CLD) was classified as a persistent organic pollutant (POP) by the Stockholm Convention in 2009.The distribution of CLD over time has been heterogeneous, ranging from banana plantations to watersheds, and contaminating all environmental compartments. The aims of this study were to (i) evaluate the potential of Miscanthus species to extract chlordecone from contaminated soils, (ii) identify the growth parameters that influence the transfer of CLD from the soil to aboveground plant parts. CLD uptake was investigated in two species of Miscanthus, C4 plants adapted to tropical climates. M. sinensis and M.×giganteus were transplanted in a soil spiked with [ 14 C]CLD at environmental concentrations (1mgkg -1 ) under controlled conditions. Root-shoot transfer of CLD was compared in the two species after two growing periods (2 then 6months) after transplantation. CLD was found in all plant organs, roots, rhizomes, stems, leaves, and even flower spikes. The highest concentration of CLD was in the roots, 5398±1636 (M.×giganteus) and 14842±3210ngg -1 DW (M. sinensis), whereas the concentration in shoots was lower, 152±28 (M.×giganteus) and 266±70ngg -1 DW (M. sinensis) in soil contaminated at 1mgkg -1 . CLD translocation led to an acropetal gradient from the bottom to the top of the plants. CLD concentrations were also monitored over two complete growing periods (10months) in M. sinensis grown in 8.05mgkg -1 CLD contaminated soils. Concentrations decreased in M. sinensis shoots after the second growth period due to the increase in organic matters in the vicinity of the roots. Results showed that, owing to their respective biomass production, the two species were equally efficient at phytoextraction of CLD. Copyright © 2017. Published by Elsevier B.V.

  9. Two dechlorinated chlordecone derivatives formed by in situ chemical reduction are devoid of genotoxicity and mutagenicity and have lower proangiogenic properties compared to the parent compound.

    PubMed

    Legeay, Samuel; Billat, Pierre-André; Clere, Nicolas; Nesslany, Fabrice; Bristeau, Sébastien; Faure, Sébastien; Mouvet, Christophe

    2018-05-01

    Chlordecone (CLD) is a chlorinated hydrocarbon insecticide, now classified as a persistent organic pollutant. Several studies have previously reported that chronic exposure to CLD leads to hepatotoxicity, neurotoxicity, raises early child development and pregnancy complications, and increases the risk of liver and prostate cancer. In situ chemical reduction (ISCR) has been identified as a possible way for the remediation of soils contaminated by CLD. In the present study, the objectives were (i) to evaluate the genotoxicity and the mutagenicity of two CLD metabolites formed by ISCR, CLD-5a-hydro, or CLD-5-hydro (5a- or 5- according to CAS nomenclature; CLD-1Cl) and tri-hydroCLD (CLD-3Cl), and (ii) to explore the angiogenic properties of these molecules. Mutagenicity and genotoxicity were investigated using the Ames's technique on Salmonella typhimurium and the in vitro micronucleus micromethod with TK6 human lymphoblastoid cells. The proangiogenic properties were evaluated on the in vitro capillary network formation of human primary endothelial cells. Like CLD, the dechlorinated derivatives of CLD studied were devoid of genotoxic and mutagenic activity. In the assay targeting angiogenic properties, significantly lower microvessel lengths formed by endothelial cells were observed for the CLD-3Cl-treated cells compared to the CLD-treated cells for two of the three tested concentrations. These results suggest that dechlorinated CLD derivatives are devoid of mutagenicity and genotoxicity and have lower proangiogenic properties than CLD.

  10. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation

    PubMed Central

    Mazza, Giuseppe; Rombouts, Krista; Rennie Hall, Andrew; Urbani, Luca; Vinh Luong, Tu; Al-Akkad, Walid; Longato, Lisa; Brown, David; Maghsoudlou, Panagiotis; Dhillon, Amar P.; Fuller, Barry; Davidson, Brian; Moore, Kevin; Dhar, Dipok; De Coppi, Paolo; Malago, Massimo; Pinzani, Massimo

    2015-01-01

    Liver synthetic and metabolic function can only be optimised by the growth of cells within a supportive liver matrix. This can be achieved by the utilisation of decellularised human liver tissue. Here we demonstrate complete decellularization of whole human liver and lobes to form an extracellular matrix scaffold with a preserved architecture. Decellularized human liver cubic scaffolds were repopulated for up to 21 days using human cell lines hepatic stellate cells (LX2), hepatocellular carcinoma (Sk-Hep-1) and hepatoblastoma (HepG2), with excellent viability, motility and proliferation and remodelling of the extracellular matrix. Biocompatibility was demonstrated by either omental or subcutaneous xenotransplantation of liver scaffold cubes (5 × 5 × 5 mm) into immune competent mice resulting in absent foreign body responses. We demonstrate decellularization of human liver and repopulation with derived human liver cells. This is a key advance in bioartificial liver development. PMID:26248878

  11. Contamination of free-range ducks by chlordecone in Martinique (French West Indies): a field study.

    PubMed

    Jondreville, Catherine; Lavigne, Anaïs; Jurjanz, Stefan; Dalibard, Christophe; Liabeuf, Jean-Marie; Clostre, Florence; Lesueur-Jannoyer, Magalie

    2014-09-15

    The former use of chlordecone (CLD) in the French West Indies has resulted in long-term pollution of soils and subsequently of food chains. In contaminated areas, free-range ducks used to control weeds in orchards may be exposed to CLD through polluted soil ingestion. The question arises whether they may be consumed. Muscovy ducks were raised on a guava orchard planted on a soil moderately contaminated (410 μg CLD/kg dry matter). Ducks were raised indoor up to 6 weeks of age and allowed to range freely outdoors thereafter. Twenty-nine females were sequentially slaughtered by groups of 2 to 5 ducks, after 4, 16, 19, 22 or 26 weeks spent in the orchard or after 16-17 weeks in the orchard followed by 3, 6 or 9 weeks in a closed shelter for depuration. CLD concentration increased from 258 to 1051, 96 to 278, 60 to 169 and 48 to 145 μg/kg fresh matter (FM) as the exposure through grazing increased from 4 to 22 weeks, in liver, abdominal fat and leg with and without skin, respectively. Eggs collected in the orchard contained up to 1001 μg CLD/kg FM. All these values exceeded the Maximum Residue Limit (MRL) of 20 μg/kg FM. CLD concentration in all tissues was divided by around 10 within the 9-week confinement period. Despite this quite rapid decontamination, it is estimated that 12-13 weeks would be required to achieve the MRL in liver and in eggs, and 5-6 weeks in leg muscle. Such durations would be too long in practice. Thus, the consumption of products from free-range ducks should be avoided, even in areas mildly contaminated with CLD. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ERα) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    PubMed Central

    Lee, Junga; Scheri, Richard C.; Zhang, Yuan; Curtis, Lawrence R.

    2008-01-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [14C]CD or [14C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor α (ERα) in a concentration-dependent manner (0–50 μM). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice. PMID:18789348

  13. Anatomic Peculiarities of Pig and Human Liver.

    PubMed

    Nykonenko, Andriy; Vávra, Petr; Zonča, Pavel

    2017-02-01

    Many investigations on surgical methods and medical treatment are currently done on pigs. This is possible because the pig is sufficiently close genetically to humans. In recent years, progress in liver surgery has opened new possibilities in surgical treatment of liver diseases. Because the methods are relatively novel, various improvements are still needed, and it is thus helpful to conduct experimental surgeries on pig livers. We reviewed the literature to compare the anatomic and functional features of pig and human livers, information that will be of great importance for improving surgical techniques. During the literature review, we used various sources, such as PubMed, Scopus, and veterinary journals. Our results were summarized in diagrams to facilitate understanding of the vascular structure and biliary systems. We conclude that, although the shapes of the human and pig livers are quite different, the pig liver is divided into the same number of segments as the human liver, which also shows a common structure of the vascular system. Thus, with the anatomic and structural features of the pig liver taken into account, this animal model can be used in experimental hepatic surgery.

  14. Fraction from human and rat liver which is inhibitory for proliferation of liver cells.

    PubMed

    Chen, T S; Ottenweller, J; Luke, A; Santos, S; Keeting, P; Cuy, R; Lea, M A

    1989-01-01

    A comparative study was undertaken with human and rat liver of a fraction reported to have growth inhibitory activity when prepared from rat liver. Fractions which were soluble in 70% ethanol and insoluble in 87% ethanol were prepared from liver cytosols. Electrophoretic analysis under denaturing conditions indicated that there were several quantitative or qualitative differences in the fractions from the two species. Fractions from both human and rat liver were found to be inhibitory for the incorporation of 3H-thymidine into DNA of foetal chick hepatocytes. Under conditions in which the rat fraction inhibited precursor incorporation into DNA of rat liver epithelial cells there was not a significant inhibitory effect with the fraction from human liver. DNA synthesis in a rat hepatoma cell line was not significantly inhibited by preparations from either species. The data suggested that corresponding fractions from both rat and human liver could have inhibitory effects on precursor incorporation into DNA but the magnitude of the effects and target cell specificity may differ.

  15. Chlordecone Transfer and Distribution in Maize Shoots.

    PubMed

    Pascal-Lorber, Sophie; Létondor, Clarisse; Liber, Yohan; Jamin, Emilien L; Laurent, François

    2016-01-20

    Chlordecone (CLD) is a persistent organic pollutant (POP) that was mainly used as an insecticide against banana weevils in the French West Indies (1972-1993). Transfer of CLD via the food chain is now the major mechanism for exposure of the population to CLD. The uptake and the transfer of CLD were investigated in shoots of maize, a C4 model plant growing under tropical climates, to estimate the exposure of livestock via feed. Maize plants were grown on soils contaminated with [(14)C]CLD under controlled conditions. The greatest part of the radioactivity was associated with roots, nearly 95%, but CLD was detected in whole shoots, concentrations in old leaves being higher than those in young ones. CLD was thus transferred from the base toward the plant top, forming an acropetal gradient of contaminant. In contrast, results evidenced the existence of a basipetal gradient of CLD concentration within leaves whose extremities accumulated larger amounts of CLD because of evapotranspiration localization. Extractable residues accounted for two-thirds of total residues both in roots and in shoots. This study highlighted the fact that the distribution of CLD contamination within grasses resulted from a conjunction between the age and evapotranspiration rate of tissues. CLD accumulation in fodder may be the main route of exposure for livestock.

  16. Susceptibility of human liver cells to porcine endogenous retrovirus.

    PubMed

    Lin, Xinzi; Qi, Lin; Li, Zhiguo; Chi, Hao; Lin, Wanjun; Wang, Yan; Jiang, Zesheng; Pan, Mingxin; Gao, Yi

    2013-12-01

    The risk of porcine endogenous retrovirus infection is a major barrier for pig-to-human xenotransplant. Porcine endogenous retrovirus, present in porcine cells, can infect many human and nonhuman primate cells in vitro, but there is no evidence available about in vitro infection of human liver cells. We investigated the susceptibility of different human liver cells to porcine endogenous retrovirus. The supernatant from a porcine kidney cell line was added to human liver cells, including a normal hepatocyte cell line (HL-7702 cells), primary hepatocytes (Phh cells), and a liver stellate cell line (Lx-2 cells), and to human embryonic kidney cells as a reference control. Expression of the porcine endogenous retrovirus antigen p15E in the human cells was evaluated with polymerase chain reaction, reverse transcription-polymerase chain reaction, and Western blot. The porcine endogenous retrovirus antigen p15E was not expressed in any human liver cells (HL-7702, Phh, or Lx-2 cells) that had been exposed to supernatants from porcine kidney cell lines. Porcine endogenous retrovirus-specific fragments were amplified in human kidney cells. Human liver cells tested were not susceptible to infection by porcine endogenous retrovirus. Therefore, not all human cells are susceptible to porcine endogenous retrovirus.

  17. Digitalis metabolism and human liver alcohol dehydrogenase.

    PubMed Central

    Frey, W A; Vallee, B L

    1980-01-01

    Human liver alcohol dehydrogenase (alcohol: NAD" oxidoreductase, EC 1.1.1.1) catalyzes the oxidation of the 3 beta-OH group of digitoxigenin, digoxigenin, and gitoxigenin to their 3-keto derivatives, which have been characterized by high performance liquid chromatography and mass spectrometry. These studies have identified human liver alcohol dehydrogenase as the unknown NAD(H)-dependent liver enzyme specific for the free hydroxyl group at C3 of the cardiac genins; this hydroxyl is the critical site of the genins' enzymatic oxidation and concomitant pharmacological inactivation in humans. Several kinetic approaches have demonstrated that ethanol and the pharmacologically active components of the digitalis glycosides are oxidized with closely similar kcat/Km values at the same site on human liver alcohol dehydrogenase, for which they compete. Human liver alcohol dehydrogenase thereby becomes an important biochemical link in the metabolism, pharmacology, and toxicology of ethanol and these glycosides, structurally unrelated agents that are both used widely. Both the competition of ethanol with these cardiac sterols and the narrow margin of safety in the therapeutic use of digitalis derivatives would seem to place at increased risk those individuals who receive digitalis and simultaneously consume large amounts of ethanol or whose alcohol dehydrogenase function is impaired. PMID:6987673

  18. Bioengineered humanized livers as better three-dimensional drug testing model system.

    PubMed

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Nagarapu, Raju; Habeeb, Md Aejaz; Khan, Aleem Ahmed

    2018-01-27

    To develop appropriate humanized three-dimensional ex-vivo model system for drug testing. Bioengineered humanized livers were developed in this study using human hepatic stem cells repopulation within the acellularized liver scaffolds which mimics with the natural organ anatomy and physiology. Six cytochrome P-450 probes were used to enable efficient identification of drug metabolism in bioengineered humanized livers. The drug metabolism study in bioengineered livers was evaluated to identify the absorption, distribution, metabolism, excretion and toxicity responses. The bioengineered humanized livers showed cellular and molecular characteristics of human livers. The bioengineered liver showed three-dimensional natural architecture with intact vasculature and extra-cellular matrix. Human hepatic cells were engrafted similar to the human liver. Drug metabolism studies provided a suitable platform alternative to available ex-vivo and in vivo models for identifying cellular and molecular dynamics of pharmacological drugs. The present study paves a way towards the development of suitable humanized preclinical model systems for pharmacological testing. This approach may reduce the cost and time duration of preclinical drug testing and further overcomes on the anatomical and physiological variations in xenogeneic systems.

  19. MASS SPECTROMETRIC ANALYSIS AND CHARACTERIZATION OF KEPONE IN ENVIRONMENTAL AND HUMAN SAMPLES

    EPA Science Inventory

    A specific portion of our environment has been contaminated with Kepone, or chlordecone. Additionally, some specific human exposures to high concentrations of Kepone have been confirmed. Gas chromatography mass spectrometry involving chemical ionization and high resolution mass s...

  20. Human liver proteome project: plan, progress, and perspectives.

    PubMed

    He, Fuchu

    2005-12-01

    The Human Liver Proteome Project is the first initiative of the human proteome project for human organs/tissues and aims at writing a modern Prometheus myth. Its global scientific objectives are to reveal the "solar system" of the human liver proteome, expression profiles, modification profiles, a protein linkage (protein-protein interaction) map, and a proteome localization map, and to define an ORFeome, physiome, and pathome. Since it was first proposed in April 2002, the Human Liver Proteome Project has attracted more than 100 laboratories from all over the world. In the ensuing 3 years, we set up a management infrastructure, identified reference laboratories, confirmed standard operating procedures, initiated international research collaborations, and finally achieved the first set of expression profile data.

  1. A microfluidically perfused three dimensional human liver model.

    PubMed

    Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S

    2015-12-01

    Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Ice formation in isolated human hepatocytes and human liver tissue.

    PubMed

    Bischof, J C; Ryan, C M; Tompkins, R G; Yarmush, M L; Toner, M

    1997-01-01

    Cryopreservation of isolated cells and tissue slices of human liver is required to furnish extracorporeal bioartificial liver devices with a ready supply of hepatocytes, and to create in vitro drug metabolism and toxicity models. Although both the bioartificial liver and many current biotoxicity models are based on reconstructing organ functions from single isolated hepatocytes, tissue slices offer an in vitro system that may more closely resemble the in vivo situation of the cells because of cell-cell and cell-extracellular matrix interactions. However, successful cryopreservation of both cellular and tissue level systems requires an increased understanding of the fundamental mechanisms involved in the response of the liver and its cells to freezing stress. This study investigates the biophysical mechanisms of water transport and intracellular ice formation during freezing in both isolated human hepatocytes and whole liver tissue. The effects of cooling rate on individual cells were measured using a cryomicroscope. Biophysical parameters governing water transport (Lpg = 2.8 microns/min-atm and ELp = 79 kcal/mole) and intracellular heterogeneous ice nucleation (omega het = 1.08 x 10(9) m-2s-1 and kappa het = 1.04 x 10(9) K5) were determined. These parameters were then incorporated into a theoretical Krogh cylinder model developed to simulate water transport and ice formation in intact liver tissue. Model simulations indicated that the cellular compartment of the Krogh model maintained more water than isolated cells under the same freezing conditions. As a result, intracellular ice nucleation occurred at lower cooling rates in the Krogh model than in isolated cells. Furthermore, very rapid cooling rates (1000 degrees C/min) showed a depression of heterogeneous nucleation and a shift toward homogeneous nucleation. The results of this study are in qualitative agreement with the findings of a previous experimental study of the response to freezing of intact human liver.

  3. Recellularization of Rat Liver Scaffolds by Human Liver Stem Cells

    PubMed Central

    Navarro-Tableros, Victor; Herrera Sanchez, Maria Beatriz; Figliolini, Federico; Romagnoli, Renato; Tetta, Ciro

    2015-01-01

    In the present study, rat liver acellular scaffolds were used as biological support to guide the differentiation of human liver stem-like cells (HLSC) to hepatocytes. Once recellularized, the scaffolds were maintained for 21 days in different culture conditions to evaluate hepatocyte differentiation. HLSC lost the embryonic markers (alpha-fetoprotein, nestin, nanog, sox2, Musashi1, Oct 3/4, and pax2), increased the expression of albumin, and acquired the expression of lactate dehydrogenase and three subtypes of cytochrome P450. The presence of urea nitrogen in the culture medium confirmed their metabolic activity. In addition, cells attached to tubular remnant matrix structures expressed cytokeratin 19, CD31, and vimentin. The rat extracellular matrix (ECM) provides not only a favorable environment for differentiation of HLSC in functional hepatocytes (hepatocyte like) but also promoted the generation of some epithelial-like and endothelial-like cells. When fibroblast growth factor–epidermal growth factor or HLSC-derived conditioned medium was added to the perfusate, an improvement of survival rate was observed. The conditioned medium from HLSC potentiated also the metabolic activity of hepatocyte-like cells repopulating the acellular liver. In conclusion, HLSC have the potential, in association with the natural ECM, to generate in vitro a functional “humanized liver-like tissue.” PMID:25794768

  4. Adrenergic receptors in human fetal liver membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falkay, G.; Kovacs, L.

    1990-01-01

    The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using {sup 3}H-prazosin and {sup 3}H-dihydroalprenolol, respectively, as radioligand. Heterogeneous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycemia of newborns after treatment ofmore » premature labor with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.« less

  5. Theoretical study of chlordecone and surface groups interaction in an activated carbon model under acidic and neutral conditions.

    PubMed

    Gamboa-Carballo, Juan José; Melchor-Rodríguez, Kenia; Hernández-Valdés, Daniel; Enriquez-Victorero, Carlos; Montero-Alejo, Ana Lilian; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2016-04-01

    Activated carbons (ACs) are widely used in the purification of drinking water without almost any knowledge about the adsorption mechanisms of the persistent organic pollutants. Chlordecone (CLD, Kepone) is an organochlorinated synthetic compound that has been used mainly as agricultural insecticide. CLD has been identified and listed as a persistent organic pollutant by the Stockholm Convention. The selection of the best suited AC for this type of contaminants is mainly an empirical and costly process. A theoretical study of the influence of AC surface groups (SGs) on CLD adsorption is done in order to help understanding the process. This may provide a first selection criteria for the preparation of AC with suitable surface properties. A model of AC consisting of a seven membered ring graphene sheet (coronene) with a functional group on the edge was used to evaluate the influence of the SGs over the adsorption. Multiple Minima Hypersurface methodology (MMH) coupled with PM7 semiempirical Hamiltonian was employed in order to study the interactions of the chlordecone with SGs (hydroxyl and carboxyl) at acidic and neutral pH and different hydration conditions. Selected structures were re-optimized using CAM-B3LYP to achieve a well-defined electron density to characterize the interactions by the Quantum Theory of Atoms in Molecules approach. The deprotonated form of surface carboxyl and hydroxyl groups of AC models show the strongest interactions, suggesting a chemical adsorption. An increase in carboxylic SGs content is proposed to enhance CLD adsorption onto AC at neutral pH conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Long-term culture of human liver tissue with advanced hepatic functions.

    PubMed

    Ng, Soon Seng; Xiong, Anming; Nguyen, Khanh; Masek, Marilyn; No, Da Yoon; Elazar, Menashe; Shteyer, Eyal; Winters, Mark A; Voedisch, Amy; Shaw, Kate; Rashid, Sheikh Tamir; Frank, Curtis W; Cho, Nam Joon; Glenn, Jeffrey S

    2017-06-02

    A major challenge for studying authentic liver cell function and cell replacement therapies is that primary human hepatocytes rapidly lose their advanced function in conventional, 2-dimensional culture platforms. Here, we describe the fabrication of 3-dimensional hexagonally arrayed lobular human liver tissues inspired by the liver's natural architecture. The engineered liver tissues exhibit key features of advanced differentiation, such as human-specific cytochrome P450-mediated drug metabolism and the ability to support efficient infection with patient-derived inoculums of hepatitis C virus. The tissues permit the assessment of antiviral agents and maintain their advanced functions for over 5 months in culture. This extended functionality enabled the prediction of a fatal human-specific hepatotoxicity caused by fialuridine (FIAU), which had escaped detection by preclinical models and short-term clinical studies. The results obtained with the engineered human liver tissue in this study provide proof-of-concept determination of human-specific drug metabolism, demonstrate the ability to support infection with human hepatitis virus derived from an infected patient and subsequent antiviral drug testing against said infection, and facilitate detection of human-specific drug hepatotoxicity associated with late-onset liver failure. Looking forward, the scalability and biocompatibility of the scaffold are also ideal for future cell replacement therapeutic strategies.

  7. Propagation of Human Hepatocytes in uPA/SCID Mice: Producing Chimeric Mice with Humanized Liver.

    PubMed

    Ohshita, Hiroki; Tateno, Chise

    2017-01-01

    Primary or cryopreserved human hepatocytes (h-heps) have been used as the gold standard for in vitro metabolism and hepatotoxicity studies; however, the supply of h-heps is limited and they cannot grow in vitro. We achieved approximately 1000-fold propagation of h-heps in the liver of albumin promoter/enhancer-driven urokinase-type plasminogen activator transgenic/severe combined immunodeficiency disease (uPA/SCID) mice with genetically induced liver disease and immunodeficiency. When h-heps are transplanted into the uPA/SCID mouse liver via the spleen, the h-heps engraft in the mouse liver, resulting in its repopulation with h-heps. We have named this model "chimeric mouse with humanized liver, PXB-mouse ® ." Fresh h-heps can be isolated from the chimeric mice (PXB-cells ® ) and have been used for in vitro studies.The efficacy and safety of chemical entities for use in humans are estimated using experimental animals such as rats and mice. The drug development of many chemical entities has been halted because of metabolic differences between humans and animals during clinical studies. Therefore, chimeric mice with humanized liver have been used to predict human-type metabolism and safety conditions for h-heps. In addition, until recently there were no suitable hepatitis B or C virus (HBV or HCV) susceptible animal models aside from chimpanzees. Chimeric mice are the sole persistent infectious small animal model for HBV and HCV and they have been used to investigate the efficacy of new anti-HBV or HCV agents.In this chapter, we describe a method for producing chimeric mice with humanized liver using uPA/SCID mice.

  8. Hepatic cholesterol ester hydrolase in human liver disease.

    PubMed

    Simon, J B; Poon, R W

    1978-09-01

    Human liver contains an acid cholesterol ester hydrolase (CEH) of presumed lysosomal origin, but its significance is unknown. We developed a modified CEH radioassay suitable for needle biopsy specimens and measured hepatic activity of this enzyme in 69 patients undergoing percutaneous liver biopsy. Histologically normal livers hydrolyzed 5.80 +/- 0.78 SEM mumoles of cholesterol ester per hr per g of liver protein (n, 10). Values were similar in alcoholic liver disease (n, 17), obstructive jaundice (n, 9), and miscellaneous hepatic disorders (n, 21). In contrast, mean hepatic CEH activity was more than 3-fold elevated in 12 patients with acute hepatitis, 21.05 +/- 2.45 SEM mumoles per hr per g of protein (P less than 0.01). In 2 patients studied serially, CEH returned to normal as hepatitis resolved. CEH activity in all patients paralleled SGOT levels (r, 0.84; P less than 0.01). There was no correlation with serum levels of free or esterified cholesterol nor with serum activity of lecithin-cholesterol acyltransferase, the enzyme responsible for cholesterol esterification in plasma. These studies confirm the presence of CEH activity in human liver and show markedly increased activity in acute hepatitis. The pathogenesis and clinical significance of altered hepatic CEH activity in liver disease require further study.

  9. ADV36 adipogenic adenovirus in human liver disease

    PubMed Central

    Trovato, Francesca M; Catalano, Daniela; Garozzo, Adriana; Martines, G Fabio; Pirri, Clara; Trovato, Guglielmo M

    2014-01-01

    Obesity and liver steatosis are usually described as related diseases. Obesity is regarded as exclusive consequence of an imbalance between food intake and physical exercise, modulated by endocrine and genetic factors. Non-alcoholic fatty liver disease (NAFLD), is a condition whose natural history is related to, but not completely explained by over-nutrition, obesity and insulin resistance. There is evidence that environmental infections, and notably adipogenic adenoviruses (ADV) infections in humans, are associated not only with obesity, which is sufficiently established, but also with allied conditions, such as fatty liver. In order to elucidate the role, if any, of previous ADV36 infection in humans, we investigated association of ADV36-ADV37 seropositivity with obesity and fatty liver in humans. Moreover, the possibility that lifestyle-nutritional intervention in patients with NAFLD and different ADV36 seropositive status, achieves different clinical outcomes on ultrasound bright liver imaging, insulin resistance and obesity was challenged. ADV36 seropositive patients have a more consistent decrease in insulin resistance, fatty liver severity and body weight in comparison with ADV36 seronegative patients, indicating a greater responsiveness to nutritional intervention. These effects were not dependent on a greater pre-interventional body weight and older age. These results imply that no obvious disadvantage - and, seemingly, that some benefit - is linked to ADV36 seropositivity, at least in NAFLD. ADV36 previous infection can boost weight loss and recovery of insulin sensitivity under interventional treatment. PMID:25356033

  10. Uptake and distribution of chlordecone in radish: different contamination routes in edible roots.

    PubMed

    Létondor, Clarisse; Pascal-Lorber, Sophie; Laurent, François

    2015-01-01

    Chlordecone (CLD) was an organochlorine insecticide mainly used to struggle against banana weevils in the French West Indies. Forbidden since 1993, it has been a long-term contaminant of soils and aquatic environments. Crops growing in contaminated soils lead to human exposure by food consumption. We used radiolabeled [(14)C]-CLD to investigate the contamination ways into radish, a model of edible roots. Radish plants were able to accumulate CLD in both roots (RCF35d 647) and tubers (edible parts, CF35d 6.3). CLD was also translocated to leaves (CF35d 1.7). The contamination of tuber was mainly due to peridermic adsorption or CLD systemic translocation to the pith. TSCF was 3.44×10(-)(3). CLD diffused across periderm to internal tissues. We calculated a mean flux of diffusion J through periderm about 5.71×10(-)(14)gcm(-)(2)s(-)(1). We highlighted different contamination routes of the tuber, (i) adsorption on periderm followed by diffusion of CLD towards underlying tissues, cortex, xylem, and pith (ii) adsorption by roots and translocation by the transpiration stream followed by diffusion from xylem vessels towards inner tissues, pith, and peripheral tissues, cortex and periderm. Concerning chemical risk assessment for other tubers, contamination would depend on various parameters, the thickness of periderm and CLD periderm permeance, the origin of secondary tissues - from cortex and/or pith - , the importance of xylem flow in tuber, and the lipid amount within tuber. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Veal Liver as Food Vehicle for Human Campylobacter Infections.

    PubMed

    Gaulin, Colette; Ramsay, Danielle; Dion, Réjean; Simard, Marc; Gariépy, Céline; Levac, Éric; Hammond-Collins, Karon; Michaud-Dumont, Maude; Gignac, Mélanie; Fiset, Marc

    2018-06-01

    A matched case-control study in Quebec, Canada, evaluated consumption of veal liver as a risk factor for campylobacteriosis. Campylobacter was identified in 28 of 97 veal livers collected concurrently from slaughterhouses and retailers. Veal liver was associated with human Campylobacter infection, particularly when consumed undercooked.

  12. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice

    PubMed Central

    Mikolajczak, Sebastian A.; Vaughan, Ashley M.; Kangwanrangsan, Niwat; Roobsoong, Wanlapa; Fishbaugher, Matthew; Yimamnuaychok, Narathatai; Rezakhani, Nastaran; Lakshmanan, Viswanathan; Singh, Naresh; Kaushansky, Alexis; Camargo, Nelly; Baldwin, Michael; Lindner, Scott E.; Adams, John H.; Prachumsri, Jetsumon; Kappe, Stefan H.I.

    2017-01-01

    Plasmodium vivax malaria is characterized by periodic relapses of symptomatic blood stage parasite infections likely initiated by activation of dormant liver stage parasites -hypnozoites. The lack of tractable animal models for P. vivax constitutes a severe obstacle to investigate this unique aspect of its biology and to test drug efficacy against liver stages. We show that the FRG KO huHep liver-humanized mice support P. vivax sporozoite infection, development of liver stages, and the formation of small non-replicating hypnozoites. Cellular characterization of P. vivax liver stage development in vivo demonstrates complete maturation into infectious exo-erythrocytic merozoites and continuing persistence of hypnozoites. Primaquine prophylaxis or treatment prevents and eliminates liver stage infection. Thus, the P. vivax/FRG KO huHep mouse infection model constitutes an important new tool to investigate the biology of liver stage development and dormancy and might aid in the discovery of new drugs for the prevention of relapsing malaria. PMID:25800544

  13. Human and rat liver phenol sulfotransferase: structure-activity relationships for phenolic substrates.

    PubMed

    Campbell, N R; Van Loon, J A; Sundaram, R S; Ames, M M; Hansch, C; Weinshilboum, R

    1987-12-01

    Phenol sulfotransferase (PST) catalyzes the sulfate conjugation of many phenolic drugs. Human liver contains thermostable (TS) and thermolabile forms of PST. Ion exchange chromatography shows that two isozymes of TS PST (peaks I and II) are present in human liver preparations. Rat liver contains four forms of PST that can be separated by ion exchange chromatography. Quantitative structure-activity relationship (QSAR) analysis was used to study phenolic substrates for both human and rat liver PST. Thirty-six substituted phenols were tested as substrates for partially purified human liver TS PST peak I. QSAR analysis resulted in derivation of the following equation: log 1/Km = 0.92 (+/- 0.18)log P - 1.48 (+/- 0.38)MR'4 - 0.64 (+/- 0.41)MR3 + 1.04 (+/- 0.63)MR2 + 0.67(+/- 0.44) sigma- + 4.03 (+/- 0.42). In this equation Km is the Michaelis constant, P is the octanol-water partition coefficient, MR is the molar refractivity of substituents at the 2-, 3-, and 4-positions, and sigma- is the Hammett constant. Values of log 1/Km calculated with this equation were highly correlated with log 1/Km values (r = 0.950) that were observed experimentally. Nine phenols were also tested as substrates for partially purified human liver TS PST peak II. Log 1/Km values for these compounds were significantly correlated for the two isozymes of TS PST (r = 0.992, p less than 0.001). QSAR analysis was also used to derive equations that described the behavior of phenolic substrates for rat liver PST forms I and II. These equations differed substantially from the equation derived for compounds tested with human liver TS PST peak I. Therefore, the characteristics of the active sites of human liver TS PST peak I and rat liver PST forms I and II appear to differ. Application of these equations may make it possible to predict Km values of phenolic substrates for human liver TS PST and for rat liver PST forms I and II.

  14. A New Human 3D-Liver Model Unravels the Role of Galectins in Liver Infection by the Parasite Entamoeba histolytica

    PubMed Central

    Petropolis, Debora B.; Faust, Daniela M.; Deep Jhingan, Gagan; Guillen, Nancy

    2014-01-01

    Investigations of human parasitic diseases depend on the availability of appropriate in vivo animal models and ex vivo experimental systems, and are particularly difficult for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. This common infectious human disease affects the intestine and liver. In the liver sinusoids E. histolytica crosses the endothelium and penetrates into the parenchyma, with the concomitant initiation of inflammatory foci and subsequent abscess formation. Studying factors responsible for human liver infection is hampered by the complexity of the hepatic environment and by the restrictions inherent to the use of human samples. Therefore, we built a human 3D-liver in vitro model composed of cultured liver sinusoidal endothelial cells and hepatocytes in a 3D collagen-I matrix sandwich. We determined the presence of important hepatic markers and demonstrated that the cell layers function as a biological barrier. E. histolytica invasion was assessed using wild-type strains and amoebae with altered virulence or different adhesive properties. We showed for the first time the dependence of endothelium crossing upon amoebic Gal/GalNAc lectin. The 3D-liver model enabled the molecular analysis of human cell responses, suggesting for the first time a crucial role of human galectins in parasite adhesion to the endothelial cells, which was confirmed by siRNA knockdown of galectin-1. Levels of several pro-inflammatory cytokines, including galectin-1 and -3, were highly increased upon contact of E. histolytica with the 3D-liver model. The presence of galectin-1 and -3 in the extracellular medium stimulated pro-inflammatory cytokine release, suggesting a further role for human galectins in the onset of the hepatic inflammatory response. These new findings are relevant for a better understanding of human liver infection by E. histolytica. PMID:25211477

  15. Current status of prediction of drug disposition and toxicity in humans using chimeric mice with humanized liver.

    PubMed

    Kitamura, Shigeyuki; Sugihara, Kazumi

    2014-01-01

    1. Human-chimeric mice with humanized liver have been constructed by transplantation of human hepatocytes into several types of mice having genetic modifications that injure endogenous liver cells. Here, we focus on liver urokinase-type plasminogen activator-transgenic severe combined immunodeficiency (uPA/SCID) mice, which are the most widely used human-chimeric mice. Studies so far indicate that drug metabolism, drug transport, pharmacological effects and toxicological action in these mice are broadly similar to those in humans. 2. Expression of various drug-metabolizing enzymes is known to be different between humans and rodents. However, the expression pattern of cytochrome P450, aldehyde oxidase and phase II enzymes in the liver of human-chimeric mice resembles that in humans, not that in the host mice. 3. Metabolism of various drugs, including S-warfarin, zaleplon, ibuprofen, naproxen, coumarin, troglitazone and midazolam, in human-chimeric mice is mediated by human drug-metabolizing enzymes, not by host mouse enzymes, and thus resembles that in humans. 4. Pharmacological and toxicological effects of various drugs in human-chimeric mice are also similar to those in humans. 5. The current consensus is that chimeric mice with humanized liver are useful to predict drug metabolism catalyzed by cytochrome P450, aldehyde oxidase and phase II enzymes in humans in vivo and in vitro. Some remaining issues are discussed in this review.

  16. The 24-hour normothermic machine perfusion of discarded human liver grafts.

    PubMed

    Vogel, Thomas; Brockmann, Jens G; Quaglia, Alberto; Morovat, Alireza; Jassem, Wayel; Heaton, Nigel D; Coussios, Constantin C; Friend, Peter J

    2017-02-01

    Donor organ shortage necessitates use of less than optimal donor allografts for transplantation. The current cold storage preservation technique fails to preserve marginal donor grafts sufficiently. Evidence from large animal experiments suggests superiority of normothermic machine preservation (NMP) of liver allografts. In this study, we analyze discarded human liver grafts that underwent NMP for the extended period of 24 hours. Thirteen human liver grafts which had been discarded for transplantation were entered into this study. Perfusion was performed with an automated device using an oxygenated, sanguineous perfusion solution at normothermia. Automated control was incorporated for temperature-, flow-, and pressure-regulation as well as oxygenation. All livers were perfused for 24 hours; parameters of biochemical and synthetic liver function as well as histological parameters of liver damage were analyzed. Livers were stratified for expected viability according to the donor's medical history, procurement data, and their macroscopic appearance. Normothermic perfusion preservation of human livers for 24 hours was shown to be technically feasible. Human liver grafts, all of which had been discarded for transplantation, showed levels suggesting organ viability with respect to metabolic and synthetic liver function (to varying degrees). There was positive correlation between instantly available perfusion parameters and generally accepted predictors of posttransplant graft survival. In conclusion, NMP is feasible reliably for periods of at least 24 hours, even in highly suboptimal donor organs. Potential benefits include not only viability testing (as suggested in recent clinical implementations), but also removal of the time constraints associated with the utilization of high-risk livers, and recovery of ischemic and other preretrieval injuries (possibly by enabling therapeutic strategies during NMP). Liver Transplantation 23 207-220 2017 AASLD. © 2016 by the

  17. The Chlordecone crisis in the French West Indies : Its fate in soils and water

    NASA Astrophysics Data System (ADS)

    Voltz, Marc; Cattan, Philippe; Saison, Carine; Berns, Anne E.; Colin, François; Crabit, Armand; Crevoisier, David; Fernandez-Bayo, Jesus; Levillain, Joseph; Pak, Lai-Ting; Samouelian, Anatja; Cabidoche, Yves-Marie

    2013-04-01

    In the French West Indies, chlordecone (CLD), an organochlorine pesticide, which is highly persistent in the environment, was applied in banana plantations from 1972 to 1993 against the banana weevil Cosmopolites sordidus. Pollution surveys conducted in 2001 by the French Department of Health revealed the presence of chlordecone in soils, rivers, springs over large areas in Guadeloupe and Martinique islands. Contamination of drinking water, food crops, aquatic species by CLD has been observed as well as its presence in blood of men, pregnant women and newborns. There is therefore a large social concern about the extent and evolution of CLD pollution in the French West Indies and its impact on human health and ecosystems. From 2008 to 2012 a multidisciplinary project CHLORDEXCO took place to study the CLD fate in water, soils and the contamination characteristics of aquatic species and food crops. Here, we summarize results obtained on the processes controlling the spatial and temporal patterns of soil and water contamination at the scale of the banana cropping area in Guadeloupe and of the Perou catchment. The main soils in the contaminated areas are andosols and nitisols and formed from the weathering of volcanic ashes. They have a high organic carbon content and high content of secondary minerals, allophane for andosols and halloysite for nitisols. An analysis of the spatial distribution of CLD in soil over 1045 field plots showed that the soil type had a strong impact. Andosols, with a high sorption capacity (Koc 20 000 L/kg), had the highest CLD concentrations and stocks, unlike Nitisols, which had 10-fold lower sorption capacities. A significant « farm effect », due to between-farm variations of application times and amounts, was also noticed. The observed stocks of CLD clearly correspond to the accumulation in soil of successive treatments and thereby confirm the high persistence of CLD in soil also observed in incubation studies in soil microcosms. Soil

  18. Determination of the electrical conductivity of human liver metastases: impact on therapy planning in the radiofrequency ablation of liver tumors.

    PubMed

    Zurbuchen, Urte; Poch, Franz; Gemeinhardt, Ole; Kreis, Martin E; Niehues, Stefan M; Vahldieck, Janis L; Lehmann, Kai S

    2017-02-01

    Background Radiofrequency ablation is used to induce thermal necrosis in the treatment of liver metastases. The specific electrical conductivity of a liver metastasis has a distinct influence on the heat formation and resulting tumor ablation within the tissue. Purpose To examine the electrical conductivity σ of human colorectal liver metastases and of tumor-free liver tissue in surgical specimens. Material and Methods Surgical specimens from patients with resectable colorectal liver metastases were used for measurements (size of metastases <30 mm). A four-needle measuring probe was used to determine the electrical conductivity σ of human colorectal liver metastasis (n = 8) and tumor-free liver tissue (n = 5) in a total of five patients. All measurements were performed at 470 kHz, which is the relevant frequency for radiofrequency ablation. The tissue temperature was also measured. Hepatic resections were performed in accordance with common surgical standards. Measurements were performed in the operating theater immediately after resection. Results The median electrical conductivity σ was 0.57 S/m in human colorectal liver metastases at a median temperature of 35.1℃ and 0.35 S/m in tumor-free liver tissue at a median temperature of 34.9℃. The electrical conductivity was significantly higher in tumor tissue than in tumor-free liver tissue ( P = 0.005). There were no differences in tissue temperature between the two groups ( P = 0.883). Conclusion The electrical conductivity is significantly higher in human colorectal liver metastases than in tumor-free liver tissue at a frequency of 470 kHz.

  19. Human liver segments: role of cryptic liver lobes and vascular physiology in the development of liver veins and left-right asymmetry.

    PubMed

    Hikspoors, Jill P J M; Peeters, Mathijs M J P; Kruepunga, Nutmethee; Mekonen, Hayelom K; Mommen, Greet M C; Köhler, S Eleonore; Lamers, Wouter H

    2017-12-07

    Couinaud based his well-known subdivision of the liver into (surgical) segments on the branching order of portal veins and the location of hepatic veins. However, both segment boundaries and number remain controversial due to an incomplete understanding of the role of liver lobes and vascular physiology on hepatic venous development. Human embryonic livers (5-10 weeks of development) were visualized with Amira 3D-reconstruction and Cinema 4D-remodeling software. Starting at 5 weeks, the portal and umbilical veins sprouted portal-vein branches that, at 6.5 weeks, had been pruned to 3 main branches in the right hemi-liver, whereas all (>10) persisted in the left hemi-liver. The asymmetric branching pattern of the umbilical vein resembled that of a "distributing" vessel, whereas the more symmetric branching of the portal trunk resembled a "delivering" vessel. At 6 weeks, 3-4 main hepatic-vein outlets drained into the inferior caval vein, of which that draining the caudate lobe formed the intrahepatic portion of the caval vein. More peripherally, 5-6 major tributaries drained both dorsolateral regions and the left and right ventromedial regions, implying a "crypto-lobar" distribution. Lobar boundaries, even in non-lobated human livers, and functional vascular requirements account for the predictable topography and branching pattern of the liver veins, respectively.

  20. Metabolic profiles of pomalidomide in human plasma simulated with pharmacokinetic data in control and humanized-liver mice.

    PubMed

    Shimizu, Makiko; Suemizu, Hiroshi; Mitsui, Marina; Shibata, Norio; Guengerich, F Peter; Yamazaki, Hiroshi

    2017-10-01

    1. Pomalidomide has been shown to be potentially teratogenic in thalidomide-sensitive animal species such as rabbits. Screening for thalidomide analogs devoid of teratogenicity/toxicity - attributable to metabolites formed by cytochrome P450 enzymes - but having immunomodulatory properties is a strategic pathway towards development of new anticancer drugs. 2. In this study, plasma concentrations of pomalidomide, its primary 5-hydroxylated metabolite, and its glucuronide conjugate(s) were investigated in control and humanized-liver mice. Following oral administration of pomalidomide (100 mg/kg), plasma concentrations of 7-hydroxypomalidomide and 5-hydroxypomalidomide glucuronide were slightly higher in humanized-liver mice than in control mice. 3. Simulations of human plasma concentrations of pomalidomide were achieved with simplified physiologically-based pharmacokinetic models in both groups of mice in accordance with reported pomalidomide concentrations after low dose administration in humans. 4. The results indicate that pharmacokinetic profiles of pomalidomide were roughly similar between control mice and humanized-liver mice and that control and humanized-liver mice mediated pomalidomide 5-hydroxylation in vivo. Introducing one aromatic amino group into thalidomide resulted in less species differences in in vivo pharmacokinetics in control and humanized-liver mice.

  1. Some biochemical and histochemical properties of human liver serine dehydratase.

    PubMed

    Kashii, Tatsuhiko; Gomi, Tomoharu; Oya, Takeshi; Ishii, Yoko; Oda, Hirofumi; Maruyama, Muneharu; Kobayashi, Masashi; Masuda, Tohru; Yamazaki, Mitsuaki; Nagata, Takuya; Tsukada, Kazuhiro; Nakajima, Akinori; Tatsu, Kazuhito; Mori, Hisashi; Takusagawa, Fusao; Ogawa, Hirofumi; Pitot, Henry C

    2005-03-01

    In rat, serine dehydratase (SDH) is abundant in the liver and known to be a gluconeogenic enzyme, while there is little information about the biochemical property of human liver serine dehydratase because of its low content and difficulty in obtaining fresh materials. To circumvent these problems, we purified recombinant enzyme from Escherichia coli, and compared some properties between human and rat liver serine dehydratases. Edman degradation showed that the N-terminal sequence of about 75% of human serine dehydratase starts from MetSTART-Met2-Ser3- and the rest from Ser3-, whereas the N-terminus of rat enzyme begins from the second codon of MetSTART-Ala2-. The heterogeneity of the purified preparation was totally confirmed by mass spectrometry. Accordingly, this observation in part fails to follow the general rule that the first Met is not removed when the side chain of the penultimate amino acid is bulky such as Met, Arg, Lys, etc. There existed the obvious differences in the local structures between the two enzymes as revealed by limited-proteolysis experiments using trypsin and Staphylococcus aureus V8 protease. The most prominent difference was found histochemically: expression of rat liver serine dehydratase is confined to the periportal region in which many enzymes involved in gluconeogenesis and urea cycle are known to coexist, whereas human liver serine dehydratase resides predominantly in the perivenous region. These findings provide an additional support to the previous notion suggested by physiological experiments that contribution of serine dehydratase to gluconeogenesis is negligible or little in human liver.

  2. Assessment of amiodarone-induced phospholipidosis in chimeric mice with a humanized liver.

    PubMed

    Sanoh, Seigo; Yamachika, Yuto; Tamura, Yuka; Kotake, Yaichiro; Yoshizane, Yasumi; Ishida, Yuji; Tateno, Chise; Ohta, Shigeru

    2017-01-01

    It is important to consider susceptibility to drug-induced toxicity between animals and humans. Chimeric mice with a humanized liver are expected to predict hepatotoxicity in humans. Drug-induced phospholipidosis (DIPL), in which phospholipids accumulate, is a known entity. In this study, we examined whether chimeric mice can reveal species differences in DIPL. Changes in various phosphatidylcholine (PhC) molecules were investigated in the liver of chimeric mice after administering amiodarone, which induces phospholipidosis. Liquid chromatography-tandem mass spectrometry revealed that levels of PhCs tended to increase in the liver after administration of amiodarone. The liver of chimeric mice consists of human hepatocytes and residual mouse hepatocytes. We used imaging mass spectrometry (IMS) to evaluate the increase of PhCs in human and mouse hepatocytes after administration of amiodarone. IMS visualizes localization of endogenous and exogenous molecules in tissues. The IMS analysis suggested that the localized levels of several PhCs tended to be higher in the human hepatocytes than those in mouse hepatocytes, and PhC levels changed in response to amiodarone. Chimeric mice with a humanized liver will be useful to evaluate species differences in DIPL between mice and humans.

  3. Cell sources for in vitro human liver cell culture models

    PubMed Central

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  4. Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature.

    PubMed

    Bacalini, Maria Giulia; Franceschi, Claudio; Gentilini, Davide; Ravaioli, Francesco; Zhou, Xiaoyuan; Remondini, Daniel; Pirazzini, Chiara; Giuliani, Cristina; Marasco, Elena; Gensous, Noémie; Di Blasio, Anna Maria; Ellis, Ewa; Gramignoli, Roberto; Castellani, Gastone; Capri, Miriam; Strom, Stephen; Nardini, Christine; Cescon, Matteo; Grazi, Gian Luca; Garagnani, Paolo

    2018-03-15

    The feasibility of liver transplantation from old healthy donors suggests that this organ is able to preserve its functionality during aging. To explore the biological basis of this phenomenon, we characterized the epigenetic profile of liver biopsies collected from 45 healthy liver donors ranging from 13 to 90 years old using the Infinium HumanMethylation450 BeadChip. The analysis indicates that a large remodeling in DNA methylation patterns occurs, with 8823 age-associated differentially methylated CpG probes. Notably, these age-associated changes tended to level off after the age of 60, as confirmed by Horvath's clock. Using stringent selection criteria we further identified a DNA methylation signature of aging liver including 75 genomic regions. We demonstrated that this signature is specific for liver compared to other tissues and that it is able to detect biological age-acceleration effects associated with obesity. Finally we combined DNA methylation measurements with available expression data. Although the intersection between the two omic characterizations was low, both approaches suggested a previously unappreciated role of epithelial-mesenchymal transition and Wnt signaling pathways in the aging of human liver.

  5. Photoacoustic physio-chemical analysis of liver conditions in animal and human subjects

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Xu, Guan; Tian, Chao; Wan, Shanshan; Welling, Theodore H.; Lok, Anna S. F.; Rubin, Jonathan M.

    2016-03-01

    Non-alcoholic fatty liver disease (NAFLD) is a common liver disease affecting 30% of the population in the United States. Biopsy is the gold standard for diagnosing NAFLD. Liver histology assesses the amount of fat, and determines type and extent of cell injury, inflammation and fibrosis. However, liver biopsy is invasive and is limited by sampling error. Current radiological diagnostic modalities can evaluate the 'physical' morphology in liver by quantifying the backscattered US signals, but cannot interrogate the 'histochemical' components forming these backscatterers. For example, ultrasound (US) imaging can detect the presence of fat but cannot differentiate steatosis alone from steatohepatitis. Our previous study of photoacoustic physiochemical analysis (PAPCA) has demonstrated that this method can characterize the histological changes in livers during the progression of NAFLD in animal models. In this study, we will further validate PAPCA with human livers. Ex vivo human liver samples with steatosis, fibrosis and cirrhosis will be scanned using optical illumination at wavelengths of 680-1700 nm and compared to histology results. In vivo study on human subjects with confirmed steatosis is planned using our PA-ultrasound (US) parallel imaging system based on Verasonic US imaging flatform with an L7-4 probe. 10 mJ/cm2 per pulse optical energy at 755 nm will be delivered to the skin surface, which is under the safety limit of American National Standard Institute. Preliminary study with ex vivo human tissue has demonstrated the potential of the proposed approach in differentiating human liver conditions.

  6. Liver manipulation during liver surgery in humans is associated with hepatocellular damage and hepatic inflammation.

    PubMed

    van den Broek, Maartje A J; Shiri-Sverdlov, Ronit; Schreurs, Joris J W; Bloemen, Johanne G; Bieghs, Veerle; Rensen, Sander S; Dejong, Cornelis H C; Olde Damink, Steven W M

    2013-04-01

    Manipulation of the liver during liver surgery results in profound hepatocellular damage. Experimental data show that mobilization-induced hepatocellular damage is related to hepatic inflammation. To date, information on this link in humans is lacking. As it is possible to modulate inflammation, it is clinically relevant to unravel this relationship. This observational study aimed to establish the association between liver mobilization and hepatic inflammation in humans. Consecutive patients requiring mobilization of the right hemi-liver during liver surgery were studied. Plasma samples and liver biopsies were collected prior to and directly after mobilization and after transection of the liver. Hepatocellular damage was assayed by liver fatty acid-binding protein (L-FABP) and aminotransferase levels. Hepatic inflammation was determined by (a) immunohistochemical identification of myeloperoxidase (MPO) and CD68- positive cells and (b) hepatic gene expression of inflammatory and cell adhesion molecules (IL-1β, IL-6, IL-8, VCAM-1 and ICAM-1). A total of 25 patients were included. L-FABP levels increased significantly during mobilization (301 ± 94 ng/ml to 1599 ± 362 ng/ml, P = 0.008), as did ALAT levels (36 ± 5 IU/L to 167 ± 21 IU/L, P < 0.001). A significant increase in MPO (P = 0.001) and CD68 (P = 0.002) positive cells was noticed in the liver after mobilization. The number of MPO-positive cells correlated with the duration of mobilization (Pearson correlation=0.505, P = 0.033). Hepatic gene expression of pro-inflammatory cytokines IL-1β and IL-6, chemo-attractant IL-8 and adhesion molecule ICAM-1 increased significantly during liver manipulation. Liver mobilization is associated with hepatocellular damage and liver inflammation, as shown by infiltration of inflammatory cells and upregulation of genes involved in acute inflammation. © 2012 John Wiley & Sons A/S.

  7. Cell sources for in vitro human liver cell culture models.

    PubMed

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. © 2016 by the Society for Experimental Biology and Medicine.

  8. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver.

    PubMed

    Kersten, Sander; Stienstra, Rinke

    2017-05-01

    The peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is abundantly expressed in liver. PPARα is activated by fatty acids and various other lipid species, as well as by a class of chemicals referred to as peroxisome proliferators. Studies in mice have shown that PPARα serves as the master regulator of hepatic lipid metabolism during fasting. In addition, PPARα suppresses inflammation and the acute phase response. Comparatively little is known about PPARα in human liver. Here, an overview is provided of the role and regulation of PPARα in human liver. The main outcomes are: 1) the level of PPARA mRNA expression in human and mouse liver is similar. 2) Expression of PPARA in human liver is reduced in patients with non-alcoholic steatohepatitis or infected with the hepatitis C virus. 3) PPARα in human liver is able to effectively induce the expression of numerous genes involved in numerous lipid metabolic pathways, including microsomal, peroxisomal and mitochondrial fatty acid oxidation, fatty acid binding and activation, fatty acid elongation and desaturation, synthesis and breakdown of triglycerides and lipid droplets, lipoprotein metabolism, gluconeogenesis, bile acid metabolism, and various other metabolic pathways and genes. 4) PPARα activation in human liver causes the down-regulation of a large number of genes involved in various immunity-related pathways. 5) Peroxisome proliferators do not promote tumour formation in human liver as opposed to mouse liver because of structural and functional differences between human and mouse PPARα. 6) In addition to helping to correct dyslipidemia, PPARα agonists may hold promise as a therapy for patients with cholestatic liver diseases, non-alcoholic fatty liver disease, and/or type 2 diabetes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. The Adult Livers of Immunodeficient Mice Support Human Hematopoiesis: Evidence for a Hepatic Mast Cell Population that Develops Early in Human Ontogeny

    PubMed Central

    Muench, Marcus O.; Beyer, Ashley I.; Fomin, Marina E.; Thakker, Rahul; Mulvaney, Usha S.; Nakamura, Masato; Suemizu, Hiroshi; Bárcena, Alicia

    2014-01-01

    The liver plays a vital role in hematopoiesis during mammalian prenatal development but its hematopoietic output declines during the perinatal period. Nonetheless, hepatic hematopoiesis is believed to persist into adulthood. We sought to model human adult-liver hematopoiesis by transplantation of fetal and neonatal hematopoietic stem cells (HSCs) into adult immunodeficient mice. Livers were found to be engrafted with human cells consisting primarily of monocytes and B-cells with lesser contributions by erythrocytes, T-cells, NK-cells and mast-cells. A resident population of CD117++CD203c+ mast cells was also documented in human midgestation liver, indicating that these cells comprise part of the liver's resident immune cell repertoire throughout human ontogeny. The murine liver was shown to support human multilineage hematopoiesis up to 321 days after transplant. Evidence of murine hepatic hematopoiesis was also found in common mouse strains as old as 2 years. Human HSC engraftment of the murine liver was demonstrated by detection of high proliferative-potential colony-forming cells in clonal cultures, observation of CD38−CD34++ and CD133+CD34++ cells by flow cytometry, and hematopoietic reconstitution of secondary transplant recipients of chimeric liver cells. Additionally, chimeric mice with both hematopoietic and endothelial reconstitution were generated by intrasplenic injection of immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA) transgene. In conclusion, the murine liver is shown to be a hematopoietic organ throughout adult life that can also support human hematopoiesis in severely immunodeficient strains. Further humanization of the murine liver can be achieved in mice harboring an uPA transgene, which support engraftment of non-hematopoietic cells types. Thus, offering a model system to study the interaction of diverse human liver cell types that regulate hematopoiesis and immune function in the liver

  10. A non-human primate model of human radiation-induced venocclusive liver disease and hepatocyte injury

    PubMed Central

    Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; Roy-Chowdhury, Jayanta; Locker, Joseph; Abe, Michio; Enke, Charles A.; Baranowska-Kortylewicz, Janina; Solberg, Timothy D.; Guha, Chandan; Fox, Ira J.

    2014-01-01

    Background Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Since the characteristic venocclusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic venocclusive disease. Methods We performed a dose escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results At doses ≥40Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses where radiation-induced liver disease was mild or non-existent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions The cynomolgus monkey, as the first animal model of human venocclusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury. PMID:24315566

  11. Sequence of the cDNA of a human dihydrodiol dehydrogenase isoform (AKR1C2) and tissue distribution of its mRNA.

    PubMed Central

    Shiraishi, H; Ishikura, S; Matsuura, K; Deyashiki, Y; Ninomiya, M; Sakai, S; Hara, A

    1998-01-01

    Human liver contains three isoforms (DD1, DD2 and DD4) of dihydrodiol dehydrogenase with 20alpha- or 3alpha-hydroxysteroid dehydrogenase activity; the dehydrogenases belong to the aldo-oxo reductase (AKR) superfamily. cDNA species encoding DD1 and DD4 have been identified. However, four cDNA species with more than 99% sequence identity have been cloned and are compatible with a partial amino acid sequence of DD2. In this study we have isolated a cDNA clone encoding DD2, which was confirmed by comparison of the properties of the recombinant and hepatic enzymes. This cDNA showed differences of one, two, four and five nucleotides from the previously reported four cDNA species for a dehydrogenase of human colon carcinoma HT29 cells, human prostatic 3alpha-hydroxysteroid dehydrogenase, a human liver 3alpha-hydroxysteroid dehydrogenase-like protein and chlordecone reductase-like protein respectively. Expression of mRNA species for the five similar cDNA species in 20 liver samples and 10 other different tissue samples was examined by reverse transcriptase-mediated PCR with specific primers followed by diagnostic restriction with endonucleases. All the tissues expressed only one mRNA species corresponding to the newly identified cDNA for DD2: mRNA transcripts corresponding to the other cDNA species were not detected. We suggest that the new cDNA is derived from the principal gene for DD2, which has been named AKR1C2 by a new nomenclature for the AKR superfamily. It is possible that some of the other cDNA species previously reported are rare allelic variants of this gene. PMID:9716498

  12. Lead suppresses chimeric human transferrin gene expression in transgenic mouse liver.

    PubMed

    Adrian, G S; Rivera, E V; Adrian, E K; Lu, Y; Buchanan, J; Herbert, D C; Weaker, F J; Walter, C A; Bowman, B H

    1993-01-01

    The major iron-transport protein in serum is transferrin (TF) which also has the capacity to transport other metals. This report presents evidence that synthesis of human TF can be regulated by the metal lead. Transgenic mice carrying chimeric human TF-chloramphenicol acetyl transferase (CAT) genes received lead or sodium salts by intraperitoneal injections or in drinking water. Transgene expression in liver was suppressed 31 to 50% by the lead treatment. Lead regulates human TF transgenes at the mRNA level since liver CAT enzyme activity, CAT protein, and TF-CAT mRNA levels were all suppressed. The dosages of lead did not alter synthesis of the other liver proteins, mouse TF and albumin, as measured by Northern blot analysis of total liver RNA and rocket immunoelectrophoresis of mouse sera. Moderate levels of lead exposure were sufficient to evoke the human TF transgene response; blood lead levels in mice that received lead acetate in drinking water ranged from 30 micrograms/dl to 56 micrograms/dl. In addition to suppressing expression of TF-CAT genes in transgenic mice, lead also suppressed synthesis of TF protein in cultured human hepatoma HepG2 cells. The regulation of human TF apparently differs from the regulation of mouse TF which is unresponsive to lead exposure.

  13. Dipeptidyl peptidase-4 greatly contributes to the hydrolysis of vildagliptin in human liver.

    PubMed

    Asakura, Mitsutoshi; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-04-01

    The major metabolic pathway of vildagliptin in mice, rats, dogs, and humans is hydrolysis at the cyano group to produce a carboxylic acid metabolite M20.7 (LAY151), whereas the major metabolic enzyme of vildagliptin has not been identified. In the present study, we determined the contribution rate of dipeptidyl peptidase-4 (DPP-4) to the hydrolysis of vildagliptin in the liver. We performed hydrolysis assay of the cyano group of vildagliptin using mouse, rat, and human liver samples. Additionally, DPP-4 activities in each liver sample were assessed by DPP-4 activity assay using the synthetic substrate H-glycyl-prolyl-7-amino-4-methylcoumarin (Gly-Pro-AMC). M20.7 formation rates in liver microsomes were higher than those in liver cytosol. M20.7 formation rate was significantly positively correlated with the DPP-4 activity using Gly-Pro-AMC in liver samples (r = 0.917, P < 0.01). The formation of M20.7 in mouse, rat, and human liver S9 fraction was inhibited by sitagliptin, a selective DPP-4 inhibitor. These findings indicate that DPP-4 is greatly involved in vildagliptin hydrolysis in the liver. Additionally, we established stable single expression systems of human DPP-4 and its R623Q mutant, which is the nonsynonymous single-nucleotide polymorphism of human DPP-4, in human embryonic kidney 293 (HEK293) cells to investigate the effect of R623Q mutant on vildagliptin-hydrolyzing activity. M20.7 formation rate in HEK293 cells expressing human DPP-4 was significantly higher than that in control HEK293 cells. Interestingly, R623Q mutation resulted in a decrease of the vildagliptin-hydrolyzing activity. Our findings might be useful for the prediction of interindividual variability in vildagliptin pharmacokinetics. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    PubMed

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  15. Native fluorescence characterization of human liver abnormalities

    NASA Astrophysics Data System (ADS)

    Ganesan, Singaravelu; Madhuri, S.; Aruna, Prakasa R.; Suchitra, S.; Srinivasan, T. G.

    1999-05-01

    Fluorescence spectroscopy of intrinsic biomolecules has been extensively used in biology and medicine for the past several decades. In the present study, we report the native fluorescence characteristics of blood plasma from normal human subjects and patients with different liver abnormalities such as hepatitis, leptospirosis, jaundice, cirrhosis and liver cell failure. Native fluorescence spectra of blood plasma -- acetone extract were measured at 405 nm excitation. The average spectrum of normal blood plasma has a prominent emission peak around 464 nm whereas in the case of liver diseased subjects, the primary peak is red shifted with respect to normal. In addition, liver diseased cases show distinct secondary emission peak around 615 nm, which may be attributed to the presence of endogenous porphyrins. The red shift of the prominent emission peak with respect to normal is found to be maximum for hepatitis and minimum for cirrhosis whereas the secondary emission peak around 615 nm was found to be more prominent in the case of cirrhosis than the rest. The ratio parameter I465/I615 is found to be statistically significant (p less than 0.001) in discriminating liver abnormalities from normal.

  16. Real-time confocal laser endomicroscopic evaluation of primary liver cancer based on human liver autofluorescence.

    PubMed

    Maki, Harufumi; Kawaguchi, Yoshikuni; Arita, Junichi; Akamatsu, Nobuhisa; Kaneko, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Harihara, Yasushi; Kokudo, Norihiro

    2017-02-01

    Confocal laser endomicroscopy (CLE) is available for real-time microscopic examination. This study aims to evaluate the usefulness of intraoperative CLE examination as a modality to evaluate surgical margins in surgery for primary liver cancer. A probe-based CLE system (Cellvizio 100, Mauna Kea Technologies, Paris, France) was used. The subjects comprised seven specimens obtained from six patients with primary liver cancer in November 2015. The probe was manually attached to the surfaces of specimens, and images were collected without external fluorophores. CLE images were compared with hematoxylin and eosin-stained slides. Fluorescence intensity (FI) values of the CLE images were assessed using luminance-analyzing software. CLE examination visualized non-cancerous regions in the background liver as regular structures with high fluorescence because of human liver autofluorescence. Conversely, hepatocellular carcinoma and intrahepatic cholangiocarcinoma were depicted as irregular structures with low fluorescence. The median FI values of the non-cancerous regions and the cancerous regions were 104 (79.8-156) and 74.9 (60.6-106), respectively, and were significantly different (P = 0.031). The probe-based CLE enables real-time differentiation of cancerous regions from non-cancerous tissues in surgical specimens because of human liver autofluorescence. CLE can be used to confirm negative surgical margins in the operating room. J. Surg. Oncol. 2017;115:151-157. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Breast Milk Jaundice: Effect of 3α 20β-pregnanediol on Bilirubin Conjugation by Human Liver

    PubMed Central

    Adlard, B. P. F.; Lathe, G. H.

    1970-01-01

    The effect of 3α,20β-pregnanediol and other steroids on bilirubin conjugation was examined using liver tissue from human and four other species. Neither 3α,20β-pregnanediol nor 3α,20β-pregnanediol inhibited conjugation by human liver slices or by solubilized human liver microsomes. 3α,20β-pregnanediol is unlikely to be the inhibitor causing breast milk jaundice. Oestriol inhibited conjugation by human liver slices. A comparison of species indicated that the response of the human liver slice system to steroids resembles that of the rabbit and guinea-pig rather than the rat or mouse. PMID:4246186

  18. Adult-Derived Human Liver Stem/Progenitor Cells Infused 3 Days Postsurgery Improve Liver Regeneration in a Mouse Model of Extended Hepatectomy

    PubMed Central

    Herrero, Astrid; Prigent, Julie; Lombard, Catherine; Rosseels, Valérie; Daujat-Chavanieu, Martine; Breckpot, Karine; Najimi, Mustapha; Deblandre, Gisèle; Sokal, Etienne M.

    2017-01-01

    There is growing evidence that cell therapy constitutes a promising strategy for liver regenerative medicine. In the setting of hepatic cancer treatments, cell therapy could prove a useful therapeutic approach for managing the acute liver failure that occurs following extended hepatectomy. In this study, we examined the influence of delivering adult-derived human liver stem/progenitor cells (ADHLSCs) at two different early time points in an immunodeficient mouse model (Rag2−/-IL2Rg-/-) that had undergone a 70% hepatectomy procedure. The hepatic mesenchymal cells were intrasplenically infused either immediately after surgery (n = 26) or following a critical 3-day period (n = 26). We evaluated the cells' capacity to engraft at day 1 and day 7 following transplantation by means of human Alu qPCR quantification, along with histological assessment of human albumin and α-smooth muscle actin. In addition, cell proliferation (anti-mouse and human Ki-67 staining) and murine liver weight were measured in order to evaluate liver regeneration. At day 1 posttransplantation, the ratio of human to mouse cells was similar in both groups, whereas 1 week posttransplantation this ratio was significantly improved (p < 0.016) in mice receiving ADHLSC injection at day 3 posthepatectomy (1.7%), compared to those injected at the time of surgery (1%). On the basis of liver weight, mouse liver regeneration was more extensive 1 week posttransplantation in mice transplanted with ADHLSCs (+65.3%) compared to that of mice from the sham vehicle group (+42.7%). In conclusion, infusing ADHLSCs 3 days after extensive hepatectomy improves the cell engraftment and murine hepatic tissue regeneration, thereby confirming that ADHLSCs could be a promising cell source for liver cell therapy and hepatic tissue repair. PMID:27657746

  19. Normothermic machine perfusion of donor livers without the need for human blood products

    PubMed Central

    Matton, Alix P. M.; Burlage, Laura C.; van Rijn, Rianne; de Vries, Yvonne; Karangwa, Shanice A.; Nijsten, Maarten W.; Gouw, Annette S. H.; Wiersema‐Buist, Janneke; Adelmeijer, Jelle; Westerkamp, Andrie C.; Lisman, Ton

    2018-01-01

    Normothermic machine perfusion (NMP) enables viability assessment of donor livers prior to transplantation. NMP is frequently performed by using human blood products including red blood cells (RBCs) and fresh frozen plasma (FFP). Our aim was to examine the efficacy of a novel machine perfusion solution based on polymerized bovine hemoglobin‐based oxygen carrier (HBOC)‐201. Twenty‐four livers declined for transplantation were transported by using static cold storage. Upon arrival, livers underwent NMP for 6 hours using pressure‐controlled portal and arterial perfusion. A total of 12 livers were perfused using a solution based on RBCs and FFPs (historical cohort), 6 livers with HBOC‐201 and FFPs, and another 6 livers with HBOC‐201 and gelofusine, a gelatin‐based colloid solution. Compared with RBC + FFP perfused livers, livers perfused with HBOC‐201 had significantly higher hepatic adenosine triphosphate content, cumulative bile production, and portal and arterial flows. Biliary secretion of bicarbonate, bilirubin, bile salts, and phospholipids was similar in all 3 groups. The alanine aminotransferase concentration in perfusate was lower in the HBOC‐201–perfused groups. In conclusion, NMP of human donor livers can be performed effectively using HBOC‐201 and gelofusine, eliminating the need for human blood products. Perfusing livers with HBOC‐201 is at least similar to perfusion with RBCs and FFP. Some of the biomarkers of liver function and injury even suggest a possible superiority of an HBOC‐201–based perfusion solution and opens a perspective for further optimization of machine perfusion techniques. Liver Transplantation 24 528–538 2018 AASLD. PMID:29281862

  20. Human plasma metabolic profiles of benzydamine, a flavin-containing monooxygenase probe substrate, simulated with pharmacokinetic data from control and humanized-liver mice.

    PubMed

    Yamazaki-Nishioka, Miho; Shimizu, Makiko; Suemizu, Hiroshi; Nishiwaki, Megumi; Mitsui, Marina; Yamazaki, Hiroshi

    2018-02-01

    1. Benzydamine is used clinically as a nonsteroidal anti-inflammatory drug in oral rinses and is employed in preclinical research as a flavin-containing monooxygenase (FMO) probe substrate. In this study, plasma concentrations of benzydamine and its primary N-oxide and N-demethylated metabolites were investigated in control TK-NOG mice, in humanized-liver mice, and in mice whose liver cells had been ablated with ganciclovir. 2. Following oral administration of benzydamine (10 mg/kg) in humanized-liver TK-NOG mice, plasma concentrations of benzydamine N-oxide were slightly higher than those of demethyl benzydamine. In contrast, in control and ganciclovir-treated TK-NOG mice, concentrations of demethyl benzydamine were slightly higher than those of benzydamine N-oxide. 3. Simulations of human plasma concentrations of benzydamine and its N-oxide were achieved using simplified physiologically based pharmacokinetic models based on data from control TK-NOG mice and from reported benzydamine concentrations after low-dose administration in humans. Estimated clearance rates based on data from humanized-liver and ganciclovir-treated TK-NOG mice were two orders magnitude high. 4. The pharmacokinetic profiles of benzydamine were different for control and humanized-liver TK-NOG mice. Humanized-liver mice are generally accepted human models; however, drug oxidation in mouse kidney might need to be considered when probe substrates undergo FMO-dependent drug oxidation in mouse liver and kidney.

  1. Human germline hedgehog pathway mutations predispose to fatty liver.

    PubMed

    Guillen-Sacoto, Maria J; Martinez, Ariel F; Abe, Yu; Kruszka, Paul; Weiss, Karin; Everson, Joshua L; Bataller, Ramon; Kleiner, David E; Ward, Jerrold M; Sulik, Kathleen K; Lipinski, Robert J; Solomon, Benjamin D; Muenke, Maximilian

    2017-10-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Activation of hedgehog (Hh) signaling has been implicated in the progression of NAFLD and proposed as a therapeutic target; however, the effects of Hh signaling inhibition have not been studied in humans with germline mutations that affect this pathway. Patients with holoprosencephaly (HPE), a disorder associated with germline mutations disrupting Sonic hedgehog (SHH) signaling, were clinically evaluated for NAFLD. A combined mouse model of Hh signaling attenuation (Gli2 heterozygous null: Gli2 +/- ) and diet-induced NAFLD was used to examine aspects of NAFLD and hepatic gene expression profiles, including molecular markers of hepatic fibrosis and inflammation. Patients with HPE had a higher prevalence of liver steatosis compared to the general population, independent of obesity. Exposure of Gli2 +/- mice to fatty liver-inducing diets resulted in increased liver steatosis compared to wild-type mice. Similar to humans, this effect was independent of obesity in the mutant mice and was associated with decreased expression of pro-fibrotic and pro-inflammatory genes, and increased expression of PPARγ, a potent anti-fibrogenic and anti-inflammatory regulator. Interestingly, tumor suppressors p53 and p16INK4 were found to be downregulated in the Gli2 +/- mice exposed to a high-fat diet. Our results indicate that germline mutations disrupting Hh signaling promotes liver steatosis, independent of obesity, with reduced fibrosis. While Hh signaling inhibition has been associated with a better NAFLD prognosis, further studies are required to evaluate the long-term effects of mutations affecting this pathway. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess fat deposition in the liver predominantly due to high calorie intake and a sedentary lifestyle. NAFLD progression is usually accompanied by activation of the Sonic hedgehog (SHH) pathway leading to fibrous

  2. Isolation and characterization of adult human liver progenitors from ischemic liver tissue derived from therapeutic hepatectomies.

    PubMed

    Stachelscheid, Harald; Urbaniak, Thomas; Ring, Alexander; Spengler, Berlind; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Recent evidence suggests that progenitor cells in adult tissues and embryonic stem cells share a high resistance to hypoxia and ischemic stress. To study the ischemic resistance of adult liver progenitors, we characterized remaining viable cells in human liver tissue after cold ischemic treatment for 24-168 h, applied to the tissue before cell isolation. In vitro cultures of isolated cells showed a rapid decline of the number of different cell types with increasing ischemia length. After all ischemic periods, liver progenitor-like cells could be observed. The comparably small cells exhibited a low cytoplasm-to-nucleus ratio, formed densely packed colonies, and showed a hepatobiliary marker profile. The cells expressed epithelial cell adhesion molecule, epithelial-specific (CK8/18) and biliary-specific (CK7/19) cytokeratins, albumin, alpha-1-antitrypsin, cytochrome-P450 enzymes, as well as weak levels of hepatocyte nuclear factor-4 and gamma-glutamyl transferase, but not alpha-fetoprotein or Thy-1. In vitro survival and expansion was facilitated by coculture with mouse embryonic fibroblasts. Hepatic progenitor-like cells exhibit a high resistance to ischemic stress and can be isolated from human liver tissue after up to 7 days of ischemia. Ischemic liver tissue from various sources, thought to be unsuitable for cell isolation, may be considered as a prospective source of hepatic progenitor cells.

  3. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  4. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  5. Proliferative human cell sources applied as biocomponent in bioartificial livers: a review.

    PubMed

    Nibourg, Geert A A; Chamuleau, Robert A F M; van Gulik, Thomas M; Hoekstra, Ruurdtje

    2012-07-01

    Bioartificial livers (BALs) are urgently needed to bridge severe liver failure patients to liver transplantation or liver regeneration. When based on primary hepatocytes, their efficacy has been shown in animal experiments and their safety was confirmed in clinical trials. However, a proliferative human cell source with therapeutic functionality is needed to secure availability and move BAL application forward. This review compares the performance of BALs based on proliferative human biocomponents and primary hepatocytes. This review evaluates relevant studies identified by searching the MEDLINE database until July 2011 and some of our own unpublished data. All the discussed hepatocyte-like biocomponents show deficiencies in their hepatic functionality compared with primary hepatocytes, particularly functions occurring late in liver development. Nonetheless, the HepaRG, HepG2-GS-CYP3A4, and mesenchymal stem cells show efficacy in a statistically well-powered animal model of acute liver failure, when applied in a BAL device. Various methods to gain higher functionality of BALs, including genetic modification, the usage of combinatory cell sources, and improvement of culture methods, have scarcely been applied, but may further pave the path for BAL application. Clinical implementation of a BAL based on a human proliferative biocomponent is still several years away.

  6. Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.

    PubMed

    Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise

    2015-08-01

    We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution.

    PubMed

    Clostre, Florence; Lesueur-Jannoyer, Magalie; Achard, Raphaël; Letourmy, Philippe; Cabidoche, Yves-Marie; Cattan, Philippe

    2014-02-01

    When field pollution is heterogeneous due to localized pesticide application, as is the case of chlordecone (CLD), the mean level of pollution is difficult to assess. Our objective was to design a decision support tool to optimize soil sampling. We analyzed the CLD heterogeneity of soil content at 0-30- and 30-60-cm depth. This was done within and between nine plots (0.4 to 1.8 ha) on andosol and ferralsol. We determined that 20 pooled subsamples per plot were a satisfactory compromise with respect to both cost and accuracy. Globally, CLD content was greater for andosols and the upper soil horizon (0-30 cm). Soil organic carbon cannot account for CLD intra-field variability. Cropping systems and tillage practices influence the CLD content and distribution; that is CLD pollution was higher under intensive banana cropping systems and, while upper soil horizon was more polluted than the lower one with shallow tillage (<40 cm), deeper tillage led to a homogenization and a dilution of the pollution in the soil profile. The decision tool we proposed compiles and organizes these results to better assess CLD soil pollution in terms of sampling depth, distance, and unit at field scale. It accounts for sampling objectives, farming practices (cropping system, tillage), type of soil, and topographical characteristics (slope) to design a relevant sampling plan. This decision support tool is also adaptable to other types of heterogeneous agricultural pollution at field level.

  8. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    PubMed

    Nakagawa, Shin-ichiro; Hirata, Yuichi; Kameyama, Takeshi; Tokunaga, Yuko; Nishito, Yasumasa; Hirabayashi, Kazuko; Yano, Junichi; Ochiya, Takahiro; Tateno, Chise; Tanaka, Yasuhito; Mizokami, Masashi; Tsukiyama-Kohara, Kyoko; Inoue, Kazuaki; Yoshiba, Makoto; Takaoka, Akinori; Kohara, Michinori

    2013-01-01

    The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV). This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice. Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  9. In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells.

    PubMed

    Ramachandran, Sarada Devi; Schirmer, Katharina; Münst, Bernhard; Heinz, Stefan; Ghafoory, Shahrouz; Wölfl, Stefan; Simon-Keller, Katja; Marx, Alexander; Øie, Cristina Ionica; Ebert, Matthias P; Walles, Heike; Braspenning, Joris; Breitkopf-Heinlein, Katja

    2015-01-01

    In this study we used differentiated adult human upcyte® cells for the in vitro generation of liver organoids. Upcyte® cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte® process). Proliferating upcyte® cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte® cells (hepatocytes, liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs)) was cultured in vitro on a thick layer of Matrigel™, they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions.

  10. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro.

    PubMed

    Maschmeyer, Ilka; Hasenberg, Tobias; Jaenicke, Annika; Lindner, Marcus; Lorenz, Alexandra Katharina; Zech, Julie; Garbe, Leif-Alexander; Sonntag, Frank; Hayden, Patrick; Ayehunie, Seyoum; Lauster, Roland; Marx, Uwe; Materne, Eva-Maria

    2015-09-01

    Systemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms. The major technical hurdle toward success in this field is the life-like combination of human barrier organ models, such as intestine, lung or skin, with parenchymal organ equivalents, such as liver, at the smallest biologically acceptable scale. Here, we report on a reproducible homeostatic long-term co-culture of human liver equivalents with either a reconstructed human intestinal barrier model or a human skin biopsy applying a microphysiological system. We used a multi-organ chip (MOC) platform, which provides pulsatile fluid flow within physiological ranges at low media-to-tissue ratios. The MOC supports submerse cultivation of an intact intestinal barrier model and an air-liquid interface for the skin model during their co-culture with the liver equivalents respectively at (1)/100.000 the scale of their human counterparts in vivo. To increase the degree of organismal emulation, microfluidic channels of the liver-skin co-culture could be successfully covered with human endothelial cells, thus mimicking human vasculature, for the first time. Finally, exposure routes emulating oral and systemic administration in humans have been qualified by applying a repeated dose administration of a model substance - troglitazone - to the chip-based co-cultures. Copyright © 2015. Published by Elsevier B.V.

  11. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    PubMed Central

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  12. Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells.

    PubMed

    Takebe, Takanori; Sekine, Keisuke; Kimura, Masaki; Yoshizawa, Emi; Ayano, Satoru; Koido, Masaru; Funayama, Shizuka; Nakanishi, Noriko; Hisai, Tomoko; Kobayashi, Tatsuya; Kasai, Toshiharu; Kitada, Rina; Mori, Akira; Ayabe, Hiroaki; Ejiri, Yoko; Amimoto, Naoki; Yamazaki, Yosuke; Ogawa, Shimpei; Ishikawa, Momotaro; Kiyota, Yasujiro; Sato, Yasuhiko; Nozawa, Kohei; Okamoto, Satoshi; Ueno, Yasuharu; Taniguchi, Hideki

    2017-12-05

    Organoid technology provides a revolutionary paradigm toward therapy but has yet to be applied in humans, mainly because of reproducibility and scalability challenges. Here, we overcome these limitations by evolving a scalable organ bud production platform entirely from human induced pluripotent stem cells (iPSC). By conducting massive "reverse" screen experiments, we identified three progenitor populations that can effectively generate liver buds in a highly reproducible manner: hepatic endoderm, endothelium, and septum mesenchyme. Furthermore, we achieved human scalability by developing an omni-well-array culture platform for mass producing homogeneous and miniaturized liver buds on a clinically relevant large scale (>10 8 ). Vascularized and functional liver tissues generated entirely from iPSCs significantly improved subsequent hepatic functionalization potentiated by stage-matched developmental progenitor interactions, enabling functional rescue against acute liver failure via transplantation. Overall, our study provides a stringent manufacturing platform for multicellular organoid supply, thus facilitating clinical and pharmaceutical applications especially for the treatment of liver diseases through multi-industrial collaborations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. A shift in paradigm towards human biology-based systems for cholestatic-liver diseases.

    PubMed

    Noor, Fozia

    2015-12-01

    Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  14. Cultures of human liver cells in simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Yoffe, B.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Khaoustov, V. I.

    1999-01-01

    We used microgravity-simulated bioreactors that create the unique environment of low shear force and high-mass transfer to establish long-term cultures of primary human liver cells (HLC). To assess the feasibility of establishing HLC cultures, human liver cells obtained either from cells dissociated by collagenase perfusion or minced tissues were cultured in rotating vessels. Formation of multidimensional tissue-like spheroids (up to 1.0 cm) comprised of hepatocytes and biliary epithelial cells that arranged as bile duct-like structures along newly formed vascular sprouts were observed. Electron microscopy revealed clusters of round hepatocytes and bile canaliculi with multiple microvilli and tight junctions. Scanning EM revealed rounded hepatocytes that were organized in tight clusters surrounded by a complex mesh of extracellular matrix. Also, we observed that co-culture of hepatocytes with endothelial cells stimulate albumin mRNA expression. In summary, a simulated microgravity environment is conducive for the establishment of long-term HLC cultures and allows the dissection of the mechanism of liver regeneration and cell-to-cell interactions that resembles in vivo conditions.

  15. Targeted Induction of Interferon-λ in Humanized Chimeric Mouse Liver Abrogates Hepatotropic Virus Infection

    PubMed Central

    Kameyama, Takeshi; Tokunaga, Yuko; Nishito, Yasumasa; Hirabayashi, Kazuko; Yano, Junichi; Ochiya, Takahiro; Tateno, Chise; Tanaka, Yasuhito; Mizokami, Masashi; Tsukiyama-Kohara, Kyoko; Inoue, Kazuaki; Yoshiba, Makoto; Takaoka, Akinori; Kohara, Michinori

    2013-01-01

    Background & Aims The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV). Methods This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice. Results Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. Conclusions These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection. PMID:23555725

  16. Functional Integrity of the Chimeric (Humanized) Mouse Liver: Enzyme Zonation, Physiologic Spaces, and Hepatic Enzymes and Transporters.

    PubMed

    Chow, Edwin C Y; Wang, Jason Z Ya; Quach, Holly P; Tang, Hui; Evans, David C; Li, Albert P; Silva, Jose; Pang, K Sandy

    2016-09-01

    Chimeric mouse liver models are useful in vivo tools for human drug metabolism studies; however, liver integrity and the microcirculation remain largely uninvestigated. Hence, we conducted liver perfusion studies to examine these attributes in FRGN [Fah(-/-), Rag2(-/-), and Il2rg(-/-), NOD strain] livers (control) and chimeric livers repopulated with mouse (mFRGN) or human (hFRGN) hepatocytes. In single-pass perfusion studies (2.5 ml/min), outflow dilution profiles of noneliminated reference indicators ((51)Cr-RBC, (125)I-albumin, (14)C-sucrose, and (3)H-water) revealed preservation of flow-limited distribution and reduced water and albumin spaces in hFRGN livers compared with FRGN livers, a view supported microscopically by tightly packed sinusoids. With prograde and retrograde perfusion of harmol (50 µM) in FRGN livers, an anterior sulfation (Sult1a1) over the posterior distribution of glucuronidation (Ugt1a1) activity was preserved, evidenced by the 42% lower sulfation-to-glucuronidation ratio (HS/HG) and 14% higher harmol extraction ratio (E) upon switching from prograde to retrograde flow. By contrast, zonation was lost in mFRGN and hFRGN livers, with HS/HG and E for both flows remaining unchanged. Remnant mouse genes persisted in hFRGN livers (10%-300% those of FRGN). When hFRGN livers were compared with human liver tissue, higher UGT1A1 and MRP2, lower MRP3, and unchanged SULT1A1 and MRP4 mRNA expression were observed. Total Sult1a1/SULT1A1 protein expression in hFRGN livers was higher than that of FRGN livers, consistent with higher harmol sulfate formation. The composite data on humanized livers suggest a loss of zonation, lack of complete liver humanization, and persistence of murine hepatocyte activities leading to higher sulfation. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  17. MicroRNA-146b-5p Identified in Porcine Liver Donation Model is Associated with Early Allograft Dysfunction in Human Liver Transplantation

    PubMed Central

    Li, Cheukfai; Zhao, Qiang; Zhang, Wei; Chen, Maogen; Ju, Weiqiang; Wu, Linwei; Han, Ming; Ma, Yi; Zhu, Xiaofeng; Wang, Dongping; Guo, Zhiyong; He, Xiaoshun

    2017-01-01

    Background Poor transplant outcome was observed in donation after brain death followed by circulatory death (DBCD), since the donor organs suffered both cytokine storm of brain death and warm ischemia injury. MicroRNAs (miRNAs) have emerged as promising disease biomarkers, so we sought to establish a miRNA signature of porcine DBCD and verify the findings in human liver transplantation. Material/Methods MiRNA expression was determined with miRNA sequencing in 3 types of the porcine model of organ donation, including donation after brain death (DBD) group, donation after circulatory death (DCD) group, and DBCD group. Bioinformatics analysis was performed to reveal the potential regulatory behavior of target miRNA. Human liver graft biopsy samples after reperfusion detected by fluorescence in situ hybridization were used to verify the expression of target miRNA. Results We compared miRNA expression profiles of the 3 donation types. The porcine liver graft miR-146b was significantly increased and selected in the DBCD group versus in the DBD and DCD groups. The donor liver expression of human miR-146b-5p, which is homologous to porcine miR-146b, was further examined in 42 cases of human liver transplantations. High expression of miR-146b-5p successfully predicted the post-transplant early allograft dysfunction (EAD) with the area under the ROC curve (AUC) 0.759 (P=0.004). Conclusions Our results revealed the miRNA signature of DBCD liver grafts for the first time. The miR-146b-5p may have important clinical implications for monitoring liver graft function and predicating transplant outcomes. PMID:29227984

  18. Biomonitoring perfluorinated compounds in Catalonia, Spain: concentrations and trends in human liver and milk samples.

    PubMed

    Kärrman, Anna; Domingo, José L; Llebaria, Xavier; Nadal, Martí; Bigas, Esther; van Bavel, Bert; Lindström, Gunilla

    2010-03-01

    Perfluorinated compounds (PFCs) are global environmental pollutants that bioaccumulate in wildlife and humans. Laboratory experiments have revealed toxic effects such as delayed development, humoral suppression, and hepatotoxicity. Although numerous human blood levels have been reported, little is known about distribution in the human body. Knowledge about PFC distribution and accumulation in the human body is crucial to understanding uptake and subsequent effects as well as to conduct risk assessments. The present study reports PFC levels in human liver and breast milk from a general population living in Catalonia, Spain. Liver and milk levels are compared to previously reported levels in blood from the same geographic area as well as to other existing reports on human liver and milk levels in other countries. Human liver (n = 12) and milk (n = 10) samples were collected in 2007 and 2008 in Catalonia, Spain. Liver samples were taken postmortem from six males and six females aged 27-79 years. Milk samples were from healthy primipara women (30-39 years old). Both liver and milk were analyzed by solid-phase extraction and ultra-performance liquid chromatography tandem mass spectrometry. Six PFCs were detected in liver, with perfluorooctanesulfonate (PFOS, 26.6 ng/g wet weight) being the chemical with the highest mean concentration. Other PFCs such as perfluorohexanesulfonate (PFHxS), perfluorooctanoic acid (PFOA), and acids with chain lengths up to C11 were also detected, with mean levels ranging between 0.50 and 1.45 ng/g wet weight. On the other hand, PFOS and PFHxS were the only PFCs detected in human milk, with mean concentrations of 0.12 and 0.04 ng/mL, respectively. While milk concentrations were similar to reported levels from other countries, liver samples contained more PFCs above quantification limits and higher PFOS concentrations compared to the only two other reports found in the literature. Differences between the results of the present study and those

  19. Hypoxia promotes liver-stage malaria infection in primary human hepatocytes in vitro.

    PubMed

    Ng, Shengyong; March, Sandra; Galstian, Ani; Hanson, Kirsten; Carvalho, Tânia; Mota, Maria M; Bhatia, Sangeeta N

    2014-02-01

    Homeostasis of mammalian cell function strictly depends on balancing oxygen exposure to maintain energy metabolism without producing excessive reactive oxygen species. In vivo, cells in different tissues are exposed to a wide range of oxygen concentrations, and yet in vitro models almost exclusively expose cultured cells to higher, atmospheric oxygen levels. Existing models of liver-stage malaria that utilize primary human hepatocytes typically exhibit low in vitro infection efficiencies, possibly due to missing microenvironmental support signals. One cue that could influence the infection capacity of cultured human hepatocytes is the dissolved oxygen concentration. We developed a microscale human liver platform comprised of precisely patterned primary human hepatocytes and nonparenchymal cells to model liver-stage malaria, but the oxygen concentrations are typically higher in the in vitro liver platform than anywhere along the hepatic sinusoid. Indeed, we observed that liver-stage Plasmodium parasite development in vivo correlates with hepatic sinusoidal oxygen gradients. Therefore, we hypothesized that in vitro liver-stage malaria infection efficiencies might improve under hypoxia. Using the infection of micropatterned co-cultures with Plasmodium berghei, Plasmodium yoelii or Plasmodium falciparum as a model, we observed that ambient hypoxia resulted in increased survival of exo-erythrocytic forms (EEFs) in hepatocytes and improved parasite development in a subset of surviving EEFs, based on EEF size. Further, the effective cell surface oxygen tensions (pO2) experienced by the hepatocytes, as predicted by a mathematical model, were systematically perturbed by varying culture parameters such as hepatocyte density and height of the medium, uncovering an optimal cell surface pO2 to maximize the number of mature EEFs. Initial mechanistic experiments revealed that treatment of primary human hepatocytes with the hypoxia mimetic, cobalt(II) chloride, as well as a HIF-1

  20. Inhibition of 1,4-butanediol metabolism in human liver in vitro.

    PubMed

    Lenz, Daniel; Jübner, Martin; Bender, Katja; Wintermeyer, Annette; Beike, Justus; Rothschild, Markus A; Käferstein, Herbert

    2011-06-01

    The conversion of 1,4-butanediol (1,4-BD) to gamma-hydroxybutyric acid (GHB), a drug of abuse, is most probably catalyzed by alcohol dehydrogenase, and potentially by aldehyde dehydrogenase. The purpose of this study was to investigate the degradation of 1,4-BD in cytosolic supernatant of human liver in vitro, and to verify involvement of the suggested enzymes by means of gas chromatography-mass spectrometry. The coingestion of 1,4-BD and ethanol (EtOH) might cause complex pharmacokinetic interactions in humans. Therefore, the effect of EtOH on 1,4-BD metabolism by human liver was examined in vitro. Additionally, the influence of acetaldehyde (AL), which might inhibit the second step of 1,4-BD degradation, was investigated. In case of a 1,4-BD intoxication, the alcohol dehydrogenase inhibitor fomepizole (4-methylpyrazole, FOM) has been discussed as an antidote preventing the formation of the central nervous system depressing GHB. Besides FOM, we tested pyrazole, disulfiram, and cimetidine as possible inhibitors of the formation of GHB from 1,4-BD catalyzed by human liver enzymes in vitro. The conversion of 1,4-BD to GHB was inhibited competitively by EtOH with an apparent K(i) of 0.56 mM. Therefore, the coingestion of 1,4-BD and EtOH might increase the concentrations and the effects of 1,4-BD itself. By contrast AL accelerated the formation of GHB. All antidotes showed the ability to inhibit the formation of GHB. In comparison FOM showed the highest inhibitory effectiveness. Furthermore, the results confirm strong involvement of ADH in 1,4-BD metabolism by human liver.

  1. Taraxasterol suppresses the growth of human liver cancer by upregulating Hint1 expression.

    PubMed

    Bao, Tianhao; Ke, Yang; Wang, Yifan; Wang, Weiwei; Li, Yuehua; Wang, Yan; Kui, Xiang; Zhou, Qixin; Zhou, Han; Zhang, Cheng; Zhou, Dongming; Wang, Lin; Xiao, Chunjie

    2018-07-01

    Taraxasterol has potent anti-inflammatory and anti-tumor activity. However, the effect and potential mechanisms of Taraxasterol on the growth of human liver cancer have not been clarified. Histidine triad nucleotide-binding protein 1 (Hint1) is a tumor suppressor and its downregulated expression is associated with the development of cancer. Here, we report that Taraxasterol treatment significantly suppressed cell proliferation and induced cell cycle arrest at G0/G1 phase and apoptosis in liver cancer cells, but not in non-tumor hepatocytes. Furthermore, Taraxasterol upregulated Hint1 and Bax, but downregulated Bcl2 and cyclin D1 expression, accompanied by promoting the demethylation in the Hint1 promoter region in liver cancer cells. The effects of Taraxasterol were abrogated by Hint1 silencing and partially mitigated by Bax silencing, Bcl2 or cyclin D1 over-expression in HepG2 cells. Moreover, oral administration with Taraxasterol did not affect body weight, urinary protein levels, and the heart, liver, and kidney morphology in BALB/c mice but effectively inhibited the growth of implanted SK-Hep1 tumor in vivo. Collectively, we demonstrate that Taraxasterol inhibits the growth of liver cancer at least partially by enhancing Hint1 expression to regulate Bax, Bcl2, and cyclin D1 expression. Taraxasterol may be a drug candidate for the treatment of human liver cancer. Taraxasterol inhibits growth and induces apoptosis in human liver cancer cells. Taraxasterol enhances Hint1 expression by promoting demethylation in Hint1 promoter. Taraxasterol increases Hint1 levels to regulate Bax, Bcl2, and cyclinD1 expression. The effects of Taraxasterol are abrogated by Hint1 silencing in liver cancer cells. Taraxasterol inhibits the growth of subcutaneously implanted liver cancers in mice.

  2. Identification of CYP3A7 for Glyburide Metabolism in Human Fetal Livers

    PubMed Central

    Shuster, Diana L.; Risler, Linda J.; Prasad, Bhagwat; Calamia, Justina C.; Voellinger, Jenna L.; Kelly, Edward J.; Unadkat, Jashvant D.; Hebert, Mary F.; Shen, Danny D.; Thummel, Kenneth E.; Mao, Qingcheng

    2014-01-01

    Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u = 37.1, 13.0, and 8.7 ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4′-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. PMID:25450675

  3. Identification of CYP3A7 for glyburide metabolism in human fetal livers.

    PubMed

    Shuster, Diana L; Risler, Linda J; Prasad, Bhagwat; Calamia, Justina C; Voellinger, Jenna L; Kelly, Edward J; Unadkat, Jashvant D; Hebert, Mary F; Shen, Danny D; Thummel, Kenneth E; Mao, Qingcheng

    2014-12-15

    Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u=37.1, 13.0, and 8.7ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4'-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Hippo Cascade Controls Lineage Commitment of Liver Tumors in Mice and Humans.

    PubMed

    Zhang, Shanshan; Wang, Jingxiao; Wang, Haichuan; Fan, Lingling; Fan, Biao; Zeng, Billy; Tao, Junyan; Li, Xiaolei; Che, Li; Cigliano, Antonio; Ribback, Silvia; Dombrowski, Frank; Chen, Bin; Cong, Wenming; Wei, Lixin; Calvisi, Diego F; Chen, Xin

    2018-04-01

    Primary liver cancer consists mainly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). A subset of human HCCs expresses a ICC-like gene signature and is classified as ICC-like HCC. The Hippo pathway is a critical regulator of normal and malignant liver development. However, the precise function(s) of the Hippo cascade along liver carcinogenesis remain to be fully delineated. The role of the Hippo pathway in a murine mixed HCC/ICC model induced by activated forms of AKT and Ras oncogenes (AKT/Ras) was investigated. The authors demonstrated the inactivation of Hippo in AKT/Ras liver tumors leading to nuclear localization of Yap and TAZ. Coexpression of AKT/Ras with Lats2, which activates Hippo, or the dominant negative form of TEAD2 (dnTEAD2), which blocks Yap/TAZ activity, resulted in delayed hepatocarcinogenesis and elimination of ICC-like lesions in the liver. Mechanistically, Notch2 expression was found to be down-regulated by the Hippo pathway in liver tumors. Overexpression of Lats2 or dnTEAD2 in human HCC cell lines inhibited their growth and led to the decreased expression of ICC-like markers, as well as Notch2 expression. Altogether, this study supports the key role of the Hippo cascade in regulating the differentiation status of liver tumors. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery.

    PubMed

    Naritomi, Yoichi; Sanoh, Seigo; Ohta, Shigeru

    2018-02-01

    Predicting human drug metabolism and pharmacokinetics (PK) is key to drug discovery. In particular, it is important to predict human PK, metabolite profiles and drug-drug interactions (DDIs). Various methods have been used for such predictions, including in vitro metabolic studies using human biological samples, such as hepatic microsomes and hepatocytes, and in vivo studies using experimental animals. However, prediction studies using these methods are often inconclusive due to discrepancies between in vitro and in vivo results, and interspecies differences in drug metabolism. Further, the prediction methods have changed from qualitative to quantitative to solve these issues. Chimeric mice with humanized liver have been developed, in which mouse liver cells are mostly replaced with human hepatocytes. Since human drug metabolizing enzymes are expressed in the liver of these mice, they are regarded as suitable models for mimicking the drug metabolism and PK observed in humans; therefore, these mice are useful for predicting human drug metabolism and PK. In this review, we discuss the current state, issues, and future directions of predicting human drug metabolism and PK using chimeric mice with humanized liver in drug discovery. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  6. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells

    PubMed Central

    Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-01-01

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine1. Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models. PMID:27077489

  7. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells.

    PubMed

    Kegel, Victoria; Deharde, Daniela; Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-03-30

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.

  8. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing.

    PubMed

    Xu, Dan; Nishimura, Toshi; Nishimura, Sachiko; Zhang, Haili; Zheng, Ming; Guo, Ying-Ying; Masek, Marylin; Michie, Sara A; Glenn, Jeffrey; Peltz, Gary

    2014-04-01

    Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU]) developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers. Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po) for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers. FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology studies could improve

  9. Comparison of chlordecone and NDL-PCB decontamination dynamics in growing male kids after cessation of oral exposure: Is there a potential to decrease the body levels of these pollutants by dietary supplementation of activated carbon or paraffin oil?

    PubMed

    Lastel, Marie-Laure; Fournier, Agnès; Jurjanz, Stefan; Thomé, Jean-Pierre; Joaquim-Justo, Célia; Archimède, Harry; Mahieu, Maurice; Feidt, Cyril; Rychen, Guido

    2018-02-01

    Sixteen weaned male Alpine kids (Capra hircus) were subjected to a 21-day oral daily exposure of 0.05 mg kg -1 BW. d -1 of chlordecone (CLD) and 0.30 μg kg -1 BW. d -1 of each non-dioxin-like polychlorinated biphenyls (NDL-PCBs, congeners 28, 52, 101, 138, 153 and 180). Four kids, identified as the CONTA group, were slaughtered at the end of the exposure, while the remaining animals (n = 12) were fed with specific diets for an additional 21-day decontamination period before slaughtering. Kids from the DECONTA (n = 4) group were fed a control diet, while those from the AC10% and PO8% group received pellets supplemented with 10% activated carbon (AC) and 8% paraffin oil (PO), respectively. CLD and NDL-PCB levels in blood, liver, peri-renal fat and muscles from different groups were analysed to compare the decontamination dynamics of the pollutants and to determine the efficiency of AC and PO to decrease the body levels of pollutants. After the decontamination period, the CLD levels considerably decreased (more than 60%) in blood, liver, muscles and fat. Concerning NDL-PCBs, the decontamination process was much lower. Overall, CLD appeared to be less retained in kids' organism compared with NDL-PCBs, and the decontamination dynamics of these pollutants appeared to be different because of their specific physicochemical properties and lipophilicity. Furthermore, the dietary supplementation with AC or PO did not significantly affect the decontamination dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Stereoselective metabolism of endosulfan by human liver microsomes and human cytochrome P450 isoforms.

    PubMed

    Lee, Hwa-Kyung; Moon, Joon-Kwan; Chang, Chul-Hee; Choi, Hoon; Park, Hee-Won; Park, Byeoung-Soo; Lee, Hye-Suk; Hwang, Eul-Chul; Lee, Young-Deuk; Liu, Kwang-Hyeon; Kim, Jeong-Han

    2006-07-01

    Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4-benzo(e)dioxathiepin-3-oxide) is a broad-spectrum chlorinated cyclodiene insecticide. This study was performed to elucidate the stereoselective metabolism of endosulfan in human liver microsomes and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of endosulfan. Human liver microsomal incubation of endosulfan in the presence of NADPH resulted in the formation of the toxic metabolite, endosulfan sulfate. The intrinsic clearances (CL(int)) of endosulfan sulfate from beta-endosulfan were 3.5-fold higher than those from alpha-endosulfan, suggesting that beta-endosulfan would be cleared more rapidly than alpha-endosulfan. Correlation analysis between the known P450 enzyme activities and the rate of the formation of endosulfan sulfate in the 14 human liver microsomes showed that alpha-endosulfan metabolism is significantly correlated with CYP2B6-mediated bupropion hydroxylation and CYP3A-mediated midazolam hydroxylation, and that beta-endosulfan metabolism is correlated with CYP3A activity. The P450 isoform-selective inhibition study in human liver microsomes and the incubation study of cDNA-expressed enzymes also demonstrated that the stereoselective sulfonation of alpha-endosulfan is mediated by CYP2B6, CYP3A4, and CYP3A5, and that that of beta-endosulfan is transformed by CYP3A4 and CYP3A5. The total CL(int) values of endosulfan sulfate formation catalyzed by CYP3A4 and CYP3A5 were consistently higher for beta-endosulfan than for the alpha-form (CL(int) of 0.67 versus 10.46 microl/min/pmol P450, respectively). CYP2B6 enantioselectively metabolizes alpha-endosulfan, but not beta-endosulfan. These findings suggest that the CYP2B6 and CYP3A enzymes are major enzymes contributing to the stereoselective disposition of endosulfan.

  11. Anti-liver-kidney microsome antibody type 1 recognizes human cytochrome P450 db1.

    PubMed

    Gueguen, M; Yamamoto, A M; Bernard, O; Alvarez, F

    1989-03-15

    Anti-liver-kidney microsome antibody type 1 (LKM1), present in the sera of a group of children with autoimmune hepatitis, was recently shown to recognize a 50 kDa protein identified as rat liver cytochromes P450 db1 and db2. High homology between these two members of the rat P450 IID subfamily and human P450 db1 suggested that anti-LKM1 antibody is directed against this human protein. To test this hypothesis, a human liver cDNA expression library in phage lambda GT-11 was screened using rat P450 db1 cDNA as a probe. Two human cDNA clones were found to be identical to human P450 db1 by restriction mapping. Immunoblot analysis using as antigen, the purified fusion protein from one of the human cDNA clones showed that only anti-LKM1 with anti-50 kDa reactivity recognized the fusion protein. This fusion protein was further used to develop an ELISA test that was shown to be specific for sera of children with this disease. These results: 1) identify the human liver antigen recognized by anti-LKM1 auto-antibodies as cytochrome P450 db1, 2) allow to speculate that mutation on the human P450 db1 gene could alter its expression in the hepatocyte and make it auto-antigenic, 3) provide a simple and specific diagnostic test for this disease.

  12. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax

    PubMed Central

    March, Sandra; Ng, Shengyong; Velmurugan, Soundarapandian; Galstian, Ani; Shan, Jing; Logan, David; Carpenter, Anne; Thomas, David; Lee Sim, B. Kim; Mota, Maria M.; Hoffman, Stephen L.; Bhatia, Sangeeta N.

    2013-01-01

    SUMMARY The Plasmodium liver stage is an attractive target for the development of anti-malarial drugs and vaccines, as it provides an opportunity to interrupt the life cycle of the parasite at a critical early stage. However, targeting the liver stage has been difficult. Undoubtedly, a major barrier has been the lack of robust, reliable and reproducible in vitro liver stage cultures. Here, we establish the liver stages for both Plasmodium falciparum and Plasmodium vivax in a microscale human liver platform composed of cryopreserved, micropatterned human primary hepatocytes surrounded by supportive stromal cells. Using this system, we have successfully recapitulated the full liver stage of P. falciparum including the release of infected merozoites and infection of overlaid erythrocytes, and also the establishment of small forms in late liver stages of P. vivax. Finally, we validate the potential of this platform as a tool for medium-throughput anti-malarial drug screening and vaccine development. PMID:23870318

  13. Drug oxygenation activities mediated by liver microsomal flavin-containing monooxygenases 1 and 3 in humans, monkeys, rats, and minipigs.

    PubMed

    Yamazaki, Miho; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi

    2014-07-15

    Liver microsomal flavin-containing monooxygenases (FMO, EC 1.14.13.8) 1 and 3 were functionally characterized in terms of expression levels and molecular catalytic capacities in human, cynomolgus monkey, rat, and minipig livers. Liver microsomal FMO3 in humans and monkeys and FMO1 and FMO3 in rats and minipigs could be determined immunochemically with commercially available anti-human FMO3 peptide antibodies or rat FMO1 peptide antibodies. With respect to FMO-dependent N-oxygenation of benzydamine and tozasertib and S-oxygenation of methimazole and sulindac sulfide activities, rat and minipig liver microsomes had high maximum velocity values (Vmax) and high catalytic efficiency (Vmax/Km, Michaelis constant) compared with those for human or monkey liver microsomes. Apparent Km values for recombinantly expressed rat FMO3-mediated N- and S-oxygenations were approximately 10-100-fold those of rat FMO1, although these enzymes had similar Vmax values. The mean catalytic efficiencies (Vmax/Km, 1.4 and 0.4 min(-1)μM(-1), respectively) of recombinant human and monkey FMO3 were higher than those of FMO1, whereas Vmax/Km values for rat and minipig FMO3 were low compared with those of FMO1. Minipig liver microsomal FMO1 efficiently catalyzed N- and S-oxygenation reactions; in addition, the minipig liver microsomal FMO1 concentration was higher than the levels in rats, humans, and monkeys. These results suggest that liver microsomal FMO1 could contribute to the relatively high FMO-mediated drug N- and S-oxygenation activities in rat and minipig liver microsomes and that lower expression of FMO1 in human and monkey livers could be a determinant factor for species differences in liver drug N- and S-oxygenation activities between experimental animals and humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Metabolism of deltamethrin and cis- and trans-permethrin by rat and human liver microsomes, liver cytosol and plasma preparations.

    PubMed

    Hedges, Laura; Brown, Susan; Vardy, Audrey; Doyle, Edward; Yoon, Miyoung; Osimitz, Thomas G; Lake, Brian G

    2018-04-19

    The metabolism of deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in liver microsomes, liver cytosol and plasma from male Sprague-Dawley rats aged 15, 21 and 90 days and from adult humans. DLM and CPM were metabolised by rat hepatic microsomal cytochrome P450 (CYP) enzymes and to a lesser extent by microsomal and cytosolic carboxylesterase (CES) enzymes, whereas TPM was metabolised to a greater extent by CES enzymes. In human liver, DLM and TPM were mainly metabolised by CES enzymes, whereas CPM was metabolised by CYP and CES enzymes. The metabolism of pyrethroids by cytosolic CES enzymes contributes to the overall hepatic clearance of these compounds. DLM, CPM and TPM were metabolised by rat, but not human, plasma CES enzymes. This study demonstrates that the ability of male rats to metabolise DLM, CPM and TPM by hepatic CYP and CES enzymes and plasma CES enzymes increases with age. In all instances, apparent intrinsic clearance values were lower in 15 than in 90 day old rats. As pyrethroid-induced neurotoxicity is due to the parent compound, these results suggest that DLM, CPM and TPM may be more neurotoxic to juvenile than to adult rats.

  15. Cyclophilin D-Sensitive Mitochondrial Permeability Transition in Adult Human Brain and Liver Mitochondria

    PubMed Central

    Morota, Saori; Chen, Li; Matsuyama, Nagahisa; Suzuki, Yoshiaki; Nakajima, Satoshi; Tanoue, Tadashi; Omi, Akibumi; Shibasaki, Futoshi; Shimazu, Motohide; Ikeda, Yukio; Uchino, Hiroyuki; Elmér, Eskil

    2011-01-01

    Abstract The mitochondrial permeability transition (mPT) is considered to be a major cause of cell death under a variety of pathophysiological conditions of the central nervous system (CNS) and other organs. Pharmacological inhibition or genetic knockout of the matrix protein cyclophilin D (CypD) prevents mPT and cell degeneration in several models of brain injury. If these findings in animal models are translatable to human disease, pharmacological inhibition of mPT offers a promising therapeutic target. The objective of this study was to validate the presence of a CypD-sensitive mPT in adult human brain and liver mitochondria. In order to perform functional characterization of human mitochondria, fresh tissue samples were obtained during hemorrhage or tumor surgery and mitochondria were rapidly isolated. Mitochondrial calcium retention capacity, a quantitative assay for mPT, was significantly increased by the CypD inhibitor cyclosporin A in both human brain and liver mitochondria, whereas thiol-reactive compounds and oxidants sensitized mitochondria to calcium-induced mPT. Brain mitochondria underwent swelling upon calcium overload, which was reversible upon calcium removal. To further explore mPT of human mitochondria, liver mitochondria were demonstrated to exhibit several classical features of the mPT phenomenon, such as calcium-induced loss of membrane potential and respiratory coupling, as well as release of the pro-apoptotic protein cytochrome c. We concluded that adult viable human brain and liver mitochondria possess an active CypD-sensitive mPT. Our findings support the rationale of CypD and mPT inhibition as pharmacological targets in acute and chronic neurodegeneration. PMID:21121808

  16. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy.

    PubMed

    Qi, Wen-Wen; Yu, Hai-Yan; Guo, Hui; Lou, Jun; Wang, Zhi-Ming; Liu, Peng; Sapin-Minet, Anne; Maincent, Philippe; Hong, Xue-Chuan; Hu, Xian-Ming; Xiao, Yu-Ling

    2015-03-02

    Due to overexpression of glycyrrhetinic acid (GA) receptor in liver cancer cells, glycyrrhetinic acid modified recombinant human serum albumin (rHSA) nanoparticles for targeting liver tumor cells may result in increased therapeutic efficacy and decreased adverse effects of cancer therapy. In this study, doxorubicin (DOX) loaded and glycyrrhetinic acid modified recombinant human serum albumin nanoparticles (DOX/GA-rHSA NPs) were prepared for targeting therapy for liver cancer. GA was covalently coupled to recombinant human serum albumin nanoparticles, which could efficiently deliver DOX into liver cancer cells. The resultant GA-rHSA NPs exhibited uniform spherical shape and high stability in plasma with fixed negative charge (∼-25 mV) and a size about 170 nm. DOX was loaded into GA-rHSA NPs with a maximal encapsulation efficiency of 75.8%. Moreover, the targeted NPs (DOX/GA-rHSA NPs) showed increased cytotoxic activity in liver tumor cells compared to the nontargeted NPs (DOX/rHSA NPs, DOX loaded recombinant human serum albumin nanoparticles without GA conjugating). The targeted NPs exhibited higher cellular uptake in a GA receptor-positive liver cancer cell line than nontargeted NPs as measured by both flow cytometry and confocal laser scanning microscopy. Biodistribution experiments showed that DOX/GA-rHSA NPs exhibited a much higher level of tumor accumulation than nontargeted NPs at 1 h after injection in hepatoma-bearing Balb/c mice. Therefore, the DOX/GA-rHSA NPs could be considered as an efficient nanoplatform for targeting drug delivery system for liver cancer.

  17. Modelling non-alcoholic fatty liver disease in human hepatocyte-like cells.

    PubMed

    Lyall, Marcus J; Cartier, Jessy; Thomson, John P; Cameron, Kate; Meseguer-Ripolles, Jose; O'Duibhir, Eoghan; Szkolnicka, Dagmara; Villarin, Baltasar Lucendo; Wang, Yu; Blanco, Giovanny Rodriguez; Dunn, Warwick B; Meehan, Richard R; Hay, David C; Drake, Amanda J

    2018-07-05

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in developed countries. An in vitro NAFLD model would permit mechanistic studies and enable high-throughput therapeutic screening. While hepatic cancer-derived cell lines are a convenient, renewable resource, their genomic, epigenomic and functional alterations mean their utility in NAFLD modelling is unclear. Additionally, the epigenetic mark 5-hydroxymethylcytosine (5hmC), a cell lineage identifier, is rapidly lost during cell culture, alongside expression of the Ten-eleven-translocation ( TET ) methylcytosine dioxygenase enzymes, restricting meaningful epigenetic analysis. Hepatocyte-like cells (HLCs) derived from human embryonic stem cells can provide a non-neoplastic, renewable model for liver research. Here, we have developed a model of NAFLD using HLCs exposed to lactate, pyruvate and octanoic acid (LPO) that bear all the hallmarks, including 5hmC profiles, of liver functionality. We exposed HLCs to LPO for 48 h to induce lipid accumulation. We characterized the transcriptome using RNA-seq, the metabolome using ultra-performance liquid chromatography-mass spectrometry and the epigenome using 5-hydroxymethylation DNA immunoprecipitation (hmeDIP) sequencing. LPO exposure induced an NAFLD phenotype in HLCs with transcriptional and metabolomic dysregulation consistent with those present in human NAFLD. HLCs maintain expression of the TET enzymes and have a liver-like epigenome. LPO exposure-induced 5hmC enrichment at lipid synthesis and transport genes. HLCs treated with LPO recapitulate the transcriptional and metabolic dysregulation seen in NAFLD and additionally retain TET expression and 5hmC. This in vitro model of NAFLD will be useful for future mechanistic and therapeutic studies.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Authors.

  18. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis

    PubMed Central

    2011-01-01

    Background Clonorchis sinensis is a carcinogenic human liver fluke that is widespread in Asian countries. Increasing infection rates of this neglected tropical disease are leading to negative economic and public health consequences in affected regions. Experimental and epidemiological studies have shown a strong association between the incidence of cholangiocarcinoma and the infection rate of C. sinensis. To aid research into this organism, we have sequenced its genome. Results We combined de novo sequencing with computational techniques to provide new information about the biology of this liver fluke. The assembled genome has a total size of 516 Mb with a scaffold N50 length of 42 kb. Approximately 16,000 reliable protein-coding gene models were predicted. Genes for the complete pathways for glycolysis, the Krebs cycle and fatty acid metabolism were found, but key genes involved in fatty acid biosynthesis are missing from the genome, reflecting the parasitic lifestyle of a liver fluke that receives lipids from the bile of its host. We also identified pathogenic molecules that may contribute to liver fluke-induced hepatobiliary diseases. Large proteins such as multifunctional secreted proteases and tegumental proteins were identified as potential targets for the development of drugs and vaccines. Conclusions This study provides valuable genomic information about the human liver fluke C. sinensis and adds to our knowledge on the biology of the parasite. The draft genome will serve as a platform to develop new strategies for parasite control. PMID:22023798

  19. Comparative Metabolism Study of Five Protoberberine Alkaloids in Liver Microsomes from Rat, Rhesus Monkey, and Human.

    PubMed

    Li, Yan; Zhou, Yanyan; Si, Nan; Han, Lingyu; Ren, Wei; Xin, Shaokun; Wang, Hongjie; Zuo, Ran; Wei, Xiaolu; Yang, Jian; Zhao, Haiyu; Bian, Baolin

    2017-11-01

    Protoberberine alkaloids including berberine, palmatine, jatrorrhizine, coptisine, and epiberberine are major components in many medicinal plants. They have been widely used for the treatment of cancer, inflammation, diabetes, depression, hypertension, and various infectious areas. However, the metabolism of five protoberberine alkaloids among different species has not been clarified previously. In order to elaborate on the in vitro metabolism of them, a comparative analysis of their metabolic profile in rat, rhesus monkey, and human liver microsomes was carried out using ultrahigh-performance liquid chromatography coupled with a high-resolution linear trap quadrupole-Orbitrap mass spectrometer (UHPLC-electrospray ionization-Orbitrap MS) for the first time. Each metabolite was identified and semiquantified by its accurate mass data and peak area. Fifteen metabolites were characterized based on accurate MS/MS spectra and the proposed MS/MS fragmentation pathways including demethylation, hydroxylation, and methyl reduction. Among them, the content of berberine metabolites in human liver microsomes was similar with those in rhesus monkey liver microsomes, whereas berberine in rat liver microsomes showed no demethylation metabolites and the content of metabolites showed significant differences with that in human liver microsomes. On the contrary, the metabolism of palmatine in rat liver microsomes resembled that in human liver microsomes. The content of jatrorrhizine metabolites presented obvious differences in all species. The HR-ESI-MS/MS fragmentation behavior of protoberberine alkaloids and their metabolic profile in rat, rhesus monkey, and human liver microsomes were investigated for the first time. The results demonstrated that the biotransformation characteristics of protoberberine alkaloids among different species had similarities as well differences that would be beneficial for us to better understand the pharmacological activities of protoberberine alkaloids

  20. Liver lipase and high-density lipoprotein. Lipoprotein changes after incubation of human serum with rat liver lipase.

    PubMed

    Groot, P H; Scheek, L M; Jansen, H

    1983-05-16

    Human sera were incubated with rat liver lipase after inactivation of lecithin:cholesterol acyltransferase, and the changes in serum lipoprotein composition were measured. In the presence of liver lipase serum triacylglycerol and phosphatidylcholine were hydrolyzed. The main changes in the concentrations of these lipids were found in the high-density lipoprotein fraction. Subfractionation of high-density lipoprotein by rate-zonal ultracentrifugation showed a prominent decrease in all constituents of high-density lipoprotein2, a smaller decrease in the 'light' high-density lipoprotein3 and an increase in the 'heavy' high-density lipoprotein3. These data support a concept in which liver lipase is involved in high-density lipoprotein2 phospholipid and triacylglycerol catabolism and suggest that as a result of this action high-density lipoprotein2 is converted into high-density lipoprotein3.

  1. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    PubMed Central

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N.M.; Nieuwenhuis, Edward E.S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R.G.; van der Laan, Luc J.W.; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785

  2. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yannam, Govardhana Rao; Han, Bing; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevatedmore » alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.« less

  3. Rate of hepatitis C viral clearance by human livers in human patients: Liver transplantation modeling primary infection and implications for studying entry inhibition.

    PubMed

    Hughes, Michael G; Tucker, William W; Reddy, Sreelatha; Brier, Michael E; Koch, David; McClain, Craig J; Jonsson, Colleen B; Matoba, Nobuyuki; Chung, Donghoon

    2017-01-01

    To better understand the dynamics of early hepatitis C virus (HCV) infection, we determined how rapidly non-cirrhotic HCV-uninfected liver allografts clear HCV from the circulation of cirrhotic HCV-infected patients at the time of transplantation but before administration of immunosuppression. Specifically, we characterized serum HCV kinetics during the first 90 min of reperfusion for 19 chronically HCV-infected patients transplanted with an HCV-uninfected liver by measuring serum viral load immediately prior to reperfusion (t = 0) and then every 15 min for a total of 90 min (t = 90). Immunosuppression was withheld until all samples were taken to better model primary infection. During this period, rates of viral clearance varied more than 20-fold with a median rate constant of 0.0357 1/min, range 0.0089-0.2169; half-life (minutes) median 19.4, range 3.2-77.8. The majority of viral clearance occurred within the first 60 min. The amount of blood transfused during this 90-min period (a potential confounding variable of this human liver transplant model of primary infection) accounted for 53% and 59% of k (r = 0.53, p = 0.05) and half-life (r = 0.59, p = 0.03) variability, respectively. No other clinical variables tested (age, allograft weight, and degree of reperfusion injury as assessed by peak postoperative ALT or AST) accounted for the remaining variability (p>0.05). In a human liver transplant model of primary infection, HCV rapidly clears the bloodstream. With approximately 90% of clearance occurring in the first 90 minutes of reperfusion, studies of HCV entry inhibition could utilize rate of clearance during this early period as an outcome measure.

  4. Stem cell-derived models to improve mechanistic understanding and prediction of human drug-induced liver injury.

    PubMed

    Goldring, Christopher; Antoine, Daniel J; Bonner, Frank; Crozier, Jonathan; Denning, Chris; Fontana, Robert J; Hanley, Neil A; Hay, David C; Ingelman-Sundberg, Magnus; Juhila, Satu; Kitteringham, Neil; Silva-Lima, Beatriz; Norris, Alan; Pridgeon, Chris; Ross, James A; Young, Rowena Sison; Tagle, Danilo; Tornesi, Belen; van de Water, Bob; Weaver, Richard J; Zhang, Fang; Park, B Kevin

    2017-02-01

    Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimately be possible to develop personalized toxicology to determine interindividual susceptibility to adverse drug reactions. However, the complexity of idiosyncratic drug-induced liver injury means that no current single-cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during human drug-induced liver injury. Nevertheless, a single-cell model of a human hepatocyte which emulates key features of a hepatocyte is likely to be valuable in assessing potential chemical risk; furthermore, understanding how to generate a relevant hepatocyte will also be critical to efforts to build complex multicellular models of the liver. Currently, hepatocyte-like cells differentiated from stem cells still fall short of recapitulating the full mature hepatocellular phenotype. Therefore, we convened a number of experts from the areas of preclinical and clinical hepatotoxicity and safety assessment, from industry, academia, and regulatory bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment and to make recommendations for the way forward. In this short review, we particularly discuss the importance of benchmarking stem cell-derived hepatocyte-like cells to their terminally differentiated human counterparts using defined phenotyping, to make sure the cells are relevant and comparable between labs, and outline why this process is essential before the cells are introduced into chemical safety assessment. (Hepatology 2017;65:710-721). © 2016 by the American Association for the Study of Liver Diseases.

  5. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease.

    PubMed

    Bell, Catherine C; Hendriks, Delilah F G; Moro, Sabrina M L; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C A; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L; Jenkins, Rosalind E; Nordling, Åsa; Mkrtchian, Souren; Park, B Kevin; Kitteringham, Neil R; Goldring, Christopher E P; Lauschke, Volker M; Ingelman-Sundberg, Magnus

    2016-05-04

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI.

  6. Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes.

    PubMed

    Klette, K L; Anderson, C J; Poch, G K; Nimrod, A C; ElSohly, M A

    2000-10-01

    The metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) was investigated in liver microsomes and cyropreserved hepatocytes from humans. Previous studies have demonstrated that O-H-LSD is present in human urine at concentrations 16-43 times greater than LSD, the parent compound. Additionally, these studies have determined that O-H-LSD is not generated during the specimen extraction and analytical processes or due to parent compound degradation in aqueous urine samples. However, these studies have not been conclusive in demonstrating that O-H-LSD is uniquely produced during in vivo metabolism. Phase I drug metabolism was investigated by incubating human liver microsomes and cryopreserved human hepatocytes with LSD. The reaction was quenched at various time points, and the aliquots were extracted using liquid partitioning and analyzed by liquid chromatography-mass spectrometry. O-H-LSD was positively identified in all human liver microsomal and human hepatocyte fractions incubated with LSD. In addition, O-H-LSD was not detected in any microsomal or hepatocyte fraction not treated with LSD nor in LSD specimens devoid of microsomes or hepatocytes. This study provides definitive evidence that O-H-LSD is produced as a metabolic product following incubation of human liver microsomes and hepatocytes with LSD.

  7. Extended normothermic extracorporeal perfusion of isolated human liver after warm ischaemia: a preliminary report.

    PubMed

    Bellomo, Rinaldo; Marino, Bruno; Starkey, Graeme; Fink, Michael; Wang, Bao Zhong; Eastwood, Glenn M; Peck, Leah; Young, Helen; Houston, Shane; Skene, Alison; Opdam, Helen; Jones, Robert

    2014-09-01

    Donation after circulatory death (DCD) livers are at markedly increased risk of primary graft dysfunction and biliary tract ischaemia. Normothermic extracorporeal liver perfusion (NELP) may increase the ability to transplant DCD livers and may allow their use for artificial extracorporeal liver support of patients with fulminant liver failure. We conducted two proof-of-concept experiments using human livers after DCD to assess the feasibility and functional efficacy of NELP over an extended period. We applied extracorporeal membrane oxygenation, parenteral nutrition, separate hepatic artery and portal vein perfusion and physiological perfusion pressures to two livers obtained after DCD. We achieved NELP and evidence of liver function (bile production, paracetamol removal and maintenance of normal lactate levels) in both livers; one for 24 hours and the other for 43 hours. Histological examination showed areas of patchy ischaemia but preserved biliary ducts and canaliculi. Our experiments justify further investigations of the feasibility and efficacy of extended DCD liver preservation by ex-vivo perfusion.

  8. Efficacy of hydrodynamic interleukin 10 gene transfer in human liver segments with interest in transplantation.

    PubMed

    Sendra Gisbert, Luis; Miguel Matas, Antonio; Sabater Ortí, Luis; Herrero, María José; Sabater Olivas, Laura; Montalvá Orón, Eva María; Frasson, Matteo; Abargues López, Rafael; López-Andújar, Rafael; García-Granero Ximénez, Eduardo; Aliño Pellicer, Salvador Francisco

    2017-01-01

    Different diseases lead, during their advanced stages, to chronic or acute liver failure, whose unique treatment consists in organ transplantation. The success of intervention is limited by host immune response and graft rejection. The use of immunosuppressant drugs generally improve organ transplantation, but they cannot completely solve the problem. Also, their management is delicate, especially during the early stages of treatment. Thus, new tools to set an efficient modulation of immune response are required. The local expression of interleukin (IL) 10 protein in transplanted livers mediated by hydrodynamic gene transfer could improve the organ acceptance by the host because it presents the natural ability to modulate the immune response at different levels. In the organ transplantation scenario, IL10 has already demonstrated positive effects on graft tolerance. Hydrodynamic gene transfer has been proven to be safe and therapeutically efficient in animal models and could be easily moved to the clinic. In the present work, we evaluated efficacy of human IL10 gene transfer in human liver segments and the tissue natural barriers for gene entry into the cell, employing gold nanoparticles. In conclusion, the present work shows for the first time that hydrodynamic IL10 gene transfer to human liver segments ex vivo efficiently delivers a human gene into the cells. Indexes of tissue protein expression achieved could mediate local pharmacological effects with interest in controlling the immune response triggered after liver transplantation. On the other hand, the ultrastructural study suggests that the solubilized plasmid could access the hepatocyte in a passive manner mediated by the hydric flow and that an active mechanism of transportation could facilitate its entry into the nucleus. Liver Transplantation 23:50-62 2017 AASLD. © 2016 by the American Association for the Study of Liver Diseases.

  9. A genome-wide interactome of DNA-associated proteins in the human liver.

    PubMed

    Ramaker, Ryne C; Savic, Daniel; Hardigan, Andrew A; Newberry, Kimberly; Cooper, Gregory M; Myers, Richard M; Cooper, Sara J

    2017-11-01

    Large-scale efforts like the ENCODE Project have made tremendous progress in cataloging the genomic binding patterns of DNA-associated proteins (DAPs), such as transcription factors (TFs). However, most chromatin immunoprecipitation-sequencing (ChIP-seq) analyses have focused on a few immortalized cell lines whose activities and physiology differ in important ways from endogenous cells and tissues. Consequently, binding data from primary human tissue are essential to improving our understanding of in vivo gene regulation. Here, we identify and analyze more than 440,000 binding sites using ChIP-seq data for 20 DAPs in two human liver tissue samples. We integrated binding data with transcriptome and phased WGS data to investigate allelic DAP interactions and the impact of heterozygous sequence variation on the expression of neighboring genes. Our tissue-based data set exhibits binding patterns more consistent with liver biology than cell lines, and we describe uses of these data to better prioritize impactful noncoding variation. Collectively, our rich data set offers novel insights into genome function in human liver tissue and provides a valuable resource for assessing disease-related disruptions. © 2017 Ramaker et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Modeling the biomechanical and injury response of human liver parenchyma under tensile loading.

    PubMed

    Untaroiu, Costin D; Lu, Yuan-Chiao; Siripurapu, Sundeep K; Kemper, Andrew R

    2015-01-01

    The rapid advancement in computational power has made human finite element (FE) models one of the most efficient tools for assessing the risk of abdominal injuries in a crash event. In this study, specimen-specific FE models were employed to quantify material and failure properties of human liver parenchyma using a FE optimization approach. Uniaxial tensile tests were performed on 34 parenchyma coupon specimens prepared from two fresh human livers. Each specimen was tested to failure at one of four loading rates (0.01s(-1), 0.1s(-1), 1s(-1), and 10s(-1)) to investigate the effects of rate dependency on the biomechanical and failure response of liver parenchyma. Each test was simulated by prescribing the end displacements of specimen-specific FE models based on the corresponding test data. The parameters of a first-order Ogden material model were identified for each specimen by a FE optimization approach while simulating the pre-tear loading region. The mean material model parameters were then determined for each loading rate from the characteristic averages of the stress-strain curves, and a stochastic optimization approach was utilized to determine the standard deviations of the material model parameters. A hyperelastic material model using a tabulated formulation for rate effects showed good predictions in terms of tensile material properties of human liver parenchyma. Furthermore, the tissue tearing was numerically simulated using a cohesive zone modeling (CZM) approach. A layer of cohesive elements was added at the failure location, and the CZM parameters were identified by fitting the post-tear force-time history recorded in each test. The results show that the proposed approach is able to capture both the biomechanical and failure response, and accurately model the overall force-deflection response of liver parenchyma over a large range of tensile loadings rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Hepatitis virus infection affects DNA methylation in mice with humanized livers.

    PubMed

    Okamoto, Yasuyuki; Shinjo, Keiko; Shimizu, Yasuhiro; Sano, Tsuyoshi; Yamao, Kenji; Gao, Wentao; Fujii, Makiko; Osada, Hirotaka; Sekido, Yoshitaka; Murakami, Shuko; Tanaka, Yasuhito; Joh, Takashi; Sato, Shinya; Takahashi, Satoru; Wakita, Takaji; Zhu, Jingde; Issa, Jean-Pierre J; Kondo, Yutaka

    2014-02-01

    Cells of tumors associated with chronic inflammation frequently have altered patterns of DNA methylation, including hepatocellular carcinomas. Chronic hepatitis has also been associated with aberrant DNA methylation, but little is known about their relationship. Pyrosequencing was used to determine the methylation status of cultured Huh7.5.1 hepatoma cells after hepatitis C virus (HCV) infection. We also studied mice with severe combined immunodeficiency carrying the urokinase-type plasminogen activator transgene controlled by an albumin promoter (urokinase-type plasminogen activator/severe combined immunodeficient mice), in which up to 85% of hepatocytes were replaced by human hepatocytes (chimeric mice). Mice were given intravenous injections of hepatitis B virus (HBV) or HCV, liver tissues were collected, and DNA methylation profiles were determined at different time points after infection. We also compared methylation patterns between paired samples of hepatocellular carcinomas and adjacent nontumor liver tissues from patients. No reproducible changes in DNA methylation were observed after infection of Huh7.5.1 cells with HCV. Livers from HBV- and HCV-infected mice had genome-wide, time-dependent changes in DNA methylation, compared with uninfected urokinase-type plasminogen activator/severe combined immunodeficient mice. There were changes in 160 ± 63 genes in HBV-infected and 237 ± 110 genes in HCV-infected mice. Methylation of 149 common genes increased in HBV- and HCV-infected mice; methylation of some of these genes also increased in hepatocellular carcinoma samples from patients compared with nontumor tissues. Expression of Ifng, which is expressed by natural killer cells, increased significantly in chimeric livers, in concordance with induction of DNA methylation, after infection with HBV or HCV. Induction of Ifng was reduced after administration of an inhibitor of natural killer cell function (anti-asialo GM1). In chimeric mice with humanized livers

  12. Effects of chlordecone on 20-hydroxyecdysone concentration and chitobiase activity in a decapod crustacean, Macrobrachium rosenbergii.

    PubMed

    Lafontaine, Anne; Gismondi, Eric; Boulangé-Lecomte, Céline; Geraudie, Perrine; Dodet, Nathalie; Caupos, Fanny; Lemoine, Soazig; Lagadic, Laurent; Thomé, Jean-Pierre; Forget-Leray, Joëlle

    2016-07-01

    Chlordecone (CLD) is an organochlorine insecticide abundant in aquatic environment of the French West Indies. However, few studies have investigated its impact on freshwater invertebrates. Whereas CLD is suspected of inducing endocrine disruption, this work aimed to study the effects of environmentally relevant concentrations of CLD on the 20-hydroxyecdysone (20-HE) hormone concentration and on the chitobiase activity, both having key roles in the molting process of crustaceans. In addition, the bioaccumulation of CLD was measured in the muscle tissue of Macrobrachium rosenbergii to underline potential dose-response relationship. The results have shown that CLD was bioaccumulated in exposed organisms according to a trend to a dose-response relationship. Moreover, it was observed that CLD decreased the 20-HE concentration in exposed prawns when compared to control, whatever the duration of exposure, as well as it inhibited the chitobiase activity after 30days of exposure. The present study indicates that CLD could interfere with molting process of M. rosenbergii by disturbing the 20-HE concentration and the activity of chitobiase, suggesting consequences at the long term on the shrimp development. This study also confirmed that CLD could be an endocrine disruptor in decapod crustaceans, as it was already observed in vertebrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Three-dimensional growth dynamics of the liver in the human fetus.

    PubMed

    Szpinda, Michał; Paruszewska-Achtel, Monika; Woźniak, Alina; Badura, Mateusz; Mila-Kierzenkowska, Celestyna; Wiśniewski, Marcin

    2015-07-01

    The fetal liver is indubitably the earliest and the most severely affected organ by abnormal fetal growth. The size of the fetal liver assessed by three-dimensional ultrasonography is indispensable in determining the status of fetal growth, nutrition and maturity, and in the early recognition and monitoring fetal micro- and macrosomias. The aim of the present study was to measure the human fetal liver length, transverse and sagittal diameters to establish their age-specific reference intervals, the 3rd, 10th, 50th, 90th, and 97th smoothed centile curves, and the relative growth of the liver calculated for the 50th centile. Using anatomical, digital (NIS-Elements AR 3.0, Nikon) and statistical methods (one-way ANOVA test for paired data and post hoc RIR Tukey test, Shapiro-Wilk test, Fisher's test, Student's t test, the Altman-Chitty method), length, transverse and sagittal diameters of the liver for the 3rd, 10th, 50th, 90th, and 97th centiles were assessed in 69 human fetuses of both sexes (32 males and 37 females) aged 18-30 weeks, derived from spontaneous abortions or stillbirths. No male-female differences (P > 0.05) concerning the three parameters studied were found. During the study period, the fetal liver increased tri-dimensionally: in length from 19.51 ± 1.02 to 39.65 ± 7.05 mm, in transverse diameter from 29.44 ± 3.73 to 53.13 ± 5.31 mm, and in sagittal diameter from 22.97 ± 3.79 to 43.22 ± 5.49 mm. The natural logarithmic models were found to fit the data with gestational age (P < 0.001) in the following five cutoff points: 3rd, 10th, 50th, 90th and 97th centiles. The values of liver parameters in relation to gestational age in weeks were calculated by the following logarithmic regressions: y = -82.778 + 35.752 × ln(age) ± Z × (-2.778 + 0.308 × age) for liver length, y = -123.06 + 52.668 × ln(age) ± Z × (3.156 + 0.049 × age) for liver transverse diameter, and y = -108.94 + 46.052 × ln(age) ± Z × (-0.541 + 0.188 × age) for liver sagittal

  14. In vivo time-harmonic multifrequency elastography of the human liver

    NASA Astrophysics Data System (ADS)

    Tzschätzsch, Heiko; Ipek-Ugay, Selcan; Guo, Jing; Streitberger, Kaspar-Josche; Gentz, Enno; Fischer, Thomas; Klaua, Robert; Schultz, Michael; Braun, Jürgen; Sack, Ingolf

    2014-04-01

    Elastography is capable of noninvasively detecting hepatic fibrosis by imposing mechanical stress and measuring the viscoelastic response in the liver. Magnetic resonance elastography (MRE) relies on time-harmonic vibrations, while most dynamic ultrasound elastography methods employ transient stimulation methods. This study attempts to benefit from the advantages of time-harmonic tissue stimulation, i.e. relative insensitivity to obesity and ascites and mechanical approachability of the entire liver, and the advantages of ultrasound, i.e. time efficiency, low costs, and wide availability, by introducing in vivo time-harmonic elastography (THE) of the human liver using ultrasound and a broad range of harmonic stimulation frequencies. THE employs continuous harmonic shear vibrations at 7 frequencies from 30 to 60 Hz in a single examination and determines the elasticity and the viscosity of the liver from the dispersion of the shear wave speed within the applied frequency range. The feasibility of the method is demonstrated in the livers of eight healthy volunteers and a patient with cirrhosis. Multifrequency MRE at the same drive frequencies was used as elastographic reference method. Similar values of shear modulus and shear viscosity according the Kelvin-Voigt model were obtained by MRE and THE, indicating that the new method is suitable for in vivo quantification of the shear viscoelastic properties of the liver, however, in real-time and at a fraction of the costs of MRE. In conclusion, THE may provide a useful tool for fast assessment of the viscoelastic properties of the liver at low costs and without limitations in obesity, ascites or hemochromatosis.

  15. Metabolomic Modularity Analysis (MMA) to Quantify Human Liver Perfusion Dynamics.

    PubMed

    Sridharan, Gautham Vivek; Bruinsma, Bote Gosse; Bale, Shyam Sundhar; Swaminathan, Anandh; Saeidi, Nima; Yarmush, Martin L; Uygun, Korkut

    2017-11-13

    Large-scale -omics data are now ubiquitously utilized to capture and interpret global responses to perturbations in biological systems, such as the impact of disease states on cells, tissues, and whole organs. Metabolomics data, in particular, are difficult to interpret for providing physiological insight because predefined biochemical pathways used for analysis are inherently biased and fail to capture more complex network interactions that span multiple canonical pathways. In this study, we introduce a nov-el approach coined Metabolomic Modularity Analysis (MMA) as a graph-based algorithm to systematically identify metabolic modules of reactions enriched with metabolites flagged to be statistically significant. A defining feature of the algorithm is its ability to determine modularity that highlights interactions between reactions mediated by the production and consumption of cofactors and other hub metabolites. As a case study, we evaluated the metabolic dynamics of discarded human livers using time-course metabolomics data and MMA to identify modules that explain the observed physiological changes leading to liver recovery during subnormothermic machine perfusion (SNMP). MMA was performed on a large scale liver-specific human metabolic network that was weighted based on metabolomics data and identified cofactor-mediated modules that would not have been discovered by traditional metabolic pathway analyses.

  16. The Effects of Lasiocarpine, Retrorsine and Retronecine Pyrrole on Human Embryo Lung and Liver Cells in Culture

    PubMed Central

    Armstrong, Sylvia J.; Zuckerman, A. J.

    1972-01-01

    Retronecine pyrrole induces toxic changes both in human liver and lung cells. Lasiocarpine and retrorsine are toxic to liver cells but not to lung cells, which are unable to metabolize the pyrrolizidine alkaloids to pyrroles. The application of lasiocarpine to human liver cells in culture is followed by inhibition of DNA, RNA and protein synthesis; vacuolation of the cells, the prevention of mitosis and the formation of giant cells (“megalocytes”). PMID:5032089

  17. Hyperspectral Stimulated Raman Scattering Microscopy Unravels Aberrant Accumulation of Saturated Fat in Human Liver Cancer.

    PubMed

    Yan, Shuai; Cui, Sishan; Ke, Kun; Zhao, Bixing; Liu, Xiaolong; Yue, Shuhua; Wang, Ping

    2018-06-05

    Lipid metabolism is dysregulated in human cancers. The analytical tools that could identify and quantitatively map metabolites in unprocessed human tissues with submicrometer resolution are highly desired. Here, we implemented analytical hyperspectral stimulated Raman scattering microscopy to map the lipid metabolites in situ in normal and cancerous liver tissues from 24 patients. In contrast to the conventional wisdom that unsaturated lipid accumulation enhances tumor cell survival and proliferation, we unexpectedly visualized substantial amount of saturated fat accumulated in cancerous liver tissues, which was not seen in majority of their adjacent normal tissues. Further analysis by mass spectrometry confirmed significant high levels of glyceryl tripalmitate specifically in cancerous liver. These findings suggest that the aberrantly accumulated saturated fat may have great potential to be a metabolic biomarker for liver cancer.

  18. Study of chlordecone desorption from activated carbons and subsequent dechlorination by reduced cobalamin.

    PubMed

    Ranguin, Ronald; Durimel, Axelle; Karioua, Reeka; Gaspard, Sarra

    2017-11-01

    Since 1972, the French departments of Guadeloupe and Martinique have intensively used organochlorinated pesticides such as chlordecone (CLD) and hexachlorocyclohexane (HCH) isomers to prevent the proliferation of banana weevil (Cosmopolite sordidus). These molecules are stable in the environment, leading to a continuous contamination of soils, water, and food chain in the banana-producing areas. In these polluted areas, water treatment plants are equipped with activated carbon (AC) filters. In order to improve treatment of CLD-contaminated waters by AC, CLD adsorption and desorption kinetic studies are carried out using different ACs produced from sugar cane bagasse as adsorbents and subsequent CLD degradation is performed using reduced vitamin B12 (VB12). A GC-MS method for CLD quantification is as well optimized. This study shows that bagasse ACs are able to capture the pollutant, leading to a CLD concentration decrease from 1 to 73 μg L -1 , with an adsorption capacity of 162 μg mg -1 . Adsorption capacity increase with the temperature indicates an endothermic process. Polar solvents favor CLD desorption from ACs, suggesting hydrogen bonding between CLD and surface groups of ACs, the best solvent for chemical desorption being ethanol. Subsequent degradation of CLD in ethanol is performed using vitamin B12 reduced by either 1,4-dithiotreitol (DTT) or zerovalent zinc, leading to 90% of CLD removal and to the molecule cage structure opening for formation of a pentachloroindene intermediate product, characterized by GC MS/MS. A pathway for pentachloroindene formation from CLD is proposed.

  19. Potential genotoxic and cytotoxicity of emamectin benzoate in human normal liver cells

    PubMed Central

    Zhang, Zhijie; Zhao, Xinyu; Qin, Xiaosong

    2017-01-01

    Pesticide residue inducing cancer-related health problems draw people more attention recently. Emamectin benzoate (EMB) has been widely used in agriculture around the world based on its specificity targets. Although potential risk and the molecular mechanism of EMB toxicity to human liver has not been well-characterized. Unlike well-reported toxicity upon central nervous system, potential genotoxic and cytotoxicity of EMB in human liver cell was ignored and very limited. In this study, we identify genotoxicity and cytotoxicity of EMB to human normal liver cells (QSG7701 cell line) in vitro. We demonstrate that EMB inhibited the viability of QSG7701 cells and induced the DNA damage. Established assays of cytotoxicity were performed to characterize the mechanism of EMB toxicity on QSG7701 cells. Typical chromatin condensation and DNA fragmentation indicated the apoptosis of QSG7701 cells induced by EMB. And the intracellular biochemical results demonstrated that EMB-enhanced apoptosis of QSG7701 cells concurrent with generated ROS, a loss of mitochondrial membrane potential, the cytochrome-c release, up regulate the Bax/Bcl-2 and the activation of caspase-9/-3. Our results of EMB induces the death of QSG7701 cells maybe via mitochondrial-mediated intrinsic apoptotic pathways would contribute to promote the awareness of EMB as an extensive used pesticide to human being effects and reveal the underlying mechanisms of potential genotoxic. PMID:29137255

  20. Potential genotoxic and cytotoxicity of emamectin benzoate in human normal liver cells.

    PubMed

    Zhang, Zhijie; Zhao, Xinyu; Qin, Xiaosong

    2017-10-10

    Pesticide residue inducing cancer-related health problems draw people more attention recently. Emamectin benzoate (EMB) has been widely used in agriculture around the world based on its specificity targets. Although potential risk and the molecular mechanism of EMB toxicity to human liver has not been well-characterized. Unlike well-reported toxicity upon central nervous system, potential genotoxic and cytotoxicity of EMB in human liver cell was ignored and very limited. In this study, we identify genotoxicity and cytotoxicity of EMB to human normal liver cells (QSG7701 cell line) in vitro . We demonstrate that EMB inhibited the viability of QSG7701 cells and induced the DNA damage. Established assays of cytotoxicity were performed to characterize the mechanism of EMB toxicity on QSG7701 cells. Typical chromatin condensation and DNA fragmentation indicated the apoptosis of QSG7701 cells induced by EMB. And the intracellular biochemical results demonstrated that EMB-enhanced apoptosis of QSG7701 cells concurrent with generated ROS, a loss of mitochondrial membrane potential, the cytochrome-c release, up regulate the Bax/Bcl-2 and the activation of caspase-9/-3. Our results of EMB induces the death of QSG7701 cells maybe via mitochondrial-mediated intrinsic apoptotic pathways would contribute to promote the awareness of EMB as an extensive used pesticide to human being effects and reveal the underlying mechanisms of potential genotoxic.

  1. Interaction of rocuronium with human liver cytochromes P450.

    PubMed

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-02-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver microsomal CYP3A4 down to 42% (at rocuronium concentration 189 μM) was found. This effect has been confirmed with two CYP3A4 substrates, testosterone (formation of 6β-hydroxytestosterone) and diazepam (temazepam formation). CYP2C9 and CYP2C19 activities were inhibited down to 75-80% (at the same rocuronium concentration). Activities of other microsomal CYPs have not been inhibited by rocuronium. To prove the possibility of rocuronium interaction with other drugs (diazepam), the effect of rocuronium on formation of main diazepam metabolites, temazepam (by CYP3A4) and desmethyldiazepam, (also known as nordiazepam; formed by CYP2C19) in primary culture of human hepatocytes has been examined. Rocuronium has caused inhibition of both reactions by 20 and 15%, respectively. The results open a possibility that interactions of rocuronium with drugs metabolized by CYP3A4 (and possibly also CYP2C19) may be observed. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  2. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease

    PubMed Central

    Bell, Catherine C.; Hendriks, Delilah F. G.; Moro, Sabrina M. L.; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C. A.; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L.; Jenkins, Rosalind E.; Nordling, Åsa; Mkrtchian, Souren; Park, B. Kevin; Kitteringham, Neil R.; Goldring, Christopher E. P.; Lauschke, Volker M.; Ingelman-Sundberg, Magnus

    2016-01-01

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI. PMID:27143246

  3. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lake, April D.; Novak, Petr; Shipkova, Petia

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BAmore » profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile

  4. Induction of three-dimensional assembly of human liver cells by simulated microgravity

    NASA Technical Reports Server (NTRS)

    Khaoustov, V. I.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Yoffe, B.

    1999-01-01

    The establishment of long-term cultures of functional primary human liver cells (PHLC) is formidable. Developed at NASA, the Rotary Cell Culture System (RCCS) allows the creation of the unique microgravity environment of low shear force, high-mass transfer, and 3-dimensional cell culture of dissimilar cell types. The aim of our study was to establish long-term hepatocyte cultures in simulated microgravity. PHLC were harvested from human livers by collagenase perfusion and were cultured in RCCS. PHLC aggregates were readily formed and increased up to 1 cm long. The expansion of PHLC in bioreactors was further evaluated with microcarriers and biodegradable scaffolds. While microcarriers were not conducive to formation of spheroids, PHLC cultured with biodegradable scaffolds formed aggregates up to 3 cm long. Analyses of PHLC spheroids revealed tissue-like structures composed of hepatocytes, biliary epithelial cells, and/or progenitor liver cells that were arranged as bile duct-like structures along nascent vascular sprouts. Electron microscopy revealed groups of cohesive hepatocytes surrounded by complex stromal structures and reticulin fibers, bile canaliculi with multiple microvilli, and tight cellular junctions. Albumin mRNA was expressed throughout the 60-d culture. A simulated microgravity environment is conducive to maintaining long-term cultures of functional hepatocytes. This model system will assist in developing improved protocols for autologous hepatocyte transplantation, gene therapy, and liver assist devices, and facilitate studies of liver regeneration and cell-to-cell interactions that occur in vivo.

  5. CXCR6 marks a novel subset of T-betloEomeshi natural killer cells residing in human liver

    PubMed Central

    Stegmann, Kerstin A.; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J.; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R.; Kennedy, Patrick; Maini, Mala K.

    2016-01-01

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56brightCD16−CD57−), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6− fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bethiEomeslo(CXCR6−) and T-betloEomeshi(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bethiEomeslo, suggesting its lineage was closer to CXCR6− peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-betloEomeshi NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity. PMID:27210614

  6. Humanizing the zebrafish liver shifts drug metabolic profiles and improves pharmacokinetics of CYP3A4 substrates.

    PubMed

    Poon, Kar Lai; Wang, Xingang; Ng, Ashley S; Goh, Wei Huang; McGinnis, Claudia; Fowler, Stephen; Carney, Tom J; Wang, Haishan; Ingham, Phillip W

    2017-03-01

    Understanding and predicting whether new drug candidates will be safe in the clinic is a critical hurdle in pharmaceutical development, that relies in part on absorption, distribution, metabolism, excretion and toxicology studies in vivo. Zebrafish is a relatively new model system for drug metabolism and toxicity studies, offering whole organism screening coupled with small size and potential for high-throughput screening. Through toxicity and absorption analyses of a number of drugs, we find that zebrafish is generally predictive of drug toxicity, although assay outcomes are influenced by drug lipophilicity which alters drug uptake. In addition, liver microsome assays reveal specific differences in metabolism of compounds between human and zebrafish livers, likely resulting from the divergence of the cytochrome P450 superfamily between species. To reflect human metabolism more accurately, we generated a transgenic "humanized" zebrafish line that expresses the major human phase I detoxifying enzyme, CYP3A4, in the liver. Here, we show that this humanized line shows an elevated metabolism of CYP3A4-specific substrates compared to wild-type zebrafish. The generation of this first described humanized zebrafish liver suggests such approaches can enhance the accuracy of the zebrafish model for toxicity prediction.

  7. Purification and structure of human liver aspartylglucosaminidase.

    PubMed Central

    Rip, J W; Coulter-Mackie, M B; Rupar, C A; Gordon, B A

    1992-01-01

    We have recently diagnosed aspartylglucosaminuria (AGU) in four members of a Canadian family. AGU is a lysosomal storage disease in which asparagine-linked glycopeptides accumulate to particularly high concentrations in liver, spleen and thyroid of affected individuals. A lesser accumulation of these glycopeptides is seen in the kidney and brain, and they are also excreted in the urine. The altered metabolism in AGU results from a deficiency of the enzyme aspartylglucosaminidase (1-aspartamido-beta-N-acetylglucosamine amidohydrolase), which hydrolyses the asparagine to N-acetylglucosamine linkages of glycoproteins and glycopeptides. We have used human liver as a source of material for the purification of aspartylglucosaminidase. The enzyme has been purified to homogeneity by using heat treatment, (NH4)2SO4 fractionation, and chromatography on concanavalin A-Sepharose, DEAE-Sepharose, sulphopropyl-Sephadex, hydroxyapatite, DEAE-cellulose and Sephadex G-100. Enzyme activity was followed by measuring colorimetrically the N-acetylglucosamine released from aspartylglucosamine at 56 degrees C. The purified enzyme protein ran at a 'native' molecular mass of 56 kDa in SDS/12.5%-PAGE gels, and the enzyme activity could be quantitatively recovered at this molecular mass by using gel slices as enzyme source in the assay. After denaturation by boiling in SDS the 56 kDa protein was lost with the corresponding appearance of polypeptides alpha,beta and beta 1, lacking enzyme activity, at 24.6, 18.4 and 17.4 kDa respectively. Treatment of heat-denatured enzyme with N-glycosidase F resulted in the following decreases in molecular mass; 24.6 to 23 kDa and 18.4 and 17.4 to 15.8 kDa. These studies indicate that human liver aspartylglucosaminidase is composed of two non-identical polypeptides, each of which is glycosylated. The N-termini of alpha,beta and beta 1 were directly accessible for sequencing, and the first 21, 26 and 22 amino acids respectively were identified. Images Fig. 4

  8. Effect of human patient plasma ex vivo treatment on gene expression and progenitor cell activation of primary human liver cells in multi-compartment 3D perfusion bioreactors for extra-corporeal liver support.

    PubMed

    Schmelzer, Eva; Mutig, Kerim; Schrade, Petra; Bachmann, Sebastian; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Cultivation of primary human liver cells in innovative 3D perfusion multi-compartment capillary membrane bioreactors using decentralized mass exchange and integral oxygenation provides in vitro conditions close to the physiologic environment in vivo. While a few scale-up bioreactors were used clinically, inoculated liver progenitors in these bioreactors were not investigated. Therefore, we characterized regenerative processes and expression patterns of auto- and paracrine mediators involved in liver regeneration in bioreactors after patient treatment. Primary human liver cells containing parenchymal and non-parenchymal cells co-cultivated in bioreactors were used for clinical extra-corporeal liver support to bridge to liver transplantation. 3D tissue re-structuring in bioreactors was studied; expression of proteins and genes related to regenerative processes and hepatic progenitors was analyzed. Formation of multiple bile ductular networks and colonies of putative progenitors were observed within parenchymal cell aggregates. HGF was detected in scattered cells located close to vascular-like structures, expression of HGFA and c-Met was assigned to biliary cells and hepatocytes. Increased expression of genes associated to hepatic progenitors was detected following clinical application. The results confirm auto- and paracrine interactions between co-cultured cells in the bioreactor. The 3D bioreactor provides a valuable tool to study mechanisms of progenitor activation and hepatic regeneration ex vivo under patient plasma treatment. (c) 2009 Wiley Periodicals, Inc.

  9. Methods of measuring metabolism during surgery in humans: focus on the liver-brain relationship.

    PubMed

    Battezzati, Alberto; Bertoli, Simona

    2004-09-01

    The purpose of this work is to review recent advances in setting methods and models for measuring metabolism during surgery in humans. Surgery, especially solid organ transplantation, may offer unique experimental models in which it is ethically acceptable to gain information on difficult problems of amino acid and protein metabolism. Two areas are reviewed: the metabolic study of the anhepatic phase during liver transplantation and brain microdialysis during cerebral surgery. The first model offers an innovative approach to understand the relative role of liver and extrahepatic organs in gluconeogenesis, and to evaluate whether other organs can perform functions believed to be exclusively or almost exclusively performed by the liver. The second model offers an insight to intracerebral metabolism that is closely bound to that of the liver. The recent advances in metabolic research during surgery provide knowledge immediately useful for perioperative patient management and for a better control of surgical stress. The studies during the anhepatic phase of liver transplantation have showed that gluconeogenesis and glutamine metabolism are very active processes outside the liver. One of the critical organs for extrahepatic glutamine metabolism is the brain. Microdialysis studies helped to prove that in humans there is an intense trafficking of glutamine, glutamate and alanine among neurons and astrocytes. This delicate network is influenced by systemic amino acid metabolism. The metabolic dialogue between the liver and the brain is beginning to be understood in this light in order to explain the metabolic events of brain damage during liver failure.

  10. Basic investigation on acoustic velocity change imaging method for quantitative assessment of fat content in human liver

    NASA Astrophysics Data System (ADS)

    Mano, Kazune; Tanigawa, Shohei; Hori, Makoto; Yokota, Daiki; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2016-07-01

    Fatty liver is a disease caused by the excess accumulation of fat in the human liver. The early diagnosis of fatty liver is very important, because fatty liver is the major marker linked to metabolic syndrome. We already proposed the ultrasonic velocity change imaging method to diagnose fatty liver by using the fact that the temperature dependence of ultrasonic velocity is different in water and in fat. For the diagonosis of a fatty liver stage, we attempted a feasibility study of the quantitative assessment of the fat content in the human liver using our ultrasonic velocity change imaging method. Experimental results showed that the fat content in the tissue mimic phantom containing lard was determined by its ultrasonic velocity change in the flat temperature region formed by a circular warming ultrasonic transducer with an acoustic lens having an appropriate focal length. By considering the results of our simulation using a thermal diffusion equation, we determined whether this method could be applied to fatty liver assessment under the condition that the tissue had the thermal relaxation effect caused by blood flow.

  11. Human amnion epithelial cells expressing HLA-G as novel cell-based treatment for liver disease.

    PubMed

    Strom, Stephen C; Gramignoli, Roberto

    2016-09-01

    Despite routine liver transplantation and supporting medical therapies, thousands of patients currently wait for an organ and there is an unmet need for more refined and widely available regenerative strategies to treat liver diseases. Cell transplants attempt to maximize the potential for repair and/or regeneration in liver and other organs. Over 40years of laboratory pre-clinical research and 25years of clinical procedures have shown that certain liver diseases can be treated by the infusion of isolated cells (hepatocyte transplant). However, like organ transplants, hepatocyte transplant suffers from a paucity of tissues useful for cell production. Alternative sources have been investigated, yet with limited success. The tumorigenic potential of pluripotent stem cells together with their primitive level of hepatic differentiation, have limited the use of stem cell populations. Stem cell sources from human placenta, and the amnion tissue in particular are receiving renewed interest in the field of regenerative medicine. Unlike pluripotent stem cells, human amnion epithelial (AE) cells are easily available without ethical or religious concerns; they do not express telomerase and are not immortal or tumorigenic when transplanted. In addition, AE cells have been reported to express genes normally expressed in mature liver, when transplanted into the liver. Moreover, because of the possibility of an immune-privileged status related to their expression of HLA-G, it might be possible to transplant human AE cells without immunosuppression of the recipient. Copyright © 2016. Published by Elsevier Inc.

  12. Unique activation of matrix metalloproteinase-9 within human liver metastasis from colorectal cancer.

    PubMed Central

    Zeng, Z. S.; Guillem, J. G.

    1998-01-01

    Experimental in vitro and animal data support an important role for matrix metalloproteinases (MMPs) in cancer invasion and metastasis via proteolytic degradation of the extracellular matrix (ECM). Our previous data have shown that MMP-9 mRNA is localized to the interface between liver metastasis and normal liver tissue, indicating that MMP-9 may play an important role in liver metastasis formation. In the present study, we analysed the cellular enzymatic expression of MMP-9 in 18 human colorectal cancer (CRC) liver metastasis specimens by enzyme-linked immunosorbent assay (ELISA) and zymography. ELISA analysis reveals that the latent form of MMP-9 is present in both liver metastasis and paired adjacent normal liver tissue. The mean level of the latent form of MMP-9 is 580+/-270 ng per mg total tissue protein (mean+/-s.e.) in liver metastasis vs 220+/-90 in normal liver tissue. However, this difference is not significantly different (P = 0.26). Using gelatin zymography, the 92-kDa band representative of the latent form is present in both liver metastasis and normal liver tissue. However, the 82 kDa band, representative of the active form of MMP-9, was seen only in liver metastasis. This was confirmed by Western blot analysis. Our observation of the unique presence of the active form of MMP-9 within liver metastasis suggests that proMMP-9 activation may be a pivotal event during CRC liver metastasis formation. Images Figure 3 Figure 4 PMID:9703281

  13. Human Liver Transplantation As A Model To Study HCV Pathogenesis

    PubMed Central

    Hughes, Michael G.; Rosen, Hugo R.

    2010-01-01

    Hepatitis C is a leading etiology of liver cancer and cause for liver transplantation. Although new therapies have improved the rates of sustained response, a large proportion of patients (~50%) fail to respond to antiviral treatment, thus remaining at risk for disease progression. While chimpanzees have been used to study HCV biology and treatments, their cost is quite high and their use is strictly regulated; indeed, the NIH no longer supports the breeding of chimpanzees for study. The development of HCV therapies has been hindered by the relative paucity of small animal models to study HCV pathogenesis. This review presents the strengths of the human liver transplant, highlighting the advances derived from this model, including insights into viral kinetics and quasispecies, viral receptor binding and entry, innate and adaptive immunity. Moreover, consideration is made of current and emerging antiviral therapeutic approaches based on translational research results. PMID:19877210

  14. Development of a New Diagnostic System for Human Liver Diseases Based on Conventional Ultrasonic Diagnostic Equipment

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Harada, Akimitsu; Sato, Hiroaki; Maruyama, Yukio; Sato, Sojun

    2001-05-01

    In this paper, the authors present the experimental results of using a quantitative ultrasonic diagnosis technique for human liver diseases using the fractal dimension (FD) of the shape of the power spectra (PS) of RF signals. We have developed an experimental system based on a conventional ultrasonic diagnostic system. As a result, we show that normal livers, fatty livers and liver cirrhosis can be identified using the FD values.

  15. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery.

    PubMed

    Kizawa, Hideki; Nagao, Eri; Shimamura, Mitsuru; Zhang, Guangyuan; Torii, Hitoshi

    2017-07-01

    The liver plays a central role in metabolism. Although many studies have described in vitro liver models for drug discovery, to date, no model has been described that can stably maintain liver function. Here, we used a unique, scaffold-free 3D bio-printing technology to construct a small portion of liver tissue that could stably maintain drug, glucose, and lipid metabolism, in addition to bile acid secretion. This bio-printed normal human liver tissue maintained expression of several kinds of hepatic drug transporters and metabolic enzymes that functioned for several weeks. The bio-printed liver tissue displayed glucose production via cAMP/protein kinase A signaling, which could be suppressed with insulin. Bile acid secretion was also observed from the printed liver tissue, and it accumulated in the culture medium over time. We observed both bile duct and sinusoid-like structures in the bio-printed liver tissue, which suggested that bile acid secretion occurred via a sinusoid-hepatocyte-bile duct route. These results demonstrated that our bio-printed liver tissue was unique, because it exerted diverse liver metabolic functions for several weeks. In future, we expect our bio-printed liver tissue to be applied to developing new models that can be used to improve preclinical predictions of long-term toxicity in humans, generate novel targets for metabolic liver disease, and evaluate biliary excretion in drug development.

  16. Differential genomic effects of six different TiO2 nanomaterials on human liver HepG2 cells

    EPA Science Inventory

    Engineered nanoparticles are reported to cause liver toxicity in vivo. To better assess the mechanism of the in vivo liver toxicity, we used the human hepatocarcinoma cells (HepG2) as a model system. Human HepG2 cells were exposed to 6 TiO2 nanomaterials (with dry primary partic...

  17. In vitro biotransformation of tris(2-butoxyethyl) phosphate (TBOEP) in human liver and serum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Eede, Nele, E-mail: nele.vandeneede@uantwerpen.be; Erratico, Claudio; Exarchou, Vassiliki

    Tris(2-butoxyethyl) phosphate (TBOEP) is a plasticizer present in indoor dust, reaching levels of several micrograms per gram. Such levels could lead to significant daily exposure of adults and children. Currently, no toxicokinetic data are available to estimate TBOEP clearance in humans after uptake and therefore, one objective of this study was to investigate intrinsic clearance of TBOEP by human liver microsome (HLM) and serum enzymes. Another objective was to generate information to identify and prioritize several metabolites of TBOEP for investigation of human exposure by biomonitoring. 1D and 2D-NMR methodologies were successfully applied on a mixture of the metabolites tomore » confirm the structure of 3-HO-TBOEP (bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate) and to tentatively assign structures to 1-HO-TBOEP and 2-HO-TBOEP. HO-TBOEP isomers and bis(2-butoxyethyl) phosphate (BBOEP), bis(2-butoxyethyl) hydroxyethyl phosphate (BBOEHEP) were further monitored by liquid chromatography–tandem mass spectrometry. Rates of formation of BBOEHEP and HO-TBOEP metabolites by liver enzymes were best described by the Michaelis–Menten model. Apparent K{sub m} values for BBOEHEP, 3-HO-TBOEP, and sum of 1- and 2-HO-TBOEP isomer formation were 152, 197 and 148 μM, respectively. Apparent V{sub max} values for the formation of BBOEHEP, 3-HO-TBOEP, and the sum of 1- and 2-HO-TBOEP isomers were 2560, 643, and 254 pmol/min/mg protein, respectively. No detectable formation of BBOEP occurred with liver or serum enzymes. Our findings indicate that intrinsic clearance of TBOEP is mainly catalyzed by oxidative enzymes in the liver and that its major in vitro metabolite is BBOEHEP. These findings can be applied in human biomonitoring studies and risk assessment. - Highlights: • First steps in the elucidation of TBOEP toxicokinetics • Quantification of TBOEP metabolites in human serum and liver microsomes • No detectable formation of BBOEP occurred with liver or

  18. Influence of Sulforaphane Metabolites on Activities of Human Drug-Metabolizing Cytochrome P450 and Determination of Sulforaphane in Human Liver Cells.

    PubMed

    Vanduchova, Alena; Tomankova, Veronika; Anzenbacher, Pavel; Anzenbacherova, Eva

    2016-12-01

    The influence of metabolites of sulforaphane, natural compounds present in broccoli (Brassica oleracea var. botrytis italica) and in other cruciferous vegetables, on drug-metabolizing cytochrome P450 (CYP) enzymes in human liver microsomes and possible entry of sulforaphane into human hepatic cells were investigated. Metabolites studied are compounds derived from sulforaphane by the mercapturic acid pathway (conjugation with glutathione and by following reactions), namely sulforaphane glutathione and sulforaphane cysteine conjugates and sulforaphane-N-acetylcysteine. Their possible effect on four drug-metabolizing CYP enzymes, CYP3A4 (midazolam 1'-hydroxylation), CYP2D6 (bufuralol 1'-hydroxylation), CYP1A2 (7-ethoxyresorufin O-deethylation), and CYP2B6 (7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation), was tested. Inhibition of four prototypical CYP activities by sulforaphane metabolites was studied in pooled human liver microsomes. Sulforaphane metabolites did not considerably affect biological function of drug-metabolizing CYPs in human liver microsomes except for CYP2D6, which was found to be inhibited down to 73-78% of the original activity. Analysis of the entry of sulforaphane into human hepatocytes was done by cell disruption by sonication, methylene chloride extraction, and modified high-performance liquid chromatography method. The results have shown penetration of sulforaphane into the human hepatic cells.

  19. Gene Expression Changes Induced by PPAR Gamma Agonists in Animal and Human Liver

    PubMed Central

    Rogue, Alexandra; Spire, Catherine; Brun, Manuel; Claude, Nancy; Guillouzo, André

    2010-01-01

    Thiazolidinediones are a class of Peroxisome Proliferator Activated Receptor γ (PPARγ) agonists that reduce insulin resistance in type 2 diabetic patients. Although no detectable hepatic toxicity has been evidenced in animal studies during preclinical trials, these molecules have nevertheless induced hepatic adverse effects in some treated patients. The mechanism(s) of hepatotoxicity remains equivocal. Several studies have been conducted using PCR analysis and microarray technology to identify possible target genes and here we review the data obtained from various in vivo and in vitro experimental models. Although PPARγ is expressed at a much lower level in liver than in adipose tissue, PPARγ agonists exert various PPARγ-dependent effects in liver in addition to PPARγ-independent effects. Differences in effects are dependent on the choice of agonist and experimental conditions in rodent animal studies and in rodent and human liver cell cultures. These effects are much more pronounced in obese and diabetic liver. Moreover, our own recent studies have shown major interindividual variability in the response of primary human hepatocyte populations to troglitazone treatment, supporting the occurrence of hepatotoxicity in only some individuals. PMID:20981297

  20. Isolation of GMP Grade Human Hepatocytes from Remnant Liver Tissue of Living Donor Liver Transplantation.

    PubMed

    Enosawa, Shin

    2017-01-01

    For the purpose of clinical research of hepatocyte transplantation, procedures for isolation, cryopreservation, thawing, and functional assessment of hepatocytes are described. Although demands for human hepatocytes are increasing in not only cell therapy but also drug development, it is highly difficult to obtain good lots of hepatocytes from human liver tissue. This chapter describes essential issues such as alleviation of warm ischemia, prevention of shear stress, optimization of cryopreservation, and functional assessment, along with securement of quality. All procedures described here are compliant with good manufacturing procedure (GMP) in cell processing facility, approved by the act on measures to ensure safety of regenerative medicine and ethical regulations in Japan.

  1. A human cytochrome P-450 is recognized by anti-liver/kidney microsome antibodies in autoimmune chronic hepatitis.

    PubMed

    Kiffel, L; Loeper, J; Homberg, J C; Leroux, J P

    1989-02-28

    1- Anti-liver/kidney microsome autoantibodies type 1 (anti-LKM1), observed in some children with chronic active hepatitis, were used to isolate their antigen in human liver microsomes. A protein, called P-LKM1 was thus purified. This protein was recognized by a rabbit antiserum directed against the related human cytochromes P-450 bufI and P-450 bufII. 2- A human liver microsomal protein immunoprecipitated with anti-LKM1 sera was also recognized by anti cytochromes P-450 bufI/II antibodies. 3- Anti-LKM1 antibodies potently inhibited microsomal bufuralol 1'-hydroxylation. These results displayed the possible identity between cytochrome P-450 bufI/II and LKM1 antigen.

  2. Dynamic PET of human liver inflammation: impact of kinetic modeling with optimization-derived dual-blood input function.

    PubMed

    Wang, Guobao; Corwin, Michael T; Olson, Kristin A; Badawi, Ramsey D; Sarkar, Souvik

    2018-05-30

    The hallmark of nonalcoholic steatohepatitis is hepatocellular inflammation and injury in the setting of hepatic steatosis. Recent work has indicated that dynamic 18F-FDG PET with kinetic modeling has the potential to assess hepatic inflammation noninvasively, while static FDG-PET did not show a promise. Because the liver has dual blood supplies, kinetic modeling of dynamic liver PET data is challenging in human studies. The objective of this study is to evaluate and identify a dual-input kinetic modeling approach for dynamic FDG-PET of human liver inflammation. Fourteen human patients with nonalcoholic fatty liver disease were included in the study. Each patient underwent one-hour dynamic FDG-PET/CT scan and had liver biopsy within six weeks. Three models were tested for kinetic analysis: traditional two-tissue compartmental model with an image-derived single-blood input function (SBIF), model with population-based dual-blood input function (DBIF), and modified model with optimization-derived DBIF through a joint estimation framework. The three models were compared using Akaike information criterion (AIC), F test and histopathologic inflammation reference. The results showed that the optimization-derived DBIF model improved the fitting of liver time activity curves and achieved lower AIC values and higher F values than the SBIF and population-based DBIF models in all patients. The optimization-derived model significantly increased FDG K1 estimates by 101% and 27% as compared with traditional SBIF and population-based DBIF. K1 by the optimization-derived model was significantly associated with histopathologic grades of liver inflammation while the other two models did not provide a statistical significance. In conclusion, modeling of DBIF is critical for kinetic analysis of dynamic liver FDG-PET data in human studies. The optimization-derived DBIF model is more appropriate than SBIF and population-based DBIF for dynamic FDG-PET of liver inflammation. © 2018

  3. Liver natural killer cells: subsets and roles in liver immunity

    PubMed Central

    Peng, Hui; Wisse, Eddie; Tian, Zhigang

    2016-01-01

    The liver represents a frontline immune organ that is constantly exposed to a variety of gut-derived antigens as a result of its unique location and blood supply. With a predominant role in innate immunity, the liver is enriched with various innate immune cells, among which natural killer (NK) cells play important roles in host defense and in maintaining immune balance. Hepatic NK cells were first described as ‘pit cells' in the rat liver in the 1970s. Recent studies of NK cells in mouse and human livers have shown that two distinct NK cell subsets, liver-resident NK cells and conventional NK (cNK) cells, are present in this organ. Here, we review liver NK cell subsets in different species, revisiting rat hepatic pit cells and highlighting recent progress related to resident NK cells in mouse and human livers, and also discuss the dual roles of NK cells in liver immunity. PMID:26639736

  4. Oxidative metabolism of BDE-99 by human liver microsomes: predominant role of CYP2B6.

    PubMed

    Erratico, Claudio A; Szeitz, András; Bandiera, Stelvio M

    2012-10-01

    Hydroxylated polybrominated diphenyl ethers (PBDEs) have been found in human serum, suggesting that they are formed by in vivo oxidative metabolism of PBDEs. However, the biotransformation of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), a major PBDE detected in human tissue and environmental samples, is poorly understood. In the present study, the oxidative metabolism of BDE-99 was assessed using pooled and single-donor human liver microsomes, a panel of human recombinant cytochrome P450 (CYP) enzymes, and CYP-specific antibodies. Hydroxylated metabolites were quantified using a liquid chromatography/tandem mass spectrometry-based method. In total, 10 hydroxylated metabolites of BDE-99 were produced by human liver microsomes. Six metabolites were identified as 2,4,5-tribromophenol (2,4,5-TBP), 4-OH-BDE-90, 5'-OH-BDE-99, 6'-OH-BDE-99, 4'-OH-BDE-101, and 2-OH-BDE-123 using authentic standards. Three monohydroxy- and one dihydroxy-pentabrominated metabolites were unidentified. Rates of formation of the three major metabolites (2,4,5-TBP, 5'-OH-BDE-99, and 4'-OH-BDE-101) by human liver microsomes ranged from 24.4 to 44.8 pmol/min/mg protein. Additional experiments demonstrated that the dihydroxylated metabolite was a primary metabolite of BDE-99 and was not produced by hydroxylation of a monohydroxy metabolite. Among the panel of recombinant CYP enzymes tested, formation of all 10 hydroxylated metabolites was catalyzed solely by CYP2B6. A combined approach using antibodies to CYP2B6 and single-donor liver microsomes expressing a wide range of CYP2B6 levels confirmed that CYP2B6 was responsible for the biotransformation of BDE-99. Collectively, the results show that the oxidative metabolism of BDE-99 by human liver microsomes is catalyzed solely by CYP2B6 and is an important determinant of the toxicity and bioaccumulation of BDE-99 in humans.

  5. [Detection of human parvovirus B19, human bocavirus and human parvovirus 4 infections in blood samples among 95 patients with liver disease in Nanjing by nested PCR].

    PubMed

    Tong, Rui; Zhou, Wei-Min; Liu, Xi-Jun; Wang, Yue; Lou, Yong-Liang; Tan, Wen-Jie

    2013-04-01

    To analyze the infection of human parvovirus B19, human bocavirus (HBoV) and human parvovirus 4 (PARV4) in blood samples among patients with liver disease in Nanjing by molecular detection. Nested PCR assays were designed and validated to detect B19, HBoV and PARV4, respectively. The assays were used to screen three parvoviruses in blood samples from 95 patients with different liver disease in Nanjing. The parvovirus infection was analyzed statistically. The detection limits were 10 copies of genomic DNA equivalents per reaction for each assays and the good specificity were observed. The frequency of B19 and HBoV were 2/95 (2.1%) and 9/95 (9.5%) in blood samples respectively. No PARV4 was detected. HBoV was detected in 3/5 patients with drug-induced hepatitis. Both B19 and HBoV infection were detected in blood from patients with liver disease.

  6. Specificity and rate of human and mouse liver and plasma phosphatidylcholine synthesis analyzed in vivo[S

    PubMed Central

    Pynn, Christopher J.; Henderson, Neil G.; Clark, Howard; Koster, Grielof; Bernhard, Wolfgang; Postle, Anthony D.

    2011-01-01

    Phosphatidylcholine (PC) synthesis by the direct cytidine diphosphate choline (CDP-choline) pathway in rat liver generates predominantly mono- and di-unsaturated molecular species, while polyunsaturated PC species are synthesized largely by the phosphatidylethanolamine-N-methyltransferase (PEMT) pathway. Although altered PC synthesis has been suggested to contribute to development of hepatocarcinoma and nonalcoholic steatohepatitis, analysis of the specificity of hepatic PC metabolism in human patients has been limited by the lack of sensitive and safe methodologies. Here we incorporated a deuterated methyl-d9-labled choline chloride, to quantify biosynthesis fluxes through both of the PC synthetic pathways in vivo in human volunteers and compared these fluxes with those in mice. Rates and molecular specificities of label incorporated into mouse liver and plasma PC were very similar and strongly suggest that label incorporation into human plasma PC can provide a direct measure of hepatic PC synthesis in human subjects. Importantly, we demonstrate for the first time that the PEMT pathway in human liver is selective for polyunsaturated PC species, especially those containing docosahexaenoic acid. Finally, we present a multiple isotopomer distribution analysis approach, based on transfer of deuterated methyl groups to S-adenosylmethionine and subsequent sequential methylations of PE, to quantify absolute flux rates through the PEMT pathway that are applicable to studies of liver dysfunction in clinical studies. PMID:21068006

  7. Identification and characterization of metabolites of ASP015K, a novel oral Janus kinase inhibitor, in rats, chimeric mice with humanized liver, and humans.

    PubMed

    Nakada, Naoyuki; Oda, Kazuo

    2015-01-01

    1. Here, we elucidated the structure of metabolites of novel oral Janus kinase inhibitor ASP015K in rats and humans and evaluated the predictability of human metabolites using chimeric mice with humanized liver (PXB mice). 2. Rat biological samples collected after oral dosing of (14)C-labelled ASP015K were examined using a liquid chromatography-radiometric detector and mass spectrometer (LC-RAD/MS). The molecular weight of metabolites in human and the liver chimeric mouse biological samples collected after oral dosing of non-labelled ASP015K was also investigated via LC-MS. Metabolites were also isolated from rat bile samples and analyzed using nuclear magnetic resonance. 3. Metabolic pathways of ASP015K in rats and humans were found to be glucuronide conjugation, methyl conjugation, sulfate conjugation, glutathione conjugation, hydroxylation of the adamantane ring and N-oxidation of the 1H-pyrrolo[2,3-b]pyridine ring. The main metabolite of ASP015K in rats was the glucuronide conjugate, while the main metabolite in humans was the sulfate conjugate. Given that human metabolites were produced by human hepatocytes in chimeric mice with humanized liver, this human model mouse was believed to be useful in predicting the human metabolic profile of various drug candidates.

  8. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems.

    PubMed

    Lee-Montiel, Felipe T; George, Subin M; Gough, Albert H; Sharma, Anup D; Wu, Juanfang; DeBiasio, Richard; Vernetti, Lawrence A; Taylor, D Lansing

    2017-10-01

    This article describes our next generation human Liver Acinus MicroPhysiology System (LAMPS). The key demonstration of this study was that Zone 1 and Zone 3 microenvironments can be established by controlling the oxygen tension in individual devices over the range of ca. 3 to 13%. The oxygen tension was computationally modeled using input on the microfluidic device dimensions, numbers of cells, oxygen consumption rates of hepatocytes, the diffusion coefficients of oxygen in different materials and the flow rate of media in the MicroPhysiology System (MPS). In addition, the oxygen tension was measured using a ratiometric imaging method with the oxygen sensitive dye, Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate (RTDP) and the oxygen insensitive dye, Alexa 488. The Zone 1 biased functions of oxidative phosphorylation, albumin and urea secretion and Zone 3 biased functions of glycolysis, α1AT secretion, Cyp2E1 expression and acetaminophen toxicity were demonstrated in the respective Zone 1 and Zone 3 MicroPhysiology System. Further improvements in the Liver Acinus MicroPhysiology System included improved performance of selected nonparenchymal cells, the inclusion of a porcine liver extracellular matrix to model the Space of Disse, as well as an improved media to support both hepatocytes and non-parenchymal cells. In its current form, the Liver Acinus MicroPhysiology System is most amenable to low to medium throughput, acute through chronic studies, including liver disease models, prioritizing compounds for preclinical studies, optimizing chemistry in structure activity relationship (SAR) projects, as well as in rising dose studies for initial dose ranging. Impact statement Oxygen zonation is a critical aspect of liver functions. A human microphysiology system is needed to investigate the impact of zonation on a wide range of liver functions that can be experimentally manipulated. Because oxygen zonation has such diverse physiological effects in the liver, we

  9. IL13Rα2 expression identifies tissue-resident IL-22 producing PLZF+ innate T cells in the human liver.

    PubMed

    Paquin-Proulx, Dominic; Greenspun, Benjamin C; Pasquet, Lise; Strunz, Benedikt; Aleman, Soo; Falconer, Karolin; Terabe, Masaki; Berzofsky, Jay A; Sandberg, Johan K; Melum, Espen; Nixon, Douglas F; Björkström, Niklas K

    2018-04-20

    Innate lymphocytes are selectively enriched in the liver where they have important roles in liver immunology. Murine studies have shown that type I NKT cells can promote liver inflammation whereas type II NKT cells have an anti-inflammatory role. In humans, type II NKT cells were found to accumulate in the gut during inflammation and IL13Rα2 was proposed as a marker for these cells. In the human liver, less is known about type I and II NKT cells. Here, we studied the phenotype and function of human liver T cells expressing IL13Rα2. We found that IL13Rα2 was expressed by around 1% of liver resident memory T cells but not on circulating T cells. In support of their innate-like T cell character, the IL13Rα2 + T cells had higher expression of PLZF compared to IL13Rα2 - T cells and possessed the capacity to produce IL-22. However, only a minority of human liver sulfatide-reactive type II NKT cells expressed IL13Rα2. Collectively, these findings suggest that IL13Rα2 identifies tissue-resident intrahepatic T cells with innate characteristics and the capacity to produce IL-22. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Intrahepatic venous anastomoses with a focus on the middle hepatic vein anastomoses in normal human livers: anatomical study on liver corrosion casts.

    PubMed

    Hribernik, Marija; Trotovšek, Blaž

    2014-04-01

    The aim of this study is to present the anatomical data about intrahepatic venous anastomoses found in normal human livers. The focus is on the middle hepatic vein (MHV) anastomoses, because their existence or non-existence could be of crucial importance in tumour resections as well as in split or living donor liver transplantations. The frequency of livers with intrahepatic venous anastomoses was determined on 164 corrosion casts and the diameter of each anastomosis was measured. Additionally, the type of connection and the position within the liver (liver segment) was determined for each MHV anastomosis. Intrahepatic venous anastomoses were found in 46 % (75/164), whereas MHV anastomoses were found in 28 % (44/164) of liver casts. Most commonly (39/44), MHV had anastomotic connections with the right hepatic vein (RHV), and also with the inferior RHV, the left hepatic vein and the short subhepatic vein. In more than three quarters of liver casts, MHV-RHV anastomoses were found in liver segment 8; in 45 % of cases, there was more than one anastomosis in this liver segment. The diameter of MHV-RHV anastomoses found in segment 8 was ≥1 mm in 90.6 % of cases. As MHV anastomoses were present in more than a quarter of all examined liver casts, we believe that detailed anatomical data presented in this article, together with up to date radiologic technics which enable even 3D reconstruction of venous anastomoses in the liver, could contribute to the clinician's decisions when planning surgical procedures.

  11. Activation of human liver 3 alpha-hydroxysteroid dehydrogenase by sulphobromophthalein.

    PubMed Central

    Matsuura, K; Tamada, Y; Deyashiki, Y; Miyabe, Y; Nakanishi, M; Ohya, I; Hara, A

    1996-01-01

    Human liver contains at least two isoenzymes (DD2 and DD4) of 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. The NADP(H)-linked oxidoreductase activities of DD4 were activated more than 4-fold by sulphobromophthalein at concentrations above 20 microM and under physiological pH conditions. Sulphobromophthalein did not stimulate the activities of DD2 and human liver aldehyde reductase, which are functionally and/or structurally related to DD4. No stimulatory effect on the activity of DD4 was observed with other organic anions such as Indocyanine Green, haematin and Rose Bengal. The binding of sulphobromophthalein to DD4 was instantaneous and reversible, and was detected by fluorescence and ultrafiltration assays. The activation by sulphobromophthalein decreased the activation energy in the dehydrogenation reaction for the enzyme, and increased both kcat, and Km values for the coenzymes and substrates. Kinetic analyses with respect to concentrations of NADP+ and (S)-(+)-indan-1-ol indicated that sulphobromophthalein was a non-essential activator of mixed type showing a dissociation constant of 2.6 microM. Thus, the human 3 alpha-hydroxysteroid dehydrogenase isoenzyme has a binding site specific to sulphobromophthalein, and the hepatic metabolism mediated by this isoenzyme may be influenced when this drug is administered. PMID:8546681

  12. The isolation of primary hepatocytes from human tissue: optimising the use of small non-encapsulated liver resection surplus.

    PubMed

    Green, Charlotte J; Charlton, Catriona A; Wang, Lai-Mun; Silva, Michael; Morten, Karl J; Hodson, Leanne

    2017-12-01

    Two-step perfusion is considered the gold standard method for isolating hepatocytes from human liver tissue. As perfusion may require a large tissue specimen, which is encapsulated and has accessible vessels for cannulation, only a limited number of tissue samples may be suitable. Therefore, the aim of this work was to develop an alternative method to isolate hepatocytes from non-encapsulated and small samples of human liver tissue. Healthy tissue from 44 human liver resections were graded for steatosis and tissue weights between 7.8 and 600 g were used for hepatocyte isolations. Tissue was diced and underwent a two-step digestion (EDTA and collagenase). Red cell lysis buffer was used to prevent red blood cell contamination and toxicity. Isolated hepatocyte viability was determined by trypan blue exclusion. Western blot and biochemical analyses were undertaken to ascertain cellular phenotype and function. Liver tissue that weighed ≥50 g yielded significantly higher (P < 0.01) cell viability than tissue <50 g. Viable cells secreted urea and displayed the phenotypic hepatocyte markers albumin and cytochrome P450. Presence of steatosis in liver tissue or intra-hepatocellular triglyceride content had no effect on cell viability. This methodology allows for the isolation of viable primary human hepatocytes from small amounts of "healthy" resected liver tissue which are not suitable for perfusion. This work provides the opportunity to increase the utilisation of resection surplus tissue, and may ultimately lead to an increased number of in vitro cellular studies being undertaken using the gold-standard model of human primary hepatocytes.

  13. Sodium taurocholate cotransporting polypeptide inhibition efficiently blocks hepatitis B virus spread in mice with a humanized liver

    PubMed Central

    Nakabori, Tasuku; Hikita, Hayato; Murai, Kazuhiro; Nozaki, Yasutoshi; Kai, Yugo; Makino, Yuki; Saito, Yoshinobu; Tanaka, Satoshi; Wada, Hiroshi; Eguchi, Hidetoshi; Takahashi, Takeshi; Suemizu, Hiroshi; Sakamori, Ryotaro; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo

    2016-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) is a recently discovered hepatitis B virus (HBV) receptor. In the present study, we used TK-NOG mice with a humanized liver to examine the impact of endogenous NTCP expression on HBV infection. Upon inoculation with HBV, these mice exhibited clear viremia in 2 weeks, and serum HBV DNA levels gradually increased. The frequency of HBsAg-positive hepatocytes in the liver was 5.1 ± 0.6% at 2 weeks and increased with increasing HBV DNA levels, reaching 92.9 ± 2.8% at 10 to 12 weeks. In vivo siRNA-mediated NTCP knockdown before and after HBV inoculation significantly suppressed the levels of HBV replication and the frequency of HBsAg-positive hepatocytes at 2 weeks, whereas NTCP knockdown 13 weeks after infection did not affect these parameters. Similar to the humanized mouse livers in the early phase of HBV infection, human liver samples from chronic hepatitis B patients, especially those treated with nucleos(t)ide analogues, contained a considerable number of hepatocytes that were negative for the anti-HBs antibody. In conclusion, NTCP inhibition prevents the spread of HBV-infected hepatocytes in mice with a humanized liver. NTCP-targeted therapy has potential for regulating HBV infection in patients with chronic hepatitis B. PMID:27278060

  14. Liver-specific gene expression in cultured human hematopoietic stem cells.

    PubMed

    Fiegel, Henning C; Lioznov, Michael V; Cortes-Dericks, Lourdes; Lange, Claudia; Kluth, Dietrich; Fehse, Boris; Zander, Axel R

    2003-01-01

    Hematopoietic and hepatic stem cells share characteristic markers such as CD34, c-kit, and Thy1. Based on the recent observations that hepatocytes may originate from bone marrow, we investigated the potential of CD34(+) bone marrow cells to differentiate into hepatocytic cells in vitro. CD34(+) and CD34(-) human bone marrow cells were separated by magnetic cell sorting. Cells were cultured on a collagen matrix in a defined medium containing hepatocyte growth factor. Cell count and size were measured by flow cytometry, and reverse transcription polymerase chain reaction was carried out for the liver-specific markers CK-19 and albumin. During cell culture, CD34(+) cells showed an increasing cell number and proliferative activity as assessed by Ki-67 staining. Under the specified culture conditions, CD34(+) cells expressed albumin RNA and CK-19 RNA after 28 days, whereas CD34(-) cells did not show liver-specific gene expression. The results indicate that CD34(+) adult human bone marrow stem cells can differentiate into hepatocytic cells in vitro.

  15. [Effect of taspine derivatives on human liver cancer SMMC7721].

    PubMed

    Zhang, Yan-min; Wang, Nan; Dai, Bing-ling; He, Lang-chong

    2011-07-01

    To analyse the inhibition effect of taspine derivatives on human Liver cancer SMMC7721 cell and its mechanism. The effects of five taspine derivatives on SMMC7721 cell growth were determined by MTT. The flow cytometry was used to determine the cell cycle. The effects of Tas-D1 on the EGF and VEGF in SMMC7721 cell were determined by ELISA. The mRNA level of EGF and VEGF in SMMC7721 cell was determined by RT-PCR. The MTT assay demonstrated that the taspine derivative Tas-D1 significantly inhibited the growth of SMMC7721 cell in a dose-dependent manner. Cell was stopped at S phase by Tas-D1. Tas-D1 inhibited the expression of EGF and VEGF and their mRNA in a dose-dependent manner (P<0.05). The taspine derivative Tas-D1 can inhibit the growth of human Liver cancer SMMC7721 cell and change cell cycle, which may be related to the inhibition of EGF and VEGF expression.

  16. Sinusoidal obstruction syndrome (SOS): A light and electron microscopy study in human liver.

    PubMed

    Vreuls, C P H; Driessen, A; Olde Damink, S W M; Koek, G H; Duimel, H; van den Broek, M A J; Dejong, C H C; Braet, F; Wisse, E

    2016-05-01

    Oxaliplatin is an important chemotherapeutic agent, used in the treatment of hepatic colorectal metastases, and known to induce the sinusoidal obstruction syndrome (SOS). Pathophysiological knowledge concerning SOS is based on a rat model. Therefore, the aim was to perform a comprehensive study of the features of human SOS, using both light microscopy (LM) and electron microscopy (EM). Included were all patients of whom wedge liver biopsies were collected during a partial hepatectomy for colorectal liver metastases, in a 4-year period. The wedge biopsy were perfusion fixated and processed for LM and EM. The SOS lesions were selected by LM and details were studied using EM. Material was available of 30 patients, of whom 28 patients received neo-adjuvant oxaliplatin. Eighteen (64%) of the 28 patients showed SOS lesions, based on microscopy. The lesions consisted of sinusoidal endothelial cell detachment from the space of Disse on EM. In the enlarged space of Disse a variable amount of erythrocytes were located. Sinusoidal endothelial cell detachment was present in human SOS, accompanied by enlargement of the space of Disse and erythrocytes in this area. These findings, originally described in a rat model, were now for the first time confirmed in human livers under clinically relevant settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. CBR1 rs9024 genotype status impacts the bioactivation of loxoprofen in human liver.

    PubMed

    Lombraña, Adolfo Quiñones; Li, Nasi; Del Solar, Virginia; Ekin Atilla-Gokcumen, G; Blanco, Javier G

    2018-05-31

    Loxoprofen is an anti-inflammatory drug that requires bioactivation into the trans-OH metabolite to exert pharmacological activity. Evidence suggests that carbonyl reductase 1 (CBR1) is important during the bioactivation of loxoprofen. Here, we examined the impact of the functional single nucleotide polymorphism CBR1 rs9024 on the bioactivation of loxoprofen in a collection of human liver samples. The synthesis ratios of trans-OH loxoprofen/cis-OH loxoprofen were 33% higher in liver cytosols from donors homozygous for the CBR1 rs9024 G allele in comparison to the ratios in samples from donors with heterozygous GA genotypes. Complementary studies examined the impact of CBR1 rs9024 on the bioactivation of loxoprofen in lymphoblastoid cell lines. CBR1 rs9024 genotype status impacts the synthesis of the bioactive trans-OH metabolite of loxoprofen in human liver. This article is protected by copyright. All rights reserved.

  18. Development of a New Conditionally Immortalized Human Liver Sinusoidal Endothelial Cells.

    PubMed

    Zhu, Meiyan; Koibuchi, Akira; Ide, Hideyuki; Morio, Hanae; Shibuya, Minaka; Kamiichi, Atsuko; Tsubota, Akihito; Anzai, Naohiko; Akita, Hidetaka; Chiba, Kan; Furihata, Tomomi

    2018-01-01

    Liver sinusoidal endothelial cells (LSECs), which are specialized endothelial cells that line liver sinusoids, have been reported to participate in a variety of liver functions, such as blood macromolecule clearance and factor VIII production. In addition, LSECs play crucial roles in liver regeneration following acute liver injury, as well as the development and progression of liver diseases or drug-induced hepatotoxicity. However, the molecular mechanisms underlying their roles remain mostly unknown. Therefore, in order to contribute to the clarification of those mechanisms, herein we report on the development of a new immortalized human LSEC (HLSEC) line. To produce this cell line, two immortalized genes were introduced into the primary HLSECs, which eventually resulted in the establishment of the HLSEC/conditionally immortalized, clone-J (HLSEC/ciJ). Consistent with the two-immortalized gene expression, HLSEC/ciJ showed excellent proliferation activity. Additionally, the results of gene expression analyses showed that several LSEC (as well as pan-endothelial) marker mRNAs and proteins were clearly expressed in HLSEC/ciJ. Furthermore, we found that adherence junction proteins were localized at the cell border in the HLSEC/ciJ monolayer, and that the cells exhibited a tube-like structure formation property. Taken together, the results obtained thus far indicate that we have successfully immortalized HLSECs, resulting in creation of HLSEC/ciJ, a cell line that possesses infinite proliferation ability while retaining possession of at least some HLSEC features. We believe that the HLSEC/ciJ have the potential to provide a valuable and unlimited alternative source of HLSECs for use in liver/LSEC physiology/pathophysiology, pharmacology, and toxicology studies.

  19. Volumetric Growth of the Liver in the Human Fetus: An Anatomical, Hydrostatic, and Statistical Study.

    PubMed

    Szpinda, Michał; Paruszewska-Achtel, Monika; Woźniak, Alina; Mila-Kierzenkowska, Celestyna; Elminowska-Wenda, Gabriela; Dombek, Małgorzata; Szpinda, Anna; Badura, Mateusz

    2015-01-01

    Using anatomical, hydrostatic, and statistical methods, liver volumes were assessed in 69 human fetuses of both sexes aged 18-30 weeks. No sex differences were found. The median of liver volume achieved by hydrostatic measurements increased from 6.57 cm(3) at 18-21 weeks through 14.36 cm(3) at 22-25 weeks to 20.77 cm(3) at 26-30 weeks, according to the following regression: y = -26.95 + 1.74 × age ± Z × (-3.15 + 0.27 × age). The median of liver volume calculated indirectly according to the formula liver volume = 0.55 × liver length × liver transverse diameter × liver sagittal diameter increased from 12.41 cm(3) at 18-21 weeks through 28.21 cm(3) at 22-25 weeks to 49.69 cm(3) at 26-30 weeks. There was a strong relationship (r = 0.91, p < 0.001) between the liver volumes achieved by hydrostatic (x) and indirect (y) methods, expressed by y = -0.05 + 2.16x ± 7.26. The liver volume should be calculated as follows liver volume = 0.26 × liver length × liver transverse diameter × liver sagittal diameter. The age-specific liver volumes are of great relevance in the evaluation of the normal hepatic growth and the early diagnosis of fetal micro- and macrosomias.

  20. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  1. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion.

    PubMed

    Laing, Richard W; Bhogal, Ricky H; Wallace, Lorraine; Boteon, Yuri; Neil, Desley A H; Smith, Amanda; Stephenson, Barney T F; Schlegel, Andrea; Hübscher, Stefan G; Mirza, Darius F; Afford, Simon C; Mergental, Hynek

    2017-11-01

    Normothermic machine perfusion of the liver (NMP-L) is a novel technique that preserves liver grafts under near-physiological conditions while maintaining their normal metabolic activity. This process requires an adequate oxygen supply, typically delivered by packed red blood cells (RBC). We present the first experience using an acellular hemoglobin-based oxygen carrier (HBOC) Hemopure in a human model of NMP-L. Five discarded high-risk human livers were perfused with HBOC-based perfusion fluid and matched to 5 RBC-perfused livers. Perfusion parameters, oxygen extraction, metabolic activity, and histological features were compared during 6 hours of NMP-L. The cytotoxicity of Hemopure was also tested on human hepatic primary cell line cultures using an in vitro model of ischemia reperfusion injury. The vascular flow parameters and the perfusate lactate clearance were similar in both groups. The HBOC-perfused livers extracted more oxygen than those perfused with RBCs (O2 extraction ratio 13.75 vs 9.43 % ×10 per gram of tissue, P = 0.001). In vitro exposure to Hemopure did not alter intracellular levels of reactive oxygen species, and there was no increase in apoptosis or necrosis observed in any of the tested cell lines. Histological findings were comparable between groups. There was no evidence of histological damage caused by Hemopure. Hemopure can be used as an alternative oxygen carrier to packed red cells in NMP-L perfusion fluid.

  2. Trapping of cis-2-butene-1,4-dial to measure furan metabolism in human liver microsomes by cytochrome P450 enzymes.

    PubMed

    Gates, Leah A; Lu, Ding; Peterson, Lisa A

    2012-03-01

    Furan is a liver toxicant and carcinogen in rodents. It is classified as a possible human carcinogen, but the human health effects of furan exposure remain unknown. The oxidation of furan by cytochrome P450 (P450) enzymes is necessary for furan toxicity. The product of this reaction is the reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). To determine whether human liver microsomes metabolize furan to BDA, a liquid chromatography/tandem mass spectrometry method was developed to detect and quantify BDA by trapping this reactive metabolite with N-acetyl-l-cysteine (NAC) and N-acetyl-l-lysine (NAL). Reaction of NAC and NAL with BDA generates N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine (NAC-BDA-NAL). Formation of NAC-BDA-NAL was quantified in 21 different human liver microsomal preparations. The levels of metabolism were comparable to that observed in F-344 rat and B6C3F1 mouse liver microsomes, two species known to be sensitive to furan-induced toxicity. Studies with recombinant human liver P450s indicated that CYP2E1 is the most active human liver furan oxidase. The activity of CYP2E1 as measured by p-nitrophenol hydroxylase activity was correlated to the extent of NAC-BDA-NAL formation in human liver microsomes. The formation of NAC-BDA-NAL was blocked by CYP2E1 inhibitors but not other P450 inhibitors. These results suggest that humans are capable of oxidizing furan to its toxic metabolite, BDA, at rates comparable to those of species sensitive to furan exposure. Therefore, humans may be susceptible to furan's toxic effects.

  3. Trapping of cis-2-Butene-1,4-dial to Measure Furan Metabolism in Human Liver Microsomes by Cytochrome P450 Enzymes

    PubMed Central

    Gates, Leah A.; Lu, Ding

    2012-01-01

    Furan is a liver toxicant and carcinogen in rodents. It is classified as a possible human carcinogen, but the human health effects of furan exposure remain unknown. The oxidation of furan by cytochrome P450 (P450) enzymes is necessary for furan toxicity. The product of this reaction is the reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). To determine whether human liver microsomes metabolize furan to BDA, a liquid chromatography/tandem mass spectrometry method was developed to detect and quantify BDA by trapping this reactive metabolite with N-acetyl-l-cysteine (NAC) and N-acetyl-l-lysine (NAL). Reaction of NAC and NAL with BDA generates N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine (NAC-BDA-NAL). Formation of NAC-BDA-NAL was quantified in 21 different human liver microsomal preparations. The levels of metabolism were comparable to that observed in F-344 rat and B6C3F1 mouse liver microsomes, two species known to be sensitive to furan-induced toxicity. Studies with recombinant human liver P450s indicated that CYP2E1 is the most active human liver furan oxidase. The activity of CYP2E1 as measured by p-nitrophenol hydroxylase activity was correlated to the extent of NAC-BDA-NAL formation in human liver microsomes. The formation of NAC-BDA-NAL was blocked by CYP2E1 inhibitors but not other P450 inhibitors. These results suggest that humans are capable of oxidizing furan to its toxic metabolite, BDA, at rates comparable to those of species sensitive to furan exposure. Therefore, humans may be susceptible to furan's toxic effects. PMID:22187484

  4. PEDIATRIC LIVER TRANSPLANTATION WITH EX-SITU LIVER TRANSECTION AND THE APPLICATION OF THE HUMAN FIBRINOGEN AND THROMBIN SPONGE IN THE WOUND AREA.

    PubMed

    Vicentine, Fernando Pompeu Piza; Gonzalez, Adriano Miziara; Azevedo, Ramiro Anthero de; Benini, Barbara Burza; Linhares, Marcelo Moura; Lopes-Filho, Gaspar de Jesus; Martins, Jose Luiz; Salzedas-Netto, Alcides Augusto

    2016-01-01

    Surgical strategy to increase the number of liver transplants in the pediatric population is the ex-situ liver transection (reduction or split). However, it is associated with complications such as hemorrhage and leaks. The human fibrinogen and thrombin sponge is useful for improving hemostasis in liver surgery. Compare pediatric liver transplants with ex-situ liver transection (reduction or split) with or without the human fibrinogen and thrombin sponge. Was performed a prospective analysis of 21 patients submitted to liver transplantation with ex-situ liver transection with the application of the human fibrinogen and thrombin sponge in the wound area (group A) and retrospective analysis of 59 patients without the sponge (group B). The characteristics of recipients and donors were similar. There were fewer reoperations due to bleeding in the wound area in group A (14.2%) compared to group B (41.7%, p=0.029). There was no difference in relation to the biliary leak (group A: 17.6%, group B: 5.1%, p=0.14). There was a lower number of reoperations due to bleeding of the wound area of ​​the hepatic graft when the human fibrinogen and thrombin sponge were used. Estratégia cirúrgica para aumentar o número de transplantes hepáticos na população pediátrica é a transecção hepática ex-situ (redução ou split). No entanto, ela está associada com complicações, tais como hemorragia e fístulas. A esponja de fibrinogênio e trombina humana é útil para melhorar a hemostasia nas operações hepáticas. Comparar transplantes hepáticos pediátricos com transecção hepática ex-situ (redução ou split) com ou sem a esponja de fibrinogênio e trombina humana. Foi realizada análise prospectiva de 21 pacientes submetidos ao transplante de fígado com transecção hepática ex-situ com a aplicação da esponja de fibrinogênio e trombina humana na área cruenta (grupo A) e análise retrospectiva de 59 pacientes sem a esponja (grupo B). As características dos

  5. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.

    PubMed

    Stegmann, Kerstin A; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R; Kennedy, Patrick; Maini, Mala K

    2016-05-23

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56(bright)CD16-CD57-), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6- fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bet(hi)Eomes(lo)(CXCR6-) and T-bet(lo)Eomes(hi)(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bet(hi)Eomes(lo), suggesting its lineage was closer to CXCR6- peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-bet(lo)Eomes(hi) NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity.

  6. Combining Chimeric Mice with Humanized Liver, Mass Spectrometry, and Physiologically-Based Pharmacokinetic Modeling in Toxicology.

    PubMed

    Yamazaki, Hiroshi; Suemizu, Hiroshi; Mitsui, Marina; Shimizu, Makiko; Guengerich, F Peter

    2016-12-19

    Species differences exist in terms of drug oxidation activities, which are mediated mainly by cytochrome P450 (P450) enzymes. To overcome the problem of species extrapolation, transchromosomic mice containing a human P450 3A cluster or chimeric mice transplanted with human hepatocytes have been introduced into the human toxicology research area. In this review, drug metabolism and disposition mediated by humanized livers in chimeric mice are summarized in terms of biliary/urinary excretions of phthalate and bisphenol A and plasma clearances of the human cocktail probe drugs caffeine, warfarin, omeprazole, metoprolol, and midazolam. Simulation of human plasma concentrations of the teratogen thalidomide and its human metabolites is possible with a simplified physiologically based pharmacokinetic model based on data obtained in chimeric mice, in accordance with reported clinical thalidomide concentrations. In addition, in vivo nonspecific hepatic protein binding parameters of metabolically activated 14 C-drug candidate and hepatotoxic medicines in humanized liver mice can be analyzed by accelerator mass spectrometry and are useful for predictions in humans.

  7. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems

    PubMed Central

    Lee-Montiel, Felipe T; George, Subin M; Sharma, Anup D; Wu, Juanfang; DeBiasio, Richard; Vernetti, Lawrence A; Taylor, D Lansing

    2017-01-01

    This article describes our next generation human Liver Acinus MicroPhysiology System (LAMPS). The key demonstration of this study was that Zone 1 and Zone 3 microenvironments can be established by controlling the oxygen tension in individual devices over the range of ca. 3 to 13%. The oxygen tension was computationally modeled using input on the microfluidic device dimensions, numbers of cells, oxygen consumption rates of hepatocytes, the diffusion coefficients of oxygen in different materials and the flow rate of media in the MicroPhysiology System (MPS). In addition, the oxygen tension was measured using a ratiometric imaging method with the oxygen sensitive dye, Tris(2,2′-bipyridyl) dichlororuthenium(II) hexahydrate (RTDP) and the oxygen insensitive dye, Alexa 488. The Zone 1 biased functions of oxidative phosphorylation, albumin and urea secretion and Zone 3 biased functions of glycolysis, α1AT secretion, Cyp2E1 expression and acetaminophen toxicity were demonstrated in the respective Zone 1 and Zone 3 MicroPhysiology System. Further improvements in the Liver Acinus MicroPhysiology System included improved performance of selected nonparenchymal cells, the inclusion of a porcine liver extracellular matrix to model the Space of Disse, as well as an improved media to support both hepatocytes and non-parenchymal cells. In its current form, the Liver Acinus MicroPhysiology System is most amenable to low to medium throughput, acute through chronic studies, including liver disease models, prioritizing compounds for preclinical studies, optimizing chemistry in structure activity relationship (SAR) projects, as well as in rising dose studies for initial dose ranging. Impact statement Oxygen zonation is a critical aspect of liver functions. A human microphysiology system is needed to investigate the impact of zonation on a wide range of liver functions that can be experimentally manipulated. Because oxygen zonation has such diverse physiological effects in the liver

  8. Toxicokinetics of chlordecone in goats: Implications for risk management in French West Indies.

    PubMed

    Fournier, Agnès; Feidt, Cyril; Lastel, Marie-Laure; Archimede, Harry; Thome, Jean-Pierre; Mahieu, Maurice; Rychen, Guido

    2017-03-01

    The former use of chlordecone (CLD) in the French West Indies has resulted in long-term pollution of soils. CLD is known to be potentially transferred towards animal products of animals reared outdoors, mainly through accidental soil ingestion. Several studies indicate that soil bound CLD is bioavailable when administered to farm animals. Currently there is a need to quantify the level of CLD absorption and its toxicokinetic characteristics in the ruminant and particularly in the goat. These are considered as important farm species in the French West Indies. The objective of this study was to evaluate the absorption rate and the half-life of CLD in the non-lactating goat. The goats were administered either intravenously (i.v., n = 6) or orally (p.o., n = 6) one dose (1 mg kg -1 body weight) of CLD. Blood samples were collected at defined times up to 160 days post-dosing. CLD was analyzed in serum by high-resolution gas chromatography. A comparison of the area under the serum concentration-time curves (AUC) showed that the i.v. route is equivalent to the oral route. Thus, CLD is considered almost completely absorbed after p.o. administration, as shown by the mean absolute bioavailability. The comparison between the pharmacokinetic profiles of CLD following oral and intravenous dose showed a difference during the first 14 days and a similar kinetic after this period. The half-life of CLD in serum was close to 20 days. These results highlight a possible strategy of decontamination due to the short half-life of CLD, obtained in dry goats that did not excrete fat matter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An Experimental Study to Measure the Mechanical Properties of the Human Liver.

    PubMed

    Karimi, Alireza; Shojaei, Ahmad

    2018-01-01

    Since the liver is one of the most important organs of the body that can be injured during trauma, that is, during accidents like car crashes, understanding its mechanical properties is of great interest. Experimental data is needed to address the mechanical properties of the liver to be used for a variety of applications, such as the numerical simulations for medical purposes, including the virtual reality simulators, trauma research, diagnosis objectives, as well as injury biomechanics. However, the data on the mechanical properties of the liver capsule is limited to the animal models or confined to the tensile/compressive loading under single direction. Therefore, this study was aimed at experimentally measuring the axial and transversal mechanical properties of the human liver capsule under both the tensile and compressive loadings. To do that, 20 human cadavers were autopsied and their liver capsules were excised and histologically analyzed to extract the mean angle of a large fibers population (bundle of the fine collagen fibers). Thereafter, the samples were cut and subjected to a series of axial and transversal tensile/compressive loadings. The results revealed the tensile elastic modulus of 12.16 ± 1.20 (mean ± SD) and 7.17 ± 0.85 kPa under the axial and transversal loadings respectively. Correspondingly, the compressive elastic modulus of 196.54 ± 13.15 and 112.41 ± 8.98 kPa were observed under the axial and transversal loadings respectively. The compressive axial and transversal maximum/failure stress of the capsule were 32.54 and 37.30 times higher than that of the tensile ones respectively. The capsule showed a stiffer behavior under the compressive load compared to the tensile one. In addition, the axial elastic modulus of the capsule was found to be higher than that of the transversal one. The findings of the current study have implications not only for understanding the mechanical properties of the human capsule tissue under tensile

  10. Effect of ultrasound frequency on the Nakagami statistics of human liver tissues.

    PubMed

    Tsui, Po-Hsiang; Zhou, Zhuhuang; Lin, Ying-Hsiu; Hung, Chieh-Ming; Chung, Shih-Jou; Wan, Yung-Liang

    2017-01-01

    The analysis of the backscattered statistics using the Nakagami parameter is an emerging ultrasound technique for assessing hepatic steatosis and fibrosis. Previous studies indicated that the echo amplitude distribution of a normal liver follows the Rayleigh distribution (the Nakagami parameter m is close to 1). However, using different frequencies may change the backscattered statistics of normal livers. This study explored the frequency dependence of the backscattered statistics in human livers and then discussed the sources of ultrasound scattering in the liver. A total of 30 healthy participants were enrolled to undergo a standard care ultrasound examination on the liver, which is a natural model containing diffuse and coherent scatterers. The liver of each volunteer was scanned from the right intercostal view to obtain image raw data at different central frequencies ranging from 2 to 3.5 MHz. Phantoms with diffuse scatterers only were also made to perform ultrasound scanning using the same protocol for comparisons with clinical data. The Nakagami parameter-frequency correlation was evaluated using Pearson correlation analysis. The median and interquartile range of the Nakagami parameter obtained from livers was 1.00 (0.98-1.05) for 2 MHz, 0.93 (0.89-0.98) for 2.3 MHz, 0.87 (0.84-0.92) for 2.5 MHz, 0.82 (0.77-0.88) for 3.3 MHz, and 0.81 (0.76-0.88) for 3.5 MHz. The Nakagami parameter decreased with the increasing central frequency (r = -0.67, p < 0.0001). However, the effect of ultrasound frequency on the statistical distribution of the backscattered envelopes was not found in the phantom results (r = -0.147, p = 0.0727). The current results demonstrated that the backscattered statistics of normal livers is frequency-dependent. Moreover, the coherent scatterers may be the primary factor to dominate the frequency dependence of the backscattered statistics in a liver.

  11. Neutrophil gelatinase‐associated lipocalin level is a prognostic factor for survival in rat and human chronic liver diseases

    PubMed Central

    Yoshikawa, Kyoko; Iwasa, Motoh; Kojima, Shinichi; Yoshizawa, Naohiko; Tempaku, Mina; Sugimoto, Ryosuke; Yamamoto, Norihiko; Sugimoto, Kazushi; Kobayashi, Yoshinao; Hasegawa, Hiroshi; Takei, Yoshiyuki

    2017-01-01

    Chronic liver disease patients often have complications, such as hepatocellular carcinoma (HCC) and acute bacterial infection. Model for end‐stage liver disease and Child‐Pugh scores are useful prognostic factors for chronic liver diseases but not for all chronic conditions, such as HCC. Our investigative aim targeted the prognostic abilities of neutrophil gelatinase‐associated lipocalin (NGAL) in rat and human chronic liver diseases. Blood NGAL levels were measured by enzyme‐linked immunosorbent assay in rats with cirrhosis and 96 patients with chronic liver disease and HCC. We examined the correlation between blood NGAL levels and liver functions as well as survival. In our rat model, liver NGAL expression was assessed by immunostaining, real‐time quantitative polymerase chain reaction, and immunoblot. In rats with cirrhosis, blood NGAL levels were continuously and significantly elevated in the deceased group and were significantly correlated with liver functions. Liver NGAL, toll‐like receptor 4, and interleukin‐6 levels were increased in the deceased group compared to the survival group. Blood NGAL levels were significantly correlated with liver NGAL levels, indicating blood NGAL was derived from the liver. In patients with chronic liver disease, blood NGAL levels were associated with liver function and renal function. Blood NGAL levels were significantly increased in patients with chronic liver disease with HCC compared to without HCC. For the survival group, 38 out of 96 patients were dead in the average follow‐up period of 9.9 months. The patients with blood NGAL ≤119 ng/mL had significantly longer rates of survival compared to patients with blood NGAL >119 ng/mL. Conclusion: Blood NGAL predicts the survival rate in rat and human chronic liver diseases. Our findings suggest blood NGAL may be prognostic of survival in chronic liver diseases complicated by HCC. (Hepatology Communications 2017;1:946–956) PMID:29404502

  12. Volumetric Growth of the Liver in the Human Fetus: An Anatomical, Hydrostatic, and Statistical Study

    PubMed Central

    Szpinda, Michał; Paruszewska-Achtel, Monika; Mila-Kierzenkowska, Celestyna; Elminowska-Wenda, Gabriela; Dombek, Małgorzata; Szpinda, Anna; Badura, Mateusz

    2015-01-01

    Using anatomical, hydrostatic, and statistical methods, liver volumes were assessed in 69 human fetuses of both sexes aged 18–30 weeks. No sex differences were found. The median of liver volume achieved by hydrostatic measurements increased from 6.57 cm3 at 18–21 weeks through 14.36 cm3 at 22–25 weeks to 20.77 cm3 at 26–30 weeks, according to the following regression: y = −26.95 + 1.74 × age ± Z  × (−3.15 + 0.27 × age). The median of liver volume calculated indirectly according to the formula liver volume = 0.55 × liver length × liver transverse diameter × liver sagittal diameter increased from 12.41 cm3 at 18–21 weeks through 28.21 cm3 at 22–25 weeks to 49.69 cm3 at 26–30 weeks. There was a strong relationship (r = 0.91, p < 0.001) between the liver volumes achieved by hydrostatic (x) and indirect (y) methods, expressed by y = −0.05 + 2.16x  ± 7.26. The liver volume should be calculated as follows liver volume = 0.26 × liver length × liver transverse diameter × liver sagittal diameter. The age-specific liver volumes are of great relevance in the evaluation of the normal hepatic growth and the early diagnosis of fetal micro- and macrosomias. PMID:26413551

  13. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model.

    PubMed

    Rigo, Federica; De Stefano, Nicola; Navarro-Tableros, Victor; David, Ezio; Rizza, Giorgia; Catalano, Giorgia; Gilbo, Nicholas; Maione, Francesca; Gonella, Federica; Roggio, Dorotea; Martini, Silvia; Patrono, Damiano; Salizzoni, Mauro; Camussi, Giovanni; Romagnoli, Renato

    2018-05-01

    The gold standard for organ preservation before transplantation is static cold storage, which is unable to fully protect suboptimal livers from ischemia/reperfusion injury. An emerging alternative is normothermic machine perfusion (NMP), which permits organ reconditioning. Here, we aimed to explore the feasibility of a pharmacological intervention on isolated rat livers by using a combination of NMP and human liver stem cells-derived extracellular vesicles (HLSC-EV). We established an ex vivo murine model of NMP capable to maintain liver function despite an ongoing hypoxic injury induced by hemodilution. Livers were perfused for 4 hours without (control group, n = 10) or with HLSC-EV (treated group, n = 9). Bile production was quantified; perfusate samples were collected hourly to measure metabolic (pH, pO2, pCO2) and cytolysis parameters (AST, alanine aminotransferase, lactate dehydrogenase). At the end of perfusion, we assessed HLSC-EV engraftment by immunofluorescence, tissue injury by histology, apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, tissue hypoxia-inducible factor 1-α, and transforming growth factor-beta 1 RNA expression by quantitative reverse transcription-polymerase chain reaction. During hypoxic NMP, livers were able to maintain homeostasis and produce bile. In the treated group, AST (P = 0.018) and lactate dehydrogenase (P = 0.032) levels were significantly lower than those of the control group at 3 hours of perfusion, and AST levels persisted lower at 4 hours (P = 0.003). By the end of NMP, HLSC-EV had been uptaken by hepatocytes, and EV treatment significantly reduced histological damage (P = 0.030), apoptosis (P = 0.049), and RNA overexpression of hypoxia-inducible factor 1-α (P < 0.0001) and transforming growth factor-beta 1 (P = 0.014). HLSC-EV treatment, even in a short-duration model, was feasible and effectively reduced liver injury during hypoxic NMP.

  14. Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells

    PubMed Central

    Sakiyama, Ryoichi; Blau, Brandon J; Miki, Toshio

    2017-01-01

    There is currently a pressing need for alternative therapies to liver transplantation. The number of patients waiting for a liver transplant is substantially higher than the number of transplantable donor livers, resulting in a long waiting time and a high waiting list mortality. An extracorporeal liver support system is one possible approach to overcome this problem. However, the ideal cell source for developing bioartificial liver (BAL) support systems has yet to be determined. Recent advancements in stem cell technology allow researchers to generate highly functional hepatocyte-like cells from human pluripotent stem cells (hPSCs). In this mini-review, we summarize previous clinical trials with different BAL systems, and discuss advantages of and potential obstacles to utilizing hPSC-derived hepatic cells in clinical-scale BAL systems. PMID:28373763

  15. A CD13-targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis.

    PubMed

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Li, Yi; Zhen, Yong-Su

    2017-05-01

    CD13 is a marker of angiogenic endothelial cells, and recently it is proved to be a biomarker of human liver cancer stem cells (CSCs). Herein, the therapeutic effects of NGR-LDP-AE, a fusion protein composed of CD13-targeting peptide NGR and antitumor antibiotic lidamycin, on human liver cancer and its mechanism were studied. Western blot and immunofluorescence assay demonstrated that CD13 (WM15 epitope) was expressed in both human liver cancer cell lines and vascular endothelial cells, while absent in normal liver cells. MTT assay showed that NGR-LDP-AE displayed potent cytotoxicity to cultured tumor cell lines with IC 50 values at low nanomolar level. NGR-LDP-AE inhibited tumorsphere formation of liver cancer cells, and the IC 50 values were much lower than that in MTT assay, indicating selectively killing of CSCs. In endothelial tube formation assay, NGR-LDP-AE at low cytotoxic dose significantly inhibited the formation of intact tube networks. Animal experiment demonstrated that NGR-LDP-AE inhibited the growth of human liver cancer xenograft. Immunohistochemical analysis showed that NGR-LDP-AE induced the down-regulation of CD13. In vitro experiment using cultured tumor cells also confirmed this result. NGR-LDP-AE activated both apoptotic and autophagic pathways in cultured tumor cells, while the induced autophagy protected cells from death. Conclusively, NGR-LDP-AE exerts its antitumor activity via killing liver CSCs and inhibiting angiogenesis. With one targeting motif, NGR-LDP-AE acts on both liver CSCs and angiogenic endothelial cells. It is a promising dual targeting fusion protein for liver cancer therapy, especially for advanced or relapsed cancers. © 2017 Wiley Periodicals, Inc.

  16. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils.

    PubMed

    Zhang, Miaoyue; Engelhardt, Irina; Šimůnek, Jirka; Bradford, Scott A; Kasel, Daniela; Berns, Anne E; Vereecken, Harry; Klumpp, Erwin

    2017-02-01

    Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14 C-labeled contaminants, the hydrophobic chlordecone (CLD) and the sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). The transport behaviors of CLD, SDZ, and MWCNTs were studied at environmentally relevant concentrations (0.1-10 mg L -1 ) and they were applied in the column studies at different times. The breakthrough curves and retention profiles were simulated using a numerical model that accounted for the advective-dispersive transport of all compounds, attachment/detachment of MWCNTs, equilibrium and kinetic sorption of contaminants, and co-transport of contaminants with MWCNTs. The experimental results indicated that the presence of mobile MWCNTs facilitated remobilization of previously deposited CLD and its co-transport into deeper soil layers, while retained MWCNTs enhanced SDZ deposition in the topsoil layers due to the increased adsorption capacity of the soil. The modeling results then demonstrated that the mobility of engineered nanoparticles (ENPs) in the environment and the high affinity and entrapment of contaminants to ENPs were the main reasons for ENP-facilitated contaminant transport. On the other hand, immobile MWCNTs had a less significant impact on the contaminant transport, even though they were still able to enhance the adsorption capacity of the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. In vitro metabolism of nobiletin, a polymethoxy-flavonoid, by human liver microsomes and cytochrome P450.

    PubMed

    Koga, Nobuyuki; Ohta, Chiho; Kato, Yoshihisa; Haraguchi, Koichi; Endo, Tetsuya; Ogawa, Kazunori; Ohta, Hideaki; Yano, Masamichi

    2011-11-01

    Cytochrome P450 enzymes (CYPs) in the liver metabolize drugs prior to excretion, with different enzymes acting at different molecular motifs. At present, the human CYPs responsible for the metabolism of the flavonoid, nobiletin (NBL), are unidentified. We investigated which enzymes were involved using human liver microsomes and 12 cDNA-expressed human CYPs. Human liver microsomes metabolized NBL to three mono-demethylated metabolites (4'-OH-, 7-OH- and 6-OH-NBL) with a relative ratio of 1:4.1:0.5, respectively, by aerobic incubation with nicotinamide adenine dinucleotide phosphate (NADPH). Of 12 human CYPs, CYP1A1, CYP1A2 and CYP1B1 showed high activity for the formation of 4'-OH-NBL. CYP3A4 catalyzed the formation of 7-OH-NBL with the highest activity and of 6-OH-NBL with lower activity. CYP3A5 also catalyzed the formation of both metabolites but considerably more slowly than CYP3A4. In contrast, seven CYPs (CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1) were inactive for NBL. Both ketoconazole and troleandomycin (CYP3A inhibitors) almost completely inhibited the formation of 7-OH- and 6-OH-NBL. Similarly, α-naphthoflavone (CYP1A1 inhibitor) and furafylline (CYP1A2 inhibitor) significantly decreased the formation of 4'-OH-NBL. These results suggest that CYP1A2 and CYP3A4 are the key enzymes in human liver mediating the oxidative demethylation of NBL in the B-ring and A-ring, respectively.

  18. KDR (VEGFR2) identifies a conserved human and murine hepatic progenitor and instructs early liver development

    PubMed Central

    Goldman, Orit; Han, Songyan; Sourrisseau, Marion; Dziedzic, Noelle; Hamou, Wissam; Corneo, Barbara; D’Souza, Sunita; Sato, Thomas; Kotton, Darrell N.; Bissig, Karl-Dimiter; Kalir, Tamara; Jacobs, Adam; Evans, Todd; Evans, Matthew J.; Gouon-Evans, Valerie

    2013-01-01

    SUMMARY Understanding the fetal hepatic niche is essential for optimizing the generation of functional hepatocyte-like (hepatic) cells from human embryonic stem cells (hESCs). Here, we show that KDR (VEGFR2), previously assumed to be mostly restricted to mesodermal lineages, marks a hESC-derived hepatic progenitor. hESC-derived endoderm cells do not express KDR, but when cultured in media supporting hepatic differentiation, generate KDR+ hepatic progenitors and KDR- hepatic cells. KDR+ progenitors require active KDR signaling both to instruct their own differentiation into hepatic cells, and to support non-cell-autonomously the functional maturation of co-cultured KDR- hepatic cells. Analysis of human fetal livers suggests that similar progenitors are present in human livers. Lineage tracing in mice provides in vivo evidence of a KDR+ hepatic progenitor for fetal hepatoblasts and subsequently adult hepatocytes and cholangiocytes. Altogether, our findings reveal that KDR is a conserved marker for endoderm-derived hepatic progenitors, and a functional receptor instructing early liver development. PMID:23746980

  19. Effects of fatty infiltration in human livers on the backscattered statistics of ultrasound imaging.

    PubMed

    Wan, Yung-Liang; Tai, Dar-In; Ma, Hsiang-Yang; Chiang, Bing-Hao; Chen, Chin-Kuo; Tsui, Po-Hsiang

    2015-06-01

    Ultrasound imaging has been widely applied to screen fatty liver disease. Fatty liver disease is a condition where large vacuoles of triglyceride fat accumulate in liver cells, thereby altering the arrangement of scatterers and the corresponding backscattered statistics. In this study, we used ultrasound Nakagami imaging to explore the effects of fatty infiltration in human livers on the statistical distribution of backscattered signals. A total of 107 patients volunteered to participate in the experiments. The livers were scanned using a clinical ultrasound scanner to obtain the raw backscattered signals for ultrasound B-mode and Nakagami imaging. Clinical scores of fatty liver disease for each patient were determined according to a well-accepted sonographic scoring system. The results showed that the Nakagami image can visualize the local backscattering properties of liver tissues. The Nakagami parameter increased from 0.62 ± 0.11 to 1.02 ± 0.07 as the fatty liver disease stage increased from normal to severe, indicating that the backscattered statistics vary from pre-Rayleigh to Rayleigh distributions. A significant positive correlation (correlation coefficient ρ = 0.84; probability value (p value) < 0.0001) exists between the degree of fatty infiltration and the Nakagami parameter, suggesting that ultrasound Nakagami imaging has potentials in future applications in fatty liver disease diagnosis. © IMechE 2015.

  20. Circulating AIM as an Indicator of Liver Damage and Hepatocellular Carcinoma in Humans

    PubMed Central

    Yamazaki, Tomoko; Mori, Mayumi; Arai, Satoko; Tateishi, Ryosuke; Abe, Masanori; Ban, Mihoko; Nishijima, Akemi; Maeda, Maki; Asano, Takeharu; Kai, Toshihiro; Izumino, Kiyohiro; Takahashi, Jun; Aoyama, Kayo; Harada, Sei; Takebayashi, Toru; Gunji, Toshiaki; Ohnishi, Shin; Seto, Shinji; Yoshida, Yukio; Hiasa, Yoichi; Koike, Kazuhiko; Yamamura, Ken-ichi; Inoue, Ken-ichiro; Miyazaki, Toru

    2014-01-01

    Background Hepatocellular carcinoma (HCC), the fifth most common cancer type and the third highest cause of cancer death worldwide, develops in different types of liver injuries, and is mostly associated with cirrhosis. However, non-alcoholic fatty liver disease often causes HCC with less fibrosis, and the number of patients with this disease is rapidly increasing. The high mortality rate and the pathological complexity of liver diseases and HCC require blood biomarkers that accurately reflect the state of liver damage and presence of HCC. Methods and Findings Here we demonstrate that a circulating protein, apoptosis inhibitor of macrophage (AIM) may meet this requirement. A large-scale analysis of healthy individuals across a wide age range revealed a mean blood AIM of 4.99±1.8 µg/ml in men and 6.06±2.1 µg/ml in women. AIM levels were significantly augmented in the younger generation (20s–40s), particularly in women. Interestingly, AIM levels were markedly higher in patients with advanced liver damage, regardless of disease type, and correlated significantly with multiple parameters representing liver function. In mice, AIM levels increased in response to carbon tetrachloride, confirming that the high AIM observed in humans is the result of liver damage. In addition, carbon tetrachloride caused comparable states of liver damage in AIM-deficient and wild-type mice, indicating no influence of AIM levels on liver injury progression. Intriguingly, certain combinations of AIM indexes normalized to liver marker score significantly distinguished HCC patients from non-HCC patients and thus could be applicable for HCC diagnosis. Conclusion AIM potently reveals both liver damage and HCC. Thus, our results may provide the basis for novel diagnostic strategies for this widespread and fatal disease. PMID:25302503

  1. Mice with chimeric livers are an improved model for human lipoprotein metabolism.

    PubMed

    Ellis, Ewa C S; Naugler, Willscott Edward; Nauglers, Scott; Parini, Paolo; Mörk, Lisa-Mari; Jorns, Carl; Zemack, Helen; Sandblom, Anita Lövgren; Björkhem, Ingemar; Ericzon, Bo-Göran; Wilson, Elizabeth M; Strom, Stephen C; Grompe, Markus

    2013-01-01

    Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.

  2. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).

    PubMed

    Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S

    2004-03-07

    The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.

  3. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion

    PubMed Central

    Wallace, Lorraine; Boteon, Yuri; Neil, Desley AH; Smith, Amanda; Stephenson, Barney TF; Schlegel, Andrea; Hübscher, Stefan G; Mirza, Darius F

    2017-01-01

    Background Normothermic machine perfusion of the liver (NMP-L) is a novel technique that preserves liver grafts under near-physiological conditions whilst maintaining their normal metabolic activity. This process requires an adequate oxygen supply, typically delivered by packed red blood cells (RBC). We present the first experience using an acellular hemoglobin-based oxygen carrier (HBOC) Hemopure in a human model of NMP-L. Methods Five discarded high-risk human livers were perfused with HBOC-based perfusion fluid and matched to 5 RBC-perfused livers. Perfusion parameters, oxygen extraction, metabolic activity and histological features were compared during 6 hours of NMP-L. The cytotoxicity of Hemopure was also tested on human hepatic primary cell line cultures using an in vitro model of ischemia reperfusion injury. Results The vascular flow parameters and the perfusate lactate clearance were similar in both groups. The HBOC-perfused livers extracted more oxygen than those perfused with RBCs (O2ER 13.75 vs 9.43 % x105 per gram of tissue, p=0.001). In vitro exposure to Hemopure did not alter intracellular levels of reactive oxygen species and there was no increase in apoptosis or necrosis observed in any of the tested cell lines. Histological findings were comparable between groups. There was no evidence of histological damage caused by Hemopure. Conclusion Hemopure can be used as an alternative oxygen carrier to packed red cells in NMP-L perfusion fluid. PMID:28520579

  4. "Non alcoholic fatty liver disease and eNOS dysfunction in humans".

    PubMed

    Persico, Marcello; Masarone, Mario; Damato, Antonio; Ambrosio, Mariateresa; Federico, Alessandro; Rosato, Valerio; Bucci, Tommaso; Carrizzo, Albino; Vecchione, Carmine

    2017-03-07

    NAFLD is associated to Insulin Resistance (IR). IR is responsible for Endothelial Dysfunction (ED) through the impairment of eNOS function. Although eNOS derangement has been demonstrated in experimental models, no studies have directly shown that eNOS dysfunction is associated with NAFLD in humans. The aim of this study is to investigate eNOS function in NAFLD patients. Fifty-four NAFLD patients were consecutively enrolled. All patients underwent clinical and laboratory evaluation and liver biopsy. Patients were divided into two groups by the presence of NAFL or NASH. We measured vascular reactivity induced by patients' platelets on isolated mice aorta rings. Immunoblot assays for platelet-derived phosphorylated-eNOS (p-eNOS) and immunohistochemistry for hepatic p-eNOS have been performed to evaluate eNOS function in platelets and liver specimens. Flow-mediated-dilation (FMD) was also performed. Data were compared with healthy controls. Twenty-one (38, 8%) patients had NAFL and 33 (61, 7%) NASH. No differences were found between groups and controls except for HOMA and insulin (p < 0.0001). Vascular reactivity demonstrated a reduced function induced from NAFLD platelets as compared with controls (p < 0.001), associated with an impaired p-eNOS in both platelets and liver (p < 0.001). NAFL showed a higher impairment of eNOS phosphorylation in comparison to NASH (p < 0.01). In contrast with what observed in vitro, the vascular response by FMD was worse in NASH as compared with NAFL. Our data showed, for the first time in humans, that NAFLD patients show a marked eNOS dysfunction, which may contribute to a higher CV risk. eNOS dysfunction observed in platelets and liver tissue didn't match with FMD.

  5. A Modified Protocol for the Isolation of Primary Human Hepatocytes with Improved Viability and Function from Normal and Diseased Human Liver.

    PubMed

    Bartlett, David C; Newsome, Philip N

    2017-01-01

    Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver and the results of hepatocyte isolation from such tissue are inferior compared to normal tissue. Here we describe a modified method, combining the use of Liberase and N-acetylcysteine (NAC), for the isolation of primary human hepatocytes with high viability from normal and diseased liver.

  6. NADH oxidase activity of rat and human liver xanthine oxidoreductase: potential role in superoxide production.

    PubMed

    Maia, Luisa; Duarte, Rui O; Ponces-Freire, Ana; Moura, José J G; Mira, Lurdes

    2007-08-01

    To characterise the NADH oxidase activity of both xanthine dehydrogenase (XD) and xanthine oxidase (XO) forms of rat liver xanthine oxidoreductase (XOR) and to evaluate the potential role of this mammalian enzyme as an O2*- source, kinetics and electron paramagnetic resonance (EPR) spectroscopic studies were performed. A steady-state kinetics study of XD showed that it catalyses NADH oxidation, leading to the formation of one O2*- molecule and half a H(2)O(2) molecule per NADH molecule, at rates 3 times those observed for XO (29.2 +/- 1.6 and 9.38 +/- 0.31 min(-1), respectively). EPR spectra of NADH-reduced XD and XO were qualitatively similar, but they were quantitatively quite different. While NADH efficiently reduced XD, only a great excess of NADH reduced XO. In agreement with reductive titration data, the XD specificity constant for NADH (8.73 +/- 1.36 microM(-1) min(-1)) was found to be higher than that of the XO specificity constant (1.07 +/- 0.09 microM(-1) min(-1)). It was confirmed that, for the reducing substrate xanthine, rat liver XD is also a better O2*- source than XO. These data show that the dehydrogenase form of liver XOR is, thus, intrinsically more efficient at generating O2*- than the oxidase form, independently of the reducing substrate. Most importantly, for comparative purposes, human liver XO activity towards NADH oxidation was also studied, and the kinetics parameters obtained were found to be very similar to those of the XO form of rat liver XOR, foreseeing potential applications of rat liver XOR as a model of the human liver enzyme.

  7. S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen

    PubMed Central

    Bowalgaha, Kushari; Elliot, David J; Mackenzie, Peter I; Knights, Kathleen M; Swedmark, Stellan; Miners, John O

    2005-01-01

    Aims To characterize the kinetics of S-naproxen (‘naproxen’) acyl glucuronidation and desmethylnaproxen acyl and phenolic glucuronidation by human liver microsomes and identify the human UGT isoform(s) catalysing these reactions. Methods Naproxen and desmethylnaproxen glucuronidation were investigated using microsomes from six and five livers, respectively. Human recombinant UGTs were screened for activity towards naproxen and desmethylnaproxen. Where significant activity was observed, kinetic parameters were determined. Naproxen and desmethylnaproxen glucuronides were measured by separate high-performance liquid chromatography methods. Results Naproxen acyl glucuronidation by human liver microsomes followed biphasic kinetics. Mean apparent Km values (±SD, with 95% confidence interval in parentheses) for the high- and low-affinity components were 29 ± 13 µm (16, 43) and 473 ± 108 µm (359, 587), respectively. UGT 1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10 and 2B7 glucuronidated naproxen. UGT2B7 exhibited an apparent Km (72 µm) of the same order as the high-affinity human liver microsomal activity, which was inhibited by the UGT2B7 selective ‘probe’ fluconazole. Although data for desmethylnaproxen phenolic glucuronidation by human liver microsomes were generally adequately fitted to either the single- or two-enzyme Michaelis–Menten equation, model fitting was inconclusive for desmethylnaproxen acyl glucuronidation. UGT 1A1, 1A7, 1A9 and 1A10 catalysed both the phenolic and acyl glucuronidation of desmethylnaproxen, while UGT 1A3, 1A6 and 2B7 formed only the acyl glucuronide. Atypical glucuronidation kinetics were variably observed for naproxen and desmethylnaproxen glucuronidation by the recombinant UGTs. Conclusion UGT2B7 is responsible for human hepatic naproxen acyl glucuronidation, which is the primary elimination pathway for this drug. PMID:16187975

  8. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    PubMed Central

    Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications. PMID:27403430

  9. Liver fibrosis in human immunodeficiency virus/hepatitis C virus coinfection: Diagnostic methods and clinical impact

    PubMed Central

    Sagnelli, Caterina; Martini, Salvatore; Pisaturo, Mariantonietta; Pasquale, Giuseppe; Macera, Margherita; Zampino, Rosa; Coppola, Nicola; Sagnelli, Evangelista

    2015-01-01

    Several non-invasive surrogate methods have recently challenged the main role of liver biopsy in assessing liver fibrosis in hepatitis C virus (HCV)-monoinfected and human immunodeficiency virus (HIV)/HCV-coinfected patients, applied to avoid the well-known side effects of liver puncture. Serological tests involve the determination of biochemical markers of synthesis or degradation of fibrosis, tests not readily available in clinical practice, or combinations of routine tests used in chronic hepatitis and HIV/HCV coinfection. Several radiologic techniques have also been proposed, some of which commonly used in clinical practice. The studies performed to compare the prognostic value of non-invasive surrogate methods with that of the degree of liver fibrosis assessed on liver tissue have not as yet provided conclusive results. Each surrogate technique has shown some limitations, including the risk of over- or under-estimating the extent of liver fibrosis. The current knowledge on liver fibrosis in HIV/HCV-coinfected patients will be summarized in this review article, which is addressed in particular to physicians involved in this setting in their clinical practice. PMID:26523204

  10. Global Transcriptional Response of Human Liver Cells to Ethanol Stress of Different Strength Reveals Hormetic Behavior.

    PubMed

    Schmidt-Heck, Wolfgang; Wönne, Eva C; Hiller, Thomas; Menzel, Uwe; Koczan, Dirk; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny; Freyer, Nora; Guthke, Reinhard; Dooley, Steven; Zeilinger, Katrin

    2017-05-01

    The liver is the major site for alcohol metabolism in the body and therefore the primary target organ for ethanol (EtOH)-induced toxicity. In this study, we investigated the in vitro response of human liver cells to different EtOH concentrations in a perfused bioartificial liver device that mimics the complex architecture of the natural organ. Primary human liver cells were cultured in the bioartificial liver device and treated for 24 hours with medium containing 150 mM (low), 300 mM (medium), or 600 mM (high) EtOH, while a control culture was kept untreated. Gene expression patterns for each EtOH concentration were monitored using Affymetrix Human Gene 1.0 ST Gene chips. Scaled expression profiles of differentially expressed genes (DEGs) were clustered using Fuzzy c-means algorithm. In addition, functional classification methods, KEGG pathway mapping and also a machine learning approach (Random Forest) were utilized. A number of 966 (150 mM EtOH), 1,334 (300 mM EtOH), or 4,132 (600 mM EtOH) genes were found to be differentially expressed. Dose-response relationships of the identified clusters of co-expressed genes showed a monotonic, threshold, or nonmonotonic (hormetic) behavior. Functional classification of DEGs revealed that low or medium EtOH concentrations operate adaptation processes, while alterations observed for the high EtOH concentration reflect the response to cellular damage. The genes displaying a hormetic response were functionally characterized by overrepresented "cellular ketone metabolism" and "carboxylic acid metabolism." Altered expression of the genes BAHD1 and H3F3B was identified as sufficient to classify the samples according to the applied EtOH doses. Different pathways of metabolic and epigenetic regulation are affected by EtOH exposition and partly undergo hormetic regulation in the bioartificial liver device. Gene expression changes observed at high EtOH concentrations reflect in some aspects the situation of alcoholic hepatitis

  11. Developmental anatomy of the liver from computerized three-dimensional reconstructions of four human embryos (from Carnegie stage 14 to 23).

    PubMed

    Lhuaire, Martin; Tonnelet, Romain; Renard, Yohann; Piardi, Tullio; Sommacale, Daniele; Duparc, Fabrice; Braun, Marc; Labrousse, Marc

    2015-07-01

    Some aspects of human embryogenesis and organogenesis remain unclear, especially concerning the development of the liver and its vasculature. The purpose of this study was to investigate, from a descriptive standpoint, the evolutionary morphogenesis of the human liver and its vasculature by computerized three-dimensional reconstructions of human embryos. Serial histological sections of four human embryos at successive stages of development belonging to three prestigious French historical collections were digitized and reconstructed in 3D using software commonly used in medical radiology. Manual segmentation of the hepatic anatomical regions of interest was performed section by section. In this study, human liver organogenesis was examined at Carnegie stages 14, 18, 21 and 23. Using a descriptive and an analytical method, we showed that these stages correspond to the implementation of the large hepatic vascular patterns (the portal system, the hepatic artery and the hepatic venous system) and the biliary system. To our knowledge, our work is the first descriptive morphological study using 3D computerized reconstructions from serial histological sections of the embryonic development of the human liver between Carnegie stages 14 and 23. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells.

    PubMed

    Werner, Melanie; Driftmann, Sabrina; Kleinehr, Kathrin; Kaiser, Gernot M; Mathé, Zotlan; Treckmann, Juergen-Walter; Paul, Andreas; Skibbe, Kathrin; Timm, Joerg; Canbay, Ali; Gerken, Guido; Schlaak, Joerg F; Broering, Ruth

    2015-01-01

    Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Cell preparation yielded the following cell counts per gram of liver tissue: 2.0 ± 0.4 × 10(7) hepatocytes, 1.8 ± 0.5 × 10(6 )Kupffer cells, 4.3 ± 1.9 × 10(5) liver sinusoidal endothelial cells, and 3.2 ± 0.5 × 10(5) stellate cells. Hepatocytes were identified by albumin (95.5 ± 1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5 ± 1.2%) and exhibited phagocytic activity, as determined with 1 μm latex beads. Endothelial cells were CD146(+) (97.8 ± 1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1 ± 1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease.

  13. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells

    PubMed Central

    Werner, Melanie; Driftmann, Sabrina; Kleinehr, Kathrin; Kaiser, Gernot M.; Mathé, Zotlan; Treckmann, Juergen-Walter; Paul, Andreas; Skibbe, Kathrin; Timm, Joerg; Canbay, Ali; Gerken, Guido; Schlaak, Joerg F.; Broering, Ruth

    2015-01-01

    Background & Aims Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Methods Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Results Cell preparation yielded the following cell counts per gram of liver tissue: 2.0±0.4×107 hepatocytes, 1.8±0.5×106 Kupffer cells, 4.3±1.9×105 liver sinusoidal endothelial cells, and 3.2±0.5×105 stellate cells. Hepatocytes were identified by albumin (95.5±1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5±1.2%) and exhibited phagocytic activity, as determined with 1μm latex beads. Endothelial cells were CD146+ (97.8±1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1±1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Conclusions Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease. PMID:26407160

  14. Polysaccharide peptides from Coriolus versicolor competitively inhibit tolbutamide 4-hydroxylation in specific human CYP2C9 isoform and pooled human liver microsomes.

    PubMed

    Yeung, John H K; Or, Penelope M Y

    2011-10-15

    Polysaccharide peptide (PSP), isolated from COV-1 strain of Coriolus versicolor, is commonly used as an adjunct in cancer chemotherapy in China. Previous studies have shown that PSP decreased antipyrine clearance and inhibited CYP2C11-mediated tolbutamide 4-hydroxylation in the rat both in vitro and in vivo. In this study, the effects of water extractable fraction of PSP on tolbutamide 4-hydroxylation was investigated in pooled human liver microsomes and in specific human CYP2C9 isoform. PSP (2.5-20μM) dose-dependently decreased the biotransformation of tolbutamide to 4-hydroxy-tolbutamide. Enzyme kinetics studies showed inhibition of tolbutamide 4-hydroxylase activity was competitive and concentration-dependent. In pooled human liver microsomes, PSP had a K(i) value of 14.2μM compared to sulfaphenazole, a human CYP2C9 inhibitor, showed a K(i) value of 0.32μM. In human CYP2C9 isoform, the K(i) value of PSP was 29.5μM and the K(i) value of sulfaphenazole was 0.04μM. This study demonstrated that PSP can competitively inhibit tolbutamide 4-hydroxylation in both pooled human liver microsomes and specific human CYP2C9 in vitro. This study compliments previous findings in the rat that PSP can inhibit human tolbutamide 4-hydroxylase, but the relatively high K(i) values in human CYP2C9 would suggest a low potential for PSP to cause herb-drug interaction. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. In vitro Inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea, and Curcuma xanthorrhiza Extracts and Constituents on Human Liver Glucuronidation Activity.

    PubMed

    Husni, Zulhilmi; Ismail, Sabariah; Zulkiffli, Mohd Halimhilmi; Afandi, Atiqah; Haron, Munirah

    2017-07-01

    Andrographis paniculata , Gynura procumbens , Ficus deltoidea and Curcuma xanthorrhiza are commonly consumed as herbal medicines. However their effects on human liver glucuronidation activity are not yet evaluated. In this study, we evaluate the inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza extracts and their constituents on human liver glucuronidation activity. Herbal extracts (aqueous, methanolic and ethanolic extracts) and their constituents were incubated with human liver microsomes with the addition of UDPGA to initiate the reaction. Working concentrations of herbal extracts and their constituents ranged from 10 μg/mL to 1000 μg/mL and 10 μM to 300 μM respectively. IC50 was determined by monitoring the decrement of glucuronidation activity with the increment of herbal extracts or phytochemical constituent's concentrations. All herbal extracts inhibited human liver glucuronidation activity in range of 34.69 μg/mL to 398.10 μg/mL whereas for the constituents, only xanthorrhizol and curcumin (constituents of Curcuma xanthorrhiza ) inhibited human liver glucuronidation activity with IC50 of 538.50 and 32.26 μM respectively. In the present study, we have proved the capabilities of Andrographis paniculata , Gynura procumbens , Ficus deltoidea and Curcuma xanthorrhiza to interfere with in vitro glucuronidation process in human liver microsomes. This study documented the capabilities of Andrographis paniculata , Gynura procumbens , Ficus deltoidea and Curcuma xanthorrhiza to inhibit human liver glucuronidation activity which may affect the metabolism of therapeutic drugs or hazardous toxicants that follow the same glucuronidation pathway. Abbreviations used: UGT: Uridine 5'-diphospho-glucuronosyltransferase; 4-MU: 4-methylumbelliferone; IC50: Half Maximal Inhibitory Concentration; Km: Michaelis constant; Vmax: Maximum velocity.

  16. Comparative Proteomic Analysis of Human Liver Tissue and Isolated Hepatocytes with a Focus on Proteins Determining Drug Exposure.

    PubMed

    Vildhede, Anna; Wiśniewski, Jacek R; Norén, Agneta; Karlgren, Maria; Artursson, Per

    2015-08-07

    Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.

  17. New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans.

    PubMed

    Inzaugarat, María Eugenia; De Matteo, Elena; Baz, Placida; Lucero, Diego; García, Cecilia Claudia; Gonzalez Ballerga, Esteban; Daruich, Jorge; Sorda, Juan Antonio; Wald, Miriam Ruth; Cherñavsky, Alejandra Claudia

    2017-01-01

    The immune system acts on different metabolic tissues that are implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Leptin and linoleic acid have the ability to potentially affect immune cells, whereas curcumin is a known natural polyphenol with antioxidant and anti-inflammatory properties. This study was designed to evaluate the pro-inflammatory and pro-oxidant effects of leptin and linoleic acid on immune cells from patients with NAFLD and to corroborate the modulatory effects of curcumin and its preventive properties against the progression of NAFLD using a high-fat diet (HFD)-induced NAFLD/nonalcoholic steatohepatitis mouse model. The ex vivo experiments showed that linoleic acid increased the production of reactive oxygen species in monocytes and liver macrophages, whereas leptin enhanced tumor necrosis factor-α (TNF-α) production in monocytes and interferon-γ production in circulating CD4+ cells. Conversely, oral administration of curcumin prevented HFD-induced liver injury, metabolic alterations, intrahepatic CD4+ cell accumulation and the linoleic acid- and leptin- induced pro-inflammatory and pro-oxidant effects on mouse liver macrophages. Our findings provide new evidence for the therapeutic potential of curcumin to treat human NAFLD. However, the development of a preventive treatment targeting human circulating monocytes and liver macrophages as well as peripheral and hepatic CD4+ cells requires additional research.

  18. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells inmore » the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  19. Human intrahepatic ILC2 are IL-13positive amphiregulinpositive and their frequency correlates with model of end stage liver disease score.

    PubMed

    Jeffery, Hannah C; McDowell, Patrick; Lutz, Philipp; Wawman, Rebecca E; Roberts, Sheree; Bagnall, Chris; Birtwistle, Jane; Adams, David H; Oo, Ye Htun

    2017-01-01

    Innate lymphoid cells (ILC) have been implicated in the initiation of inflammation and fibrosis in mice. However, ILC have not been characterized in inflamed human liver tissue. Human intrahepatic lymphocytes were isolated by mechanical digestion and phenotyped by flow cytometry. Conditioned medium from cultures of primary human biliary epithelial cells, stellate cells, fibroblasts and inflamed human liver tissue was used to model the effects of the inflammatory liver environment of ILC phenotype and function. All three ILC subsets were present in the human liver, with the ILC1 (CRTH2negCD117neg) subset constituting around 70% of intrahepatic ILCs. Both NCRpos (NKp44+) and NCRneg ILC3 (CRTH2negCD117pos) subsets were also detected. ILC2 (CRTH2pos) frequency correlated with disease severity measured by model of end stage liver disease (MELD) scoring leading us to study this subset in more detail. ILC2 displayed a tissue resident CD69+ CD161++ phenotype and expressed chemokine receptor CCR6 allowing them to respond to CCL20 secreted by cholangiocytes and stellate cells. ILC2 expressed integrins VLA-5 and VLA-6 and the IL-2 and IL-7 cytokine receptors CD25 and CD127 although IL-2 and IL-7 were barely detectable in inflamed liver tissue. Although biliary epithelial cells secrete IL-33, intrahepatic ILC2 had low expression of the ST2 receptor. Intrahepatic ILC2 secreted the immunoregulatory and repair cytokines IL-13 and amphiregulin. Intrahepatic ILC2 express receptors allowing them to be recruited to bile ducts in inflamed portal tracts. Their frequencies increased with worsening liver function. Their secretion of IL-13 and amphiregulin suggests they may be recruited to promote resolution and repair and thereby they may contribute to ongoing fibrogenesis in liver disease.

  20. Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies

    PubMed Central

    Giannios, Panagiotis; Toutouzas, Konstantinos G.; Matiatou, Maria; Stasinos, Konstantinos; Konstadoulakis, Manousos M.; Zografos, George C.; Moutzouris, Konstantinos

    2016-01-01

    The refractive index is an optical constant that plays a significant role in the description of light-matter interactions. When it comes to biological media, refraction is understudied despite recent advances in the field of bio-optics. In the present article, we report on the measurement of the refractive properties of freshly excised healthy and cancerous human liver samples, by use of a prism-coupling technique covering the visible and near-infrared spectral range. Novel data on the wavelength-dependent complex refractive index of human liver tissues are presented. The magnitude of the real and imaginary part of the refractive index is correlated with hepatic pathology. Notably, the real index contrast is pointed out as a marker of discrimination between normal liver tissue and hepatic metastases. In view of the current progress in optical biosensor technologies, our findings may be exploited for the development of novel surgical and endoscopic tools. PMID:27297034

  1. Quantitative MR Imaging of Hepatic Steatosis: Validation in Ex Vivo Human Livers

    PubMed Central

    Bannas, Peter; Kramer, Harald; Hernando, Diego; Agni, Rashmi; Cunningham, Ashley M.; Mandal, Rakesh; Motosugi, Utaroh; Sharma, Samir D.; del Rio, Alejandro Munoz; Fernandez, Luis; Reeder, Scott B.

    2015-01-01

    Emerging magnetic resonance imaging (MRI) biomarkers of hepatic steatosis have demonstrated tremendous promise for accurate quantification of hepatic triglyceride concentration. These methods quantify the “proton density fat-fraction” (PDFF), which reflects the concentration of triglycerides in tissue. Previous in vivo studies have compared MRI-PDFF with histologic steatosis grading for assessment of hepatic steatosis. However, the correlation of MRI-PDFF with the underlying hepatic triglyceride content remained unknown. The aim of this ex vivo study was to validate the accuracy of MRI-PDFF as an imaging biomarker of hepatic steatosis. Using ex vivo human livers, we compared MRI-PDFF with magnetic resonance spectroscopy-PDFF (MRS-PDFF), biochemical triglyceride extraction and histology as three independent reference standards. A secondary aim was to compare the precision of MRI-PDFF relative to biopsy for the quantification of hepatic steatosis. MRI-PDFF was prospectively performed at 1.5T in 13 explanted human livers. We performed co-localized paired evaluation of liver fat content in all nine Couinaud segments using single-voxel MRS-PDFF (n=117), tissue wedges for biochemical triglyceride extraction (n=117), and five core biopsies performed in each segment for histologic grading (n=585). Accuracy of MRI-PDFF was assessed through linear regression with MRS-PDFF, triglyceride extraction and histology. Intra-observer agreement, inter-observer agreement and repeatability of MRI-PDFF and histologic grading were assessed through Bland-Altman analyses. MRI-PDFF showed an excellent correlation with MRS-PDFF (r=0.984; CI: 0.978–0.989) and strong correlation with histology (r=0.850; CI: 0.791–0.894) and triglyceride extraction (r=0.871; CI: 0.818–0.909). Intra-observer agreement, inter-observer agreement and repeatability showed a significantly smaller variance for MRI-PDFF than for histologic steatosis grading (all p<0.001). Conclusion MRI-PDFF is an accurate

  2. In vitro Inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea, and Curcuma xanthorrhiza Extracts and Constituents on Human Liver Glucuronidation Activity

    PubMed Central

    Husni, Zulhilmi; Ismail, Sabariah; Zulkiffli, Mohd Halimhilmi; Afandi, Atiqah; Haron, Munirah

    2017-01-01

    Background: Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza are commonly consumed as herbal medicines. However their effects on human liver glucuronidation activity are not yet evaluated. Objective: In this study, we evaluate the inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza extracts and their constituents on human liver glucuronidation activity. Materials and Methods: Herbal extracts (aqueous, methanolic and ethanolic extracts) and their constituents were incubated with human liver microsomes with the addition of UDPGA to initiate the reaction. Working concentrations of herbal extracts and their constituents ranged from 10 μg/mL to 1000 μg/mL and 10 μM to 300 μM respectively. IC50 was determined by monitoring the decrement of glucuronidation activity with the increment of herbal extracts or phytochemical constituent's concentrations. Results: All herbal extracts inhibited human liver glucuronidation activity in range of 34.69 μg/mL to 398.10 μg/mL whereas for the constituents, only xanthorrhizol and curcumin (constituents of Curcuma xanthorrhiza) inhibited human liver glucuronidation activity with IC50 of 538.50 and 32.26 μM respectively. Conclusion: In the present study, we have proved the capabilities of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza to interfere with in vitro glucuronidation process in human liver microsomes. SUMMARY This study documented the capabilities of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza to inhibit human liver glucuronidation activity which may affect the metabolism of therapeutic drugs or hazardous toxicants that follow the same glucuronidation pathway. Abbreviations used: UGT: Uridine 5’-diphospho-glucuronosyltransferase; 4-MU: 4-methylumbelliferone; IC50: Half Maximal Inhibitory Concentration; Km: Michaelis constant; Vmax: Maximum velocity. PMID

  3. Fetal Liver Bisphenol A Concentrations and Biotransformation Gene Expression Reveal Variable Exposure and Altered Capacity for Metabolism in Humans

    PubMed Central

    Nahar, Muna S.; Liao, Chunyang; Kannan, Kurunthachalam; Dolinoy, Dana C.

    2013-01-01

    Widespread exposure to the endocrine active compound, bisphenol A (BPA), is well documented in humans. A growing body of literature suggests adverse health outcomes associated with varying ranges of exposure to BPA. In the current study, we measured the internal dose of free BPA and conjugated BPA and evaluated gene expression of bio-transformation enzymes specific for BPA metabolism in 50 first- and second-trimester human fetal liver samples. Both free BPA and conjugated BPA concentrations varied widely, with free BPA exhibiting three times higher concentrations than conjugated BPA concentrations. As compared to gender-matched adult liver controls, UDP-glucuronyltransferase, sulfotransferase, and steroid sulfatase genes exhibited reduced expression whereas β-glucuronidase mRNA expression remained unchanged in the fetal tissues. This study provides evidence that there is considerable exposure to BPA during human pregnancy and that the capacity for BPA metabolism is altered in the human fetal liver. PMID:23208979

  4. Characterization of hepatic progenitors from human fetal liver during second trimester.

    PubMed

    Rao, Mekala-Subba; Khan, Aleem-Ahmed; Parveen, Nyamath; Habeeb, Mohammed-Aejaz; Habibullah, Chittoor-Mohammed; Pande, Gopal

    2008-10-07

    To enrich hepatic progenitors using epithelial cell adhesion molecule (EpCAM) as a marker from human fetal liver and investigate the expression of human leukocyte antigen (HLA) and their markers associated with hepatic progenitor cells. EpCAM +ve cells were isolated using magnetic cell sorting (MACS) from human fetuses (n = 10) at 15-25 wk gestation. Expression of markers for hepatic progenitors such as albumin, alpha-fetoprotein (AFP), CD29 (integrin beta1), CD49f (integrin alpha6) and CD90 (Thy 1) was studied by using flow cytometry, immunocytochemistry and RT-PCR; HLA class I (A, B, C) and class II (DR) expression was studied by flow cytometry only. FACS analysis indicated that EpCAM +ve cells were positive for CD29, CD49f, CD90, CD34, HLA class I, albumin and AFP but negative for HLA class II (DR) and CD45. RT PCR showed that EpCAM +ve cells expressed liver epithelial markers (CK18), biliary specific marker (CK19) and hepatic markers (albumin, AFP). On immunocytochemical staining, EpCAM +ve cells were shown positive signals for CK18 and albumin. Our study suggests that these EpCAM +ve cells can be used as hepatic progenitors for cell transplantation with a minimum risk of alloreactivity and these cells may serve as a potential source for enrichment of hepatic progenitor.

  5. Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations.

    PubMed

    Hunter, Stuart; Willcox, Carrie R; Davey, Martin S; Kasatskaya, Sofya A; Jeffery, Hannah C; Chudakov, Dmitriy M; Oo, Ye H; Willcox, Benjamin E

    2018-05-18

    γδ T-cells comprise a substantial proportion of tissue-associated lymphocytes. However, our current understanding of human γδ T-cells is primarily based on peripheral blood subsets, while the immunobiology of tissue-associated subsets remains largely unclear. To address this, we characterised the TCR diversity, immunophenotype and function of human liver infiltrating γδ T-cells, focussing on the predominant tissue-associated Vδ2 neg γδ subset, which is implicated in liver immunopathology. Intrahepatic Vδ2 neg γδ T-cells were highly clonally focussed, with single expanded clonotypes featuring complex, private TCR rearrangements frequently dominating the compartment. Such T-cells were predominantly CD27 lo/neg effector lymphocytes, whereas naïve CD27 hi , TCR diverse populations present in matched blood were generally absent in the liver. Furthermore, while a CD45RA hi Vδ2 neg γδ effector subset present in both liver and peripheral blood contained overlapping TCR clonotypes, the liver Vδ2 neg γδ T-cell pool also included a phenotypically distinct CD45RA lo effector compartment that was enriched for expression of the tissue tropism marker CD69, the hepatic homing chemokine receptors CXCR3 and CXCR6, and liver-restricted TCR clonotypes, suggestive of intrahepatic tissue residency. Liver infiltrating Vδ2 neg γδ cells were capable of polyfunctional cytokine secretion, and unlike peripheral blood subsets, were responsive to both TCR and innate stimuli. These findings suggest the ability of Vδ2 neg γδ T-cells to undergo clonotypic expansion and differentiation is crucial in permitting access to solid tissues such as the liver, and can result in functionally distinct peripheral and liver-resident memory γδ T-cell subsets. They highlight the inherent functional plasticity within the Vδ2 neg γδ T-cell compartment, and may inform design of cellular therapies involving intrahepatic trafficking of γδ T-cells to suppress liver inflammation or

  6. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice.

    PubMed

    Huang, Chun; Li, Runqin; Zhang, Yinglin; Gong, Jianping

    2017-10-01

    Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells.

  7. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice

    PubMed Central

    Li, Runqin; Zhang, Yinglin

    2016-01-01

    Background and Objective: Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. Materials and Methods: The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. Results: The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. Conclusion: The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells. PMID:27402632

  8. Induction of Three-Dimensional Growth of Human Liver Cells in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Khaoustov, V. I.; Yoffe, B.; Murry, D. J.; Soriano, H. E.; Risin, D.; Dawson, David L. (Technical Monitor)

    1999-01-01

    We previously reported that a NASA-developed bioreactor that simulates microgravity environment and creates the unique environment of low shear force and high-mass transfer is conducive for maintaining long term 3-D cell cultures of functional hepatocytes (60 days). However, significant further expansion of liver mass, or the remodeling of liver in vitro was jeopardized by the appearance of apoptotic zones in the center of large cell aggregates. To optimize oxygenation and nutritional uptake within growing cellular aggregates we cultured primary human liver cells (HLC) in a bioreactor in the presence or absence of microcarriers and biodegradable scaffolds. Also, to promote angiogenesis, HLC were cultured with or without microvascular endothelial cells. HLC were harvested from human livers by collagenase perfusion. While microcarriers did not affect cell growth, HLC cultured with biodegradable scaffolds made from polyglycolic acid (PGA) formed aggregates up to 3 cm in length. Culturing cells with PGA scaffolds increased the efficiency of cell self-assembly and the formation of larger cell aggregates. Based on histological evaluation it appears that the degree of apoptotic cells was diminished as compared to cultures without scaffolds. Histology of HLC with PGA-scaffolds revealed cell distribution between the fibers of the scaffolds, and cell-cell and cell-fiber interactions. Analyses of HLC spheroids revealed tissue-like structures comprised of hepatocytes, biliary epithelial cells and/or progenitor liver cells that were arranged as bile duct-like structures along nascent vascular sprouts. Electron microscopy revealed groups of cohesive hepatocytes and bile canaliculi with multiple microvilli and tight cellular junctions. Hepatocytes were further organized into tight clusters surrounded by complex stromal structures and reticulin fibers. Also, we observed higher levels of albumin mRNA expression when hepatocytes were co-cultured with endothelial cells. To evaluate

  9. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  10. New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans

    PubMed Central

    Inzaugarat, María Eugenia; De Matteo, Elena; Baz, Placida; Lucero, Diego; García, Cecilia Claudia; Gonzalez Ballerga, Esteban; Daruich, Jorge; Sorda, Juan Antonio; Wald, Miriam Ruth

    2017-01-01

    Introduction The immune system acts on different metabolic tissues that are implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Leptin and linoleic acid have the ability to potentially affect immune cells, whereas curcumin is a known natural polyphenol with antioxidant and anti-inflammatory properties. Aims This study was designed to evaluate the pro-inflammatory and pro-oxidant effects of leptin and linoleic acid on immune cells from patients with NAFLD and to corroborate the modulatory effects of curcumin and its preventive properties against the progression of NAFLD using a high-fat diet (HFD)-induced NAFLD/nonalcoholic steatohepatitis mouse model. Results The ex vivo experiments showed that linoleic acid increased the production of reactive oxygen species in monocytes and liver macrophages, whereas leptin enhanced tumor necrosis factor-α (TNF-α) production in monocytes and interferon-γ production in circulating CD4+ cells. Conversely, oral administration of curcumin prevented HFD-induced liver injury, metabolic alterations, intrahepatic CD4+ cell accumulation and the linoleic acid- and leptin- induced pro-inflammatory and pro-oxidant effects on mouse liver macrophages. Conclusion Our findings provide new evidence for the therapeutic potential of curcumin to treat human NAFLD. However, the development of a preventive treatment targeting human circulating monocytes and liver macrophages as well as peripheral and hepatic CD4+ cells requires additional research. PMID:28257515

  11. Gene expression profiling in human precision cut liver slices in response to the FXR agonist obeticholic acid.

    PubMed

    Ijssennagger, Noortje; Janssen, Aafke W F; Milona, Alexandra; Ramos Pittol, José M; Hollman, Danielle A A; Mokry, Michal; Betzel, Bark; Berends, Frits J; Janssen, Ignace M; van Mil, Saskia W C; Kersten, Sander

    2016-05-01

    The bile acid-activated farnesoid X receptor (FXR) is a nuclear receptor regulating bile acid, glucose and cholesterol homeostasis. Obeticholic acid (OCA), a promising drug for the treatment of non-alcoholic steatohepatitis (NASH) and type 2 diabetes, activates FXR. Mouse studies demonstrated that FXR activation by OCA alters hepatic expression of many genes. However, no data are available on the effects of OCA in the human liver. Here we generated gene expression profiles in human precision cut liver slices (hPCLS) after treatment with OCA. hPCLS were incubated with OCA for 24 h. Wild-type or FXR(-/-) mice received OCA or vehicle by oral gavage for 7 days. Transcriptomic analysis showed that well-known FXR target genes, including NR0B2 (SHP), ABCB11 (BSEP), SLC51A (OSTα) and SLC51B (OSTβ), and ABCB4 (MDR3) are regulated by OCA in hPCLS. Ingenuity pathway analysis confirmed that 'FXR/RXR activation' is the most significantly changed pathway upon OCA treatment. Comparison of gene expression profiles in hPCLS and mouse livers identified 18 common potential FXR targets. ChIP-sequencing in mouse liver confirmed FXR binding to IR1 sequences of Akap13, Cgnl1, Dyrk3, Pdia5, Ppp1r3b and Tbx6. Our study shows that hPCLS respond to OCA treatment by upregulating well-known FXR target genes, demonstrating its suitability to study FXR-mediated gene regulation. We identified six novel bona-fide FXR target genes in both mouse and human liver. Finally, we discuss a possible explanation for changes in high or low density lipoprotein observed in NASH and primary biliary cholangitis patients treated with OCA based on the genomic expression profile in hPCLS. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  12. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors.

    PubMed

    Luisier, Raphaëlle; Lempiäinen, Harri; Scherbichler, Nina; Braeuning, Albert; Geissler, Miriam; Dubost, Valerie; Müller, Arne; Scheer, Nico; Chibout, Salah-Dine; Hara, Hisanori; Picard, Frank; Theil, Diethilde; Couttet, Philippe; Vitobello, Antonio; Grenet, Olivier; Grasl-Kraupp, Bettina; Ellinger-Ziegelbauer, Heidrun; Thomson, John P; Meehan, Richard R; Elcombe, Clifford R; Henderson, Colin J; Wolf, C Roland; Schwarz, Michael; Moulin, Pierre; Terranova, Rémi; Moggs, Jonathan G

    2014-06-01

    The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.

  13. Binding of [3H] SR 49059, a potent nonpeptide vasopressin V1a antagonist, to rat and human liver membranes.

    PubMed

    Serradeil-Le Gal, C; Raufaste, D; Marty, E; Garcia, C; Maffrand, J P; Le Fur, G

    1994-02-28

    The new potent and selective nonpeptide vasopressin V1a antagonist, SR 49059, was tritiated and used for the characterization of rat and human liver AVP V1a receptors. Binding of [3H] SR 49059 was time-dependent, reversible and saturable. A single class of high affinity binding sites was identified with Kd values of 0.63 +/- 0.13 and 2.95 +/- 0.64 nM, in rat and human liver membranes, respectively. The maximal binding capacity (Bmax) was about 7 times higher in rat than in human liver preparations. The relative potencies of several AVP/oxytocin agonists or antagonists to inhibit [3H] SR 49059 binding confirmed that this ligand labeled a homogeneous population of sites with the expected AVP V1a profile. Furthermore, [3H] SR 49059 or unlabeled SR 49059 displayed only slight species differences between rat and human V1a receptors, whereas OPC-21268, another nonpeptide V1a antagonist, exhibited a high species-related potency with more than 500 fold higher affinity for rat than for human liver V1a receptors. Thus, [3H] SR 49059 is the first nonpeptide AVP V1a ligand reported having highly specific activity, stability, specificity and affinity. This makes it a suitable probe for labeling AVP V1a receptors in rat and also in human tissues.

  14. IL-2high tissue-resident T cells in the human liver: Sentinels for hepatotropic infection

    PubMed Central

    Davies, Jessica; Hansi, Navjyot; Easom, Nicholas J.W.; Burton, Alice R.; Stegmann, Kerstin A.; Schurich, Anna; Swadling, Leo; Male, Victoria; Luong, TuVinh; Davidson, Brian R.; Kennedy, Patrick T.F.

    2017-01-01

    The liver provides a tolerogenic immune niche exploited by several highly prevalent pathogens as well as by primary and metastatic tumors. We have sampled healthy and hepatitis B virus (HBV)–infected human livers to probe for a subset of T cells specialized to overcome local constraints and mediate immunity. We characterize a population of T-betloEomesloBlimp-1hiHobitlo T cells found within the intrahepatic but not the circulating memory CD8 T cell pool expressing liver-homing/retention markers (CD69+CD103+ CXCR6+CXCR3+). These tissue-resident memory T cells (TRM) are preferentially expanded in patients with partial immune control of HBV infection and can remain in the liver after the resolution of infection, including compartmentalized responses against epitopes within all major HBV proteins. Sequential IL-15 or antigen exposure followed by TGFβ induces liver-adapted TRM, including their signature high expression of exhaustion markers PD-1 and CD39. We suggest that these inhibitory molecules, together with paradoxically robust, rapid, cell-autonomous IL-2 and IFNγ production, equip liver CD8 TRM to survive while exerting local noncytolytic hepatic immunosurveillance. PMID:28526759

  15. Metabolism and bioactivation of the tricyclic antidepressant amitriptyline in human liver microsomes and human urine.

    PubMed

    Zhou, Xin; Chen, Chang; Zhang, Fangrong; Zhang, Yang; Feng, Yuling; Ouyang, Hui; Xu, Yong; Jiang, Hongliang

    2016-07-01

    Amitriptyline is a widely used tricyclic antidepressant, but the metabolic studies were conducted almost 20 years ago using high-performance liquid chromatography coupled with ultraviolet detector or radiolabeled methods. First, multiple ion monitoring (MIM)- enhanced product ion (EPI) scan was used to obtain the diagnostic ions or neutral losses in human liver microsome incubations with amitriptyline. Subsequently, predicted multiple reaction monitoring (MRM)-EPI scan was used to identify the metabolites in human urine with the diagnostic ions or neutral losses. Finally, product ion filtering and neutral loss filtering were used as the data mining tools to screen metabolites. Consequently, a total of 28 metabolites were identified in human urine after an oral administration using LC-MS/MS. An integrated workflow using LC-MS/MS was developed to comprehensively profile the metabolites of amitriptyline in human urine, in which five N-acetyl-l-cysteine conjugates were characterized as tentative biomarkers for idiosyncratic toxicity.

  16. VE-cadherin expression allows identification of a new class of hematopoietic stem cells within human embryonic liver.

    PubMed

    Oberlin, Estelle; Fleury, Maud; Clay, Denis; Petit-Cocault, Laurence; Candelier, Jean-Jacques; Mennesson, Benoît; Jaffredo, Thierry; Souyri, Michèle

    2010-11-25

    Edification of the human hematopoietic system during development is characterized by the production of waves of hematopoietic cells separated in time, formed in distinct embryonic sites (ie, yolk sac, truncal arteries including the aorta, and placenta). The embryonic liver is a major hematopoietic organ wherein hematopoietic stem cells (HSCs) expand, and the future, adult-type, hematopoietic cell hierarchy becomes established. We report herein the identification of a new, transient, and rare cell population in the human embryonic liver, which coexpresses VE-cadherin, an endothelial marker, CD45, a pan-hematopoietic marker, and CD34, a common endothelial and hematopoietic marker. This population displays an outstanding self-renewal, proliferation, and differentiation potential, as detected by in vitro and in vivo hematopoietic assays compared with its VE-cadherin negative counterpart. Based on VE-cadherin expression, our data demonstrate the existence of 2 phenotypically and functionally separable populations of multipotent HSCs in the human embryo, the VE-cadherin(+) one being more primitive than the VE-cadherin(-) one, and shed a new light on the hierarchical organization of the embryonic liver HSC compartment.

  17. Choline, Its Potential Role in Nonalcoholic Fatty Liver Disease, and the Case for Human and Bacterial Genes.

    PubMed

    Sherriff, Jill L; O'Sullivan, Therese A; Properzi, Catherine; Oddo, Josephine-Lee; Adams, Leon A

    2016-01-01

    Our understanding of the impact of poor hepatic choline/phosphatidylcholine availability in promoting the steatosis characteristic of human nonalcoholic fatty liver disease (NAFLD) has recently advanced and possibly relates to phosphatidylcholine/phosphatidylethanolamine concentrations in various, membranes as well as cholesterol dysregulation. A role for choline/phosphatidylcholine availability in the progression of NAFLD to liver injury and serious hepatic consequences in some individuals requires further elucidation. There are many reasons for poor choline/phosphatidylcholine availability in the liver, including low intake, estrogen status, and genetic polymorphisms affecting, in particular, the pathway for hepatic de novo phosphatidylcholine synthesis. In addition to free choline, phosphatidylcholine has been identified as a substrate for trimethylamine production by certain intestinal bacteria, thereby reducing host choline bioavailability and providing an additional link to the increased risk of cardiovascular disease faced by those with NAFLD. Thus human choline requirements are highly individualized and biomarkers of choline status derived from metabolomics studies are required to predict those at risk of NAFLD induced by choline deficiency and to provide a basis for human intervention trials. © 2016 American Society for Nutrition.

  18. Metabolic interaction between ethanol, high-dose alprazolam and its two main metabolites using human liver microsomes in vitro.

    PubMed

    Tanaka, Einosuke; Nakamura, Takako; Terada, Masaru; Shinozuka, Tatsuo; Honda, Katsuya

    2007-08-01

    Alprazolam is widely used as a short-acting antidepressant and anxiolytic agent and its effect appears at very low doses while ethanol is used as a social drug worldwide. Sometimes, toxic interactions occur following combined administration of these two drugs. In this study we have investigated the interaction between ethanol and high-dose alprazolam using human liver microsomes in vitro. The interaction effects between ethanol and alprazolam were examined by a mixed-function oxidation reaction using a human liver microsomal preparation. Alprazolam and its two main metabolites (alpha-hydroxyalprazolam: alpha-OH alprazolam, 4-hydroxyalprazolam: 4-OH alprazolam) were measured by HPLC/UV. The production of 4-OH alprazolam, one main metabolite of alprazolam, was weakly inhibited by higher dose of ethanol, but not alpha-OH alprazolam. These results using a human liver microsomal preparation show that the production of 4-OH alprazolam is weakly inhibited by ethanol but not alpha-OH alprazolam. Toxic levels may be reached by simultaneous administration of ethanol and high-dose alprazolam.

  19. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu

    2013-02-15

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomicmore » approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed

  20. Correlation between Conjugated Bisphenol A Concentrations and Efflux Transporter Expression in Human Fetal Livers

    PubMed Central

    Moscovitz, Jamie E.; Nahar, Muna S.; Shalat, Stuart L.; Slitt, Angela L.; Dolinoy, Dana C.

    2016-01-01

    Because of its widespread use in the manufacturing of consumer products over several decades, human exposure to bisphenol A (BPA) has been pervasive. Fetuses are particularly sensitive to BPA exposure, with a number of negative developmental and reproductive outcomes observed in rodent perinatal models. Xenobiotic transporters are one mechanism to extrude conjugated and unconjugated BPA from the liver. In this study, the mRNA expression of xenobiotic transporters and relationships with total, conjugated, and free BPA levels were explored utilizing human fetal liver samples. The mRNA expression of breast cancer resistance protein (BCRP) and multidrug resistance-associated transporter (MRP)4, as well as BCRP and multidrug resistance transporter 1 exhibited the highest degree of correlation, with r2 values of 0.941 and 0.816 (P < 0.001 for both), respectively. Increasing concentrations of conjugated BPA significantly correlated with high expression of MRP1 (P < 0.001), MRP2 (P < 0.05), and MRP3 (P < 0.05) transporters, in addition to the NF-E2–related factor 2 transcription factor (P < 0.001) and its prototypical target gene, NAD(P)H quinone oxidoreductase 1 (P < 0.001). These data demonstrate that xenobiotic transporters may be coordinately expressed in the human fetal liver. This is also the first report of a relationship between environmentally relevant fetal BPA levels and differences in the expression of transporters that can excrete the parent compound and its metabolites. PMID:26851240

  1. A robust collagen scoring method for human liver fibrosis by second harmonic microscopy.

    PubMed

    Guilbert, Thomas; Odin, Christophe; Le Grand, Yann; Gailhouste, Luc; Turlin, Bruno; Ezan, Frédérick; Désille, Yoann; Baffet, Georges; Guyader, Dominique

    2010-12-06

    Second Harmonic Generation (SHG) microscopy offers the opportunity to image collagen of type I without staining. We recently showed that a simple scoring method, based on SHG images of histological human liver biopsies, correlates well with the Metavir assessment of fibrosis level (Gailhouste et al., J. Hepatol., 2010). In this article, we present a detailed study of this new scoring method with two different objective lenses. By using measurements of the objectives point spread functions and of the photomultiplier gain, and a simple model of the SHG intensity, we show that our scoring method, applied to human liver biopsies, is robust to the objective's numerical aperture (NA) for low NA, the choice of the reference sample and laser power, and the spatial sampling rate. The simplicity and robustness of our collagen scoring method may open new opportunities in the quantification of collagen content in different organs, which is of main importance in providing diagnostic information and evaluation of therapeutic efficiency.

  2. Medium and Long Chain Fatty Acids Differentially Modulate Apoptosis and Release of Inflammatory Cytokines in Human Liver Cells.

    PubMed

    Li, Lumin; Wang, Baogui; Yu, Ping; Wen, Xuefang; Gong, Deming; Zeng, Zheling

    2016-06-01

    Medium chain fatty acids (MCFA) can be more easily absorbed and supply energy more rapidly than long chain fatty acids (LCFA). However, little is known about the inflammatory response by the treatment of MCFA in human liver cells. Thus this study used human liver cells (LO2) to evaluate the effects of MCFA on apoptosis and inflammatory response. Tetrazolim-based colorimetric assay and lactate dehydrogenase assay were used to measure the viability of LO2 cells, isolated spleens and liver cells from BALB/C mice. Inverted fluorescence microscopy and flow cytometry were used to assess the cell apoptosis. Activity of superoxide dismutase and malondialdehyde level were measured to determine the oxidative damage. mRNA or protein levels of classical pro-inflammatory cytokines were analyzed by quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay and western blotting. The results showed that the liver cells treated with the fatty acids at 200 μM for 24 h exhibited good viability. Fatty acids induced inflammatory cytokines at transcriptional and translational levels to a lesser extent than lipopolysaccharide. LCFA (oleic acid) up-regulated tumor necrosis fator-α, monocyte chemoattractant-1 and interleukin-1β while down-regulated IL-6 and IL-8 secretion to a higher extent than MCFA in mRNA and protein levels. These findings suggested that MCFA may induce apoptosis to a less extent and exert more gentle inflammation than LCFA in human liver cells. © 2016 Institute of Food Technologists®

  3. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver.

    PubMed

    Yan, Liying; Guo, Hongshan; Hu, Boqiang; Li, Rong; Yong, Jun; Zhao, Yangyu; Zhi, Xu; Fan, Xiaoying; Guo, Fan; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Wang, Yan; Wen, Lu; Qiao, Jie; Tang, Fuchou

    2016-02-26

    The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Human liver plasma membranes contain receptors for the hepatitis B virus pre-S1 region and, via polymerized human serum albumin, for the pre-S2 region.

    PubMed Central

    Pontisso, P; Petit, M A; Bankowski, M J; Peeples, M E

    1989-01-01

    Hepatitis B virus particles contain three related viral envelope proteins, the small, middle, and large S (surface) proteins. All three proteins contain the small S amino acid sequence at their carboxyl terminus. It is not clear which of these S proteins functions as the viral attachment protein, binding to a target cell receptor and initiating infection. In this report, recombinant hepatitis B surface antigen (rHBsAg) particles, which contain only virus envelope proteins, were radioactively labeled, and their attachment to human liver membranes was examined. Only the rHBsAg particles containing the large S protein were capable of directly attaching to liver plasma membranes. The attachment was saturable and could be prevented by competition with unlabeled particles or by a monoclonal antibody specific for the large S protein. In the presence of polymerized human serum albumin, both large and middle S protein-containing rHBsAg particles were capable of attaching to the liver plasma membranes. Small S protein-containing rHBsAg particles were not able to attach even in the presence of polymerized human serum albumin. These results indicate that the large S protein may be the viral attachment protein for hepatocytes, binding directly to liver plasma membranes by its unique amino-terminal (pre-S1) sequence. These results also indicate that polymerized human serum albumin or a similar molecule could act as an intermediate receptor, attaching to liver plasma membranes and to the amino acid sequence (pre-S2) shared by the middle and large S proteins but not contained in the small S protein. Images PMID:2649690

  5. The nutritional geometry of liver disease including non-alcoholic fatty liver disease.

    PubMed

    Simpson, Stephen J; Raubenheimer, David; Cogger, Victoria C; Macia, Laurence; Solon-Biet, Samantha M; Le Couteur, David G; George, Jacob

    2018-02-01

    Nutrition has a profound effect on chronic liver disease, especially non-alcoholic fatty liver disease (NAFLD). Most observational studies and clinical trials have focussed on the effects of total energy intake, or the intake of individual macronutrients and certain micronutrients, such as vitamin D, on liver disease. Although these studies have shown the importance of nutrition on hepatic outcomes, there is not yet any unifying framework for understanding the relationship between diet and liver disease. The Geometric Framework for Nutrition (GFN) is an innovative model for designing nutritional experiments or interpreting nutritional data that can determine the effects of nutrients and their interactions on animal behaviour and phenotypes. Recently the GFN has provided insights into the relationship between dietary energy and macronutrients on obesity and ageing in mammals including humans. Mouse studies using the GFN have disentangled the effects of macronutrients on fatty liver and the gut microbiome. The GFN is likely to play a significant role in disentangling the effects of nutrients on liver disease, especially NAFLD, in humans. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta.

    PubMed Central

    Schuetz, J D; Kauma, S; Guzelian, P S

    1993-01-01

    Placenta and endometrium carry out steroidogenic biotransformation reactions such as 6-beta-hydroxylation of cortisol, a reaction characteristic of the dominant family of cytochromes P450 in human liver, CYP3A. To investigate the possible role in these extrahepatic tissues of the CYP3A microsomal hemoproteins, we analyzed placental and endometrial microsomes on Western blots developed with an anti-human CYP3A antibody. We found an immunoreactive 51,500 D protein that migrated between CYP3A3 (HLp) and CYP3A5 (HLp2) identical with CYP3A7 (HFLa). CYP3A7, a form found prominently in human fetal liver microsomes, was first isolated as a liver 16-alpha-dehydroepiandrosterone-sulfate hydroxylase. Northern blot analysis of total RNA isolated from placenta or from endometrium demonstrated a single band that cross-hybridized with a CYP3A7 cDNA. Amplification of the same RNA samples with the use of primers specific for CYP3A7, produced a 552-bp segment that had the predicted size and the same DNA sequence as does liver CYP3A7 cDNA. Hybridizable endometrial CYP3A7 mRNA was detected more frequently (six of seven samples) and in higher amounts (approximately 12-fold higher) in pregnant compared with nonpregnant women (4 of 12 samples). In addition, during the secretory phase of the menstrual cycle CYP3A7 expression was sixfold higher than in the one sample from the proliferative phase that had detectable CYP3A7 mRNA. Moreover, the amounts of placental and endometrial CYP3A7 mRNA and protein increased substantially from the first to the second trimester of pregnancy. We conclude that placenta and endometrium express the same P450 as is found in fetal liver. These tissues represent a previously unrecognized and quantitatively important site for 6-beta-hydroxylation and 16-alpha-hydroxylation of specific steroid precursors, possibly for protection of the fetus from the toxic effects of endogenous steroids and foreign substrates. Images PMID:8349787

  7. Extracorporeal Bioartificial Liver for Treating Acute Liver Diseases

    PubMed Central

    Kumar, Ashok; Tripathi, Anuj; Jain, Shivali

    2011-01-01

    Abstract: Liver is a vital organ of the human body performing myriad of essential functions. Liver-related ailments are often life-threatening and dramatically deteriorate the quality of life of patients. Management of acute liver diseases requires adequate support of various hepatic functions. Thus far, liver transplantation has been proven as the only effective solution for acute liver diseases. However, broader application of liver transplantation is limited by demand for lifelong immunosuppression, shortage of organ donors, relative high morbidity, and high cost. Therefore, research has been focused on attempting to develop alternative support systems to treat liver diseases. Earlier attempts have been made to use nonbiological therapies based on the use of conventional detoxification procedures such as filtration and dialysis. However, the absence of liver cells in such techniques reduced the overall survival rate of the patients and led to inadequate essential liver-specific functions. As a result, there has been growing interest in the development of biological therapy-based extracorporeal liver support systems as a bridge to liver transplantation or to support the ailing liver. A bioartificial liver support is an extracorporeal device through which plasma is circulated over living and functionally active hepatocytes packed in a bioreactor with the aim to aid the diseased liver until it regenerates or until a suitable graft for transplantation is available. This review article gives a brief overview of efficacy of various liver support systems that are currently available. Also, the development of advanced liver support systems, which has been analyzed for improving the important system component such as cell source and other culture and circulation conditions for the maintenance of the liver-specific functions, have been described. PMID:22416599

  8. Keratins 8 and 18 are type II acute-phase responsive genes overexpressed in human liver disease.

    PubMed

    Guldiken, Nurdan; Usachov, Valentyn; Levada, Kateryna; Trautwein, Christian; Ziol, Marianne; Nahon, Pierre; Strnad, Pavel

    2015-04-01

    Keratins (Ks) 7, 8, 18 and 19 constitute important markers and modifiers of liver disease. In mice, K8 and K18 are stress inducible and a dysregulated K8 > K18 stoichiometry predisposes to formation of Mallory-Denk bodies (MDBs), i.e. aggregates characteristic of chronic liver disorders such as alcoholic liver disease (ALD). In our study, we analyse the expression and the regulation of keratins in context of human liver disease. K7, K8, K18 and K19 mRNA levels were determined in liver biopsies from patients with ALD, non-alcoholic steatohepatitis (NASH), chronic hepatitis B (HBV), hepatitis C (HCV) and from control subjects. HepG2 and Hep3B cells were treated with IL-1β, IL-6 and TNF-α. Mice were injected with turpentine, an established IL-6 inducer. K7, K8 and K18 were 1.5- to 3-fold upregulated in livers of ALD and HCV patients with a more active disease, but not in HBV/NASH subjects, while K19 was significantly elevated in all analysed disorders. K8 and K18 expression displayed a strong correlation (r = 0.89), but dysregulated levels with the K8 > K18 state were seen in ALD. All keratins were overexpressed in subjects with moderate vs. minimal inflammation, while K7, K8 and K18 were upregulated in patients with advanced liver fibrosis. In HepG2/Hep3B cells, IL-6 treatment but not IL-1β or TNF-α significantly increased K8 and K18 expression and elevated K18 levels were seen after turpentine injection. Keratins represent type II acute-phase responsive genes overexpressed in specific human liver disorders. A K8 > K18 state occurs in ALD and predisposes to MDB formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Human Hepatocyte Growth Factor (hHGF)-Modified Hepatic Oval Cells Improve Liver Transplant Survival

    PubMed Central

    Li, Li; Ran, Jiang-Hua; Li, Xue-Hua; Liu, Zhi-Heng; Liu, Gui-Jie; Gao, Yan-Chao; Zhang, Xue-Li; Sun, Hiu-Dong

    2012-01-01

    Despite progress in the field of immunosuppression, acute rejection is still a common postoperative complication following liver transplantation. This study aims to investigate the capacity of the human hepatocyte growth factor (hHGF) in modifying hepatic oval cells (HOCs) administered simultaneously with orthotopic liver transplantation as a means of improving graft survival. HOCs were activated and isolated using a modified 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH) model in male Lewis rats. A HOC line stably expressing the HGF gene was established following stable transfection of the pBLAST2-hHGF plasmid. Our results demonstrated that hHGF-modified HOCs could efficiently differentiate into hepatocytes and bile duct epithelial cells in vitro. Administration of HOCs at the time of liver transplantation induced a wider distribution of SRY-positive donor cells in liver tissues. Administration of hHGF-HOC at the time of transplantation remarkably prolonged the median survival time and improved liver function for recipients compared to these parameters in the other treatment groups (P<0.05). Moreover, hHGF-HOC administration at the time of liver transplantation significantly suppressed elevation of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) levels while increasing the production of IL-10 and TGF-β1 (P<0.05). HOC or hHGF-HOC administration promoted cell proliferation, reduced cell apoptosis, and decreased liver allograft rejection rates. Furthermore, hHGF-modified HOCs more efficiently reduced acute allograft rejection (P<0.05 versus HOC transplantation only). Our results indicate that the combination of hHGF-modified HOCs with liver transplantation decreased host anti-graft immune responses resulting in a reduction of allograft rejection rates and prolonging graft survival in recipient rats. This suggests that HOC-based cell transplantation therapies can be developed as a means of treating severe liver injuries. PMID

  10. Phenotypic and in vivo functional characterization of immortalized human fetal liver cells.

    PubMed

    Patil, Pradeep B; Begum, Setara; Joshi, Meghnad; Kleman, Marika I; Olausson, Michael; Sumitran-Holgersson, Suchitra

    2014-06-01

    We report the establishment and characterization of immortalized human fetal liver progenitor cells by expression of the Simian virus 40 large T (SV40 LT) antigen. Well-characterized cells at various passages were transplanted into nude mice with acute liver injury and tested for functional capacity. The SV40LT antigen-immortalized fetal liver cells showed a morphology similar to primary cells. Cultured cells demonstrated stable phenotypic expression in various passages, of hepatic markers such as albumin, CK 8, CK18, transcription factors HNF-4α and HNF-1α and CYP3A/7. The cells did not stain for any of the tested cancer-associated markers. Albumin, HNF-4α and CYP3A7 expression was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Flow cytometry showed expression of some progenitor cell markers. In vivo study showed that the cells expressed both fetal and differentiated hepatocytes markers. Our study suggests new approaches to expand hepatic progenitor cells, analyze their fate in animal models aiming at cell therapy of hepatic diseases.

  11. Liver Immunology

    PubMed Central

    Bogdanos, Dimitrios P.; Gao, Bin; Gershwin, M. Eric

    2014-01-01

    The liver is the largest organ in the body and is generally regarded by non-immunologists as not having lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates a tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and is also instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena which if are not controlled by regulatory lymphoid populations may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events which lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discus select, but not all, immune mediated liver disease and attempt to place these data in the context of human autoimmunity. PMID:23720323

  12. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation.

    PubMed

    Larijani, Bagher; Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cell therapy seems a promising avenue in regenerative medicine. Within various stem cells, mesenchymal stem cells have progressively used for cellular therapy. Because of the age-related decreasing in the frequency and differentiating capacity of adult MSCs, fetal tissues such as fetal liver, lung, pancreas, spleen, etc. have been introduced as an alternative source of MSCs for cellular therapy. On the other hand, using stem cells as advanced therapy medicinal products, must be performed in compliance with cGMP as a quality assurance system to ensure the safety, quality, and identity of cell products during translation from the basic stem cell sciences into clinical cell transplantation. In this chapter the authors have demonstrated the manufacturing of GMP-grade human fetal liver-derived mesenchymal stem cells.

  13. Human urine and plasma concentrations of bisphenol A extrapolated from pharmacokinetics established in in vivo experiments with chimeric mice with humanized liver and semi-physiological pharmacokinetic modeling.

    PubMed

    Miyaguchi, Takamori; Suemizu, Hiroshi; Shimizu, Makiko; Shida, Satomi; Nishiyama, Sayako; Takano, Ryohji; Murayama, Norie; Yamazaki, Hiroshi

    2015-06-01

    The aim of this study was to extrapolate to humans the pharmacokinetics of estrogen analog bisphenol A determined in chimeric mice transplanted with human hepatocytes. Higher plasma concentrations and urinary excretions of bisphenol A glucuronide (a primary metabolite of bisphenol A) were observed in chimeric mice than in control mice after oral administrations, presumably because of enterohepatic circulation of bisphenol A glucuronide in control mice. Bisphenol A glucuronidation was faster in mouse liver microsomes than in human liver microsomes. These findings suggest a predominantly urinary excretion route of bisphenol A glucuronide in chimeric mice with humanized liver. Reported human plasma and urine data for bisphenol A glucuronide after single oral administration of 0.1mg/kg bisphenol A were reasonably estimated using the current semi-physiological pharmacokinetic model extrapolated from humanized mice data using algometric scaling. The reported geometric mean urinary bisphenol A concentration in the U.S. population of 2.64μg/L underwent reverse dosimetry modeling with the current human semi-physiological pharmacokinetic model. This yielded an estimated exposure of 0.024μg/kg/day, which was less than the daily tolerable intake of bisphenol A (50μg/kg/day), implying little risk to humans. Semi-physiological pharmacokinetic modeling will likely prove useful for determining the species-dependent toxicological risk of bisphenol A. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Magnetoacoustic imaging of human liver tumor with magnetic induction

    NASA Astrophysics Data System (ADS)

    Hu, Gang; Cressman, Erik; He, Bin

    2011-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging technique under development to achieve imaging of electrical impedance contrast in biological tissues with spatial resolution close to ultrasound imaging. However, previously reported MAT-MI experimental results are obtained either from low salinity gel phantoms, or from normal animal tissue samples. In this study, we report the experimental study on the performance of the MAT-MI imaging method for imaging in vitro human liver tumor tissue. The present promising experimental results suggest the feasibility of MAT-MI to image electrical impedance contrast between the cancerous tissue and its surrounding normal tissues.

  15. Postneonatal Mortality and Liver Changes in Cloned Pigs Associated with Human Tumor Necrosis Factor Receptor I-Fc and Human Heme Oxygenase-1 Overexpression

    PubMed Central

    Kim, Geon A.; Jin, Jun-Xue; Lee, Sanghoon; Taweechaipaisankul, Anukul; Oh, Hyun Ju; Hwang, Joing-Ik; Ahn, Curie

    2017-01-01

    Soluble human tumor necrosis factor (shTNFRI-Fc) and human heme oxygenase 1 (hHO-1) are key regulators for protection against oxidative and inflammatory injury for xenotransplantation. Somatic cells with more than 10 copy numbers of shTNFRI-Fc and hHO-1 were employed in somatic cell nuclear transfer to generate cloned pigs, thereby resulting in seven cloned piglets. However, produced piglets were all dead within 24 hours after birth. Obviously, postnatal death with liver apoptosis was reported in the higher copy number of shTNFRI-Fc and hHO-1 piglets. In liver, the transcript levels of ferritin heavy chain, light chain, transferrin, and inducible nitric oxide synthase were significantly highly expressed compared to those of lower copy number of shTNFRI-Fc and hHO-1 piglets (P < 0.05). Also, H2O2 contents were increased, and superoxide dismutase was significantly lower in the higher copy number of shTNFRI-Fc and hHO-1 piglets (P < 0.05). These results indicate that TNFRI-Fc and hHO-1 overexpression may apparently induce free iron in the liver and exert oxidative stress by enhancing reactive oxygen species production and block normal postneonatal liver metabolism. PMID:28503569

  16. Postneonatal Mortality and Liver Changes in Cloned Pigs Associated with Human Tumor Necrosis Factor Receptor I-Fc and Human Heme Oxygenase-1 Overexpression.

    PubMed

    Kim, Geon A; Jin, Jun-Xue; Lee, Sanghoon; Taweechaipaisankul, Anukul; Oh, Hyun Ju; Hwang, Joing-Ik; Ahn, Curie; Saadeldin, Islam M; Lee, Byeong Chun

    2017-01-01

    Soluble human tumor necrosis factor (shTNFRI-Fc) and human heme oxygenase 1 (hHO-1) are key regulators for protection against oxidative and inflammatory injury for xenotransplantation. Somatic cells with more than 10 copy numbers of shTNFRI-Fc and hHO-1 were employed in somatic cell nuclear transfer to generate cloned pigs, thereby resulting in seven cloned piglets. However, produced piglets were all dead within 24 hours after birth. Obviously, postnatal death with liver apoptosis was reported in the higher copy number of shTNFRI-Fc and hHO-1 piglets. In liver, the transcript levels of ferritin heavy chain, light chain, transferrin, and inducible nitric oxide synthase were significantly highly expressed compared to those of lower copy number of shTNFRI-Fc and hHO-1 piglets ( P < 0.05). Also, H 2 O 2 contents were increased, and superoxide dismutase was significantly lower in the higher copy number of shTNFRI-Fc and hHO-1 piglets ( P < 0.05). These results indicate that TNFRI-Fc and hHO-1 overexpression may apparently induce free iron in the liver and exert oxidative stress by enhancing reactive oxygen species production and block normal postneonatal liver metabolism.

  17. Human serum cholinesterase from liver pathological samples exhibit highly elevated aryl acylamidase activity.

    PubMed

    Boopathy, Rathanam; Rajesh, Ramanna Valmiki; Darvesh, Sultan; Layer, Paul G

    2007-05-01

    Although aspartate aminotransferase (AST) and gamma-glutamyltransferase (gamma GT) enzymes are widely used as markers for liver disorders, the ubiquitous enzyme butyrylcholinesterase (BChE), synthesized in liver is also used as marker in the assessment of liver pathophysiology. This BChE enzyme in addition to its esterase activity has yet another enzymatic function designated as aryl acylamidase (AAA) activity. It is determined in in vitro based on the hydrolysis of the synthetic substrate o-nitroacetanilide. In the present study, human serum cholinesterase (BChE) activity was studied with respect to its AAA activity on the BChE protein (AAA(BChE)) in patients with liver disorders. AST and gamma GT values were taken into account in this study as known markers for liver disorders. Blood samples were grouped into 3 based on esterase activity associated with BChE protein. They are normal, low, and very low BChE activity but with markedly increased AST and gamma GT levels. These samples were tested for their respective AAA function. Association of AAA with BChE from samples was proved using BChE monoclonal antibody precipitation experiment. The absolute levels of AAA were increased as BChE activity decreased while deviating from normal samples and such deviation was directly proportional to the severity of the liver disorder. Differences between these groups became prominent after determining the ratios of AAA(BChE) to BChE activities. Samples showing very high AAA(BChE) to BChE ratio were also showing high to very high gamma GT values. These findings establish AAA(BChE) as an independently regulated enzymatic activity on BChE especially in liver disorders. Moreover, since neither the low esterase activity of BChE by itself nor increased levels of AST/gamma GT are sufficient pathological indicators, this pilot study merits replication with large sample numbers.

  18. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes.

    PubMed

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung

    2013-09-05

    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Screening of missing proteins in the human liver proteome by improved MRM-approach-based targeted proteomics.

    PubMed

    Chen, Chen; Liu, Xiaohui; Zheng, Weimin; Zhang, Lei; Yao, Jun; Yang, Pengyuan

    2014-04-04

    To completely annotate the human genome, the task of identifying and characterizing proteins that currently lack mass spectrometry (MS) evidence is inevitable and urgent. In this study, as the first effort to screen missing proteins in large scale, we developed an approach based on SDS-PAGE followed by liquid chromatography-multiple reaction monitoring (LC-MRM), for screening of those missing proteins with only a single peptide hit in the previous liver proteome data set. Proteins extracted from normal human liver were separated in SDS-PAGE and digested in split gel slice, and the resulting digests were then subjected to LC-schedule MRM analysis. The MRM assays were developed through synthesized crude peptides for target peptides. In total, the expressions of 57 target proteins were confirmed from 185 MRM assays in normal human liver tissues. Among the proved 57 one-hit wonders, 50 proteins are of the minimally redundant set in the PeptideAtlas database, 7 proteins even have none MS-based information previously in various biological processes. We conclude that our SDS-PAGE-MRM workflow can be a powerful approach to screen missing or poorly characterized proteins in different samples and to provide their quantity if detected. The MRM raw data have been uploaded to ISB/SRM Atlas/PASSEL (PXD000648).

  20. Human Umbilical Cord MSC-Derived Exosomes Suppress the Development of CCl4-Induced Liver Injury through Antioxidant Effect.

    PubMed

    Jiang, Wenqian; Tan, Youwen; Cai, Mengjie; Zhao, Ting; Mao, Fei; Zhang, Xu; Xu, Wenrong; Yan, Zhixin; Qian, Hui; Yan, Yongmin

    2018-01-01

    Mesenchymal stem cells (MSCs) have been increasingly applied into clinical therapy. Exosomes are small (30-100 nm in diameter) membrane vesicles released by different cell types and possess the similar functions with their derived cells. Human umbilical cord MSC-derived exosomes (hucMSC-Ex) play important roles in liver repair. However, the effects and mechanisms of hucMSC-Ex on liver injury development remain elusive. Mouse models of acute and chronic liver injury and liver tumor were induced by carbon tetrachloride (CCl 4 ) injection, followed by administration of hucMSC-Ex via the tail vein. Alleviation of liver injury by hucMSC-Ex was determined. We further explored the production of oxidative stress and apoptosis in the development of liver injury and compared the antioxidant effects of hucMSC-Ex with frequently used hepatic protectant, bifendate (DDB) in liver injury. hucMSC-Ex alleviated CCl 4 -induced acute liver injury and liver fibrosis and restrained the growth of liver tumors. Decreased oxidative stress and apoptosis were found in hucMSC-Ex-treated mouse models and liver cells. Compared to bifendate (DDB) treatment, hucMSC-Ex presented more distinct antioxidant and hepatoprotective effects. hucMSC-Ex may suppress CCl 4 -induced liver injury development via antioxidant potentials and could be a more effective antioxidant than DDB in CCl 4 -induced liver tumor development.

  1. UPLC/MS MS data of testosterone metabolites in human and zebrafish liver microsomes and whole zebrafish larval microsomes.

    PubMed

    Saad, Moayad; Bijttebier, Sebastiaan; Matheeussen, An; Verbueken, Evy; Pype, Casper; Casteleyn, Christophe; Van Ginneken, Chris; Maes, Louis; Cos, Paul; Van Cruchten, Steven

    2018-02-01

    This article represents data regarding a study published in Toxicology in vitro entitled " in vitro CYP-mediated drug metabolism in the zebrafish (embryo) using human reference compounds" (Saad et al., 2017) [1]. Data were acquired with ultra-performance liquid chromatography - accurate mass mass spectrometry (UPLC-amMS). A full spectrum scan was conducted for the testosterone (TST) metabolites from the microsomal stability assay in zebrafish and humans. The microsomal proteins were extracted from adult zebrafish male (MLM) and female (FLM) livers, whole body homogenates of 96 h post fertilization larvae (EM) and a pool of human liver microsomes from 50 donors (HLM). Data are expressed as the abundance from the extracted ion chromatogram of the metabolites.

  2. Mode of action in relevance of rodent liver tumors to human cancer risk.

    PubMed

    Holsapple, Michael P; Pitot, Henri C; Cohen, Samuel M; Cohen, Samuel H; Boobis, Alan R; Klaunig, James E; Pastoor, Timothy; Dellarco, Vicki L; Dragan, Yvonne P

    2006-01-01

    Hazard identification and risk assessment paradigms depend on the presumption of the similarity of rodents to humans, yet species specific responses, and the extrapolation of high-dose effects to low-dose exposures can affect the estimation of human risk from rodent data. As a consequence, a human relevance framework concept was developed by the International Programme on Chemical Safety (IPCS) and International Life Sciences Institute (ILSI) Risk Science Institute (RSI) with the central tenet being the identification of a mode of action (MOA). To perform a MOA analysis, the key biochemical, cellular, and molecular events need to first be established, and the temporal and dose-dependent concordance of each of the key events in the MOA can then be determined. The key events can be used to bridge species and dose for a given MOA. The next step in the MOA analysis is the assessment of biological plausibility for determining the relevance of the specified MOA in an animal model for human cancer risk based on kinetic and dynamic parameters. Using the framework approach, a MOA in animals could not be defined for metal overload. The MOA for phenobarbital (PB)-like P450 inducers was determined to be unlikely in humans after kinetic and dynamic factors were considered. In contrast, after these factors were considered with reference to estrogen, the conclusion was drawn that estrogen-induced tumors were plausible in humans. Finally, it was concluded that the induction of rodent liver tumors by porphyrogenic compounds followed a cytotoxic MOA, and that liver tumors formed as a result of sustained cytotoxicity and regenerative proliferation are considered relevant for evaluating human cancer risk if appropriate metabolism occurs in the animal models and in humans.

  3. Hepatoprotective effect of an immortal human fetal hepatic cell transplantation on CCL(4)-induced acute liver injury in mice.

    PubMed

    Yan, Y B; Song, H; Zhong, B S; Wang, Z Y; Ying, S J; Wang, F

    2010-09-01

    Hepatocyte transplantation has been widely confirmed in the animal model experiments as an effective method for treatment of fulminant hepatic failure. However, the lack of donor organs remains a major problem. One solution is the development of transplantable hepatocytes. Herein we have transplanted intraperitoneally an established immortalized human fetal hepatic cell line (HL-7702) into CCl(4)-treated mice with acute liver injury to determine whether they provided life-saving metabolic support. The results showed lower levels of blood ammonia and higher content of liver albumin (P < .05) after HL-7702 transplantation versus nontransplanted controls at days 3 and 7. Histologic examination showed the transplantation group to be less affected at day 7 with no difference at day 14. In conclusion, an established immortal human fetal hepatic cell line may be a promising cell source providing life-saving metabolic support as a bioartificial liver device for the treatment of acute liver injury. 2010. Published by Elsevier Inc.

  4. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    PubMed

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [Construction and characterization of a cDNA library from human liver tissue of cirrhosis].

    PubMed

    Chen, Xiao-hong; Chen, Zhi; Chen, Feng; Zhu, Hai-hong; Zhou, Hong-juan; Yao, Hang-ping

    2005-03-01

    To construct a cDNA library from human liver tissue of cirrhosis. The total RNA from human liver tissue of cirrhosis was extracted using Trizol method, and the mRNA was purified using mRNA purification kit. SMART technique and CDSIII/3' primer were used for first-strand cDNA synthesis. Long distance PCR was then used to synthesize the double-strand cDNA that was then digested by proteinase K and Sfi I, and was fractionated by CHOMA SPIN-400 column. The cDNA fragments longer than 0.4 kb were collected and ligated to lambdaTripl Ex2 vector. Then lambda-phage packaging reaction and library amplification were performed. The qualities of both unamplified and amplified cDNA libraries was strictly checked by conventional titer determination. Eleven plaques were randomly picked and tested using PCR with universal primers derived from the sequence flanking the vector. The titers of unamplifed and amplified libraries were 1.03 x 10(6) pfu/ml and 1.36 x 10(9) pfu/ml respectively. The percentages of recombinants from both libraries were 97.24 % in unamplified library and 99.02 % in amplified library. The lengths of the inserts were 1.02 kb in average (36.36 % 1 approximately equals 2 kb and 63.64 % 0.5 approximately equals 1.0 kb). A high quality cDNA library from human liver tissue of cirrhosis was constructed successfully, which can be used for screening and cloning new special genes associated with the occurrence of cirrhosis.

  6. Choline, Its Potential Role in Nonalcoholic Fatty Liver Disease, and the Case for Human and Bacterial Genes12

    PubMed Central

    Sherriff, Jill L; O’Sullivan, Therese A; Properzi, Catherine; Oddo, Josephine-Lee; Adams, Leon A

    2016-01-01

    Our understanding of the impact of poor hepatic choline/phosphatidylcholine availability in promoting the steatosis characteristic of human nonalcoholic fatty liver disease (NAFLD) has recently advanced and possibly relates to phosphatidylcholine/phosphatidylethanolamine concentrations in various, membranes as well as cholesterol dysregulation. A role for choline/phosphatidylcholine availability in the progression of NAFLD to liver injury and serious hepatic consequences in some individuals requires further elucidation. There are many reasons for poor choline/phosphatidylcholine availability in the liver, including low intake, estrogen status, and genetic polymorphisms affecting, in particular, the pathway for hepatic de novo phosphatidylcholine synthesis. In addition to free choline, phosphatidylcholine has been identified as a substrate for trimethylamine production by certain intestinal bacteria, thereby reducing host choline bioavailability and providing an additional link to the increased risk of cardiovascular disease faced by those with NAFLD. Thus human choline requirements are highly individualized and biomarkers of choline status derived from metabolomics studies are required to predict those at risk of NAFLD induced by choline deficiency and to provide a basis for human intervention trials. PMID:26773011

  7. Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein.

    PubMed

    Sheng, Nan; Li, Juan; Liu, Hui; Zhang, Aiqian; Dai, Jiayin

    2016-01-01

    Perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad distribution in humans and the environment. The liver is an important target for PFAAs, but the mechanisms behind PFAAs interaction with hepatocyte proteins remain poorly understood. We characterized the binding of PFAAs to human liver fatty acid-binding protein (hL-FABP) and identified critical structural features in their interaction. The binding interaction of PFAAs with hL-FABP was determined by fluorescence displacement and isothermal titration calorimetry (ITC) assay. Molecular simulation was conducted to define interactions at the binding sites. ITC measurement revealed that PFOA/PFNA displayed a moderate affinity for hL-FABP at a 1:1 molar ratio, a weak binding affinity for PFHxS and no binding for PFHxA. Moreover, the interaction was mainly mediated by electrostatic attraction and hydrogen bonding. Substitution of Asn111 with Asp caused loss of binding affinity to PFAA, indicating its crucial role for the initial PFAA binding to the outer binding site. Substitution of Arg122 with Gly caused only one molecule of PFAA to bind to hL-FABP. Molecular simulation showed that substitution of Arg122 increased the volume of the outer binding pocket, making it impossible to form intensive hydrophobic stacking and hydrogen bonds with PFOA, and highlighting its crucial role in the binding process. The binding affinity of PFAAs increased significantly with their carbon number. Arg122 and Asn111 played a pivotal role in these interactions. Our findings may help understand the distribution pattern, bioaccumulation, elimination, and toxicity of PFAAs in humans.

  8. Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease.

    PubMed

    Ikeda, Etsuko; Yagi, Kiyohito; Kojima, Midori; Yagyuu, Takahiro; Ohshima, Akira; Sobajima, Satoshi; Tadokoro, Mika; Katsube, Yoshihiro; Isoda, Katsuhiro; Kondoh, Masuo; Kawase, Masaya; Go, Masahiro J; Adachi, Hisashi; Yokota, Yukiharu; Kirita, Tadaaki; Ohgushi, Hajime

    2008-05-01

    Adult stem cells have been reported to exist in various tissues. The isolation of high-quality human stem cells that can be used for regeneration of fatal deseases from accessible resources is an important advance in stem cell research. In the present study, we identified a novel stem cell, which we named tooth germ progenitor cells (TGPCs), from discarded third molar, commonly called as wisdom teeth. We demonstrated the characterization and distinctiveness of the TGPCs, and found that TGPCs showed high proliferation activity and capability to differentiate in vitro into cells of three germ layers including osteoblasts, neural cells, and hepatocytes. TGPCs were examined by the transplantation into a carbon tetrachloride (CCl4)-treated liver injured rat to determine whether this novel cell source might be useful for cell-based therapy to treat liver diseases. The successful engraftment of the TGPCs was demonstrated by PKH26 fluorescence in the recipient's rat as to liver at 4 weeks after transplantation. The TGPCs prevented the progression of liver fibrosis in the liver of CCl4-treated rats and contributed to the restoration of liver function, as assessed by the measurement of hepatic serum markers aspartate aminotransferase and alanine aminotransferase. Furthermore, the liver functions, observed by the levels of serum bilirubin and albumin, appeared to be improved following transplantation of TGPCs. These findings suggest that multipotent TGPCs are one of the candidates for cell-based therapy to treat liver diseases and offer unprecedented opportunities for developing therapies in treating tissue repair and regeneration.

  9. Metabolism of myclobutanil and triadimefon by human and rat cytochrome P450 enzymes and liver microsomes.

    PubMed

    Barton, H A; Tang, J; Sey, Y M; Stanko, J P; Murrell, R N; Rockett, J C; Dix, D J

    2006-09-01

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil was metabolized more rapidly than triadimefon, which is consistent with metabolism of the n-butyl side-chain in the former and the t-butyl group in the latter compound. Human and rat CYP2C and CYP3A enzymes were the most active. Metabolism was similar in microsomes prepared from livers of control and low-dose rats. High-dose (115 mg kg-1 day-1 of triadimefon or 150 mg kg-1 day-1 of myclobutanil) rats showed increased liver weight, induction of total CYP, and increased metabolism of the two triazoles, though the apparent Km appeared unchanged relative to the control. These data identify CYP enzymes important for the metabolization of these two triazoles. Estimated hepatic clearances suggest that CYP induction may have limited impact in vivo.

  10. Effects of dietary interventions on liver volume in humans.

    PubMed

    Bian, Hua; Hakkarainen, Antti; Lundbom, Nina; Yki-Järvinen, Hannele

    2014-04-01

    To compare effects of similar weight loss induced either by a short-term low-carbohydrate or by a long-term hypocaloric diet, and to determine effects of high carbohydrate overfeeding on liver total, lean, and fat volumes. Liver total, lean, and fat volumes were measured before and after (i) a 6-day low-carbohydrate diet (n = 17), (ii) a 7-month standard hypocaloric diet (n = 26), and (iii) a 3-week high-carbohydrate diet (n = 17), by combining magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ((1) H-MRS) techniques. At baseline, three groups were comparable with respect to age, body mass index, liver volumes and the liver fat content. Body weight decreased similarly by the short-term and long-term hypocaloric diets. Liver total volume decreased significantly more during the short-term low-carbohydrate (-22 ± 2%) than the long-term (-7 ± 2%) hypocaloric diet (P < 0.001). This was due to a greater decrease in liver lean volume in the short-term (-20 ± 2%) than the long-term (-4 ± 2%) weight loss group (P < 0.001). Decreases in liver fat were comparable. Liver volume increased by 9 ± 3% due to overfeeding (P< 0.02 for before vs. after). These data support the use of a short-term low-carbohydrate diet whenever a reduction in liver volume is desirable. Overeating carbohydrate is harmful because it increases liver volume. Copyright © 2013 The Obesity Society.

  11. Blood cell oxidative stress precedes hemolysis in whole blood-liver slice co-cultures of rat, dog, and human tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vickers, Alison E.M., E-mail: vickers_alison@allergan.co; Sinclair, John R.; Fisher, Robyn L.

    A novel in vitro model to investigate time-dependent and concentration-dependent responses in blood cells and hemolytic events is studied for rat, dog, and human tissues. Whole blood is co-cultured with a precision-cut liver slice. Methimazole (MMI) was selected as a reference compound, since metabolism of its imidazole thione moiety is linked with hematologic disorders and hepatotoxicity. An oxidative stress response occurred in all three species, marked by a decline in blood GSH levels by 24 h that progressed, and preceded hemolysis, which occurred at high MMI concentrations in the presence of a liver slice with rat (>= 1000 muM atmore » 48 h) and human tissues (>= 1000 muM at 48 h, >= 750 muM at 72 h) but not dog. Human blood-only cultures exhibited a decline of GSH levels but minimal to no hemolysis. The up-regulation of liver genes for heme degradation (Hmox1 and Prdx1), iron cellular transport (Slc40a1), and GSH synthesis and utilization (mGST1 and Gclc) were early markers of the oxidative stress response. The up-regulation of the Kupffer cell lectin Lgals3 gene expression indicated a response to damaged red blood cells, and Hp (haptoglobin) up-regulation is indicative of increased hemoglobin uptake. Up-regulation of liver IL-6 and IL-8 gene expression suggested an activation of an inflammatory response by liver endothelial cells. In summary, MMI exposure led to an oxidative stress response in blood cells, and an up-regulation of liver genes involved with oxidative stress and heme homeostasis, which was clearly separate and preceded frank hemolysis.« less

  12. Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury

    PubMed Central

    2012-01-01

    Background Hepatocytes and stem cells transplantation may be an alternative to liver transplantation in acute or chronic liver disease. We aimed to evaluate the therapeutic potential of mesenchymal stem cells from human umbilical cord (UCMSCs), a readily available source of mesenchymal stem cells, in the CCl4-induced acute liver injury model. Methods Mesenchymal stem cells profile was analyzed by flow cytometry. In order to evaluate the capability of our UCMSCs to differentiate in hepatocytes, cells were seeded on three different supports, untreated plastic support, MatrigelTM and human liver acellular matrix. Cells were analyzed by immunocitochemistry for alpha-fetoprotein and albumin expression, qPCR for hepatocyte markers gene expression, Periodic Acid-Schiff staining for glycogen storage, ELISA for albumin detection and colorimetric assay for urea secretion. To assess the effects of undifferentiated UCMSCs in hepatic regeneration after an acute liver injury, we transplanted them via tail vein in mice injected intraperitoneally with a single dose of CCl4. Livers were analyzed by histological evaluation for damage quantification, immunostaining for Kupffer and stellate cells/liver myofibroblasts activation and for UCMSCs homing. Pro- and anti-inflammatory cytokines gene expression was evaluated by qPCR analysis and antioxidant enzyme activity was measured by catalase quantification. Data were analyzed by Mann–Whitney U-test, Kruskal-Wallis test and Cuzick’s test followed by Bonferroni correction for multiple comparisons. Results We have standardized the isolation procedure to obtain a cell population with hepatogenic properties prior to in vivo transplantation. When subjected to hepatogenic differentiation on untreated plastic support, UCMSCs differentiated in hepatocyte-like cells as demonstrated by their morphology, progressive up-regulation of mature hepatocyte markers, glycogen storage, albumin and urea secretion. However, cells seeded on 3D

  13. Multi-Cellular 3D Human Primary Liver Cell Cultures Elevate Metabolic Activity Under Fluidic Flow

    PubMed Central

    Esch, Mandy B.; Prot, Jean-Matthieu; Wang, Ying I.; Miller, Paula; Llamas-Vidales, Jose Ricardo; Naughton, Brian A.; Applegate, Dawn R.

    2015-01-01

    Predicting drug-induced liver injury with in vitro cell culture models more accurately would be of significant value to the pharmaceutical industry. To this end we have developed a low-cost liver cell culture device that creates fluidic flow over a 3D primary liver cell culture that consists of multiple liver cell types, including hepatocytes and non-parenchymal cells (fibroblasts, stellate cells, and Kupffer cells). We tested the performance of the cell culture under fluidic flow for 14 days, finding that hepatocytes produced albumin and urea at elevated levels compared to static cultures. Hepatocytes also responded with induction of P450 (CYP1A1 and CYP3A4) enzyme activity when challenged with P450 inducers, although we did not find significant differences between static and fluidic cultures. Non-parenchymal cells were similarly responsive, producing interleukin 8 (IL-8) when challenged with 10 μM bacterial lipoprotein (LPS). To create the fluidic flow in an inexpensive manner, we used a rocking platform that tilts the cell culture devices at angles between ±12°, resulting in a periodically changing hydrostatic pressure drop and bidirectional fluid flow (average flow rate of 650 μL/min, and a maximum shear stress of 0.64 dyne/cm2). The increase in metabolic activity is consistent with the hypothesis that, similar to unidirectional fluidic flow, primary liver cell cultures derived from human tissues increase their metabolic activity in response to bidirectional fluidic flow. Since bidirectional flow drastically changes the behavior of other cells types that are shear sensitive, the finding that bidirectional flow increases the metabolic activity of primary liver cells also supports the theory that this increase in metabolic activity is likely caused by increased levels of gas and metabolite exchange or by the accumulation of soluble growth factors rather than by shear sensing. Our results indicate that device operation with bi-directional gravity-driven medium

  14. Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency.

    PubMed

    Herrera Sanchez, Maria Beatriz; Previdi, Sara; Bruno, Stefania; Fonsato, Valentina; Deregibus, Maria Chiara; Kholia, Sharad; Petrillo, Sara; Tolosano, Emanuela; Critelli, Rossana; Spada, Marco; Romagnoli, Renato; Salizzoni, Mauro; Tetta, Ciro; Camussi, Giovanni

    2017-07-27

    Argininosuccinate synthase (ASS)1 is a urea cycle enzyme that catalyzes the conversion of citrulline and aspartate to argininosuccinate. Mutations in the ASS1 gene cause citrullinemia type I, a rare autosomal recessive disorder characterized by neonatal hyperammonemia, elevated citrulline levels, and early neonatal death. Treatment for this disease is currently restricted to liver transplantation; however, due to limited organ availability, substitute therapies are required. Recently, extracellular vesicles (EVs) have been reported to act as intercellular transporters carrying genetic information responsible for cell reprogramming. In previous studies, we isolated a population of stem cell-like cells known as human liver stem cells (HLSCs) from healthy liver tissue. Moreover, EVs derived from HLSCs were reported to exhibit regenerative effects on the liver parenchyma in models of acute liver injury. The aim of this study was to evaluate whether EVs derived from normal HLSCs restored ASS1 enzymatic activity and urea production in hepatocytes differentiated from HLSCs derived from a patient with type I citrullinemia. HLSCs were isolated from the liver of a patient with type I citrullinemia (ASS1-HLSCs) and characterized by fluorescence-activated cell sorting (FACS), immunofluorescence, and DNA sequencing analysis. Furthermore, their differentiation capabilities in vitro were also assessed. Hepatocytes differentiated from ASS1-HLSCs were evaluated by the production of urea and ASS enzymatic activity. EVs derived from normal HLSCs were purified by differential ultracentrifugation followed by floating density gradient. The EV content was analyzed to identify the presence of ASS1 protein, mRNA, and ASS1 gene. In order to obtain ASS1-depleted EVs, a knockdown of the ASS1 gene in HLSCs was performed followed by EV isolation from these cells. Treating ASS1-HLSCs with EVs from HLSCs restored both ASS1 activity and urea production mainly through the transfer of ASS1 enzyme

  15. Microbiota and the liver.

    PubMed

    Shen, Ting-Chin David; Pyrsopoulos, Nikolaos; Rustgi, Vinod K

    2018-04-01

    The gut microbiome outnumbers the human genome by 150-fold and plays important roles in metabolism, immune system education, tolerance development, and prevention of pathogen colonization. Dysbiosis has been associated with nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), and alcoholic liver disease (ALD) as well as cirrhosis and complications. This article provides an overview of this relationship. Liver Transplantation 24 539-550 2018 AASLD. © 2018 by the American Association for the Study of Liver Diseases.

  16. Bisphenol A sulfonation is impaired in metabolic and liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L., E-mail: angela_slitt@uri.edu

    Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results:more » In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.« less

  17. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation

    PubMed Central

    Cuff, Antonia O.; Robertson, Francis P.; Stegmann, Kerstin A.; Pallett, Laura J.; Maini, Mala K.; Davidson, Brian R.

    2016-01-01

    Human liver contains an Eomeshi population of NK cells that is not present in the blood. In this study, we show that these cells are characterized by a molecular signature that mediates their retention in the liver. By examining liver transplants where donors and recipients are HLA mismatched, we distinguish between donor liver–derived and recipient-derived leukocytes to show that Eomeslo NK cells circulate freely whereas Eomeshi NK cells are unable to leave the liver. Furthermore, Eomeshi NK cells are retained in the liver for up to 13 y. Therefore, Eomeshi NK cells are long-lived liver-resident cells. We go on to show that Eomeshi NK cells can be recruited from the circulation during adult life and that circulating Eomeslo NK cells are able to upregulate Eomes and molecules mediating liver retention under cytokine conditions similar to those in the liver. This suggests that circulating NK cells are a precursor of their liver-resident counterparts. PMID:27798170

  18. Initial prevalence of anal human papilloma virus infection in liver transplant recipients.

    PubMed

    Grąt, Michał; Grąt, Karolina; Hołówko, Wacław; Malejczyk, Magdalena; Walter de Walthoffen, Szymon; Lewandowski, Zbigniew; Kobryń, Konrad; Patkowski, Waldemar; Majewski, Sławomir; Młynarczyk, Grażyna; Krawczyk, Marek

    2014-08-01

    Although liver transplant recipients are at increased risk of human papilloma virus (HPV)-related anal cancer, limited data are available regarding the initial prevalence of anal HPV infection in this population. Anal swabs collected from 50 liver transplant recipients within the first three postoperative weeks were subjected to real-time polymerase chain reaction for detection of the four HPV genotypes: 6, 11, 16, and 18. Predictors of any, low-risk, and high-risk anal HPV infection were evaluated. Overall, the prevalence of any anal HPV infection was 18.0%, with the corresponding rates for high- and low-risk HPV genotypes being 8.0% and 10.0%, respectively. Infection with any type of anal HPV was higher in patients with hepatitis B virus (HBV) infection (P = 0.027), ≥3 sexual partners (P = 0.031), and alcoholic liver disease (P = 0.063). HBV infection was the only factor significantly associated with high-risk HPV infection (P = 0.038). Male sex (P = 0.050), age ≥52 years (P = 0.016), ≥30 sexual partners (P = 0.003), age at first intercourse ≤18 years (P = 0.045), and time since first intercourse ≥38 years (P = 0.012) were identified as predictors of low-risk HPV infection. These results indicate that HPV vaccination of liver transplant candidates and screening for anal HPV infection in high-risk groups should be considered. © 2014 Steunstichting ESOT.

  19. Evidence for tangeretin O-demethylation by rat and human liver microsomes.

    PubMed

    Canivenc-Lavier, M C; Brunold, C; Siess, M H; Suschetet, M

    1993-03-01

    1. Tangeretin, a polymethoxylated flavone, was studied as a substrate for cytochrome P450-catalysed demethylation reactions by rat and human liver microsomes. Evidence has been presented for the production of formaldehyde in the presence of tangeretin and NAD(P)H. Kinetic studies showed a Km value for tangeretin of about 18 microM in both species. 2. The reaction was inhibited by CO, piperonyl butoxide, 7,8-benzoflavone, propyl gallate, aminobenzothiazole and metyrapone. 3. Rats pretreated with classical cytochrome P450 inducers (Aroclor 1254, 3-methylcholanthrene, phenobarbital, dexamethasone and ciprofibrate) or with flavonoids (flavone, flavanone, quercetin and tangeretin) resulted in increased microsomal demethylation of tangeretin after 3-methylcholanthrene and flavone only. Tangeretin did not enhance its own metabolism. 4. Tangeretin interacted with the oxidized form of cytochrome P450 to produce a reverse type I spectrum. 5. Results indicate that tangeretin is metabolized in liver microsomes by an O-demethylation reaction involving cytochrome P450.

  20. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease

    PubMed Central

    Tirnitz-Parker, Janina Elke Eleonore; Hamson, Elizabeth Jane; Warren, Alessandra; Maneck, Bharvi; Chen, Jinbiao; Patkunanathan, Bramilla; Boland, Jade; Cheng, Robert; Shackel, Nicholas Adam; Seth, Devanshi; Bowen, David Geoffrey; Martelotto, Luciano Gastón; Watkins, D. Neil; McCaughan, Geoffrey William

    2017-01-01

    Canonical Hedgehog (Hh) signaling in vertebrate cells occurs following Smoothened activation/translocation into the primary cilia (Pc), followed by a GLI transcriptional response. Nonetheless, GLI activation can occur independently of the canonical Hh pathway. Using a murine model of liver injury, we previously identified the importance of canonical Hh signaling within the Pc+ liver progenitor cell (LPC) population and noted that SMO-independent, GLI-mediated signals were important in multiple Pc-ve GLI2+ intrahepatic populations. This study extends these observations to human liver tissue, and analyses the effect of GLI inhibition on LPC viability/gene expression. Human donor and cirrhotic liver tissue specimens were evaluated for SHH, GLI2 and Pc expression using immunofluorescence and qRT-PCR. Changes to viability and gene expression in LPCs in vitro were assessed following GLI inhibition. Identification of Pc (as a marker of canonical Hh signaling) in human cirrhosis was predominantly confined to the ductular reaction and LPCs. In contrast, GLI2 was expressed in multiple cell populations including Pc-ve endothelium, hepatocytes, and leukocytes. HSCs/myofibroblasts (>99%) expressed GLI2, with only 1.92% displaying Pc. In vitro GLI signals maintained proliferation/viability within LPCs and GLI inhibition affected the expression of genes related to stemness, hepatocyte/biliary differentiation and Hh/Wnt signaling. At least two mechanisms of GLI signaling (Pc/SMO-dependent and Pc/SMO-independent) mediate chronic liver disease pathogenesis. This may have significant ramifications for the choice of Hh inhibitor (anti-SMO or anti-GLI) suitable for clinical trials. We also postulate GLI delivers a pro-survival signal to LPCs whilst maintaining stemness. PMID:28187190

  1. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease.

    PubMed

    Grzelak, Candice Alexandra; Sigglekow, Nicholas David; Tirnitz-Parker, Janina Elke Eleonore; Hamson, Elizabeth Jane; Warren, Alessandra; Maneck, Bharvi; Chen, Jinbiao; Patkunanathan, Bramilla; Boland, Jade; Cheng, Robert; Shackel, Nicholas Adam; Seth, Devanshi; Bowen, David Geoffrey; Martelotto, Luciano Gastón; Watkins, D Neil; McCaughan, Geoffrey William

    2017-01-01

    Canonical Hedgehog (Hh) signaling in vertebrate cells occurs following Smoothened activation/translocation into the primary cilia (Pc), followed by a GLI transcriptional response. Nonetheless, GLI activation can occur independently of the canonical Hh pathway. Using a murine model of liver injury, we previously identified the importance of canonical Hh signaling within the Pc+ liver progenitor cell (LPC) population and noted that SMO-independent, GLI-mediated signals were important in multiple Pc-ve GLI2+ intrahepatic populations. This study extends these observations to human liver tissue, and analyses the effect of GLI inhibition on LPC viability/gene expression. Human donor and cirrhotic liver tissue specimens were evaluated for SHH, GLI2 and Pc expression using immunofluorescence and qRT-PCR. Changes to viability and gene expression in LPCs in vitro were assessed following GLI inhibition. Identification of Pc (as a marker of canonical Hh signaling) in human cirrhosis was predominantly confined to the ductular reaction and LPCs. In contrast, GLI2 was expressed in multiple cell populations including Pc-ve endothelium, hepatocytes, and leukocytes. HSCs/myofibroblasts (>99%) expressed GLI2, with only 1.92% displaying Pc. In vitro GLI signals maintained proliferation/viability within LPCs and GLI inhibition affected the expression of genes related to stemness, hepatocyte/biliary differentiation and Hh/Wnt signaling. At least two mechanisms of GLI signaling (Pc/SMO-dependent and Pc/SMO-independent) mediate chronic liver disease pathogenesis. This may have significant ramifications for the choice of Hh inhibitor (anti-SMO or anti-GLI) suitable for clinical trials. We also postulate GLI delivers a pro-survival signal to LPCs whilst maintaining stemness.

  2. Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX.

    PubMed

    Xu, Jiehua; Teng, I-Ting; Zhang, Liqin; Delgado, Stefanie; Champanhac, Carole; Cansiz, Sena; Wu, Cuichen; Shan, Hong; Tan, Weihong

    2015-01-01

    Most clinical cases of liver cancer cannot be diagnosed until they have evolved to an advanced stage, thus resulting in high mortality. It is well recognized that the implementation of early detection methods and the development of targeted therapies for liver cancer are essential to reducing the high mortality rates associated with this disease. To achieve these goals, molecular probes capable of recognizing liver cancer cell-specific targets are needed. Here we describe a panel of aptamers able to distinguish hepatocarcinoma from normal liver cells. The aptamers, which were selected by cell-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment), have Kd values in the range of 64-349 nM toward the target human hepatoma cell HepG2, and also recognize ovarian cancer cells and lung adenocarcinoma. The proteinase treatment experiment indicated that all aptamers could recognize target HepG2 cells through surface proteins. This outcome suggested that these aptamers could be used as potential probes for further research in cancer studies, such as developing early detection assays, targeted therapies, and imaging agents, as well as for the investigation of common membrane proteins in these distinguishable cancers.

  3. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury.

    PubMed

    Weaver, Richard J; Betts, Catherine; Blomme, Eric A G; Gerets, Helga H J; Gjervig Jensen, Klaus; Hewitt, Philip G; Juhila, Satu; Labbe, Gilles; Liguori, Michael J; Mesens, Natalie; Ogese, Monday O; Persson, Mikael; Snoeys, Jan; Stevens, James L; Walker, Tracy; Park, B Kevin

    2017-07-01

    The liver is an important target for drug-induced toxicities. Early detection of hepatotoxic drugs requires use of well-characterized test systems, yet current knowledge, gaps and limitations of tests employed remains an important issue for drug development. Areas Covered: The current state of the science, understanding and application of test systems in use for the detection of drug-induced cytotoxicity, mitochondrial toxicity, cholestasis and inflammation is summarized. The test systems highlighted herein cover mostly in vitro and some in vivo models and endpoint measurements used in the assessment of small molecule toxic liabilities. Opportunities for research efforts in areas necessitating the development of specific tests and improved mechanistic understanding are highlighted. Expert Opinion: Use of in vitro test systems for safety optimization will remain a core activity in drug discovery. Substantial inroads have been made with a number of assays established for human Drug-induced Liver Injury. There nevertheless remain significant gaps with a need for improved in vitro tools and novel tests to address specific mechanisms of human Drug-Induced Liver Injury. Progress in these areas will necessitate not only models fit for application, but also mechanistic understanding of how chemical insult on the liver occurs in order to identify translational and quantifiable readouts for decision-making.

  4. Liver-Directed Human Amniotic Epithelial Cell Transplantation Improves Systemic Disease Phenotype in Hurler Syndrome Mouse Model.

    PubMed

    Rodriguez, Natalie S; Yanuaria, Lisa; Parducho, Kevin Murphy R; Garcia, Irving M; Varghese, Bino A; Grubbs, Brendan H; Miki, Toshio

    2017-07-01

    Mucopolysaccharidosis type 1 (MPS1) is an inherited lysosomal storage disorder caused by a deficiency in the glycosaminoglycan (GAG)-degrading enzyme α-l-iduronidase (IDUA). In affected patients, the systemic accumulation of GAGs results in skeletal dysplasia, neurological degeneration, multiple organ dysfunction, and early death. Current therapies, including enzyme replacement and bone marrow transplant, improve life expectancy but the benefits to skeletal and neurological phenotypes are limited. In this study, we tested the therapeutic efficacy of liver-directed transplantation of a placental stem cell, which possesses multilineage differentiation potential, low immunogenicity, and high lysosomal enzyme activity. Unfractionated human amniotic epithelial cells (hAECs) were transplanted directly into the liver of immunodeficient Idua knockout mouse neonates. The hAECs engraftment was immunohistochemically confirmed with anti-human mitochondria staining. Enzyme activity assays indicated that hAECs transplantation restored IDUA function in the liver and significantly decreased urinary GAG excretion. Histochemical and micro-computed tomography analyses revealed reduced GAG deposition in the phalanges joints and composition/morphology improvement of cranial and facial bones. Neurological assessment in the hAEC treated mice showed significant improvement of sensorimotor coordination in the hAEC treated mice compared to untreated mice. Results confirm that partial liver cell replacement with placental stem cells can provide long-term (>20 weeks) and systemic restoration of enzyme function, and lead to significant phenotypic improvement in the MPS1 mouse model. This preclinical data indicate that liver-directed placental stem cell transplantation may improve skeletal and neurological phenotypes of MPS1 patients. Stem Cells Translational Medicine 2017;6:1583-1594. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of Alpha

  5. A novel “humanized mouse” model for autoimmune hepatitis and the association of gut microbiota with liver inflammation

    PubMed Central

    Yuksel, Muhammed; Wang, Yipeng; Tai, Ningwen; Peng, Jian; Guo, Junhua; Beland, Kathie; Lapierre, Pascal; David, Chella; Alvarez, Fernando; Colle, Isabelle; Yan, Huiping; Mieli-Vergani, Giorgina; Vergani, Diego; Ma, Yun; Wen, Li

    2016-01-01

    Background Autoimmune hepatitis (AIH) in humans is a severe inflammatory liver disease, characterized by interface hepatitis, the presence of circulating autoantibodies and hyper-gammaglobulinemia. There are two types of AIH, type-1 (AIH-1) and type-2 (AIH-2) characterized by distinct autoimmune serology. Patients with AIH-1 are positive for anti-smooth muscle and/or anti-nuclear (SMA/ANA) autoantibodies whereas patients with AIH-2 have anti-liver kidney microsomal type 1 (anti-LKM1) and/or anti-liver cytosol type 1 (anti-LC1) autoantibodies. Cytochrome P4502D6 (CYP2D6) is the antigenic target of anti-LKM1 and formiminotransferase cyclodeaminase (FTCD) is the antigenic target of anti-LC1. It is known that AIH, both type-1 and type-2, is strongly linked to the Human Leukocyte Antigen (HLA) alleles -DR3, -DR4 and -DR7. However, the direct evidence of the association of HLA with AIH is lacking. Methods We developed a novel mouse model of AIH using the HLA-DR3 transgenic mouse on the non-obese diabetic (NOD) background (HLA-DR3 NOD) by immunization of HLA-DR3− and HLA-DR3+ NOD mice with a DNA plasmid, coding for human CYP2D6/FTCD fusion protein. Results Immunization with CYP2D6/FTCD leads to a sustained elevation of alanine aminotransferase (ALT), development of ANA and anti-LKM1/anti-LC1 autoantibodies, chronic immune cell infiltration and parenchymal fibrosis on liver histology in HLA-DR3+ mice. Immunized mice also showed an enhanced Th1 immune response and paucity of the frequency of regulatory T-cell (Treg) in the liver. Moreover, HLA-DR3+ mice with exacerbated AIH showed reduced diversity and total load of gut bacteria. Conclusion Our humanized animal model has provided a novel experimental tool to further elucidate the pathogenesis of AIH and to evaluate the efficacy and safety of immunoregulatory therapeutic interventions in vivo. PMID:26185095

  6. Excessive Hepatic Mitochondrial TCA Cycle and Gluconeogenesis in Humans with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Sunny, Nishanth E.; Parks, Elizabeth J.; Browning, Jeffrey D.; Burgess, Shawn C.

    2013-01-01

    Summary Approximately one-third of the U.S. population has nonalcoholic fatty liver disease (NAFLD), a condition closely associated with insulin resistance and increased risk of liver injury. Dysregulated mitochondrial metabolism is central in these disorders, but the manner and degree of dysregulation are disputed. This study tested whether humans with NAFLD have abnormal in vivo hepatic mitochondrial metabolism. Subjects with low (3.0%) and high (17%) intrahepatic triglyceride (IHTG) were studied using 2H and 13C tracers to evaluate systemic lipolysis, hepatic glucose production, and mitochondrial pathways (TCA cycle, anaplerosis, and ketogenesis). Individuals with NAFLD had 50% higher rates of lipolysis and 30% higher rates of gluconeogenesis. There was a positive correlation between IHTG content and both mitochondrial oxidative and anaplerotic fluxes. These data indicate that mitochondrial oxidative metabolism is ∼2-fold greater in those with NAFLD, providing a potential link between IHTG content, oxidative stress, and liver damage. PMID:22152305

  7. Liver Afferents Contribute to Water Drinking-Induced Sympathetic Activation in Human Subjects: A Clinical Trial

    PubMed Central

    May, Marcus; Gueler, Faikah; Barg-Hock, Hannelore; Heiringhoff, Karl-Heinz; Engeli, Stefan; Heusser, Karsten; Diedrich, André; Brandt, André; Strassburg, Christian P.; Tank, Jens; Sweep, Fred C. G. J.; Jordan, Jens

    2011-01-01

    Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant) as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant) as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (p<0.05 between groups) after 30–40 minutes of water drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. Trial Registration ClinicalTrials.gov NCT01237431 PMID:22016786

  8. Human Umbilical Cord Matrix Stem Cells Efficiently Rescue Acute Liver Failure Through Paracrine Effects Rather than Hepatic Differentiation

    PubMed Central

    Chen, Li; Liu, Tao; Zhang, Bo; Xiang, Dedong; Wang, Zhengguo

    2012-01-01

    There is increasing evidence that mesenchymal stem cells (MSCs) derived from different tissues could act as an alternative source of mature hepatocytes for treatment of acute liver failure (ALF). Human umbilical cord matrix stem cells (hUCMSCs) represent a novel source of MSCs. We examined the therapeutic potential and the different mechanisms of hUCMSCs by their transplantation into nonobese diabetic severe combined-immunodeficient (NOD-SCID) mice with carbon tetrachloride (CCl4)-induced ALF in comparison to adult human hepatocytes (AHHs). The characteristics of isolated hUCMSCs were determined from MSCs and hepatocyte marker expression, hepatic function, and differentiation. Native hUCMSCs constitutively expressed some hepatic markers, though weaker hepatocyte-specific functions were observed when compared to AHHs. When native hUCMSCs or AHHs were transplanted into livers of NOD-SCID mice with ALF induced by CCl4, both hUCMSCs and AHHs provided a significant survival benefit and prevented the release of liver injury biomarkers. hUCMSCs were found to engraft within the recipient liver and differentiated into functional hepatocytes, whereas the HepPar1-/albumin (ALB)-positive cells of the hUCMSC group were less than the AHH group in the recipient liver. Higher values of human ALB in the serum of mice-transplanted AHHs were determined in comparison with levels in mice-transplanted hUCMSCs. The analysis of mouse serum cytokine levels showed that hUCMSC transplantation was even more effective than treatment with AHHs and successfully downregulated the systemic inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-10, and IL-1 receptor antagonist (IL-1RA). Furthermore, paracrine effects produced by hUCMSCs were identified by indirect coculture with damaged mouse hepatocytes (MHs) induced by CCl4. Coculture with hUCMSCs significantly increased the viability, ALB secretion of damaged MHs, and greatly enhanced the regeneration of

  9. Processing highly porous calcium phosphate ceramics for use in bioreactor cores for culturing human liver cells in-vitro

    NASA Astrophysics Data System (ADS)

    Finoli, Anthony

    Chronic liver disease is the 11th highest cause of death in the United States claiming over 30,000 lives in 2009. The current treatment for chronic liver failure is liver transplantation but the availability of tissue is far less than the number of patients in need. To develop human liver tissue in the lab a 3D culturing environment must be created to support the growth of a complex tissue. Hydroxyapatite (HAp) has been chosen as a scaffold material because of its biocompatibility in the body and the ability to create a bioresorbable scaffold. By using a ceramic material, it is possible to create a three dimensional, protective environment in which tissue can grow. The first part of this study is to examine the behavior of adult human liver cells grown on composites of HAp and different biocompatible hydrogels. Porous HAp has been created using an emulsion foaming technique and cells are injected into the structure after being suspended in a hydrogel and are kept in culture for up to 28 days. Functional assays, gene expression and fluorescent microscopy will be used to examine these cultures. The second part of this study will be to develop a processing technique to create a resorbable scaffold that incorporates a vascular system template. Previous experiments have shown the high temperature decomposition of HAp into resorbable calcium phosphates will be used to create a multiphase material. By controlling the amount of transformation product formed, it is proposed that the resorption of the scaffold can be tailored. To introduce a pore network to guide the growth of a vascular system, a positive-negative casting technique has also been developed. A positive polymer copy can be made of a natural vascular system and ceramic is foamed around the copy. During sintering, the polymer is pyrolyzed leaving a multiscale pore network in the ceramic. By combining these techniques, it is proposed that a calcium phosphate bioreactor core can be processed that is suitable for

  10. LiverAtlas: a unique integrated knowledge database for systems-level research of liver and hepatic disease.

    PubMed

    Zhang, Yanqiong; Yang, Chunyuan; Wang, Shaochuang; Chen, Tao; Li, Mansheng; Wang, Xue; Li, Dongsheng; Wang, Kang; Ma, Jie; Wu, Songfeng; Zhang, Xueli; Zhu, Yunping; Wu, Jinsheng; He, Fuchu

    2013-09-01

    A large amount of liver-related physiological and pathological data exist in publicly available biological and bibliographic databases, which are usually far from comprehensive or integrated. Data collection, integration and mining processes pose a great challenge to scientific researchers and clinicians interested in the liver. To address these problems, we constructed LiverAtlas (http://liveratlas.hupo.org.cn), a comprehensive resource of biomedical knowledge related to the liver and various hepatic diseases by incorporating 53 databases. In the present version, LiverAtlas covers data on liver-related genomics, transcriptomics, proteomics, metabolomics and hepatic diseases. Additionally, LiverAtlas provides a wealth of manually curated information, relevant literature citations and cross-references to other databases. Importantly, an expert-confirmed Human Liver Disease Ontology, including relevant information for 227 types of hepatic disease, has been constructed and is used to annotate LiverAtlas data. Furthermore, we have demonstrated two examples of applying LiverAtlas data to identify candidate markers for hepatocellular carcinoma (HCC) at the systems level and to develop a systems biology-based classifier by combining the differential gene expression with topological features of human protein interaction networks to enhance the ability of HCC differential diagnosis. LiverAtlas is the most comprehensive liver and hepatic disease resource, which helps biologists and clinicians to analyse their data at the systems level and will contribute much to the biomarker discovery and diagnostic performance enhancement for liver diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. [Molecular detection of hepatitis E virus in pig livers destined for human consumption in the state of Nuevo Leon, Mexico].

    PubMed

    Cantú-Martínez, Marco Antonio; Roig-Sagués, Artur Xavier; Cedillo-Rosales, Sibilina; Zamora-Ávila, Diana Elisa; Avalos-Ramírez, Ramiro

    2013-04-01

    Molecular detection of HEV in pig livers destined for human consumption in Nuevo Leon, Mexico. 87 livers were collected from pigs slaughtered in TIF and 40 livers from butchers. A 212 pb fragment of HEV ORF2 gene was amplified by semi-nested RT-PCR. 19.54% (17) of tif's and 22.5% (9) of butcher's livers were positive for HEV. Sequencing of the amplified products showed a 94%-95% homology with the sequences reported for genotype 3. Our results indicate that HEV is circulating in swine herds in the state, constituting a probable source of contamination of pig meat products.

  12. Characterization of the liver tissue interstitial fluid (TIF) proteome indicates potential for application in liver disease biomarker discovery.

    PubMed

    Sun, Wei; Ma, Jie; Wu, Songfeng; Yang, Dong; Yan, Yujuan; Liu, Kehui; Wang, Jinglan; Sun, Longqin; Chen, Ning; Wei, Handong; Zhu, Yunping; Xing, Baocai; Zhao, Xiaohang; Qian, Xiaohong; Jiang, Ying; He, Fuchu

    2010-02-05

    Tissue interstitial fluid (TIF) forms the interface between circulating body fluids and intracellular fluid. Pathological alterations of liver cells could be reflected in TIF, making it a promising source of liver disease biomarkers. Mouse liver TIF was extracted, separated by SDS-PAGE, analyzed by linear ion trap mass spectrometer, and 1450 proteins were identified. These proteins may be secreted, shed from membrane vesicles, or represent cellular breakdown products. They show different profiling patterns, quantities, and possibly modification/cleavage of intracellular proteins. The high solubility and even distribution of liver TIF supports its suitability for proteome analysis. Comparison of mouse liver TIF data with liver tissue and plasma proteome data identified major proteins that might be released from liver to plasma and serve as blood biomarkers of liver origin. This result was partially supported by comparison of human liver TIF data with human liver and plasma proteome data. Paired TIFs from tumor and nontumor liver tissues of a hepatocellular carcinoma patient were analyzed and the profile of subtracted differential proteins supports the potential for biomarker discovery in TIF. This study is the first analysis of the liver TIF proteome and provides a foundation for further application of TIF in liver disease biomarker discovery.

  13. Hepatitis C virus infection inhibits P-body granule formation in human livers.

    PubMed

    Pérez-Vilaró, Gemma; Fernández-Carrillo, Carlos; Mensa, Laura; Miquel, Rosa; Sanjuan, Xavier; Forns, Xavier; Pérez-del-Pulgar, Sofía; Díez, Juana

    2015-04-01

    Decoding the myriad of interactions that hepatitis C virus (HCV) establishes with infected cells is mandatory to obtain a complete understanding of HCV biology and its associated pathogenesis. We and others have previously found that HCV infection disrupts the formation of P-bodies in cell culture. These are cytoplasmic RNA granules with key roles in post-transcriptional regulation of gene expression. Therefore, P-body disruption might have consequences beyond viral propagation. However, whether P-body disruption occurs also in vivo is unknown. Aim of this study was to address this important issue. Formalin-fixed paraffin-embedded liver biopsies from four groups of patients (healthy donors, patients with non-virus related liver inflammation, HCV- and HBV-infected patients) were immunostained to detect DDX6 and Dcp1, two core P-body components. Changes in the localization of these proteins were assessed by confocal microscopy. HCV specifically inhibited P-body formation in hepatocytes from human livers regardless of viral genotype, inflammation grade or whether the infection was recent or long established. Importantly, this alteration was reversed once HCV was eliminated by therapy. Furthermore, we observed in vivo an unexpected heterogeneity in P-body composition, which might reflect functional specializations. This is the first comprehensive in vivo P-body analysis that links a pathogenic condition to P-body alterations. Because of their role in gene expression, the alteration of P-bodies should be further studied to understand fully complex HCV-associated pathologies. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  14. Detection of liver cancer and abnormal liver tissue by Raman spectroscopy and fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhou; Ding, Jianhua; Zhang, Xiujun; Lin, Junxiu; Wang, Deli

    2005-01-01

    In this paper, laser induced human serum Raman spectra of liver cancer are measured. The spectra differences in serum from normal people and liver disease patients are analyzed. For the typical spectrum of normal serum, there are three sharp Raman peaks and relative intensity of Raman peaks excited by 514.5nm is higher than that excited by 488.0nm. For the Raman spectrum of liver cancer serum there are no peaks or very weak Raman peaks at the same positions. Results from more than two hundred case measurements show that clinical diagnostic accuracy is 92.86%. And then, the liver fibrosis and liver cirrhosis are studied applying the technology of LIF. To liver cirrhosis, the shape of Raman peak is similar to normal and fluorescence spectrum is similar to that of liver cancer from statistic data. The experiment indicates that there is notable fluorescence difference between the abnormal and normal liver tissue and have blue shift in fluorescence peak. Except for human serum, we use rats serum for researching either. Compared with results of path al examination, we analyze the spectra of normal cases, hepatic fibrosis and hepatocirrhosis respectively in an attempt to find some difference between them. Red shift of fluorescence peak is observed with disease evolution using 514.5nm excitation of an Ar-ion laser. However, no distinct changes happen with 488.0nm excitation. These results have important reference values to explore the method of laser spectrum diagnosis.

  15. Comparative bioactivation of the novel anti-tuberculosis agent PA-824 in Mycobacteria and a subcellular fraction of human liver

    PubMed Central

    Dogra, M; Palmer, BD; Bashiri, G; Tingle, MD; Shinde, SS; Anderson, RF; O'Toole, R; Baker, EN; Denny, WA; Helsby, NA

    2011-01-01

    BACKGROUND AND PURPOSE PA-824 is a 2-nitroimidazooxazine prodrug currently in Phase II clinical trial for tuberculosis therapy. It is bioactivated by a deazaflavin (F420)-dependent nitroreductase (Ddn) isolated from Mycobacterium tuberculosis to form a des-nitro metabolite. This releases toxic reactive nitrogen species which may be responsible for its anti-mycobacterial activity. There are no published reports of mammalian enzymes bioactivating this prodrug. We have investigated the metabolism of PA-824 following incubation with a subcellular fraction of human liver, in comparison with purified Ddn, M. tuberculosis and Mycobacterium smegmatis. EXPERIMENTAL APPROACH PA-824 (250 µM) was incubated with the 9000×g supernatant (S9) of human liver homogenates, purified Ddn, M. tuberculosis and M. smegmatis for metabolite identification by liquid chromatography mass spectrometry analysis. KEY RESULTS PA-824 was metabolized to seven products by Ddn and M. tuberculosis, with the major metabolite being the des-nitro product. Six of these products, but not the des-nitro metabolite, were also detected in M. smegmatis. In contrast, only four of these metabolites were observed in human liver S9; M3, a reduction product previously proposed as an intermediate in the Ddn-catalyzed des-nitrification and radiolytic reduction of PA-824; two unidentified metabolites, M1 and M4, which were products of M3; and a haem-catalyzed product of imidazole ring hydration (M2). CONCLUSIONS AND IMPLICATIONS PA-824 was metabolized by des-nitrification in Ddn and M. tuberculosis, but this does not occur in human liver S9 and M. smegmatis. Thus, PA-824 was selectively bioactivated in M. tuberculosis and there was no evidence for ‘cross-activation’ by human enzymes. PMID:20955364

  16. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells

    PubMed Central

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel

    2015-01-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  17. Abacavir/Dolutegravir/Lamivudine (Triumeq)-Induced Liver Toxicity in a Human Immunodeficiency Virus-Infected Patient.

    PubMed

    Christensen, Erin S; Jain, Rupali; Roxby, Alison C

    2017-01-01

    Drug-induced liver injury related to Triumeq (abacavir/lamivudine/dolutegravir) has not been reported in clinical trials. We report a case of hepatotoxicity related to Triumeq exposure in a human immunodeficiency virus-infected patient. Clinicians should remain aware of the risk for acute and late-onset hepatitis with these agents. Close monitoring is recommended.

  18. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice.

    PubMed

    Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean-François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique

    2015-07-24

    Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans.

  19. Serum sialyltransferase and liver catalase activity in cachectic nude mice bearing a human malignant melanoma.

    PubMed

    Kondo, Y; Sato, K; Ueyama, Y; Ohsawa, N

    1981-07-01

    Cachexia is rare in nude mice bearing human malignant tumors even when the transplanted tumors become as large as the body size of the host. In our series on heterotransplantation of a variety of human malignant tumors into nude mice, a malignant melanoma (SEKI) was found to induce severe body weight loss in the host at the early stage of transplantation. There was no electrolyte disturbance, hyper- or hypoadrenocorticism, hyperthyroidism, or destruction of cells of vital organs to account for the weight loss. Moreover, no evidence was obtained for concomitant infection with bacteria, Mycoplasma or fungi. These cachectic mice revealed remarkably increased levels of serum sialyltransferase and decreased liver catalase activity. The removal of tumor tissues from these mice resulted in prompt recovery of body weight, serum sialyltransferase, and liver catalase activity within 1 to 2 weeks. On the basis of the results obtained, the SEKI melanoma was thought to have produced a pathophysiological state in host nude mice which was very similar to that of cachexia in cancer patients. Nude mice bearing transplants of SEKI melanoma may provide a useful system for the study of cancer cachexia in humans.

  20. Characterization of HBV integration patterns and timing in liver cancer and HBV-infected livers.

    PubMed

    Furuta, Mayuko; Tanaka, Hiroko; Shiraishi, Yuichi; Unida, Takuro; Imamura, Michio; Fujimoto, Akihiro; Fujita, Masahi; Sasaki-Oku, Aya; Maejima, Kazuhiro; Nakano, Kaoru; Kawakami, Yoshiiku; Arihiro, Koji; Aikata, Hiroshi; Ueno, Masaki; Hayami, Shinya; Ariizumi, Shun-Ichi; Yamamoto, Masakazu; Gotoh, Kunihito; Ohdan, Hideki; Yamaue, Hiroki; Miyano, Satoru; Chayama, Kazuaki; Nakagawa, Hidewaki

    2018-05-18

    Integration of Hepatitis B virus (HBV) into the human genome can cause genetic instability, leading to selective advantages for HBV-induced liver cancer. Despite the large number of studies for HBV integration into liver cancer, little is known about the mechanism of initial HBV integration events owing to the limitations of materials and detection methods. We conducted an HBV sequence capture, followed by ultra-deep sequencing, to screen for HBV integrations in 111 liver samples from human-hepatocyte chimeric mice with HBV infection and human clinical samples containing 42 paired samples from non-tumorous and tumorous liver tissues. The HBV infection model using chimeric mice verified the efficiency of our HBV-capture analysis and demonstrated that HBV integration could occur 23 to 49 days after HBV infection via microhomology-mediated end joining and predominantly in mitochondrial DNA. Overall HBV integration sites in clinical samples were significantly enriched in regions annotated as exhibiting open chromatin, a high level of gene expression, and early replication timing in liver cells. These data indicate that HBV integration in liver tissue was biased according to chromatin accessibility, with additional selection pressures in the gene promoters of tumor samples. Moreover, an integrative analysis using paired non-tumorous and tumorous samples and HBV-related transcriptional change revealed the involvement of TERT and MLL4 in clonal selection. We also found frequent and non-tumorous liver-specific HBV integrations in FN1 and HBV-FN1 fusion transcript. Extensive survey of HBV integrations facilitates and improves the understanding of the timing and biology of HBV integration during infection and HBV-related hepatocarcinogenesis.

  1. Liver glucose metabolism in humans

    PubMed Central

    Adeva-Andany, María M.; Pérez-Felpete, Noemi; Fernández-Fernández, Carlos; Donapetry-García, Cristóbal; Pazos-García, Cristina

    2016-01-01

    Information about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and connected with fatty acid metabolism. The liver receives dietary carbohydrates directly from the intestine via the portal vein. Glucokinase phosphorylates glucose to glucose 6-phosphate inside the hepatocyte, ensuring that an adequate flow of glucose enters the cell to be metabolized. Glucose 6-phosphate may proceed to several metabolic pathways. During the post-prandial period, most glucose 6-phosphate is used to synthesize glycogen via the formation of glucose 1-phosphate and UDP–glucose. Minor amounts of UDP–glucose are used to form UDP–glucuronate and UDP–galactose, which are donors of monosaccharide units used in glycosylation. A second pathway of glucose 6-phosphate metabolism is the formation of fructose 6-phosphate, which may either start the hexosamine pathway to produce UDP-N-acetylglucosamine or follow the glycolytic pathway to generate pyruvate and then acetyl-CoA. Acetyl-CoA may enter the tricarboxylic acid (TCA) cycle to be oxidized or may be exported to the cytosol to synthesize fatty acids, when excess glucose is present within the hepatocyte. Finally, glucose 6-phosphate may produce NADPH and ribose 5-phosphate through the pentose phosphate pathway. Glucose metabolism supplies intermediates for glycosylation, a post-translational modification of proteins and lipids that modulates their activity. Congenital deficiency of phosphoglucomutase (PGM)-1 and PGM-3 is associated with impaired glycosylation. In addition to metabolize carbohydrates, the liver produces glucose to be used by other tissues, from glycogen breakdown or from de novo synthesis using primarily lactate and alanine (gluconeogenesis). PMID:27707936

  2. Micro-RNA Profiling in Human Serum Reveals Compartment-Specific Roles of miR-571 and miR-652 in Liver Cirrhosis

    PubMed Central

    Roderburg, Christoph; Mollnow, Tobias; Bongaerts, Brenda; Elfimova, Natalia; Vargas Cardenas, David; Berger, Katharina; Zimmermann, Henning; Koch, Alexander; Vucur, Mihael; Luedde, Mark; Hellerbrand, Claus; Odenthal, Margarete; Trautwein, Christian; Tacke, Frank; Luedde, Tom

    2012-01-01

    Background and Aims Micro-RNAs (miRNAs) have recently emerged as crucial modulators of molecular processes involved in chronic liver diseases. The few miRNAs with previously proposed roles in liver cirrhosis were identified in screening approaches on liver parenchyma, mostly in rodent models. Therefore, in the present study we performed a systematic screening approach in order to identify miRNAs with altered levels in the serum of patients with chronic liver disease and liver cirrhosis. Methods We performed a systematic, array-based miRNA expression analysis on serum samples from patients with liver cirrhosis. In functional experiments we evaluated the relationship between alterations of miRNA serum levels and their role in distinct cellular compartments involved in hepatic cirrhosis. Results The array analysis and the subsequent confirmation by qPCR in a larger patient cohort identified significant alterations in serum levels of miR-513-3p, miR-571 and miR-652, three previously uncharacterized miRNAs, in patients with alcoholic or hepatitis C induced liver cirrhosis. Of these, miR-571 serum levels closely correlated with disease stages, thus revealing potential as a novel biomarker for hepatic cirrhosis. Further analysis revealed that up-regulation of miR-571 in serum reflected a concordant regulation in cirrhotic liver tissue. In isolated primary human liver cells, miR-571 was up-regulated in human hepatocytes and hepatic stellate cells in response to the pro-fibrogenic cytokine TGF-β. In contrast, alterations in serum levels of miR-652 were stage-independent, reflecting a concordant down-regulation of this miRNA in circulating monocytes of patients with liver cirrhosis, which was inducible by proinflammatory stimuli like bacterial lipopolysaccharide. Conclusion Alterations of miR571 and miR-652 serum levels in patients with chronic liver disease reflect their putative roles in the mediation of fibrogenic and inflammatory processes in distinct cellular

  3. Dose requirements of continuous infusion of rocuronium and atracurium throughout orthotopic liver transplantation in humans

    PubMed Central

    Weng, Xiao-chuan; Zhou, Liang; Fu, Yin-yan; Zhu, Sheng-mei; He, Hui-liang; Wu, Jian

    2005-01-01

    Objective: To compare the dose requirements of continuous infusion of rocuronium and atracurium throughout orthotopic liver transplantation (OLT) in humans. Methods: Twenty male patients undergoing liver transplantation were randomly assigned to two comparable groups of 10 patients each to receive a continuous infusion of rocuronium or atracurium under intravenous balanced anesthesia. The response of adductor pollicis to train-of-four (TOF) stimulation of unlar nerve was monitored. The infusion rates of rocuronium and atracurium were adjusted to maintain T1/Tc ratio of 2%~10%. The total dose of each drug given during each of the three phases of OLT was recorded. Results: Rocuronium requirement, which were (0.468±0.167) mg/(kg·h) during the paleohepatic phase, decreased significantly during the anhepatic phase to (0.303±0.134) mg/(kg·h) and returned to the initial values at the neohepatic period ((0.429±0.130) mg/(kg·h)); whereas atracuruim requirements remained unchanged during orthotopic liver transplantation. Conclusions: This study showed that the exclusion of the liver from the circulation results in the significantly reduced requirement of rocuronium while the requirement of atracurium was not changed, which suggests that the liver is of major importance in the clearance of rocuronium. A continuous infusion of atracurium with constant rate can provide stable neuromuscular blockade during the three stages of OLT. PMID:16130187

  4. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    EPA Science Inventory

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  5. Multiplex transcriptional analysis of paraffin-embedded liver needle biopsy from patients with liver fibrosis

    PubMed Central

    2012-01-01

    Background The possibility of extracting RNA and measuring RNA expression from paraffin sections can allow extensive investigations on stored paraffin samples obtained from diseased livers and could help with studies of the natural history of liver fibrosis and inflammation, and in particular, correlate basic mechanisms to clinical outcomes. Results To address this issue, a pilot study of multiplex gene expression using branched-chain DNA technology was conducted to directly measure mRNA expression in formalin-fixed paraffin-embedded needle biopsy samples of human liver. Twenty-five genes were selected for evaluation based on evidence obtained from human fibrotic liver, a rat BDL model and in vitro cultures of immortalized human hepatic stellate cells. The expression levels of these 25 genes were then correlated with liver fibrosis and inflammation activity scores. Statistical analysis revealed that three genes (COL3A1, KRT18, and TUBB) could separate fibrotic from non-fibrotic samples and that the expression of ten genes (ANXA2, TIMP1, CTGF, COL4A1, KRT18, COL1A1, COL3A1, ACTA2, TGFB1, LOXL2) were positively correlated with the level of liver inflammation activity. Conclusion This is the first report describing this multiplex technique for liver fibrosis and has provided the proof of concept of the suitability of RNA extracted from paraffin sections for investigating the modulation of a panel of proinflammatory and profibrogenic genes. This pilot study suggests that this technique will allow extensive investigations on paraffin samples from diseased livers and possibly from any other tissue. Using identical or other genes, this multiplex expression technique could be applied to samples obtained from extensive patient cohorts with stored paraffin samples in order to correlate gene expression with valuable clinically relevant information. This method could be used to provide a better understanding of the mechanisms of liver fibrosis and inflammation, its progression

  6. Quantifying the Contribution of the Liver to Glucose Homeostasis: A Detailed Kinetic Model of Human Hepatic Glucose Metabolism

    PubMed Central

    König, Matthias; Bulik, Sascha; Holzhütter, Hermann-Georg

    2012-01-01

    Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases. PMID:22761565

  7. Gut microbiota and liver diseases

    PubMed Central

    Minemura, Masami; Shimizu, Yukihiro

    2015-01-01

    Several studies revealed that gut microbiota are associated with various human diseases, e.g., metabolic diseases, allergies, gastroenterological diseases, and liver diseases. The liver can be greatly affected by changes in gut microbiota due to the entry of gut bacteria or their metabolites into the liver through the portal vein, and the liver-gut axis is important to understand the pathophysiology of several liver diseases, especially non-alcoholic fatty liver disease and hepatic encephalopathy. Moreover, gut microbiota play a significant role in the development of alcoholic liver disease and hepatocarcinogenesis. Based on these previous findings, trials using probiotics have been performed for the prevention or treatment of liver diseases. In this review, we summarize the current understanding of the changes in gut microbiota associated with various liver diseases, and we describe the therapeutic trials of probiotics for those diseases. PMID:25684933

  8. Merlin, the product of NF2 gene, is associated with aromatase expression and estrogen formation in human liver tissues and liver cancer cells.

    PubMed

    Cocciadiferro, Letizia; Miceli, Vitale; Granata, Orazia M; Carruba, Giuseppe

    2017-09-01

    The product of neurofibromatosis type 2 (NF2) gene, also known as Merlin/neurofibromin 2, homeostatically regulates liver stem cells by controlling abundance and signaling of epidermal growth factor receptor (EGFR), with a mechanism independent of the Hippo pathway. We have reported that locally elevated estrogen formation, driven by abnormally high expression and function of aromatase, may be implicated in development and progression of human hepatocellular carcinoma (HCC) through activation of a rapid signaling pathway mediated by amphiregulin (AREG) and EGFR. We have recently presented a model by which the aromatase-estrogen-amphiregulin-EGFR axis is activated in response to tissue injury and/or inflammatory disease, with its alteration eventually leading to development of major human tumors (liver, breast, prostate) and other chronic diseases (diabetes, obesity, Alzheimer's and heart disease). In this study, we investigated NF2 expression in liver cancer cells and tissues in relation to aromatase expression/function, estrogen receptor (ER) status and amphiregulin. Our data indicate that NF2 expression is associated with aromatase and AREG expression, being elevated in HCC tissues and HepG2 cells, intermediate in cirrhotic tissues and Huh7 cells, and lower in nontumoral liver and HA22T cells. In addition, NF2 expression is inversely related to wild type hERα66 and proportional to the expression of the membrane-associated hERα36 splice variant, as measured by exon-specific RT-PCR analysis, both in vivo and in vitro. Furthermore, incubation with estradiol induced a significant decrease of NF2 expression in both HA22T and Huh7 cells (over 54% and 22%, respectively), while no change could be observed in HepG2 cells, this effect being inversely related to aromatase expression and activity in HCC cell lines. Based on the above combined evidence, we hypothesize that NF2 behaves as a protein sensing tissue damage and aromatase-driven local estrogen formation

  9. Localization of ABCG5 and ABCG8 proteins in human liver, gall bladder and intestine

    PubMed Central

    Klett, Eric L; Lee, Mi-Hye; Adams, David B; Chavin, Kenneth D; Patel, Shailendra B

    2004-01-01

    Background The molecular mechanisms that regulate the entry of dietary sterols into the body and their removal via hepatobiliary secretion are now beginning to be defined. These processes are specifically disrupted in the rare autosomal recessive disease, Sitosterolemia (MIM 210250). Mutations in either, but not both, of two genes ABCG5 or ABCG8, comprising the STSL locus, are now known to cause this disease and their protein products are proposed to function as heterodimers. Under normal circumstances cholesterol, but not non-cholesterol sterols, is preferentially absorbed from the diet. Additionally, any small amounts of non-cholesterol sterols that are absorbed are rapidly taken up by the liver and preferentially excreted into bile. Based upon the defects in sitosterolemia, ABCG5 and ABCG8 serve specifically to exclude non-cholesterol sterol entry at the intestinal level and are involved in sterol excretion at the hepatobiliary level. Methods Here we report the biochemical and immuno-localization of ABCG5 and ABCG8 in human liver, gallbladder and intestine using cell fractionation and immunohistochemical analyses. Results We raised peptide antibodies against ABCG5 and ABCG8 proteins. Using human liver samples, cell fractionation studies showed both proteins are found in membrane fractions, but they did not co-localize with caveolin-rafts, ER, Golgi or mitochondrial markers. Although their distribution in the sub-fractions was similar, they were not completely contiguous. Immunohistochemical analyses showed that while both proteins were readily detectable in the liver, ABCG5 was found predominately lining canalicular membranes, whereas ABCG8 was found in association with bile duct epithelia. At the cellular level, ABCG5 appeared to be apically expressed, whereas ABCG8 had a more diffuse expression pattern. Both ABCG5 and ABCG8 appeared to localize apically as shown by co-localization with MRP2. The distribution patterns of ABCG5 and ABCG8 in the gallbladder were

  10. Benzydamine N-oxidation as an index reaction reflecting FMO activity in human liver microsomes and impact of FMO3 polymorphisms on enzyme activity

    PubMed Central

    Störmer, Elke; Roots, Ivar; Brockmöller, Jürgen

    2000-01-01

    Aims The role of flavin containing monooxygenases (FMO) on the disposition of many drugs has been insufficiently explored. In vitro and in vivo tests are required to study FMO activity in humans. Benzydamine (BZD) N-oxidation was evaluated as an index reaction for FMO as was the impact of genetic polymorphisms of FMO3 on activity. Methods BZD was incubated with human liver microsomes (HLM) and recombinant enzymes. Human liver samples were genotyped using PCR-RFLP. Results BZD N-oxide formation rates in HLM followed Michaelis-Menten kinetics (mean Km = 64.0 μm, mean Vmax = 6.9 nmol mg−1 protein min−1; n = 35). N-benzylimidazole, a nonspecific CYP inhibitor, and various CYP isoform selective inhibitors did not affect BZD N-oxidation. In contrast, formation of BZD N-oxide was almost abolished by heat treatment of microsomes in the absence of NADPH and strongly inhibited by methimazole, a competitive FMO inhibitor. Recombinant FMO3 and FMO1 (which is not expressed in human liver), but not FMO5, showed BZD N-oxidase activity. Respective Km values for FMO3 and FMO1 were 40.4 μm and 23.6 μm, and respective Vmax values for FMO3 and FMO1 were 29.1 and 40.8 nmol mg−1 protein min−1. Human liver samples (n = 35) were analysed for six known FMO3 polymorphisms. The variants I66M, P135L and E305X were not detected. Samples homozygous for the K158 variant showed significantly reduced vmax values (median 2.7 nmol mg−1 protein min−1) compared to the carriers of at least one wild type allele (median 6.2 nmol mg−1 protein min−1) (P<0.05, Mann–Whitney- U-test). The V257M and E308G substitutions had no effect on enzyme activity. Conclusions BZD N-oxidation in human liver is mainly catalysed by FMO3 and enzyme activity is affected by FMO3 genotype. BZD may be used as a model substrate for human liver FMO3 activity in vitro and may be further developed as an in vivo probe reflecting FMO3 activity. PMID:11136294

  11. Lack of cilia and differentiation defects in the liver of human foetuses with the Meckel syndrome.

    PubMed

    Clotman, Frédéric; Libbrecht, Louis; Killingsworth, Murray C; Loo, Christine C K; Roskams, Tania; Lemaigre, Frédéric P

    2008-03-01

    Meckel syndrome is an autosomal-recessive disease characterized by a combination of renal cysts, anomalies of the central nervous system, polydactyly and ductal plate malformations (DPM), which are hepatic anomalies consisting of excessive and abnormal foetal biliary structures. Among the genomic loci associated with Meckel syndrome, mutations in four genes were recently identified. These genes code for proteins associated with primary cilia and are possibly involved in cell differentiation. The aim of the present work was to investigate the formation of the primary cilia and the differentiation of the hepatic cells in foetuses with Meckel syndrome. Sections of livers from human foetuses with Meckel syndrome were analysed by immunofluorescence, immunohistochemistry and electron microscopy. The primary cilia of the biliary cells were absent in some Meckel foetuses, but were present in others. In addition, defects in hepatic differentiation were observed in Meckel livers, as evidenced by the presence of hybrid cells co-expressing hepatocytic and biliary markers. Defects in cilia formation occur in some Meckel livers, and most cases show DPM associated with abnormal hepatic cell differentiation. Because differentiation precedes the formation of the cilia during liver development, we propose that defective differentiation may constitute the initial defect in the liver of Meckel syndrome foetuses.

  12. Human hepatocytes loaded in 3D bioprinting generate mini-liver.

    PubMed

    Zhong, Cheng; Xie, Hai-Yang; Zhou, Lin; Xu, Xiao; Zheng, Shu-Sen

    2016-10-01

    Because of an increasing discrepancy between the number of potential liver graft recipients and the number of organs available, scientists are trying to create artificial liver to mimic normal liver function and therefore, to support the patient's liver when in dysfunction. 3D printing technique meets this purpose. The present study was to test the feasibility of 3D hydrogel scaffolds for liver engineering. We fabricated 3D hydrogel scaffolds with a bioprinter. The biocompatibility of 3D hydrogel scaffolds was tested. Sixty nude mice were randomly divided into four groups, with 15 mice in each group: control, hydrogel, hydrogel with L02 (cell line HL-7702), and hydrogel with hepatocyte growth factor (HGF). Cells were cultured and deposited in scaffolds which were subsequently engrafted into livers after partial hepatectomy and radiation-induced liver damage (RILD). The engrafted tissues were examined after two weeks. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, total bilirubin, CYP1A2, CYP2C9, glutathione S-transferase (a-GST), and UDP-glucuronosyl transferase (UGT-2) were compared among the groups. Hematoxylin-eosin (HE) staining and immunohistochemistry of cKit and cytokeratin 18 (CK18) of engrafted tissues were evaluated. The survival time of the mice was also compared among the four groups. 3D hydrogel scaffolds did not impact the viability of cells. The levels of ALT, AST, albumin, total bilirubin, CYP1A2, CYP2C9, a-GST and UGT-2 were significantly improved in mice engrafted with 3D scaffold loaded with L02 compared with those in control and scaffold only (P<0.05). HE staining showed clear liver tissue and immunohistochemistry of cKit and CK18 were positive in the engrafted tissue. Mice treated with 3D scaffold+L02 cells had longer survival time compared with those in control and scaffold only (P<0.05). 3D scaffold has the potential of recreating liver tissue and partial liver functions and can be used in the

  13. Identification of Human UDP-Glucuronosyltransferase 1A4 as the Major Isozyme Responsible for the Glucuronidation of 20(S)-Protopanaxadiol in Human Liver Microsomes

    PubMed Central

    Li, Jia; He, Chunyong; Fang, Lianxiang; Yang, Li; Wang, Zhengtao

    2016-01-01

    20(S)-protopanaxadiol (PPD), one of the representative aglycones of ginsenosides, has a broad spectrum of pharmacological activities. Although phase I metabolism has been investigated extensively, information regarding phase II metabolism of this compound remains to be elucidated. Here, a glucuronidated metabolite of PPD in human liver microsomes (HLMs) and rat liver microsomes (RLMs) was unambiguously identified as PPD-3-O-β-d-glucuronide by nuclear magnetic resonance spectroscopy and high resolution mass spectrometry. The chemical inhibition and recombinant human UDP-Glucuronosyltransferase (UGT) isoforms assay showed that the PPD glucuronidation was mainly catalyzed by UGT1A4 in HLM, whereas UGT1A3 showed weak catalytic activity. In conclusion, PPD-3-O-β-d-glucuronide was first identified as the principal glucuronidation metabolite of PPD in HLMs, which was catalyzed by UGT1A4. PMID:27005621

  14. Alterations of the human gut microbiome in liver cirrhosis.

    PubMed

    Qin, Nan; Yang, Fengling; Li, Ang; Prifti, Edi; Chen, Yanfei; Shao, Li; Guo, Jing; Le Chatelier, Emmanuelle; Yao, Jian; Wu, Lingjiao; Zhou, Jiawei; Ni, Shujun; Liu, Lin; Pons, Nicolas; Batto, Jean Michel; Kennedy, Sean P; Leonard, Pierre; Yuan, Chunhui; Ding, Wenchao; Chen, Yuanting; Hu, Xinjun; Zheng, Beiwen; Qian, Guirong; Xu, Wei; Ehrlich, S Dusko; Zheng, Shusen; Li, Lanjuan

    2014-09-04

    Liver cirrhosis occurs as a consequence of many chronic liver diseases that are prevalent worldwide. Here we characterize the gut microbiome in liver cirrhosis by comparing 98 patients and 83 healthy control individuals. We build a reference gene set for the cohort containing 2.69 million genes, 36.1% of which are novel. Quantitative metagenomics reveals 75,245 genes that differ in abundance between the patients and healthy individuals (false discovery rate < 0.0001) and can be grouped into 66 clusters representing cognate bacterial species; 28 are enriched in patients and 38 in control individuals. Most (54%) of the patient-enriched, taxonomically assigned species are of buccal origin, suggesting an invasion of the gut from the mouth in liver cirrhosis. Biomarkers specific to liver cirrhosis at gene and function levels are revealed by a comparison with those for type 2 diabetes and inflammatory bowel disease. On the basis of only 15 biomarkers, a highly accurate patient discrimination index is created and validated on an independent cohort. Thus microbiota-targeted biomarkers may be a powerful tool for diagnosis of different diseases.

  15. Integrated Assessment of Diclofenac Biotransformation, Pharmacokinetics, and Omics-Based Toxicity in a Three-Dimensional Human Liver-Immunocompetent Coculture System

    PubMed Central

    Ravindra, Kodihalli C.; Large, Emma; Young, Carissa L.; Rivera-Burgos, Dinelia; Yu, Jiajie; Cirit, Murat; Hughes, David J.; Wishnok, John S.; Lauffenburger, Douglas A.; Griffith, Linda G.

    2017-01-01

    In vitro hepatocyte culture systems have inherent limitations in capturing known human drug toxicities that arise from complex immune responses. Therefore, we established and characterized a liver immunocompetent coculture model and evaluated diclofenac (DCF) metabolic profiles, in vitro–in vivo clearance correlations, toxicological responses, and acute phase responses using liquid chromatography–tandem mass spectrometry. DCF biotransformation was assessed after 48 hours of culture, and the major phase I and II metabolites were similar to the in vivo DCF metabolism profile in humans. Further characterization of secreted bile acids in the medium revealed that a glycine-conjugated bile acid was a sensitive marker of dose-dependent toxicity in this three-dimensional liver microphysiological system. Protein markers were significantly elevated in the culture medium at high micromolar doses of DCF, which were also observed previously for acute drug-induced toxicity in humans. In this immunocompetent model, lipopolysaccharide treatment evoked an inflammatory response that resulted in a marked increase in the overall number of acute phase proteins. Kupffer cell–mediated cytokine release recapitulated an in vivo proinflammatory response exemplified by a cohort of 11 cytokines that were differentially regulated after lipopolysaccharide induction, including interleukin (IL)-1β, IL-1Ra, IL-6, IL-8, IP-10, tumor necrosis factor-α, RANTES (regulated on activation normal T cell expressed and secreted), granulocyte colony-stimulating factor, macrophage colony-stimulating factor, macrophage inflammatory protein-1β, and IL-5. In summary, our findings indicate that three-dimensional liver microphysiological systems may serve as preclinical investigational platforms from the perspective of the discovery of a set of clinically relevant biomarkers including potential reactive metabolites, endogenous bile acids, excreted proteins, and cytokines to predict early drug

  16. Variation in dielectric properties due to pathological changes in human liver.

    PubMed

    Peyman, Azadeh; Kos, Bor; Djokić, Mihajlo; Trotovšek, Blaž; Limbaeck-Stokin, Clara; Serša, Gregor; Miklavčič, Damijan

    2015-12-01

    Dielectric properties of freshly excised human liver tissues (in vitro) with several pathological conditions including cancer were obtained in frequency range 100 MHz-5 GHz. Differences in dielectric behavior of normal and pathological tissues at microwave frequencies are discussed based on histological information for each tissue. Data presented are useful for many medical applications, in particular nanosecond pulsed electroporation techniques. Knowledge of dielectric properties is vital for mathematical calculations of local electric field distribution inside electroporated tissues and can be used to optimize the process of electroporation for treatment planning procedures. © 2015 Wiley Periodicals, Inc.

  17. DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in human liver cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obara, Akio; Fujita, Yoshihito; Abudukadier, Abulizi

    Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosomemore » protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy. - Highlights: • We elucidated a novel pathway of metformin's anti-cancer action in HCC cells. • DEPTOR is involved in the suppressing effect of metformin on mTOR signaling. • Metformin increases DEPTOR protein levels via suppression of proteasome activity. • DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action.« less

  18. In vivo imaging of autologous islet grafts in the liver and under the kidney capsule in non-human primates

    PubMed Central

    Medarova, Zdravka; Vallabhajosyula, Prashanth; Tena, Aseda; Evgenov, Natalia; Pantazopoulos, Pamela; Tchipashvili, Vaja; Weir, Gordon; Sachs, David; Moore, Anna

    2009-01-01

    Objective As islet transplantation begins to show promise clinically, there is a critical need for reliable, non-invasive techniques to monitor islet graft survival. Previous work in our laboratory has shown that human islets labeled with a superparamagnetic iron oxide contrast agent and transplanted into mice could be detected by magnetic resonance imaging (MRI). The potential translation of these findings to the clinical situation requires validation of our methodology in a non-human primate model, which we have now carried out in baboons (Papio hamadryas) and reported here. Research Design and Methods: For islet labeling, we adapted the FDA-approved superparamagnetic iron oxide contrast agent, Feridex, which is used clinically for liver imaging. After partial pancreatectomy, Feridex-labeled islets were prepared and autotransplanted underneath the renal capsule and into the liver. Longitudinal in vivo MRI at days 1, 3, 8, 16, 23, and 30 after transplantation was performed in order to track the islet grafts. Results The renal subcapsular islet graft was easily detectable on T2*-weighted MRI images as a pocket of signal loss disrupting the contour of the kidney at the transplantation site. Islets transplanted in the liver appeared as distinct signal voids dispersed throughout the liver parenchyma. A semi-automated computational analysis of our MR imaging data established the feasibility of monitoring both the renal and intrahepatic grafts during the studied post-transplantation period. Conclusion This study establishes a method for the noninvasive, longitudinal detection of pancreatic islets transplanted into non-human primates using a low field clinical MRI system. PMID:19502957

  19. Mouse decellularised liver scaffold improves human embryonic and induced pluripotent stem cells differentiation into hepatocyte-like cells

    PubMed Central

    Scottoni, Federico; Crowley, Claire; Fiadeiro, Rebeca; Maghsoudlou, Panagiotis; Pellegata, Alessandro Filippo; Mazzacuva, Francesca; Gjinovci, Asllan; Lyne, Anne-Marie; Zulini, Justine; Little, Daniel; Mosaku, Olukunbi; Kelly, Deirdre; De Coppi, Paolo; Gissen, Paul

    2017-01-01

    Liver transplantation is the definitive treatment of liver failure but donor organ shortage limits its availability. Stem cells are highly expandable and have the potential to differentiate into any specialist cell. Use of patient-derived induced Pluripotent Stem Cells (hiPSCs) has the additional advantage for organ regeneration therapies by removing the need for immunosuppression. We compared hepatocyte differentiation of human embryonic stem cells (hESCs) and hiPSCs in a mouse decellularised liver scaffold (3D) with standard in vitro protocol (2D). Mouse livers were decellularised preserving micro-architecture, blood vessel network and extracellular matrix. hESCs and hiPSCs were primed towards the definitive endoderm. Cells were then seeded either in 3D or 2D cultures and the hepatocyte differentiation was continued. Both hESCs and hiPSCs differentiated more efficiently in 3D than in 2D, with higher and earlier expression of mature hepatocyte marker albumin, lipid and glycogen synthesis associated with a decrease in expression of fetal hepatocyte marker alpha-fetoprotein. Thus we conclude that stem cell hepatocyte differentiation in 3D culture promotes faster cell maturation. This finding suggests that optimised 3D protocols could allow generation of mature liver cells not achieved so far in standard 2D conditions and lead to improvement in cell models of liver disease and regenerative medicine applications. PMID:29261712

  20. Exacerbating Effects of Human Parvovirus B19 NS1 on Liver Fibrosis in NZB/W F1 Mice

    PubMed Central

    Hsu, Tsai-Ching; Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Tzang, Bor-Show

    2013-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19) is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling. PMID:23840852

  1. Betaine:homocysteine methyltransferase--a new assay for the liver enzyme and its absence from human skin fibroblasts and peripheral blood lymphocytes.

    PubMed

    Wang, J A; Dudman, N P; Lynch, J; Wilcken, D E

    1991-12-31

    Chronic elevation of plasma homocysteine is associated with increased atherogenesis and thrombosis, and can be lowered by betaine (N,N,N-trimethylglycine) treatment which is thought to stimulate activity of the enzyme betaine:homocysteine methyltransferase. We have developed a new assay for this enzyme, in which the products of the enzyme-catalysed reaction between betaine and homocysteine are oxidised by performic acid before being separated and quantified by amino acid analysis. This assay confirmed that human liver contains abundant betaine:homocysteine methyltransferase (33.4 nmol/h/mg protein at 37 degrees C, pH 7.4). Chicken and lamb livers also contain the enzyme, with respective activities of 50.4 and 6.2 nmol/h/mg protein. However, phytohaemagglutinin-stimulated human peripheral blood lymphocytes and cultured human skin fibroblasts contained no detectable betaine:homocysteine methyltransferase (less than 1.4 nmol/h/mg protein), even after cells were pre-cultured in media designed to stimulate production of the enzyme. The results emphasize the importance of the liver in mediating the lowering of elevated circulating homocysteine by betaine.

  2. Plants Consumption and Liver Health

    PubMed Central

    He, Qing

    2015-01-01

    The liver is a very important organ with a lot of functions for the host to survive. Dietary components are essential for and can be beneficial or detrimental to the healthy or diseased liver. Plants food is an essential part of the human diet and comprises various compounds which are closely related to liver health. Selected food plants can provide nutritional and medicinal support for liver disease. At the present, the knowledge of the effects of plants on the liver is still incomplete. The most urgent task at the present time is to find the best dietary and medicinal plants for liver health in an endless list of candidates. This review article updates the knowledge about the effects of plants consumption on the health of the liver, putting particular emphasis on the potential beneficial and harmful impact of dietary and medicinal plants on liver function. PMID:26221179

  3. Extrahepatic arteries of the human liver - anatomical variants and surgical relevancies.

    PubMed

    Németh, Károly; Deshpande, Rahul; Máthé, Zoltán; Szuák, András; Kiss, Mátyás; Korom, Csaba; Nemeskéri, Ágnes; Kóbori, László

    2015-10-01

    The purpose of our study was to investigate the anatomical variations of the extrahepatic arterial structures of the liver with particular attention to rare variations and their potential impact on liver surgery. A total of 50 human abdominal organ complexes were used to prepare corrosion casts. A multicomponent resin mixture was injected into the abdominal aorta. The portal vein was injected with a different colored resin in 16 cases. Digestion of soft tissues was achieved using cc. KOH solution at 60-65 °C. Extrahepatic arterial variations were classified according to Michels. All specimens underwent 3D volumetric CT reconstruction. Normal anatomy was seen in 42% of cases, and variants were seen in the other 58%. No Michels type VI or X variations were present; however, in 18% of cases the extrahepatic arterial anatomy did not fit into Michels' classification. We report four new extrahepatic arterial variations. In contrast to the available data, normal anatomy was found much less frequently, whereas the prevalence of unclassified arterial variations was higher. We detected four previously unknown variations. Our data may contribute to the reduction of complications during surgical and radiological interventions in the upper abdomen. © 2015 Steunstichting ESOT.

  4. Innate Immune Cells in Liver Inflammation

    PubMed Central

    Liaskou, Evaggelia; Wilson, Daisy V.; Oo, Ye H.

    2012-01-01

    Innate immune system is the first line of defence against invading pathogens that is critical for the overall survival of the host. Human liver is characterised by a dual blood supply, with 80% of blood entering through the portal vein carrying nutrients and bacterial endotoxin from the gastrointestinal tract. The liver is thus constantly exposed to antigenic loads. Therefore, pathogenic microorganism must be efficiently eliminated whilst harmless antigens derived from the gastrointestinal tract need to be tolerized in the liver. In order to achieve this, the liver innate immune system is equipped with multiple cellular components; monocytes, macrophages, granulocytes, natural killer cells, and dendritic cells which coordinate to exert tolerogenic environment at the same time detect, respond, and eliminate invading pathogens, infected or transformed self to mount immunity. This paper will discuss the innate immune cells that take part in human liver inflammation, and their roles in both resolution of inflammation and tissue repair. PMID:22933833

  5. Differential representation of liver proteins in obese human subjects suggests novel biomarkers and promising targets for drug development in obesity.

    PubMed

    Caira, Simonetta; Iannelli, Antonio; Sciarrillo, Rosaria; Picariello, Gianluca; Renzone, Giovanni; Scaloni, Andrea; Addeo, Pietro

    2017-12-01

    The proteome of liver biopsies from human obese (O) subjects has been compared to those of nonobese (NO) subjects using two-dimensional gel electrophoresis (2-DE). Differentially represented proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)-based peptide mass fingerprinting (PMF) and nanoflow-liquid chromatography coupled to electrospray-tandem mass spectrometry (nLC-ESI-MS/MS). Overall, 61 gene products common to all of the liver biopsies were identified within 65 spots, among which 25 ones were differently represented between O and NO subjects. In particular, over-representation of short-chain acyl-CoA dehydrogenase, Δ(3,5)-Δ(2,4)dienoyl-CoA isomerase, acetyl-CoA acetyltransferase, glyoxylate reductase/hydroxypyruvate reductase, fructose-biphosphate aldolase B, peroxiredoxin I, protein DJ-1, catalase, α- and β-hemoglobin subunits, 3-mercaptopyruvate S-transferase, calreticulin, aminoacylase 1, phenazine biosynthesis-like domain-containing protein and a form of fatty acid-binding protein, together with downrepresentation of glutamate dehydrogenase, glutathione S-transferase A1, S-adenosylmethionine synthase 1A and a form of apolipoprotein A-I, was associated with the obesity condition. Some of these metabolic enzymes and antioxidant proteins have already been identified as putative diagnostic markers of liver dysfunction in animal models of steatosis or obesity, suggesting additional investigations on their role in these syndromes. Their differential representation in human liver was suggestive of their consideration as obesity human biomarkers and for the development of novel antiobesity drugs.

  6. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound.

    PubMed

    Kamimura, Hidetaka; Ito, Satoshi

    2016-01-01

    1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.

  7. Mass spectrometric characterization of human serum albumin dimer: A new potential biomarker in chronic liver diseases.

    PubMed

    Naldi, Marina; Baldassarre, Maurizio; Nati, Marina; Laggetta, Maristella; Giannone, Ferdinando Antonino; Domenicali, Marco; Bernardi, Mauro; Caraceni, Paolo; Bertucci, Carlo

    2015-08-10

    Human serum albumin (HSA) undergoes several structural alterations affecting its properties in pro-oxidant and pro-inflammatory environments, as it occurs during liver cirrhosis. These modifications include the formation of albumin dimers. Although HSA dimers were reported to be an oxidative stress biomarker, to date nothing is known about their role in liver cirrhosis and related complications. Additionally, no high sensitive analytical method was available for HSA dimers assessment in clinical settings. Thus the HSA dimeric form in human plasma was characterized by mass spectrometry using liquid chromatography tandem mass spectrometry (LC-ESI-Q-TOF) and matrix assisted laser desorption time of flight (MALDI-TOF) techniques. N-terminal and C-terminal truncated HSA, as well as the native HSA, undergo dimerization by binding another HSA molecule. This study demonstrated the presence of both homo- and hetero-dimeric forms of HSA. The dimerization site was proved to be at Cys-34, forming a disulphide bridge between two albumin molecules, as determined by LC-MS analysis after tryptic digestion. Interestingly, when plasma samples from cirrhotic subjects were analysed, the dimer/monomer ratio resulted significantly increased when compared to that of healthy subjects. These isoforms could represent promising biomarkers for liver disease. Additionally, this analytical approach leads to the relative quantification of the residual native HSA, with fully preserved structural integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yoko, E-mail: y-watanabe@nichiyaku.ac.jp; Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806; Kojima, Hiroyuki

    2015-01-15

    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOHmore » BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with

  9. Abacavir/Dolutegravir/Lamivudine (Triumeq)–Induced Liver Toxicity in a Human Immunodeficiency Virus–Infected Patient

    PubMed Central

    Jain, Rupali; Roxby, Alison C.

    2017-01-01

    Abstract Drug-induced liver injury related to Triumeq (abacavir/lamivudine/dolutegravir) has not been reported in clinical trials. We report a case of hepatotoxicity related to Triumeq exposure in a human immunodeficiency virus–infected patient. Clinicians should remain aware of the risk for acute and late-onset hepatitis with these agents. Close monitoring is recommended. PMID:28748198

  10. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency.

    PubMed

    Spencer, Melanie D; Hamp, Timothy J; Reid, Robert W; Fischer, Leslie M; Zeisel, Steven H; Fodor, Anthony A

    2011-03-01

    Nonalcoholic fatty liver disease affects up to 30% of the US population, but the mechanisms underlying this condition are incompletely understood. We investigated how diet standardization and choline deficiency influence the composition of the microbial community in the human gastrointestinal tract and the development of fatty liver under conditions of choline deficiency. We performed a 2-month inpatient study of 15 female subjects who were placed on well-controlled diets in which choline levels were manipulated. We used 454-FLX pyrosequencing of 16S ribosomal RNA bacterial genes to characterize microbiota in stool samples collected over the course of the study. The compositions of the gastrointestinal microbial communities changed with choline levels of diets; each individual's microbiome remained distinct for the duration of the experiment, even though all subjects were fed identical diets. Variations between subjects in levels of Gammaproteobacteria and Erysipelotrichi were directly associated with changes in liver fat in each subject during choline depletion. Levels of these bacteria, change in amount of liver fat, and a single nucleotide polymorphism that affects choline were combined into a model that accurately predicted the degree to which subjects developed fatty liver on a choline-deficient diet. Host factors and gastrointestinal bacteria each respond to dietary choline deficiency, although the gut microbiota remains distinct in each individual. We identified bacterial biomarkers of fatty liver that result from choline deficiency, adding to the accumulating evidence that gastrointestinal microbes have a role in metabolic disorders. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Betaine chemistry, roles, and potential use in liver disease.

    PubMed

    Day, Christopher R; Kempson, Stephen A

    2016-06-01

    Betaine is the trimethyl derivative of glycine and is normally present in human plasma due to dietary intake and endogenous synthesis in liver and kidney. Betaine is utilized in the kidney primarily as an osmoprotectant, whereas in the liver its primary role is in metabolism as a methyl group donor. In both organs, a specific betaine transporter mediates cellular uptake of betaine from plasma. The abundance of both betaine and the betaine transporter in liver greatly exceeds that of other organs. The remarkable contributions of betaine to normal human and animal health are summarized together with a discussion of the mechanisms and potential beneficial effects of dietary betaine supplements on liver disease. A significant amount of data from animal models of liver disease indicates that administration of betaine can halt and even reverse progression of the disruption of liver function. Betaine is well-tolerated, inexpensive, effective over a wide range of doses, and is already used in livestock feeding practices. The accumulated data indicate that carefully controlled additional investigations in humans are merited. The focus should be on the long-term use of betaine in large patient populations with liver diseases characterized by development of fatty liver, especially non-alcoholic fatty liver disease and alcoholic liver disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Metabolism of Ginger Component [6]-Shogaol in Liver Microsomes from Mouse, Rat, Dog, Monkey, and Human

    PubMed Central

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-01-01

    Scope There are limited data on the metabolism of [6]-shogaol, a major bioactive component of ginger. This study demonstrates metabolism of [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human. Methods and results The in vitro metabolism of [6]-shogaol was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with [6]-shogaol, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E, 4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than [6]-shogaol. Conclusion We conclude that [6]-shogaol is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning pre-clinical trials towards [6]-shogaol chemoprevention. PMID:23322474

  13. Subtoxic Concentrations of Hepatotoxic Drugs Lead to Kupffer Cell Activation in a Human In Vitro Liver Model: An Approach to Study DILI

    PubMed Central

    Kegel, Victoria; Pfeiffer, Elisa; Burkhardt, Britta; Liu, Jia L.; Zeilinger, Katrin; Nüssler, Andreas K.; Seehofer, Daniel; Damm, Georg

    2015-01-01

    Drug induced liver injury (DILI) is an idiosyncratic adverse drug reaction leading to severe liver damage. Kupffer cells (KC) sense hepatic tissue stress/damage and therefore could be a tool for the estimation of consequent effects associated with DILI. Aim of the present study was to establish a human in vitro liver model for the investigation of immune-mediated signaling in the pathogenesis of DILI. Hepatocytes and KC were isolated from human liver specimens. The isolated KC yield was 1.2 ± 0.9 × 106 cells/g liver tissue with a purity of >80%. KC activation was investigated by the measurement of reactive oxygen intermediates (ROI, DCF assay) and cell activity (XTT assay). The initial KC activation levels showed broad donor variability. Additional activation of KC using supernatants of hepatocytes treated with hepatotoxic drugs increased KC activity and led to donor-dependent changes in the formation of ROI compared to KC incubated with supernatants from untreated hepatocytes. Additionally, a compound- and donor-dependent increase in proinflammatory cytokines or in anti-inflammatory cytokines was detected. In conclusion, KC related immune signaling in hepatotoxicity was successfully determined in a newly established in vitro liver model. KC were able to detect hepatocyte stress/damage and to transmit a donor- and compound-dependent immune response via cytokine production. PMID:26491234

  14. Liver-related safety assessment of green tea extracts in humans: a systematic review of randomized controlled trials

    PubMed Central

    Isomura, T; Suzuki, S; Origasa, H; Hosono, A; Suzuki, M; Sawada, T; Terao, S; Muto, Y; Koga, T

    2016-01-01

    There remain liver-related safety concerns, regarding potential hepatotoxicity in humans, induced by green tea intake, despite being supposedly beneficial. Although many randomized controlled trials (RCTs) of green tea extracts have been reported in the literature, the systematic reviews published to date were only based on subjective assessment of case reports. To more objectively examine the liver-related safety of green tea intake, we conducted a systematic review of published RCTs. A systematic literature search was conducted using three databases (PubMed, EMBASE and Cochrane Central Register of Controlled Trials) in December 2013 to identify RCTs of green tea extracts. Data on liver-related adverse events, including laboratory test abnormalities, were abstracted from the identified articles. Methodological quality of RCTs was assessed. After excluding duplicates, 561 titles and abstracts and 119 full-text articles were screened, and finally 34 trials were identified. Of these, liver-related adverse events were reported in four trials; these adverse events involved seven subjects (eight events) in the green tea intervention group and one subject (one event) in the control group. The summary odds ratio, estimated using a meta-analysis method for sparse event data, for intervention compared with placebo was 2.1 (95% confidence interval: 0.5–9.8). The few events reported in both groups were elevations of liver enzymes. Most were mild, and no serious liver-related adverse events were reported. Results of this review, although not conclusive, suggest that liver-related adverse events after intake of green tea extracts are expected to be rare. PMID:27188915

  15. Purification, crystallization and preliminary X-ray studies of human augmenter of liver regeneration.

    PubMed

    Ji, Chao-Neng; Cai, Zai-Long; Cao, Gen-Tao; Yin, Gang; Jiao, Bing-Hua; Jiang, Tao; Shu, Guang; Mao, Ji-Fang; Xie, Yi; Mao, Yu-Min

    2002-12-01

    Human augmenter of liver regeneration has been expressed in Escherichia coli, purified and crystallized. The crystals belong to space group C222, with unit-cell parameters a=51.7 A, b=78.8 A, c=63.7 A. Diffraction data were collected to 2.80 A with a completeness of 99.9% (99.9% for the last shell), a R(sym) value of 0.092(0.236) and an I/sigma(I) value of 6.2(2.7).

  16. Hypolipidaemic drugs are activated to acyl-CoA esters in isolated rat hepatocytes. Detection of drug activation by human liver homogenates and by human platelets.

    PubMed Central

    Bronfman, M; Morales, M N; Amigo, L; Orellana, A; Nuñez, L; Cárdenas, L; Hidalgo, P C

    1992-01-01

    The formation of acyl-CoA esters of the hypolipidaemic peroxisome proliferators clofibric acid, ciprofibrate and nafenopin was studied in isolated rat hepatocytes. The concentration of ciprofibroyl-CoA in the liver of ciprofibrate-treated rats was in the range of 10-30 microM. The three drugs formed acyl-CoA esters when incubated with isolated hepatocytes. Their formation was saturable and reached a plateau after 30 min incubation. Maximal intracellular concentrations of ciprofibroyl-CoA and clofibroyl-CoA (100 microM and 55 microM respectively) were attained at 0.5 mM of the free drugs in the incubation medium, whereas for nafenopin-CoA, the maximal intracellular concentration (9 microM) was reached at 1 mM-nafenopin. At low concentrations of the hypolipidaemic compounds in the incubation medium a significant proportion of the total intracellular drug was present as its acyl-CoA ester (25-35% for ciprofibrate). When isolated hepatocytes were incubated with a ciprofibrate concentration comparable with that observed in the blood of drug-treated rats (0.1 mM), ciprofibroyl-CoA attained an intracellular concentration similar to that previously observed in the liver of treated rats. The formation of ciprofibroyl-CoA by isolated rat hepatocytes was stimulated by the addition of carnitine and partially inhibited by the addition of palmitate. Further, it was shown that human liver homogenates synthesized ciprofibroyl-CoA at a rate similar to that observed for rat liver homogenates. Solubilized human platelets also formed ciprofibroyl-CoA, although at a rate two orders of magnitude lower than that of liver. The results support the view that acyl-CoA esters of hypolipidaemic peroxisome proliferators may be the pharmacologically active species of the drugs. PMID:1599408

  17. Effect of short-term carbohydrate overfeeding and long-term weight loss on liver fat in overweight humans.

    PubMed

    Sevastianova, Ksenia; Santos, Alexandre; Kotronen, Anna; Hakkarainen, Antti; Makkonen, Janne; Silander, Kaisa; Peltonen, Markku; Romeo, Stefano; Lundbom, Jesper; Lundbom, Nina; Olkkonen, Vesa M; Gylling, Helena; Fielding, Barbara A; Rissanen, Aila; Yki-Järvinen, Hannele

    2012-10-01

    Cross-sectional studies have identified a high intake of simple sugars as an important dietary factor predicting nonalcoholic fatty liver disease (NAFLD). We examined whether overfeeding overweight subjects with simple sugars increases liver fat and de novo lipogenesis (DNL) and whether this is reversible by weight loss. Sixteen subjects [BMI (kg/m²): 30.6 ± 1.2] were placed on a hypercaloric diet (>1000 kcal simple carbohydrates/d) for 3 wk and, thereafter, on a hypocaloric diet for 6 mo. The subjects were genotyped for rs739409 in the PNPLA3 gene. Before and after overfeeding and after hypocaloric diet, metabolic variables and liver fat (measured by proton magnetic resonance spectroscopy) were measured. The ratio of palmitate (16:0) to linoleate (18:2n-6) in serum and VLDL triglycerides was used as an index of DNL. Carbohydrate overfeeding increased weight (±SEM) by 2% (1.8 ± 0.3 kg; P < 0.0001) and liver fat by 27% from 9.2 ± 1.9% to 11.7 ± 1.9% (P = 0.005). DNL increased in proportion to the increase in liver fat and serum triglycerides in subjects with PNPLA3-148IIbut not PNPLA3-148MM. During the hypocaloric diet, the subjects lost 4% of their weight (3.2 ± 0.6 kg; P < 0.0001) and 25% of their liver fat content (from 11.7 ± 1.9% to 8.8 ± 1.8%; P < 0.05). Carbohydrate overfeeding for 3 wk induced a >10-fold greater relative change in liver fat (27%) than in body weight (2%). The increase in liver fat was proportional to that in DNL. Weight loss restores liver fat to normal. These data indicate that the human fatty liver avidly accumulates fat during carbohydrate overfeeding and support a role for DNL in the pathogenesis of NAFLD. This trial was registered at www.hus.fi as 235780.

  18. Kinetic properties of the human liver cytosolic aldehyde dehydrogenase for retinal isomers.

    PubMed

    Bhat, P V; Samaha, H

    1999-01-15

    Retinoic acid exerts pleiotropic effects by acting through two families of nuclear receptors, RAR and RXR. All-trans and 9-cis retinoic acid bind RARs, whereas 9-cis retinoic acid binds and activates only the RXRs. To understand the role of human liver cytosolic aldehyde dehydrogenase (ALDH1) in retinoic acid synthesis, we examined the ability of ALDH 1 to catalyze the oxidation of the naturally occurring retinal isomers. ALDH1 catalyzed the oxidation of all-trans, 9-cis, and 13-cis retinal with equal efficiency. However, the affinity to all-trans retinal (Km = 2.2 microM) was twofold higher than to 9-cis (Km = 5.5 microM) and 13-cis (Km = 4.6 microM) retinal. All-trans retinol was a potent inhibitor of ALDH1 activity, and inhibited all-trans retinal oxidation uncompetitively. Comparison of the kinetic properties of ALDH1 for retinal isomers with those of previously reported rat kidney retinal dehydrogenase showed distinct differences, suggesting that ALDH1 may play a different role in retinal metabolism in liver.

  19. In Vitro Hepatic Trans-Differentiation of Human Mesenchymal Stem Cells Using Sera from Congestive/Ischemic Liver during Cardiac Failure

    PubMed Central

    Bishi, Dillip Kumar; Mathapati, Santosh; Cherian, Kotturathu Mammen; Guhathakurta, Soma; Verma, Rama Shanker

    2014-01-01

    Cellular therapy for end-stage liver failures using human mesenchymal stem cells (hMSCs)-derived hepatocytes is a potential alternative to liver transplantation. Hepatic trans-differentiation of hMSCs is routinely accomplished by induction with commercially available recombinant growth factors, which is of limited clinical applications. In the present study, we have evaluated the potential of sera from cardiac-failure-associated congestive/ischemic liver patients for hepatic trans-differentiation of hMSCs. Results from such experiments were confirmed through morphological changes and expression of hepatocyte-specific markers at molecular and cellular level. Furthermore, the process of mesenchymal-to-epithelial transition during hepatic trans-differentiation of hMSCs was confirmed by elevated expression of E-Cadherin and down-regulation of Snail. The functionality of hMSCs-derived hepatocytes was validated by various liver function tests such as albumin synthesis, urea release, glycogen accumulation and presence of a drug inducible cytochrome P450 system. Based on these findings, we conclude that sera from congestive/ischemic liver during cardiac failure support a liver specific microenvironment for effective hepatic trans-differentiation of hMSCs in vitro. PMID:24642599

  20. Coexpression of CD14 and CD326 discriminate hepatic precursors in the human fetal liver.

    PubMed

    Fomin, Marina E; Tai, Lung-Kuo; Bárcena, Alicia; Muench, Marcus O

    2011-07-01

    The molecular and cellular profile of liver cells during early human development is incomplete, complicating the isolation and study of hepatocytes, cholangiocytes, and hepatic stem cells from the complex amalgam of hepatic and hematopoietic cells, that is, the fetal liver. Epithelial cell adhesion molecule, CD326, has emerged as a marker of hepatic stem cells, and lipopolysaccharide receptor CD14 is known to be expressed on adult hepatocytes. Using flow cytometry, we studied the breadth of CD326 and CD14 expression in midgestation liver. Both CD45(+) hematopoietic and CD45(-) nonhematopoietic cells expressed CD326. Moreover, diverse cell types expressing CD326 were revealed among CD45(-) cells by costaining for CD14. Fluorescence-activated cell sorting was used to isolate nonhematopoietic cells distinguished by expression of high levels of CD326 and low CD14 (CD326(++)CD14(lo)), which were characterized for gene expression associated with liver development. CD326(++)CD14(lo) cells expressed the genes albumin, α-fetoprotein, hepatic nuclear factor 3α, prospero-related homeobox 1, cytochrome P450 3A7, α(1)-antitrypsin, and transferrin. Proteins expressed included cell-surface CD24, CD26, CD29, CD34, CD49f, CD243, and CD324 and, in the cytoplasm, cytokeratins-7/8 (CAM 5.2 antigen) and some cytokeratin-19. Cultured CD326(++)CD14(lo) cells yielded albumin(+) hepatocytes, cytokeratin-19(+) cholangiocytes, and hepatoblasts expressing both markers. Using epifluorescence microscopy we observed CD326 and CD14 expression on fetal hepatocytes comprising the liver parenchyma, as well as on cells associated with ductal plates and surrounding large vessels. These findings indicate that expression of CD14 and CD326 can be used to identify functionally distinct subsets of fetal liver cells, including CD326(++)CD14(lo) cells, representing a mixture of parenchymal cells, cholangiocytes, and hepatoblasts.

  1. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    PubMed Central

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the promiscuous binding and transport properties of L-FABP, we investigated structure and dynamics of human L-FABP with and without bound ligands by means of heteronuclear NMR. The overall conformation of human L-FABP shows the typical β-clam motif. Binding of two oleic acid (OA) molecules does not alter the protein conformation substantially, but perturbs the chemical shift of certain backbone and side-chain protons that are involved in OA binding according to the structure of the human L-FABP/OA complex. Comparison of the human apo and holo L-FABP structures revealed no evidence for an “open-cap” conformation or a “swivel-back” mechanism of the K90 side chain upon ligand binding, as proposed for rat L-FABP. Instead, we postulate that the lipid binding process in L-FABP is associated with backbone dynamics. PMID:22713574

  2. Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: A case study with phenobarbital as a model constitutive androstane receptor (CAR) activator

    PubMed Central

    Elcombe, Clifford R.; Peffer, Richard C.; Wolf, Douglas C.; Bailey, Jason; Bars, Remi; Bell, David; Cattley, Russell C.; Ferguson, Stephen S.; Geter, David; Goetz, Amber; Goodman, Jay I.; Hester, Susan; Jacobs, Abigail; Omiecinski, Curtis J.; Schoeny, Rita; Xie, Wen; Lake, Brian G.

    2014-01-01

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are important nuclear receptors involved in the regulation of cellular responses from exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non-genotoxic indirect CAR activator, which induces cytochrome P450 (CYP) and other xenobiotic metabolizing enzymes and is known to produce liver foci/tumors in mice and rats. From literature data, a mode of action (MOA) for PB-induced rodent liver tumor formation was developed. A MOA for PXR activators was not established owing to a lack of suitable data. The key events in the PB-induced liver tumor MOA comprise activation of CAR followed by altered gene expression specific to CAR activation, increased cell proliferation, formation of altered hepatic foci and ultimately the development of liver tumors. Associative events in the MOA include altered epigenetic changes, induction of hepatic CYP2B enzymes, liver hypertrophy and decreased apoptosis; with inhibition of gap junctional intercellular communication being an associative event or modulating factor. The MOA was evaluated using the modified Bradford Hill criteria for causality and other possible MOAs were excluded. While PB produces liver tumors in rodents, important species differences were identified including a lack of cell proliferation in cultured human hepatocytes. The MOA for PB-induced rodent liver tumor formation was considered to be qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies conducted in human populations chronically exposed to PB in which there is no clear evidence for increased liver tumor risk. PMID:24180433

  3. The classification of secondary colorectal liver cancer in human biopsy samples using angular dispersive x-ray diffraction and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Theodorakou, Chrysoula; Farquharson, Michael J.

    2009-08-01

    The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.

  4. Hepatocyte-Specific Expression of Human Lysosome Acid Lipase Corrects Liver Inflammation and Tumor Metastasis in lal−/− Mice

    PubMed Central

    Du, Hong; Zhao, Ting; Ding, Xinchun; Yan, Cong

    2016-01-01

    The liver is a major organ for lipid synthesis and metabolism. Deficiency of lysosomal acid lipase (LAL; official name Lipa, encoded by Lipa) in mice (lal−/−) results in enlarged liver size due to neutral lipid storage in hepatocytes and Kupffer cells. To test the functional role of LAL in hepatocyte, hepatocyte-specific expression of human LAL (hLAL) in lal−/− mice was established by cross-breeding of liver-activated promoter (LAP)–driven tTA transgene and (tetO)7-CMV-hLAL transgene with lal−/− knockout (KO) (LAP-Tg/KO) triple mice. Hepatocyte-specific expression of hLAL in LAP-Tg/KO triple mice reduced the liver size to the normal level by decreasing lipid storage in both hepatocytes and Kupffer cells. hLAL expression reduced tumor-promoting myeloid-derived suppressive cells in the liver of lal−/− mice. As a result, B16 melanoma metastasis to the liver was almost completely blocked. Expression and secretion of multiple tumor-promoting cytokines or chemokines in the liver were also significantly reduced. Because hLAL is a secretory protein, lal−/− phenotypes in other compartments (eg, blood, spleen, and lung) also ameliorated, including systemic reduction of myeloid-derived suppressive cells, an increase in CD4+ and CD8+ T and B lymphocytes, and reduced B16 melanoma metastasis in the lung. These results support a concept that LAL in hepatocytes is a critical metabolic enzyme in controlling neutral lipid metabolism, liver homeostasis, immune response, and tumor metastasis. PMID:26212911

  5. Accurate Prediction of Drug-Induced Liver Injury Using Stem Cell-Derived Populations

    PubMed Central

    Szkolnicka, Dagmara; Farnworth, Sarah L.; Lucendo-Villarin, Baltasar; Storck, Christopher; Zhou, Wenli; Iredale, John P.; Flint, Oliver

    2014-01-01

    Despite major progress in the knowledge and management of human liver injury, there are millions of people suffering from chronic liver disease. Currently, the only cure for end-stage liver disease is orthotopic liver transplantation; however, this approach is severely limited by organ donation. Alternative approaches to restoring liver function have therefore been pursued, including the use of somatic and stem cell populations. Although such approaches are essential in developing scalable treatments, there is also an imperative to develop predictive human systems that more effectively study and/or prevent the onset of liver disease and decompensated organ function. We used a renewable human stem cell resource, from defined genetic backgrounds, and drove them through developmental intermediates to yield highly active, drug-inducible, and predictive human hepatocyte populations. Most importantly, stem cell-derived hepatocytes displayed equivalence to primary adult hepatocytes, following incubation with known hepatotoxins. In summary, we have developed a serum-free, scalable, and shippable cell-based model that faithfully predicts the potential for human liver injury. Such a resource has direct application in human modeling and, in the future, could play an important role in developing renewable cell-based therapies. PMID:24375539

  6. Mouse models to study the interaction of risk factors for human liver cancer.

    PubMed

    Sell, Stewart

    2003-11-15

    Each of the risk factors for human liver cancer (aflatoxin exposure, hepatitis B virus-associated liver injury, p53 loss, p53ser249 mutation, and male sex) also increases the incidence of hepatocellular carcinoma (HCC) in mouse models of hepatocarcinogenesis. Neonatal mice, partially hepatectomized adult mice, and p53-deficient mice each have a higher hepatocyte proliferation rate, are less able to detoxify AFB1, and form more DNA adducts than do normal wild-type controls. However, transgenic hepatitis B surface antigen mice, expressing hepatitis B surface antigen under control of the albumin promoter (alb/psx), are able to detoxify AFB1 at the same level as do wild-type mice. Thus, AFB1-induced HCC development in neonatal mice and p53+/- mice may be due to "immature" carcinogen metabolism, whereas increased HCC in transgenic hepatitis B virus mice may be due to promotion effects of increased proliferation. Future studies will explore the effects of modifying factors on the development of HCC.

  7. Metabolite Profiling and Pharmacokinetic Evaluation of Hydrocortisone in a Perfused Three-Dimensional Human Liver Bioreactor

    PubMed Central

    Sarkar, Ujjal; Rivera-Burgos, Dinelia; Large, Emma M.; Hughes, David J.; Ravindra, Kodihalli C.; Dyer, Rachel L.; Ebrahimkhani, Mohammad R.; Griffith, Linda G.

    2015-01-01

    Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a three-dimensional human microphysiological hepatocyte–Kupffer cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and was assessed by the release of proinflammatory cytokines, interleukin 6 and tumor necrosis factor α. A sensitive and specific reversed-phase–ultra high-performance liquid chromatography–quadrupole time of flight–mass spectrometry method was used to evaluate hydrocortisone disappearance and metabolism at near physiologic levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for 2 days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8–10% of the loss, and 45–52% consisted of phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life, rate of elimination, clearance, and area under the curve, were 23.03 hours, 0.03 hour−1, 6.6 × 10−5 l⋅hour−1, and 1.03 (mg/l)*h, respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized, and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically relevant tool for investigating hepatic function in an inflamed liver. PMID:25926431

  8. Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor.

    PubMed

    Sarkar, Ujjal; Rivera-Burgos, Dinelia; Large, Emma M; Hughes, David J; Ravindra, Kodihalli C; Dyer, Rachel L; Ebrahimkhani, Mohammad R; Wishnok, John S; Griffith, Linda G; Tannenbaum, Steven R

    2015-07-01

    Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a three-dimensional human microphysiological hepatocyte-Kupffer cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and was assessed by the release of proinflammatory cytokines, interleukin 6 and tumor necrosis factor α. A sensitive and specific reversed-phase-ultra high-performance liquid chromatography-quadrupole time of flight-mass spectrometry method was used to evaluate hydrocortisone disappearance and metabolism at near physiologic levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for 2 days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8-10% of the loss, and 45-52% consisted of phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life, rate of elimination, clearance, and area under the curve, were 23.03 hours, 0.03 hour(-1), 6.6 × 10(-5) l⋅hour(-1), and 1.03 (mg/l)*h, respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized, and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically relevant tool for investigating hepatic function in an inflamed liver. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Evaluation of Encapsulated Liver Cell Spheroids in a Fluidised-Bed Bioartificial Liver for Treatment of Ischaemic Acute Liver Failure in Pigs in a Translational Setting

    PubMed Central

    Selden, Clare; Spearman, Catherine Wendy; Kahn, Delawir; Miller, Malcolm; Figaji, Anthony; Erro, Eloy; Bundy, James; Massie, Isobel; Chalmers, Sherri-Ann; Arendse, Hiram; Gautier, Aude; Sharratt, Peter; Fuller, Barry; Hodgson, Humphrey

    2013-01-01

    Liver failure is an increasing problem. Donor-organ shortage results in patients dying before receiving a transplant. Since the liver can regenerate, alternative therapies providing temporary liver-support are sought. A bioartificial-liver would temporarily substitute function in liver failure buying time for liver regeneration/organ-procurement. Our aim: to develop a prototype bioartificial-liver-machine (BAL) comprising a human liver-derived cell-line, cultured to phenotypic competence and deliverable in a clinical setting to sites distant from its preparation. The objective of this study was to determine whether its use would improve functional parameters of liver failure in pigs with acute liver failure, to provide proof-of-principle. HepG2cells encapsulated in alginate-beads, proliferated in a fluidised-bed-bioreactor providing a biomass of 4–6×1010cells, were transported from preparation-laboratory to point-of-use operating theatre (6000miles) under perfluorodecalin at ambient temperature. Irreversible ischaemic liver failure was induced in anaesthetised pigs, after portal-systemic-shunt, by hepatic-artery-ligation. Biochemical parameters, intracranial pressure, and functional-clotting were measured in animals connected in an extracorporeal bioartificial-liver circuit. Efficacy was demonstrated comparing outcomes between animals connected to a circuit containing alginate-encapsulated cells (Cell-bead BAL), and those connected to circuit containing alginate capsules without cells (Empty-bead BAL). Cells of the biomass met regulatory standards for sterility and provenance. All animals developed progressive liver-failure after ischaemia induction. Efficacy of BAL was demonstrated since animals connected to a functional biomass (+ cells) had significantly smaller rises in intracranial pressure, lower ammonia levels, more bilirubin conjugation, improved acidosis and clotting restoration compared to animals connected to the circuit without cells. In the +cell

  10. Hydrolysis of pyrethroids by human and rat tissues: Examination of intestinal, liver and serum carboxylesterases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crow, J. Allen; Borazjani, Abdolsamad; Potter, Philip M.

    2007-05-15

    Hydrolytic metabolism of pyrethroid insecticides in humans is one of the major catabolic pathways that clear these compounds from the body. Rodent models are often used to determine the disposition and clearance rates of these esterified compounds. In this study the distribution and activities of esterases that catalyze pyrethroid metabolism have been investigated in vitro using several human and rat tissues, including small intestine, liver and serum. The major esterase in human intestine is carboxylesterase 2 (hCE2). We found that the pyrethroid trans-permethrin is effectively hydrolyzed by a sample of pooled human intestinal microsomes (5 individuals), while deltamethrin and bioresmethrinmore » are not. This result correlates well with the substrate specificity of recombinant hCE2 enzyme. In contrast, a sample of pooled rat intestinal microsomes (5 animals) hydrolyze trans-permethrin 4.5-fold slower than the sample of human intestinal microsomes. Furthermore, it is demonstrated that pooled samples of cytosol from human or rat liver are {approx} 2-fold less hydrolytically active (normalized per mg protein) than the corresponding microsomal fraction toward pyrethroid substrates; however, the cytosolic fractions do have significant amounts ({approx} 40%) of the total esteratic activity. Moreover, a 6-fold interindividual variation in carboxylesterase 1 protein expression in human hepatic cytosols was observed. Human serum was shown to lack pyrethroid hydrolytic activity, but rat serum has hydrolytic activity that is attributed to a single CE isozyme. We purified the serum CE enzyme to homogeneity to determine its contribution to pyrethroid metabolism in the rat. Both trans-permethrin and bioresmethrin were effectively cleaved by this serum CE, but deltamethrin, esfenvalerate, alpha-cypermethrin and cis-permethrin were slowly hydrolyzed. Lastly, two model lipase enzymes were examined for their ability to hydrolyze pyrethroids. However, no hydrolysis products could

  11. Bisphenol-A glucuronidation in human liver and breast: identification of UDP-glucuronosyltransferases (UGTs) and influence of genetic polymorphisms.

    PubMed

    Street, Christina M; Zhu, Zhaohui; Finel, Moshe; Court, Michael H

    2017-01-01

    1. Bisphenol-A is a ubiquitous environmental contaminant that is primarily metabolized by glucuronidation and associated with various human diseases including breast cancer. Here we identified UDP-glucuronosyltransferases (UGTs) and genetic polymorphisms responsible for interindividual variability in bisphenol-A glucuronidation in human liver and breast. 2. Hepatic UGTs showing the highest bisphenol-A glucuronidation activity included UGT2B15 and UGT1A9. Relative activity factor normalization indicated that UGT2B15 contributes >80% of activity at bisphenol-A concentrations under 5 μM, while UGT1A9 contributes up to 50% of activity at higher concentrations. 3. Bisphenol-A glucuronidation by liver microsomes (46 donors) ranged from 0.25 to 4.3 nmoles/min/mg protein. Two-fold higher glucuronidation (p = 0.018) was observed in UGT1A9 *22/*22 livers compared with *1/*1 and *1/*22 livers. However, no associations were observed for UGT2B15*2 or UGT1A1*28 genotypes. 4. Bisphenol-A glucuronidation by breast microsomes (15 donors) ranged from <0.2 to 56 fmoles/min/mg protein. Breast mRNA expression of UGTs capable of glucuronidating bisphenol-A was highest for UGT1A1, followed by UGT2B4, UGT1A9, UGT1A10, UGT2B7 and UGT2B15. Bisphenol-A glucuronidation was over 10-fold lower in breast tissues with the UGT1A1*28 allele compared with tissues without this allele (p = 0.006). 5. UGT2B15 and UGT1A9 contribute to glucuronidation variability in liver, while UGT1A1 is important in breast.

  12. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice.

    PubMed

    Vaughan, Ashley M; Mikolajczak, Sebastian A; Wilson, Elizabeth M; Grompe, Markus; Kaushansky, Alexis; Camargo, Nelly; Bial, John; Ploss, Alexander; Kappe, Stefan H I

    2012-10-01

    Plasmodium falciparum, which causes the most lethal form of human malaria, replicates in the host liver during the initial stage of infection. However, in vivo malaria liver-stage (LS) studies in humans are virtually impossible, and in vitro models of LS development do not reconstitute relevant parasite growth conditions. To overcome these obstacles, we have adopted a robust mouse model for the study of P. falciparum LS in vivo: the immunocompromised and fumarylacetoacetate hydrolase-deficient mouse (Fah-/-, Rag2-/-, Il2rg-/-, termed the FRG mouse) engrafted with human hepatocytes (FRG huHep). FRG huHep mice supported vigorous, quantifiable P. falciparum LS development that culminated in complete maturation of LS at approximately 7 days after infection, providing a relevant model for LS development in humans. The infections allowed observations of previously unknown expression of proteins in LS, including P. falciparum translocon of exported proteins 150 (PTEX150) and exported protein-2 (EXP-2), components of a known parasite protein export machinery. LS schizonts exhibited exoerythrocytic merozoite formation and merosome release. Furthermore, FRG mice backcrossed to the NOD background and repopulated with huHeps and human red blood cells supported reproducible transition from LS infection to blood-stage infection. Thus, these mice constitute reliable models to study human LS directly in vivo and demonstrate utility for studies of LS-to-blood-stage transition of a human malaria parasite.

  13. Absolute Quantification of Human Liver Phosphorus-Containing Metabolites In Vivo Using an Inhomogeneous Spoiling Magnetic Field Gradient

    PubMed Central

    Bashir, Adil; Gropler, Robert; Ackerman, Joseph

    2015-01-01

    Purpose Absolute concentrations of high-energy phosphorus (31P) metabolites in liver provide more important insight into physiologic status of liver disease compared to resonance integral ratios. A simple method for measuring absolute concentrations of 31P metabolites in human liver is described. The approach uses surface spoiling inhomogeneous magnetic field gradient to select signal from liver tissue. The technique avoids issues caused by respiratory motion, chemical shift dispersion associated with linear magnetic field gradients, and increased tissue heat deposition due to radiofrequency absorption, especially at high field strength. Methods A method to localize signal from liver was demonstrated using superficial and highly non-uniform magnetic field gradients, which eliminate signal(s) from surface tissue(s) located between the liver and RF coil. A double standard method was implemented to determine absolute 31P metabolite concentrations in vivo. 8 healthy individuals were examined in a 3 T MR scanner. Results Concentrations of metabolites measured in eight healthy individuals are: γ-adenosine triphosphate (ATP) = 2.44 ± 0.21 (mean ± sd) mmol/l of wet tissue volume, α-ATP = 3.2 ± 0.63 mmol/l, β-ATP = 2.98 ± 0.45 mmol/l, inorganic phosphates (Pi) = 1.87 ± 0.25 mmol/l, phosphodiesters (PDE) = 10.62 ± 2.20 mmol/l and phosphomonoesters (PME) = 2.12 ± 0.51 mmol/l. All are in good agreement with literature values. Conclusions The technique offers robust and fast means to localize signal from liver tissue, allows absolute metabolite concentration determination, and avoids problems associated with constant field gradient (linear field variation) localization methods. PMID:26633549

  14. The Use of Human Liver Cell Model and Cytochrome P450 Substrate-Inhibitor Panel for Studies of Dasatinib and Warfarin Interactions.

    PubMed

    Zakharyants, A A; Burmistrova, O A; Poloznikov, A A

    2017-02-01

    The possibility of interactions between warfarin and dasatinib and their interactions with other drugs metabolized by cytochrome P450 isoform CYP3A4 was demonstrated using a previously created cytochrome P450 substrate-inhibitor panel for preclinical in vitro studies of drug biotransformation on a 3D histotypical microfluidic cell model of human liver (liver-on-a-chip technology). Dasatinib and warfarin are inhibitors of CYP2C19 isoform and hence, can interfere the drugs metabolized by this isoform. Our findings are in line with the data obtained on primary culture of human hepatocytes and suggest that the model can be used in preclinical in vitro studies of drugs.

  15. Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human.

    PubMed

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-05-01

    There are limited data on the metabolism of [6]-shogaol (6S), a major bioactive component of ginger. This study demonstrates metabolism of 6S in liver microsomes from mouse, rat, dog, monkey, and human. The in vitro metabolism of 6S was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with 6S, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E,4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites, M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than 6S. We conclude that 6S is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning preclinical trials toward 6S chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Purification, crystallization and preliminary X-ray analysis of the glucosamine-6-phosphate N-acetyltransferase from human liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juan; Zhou, Yan-Feng; Li, Lan-Fen

    2006-11-01

    Glucosamine-6-phosphate N-acetyltransferase from human liver was expressed, purified and crystallized. Diffraction data have been collected to 2.6 Å resolution. Glucosamine-6-phosphate N-acetyltransferase from human liver, which catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to the primary amine of d-glucosamine 6-phosphate to form N-acetyl-d-glucosamine 6-phosphate, was expressed in a soluble form from Escherichia coli strain BL21 (DE3). The protein was purified to homogeneity using Ni{sup 2+}-chelating chromatography followed by size-exclusion chromatography. Crystals of the protein were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.6 Å resolution. The crystals belonged to space group P4{sub 1}2{sub 1}2more » or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 50.08, c = 142.88 Å.« less

  17. Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis.

    PubMed

    Nussler, Andreas K; Wildemann, Britt; Freude, Thomas; Litzka, Christian; Soldo, Petra; Friess, Helmut; Hammad, Seddik; Hengstler, Jan G; Braun, Karl F; Trak-Smayra, Viviane; Godoy, Patricio; Ehnert, Sabrina

    2014-04-01

    Patients with chronic liver diseases frequently exhibit decreased bone mineral densities (BMD), which is defined as hepatic osteodystrophy (HOD). HOD is a multifactorial disease whose regulatory mechanisms are barely understood. Thus, an early diagnosis and therapy is hardly possible. Therefore, the aim of our study consisted in characterizing a mouse model reflecting the human pathomechanism. Serum samples were collected from patients with chronic liver diseases and 12-week old C57Bl6/N mice after 6-week treatment with carbon tetrachloride (CCl4). Repetitive injections of CCl4 induced liver damage in mice, resembling liver fibrosis in patients, as assessed by serum analysis and histological staining. Although CCl4 did not affect primary osteoblast cultures, μCT analysis revealed significantly decreased BMD, bone volume, trabecular number and thickness in CCl4-treated mice. In both HOD patients and CCl4-treated mice, an altered vitamin D metabolism with decreased CYP27A1, CYP2R1, vitamin D-binding protein GC and increased 7-dehydrocholesterol reductase hepatic gene expression, results in decreased 25-OH vitamin D serum levels. Moreover, both groups exhibit excessively high active transforming growth factor-beta (TGF-β) serum levels, inhibiting osteoblast function in vitro. Summarizing, our mouse model presents possible mediators of HOD, e.g. altered vitamin D metabolism and increased active TGF-β. Liver damage and significant changes in bone structure and mineralization are already visible by μCT analysis after 6 weeks of CCl4 treatment. This fast response and easy transferability makes it an ideal model to investigate specific gene functions in HOD.

  18. Kinetics of Ethylene and Ethylene Oxide in Subcellular Fractions of Lungs and Livers of Male B6C3F1 Mice and Male Fischer 344 Rats and of Human Livers

    PubMed Central

    Csanády, György András; Kessler, Winfried; Klein, Dominik; Pankratz, Helmut; Pütz, Christian; Richter, Nadine; Filser, Johannes Georg

    2011-01-01

    Ethylene (ET) is metabolized in mammals to the carcinogenic ethylene oxide (EO). Although both gases are of high industrial relevance, only limited data exist on the toxicokinetics of ET in mice and of EO in humans. Metabolism of ET is related to cytochrome P450-dependent mono-oxygenase (CYP) and of EO to epoxide hydrolase (EH) and glutathione S-transferase (GST). Kinetics of ET metabolism to EO and of elimination of EO were investigated in headspace vessels containing incubations of subcellular fractions of mouse, rat, or human liver or of mouse or rat lung. CYP-associated metabolism of ET and GST-related metabolism of EO were found in microsomes and cytosol, respectively, of each species. EH-related metabolism of EO was not detectable in hepatic microsomes of rats and mice but obeyed saturation kinetics in hepatic microsomes of humans. In ET-exposed liver microsomes, metabolism of ET to EO followed Michaelis-Menten-like kinetics. Mean values of Vmax [nmol/(min·mg protein)] and of the apparent Michaelis constant (Km [mmol/l ET in microsomal suspension]) were 0.567 and 0.0093 (mouse), 0.401 and 0.031 (rat), and 0.219 and 0.013 (human). In lung microsomes, Vmax values were 0.073 (mouse) and 0.055 (rat). During ET exposure, the rate of EO production decreased rapidly. By modeling a suicide inhibition mechanism, rate constants for CYP-mediated catalysis and CYP inactivation were estimated. In liver cytosol, mean GST activities to EO expressed as Vmax/Km [μl/(min·mg protein)] were 27.90 (mouse), 5.30 (rat), and 1.14 (human). The parameters are most relevant for reducing uncertainties in the risk assessment of ET and EO. PMID:21785163

  19. In vivo hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells: Therapeutic effect on liver fibrosis/cirrhosis.

    PubMed

    Zhang, Guo-Zun; Sun, Hui-Cong; Zheng, Li-Bo; Guo, Jin-Bo; Zhang, Xiao-Lan

    2017-12-14

    To investigate the hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and to evaluate their therapeutic effect on liver fibrosis/cirrhosis. A CCl 4 -induced liver fibrotic/cirrhotic rat model was used to assess the effect of hUC-MSCs. Histopathology was assessed by hematoxylin and eosin (H&E), Masson trichrome and Sirius red staining. The liver biochemical profile was measured using a Beckman Coulter analyzer. Expression analysis was performed using immunofluorescent staining, immunohistochemistry, Western blot, and real-time PCR. We demonstrated that the infused hUC-MSCs could differentiate into hepatocytes in vivo . Functionally, the transplantation of hUC-MSCs to CCl 4 -treated rats improved liver transaminases and synthetic function, reduced liver histopathology and reversed hepatobiliary fibrosis. The reversal of hepatobiliary fibrosis was likely due to the reduced activation state of hepatic stellate cells, decreased collagen deposition, and enhanced extracellular matrix remodeling via the up-regulation of MMP-13 and down-regulation of TIMP-1. Transplanted hUC-MSCs could differentiate into functional hepatocytes that improved both the biochemical and histopathologic changes in a CCl 4 -induced rat liver fibrosis model. hUC-MSCs may offer therapeutic opportunities for treating hepatobiliary diseases, including cirrhosis.

  20. In vivo hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells: Therapeutic effect on liver fibrosis/cirrhosis

    PubMed Central

    Zhang, Guo-Zun; Sun, Hui-Cong; Zheng, Li-Bo; Guo, Jin-Bo; Zhang, Xiao-Lan

    2017-01-01

    AIM To investigate the hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and to evaluate their therapeutic effect on liver fibrosis/cirrhosis. METHODS A CCl4-induced liver fibrotic/cirrhotic rat model was used to assess the effect of hUC-MSCs. Histopathology was assessed by hematoxylin and eosin (H&E), Masson trichrome and Sirius red staining. The liver biochemical profile was measured using a Beckman Coulter analyzer. Expression analysis was performed using immunofluorescent staining, immunohistochemistry, Western blot, and real-time PCR. RESULTS We demonstrated that the infused hUC-MSCs could differentiate into hepatocytes in vivo. Functionally, the transplantation of hUC-MSCs to CCl4-treated rats improved liver transaminases and synthetic function, reduced liver histopathology and reversed hepatobiliary fibrosis. The reversal of hepatobiliary fibrosis was likely due to the reduced activation state of hepatic stellate cells, decreased collagen deposition, and enhanced extracellular matrix remodeling via the up-regulation of MMP-13 and down-regulation of TIMP-1. CONCLUSION Transplanted hUC-MSCs could differentiate into functional hepatocytes that improved both the biochemical and histopathologic changes in a CCl4-induced rat liver fibrosis model. hUC-MSCs may offer therapeutic opportunities for treating hepatobiliary diseases, including cirrhosis. PMID:29290652

  1. Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression.

    PubMed

    Unzu, C; Melero, I; Hervás-Stubbs, S; Sampedro, A; Mancheño, U; Morales-Kastresana, A; Serrano-Mendioroz, I; de Salamanca, R E; Benito, A; Fontanellas, A

    2015-11-01

    Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles kg(-1) (10(10) infective units kg(-1)) of HDA only resulted in transient (≈14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.

  2. Expression of cytochrome P-450 4 enzymes in the kidney and liver: regulation by PPAR and species-difference between rat and human.

    PubMed

    Ito, Osamu; Nakamura, Yasuhiro; Tan, Liping; Ishizuka, Tsuneo; Sasaki, Yuko; Minami, Naoyoshi; Kanazawa, Masayuki; Ito, Sadayoshi; Sasano, Hironobu; Kohzuki, Masahiro

    2006-03-01

    Members of the cytochrome P-450 4 (CYP4) family catalyze the omega-hydroxylation of fatty acids, and some of them have the PPAR response element in the promoter area of the genes. The localization of CYP4A and PPAR isoforms and the effect of PPAR agonists on CYP4A protein level and activity were determined in rat kidney and liver. Immunoblot analysis showed that CYP4A was expressed in the liver and proximal tubule, with lower expression in the preglomerular microvessel, glomerulus and thick ascending limb (TAL), but the expression was not detected in the collecting duct. PPARalpha was expressed in the liver, proximal tubule and TAL. PPARgamma was expressed in the collecting duct, with lower expression in the TAL, but no expression in the proximal tubule and liver. The PPARalpha agonist clofibrate induced CYP4A protein levels and activity in the renal cortex and liver. The PPARgamma agonist pioglitazone did not modulate them in these tissues. The localization of CYP4A and CYP4F were further determined in human kidney and liver by immunohistochemical technique. Immunostainings for CYP4A and CYP4F were observed in the hepatocytes of the liver lobule and the proximal tubules, with lower stainings in the TALs and collecting ducts, but no staining in the glomeruli or renal vasculatures. These results indicate that the inducibility of CYP4A by PPAR agonists in the rat tissues correlates with the expression of the respective PPAR isoforms, and that the localization of CYP4 in the kidney has a species-difference between rat and human.

  3. Comparison of the therapeutic effectiveness of human CD34+ and rat bone marrow mesenchymal stem cells on improvement of experimental liver fibrosis in Wistar rats

    PubMed Central

    Sayyed, Hayam G; Osama, Amany; Idriss, Naglaa K; Sabry, Dina; Abdelrhim, Azza S; Bakry, Rania

    2016-01-01

    Background and objective: Human umbilical cord blood (UCB) cells and bone marrow mesenchymal stem cells (BM-MSCs) have numerous advantages as grafts for cell transplantation. We hypothesized differing impacts of human UCB cells and rat BM-MSCs on reversal of hepatic injury and revival of liver function in carbon tetrachloride (CCl4)-induced liver fibrosis. Methods: Forty rats were divided into 4 groups; control group, CCl4 group, CCl4/CD34+ group and CCl4/BM-MSCs group. Blood samples were driven from rats at 4, 8 and 12 weeks to measure serum concentration of albumin and alanine aminotransferase (ALT). Quantitative expression of collagen Iα, TGF-β, α-SMA, albumin, MMP-2, MMP-9 and TNF-α were assessed by polymerase chain reaction. Histopathological examination of the liver tissue was performed. GFP labeled cells were detected in groups injected with stem cells. Results: Regarding liver function, CD34+ were more efficient than BM-MSCs in elevating albumin (P<0.05) and reducing ALT (P<0.05) concentrations. Concerning gene expression, CD34+ were more effective than BM-MSCs in reducing gene expressions of collagen Iα (P<0.01), TGF-β1 (P<0.01) and α-SMA (P<0.01). Both CD34+ and BM-MSCs have the same efficacy in reducing TNF-α (P<0.001 and P<0.01, respectively). Furthermore, CD34+ were more valuable than BM-MSCs in increasing gene expression of albumin (P<0.05) and MMP-9 (P<0.01). Conclusion: Taken together; human UCB CD34+ stem cells were more efficient in improvement of experimental liver injury than BM-MSCs. This study highlighted an important role of human UCB CD34+ stem cells in liver fibrosis therapy. PMID:27785340

  4. Cytokinesis-block micronucleus assay in primary human liver fibroblasts exposed to griseofulvin and mitomycin C.

    PubMed

    Nesti, C; Trippi, F; Scarpato, R; Migliore, L; Turchi, G

    2000-03-01

    Primary liver fibroblasts were applied in a cytokinesis-block micronucleus assay in combination with fluorescence in situ hybridization (FISH) using two protocols. In protocol A (Prot. A), cytochalasin B (Cyt B) was added at the end of the treatment time directly to the medium containing the standard compounds, whereas in protocol B (Prot. B) the chemical-containing medium was removed and fresh medium with Cyt B was added. The study was performed using the aneugen griseofulvin (GF) and the clastogen mitomycin C (MMC) as standard compounds. With both protocols GF induced a significant increase in MN frequency over controls in a dose-related manner at the lower concentrations tested (7.5 and 15 microg/ml). At the highest dose (30 microg/ml) the aneugen effect was substantially reduced. MN induction obtained with Prot. A was significantly higher ( approximately 3-fold) than with Prot. B at the most effective concentration. The aneugen effect induced by GF did not change when different cell densities were used, but again with Prot. A we obtained the highest effect. MN induced by MMC showed a dose- and time-dependent increase in both protocols. In contrast to GF, the greater clastogenic response induced by MMC in human liver fibroblasts was obtained with Prot. B, approximately 3-fold higher than Prot. A at the most effective concentration and approximately 2-fold with 24 h treatment at 0.17 microg/ml MMC. With GF, the FISH data in human liver fibroblasts (80% C+MN) were fairly consistent with those obtained in the rodent cell lines. In human whole blood cultures, the same dose used in our experiment produced a relatively higher percentage of C+MN. FISH analysis showed that MMC induced mainly MN containing acentric fragments rather than whole chromosomes. In conclusion we have demostrated that chemically induced genetic effects are strongly dependent on the cell culture employed, treatment schedule and intra- and post-treatment experimental conditions.

  5. Hepatocyte nuclear factor 4A improves hepatic differentiation of immortalized adult human hepatocytes and improves liver function and survival.

    PubMed

    Hang, Hua-Lian; Liu, Xin-Yu; Wang, Hai-Tian; Xu, Ning; Bian, Jian-Min; Zhang, Jian-Jun; Xia, Lei; Xia, Qiang

    2017-11-15

    Immortalized human hepatocytes (IHH) could provide an unlimited supply of hepatocytes, but insufficient differentiation and phenotypic instability restrict their clinical application. This study aimed to determine the role of hepatocyte nuclear factor 4A (HNF4A) in hepatic differentiation of IHH, and whether encapsulation of IHH overexpressing HNF4A could improve liver function and survival in rats with acute liver failure (ALF). Primary human hepatocytes were transduced with lentivirus-mediated catalytic subunit of human telomerase reverse transcriptase (hTERT) to establish IHH. Cells were analyzed for telomerase activity, proliferative capacity, hepatocyte markers, and tumorigenicity (c-myc) expression. Hepatocyte markers, hepatocellular functions, and morphology were studied in the HNF4A-overexpressing IHH. Hepatocyte markers and karyotype analysis were completed in the primary hepatocytes using shRNA knockdown of HNF4A. Nuclear translocation of β-catenin was assessed. Rat models of ALF were treated with encapsulated IHH or HNF4A-overexpressing IHH. A HNF4A-positive IHH line was established, which was non-tumorigenic and conserved properties of primary hepatocytes. HNF4A overexpression significantly enhanced mRNA levels of genes related to hepatic differentiation in IHH. Urea levels were increased by the overexpression of HNF4A, as measured 24h after ammonium chloride addition, similar to that of primary hepatocytes. Chromosomal abnormalities were observed in primary hepatocytes transfected with HNF4A shRNA. HNF4α overexpression could significantly promote β-catenin activation. Transplantation of HNF4A overexpressing IHH resulted in better liver function and survival of rats with ALF compared with IHH. HNF4A improved hepatic differentiation of IHH. Transplantation of HNF4A-overexpressing IHH could improve the liver function and survival in a rat model of ALF. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes.

    PubMed

    Shi, Jian; Wang, Xinwen; Lyu, Lingyun; Jiang, Hui; Zhu, Hao-Jie

    2018-04-01

    Human hepatic cell lines are widely used as an in vitro model for the study of drug metabolism and liver toxicity. However, the validity of this model is still a subject of debate because the expressions of various proteins in the cell lines, including drug-metabolizing enzymes (DMEs), can differ significantly from those in human livers. In the present study, we first conducted an untargeted proteomics analysis of the microsomes of the cell lines HepG2, Hep3B, and Huh7, and compared them to human livers using a sequential window acquisition of all theoretical mass spectra (SWATH) method. Furthermore, high-resolution multiple reaction monitoring (MRM-HR), a targeted proteomic approach, was utilized to compare the expressions of pre-selected DMEs between human livers and the cell lines. In general, the SWATH quantifications were in good agreement with the MRM-HR analysis. Over 3000 protein groups were quantified in the cells and human livers, and the proteome profiles of human livers significantly differed from the cell lines. Among the 101 DMEs quantified with MRM-HR, most were expressed at substantially lower levels in the cell lines. Thus, appropriate caution must be exercised when using these cell lines for the study of hepatic drug metabolism and toxicity. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  7. The interaction of bacterial magnetosomes and human liver cancer cells in vitro

    NASA Astrophysics Data System (ADS)

    Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Yue; Pan, Weidong; Song, Tao

    2017-04-01

    As the biogenic magnetic nanomaterial, bacterial magnetic nanoparticles, namely magnetosomes, provide many advantages for potential biomedical applications. As such, interactions among magnetosomes and target cells should be elucidated to develop their bioapplications and evaluate their biocompatibilities. In this study, the interaction of magnetosomes and human liver cancer HepG2 cells was examined. Prussian blue staining revealed numerous stained particles in or on the cells. Intracellular iron concentrations, measured through inductively coupled plasma optical emission spectroscopy, increased with the increasing concentration of the magnetosomes. Transmission electron microscopy images showed that magnetosomes could be internalized in cells, mainly encapsulated in membrane vesicles, such as endosomes and lysosomes, and partly found as free particles in the cytosol. Some of the magnetosomes on cellular surfaces were encapsulated through cell membrane ruffling, which is the initiating process of endocytosis. Applying low temperature treatment and using specific endocytic inhibitors, we validated that macropinocytosis and clathrin-mediated endocytosis were involved in magnetosome uptake by HepG2 cells. Consequently, we revealed the interaction and intrinsic endocytic mechanisms of magnetosomes and HepG2 cells. This study provides a basis for the further research on bacterial magnetosome applications in liver diseases.

  8. In vitro metabolism and interactions of pyridostigmine bromide, N,N-diethyl-m-toluamide, and permethrin in human plasma and liver microsomal enzymes.

    PubMed

    Abu-Qare, A W; Abou-Donia, M B

    2008-03-01

    1. The in vitro human plasma activity and liver microsomal metabolism of pyridostigmine bromide (PB), a prophylactic treatment against organophosphate nerve agent attack, N,N-diethyl-m-toluamide (DEET), an insect repellent, and permethrin, a pyrethroid insecticide, either alone or in combination were investigated. 2. The three chemicals disappeared from plasma in the following order: permethrin > PB > DEET. The combined incubation of DEET with either permethrin or PB had no effect on permethrin or PB. Binary incubation with permethrin decreased the metabolism of PB and its disappearance from plasma and binary incubation with PB decreased the metabolism of permethrin and its clearance from plasma. Incubation with PB and/or permethrin shortened the DEET terminal half-life in plasma. These agents behaved similarly when studied in liver microsomal assays. The combined incubation of DEET with PB or permethrin (alone or in combination) diminished DEET metabolism in microsomal systems. 3. The present study evidences that PB and permethrin are metabolized by both human plasma and liver microsomal enzymes and that DEET is mainly metabolized by liver oxidase enzymes. Combined exposure to test chemicals increases their neurotoxicity by impeding the body's ability to eliminate them because of the competition for detoxifying enzymes.

  9. In Utero Bisphenol A Concentration, Metabolism, and Global DNA Methylation Across Matched Placenta, Kidney, and Liver in the Human Fetus

    PubMed Central

    Nahar, Muna S.; Liao, Chunyang; Kannan, Kurunthachalam; Harris, Craig; Dolinoy, Dana C.

    2014-01-01

    While urine has been an easily accessible and feasible matrix for human biomonitoring, analytical measurements in internal tissues and organs can provide more accurate exposure assessments to understand disease etiology. This is especially important for the endocrine active compound, bisphenol A (BPA), where studies investigating internal doses at sensitive periods of human development are currently lacking. Herein, BPA concentrations, BPA-specific metabolizing enzyme gene expression, and global DNA methylation were characterized across three matched tissues from elective pregnancy terminations of 2nd trimester human fetuses: the placenta, liver, and kidney (N=12 each; N=36 total). Compared to liver (free: 0.54-50.5 ng/g), BPA concentrations were lower in matched placenta (<0.05-25.4 ng/g) and kidney (0.08-11.1 ng/g) specimens. BPA-specific metabolism gene expression of GUSB, UGT2B15, STS, and SULT1A1 differed across each tissue type; however, conjugation and deconjugation expression patterns were similar across the fetus. Average LINE1 and CCGG global methylation were 58.3 and 59.2% in placenta, 79.5 and 66.4% in fetal liver, and 77.9 and 77.0% in fetal kidney, with significant tissue-specific DNA methylation differences in both LINE1 (p-value <0.001) and CCGG content (p-value <0.001). Total BPA concentrations were positively associated with global methylation for the placenta only using the LINE1 assay (p-value: 0.002), suggesting organ-specific biological effects after fetal exposure. Utilizing sensitive human clinical specimens, results are informative for BPA toxicokinetics and toxicodynamics assessment in the developing human fetus. PMID:25434263

  10. Effect of Abdominal Loading Location on Liver Motion: Experimental Assessment using Ultrafast Ultrasound Imaging and Simulation with a Human Body Model.

    PubMed

    Le Ruyet, Anicet; Berthet, Fabien; Rongiéras, Frédéric; Beillas, Philippe

    2016-11-01

    A protocol based on ultrafast ultrasound imaging was applied to study the in situ motion of the liver while the abdomen was subjected to compressive loading at 3 m/s by a hemispherical impactor or a seatbelt. The loading was applied to various locations between the lower abdomen and the mid thorax while feature points inside the liver were followed on the ultrasound movie (2000 frames per second). Based on tests performed on five post mortem human surrogates (including four tested in the current study), trends were found between the loading location and feature point trajectory parameters such as the initial angle of motion or the peak displacement in the direction of impact. The impactor tests were then simulated using the GHBMC M50 human body model that was globally scaled to the dimensions of each surrogate. Some of the experimental trends observed could be reproduced in the simulations (e.g. initial angle) while others differed more widely (e.g. final caudal motion). The causes for the discrepancies need to be further investigated. The liver strain energy density predicted by the model was also widely affected by the impact location. Experimental and simulation results both highlight the importance of the liver position with respect to the impactor when studying its response in situ.

  11. Counter-regulation of rejection activity against human liver grafts by donor PD-L1 and recipient PD-1 interaction.

    PubMed

    Shi, Xiao-Lei; Mancham, Shanta; Hansen, Bettina E; de Knegt, Robert J; de Jonge, Jeroen; van der Laan, Luc J W; Rivadeneira, Fernando; Metselaar, Herold J; Kwekkeboom, Jaap

    2016-06-01

    Co-inhibitory receptor-ligand interactions fine-tune immune responses by negatively regulating T cell functions. Our aim is to examine the involvement of co-inhibitory receptor-ligand pair PD-1/PD-L1 in regulating rejection after liver transplantation (LT) in humans. PD-L1/PD-1 expression in liver allograft was determined by immunohistochemistry or flow cytometry, and the effect of blockade was studied using graft-infiltrating T cells ex vivo. Five single nucleotide polymorphisms within PD-1 and PD-L1 genes were genotyped in 528 LT recipients and 410 donors, and associations with both early (⩽6months) and late (>6months) acute rejection were analyzed using Cox proportional-hazards regression model. The effect of PD-L1 rs4143815 on PD-L1 expression was analyzed using donor hepatic leukocytes. PD-L1 was expressed by hepatocytes, cholangiocytes and along the sinusoids in post-transplant liver allografts, and PD-1 was abundantly expressed on allograft-infiltrating T cells. PD-L1 blockade enhanced allogeneic proliferative responses of graft-infiltrating T cells. In the genetic association analysis, donor PD-L1 rs4143815 (CC/CG vs. GG; HR=0.230; p=0.002) and recipient PD-1 rs11568821 (AA/AG vs. GG; HR=3.739; p=0.004) were associated with acute rejection late after LT in multivariate analysis. Recipients carrying the PD-1 rs11568821 A allele who were transplanted with liver grafts of PD-L1 rs4143815 GG homozygous donors showed the highest risk for late acute rejection. PD-L1 rs4143815 is associated with differential PD-L1 expression on donor hepatic dendritic cells upon IFN-γ stimulation. Our data suggest that interplay between donor PD-L1 and recipient PD-1 counter-regulates rejection activity against liver grafts in humans. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  12. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice

    PubMed Central

    Vaughan, Ashley M.; Mikolajczak, Sebastian A.; Wilson, Elizabeth M.; Grompe, Markus; Kaushansky, Alexis; Camargo, Nelly; Bial, John; Ploss, Alexander; Kappe, Stefan H.I.

    2012-01-01

    Plasmodium falciparum, which causes the most lethal form of human malaria, replicates in the host liver during the initial stage of infection. However, in vivo malaria liver-stage (LS) studies in humans are virtually impossible, and in vitro models of LS development do not reconstitute relevant parasite growth conditions. To overcome these obstacles, we have adopted a robust mouse model for the study of P. falciparum LS in vivo: the immunocompromised and fumarylacetoacetate hydrolase–deficient mouse (Fah–/–, Rag2–/–, Il2rg–/–, termed the FRG mouse) engrafted with human hepatocytes (FRG huHep). FRG huHep mice supported vigorous, quantifiable P. falciparum LS development that culminated in complete maturation of LS at approximately 7 days after infection, providing a relevant model for LS development in humans. The infections allowed observations of previously unknown expression of proteins in LS, including P. falciparum translocon of exported proteins 150 (PTEX150) and exported protein-2 (EXP-2), components of a known parasite protein export machinery. LS schizonts exhibited exoerythrocytic merozoite formation and merosome release. Furthermore, FRG mice backcrossed to the NOD background and repopulated with huHeps and human red blood cells supported reproducible transition from LS infection to blood-stage infection. Thus, these mice constitute reliable models to study human LS directly in vivo and demonstrate utility for studies of LS–to–blood-stage transition of a human malaria parasite. PMID:22996664

  13. Duck liver-associated outbreak of Campylobacteriosis among humans, United Kingdom, 2011.

    PubMed

    Abid, Muhammad; Wimalarathna, Helen; Mills, Janette; Saldana, Luisa; Pang, Winnie; Richardson, Judith F; Maiden, Martin C J; McCarthy, Noel D

    2013-08-01

    Campylobacter- spp.-related gastroenteritis in diners at a catering college restaurant was associated with consumption of duck liver pâté. Population genetic analysis indicated that isolates from duck samples were typical of isolates from farmed poultry. Campylobacter spp. contamination of duck liver may present a hazard similar to the increasingly recognized contamination of chicken liver.

  14. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Javed; Ahamed, Maqusood, E-mail: maqusood@gmail.com; Akhtar, Mohd Javed

    Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion ofmore » glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.« less

  15. TWEAK induces liver progenitor cell proliferation

    PubMed Central

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.

    2005-01-01

    Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  16. Explanted Diseased Livers – A Possible Source of Metabolic Competent Primary Human Hepatocytes

    PubMed Central

    Krech, Till; DeTemple, Daphne; Jäger, Mark D.; Lehner, Frank; Manns, Michael P.; Klempnauer, Jürgen; Borlak, Jürgen; Bektas, Hueseyin; Vondran, Florian W. R.

    2014-01-01

    Being an integral part of basic, translational and clinical research, the demand for primary human hepatocytes (PHH) is continuously growing while the availability of tissue resection material for the isolation of metabolically competent PHH remains limited. To overcome current shortcomings, this study evaluated the use of explanted diseased organs from liver transplantation patients as a potential source of PHH. Therefore, PHH were isolated from resected surgical specimens (Rx-group; n = 60) and explanted diseased livers obtained from graft recipients with low labMELD-score (Ex-group; n = 5). Using established protocols PHH were subsequently cultured for a period of 7 days. The viability and metabolic competence of cultured PHH was assessed by the following parameters: morphology and cell count (CyQuant assay), albumin synthesis, urea production, AST-leakage, and phase I and II metabolism. Both groups were compared in terms of cell yield and metabolic function, and results were correlated with clinical parameters of tissue donors. Notably, cellular yields and viabilities were comparable between the Rx- and Ex-group and were 5.3±0.5 and 2.9±0.7×106 cells/g liver tissue with 84.3±1.3 and 76.0±8.6% viability, respectively. Moreover, PHH isolated from the Rx- or Ex-group did not differ in regards to loss of cell number in culture, albumin synthesis, urea production, AST-leakage, and phase I and II metabolism (measured by the 7-ethoxycoumarin-O-deethylase and uracil-5′-diphosphate-glucuronyltransferase activity). Likewise, basal transcript expressions of the CYP monooxygenases 1A1, 2C8 and 3A4 were comparable as was their induction when treated with a cocktail that consisted of 3-methylcholantren, rifampicin and phenobarbital, with increased expression of CYP 1A1 and 3A4 mRNA while transcript expression of CYP 2C8 was only marginally changed. In conclusion, the use of explanted diseased livers obtained from recipients with low labMELD-score might

  17. Environmental Toxin Screening Using Human-Derived 3D Bioengineered Liver and Cardiac Organoids.

    PubMed

    Forsythe, Steven D; Devarasetty, Mahesh; Shupe, Thomas; Bishop, Colin; Atala, Anthony; Soker, Shay; Skardal, Aleksander

    2018-01-01

    Environmental toxins, such as lead and other heavy metals, pesticides, and other compounds, represent a significant health concern within the USA and around the world. Even in the twenty-first century, a plethora of cities and towns in the U.S. have suffered from exposures to lead in drinking water or other heavy metals in food or the earth, while there is a high possibility of further places to suffer such exposures in the near future. We employed bioengineered 3D human liver and cardiac organoids to screen a panel of environmental toxins (lead, mercury, thallium, and glyphosate), and charted the response of the organoids to these compounds. Liver and cardiac organoids were exposed to lead (10 µM-10 mM), mercury (200 nM-200 µM), thallium (10 nM-10 µM), or glyphosate (25 µM-25 mM) for a duration of 48 h. The impacts of toxin exposure were then assessed by LIVE/DEAD viability and cytotoxicity staining, measuring ATP activity and determining IC50 values, and determining changes in cardiac organoid beating activity. As expected, all of the toxins induced toxicity in the organoids. Both ATP and LIVE/DEAD assays showed toxicity in both liver and cardiac organoids. In particular, thallium was the most toxic, with IC50 values of 13.5 and 1.35 µM in liver and cardiac organoids, respectively. Conversely, glyphosate was the least toxic of the four compounds, with IC50 values of 10.53 and 10.85 mM in liver and cardiac organoids, respectively. Additionally, toxins had a negative influence on cardiac organoid beating activity as well. Thallium resulting in the most significant decreases in beating rate, followed by mercury, then glyphosate, and finally, lead. These results suggest that the 3D organoids have significant utility to be deployed in additional toxicity screening applications, and future development of treatments to mitigate exposures. 3D organoids have significant utility to be deployed in additional toxicity screening applications, such

  18. Human Mesenchymal Stem Cell Transfusion Is Safe and Improves Liver Function in Acute-on-Chronic Liver Failure Patients

    PubMed Central

    Shi, Ming; Zhang, Zheng; Xu, Ruonan; Lin, Hu; Fu, Junliang; Zou, Zhengsheng; Zhang, Aimin; Shi, Jianfei; Chen, Liming; Lv, Sa; He, Weiping; Geng, Hua; Jin, Lei; Liu, Zhenwen

    2012-01-01

    Acute-on-chronic liver failure (ACLF) is a severe, life-threatening complication, and new and efficient therapeutic strategies for liver failure are urgently needed. Mesenchymal stem cell (MSC) transfusions have been shown to reverse fulminant hepatic failure in mice and to improve liver function in patients with end-stage liver diseases. We assessed the safety and initial efficacy of umbilical cord-derived MSC (UC-MSC) transfusions for ACLF patients associated with hepatitis B virus (HBV) infection. A total of 43 ACLF patients were enrolled for this open-labeled and controlled study; 24 patients were treated with UC-MSCs, and 19 patients were treated with saline as controls. UC-MSC therapy was given three times at 4-week intervals. The liver function, adverse events, and survival rates were evaluated during the 48-week or 72-week follow-up period. No significant side effects were observed during the trial. The UC-MSC transfusions significantly increased the survival rates in ACLF patients; reduced the model for end-stage liver disease scores; increased serum albumin, cholinesterase, and prothrombin activity; and increased platelet counts. Serum total bilirubin and alanine aminotransferase levels were significantly decreased after the UC-MSC transfusions. UC-MSC transfusions are safe in the clinic and may serve as a novel therapeutic approach for HBV-associated ACLF patients. PMID:23197664

  19. Occurrence of artificial sweeteners in human liver and paired blood and urine samples from adults in Tianjin, China and their implications for human exposure.

    PubMed

    Zhang, Tao; Gan, Zhiwei; Gao, Chuanzi; Ma, Ling; Li, Yanxi; Li, Xiao; Sun, Hongwen

    2016-09-14

    In this study, acesulfame (ACE), saccharin (SAC) and cyclamate (CYC) were found in all paired urine and blood samples collected from healthy adults, with mean values of 4070, 918 and 628 ng mL(-1), respectively, in urine and 9.03, 20.4 and 0.72 ng mL(-1), respectively, in blood. SAC (mean: 84.4 ng g(-1)) and CYC (4.29 ng g(-1)) were detectable in all liver samples collected from liver cancer patients, while ACE was less frequently detected. Aspartame (ASP) was not found in any analyzed human sample, which can be explained by the fact that this chemical metabolized rapidly in the human body. Among all adults, significantly positive correlations between SAC and CYC levels were observed (p < 0.001), regardless of human matrices. Nevertheless, no significant correlations between concentrations of SAC (or CYC) and ACE were found in any of the human matrices. Our results suggest that human exposure to SAC and CYC is related, whereas ACE originates from a discrete source. Females (or young adults) were exposed to higher levels of SAC and CYC than males (or elderly). The mean renal clearance of SAC was 730 mL per day per kg in adults, which was significantly (p < 0.001) lower than those for CYC (10 800 mL per day per kg) and ACE (10 300 mL per day per kg). The average total daily intake of SAC and ACE was 9.27 and 33.8 μg per kg bw per day, respectively.

  20. A Pathway to Personalizing Therapy for Metastases Using Liver-on-a-Chip Platforms.

    PubMed

    Khazali, A S; Clark, A M; Wells, A

    2017-06-01

    Metastasis accounts for most cancer-related deaths. The majority of solid cancers, including those of the breast, colorectum, prostate and skin, metastasize at significant levels to the liver due to its hemodynamic as well as tumor permissive microenvironmental properties. As this occurs prior to detection and treatment of the primary tumor, we need to target liver metastases to improve patients' outcomes. Animal models, while proven to be useful in mechanistic studies, do not represent the heterogeneity of human population especially in drug metabolism lack proper human cell-cell interactions, and this gap between animals and humans results in costly and inefficient drug discovery. This underscores the need to accurately model the human liver for disease studies and drug development. Further, the occurrence of liver metastases is influenced by the primary tumor type, sex and race; thus, modeling these specific settings will facilitate the development of personalized/targeted medicine for each specific group. We have adapted such all-human 3D ex vivo hepatic microphysiological system (MPS) (a.k.a. liver-on-a-chip) to investigate human micrometastases. This review focuses on the sources of liver resident cells, especially the iPS cell-derived hepatocytes, and examines some of the advantages and disadvantages of these sources. In addition, this review also examines other potential challenges and limitations in modeling human liver.

  1. Assessment of possible carcinogenicity of oxyfluorfen to humans using mode of action analysis of rodent liver effects.

    PubMed

    Stagg, Nicola J; LeBaron, Matthew J; Eisenbrandt, David L; Gollapudi, B Bhaskar; Klaunig, James E

    2012-08-01

    Oxyfluorfen is a herbicide that is not genotoxic and produces liver toxicity in rodents, following repeated administration at high dose levels. Lifetime rodent feeding studies reported in 1977 with low-purity oxyfluorfen (85%) showed no increase in any tumor type in rats (800 ppm, high dose) and only a marginally increased incidence of hepatocellular tumors in male CD-1 mice at the highest dose (200 ppm). To evaluate the potential carcinogenicity of the currently registered oxyfluorfen (> 98% purity), we conducted a series of short-term liver mode of action (MOA) toxicology studies in male CD-1 mice administered dietary doses of 0, 40, 200, 800, and 1600 ppm for durations of 3, 7, 10, or 28 days. MOA endpoints examined included liver weight, histopathology, cell proliferation, nuclear receptor-mediated gene expression, and other peroxisome proliferator-specific endpoints and their reversibility. Minimal liver effects were observed in mice administered doses at or below 200 ppm for up to 28 days. Increased liver weight, single-cell necrosis, cell proliferation, and peroxisomal acyl-CoA oxidase (ACO) were observed at 800 ppm after 28 days, but there was no increase in peroxisomes. Expression of Cyp2b10 and Cyp4a10 transcripts, markers of constitutive androstane receptor and peroxisome proliferator activated receptor α nuclear receptor activation, respectively, were increased at 800 and 1600 ppm after 3 or 10 days. Collectively, these data along with the negative genotoxicity demonstrate that oxyfluorfen (> 98% purity) has the potential to induce mouse liver tumors through a nongenotoxic, mitogenic MOA with a clear threshold and is not predicted to be carcinogenic in humans at relevant exposure levels.

  2. [Effect of bemethyl on cytochrome P-450-dependent monoxygenases in the human liver and lymphocytes].

    PubMed

    Sorokina, E A; Sibiriak, S V; Sergeeva, S A

    2002-01-01

    Effects of the actoprotector bemithyl (50 mg/kg, p.o.) upon a single or five-fold administration on the cytochrome P-450 and b5 content and the isoform-specific and nonspecific monooxygenase activity [aminopyrine-N-demethylase, aniline-p-hydroxylase, 4-nitroanisole-o-demethylase,2,5-diphenyloxazole-p-hydroxylase, 7-ethoxyresorufin-o-deethylase (EROD), benzyloxyresorufin-o-debenzylase (BROD)] in rat liver were evaluated. In addition, the influence of bemithyl (0.(1)-100 microM) on the development of EROD and BROD activity was studied on the mitogen-stimulated human lymphocytes in vitro. Administered in rats, bemithyl exhibited the properties of a cytochrome P-450 inductor of the mixed type, which was manifested by an increase in the total cytochrome P-450 content in liver microsomes and in the monooxygenase activity related to both Ah-receptor-dependent and -independent isoforms (except for the aniline-p-hydroxylase activity). The induction of the monooxygenase activity realized by Ah-receptor-dependent isoforms (4-nitroanisole-o-demethylase, 2,5-diphenyloxazole-p-hydroxylase, and EROD activity) was more pronounced, reaching maximum upon a single drug administration. Acting upon the human lymphocytes in vitro, high concentrations of bemithyl increased expression of the EROD activity, while low drug concentrations stimulated the BROD activity.

  3. Fixation methods for electron microscopy of human and other liver

    PubMed Central

    Wisse, Eddie; Braet, Filip; Duimel, Hans; Vreuls, Celien; Koek, Ger; Olde Damink, Steven WM; van den Broek, Maartje AJ; De Geest, Bart; Dejong, Cees HC; Tateno, Chise; Frederik, Peter

    2010-01-01

    For an electron microscopic study of the liver, expertise and complicated, time-consuming processing of hepatic tissues and cells is needed. The interpretation of electron microscopy (EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation, embedding, sectioning, contrast staining and microscopic imaging. Hence, the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue, for the purpose of preserving long-standing expertise and to encourage new investigators and clinicians to include EM studies of liver cells and tissue in their projects. PMID:20556830

  4. Purification and characterization of akr1b10 from human liver: role in carbonyl reduction of xenobiotics.

    PubMed

    Martin, Hans-Jörg; Breyer-Pfaff, Ursula; Wsol, Vladimir; Venz, Simone; Block, Simone; Maser, Edmund

    2006-03-01

    Members of the aldo-keto reductase (AKR) superfamily have a broad substrate specificity in catalyzing the reduction of carbonyl group-containing xenobiotics. In the present investigation, a member of the aldose reductase subfamily, AKR1B10, was purified from human liver cytosol. This is the first time AKR1B10 has been purified in its native form. AKR1B10 showed a molecular mass of 35 kDa upon gel filtration and SDS-polyacrylamide gel electrophoresis. Kinetic parameters for the NADPH-dependent reduction of the antiemetic 5-HT3 receptor antagonist dolasetron, the antitumor drugs daunorubicin and oracin, and the carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) to the corresponding alcohols have been determined by HPLC. Km values ranged between 0.06 mM for dolasetron and 1.1 mM for daunorubicin. Enzymatic efficiencies calculated as kcat/Km were more than 100 mM-1 min-1 for dolasetron and 1.3, 0.43, and 0.47 mM-1 min-1 for daunorubicin, oracin, and NNK, respectively. Thus, AKR1B10 is one of the most significant reductases in the activation of dolasetron. In addition to its reducing activity, AKR1B10 catalyzed the NADP+-dependent oxidation of the secondary alcohol (S)-1-indanol to 1-indanone with high enzymatic efficiency (kcat/Km=112 mM-1 min-1). The gene encoding AKR1B10 was cloned from a human liver cDNA library and the recombinant enzyme was purified. Kinetic studies revealed lower activity of the recombinant compared with the native form. Immunoblot studies indicated large interindividual variations in the expression of AKR1B10 in human liver. Since carbonyl reduction of xenobiotics often leads to their inactivation, AKR1B10 may play a role in the occurrence of chemoresistance of tumors toward carbonyl group-bearing cytostatic drugs.

  5. An effective strategy for decontamination, ex vivo expansion, and storage of human fetal liver hematopoietic stem cells.

    PubMed

    Rice, H E; Skarsgard, E D; Emani, V R; Zanjani, E D; Harrison, M R; Flake, A W

    1994-12-01

    The transplantation of human fetal tissue has the potential to cure a variety of life-threatening diseases. The strategy for procurement, quality control, and functional assessment of human fetal liver HSC may prove useful for the transplantation of other fetal tissues. In addition to technical limitations, there are ethical and legal issues which need to be resolved before widespread use of fetal tissue. Further development of regulatory standards for the acquisition and distribution of fetal tissues will foster the application of this novel technology.

  6. A liver-metastatic model of human primary gastric lymphoma in nude mice orthotopically constructed by using histologically intact patient specimens.

    PubMed

    Yang, Bo; Tuo, Shuai; Tuo, Chao-Wei; Zhang, Ning; Liu, Qiu-Zhen

    2010-06-01

    In recent years, incidence and mortality of lymphoma are markedly increasing worldwide. However, the pathogenesis and mechanism of invasion and metastasis for lymphoma are not yet fully clarified. It is mainly due to the lack of ideal animal models, which can precisely simulate the invasion and metastasis of lymphoma in the human body. So, it is very necessary to establish a highly metastatic nude mouse model of human lymphoma. This study developed a liver-metastatic model of primary gastric lymphoma in nude mice by using orthotopic surgical implantation of histologically intact patient specimens into the corresponding organs of the recipient small animals. A histologically intact fragment of liver metastasis derived from a surgical specimen of a patient with primary gastric lymphoma was implanted into the submucosa of the stomach in nude mice. Tumorigenicity, invasion, metastasis, morphologic characteristics (via light microscopy, electron microscopy, and immunohistochemistry), karyotype analysis, and DNA content of the orthotopically transplanted tumors were studied. An orthotopic liver metastatic model of human primary gastric lymphoma in nude mice (termed HGBL-0304) was successfully established. The histopathology of the transplanted tumors showed primary gastric diffuse large B-cell lymphoma. CD19, CD20, CD22, and CD79alpha were positive, but CD3 and CD7 were negative. The serum level of lactate dehydrogenase (LDH) was elevated [(1010.56+/-200.85) U/L]. The number of chromosomes ranged from 75 to 89. The DNA index (DI) was 1.45+/-0.25 (that is, heteroploid). So far, the HGBL-0304 model has been passed on for 45 generations of nude mice. A total of 263 nude mice were used for the transplantation. Both the growth and resuscitation rates of liquid nitrogen cryopreservation of the transplanted tumors were 100%. The transplanted tumors autonomically invasively grew and damaged a whole layer in the stomach of nude mice. The metastasis rates of liver, spleen, lymph

  7. Human parvovirus B19 VP1u Protein as inflammatory mediators induces liver injury in naïve mice.

    PubMed

    Hsu, Tsai-Ching; Chiu, Chun-Ching; Chang, Shun-Chih; Chan, Hsu-Chin; Shi, Ya-Fang; Chen, Tzy-Yen; Tzang, Bor-Show

    2016-01-01

    Human parvovirus B19 (B19V) is a human pathogen known to be associated with many non-erythroid diseases, including hepatitis. Although B19V VP1-unique region (B19-VP1u) has crucial roles in the pathogenesis of B19V infection, the influence of B19-VP1u proteins on hepatic injury is still obscure. This study investigated the effect and possible inflammatory signaling of B19-VP1u in livers from BALB/c mice that were subcutaneously inoculated with VP1u-expressing COS-7 cells. The in vivo effects of B19-VP1u were analyzed by using live animal imaging system (IVIS), Haematoxylin-Eosin staining, gel zymography, and immunoblotting after inoculation. Markedly hepatocyte disarray and lymphocyte infiltration, enhanced matrix metalloproteinase (MMP)-9 activity and increased phosphorylation of p38, ERK, IKK-α, IκB and NF-κB (p-p65) proteins were observed in livers from BALB/c mice receiving COS-7 cells expressing B19-VP1u as well as the significantly increased CRP, IL-1β and IL-6. Notably, IFN-γ and phosphorylated STAT1, but not STAT3, were also significantly increased in the livers of BALB/c mice that were subcutaneously inoculated with VP1u-expressing COS-7 cells. These findings revealed the effects of B19-VP1u on liver injury and suggested that B19-VP1u may have a role as mediators of inflammation in B19V infection.

  8. The Influence of Dietary Fat on Liver Fat Accumulation

    PubMed Central

    Green, Charlotte J.; Hodson, Leanne

    2014-01-01

    Obesity is a known risk factor for the development of non-alcoholic fatty liver disease (NAFLD); however, it has been suggested that dietary fat, both amount and composition, may play a pivotal role in its development, independent of body fatness. Studies that have investigated the role of dietary fat on liver fat accumulation are reasonably sparse. We review here the available work that has investigated the impact of dietary fat: amount, composition and frequency, on liver fat accumulation in human observational and intervention studies. Overall, it would seem that total calorie consumption, rather than dietary fat composition, is an important factor in the development of fatty liver disease in humans. PMID:25389901

  9. Pre-existing Epithelial Diversity in Normal Human Livers: A Tissue-tethered Cytometric Analysis in Portal/Periportal Epithelial Cells

    PubMed Central

    Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Maier, John; Specht, Susan; Castillo-Rama, Marcela; Lunz, John; Roysam, Badrinath; Michalopoulos, George; Demetris, Anthony J.

    2012-01-01

    Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BEC). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the Canals of Hering and/or metaplasia of pre-existing mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high resolution whole slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes pre-existed in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. “Virtually digested” WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g. scatter plots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically-associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. Results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bi-potential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. Conclusion Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable pre-existent hybrid epithelial diversity in normal human liver. This computationally-enabled tissue analysis approach offers much broader potential beyond the results presented here. PMID:23150208

  10. Use of Isoform-Specific UGT Metabolism to Determine and Describe Rates and Profiles of Glucuronidation of Wogonin and Oroxylin A by Human Liver and Intestinal Microsomes

    PubMed Central

    Zhou, Qiong; Zheng, Zhijie; Xia, Bijun; Tang, Lan; Lv, Chang; Liu, Wei; Liu, Zhongqiu; Hu, Ming

    2010-01-01

    Purposes Glucuronidation via UDP-glucuronosyltransferases (or UGTs) is a major metabolic pathway. The purposes of this study are to determine the UGT-isoform specific metabolic fingerprint (or GSMF) of wogonin and oroxylin A, and to use isoform-specific metabolism rates and kinetics to determine and describe their glucuronidation behaviors in tissue microsomes. Methods In vitro glucuronidation rates and profiles were measured using expressed UGTs and human intestinal and liver microsomes. Results GSMF experiments indicated that both flavonoids were metabolized mainly by UGT1As, with major contributions from UGT1A3 and UGT1A7-1A10. Isoform-specific metabolism showed that kinetic profiles obtained using expressed UGT1A3 and UGT1A7-1A10 could fit to known kinetic models. Glucuronidation of both flavonoids in human intestinal and liver microsomes followed simple Michaelis-Menten kinetics. A comparison of the kinetic parameters and profiles suggests that UGT1A9 is likely the main isoform responsible for liver metabolism. In contrast, a combination of UGT1As with a major contribution from UGT1A10 contributed to their intestinal metabolism. Correlation studies clearly showed that UGT isoform-specific metabolism could describe their metabolism rates and profiles in human liver and intestinal microsomes. Conclusion GSMF and isoform-specific metabolism profiles can determine and describe glucuronidation rates and profiles in human tissue microsomes. PMID:20411407

  11. Nondestructive Methods for Monitoring Cell Removal During Rat Liver Decellularization.

    PubMed

    Geerts, Sharon; Ozer, Sinan; Jaramillo, Maria; Yarmush, Martin L; Uygun, Basak E

    2016-07-01

    Whole liver engineering holds the promise to create transplantable liver grafts that may serve as substitutes for donor organs, addressing the donor shortage in liver transplantation. While decellularization and recellularization of livers in animal models have been successfully achieved, scale up to human livers has been slow. There are a number of donor human livers that are discarded because they are not found suitable for transplantation, but are available for engineering liver grafts. These livers are rejected due to a variety of reasons, which in turn may affect the decellularization outcome. Hence, a one-size-fit-for all decellularization protocol may not result in scaffolds with consistent matrix quality, subsequently influencing downstream recellularization and transplantation outcomes. There is a need for a noninvasive monitoring method to evaluate the extent of cell removal, while ensuring preservation of matrix components during decellularization. In this study, we decellularized rat livers using a protocol previously established by our group, and we monitored decellularization through traditional destructive techniques, including evaluation of DNA, collagen, and glycosaminoglycan (GAG) content in decellularized scaffolds, as well as histology. In addition, we used computed tomography and perfusate analysis as alternative nondestructive decellularization monitoring methods. We found that DNA removal correlates well with the Hounsfield unit of the liver, and perfusate analysis revealed that significant amount of GAG is removed during perfusion with 0.1% sodium dodecyl sulfate. This allowed for optimization of our decellularization protocol leading to scaffolds that have significantly higher GAG content, while maintaining appropriate removal of cellular contents. The significance of this is the creation of a nondestructive monitoring strategy that can be used for optimization of decellularization protocols for individual human livers available for liver

  12. Nondestructive Methods for Monitoring Cell Removal During Rat Liver Decellularization

    PubMed Central

    Geerts, Sharon; Ozer, Sinan; Jaramillo, Maria; Yarmush, Martin L.

    2016-01-01

    Whole liver engineering holds the promise to create transplantable liver grafts that may serve as substitutes for donor organs, addressing the donor shortage in liver transplantation. While decellularization and recellularization of livers in animal models have been successfully achieved, scale up to human livers has been slow. There are a number of donor human livers that are discarded because they are not found suitable for transplantation, but are available for engineering liver grafts. These livers are rejected due to a variety of reasons, which in turn may affect the decellularization outcome. Hence, a one-size-fit-for all decellularization protocol may not result in scaffolds with consistent matrix quality, subsequently influencing downstream recellularization and transplantation outcomes. There is a need for a noninvasive monitoring method to evaluate the extent of cell removal, while ensuring preservation of matrix components during decellularization. In this study, we decellularized rat livers using a protocol previously established by our group, and we monitored decellularization through traditional destructive techniques, including evaluation of DNA, collagen, and glycosaminoglycan (GAG) content in decellularized scaffolds, as well as histology. In addition, we used computed tomography and perfusate analysis as alternative nondestructive decellularization monitoring methods. We found that DNA removal correlates well with the Hounsfield unit of the liver, and perfusate analysis revealed that significant amount of GAG is removed during perfusion with 0.1% sodium dodecyl sulfate. This allowed for optimization of our decellularization protocol leading to scaffolds that have significantly higher GAG content, while maintaining appropriate removal of cellular contents. The significance of this is the creation of a nondestructive monitoring strategy that can be used for optimization of decellularization protocols for individual human livers available for liver

  13. Transcriptional regulation of PNPLA3 and its impact on susceptibility to nonalcoholic fatty liver Disease (NAFLD) in humans

    PubMed Central

    Wang, Xiaoliang; Gawrieh, Samer; Gamazon, Eric R.; Athinarayanan, Shaminie; Liu, Yang-Lin; Darlay, Rebecca; Cordell, Heather J; Daly, Ann K

    2017-01-01

    The increased expression of PNPLA3148M leads to hepatosteatosis in mice. This study aims to investigate the genetic control of hepatic PNPLA3 transcription and to explore its impact on NAFLD risk in humans. Through a locus-wide expression quantitative trait loci (eQTL) mapping in two human liver sample sets, a PNPLA3 intronic SNP, rs139051 A>G was identified as a significant eQTL (p = 6.6×10−8) influencing PNPLA3 transcription, with the A allele significantly associated with increased PNPLA3 mRNA. An electrophoresis mobility shift assay further demonstrated that the A allele has enhanced affinity to nuclear proteins than the G allele. The impact of this eQTL on NAFLD risk was further tested in three independent populations. We found that rs139051 did not independently affect the NAFLD risk, whilst rs738409 did not significantly modulate PNPLA3 transcription but was associated with NAFLD risk. The A-G haplotype associated with higher transcription of the disease-risk rs738409 G allele conferred similar risk for NAFLD compared to the G-G haplotype that possesses a lower transcription level. Our study suggests that the pathogenic role of PNPLA3148M in NAFLD is independent of the gene transcription in humans, which may be attributed to the high endogenous transcription level of PNPLA3 gene in human livers. PMID:27744419

  14. Transcriptional regulation of PNPLA3 and its impact on susceptibility to nonalcoholic fatty liver Disease (NAFLD) in humans.

    PubMed

    Liu, Wanqing; Anstee, Quentin M; Wang, Xiaoliang; Gawrieh, Samer; Gamazon, Eric R; Athinarayanan, Shaminie; Liu, Yang-Lin; Darlay, Rebecca; Cordell, Heather J; Daly, Ann K; Day, Chris P; Chalasani, Naga

    2016-10-13

    The increased expression of PNPLA3 148M leads to hepatosteatosis in mice. This study aims to investigate the genetic control of hepatic PNPLA3 transcription and to explore its impact on NAFLD risk in humans. Through a locus-wide expression quantitative trait loci (eQTL) mapping in two human liver sample sets, a PNPLA3 intronic SNP, rs139051 A>G was identified as a significant eQTL ( p = 6.6×10 -8 ) influencing PNPLA3 transcription, with the A allele significantly associated with increased PNPLA3 mRNA. An electrophoresis mobility shift assay further demonstrated that the A allele has enhanced affinity to nuclear proteins than the G allele. The impact of this eQTL on NAFLD risk was further tested in three independent populations. We found that rs139051 did not independently affect the NAFLD risk, whilst rs738409 did not significantly modulate PNPLA3 transcription but was associated with NAFLD risk. The A-G haplotype associated with higher transcription of the disease-risk rs738409 G allele conferred similar risk for NAFLD compared to the G-G haplotype that possesses a lower transcription level. Our study suggests that the pathogenic role of PNPLA3 148M in NAFLD is independent of the gene transcription in humans, which may be attributed to the high endogenous transcription level of PNPLA3 gene in human livers.

  15. Molecular Epidemiology and Strain Comparison between Hepatitis E Viruses in Human Sera and Pig Livers during 2014 to 2016 in Hong Kong.

    PubMed

    Chan, Martin C W; Kwok, Kirsty; Hung, Tin-Nok; Chan, Paul K S

    2017-05-01

    Hepatitis E virus (HEV) causes substantial morbidity and mortality in developing countries and is considered an emerging foodborne pathogen in developed countries in which it was previously not endemic. To investigate genetic association between human HEV infection and HEV-contaminated high-risk food in Hong Kong, we compared local virus strains obtained from hepatitis E patient sera with those surveyed from high-risk food items during 2014 to 2016. Twenty-four cases of laboratory-confirmed human HEV infections were identified from January 2014 to March 2016 in our hospitals. Five types of food items at risk of HEV contamination were purchased on a biweekly basis from April 2014 to March 2016 in two local market settings: supermarkets (lamb, oyster, and pig liver) and wet markets (oyster, pig blood curd, pig large intestine, and pig liver). HEV RNA detection was performed by a real-time reverse transcription-PCR assay. HEV RNA was detected in pig liver, pig intestine, and oyster samples with prevalences of 1.5%, 0.4%, and 0.2%, respectively. Neighbor-joining phylogenetic inference showed that all human and swine HEV strains belonged to genotype 4. HEV subtype distributions in humans and swine were highly comparable: subtype 4b predominated, while subtype 4d was the minority. Local human and swine HEV genotype 4 strains shared over 95% nucleotide identity and were genetically very similar, implicating swine as an important foodborne source of autochthonous human HEV infections in Hong Kong. Action should be taken to raise the awareness among public and health care professionals of hepatitis E as an emerging foodborne disease. Copyright © 2017 American Society for Microbiology.

  16. In vitro metabolism of a novel synthetic cannabinoid, EAM-2201, in human liver microsomes and human recombinant cytochrome P450s.

    PubMed

    Kim, Ju Hyun; Kim, Hee Seung; Kong, Tae Yeon; Lee, Joo Young; Kim, Jin Young; In, Moon Kyo; Lee, Hye Suk

    2016-02-05

    In vitro metabolism of a new synthetic cannabinoid, EAM-2201, has been investigated with human liver microsomes and major cDNA-expressed cytochrome P450 (CYP) isozymes using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Incubation of EAM-2201 with human liver microsomes in the presence of NADPH resulted in the formation of 37 metabolites, including nine hydroxy-EAM-2201 (M1-M9), five dihydroxy-EAM-2201 (M10-M14), dihydrodiol-EAM-2201 (M15), oxidative defluorinated EAM-2201 (M16), two hydroxy-M16 (M17 and M18), three dihydroxy-M16 (M19-M21), N-dealkyl-EAM-2201 (M22), two hydroxy-M22 (M23 and M24), dihydroxy-M22 (M25), EAM-2201 N-pentanoic acid (M26), hydroxy-M26 (M27), dehydro-EAM-2201 (M28), hydroxy-M28 (M29), seven dihydroxy-M28 (M30-M36), and oxidative defluorinated hydroxy-M28 (M37). Multiple CYPs, including CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2J2, 3A4, and 3A5, were involved in the metabolism of EAM-2201. In conclusion, EAM-2201 is extensively metabolized by CYPs and its metabolites can be used as an indicator of EAM-2201 abuse. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. MAIT cells: new guardians of the liver.

    PubMed

    Kurioka, Ayako; Walker, Lucy J; Klenerman, Paul; Willberg, Christian B

    2016-08-01

    The liver is an important immunological organ that remains sterile and tolerogenic in homeostasis, despite continual exposure to non-self food and microbial-derived products from the gut. However, where intestinal mucosal defenses are breached or in the presence of a systemic infection, the liver acts as a second 'firewall', because of its enrichment with innate effector cells able to rapidly respond to infections or tissue dysregulation. One of the largest populations of T cells within the human liver are mucosal-associated invariant T (MAIT) cells, a novel innate-like T-cell population that can recognize a highly conserved antigen derived from the microbial riboflavin synthesis pathway. MAIT cells are emerging as significant players in the human immune system, associated with an increasing number of clinical diseases of bacterial, viral, autoimmune and cancerous origin. As reviewed here, we are only beginning to investigate the potential role of this dominant T-cell subset in the liver, but the reactivity of MAIT cells to both inflammatory cytokines and riboflavin derivatives suggests that MAIT cells may have an important role in first line of defense as part of the liver firewall. As such, MAIT cells are promising targets for modulating the host defense and inflammation in both acute and chronic liver diseases.

  18. MAIT cells: new guardians of the liver

    PubMed Central

    Kurioka, Ayako; Walker, Lucy J; Klenerman, Paul; Willberg, Christian B

    2016-01-01

    The liver is an important immunological organ that remains sterile and tolerogenic in homeostasis, despite continual exposure to non-self food and microbial-derived products from the gut. However, where intestinal mucosal defenses are breached or in the presence of a systemic infection, the liver acts as a second 'firewall', because of its enrichment with innate effector cells able to rapidly respond to infections or tissue dysregulation. One of the largest populations of T cells within the human liver are mucosal-associated invariant T (MAIT) cells, a novel innate-like T-cell population that can recognize a highly conserved antigen derived from the microbial riboflavin synthesis pathway. MAIT cells are emerging as significant players in the human immune system, associated with an increasing number of clinical diseases of bacterial, viral, autoimmune and cancerous origin. As reviewed here, we are only beginning to investigate the potential role of this dominant T-cell subset in the liver, but the reactivity of MAIT cells to both inflammatory cytokines and riboflavin derivatives suggests that MAIT cells may have an important role in first line of defense as part of the liver firewall. As such, MAIT cells are promising targets for modulating the host defense and inflammation in both acute and chronic liver diseases. PMID:27588203

  19. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma

    PubMed Central

    Wadkin, James C. R.; Patten, Daniel A.; Kamarajah, Sivesh K.; Shepherd, Emma L.; Novitskaya, Vera; Berditchevski, Fedor; Adams, David H.; Weston, Chris J.

    2017-01-01

    CD151, a member of the tetraspanin family of receptors, is a lateral organizer and modulator of activity of several families of transmembrane proteins. It has been implicated in the development and progression of several cancers, but its role in chronic inflammatory disease is less well understood. Here we show that CD151 is upregulated by distinct microenvironmental signals in a range of chronic inflammatory liver diseases and in primary liver cancer, in which it supports lymphocyte recruitment. CD151 was highly expressed in endothelial cells of the hepatic sinusoids and neovessels developing in fibrotic septa and tumor margins. Primary cultures of human hepatic sinusoidal endothelial cells (HSECs) expressed CD151 at the cell membrane and in intracellular vesicles. CD151 was upregulated by VEGF and HepG2 conditioned media but not by proinflammatory cytokines. Confocal microscopy confirmed that CD151 colocalized with the endothelial adhesion molecule/immunoglobulin superfamily member, VCAM-1. Functional flow-based adhesion assays with primary human lymphocytes and HSECs demonstrated a 40% reduction of lymphocyte adhesion with CD151 blockade. Inhibition of lymphocyte adhesion was similar between VCAM-1 blockade and a combination of CD151/VCAM-1 blockade, suggesting a collaborative role between the two receptors. These studies demonstrate that CD151 is upregulated within the liver during chronic inflammation, where it supports lymphocyte recruitment via liver endothelium. We propose that CD151 regulates the activity of VCAM-1 during lymphocyte recruitment to the human liver and could be a novel anti-inflammatory target in chronic liver disease and hepatocellular cancer prevention. NEW & NOTEWORTHY Chronic hepatitis is characterized by lymphocyte accumulation in liver tissue, which drives fibrosis and carcinogenesis. Here, we demonstrate for the first time that the tetraspanin CD151 supports lymphocyte adhesion to liver endothelium. We show that CD151 is upregulated

  20. A Review of Organ Transplantation: Heart, Lung, Kidney, Liver, and Simultaneous Liver-Kidney.

    PubMed

    Scheuher, Cynthia

    2016-01-01

    Heart, lung, kidney, liver, and simultaneous liver-kidney transplants share many features. They all follow the same 7-step process, the same 3 immunosuppressant medications, and the same reason for organ transplantation. Organs are transplanted because of organ failure. The similarities end there. Each organ has its unique causes for failure. Each organ also has its own set of criteria that must be met prior to transplantation. Simultaneous liver-kidney transplant criteria vary per transplant center but are similar in nature. Both the criteria required and the 7-step process are described by the United Network of Organ Sharing, which is a private, nonprofit organization, under contract with the US Department of Health and Human Services. Its function is to increase the number of transplants, improve survival rates after transplantation, promote safe transplant practices, and endorse efficiency. The purpose of this article is to review the reasons transplant is needed, specifically heart, lung, kidney, liver, and simultaneous liver-kidney, and a brief overview of the transplant process including criteria used, contraindications, and medications prescribed.

  1. STRUCTURAL AND FUNCTIONAL INTERACTION OF FATTY ACIDS WITH HUMAN LIVER FATTY ACID BINDING PROTEIN (L-FABP) T94A VARIANT

    PubMed Central

    Huang, Huan; McIntosh, Avery L.; Martin, Gregory G.; Landrock, Kerstin K.; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P.; Kier, Ann B.; Schroeder, Friedhelm

    2014-01-01

    The human liver fatty acid binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride (TG) levels. How this amino acid substitution elicits these effects is not known. This issue was addressed with human recombinant wild-type (WT, T94T) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC, and CC). T94A substitution did not or only slightly alter L-FABP binding affinities for saturated, monounsaturated, or polyunsaturated long chain fatty acids (LCFA), nor did it change the affinity for intermediates in TG synthesis. Nevertheless, T94A substitution markedly altered the secondary structural response of L-FABP induced by binding LCFA or intermediates of TG synthesis. Finally, T94A substitution markedly diminished polyunsaturated fatty acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), induction of peroxisome proliferator-activated receptor alpha (PPARα) - regulated proteins such as L-FABP, fatty acid transport protein 5 (FATP5), and PPARα itself in cultured primary human hepatocytes. Thus, while T94A substitution did not alter the affinity of human L-FABP for LCFAs, it significantly altered human L-FABP structure and stability as well as conformational and functional response to these ligands. PMID:24628888

  2. Studies of structure-activity relationship on plant polyphenol-induced suppression of human liver cancer cells.

    PubMed

    Loa, Jacky; Chow, Pierce; Zhang, Kai

    2009-05-01

    To study anticancer activities of 68 plant polyphenols with different backbone structures and various substitutions and to analyze the structure-activity relationships. Antiproliferative activity of 68 plant polyphenols on human liver cancer cells were screened by the 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide method. Structure-activity relationships were analyzed by comparison of their activities with selected structures. Cell cycle progression was assayed by flow cytometry analysis and apoptosis was analyzed by DNA fragment assay. Based on their backbone structures, 68 polyphenols were sub-classed to flavonoids (chalcones, flavanones, flavones and isoflavones), chromones and coumarins. The order of their potency to suppress the human liver cancer cells is chalcones > flavones > chromones > isoflavones > flavanones > coumarins. Chalcones comprise the most potent group with IC(50) values ranging from 21.69 to 197 microM. Top nine most potent chalcones in the group have hydroxylation at 2'-carbon position in B-ring. Flavones ranked second in their potencies. Quercetin, 4-hydroxyflavone and luteolin are three hydroxyflavones with highest potencies in this group. Their IC(50) values are 30.81, 39.29 and 71.17 microM, respectively. Chromones, isoflavones, flavanones and coumarins showed much lower potencies when compared to the first two groups with IC(50) ranges of 61 to >400, 131 to >400, 138 to >400 and 360.85 to >400 microM, respectively. In mechanistic studies, the most potent chalcone, 2,2'-dihydroxychalcone could induce G2/M arrest and then apoptosis of the cancer cells. An analysis of structure-activity relationship showed that following structures are required for their inhibitory potencies on human liver cancer cells: (1) of the six sub-classes of the polyphenols tested, the unique backbone structure of chalcones with a open C-ring; (2) within the chalcone group, hydroxyl substitution at 2'-carbon of B-ring; (3) hydroxyl substitution at 3

  3. Theoretical study on the interactions between chlordecone hydrate and acidic surface groups of activated carbon under basic pH conditions.

    PubMed

    Melchor-Rodríguez, Kenia; Gamboa-Carballo, Juan José; Ferino-Pérez, Anthuan; Passé-Coutrin, Nady; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2018-05-01

    A theoretical study of the influence of acidic surface groups (SG) of activated carbon (AC) on chlordecone hydrate (CLDh) adsorption is presented, in order to help understanding the adsorption process under basic pH conditions. A seven rings aromatic system (coronene) with a functional group in the edge was used as a simplified model of AC to evaluate the influence of SG in the course of adsorption from aqueous solution at basic pH conditions. Two SG were modeled in their deprotonated form: carboxyl and hydroxyl (COO - and O - ), interacting with CLDh. In order to model the solvation process, all systems under study were calculated with up to three water molecules. Multiple Minima Hypersurface (MMH) methodology was employed to study the interactions of CLDh with SG on AC using PM7 semiempirical Hamiltonian, to explore the potential energy surfaces of the systems and evaluate their thermodynamic association energies. The re-optimization of representative structures obtained from MMH was done using M06-2X Density Functional Theory. The Quantum Theory of Atoms in Molecules (QTAIM) was used to characterize the interaction types. As result, the association of CLDh with acidic SG at basic pH conditions preferentially occurs between the two alcohol groups of CLDh with COO - and O - groups and by dispersive interactions of chlorine atoms of CLDh with the graphitic surface. On the other hand, the presence of covalent interactions between the negatively charged oxygen of SG and one hydrogen atom of CLDh alcohol groups (O - ⋯HO interactions) without water molecules, was confirmed by QTAIM study. It can be concluded that the interactions of CLDh with acidic SG of AC under basic pH conditions confirms the physical mechanisms of adsorption process. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Effect of human umbilical cord blood stem cell transplantation on oval cell response in 2-AAF/CCL4 liver injury model: experimental immunohistochemical study.

    PubMed

    Abdellatif, Hussein; Shiha, Gamal; Saleh, Dalia M; Eltahry, Huda; Botros, Kamal G

    2017-01-01

    Oval cells, specific liver progenitors, are activated in response to injury. The human umbilical cord blood (hUCB) is a possible source of transplantable hepatic progenitors and can be used in cases of severe liver injury. We detected the effect of hUCB stem cell transplantation on natural response of oval cells to injury. Twenty-four female albino rats were randomly divided into three groups: (A) control, (B) liver injury with hepatocyte block, and (C) hUCB transplanted group. Hepatocyte block was performed by administration of 2-acetylaminofluorene (2-AAF) for 12 days. CCL4 was administrated at day 5 from experiment start. Animals were sacrificed at 9 days post CCL4 administration, and samples were collected for biochemical and histopathological analysis. Oval cell response to injury was evaluated by the percentage of oval cells in the liver tissue and frequency of cells incorporated into new ducts. Immunohistochemical analysis of oval cell response to injury was performed. There was significant deviation in the hUCB-transplanted (4.9 ± 1.4) and liver injury groups (2.4 ± 0.9) as compared to control (0.89 ± 0.4) 9 days post injury. Detection of oval cell response was dependant on OV-6 immunoreactivity. For mere localization of cells with human origin, CD34 antihuman immunoreactivity was performed. There was no significant difference in endogenous OV-6 immunoreactivity following stem cell transplantation as compared to the liver injury group. In vivo transplantation of cord blood stem cells (hUCB) does not interfere with natural oval cell response to liver injury.

  5. Data-Driven Identification of Structural Alerts for Mitigating the Risk of Drug-Induced Human Liver Injuries

    DTIC Science & Technology

    2015-02-11

    the National Library of Medicine of the U.S. National Institutes of Health launched LiverTox, a data- base of ~700 medications associated with human... herbal remedies, and dietary supplements. Carefully curated and reviewed by experts in multiple disciplines, the database constitutes a valu- able resource...March 2014 via web access at http://livertox.nih.gov/. We then removed entries without chemical structures, such as some herbal extracts and vac

  6. Human CD34(lo)CD133(lo) fetal liver cells support the expansion of human CD34(hi)CD133(hi) hematopoietic stem cells.

    PubMed

    Yong, Kylie Su Mei; Keng, Choong Tat; Tan, Shu Qi; Loh, Eva; Chang, Kenneth Te; Tan, Thiam Chye; Hong, Wanjin; Chen, Qingfeng

    2016-09-01

    We have recently discovered a unique CD34(lo)CD133(lo) cell population in the human fetal liver (FL) that gives rise to cells in the hepatic lineage. In this study, we further characterized the biological functions of FL CD34(lo)CD133(lo) cells. Our findings show that these CD34(lo)CD133(lo) cells express markers of both endodermal and mesodermal lineages and have the capability to differentiate into hepatocyte and mesenchymal lineage cells by ex vivo differentiation assays. Furthermore, we show that CD34(lo)CD133(lo) cells express growth factors that are important for human hematopoietic stem cell (HSC) expansion: stem cell factor (SCF), insulin-like growth factor 2 (IGF2), C-X-C motif chemokine 12 (CXCL12), and factors in the angiopoietin-like protein family. Co-culture of autologous FL HSCs and allogenic HSCs derived from cord blood with CD34(lo)CD133(lo) cells supports and expands both types of HSCs.These findings are not only essential for extending our understanding of the HSC niche during the development of embryonic and fetal hematopoiesis but will also potentially benefit adult stem cell transplantations in clinics because expanded HSCs demonstrate the same capacity as primary cells to reconstitute the human immune system and mediate long-term hematopoiesis in vivo. Together, CD34(lo)CD133(lo) cells not only serve as stem/progenitor cells for liver development but are also an essential component of the HSC niche in the human FL.

  7. Human Parvovirus B19 NS1 Protein Aggravates Liver Injury in NZB/W F1 Mice

    PubMed Central

    Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Hsu, Huai-Sheng; Tzang, Bor-Show; Hsu, Tsai-Ching

    2013-01-01

    Human parvovirus B19 (B19) has been associated with a variety of diseases. However, the influence of B19 viral proteins on hepatic injury in SLE is still obscure. To elucidate the effects of B19 viral proteins on livers in SLE, recombinant B19 NS1, VP1u or VP2 proteins were injected subcutaneously into NZB/W F1 mice, respectively. Significant expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected in NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Markedly hepatocyte disarray and lymphocyte infiltration were observed in livers from NZB/WF 1 mice receiving B19 NS1 as compared to those mice receiving PBS. Additionally, significant increases of Tumor Necrosis Factor –α (TNF-α), TNF-α receptor, IκB kinase –α (IKK-α), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB) and nuclear factor-kappa B (NF-κB) were detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Accordingly, significant increases of matrix metalloproteinase-9 (MMP9) and U-plasminogen activator (uPA) were also detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Contrarily, no significant variation on livers from NZB/W F1 mice receiving B19 VP1u or VP2 was observed as compared to those mice receiving PBS. These findings firstly demonstrated the aggravated effects of B19 NS1 but not VP1u or VP2 protein on hepatic injury and provide a clue in understanding the role of B19 NS1 on hepatic injury in SLE. PMID:23555760

  8. Disease modeling using human induced pluripotent stem cells: lessons from the liver.

    PubMed

    Gieseck, Richard L; Colquhoun, Jennifer; Hannan, Nicholas R F

    2015-01-01

    Human pluripotent stem cells (hPSCs) have the capacity to differentiate into any of the hundreds of distinct cell types that comprise the human body. This unique characteristic has resulted in considerable interest in the field of regenerative medicine, given the potential for these cells to be used to protect, repair, or replace diseased, injured, and aged cells within the human body. In addition to their potential in therapeutics, hPSCs can be used to study the earliest stages of human development and to provide a platform for both drug screening and disease modeling using human cells. Recently, the description of human induced pluripotent stem cells (hIPSCs) has allowed the field of disease modeling to become far more accessible and physiologically relevant, as pluripotent cells can be generated from patients of any genetic background. Disease models derived from hIPSCs that manifest cellular disease phenotypes have been established to study several monogenic diseases; furthermore, hIPSCs can be used for phenotype-based drug screens to investigate complex diseases for which the underlying genetic mechanism is unknown. As a result, the use of stem cells as research tools has seen an unprecedented growth within the last decade as researchers look for in vitro disease models which closely mimic in vivo responses in humans. Here, we discuss the beginnings of hPSCs, starting with isolation of human embryonic stem cells, moving into the development and optimization of hIPSC technology, and ending with the application of hIPSCs towards disease modeling and drug screening applications, with specific examples highlighting the modeling of inherited metabolic disorders of the liver. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  9. Human hepatocytes support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogen sodium phenobarbital in an in vivo study using a chimeric mouse with humanized liver.

    PubMed

    Yamada, Tomoya; Okuda, Yu; Kushida, Masahiko; Sumida, Kayo; Takeuchi, Hayato; Nagahori, Hirohisa; Fukuda, Takako; Lake, Brian G; Cohen, Samuel M; Kawamura, Satoshi

    2014-11-01

    High doses of sodium phenobarbital (NaPB), a constitutive androstane receptor (CAR) activator, have been shown to produce hepatocellular tumors in rodents by a mitogenic mode of action (MOA) involving CAR activation. The effect of 1-week dietary treatment with NaPB on liver weight and histopathology, hepatic CYP2B enzyme activity and CYP2B/3A mRNA expression, replicative DNA synthesis and selected genes related to cell proliferation, and functional transcriptomic and metabolomic analyses was studied in male CD-1 mice, Wistar Hannover (WH) rats, and chimeric mice with human hepatocytes. The treatment of chimeric mice with 1000-1500-ppm NaPB resulted in plasma levels around 3-5-fold higher than those observed in human subjects given therapeutic doses of NaPB. NaPB produced dose-dependent increases in hepatic CYP2B activity and CYP2B/3A mRNA levels in all animal models. Integrated functional metabolomic and transcriptomic analyses demonstrated that the responses to NaPB in the human liver were clearly different from those in rodents. Although NaPB produced a dose-dependent increase in hepatocyte replicative DNA synthesis in CD-1 mice and WH rats, no increase in replicative DNA synthesis was observed in human hepatocyte-originated areas of chimeric mice. In addition, treatment with NaPB had no effect on Ki-67, PCNA, GADD45β, and MDM2 mRNA expression in chimeric mice, whereas significant increases were observed in CD-1 mice and/or WH rats. However, increases in hepatocyte replicative DNA synthesis were observed in chimeric mice both in vivo and in vitro after treatment epidermal growth factor. Thus, although NaPB could activate CAR in both rodent and human hepatocytes, NaPB did not increase replicative DNA synthesis in human hepatocytes of chimeric mice, whereas it was mitogenic to rat and mouse hepatocytes. As human hepatocytes are refractory to the mitogenic effects of NaPB, the MOA for NaPB-induced rodent liver tumor formation is thus not relevant for humans. © The

  10. In vivo characterization of the liver fat 1H MR spectrum

    PubMed Central

    Hamilton, Gavin; Yokoo, Takeshi; Bydder, Mark; Cruite, Irene; Schroeder, Michael E.; Sirlin, Claude B.; Middleton, Michael S.

    2013-01-01

    A theoretical triglyceride model was developed for in vivo human liver fat 1H MRS characterization, using the number of double bonds (–CH=CH–), number of methylene-interrupted double bonds (–CH=CH–CH2–CH=CH–) and average fatty acid chain length. Five 3 T, single-voxel, stimulated echo acquisition mode spectra (STEAM) were acquired consecutively at progressively longer TEs in a fat–water emulsion phantom and in 121 human subjects with known or suspected nonalcoholic fatty liver disease. T2-corrected peak areas were calculated. Phantom data were used to validate the model. Human data were used in the model to determine the complete liver fat spectrum. In the fat–water emulsion phantom, the spectrum predicted by the model (based on known fatty acid chain distribution) agreed closely with spectroscopic measurement. In human subjects, areas of CH2 peaks at 2.1 and 1.3 ppm were linearly correlated (slope, 0.172; r = 0.991), as were the 0.9 ppm CH3 and 1.3 ppm CH2 peaks (slope, 0.125; r = 0.989). The 2.75 ppm CH2 peak represented 0.6% of the total fat signal in high-liver-fat subjects. These values predict that 8.6% ofm the total fat signal overlies the water peak. The triglyceride model can characterize human liver fat spectra. This allows more accurate determination of liver fat fraction from MRI and MRS. PMID:21834002

  11. Hepatic inflammation and progressive liver fibrosis in chronic liver disease

    PubMed Central

    Czaja, Albert J

    2014-01-01

    Chronic liver inflammation drives hepatic fibrosis, and current immunosuppressive, anti-inflammatory, and anti-viral therapies can weaken this driver. Hepatic fibrosis is reversed, stabilized, or prevented in 57%-79% of patients by conventional treatment regimens, mainly by their anti-inflammatory actions. Responses, however, are commonly incomplete and inconsistently achieved. The fibrotic mechanisms associated with liver inflammation have been clarified, and anti-fibrotic agents promise to improve outcomes as adjunctive therapies. Hepatitis C virus and immune-mediated responses can activate hepatic stellate cells by increasing oxidative stress within hepatocytes. Angiotensin can be synthesized by activated hepatic stellate cells and promote the production of reactive oxygen species. Anti-oxidants (N-acetylcysteine, S-adenosyl-L-methionine, and vitamin E) and angiotensin inhibitors (losartin) have had anti-fibrotic actions in preliminary human studies, and they may emerge as supplemental therapies. Anti-fibrotic agents presage a new era of supplemental treatment for chronic liver disease. PMID:24627588

  12. Acetaminophen-Induced Liver Injury Alters the Acyl Ethanolamine-Based Anti-Inflammatory Signaling System in Liver.

    PubMed

    Rivera, Patricia; Pastor, Antoni; Arrabal, Sergio; Decara, Juan; Vargas, Antonio; Sánchez-Marín, Laura; Pavón, Francisco J; Serrano, Antonia; Bautista, Dolores; Boronat, Anna; de la Torre, Rafael; Baixeras, Elena; Lucena, M Isabel; de Fonseca, Fernando R; Suárez, Juan

    2017-01-01

    Protective mechanisms against drug-induced liver injury are actively being searched to identify new therapeutic targets. Among them, the anti-inflammatory N -acyl ethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system has gained much interest after the identification of its protective role in steatohepatitis and liver fibrosis. An overdose of paracetamol (APAP), a commonly used analgesic/antipyretic drug, causes hepatotoxicity, and it is being used as a liver model. In the present study, we have analyzed the impact of APAP on the liver NAE-PPARα system. A dose-response (0.5-5-10-20 mM) and time-course (2-6-24 h) study in human HepG2 cells showed a biphasic response, with a decreased PPAR α expression after 6-h APAP incubation followed by a generalized increase of NAE-PPARα system-related components ( PPAR α, NAPE-PLD , and FAAH ), including the NAEs oleoyl ethanolamide (OEA) and docosahexaenoyl ethanolamide, after a 24-h exposure to APAP. These results were partially confirmed in a time-course study of mice exposed to an acute dose of APAP (750 mg/kg). The gene expression levels of Ppar α and Faah were decreased after 6 h of treatment and, after 24 h, the gene expression levels of Nape-pld and Faah , as well as the liver levels of OEA and palmitoyl ethanolamide, were increased. Repeated APAP administration (750 mg/kg/day) up to 4 days also decreased the expression levels of PPARα and FAAH, and increased the liver levels of NAEs. A resting period of 15 days completely restored these impairments. Liver immunohistochemistry in a well-characterized human case of APAP hepatotoxicity confirmed PPARα and FAAH decrements. Histopathological and hepatic damage ( Cyp2e1, Caspase3 , α Sma, Tnf α, and Mcp1 )-related alterations observed after repeated APAP administration were aggravated in the liver of Ppar α-deficient mice. Our results demonstrate that the anti-inflammatory NAE-PPARα signaling system is implicated in liver toxicity

  13. Acetaminophen-Induced Liver Injury Alters the Acyl Ethanolamine-Based Anti-Inflammatory Signaling System in Liver

    PubMed Central

    Rivera, Patricia; Pastor, Antoni; Arrabal, Sergio; Decara, Juan; Vargas, Antonio; Sánchez-Marín, Laura; Pavón, Francisco J.; Serrano, Antonia; Bautista, Dolores; Boronat, Anna; de la Torre, Rafael; Baixeras, Elena; Lucena, M. Isabel; de Fonseca, Fernando R.; Suárez, Juan

    2017-01-01

    Protective mechanisms against drug-induced liver injury are actively being searched to identify new therapeutic targets. Among them, the anti-inflammatory N-acyl ethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system has gained much interest after the identification of its protective role in steatohepatitis and liver fibrosis. An overdose of paracetamol (APAP), a commonly used analgesic/antipyretic drug, causes hepatotoxicity, and it is being used as a liver model. In the present study, we have analyzed the impact of APAP on the liver NAE-PPARα system. A dose-response (0.5–5–10–20 mM) and time-course (2–6–24 h) study in human HepG2 cells showed a biphasic response, with a decreased PPARα expression after 6-h APAP incubation followed by a generalized increase of NAE-PPARα system-related components (PPARα, NAPE-PLD, and FAAH), including the NAEs oleoyl ethanolamide (OEA) and docosahexaenoyl ethanolamide, after a 24-h exposure to APAP. These results were partially confirmed in a time-course study of mice exposed to an acute dose of APAP (750 mg/kg). The gene expression levels of Pparα and Faah were decreased after 6 h of treatment and, after 24 h, the gene expression levels of Nape-pld and Faah, as well as the liver levels of OEA and palmitoyl ethanolamide, were increased. Repeated APAP administration (750 mg/kg/day) up to 4 days also decreased the expression levels of PPARα and FAAH, and increased the liver levels of NAEs. A resting period of 15 days completely restored these impairments. Liver immunohistochemistry in a well-characterized human case of APAP hepatotoxicity confirmed PPARα and FAAH decrements. Histopathological and hepatic damage (Cyp2e1, Caspase3, αSma, Tnfα, and Mcp1)-related alterations observed after repeated APAP administration were aggravated in the liver of Pparα-deficient mice. Our results demonstrate that the anti-inflammatory NAE-PPARα signaling system is implicated in liver toxicity after

  14. NOD2: a potential target for regulating liver injury.

    PubMed

    Body-Malapel, Mathilde; Dharancy, Sébastien; Berrebi, Dominique; Louvet, Alexandre; Hugot, Jean-Pierre; Philpott, Dana J; Giovannini, Marco; Chareyre, Fabrice; Pages, Gilles; Gantier, Emilie; Girardin, Stephen E; Garcia, Irène; Hudault, Sylvie; Conti, Filoména; Sansonetti, Philippe J; Chamaillard, Mathias; Desreumaux, Pierre; Dubuquoy, Laurent; Mathurin, Philippe

    2008-03-01

    The recent discovery of bacterial receptors such as NOD2 that contribute to crosstalk between innate and adaptive immune systems in the digestive tract constitutes an important challenge in our understanding of liver injury mechanisms. The present study focuses on NOD2 functions during liver injury. NOD2, TNF-alpha and IFN-gamma mRNA were quantified using real-time PCR in liver samples from patients and mice with liver injury. We evaluated the susceptibility of concanavalin A (ConA) challenge in NOD2-deficient mice (Nod2-/-) compared to wild-type littermates. We tested the effect of muramyl dipeptide (MDP), the specific activator of NOD2, on ConA-induced liver injury in C57BL/6 mice. We studied the cellular distribution and the role of NOD2 in immune cells and hepatocytes. We demonstrated that NOD2, TNF-alpha and IFN-gamma were upregulated during liver injury in mice and humans. Nod2-/- mice were resistant to ConA-induced hepatitis compared to their wild-type littermates, through reduced IFN-gamma production by immune cells. Conversely, administration of MDP exacerbated ConA-induced liver injury. MDP was a strong inducer of IFN-gamma in freshly isolated human PBMC, splenocytes and hepatocytes. Our study supports the hypothesis that NOD2 contributes to liver injury via a regulatory mechanism affecting immune cells infiltrating the liver and hepatocytes. Taken together, our results indicate that NOD2 may represent a new therapeutic target in liver diseases.

  15. Pharmacokinetic study of isocorynoxeine metabolites mediated by cytochrome P450 enzymes in rat and human liver microsomes.

    PubMed

    Zhao, Lizhu; Zang, Bin; Qi, Wen; Chen, Fangfang; Wang, Haibo; Kano, Yoshihiro; Yuan, Dan

    2016-06-01

    Isocorynoxeine (ICN) is one of the major bioactive tetracyclic oxindole alkaloids found in Uncaria rhynchophylla (Miq.) Jacks. that is widely used for the treatment of hypertension, vascular dementia, and stroke. The present study was undertaken to assess the plasma pharmacokinetic characteristics of major ICN metabolites, and the role of simulated gastric and intestinal fluid (SGF and SIF), human and rat liver microsomes (HLMs and RLMs), and seven recombinant human CYP enzymes in the major metabolic pathway of ICN. A rapid, sensitive and accurate UHPLC/Q-TOF MS method was validated for the simultaneous determination of ICN and its seven metabolites in rat plasma after oral administration of ICN at 40mg/kg. It was found that 18.19-dehydrocorynoxinic acid (DCA) and 5-oxoisocorynoxeinic acid (5-O-ICA) were both key and predominant metabolites, rather than ICN itself, due to the rapid and extensive metabolism of ICN in vivo. The further study indicated that ICN was mainly metabolized in human or rat liver, and CYPs 2C19, 3A4 and 2D6 were the major enzymes responsible for the biotransformation of ICN to DCA and 5-O-ICA in human. These findings are of significance in understanding of the pharmacokinetic nature of tetracyclic oxindole alkaloids, and provide helpful information for the clinical co-administration of the herbal preparations containing U. rhynchophylla with antihypertensive drugs that are mainly metabolized by CYP3A4 and CYP2C19. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. v-Liver: Simulating Hepatic Tissue Lesions as Virtual Cellular Systems

    EPA Science Inventory

    The US EPA Virtual Liver (v-Liver) project is aimed at reducing the uncertainty in estimating the risk of toxic outcomes in humans by simulating the dose-dependent effects of environmental chemicals in silico. The v-Liver embodies an emerging field of research in computational ti...

  17. Effects of sodium phenylbutyrate on differentiation and induction of the P21WAF1/CIP1 anti-oncogene in human liver carcinoma cell lines.

    PubMed

    Meng, Mei; Jiang, Jun Mei; Liu, Hui; In, Cheng Yong; Zhu, Ju Ren

    2005-01-01

    To explore the effects of sodium phenylbutyrate on the proliferation, differentiation, cell cycle arrest and induction of the P(21WAF1/CIP1) anti-oncogene in human liver carcinoma cell lines Bel-7402 and HepG2. Bel-7402 and HepG2 human liver carcinoma cells were treated with sodium phenylbutyrate at different concentrations. Light microscopy was used to observe morphological changes in the carcinoma cells. Effects on the cell cycle were detected by using flow cytometry. P(21WAF1/CIP1) expression was determined by both reverse transcription-polymerase chain reaction and western blotting. Statistical analysis was performed by using one-way anova and Student's t-test. Sodium phenylbutyrate treatment caused time- and dose-dependent growth inhibition of Bel-7402 and HepG2 cells. This treatment also caused a decline in the proportion of S-phase cells and an increase in the proportion of G(0)/G(1) cells. Sodium phenylbutyrate increased the expression of P(21WAF1/CIP1). Sodium phenylbutyrate inhibits the proliferation of human liver carcinoma cells Bel-7402 and HepG2, induces partial differentiation, and increases the expression of P(21WAF1/CIP1).

  18. A Convenient and Efficient Method to Enrich and Maintain Highly Proliferative Human Fetal Liver Stem Cells

    PubMed Central

    Guo, Xuan; Wang, Shu; Dou, Ya-ling; Guo, Xiang-fei; Chen, Zhao-li; Wang, Xin-wei; Shen, Zhi-qiang; Qiu, Zhi-gang

    2015-01-01

    Abstract Pluripotent human hepatic stem cells have broad research and clinical applications, which are, however, restricted by both limited resources and technical difficulties with respect to isolation of stem cells from the adult or fetal liver. In this study, we developed a convenient and efficient method involving a two-step in situ collagenase perfusion, gravity sedimentation, and Percoll density gradient centrifugation to enrich and maintain highly proliferative human fetal liver stem cells (hFLSCs). Using this method, the isolated hFLSCs entered into the exponential growth phase within 10 days and maintained sufficient proliferative activity to permit subculture for at least 20 passages without differentiation. Immunocytochemistry, immunofluorescence, and flow cytometry results showed that these cells expressed stem cell markers, such as c-kit, CD44, epithelial cell adhesion molecule (EpCAM), oval cell marker-6 (OV-6), epithelial marker cytokeratin 18 (CK18), biliary ductal marker CK19, and alpha-fetoprotein (AFP). Gene expression analysis showed that these cells had stable mRNA expression of c-Kit, EpCAM, neural cell adhesion molecule (NCAM), CK19, CK18, AFP, and claudin 3 (CLDN-3) throughout each passage while maintaining low levels of ALB, but with complete absence of cytochrome P450 3A4 (C3A4), phosphoenolpyruvate carboxykinase (PEPCK), telomeric repeat binding factor (TRF), and connexin 26 (CX26) expression. When grown in appropriate medium, these isolated liver stem cells could differentiate into hepatocytes, cholangiocytes, osteoblasts, adipocytes, or endothelial cells. Thus, we have demonstrated a more economical and efficient method to isolate hFLSCs than magnetic-activated cell sorting (MACS). This novel approach may provide an excellent tool to isolate highly proliferative hFLSCs for tissue engineering and regenerative therapies. PMID:25556695

  19. A Convenient and Efficient Method to Enrich and Maintain Highly Proliferative Human Fetal Liver Stem Cells.

    PubMed

    Guo, Xuan; Wang, Shu; Dou, Ya-ling; Guo, Xiang-fei; Chen, Zhao-li; Wang, Xin-wei; Shen, Zhi-qiang; Qiu, Zhi-gang; Jin, Min; Li, Jun-wen

    2015-06-01

    Pluripotent human hepatic stem cells have broad research and clinical applications, which are, however, restricted by both limited resources and technical difficulties with respect to isolation of stem cells from the adult or fetal liver. In this study, we developed a convenient and efficient method involving a two-step in situ collagenase perfusion, gravity sedimentation, and Percoll density gradient centrifugation to enrich and maintain highly proliferative human fetal liver stem cells (hFLSCs). Using this method, the isolated hFLSCs entered into the exponential growth phase within 10 days and maintained sufficient proliferative activity to permit subculture for at least 20 passages without differentiation. Immunocytochemistry, immunofluorescence, and flow cytometry results showed that these cells expressed stem cell markers, such as c-kit, CD44, epithelial cell adhesion molecule (EpCAM), oval cell marker-6 (OV-6), epithelial marker cytokeratin 18 (CK18), biliary ductal marker CK19, and alpha-fetoprotein (AFP). Gene expression analysis showed that these cells had stable mRNA expression of c-Kit, EpCAM, neural cell adhesion molecule (NCAM), CK19, CK18, AFP, and claudin 3 (CLDN-3) throughout each passage while maintaining low levels of ALB, but with complete absence of cytochrome P450 3A4 (C3A4), phosphoenolpyruvate carboxykinase (PEPCK), telomeric repeat binding factor (TRF), and connexin 26 (CX26) expression. When grown in appropriate medium, these isolated liver stem cells could differentiate into hepatocytes, cholangiocytes, osteoblasts, adipocytes, or endothelial cells. Thus, we have demonstrated a more economical and efficient method to isolate hFLSCs than magnetic-activated cell sorting (MACS). This novel approach may provide an excellent tool to isolate highly proliferative hFLSCs for tissue engineering and regenerative therapies.

  20. Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant.

    PubMed

    Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Landrock, Kerstin K; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2014-05-01

    The human liver fatty acid-binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride levels. How this amino acid substitution elicits these effects is not known. This issue was addressed using human recombinant wild-type (WT) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC and CC). The T94A substitution did not alter or only slightly altered L-FABP binding affinities for saturated, monounsaturated or polyunsaturated long chain fatty acids, nor did it change the affinity for intermediates of triglyceride synthesis. Nevertheless, the T94A substitution markedly altered the secondary structural response of L-FABP induced by binding long chain fatty acids or intermediates of triglyceride synthesis. Finally, the T94A substitution markedly decreased the levels of induction of peroxisome proliferator-activated receptor α-regulated proteins such as L-FABP, fatty acid transport protein 5 and peroxisome proliferator-activated receptor α itself meditated by the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid in cultured primary human hepatocytes. Thus, although the T94A substitution did not alter the affinity of human L-FABP for long chain fatty acids, it significantly altered human L-FABP structure and stability, as well as the conformational and functional response to these ligands. © 2014 FEBS.

  1. Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes

    PubMed Central

    Joshi, Meghnad; Patil, Pradeep B.; He, Zhong; Holgersson, Jan; Olausson, Michael; Sumitran-Holgersson, Suchitra

    2012-01-01

    Background aims One important problem commonly encountered after hepatocyte transplantation is the low numbers of transplanted cells found in the graft. If hepatocyte transplantation is to be a viable therapeutic approach, significant liver parenchyma repopulation is required. Mesenchymal stromal cells (MSC) produce high levels of various growth factors, cytokines and metalloproteinases, and have immunomodulatory effects. We therefore hypothesized that co-transplantation of MSC with human fetal hepatocytes (hFH) could augment in vivo expansion after transplantation. We investigated the ability of human fetal liver MSC (hFLMSC) to augment expansion of phenotypically and functionally well-characterized hFH. Methods Two million hFH (passage 6) were either transplanted alone or together (1:1 ratio) with green fluorescence protein-expressing hFLMSC into the spleen of C57BL/6 nude mice with retrorsine-induced liver injury. Results After 4 weeks, engraftment of cells was detected by fluorescence in situ hybridization using a human-specific DNA probe. Significantly higher numbers of cells expressing human cytokeratin (CK)8, CK18, CK19, Cysteine-rich MNNG HOS Transforming gene (c-Met), alpha-fetoprotein (AFP), human nuclear antigen, mitochondrial antigen, hepatocyte-specific antigen and albumin (ALB) were present in the livers of recipient animals co-transplanted with hFLMSC compared with those without. Furthermore, expression of human hepatocyte nuclear factor (HNF)-4α and HNF-1β, and cytochrome P450 (CYP) 3A7 mRNA was demonstrated by reverse transcriptase-polymerase chain reaction (RT-PCR) in these animals. In addition, significantly increased amounts of human ALB were detected. Importantly, hFLMSC did not transdifferentiate into hepatocytes. Conclusions Our study reports the use of a novel strategy for enhanced liver repopulation and thereby advances this experimental procedure closer to clinical liver cell therapy. PMID:22424216

  2. Analysis of global and absorption, distribution, metabolism, and elimination gene expression in the progressive stages of human nonalcoholic fatty liver disease.

    PubMed

    Lake, April D; Novak, Petr; Fisher, Craig D; Jackson, Jonathan P; Hardwick, Rhiannon N; Billheimer, D Dean; Klimecki, Walter T; Cherrington, Nathan J

    2011-10-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by a series of pathological changes that range from simple fatty liver to nonalcoholic steatohepatitis (NASH). The objective of this study is to describe changes in global gene expression associated with the progression of human NAFLD. This study is focused on the expression levels of genes responsible for the absorption, distribution, metabolism, and elimination (ADME) of drugs. Differential gene expression between three clinically defined pathological groups-normal, steatosis, and NASH-was analyzed. Genome-wide mRNA levels in samples of human liver tissue were assayed with Affymetrix GeneChip Human 1.0ST arrays. A total of 11,633 genes exhibited altered expression out of 33,252 genes at a 5% false discovery rate. Most gene expression changes occurred in the progression from steatosis to NASH. Principal component analysis revealed that hepatic disease status was the major determinant of differential ADME gene expression rather than age or sex of sample donors. Among the 515 drug transporters and 258 drug-metabolizing enzymes (DMEs) examined, uptake transporters but not efflux transporters or DMEs were significantly over-represented in the number of genes down-regulated. These results suggest that uptake transporter genes are coordinately targeted for down-regulation at the global level during the pathological development of NASH and that these patients may have decreased drug uptake capacity. This coordinated regulation of uptake transporter genes is indicative of a hepatoprotective mechanism acting to prevent accumulation of toxic intermediates in disease-compromised hepatocytes.

  3. Metabolic fate of desomorphine elucidated using rat urine, pooled human liver preparations, and human hepatocyte cultures as well as its detectability using standard urine screening approaches.

    PubMed

    Richter, Lilian H J; Kaminski, Yeda Rumi; Noor, Fozia; Meyer, Markus R; Maurer, Hans H

    2016-09-01

    Desomorphine is an opioid misused as "crocodile", a cheaper alternative to heroin. It is a crude synthesis product homemade from codeine with toxic byproducts. The aim of the present work was to investigate the metabolic fate of desomorphine in vivo using rat urine and in vitro using pooled human liver microsomes and cytosol as well as human liver cell lines (HepG2 and HepaRG) by Orbitrap-based liquid chromatography-high resolution-tandem mass spectrometry or hydrophilic interaction liquid chromatography. According to the identified metabolites, the following metabolic steps could be proposed: N-demethylation, hydroxylation at various positions, N-oxidation, glucuronidation, and sulfation. The cytochrome P450 (CYP) initial activity screening revealed CYP3A4 to be the only CYP involved in all phase I steps. UDP-glucuronyltransferase (UGT) initial activity screening showed that UGT1A1, UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17 formed desomorphine glucuronide. Among the tested in vitro models, HepaRG cells were identified to be the most suitable tool for prediction of human hepatic phase I and II metabolism of drugs of abuse. Finally, desomorphine (crocodile) consumption should be detectable by all standard urine screening approaches mainly via the parent compound and/or its glucuronide assuming similar kinetics in rats and humans.

  4. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma.

    PubMed

    Wadkin, James C R; Patten, Daniel A; Kamarajah, Sivesh K; Shepherd, Emma L; Novitskaya, Vera; Berditchevski, Fedor; Adams, David H; Weston, Chris J; Shetty, Shishir

    2017-08-01

    CD151, a member of the tetraspanin family of receptors, is a lateral organizer and modulator of activity of several families of transmembrane proteins. It has been implicated in the development and progression of several cancers, but its role in chronic inflammatory disease is less well understood. Here we show that CD151 is upregulated by distinct microenvironmental signals in a range of chronic inflammatory liver diseases and in primary liver cancer, in which it supports lymphocyte recruitment. CD151 was highly expressed in endothelial cells of the hepatic sinusoids and neovessels developing in fibrotic septa and tumor margins. Primary cultures of human hepatic sinusoidal endothelial cells (HSECs) expressed CD151 at the cell membrane and in intracellular vesicles. CD151 was upregulated by VEGF and HepG2 conditioned media but not by proinflammatory cytokines. Confocal microscopy confirmed that CD151 colocalized with the endothelial adhesion molecule/immunoglobulin superfamily member, VCAM-1. Functional flow-based adhesion assays with primary human lymphocytes and HSECs demonstrated a 40% reduction of lymphocyte adhesion with CD151 blockade. Inhibition of lymphocyte adhesion was similar between VCAM-1 blockade and a combination of CD151/VCAM-1 blockade, suggesting a collaborative role between the two receptors. These studies demonstrate that CD151 is upregulated within the liver during chronic inflammation, where it supports lymphocyte recruitment via liver endothelium. We propose that CD151 regulates the activity of VCAM-1 during lymphocyte recruitment to the human liver and could be a novel anti-inflammatory target in chronic liver disease and hepatocellular cancer prevention. NEW & NOTEWORTHY Chronic hepatitis is characterized by lymphocyte accumulation in liver tissue, which drives fibrosis and carcinogenesis. Here, we demonstrate for the first time that the tetraspanin CD151 supports lymphocyte adhesion to liver endothelium. We show that CD151 is upregulated

  5. Inhibition of Acute in vivo Human Immunodeficiency Virus Infection by Human Interleukin 10 Treatment of SCID Mice Implanted with Human Fetal Thymus and Liver

    NASA Astrophysics Data System (ADS)

    Kollmann, Tobias R.; Pettoello-Mantovani, Massimo; Katopodis, Nikos F.; Hachamovitch, Moshe; Rubinstein, Arye; Kim, Ana; Goldstein, Harris

    1996-04-01

    To improve the usefulness of in vivo models for the investigation of the pathophysiology of human immunodeficiency virus (HIV) infection, we modified the construction of SCID mice implanted with human fetal thymus and liver (thy/liv-SCID-hu mice) so that the peripheral blood of the mice contained significant numbers of human monocytes and T cells. After inoculation with HIV-159, a primary patient isolate capable of infecting monocytes and T cells, the modified thy/liv-SCID-hu mice developed disseminated HIV infection that was associated with plasma viremia. The development of plasma viremia and HIV infection in thy/liv-SCID-hu mice inoculated with HIV-159 was inhibited by acute treatment with human interleukin (IL) 10 but not with human IL-12. The human peripheral blood mononuclear cells in these modified thy/liv-SCID-hu mice were responsive in vivo to treatment with exogenous cytokines. Human interferon γ expression in the circulating human peripheral blood mononuclear cells was induced by treatment with IL-12 and inhibited by treatment with IL-10. Thus, these modified thy/liv-SCID-hu mice should prove to be a valuable in vivo model for examining the role of immunomodulatory therapy in modifying HIV infection. Furthermore, our demonstration of the in vivo inhibitory effect of IL-10 on acute HIV infection suggests that further studies may be warranted to evaluate whether there is a role for IL-10 therapy in preventing HIV infection in individuals soon after exposure to HIV such as for children born to HIV-infected mothers.

  6. Zebrafish: an important tool for liver disease research.

    PubMed

    Goessling, Wolfram; Sadler, Kirsten C

    2015-11-01

    As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Zebrafish: An Important Tool for Liver Disease Research

    PubMed Central

    Goessling, Wolfram; Sadler, Kirsten C.

    2016-01-01

    As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration. PMID:26319012

  8. Glucuronidation of 6 alpha-hydroxy bile acids by human liver microsomes.

    PubMed Central

    Radomińska-Pyrek, A; Zimniak, P; Irshaid, Y M; Lester, R; Tephly, T R; St Pyrek, J

    1987-01-01

    The glucuronidation of 6-hydroxylated bile acids by human liver microsomes has been studied in vitro; for comparison, several major bile acids lacking a 6-hydroxyl group were also investigated. Glucuronidation rates for 6 alpha-hydroxylated bile acids were 10-20 times higher than those of substrates lacking a hydroxyl group in position 6. The highest rates measured were for hyodeoxy- and hyocholic acids, and kinetic analyses were carried out using these substrates. Rigorous product identification by high-field proton nuclear magnetic resonance and by electron impact mass spectrometry of methyl ester/peracetate derivatives revealed that 6-O-beta-D-glucuronides were the exclusive products formed in these enzymatic reactions. These results, together with literature data, indicate that 6 alpha-hydroxylation followed by 6-O-glucuronidation constitutes an alternative route of excretion of toxic hydrophobic bile acids. PMID:3110212

  9. Importance Rat Liver Morphology and Vasculature in Surgical Research.

    PubMed

    Vdoviaková, Katarína; Vdoviaková, Katarína; Petrovová, Eva; Krešáková, Lenka; Maloveská, Marcela; Teleky, Jana; Jenčová, Janka; Živčák, Jozef; Jenča, Andrej

    2016-12-02

    BACKGROUND The laboratory rat is one of the most popular experimental models for the experimental surgery of the liver. The objective of this study was to investigate the morphometric parameters, physiological data, differences in configuration of liver lobes, biliary system, and vasculature (arteries, veins, and lymphatic vessels) of the liver in laboratory rats. In addition, this study supports the anatomic literature and identified similarities and differences with human and other mammals. MATERIAL AND METHODS Forty laboratory rats were dissected to prepare corrosion casts of vascular system specimens (n=20), determine the lymph vessels and lymph nodes (n=10), and for macroscopic anatomical dissection (n=10) of the rat liver. The results are listed in percentages. The anatomical nomenclature of the liver morphology, its arteries, veins, lymph nodes, and lymphatic vessels are in accordance with Nomina Anatomica Veterinaria. RESULTS We found many variations in origin, direction, and division of the arterial, venous, and lymphatic systems in rat livers, and found differences in morphometric parameters compared to results reported by other authors. The portal vein was formed by 4 tributaries in 23%, by 3 branches in 64%, and by 2 tributaries in 13%. The liver lymph was drained to the 2 different lymph nodes. The nomenclature and morphological characteristics of the rat liver vary among authors. CONCLUSIONS Our results may be useful for the planing of experimental surgery and for cooperation with other investigation methods to help fight liver diseases in human populations.

  10. Importance Rat Liver Morphology and Vasculature in Surgical Research

    PubMed Central

    Vdoviaková, Katarína; Petrovová, Eva; Krešáková, Lenka; Maloveská, Marcela; Teleky, Jana; Jenčová, Janka; Živčák, Jozef; Jenča, Andrej

    2016-01-01

    Background The laboratory rat is one of the most popular experimental models for the experimental surgery of the liver. The objective of this study was to investigate the morphometric parameters, physiological data, differences in configuration of liver lobes, biliary system, and vasculature (arteries, veins, and lymphatic vessels) of the liver in laboratory rats. In addition, this study supports the anatomic literature and identified similarities and differences with human and other mammals. Material/Methods Forty laboratory rats were dissected to prepare corrosion casts of vascular system specimens (n=20), determine the lymph vessels and lymph nodes (n=10), and for macroscopic anatomical dissection (n=10) of the rat liver. The results are listed in percentages. The anatomical nomenclature of the liver morphology, its arteries, veins, lymph nodes, and lymphatic vessels are in accordance with Nomina Anatomica Veterinaria. Results We found many variations in origin, direction, and division of the arterial, venous, and lymphatic systems in rat livers, and found differences in morphometric parameters compared to results reported by other authors. The portal vein was formed by 4 tributaries in 23%, by 3 branches in 64%, and by 2 tributaries in 13%. The liver lymph was drained to the 2 different lymph nodes. The nomenclature and morphological characteristics of the rat liver vary among authors. Conclusions Our results may be useful for the planing of experimental surgery and for cooperation with other investigation methods to help fight liver diseases in human populations. PMID:27911356

  11. New psychoactive substances: Studies on the metabolism of XLR-11, AB-PINACA, FUB-PB-22, 4-methoxy-α-PVP, 25-I-NBOMe, and meclonazepam using human liver preparations in comparison to primary human hepatocytes, and human urine.

    PubMed

    Richter, Lilian H J; Maurer, Hans H; Meyer, Markus R

    2017-10-05

    New psychoactive substances (NPS) are an increasing problem in clinical and forensic toxicology. The knowledge of their metabolism is important for toxicological risk assessment and for developing toxicological urine screenings. Considering the huge numbers of NPS annually appearing on the market, metabolism studies should be realized in a fast, simple, cost efficient, and reliable way. Primary human hepatocytes (PHH) were recommended to be the gold standard for in vitro metabolism studies as they are expected to contain natural enzyme clusters, co-substrates, and drug transporters. In addition, they were already successfully used for metabolism studies of NPS. However, they also have disadvantages such as high costs and limited applicability without special equipment. The aims of the present study were therefore first to investigate exemplarily the phase I and phase II metabolism of six NPS (XLR-11, AB-PINACA, FUB-PB-22, 4-methoxy-α-PVP, 25-I-NBOMe, and meclonazepam) from different drug classes using pooled human S9 fraction (pS9) or pooled human liver microsomes combined with cytosol (pHLM/pHLC) after addition of the co-substrates for the main metabolic phase I and II reactions. Second to compare results to published data generated using primary human hepatocytes and human urine samples. Results of the incubations with pS9 or pHLM/pHLC were comparable in number and abundance of metabolites. Formation of metabolites, particularly after multi-step reactions needed a longer incubation time. However, incubations using human liver preparations resulted in a lower number of total detected metabolites compared to PHH, but they were still able to allow the identification of the main human urinary excretion products. Human liver preparations and particularly the pooled S9 fraction could be shown to be a sufficient and more cost-efficient alternative in context of metabolism studies also for developing toxicological urine screenings. It might be recommended to use the

  12. Klebsiella pneumoniae liver abscess and endophthalmitis

    PubMed Central

    Abdul-Hamid, Ayeshah; Bailey, Sarah-Jane

    2013-01-01

    A 36-year-old man was referred to the general medical team with endophthalmitis. He was noted to have raised inflammatory markers and deranged liver function tests on admission. Subsequent abdominal ultrasound scan revealed a liver abscess requiring percutaneous drainage. A common human pathogen, Klebsiella pneumoniae, was cultured from multiple sites. K pneumoniae has virulent serotypes (K1 and K2) that can cause primary liver abscess with metastatic infections. Cases have previously been predominantly reported in Southeast Asia but are increasing in prevalence in Europe and North America. The main known risk factor for the disease is diabetes mellitus. Swift antibiotic therapy, ophthalmology review and percutaneous drainage of any liver abscess are essential. Early recognition of the syndrome, despite potentially few initial symptoms, can significantly reduce morbidity and mortality. The authors report the first recorded case of K pneumoniae liver abscess with endophthalmitis in the UK. PMID:23559652

  13. Fast macromolecular proton fraction mapping of the human liver in vivo for quantitative assessment of hepatic fibrosis

    PubMed Central

    Yarnykh, Vasily L.; Tartaglione, Erica V.; Ioannou, George N.

    2015-01-01

    Macromolecular proton fraction (MPF) is a quantitative MRI parameter determining the magnetization transfer (MT) effect in tissues and defined as a relative amount of immobile macromolecular protons involved into magnetization exchange with mobile water protons. MPF has a potential for quantitative assessment of fibrous tissue due to intrinsically high MPF specific for collagen. The goal of this study was to investigate a relationship between histologically determined fibrosis stage and MPF in the liver parenchyma measured using a recently developed fast single-point clinically-targeted MPF mapping method. Optimal saturation parameters for single-point liver MPF measurements were determined from the analysis of liver Z-spectra in vivo based on the error propagation model. Sixteen patients with chronic hepatitis C viral infection underwent 3T MRI using an optimized liver MPF mapping protocol. Fourteen patients had prior liver biopsy with histologically staged fibrosis (METAVIR scores F0-F3), and two patients had clinically diagnosed cirrhosis (score F4 was assigned). The protocol included four breath-hold three-dimensional scans with 2×3×6 mm3 resolution and 10 transverse sections: 1) dynamic acquisition of MT-weighted and reference images; 2) dynamic acquisition of three images for variable flip angle T1 mapping; 3) dual-echo B0 map; and 4) actual flip-angle imaging B1 map. Average liver MPF was determined as the mode of MPF histograms. MPF was significantly increased in patients with clinically significant fibrosis (scores F2-F4, n=6) compared to patients with no or mild fibrosis (scores F0-F1, n=10): 6.49±0.36% vs. 5.94±0.26%, P<0.01 (Mann-Whitney test). MPF and fibrosis score were strongly positively correlated with the Spearman's rank correlation coefficient 0.80 (P<0.001). This study demonstrates the feasibility of fast MPF mapping of the human liver in vivo and confirms the hypothesis that MPF is increased in hepatic fibrosis and associated with fibrosis

  14. Tumor necrosis factor-inducible gene 6 promotes liver regeneration in mice with acute liver injury.

    PubMed

    Wang, Sihyung; Lee, Ji-Seon; Hyun, Jeongeun; Kim, Jieun; Kim, Seung U; Cha, Hyuk-Jin; Jung, Youngmi

    2015-03-11

    Tumor necrosis factor-inducible gene 6 protein (TSG-6), one of the cytokines released by human mesenchymal stem/stromal cells (hMSC), has an anti-inflammatory effect and alleviates several pathological conditions; however, the hepatoprotective potential of TSG-6 remains unclear. We investigated whether TSG-6 promoted liver regeneration in acute liver failure. The immortalized hMSC (B10) constitutively over-expressing TSG-6 or empty plasmid (NC: Negative Control) were established, and either TSG-6 or NC-conditioned medium (CM) was intraperitoneally injected into mice with acute liver damage caused by CCl4. Mice were sacrificed at 3 days post-CM treatment. Higher expression and the immunosuppressive activity of TSG-6 were observed in CM from TSG-6-hMSC. The obvious histomorphological liver injury and increased level of liver enzymes were shown in CCl4-treated mice with or without NC-CM, whereas those observations were markedly ameliorated in TSG-6-CM-treated mice with CCl4. Ki67-positive hepatocytic cells were accumulated in the liver of the CCl4+TSG-6 group. RNA analysis showed the decrease in both of inflammation markers, tnfα, il-1β, cxcl1 and cxcl2, and fibrotic markers, tgf-β1, α-sma and collagen α1, in the CCl4+TSG-6 group, compared to the CCl4 or the CCl4+NC group. Protein analysis confirmed the lower expression of TGF-β1 and α-SMA in the CCl4+TSG-6 than the CCl4 or the CCl4+NC group. Immunostaining for α-SMA also revealed the accumulation of the activated hepatic stellate cells in the livers of mice in the CCl4 and CCl4+NC groups, but not in the livers of mice from the CCl4+TSG-6 group. The cultured LX2 cells, human hepatic stellate cell line, in TSG-6-CM showed the reduced expression of fibrotic markers, tgf-β1, vimentin and collagen α1, whereas the addition of the TSG-6 antibody neutralized the inhibitory effect of TSG-6 on the activation of LX2 cells. In addition, cytoplasmic lipid drops, the marker of inactivated hepatic stellate cell, were

  15. Paritaprevir and Ritonavir Liver Concentrations in Rats as Assessed by Different Liver Sampling Techniques

    PubMed Central

    Venuto, Charles S.; Markatou, Marianthi; Woolwine-Cunningham, Yvonne; Furlage, Rosemary; Ocque, Andrew J.; DiFrancesco, Robin; Dumas, Emily O.; Wallace, Paul K.; Morse, Gene D.

    2017-01-01

    ABSTRACT The liver is crucial to pharmacology, yet substantial knowledge gaps exist in the understanding of its basic pharmacologic processes. An improved understanding for humans requires reliable and reproducible liver sampling methods. We compared liver concentrations of paritaprevir and ritonavir in rats by using samples collected by fine-needle aspiration (FNA), core needle biopsy (CNB), and surgical resection. Thirteen Sprague-Dawley rats were evaluated, nine of which received paritaprevir/ritonavir at 30/20 mg/kg of body weight by oral gavage daily for 4 or 5 days. Drug concentrations were measured using liquid chromatography-tandem mass spectrometry on samples collected via FNA (21G needle) with 1, 3, or 5 passes (FNA1, FNA3, and FNA5); via CNB (16G needle); and via surgical resection. Drug concentrations in plasma were also assessed. Analyses included noncompartmental pharmacokinetic analysis and use of Bland-Altman techniques. All liver tissue samples had higher paritaprevir and ritonavir concentrations than those in plasma. Resected samples, considered the benchmark measure, resulted in estimations of the highest values for the pharmacokinetic parameters of exposure (maximum concentration of drug in serum [Cmax] and area under the concentration-time curve from 0 to 24 h [AUC0–24]) for paritaprevir and ritonavir. Bland-Altman analyses showed that the best agreement occurred between tissue resection and CNB, with 15% bias, followed by FNA3 and FNA5, with 18% bias, and FNA1 and FNA3, with a 22% bias for paritaprevir. Paritaprevir and ritonavir are highly concentrated in rat liver. Further research is needed to validate FNA sampling for humans, with the possible derivation and application of correction factors for drug concentration measurements. PMID:28264852

  16. Immunohistochemical study of retinol-binding protein in livers of polar bears (Thalarctos maritimus).

    PubMed

    Heier, A; Gröne, A; Völlm, J; Kübber-Heiss, A; Bacciarini, L N

    2003-03-01

    Liver tumors of unknown cause have frequently been described in polar bears. Concurrent decrease of vitamin A levels and chronic liver disease are associated with hepatic carcinogenesis in humans. More than 90% of the body's vitamin A is stored in the liver, where it is bound to an intracellular retinol-binding protein (RBP). Therefore, in this retrospective study, RBP was assessed by immunohistochemistry in liver sections of 11 polar bears. Two of these polar bears had hepatocellular carcinoma, four showed other chronic liver changes, and five had normal livers. In normal livers, the cytoplasm stained diffusely positive with intensely staining cytoplasmic granules. RBP staining was evaluated and the abundance of diffuse cytoplasmic staining and intracytoplasmic large granules was determined. All cases with pathologic liver changes had markedly decreased staining intensities for RBP compared with normal livers. The findings of this study suggest that in polar bears, as in humans, vitamin A metabolism may play a role in hepatic carcinogenesis.

  17. Endothelial- and Platelet-Derived Microparticles Are Generated During Liver Resection in Humans.

    PubMed

    Banz, Yara; Item, Gian-Marco; Vogt, Andreas; Rieben, Robert; Candinas, Daniel; Beldi, Guido

    2016-01-01

    Cell-derived plasma microparticles (<1.5 μm) originating from various cell types have the potential to regulate thrombogenesis and inflammatory responses. The aim of this study was to test the hypothesis that microparticles generated during hepatic surgery co-regulate postoperative procoagulant and proinflammatory events. In 30 patients undergoing liver resection, plasma microparticles were isolated, quantitated, and characterized as endothelial (CD31+, CD41-), platelet (CD41+), or leukocyte (CD11b+) origin by flow cytometry and their procoagulant and proinflammatory activity was measured by immunoassays. During liver resection, the total numbers of microparticles increased with significantly more Annexin V-positive, endothelial and platelet-derived microparticles following extended hepatectomy compared to standard and minor liver resections. After liver resection, microparticle tissue factor and procoagulant activity increased along with overall coagulation as assessed by thrombelastography. Levels of leukocyte-derived microparticles specifically increased in patients with systemic inflammation as assessed by C-reactive protein but are independent of the extent of liver resection. Endothelial and platelet-derived microparticles are specifically elevated during liver resection, accompanied by increased procoagulant activity. Leukocyte-derived microparticles are a potential marker for systemic inflammation. Plasma microparticles may represent a specific response to surgical stress and may be an important mediator of postoperative coagulation and inflammation.

  18. Specific gene delivery to liver sinusoidal and artery endothelial cells.

    PubMed

    Abel, Tobias; El Filali, Ebtisam; Waern, Johan; Schneider, Irene C; Yuan, Qinggong; Münch, Robert C; Hick, Meike; Warnecke, Gregor; Madrahimov, Nodir; Kontermann, Roland E; Schüttrumpf, Jörg; Müller, Ulrike C; Seppen, Jurgen; Ott, Michael; Buchholz, Christian J

    2013-09-19

    Different types of endothelial cells (EC) fulfill distinct tasks depending on their microenvironment. ECs are therefore difficult to genetically manipulate ex vivo for functional studies or gene therapy. We assessed lentiviral vectors (LVs) targeted to the EC surface marker CD105 for in vivo gene delivery. The mouse CD105-specific vector, mCD105-LV, transduced only CD105-positive cells in primary liver cell cultures. Upon systemic injection, strong reporter gene expression was detected in liver where mCD105-LV specifically transduced liver sinusoidal ECs (LSECs) but not Kupffer cells, which were mainly transduced by nontargeted LVs. Tumor ECs were specifically targeted upon intratumoral vector injection. Delivery of the erythropoietin gene with mCD105-LV resulted in substantially increased erythropoietin and hematocrit levels. The human CD105-specific vector (huCD105-LV) transduced exclusively human LSECs in mice transplanted with human liver ECs. Interestingly, when applied at higher dose and in absence of target cells in the liver, huCD105-LV transduced ECs of a human artery transplanted into the descending mouse aorta. The data demonstrate for the first time targeted gene delivery to specialized ECs upon systemic vector administration. This strategy offers novel options to better understand the physiological functions of ECs and to treat genetic diseases such as those affecting blood factors.

  19. Human immunodeficiency virus infection does not worsen prognosis of liver transplantation for hepatocellular carcinoma.

    PubMed

    Agüero, Fernando; Forner, Alejandro; Manzardo, Christian; Valdivieso, Andres; Blanes, Marino; Barcena, Rafael; Rafecas, Antoni; Castells, Lluis; Abradelo, Manuel; Torre-Cisneros, Julian; Gonzalez-Dieguez, Luisa; Salcedo, Magdalena; Serrano, Trinidad; Jimenez-Perez, Miguel; Herrero, Jose Ignacio; Gastaca, Mikel; Aguilera, Victoria; Fabregat, Juan; Del Campo, Santos; Bilbao, Itxarone; Romero, Carlos Jimenez; Moreno, Asuncion; Rimola, Antoni; Miro, Jose M

    2016-02-01

    The impact of human immunodeficiency virus (HIV) infection on patients undergoing liver transplantation (LT) for hepatocellular carcinoma (HCC) is uncertain. This study aimed to assess the outcome of a prospective Spanish nationwide cohort of HIV-infected patients undergoing LT for HCC (2002-2014). These patients were matched (age, gender, year of LT, center, and hepatitis C virus (HCV) or hepatitis B virus infection) with non-HIV-infected controls (1:3 ratio). Patients with incidental HCC were excluded. Seventy-four HIV-infected patients and 222 non-HIV-infected patients were included. All patients had cirrhosis, mostly due to HCV infection (92%). HIV-infected patients were younger (47 versus 51 years) and had undetectable HCV RNA at LT (19% versus 9%) more frequently than non-HIV-infected patients. No significant differences were detected between HIV-infected and non-HIV-infected recipients in the radiological characteristics of HCC at enlisting or in the histopathological findings for HCC in the explanted liver. Survival at 1, 3, and 5 years for HIV-infected versus non-HIV-infected patients was 88% versus 90%, 78% versus 78%, and 67% versus 73% (P = 0.779), respectively. HCV infection (hazard ratio = 7.90, 95% confidence interval 1.07-56.82) and maximum nodule diameter >3 cm in the explanted liver (hazard ratio = 1.72, 95% confidence interval 1.02-2.89) were independently associated with mortality in the whole series. HCC recurred in 12 HIV-infected patients (16%) and 32 non-HIV-infected patients (14%), with a probability of 4% versus 5% at 1 year, 18% versus 12% at 3 years, and 20% versus 19% at 5 years (P = 0.904). Microscopic vascular invasion (hazard ratio = 3.40, 95% confidence interval 1.34-8.64) was the only factor independently associated with HCC recurrence. HIV infection had no impact on recurrence of HCC or survival after LT. Our results support the indication of LT in HIV-infected patients with HCC. © 2015 by the American Association for the Study

  20. Effect of Boron Neutron Capture Therapy (BNCT) on Normal Liver Regeneration: Towards a Novel Therapy for Liver Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorge E. Cardoso; Elisa M. Heber; David W. Nigg

    2007-10-01

    The “TAORMINA project” developed a new method for Boron Neutron Capture Therapy (BNCT) of human multifocal unresectable liver metastases based on whole liver ex-situ BNCT mediated by boronophenylalanine (BPA), followed by whole liver autograft. This technique involved a high risk, prolonged anhepatic phase. The Roffo Institute liver surgeons (JEC) herein propose a novel technique to pursue ex-situ liver BNCT studies with a drastically lower surgical risk for the patient. The technique would involve, sequentially, ex-situ BNCT of left liver segments II and III, partial liver autograft, and induction of partial atrophy of the untreated right liver. The working hypothesis ismore » that the atrophy of the right, untreated, diseased liver would stimulate regeneration of the left, treated, “cured” liver to yield a healthy liver mass, allowing for the resection of the remaining portion of diseased liver. This technique does not involve an anhepatic phase and would thus pose a drastically lower surgical risk to the patient but requires sine qua non that BNCT should not impair the regenerative capacity of normal hepatocytes. The aim of the present study was to assess the effect of therapeutic doses of BNCT mediated by BPA, GB-10 (Na2 10B10H10) or (GB- 10 + BPA) on normal liver regeneration in the Wistar rat employing partial hepatectomy as a regenerative stimulus. BNCT did not cause alterations in the outcome of normal liver regeneration, regenerated liver function or histology. We provide proof of principle to support the development of a novel, promising BNCT technique for the treatment of liver metastases.« less

  1. Evolution of Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of the Hepatotoxicity of Drugs and Drug Candidates.

    PubMed

    Andersson, Tommy B

    2017-10-01

    The pharmaceutical industry urgently needs reliable pre-clinical models to evaluate the efficacy and safety of new chemical entities before they enter the clinical trials. Development of in vitro model systems that emulate the functions of the human liver organ has been an elusive task. Cell lines exhibit a low drug-metabolizing capacity and primary liver cells rapidly dedifferentiate in culture, which restrict their usefulness substantially. Recently, the development of hepatocyte spheroid cultures has shown promising results. The proteome and transcriptome in the spheroids were similar to the liver tissue, and hepatotoxicity of selected substances was detected at in vivo-relevant concentrations. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  2. Cautiously using natural medicine to treat liver problems.

    PubMed

    Xiong, Fei; Guan, Yong-Song

    2017-05-21

    Natural medicine is a system of therapy that administrates natural agents and their derivatives to treat human diseases. This medicine has been used to treat many kinds of human diseases for thousands of years. The treatment protocols of natural medicine are integrative in nature, and are required to utilize the most appropriate therapies to address the needs of the individual patient. Because of the relative convenience, safety and efficacy, natural medicine is now increasing worldwide. Naturopathic doctors are licensed in many areas of the world and regulated partly by law in these areas, which is quite different from various other forms of complementary and alternative medicine. Liver diseases, such as hepatitis, liver cirrhosis and liver carcinoma, are serious health problems worldwide. Nearly half of the natural agents used in treatment of liver diseases today are natural products and their derivatives. Although natural medicine is beneficial and safe, physicians should pay close attention to the potential side-effects of the naturopathic agents, which lead to liver injury, interstitial pneumonia and acute respiratory failure. Therefore, when administrating naturopathic protocols to patients for the treatment of liver diseases, we should try our best to prevent and avoid as much as possible the negative impact of these medicines. This article highlights the current practice and recommended improvement of natural medicines in the treatment of liver diseases and gives some specific examples to emphasize the prevention and management of adverse reactions of the natural agents and suggests that natural medicine should be cautiously used to treat liver problems.

  3. Multiple-approaches to the identification and quantification of cytochromes P450 in human liver tissue by mass spectrometry.

    PubMed

    Seibert, Cathrin; Davidson, Brian R; Fuller, Barry J; Patterson, Laurence H; Griffiths, William J; Wang, Yuqin

    2009-04-01

    Here we report the identification and approximate quantification of cytochrome P450 (CYP) proteins in human liver microsomes as determined by nano-LC-MS/MS with application of the exponentially modified protein abundance index (emPAI) algorithm during database searching. Protocols based on 1D-gel protein separation and 2D-LC peptide separation gave comparable results. In total, 18 CYP isoforms were unambiguously identified based on unique peptide matches. Further, we have determined the absolute quantity of two CYP enzymes (2E1 and 1A2) in human liver microsomes using stable-isotope dilution mass spectrometry, where microsomal proteins were separated by 1D-gel electrophoresis, digested with trypsin in the presence of either a CYP2E1- or 1A2-specific stable-isotope labeled tryptic peptide and analyzed by LC-MS/MS. Using multiple reaction monitoring (MRM) for the isotope-labeled tryptic peptides and their natural unlabeled analogues quantification could be performed over the range of 0.1-1.5 pmol on column. Liver microsomes from four individuals were analyzed for CYP2E1 giving values of 88-200 pmol/mg microsomal protein. The CYP1A2 content of microsomes from a further three individuals ranged from 165 to 263 pmol/mg microsomal protein. Although, in this proof-of-concept study for CYP quantification, the two CYP isoforms were quantified from different samples, there are no practical reasons to prevent multiplexing the method to allow the quantification of multiple CYP isoforms in a single sample.

  4. Evaluation of the antibacterial and antifungal potential of Peltophorum africanum: toxicological effect on human Chang liver cell line.

    PubMed

    Okeleye, Benjamin I; Mkwetshana, Noxolo T; Ndip, Roland N

    2013-01-01

    We assessed the in vitro antimicrobial activity of Peltophorum africanum by means of the agar well and macrodilution methods. The toxicity on a normal human liver cell (Chang liver cell) was determined using the CellTiter-Blue cell viability assay, and the compounds contained in the fractions were identified using GC-MS. Zone diameter of inhibition of the extract ranged from 12.5 ± 0.7  to  32 ± 2.8 mm for bacteria and from  7.5 ± 0.7  to  26.4 ± 3.4 mm for yeast. Marked activity of the extract was observed against Plesiomonas shigelloides ATCC 51903, with MIC and MLC values of 0.15625 and 0.3125 mg/mL, respectively. The extract was both bactericidal (MIC(index) ≤ 2) and bacteriostatic/fungistatic (MIC(index) > 2) in activity. Lethal dose at 50 (LD50) showed 82.64 ± 1.40 degree of toxicity at 24 hrs, and 95 percentile of cell death dose activity ranged from log 3.12 ± 0.01  to  4.59 ± 0.03. The activity of the eight fractions tested ranged from 1.0 ± 0.5  to  3.7 ± 1.6 mg/mL (IC50) and from  2.1 ± 0.8  to  6.25 ± 0 mg/mL (IC90). The extract was toxic to human Chang liver cell lines.

  5. Multiple-approaches to the identification and quantification of cytochromes P450 in human liver tissue by mass spectrometry

    PubMed Central

    Seibert, Cathrin; Davidson, Brian R.; Fuller, Barry J.; Patterson, Laurence H.; Griffiths, William J.; Wang, Yuqin

    2009-01-01

    Here we report the identification and approximate quantification of cytochrome P450 (CYP) proteins in human liver microsomes as determined by nano-LC-MS/MS with application of the exponentially modified protein abundance index (emPAI) algorithm during database searching. Protocols based on 1D-gel protein separation and 2D-LC peptide separation gave comparable results. In total 18 CYP isoforms were unambiguously identified based on unique peptide matches. Further, we have determined the absolute quantity of two CYP enzymes (2E1 and 1A2) in human liver microsomes using stable-isotope dilution mass spectrometry, where microsomal proteins were separated by 1D-gel electrophoresis, digested with trypsin in the presence of either a CYP2E1- or 1A2-specific stable-isotope labelled tryptic peptide and analysed by LC-MS/MS. Using multiple reaction monitoring (MRM) for the isotope-labelled tryptic peptides and their natural unlabelled analogues quantification could be performed over the range of 0.1 – 1.5 pmol on column. Liver microsomes from four individuals were analysed for CYP2E1 giving values of 88 - 200 pmol/mg microsomal protein. The CYP1A2 content of microsomes from a further three individuals ranged from 165 – 263 pmol/mg microsomal protein. Although, in this proof-of-concept study for CYP quantification, the two CYP-isoforms were quantified from different samples, there are no practical reasons to prevent multiplexing the method to allow the quantification of multiple CYP-isoforms in a single sample. PMID:19714871

  6. Antibody-Mediated Rejection of Human Orthotopic Liver Allografts

    PubMed Central

    Demetris, A. Jake; Jaffe, Ron; Tzakis, A.; Ramsey, Glenn; Todo, S.; Belle, Steven; Esquivel, Carlos; Shapiro, Ron; Markus, Bernd; Mroczek, Elizabeth; Van Thiel, D. H.; Sysyn, Greg; Gordon, Robert; Makowka, Leonard; Starzl, Tom

    1988-01-01

    A clinicopathologic analysis of liver transplantation across major ABO blood group barriers was carried out 1) to determine if antibody-mediated (humoral) rejection was a cause of graft failure and if humoral rejection can be identified, 2) to propose criteria for establishing the diagnosis, and 3) to describe the clinical and pathologic features of humoral rejection. A total of 51 (24 primary) ABO-incompatible (ABO-I) liver grafts were transplanted into 49 recipients. There was a 46% graft failure rate during the first 30 days for primary ABO-I grafts compared with an 11% graft failure rate for primary ABO compatible (ABO-C), crossmatch negative, age, sex and priority-matched control patients (P < 0.02). A similarly high early graft failure rate (60%) was seen for nonprimary ABO-I grafts during the first 30 days. Clinically, the patients experienced a relentless rise in serum transaminases, hepatic failure, and coagulopathy during the first weeks after transplant. Pathologic examination of ABO-I grafts that failed early demonstrated widespread areas of geographic hemorrhagic necrosis with diffuse intraorgan coagulation. Prominent arterial deposition of antibody and complement components was demonstrated by immunoflourescent staining. Elution studies confirmed the presence of tissue-bound, donor-specific isoagglutinins within the grafts. No such deposition was seen in control cases. These studies confirm that antibody mediated rejection of the liver occurs and allows for the development of criteria for establishing the diagnosis. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:3046369

  7. Quantitative PET of liver functions

    PubMed Central

    Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord

    2018-01-01

    Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[18F]fluoro-D-galactose (18F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value (SUV) from a static liver 18F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11C-palmitate and with the conjugated bile acid tracer [N-methyl-11C]cholylsarcosine (11C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood (K 1; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion, SUV of non-invasive static PET with 18F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET. PMID:29755841

  8. Quantitative PET of liver functions.

    PubMed

    Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord

    2018-01-01

    Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[ 18 F]fluoro- D -galactose ( 18 F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value ( SUV ) from a static liver 18 F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11 C-palmitate and with the conjugated bile acid tracer [ N -methyl- 11 C]cholylsarcosine ( 11 C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood ( K 1 ; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion , SUV of non-invasive static PET with 18 F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET.

  9. Dithiothreitol abrogates the effect of arsenic trioxide on normal rat liver mitochondria and human hepatocellular carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Manash K.; Kumar, Rajinder; Mukhopadhyay, Anup K.

    2008-01-15

    Arsenic trioxide (ATO) is a known environmental toxicant and a potent chemotherapeutic agent. Significant correlation has been reported between consumption of arsenic-contaminated water and occurrence of liver cancer; moreover, ATO-treated leukemia patients also suffers from liver toxicity. Hence, modulation of ATO action may help to prevent populations suffering from arsenic toxicity as well as help reduce the drug-related side effects. Dithiothreitol (DTT) is a well-known dithiol agent reported to modulate the action of ATO. Controversial reports exist regarding the effect of DTT on ATO-induced apoptosis in leukemia cells. To the best of our knowledge, no report illustrates the modulatory effectmore » of DTT on ATO-induced liver toxicity, the prime target for arsenic. Mitochondria serve as the doorway to apoptosis and have been implicated in ATO-induced cell death. Hence, we attempted to study the modulatory effect of DTT on ATO-induced dysfunction of mammalian liver mitochondria and human hepatocellular carcinoma cell line (Hep3B). We, for the first time, report that ATO produces complex I-mediated electron transfer inhibition, reactive oxygen species (ROS) generation, respiration inhibition, and ATO-induced ROS-mediated mitochondrial permeability transition (MPT) opening. DTT at low concentration (100 {mu}M and less) prevents the effect of ATO-induced complex I-malfunctions. DTT protects mitochondria from ATO-mediated opening of MPT and membrane potential depolarization. DTT also prevented ATO-induced Hep3B cell death. Thus, at low concentrations DTT abrogates the effect of ATO on rat liver mitochondria and Hep3B cell line. Therefore, the present result suggests, that use of low concentration of dithiols as food supplement may prevent arsenic toxicity in affected population.« less

  10. Metabolism of Endosulfan-Alpha by Human Liver Microsomes and its Utility as a Simultaneous In Vitro Probe for CYP2B6 and CYP3A4

    DTIC Science & Technology

    2006-03-30

    METABOLISM OF ENDOSULFAN-ALPHA BY HUMAN LIVER MICROSOMES AND ITS UTILITY AS A SIMULTANEOUS IN VITRO PROBE FOR CYP2B6 AND CYP3A4 Richard C.T. Casabar...MICROSOMES AND ITS UTILITY AS A SIMULTANEOUS IN VITRO PROBE FOR CYP2B6 AND CYP3A4 Corresponding Author: Randy L. Rose Department of Environmental and Molecular...ALPHA BY HUMAN LIVER MICROSOMES AND ITS UTILITY AS A SIMULTANEOUS IN VITRO PROBE FOR CYP2B6 AND CYP3A4 . 6. AUTHOR(S) CAPT CASABAR RICHARD C 7

  11. Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation

    PubMed Central

    Bohne, Felix; Martínez-Llordella, Marc; Lozano, Juan-José; Miquel, Rosa; Benítez, Carlos; Londoño, María-Carlota; Manzia, Tommaso-María; Angelico, Roberta; Swinkels, Dorine W.; Tjalsma, Harold; López, Marta; Abraldes, Juan G.; Bonaccorsi-Riani, Eliano; Jaeckel, Elmar; Taubert, Richard; Pirenne, Jacques; Rimola, Antoni; Tisone, Giuseppe; Sánchez-Fueyo, Alberto

    2011-01-01

    Following organ transplantation, lifelong immunosuppressive therapy is required to prevent the host immune system from destroying the allograft. This can cause severe side effects and increased recipient morbidity and mortality. Complete cessation of immunosuppressive drugs has been successfully accomplished in selected transplant recipients, providing proof of principle that operational allograft tolerance is attainable in clinical transplantation. The intra-graft molecular pathways associated with successful drug withdrawal, however, are not well defined. In this study, we analyzed sequential blood and liver tissue samples collected from liver transplant recipients enrolled in a prospective multicenter immunosuppressive drug withdrawal clinical trial. Before initiation of drug withdrawal, operationally tolerant and non-tolerant recipients differed in the intra-graft expression of genes involved in the regulation of iron homeostasis. Furthermore, as compared with non-tolerant recipients, operationally tolerant patients exhibited higher serum levels of hepcidin and ferritin and increased hepatocyte iron deposition. Finally, liver tissue gene expression measurements accurately predicted the outcome of immunosuppressive withdrawal in an independent set of patients. These results point to a critical role for iron metabolism in the regulation of intra-graft alloimmune responses in humans and provide a set of biomarkers to conduct drug-weaning trials in liver transplantation. PMID:22156196

  12. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury.

    PubMed

    Esch, Mandy B; Mahler, Gretchen J; Stokol, Tracy; Shuler, Michael L

    2014-08-21

    The use of nanoparticles in medical applications is highly anticipated, and at the same time little is known about how these nanoparticles affect human tissues. Here we have simulated the oral uptake of 50 nm carboxylated polystyrene nanoparticles with a microscale body-on-a-chip system (also referred to as multi-tissue microphysiological system or micro Cell Culture Analog). Using the 'GI tract-liver-other tissues' system allowed us to observe compounding effects and detect liver tissue injury at lower nanoparticle concentrations than was expected from experiments with single tissues. To construct this system, we combined in vitro models of the human intestinal epithelium, represented by a co-culture of enterocytes (Caco-2) and mucin-producing cells (TH29-MTX), and the liver, represented by HepG2/C3A cells, within one microfluidic device. The device also contained chambers that together represented the liquid portions of all other organs of the human body. Measuring the transport of 50 nm carboxylated polystyrene nanoparticles across the Caco-2/HT29-MTX co-culture, we found that this multi-cell layer presents an effective barrier to 90.5 ± 2.9% of the nanoparticles. Further, our simulation suggests that a larger fraction of the 9.5 ± 2.9% nanoparticles that travelled across the Caco-2/HT29-MTX cell layer were not large nanoparticle aggregates, but primarily single nanoparticles and small aggregates. After crossing the GI tract epithelium, nanoparticles that were administered in high doses estimated in terms of possible daily human consumption (240 and 480 × 10(11) nanoparticles mL(-1)) induced the release of aspartate aminotransferase (AST), an intracellular enzyme of the liver that indicates liver cell injury. Our results indicate that body-on-a-chip devices are highly relevant in vitro models for evaluating nanoparticle interactions with human tissues.

  13. Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, Maria Lauda; USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033; The Southern California Research Center for Alcoholic and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033

    Methionine adenosyltransferase (MAT) is an essential enzyme that is responsible for the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and precursor of polyamines. MAT1A is expressed in normal liver and MAT2A is expressed in all extrahepatic tissues. MAT2A expression is increased in human colon cancer and in colon cancer cells treated with mitogens, whereas silencing MAT2A resulted in apoptosis. The aim of the current work was to examine the mechanism responsible for MAT2A-dependent growth and apoptosis. We found that in RKO (human adenocarcinoma cell line) cells, MAT2A siRNA treatment lowered cellular SAMe and putrescine levels by 70–75%, increased apoptosismore » and inhibited growth. Putrescine supplementation blunted significantly MAT2A siRNA-induced apoptosis and growth suppression. Putrescine treatment (100 pmol/L) raised MAT2A mRNA level to 4.3-fold of control, increased the expression of c-Jun and c-Fos and binding to an AP-1 site in the human MAT2A promoter and the promoter activity. In human colon cancer specimens, the expression levels of MAT2A, ornithine decarboxylase (ODC), c-Jun and c-Fos are all elevated as compared to adjacent non-tumorous tissues. Overexpression of ODC in RKO cells also raised MAT2A mRNA level and MAT2A promoter activity. ODC and MAT2A are also overexpressed in liver cancer and consistently, similar MAT2A-ODC-putrescine interactions and effects on growth and apoptosis were observed in HepG2 cells. In conclusion, there is a crosstalk between polyamines and MAT2A. Increased MAT2A expression provides more SAMe for polyamines biosynthesis; increased polyamine (putrescine in this case) can activate MAT2A at the transcriptional level. This along with increased ODC expression in cancer all feed forward to further enhance the proliferative capacity of the cancer cell. -- Highlights: • MAT2A knockdown depletes putrescine and leads to apoptosis. • Putrescine attenuates MAT2A knockdown-induced apoptosis and

  14. Remote Sensing between Liver and Intestine: Importance of Microbial Metabolites

    PubMed Central

    Fu, Zidong Donna; Cui, Julia Yue

    2017-01-01

    Recent technological advancements including metagenomics sequencing and metabolomics have allowed the discovery of critical functions of gut microbiota in obesity, malnutrition, neurological disorders, asthma, and xenobiotic metabolism. Classification of the human gut microbiome into distinct “enterotypes” has been proposed to serve as a new paradigm for understanding the interplay between microbial variation and human disease phenotypes, as many organs are affected by gut microbiota modifications during the pathogenesis of diseases. Gut microbiota remotely interacts with liver and other metabolic organs of the host through various microbial metabolites that are absorbed into the systemic circulation. Purpose of review The present review summarizes recent literature regarding the importance of gut microbiota in modulating the physiological and pathological responses of various host organs, and describes the functions of the known microbial metabolites that are involved in this remote sensing process, with a primary focus on the gut microbiota-liver axis. Recent findings Under physiological conditions, gut microbiota modulates the hepatic transcriptome, proteome, and metabolome, most notably down-regulating cytochrome P450 3a mediated xenobiotic metabolism. Gut microbiome also modulates the rhythmicity in liver gene expression, likely through microbial metabolites, such as butyrate and propionate that serve as epigenetic modifiers. Additionally, the production of host hormones such as primary bile acids and glucagon like peptide 1 is altered by gut microbiota to modify intermediary metabolism of the host. Summary Dysregulation of gut microbiota is implicated in various liver diseases such as alcoholic liver disease, non-alcoholic steatohepatitis, liver cirrhosis, cholangitis, and liver cancer. Gut microbiota modifiers such as probiotics and prebiotics are increasingly recognized as novel therapeutic modalities for liver and other types of human diseases. PMID

  15. Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice.

    PubMed

    Cong, Min; Zhao, Weihua; Liu, Tianhui; Wang, Ping; Fan, Xu; Zhai, Qingling; Bao, Xiaoli; Zhang, Dong; You, Hong; Kisseleva, Tatiana; Brenner, David A; Jia, Jidong; Zhuang, Hui

    2017-08-01

    Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28-30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation.

  16. Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice

    PubMed Central

    Cong, Min; Zhao, Weihua; Liu, Tianhui; Wang, Ping; Fan, Xu; Zhai, Qingling; Bao, Xiaoli; Zhang, Dong; You, Hong; Kisseleva, Tatiana; Brenner, David A.; Jia, Jidong; Zhuang, Hui

    2017-01-01

    Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28–30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation. PMID:28627620

  17. New Insights into the Pathogenesis of Alcohol-Induced ER Stress and Liver Diseases.

    PubMed

    Ji, Cheng

    2014-01-01

    Alcohol-induced liver disease increasingly contributes to human mortality worldwide. Alcohol-induced endoplasmic reticulum (ER) stress and disruption of cellular protein homeostasis have recently been established as a significant mechanism contributing to liver diseases. The alcohol-induced ER stress occurs not only in cultured hepatocytes but also  in vivo  in the livers of several species including mouse, rat, minipigs, zebrafish, and humans. Identified causes for the ER stress include acetaldehyde, oxidative stress, impaired one carbon metabolism, toxic lipid species, insulin resistance, disrupted calcium homeostasis, and aberrant epigenetic modifications. Importance of each of the causes in alcohol-induced liver injury depends on doses, duration and patterns of alcohol exposure, genetic disposition, environmental factors, cross-talks with other pathogenic pathways, and stages of liver disease. The ER stress may occur more or less all the time during alcohol consumption, which interferes with hepatic protein homeostasis, proliferation, and cell cycle progression promoting development of advanced liver diseases. Emerging evidence indicates that long-term alcohol consumption and ER stress may directly be involved in hepatocellular carcinogenesis (HCC). Dissecting ER stress signaling pathways leading to tumorigenesis will uncover potential therapeutic targets for intervention and treatment of human alcoholics with liver cancer.

  18. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine.

    PubMed

    Lee, Charlotte A; Sinha, Siddharth; Fitzpatrick, Emer; Dhawan, Anil

    2018-06-01

    Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.

  19. Microbiota, immunity and the liver.

    PubMed

    Vaikunthanathan, T; Safinia, N; Lombardi, G; Lechler, R I

    2016-03-01

    The gut harbors a complex community of over 100 trillion microbial cells known to exist in symbiotic harmony with the host influencing human physiology, metabolism, nutrition and immune function. It is now widely accepted that perturbations of this close partnership results in the pathogenesis of several major diseases with increasing evidence highlighting their role outside of the intestinal tract. The intimate proximity and circulatory loop of the liver and the gut has attracted significant attention regarding the role of the microbiota in the development and progression of liver disease. Here we give an overview of the interaction between the microbiota and the immune system and focus on their convincing role in both the propagation and treatment of liver disease. Copyright © 2016. Published by Elsevier B.V.

  20. Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein alpha, liver activator protein, and D-element-binding protein.

    PubMed Central

    van Ooij, C; Snyder, R C; Paeper, B W; Duester, G

    1992-01-01

    The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113

  1. Characterization of human liver cytochrome P-450 enzymes involved in the O-demethylation of a new P-glycoprotein inhibitor HM-30181.

    PubMed

    Paek, In Bok; Kim, Sung Yeon; Kim, Maeng Sup; Kim, John; Lee, Gwansun; Lee, Hye Suk

    2007-08-01

    HM-30181, 4-oxo-4H-chromene-2-carboxylic acid [2-(2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-2H-tetrazol-5-yl)-4,5-dimethoxy-phenyl]-amide, is a new P-glycoprotein inhibitor with the potential to increase the cytotoxic activity of orally coadministered paclitaxel. This study was performed to characterize human cytochrome P-450 (CYP) enzymes involved in the metabolism of HM-30181 to 4- or 5-O-desmethyl-HM-30181 (M2) and 6- or 7-O-desmethyl-HM-30181 (M3) and to investigate the inhibitory potential of HM-30181 on CYP enzymes in human liver microsomes. CYP3A4 was identified as the major isozyme responsible for the O-demethylation of HM-30181 to M2 and M3 based on the correlation analysis, chemical inhibition and immuno-inhibition study and metabolism in cDNA-expressed human CYP isozymes. HM-30181 itself had no inhibitory effects on CYPs 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, and 3A4 in human liver microsomes, suggesting the possibility that the pharmacokinetics of HM-30181 could be changed with coadministration of known CYP3A4 inducers or inhibitors.

  2. [Establishment of a D-galactosamine/lipopolysaccharide induced acute-on-chronic liver failure model in rats].

    PubMed

    Liu, Xu-hua; Chen, Yu; Wang, Tai-ling; Lu, Jun; Zhang, Li-jie; Song, Chen-zhao; Zhang, Jing; Duan, Zhong-ping

    2007-10-01

    To establish a practical and reproducible animal model of human acute-on-chronic liver failure for further study of the pathophysiological mechanism of acute-on-chronic liver failure and for drug screening and evaluation in its treatment. Immunological hepatic fibrosis was induced by human serum albumin in Wistar rats. In rats with early-stage cirrhosis (fibrosis stage IV), D-galactosamine and lipopolysaccharide were administered. Mortality and survival time were recorded in 20 rats. Ten rats were sacrificed at 4, 8, and 12 hours. Liver function tests and plasma cytokine levels were measured after D-galactosamine/lipopolysaccharide administration and liver pathology was studied. Cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Most of the rats treated with human albumin developed cirrhosis and fibrosis, and 90% of them died from acute liver failure after administration of D-galactosamine/lipopolysaccharide, with a mean survival time of (16.1+/-3.7) hours. Liver histopathology showed massive or submassive necrosis of the regenerated nodules, while fibrosis septa were intact. Liver function tests were compatible with massive necrosis of hepatocytes. Plasma level of TNFalpha increased significantly, parallel with the degree of the hepatocytes apoptosis. Plasma IL-10 levels increased similarly as seen in patients with acute-on-chronic liver failure. We established an animal model of acute-on-chronic liver failure by treating rats with human serum albumin and later with D-galactosamine and lipopolysaccharide. TNFalpha-mediated liver cell apoptoses plays a very important role in the pathogenesis of acute liver failure.

  3. Surgical anatomy of the liver, hepatic vasculature and bile ducts in the rat.

    PubMed

    Martins, Paulo Ney Aguiar; Neuhaus, Peter

    2007-04-01

    The rat is the most used experimental model in surgical research. Virtually all procedures in clinical liver surgery can be performed in the rat. However, the use of the rat model in liver surgery is limited by its small size and limited knowledge of the liver anatomy. As in humans, the rat liver vasculature and biliary system have many anatomical variations. The development of surgical techniques, and the study of liver function and diseases require detailed knowledge of the regional anatomy. The objective of this study was to describe and illustrate systematically the surgical anatomy of the rat liver to facilitate the planning and performance of studies in this animal. Knowledge of the diameter and length of liver vessels is also important for the selection of catheters and perivascular devices. Twelve Wistar rat livers were dissected using a surgical microscope. Hepatic and extrahepatic anatomical structures were measured under magnification with a millimeter scale. In this study, we describe the rat liver topographical anatomy, compare it with the human liver and review the literature. Increased knowledge of the rat liver anatomy and microsurgical skills permit individualized dissection, parenchymal section, embolization and ligature of vascular and biliary branches.

  4. Bioinformatics approaches for cross-species liver cancer analysis based on microarray gene expression profiling

    PubMed Central

    Fang, H; Tong, W; Perkins, R; Shi, L; Hong, H; Cao, X; Xie, Q; Yim, SH; Ward, JM; Pitot, HC; Dragan, YP

    2005-01-01

    Background The completion of the sequencing of human, mouse and rat genomes and knowledge of cross-species gene homologies enables studies of differential gene expression in animal models. These types of studies have the potential to greatly enhance our understanding of diseases such as liver cancer in humans. Genes co-expressed across multiple species are most likely to have conserved functions. We have used various bioinformatics approaches to examine microarray expression profiles from liver neoplasms that arise in albumin-SV40 transgenic rats to elucidate genes, chromosome aberrations and pathways that might be associated with human liver cancer. Results In this study, we first identified 2223 differentially expressed genes by comparing gene expression profiles for two control, two adenoma and two carcinoma samples using an F-test. These genes were subsequently mapped to the rat chromosomes using a novel visualization tool, the Chromosome Plot. Using the same plot, we further mapped the significant genes to orthologous chromosomal locations in human and mouse. Many genes expressed in rat 1q that are amplified in rat liver cancer map to the human chromosomes 10, 11 and 19 and to the mouse chromosomes 7, 17 and 19, which have been implicated in studies of human and mouse liver cancer. Using Comparative Genomics Microarray Analysis (CGMA), we identified regions of potential aberrations in human. Lastly, a pathway analysis was conducted to predict altered human pathways based on statistical analysis and extrapolation from the rat data. All of the identified pathways have been known to be important in the etiology of human liver cancer, including cell cycle control, cell growth and differentiation, apoptosis, transcriptional regulation, and protein metabolism. Conclusion The study demonstrates that the hepatic gene expression profiles from the albumin-SV40 transgenic rat model revealed genes, pathways and chromosome alterations consistent with experimental and

  5. The nuclear bile acid receptor FXR controls the liver derived tumor suppressor histidine-rich glycoprotein.

    PubMed

    Deuschle, Ulrich; Birkel, Manfred; Hambruch, Eva; Hornberger, Martin; Kinzel, Olaf; Perović-Ottstadt, Sanja; Schulz, Andreas; Hahn, Ulrike; Burnet, Michael; Kremoser, Claus

    2015-06-01

    The nuclear bile acid receptor Farnesoid X receptor (FXR) is strongly expressed in liver and intestine, controls bile acid and lipid homeostasis and exerts tumor-protective functions in liver and intestine. Histidine-rich glycoprotein (HRG) is an abundant plasma protein produced by the liver with the proposed function as a pattern recognition molecule involved in the clearance of immune complexes, necrotic cells and pathogens, the modulation of angiogenesis, the normalization of deranged endothelial vessel structure in tumors and tumor suppression. FXR recognition sequences were identified within a human HRG promoter fragment that mediated FXR/FXR-agonist dependent reporter gene activity in vitro. We show that HRG is a novel transcriptional target gene of FXR in human hepatoma cells, human upcyte® primary hepatocytes and 3D human liver microtissues in vitro and in mouse liver in vivo. Prolonged administration of the potent nonsteroidal FXR agonist PX20606 increases HRG levels in mouse plasma. Finally, daily oral administration of this FXR agonist for seven days resulted in a significant increase of HRG levels in the plasma of healthy human male volunteers during a clinical Phase I safety study. HRG might serve as a surrogate marker indicative of liver-specific FXR activation in future human clinical studies. Furthermore, potent FXR agonists might be beneficial in serious health conditions where HRG is reduced, for example, in hepatocellular carcinoma but also other solid cancers, liver failure, sepsis and pre-eclampsia. © 2014 UICC.

  6. Paritaprevir and Ritonavir Liver Concentrations in Rats as Assessed by Different Liver Sampling Techniques.

    PubMed

    Venuto, Charles S; Markatou, Marianthi; Woolwine-Cunningham, Yvonne; Furlage, Rosemary; Ocque, Andrew J; DiFrancesco, Robin; Dumas, Emily O; Wallace, Paul K; Morse, Gene D; Talal, Andrew H

    2017-05-01

    The liver is crucial to pharmacology, yet substantial knowledge gaps exist in the understanding of its basic pharmacologic processes. An improved understanding for humans requires reliable and reproducible liver sampling methods. We compared liver concentrations of paritaprevir and ritonavir in rats by using samples collected by fine-needle aspiration (FNA), core needle biopsy (CNB), and surgical resection. Thirteen Sprague-Dawley rats were evaluated, nine of which received paritaprevir/ritonavir at 30/20 mg/kg of body weight by oral gavage daily for 4 or 5 days. Drug concentrations were measured using liquid chromatography-tandem mass spectrometry on samples collected via FNA (21G needle) with 1, 3, or 5 passes (FNA 1 , FNA 3 , and FNA 5 ); via CNB (16G needle); and via surgical resection. Drug concentrations in plasma were also assessed. Analyses included noncompartmental pharmacokinetic analysis and use of Bland-Altman techniques. All liver tissue samples had higher paritaprevir and ritonavir concentrations than those in plasma. Resected samples, considered the benchmark measure, resulted in estimations of the highest values for the pharmacokinetic parameters of exposure (maximum concentration of drug in serum [ C max ] and area under the concentration-time curve from 0 to 24 h [AUC 0-24 ]) for paritaprevir and ritonavir. Bland-Altman analyses showed that the best agreement occurred between tissue resection and CNB, with 15% bias, followed by FNA 3 and FNA 5 , with 18% bias, and FNA 1 and FNA 3 , with a 22% bias for paritaprevir. Paritaprevir and ritonavir are highly concentrated in rat liver. Further research is needed to validate FNA sampling for humans, with the possible derivation and application of correction factors for drug concentration measurements. Copyright © 2017 American Society for Microbiology.

  7. Squamous cell carcinoma antigen in human liver carcinogenesis.

    PubMed

    Guido, M; Roskams, T; Pontisso, P; Fassan, M; Thung, S N; Giacomelli, L; Sergio, A; Farinati, F; Cillo, U; Rugge, M

    2008-04-01

    Squamous cell carcinoma antigen (SCCA) is a serine protease inhibitor that can be overexpressed in hepatocellular carcinoma (HCC) at both molecular and protein level, but no data are available on its expression in pre-malignant stages. To assess SCCA expression by immunohistochemistry in HCC and its nodular precursors in cirrhotic livers. 55 nodules from 42 explanted livers were evaluated: 7 large regenerative nodules (LRNs), 7 low-grade dysplastic nodules (LG-DNs), 10 high-grade DNs (HG-DNs), and 31 HCC. SCCA expression was semiquantitatively scored on a four-tiered scale. SCCA hepatocyte immunostaining was always restricted to the cytoplasm, mainly exhibiting a granular pattern. Stain intensity varied, ranging from weak to very strong. Within the nodules, positive cells were unevenly distributed, either scattered or in irregular clusters. The prevalence of SCCA expression was 29% in LRNs, 100% in DNs and 93% in HCC. A significant difference emerged in both prevalence and score for LRNs versus LG-DNs (p<0.039), HG-DNs (p = 0.001), and HCC (p = 0.000). A barely significant difference (p = 0.49) was observed between LG-DNs and HG-DNs, while no difference in SCCA expression was detected between HG-DNs and HCC. Cirrhotic tissue adjacent to the nodules was positive in 96% of cases, with a significant difference in the score (p = 0.000) between hepatocytes adjacent to HCC and those surrounding LRNs. This study provides the first evidence that aberrant SCCA expression is an early event in liver cell carcinomatous transformation.

  8. Interactions Between the Intestinal Microbiome and Liver Diseases

    PubMed Central

    Schnabl, Bernd; Brenner, David A.

    2014-01-01

    The human intestine harbors a diverse community of microbes that promote metabolism and digestion in their symbiotic relationship with the host. Disturbance of its homeostasis can result in disease. We review factors that disrupt intestinal homeostasis and contribute to non-alcoholic fatty liver disease (NAFLD), steatohepatitis (NASH), alcoholic liver disease, and cirrhosis. Liver disease has long been associated with qualitative and quantitative (overgrowth) dysbiotic changes in the intestinal microbiota. Extrinsic factors, such as the Western diet and alcohol, contribute to these changes. Dysbiosis results in intestinal inflammation, a breakdown of the intestinal barrier, and translocation of microbial products in animal models. However, the contribution of the intestinal microbiome to liver disease goes beyond simple translocation of bacterial products that promote hepatic injury and inflammation. Microbial metabolites produced in a dysbiotic intestinal environment and host factors are equally important in the pathogenesis of liver disease. We review how the combination of liver insult and disruptions in intestinal homeostasis contribute to liver disease. PMID:24440671

  9. Phosphodiester content measured in human liver by in vivo 31P MR spectroscopy at 7 tesla

    PubMed Central

    Clarke, William T.; Valkovič, Ladislav; Levick, Christina; Pavlides, Michael; Barnes, Eleanor; Cobbold, Jeremy F.; Robson, Matthew D.; Rodgers, Christopher T.

    2017-01-01

    Purpose Phosphorus (31P) metabolites are emerging liver disease biomarkers. Of particular interest are phosphomonoester and phosphodiester (PDE) “peaks” that comprise multiple overlapping resonances in 31P spectra. This study investigates the effect of improved spectral resolution at 7 Tesla (T) on quantifying hepatic metabolites in cirrhosis. Methods Five volunteers were scanned to determine metabolite T1s. Ten volunteers and 11 patients with liver cirrhosis were scanned at 7T. Liver spectra were acquired in 28 min using a 16‐channel 31P array and 3D chemical shift imaging. Concentrations were calculated using γ‐adenosine‐triphosphate (γ‐ATP) = 2.65 mmol/L wet tissue. Results T1 means ± standard deviations: phosphatidylcholine 1.05 ± 0.28 s, nicotinamide‐adenine‐dinucleotide (NAD+) 2.0 ± 1.0 s, uridine‐diphosphoglucose (UDPG) 3.3 ± 1.4 s. Concentrations in healthy volunteers: α‐ATP 2.74 ± 0.11 mmol/L wet tissue, inorganic phosphate 2.23 ± 0.20 mmol/L wet tissue, glycerophosphocholine 2.34 ± 0.46 mmol/L wet tissue, glycerophosphoethanolamine 1.50 ± 0.28 mmol/L wet tissue, phosphocholine 1.06 ± 0.16 mmol/L wet tissue, phosphoethanolamine 0.77 ± 0.14 mmol/L wet tissue, NAD+ 2.37 ± 0.14 mmol/L wet tissue, UDPG 2.00 ± 0.22 mmol/L wet tissue, phosphatidylcholine 1.38 ± 0.31 mmol/L wet tissue. Inorganic phosphate and phosphatidylcholine concentrations were significantly lower in patients; glycerophosphoethanolamine concentrations were significantly higher (P < 0.05). Conclusion We report human in vivo hepatic T1s for phosphatidylcholine, NAD+, and UDPG for the first time at 7T. Our protocol allows high signal‐to‐noise, repeatable measurement of metabolite concentrations in human liver. The splitting of PDE into its constituent peaks at 7T may allow more insight into changes in metabolism. Magn Reson Med 78:2095–2105, 2017. © 2017 The Authors Magnetic Resonance in

  10. The Predictive Value of the Maximal Liver Function Capacity Test for the Isolation of Primary Human Hepatocytes.

    PubMed

    Major, Rebeka D; Kluge, Martin; Jara, Maximilian; Nösser, Maximilian; Horner, Rosa; Gassner, Joseph; Struecker, Benjamin; Tang, Peter; Lippert, Steffen; Reutzel-Selke, Anja; Geisel, Dominik; Denecke, Timm; Stockmann, Martin; Pratschke, Johann; Sauer, Igor M; Raschzok, Nathanael

    2018-03-01

    The need for primary human hepatocytes is constantly growing for basic research, as well as for therapeutic applications. However, the isolation outcome strongly depends on the quality of liver tissue, and we are still lacking a preoperative test that allows the prediction of the hepatocyte isolation outcome. In this study, we evaluated the "maximal liver function capacity test" (LiMAx) as predictive test for the quantitative and qualitative outcome of hepatocyte isolation. This test is already used in clinical routine to measure preoperative and to predict postoperative liver function. The patient's preoperative mean LiMAx was obtained from the patient records, and preoperative computed tomography and magnetic resonance images were used to calculate the whole liver volume to adjust the mean LiMAx. The outcome parameters of the hepatocyte isolation procedures were analyzed in correlation with the adjusted mean LiMAx. Primary human hepatocytes were isolated from partial hepatectomies (n = 64). From these 64 hepatectomies we included 48 to our study and correlated their isolation outcome parameters with volume corrected LiMAx values. From a total of 11 hepatocyte isolation procedures, metabolic parameters (albumin, urea, and aspartate aminotransferase or AST) were assessed during the hepatocyte cultivation period of 5 days. The volume adjusted mean LiMAx showed a significant positive correlation with the total cell yield (p = 0.049; r = 0.242; n = 48). The correlations of volume adjusted LiMAx values with viable cell yield and cell viability did not reach statistical significance. To create a more homogenous study group regarding tumor entities, subgroup analyses were performed. A subgroup analysis of isolations from patients with colorectal metastasis revealed a significant correlation between volume adjusted mean LiMAx and total cell yield (p = 0.012; r = 0.488; n = 21) and viable cell yield (p = 0.034; r = 0.405; n = 21

  11. Scaling down of a clinical three-dimensional perfusion multicompartment hollow fiber liver bioreactor developed for extracorporeal liver support to an analytical scale device useful for hepatic pharmacological in vitro studies.

    PubMed

    Zeilinger, Katrin; Schreiter, Thomas; Darnell, Malin; Söderdahl, Therese; Lübberstedt, Marc; Dillner, Birgitta; Knobeloch, Daniel; Nüssler, Andreas K; Gerlach, Jörg C; Andersson, Tommy B

    2011-05-01

    Within the scope of developing an in vitro culture model for pharmacological research on human liver functions, a three-dimensional multicompartment hollow fiber bioreactor proven to function as a clinical extracorporeal liver support system was scaled down in two steps from 800 mL to 8 mL and 2 mL bioreactors. Primary human liver cells cultured over 14 days in 800, 8, or 2 mL bioreactors exhibited comparable time-course profiles for most of the metabolic parameters in the different bioreactor size variants. Major drug-metabolizing cytochrome P450 activities analyzed in the 2 mL bioreactor were preserved over up to 23 days. Immunohistochemical studies revealed tissue-like structures of parenchymal and nonparenchymal cells in the miniaturized bioreactor, indicating physiological reorganization of the cells. Moreover, the canalicular transporters multidrug-resistance-associated protein 2, multidrug-resistance protein 1 (P-glycoprotein), and breast cancer resistance protein showed a similar distribution pattern to that found in human liver tissue. In conclusion, the down-scaled multicompartment hollow fiber technology allows stable maintenance of primary human liver cells and provides an innovative tool for pharmacological and kinetic studies of hepatic functions with small cell numbers.

  12. Soil thresholds and a decision tool to manage food safety of crops grown in chlordecone polluted soil in the French West Indies.

    PubMed

    Clostre, Florence; Letourmy, Philippe; Lesueur-Jannoyer, Magalie

    2017-04-01

    Due to the persistent pollution of soils by an organochlorine, chlordecone (CLD also known as Kepone © ) in the French West Indies, some crops may be contaminated beyond the European regulatory threshold, the maximum residue limit (MRL). Farmers need to be able to foresee the risk of not complying with the regulatory threshold in each field and for each crop, if not, farmers whose fields are contaminated would have to stop cultivating certain crops in the fields concerned. To help farmers make the right choices, we studied the relationship between contamination of the soil and contamination of crops. We showed that contamination of a crop by CLD depended on the crop concerned, the soil CLD content and the type of soil. We grouped crop products in three categories: (i) non-uptakers and low-uptakers, (ii) medium-uptakers, and (iii) high-uptakers, according to their level of contamination and the resulting risk of exceeding MRL. Using a simulation model, we computed the soil threshold required to ensure the risk of not complying with MRL was sufficiently low for each crop product and soil type. Threshold values ranged from 0.02 μgkg -1 for dasheen grown in nitisol to 1.7 μgkg -1 for yam grown in andosol in the high-uptake category, and from 1 μgkg -1 for lettuce grown in nitisol to 45 μgkg -1 for the leaves of spring onions grown in andosol in the medium-uptake category. Contamination of non-uptakers and low-uptakers did not depend on soil contamination. With these results, we built an easy-to-use decision support tool based on two soil thresholds (0.1 and 1 μgkg -1 ) to enable growers to adapt their cropping system and hence to be able to continue farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The intersection of nonalcoholic fatty liver disease and obesity.

    PubMed

    Woo Baidal, Jennifer A; Lavine, Joel E

    2016-01-27

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide and recently emerged as the most rapidly increasing indication for liver transplant. Although obesity is a risk factor for NAFLD, overlap between these two entities is incompletely understood. We highlight recent insights into the pathogenesis of human NAFLD in relation to obesity and discuss advances in the diagnosis and treatment of NAFLD. Copyright © 2016, American Association for the Advancement of Science.

  14. Glucuronidation of trans-resveratrol by human liver and intestinal microsomes and UGT isoforms.

    PubMed

    Brill, Shirley S; Furimsky, Anna M; Ho, Mark N; Furniss, Michael J; Li, Yi; Green, Adam G; Bradford, Wallace W; Green, Carol E; Kapetanovic, Izet M; Iyer, Lalitha V

    2006-04-01

    Resveratrol (trans-resveratrol, trans-3,5,4'-trihydroxystilbene) is a naturally occurring stilbene analogue found in high concentrations in red wine. There is considerable research interest to determine the therapeutic potential of resveratrol, as it has been shown to have tumour inhibitory and antioxidant properties. This study was performed to investigate the glucuronidation of resveratrol and possible drug interactions via glucuronidation. Two glucuronide conjugates, resveratrol 3-O-glucuronide and resveratrol 4'-O-glucuronide, were formed by human liver and intestinal microsomes. UGT1A1 and UGT1A9 were predominantly responsible for the formation of the 3-O-glucuronide (Km = 149 microM) and 4'-O-glucuronide (Km = 365 microM), respectively. The glucuronide conjugates were formed at higher levels (up to 10-fold) by intestinal rather than liver microsomes. Resveratrol was co-incubated with substrates of UGT1A1 (bilirubin and 7-ethyl-10-hydroxycamptothecin (SN-38)) and UGT1A9 (7-hydroxytrifluoromethyl coumarin (7-HFC)). No major changes were noted in bilirubin glucuronidation in the presence of resveratrol. Resveratrol significantly inhibited the glucuronidation of SN-38 (Ki = 6.2 +/- 2.1 microM) and 7-HFC (Ki = 0.6 +/- 0.2 microM). Hence, resveratrol has the potential to inhibit the glucuronidation of concomitantly administered therapeutic drugs or dietary components that are substrates of UGT1A1 and UGT1A9.

  15. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice

    PubMed Central

    Tateno, Chise; Kawase, Yosuke; Tobita, Yoshimi; Hamamura, Satoko; Ohshita, Hiroki; Yokomichi, Hiroshi; Sanada, Harumi; Kakuni, Masakazu; Shiota, Akira; Kojima, Yuha; Ishida, Yuji; Shitara, Hiroshi; Wada, Naoko A.; Tateishi, Hiromi; Sudoh, Masayuki; Nagatsuka, Shin-ichiro; Jishage, Kou-ichi; Kohara, Michinori

    2015-01-01

    We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression—not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for

  16. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    PubMed

    Tateno, Chise; Kawase, Yosuke; Tobita, Yoshimi; Hamamura, Satoko; Ohshita, Hiroki; Yokomichi, Hiroshi; Sanada, Harumi; Kakuni, Masakazu; Shiota, Akira; Kojima, Yuha; Ishida, Yuji; Shitara, Hiroshi; Wada, Naoko A; Tateishi, Hiromi; Sudoh, Masayuki; Nagatsuka, Shin-Ichiro; Jishage, Kou-Ichi; Kohara, Michinori

    2015-01-01

    We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for

  17. CITED1 Expression in Liver Development and Hepatoblastoma12

    PubMed Central

    Murphy, Andrew J; de Caestecker, Christian; Pierce, Janene; Boyle, Scott C; Ayers, Gregory D; Zhao, Zhiguo; Libes, Jaime M; Correa, Hernan; Walter, Teagan; Huppert, Stacey S; Perantoni, Alan O; de Caestecker, Mark P; Lovvorn, Harold N

    2012-01-01

    Hepatoblastoma, the most common pediatric liver cancer, consists of epithelial mixed embryonal/fetal (EMEF) and pure fetal histologic subtypes, with the latter exhibiting a more favorable prognosis. Few embryonal histology markers that yield insight into the biologic basis for this prognostic discrepancy exist. CBP/P-300 interacting transactivator 1 (CITED1), a transcriptional co-activator, is expressed in the self-renewing nephron progenitor population of the developing kidney and broadly in its malignant analog, Wilms tumor (WT). In this current study, CITED1 expression is detected in mouse embryonic liver initially on post-coitum day 10.5 (e10.5), begins to taper by e14.5, and is undetectable in e18.5 and adult livers. CITED1 expression is detected in regenerating murine hepatocytes following liver injury by partial hepatectomy and 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Importantly, while CITED1 is undetectable in normal human adult livers, 36 of 41 (87.8%) hepatoblastoma specimens express CITED1, where it is enriched in EMEF specimens compared to specimens of pure fetal histology. CITED1 overexpression in Hep293TT human hepatoblastoma cells induces cellular proliferation and upregulates the Wnt inhibitors Kringle containing transmembrane protein 1 (KREMEN1) and CXXC finger protein 4 (CXXC4). CITED1 mRNA expression correlates with expression of CXXC4 and KREMEN1 in clinical hepatoblastoma specimens. These data show that CITED1 is expressed during a defined time course of liver development and is no longer expressed in the adult liver but is upregulated in regenerating hepatocytes following liver injury. Moreover, as in WT, this embryonic marker is reexpressed in hepatoblastoma and correlates with embryonal histology. These findings identify CITED1 as a novel marker of hepatic progenitor cells that is re-expressed following liver injury and in embryonic liver tumors. PMID:23308048

  18. Liver Disease in the HIV-Infected Individual

    PubMed Central

    Price, Jennifer C.; Thio, Chloe L.

    2010-01-01

    Since the advent of effective antiretroviral therapy (ART) for human immunodeficiency virus-1 (HIV), there has been a substantial decrease in deaths related to acquired immunodeficiency syndrome (AIDS). However, in the ART-era liver disease is now the most common non-AIDS related cause of death among HIV-infected patients, accounting for 14-18% of all deaths in this population and almost half of deaths among hospitalized HIV-infected patients. Just as the burden of non-AIDS morbidity and mortality has changed in the ART-era, the types of liver disease the clinician is likely to encounter among these patients have changed as well. This review will discuss the causes of liver disease in the HIV-infected population in the ART-era, including chronic hepatitis C virus, chronic hepatitis B virus, medication-related hepatotoxicity, alcohol abuse, nonalcoholic fatty liver disease, and AIDS-related liver diseases. PMID:20851211

  19. Molecular regulation of urea cycle function by the liver glucocorticoid receptor.

    PubMed

    Okun, Jürgen G; Conway, Sean; Schmidt, Kathrin V; Schumacher, Jonas; Wang, Xiaoyue; de Guia, Roldan; Zota, Annika; Klement, Johanna; Seibert, Oksana; Peters, Achim; Maida, Adriano; Herzig, Stephan; Rose, Adam J

    2015-10-01

    One of the major side effects of glucocorticoid (GC) treatment is lean tissue wasting, indicating a prominent role in systemic amino acid metabolism. In order to uncover a novel aspect of GCs and their intracellular-receptor, the glucocorticoid receptor (GR), on metabolic control, we conducted amino acid and acylcarnitine profiling in human and mouse models of GC/GR gain- and loss-of-function. Blood serum and tissue metabolite levels were determined in Human Addison's disease (AD) patients as well as in mouse models of systemic and liver-specific GR loss-of-function (AAV-miR-GR) with or without dexamethasone (DEX) treatments. Body composition and neuromuscular and metabolic function tests were conducted in vivo and ex vivo, the latter using precision cut liver slices. A serum metabolite signature of impaired urea cycle function (i.e. higher [ARG]:[ORN + CIT]) was observed in human (CTRL: 0.45 ± 0.03, AD: 1.29 ± 0.04; p < 0.001) and mouse (AAV-miR-NC: 0.97 ± 0.13, AAV-miR-GR: 2.20 ± 0.19; p < 0.001) GC/GR loss-of-function, with similar patterns also observed in liver. Serum urea levels were consistently affected by GC/GR gain- (∼+32%) and loss (∼-30%) -of-function. Combined liver-specific GR loss-of-function with DEX treatment revealed a tissue-autonomous role for the GR to coordinate an upregulation of liver urea production rate in vivo and ex vivo, and prevent hyperammonaemia and associated neuromuscular dysfunction in vivo. Liver mRNA expression profiling and GR-cistrome mining identified Arginase I (ARG1) a urea cycle gene targeted by the liver GR. The liver GR controls systemic and liver urea cycle function by transcriptional regulation of ARG1 expression.

  20. Several Human Liver Cell Expressed Apolipoproteins Complement HCV Virus Production with Varying Efficacy Conferring Differential Specific Infectivity to Released Viruses.

    PubMed

    Hueging, Kathrin; Weller, Romy; Doepke, Mandy; Vieyres, Gabrielle; Todt, Daniel; Wölk, Benno; Vondran, Florian W R; Geffers, Robert; Lauber, Chris; Kaderali, Lars; Penin, François; Pietschmann, Thomas

    2015-01-01

    Apolipoprotein E (ApoE), an exchangeable apolipoprotein, is necessary for production of infectious Hepatitis C virus (HCV) particles. However, ApoE is not the only liver-expressed apolipoprotein and the role of other apolipoproteins for production of infectious HCV progeny is incompletely defined. Therefore, we quantified mRNA expression of human apolipoproteins in primary human hepatocytes. Subsequently, cDNAs encoding apolipoproteins were expressed in 293T/miR-122 cells to explore if they complement HCV virus production in cells that are non-permissive due to limiting endogenous levels of human apolipoproteins. Primary human hepatocytes expressed high mRNA levels of ApoA1, A2, C1, C3, E, and H. ApoA4, A5, B, D, F, J, L1, L2, L3, L4, L6, M, and O were expressed at intermediate levels, and C2, C4, and L5 were not detected. All members of the ApoA and ApoC family of lipoproteins complemented HCV virus production in HCV transfected 293T/miR-122 cells, albeit with significantly lower efficacy compared with ApoE. In contrast, ApoD expression did not support production of infectious HCV. Specific infectivity of released particles complemented with ApoA family members was significantly lower compared with ApoE. Moreover, the ratio of extracellular to intracellular infectious virus was significantly higher for ApoE compared to ApoA2 and ApoC3. Since apolipoproteins complementing HCV virus production share amphipathic alpha helices as common structural features we altered the two alpha helices of ApoC1. Helix breaking mutations in both ApoC1 helices impaired virus assembly highlighting a critical role of alpha helices in apolipoproteins supporting HCV assembly. In summary, various liver expressed apolipoproteins with amphipathic alpha helices complement HCV virus production in human non liver cells. Differences in the efficiency of virus assembly, the specific infectivity of released particles, and the ratio between extracellular and intracellular infectivity point to

  1. Several Human Liver Cell Expressed Apolipoproteins Complement HCV Virus Production with Varying Efficacy Conferring Differential Specific Infectivity to Released Viruses

    PubMed Central

    Doepke, Mandy; Vieyres, Gabrielle; Todt, Daniel; Wölk, Benno; Vondran, Florian W. R.; Geffers, Robert; Lauber, Chris; Kaderali, Lars; Penin, François; Pietschmann, Thomas

    2015-01-01

    Apolipoprotein E (ApoE), an exchangeable apolipoprotein, is necessary for production of infectious Hepatitis C virus (HCV) particles. However, ApoE is not the only liver-expressed apolipoprotein and the role of other apolipoproteins for production of infectious HCV progeny is incompletely defined. Therefore, we quantified mRNA expression of human apolipoproteins in primary human hepatocytes. Subsequently, cDNAs encoding apolipoproteins were expressed in 293T/miR-122 cells to explore if they complement HCV virus production in cells that are non-permissive due to limiting endogenous levels of human apolipoproteins. Primary human hepatocytes expressed high mRNA levels of ApoA1, A2, C1, C3, E, and H. ApoA4, A5, B, D, F, J, L1, L2, L3, L4, L6, M, and O were expressed at intermediate levels, and C2, C4, and L5 were not detected. All members of the ApoA and ApoC family of lipoproteins complemented HCV virus production in HCV transfected 293T/miR-122 cells, albeit with significantly lower efficacy compared with ApoE. In contrast, ApoD expression did not support production of infectious HCV. Specific infectivity of released particles complemented with ApoA family members was significantly lower compared with ApoE. Moreover, the ratio of extracellular to intracellular infectious virus was significantly higher for ApoE compared to ApoA2 and ApoC3. Since apolipoproteins complementing HCV virus production share amphipathic alpha helices as common structural features we altered the two alpha helices of ApoC1. Helix breaking mutations in both ApoC1 helices impaired virus assembly highlighting a critical role of alpha helices in apolipoproteins supporting HCV assembly. In summary, various liver expressed apolipoproteins with amphipathic alpha helices complement HCV virus production in human non liver cells. Differences in the efficiency of virus assembly, the specific infectivity of released particles, and the ratio between extracellular and intracellular infectivity point to

  2. Human exposure to Bisphenol A and liver health status: Quantification of urinary and circulating levels by LC-MS/MS.

    PubMed

    Nicolucci, Carla; Errico, Sonia; Federico, Alessandro; Dallio, Marcello; Loguercio, Carmelina; Diano, Nadia

    2017-06-05

    A selective and highly sensitive analytical methodology for determination of Bisphenol A in human plasma was developed and validated. The method was based on selective liquid/solid extraction, combined with liquid chromatography-electrospray ionization tandem mass spectrometry in the multiple reaction monitoring mode and negative ionization. The linearity of the detector response was verified in human plasma over the concentration range 0.100-200ngmL -1 . The detection limit was 0.03ngmL -1 and the quantification limit was 0.100ngmL -1 . The analytical features of the proposed in-house validated method were satisfactory: precision was <10% and recoveries were around 84-104%. The matrix effect was studied and compensated using deuterated labeled standard. The applicability of the proposed method was demonstrated analyzing human plasma samples from individuals affected by non-alcoholic fatty liver disease. Bisphenol A was detected above the detection limit in all samples. The data show a persistence of unconjugated Bisphenol A levels in plasma and indicate a chronic Bisphenol A exposure of the target organ, suggesting an association between liver health status and Bisphenol A exposure. The results from our study are valuable for further investigation with large sample size and longitudinal study designs, necessary to confirm the observed association. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Liver metastases

    MedlinePlus

    Metastases to the liver; Metastatic liver cancer; Liver cancer - metastatic; Colorectal cancer - liver metastases; Colon cancer - liver metastases; Esophageal cancer - liver metastases; Lung cancer - liver metastases; Melanoma - liver metastases

  4. Emerging In Vitro Liver Technologies for Drug Metabolism and Inter-Organ Interactions

    PubMed Central

    Bale, Shyam Sundhar; Moore, Laura

    2016-01-01

    In vitro liver models provide essential information for evaluating drug metabolism, metabolite formation, and hepatotoxicity. Interfacing liver models with other organ models could provide insights into the desirable as well as unintended systemic side effects of therapeutic agents and their metabolites. Such information is invaluable for drug screening processes particularly in the context of secondary organ toxicity. While interfacing of liver models with other organ models has been achieved, platforms that effectively provide human-relevant precise information are needed. In this concise review, we discuss the current state-of-the-art of liver-based multiorgan cell culture platforms primarily from a drug and metabolite perspective, and highlight the importance of media-to-cell ratio in interfacing liver models with other organ models. In addition, we briefly discuss issues related to development of optimal liver models that include recent advances in hepatic cell lines, stem cells, and challenges associated with primary hepatocyte-based liver models. Liver-based multiorgan models that achieve physiologically relevant coupling of different organ models can have a broad impact in evaluating drug efficacy and toxicity, as well as mechanistic investigation of human-relevant disease conditions. PMID:27049038

  5. Generation of hepatocyte-like cells from human induced pluripotent stem (iPS) cells by co-culturing embryoid body cells with liver non-parenchymal cell line TWNT-1.

    PubMed

    Javed, M Shahid; Yaqoob, Naeem; Iwamuro, Masaya; Kobayashi, Naoya; Fujiwara, Toshiyoshi

    2014-02-01

    To generate a homogeneous population of patient-specific hepatocyte-like cells (HLCs) from human iPS cells those show the morphologic and phenotypic properties of primary human hepatocytes. An experimental study. Department of Surgery, Okayama University, Graduate School of Medicine, Japan, from April to December 2011. Human iPS cells were generated and maintained on ES qualified matrigel coated plates supplemented with mTeSR medium or alternatively on mitotically inactivated MEF feeder layer in DMEM/F12 medium containing 20% KOSR, 4ng/ml bFGF-2, 1 x 10-4 M 2-mercaptoethanol, 1 mmol/L NEAA, 2mM L-glutamine and 1% penicillin-streptomycin. iPS cells were differentiated to HLCs by sequential culture using a four step differentiation protocol: (I) Generation of embryoid bodies (EBs) in suspension culture; (II) Induction of definitive endoderm (DE) from 2 days old EBs by growth in human activin-A (100 ng/ml) and basic fibroblasts growth factor (bFGF2) (100 ng/ml) on matrigel coated plates; (III) Induction of hepatic progenitors by co-culture with non-parenchymal human hepatic stellate cell line (TWNT-1); and (IV) Maturation by culture in dexamethasone. Characterization was performed by RT-PCR and functional assays. The generated HLCs showed microscopically morphological phenotype of human hepatocytes, expressed liver-specific genes (ASGPR, Albumin, AFP, Sox17, Fox A2), secreted human liver-specific proteins such as albumin, synthesized urea and metabolized ammonia. Functional HLCs were generated from human iPS cells, which could be used for autologus hepatocyte transplantation for liver failure and as in vitro model for determining the metabolic and toxicological properties of drug compounds.

  6. MNADK, a novel liver-enriched mitochondrion-localized NAD kinase

    PubMed Central

    Zhang, Ren

    2013-01-01

    Summary NADP+ and its reducing equivalent NADPH are essential for counteracting oxidative damage. Mitochondria are the major source of oxidative stress, since the majority of superoxide is generated from the mitochondrial respiratory chain. Because NADP+ cannot pass through the mitochondrial membrane, NADP+ generation within mitochondria is critical. However, only a single human NAD kinase (NADK) has been identified, and it is localized to the cytosol. Therefore, sources of mitochondrial NADP+ and mechanisms for maintaining its redox balance remain largely unknown. Here, we show that the uncharacterized human gene C5ORF33, named MNADK (mouse homologue 1110020G09Rik), encodes a novel mitochondrion-localized NAD kinase. In mice MNADK is mostly expressed in the liver, and also abundant in brown fat, heart, muscle and kidney, all being mitochondrion-rich. Indeed, MNADK is localized to mitochondria in Hep G2 cells, a human liver cell line, as demonstrated by fluorescence imaging. Having a conserved NAD kinase domain, a recombinant MNADK showed NAD kinase activity, confirmed by mass spectrometry analysis. Consistent with a role of NADP+ as a coenzyme in anabolic reactions, such as lipid synthesis, MNADK is nutritionally regulated in mice. Fasting increased MNADK levels in liver and fat, and obesity dramatically reduced its level in fat. MNADK expression was suppressed in human liver tumors. Identification of MNADK immediately suggests a model in which NADK and MNADK are responsible for de novo synthesis of NADP+ in cytosol and mitochondria, respectively, and therefore provides novel insights into understanding the sources and mechanisms of mitochondrial NADP+ and NADH production in human cells. PMID:23616928

  7. Long-Term Adult Feline Liver Organoid Cultures for Disease Modeling of Hepatic Steatosis.

    PubMed

    Kruitwagen, Hedwig S; Oosterhoff, Loes A; Vernooij, Ingrid G W H; Schrall, Ingrid M; van Wolferen, Monique E; Bannink, Farah; Roesch, Camille; van Uden, Lisa; Molenaar, Martijn R; Helms, J Bernd; Grinwis, Guy C M; Verstegen, Monique M A; van der Laan, Luc J W; Huch, Meritxell; Geijsen, Niels; Vries, Robert G; Clevers, Hans; Rothuizen, Jan; Schotanus, Baukje A; Penning, Louis C; Spee, Bart

    2017-04-11

    Hepatic steatosis is a highly prevalent liver disease, yet research is hampered by the lack of tractable cellular and animal models. Steatosis also occurs in cats, where it can cause severe hepatic failure. Previous studies demonstrate the potential of liver organoids for modeling genetic diseases. To examine the possibility of using organoids to model steatosis, we established a long-term feline liver organoid culture with adult liver stem cell characteristics and differentiation potential toward hepatocyte-like cells. Next, organoids from mouse, human, dog, and cat liver were provided with fatty acids. Lipid accumulation was observed in all organoids and interestingly, feline liver organoids accumulated more lipid droplets than human organoids. Finally, we demonstrate effects of interference with β-oxidation on lipid accumulation in feline liver organoids. In conclusion, feline liver organoids can be successfully cultured and display a predisposition for lipid accumulation, making them an interesting model in hepatic steatosis research. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Incorporating Human Interindividual Biotransformation ...

    EPA Pesticide Factsheets

    The protection of sensitive individuals within a population dictates that measures other than central tendencies be employed to estimate risk. The refinement of human health risk assessments for chemicals metabolized by the liver to reflect data on human variability can be accomplished through (1) the characterization of enzyme expression in large banks of human liver samples, (2) the employment of appropriate techniques for the quantification and extrapolation of metabolic rates derived in vitro, and (3) the judicious application of physiologically based pharmacokinetic (PBPK) modeling. While in vitro measurements of specific biochemical reactions from multiple human samples can yield qualitatively valuable data on human variance, such measures must be put into the perspective of the intact human to yield the most valuable predictions of metabolic differences among humans. For quantitative metabolism data to be the most valuable in risk assessment, they must be tied to human anatomy and physiology, and the impact of their variance evaluated under real exposure scenarios. For chemicals metabolized in the liver, the concentration of parent chemical in the liver represents the substrate concentration in the MichaelisMenten description of metabolism. Metabolic constants derived in vitro may be extrapolated to the intact liver, when appropriate conditions are met. Metabolic capacity Vmax; the maximal rate of the reaction) can be scaled directly to the concentration

  9. Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation.

    PubMed

    Haemmerich, Dieter; Schutt, David J; Wright, Andrew W; Webster, John G; Mahvi, David M

    2009-05-01

    We measured the ex vivo electrical conductivity of eight human metastatic liver tumours and six normal liver tissue samples from six patients using the four electrode method over the frequency range 10 Hz to 1 MHz. In addition, in a single patient we measured the electrical conductivity before and after the thermal ablation of normal and tumour tissue. The average conductivity of tumour tissue was significantly higher than normal tissue over the entire frequency range (from 4.11 versus 0.75 mS cm(-1) at 10 Hz, to 5.33 versus 2.88 mS cm(-1) at 1 MHz). We found no significant correlation between tumour size and measured electrical conductivity. While before ablation tumour tissue had considerably higher conductivity than normal tissue, the two had similar conductivity throughout the frequency range after ablation. Tumour tissue conductivity changed by +25% and -7% at 10 Hz and 1 MHz after ablation (0.23-0.29 at 10 Hz, and 0.43-0.40 at 1 MHz), while normal tissue conductivity increased by +270% and +10% at 10 Hz and 1 MHz (0.09-0.32 at 10 Hz and 0.37-0.41 at 1 MHz). These data can potentially be used to differentiate tumour from normal tissue diagnostically.

  10. Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment.

    PubMed

    Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas

    2017-04-01

    The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).

  11. Bacterial microflora of normal and telangiectatic livers in cattle.

    PubMed

    Stotland, E I; Edwards, J F; Roussel, A J; Simpson, R B

    2001-07-01

    To identify potential bacterial pathogens in normal and telangiectatic livers of mature cattle at slaughter and to identify consumer risk associated with hepatic telangiectasia. 50 normal livers and 50 severely telangiectatic livers. Normal and telangiectatic livers were collected at slaughter for aerobic and anaerobic bacterial culture. Isolates were identified, and patterns of isolation were analyzed. Histologic examination of all livers was performed. Human pathogens isolated from normal and telangiectatic livers included Escherichia coli O157:H7 and group-D streptococci. Most livers in both groups contained bacteria in low numbers; however, more normal livers yielded negative culture results. More group-D streptococci were isolated from the right lobes of telangiectatic livers than from the left lobes, and more gram-negative anaerobic bacteria were isolated from left lobes of telangiectatic livers than from right lobes. All telangiectatic lesions were free of fibrosis, active necrotizing processes, and inflammation. The USDA regulation condemning telangiectatic livers is justified insofar as these livers contain more bacteria than normal livers do; however, normal livers contain similar species of microflora. Development of telangiectasia could not be linked to an infectious process. The finding of E coli O157:H7 in bovine livers suggests that information regarding bacterial content of other offal and muscle may identify sources of this and other potential foodborne pathogens and assist in establishing critical control points for the meat industry.

  12. Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe.

    PubMed

    O'Rourke, Ann P; Lazebnik, Mariya; Bertram, John M; Converse, Mark C; Hagness, Susan C; Webster, John G; Mahvi, David M

    2007-08-07

    Hepatic malignancies have historically been treated with surgical resection. Due to the shortcomings of this technique, there is interest in other, less invasive, treatment modalities, such as microwave hepatic ablation. Crucial to the development of this technique is the accurate knowledge of the dielectric properties of human liver tissue at microwave frequencies. To this end, we characterized the dielectric properties of in vivo and ex vivo normal, malignant and cirrhotic human liver tissues from 0.5 to 20 GHz. Analysis of our data at 915 MHz and 2.45 GHz indicates that the dielectric properties of ex vivo malignant liver tissue are 19 to 30% higher than normal tissue. The differences in the dielectric properties of in vivo malignant and normal liver tissue are not statistically significant (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 16% higher than normal). Also, the dielectric properties of in vivo normal liver tissue at 915 MHz and 2.45 GHz are 16 to 43% higher than ex vivo. No statistically significant differences were found between the dielectric properties of in vivo and ex vivo malignant tissue (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 28% higher than normal). We report the one-pole Cole-Cole parameters for ex vivo normal, malignant and cirrhotic liver tissue in this frequency range. We observe that wideband dielectric properties of in vivo liver tissue are different from the wideband dielectric properties of ex vivo liver tissue, and that the in vivo data cannot be represented in terms of a Cole-Cole model. Further work is needed to uncover the mechanisms responsible for the observed wideband trends in the in vivo liver data.

  13. Modeling Liver-Related Adverse Effects of Drugs Using kNN QSAR Method

    PubMed Central

    Rodgers, Amie D.; Zhu, Hao; Fourches, Dennis; Rusyn, Ivan; Tropsha, Alexander

    2010-01-01

    Adverse effects of drugs (AEDs) continue to be a major cause of drug withdrawals both in development and post-marketing. While liver-related AEDs are a major concern for drug safety, there are few in silico models for predicting human liver toxicity for drug candidates. We have applied the Quantitative Structure Activity Relationship (QSAR) approach to model liver AEDs. In this study, we aimed to construct a QSAR model capable of binary classification (active vs. inactive) of drugs for liver AEDs based on chemical structure. To build QSAR models, we have employed an FDA spontaneous reporting database of human liver AEDs (elevations in activity of serum liver enzymes), which contains data on approximately 500 approved drugs. Approximately 200 compounds with wide clinical data coverage, structural similarity and balanced (40/60) active/inactive ratio were selected for modeling and divided into multiple training/test and external validation sets. QSAR models were developed using the k nearest neighbor method and validated using external datasets. Models with high sensitivity (>73%) and specificity (>94%) for prediction of liver AEDs in external validation sets were developed. To test applicability of the models, three chemical databases (World Drug Index, Prestwick Chemical Library, and Biowisdom Liver Intelligence Module) were screened in silico and the validity of predictions was determined, where possible, by comparing model-based classification with assertions in publicly available literature. Validated QSAR models of liver AEDs based on the data from the FDA spontaneous reporting system can be employed as sensitive and specific predictors of AEDs in pre-clinical screening of drug candidates for potential hepatotoxicity in humans. PMID:20192250

  14. Contribution of stable isotopes and age dating tools to the understanding of pesticide transfer into surface and ground-waters in Martinique (French West Indies)

    NASA Astrophysics Data System (ADS)

    Gourcy, Laurence; Arnaud, Luc; Baran, Nicole; Petelet-Giraud, Emmanuelle

    2013-04-01

    In Martinique, chlordecone, a synthetic chlorinated organic compound has mainly been used as an insecticide for banana farming up to 1993. The intrinsic characteristic of this contaminant makes it still quite abundant in soil, surface and groundwater. Since 2004 and the implementation of the Water Framework Directive the concentration of chlordecone in groundwater has been monitored regularly (two to four times / year) at different points of the island by the ODE (Office de l'Eau). Previous study (Gourcy et al. 2009, Arnaud et al. 2012) showed that variations of pesticides concentrations in groundwater are temporally strong and not always easy to correlate to climate, geological or hydrogeological context. The objective of the present study was to explore new investigation ways to identify, in a specific site and for high sampling frequency possible pathways of chlordecone into surface and ground-waters. A major sampling campaign was carried out in December 2011 including 12 surface and groundwater points located in Chalvet and Chez Lélène wells watersheds. Besides, monthly or weekly samples were taken at these two groundwater monitoring wells and the Falaise river up to August 2012. Major dissolved ions, δ18O, δ2H, chlordecone concentrations were determined for all samples. CFC-11, CFC-12, CFC-113 and SF6 analyses were performed for groundwater for apparent age estimation. Punctual or cumulative rainfalls were sampled at Chalvet (30 m NGM) and Aileron (800 m NGM) for stable isotopes determination. The isotope data are indicating a deuterium excess higher for surface water, groundwater and rainfall collected at high altitude vs. samples corresponding to lowest altitudes. This data can therefore be used to estimate the average altitude of recharge area of groundwater. This altitude of recharge, between 30 and 350m corresponds to the altitude of banana growing ; it is therefore in accordance with the presence of chlordecone in soils. This information is also

  15. FXR activation by obeticholic acid or nonsteroidal agonists induces a human-like lipoprotein cholesterol change in mice with humanized chimeric liver.

    PubMed

    Papazyan, Romeo; Liu, Xueqing; Liu, Jingwen; Dong, Bin; Plummer, Emily M; Lewis, Ronald D; Roth, Jonathan D; Young, Mark A

    2018-06-01

    Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.

  16. Genotoxic and chemopreventive assessment of Cynara scolymus L. aqueous extract in a human-derived liver cell line.

    PubMed

    da Silva, Regiane Pereira; Jacociunas, Laura Vicedo; de Carli, Raíne Fogliati; de Abreu, Bianca Regina Ribas; Lehmann, Mauricio; da Silva, Juliana; Ferraz, Alexandre de Barros Falcão; Dihl, Rafael Rodrigues

    2017-10-01

    Cynara scolymus L., popularly known as artichoke, is consumed as food and used as tea infusions for pharmacological purposes to treat liver dysfunctions and other conditions. Scientific data on the safety and protective effect of artichoke in human-derived liver cells is missing. This study investigated the genotoxic and modulatory effect of a liophilized extract suspended in water of C. scolymus L. leaves. Four extract concentrations (0.62, 1.25, 2.5 and 5.0 mg/mL) were evaluated using the comet assay on human hepatocyte cultures, HepG2 cells. Genotoxicity was assessed after two treatment periods, 1 and 24 h. Antigenotoxicity was evaluated against oxidative lesions induced by hydrogen peroxide in pre-, simultaneous and post-treatment protocols. Artichoke leaves aqueous extract induced genotoxic effects in HepG2 cells after 1- and 24-h treatments. In turn, extract concentrations of 0.62, 1.25 and 2.5 mg/mL, exhibited a protective effect in pretreatment, compared to hydrogen peroxide alone. However, in simultaneous and post-treatment protocols, only the lowest concentration reduced the frequency of DNA damage induced by hydrogen peroxide. In addition, in the simultaneous treatment protocol, the highest artichoke extract concentration increased hydrogen peroxide genotoxicity. It can be concluded that artichoke is genotoxic, in vitro, to HepG2 cells, but can also modulate hydrogen peroxide DNA damage.

  17. Characterization of the in Vitro Metabolic Profile of Evodiamine in Human Liver Microsomes and Hepatocytes by UHPLC-Q Exactive Mass Spectrometer

    PubMed Central

    Zhang, Zhaowei; Fang, Tianzi; Zhou, Hongyun; Yuan, Jie; Liu, Qingwang

    2018-01-01

    Evodiamine is an indoloquinazoline alkaloid isolated from the fruit of Evodia rutaecarpa, which has a wide range of pharmacological effects like anti-tumor and anti-inflammatory effects. This study was intended to investigate the metabolic characteristics of evodiamine in human liver microsomes and hepatocytes by ultra-high performance liquid chromatography coupled with a Q Exactive mass spectrometer. A total of 12 phase I metabolites were detected in human liver microsomes; whereas in human hepatocytes 19 metabolites, including seven phase II metabolites were detected. The structures of the metabolites were characterized based on their accurate masses, fragment ions, and chromatographic retention times. Four metabolites (M1, M2, M5, and M7) were further unambiguously confirmed by matching their retention times, accurate masses, and fragment ions with those of their reference standards. Among these metabolites, 12 metabolites are first identified (M2, M5–M8, M10–M13, and M17–M19). The current study revealed that oxygenation, N-demethylation, dehydrogenation, glucuronidation, and GSH conjugation were the major metabolic pathways for evodiamine. This study elucidated the detailed metabolite profiles of evodiamine, which is helpful in predicting in vivo metabolism of evodiamine in human and in understanding the elimination mechanism of evodiamine and in turn, the effectiveness and toxicity. PMID:29520234

  18. Cell Spheroids with Enhanced Aggressiveness to Mimic Human Liver Cancer In Vitro and In Vivo.

    PubMed

    Jung, Hong-Ryul; Kang, Hyun Mi; Ryu, Jea-Woon; Kim, Dae-Soo; Noh, Kyung Hee; Kim, Eun-Su; Lee, Ho-Joon; Chung, Kyung-Sook; Cho, Hyun-Soo; Kim, Nam-Soon; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok

    2017-09-05

    We fabricated a spheroid-forming unit (SFU) for efficient and economic production of cell spheroids. We optimized the protocol for generating large and homogenous liver cancer cell spheroids using Huh7 hepatocellular carcinoma (HCC) cells. The large Huh7 spheroids showed apoptotic and proliferative signals in the centre and at the surface, respectively. In particular, hypoxia-induced factor-1 alpha (HIF-1α) and ERK signal activation were detected in the cell spheroids. To diminish core necrosis and increase the oncogenic character, we co-cultured spheroids with 2% human umbilical vein endothelial cells (HUVECs). HUVECs promoted proliferation and gene expression of HCC-related genes and cancer stem cell markers in the Huh7 spheroidsby activating cytokine signalling, mimicking gene expression in liver cancer. HUVECs induced angiogenesis and vessel maturation in Huh7 spheroids in vivo by activating epithelial-mesenchymal transition and angiogenic pathways. The large Huh7 cell spheroids containing HUVECs survived at higher concentrations of anti-cancer drugs (doxorubicin and sorafenib) than did monolayer cells. Our large cell spheroid provides a useful in vitro HCC model to enable intuitive observation for anti-cancer drug testing.

  19. Designing a fibrotic microenvironment to investigate changes in human liver sinusoidal endothelial cell function.

    PubMed

    Ford, Andrew J; Jain, Gaurav; Rajagopalan, Padmavathy

    2015-09-01

    The deposition of extracellular matrix (ECM) proteins by hepatic cells during fibrosis leads to the stiffening of the organ and perturbed cellular functions. Changes in the elasticity of liver tissue are manifested by altered phenotype in hepatic cells. We have investigated changes in human liver sinusoidal endothelial cells (hLSECs) that occur as the elastic modulus of their matrix transitions from healthy (6kPa) to fibrotic (36kPa) conditions. We have also investigated the role played by Kupffer cells in the dedifferentiation of hLSECs. We report the complete loss of fenestrae and the expression of CD31 at the surface as a result of increasing elastic moduli. LSECs exhibited a greater number of actin stress fibers and vinculin focal adhesion on the stiffer substrate, as well. A novel finding is that these identical trends can be obtained on soft (6kPa) substrates by introducing an inflamed microenvironment through the addition of Kupffer cells. hLSEC monocultures on 6kPa gels exhibited fenestrae that were 140.7±52.6nm in diameter as well as a lack of surface CD31 expression. Co-culturing hLSECs with rat Kupffer cells (rKCs) on 6kPa substrates, resulted in the complete loss of fenestrae, an increase in CD31 expression and in a well-organized cytoskeleton. These results demonstrate that the increasing stiffness of liver matrices does not solely result in changes in hLSEC phenotype. Even on soft substrates, culturing hLSECs in an inflamed microenvironment can result in their dedifferentiation. Our findings demonstrate the interplay between matrix elasticity and inflammation in the progression of hepatic fibrosis. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Effects on the Liver of Chemicals Encountered in the Workplace

    PubMed Central

    Pond, Susan M.

    1982-01-01

    The liver plays a central role in toxicology. It is the primary organ of detoxification and elimination by metabolism of many chemicals. Many workplace chemicals can affect the liver in animals; fewer have been proved to do so in humans. The diverse hepatic effects observed in humans from occupational exposure to chemicals range from fatty infiltration, acute hepatitis and cholestasis to cirrhosis and angiosarcoma. Three important workplace chemicals, prototypes for the toxicities of many others, are carbon tetrachloride, vinyl chloride and the polychlorinated biphenyls (PCB's). These three are described in some detail to highlight principles of occupational toxicology. Most of the hepatic effects produced by chemicals in the workplace have clinical, laboratory and morphological features common to many other forms of liver disease. Therefore, only an astute physician who takes an occupational history will recognize the association between a patient's workplace and liver disease. PMID:6819718