Science.gov

Sample records for human lung microsomes

  1. Metabolism of the anti-tuberculosis drug ethionamide by mouse and human FMO1, FMO2 and FMO3 and mouse and human lung microsomes

    SciTech Connect

    Henderson, Marilyn C.; Siddens, Lisbeth K.; Morre, Jeffrey T.; Krueger, Sharon K.; Williams, David E.

    2008-12-15

    Tuberculosis (TB) results from infection with Mycobacterium tuberculosis and remains endemic throughout the world with one-third of the world's population infected. The prevalence of multi-drug resistant strains necessitates the use of more toxic second-line drugs such as ethionamide (ETA), a pro-drug requiring bioactivation to exert toxicity. M. tuberculosis possesses a flavin monooxygenase (EtaA) that oxygenates ETA first to the sulfoxide and then to 2-ethyl-4-amidopyridine, presumably through a second oxygenation involving sulfinic acid. ETA is also a substrate for mammalian flavin-containing monooxygenases (FMOs). We examined activity of expressed human and mouse FMOs toward ETA, as well as liver and lung microsomes. All FMOs converted ETA to the S-oxide (ETASO), the first step in bioactivation. Compared to M. tuberculosis, the second S-oxygenation to the sulfinic acid is slow. Mouse liver and lung microsomes, as well as human lung microsomes from an individual expressing active FMO, oxygenated ETA in the same manner as expressed FMOs, confirming this reaction functions in the major target organs for therapeutics (lung) and toxicity (liver). Inhibition by thiourea, and lack of inhibition by SKF-525A, confirm ETASO formation is primarily via FMO, particularly in lung. ETASO production was attenuated in a concentration-dependent manner by glutathione. FMO3 in human liver may contribute to the toxicity and/or affect efficacy of ETA administration. Additionally, there may be therapeutic implications of efficacy and toxicity in human lung based on the FMO2 genetic polymorphism, though further studies are needed to confirm that suggestion.

  2. Metabolism of N-methylcarbazole by rat lung microsomes.

    PubMed

    Ibe, B O; Raj, J U

    1994-01-01

    N-methylcarbazole (NMC) is a procarcinogenic component of tobacco smoke particulate matter. It is metabolized by liver microsomes into some hydroxylated metabolites such as the potent mutagen N-hydroxymethylcarbazole (NHMC). Lung metabolism and toxicity of NMC is not known. Since the lung is the primary organ of inhalation of tobacco smoke, NMC metabolism by lung microsomes was studied in comparison with the metabolism by liver microsomes. Liver or lung microsomes (1 mg/mL) were incubated with 0.5 mM NMC for 30 min at 37 degrees C. NMC metabolites were extracted with ethyl acetate and analyzed by reversed-phase high-performance liquid chromatography. Rat lung microsomes metabolized NMC with a similar profile to liver microsomes, although lung microsomes produced greater number of metabolites. The potent mutagen NHMC was also the major NMC metabolite produced by lung microsomes, as confirmed by particle beam mass spectrometry. However, lung microsomes produced only 10% of NHMC produced by liver microsomes. Metabolism of NMC by lung microsomes also led to depletion of the endogenous antioxidant glutathione by 34% compared to controls, indicating a significant generation of some reactive intermediates during NMC metabolism by lung microsomes. The data show that the lung participates directly in producing the potent mutagen NHMC from NMC present in tobacco smoke. PMID:7925139

  3. Paraquat and NADPH-dependent lipid peroxidation in lung microsomes

    SciTech Connect

    Misra, H.P.; Gorsky, L.D.

    1981-10-10

    Since there exists some controversy in the literature as to whether paraquat augments microsomal lipid peroxidation via superoxide anion (O/sub 2//sup -/), the role of paraquat and active oxygen species in NADPH-dependent lung microsomal lipid peroxidation was investigated. Incubation of buffered aerobic mixture of bovine lung microsome and NADPH, in the presence or absence of exogenously added iron, resulted in a progressive formation of lipid peroxides whose accumulation could be followed at 535 nm as malondialdehyde. Paraquat strongly inhibited this lipid peroxidation, Thus, malondialydehyde formation was 50% inhibited by 4 X 10/sup -5/ M paraquat in the reaction mixture. The malondialdehyde color development by lipid peroxides was not affected by this concentration of paraquat. Lipid peroxidation was also strongly inhibited by singlet oxygen scavengers, e.g. dimethylfuran and diphenylfuran, and by catalase. Hydroxyl radical scavengers, e.g. mannitol, benzoate, and ethanol, had little effect in malondialydehyde production. Superoxide dismutase, which removes O/sub 2//sup -/ efficiently, did not inhibit malondialdehyde production by lung microsomes and rather enhanced its formation. A scheme in which paraquat and active O/sub 2/ species may be involved with microsomal lipid peroxidation is presented.

  4. Cyclosporin metabolism by human gastrointestinal mucosal microsomes.

    PubMed Central

    Webber, I R; Peters, W H; Back, D J

    1992-01-01

    The in vitro metabolism of the immunosuppressant cyclosporin (CsA) by human gastrointestinal mucosal microsomes has been studied. Macroscopically normal intestinal (n = 4) and liver (n = 2) tissue was obtained from kidney transplant donors, and microsomes prepared. Intestinal metabolism was most extensive with duodenal protein (15% conversion to metabolites M1/M17 after 2 h incubation at 37 degrees C; metabolite measurement by h.p.l.c). Western blotting confirmed the presence of P-4503A (enzyme subfamily responsible for CsA metabolism) in duodenum and ileum tissue, but not in colon tissue. The results of this study indicate that the gut wall may play a role in the first-pass metabolism of CsA, and could therefore be a contributory factor to the highly variable oral bioavailability of CsA. PMID:1389941

  5. Prostaglandin synthesis by chicken and rat lung microsomes

    SciTech Connect

    Craig-Schmidt, M.C.; Faircloth, S.A.; Wu-Wang, C.Y.

    1986-03-01

    A comparison between chicken and rat lung was made for microsomal prostaglandin (PG) synthesis from 1-/sup 14/C-arachidonic acid. Microsomal protein (2.0 mg) from chicken or rat lung was incubated in the presence of 20 ..mu..g of 1-/sup 14/C-arachidonic acid (specific activity = 3 x 10/sup 6/ dpm/..mu..mol for chicken; 6 x 10/sup 6/ dpm/..mu..mol for rat), 0.05 M Tris-HCl buffer (pH = 8.0), 0.5 mM epinephrine, and 1 mM reduced glutathione in a total volume of 0.5 ml in a 37/sup 0/C water bath with shaking for 15 min. After acidification with 1 M HCl to pH 3, prostaglandins were extracted with ethyl acetate. The products of the reactions were separated by reversed phase chromatography, and the radioactivity of each prostanoid fraction was determined. The predominant prostanoid synthesized by chicken lung microsomes was PGE/sub 2/, followed by much lower amounts of thromboxane B/sub 2/ (TXB/sub 2/), PGF/sub 2//sub ..cap alpha../ and PGD/sub 2/. In at lung, 6-keto-PGF/sub 1//sub ..cap alpha../ was the predominant product formed, with minor amounts of 6-keto-PGE/sub 1/, TXB/sub 2/, PGF/sub 2//sub ..cap alpha../ and PGD/sub 2/. In rat lung, 6-keto-FGF/sub 1//sub ..cap alpha../ was the predominant product formed, with minor amounts of 6-keto-PGF/sub 1//sub ..cap alpha../ was the predominant product formed, with minor amounts of 6-keto-PGE/sub 1/, TXB/sub 2/, PGF/sub 2//sub ..cap alpha../, PGE/sub 2/ and PGD/sub 2/ being formed. Enzyme specific activity (pmol of PG produced per mg microsomal protein per min) was 11.9 for PGE/sub 2/ produced by chicken lung and 16. 7 for 6-keto-P/sub 1//sub ..cap alpha../ produced by rat lung. Thus, there appears to be a species variation in chicken compared to rat for the lung prostanoids which are known to cause bronchial dilation.

  6. Comparative study of the hydrolytic metabolism of methyl-, ethyl-, propyl-, butyl-, heptyl- and dodecylparaben by microsomes of various rat and human tissues.

    PubMed

    Ozaki, Hitomi; Sugihara, Kazumi; Watanabe, Yoko; Fujino, Chieri; Uramaru, Naoto; Sone, Tomomichi; Ohta, Shigeru; Kitamura, Shigeyuki

    2013-12-01

    Hydrolytic metabolism of methyl-, ethyl-, propyl-, butyl-, heptyl- and dodecylparaben by various tissue microsomes and plasma of rats, as well as human liver and small-intestinal microsomes, was investigated and the structure-metabolic activity relationship was examined. Rat liver microsomes showed the highest activity toward parabens, followed by small-intestinal and lung microsomes. Butylparaben was most effectively hydrolyzed by the liver microsomes, which showed relatively low hydrolytic activity towards parabens with shorter and longer alkyl side chains. In contrast, small-intestinal microsomes exhibited relatively higher activity toward longer-side-chain parabens, and showed the highest activity towards heptylparaben. Rat lung and skin microsomes showed liver-type substrate specificity. Kidney and pancreas microsomes and plasma of rats showed small-intestinal-type substrate specificity. Liver and small-intestinal microsomal hydrolase activity was completely inhibited by bis(4-nitrophenyl)phosphate, and could be extracted with Triton X-100. Ces1e and Ces1d isoforms were identified as carboxylesterase isozymes catalyzing paraben hydrolysis by anion exchange column chromatography of Triton X-100 extract from liver microsomes. Ces1e and Ces1d expressed in COS cells exhibited significant hydrolase activities with the same substrate specificity pattern as that of liver microsomes. Small-intestinal carboxylesterase isozymes Ces2a and Ces2c expressed in COS cells showed the same substrate specificity as small-intestinal microsomes, being more active toward longer-alkyl-side-chain parabens. Human liver microsomes showed the highest hydrolytic activity toward methylparaben, while human small-intestinal microsomes showed a broadly similar substrate specificity to rat small-intestinal microsomes. Human CES1 and CES2 isozymes showed the same substrate specificity patterns as human liver and small-intestinal microsomes, respectively. PMID:23742084

  7. Protein Targets of Reactive Electrophiles in Human Liver Microsomes

    PubMed Central

    Shin, Nah-Young; Liu, Qinfeng; Stamer, Sheryl L.; Liebler, Daniel C.

    2008-01-01

    Liver microsomes are widely used to study xenobiotic metabolism in vitro and covalent binding to microsomal proteins serves as a surrogate marker for toxicity mediated by reactive metabolites. We have applied liquid chromatography-tandem mass spectrometry (LC-MS-MS) to identify protein targets of the biotin-tagged model electrophiles 1-biotinamido-4-(4′-[maleimidoethylcyclohexane]-carboxamido)butane (BMCC) and N-iodoacetyl-N-biotinylhexylenediamine (IAB) in human liver microsomes. The biotin-tagged peptides resulting from in-gel tryptic digestion were enriched by biotin-avidin chromatography and LC-MS-MS was used to identify 376 microsomal cysteine thiol targets of BMCC and IAB in 263 proteins. Protein adduction was selective and reproducible and only 90 specific cysteine sites in 70 proteins (approximately 25% of the total) were adducted by both electrophiles. Differences in adduction selectivity correlated with different biological effects of the compounds, as IAB, but not BMCC induced ER stress in HEK293 cells. Targeted LC-MS-MS analysis of microsomal glutathione-S-transferase cysteine 50, a target of both IAB and BMCC, detected time-dependent adduction by the reactive acetaminophen metabolite N-acetyl-p-benzoquinoneimine during microsomal incubations. The results indicate that electrophiles selectively adduct microsomal proteins, but display differing target selectivities that correlate with differences in toxicity. Analysis of selected microsomal protein adduction reactions thus could provide a more specific indication of potential toxicity than bulk covalent binding of radiolabeled compounds. PMID:17480101

  8. Characterisation of theophylline metabolism in human liver microsomes.

    PubMed Central

    Robson, R A; Matthews, A P; Miners, J O; McManus, M E; Meyer, U A; Hall, P M; Birkett, D J

    1987-01-01

    1. A radiometric high performance liquid chromatographic method is described for the assay of theophylline metabolism in vitro by the microsomal fraction of human liver. 2. Formation of the three metabolites of theophylline (3-methylxanthine, 1-methylxanthine and 1,3-dimethyluric acid) were linear with protein concentrations to 4 mg ml-1 and with incubation times up to 180 min. 3. The coefficients of variation for the formation of 3-methylxanthine, 1-methylxanthine and 1,3-dimethyluric acid were 1.2%, 1% and 1.6%, respectively. 4. Theophylline is metabolised by microsomal enzymes with a requirement for NADPH. 5. The mean (n = 7) Km values for 1-demethylation, 3-demethylation and 8-hydroxylation were 545, 630 and 788 microM, respectively, and the mean Vmax values were 2.65, 2.84 and 11.23 pmol min-1 mg-1, respectively. 6. There was a high correlation between the Km and Vmax values for the two demethylation pathways suggesting that the demethylations are performed by the same enzyme. 7. Overall the in vitro studies are consistent with the in vivo results which suggest the involvement of two cytochrome P-450 isozymes in the metabolism of theophylline. PMID:3663445

  9. Etoxazole is Metabolized Enantioselectively in Liver Microsomes of Rat and Human in Vitro.

    PubMed

    Yao, Zhoulin; Qian, Mingrong; Zhang, Hu; Nie, Jing; Ye, Jingqing; Li, Zuguang

    2016-09-01

    Acaricide etoxazole belongs to the ovicides/miticides diphenyloxazole class, affecting adults to lay sterile eggs by inhibiting chitin biosynthesis possibly. The reverse-phase HPLC-MS/MS method was used to determine the etoxazole enantiomers. The enantioselective degradation behavior of rac-etoxazole in liver microsomes of rat and human in vitro with NADPH was dramatically different. The t1/2 of (R)-etoxazole was 15.23 min in rat liver microsomes and 30.54 min in human liver microsomes, while 21.73 and 23.50 min were obtained for (S)-etoxazole, respectively. The Vmax of (R)-etoxazole was almost 5-fold of (S)-etoxazole in liver microsomes of rat in vitro. However, the Vmax of (S)-etoxazole was almost 2-fold of (R)-etoxazole in liver microsomes of human in vitro. The CLint of etoxazole was also shown the enantioselectivity on the contrary in liver microsomes of rat and human. These results indicated that the metabolism of two etoxazole enantiomers was selective in liver microsomes of rat and human in vitro, and enantioselectivity in the two kinds of liver microsomes was in the difference in degradation performance. The reason might be related to the composition and content involved in the enzyme system. PMID:27479246

  10. Purification and specificity of a human microsomal epoxide hydratase

    PubMed Central

    Oesch, Franz

    1974-01-01

    Epoxide hydratase was solubilized from human liver microsomal fractions and purified to an extent where the specific activity was 40-fold greater than that of the liver homogenate. Combination of homogenate and purified preparation showed that the increase in activity was not due to the removal of an inhibitor. Monosubstituted oxiranes with a lipophilic substituent larger than an ethyl group (isopropyl, t-butyl, n-hexyl, phenyl) readily interacted as substrates or inhibitors with this purified human epoxide hydratase, whereas those with a small substituent (methyl, ethyl, vinyl) were inactive, probably reflecting greater affinity of the former epoxides owing to lipophilic binding sites near the active site of the enzyme. In a series of oxiranes having a lipophilic substituent of sufficient size (styrene oxides), monosubstituted as well as 1,1- and cis-1,2-disubstituted oxiranes readily served as substrates or inhibitors of the enzyme, but not the trans-1,2-disubstituted, tri- or tetra-substituted oxiranes. trans-Substitution at the oxirane ring apparently prevents access of the oxirane ring to the active site by steric hindrance. Epoxide hydratase was also solubilized from microsomal fractions of rat and guinea-pig liver and purified by the same procedure. Structural requirements for effective interaction of substrates, inhibitors and activators were qualitatively identical for epoxide hydratase from the three sources. However, several quantitative differences were observed. Thus human hepatic epoxide hydratase seems to be very similar to, although not identical with, the enzyme from guinea pig or rat. Studies with epoxide hydratase from the latter two species therefore appear to be significant with respect to man. In addition, knowledge of structural requirements for epoxides to serve as substrates for human epoxide hydratase may prove useful for drug design. Compounds which need aromatic or olefinic moieties for their desired effect would not be expected to lead

  11. In vitro metabolism of (-)-camphor using human liver microsomes and CYP2A6.

    PubMed

    Gyoubu, Kunihiko; Miyazawa, Mitsuo

    2007-02-01

    The in vitro metabolism of (-)-camphor was examined in human liver microsomes and recombinant enzymes. Biotransformation of (-)-camphor was investigated by gas chromatography-mass spectrometry (GC-MS). (-)-Camphor was oxidized to 5-exo-hydroxyfenchone by human liver microsomal cytochrome (P450) enzymes. The formation of metabolites of (-)-camphor was determined by the relative abundance of mass fragments and retention time on gas chromatography (GC). CYP2A6 was the major enzyme involved in the hydroxylation of (-)-camphor by human liver microsomes, based on the following lines of evidence. First, of eleven recombinant human P450 enzymes tested, CYP2A6 catalyzed the oxidation of (-)-camphor. Second, oxidation of (-)-camphor was inhibited by (+)-menthofuran and anti-CYP2A6 antibody. Finally, there was a good correlation between CYP2A6 contents and (-)-camphor hydroxylation activities in liver microsomes of 9 human samples. PMID:17268056

  12. In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes.

    PubMed

    Maul, Ronald; Warth, Benedikt; Schebb, Nils Helge; Krska, Rudolf; Koch, Matthias; Sulyok, Michael

    2015-06-01

    The mycotoxin deoxynivalenol (DON), formed by Fusarium species, is one of the most abundant mycotoxins contaminating food and feed worldwide. Upon ingestion, the majority of the toxin is excreted by humans and animal species as glucuronide conjugate. First in vitro data indicated that DON phase II metabolism is strongly species dependent. However, kinetic data on the in vitro metabolism as well as investigations on the specific enzymes responsible for DON glucuronidation in human are lacking. In the present study, the DON metabolism was investigated using human microsomal fractions and uridine-diphosphoglucuronyltransferases (UGTs) as well as liver microsomes from five animal species. Only two of the twelve tested human recombinant UGTs led to the formation of DON glucuronides with a different regiospecificity. UGT2B4 predominantly catalyzed the formation of DON-15-O-glucuronide (DON-15GlcA), while for UGT2B7 the DON-3-O-glucuronide (DON-3GlcA) metabolite prevailed. For human UGTs, liver, and intestinal microsomes, the glucuronidation activities were low. The estimated apparent intrinsic clearance (Clapp,int) for all human UGT as well as tissue homogenates was <1 mL/min mg protein. For the animal liver microsomes, moderate Clapp,int between 1.5 and 10 mL/min mg protein were calculated for carp, trout, and porcine liver. An elevated glucuronidation activity was detected for rat and bovine liver microsomes leading to Clapp,int between 20 and 80 mL/min mg protein. The obtained in vitro data points out that none of the animal models is suitable for estimating the human DON metabolism with respect to the metabolite pattern and formation rate. PMID:24927789

  13. 3-ketocholanoic acid is the major in vitro human hepatic microsomal metabolite of lithocholic acid.

    PubMed

    Deo, Anand K; Bandiera, Stelvio M

    2009-09-01

    3alpha-Hydroxy-5 beta-cholan-24-oic (lithocholic) acid is a relatively minor component of hepatic bile acids in humans but is highly cytotoxic. Hepatic microsomal oxidation offers a potential mechanism for effective detoxification and elimination of bile acids. The aim of the present study was to investigate the biotransformation of lithocholic acid by human hepatic microsomes and to assess the contribution of cytochrome P450 (P450) enzymes in human hepatic microsomes using human recombinant P450 enzymes and chemical inhibitors. Metabolites were identified, and metabolite formation was quantified using a liquid chromatography/mass spectrometry-based assay. Incubation of lithocholic acid with human liver microsomes resulted in the formation of five metabolites, which are listed in order of their rates of formation: 3-oxo-5 beta-cholan-24-oic (3-ketocholanoic) acid, 3 alpha,6 alpha-dihydroxy-5 beta-cholan-24-oic (hyodeoxycholic) acid, 3 alpha,7 beta-dihydroxy-5 beta-cholan-24-oic (ursodeoxycholic) acid, 3 alpha,6 beta-dihydroxy-5 beta-cholan-24-oic (murideoxycholic) acid, and 3 alpha-hydroxy-6-oxo-5 beta-cholan-24-oic (6-ketolithocholic) acid. 3-Ketocholanoic acid was the major metabolite, exhibiting apparent K(m) and V(max) values of 22 muM and 336 pmol/min/mg protein, respectively. Incubation of lithocholic acid with a of human recombinant P450 enzymes revealed that all five metabolites were formed by recombinant CYP3A4. Chemical inhibition studies with human liver microsomes and recombinant P450 enzymes confirmed that CYP3A4 was the predominant enzyme involved in hepatic microsomal biotransformation of lithocholic acid. In summary, the results indicate that oxidation of the third carbon of the cholestane ring is the preferred position of oxidation by P450 enzymes for lithocholic acid biotransformation in humans and suggest that formation of lithocholic acid metabolites leads to enhanced hepatic detoxification and elimination. PMID:19487251

  14. Changes in alveolar lavage materials and lung microsomal xenobiotic metabolism following exposures to HCl-washed or unwashed crystalline silica.

    PubMed

    Miles, P R; Bowman, L; Jones, W G; Berry, D S; Vallyathan, V

    1994-12-01

    Intratracheal exposures of rats to crystalline silica washed with HCl to remove iron contaminants have previously been shown to increase lung surfactant phospholipids (PL) and proteins and to alter the pulmonary microsomal cytochrome P450 system. We compared these effects of HCl-washed silica with those produced by exposures to unwashed silica and alumina. Both silica preparations produce increases in lung weights and alveolar lavage PL and proteins, but to different degrees. The increases produced by HCl-washed vs unwashed silica are lung weights, 2.2- vs 1.3-fold; lavage PL, 25.9- vs 3.7-fold; and lavage proteins, 11.1- vs 3.2-fold, respectively. Although the two silica particles increase lung microsomal protein concentrations (expressed per gram lung) by 50-60%, their effects on cytochrome P-450-mediated xenobiotic metabolism are quite different. Exposure to HCl-washed silica leads to a 2.3-fold increase in 7-ethoxyresorufin O-deethylation, a reaction catalyzed by cytochrome P4501A1, and a 0.5- to 0.6-fold reduction in 7-ethoxycoumarin O-deethylation, a reaction which may be catalyzed by cytochrome P-4502B1. Unwashed silica does not alter the metabolism of either xenobiotic when results are expressed per milligram microsomal protein. Administration of alumina produces only minor increases in lung weight and lavage PL and no effect on microsomal xenobiotic metabolism. These results show that the increases in alveolar lavage PL and proteins induced by administration of unwashed silica are exaggerated by 3- to 7-fold if the silica is treated with HCl. Furthermore, exposure to HCl-washed silica results in significant alterations of the lung microsomal cytochrome P450 system, but the unwashed silica has little effect. Although the reason(s) for these different effects is not known, measurements of iron levels and formation of hydroxyl radicals using ESR demonstrate that there is more iron associated with the unwashed than with the HCl-washed silica. PMID:7992313

  15. Serotonin (5-hydroxytryptamine) glucuronidation in vitro: assay development, human liver microsome activities and species differences.

    PubMed

    Krishnaswamy, S; Duan, S X; Von Moltke, L L; Greenblatt, D J; Sudmeier, J L; Bachovchin, W W; Court, M H

    2003-02-01

    1. The main purpose was to develop a high-performance liquid chromatography (HPLC)-based method to assay serotonin glucuronidation activity using liver microsomal fractions. Application of this method was then demonstrated by determining serotonin UDP-glucuronosyltransferase (UGT) enzyme kinetics using human liver microsomes and recombinant human UGT1A6. Interspecies differences were also evaluated using liver microsomes from 10 different mammalian species. 2. Incubation of liver microsomes with serotonin, UDP-glucuronic acid and magnesium resulted in the formation of a single product peak using HPLC with fluorescence and ultraviolet absorbance detection. This peak was confirmed as serotonin glucuronide based on sensitivity to beta-glucuronidase and by obtaining the expected mass of 352 with positive-ion mass spectrometry. 3. Following a preparative HPLC isolation, the structure of this metabolite was established as serotonin-5-O-glucuronide by (1)H-NMR spectroscopy. 4. Enzyme kinetic studies showed apparent K(m) and V(max) of 8.8 +/- 0.3 mM and 43.4 +/- 0.4 nmoles min(-1) mg(-1) protein, respectively, for human liver microsomes, and 5.9 +/- 0.2 mM and 15.8 +/- 0.2 nmoles min(-1) mg(-1), respectively, for recombinant UGT1A6. 5. The order of serotonin-UGT activities in animal liver microsomes was rat > mouse > human > cow > pig > horse > dog > rabbit > monkey > ferret. Cat livers showed no serotonin-UGT activity. Heterozygous and homozygous mutant Gunn rat livers had 40 and 13%, respectively, of the activity of the normal Wistar rat, indicating a significant contribution by a rat UGT1A isoform to serotonin glucuronidation. 6. This assay provides a novel sensitive and specific technique for the measurement of serotonin-UGT activity in vitro. PMID:12623759

  16. Liver and lung microsomal metabolism of the tobacco alkaloid beta-nicotyrine.

    PubMed

    Shigenaga, M K; Kim, B H; Caldera-Munoz, P; Cairns, T; Jacob, P; Trevor, A J; Castagnoli, N

    1989-01-01

    The in vitro metabolic fate of beta-nicotyrine has been examined in rabbit lung and liver microsomal preparations as part of an effort to characterize the formation of potentially reactive metabolic species that may contribute to the toxic properties of tobacco products. HPLC analysis revealed the formation of an unstable metabolite which displayed HPLC-MS/MS characteristics consistent with the structure 1-methyl-5-(3-pyridyl)-3-pyrrolin-2-one. Attempted synthesis of this pyrrolinone, however, resulted in the isolation of the isomeric 1-methyl-5-(3-pyridyl)-2-pyrrolin-2-one. The HPLC, diode array UV, and mass spectral characteristics of this delta 4,5-isomer proved to be identical with those of the metabolite derived from beta-nicotyrine. Studies in D2O suggest that the 2- and 3-pyrrolinones are in equilibrium in aqueous solution. The metabolite undergoes autoxidation, possibly via radical intermediates, to yield 1-methyl-5-(3-pyridyl)-5-hydroxy-3-pyrrolin-2-one. PMID:2519819

  17. Metabolism of (+)- and (-)-menthols by CYP2A6 in human liver microsomes.

    PubMed

    Miyazawa, Mitsuo; Marumoto, Shinsuke; Takahashi, Toshiyuki; Nakahashi, Hiroshi; Haigou, Risa; Nakanishi, Kyousuke

    2011-01-01

    The in vitro metabolism of (+)-(1S,3S,4R) and (-)-(1R,3R,4S)-menthol enantiomers was examined by incubation with human liver microsomes, and the oxidative metabolites thus formed were analyzed using gas chromatography-mass spectrometry (GC-MS). The (+)- and (-)-menthols were found to be oxidized to the respective (+)-(1S,3S,4S)- and (-)-(1R,3R,4R)-trans-p-menthane-3,8-diol derivatives by human liver microsomal P450 enzymes. Cytochrome P450 (CYP) 2A6 was determined to be the major enzyme involved in the hydroxylation of (+)- and (-)-menthols by human liver microsomes on the basis of the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 catalyzed the oxidation of (+)- and (-)-menthols. Second, oxidation of (+)- and (-)-menthols was inhibited by (+)-menthofuran and anti-CYP2A6 antibody. Finally, (+)- and (-)-menthol activities were found to correlate with contents of CYP2A6 in liver microsomes of 9 human samples. PMID:21343660

  18. Characterization of fimasartan metabolites in human liver microsomes and human plasma.

    PubMed

    Lee, Ji-Yoon; Choi, Young Jae; Oh, Soo Jin; Chi, Yong Ha; Paik, Soo Heui; Lee, Ki Ho; Jung, Jae-Kyung; Ryu, Chang Seon; Kim, Kwon-Bok; Kim, Dong-Hyun; Yoon, Young-Ran; Kim, Sang Kyum

    2016-01-01

    1. The metabolites of fimasartan (FMS), a new angiotensin II receptor antagonist, were characterized in human liver microsomes (HLM) and human subjects. 2. We developed a method for a simultaneous quantitative and qualitative analysis using predictive multiple reaction monitoring information-dependent acquisition-enhanced product ion scanning. To characterize metabolic reactions, FMS metabolites were analyzed using quadrupole-time of flight mass spectrometer in full-scan mode. 3. The structures of metabolites were confirmed by comparison of chromatographic retention times and mass spectra with those of authentic metabolite standards. 4. In the cofactor-dependent microsomal metabolism study, the half-lives of FMS were 56.7, 247.9 and 53.3 min in the presence of NADPH, UDPGA and NADPH + UDPGA, respectively. 5. The main metabolic routes in HLM were S-oxidation, oxidative desulfuration, n-butyl hydroxylation and N-glucuronidation. 6. In humans orally administered with 120 mg FMS daily for 7 days, the prominent metabolites were FMS S-oxide and FMS N-glucuronide in the 0-8-h pooled plasma sample of each subject. 7. This study characterizes, for the first time, the metabolites of FMS in humans to provide information for its safe use in clinical medicine. PMID:26068523

  19. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  20. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    EPA Science Inventory

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  1. Content and activity of human liver microsomal protein and prediction of individual hepatic clearance in vivo

    PubMed Central

    Zhang, Haifeng; Gao, Na; Tian, Xin; Liu, Tingting; Fang, Yan; Zhou, Jun; Wen, Qiang; Xu, Binbin; Qi, Bing; Gao, Jie; Li, Hongmeng; Jia, Linjing; Qiao, Hailing

    2015-01-01

    The lack of information concerning individual variation in content and activity of human liver microsomal protein is one of the most important obstacles for designing personalized medicines. We demonstrated that the mean value of microsomal protein per gram of liver (MPPGL) was 39.46 mg/g in 128 human livers and up to 19-fold individual variations existed. Meanwhile, the metabolic activities of 10 cytochrome P450 (CYPs) were detected in microsomes and liver tissues, respectively, which showed huge individual variations (200-fold). Compared with microsomes, the activities of liver tissues were much suitable to express the individual variations of CYP activities. Furthermore, individual variations in the in vivo clearance of tolbutamide were successfully predicted with the individual parameter values. In conclusion, we offer the values for MPPGL contents in normal liver tissues and build a new method to assess the in vitro CYP activities. In addition, large individual variations exist in predicted hepatic clearance of tolbutamide. These findings provide important physiological parameters for physiologically-based pharmacokinetics models and thus, establish a solid foundation for future development of personalized medicines. PMID:26635233

  2. Metabolism of chamaechromone in vitro with human liver microsomes and recombinant human drug-metabolizing enzymes.

    PubMed

    Lou, Yan; Hu, Haihong; Qiu, Yunqing; Zheng, Jinqi; Wang, Linrun; Zhang, Xingguo; Zeng, Su

    2014-04-01

    Chamaechromone is a major component in the dried roots of Stellera chamaejasme with antihepatitis B virus and insecticidal activity. In this study, metabolic profiles of chamaechromone were investigated in human liver microsomes. One monohydroxide and two monoglucuronides of chamaechromone were identified. The enzyme kinetics for both hydroxylation and glucuronidation were fitted to the Michaelis-Menten equation. The hydroxylation of chamaechromone was inhibited by α-naphthoflavone, and predominantly catalyzed by recombinant human cytochrome P450 1A2, whereas the glucuronidation was inhibited by quercetin, 1-naphthol, and fluconazole, and mainly catalyzed by recombinant human UDP-glucuronosyltransferase 1A3, 1A7, 1A9, and 2B7. PMID:24687737

  3. Physiological Content and Intrinsic Activities of 10 Cytochrome P450 Isoforms in Human Normal Liver Microsomes.

    PubMed

    Zhang, Hai-Feng; Wang, Huan-Huan; Gao, Na; Wei, Jun-Ying; Tian, Xin; Zhao, Yan; Fang, Yan; Zhou, Jun; Wen, Qiang; Gao, Jie; Zhang, Yang-Jun; Qian, Xiao-Hong; Qiao, Hai-Ling

    2016-07-01

    Due to a lack of physiologic cytochrome P450 (P450) isoform content, P450 activity is typically only determined at the microsomal level (per milligram of microsomal protein) and not at the isoform level (per picomole of P450 isoform), which could result in the misunderstanding of variations in P450 activity between individuals and further hinder development of personalized medicine. We found that there were large variations in protein content, mRNA levels, and intrinsic activities of the 10 P450s in 100 human liver samples, in which CYP2E1 and CYP2C9 showed the highest expression levels. P450 gene polymorphisms had different effects on activity at two levels: CYP3A5*3 and CYP2A6*9 alleles conferred increased activity at the isoform level but decreased activity at the microsomal level; CYP2C9*3 had no effect at the isoform level but decreased activity at the microsomal level. The different effects at each level stem from the different effects of each polymorphism on the resulting P450 protein. Individuals with CYP2A6*1/*4, CYP2A6*1/*9, CYP2C9*1/*3, CYP2D6 100C>T TT, CYP2E1 7632T>A AA, CYP3A5*1*3, and CYP3A5*3*3 genotypes had significantly lower protein content, whereas CYP2D6 1661G>C mutants had a higher protein content. In conclusion, we first offered the physiologic data of 10 P450 isoform contents and found that some single nucleotide polymorphisms had obvious effects on P450 expression in human normal livers. The effects of gene polymorphisms on intrinsic P450 activity at the isoform level were quite different from those at the microsomal level, which might be due to changes in P450 protein content. PMID:27189963

  4. Oxidative metabolism of BDE-99 by human liver microsomes: predominant role of CYP2B6.

    PubMed

    Erratico, Claudio A; Szeitz, András; Bandiera, Stelvio M

    2012-10-01

    Hydroxylated polybrominated diphenyl ethers (PBDEs) have been found in human serum, suggesting that they are formed by in vivo oxidative metabolism of PBDEs. However, the biotransformation of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), a major PBDE detected in human tissue and environmental samples, is poorly understood. In the present study, the oxidative metabolism of BDE-99 was assessed using pooled and single-donor human liver microsomes, a panel of human recombinant cytochrome P450 (CYP) enzymes, and CYP-specific antibodies. Hydroxylated metabolites were quantified using a liquid chromatography/tandem mass spectrometry-based method. In total, 10 hydroxylated metabolites of BDE-99 were produced by human liver microsomes. Six metabolites were identified as 2,4,5-tribromophenol (2,4,5-TBP), 4-OH-BDE-90, 5'-OH-BDE-99, 6'-OH-BDE-99, 4'-OH-BDE-101, and 2-OH-BDE-123 using authentic standards. Three monohydroxy- and one dihydroxy-pentabrominated metabolites were unidentified. Rates of formation of the three major metabolites (2,4,5-TBP, 5'-OH-BDE-99, and 4'-OH-BDE-101) by human liver microsomes ranged from 24.4 to 44.8 pmol/min/mg protein. Additional experiments demonstrated that the dihydroxylated metabolite was a primary metabolite of BDE-99 and was not produced by hydroxylation of a monohydroxy metabolite. Among the panel of recombinant CYP enzymes tested, formation of all 10 hydroxylated metabolites was catalyzed solely by CYP2B6. A combined approach using antibodies to CYP2B6 and single-donor liver microsomes expressing a wide range of CYP2B6 levels confirmed that CYP2B6 was responsible for the biotransformation of BDE-99. Collectively, the results show that the oxidative metabolism of BDE-99 by human liver microsomes is catalyzed solely by CYP2B6 and is an important determinant of the toxicity and bioaccumulation of BDE-99 in humans. PMID:22738989

  5. Hydrolytic metabolism of phenyl and benzyl salicylates, fragrances and flavoring agents in foods, by microsomes of rat and human tissues.

    PubMed

    Ozaki, Hitomi; Sugihara, Kazumi; Tamura, Yuki; Fujino, Chieri; Watanabe, Yoko; Uramaru, Naoto; Sone, Tomomichi; Ohta, Shigeru; Kitamura, Shigeyuki

    2015-12-01

    Salicylates are used as fragrance and flavor ingredients for foods, as UV absorbers and as medicines. Here, we examined the hydrolytic metabolism of phenyl and benzyl salicylates by various tissue microsomes and plasma of rats, and by human liver and small-intestinal microsomes. Both salicylates were readily hydrolyzed by tissue microsomes, predominantly in small intestine, followed by liver, although phenyl salicylate was much more rapidly hydrolyzed than benzyl salicylate. The liver and small-intestinal microsomal hydrolase activities were completely inhibited by bis(4-nitrophenyl)phosphate, and could be extracted with Triton X-100. Phenyl salicylate-hydrolyzing activity was co-eluted with carboxylesterase activity by anion exchange column chromatography of the Triton X-100 extracts of liver and small-intestinal microsomes. Expression of rat liver and small-intestinal isoforms of carboxylesterase, Ces1e and Ces2c (AB010632), in COS cells resulted in significant phenyl salicylate-hydrolyzing activities with the same specific activities as those of liver and small-intestinal microsomes, respectively. Human small-intestinal microsomes also exhibited higher hydrolyzing activity than liver microsomes towards these salicylates. Human CES1 and CES2 isozymes expressed in COS cells both readily hydrolyzed phenyl salicylate, but the activity of CES2 was higher than that of CES1. These results indicate that significant amounts of salicylic acid might be formed by microsomal hydrolysis of phenyl and benzyl salicylates in vivo. The possible pharmacological and toxicological effects of salicylic acid released from salicylates present in commercial products should be considered. PMID:26321725

  6. Prediction of hepatic microsomal intrinsic clearance and human clearance values for drugs.

    PubMed

    Nikolic, Katarina; Agababa, Danica

    2009-10-01

    Twenty-nine drugs of different structures were used in theoretical QSAR analysis of human hepatic microsomal intrinsic clearance (in vitro T(1/2) and in vitro CL'(int)) and whole body clearance (CL(blood)). The examined compounds demonstrated a wide range of scaled intrinsic clearance values. Constitutional, geometrical, physico-chemical and electronic descriptors were computed for the examined structures by use of the Marvin Sketch 5.1.3_2, the Chem3D Ultra 7.0.0 and the Dragon 5.4 program. Partial least squares regression (PLSR), has been applied for selection of the most relevant molecular descriptors and development of quantitative structure-activity relationship (QSAR) model for human hepatic microsomal intrinsic clearance (in vitro T(1/2)). Optimal QSAR models with nine and ten variables, R(2)>0.808 and cross-validation parameter q(pre)(2)>0.623, were selected and compared. Since the microsomal in vitro T(1/2) data can be used for calculation of in vitro CL'(int) and in vivo CL(blood), the developed QSAR model will enable one to analyze the kinetics of cytochrome P450-mediated reactions in term of intrinsic clearance and whole body clearance. A comparison is made between predictions produced from the QSAR analysis and experimental data, and there appears to be generally satisfactory correlations with the literature values for intrinsic clearance data. PMID:19713138

  7. Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes.

    PubMed Central

    Coleman, S; Linderman, R; Hodgson, E; Rose, R L

    2000-01-01

    Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methyl-phenyl)-acetamide], alachlor [N-(methoxymethyl)-2-chloro-N-(2, 6-diethyl-phenyl)acetamide], butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-diethyl-phenyl)acetamide], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] are pre-emergent herbicides used in the production of agricultural crops. These herbicides are carcinogenic in rats: acetochlor and alachlor cause tumors in the nasal turbinates, butachlor causes stomach tumors, and metolachlor causes liver tumors. It has been suggested that the carcinogenicity of these compounds involves a complex metabolic activation pathway leading to a DNA-reactive dialkylbenzoquinone imine. Important intermediates in this pathway are 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) produced from alachlor and butachlor and 2-chloro-N-(2-methyl-6-ethylphenyl)acetamide (CMEPA) produced from acetochlor and metolachlor. Subsequent metabolism of CDEPA and CMEPA produces 2,6-diethylaniline (DEA) and 2-methyl-6-ethylaniline (MEA), which are bioactivated through para-hydroxylation and subsequent oxidation to the proposed carcinogenic product dialkylbenzoquinone imine. The current study extends our earlier studies with alachlor and demonstrates that rat liver microsomes metabolize acetochlor and metolachlor to CMEPA (0.065 nmol/min/mg and 0.0133 nmol/min/mg, respectively), whereas human liver microsomes can metabolize only acetochlor to CMEPA (0.023 nmol/min/mg). Butachlor is metabolized to CDEPA to a much greater extent by rat liver microsomes (0.045 nmol/min/mg) than by human liver microsomes (< 0.001 nmol/min/mg). We have determined that both rat and human livers metabolize both CMEPA to MEA (0.308 nmol/min/mg and 0.541 nmol/min/mg, respectively) and CDEPA to DEA (0.350 nmol/min/mg and 0.841 nmol/min/mg, respectively). We have shown that both rat and human liver microsomes metabolize MEA (0.035 nmol/min/mg and 0.069 nmol/min/mg, respectively

  8. The NADPH- and iron-dependent lipid peroxidation in human placental microsomes.

    PubMed

    Milczarek, Ryszard; Sokolowska, Ewa; Hallmann, Anna; Klimek, Jerzy

    2007-01-01

    In pregnant females, placenta is the most important source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides is often linked to preeclampsia. In our study, we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) occurred. In the presence of Fe2+ ion, HPM produced small amounts of thiobarbituric acid-reactive substances (TBARS) - a final product of lipid peroxidation. NADPH caused a strong increase of iron stimulated TBARS formation. TBARS formation was inhibited by superoxide dismutase, butylated hydroxytoluene and alpha-tocopherol but not by mannitol or catalase. TBARS and superoxide radical production was inhibited in similar manner by cytochrome P450 inhibitors. The results obtained led us to the following conclusions: (1) microsomal lipid peroxidation next to mitochondrial lipid peroxidation may by an important source of lipid hydroperoxides in blood during pregnancy and (2) superoxide radical released by microsomal cytochrome P450 is an important factor in NADPH- and iron-dependent lipid peroxidation in HPM. PMID:16896536

  9. Biotransformation of Flavokawains A, B, and C, Chalcones from Kava (Piper methysticum), by Human Liver Microsomes.

    PubMed

    Zenger, Katharina; Agnolet, Sara; Schneider, Bernd; Kraus, Birgit

    2015-07-22

    The in vitro metabolism of flavokawains A, B, and C (FKA, FKB, FKC), methoxylated chalcones from Piper methysticum, was examined using human liver microsomes. Phase I metabolism and phase II metabolism (glucuronidation) as well as combined phase I+II metabolism were studied. For identification and structure elucidation of microsomal metabolites, LC-HRESIMS and NMR techniques were applied. Major phase I metabolites were generated by demethylation in position C-4 or C-4' and hydroxylation predominantly in position C-4, yielding FKC as phase I metabolite of FKA and FKB, helichrysetin as metabolite of FKA and FKC, and cardamonin as metabolite of FKC. To an even greater extent, flavokawains were metabolized in the presence of uridine diphosphate (UDP) glucuronic acid by microsomal UDP-glucuronosyl transferases. For all flavokawains, monoglucuronides (FKA-2'-O-glucuronide, FKB-2'-O-glucuronide, FKC-2'-O-glucuronide, FKC-4-O-glucuronide) were found as major phase II metabolites. The dominance of generated glucuronides suggests a role of conjugated chalcones as potential active compounds in vivo. PMID:26123050

  10. In vitro metabolism of 2-ethylhexyldiphenyl phosphate (EHDPHP) by human liver microsomes.

    PubMed

    Ballesteros-Gómez, Ana; Erratico, Claudio A; Eede, Nele Van den; Ionas, Alin C; Leonards, Pim E G; Covaci, Adrian

    2015-01-01

    2-ethylhexyl diphenyl phosphate (EHDPHP) is used as flame retardant and plasticizer additive in a variety of consumer products. Since EHDPHP is toxic to aquatic organisms and has been detected in environmental samples, concerns about human exposure and toxicity are emerging. With the aim of identifying human-specific metabolites, the biotransformation of EHDPHP was investigated using human liver microsomes. Using an in silico program (Meteor) for the prediction of metabolites, untargeted screening tools (agilent Mass Hunter) and a suitable analysis platform based on ultra-high performance liquid chromatography (UPLC) and quadrupole time-of-flight high resolution mass spectrometer (QTOF-MS), for the first time a wide variety of phases-I and II metabolites of EHDPHP were identified. Mono- and di-hydroxylated metabolites, keto metabolites, mixed keto and hydroxylated metabolites and diphenyl phosphate were the major phase-I metabolites of EHDPHP. Glucuronidated metabolites of phase-I metabolites of EHDPHP were also formed by human liver microsomes. Using these results, we propose a general metabolism pathway for EHDPHP in humans and a number of candidate biomarkers for assessing the human exposure to this ubiquitous phosphate flame retardant and plasticizer in future biomonitoring studies. Furthermore, we provide a template analytical approach based on the combination of untargeted and targeted screening and UPLC-QTOF-MS analysis suitable for use in future metabolism studies. PMID:25448284

  11. Benzene metabolism by human liver microsomes in relation to cytochrome P450 2E1 activity.

    PubMed

    Seaton, M J; Schlosser, P M; Bond, J A; Medinsky, M A

    1994-09-01

    Low levels of benzene from sources including cigarette smoke and automobile emissions are ubiquitous in the environment. Since the toxicity of benzene probably results from oxidative metabolites, an understanding of the profile of biotransformation of low levels of benzene is critical in making a valid risk assessment. To that end, we have investigated metabolism of a low concentration of [14C]benzene (3.4 microM) by microsomes from human, mouse and rat liver. The extent of phase I benzene metabolism by microsomal preparations from 10 human liver samples and single microsomal preparations from both mice and rats was then related to measured activities of cytochrome P450 (CYP) 2E1. Measured CYP 2E1 activities, as determined by hydroxylation of p-nitrophenol, varied 13-fold (0.253-3.266 nmol/min/mg) for human samples. The fraction of benzene metabolized in 16 min ranged from 10% to 59%. Also at 16 min, significant amounts of oxidative metabolites were formed. Phenol was the main metabolite formed by all but two human microsomal preparations. In those samples, both of which had high CYP 2E1 activity, hydroquinone was the major metabolite formed. Both hydroquinone and catechol formation showed a direct correlation with CYP 2E1 activity over the range of activities present. A simulation model was developed based on a mechanism of competitive inhibition between benzene and its oxidized metabolites, and was fit to time-course data for three human liver preparations. Model calculations for initial rates of benzene metabolism ranging from 0.344 to 4.442 nmol/mg/min are directly proportional to measured CYP 2E1 activities. The model predicted the dependence of benzene metabolism on the measured CYP 2E1 activity in human liver samples, as well as in mouse and rat liver samples. These results suggest that differences in measured hepatic CYP 2E1 activity may be a major factor contributing to both interindividual and interspecies variations in hepatic metabolism of benzene

  12. Detection of Phenolic Metabolites of Styrene in Mouse Liver and Lung Microsomal IncubationsS⃞

    PubMed Central

    Shen, Shuijie; Zhang, Fan; Gao, Lingbo; Zeng, Su

    2010-01-01

    Metabolic activation is considered to be a critical step for styrene-induced pulmonary toxicity. Styrene-7,8-oxide is a primary oxidative metabolite generated by vinyl epoxidation of styrene. In addition, urinary 4-vinylphenol (4-VP), a phenolic metabolite formed by aromatic hydroxylation, has been detected in workers and experimental animals after exposure to styrene. In the present study, new oxidative metabolites of styrene, including 2-vinylphenol (2-VP), 3-vinylphenol (3-VP), vinyl-1,4-hydroquinone, and 2-hydroxystyrene glycol were detected in mouse liver microsomal incubations. The production rates of 2-VP, 3-VP, 4-VP, and styrene glycol were 0.0527 ± 0.0045, 0.0019 ± 0.0006, 0.0053 ± 0.0002, and 4.42 ± 0.33 nmol/(min · mg protein) in mouse liver microsomes, respectively. Both disulfiram (100 μM) and 5-phenyl-1-pentyne (5 μM) significantly inhibited the formation of the VPs and styrene glycol. 2-VP, 3-VP, and 4-VP were metabolized in mouse liver microsomes at rates of 2.50 ± 0.30, 2.63 ± 0.13, and 3.45 ± 0.11 nmol/(min · mg protein), respectively. The three VPs were further metabolized to vinylcatechols and/or vinyl-1,4-hydroquinone and the corresponding glycols. Pulmonary toxicity of 2-VP, 3-VP, and 4-VP was evaluated in CD-1 mice, and 4-VP was found to be more toxic than 2-VP and 3-VP. PMID:20724499

  13. NADPH- and iron-dependent lipid peroxidation inhibit aromatase activity in human placental microsomes.

    PubMed

    Milczarek, Ryszard; Sokołowska, Ewa; Hallmann, Anna; Kaletha, Krystian; Klimek, Jerzy

    2008-06-01

    During pregnancy placenta is the most significant source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides and other ROS is often linked to pre-eclampsia. It is already proved that placental endoplasmic reticulum may be an important place of lipid peroxides and superoxide radical production. In the present study we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) inhibit placental aromatase--a key enzyme of estrogen biosynthesis in human placenta. We showed that significant inhibition of this enzyme is caused by small lipid peroxidation (TBARS (thiobarbituric acid-reactive substances)<4nmol/mg microsomal protein (m.p.)). More intensive lipid peroxidation (TBARS>9nmol/mg microsomal protein) diminishes aromatase activity to value being less than 5% of initial value. NADPH- and iron-dependent lipid peroxidation also causes disappearance of cytochrome P450 parallel to observed aromatase activity inhibition. EDTA, alpha-tocopherol, MgCl(2) and superoxide dismutase (SOD) prevent aromatase activity inhibition and cytochrome P450(AROM) degradation. Mannitol and catalase have not effect on TBARS synthesis, aromatase activity and cytochrome P450 degradation. In view of the above we postulate that the inhibition of aromatase activity observed is mainly a consequence of cytochrome P450(AROM) degradation induced by lipid radicals. The role of hydroxyl radical in cytochrome P450 degradation is negligible in our experimental conditions. The results presented here also suggest that the inhibition of aromatase activity can also take place in placenta at in vivo conditions. PMID:18499441

  14. In vivo effects of 3-methylcholanthrene, phenobarbital, pyrethrum and 2,4,5-T isooctylester on liver, lung and kidney microsomal mixed-function oxidase system of guinea-pig: a comparative study.

    PubMed

    Işcan, M; Arinç, E; Vural, N; Işcan, M Y

    1984-01-01

    The optimum conditions (pH, microsomal protein amount and substrate concentration) of guinea-pig liver, lung and kidney microsomal aniline 4-hydroxylase, ethylmorphine N-demethylase and benzo[a]pyrene hydroxylase activities were determined. Male guinea-pigs weighing 500-700 g were administered 3-methylcholanthrene (25 mg/kg, i.p. 3 days), phenobarbital (75 mg/kg, i.p. 3 days), pyrethrum (120 mg/kg, i.p. 2 days) and 2,4,5-T isooctylester (200 mg/kg, i.p. 3 days). 3-Methylcholanthrene treatment caused significant increases in liver microsomal benzo[a]pyrene hydroxylase and kidney microsomal aniline 4-hydroxylase activities. However, with phenobarbital treatment the only significant increase was observed in liver microsomal ethylmorphine N-demethylase activity. Pyrethrum treatment decreased kidney microsomal ethylmorphine N-demethylase activity significantly. 2,4,5-T isooctylester treatment increased liver microsomal aniline 4-hydroxylase and lung microsomal ethylmorphine N-demethylase activities significantly. Liver microsomal NADPH-cytochrome c reductase activity was increased significantly by phenobarbital and pyrethrum treatment. The other treatments did not cause any significant changes in microsomal NADPH-cytochrome c reductase activities of liver, lung and kidney. Cytochrome P-450 content of guinea-pig liver microsomes were increased significantly about 2.5-fold and 2-fold by treatment with 3-methylcholanthrene and phenobarbital, respectively. 3-Methylcholanthrene also caused 1 nm spectral shift in the absorption maxima of CO difference spectrum of the dithionite-reduced liver microsomal cytochrome P-450, forming P-449. PMID:6141874

  15. Inhibition of Cytochrome P450 by Propolis in Human Liver Microsomes

    PubMed Central

    Ryu, Chang Seon; Oh, Soo Jin; Oh, Jung Min; Lee, Ji-Yoon; Lee, Sang Yoon; Chae, Jung-woo; Kwon, Kwang-il; Kim, Sang Kyum

    2016-01-01

    Although propolis is one of the most popular functional foods for human health, there have been no comprehensive studies of herb-drug interactions through cytochrome P450 (CYP) inhibition. The purpose of this study was to determine the inhibitory effects of propolis on the activities of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 using pooled human liver microsomes (HLMs). Propolis inhibited CYP1A2, CYP2E1 and CYP2C19 with an IC50 value of 6.9, 16.8, and 43.1 μg/mL, respectively, whereas CYP2A6, 2B6, 2C9, 2D6, and 3A4 were unaffected. Based on half-maximal inhibitory concentration shifts between microsomes incubated with and without nicotinamide adenine dinucleotide phosphate, propolis-induced CYP1A2, CYP2C19, and CYP2E1 inhibition was metabolism-independent. To evaluate the interaction potential between propolis and therapeutic drugs, the effects of propolis on metabolism of duloxetine, a serotonin-norepinephrine reuptake inhibitor, were determined in HLMs. CYP1A2 and CYP2D6 are involved in hydroxylation of duloxetine to 4-hydroxy duloxetine, the major metabolite, which was decreased following propolis addition in HLMs. These results raise the possibility of interactions between propolis and therapeutic drugs metabolized by CYP1A2. PMID:27437087

  16. Vanadium-mediated lipid peroxidation in microsomes from human term placenta

    SciTech Connect

    Byczkowski, J.Z.; Wan, B.; Kulkarni, A.P.

    1988-11-01

    Vanadium is considered an essential element present in living organisms in trace amounts but it is toxic when introduced in excessive doses to animals and humans. Vanadium compounds are extensively used in modern industry and occupational exposure to high doses of vanadium is quite common. In pregnant mice, vanadium accumulates preferentially in the placenta and to lower extent in fetal skeleton and mammary gland during exposure to radioactive vanadium. Accumulation of vanadium in fetoplacental unit may present threat to the fetus by interacting with enzymes and ion-transporting systems in membranes. It is also possible that accumulation of vanadium with its concomitant reduction to vanadyl may lead to lipid peroxidation, followed by damage to biological membranes, lysosomal enzymes release and destruction of placental tissue. To explore some of these possibilities the authors decided to examine whether vanadate can undergo redox cycling in microsomes from human term placenta (HTP) that can lead to lipid peroxidation.

  17. Selective serotonin reuptake inhibitors and theophylline metabolism in human liver microsomes: potent inhibition by fluvoxamine.

    PubMed Central

    Rasmussen, B B; Maënpää, J; Pelkonen, O; Loft, S; Poulsen, H E; Lykkesfeldt, J; Brøsen, K

    1995-01-01

    1. Fluvoxamine and seven other selective serotonin reuptake inhibitors (SRRI) were tested for their ability to inhibit a number of human cytochrome P450 isoforms (CYPs). 2. None of the drugs showed potent inhibition of CYP2A6 (coumarin 7-hydroxylase) or CYP2E1 (chlorzoxazone 6-hydroxylase), while norfluoxetine was the only potent inhibitor of CYP3A having IC50 values of 11 microM and 19 microM for testosterone 6 beta-hydroxylase and cortisol 6 beta-hydroxylase, respectively. 3. Norfluoxetine, sertraline and fluvoxamine inhibited CYP1A1 (7-ethoxyresorufin O-deethylase) in microsomes from human placenta (IC50 values 29 microM, 35 microM and 80 microM, respectively). Fluvoxamine was a potent inhibitor of CYP1A2-mediated 7-ethoxyresorufin O-deethylase activity (IC50 = 0.3 microM) in human liver. 4. In microsomes from three human livers fluvoxamine potently inhibited all pathways of theophylline biotransformation, the apparent inhibitor constant, Ki, was 0.07-0.13 microM, 0.05-0.10 microM and 0.16-0.29 microM for inhibition of 1-methylxanthine, 3-methylxanthine and 1,3-dimethyluric acid formation, respectively. Seven other SSRIs showed either weak or no inhibition of theophylline metabolism. 5. Ethanol inhibited the formation of 1,3-dimethyluric acid with K(i) value of 300 microM, a value which is consistent with inhibition of CYP2E1. Ethanol and fluvoxamine both inhibited 8-hydroxylation by about 45% and, in combination, the compounds decreased the formation of 1,3-dimethyluric acid by 90%, indicating that CYP1A2 and CYP2E1 are equally important isoforms for the 8-hydroxylation of theophylline. 6. It is concluded that pharmacokinetic interaction between fluvoxamine and theophylline is due to potent inhibition of CYP1A2. PMID:7742153

  18. Aromatase inhibition by synthetic lactones and flavonoids in human placental microsomes and breast fibroblasts - A comparative study

    SciTech Connect

    Meeuwen, J.A. van Nijmeijer, S.; Mutarapat, T.; Ruchirawat, S.; Jong, P.C. de; Piersma, A.H.; Berg, M. van den

    2008-05-01

    Interference of exogenous chemicals with the aromatase enzyme can be useful as a tool to identify chemicals that could act either chemopreventive for hormone-dependent cancer or adverse endocrine disruptive. Aromatase is the key enzyme in the biosynthesis of steroids, as it converts androgens to estrogens. Certain flavonoids, plant derived chemicals, are known catalytic aromatase inhibitors. Various systems are in use to test aromatase inhibitory properties of compounds. Commonly used are microsomes derived from ovary or placental tissue characterized by high aromatase activity. To a lesser extent whole cell systems are used and specifically cell systems that are potential target tissue in breast cancer development. In this study aromatase inhibitory properties of fadrozole, 8-prenylnaringenin and a synthetic lactone (TM-7) were determined in human placental microsomes and in human primary breast fibroblasts. In addition, apigenin, chrysin, naringenin and two synthetic lactones (TM-8 and TM-9) were tested in human microsomes only. Comparison of the aromatase inhibitory potencies of these compounds between the two test systems showed that the measurement of aromatase inhibition in human placental microsomes is a good predictor of aromatase inhibition in human breast fibroblasts.

  19. Aromatase inhibition by synthetic lactones and flavonoids in human placental microsomes and breast fibroblasts--a comparative study.

    PubMed

    van Meeuwen, J A; Nijmeijer, S; Mutarapat, T; Ruchirawat, S; de Jong, P C; Piersma, A H; van den Berg, M

    2008-05-01

    Interference of exogenous chemicals with the aromatase enzyme can be useful as a tool to identify chemicals that could act either chemopreventive for hormone-dependent cancer or adverse endocrine disruptive. Aromatase is the key enzyme in the biosynthesis of steroids, as it converts androgens to estrogens. Certain flavonoids, plant derived chemicals, are known catalytic aromatase inhibitors. Various systems are in use to test aromatase inhibitory properties of compounds. Commonly used are microsomes derived from ovary or placental tissue characterized by high aromatase activity. To a lesser extent whole cell systems are used and specifically cell systems that are potential target tissue in breast cancer development. In this study aromatase inhibitory properties of fadrozole, 8-prenylnaringenin and a synthetic lactone (TM-7) were determined in human placental microsomes and in human primary breast fibroblasts. In addition, apigenin, chrysin, naringenin and two synthetic lactones (TM-8 and TM-9) were tested in human microsomes only. Comparison of the aromatase inhibitory potencies of these compounds between the two test systems showed that the measurement of aromatase inhibition in human placental microsomes is a good predictor of aromatase inhibition in human breast fibroblasts. PMID:18201740

  20. Metabolism of aildenafil in vivo in rats and in vitro in mouse, rat, dog, and human liver microsomes.

    PubMed

    Li, Yan; Wu, Linan; Gu, Yuan; Si, Duanyun; Liu, Changxiao

    2014-06-01

    Aildenafil, 1-{[3-(6, 7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo [4, 3-d] primidin-5-yl)-4-ethoxyphenyl] sulfonyl}-cis-3, 5-dimethylpiperazine, a phosphodiesterase type V enzyme inhibitor (PDE5I), is under development for treatment of erectile dysfunction (ED). The purpose of this study was to elucidate metabolism of aildenafil in vivo in rats and in vitro in mouse, rat, dog, and human liver microsomes. Thirty-one phase I metabolites have been found by LTQ/Orbitrap hybrid mass spectrometry in rat urine, faeces, and bile after oral administration. Major biotransformation pathways of aildenafil included N-dealkylation of the piperazine ring, hydroxylation and dehydrogenation, aliphatic hydroxylation and loss of alkyl group of piperazine ring. Minor pathways involved hydroxylation on the phenyl ring, pyrazole N-demethylation, O-deethylation, loss of piperazine ring (cleavage of N-S bond) and dehydrogenation on the piperazine ring. Similar metabolic pathways of aildenafil were observed in the incubations of liver microsomes from mouse, rat, and dog as well as from human. The depletion rate of parent drug in mouse and rat liver microsomes was significantly different from that in human liver microsomes. The cytochrome P450 reaction phenotyping analysis was conducted using isozyme-specific inhibitors. The results indicated that CYP3A was the main isoenzyme involved in oxidative metabolism of aildenafil. Overall, these in vitro and in vivo findings should provide valuable information on possible metabolic behaviours of aildenafil in humans. PMID:24311535

  1. In vitro metabolic clearance of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome P450 isoforms

    EPA Science Inventory

    Species differences in the intrinsic clearance (CLint) and the enzymes involved in the metabolism of pyrethroid pesticides were examined in rat and human hepatic microsomes. The pyrethroids bifenthrin, S-bioallethrin, bioresmethrin, β-cyfluthrin, cypermethrin, cis-per...

  2. Calcium channel antagonists and cyclosporine metabolism: in vitro studies with human liver microsomes.

    PubMed Central

    Tjia, J F; Back, D J; Breckenridge, A M

    1989-01-01

    The effects of four Ca2+ channel antagonists on the metabolism of cyclosporine (CsA) by human liver microsomes (n = 4) in vitro have been examined. Nicardipine produced marked inhibition of both M17 and M21 (IC50 = 7.0 microM) formation. In contrast nifedipine produced less than 20% inhibition of M17 and M21 even at the highest concentration examined (50 microM). Diltiazem data were comparable to those for nifedipine. Verapamil (50 microM) produced 30 and 28% inhibition of M17 and M21 formation, respectively. These findings give a basis to the increase in CsA blood concentrations seen in transplant patients who are also given nicardipine. PMID:2789931

  3. The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes.

    PubMed Central

    Spaldin, V; Madden, S; Pool, W F; Woolf, T F; Park, B K

    1994-01-01

    1. Tacrine (1,2,3,4-tetrahydro-9-aminoacridine-hydrochloride: THA) underwent metabolism in vitro by a panel (n = 12) of human liver microsomes genotyped for CYP2D6, in the presence of NADPH, to both protein-reactive and stable metabolites. 2. There was considerable variation in the extent of THA metabolism amongst human livers. Protein-reactive metabolite formation showed a 10-fold variation (0.6 +/- 0.1%-5.2 +/- 0.8% of incubated radioactivity mg-1 protein) whilst stable metabolites showed a 3-fold variation (24.3 +/- 1.7%-78.6 +/- 2.6% of incubated radioactivity). 3. Using cytochrome P450 isoform specific inhibitors CYP1A2 was identified as the major enzyme involved in all routes of THA metabolism. 4. There was a high correlation between aromatic and alicyclic hydroxylation (r = 0.92, P < 0.0001) consistent with these biotransformations being catalysed by the same enzymes. 5. Enoxacin (ENOX), cimetidine (CIM) and chloroquine (CQ) inhibited THA metabolism by a preferential decrease in the bioactivation to protein-reactive, and hence potentially toxic, species. The inhibitory potency of ENOX and CIM was increased significantly upon pre-incubation with microsomes and NADPH. 6. Covalent binding correlated with 7-OH-THA formation before (r = 0.792, P < 0.0001) and after (r = 0.73, P < 0.0001) inhibition by CIM, consistent with a two-step mechanism in the formation of protein-reactive metabolite(s) via a 7-OH intermediate. 7. The use of enzyme inhibitors may provide a useful tool for examining the relationship between the metabolism and toxicity of THA in vivo. PMID:7946932

  4. Reductive metabolism of nabumetone by human liver microsomal and cytosolic fractions: exploratory prediction using inhibitors and substrates as marker probes.

    PubMed

    Matsumoto, Kaori; Hasegawa, Tetsuya; Koyanagi, Junichi; Takahashi, Tamiko; Akimoto, Masayuki; Sugibayashi, Kenji

    2015-06-01

    The metabolic reduction of nabumetone was examined by inhibition and correlation studies using human liver microsomes and cytosol. This reduction was observed in both fractions, with the V(max) values for reduction activity being approximately fourfold higher, and the V(max)/K(m) values approximately three-fold higher, in the microsomes than in the cytosol. The reduction of nabumetone was inhibited by 18β-glycyrrhetinic acid, an 11β-hydroxysteroid dehydrogenase (11β-HSD) inhibitor, in the microsomal fraction. The reduction activity was also inhibited by quercetin and menadione [carbonyl reductase (CBR) inhibitors], and by phenolphthalein and medroxyprogesterone acetate [potent inhibitors of aldo-keto reductase (AKR) 1C1, 1C2 and 1C4] in the cytosol. A good correlation (r² = 0.93) was observed between the reduction of nabumetone and of cortisone, as a marker of 11β-HSD activity, in the microsomal fractions. There was also an excellent relationship between reduction of nabumetone and of the AKR1C substrates, acetohexamide, and ethacrynic acid (r 2 = 0.92 and 0.93, respectively), in the cytosol fractions. However, a poor correlation was observed between the formation of 4-(6-methoxy-2-naphthyl)-butan-2-ol (MNBO) from nabumetone and CBR activity (with 4-benzoyl pyridine reduction as a CBR substrate) in the cytosol fractions (r² = 0.24). These findings indicate that nabumetone may be metabolized by 11β-HSD in human liver microsomes, and primarily by AKR1C4 in human liver cytosol, although multiple enzymes in the AKR1C subfamily may be involved. It cannot be completely denied that CBR is involved to some extent in the formation of MNBO from nabumetone in the cytosol fraction. PMID:24659525

  5. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants

    PubMed Central

    Hassett, Christopher; Aicher, Lauri; Sidhu, Jaspreet S.

    2016-01-01

    Human microsomal epoxide hydrolase (mEH) is a biotransformation enzyme that metabolizes reactive epoxide intermediates to more water-soluble trans-dihydrodiol derivatives. We compared protein-coding sequences from six full-length human mEH DNA clones and assessed potential amino acid variation at seven positions. The prevalence of these variants was assessed in at least 37 unrelated individuals using polymerase chain reaction experiments. Only Tyr/His 113 (exon 3) and His/Arg 139 (exon 4) variants were observed. The genotype frequencies determined for residue 113 alleles indicate that this locus may not be in Hardy – Weinberg equilibrium, whereas frequencies observed for residue 139 alleles were similar to expected values. Nucleotide sequences coding for the variant amino acids were constructed in an mEH cDNA using site-directed mutagenesis, and each was expressed in vitro by transient transfection of COS-1 cells. Epoxide hydrolase mRNA level, catalytic activity, and immunoreactive protein were evaluated for each construct. The results of these analyses demonstrated relatively uniform levels of mEH RNA expression between the constructs. mEH enzymatic activity and immunoreactive protein were strongly correlated, indicating that mEH specific activity was similar for each variant. However, marked differences were noted in the relative amounts of immunoreactive protein and enzymatic activity resulting from the amino acid substitutions. These data suggest that common human mEH amino acid polymorphisms may alter enzymatic function, possibly by modifying protein stability. PMID:7516776

  6. Selective Inhibition of Bakuchicin Isolated from Psoralea corylifolia on CYP1A in Human Liver Microsomes

    PubMed Central

    Kim, Sun Joo; Oh, Heung Chan; Kim, Youn-Chul; Jeong, Gil-Saeng; Lee, Sangkyu

    2016-01-01

    Bakuchicin is a furanocoumarin isolated from Psoralea corylifolia and shows several biological activities. Although there have been studies on the biological effects of bakuchicin, its modulation potency of CYP activities has not been previously investigated. Here, we investigated the inhibitory effects of bakuchicin on the activities of CYP isoforms by using a cocktail of probe substrates in pooled human liver microsomes (HLMs) and human recombinant cDNA-expressed CYP. Bakuchicin strongly inhibited CYP1A-mediated phenacetin O-deethylation with an IC50 value of 0.43 μM in HLMs. It was confirmed by human recombinant cDNA-expressed CYP1A1 and CYP1A2 with a Ki value of 0.11 μM and 0.32 μM, respectively. A Lineweaver-Burk plot indicated that the inhibition mechanism of bakuchicin was competitive inhibition. Overall, this is the first study to investigate the potential CYP1A1 and CYP1A2 inhibition associated with bakuchicin and to report its competitive inhibitory effects on HLMs. PMID:26977174

  7. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues

    PubMed Central

    Suzuki, Takashi; Swift, Larry L.

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5′-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5′-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  8. Identification of di-2-ethylhexyl terephthalate (DEHTP) metabolites using human liver microsomes for biomonitoring applications.

    PubMed

    Silva, Manori J; Samandar, Ella; Calafat, Antonia M; Ye, Xiaoyun

    2015-06-01

    Di-2-ethylhexyl terephthalate (DEHTP), a structural isomer of the plasticizer di-2-ethylhexyl phthalate (DEHP), is used in food packaging and medical devices, among other applications, and is a potential replacement for DEHP and other ortho-phthalate plasticizers. Identifying sensitive and specific biomarkers of DEHTP is necessary to assess humans' background exposure to DEHTP. Using mass spectrometry, we investigated the metabolism of DEHTP by human liver microsomes to identify in vitro DEHTP metabolites. We unequivocally identified terephthalic acid (TPA) and mono-2-ethylhydroxyhexyl terephthalate (MEHHTP), using authentic standards, and tentatively identified mono-2-ethylhexyl terephthalate (MEHTP) and two other oxidative metabolites of DEHTP: mono-2-ethyloxohexyl terephthalate (MEOHTP), and mono-2-ethyl-5-carboxypentyl terephthalate (MECPTP) from their mass spectrometry fragmentation patterns. We also evaluated the formation of in vitro metabolites of DEHP. DEHTP and DEHP produced similar metabolites, but their metabolite profiles differed considerably. DEHTP metabolized to form TPA, a metabolite of several terephthalates, as the major in vitro metabolite, followed by MEHTP, MEHHTP, MEOHTP and MECPTP. MEHTP, MEHHTP, MEOHTP and MECPTP, which are specific metabolites of DEHTP, may be suitable biomarkers for assessing exposure to DEHTP. Nonetheless, data on the urinary excretion fraction and temporal stability of these metabolites, among other considerations, are needed to demonstrate their utility as exposure biomarkers. PMID:25687528

  9. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues.

    PubMed

    Suzuki, Takashi; Swift, Larry L

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5'-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5'-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  10. Human Enteric Microsomal CYP4F Enzymes O-Demethylate the Antiparasitic Prodrug Pafuramidine

    PubMed Central

    Wang, Michael Zhuo; Wu, Judy Qiju; Bridges, Arlene S.; Zeldin, Darryl C.; Kornbluth, Sally; Tidwell, Richard R.; Hall, James Edwin; Paine, Mary F.

    2008-01-01

    CYP4F enzymes, including CYP4F2 and CYP4F3B, were recently shown to be the major enzymes catalyzing the initial oxidative O-demethylation of the antiparasitic prodrug pafuramidine (DB289) by human liver microsomes. As suggested by a low oral bioavailability, DB289 could undergo first-pass biotransformation in the intestine, as well as in the liver. Using human intestinal microsomes (HIM), we characterized the enteric enzymes that catalyze the initial O-demethylation of DB289 to the intermediate metabolite, M1. M1 formation in HIM was catalyzed by cytochrome P450 (P450) enzymes, as evidenced by potent inhibition by 1-aminoben-zotriazole and the requirement for NADPH. Apparent Km and Vmax values ranged from 0.6 to 2.4 μM and from 0.02 to 0.89 nmol/min/mg protein, respectively (n = 9). Of the P450 chemical inhibitors evaluated, ketoconazole was the most potent, inhibiting M1 formation by 66%. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N′-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, inhibited M1 formation in a concentration-dependent manner (up to 95%). Immunoinhibition with an antibody raised against CYP4F2 showed concentration-dependent inhibition of M1 formation (up to 92%), whereas antibodies against CYP3A4/5 and CYP2J2 had negligible to modest effects. M1 formation rates correlated strongly with arachidonic acid ω-hydroxylation rates (r2 = 0.94, P < 0.0001, n = 12) in a panel of HIM that lacked detectable CYP4A11 protein expression. Quantitative Western blot analysis revealed appreciable CYP4F expression in these HIM, with a mean (range) of 7 (3–18) pmol/mg protein. We conclude that enteric CYP4F enzymes could play a role in the first-pass biotransformation of DB289 and other xenobiotics. PMID:17709372

  11. Kinetics of tris (1-chloro-2-propyl) phosphate (TCIPP) metabolism in human liver microsomes and serum.

    PubMed

    Van den Eede, Nele; Tomy, Gregg; Tao, Fang; Halldorson, Thor; Harrad, Stuart; Neels, Hugo; Covaci, Adrian

    2016-02-01

    Tris(1-chloro-2-propyl) phosphate (TCIPP) is an emerging contaminant which is ubiquitous in the indoor and outdoor environment. Moreover, its presence in human body fluids and biota has been evidenced. Since no quantitative data exist on the biotransformation or stability of TCIPP in the human body, we performed an in vitro incubation of TCIPP with human liver microsomes (HLM) and human serum (HS). Two metabolites, namely bis(2-chloro-isopropyl) phosphate (BCIPP) and bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP), were quantified in a kinetic study using HLM or HS (only BCIPP, the hydrolysis product) and LC-MS. The Michaelis-Menten model fitted best the NADPH-dependent formation of BCIPHIPP and BCIPP in HLM, with respective V(MAX) of 154 ± 4 and 1470 ± 110 pmol/min/mg protein and respective apparent K(m) of 80.2 ± 4.4 and 96.1 ± 14.5 μM. Hydrolases, which are naturally present in HLM, were also involved in the production of BCIPP. A HS paraoxonase assay could not detect any BCIPP formation above 38.6 ± 10.8 pmol/min/μL serum. Our data indicate that BCIPP is the major metabolite of TCIPP formed in the liver. To our knowledge, this is the first quantitative assessment of the stability of TCIPP in tissues of humans or any other species. Further research is needed to confirm whether these biotransformation reactions are associated with a decrease or increase in toxicity. PMID:26473552

  12. Comparative metabolic study between two selective estrogen receptor modulators, toremifene and tamoxifen, in human liver microsomes.

    PubMed

    Watanabe, Miyuki; Watanabe, Noriko; Maruyama, Sakiko; Kawashiro, Takashi

    2015-10-01

    Toremifene (TOR) and Tamoxifen (TAM) are widely used as endocrine therapy for estrogen receptor positive breast cancer. Poor metabolizers of TAM are likely to have worse clinical outcomes than patients who exhibit normal TAM metabolism due to lower plasma level of its active metabolite, 4-hydroxy-N-desmethyl (4OH-NDM) tamoxifen (endoxifen). In this study, we examined the role of individual cytochrome P450 (CYP) isoforms in the metabolism of TOR to N-desmethyl (NDM), 4-hydroxy (4OH) and 4OH-NDM metabolites in comparison with TAM using human liver microsomes (HLMs) with selective chemical inhibitors for each CYP isoform and recombinant CYP proteins. Similar levels of NDM metabolites were formed for both TOR and TAM, and N-demethylation of both compounds was primarily carried out by CYP3A4. We found that the formation of 4OH-NDM-TOR was catalyzed both by CYP2C9 and CYP2D6, whereas the formation of 4OH-TAM and endoxifen was specifically catalyzed by CYP2D6 in HLMs. Our results suggest that the potential contribution of CYP2D6 in the bioactivation pathway of TOR may be lower compared to TAM, and may have a different impact on clinical outcome than CYP2D6 polymorphisms. PMID:26423799

  13. Bioactivation of bisphenol A and its analogs (BPF, BPAF, BPZ and DMBPA) in human liver microsomes.

    PubMed

    Schmidt, Jan; Kotnik, Petra; Trontelj, Jurij; Knez, Željko; Mašič, Lucija Peterlin

    2013-06-01

    Bisphenol A analogs are a class of chemicals known as diphenylmethanes, which contain two benzene rings separated by one central carbon atom, usually with a para-hydroxy group on both benzene rings. Bisphenol A (BPA) can induce an uterotrophic response in immature CD-1 mice and elicits estrogenic responses in many other experimental systems. Besides highlighting endocrine effects, a number of metabolic studies provide strong support for the idea that reactive species of BPA are formed in vitro and in vivo that can form covalent adducts with nucleophilic macromolecules and/or produce oxidative stress. We used a liquid chromatography with a triple quadrupole tandem mass spectrometry (LC-MS/MS) for the detection of metabolites and glutathione conjugates of BPA and its analogs (BPF, BPAF, BPZ and DMBPA) in human liver microsomes (HLM) or with recombinant CYP isozymes in the presence of NADPH and GSH as a trapping agent. We have confirmed that BPA and its structural analogs form hydroxylated metabolites and electrophilic species during bioactivation in HLM and CYP isozymes. These results provided important mechanistic insight into the metabolic fate of BPA structural analogs in vitro. PMID:23470418

  14. Baculovirus expression and biochemical characterization of the human microsomal triglyceride transfer protein.

    PubMed Central

    Ritchie, P J; Decout, A; Amey, J; Mann, C J; Read, J; Rosseneu, M; Scott, J; Shoulders, C C

    1999-01-01

    The microsomal triglyceride transfer protein (MTP) complexed to protein disulphide isomerase (PDI) is obligatory for the assembly of chylomicrons and very-low-density lipoproteins. The determination of the atomic structure of the MTP-PDI heterodimer has important implications for the treatment of those forms of hyperlipidaemia associated with the overproduction of very-low-density lipoproteins, which predispose to premature coronary heart disease. To perform structural studies of the human MTP-PDI complex it was necessary to produce milligram quantities of pure protein. We chose the baculovirus expression system for this purpose. Insects cells were co-infected with recombinant viruses encoding FLAG-tagged MTP and His-tagged PDI; the resulting heterodimer was purified by affinity chromatography. From 5 litres of insect cells, 4-6 mg of more than 95% pure recombinant protein was obtained. CD and attenuated total reflection Fourier-transform infrared spectroscopy indicate that the purified protein has around 34% alpha-helical and 33% beta-structure content. The recombinant protein had a comparable triglyceride transfer activity to that of bovine MTP-PDI. The production of polyclonal antibodies raised against the MTP and PDI subunits of the purified protein is described. The present study demonstrates the feasibility of expressing two proteins at high levels in insect cells and describes a transferable methodology for the purification of the resulting protein complex. PMID:10036224

  15. In Vitro Metabolism of 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin in Human Liver Microsomes

    PubMed Central

    Zheng, Nan; Zou, Peng; Wang, Shaomeng

    2011-01-01

    The objective of this study was to investigate the oxidative metabolism pathways of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), a geldanamycin (GA) derivative and 90-kDa heat shock protein inhibitor. In vitro metabolic profiles of 17-DMAG were examined by using pooled human liver microsomes (HLMs) and recombinant CYP450 isozymes in the presence or absence of reduced GSH. In addition to 17-DMAG hydroquinone and 19-glutathionyl 17-DMAG, several oxidative metabolites of 17-DMAG were detected and characterized by liquid chromatography-tandem mass spectrometry. Different from previously reported primary biotransformations of GA and GA derivatives, 17-DMAG was not metabolized primarily through the reduction of benzoquinone and GSH conjugation in HLMs. In contrast, the primary biotransformations of 17-DMAG in HLMs were hydroxylation and demethylation on its side chains. The most abundant metabolite was produced by demethylation from the methoxyl at position 12. The reaction phenotyping study showed that CYP3A4 and 3A5 were the major cytochrome P450 isozymes involved in the oxidative metabolism of 17-DMAG, whereas CYP2C8, 2D6, 2A6, 2C19, and 1A2 made minor contributions to the formation of metabolites. On the basis of the identified metabolite profiles, the biotransformation pathways for 17-DMAG in HLMs were proposed. PMID:21177985

  16. Metabolic inhibition and kinetics of raloxifene by pharmaceutical excipients in human liver microsomes.

    PubMed

    Kim, Ae Ra; Lim, Soo-Jeong; Lee, Beom-Jin

    2009-02-23

    This study was originally undertaken to establish the in vitro metabolic conditions and then evaluate the effect of pharmaceutical excipients (PEs) on drug metabolism in uridine diphosphoglucuronic acid-supplemented human liver microsomes. Poorly bioavailable raloxifene was chosen as a model drug. Intact drug and its two glucuronide metabolites were successfully isolated using gradient HPLC analysis and LC/MS analysis. Formation of raloxifene metabolites was affected by buffer compositions, incubation time and initial raloxifene concentrations. Under optimized metabolic conditions, 41.0% of raloxifene was converted to its metabolites after 2h incubation. This metabolic inhibition of raloxifene by the PEs occurred in a dose-dependent manner and accordingly formed two glucuronide metabolites. In the metabolic kinetics using Lineweaver-Burk analyses, Cremophor EL competitively inhibited formation of metabolites while sodium lauryl sulfate (SLS), polyvinylpyrrolidone K30 (PVP) and Tween 80 significantly inhibited in a mixed competition. Although some PEs showed inhibition on glucuronidation of raloxifene in vitro, their effects on in vivo bioavailability of raloxifene need to be confirmed directly due to the dilution factors and other complicated situations influencing the bioavailability. PMID:18977285

  17. Interaction between oblongifolin C and UDP-glucuronosyltransferase isoforms in human liver and intestine microsomes.

    PubMed

    Gao, Cui; Shi, Rong; Wang, Tianming; Tan, Hongsheng; Xu, Hongxi; Ma, Yueming

    2015-01-01

    1. Oblongifolin C (OC) is a potential natural anticancer candidate, and its metabolic profile has not yet been established. 2. One major OC glucuronidation metabolite (OCG) has been identified in a pool of human liver microsomes (HLMs). Chemical inhibition experiments suggested that OCG was mainly formed by UGT1A. A screen of recombinant UDP-glucuronosyltransferase isoforms (UGTs) indicated that UGT1A1 primarily mediates OC conjugation, with minor contributions from UGT1A3 and UGT1A8. Enzyme kinetic studies showed that UGT1A1 was the main UGT isoform involved in OCG in HLMs. 3. Further investigation suggested that OC is a broad inhibitor of UGTs. Additionally, OC competitively inhibited UGT1A6 with a Ki value of 3.49 ± 0.57 μM, whereas non-competitively inhibited UGT1A10 with a Ki value of 2.12 ± 0.18 μM. 4. Understanding the interaction between OC and UGTs will greatly contribute to future investigations regarding the inter-individual differences in OC metabolism in clinical trials and potential drug-drug interactions. PMID:25714435

  18. Metabolic profile of glyburide in human liver microsomes using LC-DAD-Q-TRAP-MS/MS.

    PubMed

    Ravindran, Selvan; Basu, Sudipta; Gorti, Santosh Kapil Kumar; Surve, Prashant; Sloka, Navya

    2013-05-01

    The sulfonylurea urea drug glyburide (glibenclamide) is widely used for the treatment of diabetes milletus and gestational diabetes. In previous studies monohydroxylated metabolites were identified and characterized for glyburide in different species, but the metabolite owing to the loss of cyclohexyl ring was identified only in mouse. Glyburide upon incubation with hepatic microsomes resulted in 10 metabolites for human. The current study identifies new metabolites of glyburide along with the hydroxylated metabolites that were reported earlier. The newly identified drug metabolites are dihydroxylated metabolites, a metabolite owing to the loss of cyclohexyl ring and one owing to hydroxylation with dehydrogenation. Among the 10 identified metabolites, there were six monohydroxylated metabolites, one dihydroxylated metabolite, two metabolites owing to hydroxylation and dehydrogenation, and one metabolite owing to the loss of cyclohexyl ring. New metabolites of glyburide were identified and characterized using liquid chromatography-diode array detector-quadruple-ion trap-mass spectrometry/mass spectrometry (LC-DAD-Q-TRAP-MS/MS). An enhanced mass scan-enhanced product ion scan with information-dependent acquisition mode in a Q-TRAP-MS/MS system was used to characterize the metabolites. Liquid chromatography with diode array detection was used as a complimentary technique to confirm and identify the metabolites. Metabolites formed in higher amounts were detected in both diode array detection and mass spectrometry detection. PMID:23070832

  19. In vitro glucuronidation of 2,2-bis(bromomethyl)-1,3-propanediol by microsomes and hepatocytes from rats and humans.

    PubMed

    Rad, Golriz; Hoehle, Simone I; Kuester, Robert K; Sipes, I Glenn

    2010-06-01

    2,2-Bis(bromomethyl)-1,3-propanediol (BMP) is a brominated flame retardant used in unsaturated polyester resins. In a 2-year bioassay BMP was shown to be a multisite carcinogen in rats and mice. Because glucuronidation is the key metabolic transformation of BMP by rats, in this study the in vitro hepatic glucuronidation of BMP was compared across several species. In addition, the glucuronidation activities of human intestinal microsomes and specific human hepatic UDP-glucuronosyltransferase (UGT) enzymes for BMP were determined. To explore other possible routes of metabolism for BMP, studies were conducted with rat and human hepatocytes. Incubation of hepatic microsomes with BMP in the presence of UDP-glucuronic acid resulted in the formation of a BMP monoglucuronide. The order of hepatic microsomal glucuronidation activity of BMP was rats, mice > hamsters > monkeys > humans. The rate of glucuronidation by rat hepatic microsomes was 90-fold greater than that of human hepatic microsomes. Human intestinal microsomes converted BMP to BMP glucuronide at a rate even lower than that of human hepatic microsomes. Among the human UGT enzymes tested, only UGT2B7 had detectable glucuronidation activity for BMP. BMP monoglucuronide was the only metabolite formed when BMP was incubated with suspensions of freshly isolated hepatocytes from male F-344 rats or with cryopreserved human hepatocytes. Glucuronidation of BMP in human hepatocytes was extremely low. Overall, the results support in vivo studies in rats in which BMP glucuronide was the only metabolite found. The poor glucuronidation capacity of humans for BMP suggests that the pharmacokinetic profile of BMP in humans will be dramatically different from that of rodents. PMID:20200232

  20. In Vitro Glucuronidation of 2,2-Bis(bromomethyl)-1,3-propanediol by Microsomes and Hepatocytes from Rats and Humans

    PubMed Central

    Rad, Golriz; Hoehle, Simone I.; Kuester, Robert K.

    2010-01-01

    2,2-Bis(bromomethyl)-1,3-propanediol (BMP) is a brominated flame retardant used in unsaturated polyester resins. In a 2-year bioassay BMP was shown to be a multisite carcinogen in rats and mice. Because glucuronidation is the key metabolic transformation of BMP by rats, in this study the in vitro hepatic glucuronidation of BMP was compared across several species. In addition, the glucuronidation activities of human intestinal microsomes and specific human hepatic UDP-glucuronosyltransferase (UGT) enzymes for BMP were determined. To explore other possible routes of metabolism for BMP, studies were conducted with rat and human hepatocytes. Incubation of hepatic microsomes with BMP in the presence of UDP-glucuronic acid resulted in the formation of a BMP monoglucuronide. The order of hepatic microsomal glucuronidation activity of BMP was rats, mice ≫ hamsters > monkeys ⋙ humans. The rate of glucuronidation by rat hepatic microsomes was 90-fold greater than that of human hepatic microsomes. Human intestinal microsomes converted BMP to BMP glucuronide at a rate even lower than that of human hepatic microsomes. Among the human UGT enzymes tested, only UGT2B7 had detectable glucuronidation activity for BMP. BMP monoglucuronide was the only metabolite formed when BMP was incubated with suspensions of freshly isolated hepatocytes from male F-344 rats or with cryopreserved human hepatocytes. Glucuronidation of BMP in human hepatocytes was extremely low. Overall, the results support in vivo studies in rats in which BMP glucuronide was the only metabolite found. The poor glucuronidation capacity of humans for BMP suggests that the pharmacokinetic profile of BMP in humans will be dramatically different from that of rodents. PMID:20200232

  1. The metabolism of 17 alpha-ethinyloestradiol by human liver microsomes: formation of catechol and chemically reactive metabolites.

    PubMed

    Purba, H S; Maggs, J L; Orme, M L; Back, D J; Park, B K

    1987-04-01

    The metabolism of 17 alpha-ethinyloestradiol (EE2) to catechol and reactive metabolites by human liver microsomes was investigated. 2-Hydroxyethinyloestradiol (2-OHEE2) was either the sole or principal metabolite. Small amounts of 6-hydroxyethinyloestradiol and 16-hydroxyethinyloestradiol were produced by some of the livers. EE2 (10 microM) underwent substantial (5-20% of incubated drug), though highly variable, NADPH-dependent metabolism to material irreversibly bound to microsomal protein. 2-OHEE2 appeared to be the pro-reactive metabolite. The maximum EE2 2-hydroxylase activity was 0.67 nmol min-1 mg-1 microsomal protein, with a Km value of 8.6 microM. Oestradiol, which is mainly hydroxylated to 2-hydroxyoestradiol, was the most potent inhibitor of hydroxylase activity and exhibited competitive inhibition. Progesterone, which undergoes 2-hydroxylation to a minor extent was also a competitive inhibitor, whereas cholesterol and cortisol did not have any appreciable inhibitory effect. Primaquine was the most potent non-steroidal inhibitor but was non-competitive. Other non-steroidal compounds investigated, e.g. antipyrine, did not show any significant effect on EE2 2-hydroxylation. The results of this study suggest that EE2 2-hydroxylation is metabolised by a form(s) of cytochrome P-450 which has affinity for endogenous steroids. PMID:3555579

  2. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability.

    PubMed

    Liu, Ruifeng; Schyman, Patric; Wallqvist, Anders

    2015-08-24

    To lower the possibility of late-stage failures in the drug development process, an up-front assessment of absorption, distribution, metabolism, elimination, and toxicity is commonly implemented through a battery of in silico and in vitro assays. As in vitro data is accumulated, in silico quantitative structure-activity relationship (QSAR) models can be trained and used to assess compounds even before they are synthesized. Even though it is generally recognized that QSAR model performance deteriorates over time, rigorous independent studies of model performance deterioration is typically hindered by the lack of publicly available large data sets of structurally diverse compounds. Here, we investigated predictive properties of QSAR models derived from an assembly of publicly available human liver microsomal (HLM) stability data using variable nearest neighbor (v-NN) and random forest (RF) methods. In particular, we evaluated the degree of time-dependent model performance deterioration. Our results show that when evaluated by 10-fold cross-validation with all available HLM data randomly distributed among 10 equal-sized validation groups, we achieved high-quality model performance from both machine-learning methods. However, when we developed HLM models based on when the data appeared and tried to predict data published later, we found that neither method produced predictive models and that their applicability was dramatically reduced. On the other hand, when a small percentage of randomly selected compounds from data published later were included in the training set, performance of both machine-learning methods improved significantly. The implication is that 1) QSAR model quality should be analyzed in a time-dependent manner to assess their true predictive power and 2) it is imperative to retrain models with any up-to-date experimental data to ensure maximum applicability. PMID:26170251

  3. Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes.

    PubMed

    Kuehl, Gwendolyn E; Bigler, Jeannette; Potter, John D; Lampe, Johanna W

    2006-02-01

    Acetylsalicylic acid (aspirin) is a common nonsteroidal anti-inflammatory drug used for treatment of pain and arthritis. In the body, acetylsalicylic acid is rapidly deacetylated to form salicylic acid. Both compounds have been proposed as anti-inflammatory agents. Major metabolites of salicylic acid are its acyl and phenolic glucuronide conjugates. Formation of these conjugates, catalyzed by UDP-glucuronosyltransferases (UGTs), decreases the amount of pharmacologically active salicylic acid present. We aimed to identify the UGTs catalyzing the glucuronidation of salicylic acid using both heterologously expressed enzymes and pooled human liver microsomes (HLMs) and to develop a liquid chromatography-tandem mass spectrometry method to quantify glucuronidation activity of UGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17 Supersomes. All UGTs tested, except 1A4, 2B15, and 2B17, catalyzed salicylic acid phenolic and acyl glucuronidation. Ratios of salicylic acid phenolic to acyl glucuronide formation varied more than 12-fold from 0.5 for UGT1A6 to 6.1 for UGT1A1. These results suggest that all UGTs except 1A4, 2B15, and 2B17 might be involved in the glucuronidation of salicylic acid in vivo. From comparisons of apparent Km values determined in pooled HLMs and in expressed UGTs, UGT2B7 was suggested as a likely catalyst of salicylic acid acyl glucuronidation, whereas multiple UGTs were suggested as catalysts of phenolic glucuronidation. The results of this UGT screening may help target future evaluation of the effects of UGT polymorphisms on response to aspirin in clinical and population-based studies. PMID:16258079

  4. The Nonspecific Binding of Tyrosine Kinase Inhibitors to Human Liver Microsomes.

    PubMed

    Burns, Kushari; Nair, Pramod C; Rowland, Andrew; Mackenzie, Peter I; Knights, Kathleen M; Miners, John O

    2015-12-01

    Drugs and other chemicals frequently bind nonspecifically to the constituents of an in vitro incubation mixture, particularly the enzyme source [e.g., human liver microsomes (HLM)]. Correction for nonspecific binding (NSB) is essential for the accurate calculation of the kinetic parameters Km, Clint, and Ki. Many tyrosine kinase inhibitors (TKIs) are lipophilic organic bases that are nonionized at physiologic pH. Attempts to measure the NSB of several TKIs to HLM by equilibrium dialysis proved unsuccessful, presumably due to the limited aqueous solubility of these compounds. Thus, the addition of detergents to equilibrium dialysis samples was investigated as an approach to measure the NSB of TKIs. The binding of six validation set nonionized lipophilic bases (felodipine, isradipine, loratidine, midazolam, nifedipine, and pazopanib) to HLM (0.25 mg/ml) was shown to be unaffected by the addition of CHAPS (6 mM) to the dialysis medium. This approach was subsequently applied to measurement of the binding of axitinib, dabrafenib, erlotinib, gefitinib, ibrutinib, lapatinib, nilotinib, nintedanib, regorafenib, sorafenib, and trametinib to HLM (0.25 mg/ml). As with the validation set drugs, attainment of equilibrium was demonstrated in HLM-HLM and buffer-buffer control dialysis experiments. Values of the fraction unbound to HLM ranged from 0.14 (regorafenib and sorafenib) to 0.93 (nintedanib), and were generally consistent with the known physicochemical determinants of drug NSB. The extensive NSB of many TKIs to HLM underscores the importance of correction for TKI binding to HLM and, presumably, other enzyme sources present in in vitro incubation mixtures. PMID:26443648

  5. Biotransformation of lovastatin--III. Effect of cimetidine and famotidine on in vitro metabolism of lovastatin by rat and human liver microsomes.

    PubMed

    Vyas, K P; Kari, P H; Wang, R W; Lu, A Y

    1990-01-01

    The effects of the H2-receptor antagonists, cimetidine and famotidine, on the microsomal metabolism of [14C]lovastatin were investigated. Liver microsomes were prepared from control, phenobarbital- and 3-methylcholanthrene-pretreated rats and humans (male and female). Concentration-dependent inhibition of the metabolism of lovastatin (0.1 mM) was observed with cimetidine (0.1 to 1.0 mM). In contrast, famotidine at a similar concentration was a very weak inhibitor. The formation of 6'beta-hydroxy-lovastatin, the major microsomal metabolite of lovastatin, was similarly inhibited. The results suggest that in vivo metabolic interaction with concomitantly administered lovastatin is less likely with famotidine than with cimetidine. Phenobarbital pretreatment produced 58% stimulation in overall metabolism, whereas 3-methylcholanthrene pretreatment had no effect relative to control rats (5.4 nmol/mg protein/min). Liver microsomes from phenobarbital-pretreated rats produced 67% more of the 6'beta-hydroxy-lovastatin but 63-66% less of the 3''-hydroxy and 6'-exomethylene metabolites. Liver microsomes from 3-methylcholanthrene-treated rats also produced less 3"-hydroxy-lovastatin (49%) but similar quantities of the other two metabolites. 6'beta-Hydroxy-lovastatin was a major metabolite with human liver microsomes. Interestingly with these microsomes, hydroxylation at the 3''-position of the molecule was a negligible pathway and hydrolysis to the hydroxy acid form was not observed. The formation of 6'-exomethylene-lovastatin was also catalyzed by human liver microsomes (0.5 to 0.8 nmol/mg protein/min). PMID:2297361

  6. In vitro metabolism of benzo[a]pyrene and dibenzo[def,p]chrysene in rodent and human hepatic microsomes

    PubMed Central

    Crowell, S.R.; Hanson-Drury, S.; Williams, D.E.; Corley, R.A.

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and often carcinogenic contaminants released into the environment during natural and anthropogenic combustion processes. Benzo[a]pyrene (B[a]P) is the prototypical carcinogenic PAH, and dibenzo[def,p]chrysene (DBC) is a less prevalent, but highly potent transplacental carcinogenic PAH. Both are metabolically activated by isoforms of the cytochrome P450 enzyme superfamily to form reactive carcinogenic and cytotoxic metabolites. Metabolism of B[a]P and DBC was studied in hepatic microsomes of male Sprague-Dawley rats, naïve and pregnant female B6129SF1/J mice, and female humans, corresponding to available pharmacokinetic data. Michaelis–Menten saturation kinetic parameters including maximum rates of metabolism (VMAX, nmol/min/mg microsomal protein), affinity constants (KM, μM), and rates of intrinsic clearance (CLINT, ml/min/kg body weight) were calculated from substrate depletion data. CLINT was also estimated from substrate depletion data using the alternative in vitro half-life method. VMAX and CLINT were higher for B[a]P than DBC, regardless of species. Clearance for both B[a]P and DBC was highest in naïve female mice and lowest in female humans. Clearance rates of B[a]P and DBC in male rat were more similar to female human than to female mice. Clearance of DBC in liver microsomes from pregnant mice was reduced compared to naïve mice, consistent with reduced active P450 protein levels and elevated tissue concentrations and residence times for DBC observed in previous in vivo pharmacokinetic studies. These findings suggest that rats are a more appropriate model organism for human PAH metabolism, and that pregnancy's effects on metabolism should be further explored. PMID:24769260

  7. Stereochemical aspects of vinylcyclohexene bioactivation in rodent hepatic microsomes and purified human cytochrome P450 enzyme systems.

    PubMed

    Fontaine, S M; Mash, E A; Hoyer, P B; Sipes, I G

    2001-02-01

    The racemic mixture of 4-vinylcyclohexene (VCH) forms ovotoxic epoxides [VCH-1,2-epoxide, VCH-7,8-epoxide, and vinylcyclohexene diepoxide (VCD)] by cytochrome P450 (CYP) in B6C3F(1) female mice. These epoxides deplete primordial and primary follicles. The current studies compared in vitro epoxidation of (R)-VCH with that of (S)-VCH in hepatic microsomes prepared from adult female B6C3F(1) mice and Fischer 344 rats. Bioactivation of VCH in the rat was significantly less compared with that in the mouse. (R)-VCH formed significantly more VCH-1,2-epoxide as compared with (S)-VCH in both species, and less VCH-7,8-epoxide in the mouse. Neither of the enantiomers formed detectable amounts of VCD in the mouse or rat. Hepatic microsomes prepared from mice and rats pretreated with CYP-inducing agents (phenobarbital and acetone) were also incubated with (R)-VCH or (S)-VCH. Although monoepoxide formation was not increased enantioselectively in the mouse, VCD was formed preferentially from (R)-VCH as compared with (S)-VCH. Pretreatment with VCH resulted in nonstereoselective increases in both monoepoxide and diepoxide formation. In the rat, these pretreatments resulted in nonstereoselective increases in monoepoxide formation, but VCD formation was not detectable. Incubations with human CYP2E1 enzyme revealed that (R)-VCH formed significantly more VCH-1,2-epoxide and less VCH-7,8-epoxide than (S)-VCH. Human CYP2A6 was limited in its ability to form epoxides from either enantiomer of VCH. Human CYP2B6 preferentially formed VCH-7,8-epoxide compared with VCH-1,2-epoxide, and to a greater extent from (R)-VCH than from (S)-VCH. These results demonstrate regioselectivity and enantioselectivity in the bioactivation of VCH in rodent hepatic microsomes as well as in expressed human CYP enzymes. PMID:11159809

  8. Inhibitory effects of psychotropic drugs on mexiletine metabolism in human liver microsomes: prediction of in vivo drug interactions.

    PubMed

    Hara, Y; Nakajima, M; Miyamoto, K-I; Yokoi, T

    2005-06-01

    Mexiletine, an anti-arrhythmic agent, is used for the control of ventricular arrhythmias and for neuropathic pain from cancer or diabetes mellitus. It is sometimes used together with psychotropic drugs in patients with depression, schizophrenia or sleep disorder. It is metabolized mainly by cytochrome P450 (CYP) 2 D 6 and, to a minor extent, by CYP1A2. To predict possible drug interactions between mexiletine and psychotropic drugs, the inhibitory effects of 14 psychotropic drugs (phenytoin, carbamazepine, fluvoxamine, paroxetine, fluoxetine, citalopram, sertraline, imipramine, desipramine, haloperidol, thioridazine, olanzapine, etizolam, and quazepam) on mexiletine metabolism in human liver microsomes were determined. Fluoxetine (Ki=0.6+/- 0.1 microM), sertraline (Ki=7.6+/- 0.8 microM) and desipramine (Ki=3.2+/- 0.5 microM) competitively inhibited the mexiletine p-hydroxylation in human liver microsomes. Thioridazine (Kis=0.5+/- 0.2 microM; Kii =3.6+/-1.6 microM) and paroxetine (Kis=1.7+/- 0.7 microM; Kii=3.6+/- 0.9 microM) exhibited a mixed-type inhibition (competitive and non-competitive) toward mexiletine p-hydroxylation in human liver microsomes. The changes of the in vivo clearance of mexiletine by the psychotropic drugs were predicted by 1+(I/Ki) using the in vitro Ki and unbound inhibitor concentrations in liver. The values were calculated as 2.4 for paroxetine, 5.5 for fluoxetine, 1.1 for sertraline, 2.8 for desipramine and 2.2 for thioridazine. In addition, paroxetine exhibited a mechanism-based inactivation with Ki=0.7 microM and Kinact=0.15 min(-1). The present study predicted the possibility of drug interactions between mexiletine and paroxetine, fluoxetine, desipramine, and thioridazine in clinical use. PMID:16192107

  9. Validation of 4-nitrophenol as an in vitro substrate probe for human liver CYP2E1 using cDNA expression and microsomal kinetic techniques.

    PubMed

    Tassaneeyakul, W; Veronese, M E; Birkett, D J; Gonzalez, F J; Miners, J O

    1993-12-01

    The involvement of human cytochrome P450 (CYP) 2E1 in the hydroxylation of 4-nitrophenol (4NP) to 4-nitrocatechol (4NC) has been investigated using cDNA expression and liver microsomal kinetic and inhibitor techniques. 4NP hydroxylation by human liver microsomes and cDNA-expressed human CYP2E1 exhibited Michaelis-Menten kinetics; the respective apparent Km values were 30 +/- 7 and 21 microM. Mutual competitive inhibition was observed for 4NP and chlorzoxazone (CZ) (an alternative human CYP2E1 substrate) in liver microsomes, with close similarities between the calculated apparent Km and Ki values for each individual compound. 4NP and CZ hydroxylase activities in microsomes from 18 liver donors varied to a similar extent (3.3- and 3.0-fold, respectively) and 4NP hydroxylase activity correlated significantly (rs > or = 0.75, P < 0.005) with both CZ hydroxylation and immunoreactive CYP2E1 content. The prototypic CYP2E1 inhibitor, diethyldithiocarbamate, was a potent inhibitor of 4NC formation and decreased 4NP hydroxylation by cDNA-expressed CYP2E1 and human liver microsomes in parallel. Probes for other human CYP isoforms namely (alpha-naphthoflavone, coumarin, sulphaphenazole, quinidine, troleandomycin and mephenytoin) caused < 15% inhibition of liver microsomal 4NP hydroxylation. These data confirm that, as in animal species, 4NP hydroxylation is catalysed largely by CYP2E1 in human liver and 4NP may therefore be used as an in vitro substrate probe for the human enzyme. PMID:8267647

  10. Biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by human liver microsomes: identification of cytochrome P450 2B6 as the major enzyme involved.

    PubMed

    Erratico, Claudio A; Szeitz, András; Bandiera, Stelvio M

    2013-05-20

    Polybrominated diphenyl ethers (PBDEs) were widely used flame retardants that have become persistent environmental pollutants. In the present study, we investigated the in vitro oxidative metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a major PBDE detected in human tissue and environmental samples. Biotransformation of BDE-47 by pooled and individual human liver microsomes and by human recombinant cytochrome P450 (P450) enzymes was assessed using a liquid chromatography/tandem mass spectrometry-based method. Of the nine hydroxylated metabolites of BDE-47 produced by human liver microsomes, seven metabolites were identified using authentic standards. A monohydroxy-tetrabrominated and a dihydroxy-tetrabrominated metabolite remain unidentified. Kinetic analysis of the rates of metabolite formation revealed that the major metabolites were 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE-47), 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47), and possibly the unidentified monohydroxy-tetrabrominated metabolite. Among the human recombinant P450 enzymes tested, P450 2B6 was the most active enzyme in the formation of the hydroxylated metabolites of BDE-47. Moreover, the formation of all metabolites of BDE-47 by pooled human liver microsomes was inhibited by a P450 2B6-specific antibody and was highly correlated with P450 2B6-mediated activity in single donor liver microsomes indicating that P450 2B6 was the major P450 responsible for the biotransformation of BDE-47. Additional experiments involving the incubation of liver microsomes with individual monohydroxy-tetrabrominated metabolites in place of BDE-47 demonstrated that 2,4-dibromophenol was a product of BDE-47 and several primary metabolites, but the dihydroxy-tetrabrominated metabolite was not formed by sequential hydroxylation of any of the monohydroxy-tetrabrominated metabolites tested. The present study provides a comprehensive characterization of the oxidative metabolism of BDE-47 by

  11. Metabolism of Anandamide by Human Cytochrome P450 2J2 in the Reconstituted System and Human Intestinal Microsomes.

    PubMed

    Walker, Vyvyca J; Griffin, Alisha P; Hammar, Dagan K; Hollenberg, Paul F

    2016-06-01

    According to the Centers for Disease Control and Prevention, the incidence of inflammatory bowel diseases (IBD) is about 1 in 250 people in the United States. The disease is characterized by chronic or recurring inflammation of the gut. Because of the localization of the endocannabinoid system in the gastrointestinal tract, it may be a potential pharmacologic target for the treatment of IBD and other diseases. Fatty acid amide hydrolase (FAAH) is a potential candidate because it is upregulated in IBD. FAAH hydrolyzes and, as a consequence, inactivates anandamide (AEA), a prominent endocannabinoid. Inhibition of FAAH would lead to increases in the amount of AEA oxidized by cytochrome P450s (P450s). CYP2J2, the major P450 epoxygenase expressed in the heart, is also expressed in the intestine and has previously been reported to oxidize AEA. We have investigated the possibility that it may play a role in AEA metabolism in the gut and have demonstrated that purified human CYP2J2 metabolizes AEA to form the 20-hydroxyeicosatetraenoic acid ethanolamide (HETE-EA) and several epoxygenated products, including the 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EET-EAs), in the reconstituted system. Kinetic studies suggest that the KM values for these products range from approximately 10 to 468 μM and the kcat values from 0.2 to 23.3 pmol/min per picomole of P450. Human intestinal microsomes, which express CYP2J2, metabolize AEA to give the 5,6-, 8,9-, and 11,12-EET-EAs, as well as 20-HETE-EA. Studies using specific P450 inhibitors suggest that although CYP2J2 metabolizes AEA, it is not the primary P450 responsible for AEA metabolism in human intestines. PMID:27000802

  12. Identification of Human UDP-Glucuronosyltransferase 1A4 as the Major Isozyme Responsible for the Glucuronidation of 20(S)-Protopanaxadiol in Human Liver Microsomes

    PubMed Central

    Li, Jia; He, Chunyong; Fang, Lianxiang; Yang, Li; Wang, Zhengtao

    2016-01-01

    20(S)-protopanaxadiol (PPD), one of the representative aglycones of ginsenosides, has a broad spectrum of pharmacological activities. Although phase I metabolism has been investigated extensively, information regarding phase II metabolism of this compound remains to be elucidated. Here, a glucuronidated metabolite of PPD in human liver microsomes (HLMs) and rat liver microsomes (RLMs) was unambiguously identified as PPD-3-O-β-d-glucuronide by nuclear magnetic resonance spectroscopy and high resolution mass spectrometry. The chemical inhibition and recombinant human UDP-Glucuronosyltransferase (UGT) isoforms assay showed that the PPD glucuronidation was mainly catalyzed by UGT1A4 in HLM, whereas UGT1A3 showed weak catalytic activity. In conclusion, PPD-3-O-β-d-glucuronide was first identified as the principal glucuronidation metabolite of PPD in HLMs, which was catalyzed by UGT1A4. PMID:27005621

  13. Effects of capsaicin and dihydrocapsaicin on human and rat liver microsomal CYP450 enzyme activities in vitro and in vivo.

    PubMed

    Zhang, Qing-Hao; Hu, Jin-Ping; Wang, Bao-Lian; Li, Yan

    2012-01-01

    Capsaicin and dihydrocapsaicin, the two most abundant members of capsaicinoids in chili peppers, are widely used as food additives and for other purposes. In this study, we examined the inhibitory potentials of capsaicin and dihydrocapsaicin against CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4/5 activities in human liver microsomes. The effects of these two capsaicinoids on CYP450 enzymes were also evaluated in vivo in rats. The results demonstrated that capsaicin and dihydrocapsaicin moderately inhibited five isozymes (IC₅₀) values ranging from 4.4 to 61.8 μM), with the exception of CYP2E1 (IC₅₀ > 200 μM). Both capsaicinoids exhibited competitive, mixed, and noncompetitive inhibition on these isozymes (K (i) = 3.1 ± 0.5 - 78.6 ± 8.4 μM). Time-dependent inhibition of CYP3A4/5 by capsaicin was found. After multiple administrations of capsaicin and dihydrocapsaicin (1, 4, and 10 mg/kg) to rats, chlorzoxazone 6-hydroxylase activity and the expression of CYP2E1 were increased in liver microsomes. Our findings indicated that the possibility of food-drug interactions mediated by capsaicin and dihydrocapsaicin could not be excluded, and provided the useful information for evaluating the anticarcinogenic potentials of these two capsaicinoids. PMID:22375877

  14. Nonenzymatic formation of a novel hydroxylated sulfamethoxazole derivative in human liver microsomes: implications for bioanalysis of sulfamethoxazole metabolites.

    PubMed

    Sanderson, Joseph P; Hollis, Frank J; Maggs, James L; Clarke, Stephen E; Naisbitt, Dean J; Park, B Kevin

    2008-12-01

    Sulfamethoxazole is metabolized by microsomal CYP2C9 to a hydroxylamine that is thought to be responsible for the relatively high incidence of hypersensitivity reactions associated with the drug. Accurate quantification of the hydroxylamine requires the loss of metabolite through autoxidation to be blocked with ascorbate. In this study, a partly nonenzymatically generated arylhydroxylated derivative of sulfamethoxazole was identified by liquid chromatography/mass spectrometry in incubations of human liver microsomes, and it was found to coelute with the isomeric hydroxylamine under the conditions of three published high-performance liquid chromatography (HPLC) assays. Partial inhibition of the aryl hydroxylation by 1-aminobenzotriazole suggested some involvement of cytochrome P450. However, the formation of this compound was ascorbate-dependent, and it was enhanced by the addition of Fe2+/EDTA and inhibited by desferrioxamine but not by mannitol. These findings are consistent with the phenol being generated via an Fe2+/ascorbate/O2-oxygenating system that does not involve hydroxyl radicals. It was also produced by H2O2/ascorbate. Because the compound shares close chromatographic similarities with the hydroxylamine metabolite, it is possible that previous studies may have inaccurately characterized or quantified sulfamethoxazole metabolism. PMID:18765684

  15. Metabolites profiling of 10 bufadienolides in human liver microsomes and their cytotoxicity variation in HepG2 cell.

    PubMed

    Han, Lingyu; Wang, Hongjie; Si, Nan; Ren, Wei; Gao, Bo; Li, Yan; Yang, Jian; Xu, Miao; Zhao, Haiyu; Bian, Baolin

    2016-04-01

    Bufadienolides, a class of polyhydroxy steroids, exhibit significant antitumor activity. In this study, a total of 39 metabolites from 10 bufadienolides were detected and identified by ultrahigh-performance liquid chromatography (UHPLC) coupled with an LTQ Orbitrap mass spectrometer. The results showed that hydroxylation and dehydrogenation were the major metabolic pathways of bufadienolides in human liver microsomes (HLMs). CYP3A4 was found to be the major metabolic enzyme and CYP2D6 only mediated the dehydrogenation reaction. A systematic validated cytotoxicity evaluation method for bufadienolide metabolites at equal equivalents was established. Hellebrigenin (1), hellebrigenol (2), arenobufagin (3), bufotalin (5), and bufalin (6) were selected to determine their cytotoxicity against HepG2 cells before and after incubation in HLMs. All the test samples were enriched by a validated solid-phase extraction (SPE) method. Although the cytotoxicities of metabolites were weaker than those of the parent compounds to different degrees, their effects were still strong. PMID:26869342

  16. Relationship of Metabolism and Cell Proliferation to the Mode of Action of Fluensulfone-Induced Mouse Lung Tumors: Analysis of Their Human Relevance Using the IPCS Framework

    PubMed Central

    Strupp, Christian; Banas, Deborah A.; Cohen, Samuel M.; Gordon, Elliot B.; Jaeger, Martina; Weber, Klaus

    2012-01-01

    Species-specific lung tumors in the mouse are induced by a number of chemicals. The underlying cause appears to be a high metabolic activity of mouse lung, due to relatively high abundance of Clara cells in mice compared with humans and the mouse-specific cytochrome P450 isoform 2f2 in the Clara cells. The chemicals are activated to reactive intermediates, leading to local cytotoxicity or mitogenicity resulting in increased cell proliferation and tumors. Rats have lower metabolic activity than mice (already below the threshold needed to cause lung tumors upon lifetime exposure) and activity in humans is lower than in rats. The carcinogenic risk for human lung is low for this mode of action (MOA). Fluensulfone has shown an increased incidence of lung adenomas in mice, but not in rats, at high doses. Fluensulfone is not genotoxic. MOA studies were conducted investigating key events of the postulated MOA. Fluensulfone is extensively metabolized by mouse lung microsomes, whereas no metabolic activity is seen with human lung microsomes. Cyp 2f2 is a major contributor in fluensulfone’s metabolism and Cyp 2e1 is not involved. Furthermore, administration of fluensulfone to mice led to an early increase in Clara cell proliferation. The International Programme on Chemical Safety (IPCS) MOA and human relevance framework was used to evaluate the collective data on fluensulfone. We concluded that fluensulfone leads to species-specific mouse lung tumors and that these tumors are likely not relevant to human hazard or risk. PMID:22491425

  17. Pharmacokinetic study of isocorynoxeine metabolites mediated by cytochrome P450 enzymes in rat and human liver microsomes.

    PubMed

    Zhao, Lizhu; Zang, Bin; Qi, Wen; Chen, Fangfang; Wang, Haibo; Kano, Yoshihiro; Yuan, Dan

    2016-06-01

    Isocorynoxeine (ICN) is one of the major bioactive tetracyclic oxindole alkaloids found in Uncaria rhynchophylla (Miq.) Jacks. that is widely used for the treatment of hypertension, vascular dementia, and stroke. The present study was undertaken to assess the plasma pharmacokinetic characteristics of major ICN metabolites, and the role of simulated gastric and intestinal fluid (SGF and SIF), human and rat liver microsomes (HLMs and RLMs), and seven recombinant human CYP enzymes in the major metabolic pathway of ICN. A rapid, sensitive and accurate UHPLC/Q-TOF MS method was validated for the simultaneous determination of ICN and its seven metabolites in rat plasma after oral administration of ICN at 40mg/kg. It was found that 18.19-dehydrocorynoxinic acid (DCA) and 5-oxoisocorynoxeinic acid (5-O-ICA) were both key and predominant metabolites, rather than ICN itself, due to the rapid and extensive metabolism of ICN in vivo. The further study indicated that ICN was mainly metabolized in human or rat liver, and CYPs 2C19, 3A4 and 2D6 were the major enzymes responsible for the biotransformation of ICN to DCA and 5-O-ICA in human. These findings are of significance in understanding of the pharmacokinetic nature of tetracyclic oxindole alkaloids, and provide helpful information for the clinical co-administration of the herbal preparations containing U. rhynchophylla with antihypertensive drugs that are mainly metabolized by CYP3A4 and CYP2C19. PMID:27094112

  18. Formation of GSH-trapped reactive metabolites in human liver microsomes, S9 fraction, HepaRG-cells, and human hepatocytes.

    PubMed

    Lassila, Toni; Rousu, Timo; Mattila, Sampo; Chesné, Christophe; Pelkonen, Olavi; Turpeinen, Miia; Tolonen, Ari

    2015-11-10

    The objective was to compare several in vitro human liver-derived subcellular and cellular incubation systems for the formation of GSH-trapped reactive metabolites. Incubations of pooled human liver microsomes, human liver S9 fractions, HepaRG-cells, and human hepatocytes were performed with glutathione as a trapping agent. Experiments with liver S9 were performed under two conditions, using only NADPH and using a full set of cofactors enabling also conjugative metabolism. Ten structurally different compounds were used as a test set, chosen as either "positive" (ciprofloxacin, clozapine, diclofenac, ethinyl estradiol, pulegone, and ticlopidine) or "negative" (caffeine, citalopram, losartan, montelukast) compounds, based on their known adverse reactions on liver or bone marrow. GSH conjugates were observed for seven of the ten compounds; while no conjugates were observed for caffeine, citalopram, or ciprofloxacin. Hepatocyte and HepaRG assays produced a clearly lower number and lower relative abundance of GSH conjugates compared to assays with microsomes and S9 fractions. The major GSH conjugates were different for many compounds in cellular subfractions and cell-based systems. Hepatocytes generally produced a higher number of GSH conjugates than HepaRG cells, although the differences were minor. The results show that the hepatic enzyme system used for screening of GSH-trapped reactive metabolites do have a high impact on the results, and results between different systems are comparable only qualitatively. PMID:26263063

  19. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity

    SciTech Connect

    Watanabe, Yoko; Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Sanoh, Seigo; Sugihara, Kazumi; Kitamura, Shigeyuki; Ohta, Shigeru

    2015-01-15

    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOH BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with rat liver

  20. Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation.

    PubMed

    Zhu, Yanlin; Wang, Fen; Li, Quan; Zhu, Mingshe; Du, Alicia; Tang, Wei; Chen, Weiqing

    2014-02-01

    Amlodipine is a commonly prescribed calcium channel blocker for the treatment of hypertension and ischemic heart disease. The drug is slowly cleared in humans primarily via dehydrogenation of its dihydropyridine moiety to a pyridine derivative (M9). Results from clinical drug-drug interaction studies suggest that CYP3A4/5 mediate metabolism of amlodipine. However, attempts to identify a role of CYP3A5 in amlodipine metabolism in humans based on its pharmacokinetic differences between CYP3A5 expressers and nonexpressers failed. Objectives of this study were to determine the metabolite profile of amlodipine (a racemic mixture and S-isomer) in human liver microsomes (HLM), and to identify the cytochrome P450 (P450) enzyme(s) involved in the M9 formation. Liquid chromatography/mass spectrometry analysis showed that amlodipine was mainly converted to M9 in HLM incubation. M9 underwent further O-demethylation, O-dealkylation, and oxidative deamination to various pyridine derivatives. This observation is consistent with amlodipine metabolism in humans. Incubations of amlodipine with HLM in the presence of selective P450 inhibitors showed that both ketoconazole (an inhibitor of CYP3A4/5) and CYP3cide (an inhibitor of CYP3A4) completely blocked the M9 formation, whereas chemical inhibitors of other P450 enzymes had little effect. Furthermore, metabolism of amlodipine in expressed human P450 enzymes showed that only CYP3A4 had significant activity in amlodipine dehydrogenation. Metabolite profiles and P450 reaction phenotyping data of a racemic mixture and S-isomer of amlodipine were very similar. The results from this study suggest that CYP3A4, rather than CYP3A5, plays a key role in metabolic clearance of amlodipine in humans. PMID:24301608

  1. In vitro characterization of 4'-(p-toluenesulfonylamide)-4-hydroxychalcone using human liver microsomes and recombinant cytochrome P450s.

    PubMed

    Lee, Boram; Wu, Zhexue; Lee, Taeho; Tan, Xue Fei; Park, Ki Hun; Liu, Kwang-Hyeon

    2016-01-01

    1. 4'-(p-Toluenesulfonylamide)-4-hydroxychalcone (TSAHC) is a synthetic sulfonylamino chalcone compound possessing anti-cancer properties. The aim of this study was to elucidate the metabolism of TSAHC in human liver microsomes (HLMs) and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of TSAHC. 2. TSAHC was incubated with HLMs or recombinant P450 isoforms (rP450) in the presence of an nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-regenerating system. The metabolites were identified and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). P450 isoforms, responsible for TSAHC metabolite formation, were characterized by chemical inhibition and correlation studies in HLMs and enzyme kinetic studies with a panel of rP450 isoforms. 3. Two hydroxyl metabolites, that is M1 and M2, were produced from the human liver microsomal incubations (K(m) and V(max) values were 2.46 µM and 85.1 pmol/min/mg protein for M1 and 9.98 µM and 32.1 pmol/min/mg protein for M2, respectively). The specific P450 isoforms responsible for two hydroxy-TSAHC formations were identified using a combination of chemical inhibition, correlation analysis and metabolism by expressed recombinant P450 isoforms. The known P450 enzyme activities and the rate of TSAHC metabolite formation in the 15 HLMs showed that TSAHC metabolism is correlated with CYP2C and CYP3A activity. The P450 isoform-selective inhibition study in HLMs and the incubation study of cDNA-expressed enzymes also showed that two hydroxyl metabolites M1 and M2 biotransformed from TSAHC are mainly mediated by CYP2C and CYP3A, respectively. These findings suggest that CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 isoforms are major enzymes contributing to TSAHC metabolism. PMID:26330107

  2. Catalytic characterization of human microsomal glutathione S-transferase 2: identification of rate-limiting steps.

    PubMed

    Ahmad, Shabbir; Niegowski, Damian; Wetterholm, Anders; Haeggström, Jesper Z; Morgenstern, Ralf; Rinaldo-Matthis, Agnes

    2013-03-12

    Microsomal glutathione S-transferase 2 (MGST2) is a 17 kDa trimeric integral membrane protein homologous to leukotriene C4 synthase (LTC4S). MGST2 has been suggested to catalyze the biosynthesis of the pro-inflammatory mediator leukotriene C4 (LTC4) in cells devoid of LTC4S. A detailed biochemical study of MGST2 is critical for the understanding of its cellular function and potential role as an LTC4-producing enzyme. Here we have characterized the substrate specificity and catalytic properties of purified MGST2 by steady-state and pre-steady-state kinetic experiments. In comparison with LTC4S, which has a catalytic efficiency of 8.7 × 10(5) M(-1) s(-1), MGST2, with a catalytic efficiency of 1.8 × 10(4) M(-1) s(-1), is considerably less efficient in producing LTC4. However, the two enzymes display a similar KM(LTA4) of 30-40 μM. While LTC4S has one activated glutathione (GSH) (forming a thiolate) per enzyme monomer, the MGST2 trimer seems to display only third-of-the-sites reactivity for thiolate activation, which in part would explain its lower catalytic efficiency. Furthermore, MGST2 displays GSH-dependent peroxidase activity of ∼0.2 μmol min(-1) mg(-1) toward several lipid hydroperoxides. MGST2, but not LTC4S, is efficient in catalyzing conjugation of the electrophilic substrate 1-chloro-2,4-dinitrobenzene (CDNB) and the lipid peroxidation product 4-hydroxy-2-nonenal with GSH. Using stopped-flow pre-steady-state kinetics, we have characterized the full catalytic reaction of MGST2 with CDNB and GSH as substrates, showing an initial rapid equilibrium binding of GSH followed by thiolate formation. Burst kinetics for the CDNB-GSH conjugation step was observed only at low GSH concentrations (thiolate anion formation becoming rate-limiting under these conditions). Product release is rapid and does not limit the overall reaction. Therefore, in general, the chemical conjugation step is rate-limiting for MGST2 at physiological GSH concentrations. MGST2 and LTC4S

  3. Postmortem inflation and fixation of human lungs

    PubMed Central

    Wright, B. M.; Slavin, G.; Kreel, L.; Callan, K.; Sandin, Brenda

    1974-01-01

    Wright, B. M., Slavin, G., Kreel, L., Callan, K., and Sandin, Brenda (1974).Thorax, 29, 189-194. Postmortem inflation and fixation of human lungs. A method of fixing lungs by inflating them with heated formalin vapour is described. This method facilitates postmortem correlations between radiographic and histological appearances. Images PMID:4598582

  4. Characterization of in vitro metabolic profiles of cinitapride obtained with liver microsomes of humans and various mammal species using UHPLC and chemometric methods for data analysis.

    PubMed

    Marquez, Helena; Albertí, Joan; Salvà, Miquel; Saurina, Javier; Sentellas, Sonia

    2012-05-01

    An ultra-high performance liquid chromatographic method has been utilized to obtain metabolic profiles of cinitapride with liver microsomes of humans and various mammal species such as rats, mice, mini pigs, dogs, and monkeys. Metabolites have been generated by incubation of cinitapride in the presence of microsomes using nicotinamide adenine dinucleotide phosphate as a cofactor. Incubation times from 15 to 60 min have been assayed. Cinitapride and its metabolites have been separated by reversed-phase C(18) mode using ammonium formate aqueous solution (pH 6.5) and acetonitrile as the components of the mobile phase. Concentrations of metabolites in the incubated samples have resulted in an excellent source of multivariate data to be used to extract metabolic information. Statistic parameters and principal component analysis have been used to compare the in vitro metabolism of humans with the other species. PMID:22362276

  5. High-performance liquid chromatographic assay for 4-nitrophenol hydroxylation, a putative cytochrome P-4502E1 activity, in human liver microsomes.

    PubMed

    Tassaneeyakul, W; Veronese, M E; Birkett, D J; Miners, J O

    1993-06-23

    A high-performance liquid chromatographic method which measures formation of product 4-nitrocatechol (4NC) has been developed and applied to the study of human liver microsomal 4-nitrophenol (4NP) hydroxylation. Following diethyl ether extraction, 4NC and the assay internal standard (salicylamide) were separated by reversed-phase (C18) liquid chromatography. Extraction efficiencies of 4NC and internal standard were both > 90%. The assay, which has a limit of detection of 15 pmol injected (or an incubation 4NC concentration of 0.25 microM), is accurate, reproducible and straightforward. With a chromatographic time of 12 min, 40-50 samples may be analyzed per day. Rates of 4NC formation were linear with time and protein concentration to 50 min and 0.5 mg/ml, respectively. Preliminary studies of 4NP hydroxylation showed that this reaction followed single enzyme Michaelis-Menten kinetics in human liver microsomes. PMID:8376495

  6. Metabolic studies of prostanozol with the uPA-SCID chimeric mouse model and human liver microsomes.

    PubMed

    Geldof, Lore; Lootens, Leen; Decroix, Lieselot; Botrè, Francesco; Meuleman, Philip; Leroux-Roels, Geert; Deventer, Koen; Van Eenoo, Peter

    2016-03-01

    Anabolic androgenic steroids are prohibited by the World Anti-Doping Agency because of their adverse health and performance enhancing effects. Effective control of their misuse by detection in urine requires knowledge about their metabolism. In case of designer steroids, ethical objections limit the use of human volunteers to perform excretion studies. Therefore the suitability of alternative models needs to be investigated. In this study pooled human liver microsomes (HLM) and an uPA(+/+)-SCID chimeric mouse model were used to examine the metabolism of the designer steroid prostanozol as a reference standard. Metabolites were detected by GC-MS (full scan) and LC-MS/MS (precursor ion scan). In total twenty-four prostanozol metabolites were detected with the in vitro and in vivo metabolism studies, which could be grouped into two broad classes, those with a 17-hydroxy- and those with a 17-keto-substituent. Major first phase metabolic sites were tentatively identified as C-3'; C-4 and C-16. Moreover, 3'- and 16β-hydroxy-17-ketoprostanozol could be unequivocally identified, since authentic reference material was available, in both models. Comparison with published data from humans showed a good correlation, except for phase II metabolism. As metabolites were in contrast to the human studies predominantly present in the free fraction. Two types of metabolites ((di)hydroxylated prostanozol metabolites) that have not been described before could be confirmed in a real positive doping control sample. Hence, the results provide further evidence for the applicability of chimeric mice and HLM to perform metabolism studies of designer steroids. PMID:26774429

  7. Comparative effects of the antimycotic drugs ketoconazole, fluconazole, itraconazole and terbinafine on the metabolism of cyclosporin by human liver microsomes.

    PubMed Central

    Back, D J; Tjia, J F

    1991-01-01

    Four antimycotic drugs, the azoles ketoconazole, itraconazole and fluconazole, and the allylamine terbinafine have been studied for their effect on the metabolism of cyclosporin by human liver microsomes (n = 3) in vitro. Ketoconazole caused marked inhibition of cyclosporin hydroxylase (to metabolites M17 and M1) with IC50 and Ki values of 0.24 +/- 0.01 and 0.022 +/- 0.004 microM, respectively. Based on IC50 values, itraconazole was ten times less potent (IC50 value of 2.2 +/- 0.2 microM) and both fluconazole and terbinafine had values above 100 microM. Ki values for itraconazole and fluconazole were 0.7 +/- 0.2 and 40 +/- 5.6 microM, respectively. No kinetic parameters were calculated for terbinafine because of the lack of inhibitory effects. Based on these data, ketoconazole is confirmed as being a potent inhibitor of cyclosporin metabolism and this has clinical relevance. Although inhibition by fluconazole was much less than that by itraconazole at equimolar concentrations, it should be noted that in patients plasma concentrations of fluconazole are much greater than those of itraconazole. Clinical interactions of cyclosporin with both fluconazole and itraconazole have been reported. In contrast to the azoles, terbinafine does not have the same potential for interaction. PMID:1659439

  8. Inhibitory effect of six herbal extracts on CYP2C8 enzyme activity in human liver microsomes.

    PubMed

    Albassam, Ahmed A; Mohamed, Mohamed-Eslam F; Frye, Reginald F

    2015-05-01

    1. Herbal supplements widely used in the US were screened for the potential to inhibit CYP2C8 activity in human liver microsomes. The herbal extracts screened were garlic, echinacea, saw palmetto, valerian, black cohosh and cranberry. N-desethylamodiaquine (DEAQ) and hydroxypioglitazone metabolite formation were used as indices of CYP2C8 activity. 2. All herbal extracts showed inhibition of CYP2C8 activity for at least one of three concentrations tested. A volume per dose index (VDI) was calculated to determine the volume in which a dose should be diluted to obtain IC50 equivalent concentration. Cranberry and saw palmetto had a VDI value > 5.0 l per dose unit, suggesting a potential for interaction. 3. Inhibition curves were constructed and the IC50 (mean ± SE) values were 24.7 ± 2.7 μg/ml for cranberry and 15.4 ± 1.7 μg/ml for saw palmetto. 4. The results suggest a potential for cranberry or saw palmetto extracts to inhibit CYP2C8 activity. Clinical studies are needed to evaluate the significance of this interaction. PMID:25430798

  9. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms.

    PubMed Central

    Andersson, T; Miners, J O; Veronese, M E; Birkett, D J

    1994-01-01

    1. The primary metabolism of diazepam was studied in human liver microsomes in order to investigate the kinetics and to identify the cytochrome P450 (CYP) isoforms responsible for the formation of the main diazepam metabolites, temazepam and N-desmethyldiazepam. 2. The formation kinetics of both metabolites were atypical and consistent with the occurrence of substrate activation. A sigmoid Vmax model equivalent to the Hill equation was used to fit the data. The degree of sigmoidicity was greater for temazepam formation than for N-desmethyldiazepam formation, so that the ratio of desmethyldiazepam:temazepam formation increased as the substrate (diazepam) concentration decreased. 3. alpha-Naphthoflavone activated both reactions but with a greater effect on temazepam formation than on N-desmethyldiazepam formation. In the presence of 25 microM alpha-naphthoflavone the kinetics for both pathways were approximated by Michaelis-Menten kinetics. 4. Studies with a series of CYP isoform selective inhibitors and with an inhibitory anti-CYP2C antibody indicated that temazepam formation was carried out mainly by CYP3A isoforms, whereas the formation of N-desmethyldiazepam was mediated by both CYP3A isoforms and S-mephenytoin hydroxylase. PMID:7981013

  10. Garlic inhibits microsomal triglyceride transfer protein gene expression in human liver and intestinal cell lines and in rat intestine.

    PubMed

    Lin, Marie C; Wang, Er-Jia; Lee, Catherine; Chin, K T; Liu, Depei; Chiu, Jen-Fu; Kung, Hsiang-Fu

    2002-06-01

    Epidemiologic studies have suggested that fresh garlic has lipid-lowering activity. Because the microsomal triglyceride transfer protein (MTP) plays a pivotal role in the assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins, we evaluated the effect of garlic on the expression of the MTP gene in vitro in cell lines and in vivo in rats. Fresh garlic extract (FGE) reduced MTP mRNA levels in both the human hepatoma HepG2 and intestinal carcinoma Caco-2 cells in dose-dependent fashion; significant reductions were detected with 3 g/L FGE. Maximal 72 and 59% reductions, respectively, were observed with 6 g/L FGE. To evaluate the in vivo effect of garlic on MTP gene expression, rats were given a single oral dose of fresh garlic homogenate (FGH), with hepatic and intestinal MTP mRNA measured 3 h after dosing. Rats fed FGH had significantly (46% of the control) lower intestinal MTP mRNA levels compared with the control rats, whereas hepatic MTP mRNA levels were not affected. These results suggest a new mechanism for the hypolipidemic effect of fresh garlic. Long-term dietary supplementation of fresh garlic may exert a lipid-lowering effect partly through reducing intestinal MTP gene expression, thus suppressing the assembly and secretion of chylomicrons from intestine to the blood circulation. PMID:12042427

  11. In vitro enantioselective human liver microsomal metabolism and prediction of in vivo pharmacokinetic parameters of tetrabenazine by DLLME-CE.

    PubMed

    Bocato, Mariana Zuccherato; de Lima Moreira, Fernanda; de Albuquerque, Nayara Cristina Perez; de Gaitani, Cristiane Masetto; de Oliveira, Anderson Rodrigo Moraes

    2016-09-01

    A new capillary electrophoresis method for the enantioselective analysis of cis- and trans- dihydrotetrabenazine (diHTBZ) after in vitro metabolism by human liver microsomes (HLMs) was developed. The chiral electrophoretic separations were performed by using tris-phosphate buffer (pH 2.5) containing 1% (w/v) carboxymethyl-β-CD as background electrolyte with an applied voltage of +15kV and capillary temperature kept at 15°C. Dispersive liquid-liquid microextraction was employed to extract the analytes from HLMs. Dichloromethane was used as extraction solvent (75μL) and acetone as disperser solvent (150μL). The method was validated according to official guidelines and showed to be linear over the concentration range of 0.29-19.57μmolL(-1) (r=0.9955) for each metabolite enantiomer. Within- and between-day precision and accuracy evaluated by relative standard deviation and relative error were lower than 15% for all enantiomers. The stability assay showed that the analytes kept stable under handling, storage and in metabolism conditions. After method validation, an enantioselective in vitro metabolism and in vivo pharmacokinetic prediction was carried out. This study showed a stereoselective metabolism and the observed kinetic profile indicated a substrate inhibition behavior. DiHTBZ enantiomers were catalyzed mainly by CYP2C19 and the predicted clearance suggests that liver metabolism is the main route for TBZ elimination which supports the literature data. PMID:27381871

  12. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  13. Cysteine amide adduct formation from carboxylic acid drugs via UGT-mediated bioactivation in human liver microsomes.

    PubMed

    Harada, H; Toyoda, Y; Endo, T; Kobayashi, M

    2015-10-01

    Although chemical trapping has been widely used to evaluate cytochrome P450-mediated drug bioactivation, thus far, only a few in vitro-trapping studies have been performed on UDP-glucuronosyltransferase (UGT)-mediated drug bioactivation. In this study, we used cysteine (Cys) as trapping agent to gain new insights into the UGT-mediated bioactivation involving acyl glucuronides of carboxylic acid drugs. Diclofenac, ketoprofen and ibuprofen were incubated in human liver microsomes with UDPGA and Cys, followed by analysis using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The N-acyl-Cys amide adduct of diclofenac was characterized by mass analysis and was detectable even in photodiode array analysis. Our data indicated that the formation of such adducts reflects the reactivity of the corresponding acyl glucuronides. In addition, it was suggested that the adduct formation requires an N-terminal Cys moiety with both a free amine and a free thiol group, from the results using various cysteine derivatives. We propose that the S-acyl-Cys thioester adduct can form via transacylation of an acyl glucuronide and can then form to an N-acyl-Cys amide adduct through intramolecular S- to N-acyl rearrangement. This series of the reactions has important implications as a possible bioactivation mechanism for covalent binding of carboxylic acid drugs to macromolecules. PMID:26601426

  14. Surfactant protein D in human lung diseases.

    PubMed

    Hartl, D; Griese, M

    2006-06-01

    The lung is continuously exposed to inhaled pollutants, microbes and allergens. Therefore, the pulmonary immune system has to defend against harmful pathogens, while an inappropriate inflammatory response to harmless particles must be avoided. In the bronchoalveolar space this critical balance is maintained by innate immune proteins, termed surfactant proteins. Among these, surfactant protein D (SP-D) plays a central role in the pulmonary host defence and the modulation of allergic responses. Several human lung diseases are characterized by decreased levels of bronchoalveolar SP-D. Thus, recombinant SP-D has been proposed as a therapeutical option for cystic fibrosis, neonatal lung disease and smoking-induced emphysema. Furthermore, SP-D serum levels can be used as disease activity markers for interstitial lung diseases. This review illustrates the emerging role of SP-D translated from in vitro studies to human lung diseases. PMID:16684127

  15. Metabolic profiling of the Uncaria hook alkaloid geissoschizine methyl ether in rat and human liver microsomes using high-performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Kushida, Hirotaka; Matsumoto, Takashi; Igarashi, Yasushi; Nishimura, Hiroaki; Watanabe, Junko; Maemura, Kazuya; Kase, Yoshio

    2015-01-01

    Geissoschizine methyl ether (GM) is an indole alkaloid found in Uncaria hook, which is a galenical constituent of yokukansan, a traditional Japanese medicine. GM has been identified as the active component responsible for anti-aggressive effects. In this study, the metabolic profiling of GM in rat and human liver microsomes was investigated. Thirteen metabolites of GM were elucidated and identified using a high-performance liquid chromatography with tandem mass spectrometry method, and their molecular structures were proposed on the basis of the characteristics of their precursor ions, product ions, and chromatographic retention times. There were no differences in the metabolites between the rat and human liver microsomes. Among the 13 identified metabolites, there were two demethylation metabolites, one dehydrogenation metabolite, three methylation metabolites, three oxidation metabolites, two water-adduct metabolites, one di-demethylation metabolite, and one water-adduct metabolite followed by oxidation. The metabolic pathways of GM were proposed on the basis of this study. This study will be helpful in understanding the metabolic routes of GM and related Uncaria hook alkaloids, and provide useful information on the pharmacokinetics and pharmacodynamics. This is the first report that describes the separation and identification of GM metabolites in rat and human liver microsomes. PMID:25633336

  16. In Vitro Metabolism of 20(R)-25-Methoxyl-Dammarane-3, 12, 20-Triol from Panax notoginseng in Human, Monkey, Dog, Rat, and Mouse Liver Microsomes

    PubMed Central

    Li, Wei; Liu, Li; Sun, Baoshan; Guo, Zhenghong; Shi, Caihong; Zhao, Yuqing

    2014-01-01

    The present study characterized in vitro metabolites of 20(R)-25-methoxyl-dammarane-3β, 12β, 20-triol (20(R)-25-OCH3-PPD) in mouse, rat, dog, monkey and human liver microsomes. 20(R)-25-OCH3-PPD was incubated with liver microsomes in the presence of NADPH. The reaction mixtures and the metabolites were identified on the basis of their mass profiles using LC-Q/TOF and were quantified using triple quadrupole instrument by multiple reaction monitoring. A total of 7 metabolites (M1–M7) of the phase I metabolites were detected in all species. 25(R)-OCH3-PPD was metabolized by hydroxylation, dehydrogenation, and O-demethylation. Enzyme kinetic of 20(R)-25-OCH3-PPD metabolism was evaluated in rat and human hepatic microsomes. Incubations studies with selective chemical inhibitors demonstrated that the metabolism of 20(R)-25-OCH3-PPD was primarily mediated by CYP3A4. We conclude that 20(R)-25-OCH3-PPD was metabolized extensively in mammalian species of mouse, rat, dog, monkey, and human. CYP3A4-catalyzed oxygenation metabolism played an important role in the disposition of 25(R)-OCH3-PPD, especially at the C-20 hydroxyl group. PMID:24736630

  17. High-performance liquid chromatography determination of N- and O-demethylase activities of chemicals in human liver microsomes: application of postcolumn fluorescence derivatization using Nash reagent.

    PubMed

    Kobayashi, K; Yamamoto, T; Taguchi, M; Chiba, K

    2000-09-10

    Formaldehyde is liberated in the process of cytochrome P450 (CYP) mediated demethylation of a wide variety of compounds containing the CH(3)N or CH(3)O functionality. A highly sensitive method using a high-performance liquid chromatography (HPLC) system with postcolumn derivatization was developed to measure the liberated formaldehyde as N- and O-demethylase activity of drugs in human liver microsomes. Following the chromatographic separation of formaldehyde on a C18 column, the formaldehyde was reacted with the Nash reagent in the postcolumn reactor at 100 degrees C and detected by the fluorescence method. The results showed that the present method has excellent precision and accuracy. The intra- and interassay variances of this method were less than 10%. The newly developed HPLC method was found to be about 80-fold more sensitive than the colorimetric method in detection of formaldehyde. The N-demethylase activity of sertraline in rat liver microsomes determined by the present method did not differ from those detected by previous methods quantifying produced desmethyl metabolite. The present method has been successfully applied to determine the N-demethylase activities of several drugs, including aminopyrine, erythromycin, fluoxetine, S-mephenytoin, and sertraline, in human liver microsomes. This assay should be useful for generic analysis of N- and O-demethylase activities of xenobiotic and endobiotic chemicals by CYP enzymes. PMID:10964418

  18. UDP-glucuronosyltransferase 1A1 is the principal enzyme responsible for puerarin metabolism in human liver microsomes.

    PubMed

    Luo, Cheng-Feng; Cai, Bin; Hou, Ning; Yuan, Mu; Liu, Shi-Ming; Ji, Hong; Xiong, Long-Gen; Xiong, Wei; Luo, Jian-Dong; Chen, Min-Sheng

    2012-11-01

    Puerarin has multiple pharmacological effects and is widely prescribed for patients with cardiovascular diseases, including hypertension, cerebral ischemia, myocardial ischemia, diabetes mellitus, and arteriosclerosis. While puerarin is a useful therapeutic agent, its mechanisms of action have not been well defined. Understanding puerarin metabolism, in particular its interactions with metabolizing enzymes, will contribute to our understanding of its toxic and therapeutic effects and may help to elucidate potential negative drug-drug interactions. In this study, the major metabolite of puerarin was obtained from the urine of rats administered puerarin, by a semi-preparative high-performance liquid chromatography method. The major metabolite was identified as puerarin-7-O-glucuronide. In vitro, we used a UDP-glucuronosyltransferase (UGT) reaction screening method with 12 recombinant human UGTs to demonstrate that formation of puerarin-7-O-glucuronide was catalyzed by UGT1A1, 1A9, 1A10, 1A3, 1A6, 1A7, and 1A8. UGT1A1, 1A9, and 1A10 significantly catalyzed puerarin-7-O-glucuronide formation, and the activity of UGT1A1 was significantly higher than those of 1A9 and 1A10. The V (max) of UGT1A1 was two- to threefold higher than the levels of UGT1A9 or 1A10, with a lower K ( m ) value and a higher V (max)/K ( m ) value. The kinetics of puerarin-7-O-glucuronide formation catalyzed by UGT1A1 were similar to those of the pooled human liver microsomes (HLMs), with V (max) values of 186.3 and 149.2 pmol/min/mg protein, and K ( m ) values of 811.3 and 838.9 μM, respectively. Furthermore, bilirubin and β-estradiol, probe substrates for UGT1A1, significantly inhibited the formation of puerarin-7-O-glucuronide in HLMs. PMID:22648071

  19. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5'-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes.

    PubMed

    Kwon, Soon-Sang; Kim, Ju-Hyun; Jeong, Hyeon-Uk; Cho, Yong Yeon; Oh, Sei-Ryang; Lee, Hye Suk

    2016-01-01

    Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca(2+)-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes of human liver microsomes to determine if mechanistic aschantin-enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4'-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4'-hydroxylation, and CYP3A4-mediated midazolam 1'-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1'-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4. PMID:27128896

  20. Gene polymorphisms and contents of cytochrome P450s have only limited effects on metabolic activities in human liver microsomes.

    PubMed

    Gao, Na; Tian, Xin; Fang, Yan; Zhou, Jun; Zhang, Haifeng; Wen, Qiang; Jia, Linjing; Gao, Jie; Sun, Bao; Wei, Jingyao; Zhang, Yunfei; Cui, Mingzhu; Qiao, Hailing

    2016-09-20

    Extensive inter-individual variations in pharmacokinetics are considered as a major reason for unpredictable drug responses. As the most important drug metabolic enzymes, inter-individual variations of cytochrome P450 (CYP) activities are not clear in human liver. In this paper, metabolic activities, gene polymorphisms and protein contents of 10 CYPs were determined in 105 human normal liver microsomes. The results indicated substantial inter-individual variations in CYP activities, with the greatest being CYP2C19 activity (>600-fold). Only half of 10 CYP isoforms and 26 gene polymorphism sites had limited effects on metabolic activities, such as CYP2A6, CYP2B6, CYP2C9, CYP2D6 and CYP3A4/5, others had almost no effects. Compared with their respective wild type, Km, Vmax, and CLint decreased by 51.6%, 88.7% and 70.7% in CYP2A6*1/*4 genotype, Vmax and CLint decreased by 32.8% and 60.2% in CYP2C9*1/*3 genotype, Km increased by 118.4% and CLint decreased by 65.2% in CYP2D6 100TT genotype, respectively. Moreover, there were only 4 CYP isoforms, CYP1A2, CYP2A6, CYP2E1 and CYP3A5, which had moderate or weak correlations between Vmax values and corresponding contents. In conclusions, the genotypes and contents of some CYPs have only limited effects on metabolic activities, which imply that there are other more important factors to influence inter-individual variations. PMID:27339126

  1. OXIDATIVE AND HYDROLYTIC METABOLISM OF TYPE I PYRETHROIDS IN RAT AND HUMAN HEPATIC MICROSOMES

    EPA Science Inventory

    Pyrethroids are a class of neurotoxic insecticides used in a variety of agricultural and household activities. Increased potential for human exposure to pyrethroids has prompted pharmacokinetic research. To that end, our laboratory has determined the in vitro clearance of the T...

  2. Isolation and identification of intestinal CYP3A inhibitors from cranberry (Vaccinium macrocarpon) using human intestinal microsomes.

    PubMed

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N; Brantley, Scott J; Paine, Mary F; Oberlies, Nicholas H

    2011-02-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC(50)) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and < 10 µM, respectively, using HIM as the enzyme source and 2.8, 4.3, and < 10 µM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study. PMID:20717876

  3. Development of monoclonal antibodies to human microsomal epoxide hydrolase and analysis of "preneoplastic antigen"-like molecules.

    PubMed

    Duan, Hongying; Yoshimura, Kazunori; Kobayashi, Nobuharu; Sugiyama, Kazuo; Sawada, Jun-Ichi; Saito, Yoshiro; Morisseau, Christophe; Hammock, Bruce D; Akatsuka, Toshitaka

    2012-04-01

    Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detected as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. PMID:22310175

  4. Isolation and Identification of Intestinal CYP3A Inhibitors from Cranberry (Vaccinium macrocarpon) using Human Intestinal Microsomes

    PubMed Central

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N.; Brantley, Scott J.; Paine, Mary F.; Oberlies, Nicholas H.

    2010-01-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, a cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC50) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and <10 μM, respectively, using HIM as the enzyme source and was 2.8, 4.3, and <10 μM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study. PMID:20717876

  5. Metabolism-mediated drug interaction potential of HS-23, a new herbal drug for the treatment of sepsis in human hepatocytes and liver microsomes.

    PubMed

    Jeong, Hyeon-Uk; Lee, Ji Young; Kwon, Soon-Sang; Kim, Ju Hyun; Kim, Young-Mok; Hong, Sung-Woon; Yeon, Sung Hum; Lee, Sun-Mee; Cho, Yong-Yeon; Lee, Hye Suk

    2015-02-01

    HS-23, an extract of the dried flower buds of Lonicera japonica, is a new botanical drug currently being evaluated in a phase I clinical study in Korea for the treatment of sepsis. The in vitro induction and inhibition potentials of HS-23 on the drug-metabolizing enzymes using human hepatocytes and liver microsomes were assessed to evaluate herb-drug interaction according to botanical drug guideline and drug interaction guidance of FDA. HS-23 slightly inhibited CYP2A6, CYP2B6, CYP2C9, CYP2C19, and CYP3A4 enzyme activities in human liver microsomes with IC50 values of 80.6, 160.7, 169.5, 85.4, and 76.6 μg/mL, respectively. HS-23 showed negligible inhibition of CYP1A2, CYP2C8, CYP2D6, UGT1A1, UGT1A4, UGT1A9, and UGT2B7 activities in human liver microsomes. Based on these results, HS-23 may not inhibit the metabolism of CYP2A6, CYP2B6, CYP2C9, CYP2C19, and CYP3A4-catalyzed drugs in humans. HS-23 did not affect the mRNA expression of CYP1A2, CYP2B6, and CYP3A4 after 48 h treatment at three concentrations (0.5, 5, and 50 μg/mL) in three independent human hepatocytes, indicating that HS-23 has no effect on herb-drug interactions that up- or down-regulate CYP1A2, CYP2B6, and CYP3A4. These results indicate that the administration of HS-23 in human may not cause clinically relevant inhibition and induction of these cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes and HS-23 may be promising therapeutic agent for treatment of sepsis. PMID:25052959

  6. Metabolism of a 14C/3H-labeled GABAA receptor partial agonist in rat, dog and human liver microsomes: evaluation of a dual-radiolabel strategy.

    PubMed

    Shaffer, Christopher L; Langer, Connie S

    2007-03-12

    The metabolism of 2-{[2-(3-fluoropyrid-2-yl)-1H-imidazol-1-yl]methyl}-1-propyl-5-cyano-1H-benzimidazole (1), a potent subtype-selective GABA(A) receptor partial agonist, was investigated in rat, dog and human liver microsomes. Due to its significant metabolic cleavage at C(8) observed in preliminary biotransformation studies with non-radiolabeled 1, both [(14)C]1 and [(3)H]1 were synthesized with respective radioisotopes placed on either side of C(8) to determine if all microsomal metabolites formed after C(8)N-dealkylation of 1 (or its core-intact metabolites) could be detected and quantified adequately. Both radiolabeled forms of 1, used separately in mono-radiolabel studies in cross-species microsomes and concomitantly in dual-radiolabel studies in rat microsomes, permitted the detection and quantification of all metabolites of 1, and a combination of radioactive and mass spectral data allowed structural elucidation of its Phase I metabolites. As expected, the sum of (14)C-only metabolites equaled that of (3)H-only metabolites in all incubations. In-line radiometric analysis worked extremely well (and was very reproducible) for quantifying either (14)C- or (3)H-compounds within separate incubations when using mono-radiolabeled 1. However, although the in-line radiodetector provided a comprehensive qualitative metabolic profile using dual-radiolabled 1, its inability to exclude completely (14)C- from (3)H-generated counts caused a degree of ambiguity pertaining to metabolite quantification. Thus, off-line liquid scintillation counting of collected dual-radiolabeled incubation LC-fractions was employed to quantify both (14)C- and (3)H-metabolites simultaneously, while in-line radiodetection was only used for qualitative analyses accompanying MS and MS/MS experiments. These studies demonstrated the analytical feasibility of using a dual-radiolabel approach for subsequent in vivo ADME studies with 1. PMID:17150324

  7. Immunolocalization of elastase in human emphysematous lungs.

    PubMed Central

    Damiano, V V; Tsang, A; Kucich, U; Abrams, W R; Rosenbloom, J; Kimbel, P; Fallahnejad, M; Weinbaum, G

    1986-01-01

    The current working hypothesis concerning the pathogenesis of human pulmonary emphysema proposes that neutrophils migrate through the alveolar interstitium and degranulate, releasing proteolytic enzymes into the interstitium. These enzymes, in particular elastase, can bind to and degrade interstitial elastin. This report describes an immunohistochemical, ultrastructural technique that utilizes polyclonal antibodies to localize neutrophil elastase in human lungs. Using both the immunoperoxidase and the immunogold methods on thin, embedded sections of surgically resected human emphysematous lung tissue, elastase was localized in neutrophils in the lung interstitium and extracellularly in association with interstitial elastic fibers in human lungs that showed local emphysema of varying severity. Quantitative morphometric data were obtained from the lungs of eight patients undergoing lobectomy for removal of pulmonary carcinomas. Patients had preoperative forced expiratory volume (FEV1)% levels ranging from 55 to 77. There was a correlation between a quantitative measure of the local distribution of neutrophil elastase in contact with alveolar interstitial elastin and the local presence of emphysematous change as determined by mean linear intercept of the various histologic sections. These data support the validity of the "protease-protease inhibitor balance hypothesis" as an explanation of the pathogenesis of human pulmonary emphysema. Images PMID:3525610

  8. Monoclonal antibodies reveal multiple forms of expression of human microsomal epoxide hydrolase

    SciTech Connect

    Duan, Hongying; Takagi, Akira; Kayano, Hidekazu; Koyama, Isamu; Morisseau, Christophe; Hammock, Bruce D.; Akatsuka, Toshitaka

    2012-04-01

    In a previous study, we developed five kinds of monoclonal antibodies against different portions of human mEH: three, anti-N-terminal; one, anti-C-terminal; one, anti-conformational epitope. Using them, we stained the intact and the permeabilized human cells of various kinds and performed flow cytometric analysis. Primary hepatocytes and peripheral blood mononuclear cells (PBMC) showed remarkable differences. On the surface, hepatocytes exhibited 4 out of 5 epitopes whereas PBMC did not show any of the epitopes. mEH was detected inside both cell types, but the most prominent expression was observed for the conformational epitope in the hepatocytes and the two N-terminal epitopes in PBMC. These differences were also observed between hepatocyte-derived cell lines and mononuclear cell-derived cell lines. In addition, among each group, there were several differences which may be related to the cultivation, the degree of differentiation, or the original cell subsets. We also noted that two glioblastoma cell lines reveal marked expression of the conformational epitope on the surface which seemed to correlate with the brain tumor-associated antigen reported elsewhere. Several cell lines also underwent selective permeabilization before flow cytometric analysis, and we noticed that the topological orientation of mEH on the ER membrane in those cells was in accordance with the previous report. However, the orientation on the cell surface was inconsistent with the report and had a great variation between the cells. These findings show the multiple mode of expression of mEH which may be possibly related to the multiple roles that mEH plays in different cells. -- Highlights: ► We examine expression of five mEH epitopes in human cells. ► Remarkable differences exist between hepatocytes and PBMC. ► mEH expression in cell lines differs depending on several factors. ► Some glioblastoma cell lines reveal marked surface expression of mEH. ► Topology of mEH on the cell

  9. Differentiation of xenografted human fetal lung parenchyma

    PubMed Central

    Pavlovic, Jelena; Floros, Joanna; Phelps, David S.; Wigdahl, Brian; Welsh, Patricia; Weisz, Judith; Shearer, Debra A.; Pree, Alphonse Leure du; Myers, Roland; Howett, Mary K.

    2009-01-01

    The goal of this study was to characterize xenografted human fetal lung tissue with respect to developmental stage-specific cytodifferentiation. Human fetal lung tissue (pseudoglandular stage) was grafted either beneath the renal capsule or the skin of athymic mice (NCr-nu). Tissues were analyzed from 3 to 42 days post-engraftment for morphological alterations by light and electron microscopy (EM), and for surfactant protein mRNA and protein by reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry (ICC), respectively. The changes observed resemble those seen in human lung development in utero in many respects, including the differentiation of epithelium to the saccular stage. Each stage occurred over approximately one week in the graft in contrast to the eight weeks of normal in utero development. At all time points examined, all four surfactant proteins (SP-A, SP-B, SP-C, and SP-D) were detected in the epithelium by ICC. Lamellar bodies were first identified by EM in 14 day xenografts. By day 21, a significant increase in lamellar body expression was observed. Cellular proliferation, as marked by PCNA ICC and elastic fiber deposition resembled those of canalicular and saccular in utero development. This model in which xenografted lung tissue in different stages of development is available may facilitate the study of human fetal lung development and the impact of various pharmacological agents on this process. PMID:17555893

  10. Human microsomal carbonyl reducing enzymes in the metabolism of xenobiotics: well-known and promising members of the SDR superfamily.

    PubMed

    Skarydová, Lucie; Wsól, Vladimír

    2012-05-01

    The best known, most widely studied enzyme system in phase I biotransformation is cytochrome P450 (CYP), which participates in the metabolism of roughly 9 of 10 drugs in use today. The main biotransformation isoforms of CYP are associated with the membrane of the endoplasmatic reticulum (ER). Other enzymes that are also active in phase I biotransformation are carbonyl reducing enzymes. Much is known about the role of cytosolic forms of carbonyl reducing enzymes in the metabolism of xenobiotics, but their microsomal forms have been mostly poorly studied. The only well-known microsomal carbonyl reducing enzyme taking part in the biotransformation of xenobiotics is 11β-hydroxysteroid dehydrogenase 1, a member of the short-chain dehydrogenase/reductase superfamily. Physiological roles of microsomal carbonyl reducing enzymes are better known than their participation in the metabolism of xenobiotics. This review is a summary of the fragmentary information known about the roles of the microsomal forms. Besides 11β-hydroxysteroid dehydrogenase 1, it has been reported, so far, that retinol dehydrogenase 12 participates only in the detoxification of unsaturated aldehydes formed upon oxidative stress. Another promising group of microsomal biotransformation carbonyl reducing enzymes are some members of 17β-hydroxysteroid dehydrogenases. Generally, it is clear that this area is, overall, quite unexplored, but carbonyl reducing enzymes located in the ER have proven very interesting. The study of these enzymes could shed new light on the metabolism of several clinically used drugs or they could become an important target in connection with some diseases. PMID:22181347

  11. Antithyroid microsomal antibody

    MedlinePlus

    Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb ... test is done to confirm the cause of thyroid problems, including Hashimoto thyroiditis . The test is also ...

  12. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes: the role of cytochrome P450 2E1.

    PubMed

    Urban, G; Speerschneider, P; Dekant, W

    1994-01-01

    1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) has been developed as a substitute for ozone-depleting chlorofluorocarbons. The atmospheric lifetime of HCFC-123 is expected to be much shorter than those of chlorofluorocarbons; however, due to its lower stability and the presence of carbon-hydrogen bonds, metabolism of HCFC-123 in mammals and metabolism-dependent toxicity is likely. We compared the metabolism of HCFC-123 and its analog halothane in rat and human liver microsomes. 19F-NMR studies showed that trifluoroacetic acid is a major metabolite of HCFC-123. Besides trifluoroacetic acid, chlorodifluoroacetic acid and inorganic fluoride were identified as products of the enzymatic oxidation of HCFC-123 in rat and human liver microsomes by 19F-NMR and mass spectrometry. The metabolites were not detected in incubations with halothane. HCFC-123 and halothane were transformed by liver microsomes from untreated rats at low rates. Microsomes from ethanol-and pyridine-treated rats metabolized both HCFC-123 and halothane at much higher rates. These microsomes also exhibited high rates of p-nitrophenol oxidation. p-Nitrophenol is a model substrate mainly oxidized by P450 2E1 to p-nitrocatechol. Samples of human liver microsomes showed considerable differences in the extent of HCFC-123, p-nitrophenol oxidation, and chlorzoxazone hydroxylation. In human liver microsomes, rabbit anti-rat P450 2E1 IgG recognized a single protein band corresponding in apparent molecular weight to human P450 2E1. Immunoblot analysis revealed considerable heterogenity in the P450 2E1 protein content of the human liver samples. Trifluoroacetic acid formation from HCFC-123 and halothane and p-nitrocatechol formation from p-nitrophenol were significantly reduced by the P450 2E1 inhibitor diethyldithiocarbamate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8199305

  13. In vitro metabolism of l-corydalmine, a potent analgesic drug, in human, cynomolgus monkey, beagle dog, rat and mouse liver microsomes.

    PubMed

    Tang, Xiange; Di, Xinyu; Zhong, Zeyu; Xie, Qiushi; Chen, Yang; Wang, Fan; Ling, Zhaoli; Xu, Ping; Zhao, Kaijing; Wang, Zhongjian; Liu, Li; Liu, Xiaodong

    2016-09-01

    l-Corydalmine (l-CDL) was under development as an oral analgesic agent, exhibiting potent analgesic activity in preclinical models. The objective of this study was to compare metabolic profiles of l-CDL in liver microsomes from mouse, rat, monkey, dog and human. Six metabolites (M1-M6) were identified using LC-Q/TOF in liver microsomes from the five species. The metabolism of l-CDL included O-demethylation (M1-3) and hydroxylation (M4-6). The desmethyl metabolites were the major ones among the five species, which accounted for more than 84%. Data from chemical inhibition in human liver microsomes (HLM) and human recombinant CYP450s demonstrated that CYP2D6 exhibited strong catalytic activity towards M1 and M2 formations, while CYP2C9 and CYP2C19 also catalyzed M2 formation. Formations of M3 and hydroxyl metabolites (M4 and M5) were mainly catalyzed by CYP3A4. Further studies showed that M1 and M2 were main metabolites in HLM. The kinetics of M1 and M2 formations in HLM and recombinant CYP450s were also investigated. The results showed that M1 and M2 formations in HLM and recombinant CYP2D6 characterized biphasic kinetics, whereas sigmoid Vmax model was better used to fit M2 formation by recombinant CYP2C9 and CYP2C19. The contributions of CYP2D6 to M1 and M2 formations in HLM were estimated to be 75.3% and 50.7%, respectively. However, the contributions of CYP2C9 and CYP2C19 to M2 formation were only 5.0% and 4.1%, respectively. All these data indicated that M1 and M2 were main metabolites in HLM, and CYP2D6 was the primary enzyme responsible for their formations. PMID:27239758

  14. Inhibitory effects of curcumin on activity of cytochrome P450 2C9 enzyme in human and 2C11 in rat liver microsomes.

    PubMed

    Wang, Zhe; Sun, Wei; Huang, Cheng-Ke; Wang, Li; Xia, Meng-Ming; Cui, Xiao; Hu, Guo-Xin; Wang, Zeng-Shou

    2015-04-01

    Cytochrome P450 2C9 (CYP2C9), one of the most important phase I drug metabolizing enzymes, could catalyze the reactions that convert diclofenanc into diclofenac 4'-hydroxylation. Evaluation of the inhibitory effects of compounds on CYP2C9 is clinically important because inhibition of CYP2C9 could result in serious drug-drug interactions. The objective of this work was to investigate the effects of curcumin on CYP2C9 in human and cytochrome P450 2C11 (CYP2C11) in rat liver microsomes. The results showed that curcumin inhibited CYP2C9 activity (10 µmol L(-1) diclofenac) with half-maximal inhibition or a half-maximal inhibitory concentration (IC50) of 15.25 µmol L(-1) and Ki = 4.473 µmol L(-1) in human liver microsomes. Curcumin's mode of action on CYP2C9 activity was noncompetitive for the substrate diclofenanc and uncompetitive for the cofactor NADPH. In contrast to its potent inhibition of CYP2C9 in human, diclofenanc had lesser effects on CYP2C11 in rat, with an IC50 ≥100 µmol L(-1). The observations imply that curcumin has the inhibitory effects on CYP2C9 activity in human. These in vitro findings suggest that more attention should be paid to special clinical caution when intake of curcumin combined with other drugs in treatment. PMID:24517573

  15. Predicting the oral bioavailability of 19-nortestosterone progestins in vivo from their metabolic stability in human liver microsomal preparations in vitro.

    PubMed

    Kuhnz, W; Gieschen, H

    1998-11-01

    It was the aim of this study to investigate whether assessment of the metabolic stability of selected progestins of the 19-nortestosterone type in human microsomal liver preparations was a suitable approach to predict the oral bioavailability of these drugs in humans. The Michaelis-Menten parameters Vmax and KM,app for norethisterone, levonorgestrel, gestodene, desogestrel, 3-keto-desogestrel, norgestimate, and dienogest were determined in in vitro incubations with human liver microsomes. Using these data, both the in vitro intrinsic clearance (CLint) and, after application of a suitable scaling factor, the scaled in vivo CLint were calculated. For progestins for which human in vivo data were available, the in vitro results were correlated with in vivo CLint values and oral bioavailability. A comparison of the scaled in vivo CLint values with the corresponding in vivo CLint values showed a reasonable correlation, although the latter values were generally approximately 2-fold higher than the former. Excluding desogestrel, which is subject to substantial intestinal metabolism in vivo, there was a linear relationship (r = -0.986) between increasing in vitro CLint values for the progestins and decreasing bioavailability in vivo. Other methods of assessing the metabolic stability of the progestins in vitro, such as evaluation of metabolic half-lives at single initial concentrations, showed either no correlation or a less satisfactory correlation with bioavailability data. PMID:9806955

  16. Development of monoclonal antibodies to human microsomal epoxide hydrolase and analysis of “preneoplastic antigen”-like molecules

    SciTech Connect

    Duan, Hongying; Yoshimura, Kazunori; Kobayashi, Nobuharu; Sugiyama, Kazuo; Sawada, Jun-ichi; Saito, Yoshiro; Morisseau, Christophe; Hammock, Bruce D.; Akatsuka, Toshitaka

    2012-04-01

    Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detected as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. -- Highlights: ► Monoclonal antibodies against different portions of mEH were developed. ► They discriminate between the membrane-bound and the linearized forms of mEH. ► We analyze the antigenic structure of the altered form of mEH in tumor cells. ► Preneoplastic antigen is a multimolecular complex of mEH with

  17. Hepatic and intestinal glucuronidation of mono(2-ethylhexyl) phthalate, an active metabolite of di(2-ethylhexyl) phthalate, in humans, dogs, rats, and mice: an in vitro analysis using microsomal fractions.

    PubMed

    Hanioka, Nobumitsu; Isobe, Takashi; Kinashi, Yu; Tanaka-Kagawa, Toshiko; Jinno, Hideto

    2016-07-01

    Mono(2-ethylhexyl) phthalate (MEHP) is an active metabolite of di(2-ethylhexyl) phthalate (DEHP) and has endocrine-disrupting effects. MEHP is metabolized into glucuronide by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, the hepatic and intestinal glucuronidation of MEHP in humans, dogs, rats, and mice was examined in an in vitro system using microsomal fractions. The kinetics of MEHP glucuronidation by liver microsomes followed the Michaelis-Menten model for humans and dogs, and the biphasic model for rats and mice. The K m and V max values of human liver microsomes were 110 µM and 5.8 nmol/min/mg protein, respectively. The kinetics of intestinal microsomes followed the biphasic model for humans, dogs, and mice, and the Michaelis-Menten model for rats. The K m and V max values of human intestinal microsomes were 5.6 µM and 0.40 nmol/min/mg protein, respectively, for the high-affinity phase, and 430 µM and 0.70 nmol/min/mg protein, respectively, for the low-affinity phase. The relative levels of V max estimated by Eadie-Hofstee plots were dogs (2.0) > mice (1.4) > rats (1.0) ≈ humans (1.0) for liver microsomes, and mice (8.5) > dogs (4.1) > rats (3.1) > humans (1.0) for intestinal microsomes. The percentages of the V max values of intestinal microsomes to liver microsomes were mice (120 %) > rats (57 %) > dogs (39 %) > humans (19 %). These results suggest that the metabolic abilities of UGT enzymes expressed in the liver and intestine toward MEHP markedly differed among species, and imply that these species differences are strongly associated with the toxicity of DEHP. PMID:26514348

  18. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol.

    PubMed

    Negreira, Noelia; Erratico, Claudio; Kosjek, Tina; van Nuijs, Alexander L N; Heath, Ester; Neels, Hugo; Covaci, Adrian

    2015-07-01

    The aim of the present study was to identify the in vitro Phase I and Phase II metabolites of three new psychoactive substances: α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV), and methedrone, using human liver microsomes and human liver cytosol. Accurate-mass spectra of metabolites were obtained using liquid chromatography-quadrupole time-of-flight mass spectrometry. Six Phase I metabolites of α-PVP were identified, which were formed involving reduction, hydroxylation, and pyrrolidine ring opening reactions. The lactam compound was the major metabolite observed for α-PVP. Two glucuronidated metabolites of α-PVP, not reported in previous in vitro studies, were further identified. MDPV was transformed into 10 Phase I metabolites involving reduction, hydroxylation, and loss of the pyrrolidine ring. Also, six glucuronidated and two sulphated metabolites were detected. The major metabolite of MDPV was the catechol metabolite. Methedrone was transformed into five Phase I metabolites, involving N- and O-demethylation, hydroxylation, and reduction of the ketone group. Three metabolites of methedrone are reported for the first time. In addition, the contribution of individual human CYP enzymes in the formation of the detected metabolites was investigated. PMID:26014283

  19. Kinetics of Ethylene and Ethylene Oxide in Subcellular Fractions of Lungs and Livers of Male B6C3F1 Mice and Male Fischer 344 Rats and of Human Livers

    PubMed Central

    Csanády, György András; Kessler, Winfried; Klein, Dominik; Pankratz, Helmut; Pütz, Christian; Richter, Nadine; Filser, Johannes Georg

    2011-01-01

    Ethylene (ET) is metabolized in mammals to the carcinogenic ethylene oxide (EO). Although both gases are of high industrial relevance, only limited data exist on the toxicokinetics of ET in mice and of EO in humans. Metabolism of ET is related to cytochrome P450-dependent mono-oxygenase (CYP) and of EO to epoxide hydrolase (EH) and glutathione S-transferase (GST). Kinetics of ET metabolism to EO and of elimination of EO were investigated in headspace vessels containing incubations of subcellular fractions of mouse, rat, or human liver or of mouse or rat lung. CYP-associated metabolism of ET and GST-related metabolism of EO were found in microsomes and cytosol, respectively, of each species. EH-related metabolism of EO was not detectable in hepatic microsomes of rats and mice but obeyed saturation kinetics in hepatic microsomes of humans. In ET-exposed liver microsomes, metabolism of ET to EO followed Michaelis-Menten-like kinetics. Mean values of Vmax [nmol/(min·mg protein)] and of the apparent Michaelis constant (Km [mmol/l ET in microsomal suspension]) were 0.567 and 0.0093 (mouse), 0.401 and 0.031 (rat), and 0.219 and 0.013 (human). In lung microsomes, Vmax values were 0.073 (mouse) and 0.055 (rat). During ET exposure, the rate of EO production decreased rapidly. By modeling a suicide inhibition mechanism, rate constants for CYP-mediated catalysis and CYP inactivation were estimated. In liver cytosol, mean GST activities to EO expressed as Vmax/Km [μl/(min·mg protein)] were 27.90 (mouse), 5.30 (rat), and 1.14 (human). The parameters are most relevant for reducing uncertainties in the risk assessment of ET and EO. PMID:21785163

  20. Effects of mitragynine and 7-hydroxymitragynine (the alkaloids of Mitragyna speciosa Korth) on 4-methylumbelliferone glucuronidation in rat and human liver microsomes and recombinant human uridine 5’-diphospho-glucuronosyltransferase isoforms

    PubMed Central

    Haron, Munirah; Ismail, Sabariah

    2015-01-01

    Background: Glucuronidation catalyzed by uridine 5’- diphospho-glucuronosyltransferase (UGT) is a major phase II drug metabolism reaction which facilitates drug elimination. Inhibition of UGT activity can cause drug-drug interaction. Therefore, it is important to determine the inhibitory potentials of drugs on glucuronidation. Objective: The objective was to evaluate the inhibitory potentials of mitragynine, 7-hydroxymitragynine, ketamine and buprenorphine, respectively on 4-methylumbelliferone (4-MU) glucuronidation in rat liver microsomes, human liver microsomes and recombinant human UGT1A1 and UGT2B7 isoforms. Materials and Methods: The effects of the above four compounds on the formation of 4-MU glucuronide from 4-MU by rat liver microsomes, human liver microsomes, recombinant human UGT1A1 and UGT2B7 isoforms were determined using high-performance liquid chromatography with ultraviolet detection. Results: For rat liver microsomes, ketamine strongly inhibited 4-MU glucuronidation with an IC50 value of 6.21 ± 1.51 μM followed by buprenorphine with an IC50 value of 73.22 ± 1.63 μM. For human liver microsomes, buprenorphine strongly inhibited 4-MU glucuronidation with an IC50 value of 6.32 ± 1.39 μM. For human UGT1A1 isoform, 7-hydroxymitragynine strongly inhibited 4-MU glucuronidation with an IC50 value of 7.13 ± 1.16 μM. For human UGT2B7 isoform, buprenorphine strongly inhibited 4-MU glucuronidation followed by 7-hydroxymitragynine and ketamine with respective IC50 values of 5.14 ± 1.30, 26.44 ± 1.31, and 27.28 ± 1.18 μM. Conclusions: These data indicate the possibility of drug-drug interaction if 7-hydroxymitragynine, ketamine, and buprenorphine are co-administered with drugs that are UGT2B7 substrates since these three compounds showed significant inhibition on UGT2B7 activity. In addition, if 7-hydroxymitragynine is to be taken with other drugs that are highly metabolized by UGT1A1, there is a possibility of drug-drug interaction to occur. PMID

  1. Metabolism studies on prim-O-glucosylcimifugin and cimifugin in human liver microsomes by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Jia, Peipei; Zhang, Yuqian; Zhang, Qiaoyue; Sun, Yupeng; Yang, Haotian; Shi, He; Zhang, Xiaoxu; Zhang, Lantong

    2016-09-01

    Prim-O-glucosylcimifugin (PGCN) and cimifugin (CN) are major constituents of Radix Saposhnikoviae that have antipyretic, analgesic and anti-inflammatory pharmacological activities. However, there were few reports with respect to the metabolism of PGCN and CN in vitro. In this paper, we describe a strategy using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) for fast analysis of the metabolic profile of PGCN and CN in human liver microsomes. In total, five phase I metabolites of PGCN, seven phase I metabolites and two phase II metabolites of CN were identified in the incubation of human liver microsomes. The results revealed that the main phase I metabolic pathways of PGCN were hydroxylation and hydrolysis reactions. The phase I metabolic pathways of CN were found to be hydroxylation, demethylation and dehydrogenation. Meanwhile, the results indicated that O-glucuronidation was the major metabolic pathway of CN in phase II metabolism. The specific UDP-glucuronosyltransferase (UGT) enzymes responsible for CN glucuronidation metabolites were identified using recombinant UGT enzymes. The results indicated that UGT1A1, UGT1A9, UGT2B4 and UGT2B7 might play major roles in the glucuronidation of CN. Overall, this study may be useful for the investigation of metabolic mechanism of PGCN and CN, and it can provide reference and evidence for further pharmacodynamic experiments. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26910368

  2. Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection.

    PubMed

    Kawakami, Hirotaka; Ohtsuki, Sumio; Kamiie, Junichi; Suzuki, Takashi; Abe, Takaaki; Terasaki, Tetsuya

    2011-01-01

    Cytochrome P450 (CYP) proteins are involved in the biological oxidation and reduction of xenobiotics, affecting the pharmacological efficiency of drugs. This study aimed to establish a method to simultaneously quantify 11 CYP isoforms by multiplexed-multiple reaction monitoring analysis with liquid chromatography tandem mass spectrometry and in silico peptide selection to clarify CYP isoform expression profiles in human liver tissue. CYP1A2, 2A6, and 2D6 target peptides were identified by shot-gun proteomic analysis, and those of other isoforms were selected by in silico peptide selection criteria. The established quantification method detected target peptides at 10  fmol, and the dynamic range of calibration curves was at least 500-fold. The quantification value of CYP1A2 in Supersomes was not significantly different between the established method and quantitative immunoblot analysis. The absolute protein expression levels of 11 CYP isoforms were determined from one pooled and 10 individual human liver microsomes. In the individual microsomes, CYP2C9 showed the highest protein expression level, and CYP1A2, 2A6, 2C19, and 3A4 protein expression exhibited more than a 20-fold difference among individuals. This highly sensitive and selective quantification method is a useful tool for the analysis of highly homologous CYP isoforms and the contribution made by each CYP isoform to drug metabolism. PMID:20564338

  3. Lung adenocarcinoma and human papillomavirus infection.

    PubMed

    Chen, Yen-Ching; Chen, Jen-Hau; Richard, Kradin; Chen, Pao-Yang; Christiani, David C

    2004-09-15

    Over the past three decades, the incidence of lung adenocarcinoma has increased worldwide. Most individuals with lung adenocarcinoma (especially women) are nonsmokers. Reported risk factors for the development of lung adenocarcinoma include cigarette smoking; exposure to cooking fumes, air pollution, second-hand smoke, asbestos, and radon; nutritional status; genetic susceptibility; immunologic dysfunction; tuberculosis infection; and asthma. Human papillomavirus (HPV) infection is a known risk factor for the development of squamous cell carcinoma (SCC), but it has not been thoroughly assessed as a potential risk factor for the development of pulmonary adenocarcinoma. More than 50% of people are infected with HPV during their lifetimes, either via intrauterine or postnatal infection. Recent studies involving Taiwanese patients have demonstrated a possible association between HPV infection and the risk of developing pulmonary adenocarcinoma. HPV transmission pathways have not yet been conclusively identified. The observation of certain types of HPV in association with cervical and oral SCC raises the possibility of sexual transmission of HPV from the cervix to the oral cavity, with subsequent transmission to the larynx and then to the lung. HPV infection and metaplasia in lung tissue may increase an individual's susceptibility to the tumorigenesis of pulmonary adenocarcinoma. Further epidemiologic and pathologic investigations will be necessary to establish a causal relation. PMID:15368331

  4. Human models of acute lung injury

    PubMed Central

    Proudfoot, Alastair G.; McAuley, Danny F.; Griffiths, Mark J. D.; Hind, Matthew

    2011-01-01

    Acute lung injury (ALI) is a syndrome that is characterised by acute inflammation and tissue injury that affects normal gas exchange in the lungs. Hallmarks of ALI include dysfunction of the alveolar-capillary membrane resulting in increased vascular permeability, an influx of inflammatory cells into the lung and a local pro-coagulant state. Patients with ALI present with severe hypoxaemia and radiological evidence of bilateral pulmonary oedema. The syndrome has a mortality rate of approximately 35% and usually requires invasive mechanical ventilation. ALI can follow direct pulmonary insults, such as pneumonia, or occur indirectly as a result of blood-borne insults, commonly severe bacterial sepsis. Although animal models of ALI have been developed, none of them fully recapitulate the human disease. The differences between the human syndrome and the phenotype observed in animal models might, in part, explain why interventions that are successful in models have failed to translate into novel therapies. Improved animal models and the development of human in vivo and ex vivo models are therefore required. In this article, we consider the clinical features of ALI, discuss the limitations of current animal models and highlight how emerging human models of ALI might help to answer outstanding questions about this syndrome. PMID:21357760

  5. Evaluation of the stereoselective biotransformation of permethrin in human liver microsomes: contributions of cytochrome P450 monooxygenases to the formation of estrogenic metabolites.

    PubMed

    Lavado, Ramon; Li, Jiwen; Rimoldi, John M; Schlenk, Daniel

    2014-04-21

    Permethrin (PM) is a pyrethroid insecticide that exists as 4 enantiomers. Biotransformation of PM to estrogen receptor agonists (3-phenoxybenzyl alcohol (PBOH) and 3-(4'-hydroxyphenoxy)-benzyl alcohol (3,4 PBOH)) has been shown to be stereoselective in other vertebrate species. This study evaluated the biotransformation of PM enantiomers in human liver microsomes and with recombinant CYP3A4 and CYP2C19. PBOH and 3,4 PBOH were the only metabolites detected from in vitro incubations including each of the 4 enantiomers of PM with 1R-trans PM having the most efficient NADPH-catalyzed biotransformation to both metabolites. Coincubation with the CYP inhibitor ketoconazole and time course experiments with liver microsomes and recombinant CYP2C19 and CYP3A4 indicated CYP-catalyzed stereoselective cleavage of the ester followed by 4-hydoxylation to 3,4' PBOH. These data indicate potential dispositional differences may occur with PM enantiomers and a shift in putative molecular targets. While cleavage of pyrethroid esters lead to detoxification of the acute neurological effects, formation of the benzyl alcohol and hydroxylated metabolite may lead to estrogenic responses, since each of these metabolites are estrogen receptor ligands. PMID:24548679

  6. Antithyroid microsomal antibody

    MedlinePlus

    ... Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb Images Blood test References Guber HA, Faraq AF. Evaluation of endocrine function. In: McPherson RA, Pincus MR, eds. Henry's Clinical ...

  7. Identification of metabolites of 4-nonylphenol isomer 4-(3',6'-dimethyl-3'-heptyl) phenol by rat and human liver microsomes.

    PubMed

    Ye, Xiaoyun; Bishop, Amber M; Needham, Larry L; Calafat, Antonia M

    2007-08-01

    Nonylphenol (NP) has been widely used for more than 50 years in the synthesis of NP ethoxylates, which are important nonionic surfactants. NP is considered an endocrine disruptor based on in vitro and in vivo animal studies. However, the toxic effects of NP in humans are unknown. Information regarding the metabolic fate of 4-t-nonylphenol (4-tNP), a mixture of commercial NP branched isomers, in mammalian species is limited. This information is critical for the identification of adequate biomarkers of exposure to NP that could be used for exposure and risk assessment. We identified metabolites of one 4-tNP isomer, namely, 4-(3',6'-dimethyl-3'-heptyl) phenol (P363-NP), using rat and human liver microsomes. The P363-NP metabolites were extracted by on-line solid-phase extraction and then separated and detected using high-performance liquid chromatography/tandem mass spectrometry. Using the genuine standard, we unambiguously identified 4-(3',6'-dimethyl-3'-heptyl) catechol (P363-NC) as the main P363-NP metabolite when using human liver microsomes. Based on their chromatographic behavior and mass spectral fragmentation patterns, several other metabolites were tentatively identified, including a hydroxylated P363-NP with the alcohol functional group on the branched alkyl chain and its oxidative metabolite, a catechol with a hydroxylated alkyl side chain. Furthermore, the metabolite profile of P363-NP using rat and human enzymes was compared. Our findings suggest that P363-NC could be used as a biomarker to assess exposure to 4-tNP, although additional research to evaluate its suitability as a biomarker is warranted. PMID:17460028

  8. Comparison of lung preservation solutions in human lungs using an ex vivo lung perfusion experimental model

    PubMed Central

    Medeiros, Israel L.; Pêgo-Fernandes, Paulo M.; Mariani, Alessandro W.; Fernandes, Flávio G.; Unterpertinger, Fernando V.; Canzian, Mauro; Jatene, Fabio B.

    2012-01-01

    OBJECTIVE: Experimental studies on lung preservation have always been performed using animal models. We present ex vivo lung perfusion as a new model for the study of lung preservation. Using human lungs instead of animal models may bring the results of experimental studies closer to what could be expected in clinical practice. METHOD: Brain-dead donors whose lungs had been declined by transplantation teams were used. The cases were randomized into two groups. In Group 1, Perfadex® was used for pulmonary preservation, and in Group 2, LPDnac, a solution manufactured in Brazil, was used. An ex vivo lung perfusion system was used, and the lungs were ventilated and perfused after 10 hours of cold ischemia. The extent of ischemic-reperfusion injury was measured using functional and histological parameters. RESULTS: After reperfusion, the mean oxygenation capacity was 405.3 mmHg in Group 1 and 406.0 mmHg in Group 2 (p = 0.98). The mean pulmonary vascular resistance values were 697.6 and 378.3 dyn·s·cm-5, respectively (p = 0.035). The mean pulmonary compliance was 46.8 cm H2O in Group 1 and 49.3 ml/cm H2O in Group 2 (p = 0.816). The mean wet/dry weight ratios were 2.06 and 2.02, respectively (p = 0.87). The mean Lung Injury Scores for the biopsy performed after reperfusion were 4.37 and 4.37 in Groups 1 and 2, respectively (p = 1.0), and the apoptotic cell counts were 118.75/mm2 and 137.50/mm2, respectively (p = 0.71). CONCLUSION: The locally produced preservation solution proved to be as good as Perfadex®. The clinical use of LPDnac may reduce costs in our centers. Therefore, it is important to develop new models to study lung preservation. PMID:23018310

  9. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    SciTech Connect

    Choi, Hye Jin; Lee, Dong-Hyung; Park, Seong-Hwan; Kim, Juil; Do, Kee Hun; An, Tae Jin; Ahn, Young Sup; Park, Chung Berm; Moon, Yuseok

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  10. Effect of voriconazole and other azole antifungal agents on CYP3A activity and metabolism of tacrolimus in human liver microsomes.

    PubMed

    Zhang, Shimin; Pillai, Venkateswaran C; Mada, Sripal Reddy; Strom, Steve; Venkataramanan, Raman

    2012-05-01

    Azole antifungal agents are known to inhibit cytochrome P450 3A (CYP3A) enzymes. Limited information is available regarding the effect of voriconazole on CYP3A activity. We examined the effect of voriconazole on CYP3A activity in human liver microsomes as measured by the formation of 6β-hydroxytestosterone from testosterone. We also evaluated the interaction between voriconazole and tacrolimus, an immunosuppressive drug, using human liver microsomes. The effect of voriconazole on CYP3A activity and tacrolimus metabolism was compared to that of other azole antifungal agents. CYP3A4 activity and the metabolism of tacrolimus were measured in the absence and in the presence of various concentrations of voriconazole (0-1.43 mM), fluconazole (0-1.63 mM), itraconazole (0-14 µM) and ketoconazole (0-0.19 µM). At a concentration of 21.2 ± 15.4 µM and 29.8 ± 12.3 µM, voriconazole inhibited the formation of 6β-hydroxytestosterone from testosterone and the metabolism of tacrolimus by 50%, respectively. The rank order of inhibition of 6β-hydroxytestosterone formation from testosterone and the metabolism of tacrolimus, is ketoconazole > itraconazole > voriconazole > fluconazole. Our observations suggest that voriconazole at clinically relevant concentrations will inhibit the hepatic metabolism of tacrolimus and increase the concentration of tacrolimus more than two-fold. Close monitoring of the blood concentrations and adjustment in the dose of tacrolimus are warranted when transplant patients receiving tacrolimus are treated with voriconazole. PMID:22106961

  11. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations

    NASA Astrophysics Data System (ADS)

    Ye, Meiling; Tang, Ling; Luo, Mengjun; Zhou, Jing; Guo, Bin; Liu, Yangyuan; Chen, Bo

    2014-11-01

    Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV-vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the

  12. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations

    PubMed Central

    2014-01-01

    Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV–vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the

  13. Metabolism of Nω -methylserotonin, a serotonergic constituent of black cohosh (Cimicifuga racemosa, L. (Nutt.)), by human liver microsomes.

    PubMed

    Nikolić, Dejan; Li, Jinghu; van Breemen, Richard B

    2014-12-01

    The roots/rhizomes of black cohosh (Cimicifuga racemosa L. (Nutt.) (syn. Actaea racemosa L.) are a popular dietary supplements among women for management of menopausal symptoms. Although not estrogenic, Nω -methylserotonin has been identified in black cohosh as a potent agonist of serotonin 5-HT1A and 5-HT7 receptors. In the present study, in vitro metabolism of Nω -methylserotonin was investigated to gain insights into aspects of the bioavailability of this compound. The major metabolic pathway was determined to be conversion into 5-hydroxyindole acetaldehyde catalyzed by the monoamine oxidase A (MAO-A). 5-Hydroxyindole acetaldehyde could be further oxidized to form 5-hydroxyindole acetic acid by the action of microsomal aldehyde dehydrogenase or reduced to 5-hydroxy tryptophol by the action of aldehyde reductase. The cytochrome P450 enzymes had only a minor role in the metabolism of Nω -methylserotonin and then only when MAO-A was inhibited. In many aspects, the metabolism of Nω -methylserotonin was similar to the metabolism of serotonin, suggesting that this compound is unlikely to elicit CNS effects due to rapid metabolism by the widely distributed MAO-A. PMID:24817649

  14. Lung flooding enables efficient lung sonography and tumour imaging in human ex vivo and porcine in vivo lung cancer model

    PubMed Central

    2013-01-01

    Background Sonography has become the imaging technique of choice for guiding intraoperative interventions in abdominal surgery. Due to artefacts from residual air content, however, videothoracoscopic and open intraoperative ultrasound-guided thermoablation of lung malignancies are impossible. Lung flooding is a new method that allows complete ultrasound imaging of lungs and their tumours. Methods Fourteen resected tumourous human lung lobes were examined transpleurally with B-mode ultrasound before (in atelectasis) and after lung flooding with isotonic saline solution. In two swine, the left lung was filled with 15 ml/kg isotonic saline solution through the left side of a double-lumen tube. Lung tumours were simulated by transthoracic ultrasound-guided injection of 5 ml of purified bovine serum albumin in glutaraldehyde, centrally into the left lower lung lobe. The rate of tumour detection, the severity of disability caused by residual gas, and sonomorphology of the lungs and tumours were assessed. Results The ex vivo tumour detection rate was 100% in flooded human lung lobes and 43% (6/14) in atelectatic lungs. In all cases of atelectasis, sonographic tumour imaging was impaired by residual gas. Tumours and atelectatic tissue were isoechoic. In 28% of flooded lungs, a little residual gas was observed that did not impair sonographic tumour imaging. In contrast to tumours, flooded lung tissue was hyperechoic, homogeneous, and of fine-grained structure. Because of the bronchial wall three-laminar structure, sonographic differentiation of vessels and bronchi was possible. In all cases, malignant tumours in the flooded lung appeared well-demarcated from the lung parenchyma. Adenocarcinoma, squamous, and large cell carcinomas were hypoechoic. Bronchioloalveolar cell carcinoma was slightly hyperechoic. Transpleural sonography identifies endobronchial tumour growth and bronchial wall destruction. With transthoracic sonography, the flooded animal lung can be completely

  15. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice.

    PubMed

    Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair

    2015-08-01

    Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche. PMID:26168294

  16. Enhanced Lung Epithelial Specification of Human iPSCs on Decellularized Lung Matrix

    PubMed Central

    Gilpin, Sarah E.; Ren, Xi; Okamoto, Tatsuya; Guyette, Jacques P.; Mou, Hongmei; Rajagopal, Jayaraj; Mathisen, Douglas J.; Vacanti, Joseph P.; Ott, Harald C.

    2014-01-01

    Background Whole lung scaffolds can be created by perfusion decellularization of cadaveric donor lungs. The resulting matrices can then be recellularized to regenerate functional organs. This study evaluates the capacity of acellular lung scaffolds to support recellularization with human induced pluripotent stem cell (iPSC)-derived lung progenitors. Methods Whole rat and human lungs were decellularized by constant-pressure perfusion with 0.1% SDS solution. Resulting lung scaffolds were either cryosectioned into slices or left intact. Human iPSCs were differentiated to definitive endoderm, anteriorized to a foregut fate, and then ventralized to an Nkx2.1-expressing population. Cells were seeded onto slices and whole lungs, which were maintained under constant-perfusion biomimetic culture. Lineage specification was assessed by quantitative PCR and immunofluorescent staining. Regenerated left lungs were transplanted in orthotopic position. Results Activin-A treatment followed by TGF-β inhibition induced differentiation of human iPSCs to anterior foregut endoderm as confirmed by FOXA2, SOX17, and SOX2 expression. Cells cultured on decellularized lung slices demonstrated proliferation and lineage commitment after 5 days. Nkx2.1-expressing cells were identified at 40–60% efficiency. Within whole lung scaffolds and under perfusion culture, cells further up-regulated Nkx2.1 expression. After orthotopic transplantation, grafts were perfused and ventilated via host vasculature and airways. Conclusions Decellularized lung matrix supports the culture and lineage commitment of human iPSC-derived lung progenitor cells. Whole organ scaffolds and biomimetic culture enable co-seeding of iPSC-derived endothelial and epithelial progenitors and enhance early lung fate. Orthotopic transplantation may enable further in vivo graft maturation. PMID:25149047

  17. In vitro studies on the oxidative metabolism of 20(s)-ginsenoside Rh2 in human, monkey, dog, rat, and mouse liver microsomes, and human liver s9.

    PubMed

    Li, Liang; Chen, Xiaoyan; Zhou, Jialan; Zhong, Dafang

    2012-10-01

    20(S)-Ginsenoside Rh2 (Rh2)-containing products are widely used in Asia, Europe, and North America. However, extremely limited metabolism information greatly impedes the complete understanding of its clinical safety and effectiveness. The present study aims to systematically investigate the oxidative metabolism of Rh2 using a complementary set of in vitro models. Twenty-five oxidative metabolites were found using liquid chromatography-electrospray ionization ion-trap mass spectrometry. Six metabolites and a metabolic intermediate were synthesized. The metabolites were structurally identified as 26-hydroxy Rh2 (M1-1), (20S,24S)-epoxydammarane-12,25-diol-3-β-d-glucopyranoside (M1-3), (20S,24R)-epoxydammarane-12,25-diol-3-β-d-glucopyranoside (M1-5), 26,27-dihydroxy Rh2 (M3-6), (20S,24S)-epoxydammarane-12,25,26-triol-3-β-d-glucopyranoside (M3-10), (20S,24R)-epoxydammarane-12,25,26-triol-3-β-d-glucopyranoside (M3-11), and 26-aldehyde Rh2 on the basis of detailed mass spectrometry and nuclear magnetic resonance data analysis. Double-bond epoxidation followed by rearrangement and vinyl-methyl group hydroxylation represent the initial metabolic pathways generating monooxygenated metabolites M1-1 to M1-5. Further sequential metabolites (M2-M5) from the dehydrogenation and/or oxygenation of M1 were also detected. CYP3A4 was the predominant enzyme involved in the oxidative metabolism of Rh2, whereas alcohol dehydrogenase and aldehyde dehydrogenase mainly catalyzed the metabolic conversion of alcohol to the corresponding carboxylic acid. No significant differences were observed in the phase I metabolite profiles of Rh2 among the five species tested. Reactive epoxide metabolite formation in both humans and animals was evident. However, GSH conjugate M6 was detected only in cynomolgus monkey liver microsomal incubations. In conclusion, Rh2 is a good substrate for CYP3A4 and could undergo extensive oxidative metabolism under the catalysis of CYP3A4. PMID:22829543

  18. Cyp2D6 catalyzes 5-hydroxylation of 1-(2-pyrimidinyl)-piperazine, an active metabolite of several psychoactive drugs, in human liver microsomes.

    PubMed

    Raghavan, Nirmala; Zhang, Donglu; Zhu, Mingshe; Zeng, Jianing; Christopher, Lisa

    2005-02-01

    1-(2-Pyrimidinyl)-piperazine (1-PP) is an active metabolite of several psychoactive drugs including buspirone. 1-PP is also the major metabolite in the human circulation and in rat brains following oral administration of buspirone. This study was conducted to identify the enzyme responsible for the metabolic conversion of 1-PP to 5-hydroxy-1-(2-pyrimidinyl)-piperazine (HO-1-PP) in human liver microsomes (HLMs). The product HO-1-PP was quantified by a validated liquid chromatography-tandem mass spectrometry method. In the presence of NADPH, 1-PP (100 microM) was incubated separately with human cDNA-expressed cytochrome P450 isozymes (including CYP2D6, 3A4, 1A2, 2A6, 2C9, 2C19, 2E1, and 2B6) at 37 degrees C. CYP2D6 catalyzed the formation of HO-1-PP from 1-PP. This catalytic activity was >95% inhibited by quinidine, a CYP2D6 inhibitor. HO-1-PP formation rates correlated well with the bufuralol 1-hydroxylase (CYP2D6) activities of individual HLMs. The formation of HO-1-PP followed a Michaelis-Menten kinetics with a K(m) of 171 microM and V(max) of 313 pmol/min x mg protein in HLMs. Collectively, these results indicate that polymorphic CYP2D6 is responsible for the conversion of 1-PP to HO-1-PP. PMID:15507542

  19. Relevance of particle-induced rat lung tumors for assessing lung carcinogenic hazard and human lung cancer risk.

    PubMed Central

    Mauderly, J L

    1997-01-01

    Rats and other rodents are exposed by inhalation to identify agents that might present hazards for lung cancer in humans exposed by inhalation. In some cases, the results are used in attempts to develop quantitative estimates of human lung cancer risk. This report reviews evidence for the usefulness of the rat for evaluation of lung cancer hazards from inhaled particles. With the exception of nickel sulfate, particulate agents thought to be human lung carcinogens cause lung tumors in rats exposed by inhalation. The rat is more sensitive to carcinogenesis from nonfibrous particles than mice or Syrian hamsters, which have both produced false negatives. However, rats differ from mice and nonhuman primates in both the pattern of particle retention in the lung and alveolar epithelial hyperplastic responses to chronic particle exposure. Present evidence warrants caution in extrapolation from the lung tumor response of rats to inhaled particles to human lung cancer hazard, and there is considerable uncertainty in estimating unit risks for humans from rat data. It seems appropriate to continue using rats in inhalation carcinogenesis assays of inhaled particles, but the upper limit of exposure concentrations must be set carefully to avoid false-positive results. A positive finding in both rats and mice would give greater confidence that an agent presents a carcinogenic hazard to man, and both rats and mice should be used if the agent is a gas or vapor. There is little justification for including Syrian hamsters in assays of the intrapulmonary carcinogenicity of inhaled agents. PMID:9400748

  20. Quantitative Anatomy of the Growing Lungs in the Human Fetus

    PubMed Central

    Szpinda, Michał; Siedlaczek, Waldemar; Szpinda, Anna; Woźniak, Alina; Mila-Kierzenkowska, Celestyna; Badura, Mateusz

    2015-01-01

    Using anatomical, digital, and statistical methods we examined the three-dimensional growth of the lungs in 67 human fetuses aged 16–25 weeks. The lung dimensions revealed no sex differences. The transverse and sagittal diameters and the base circumference were greater in the right lungs while the lengths of anterior and posterior margins and the lung height were greater in the left lungs. The best-fit curves for all the lung parameters were natural logarithmic models. The transverse-to-sagittal diameter ratio remained stable and averaged 0.56 ± 0.08 and 0.52 ± 0.08 for the right and left lungs, respectively. For the right and left lungs, the transverse diameter-to-height ratio significantly increased from 0.74 ± 0.09 to 0.92 ± 0.08 and from 0.56 ± 0.07 to 0.79 ± 0.09, respectively. The sagittal diameter-to-height ratio significantly increased from 1.41 ± 0.23 to 1.66 ± 0.18 in the right lung, and from 1.27 ± 0.17 to 1.48 ± 0.22 in the left lung. In the fetal lungs, their proportionate increase in transverse and sagittal diameters considerably accelerates with relation to the lung height. The lung dimensions in the fetus are relevant in the evaluation of the normative pulmonary growth and the diagnosis of pulmonary hypoplasia. PMID:26413517

  1. Oxidative metabolism of BDE-47, BDE-99, and HBCDs by cat liver microsomes: Implications of cats as sentinel species to monitor human exposure to environmental pollutants.

    PubMed

    Zheng, Xiaobo; Erratico, Claudio; Luo, Xiaojun; Mai, Bixian; Covaci, Adrian

    2016-05-01

    BDE-99 is different by cat and human liver microsomes. This suggests that cats are not a suitable sentinel to represent internal exposure of PBDEs for humans, but is likely a promising sentinel for internal HBCDs exposure for humans. PMID:26923239

  2. Cloning of human lung cancer cells.

    PubMed Central

    Walls, G. A.; Twentyman, P. R.

    1985-01-01

    We have carried out a comparison of two different methods for cloning human lung cancer cells. The method of Courtenay & Mills (1978) generally gave higher plating efficiencies (PE) than the method of Carney et al. (1980). The number of colonies increased with incubation time in both methods and the weekly medium replenishment in the Courtenay method was advantageous for longer incubation times of several weeks. In the Courtenay method, the use of August rat red blood cells (RBC) and low oxygen tension were both found to be necessary factors for maximum plating efficiency. The usefulness of heavily irradiated feeder cells in improving PE is less certain; each cell type may have its own requirement. PMID:3904799

  3. Basal expression of the human MAPEG members microsomal glutathione transferase 1 and prostaglandin E synthase genes is mediated by Sp1 and Sp3.

    PubMed

    Ekström, Lena; Lyrenäs, Louise; Jakobsson, Per-Johan; Morgenstern, Ralf; Kelner, Michael J

    2003-06-19

    Microsomal glutathione transferase (MGST1) and prostaglandin E synthase (PGES) are both members of the MAPEG (Membrane Associated Proteins involved in Eicosanoid and Glutathione metabolism) superfamily. In humans, their organ distribution is quite distinct with the former being widely and constitutively expressed whereas PGES is largely inducible. In order to study the basal expression of these genes, we characterized the promoter regions and identified the elements and the transcription factors required using in vitro assays, including reporter analysis of deletion and mutant clones and EMSA. The results indicate that Sp1 is the protein mediating the basal transcription of MGST1. It appears that both the Sp1 and Sp3 proteins are important for the basal expression of PGES. In addition, mutational analysis of two Barbie-box elements in the PGES promoter showed that these were not involved in the down-regulation of PGES by phenobarbital (PB). These results provide the first description of the basal regulation of these genes in humans. PMID:12818425

  4. Computational tools and resources for metabolism-related property predictions. 2. Application to prediction of half-life time in human liver microsomes

    PubMed Central

    Zakharov, Alexey V; Peach, Megan L; Sitzmann, Markus; Filippov, Igor V; McCartney, Heather J; Smith, Layton H; Pugliese, Angelo; Nicklaus, Marc C

    2014-01-01

    Background The most important factor affecting metabolic excretion of compounds from the body is their half-life time. This provides an indication of compound stability of, for example, drug molecules. We report on our efforts to develop QSAR models for metabolic stability of compounds, based on in vitro half-life assay data measured in human liver microsomes. Method A variety of QSAR models generated using different statistical methods and descriptor sets implemented in both open-source and commercial programs (KNIME, GUSAR and StarDrop) were analyzed. The models obtained were compared using four different external validation sets from public and commercial data sources, including two smaller sets of in vivo half-life data in humans. Conclusion In many cases, the accuracy of prediction achieved on one external test set did not correspond to the results achieved with another test set. The most predictive models were used for predicting the metabolic stability of compounds from the open NCI database, the results of which are publicly available on the NCI/CADD Group web server (http://cactus.nci.nih.gov). PMID:23088274

  5. Metabolism of bupropion by baboon hepatic and placental microsomes

    PubMed Central

    Wang, Xiaoming; Abdelrahman, Doaa R.; Fokina, Valentina M.; Hankins, Gary D.V.; Ahmed, Mahmoud S.; Nanovskaya, Tatiana N.

    2011-01-01

    The aim of this investigation was to determine the biotransformation of bupropion by baboon hepatic and placental microsomes, identify the enzyme(s) catalyzing the reaction(s) and determine its kinetics. Bupropion was metabolized by baboon hepatic and placental microsomes to hydroxybupropion (OH-BUP), threo- (TB) and erythrohydrobupropion (EB). OH-bupropion was the major metabolite formed by hepatic microsomes (Km 36 ± 6 µM, Vmax 258 ± 32 pmol mg protein−1 min−1), however the formation of OH-BUP by placental microsomes was below the limit of quantification. The apparent Km values of bupropion for the formation of TB and EB by hepatic and placental microsomes were similar. The selective inhibitors of CYP2B6 (ticlopidine and phencyclidine) and monoclonal antibodies raised against human CYP2B6 isozyme caused 80% inhibition of OH-BUP formation by baboon hepatic microsomes. The chemical inhibitors of aldo-keto reductases (flufenamic acid), carbonyl reductases (menadione), and 11β-hydroxysteroid dehydrogenases (18β-glycyrrhetinic acid) significantly decreased the formation of TB and EB by hepatic and placental microsomes. Data indicate that CYP2B of baboon hepatic microsomes is responsible for biotransformation of bupropion to OH-BUP, while hepatic and placental short chain dehydrogenases/reductases and to a lesser extent aldo-keto reductases are responsible for the reduction of bupropion to TB and EB. PMID:21570381

  6. Production and Assessment of Decellularized Pig and Human Lung Scaffolds

    PubMed Central

    Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin

    2013-01-01

    The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II

  7. DETECTION OF HUMAN LUNG EPITHELIA CELL GROWTH FACTORS PRODUCED BY A LUNG CARCINOMA CELL LINE: USE IN CULTURE OF PRIMARY SOLID LUNG TUMORS

    EPA Science Inventory

    Serum-free medium conditioned for 72 h by a human undifferentiated adenocarcinoma of lung, Cal u 6, stimulated the colony formation of normal human bronchial epithelial cells, newly cultured cells from human solid lung tumors, and established human lung tumor cell lines, includin...

  8. Human embryonic stem cells and lung regeneration

    PubMed Central

    Varanou, A; Page, C P; Minger, S L

    2008-01-01

    Human embryonic stem cells are pluripotent cells derived from the inner cell mass of preimplantation stage embryos. Their unique potential to give rise to all differentiated cell types has generated great interest in stem cell research and the potential that it may have in developmental biology, medicine and pharmacology. The main focus of stem cell research has been on cell therapy for pathological conditions with no current methods of treatment, such as neurodegenerative diseases, cardiac pathology, retinal dysfunction and lung and liver disease. The overall aim is to develop methods of application either of pure cell populations or of whole tissue parts to the diseased organ under investigation. In the field of pulmonary research, studies using human embryonic stem cells have succeeded in generating enriched cultures of type II pneumocytes in vitro. On account of their potential of indefinite proliferation in vitro, embryonic stem cells could be a source of an unlimited supply of cells available for transplantation and for use in gene therapy. Uncovering the ability to generate such cell types will expand our understanding of biological processes to such a degree that disease understanding and management could change dramatically. PMID:18724383

  9. Contribution of carboxylesterase and cytochrome P450 to the bioactivation and detoxification of isocarbophos and its enantiomers in human liver microsomes.

    PubMed

    Zhuang, Xiao-Mei; Wei, Xia; Tan, Yan; Xiao, Wei-Bin; Yang, Hai-Ying; Xie, Jian-Wei; Lu, Chuang; Li, Hua

    2014-07-01

    Organophosphorus pesticides are the most widely used pesticides in modern agricultural systems to ensure good harvests. Isocarbophos (ICP), with a potent acetylcholinesterase inhibitory effect is widely utilized to control a variety of leaf-eating and soil insects. However, the characteristics of the bioactivation and detoxification of ICP in humans remain unclear. In this study, the oxidative metabolism, esterase hydrolysis, and chiral inversion of ICP in human liver microsomes (HLMs) were investigated with the aid of a stereoselective LC/MS/MS method. The depletion of ICP in HLMs was faster in the absence of carboxylesterase inhibitor (BNPP) than in the presence of NADPH and BNPP, with t1/2 of 5.2 and 90 min, respectively. Carboxylesterase was found to be responsible for the hydrolysis of ICP, the major metabolic pathway. CYP3A4, CYP1A2, CYP2D6, CYP2C9, and CYP2C19 were all involved in the secondary metabolism pathway of desulfuration of ICP. Flavin-containing monooxygenase (FMO) did not contribute to the clearance of ICP. The hydrolysis and desulfuration of (±)ICP, (+)ICP, and (-)ICP in HLMs follow Michaelis-Menten kinetics. Individual enantiomers of ICP and its oxidative desulfuration metabolite isocarbophos oxon (ICPO) were found to be inhibitors of acetylcholinesterases at different extents. For example, (±)ICPO is more potent than ICP (IC50 0.031μM vs. 192μM), whereas (+)ICPO is more potent than (-)ICPO (IC50 0.017μM vs. 1.55μM). Given the finding of rapid hydrolysis of ICP and low abundance of oxidative metabolites presence in human liver, the current study highlights that human liver has a greater capacity for detoxification of ICP. PMID:24752505

  10. In vitro enantioselective metabolism of TJ0711 hydrochloride by human liver microsomes using a novel chiral liquid chromatography-tandem mass spectrometry method.

    PubMed

    Huang, Jiangeng; Hu, Lei; Xu, Li; Sun, Minghui; Fan, Zhaoze; Qiu, Jun; Li, Gao; Si, Luqin

    2012-04-01

    A novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing chiral analytical techniques was developed and validated for in vitro enantioselective metabolic stability study of racemic 1-[4-(2-methoxyethyl) phenoxy]-3-[[2-(2-methoxyphenoxy) ethyl]amino]-2-propanol hydrochloride (TJ0711 HCl), a newly developed vasodilatory β-blocker. Robust enantiomeric separations were achieved on a chiral SUMICHIRAL OA-2500 column using ethanol and hexane (40:60, v/v) as a mobile phase. Metabolic stability results demonstrated that both TJ0711 enantiomers underwent a rapid phase I metabolism, but preferential metabolism of R-TJ0711 was observed. Our previously reported ultra-performance liquid chromatography-multiple reaction monitoring-information dependent acquisition-enhanced product ion (UPLC-MRM-IDA-EPI) method was finally chosen for metabolite profiling study of TJ0711 enantiomers, because the newly developed HPLC-based method resulted in compromised chromatographic separation, particularly for TJ0711 metabolites. A number of metabolic products were detected and the structures of formed metabolites were predicted. Similar to racemic TJ0711 HCl, demethylation and hydroxylation were proposed to be the principle metabolism pathways during in vitro incubations of each enantiomer with human liver microsomes. PMID:22406105

  11. In vitro assay of six UDP-glucuronosyltransferase isoforms in human liver microsomes, using cocktails of probe substrates and liquid chromatography-tandem mass spectrometry.

    PubMed

    Seo, Kyung-Ah; Kim, Hyo-Ji; Jeong, Eun Sook; Abdalla, Nagi; Choi, Chang-Soo; Kim, Dong-Hyun; Shin, Jae-Gook

    2014-11-01

    UDP-glucuronosyltransferase (UGT)-mediated drug-drug interactions are commonly evaluated during drug development. We present a validated method for the simultaneous evaluation of drug-mediated inhibition of six major UGT isoforms, developed in human liver microsomes through the use of pooled specific UGT probe substrates (cocktail assay) and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The six probe substrates used in this assay were estradiol (UGT1A1), chenodeoxycholic acid (UGT1A3), trifluoperazine (UGT1A4), 4-hydroxyindole (UGT1A6), propofol (UGT1A9), and naloxone (UGT2B7). In a cocktail incubation, UGT1A1, UGT1A9, and UGT2B7 activities were substantially inhibited by other substrates. This interference could be eliminated by dividing substrates into two incubations: one containing estradiol, trifluoperazine, and 4-hydroxyindole, and the other containing chenodeoxycholic acid, propofol, and naloxone. Incubation mixtures were pooled for the simultaneous analysis of glucuronyl conjugates in a single LC-MS/MS run. The optimized cocktail method was further validated against single-probe substrate assays using compounds known to inhibit UGTs. The degree of inhibition of UGT isoform activities by such known inhibitors in this cocktail assay was not substantially different from that in single-probe assays. This six-isoform cocktail assay may be very useful in assessing the UGT-based drug-interaction potential of candidates in a drug-discovery setting. PMID:25122565

  12. Human microsomal cyttrochrome P450-mediated reduction of oxysophocarpine, an active and highly toxic constituent derived from Sophora flavescens species, and its intestinal absorption and metabolism in rat.

    PubMed

    Wu, Lili; Zhong, Wanping; Liu, Junjin; Han, Weichao; Zhong, Shilong; Wei, Qiang; Liu, Shuwen; Tang, Lan

    2015-09-01

    Oxysophocarpine (OSC), an active and toxic quinolizidine alkaloid, is highly valued in Sophora flavescens Ait. and Subprostrate sophora Root. OSC is used to treat inflammation and hepatitis for thousands of years in China. This study aims to investigate the CYP450-mediated reduction responsible for metabolizing OSC and to evaluate the absorption and metabolism of OSC in rat in situ. Four metabolites were identified, with sophocarpine (SC) as the major metabolite. SC formation was rapid in human and rat liver microsomes (HLMs and RLMs, respectively). The reduction rates in the liver are two fold higher than in the intestine, both in humans and rats. In HLMs, inhibitors of CYP2C9, 3A4/5, 2D6, and 2B6 had strong inhibitory effects on SC formation. Meanwhile, inhibitors of CYP3A and CYP2D6 had significant inhibition on SC formation in RLMs. Human recombinant CYP3A4/5, 2B6, 2D6, and 2C9 contributed significantly to SC production. The permeability in rat intestine and the excretion rates of metabolites were highest in the duodenum (p<0.05), and the absorbed amount of OSC in duodenum and jejunum was concentration-dependent. The metabolism could be significantly decreased by CYP3A inhibitor ketoconazole. In conclusion, the liver was the main organ responsible for OSC metabolism. First-pass metabolism via CYP3A4/5, 2B6, 2D6, and 2C9 may be the main reason for the poor OSC bioavailability. PMID:26045316

  13. Regional differences in alveolar density in the human lung are related to lung height.

    PubMed

    McDonough, John E; Knudsen, Lars; Wright, Alexander C; Elliott, W Mark; Ochs, Matthias; Hogg, James C

    2015-06-01

    The gravity-dependent pleural pressure gradient within the thorax produces regional differences in lung inflation that have a profound effect on the distribution of ventilation within the lung. This study examines the hypothesis that gravitationally induced differences in stress within the thorax also influence alveolar density in terms of the number of alveoli contained per unit volume of lung. To test this hypothesis, we measured the number of alveoli within known volumes of lung located at regular intervals between the apex and base of four normal adult human lungs that were rapidly frozen at a constant transpulmonary pressure, and used microcomputed tomographic imaging to measure alveolar density (number alveoli/mm3) at regular intervals between the lung apex and base. These results show that at total lung capacity, alveolar density in the lung apex is 31.6 ± 3.4 alveoli/mm3, with 15 ± 6% of parenchymal tissue consisting of alveolar duct. The base of the lung had an alveolar density of 21.2 ± 1.6 alveoli/mm3 and alveolar duct volume fraction of 29 ± 6%. The difference in alveolar density can be negated by factoring in the effects of alveolar compression due to the pleural pressure gradient at the base of the lung in vivo and at functional residual capacity. PMID:25882386

  14. COMPARISON OF LUNG ANTIOXIDANT LEVELS IN HUMANS AND LABORATORY ANIMALS

    EPA Science Inventory

    Basal lung concentrations of ascorbic acid (AA), nonprotein sulfhydryls (NPSH), and a-tocopherol (a-T) were determined in rabbits, guinea pigs, rats, hamsters, mice, domestic pigs and sheep, and in human lung samples obtained from cancer surgery patients. Significant differences ...

  15. DEPOSITION PATTERNS OF POLYDISPERSE AEROSOLS WITHIN HUMAN LUNGS

    EPA Science Inventory

    The efficacy of airborne pharmaceuticals in the treatment of lung diseases can may be improved with the selective deposition of inhaled drugs. erein, a validated mathematical model is used to examine the effects of aerosol polydispersity upon deposition in the human lung. ocalize...

  16. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    PubMed

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration. PMID:26292034

  17. Metabolic activation of 2-methylfuran by rat microsomal systems

    SciTech Connect

    Ravindranath, V.; Boyd, M.R.

    1985-05-01

    2-Methylfuran (2-MF), a constituent of cigarette smoke and coffee, causes necrosis of liver, lungs, and kidneys in rodents. 2-MF is metabolically activated by mixed-function oxidases to acetylacrolein, a reactive metabolite that binds covalently to microsomal protein. The hepatic microsomal metabolism of 2-MF to reactive metabolite required the presence of NADPH and oxygen and was dependent on incubation time and substrate concentration. The microsomal metabolism of 2-MF was inducible by pretreatment of rats with phenobarbital and was inhibited by piperonyl butoxide and N-octyl imidazole, which indicates that the metabolism of 2-MF may be mediated by cytochrome P-450. Acetylacrolein was a potent inhibitor of mixed-function oxidase and completely inhibited the microsomal metabolism of 2-MF, indicating that 2-MF is a suicide substrate for the enzyme. The sulfhydryl nucleophile cysteine was a better trapping agent of the reactive metabolite of 2-MF than N-acetylcysteine or glutathione. Lysine decreased the covalent binding of 2-MF metabolites, presumably by reacting with the aldehyde group of acetylacrolein. In addition, in the presence of NADPH, 2-MF was bioactivated by both pulmonary and renal cortical microsomes to reactive metabolites that were covalently bound to microsomal proteins.

  18. Investigation of CYP3A4 and CYP2D6 Interactions of Withania somnifera and Centella asiatica in Human Liver Microsomes.

    PubMed

    Savai, Jay; Varghese, Alice; Pandita, Nancy; Chintamaneni, Meena

    2015-05-01

    Withania somnifera is commonly used as a rejuvenator, whereas Centella asiatica is well known for its anxiolytic and nootropic effects. The present study aims at investigating the effect of crude extracts and principal phytoconstituents of both the medicinal plants with CYP3A4 and CYP2D6 enzyme activity in human liver microsomes (HLM). Phytoconstituents were quantified in the crude extracts of both the medicinal plants using reverse phase HPLC. Crude extracts and phytoconstituents of W. somnifera showed no significant interaction with both CYP3A4 and CYP2D6 enzymes in HLM. Of the crude extracts of C. asiatica screened in vitro, methanolic extract showed potent noncompetitive inhibition of only CYP3A4 enzyme (Ki-64.36 ± 1.82 µg/mL), whereas ethanol solution extract showed potent noncompetitive inhibition of only CYP2D6 enzyme (Ki-36.3 ± 0.44 µg/mL). The flavonoids, quercetin, and kaempferol showed potent (IC50 values less than 100 μM) inhibition of CYP3A4 activity, whereas quercetin alone showed potent inhibition of CYP2D6 activity in HLM. Because methanolic extract of C. asiatica showed a relatively high percentage content of quercetin and kaempferol than ethanol solution extract, the inhibitory effect of methanolic extract on CYP3A4 enzyme activity could be attributed to the flavonoids. Thus, co-administration of the alcoholic extracts of C. asiatica with drugs that are substrates of CYP3A4 and CYP2D6 enzymes may lead to undesirable herb-drug interactions in humans. PMID:25684704

  19. In Vitro Enhancement of Carvedilol Glucuronidation by Amiodarone-Mediated Altered Protein Binding in Incubation Mixture of Human Liver Microsomes with Bovine Serum Albumin.

    PubMed

    Sekimoto, Makoto; Takamori, Toru; Nakamura, Saki; Taguchi, Masato

    2016-01-01

    Carvedilol is mainly metabolized in the liver to O-glucuronide (O-Glu). We previously found that the glucuronidation activity of racemic carvedilol in pooled human liver microsomes (HLM) was increased, R-selectively, in the presence of amiodarone. The aim of this study was to clarify the mechanisms for the enhancing effect of amiodarone on R- and S-carvedilol glucuronidation. We evaluated O-Glu formation of R- and S-carvedilol enantiomers in a reaction mixture of HLM including 0.2% bovine serum albumin (BSA). In the absence of amiodarone, glucuronidation activity of R- and S-carvedilol for 25 min was 0.026, and 0.51 pmol/min/mg protein, and that was increased by 6.15 and 1.60-fold in the presence of 50 µM amiodarone, respectively. On the other hand, in the absence of BSA, or when BSA was replaced with human serum albumin, no enhancing effect of amiodarone on glucuronidation activity was observed, suggesting that BSA played a role in the mechanisms for the enhancement of glucuronidation activity. Unbound fraction of S-carvedilol in the reaction mixture was greater than that of R-carvedilol in the absence of amiodarone. Also, the addition of amiodarone caused a greater increase of unbound fraction of R-carvedilol than that of S-carvedilol. These results suggest that the altered protein binding by amiodarone is a key mechanism for R-selective stimulation of carvedilol glucuronidation. PMID:27476943

  20. In vitro oxidative metabolism of cajaninstilbene Acid by human liver microsomes and hepatocytes: involvement of cytochrome p450 reaction phenotyping, inhibition, and induction studies.

    PubMed

    Hua, Xin; Peng, Xiao; Tan, Shengnan; Li, Chunying; Wang, Wei; Luo, Meng; Fu, Yujie; Zu, Yuangang; Smyth, Hugh

    2014-10-29

    Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid), an active constituent of pigeonpea leaves, an important tropical crop, is known for its clinical effects in the treatment of diabetes, hepatitis, and measles and its potential antitumor effect. In this study, the effect of the cytochrome P450 isozymes on the activity of CSA was investigated. Two hydroxylation metabolites were identified in the study. The reaction phenotype study showed that CYP3A4, CYP2C9, and CYP1A2 were the major cytochrome P450 isozymes in the metabolism of CSA. The metabolic food-drug interaction potential was also evaluated in vitro. The effect of CSA inhibition/induction of enzymatic activities of seven drug-metabolizing CYP450 isozymes in vitro was estimated by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analytical techniques. CSA showed different inhibitory effects on different isozymes. CSA reversibly inhibited CYP3A4 and CYP2C9 activities in human liver microsomes with IC50 values of 28.3 and 31.3 μM, respectively, but exhibited no inhibition activities to CYP1A2, CYP2A6, CYP2C19, CYP2D6, and CYP2E1. CSA showed a weak effect on CYP450 enzymes in a time-dependent manner. CSA did not substantially induce CYP1A2, CYP2A6, CYP2B6, CYP2E1, CYP2C9, CYP2C19, CYP2D6, or CYP3A4 at concentrations up to 30 μM in primary human hepatocytes. The results of our experiments may be helpful to predict clinically significant food-drug interactions when other drugs are administered in combination with CSA. PMID:25272989

  1. COMPUTER MODEL OF HUMAN LUNG MORPHOLOGY TO COMPLEMENT SPECT ANALYSES

    EPA Science Inventory

    Aerosol therapy protocols could be improved if inhaled pharmacologic drugs were selectively deposited within the human lung. he targeted delivery to specific sites, such as receptors and sensitive airway cells, would enhance the efficacies of airborne pharmaceuticals. he high res...

  2. Towards a porous media model of the human lung

    NASA Astrophysics Data System (ADS)

    DeGroot, Christopher T.; Straatman, Anthony G.

    2012-05-01

    In this article, progress towards building a complete porous media model of the human lung is discussed. While the recent trend in computational fluid dynamics studies of airflow in the human lung has been to continually increase the size and detail of the airway tree under consideration, it is proposed in this work that simulating flow in the human lung as a coupled fluid-porous system is an effective method to simulate the flow in the whole lung. Under the proposed modeling paradigm, a truncated airway tree constitutes a fluid region which is coupled to a porous region that represents the remainder of the lung volume, containing small airways and alveoli. The first part of this work describes pore-level simulations conducted in an alveolated duct geometry, which are present in large quantities in the human lung, to determine its permeability. Next, volume-averaged simulations incorporating the results of the pore-level simulations and using a realistic lung geometry based on computed tomography images are discussed along with future directions for this work.

  3. Persistent Human Cosavirus Infection in Lung Transplant Recipient, Italy

    PubMed Central

    Campanini, Giulia; Rovida, Francesca; Meloni, Federica; Cascina, Alessandro; Ciccocioppo, Rachele; Piralla, Antonio

    2013-01-01

    Human cosavirus is a novel picornavirus recently identified in feces from children in southern Asia. We report infection with human cosavirus in a patient in the Mediterranean area. The patient was an adult double lung transplant recipient who had chronic diarrhea associated with persistent infection with human cosavirus. PMID:24047954

  4. The accumulation of nickel in human lungs

    SciTech Connect

    Edelman, D.A.; Roggli, V.L. )

    1989-05-01

    Using data from published studies, lung concentrations of nickel were compare for persons with and without occupational exposure to nickel. As expected, the concentrations were much higher for persons with occupational exposure. To estimate the effects of nickel-containing tobacco smoke and nickel in the ambient air on the amount of nickel accumulated in lungs over time, a model was derived that took into account various variables related to the deposition of nickel in lungs. The model predicted nickel concentrations that were in the range of those of persons without known nickel exposure. Nickel is a suspected carcinogen and has been associated with an increased risk of respiratory tract cancer among nickel workers. However, before the nickel content of cigarettes can be implicated in the etiology of lung cancer, further studies are needed to evaluate the independent effects of smoking and exposure to nickel.

  5. Solubility of Freon 22 in human blood and lung tissue

    SciTech Connect

    Varene, N.; Choukroun, M.L.; Marthan, R.; Varene, P.

    1989-05-01

    The solubility of Freon 22 in human blood and lung tissue was determined using the chromatographic method of Wagner et al. In normal human blood, the mean Bunsen coefficient of solubility (alpha B) was 0.804 cm3 STPD.cm-3.ATA-1 at 37 degrees C. It increased with hematocrit (Hct) according to the equation alpha B = 0.274 Hct + 0.691. Tissue homogenates were prepared from macroscopically normal lung pieces obtained at thoracotomy from eight patients undergoing resection for lung carcinoma. The Bunsen solubility coefficients were 0.537 +/- 0.068 and 0.635 +/- 0.091 in washed and unwashed lung, respectively. These values can be used in the determination of both cardiac output and pulmonary tissue volume in humans by use of the rebreathing technique.

  6. Linear dimensions and volumes of human lungs

    DOE PAGESBeta

    Hickman, David P.

    2012-03-30

    TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does notmore » improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.« less

  7. Linear dimensions and volumes of human lungs

    SciTech Connect

    Hickman, David P.

    2012-03-30

    TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does not improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.

  8. Correlation of Apical Fluid-Regulating Channel Proteins with Lung Function in Human COPD Lungs

    PubMed Central

    Zhao, Meimi; Liu, Shan-Lu; Huang, Yao; Idell, Steven; Li, Xiumin; Ji, Hong-Long

    2014-01-01

    Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD) are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporin 5 (AQP5) proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of α and β ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI) and II (ATII)-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3) was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD. PMID:25329998

  9. An ultra-high performance liquid chromatography-tandem mass spectrometric assay for quantifying 3-ketocholanoic acid: Application to the human liver microsomal CYP3A-dependent lithocholic acid 3-oxidation assay.

    PubMed

    Bansal, Sumit; Chai, Swee Fen; Lau, Aik Jiang

    2016-06-15

    Lithocholic acid (LCA), a hepatotoxic and carcinogenic bile acid, is metabolized to 3-ketocholanoic acid (3-KCA) by cytochrome P450 3A (CYP3A). In the present study, the objectives were to develop and validate an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify 3-KCA and apply it to the human liver microsomal CYP3A-dependent LCA 3-oxidation assay. Chromatographic separation was achieved on a Waters ACQUITY™ UPLC C18 column (50×2.1mm, 1.7μm) with a gradient system consisting of 0.1% v/v formic acid in water (solvent A) and 0.1% v/v formic acid in acetonitrile (solvent B). The retention time was 3.73min for 3-KCA and 2.73min for cortisol (internal standard). Positive electrospray ionization with multiple reaction monitoring (MRM) mode was used to quantify 3-KCA (m/z 375.4→135.2) and cortisol (m/z 363.5→121.0). The limit of detection of 3-KCA was 10μM, the lower limit of quantification was 33.3μM, and the calibration curve was linear from 0.05-10μM with r(2)>0.99. Intra-day and inter-day accuracy and precision were <13.7%. The quality control samples were stable when assessed after 4h at room temperature, 24h at 4°C, 14days at -20°C, and three freeze-thaw cycles. The liver microsomal matrix did not affect 3-KCA quantification. The amount of KCA formed in the human liver microsomal LCA 3-oxidation assay was linear with respect to the amount of microsomal protein (up to 40μg) and incubation time (5-30min). Enzyme kinetics experiment indicated that LCA 3-oxidation followed the Michaelis-Menten model with an apparent Km of 26±7μM and Vmax of 303±50pmol/min/mg protein. This novel UPLC-MS/MS method for quantifying 3-KCA offers a specific, sensitive, and fast approach to determine liver microsomal LCA 3-oxidation. PMID:27153105

  10. Effect of Cytochrome b5 Content on the Activity of Polymorphic CYP1A2, 2B6, and 2E1 in Human Liver Microsomes

    PubMed Central

    Zhang, Haifeng; Gao, Na; Liu, Tingting; Fang, Yan; Qi, Bing; Wen, Qiang; Zhou, Jun; Jia, Linjing; Qiao, Hailing

    2015-01-01

    Human cytochrome b5 (Cyt b5) plays important roles in cytochrome P450 (CYP)-mediated drug metabolism. However, the expression level of Cyt b5 in normal human liver remains largely unknown. The effect of Cyt b5 on overall CYP activity in human liver microsomes (HLM) has rarely been reported and the relationship between Cyt b5 and the activity of polymorphic CYP has not been systematically investigated. In this study, we found that the median value of Cyt b5 protein was 270.01 pmol/mg from 123 HLM samples, and 12- and 19-fold individual variation was observed in Cyt b5 mRNA and protein levels, respectively. Gender and smoking clearly influenced Cyt b5 content. In addition, we found that Cyt b5 protein levels significantly correlated with the overall activity of CYP1A2, 2B6, and 2E1 in HLM. However, when the CYP activities were sorted by single nucleotide polymorphisms (SNP), the effect of Cyt b5 protein on the kinetic parameters varied greatly. There were significant correlations between Cyt b5 content and Vmax and CLint of CYP1A2 wild-types (3860GG, 2159GG, and 5347CC) as well as homozygous mutants (163AA and 3113GG). In contrast to Vmax and CLint, the Km of CYP2B6 516GG and 785AA genotypes was inversely associated with Cyt b5 content. Correlations between Cyt b5 content and Vmax and CLint of CYP2E1 -1293GG, -1293GC, 7632TT, 7632TA, -333TT, and -352AA genotypes were also observed. In conclusion, Cyt b5 expression levels varied considerably in the Chinese cohort from this study. Cyt b5 had significant impact on the overall activity of CYP1A2, 2B6, and 2E1 in HLM and the effects of Cyt b5 protein on polymorphic CYP1A2, 2B6, and 2E1 activity were SNP-dependent. These findings suggest that Cyt b5 plays an important role in CYP-mediated activities in HLM and may possibly be a contributing factor for the individual variation observed in CYP enzyme activities. PMID:26046844

  11. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    PubMed Central

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839

  12. Ex Vivo Perfusion Treatment of Infection in Human Donor Lungs.

    PubMed

    Nakajima, D; Cypel, M; Bonato, R; Machuca, T N; Iskender, I; Hashimoto, K; Linacre, V; Chen, M; Coutinho, R; Azad, S; Martinu, T; Waddell, T K; Hwang, D M; Husain, S; Liu, M; Keshavjee, S

    2016-04-01

    Ex vivo lung perfusion (EVLP) is a platform to treat infected donor lungs with antibiotic therapy before lung transplantation. Human donor lungs that were rejected for transplantation because of clinical concern regarding infection were randomly assigned to two groups. In the antibiotic group (n = 8), lungs underwent EVLP for 12 h with high-dose antibiotics (ciprofloxacin 400 mg or azithromycin 500 mg, vancomycin 15 mg/kg, and meropenem 2 g). In the control group (n = 7), lungs underwent EVLP for 12 h without antibiotics. A quantitative decrease in bacterial counts in bronchoalveolar lavage (BAL) was found in all antibiotic-treated cases but in only two control cases. Perfusate endotoxin levels at 12 h were significantly lower in the antibiotic group compared with the control group. EVLP with broad-spectrum antibiotic therapy significantly improved pulmonary oxygenation and compliance and reduced pulmonary vascular resistance. Perfusate endotoxin levels at 12 h were strongly correlated with levels of perfusates tumor necrosis factor α, IL-1β and macrophage inflammatory proteins 1α and 1β at 12 h. In conclusion, EVLP treatment of infected donor lungs with broad-spectrum antibiotics significantly reduced BAL bacterial counts and endotoxin levels and improved donor lung function. PMID:26730551

  13. ACID AIR AND AEROBIOLOGY RELATED TO THE MATURING HUMAN LUNG

    EPA Science Inventory

    The effect of 'acid air' on human health was studied by considering the effects of hygroscopicity upon aerosol deposition in the lung as a function of human subject age. Children are a critical sub-population to be incorporated into health effects analyses following ambient expos...

  14. Effect of polyphenolic compounds from Solanum torvum on plasma lipid peroxidation, superoxide anion and cytochrome P450 2E1 in human liver microsomes.

    PubMed

    Kusirisin, Winthana; Jaikang, Churdsak; Chaiyasut, Chaiyavat; Narongchai, Paitoon

    2009-11-01

    Previous studies presented evidence that plants contain antioxidants that have free radical-scavenging properties. Overproduction of free radicals leads to oxidative stress, a factor associated with a variety of diseases, such as diabetes. Cytochrome P450 2E1 enzymes (CYP2E1) are involved in drug metabolism in the liver and metabolism of DNA-reaction generating intra-mitochondrial ROS, which leads to micro- and macro-vascular pathology in diabetes. Plant-based chemicals can affect CYP2E1 enzymes and related defense mechanisms, possibly leading to protection against oxidative stress. We investigated the effect of Solanum torvum (ST) extracts on the inhibition of CYP2E1 activity in human liver microsomes. ST extract was analyzed for antioxidant activity by the ABTS method. Polyphenolic compounds were measured by the total phenol content using the Folin-Ciocalteau reagent. Flavonoid and tannin content were analyzed by standard methods. Oxidative stress was evaluated by measuring lipid peroxidation by TBARS and superoxide anion scavenging levels in plasma from diabetic patients. Results showed that 10 mg/ml of ST had CYP2E1 catalytic inhibiting activity (57.16 %). The IC50 value of CYP2E1 catalytic inhibiting activity level was 5.14 mg/ml by concentration in a dependent manner. One gram of concentrated ST extract had an antioxidant activity index of 3.68 mg of trolox and 360.53 mg of ascorbic acid equivalent. Effects on free radical-scavenging, as measured by TBARS and superoxide anion, showed IC50 values of 20.60 and 10.26 microg/ml, respectively. Polyphenolic compounds found included phenol, flavonoid and tannin, measuring 160.30, 104.36 and 65.91 mg/g, respectively. These results imply that ST is a natural source of polyphenolic antioxidants, which have cytochrome P450 2E1 enzyme inhibiting and free radical scavenging properties, as related to lipid peroxidation and superoxide anion activity. ST could potentially be used for reducing oxidative stress in diabetes

  15. Role of the ABCE1 gene in human lung adenocarcinoma

    PubMed Central

    REN, YI; LI, YINGHUI; TIAN, DALI

    2012-01-01

    ATP-binding cassette transporter E1 (ABCE1), also known as RLI (RNase L inhibitor), is a new type of endoribonuclease inhibitor, which can specifically bind to RNase L and abolish its effect. ABCE1 binds to eIF2α and eIF5 to form a pre-translation initiation complex, suggesting its crucial role in cell growth, development and certain pathological processes. To probe the role of ABCE1 in the development and progress of human lung adenocarcinoma, we first detected the changes of its mRNA and protein expression in tissues, and found a high expression level of ABCE1 in human lung adenocarcinoma tissues and metastatic lymph nodes, which was also correlated with clinical stages. Moreover, human lung adenocarcinoma A549 cells were infected with lentiviral vectors containing ABCE1-specific shRNA, and resulted in significant inhibition of cell growth. Using microarray assay, a number of differentially expressed genes were found after ABCE1 suppression. Our results demonstrated the potential role of ABCE1 in human lung adenocarcinoma, which may provide some molecular basis for the mechanisms of development and progress of human lung adenocarcinoma, and help to find new pharmacological targets. PMID:22267055

  16. Liquid chromatography/nuclear magnetic resonance spectroscopy and liquid chromatography/mass spectrometry identification of novel metabolites of the multidrug resistance modulator LY335979 in rat bile and human liver microsomal incubations.

    PubMed

    Ehlhardt, W J; Woodland, J M; Baughman, T M; Vandenbranden, M; Wrighton, S A; Kroin, J S; Norman, B H; Maple, S R

    1998-01-01

    Compound LY335979 is a P-glycoprotein inhibitor currently entering phase I clinical trials for potential reversal of multidrug resistance to cancer chemotherapy. In early exploratory studies, LY335979 was found to be rapidly transformed in incubations with liver microsomes from rats, dogs, monkeys, and humans. Although the parent compound was completely metabolized, no prominent metabolite peaks were observed. One peak did appear early in the time course, but it did not increase over time. In another preliminary experiment, rats were treated iv with [3H]LY335979 (prepared for pharmacology studies), and urine and bile fractions were collected. Analysis of the urine by reverse-phase HPLC with UV and radioactivity detection revealed that almost all of the material eluted with the solvent front. More than half the radioactivity in bile was accounted for by two peaks eluting earlier than the parent compound (the rest eluted at the solvent front). With both bile and the incubations with microsomes, initial attempts to isolate metabolites were not successful. There was also evidence in both systems of products derived from cleavage of LY335979 (by both further metabolism and degradation). LC/NMR was thus used to analyze materials directly in their respective matrices. An N-oxide metabolite (LY389551) formed by oxidation of the quinoline nitrogen was identified in the microsomal incubations; in bile, three glucuronide metabolites were identified, all of which were conjugates of products formed by oxidation of the quinoline ring of LY335979. There have been few reports in the literature of LC/NMR analysis of bile, which is a more complex matrix than either urine or microsomal suspensions. However, the HPLC techniques developed in this work for the HPLC/UV and LC/MS analyses of LY335979 metabolites in the microsomal matrix and in bile proved readily adaptable for LC/NMR. Using a 500-MHz instrument, basic 1H NMR spectra could be obtained in 2-3 hr with approximately 100 ng of

  17. UPLC/ESI-MS/MS-based determination of metabolism of several new illicit drugs, ADB-FUBINACA, AB-FUBINACA, AB-PINACA, QUPIC, 5F-QUPIC and α-PVT, by human liver microsome.

    PubMed

    Takayama, Takahiro; Suzuki, Mayu; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Kikura-Hanajiri, Ruri; Goda, Yukihiro; Toyo'oka, Toshimasa

    2014-06-01

    The metabolism by human liver microsomes of several new illicit drugs, that is, N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3- carboxamide (ADB-FUBINACA), N-(1-amino-3-methyl-1-oxobutan-2-yl)-1- (4-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA), N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA), quinolin-8-yl 1-pentyl-(1H-indole)-3-carboxylate (QUPIC), quinolin-8-yl 1-(5-fluoropentyl)-(1H-indole)-3-carboxylate (5 F-QUPIC) and α-pyrrolidinovalerothiophenone (α-PVT), which have indole, indazole, quinolinol ester and thiophene structures, was investigated using reversed-phase chromatography and mass spectrometry. The present method is based upon the oxidation by cytochrome p450 superfamily enzymes in the microsomes. The oxidation of ADB-FUBINACA and AB-FUBINACA mainly occurred on the N-(1-amino-alkyl-1-oxobutan) moiety. However, the oxidation of AB-PINACA seemed to occur on the 1-pentyl moiety. On the other hand, QUPIC and 5 F-QUPIC, which have a quinolinol ester structure, predominantly underwent a cleavage reaction to produce indoleacetic acid type metabolites. In contrast, the metabolism reaction of α-PVT was different from that of the other tested drugs, and various oxidation products were observed on the chromatograms. The obtained metabolites are not in conflict with the results predicted by MetaboLynx software. However, the exact structures of the metabolites, except for 1-pentyl-1H-indole-3-carboxylic acid (QUPIC metabolite) and 1-(5-fluoropentyl)-1H-indole-3-carboxylic acid (5 F-QUPIC metabolite), are currently not proven, because we have no authentic compounds for comparison. The proposed approach using human liver microsome seems to provide a new technology for the prediction of possible metabolites occuring in humans. PMID:24861751

  18. A reevaluation of CD22 expression in human lung cancer.

    PubMed

    Pop, Laurentiu M; Barman, Stephen; Shao, Chunli; Poe, Jonathan C; Venturi, Guglielmo M; Shelton, John M; Pop, Iliodora V; Gerber, David E; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I; Richardson, James A; Minna, John D; Tedder, Thomas F; Vitetta, Ellen S

    2014-01-01

    CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B-cell receptor and its coreceptor CD19. Recent reports indicate that most human lung cancer cells and cell lines express CD22, making it an important new therapeutic target for lung cancer. The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by quantitative real-time PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200 to 60,000-fold lower than those observed in the human CD22(+) Burkitt lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by either CD22 antibodies or our highly potent anti-CD22 immunotoxin. In contrast, CD22(+) Daudi cells expressed high levels of CD22 mRNA and protein, and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from more than 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells, and that these cells cannot be killed by anti-CD22 immunotoxins. PMID:24395821

  19. Parallel Computation of Airflow in the Human Lung Model

    NASA Astrophysics Data System (ADS)

    Lee, Taehun; Tawhai, Merryn; Hoffman, Eric. A.

    2005-11-01

    Parallel computations of airflow in the human lung based on domain decomposition are performed. The realistic lung model is segmented and reconstructed from CT images as part of an effort to build a normative atlas (NIH HL-04368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. Because of the large number of the airway generation and the sheer complexity of the geometry, massively parallel computation of pulmonary airflow is carried out. We present the parallel algorithm implemented in the custom-developed characteristic-Galerkin finite element method, evaluate the speed-up and scalability of the scheme, and estimate the computing resources needed to simulate the airflow in the conducting airways of the human lungs. It is found that the special tree-like geometry enables the inter-processor communications to occur among only three or four processors for optimal parallelization irrespective of the number of processors involved in the computation.

  20. A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes.

    PubMed

    Turpeinen, Miia; Hofmann, Ute; Klein, Kathrin; Mürdter, Thomas; Schwab, Matthias; Zanger, Ulrich M

    2009-05-01

    Nabumetone, a widely used nonsteroidal anti-inflammatory drug, requires biotransformation into 6-methoxy-2-naphthylacetic acid (6-MNA), a close structural analog to naproxen, to achieve its analgesic and anti-inflammatory effects. Despite its wide use, the enzymes involved in metabolism have not been identified. In the present study, several in vitro approaches were used to identify the cytochrome P450 (P450) enzyme(s) responsible for 6-MNA formation. In human liver microsomes (HLMs) 6-MNA formation displayed monophasic Michaelis-Menten kinetics with apparent K(m) and V(max) values (mean +/- S.D.) of 75.1 +/- 15.3 microM and 1304 +/- 226 pmol/min/mg protein, respectively, and formation rate of 6-MNA varied approximately 5.5-fold (179-983 pmol/min/mg protein). 6-MNA activity correlated strongly with both CYP1A2-mediated phenacetin O-deethylation activity and CYP1A2 protein content (r = 0.85 and 0.74, respectively; p < 0.0001 for both). Additional correlations were found with model activities of CYP2C19 and CYP3A4. Of 11 cDNA-expressed recombinant P450s used, recombinant CYP1A2 was the major form catalyzing the 6-MNA formation with an apparent K(m) of 45 microM and V(max) of 8.7 pmol/min/pmol P450. Minor fractions were catalyzed by recombinant P450s CYP1A1, CYP2B6, CYP2C19, CYP2D6, and CYP2E1. Experiments with P450-selective chemical inhibitors and monoclonal anti-P450 antibodies showed that furafylline, a mechanism-based inhibitor CYP1A2, and anti-CYP1A2 antibody markedly inhibited 6-MNA formation, whereas inhibitors for other P450s did not show significant inhibitory effects. Taken together, these studies indicate that the formation of the active metabolite of nabumetone, 6-MNA, is predominantly catalyzed by CYP1A2 in HLMs with only minor contribution of other P450s. PMID:19204080

  1. Development and implementation of a stereoselective normal-phase liquid chromatography-tandem mass spectrometry method for the determination of intrinsic metabolic clearance in human liver microsomes.

    PubMed

    Zhang, Yingru; Caporuscio, Christian; Dai, Jun; Witkusa, Michael; Rose, Anne; Santella, Joseph; D'Arienzo, Celia; Wang-Iverson, David B; Tymiak, Adrienne A

    2008-11-01

    The stereoselective determination of stereoisomers in biological samples provides vital information on stereospecific metabolism and pharmacokinetic profiles of the drugs. Despite the unique advantage and the great success of normal-phase (NP) HPLC for the separations of drug stereoisomers using polysaccharide-type chiral stationary phases (CSPs), the technique is rarely applied to quantitative HPLC-MS-MS bioanalysis. This is, at least in part, due to the incompatibility between the usual mobile phase (n-hexane or n-heptane) in normal-phase HPLC and the MS ionization sources which poses a potential detonation hazard. An environmentally friendly and nonflammable alternative solvent, ethoxynonafluorobutane (ENFB), was reported previously to potentially provide an ideal solution for combining the powers of stereoselective NP chromatographic separation and MS-MS detection. In this study, a stereoselective NP-HPLC-MS-MS method was developed using ENFB to quantify a pair of Bristol Myers Squibb (BMS) proprietary drug stereoisomers and their ketone metabolite for an in vitro study, which demonstrated, for the first time, the practical applicability and utility of ENFB for bioanalysis in pharmaceutical industry. The effects of different organic modifiers and temperature, as well as the comparison between ENFB and the usual solvent, heptane, for the separation, are discussed. The resolution of the stereoisomers was achieved using 63% of 3:1 mixture of ethanol and methanol with 37% ENFB on a Chiralpak AD-H column at 50 degrees C. High sensitivity was obtained using the MS-MS detection in the positive ion atmospheric pressure chemical ionization (APCI) mode. The lower limit of quantitation (LLOQ) for the first stereoisomer and the ketone metabolite was 5 ng/mL, and was 10 ng/mL for the second isomer in the human liver microsome-potassium phosphate buffer matrix. The linear dynamic range of 5-1000 ng/mL for both isomers and 10-1000 ng/mL for the metabolite were demonstrated

  2. The Role of CYP2C8 and CYP2C9 Genotypes in Losartan-Dependent Inhibition of Paclitaxel Metabolism in Human Liver Microsomes.

    PubMed

    Mukai, Yuji; Senda, Asuna; Toda, Takaki; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2016-06-01

    The aim of the present study was to further investigate a previously identified metabolic interaction between losartan and paclitaxel, which is one of the marker substrates of CYP2C8, by using human liver microsomes (HLMs) from donors with different CYP2C8 and CYP2C9 genotypes. Although CYP2C8 and CYP2C9 exhibit genetic linkage, previous studies have yet to determine whether losartan or its active metabolite, EXP-3174 which is specifically generated by CYP2C9, is responsible for CYP2C8 inhibition. Concentrations of 6α-hydroxypaclitaxel and EXP-3174 were measured by high-performance liquid chromatography after incubations with paclitaxel, losartan or EXP-3174 in HLMs from seven donors with different CYP2C8 and CYP2C9 genotypes. The half maximal inhibitory concentration (IC50 ) values were not fully dependent on CYP2C8 genotypes. Although the degree of inhibition was small, losartan significantly inhibited the production of 6α-hydroxypaclitaxel at a concentration of 1 μmol/L in only HL20 with the CYP2C8*3/*3 genotype. HLMs with either CYP2C9*2/*2 or CYP2C9*1/*3 exhibited a lower losartan intrinsic clearance (Vmax /Km ) than other HLMs including those with CYP2C9*1/*1 and CYP2C9*1/*2. Significant inhibition of 6α-hydroxypaclitaxel formation by EXP-3174 could only be found at levels that were 50 times higher (100 μmol/L) than the maximum concentration generated in the inhibition study using losartan. These results suggest that the metabolic interaction between losartan and paclitaxel is dependent on losartan itself rather than its metabolite and that the CYP2C8 inhibition by losartan is not affected by the CYP2C9 genotype. Further study is needed to define the effect of CYP2C8 genotypes on losartan-paclitaxel interaction. PMID:26551762

  3. Paracetamol hepatotoxicity and microsomal function.

    PubMed

    Kaushal, R; Dave, K R; Katyare, S S

    1999-03-01

    The effect of paracetamol-induced hepatotoxicity in rats (650 mg/kg) on microsomal function was examined. Paracetamol treatment resulted in lowered Na(+),K(+)-ATPase activity in the microsomes with decrease in V(max) of the low affinity high V(max) component II. However, the temperature kinetics was not influenced significantly. The total phospholipid and cholesterol contents as well as lipid peroxidation in the microsomes were unchanged. However, content of acidic phospholipids: phosphatidylserine and phosphatidylinositol decreased by 50% with a reciprocal increase in the sphingomyelin content; the lysophosphoglyceride content increased by 12-fold. The microsomal membrane appeared to be more fluidized following paracetamol treatment. Paracetamol treatment also resulted in a significant reduction in the sulfhydryl groups content. PMID:21781911

  4. Deposition of large particles in human lung.

    PubMed

    Svartengren, M; Falk, R; Linnman, L; Philipson, K; Camner, P

    1987-01-01

    Twenty-four nonsmoking males, all without history of pulmonary disease, were randomly divided into four groups of six subjects each. The subjects in each group inhaled monodisperse Teflon particles labelled with 111In (half-life 2.83 days); 8.2, 11.5, 13.7 and 16.4 micron aerodynamic diameter, respectively. Radioactivity in head and throat, lung and stomach was determined after 0, 3 and 24 hrs using a profile scanner. For some subjects radioactivity was also determined using a whole-body scanner at 3.5 and 24 hrs. After the 24-hr determination the subjects inhaled labelled Teflon particles again, this time with a filter in front of the mouth. Average values for total deposition in the body, obtained using a profile scanner, whole-body scanner and filter measurements, agreed fairly well. Lung retention values obtained by whole-body and profile scanning also agreed well. The average deposition in the lung, expressed as a percentage of total deposition, was 49, 31, 21 and 13% for the four particle sizes (8.2-16.4 micron). Alveolar deposition, determined as retention at 24 hrs and expressed in percent of total deposition, was 15, 4, 4 and 1%. For the smallest particle sizes the deposition values agreed with earlier investigations. However, for the larger particles the two deposition values were higher than expected when compared to earlier studies. PMID:3102217

  5. Second-hand smoke and human lung cancer

    PubMed Central

    Besaratinia, Ahmad; Pfeifer, Gerd P.

    2009-01-01

    Since the early 1980s, there has been growing concern about potential health consequences of exposure to second-hand smoke (SHS). Despite SHS being established as a risk factor for lung cancer development, the estimated risk has remained small yet somehow debatable. Human exposure to SHS is complicated because of temporal variabilities in source, composition, and concentration of SHS. The temporality of exposure to SHS is important for human lung carcinogenesis with a latency of many years. To explore the causal effect of SHS in lung carcinogenesis, exposure assessments should estimate chronic exposure to SHS on an individual basis. However, conventional exposure assessment for SHS relies on one-off or short-term measurements of SHS indices. A more reliable approach would be to use biological markers that are specific for SHS exposure and pertinent to lung cancer. This approach requires an understanding of the underlying mechanisms through which SHS could contribute to lung carcinogenesis. This Review is a synopsis of research on SHS and lung cancer, with special focus on hypothetical modes of action of SHS for carcinogenesis, including genotoxic and epigenetic effects. PMID:18598930

  6. In vitro inhibition and enhancement of liver microsomal S-777469 metabolism by long-chain fatty acids and serum albumin: insight into in vitro and in vivo discrepancy of metabolite formation in humans.

    PubMed

    Sekiguchi, Kazutaka; Kanazu, Takushi; Murayama, Norie; Yamazaki, Hiroshi; Yamaguchi, Yoshitaka

    2016-06-01

    1. It was previously demonstrated that 10% of S-777469, a cannabinoid receptor 2 selective agonist, is metabolized to its carboxylic acid metabolite (S-777469 5-carboxylic acid, 5-CA) in humans in vivo, while the formation of 5-CA is extremely low in human cryopreserved hepatocytes and liver microsomes (HLMs). In this study, factors causing the different metabolite formation rates of S-777469 in vitro and in vivo were investigated. 2. Formation of 5-CA and S-777469 5-hydroxymethyl (5-HM), a precursor metabolite of 5-CA, was catalyzed by CYP2C9. Arachidonic acid, α-linolenic acid, oleic acid and myristic acid, which have been reported to exist in liver microsomes, inhibited S-777469 oxidation by CYP2C9, but serum albumin enhanced this reactions. 3. The IC50 values of these fatty acids for 5-CA formation from 5-HM were lower than those of 5-HM formation from S-777469. Serum albumin extensively enhanced 5-CA formation from 5-HM in comparison to 5-HM formation from S-777469. 4. CYP2C9 was the enzyme responsible for S-777469 oxidation in human livers. The suppressive effects of several fatty acids and enhancing action of serum albumin in vitro are likely to be the causal factors for the apparently different rates of in vitro and in vivo metabolite formation of S-777469. PMID:26677906

  7. Hyperpolarized 129Xe MRI of the Human Lung

    PubMed Central

    Mugler, John P.; Altes, Talissa A.

    2012-01-01

    By permitting direct visualization of the airspaces of the lung, MR imaging using hyperpolarized gases provides unique strategies for evaluating pulmonary structure and function. Although the vast majority of research in humans has been performed using hyperpolarized 3He, recent contraction in the supply of 3He and consequent increases in price have turned attention to the alternative agent, hyperpolarized 129Xe. Compared to 3He, 129Xe yields reduced signal due to its smaller magnetic moment. Nonetheless, taking advantage of advances in gas-polarization technology, recent studies in humans using techniques for measuring ventilation, diffusion, and partial pressure of oxygen have demonstrated results for hyperpolarized 129Xe comparable to those previously demonstrated using hyperpolarized 3He. In addition, xenon has the advantage of readily dissolving in lung tissue and blood following inhalation, which makes hyperpolarized 129Xe particularly attractive for exploring certain characteristics of lung function, such as gas exchange and uptake, which cannot be accessed using 3He. Preliminary results from methods for imaging 129Xe dissolved in the human lung suggest that these approaches will provide new opportunities for quantifying relationships among gas delivery, exchange, and transport, and thus show substantial potential to broaden our understanding of lung disease. Finally, recent changes in the commercial landscape of the hyperpolarized-gas field now make it possible for this innovative technology to move beyond the research lab. PMID:23355432

  8. Histologic, immunohistochemical, and ultrastructural findings in human blast lung injury.

    PubMed

    Tsokos, Michael; Paulsen, Friedrich; Petri, Susan; Madea, Burkhard; Puschel, Klaus; Turk, Elisabeth E

    2003-09-01

    The objective of this autopsy-based study was to investigate the pathology of human blast lung injury using histology, Fat Red 7B staining, immunohistochemistry, and scanning electron microscopy on lung specimens from eight medicolegal autopsy cases of fatal close-range detonations of chemical explosives. The micromorphologic equivalents of human blast lung injury can be summarized as follows: diffuse alveolar overdistension, circumscribed interstitial hemorrhages showing a cufflike pattern around pulmonary vessels, venous air embolism, bone marrow embolism, and pulmonary fat embolism. Hemorrhages within the lung parenchyma that were present in this study in blast victims without coexisting blunt or penetrating chest trauma must be regarded as potentially life-threatening intrapulmonary bleeding sites in survivors. In addition, the potential clinical importance of the presence of massive pulmonary fat embolism, which has, to the best of our knowledge, not been described previously in human blast lung injury, must be emphasized because pulmonary fat embolism may be a leading cause of the rapid respiratory deterioration with progressive hypoxia and development of acute respiratory distress syndrome in blast victims who survive. Furthermore, this study provides evidence that air embolism presenting in blast victims is not a mere ventilation-induced artifact. PMID:12842857

  9. DISPERSION OF AEROSOL BOLUSES IN THE HUMAN LUNG: DEPENDENCE ON LUNG VOLUME, BOLUS VOLUME, AND GENDER

    EPA Science Inventory

    The dispersion of aerosol boluses in the human lungs has been studied in health and disease by other investigators as a means of investigating convective mixing. owever, there are only limited data on the roles played in dispersion by critical factors such as the volume of inhale...

  10. Radioactivity and lung cancer-mathematical models of radionuclide deposition in the human lungs

    PubMed Central

    Sturm, Robert

    2011-01-01

    The human respiratory tract is regarded as pathway for radionuclides and other hazardous airborne materials to enter the body. Radioactive particles inhaled and deposited in the lungs cause an irradiation of bronchial/alveolar tissues. At the worst, this results in a malignant cellular transformation and, as a consequence of that, the development of lung cancer. In general, naturally occurring radionuclides (e.g., 222Rn, 40K) are attached to so-called carrier aerosols. The aerodynamic diameters of such radioactively labeled particles generally vary between several nanometers (ultrafine particles) and few micrometers, whereby highest particle fractions adopt sizes around 100 nm. Theoretical simulations of radioactive particle deposition in the human lungs were based on a stochastic lung geometry and a particle transport/deposition model using the random-walk algorithm. Further a polydisperse carrier aerosol (diameter: 1 nm–10 µm, ρ ≈ 1 g cm−3) with irregularly shaped particles and the effect of breathing characteristics and certain respiratory parameters on the transport of radioactive particles to bronchial/alveolar tissues were considered. As clearly shown by the results of deposition modeling, distribution patterns of radiation doses mainly depend on the size of the carrier aerosol. Ultrafine (< 10 nm) and large (> 2 µm) aerosol particles are preferentially deposited in the extrathoracic and upper bronchial region, whereas aerosol particles with intermediate size (10 nm–2 µm) may penetrate to deeper lung regions, causing an enhanced damage of the alveolar tissue by the attached radionuclides. PMID:22263097

  11. Impact of Statins on Gene Expression in Human Lung Tissues

    PubMed Central

    Lane, Jérôme; van Eeden, Stephan F.; Obeidat, Ma’en; Sin, Don D.; Tebbutt, Scott J.; Timens, Wim; Postma, Dirkje S.; Laviolette, Michel; Paré, Peter D.; Bossé, Yohan

    2015-01-01

    Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that alter the synthesis of cholesterol. Some studies have shown a significant association of statins with improved respiratory health outcomes of patients with asthma, chronic obstructive pulmonary disease and lung cancer. Here we hypothesize that statins impact gene expression in human lungs and may reveal the pleiotropic effects of statins that are taking place directly in lung tissues. Human lung tissues were obtained from patients who underwent lung resection or transplantation. Gene expression was measured on a custom Affymetrix array in a discovery cohort (n = 408) and two replication sets (n = 341 and 282). Gene expression was evaluated by linear regression between statin users and non-users, adjusting for age, gender, smoking status, and other covariables. The results of each cohort were combined in a meta-analysis and biological pathways were studied using Gene Set Enrichment Analysis. The discovery set included 141 statin users. The lung mRNA expression levels of eighteen and three genes were up-regulated and down-regulated in statin users (FDR < 0.05), respectively. Twelve of the up-regulated genes were replicated in the first replication set, but none in the second (p-value < 0.05). Combining the discovery and replication sets into a meta-analysis improved the significance of the 12 up-regulated genes, which includes genes encoding enzymes and membrane proteins involved in cholesterol biosynthesis. Canonical biological pathways altered by statins in the lung include cholesterol, steroid, and terpenoid backbone biosynthesis. No genes encoding inflammatory, proteases, pro-fibrotic or growth factors were altered by statins, suggesting that the direct effect of statin in the lung do not go beyond its antilipidemic action. Although more studies are needed with specific lung cell types and different classes and doses of statins, the improved health outcomes and survival observed in statin

  12. The association between human papillomavirus infection and female lung cancer

    PubMed Central

    Lin, Frank Cheau-Feng; Huang, Jing-Yang; Tsai, Stella Ching-Shao; Nfor, Oswald Ndi; Chou, Ming-Chih; Wu, Ming-Fang; Lee, Chun-Te; Jan, Cheng-Feng; Liaw, Yung-Po

    2016-01-01

    Abstract Lung cancer is the leading cause of cancer deaths among Taiwanese women. Human papillomavirus (HPV) has been detected in lung cancer tissues. The aim of this study was to investigate the association between HPV infection and lung cancer among the Taiwanese women. The analytical data were collected from the longitudinal health insurance databases (LHID 2005 and 2010) of the National Health Insurance Research Database (NHIRD). The study participants were 30 years and older and included 24,162 individuals who were identified with HPV infection from 2001 to 2004 and 1,026,986 uninfected individuals. Lung cancer incidence among infected and uninfected individuals was compared using the univariate and multivariate regression models. Among the total participants, 24,162 individuals were diagnosed with HPV. After adjusting for age, gender, low income, residential area, and comorbidity, the risk of lung cancer was higher in women (hazard ratio [HR] 1.263, 95% CI 1.015–1.571), while all cancer risks were high in both men and women with corresponding hazard ratios (HR) of 1.161 (95% CI 1.083–1.245) and HR 1.240 (95% CI 1.154–1.331), respectively. This study showed a significant increase in lung cancer risk among Taiwanese women who were exposed to HPV infection. PMID:27281096

  13. BIOMARKERS OF HEALTH EFFECTS IN THE HUMAN LUNG

    EPA Science Inventory

    Little information exists about retained particle/metal burden in human lung and associated biomarkers of internal dose/indicators of health effects. We have shown that anatomical remodeling of the terminal and respiratory bronchioles occur at sites of particle deposition. We ext...

  14. MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS

    EPA Science Inventory

    MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS. Jung-il Choi*, Center for Environmental Medicine, University of North Carolina, Chapel Hill, NC 27599; C. S. Kim, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711

    Partic...

  15. Mathematical model of the human lungs during phonation

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, R. V.

    2012-08-01

    Modeling of the human lungs during phonation is considered. The main relationships during physiological phonation process and air passage through vocal folds are established. Results of investigation are presented for statements of various types corresponding to different intonation patterns of the statement.

  16. COMPUTER SIMULATIONS OF HUMAN LUNG STRUCTURES FOR MEDICAL APPLICATIONS

    EPA Science Inventory

    Knowledge of the structure of the human lung has salient health effects applications. he clinical issues encompass (1) aerosol therapy, delivery of inhaled particles to enhance the efficacies of pharmacologic drugs, and (2) nuclear medicine, where planar gamma camera imaging, SPE...

  17. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory


    Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
    T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  18. A novel P450-catalyzed transformation of the 2,2,6,6-tetramethyl piperidine moiety to a 2,2-dimethyl pyrrolidine in human liver microsomes: characterization by high resolution quadrupole-time-of-flight mass spectrometry and 1H-NMR.

    PubMed

    Yin, Wenji; Doss, George A; Stearns, Ralph A; Chaudhary, Ashok G; Hop, Cornelis E; Franklin, Ronald B; Kumar, Sanjeev

    2003-02-01

    We describe herein a novel metabolic fate of the 2,2,6,6-tetramethyl-piperidine (2,2,6,6-TMPi) moiety to a ring-contracted 2,2-dimethyl pyrrolidine (2,2-DMPy) in human liver microsomal incubations. The existence of this pathway was demonstrated for three compounds (I-III) of varied structures suggesting that this may be a general biotransformation reaction for the 2,2,6,6-TMPi moiety. The 2,2-DMPy metabolites formed in incubations of the three compounds with human liver microsomes were characterized by online high performance liquid chromatography coupled to a high resolution hybrid quadrupole-time-of-flight mass spectrometer. Suggested elemental composition obtained from accurate mass measurements of the molecular ions and fragment ions of the metabolites clearly indicated the loss of a mass equivalent to C(3)H(6) from the parent 2,2,6,6-TMPi functionality. Additional accurate tandem mass spectrometry data indicated that one of the original two gem-dimethyl groups was intact in the metabolite structure. Proof of a ring-contracted 2,2-DMPy structure was obtained using (1)H-NMR experiments on a metabolite purified from liver microsomal incubations, which showed only two geminal methyl groups, instead of four in the parent compound. Two-dimensional correlation spectroscopy and decoupling experiments established aliphatic protons arranged in a pyrrolidine ring pattern. The fact that the formation of 2,2-DMPy metabolites in human liver microsomes was NADPH-dependent suggested that this novel metabolic reaction was catalyzed by the cytochrome P450 (P450) enzyme(s). Immunoinhibition studies in human liver microsomal incubations using anti-P450 monoclonal antibodies and experiments with insect cell microsomes containing individually expressed recombinant human P450 isozymes indicated that multiple P450 isozymes were capable of catalyzing this novel metabolic transformation. PMID:12527703

  19. Modeling of the Nitric Oxide Transport in the Human Lungs

    PubMed Central

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  20. HT-2 toxin 4-glucuronide as new T-2 toxin metabolite: enzymatic synthesis, analysis, and species specific formation of T-2 and HT-2 toxin glucuronides by rat, mouse, pig, and human liver microsomes.

    PubMed

    Welsch, Tanja; Humpf, Hans-Ulrich

    2012-10-10

    Glucuronides of the mycotoxin T-2 toxin and its phase I metabolite HT-2 toxin are important phase II metabolites under in vivo and in vitro conditions. Since standard substances are essential for the direct quantitation of these glucuronides, a method for the enzymatic synthesis of T-2 and HT-2 toxin glucuronides employing liver microsomes was optimized. Structure elucidation by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry revealed that besides T-2 toxin glucuronide and HT-2 toxin 3-glucuronide also the newly identified isomer HT-2 toxin 4-glucuronide was formed. Glucuronidation of T-2 and HT-2 toxin in liver microsomes of rat, mouse, pig, and human was compared and metabolites were analyzed directly by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). A distinct, species specific pattern of glucuronidation of T-2 and HT-2 toxin was observed with interesting interindividual differences. Until recently, glucuronides have frequently been analyzed indirectly by quantitation of the aglycone after enzymatic cleavage of the glucuronides by β-glucuronidase. Therefore, the hydrolysis efficiencies of T-2 and HT-2 toxin glucuronides using β-glucuronidases from Helix pomatia, bovine liver, and Escherichia coli were compared. PMID:22967261

  1. Nucleotide Excision Repair Is Not Induced in Human Embryonic Lung Fibroblasts Treated with Environmental Pollutants

    PubMed Central

    Rossner, Pavel; Spatova, Milada; Rossnerova, Andrea; Libalova, Helena; Schmuczerova, Jana; Milcova, Alena; Topinka, Jan; Sram, Radim J.

    2013-01-01

    The cellular response to genotoxic treatment depends on the cell line used. Although tumor cell lines are widely used for genotoxicity tests, the interpretation of the results may be potentially hampered by changes in cellular processes caused by malignant transformation. In our study we used normal human embryonic lung fibroblasts (HEL12469 cells) and tested their response to treatment with benzo[a]pyrene (B[a]P) and extractable organic matter (EOM) from ambient air particles <2.5 µm (PM2.5) collected in two Czech cities differing in levels and sources of air pollution. We analyzed multiple endpoints associated with exposure to polycyclic aromatic hydrocarbons (PAHs) including the levels of bulky DNA adducts and the nucleotide excision repair (NER) response [expression of XPE, XPC and XPA genes on the level of mRNA and proteins, unscheduled DNA synthesis (UDS)]. EOMs were collected in the winter and summer of 2011 in two Czech cities with different levels and sources of air pollution. The effects of the studied compounds were analyzed in the presence (+S9) and absence (–S9) of the rat liver microsomal S9 fraction. The levels of bulky DNA adducts were highest after treatment with B[a]P, followed by winter EOMs; their induction by summer EOMs was weak. The induction of both mRNA and protein expression was observed, with the most pronounced effects after treatment with B[a]P (–S9); the response induced by EOMs from both cities and seasons was substantially weaker. The expression of DNA repair genes was not accompanied by the induction of UDS activity. In summary, our results indicate that the tested compounds induced low levels of DNA damage and affected the expression of NER genes; however, nucleotide excision repair was not induced. PMID:23894430

  2. In vitro glucuronidation of the primary metabolite of 10-chloromethyl-11-demethyl-12-oxo-calanolide A by human liver microsomes and its interactions with UDP-glucuronosyltransferase substrates.

    PubMed

    Liu, Xin; Sheng, Li; Zhao, Manman; Mi, Jiaqi; Liu, Zhihao; Li, Yan

    2015-02-01

    F18 (10-chloromethyl-11-demethyl-12-oxo-calanolide), an analog of (+)-Calanolide A, is a novel small-molecule nonnucleoside reverse transcriptase inhibitor for the therapy of human immunodeficiency virus (HIV) infection. M3, the most abundant primary metabolite of F18 in human liver microsomes (HLMs) and rat liver microsomes (RLMs), is mainly excreted in bile as a glucuronide conjugate in rats after oral administration. The aim of this study was to identify the UDP glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of M3 by HLMs and recombinant human UGTs and investigate the metabolic interactions of M3 with the substrates of UGTs in HLMs. As a result, UGT1A1 was the major isozyme responsible for the glucuronidation of M3, followed by UGT1A4, UGT1A9 and UGT2B7. M3 exhibited significant inhibition against UGT1A9 and UGT2B7 in both HLMs and recombinant human UGTs. In addition, M3 inhibited UGT1A9 catalyzed mycophenolic acid (MPA) glucuronidation with Ki of 0.39 μM, and M3 also inhibited the glucuronidation of 3'-azido-3'-deoxythymidine (AZT) by a "mixed-type" mechanism with Ki of 16.8 μM. The results suggest that UGT1A1 provides the major contribution to M3 glucuronidation in vitro and M3 has the potential to interact with xenobiotics and endogenous chemicals that are UGT1A9 and UGT 2B7 substrates. PMID:25760535

  3. Aerosol Deposition in the Human Lung in Reduced Gravity

    PubMed Central

    2014-01-01

    Abstract The deposition of aerosol in the human lung occurs mainly through a combination of inertial impaction, gravitational sedimentation, and diffusion. For 0.5- to 5-μm-diameter particles and resting breathing conditions, the primary mechanism of deposition in the intrathoracic airways is sedimentation, and therefore the fate of these particles is markedly affected by gravity. Studies of aerosol deposition in altered gravity have mostly been performed in humans during parabolic flights in both microgravity (μG) and hypergravity (∼1.6G), where both total deposition during continuous aerosol mouth breathing and regional deposition using aerosol bolus inhalations were performed with 0.5- to 3-μm particles. Although total deposition increased with increasing gravity level, only peripheral deposition as measured by aerosol bolus inhalations was strongly dependent on gravity, with central deposition (lung depth<200 mL) being similar between gravity levels. More recently, the spatial distribution of coarse particles (mass median aerodynamic diameter≈5 μm) deposited in the human lung was assessed using planar gamma scintigraphy. The absence of gravity caused a smaller portion of 5-μm particles to deposit in the lung periphery than in the central region, where deposition occurred mainly in the airways. Indeed, 5-μm-diameter particles deposit either by inertial impaction, a mechanism most efficient in the large and medium-sized airways, or by gravitational sedimentation, which is most efficient in the distal lung. On the contrary, for fine particles (∼1 μm), both aerosol bolus inhalations and studies in small animals suggest that particles deposit more peripherally in μG than in 1G, beyond the reach of the mucociliary clearance system. PMID:24870702

  4. Sulf-2, a heparan sulfate endosulfatase, promotes human lung carcinogenesis

    PubMed Central

    Lemjabbar-Alaoui, Hassan; van Zante, Annemieke; Singer, Mark S.; Xue, Qing; Wang, Yang-Qing; Tsay, Durwin; He, Biao; Jablons, David M.; Rosen, Steven D.

    2009-01-01

    Heparan sulfate proteoglycans (HSPGs) bind to multiple growth factors/morphogens and regulate their signaling. 6-O-sulfation (6S) of glucosamine within HS-chains is critical for many of these ligand interactions. Sulf-1 and Sulf-2, which are extracellular neutral-pH sulfatases, provide a novel post-synthetic mechanism for regulation of HSPG function by removing 6S from intact HS-chains. The Sulfs can thereby modulate several signaling pathways, including the promotion of Wnt signaling. We found induction of SULF2 transcripts and Sulf-2 protein in human lung adenocarcinoma and squamous cell carcinoma, the two major classes of non-small cell lung cancers (NSCLC). We confirmed widespread Sulf-2 protein expression in tumor cells of 10/10 surgical specimens of human lung squamous carcinomas. We studied five Sulf-2+ NSCLC cell lines, including two which were derived by cigarette-smoke transformation of bronchial epithelial cells. shRNA-mediated Sulf-2 knockdown in these lines caused an increase in 6S on their cell surface and in parallel reversed their transformed phenotype in vitro, eliminated autocrine Wnt signaling, and strongly blunted xenograft tumor formation in nude mice. Conversely, forced Sulf-2 expression in non-malignant bronchial epithelial cells produced a partially transformed phenotype. Our findings support an essential role for Sulf-2 in lung cancer, the leading cancer killer. PMID:19855436

  5. Selective Toll-Like Receptor Expression in Human Fetal Lung

    PubMed Central

    Petrikin, Joshua E; Gaedigk, Roger; Leeder, J Steven; Truog, William E

    2010-01-01

    Toll-like receptors (TLRs) are critical components of the innate immune system, acting as pattern recognition molecules and triggering an inflammatory response. TLR associated gene products are of interest in modulating inflammatory related pulmonary diseases of the neonate. The ontogeny of TLR related genes in human fetal lung has not been previously described and could elucidate additional functions and identify strategies for attenuating the effects of fetal inflammation. We examined the expression of 84 TLR related genes on 23 human fetal lung samples from three groups with estimated ages of 60 (57-59d), 90 (89-91d), and 130 (117-154d) days. Using a false detection rate algorithm, we identified 32 genes displaying developmental regulation with TLR2 having the greatest up-regulation of TLR genes (9.2 fold increase) and TLR4 unchanged. We confirmed the TLR2 up-regulation by examining an additional 133 fetal lung tissue samples with a fluorogenic polymerase chain reaction assay (TaqMan®) and found an exponential best-fit curve over the time studied. The best-fit curve predicts a 6.1 fold increase from 60d to 130d. We conclude that TLR2 is developmentally expressed from the early pseudoglandular stage of lung development to the canalicular stage. PMID:20581745

  6. Comparative Pathobiology of Environmentally Induced Lung Cancers in Humans and Rodents

    PubMed Central

    Pandiri, Arun

    2014-01-01

    Lung cancer is the number one cause of cancer-related deaths in humans worldwide. Environmental factors play an important role in the epidemiology of these cancers. Rodents are the most common experimental model to study human lung cancers and are frequently used in bioassays to identify environmental exposure hazards associated with lung cancer. Lung tumors in rodents are common, particularly in certain strains of mice. Rodent lung tumors are predominantly bronchioloalveolar carcinomas and usually follow a progressive continuum of hyperplasia to adenoma to carcinoma. Human lung cancers are phenotypically more diverse and broadly constitute 2 types: small cell lung cancers or non-small cell lung cancers. Rodent lung tumors resulting from exposure to environmental agents are comparable to certain adenocarcinomas that are a subset of human non-small cell lung cancers. Human pulmonary carcinomas differ from rodent lung tumors by exhibiting greater morphologic heterogeneity (encompassing squamous cell, neuroendocrine, mucinous, sarcomatoid, and multiple cell combinations), higher metastatic rate, higher stromal response, aggressive clinical behavior, and lack of a clear continuum of proliferative lesions. In spite of these differences, rodent lung tumors recapitulate several fundamental aspects of human lung tumor biology at the morphologic and molecular level especially in lung cancers resulting from exposure to environmental carcinogens. PMID:25351923

  7. Inhibition of hepatic microsomal carboxylesterase activity by paraoxon.

    PubMed

    Castle, M C

    1988-01-01

    A large number of therapeutic agents are esters of carboxylic acids and are thus substrates for microsomal carboxylesterase enzymes. These studies characterized the effects of the organophosphate compound, paraoxon, on the hydrolysis of several drug esters (procaine, chloramphenicol succinate, prednisolone succinate, lidocaine, procainamide and methylparaben) by microsomal preparations from guinea-pigs. These investigations demonstrate that carboxylesterase activity toward several drug esters is present in liver, lung and kidney. The liver is by far the major site of hydrolysis of these ester compounds. Since no hydrolysis was observed with the two amide esters, the hydrolysis of carboxylesters and amide esters appears to be mediated by different enzymes in the guinea-pig. At the substrate concentrations studied, the hydrolysis of methylparaben followed zero-order kinetics. When added to isolated microsomal preparations, paraoxon produced a dose-dependent inhibition of hydrolysis of all substrates. Administration of paraoxon to guinea-pigs prior to isolation of microsomes did not produce consistent effects with any substrate. Inhibition of ester hydrolysis was observed with some pretreatments, while either no change or increased hydrolysis was observed with other pretreatment regimens. PMID:3245748

  8. Evaluation of metabolism dependent inhibition of CYP2B6 mediated bupropion hydroxylation in human liver microsomes by monoamine oxidase inhibitors and prediction of potential as perpetrators of drug interaction.

    PubMed

    Nirogi, Ramakrishna; Palacharla, Raghava Choudary; Mohammed, Abdul Rasheed; Manoharan, Arunkumar; Ponnamaneni, Ranjith Kumar; Bhyrapuneni, Gopinadh

    2015-03-25

    The objective of the study was to evaluate the metabolism dependent inhibition of CYP2B6 catalyzed bupropion hydroxylation in human liver microsomes by monoamine oxidase (MAO) inhibitors and to predict the drug-drug interaction potential of monoamine oxidase inhibitors as perpetrators of drug interaction. Human liver microsomal CYP2B6 activities were investigated using bupropion hydroxylation as probe substrate marker. The results from single point time dependent inhibition and shift assays suggest that clorgyline, pargyline, phenelzine, and selegiline were metabolism based inhibitors of CYP2B6. In IC50 shift assays, clorgyline, pargyline, phenelzine and selegiline are metabolism based inhibitors of CYP2B6 with fold shit of 3.0-, 3.7-, 2.9-, and 11.4-fold respectively. The inactivation of clorgyline was characterized by KI value of 2.5 ± 0.3 and k(inact) value of 0.045 ± 0.001 min(-1). Phenelzine inactivated CYP2B6 with KI and k(inact) values of 44.9 ± 6.9 μM and 0.085 ± 0.003 min(-1) respectively. Inactivation of selegiline was characterized with KI and k(inact) values of 22.0 ± 3.3 and 0.074 ± 0.002 min(-1) respectively. The inactivation caused by these inhibitors was not reversed by dialysis indicating irreversible inhibition. Based on the mechanistic static model, selegiline showed an increase in the area under the curve (AUC) of efavirenz and bupropion by 1.01-fold. Phenelzine predicted to cause an increase in the AUC of efavirenz and bupropion by 9.4- and 2.4-fold respectively considering unbound hepatic inlet concentrations of phenelzine. In conclusion, the results from this study demonstrated that MAO inhibitors can inactivate human liver microsomal CYP2B6. The likelihood of drug interaction when selegiline co-administered with CYP2B6 substrates is remote. Caution is required while co-administering phenelzine with substrates that are exclusively metabolized by CYP2B6 enzyme and substrates that have narrow therapeutic index. PMID:25656918

  9. Generation of leukotrienes by purified human lung mast cells.

    PubMed Central

    MacGlashan, D W; Schleimer, R P; Peters, S P; Schulman, E S; Adams, G K; Newball, H H; Lichtenstein, L M

    1982-01-01

    Although mediator release from mast cells and basophils plays a central role in the pathogenesis of human allergic disease, biochemical studies have been restricted to rat peritoneal mast cells and basophilic leukemia cells because they could be easily purified. We have used two new techniques of cell separation to purify human lung mast cells to 98% homogeneity. Lung cell suspensions were obtained by dispersion of chopped lung tissue with proteolytic enzymes. Mast cells were then purified from the suspensions by countercurrent centrifugal elutriation and affinity chromatography. The purified mast cells released both histamine and slow-reacting substance of anaphylaxis (SRS-A) (leukotriene C and D) during stimulation with goat anti-human IgE antibody. Moreover, these preparations were able to generate significant quantities of SRS-A (32 +/- 7 x 10(-17) LTD mole-equivalents/mast cell) at all stages of purification, indicating that a secondary cell is not necessary for the antigen-induced release of SRS. Images PMID:7119113

  10. Activation of proto-oncogenes in human and mouse lung tumors

    SciTech Connect

    Reynolds, S.H.; Anderson, M.W. )

    1991-06-01

    Lung cancer is a leading cause of cancer-related deaths in several nations. Epidemiological studies have indicated that 85% of all lung cancer deaths and 30% of all cancer deaths in the US are associated with tobacco smoking. Various chemicals in tobacco smoke are thought to react with DNA and to ultimately yield heritable mutations. In an effort to understand the molecular mechanisms involved in lung tumorigenesis, the authors have analyzed proto-oncogene activation in a series of human lung tumors from smokers and spontaneously occurring and chemically induced lung tumors in mice. Approximately 86% of the human lung tumors and > 90% of the mouse lung tumors were found to contain activated oncogenes. ras Oncogenes activated by point mutations were detected in many of the human lung adenocarcinomas and virtually all of the mouse lung adenomas and adenocarcinomas. The mutation profiles of the activated K-ras genes detected in the chemically induced mouse lung tumors suggest that the observed mutations result from genotoxic effects of the chemicals. Comparison of the K-ras mutations observed in the human lung adenocarcinomas with mutation profiles observed in the mouse lung tumors suggest that bulky hydrophobic DNA adducts may be responsible for the majority of the mutations observed in the activated human K-ras genes. Other data indicate that approximately 20% of human lung tumors contain potentially novel transforming genes that may also be targets for mutagens in cigarette smoke.

  11. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    SciTech Connect

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Barrios, Roberto; Moorthy, Bhagavatula

    2013-10-15

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.

  12. Autoradiographic localization of beta-adrenoceptors in asthmatic human lung

    SciTech Connect

    Spina, D.; Rigby, P.J.; Paterson, J.W.; Goldie, R.G. )

    1989-11-01

    The autoradiographic distribution and density of beta-adrenoceptors in human non-diseased and asthmatic bronchi were investigated using (125I)iodocyanopindolol (I-CYP). Analysis of the effects of the beta-adrenoceptor antagonists on I-CYP binding demonstrated that betaxolol (20 nM, beta 1-selective) had no significant effect on specific grain density in either nonasthmatic or asthmatic human bronchus, whereas ICI-118551 (20 nM, beta 2-selective) inhibited I-CYP binding by 85 +/- 9% and 89 +/- 3%, respectively. Thus, homogeneous populations of beta 2-adrenoceptors existed in bronchi from both sources. Large populations of beta-adrenoceptors were localized to the bronchial epithelium, submucosal glands, and airway smooth muscle. Asthmatic bronchial tissue featured epithelial damage with exfoliated cells associated with luminal mucus plugs. A thickened basement membrane and airway smooth muscle hyperplasia were also evident. High levels of specific I-CYP binding were also detected over asthmatic bronchial smooth muscle, as assessed by autoradiography and quantitation of specific grain densities. Isoproterenol and fenoterol were 10- and 13-fold less potent, respectively, in bronchi from asthmatic lung than in those from nonasthmatic lung. However, this attenuated responsiveness to beta-adrenoceptor agonists was not caused by reduced beta-adrenoceptor density in asthmatic airways. A defect may exist in the coupling between beta-adrenoceptors and postreceptor mechanisms in severely asthmatic lung.

  13. 3-D segmentation of human sternum in lung MDCT images.

    PubMed

    Pazokifard, Banafsheh; Sowmya, Arcot

    2013-01-01

    A fully automatic novel algorithm is presented for accurate 3-D segmentation of the human sternum in lung multi detector computed tomography (MDCT) images. The segmentation result is refined by employing active contours to remove calcified costal cartilage that is attached to the sternum. For each dataset, costal notches (sternocostal joints) are localized in 3-D by using a sternum mask and positions of the costal notches on it as reference. The proposed algorithm for sternum segmentation was tested on 16 complete lung MDCT datasets and comparison of the segmentation results to the reference delineation provided by a radiologist, shows high sensitivity (92.49%) and specificity (99.51%) and small mean distance (dmean=1.07 mm). Total average of the Euclidean distance error for costal notches positioning in 3-D is 4.2 mm. PMID:24110446

  14. An ex vivo human lung model for ultrasound-guided high-intensity focused ultrasound therapy using lung flooding.

    PubMed

    Wolfram, Frank; Reichenbach, Jürgen R; Lesser, Thomas G

    2014-03-01

    The usability of an ex vivo human lung model for ablation of lung cancer tissue with high-intensity focused ultrasound (HIFU) is described. Lung lobes were flooded with saline, with no gas remaining after complete atelectasis. The tumor was delineated sono-morphologically. Speed of sound, tissue density and ultrasound attenuation were measured for flooded lung and different pulmonary cancer tissues. The acoustic impedance of lung cancer tissue (1.6-1.9 mega-Rayleighs) was higher than that of water, as was its attenuation coefficient (0.31-0.44 dB/cm/MHz) compared with that of the flooded lung (0.12 dB/cm/MHz). After application of HIFU, the temperature in centrally located lung cancer surrounded by the flooded lung increased as high as 80°C, which is sufficient for treatment. On the basis of these preliminary results, ultrasound-guided HIFU ablation of lung cancer, by lung flooding with saline, appears feasible and should be explored in future clinical studies. PMID:24412177

  15. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration

    PubMed Central

    Wagner, Darcy E.; Bonenfant, Nicholas R.; Sokocevic, Dino; DeSarno, Michael; Borg, Zachary; Parsons, Charles; Brooks, Elice M.; Platz, Joseph; Khalpey, Zain; Hoganson, David M.; Deng, Bin; Lam, Ying Wai; Oldinski, Rachael A.; Ashikaga, Takamaru; Weiss, Daniel J.

    2014-01-01

    Acellular scaffolds from complex whole organs such as lung are being increasingly studied for ex vivo organ generation and for in vitro studies of cell-extracellular matrix interactions. We have established effective methods for efficient de- and recellularization of large animal and human lungs including techniques which allow multiple small segments (∼1–3cm3) to be excised that retain 3-dimensional lung structure. Coupled with the use of a synthetic pleural coating, cells can be selectively physiologically inoculated via preserved vascular and airway conduits. Inoculated segments can be further sliced for high throughput studies. Further, we demonstrate thermography as a powerful noninvasive technique for monitoring perfusion decellularization and for evaluating preservation of vascular and airway networks following human and porcine lung decellularization. Collectively, these techniques are a significant step forward as they allow high throughput in vitro studies from a single lung or lobe in a more biologically relevant, three-dimensional acellular scaffold. PMID:24411675

  16. Sex-specific Differences in Hyperoxic Lung Injury in Mice: Implications for Acute and Chronic Lung Disease in Humans

    PubMed Central

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Barrios, Roberto; Moorthy, Bhagavatula

    2014-01-01

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO2>0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F2 alpha (8-iso-PGF 2α) (LC-MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. CytochromeP450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F>M) and VEGF (M>F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. PMID:23792423

  17. Cellular morphometry of the bronchi of human and dog lungs

    SciTech Connect

    Robbins, E.S.

    1991-09-01

    One hundred and forty-seven bronchial samples (generations 3--6) from 66 patients (62 usable; 36 female, 26 male; median age 61) have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. In addition, one hundred and fifty-six mongol dog bronchi (generations 2--6) dissected from different lobes of 26 dog lungs have also been similarly prepared. One hundred and twenty-seven human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 655 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement of the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 328 micrographs of dog epithelium from 33 bronchial samples have been used to measure the distances of basal and mucous cell nuclei to the epithelial free surface and have been entered into COSAS. Using the COSAS planimetry program, we continue to expand our established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the same 5 epithelial cell types of dog bronchi. Our micrographs of human bronchial epithelium have allowed us to analyze the recent suggestion that the DNA of lymphocytes may be subject to significant damage from Rn progeny while within the lung. Since the last progress report three papers have been submitted for publication. 17 refs., 4 tabs.

  18. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  19. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells.

    PubMed

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W; Basse, Per H; Wang, Hong; Wang, Xinhui; Proia, David A; Greenberger, Joel S; Socinski, Mark A; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  20. GENETIC ASSOCIATION BETWEEN HUMAN CHITINASES AND LUNG FUNCTION IN COPD

    PubMed Central

    Aminuddin, F.; Akhabir, L.; Stefanowicz, D.; Paré, P.D.; Connett, J.E.; Anthonisen, N.R.; Fahy, J.V.; Seibold, M.A.; Burchard, E.G.; Eng, C.; Gulsvik, A.; Bakke, P.; Cho, M. H.; Litonjua, A.; Lomas, D.A.; Anderson, W. H.; Beaty, T.H.; Crapo, J.D.; Silverman, E.K.; Sandford, A.J.

    2013-01-01

    Two primary chitinases have been identified in humans – acid mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Mammalian chitinases have been observed to affect the host’s immune response. The aim of this study was to test for association between genetic variation in the chitinases and phenotypes related to Chronic Obstructive Pulmonary Disease (COPD). Polymorphisms in the chitinase genes were selected based on previous associations with respiratory diseases. Polymorphisms that were associated with lung function level or rate of decline in the Lung Health Study (LHS) cohort were analyzed for association with COPD affection status in four other COPD case-control populations. Chitinase activity and protein levels were also related to genotypes. In the Caucasian LHS population, the baseline forced expiratory volume in one second (FEV1) was significantly different between the AA and GG genotypic groups of the AMCase rs3818822 polymorphism. Subjects with the GG genotype had higher AMCase protein and chitinase activity compared with AA homozygotes. For CHIT1 rs2494303, a significant association was observed between rate of decline in FEV1 and the different genotypes. In the African American LHS population, CHIT1 rs2494303 and AMCase G339T genotypes were associated with rate of decline in FEV1. Although a significant effect of chitinase gene alleles was found on lung function level and decline in the LHS, we were unable to replicate the associations with COPD affection status in the other COPD study groups. PMID:22200767

  1. Human Immunodeficiency Virus Infection and Host Defense in the Lungs.

    PubMed

    Charles, Tysheena P; Shellito, Judd E

    2016-04-01

    Immunosuppression associated with human immunodeficiency virus (HIV) infection impacts all components of host defense against pulmonary infection. Cells within the lung have altered immune function and are important reservoirs for HIV infection. The host immune response to infected lung cells further compromises responses to a secondary pathogenic insult. In the upper respiratory tract, mucociliary function is impaired and there are decreased levels of salivary immunoglobulin A. Host defenses in the lower respiratory tract are controlled by alveolar macrophages, lymphocytes, and polymorphonuclear leukocytes. As HIV infection progresses, lung CD4 T cells are reduced in number causing a lack of activation signals from CD4 T cells and impaired defense by macrophages. CD8 T cells, on the other hand, are increased in number and cause lymphocytic alveolitis. Specific antibody responses by B-lymphocytes are decreased and opsonization of microorganisms is impaired. These observed defects in host defense of the respiratory tract explain the susceptibility of HIV-infected persons for oropharyngeal candidiasis, bacterial pneumonia, Pneumocystis pneumonia, and other opportunistic infections. PMID:26974294

  2. Organoids as a model system for studying human lung development and disease.

    PubMed

    Nadkarni, Rohan R; Abed, Soumeya; Draper, Jonathan S

    2016-05-01

    The lung is a complex organ comprising multiple cell types that perform a variety of vital processes, including immune defense and gas exchange. Diseases of the lung, such as chronic obstructive pulmonary disease, asthma and lung cancer, together represent one of the largest causes of patient suffering and mortality. Logistical barriers that hamper access to embryonic, normal adult or diseased lung tissue currently hinder the study of lung disease. In vitro lung modeling represents an attractive and accessible avenue for investigating lung development, function and disease pathology, but accurately modeling the lung in vitro requires a system that recapitulates the structural features of the native lung. Organoids are stem cell-derived three-dimensional structures that are supported by an extracellular matrix and contain multiple cell types whose spatial arrangement and interactions mimic those of the native organ. Recently, organoids representative of the respiratory system have been generated from adult lung stem cells and human pluripotent stem cells. Ongoing studies are showing that organoids may be used to model human lung development, and can serve as a platform for interrogating the function of lung-related genes and signalling pathways. In a therapeutic context, organoids may be used for modeling lung diseases, and as a platform for screening for drugs that alleviate respiratory disease. Here, we summarize the organoid-forming capacity of respiratory cells, current lung organoid technologies and their potential use in future therapeutic applications. PMID:26721435

  3. Radiographic Comparison of Human Lung Shape During Normal Gravity and Weightlessness

    NASA Technical Reports Server (NTRS)

    Michels, D. B.; Friedman, P. J.; West, J. B.

    1979-01-01

    Chest radiographs in five seated normal volunteers at 1 G and 0 G were made with a view toward comparing human lung shape during normal gravity and weightlessness. Lung shape was assessed by measuring lung heights and widths in upper, middle and lower lung regions. No significant differences were found between any of the 1-G and 0-G measurements, although there was a slight tendency for the lung to become shorter and wider at 0 G. The evidence that gravity causes regional differences in ventilation by direct action on the lung is consistent with the theoretical analysis of West and Matthews (1972).

  4. Benzylmorpholine Analogs as Selective Inhibitors of Lung Cytochrome P450 2A13 for the Chemoprevention of Lung Cancer in Tobacco Users

    PubMed Central

    Blake, Linda C.; Roy, Anuradha; Neul, David; Schoenen, Frank J.; Aubé, Jeffrey; Scott, Emily E.

    2013-01-01

    Purpose 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), one of the most prevalent and procarcinogenic compounds in tobacco, is bioactivated by respiratory cytochrome P450 (CYP) 2A13, forming DNA adducts and initiating lung cancer. CYP2A13 inhibition offers a novel strategy for chemoprevention of tobacco-associated lung cancer. Methods Twenty-four analogs of a 4-benzylmorpholine scaffold identified by high throughput screening were evaluated for binding and inhibition of both functional human CYP2A enzymes, CYP2A13 and the 94%-identical hepatic CYP2A6, whose inhibition is undesirable. Thus, selectivity is the major challenge in compound design. Results A key feature resulting in CYP2A13-selective binding and inhibition was substitution at the benzyl ortho position, with three analogs being >25-fold selective for CYP2A13 over CYP2A6. Conclusions Two such analogs were negative for genetic and hERG toxicities and metabolically stable in human lung microsomes, but displayed rapid metabolism in human liver and in mouse and rat lung and liver microsomes, likely due to CYP2B-mediated degradation. A specialized knockout mouse mimicking the human lung demonstrates compound persistence in lung and provides an appropriate test model. Compound delivered by inhalation may be effective in the lung but rapidly cleared otherwise, limiting systemic exposure. PMID:23756756

  5. Cellular morphometry of the bronchi of human and dog lungs

    SciTech Connect

    Robbins, E.S.

    1991-03-01

    One hundred and thirty-one bronchial samples from 62 patients have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. Complete patient records including occupational and smoking histories, as well as possible exposure to radon, are obtained. In addition, one hundred and sixty-two mongol dog bronchi dissected from different lobes of 23 dog lungs have also been similarly prepared. Ninety-four human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 532 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement of the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 240 micrographs of dog epithelium from 31 bronchial samples have been entered into COSAS. We have, using the COSAS planimetry program, established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the epithelial cell types of dog bronchi. The data are being used to develop weighting factors for dosimetry and radon risk analysis. 26 refs., 7 figs., 4 tabs.

  6. Cellular morphometry of the bronchi of human and dog lungs

    SciTech Connect

    Robbins, E.S.

    1990-09-01

    One hundred and twenty one bronchial samples from 58 patients (54 useable; 32 female, 22 male; median age 61) have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. Complete patient records including occupational and smoking histories, as well as possible exposure to radon, are being kept. In addition, mongol dog bronchi dissected from different lobes of 23 dog lungs have been used to establish protocols. Ninety human samples have been completely processed for electron microscopy and have yielded 913 electron micrographs of which 471 have been entered into the Computerized Stereological Analysis System (COSAS) and used for the measurement of the distances of basal and mucous cell nuclei to the epithelial free surface. We have, using the COSAS planimetry program, established a small data base which describes the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, nonsmokers and ex-smokers. The data is being used to develop weighting factors for dosimetry and radon risk analysis. The electron micrographs of dog bronchial epithelium are unanalyzed as yet. 4 figs., 2 tabs.

  7. Cellular morphometry of the bronchi of human and dog lungs

    SciTech Connect

    Robbins, E.S.

    1992-09-01

    Quantitative data of the human bronchial epithelial cells at possible risk for malignant transformation in lung cancer is crucial for accurate radon dosimetry and risk analysis. The locations and other parameters of the nuclei which may be damaged by [alpha] particles must be determined and compared in different airway generations, among smokers, non-smokers and ex-smokers, between men and women and in people of different ages. This proposal includes extended morphometric studies on electron micrographs of human epithelium of defined airway generations and in parallel on electron micrographs of the dog bronchial lining. The second part of this proposal describes studies to quantitate the cycling bronchial epithelial population(s) using proliferation markers and immunocytochemistry on frozen and paraffin sections and similar labeling of isolated bronchial epithelial cells sorted flow cytometry.

  8. Physiological and biochemical markers of alveolar epithelial barrier dysfunction in perfused human lungs

    PubMed Central

    Frank, James A.; Briot, Raphael; Lee, Jae Woo; Ishizaka, Akitoshi; Uchida, Tokujiro; Matthay, Michael A.

    2009-01-01

    To study air space fluid clearance (AFC) under conditions that resemble the clinical setting of pulmonary edema in patients, we developed a new perfused human lung preparation. We measured AFC in 20 human lungs rejected for transplantation and determined the contribution of AFC to lung fluid balance. AFC was then compared with air space and perfusate levels of a biological marker of epithelial injury. The majority of human lungs rejected for transplant had intact basal (75%) and β2-adrenergic agonist-stimulated (70%) AFC. For lungs with both basal and stimulated AFC, the basal AFC rate was 19 ± 10%/h, and the β2-adrenergic-stimulated AFC rate was 43 ± 13%/h. Higher rates of AFC were associated with less lung weight gain (Pearson coefficient −0.90, P < 0.0001). Air space and perfusate levels of the type I pneumocyte marker receptor for advanced glycation end products (RAGE) were threefold and sixfold higher, respectively, in lungs without basal AFC compared with lungs with AFC (P < 0.05). These data show that preserved AFC is a critical determinant of favorable lung fluid balance in the perfused human lung, raising the possibility that β2-agonist therapy to increase edema fluid clearance may be of value for patients with acute lung injury and pulmonary edema. Also, although additional studies are needed, a biological marker of alveolar epithelial injury may be useful clinically in predicting preserved AFC. PMID:17351061

  9. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice

    PubMed Central

    Godin, Lindsay M.; Sandri, Brian J.; Wagner, Darcy E.; Meyer, Carolyn M.; Price, Andrew P.; Akinnola, Ifeolu; Weiss, Daniel J.; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases. PMID:26954258

  10. Stem cells--potential for repairing damaged lungs and growing human lungs for transplant.

    PubMed

    Bishop, Anne E; Rippon, Helen J

    2006-08-01

    Repair or regeneration of defective lung epithelium would be of great therapeutic potential. It is estimated by the British Lung Foundation that 1 in 7 people in the UK is affected by a lung disease and that 1 in 4 admissions to children's wards are as a result of respiratory problems. Potential cellular sources for the regeneration of lung tissue in vivo or lung tissue engineering in vitro include endogenous pulmonary epithelial stem cells, extrapulmonary circulating stem cells and embryonic stem cells. This article discusses the potential role of each of these stem cell types in future approaches to the treatment of lung injury and disease. PMID:16856797

  11. Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation

    PubMed Central

    Curley, G. F.; Hamid, U. I.; Laffey, J. G.; Abbott, J.; McKenna, D. H.; Fang, X.; Matthay, M. A.; Lee, J. W.

    2014-01-01

    The lack of suitable donors for all solid-organ transplant programs is exacerbated in lung transplantation by the low utilization of potential donor lungs, due primarily to donor lung injury and dysfunction, including pulmonary edema. The current studies were designed to determine if intravenous clinical-grade human mesenchymal stem (stromal) cells (hMSCs) would be effective in restoring alveolar fluid clearance (AFC) in the human ex vivo lung perfusion model, using lungs that had been deemed unsuitable for transplantation and had been subjected to prolonged ischemic time. The human lungs were perfused with 5% albumin in a balanced electrolyte solution and oxygenated with continuous positive airway pressure. Baseline AFC was measured in the control lobe and if AFC was impaired (defined as <10%/h), the lungs received either hMSC (5 × 106 cells) added to the perfusate or perfusion only as a control. AFC was measured in a different lung lobe at 4 h. Intravenous hMSC restored AFC in the injured lungs to a normal level. In contrast, perfusion only did not increase AFC. This positive effect on AFC was reduced by intrabronchial administration of a neutralizing antibody to keratinocyte growth factor (KGF). Thus, intravenous allogeneic hMSCs are effective in restoring the capacity of the alveolar epithelium to remove alveolar fluid at a normal rate, suggesting that this therapy may be effective in enhancing the resolution of pulmonary edema in human lungs deemed clinically unsuitable for transplantation. PMID:24532289

  12. Extensive exchange of rat liver microsomal phospholipids.

    PubMed

    Zilversmit, D B; Hughes, M E

    1977-08-15

    Liver microsomal fractions were prepared from rats injected with a single dose of choline [14C]methylchloride or with single or multiple doses of 32Pi. Exchangeability of microsomal phospholipids was determined by incubation with an excess of mitochondria and phospholipid exchange proteins derived from beef heart, beef liver or rat liver. Labeled phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were found to act as a single pool and were 85--95% exchangeable in 1--2h. High latencies of mannose-6-phosphate phosphohydrolase activities and impermeability of microsomes to EDTA proved that phospholipid exchange proteins did not have access to the intracisternal space. If microsomal membranes are largely composed of phospholipid bilayers, the experiments suggest that one or more of the phospholipid classes in microsomal membranes undergo rapid translocation between the inner and outer portions of the bilayer. PMID:889827

  13. Effect of buffer conditions on CYP2C8-mediated paclitaxel 6α-hydroxylation and CYP3A4-mediated triazolam α- and 4-hydroxylation by human liver microsomes.

    PubMed

    Kudo, Toshiyuki; Ozaki, Yuya; Kusano, Tomomi; Hotta, Eri; Oya, Yuka; Komatsu, Seina; Goda, Hitomi; Ito, Kiyomi

    2016-01-01

    1. Buffer conditions in in vitro metabolism studies using human liver microsomes (HLM) have been reported to affect the metabolic activities of several cytochrome P450 (CYP) isozymes in different ways, although there are no reports about the dependence of CYP2C8 activity on buffer conditions. 2. The present study investigated the effect of buffer components (phosphate or Tris-HCl) and their concentration (10-200 mM) on the CYP2C8 and CYP3A4 activities of HLM, using paclitaxel and triazolam, respectively, as marker substrates. 3. The Km (or S50) and Vmax values for both paclitaxel 6α-hydroxylation and triazolam α- and 4-hydroxylation, estimated by fitting analyses based on the Michaelis-Menten or Hill equation, greatly depended on the buffer components and their concentration. 4. The CLint values in phosphate buffer were 1.2-3.0-fold (paclitaxel) or 3.1-6.4-fold (triazolam) higher than in Tris-HCl buffer at 50-100 mM. These values also depended on the buffer concentration, with a maximum 2.3-fold difference observed between 50 and 100 mM which are both commonly used in drug metabolism studies. 5. These findings suggest the necessity for optimization of the buffer conditions in the quantitative evaluation of metabolic clearances, such as in vitro-in vivo extrapolation and also estimating the contribution of a particular enzyme in drug metabolism. PMID:26290405

  14. Potential effect of Olea europea leaves, Sonchus oleraceus leaves and Mangifera indica peel extracts on aromatase activity in human placental microsomes and CYP19A1 expression in MCF-7 cell line: Comparative study.

    PubMed

    Shaban, N Z; Hegazy, W A; Abdel-Rahman, S M; Awed, O M; Khalil, S A

    2016-01-01

    Aromatase inhibitors (AIs) provide novel approaches to the adjuvant therapy for postmenopausal women with estrogen-receptor-positive (ER+) breast cancers. In this study, different plant extracts from Olea europaea leaves (OLE), Sonchus oleraceus L. (SOE) and Mangifera indica peels (MPE) were prepared to identify phytoconstituents and measure antioxidant capacities. The effects of these three extracts on aromatase activity in human placental microsomes were evaluated. Additionally, the effects of these extracts on tissue-specific promoter expression of CYP19A1 gene in cell culture model (MCF-7) were assessed using qRT-PCR. Results showed a concentration-dependent decrease in aromatase activity after treatment with OLE and MPE, whereas, SOE showed a biphasic effect. The differential effects of OLE, SOE and MPE on aromatase expression showed that OLE seems to be the most potent suppressor followed by SOE and then MPE. These findings indicate that OLE has effective inhibitory action on aromatase at both the enzymatic and expression levels, in addition to its cytotoxic effect against MCF-7 cells. Also, MPE may be has the potential to be used as a tissue-specific aromatase inhibitor (selective aromatase inhibitor) and it may be promising to develop a new therapeutic agent against ER+ breast cancer. PMID:27585256

  15. A model of ventilation of the healthy human lung.

    PubMed

    Steimle, K L; Mogensen, M L; Karbing, D S; Bernardino de la Serna, J; Andreassen, S

    2011-02-01

    This paper presents a model of the lung mechanics which simulates the pulmonary alveolar ventilation. The model includes aspects of: the alveolar geometry; pressure due to the chest wall; pressure due to surface tension determined by surfactant activity; pressure due to lung tissue elasticity; and pressure due to the hydrostatic effects of the lung tissue and blood. The cross-sectional area of the lungs in the supine position derived from computed tomography is used to construct a horizontally layered model, which simulates heterogeneous ventilation distribution from the non-dependent to the dependent layers of the lungs. The model is in agreement with experimentally measured hysteresis of the pressure-volume curve of the lungs, static lung compliance, changes in lung depth during breathing and density distributions at total lung capacity (TLC) and residual volume (RV). In the dependent layers of the lungs, alveolar collapse may occur at RV, depending on the assumptions concerning lung tissue elasticity at very low alveolar volumes. The model simulations showed that ventilation increased with depth in the lungs, although not as pronounced as observed experimentally. The model simulates alveolar ventilation including all of the mentioned components of the respiratory system and to be validated against all the above mentioned experimental data. PMID:20655612

  16. Human lung cancer-derived microparticles enhanced angiogenesis and growth of hepatoma cells in rodent lung parenchyma

    PubMed Central

    Ko, Sheung-Fat; Hsu, Shu-Yuan; Chen, Chih-Hung; Sung, Pei-Hsun; Zhen, Meng-Shen TongYen-Yi; Chen, Yi-Ling; Huang, Tien-Hung; Chen, Sheng-Yi; Kao, Gour-Shenq; Chen, Hong-Hwa; Chang, Chia-Lo; Sun, Cheuk-Kwan; Chang, Hsueh-Wen; Yip, Hon-Kan

    2016-01-01

    This study tested the hypothesis that human lung cancer-derived microparticles (LcD-MPs) played an important role in tumor angiogenesis and growth. Fischer 344 rats (F344, n=18) were equally categorized into group 1 [Sham Control (3.0 mL normal saline intravenous injection (IV))], group 2 [hepatoma cell line (2.0 x 106 cells, IV)], and group 3 [hepatoma cell line + LcD-MPs (3.0 x 106, IV)]. Animals were euthanized by day 28 after hepatoma cells transfusion. Our result showed that the gross pathology confirmed growth of hepatoma cell line in lung parenchyma. The size and weight of the lungs were significantly increased in group 2 and further elevated in group 3 than in group 1 (all p<0.001). Histopathological analysis demonstrated that the lung crowded score and number of small vessel exhibited an identical pattern, whereas the number of alveolar sacs showed an opposite pattern compared to that of total lung weight among the three groups (all p<0.0001). The cellular expressions of CD34+, CXCR4+, c-Kit+, CK19+, VEGF+ and vimentin+ cells in lung parenchyma exhibited an identical pattern compared to those of total lung weight among all groups (all p<0.001). The protein expressions of apoptotic (Bax, cleaved caspase-3 and c-PARP), fibrotic (Smad3, TGF-β), and tumor suppression (PTEN) biomarkers showed an identical pattern, whereas that of anti-apoptotic (Bcl-2) and anti-fibrotic (Smad1/5, BMP-2) biomarkers were displayed an opposite pattern compared to that of total lung weight among all groups (all p<0.001). The MPs could enhance angiogenesis and accelerated hepatoma cell growth in rodent lung parenchyma. PMID:27186261

  17. Human lung cancer-derived microparticles enhanced angiogenesis and growth of hepatoma cells in rodent lung parenchyma.

    PubMed

    Ko, Sheung-Fat; Hsu, Shu-Yuan; Chen, Chih-Hung; Sung, Pei-Hsun; Zhen, Meng-Shen TongYen-Yi; Chen, Yi-Ling; Huang, Tien-Hung; Chen, Sheng-Yi; Kao, Gour-Shenq; Chen, Hong-Hwa; Chang, Chia-Lo; Sun, Cheuk-Kwan; Chang, Hsueh-Wen; Yip, Hon-Kan

    2016-01-01

    This study tested the hypothesis that human lung cancer-derived microparticles (LcD-MPs) played an important role in tumor angiogenesis and growth. Fischer 344 rats (F344, n=18) were equally categorized into group 1 [Sham Control (3.0 mL normal saline intravenous injection (IV))], group 2 [hepatoma cell line (2.0 x 10(6) cells, IV)], and group 3 [hepatoma cell line + LcD-MPs (3.0 x 10(6), IV)]. Animals were euthanized by day 28 after hepatoma cells transfusion. Our result showed that the gross pathology confirmed growth of hepatoma cell line in lung parenchyma. The size and weight of the lungs were significantly increased in group 2 and further elevated in group 3 than in group 1 (all p<0.001). Histopathological analysis demonstrated that the lung crowded score and number of small vessel exhibited an identical pattern, whereas the number of alveolar sacs showed an opposite pattern compared to that of total lung weight among the three groups (all p<0.0001). The cellular expressions of CD34(+), CXCR4(+), c-Kit(+), CK19(+), VEGF(+) and vimentin+ cells in lung parenchyma exhibited an identical pattern compared to those of total lung weight among all groups (all p<0.001). The protein expressions of apoptotic (Bax, cleaved caspase-3 and c-PARP), fibrotic (Smad3, TGF-β), and tumor suppression (PTEN) biomarkers showed an identical pattern, whereas that of anti-apoptotic (Bcl-2) and anti-fibrotic (Smad1/5, BMP-2) biomarkers were displayed an opposite pattern compared to that of total lung weight among all groups (all p<0.001). The MPs could enhance angiogenesis and accelerated hepatoma cell growth in rodent lung parenchyma. PMID:27186261

  18. Hydrolysis of a series of parabens by skin microsomes and cytosol from human and minipigs and in whole skin in short-term culture.

    PubMed

    Jewell, Christopher; Prusakiewicz, Jeffery J; Ackermann, Chrisita; Payne, N Ann; Fate, Gwendolyn; Voorman, Richard; Williams, Faith M

    2007-12-01

    Parabens are esters of 4-hydroxybenzoic acid and used as anti-microbial agents in a wide variety of toiletries, cosmetics and pharmaceuticals. It is of interest to understand the dermal absorption and hydrolysis of parabens, and to evaluate their disposition after dermal exposure and their potential to illicit localised toxicity. The use of minipig as a surrogate model for human dermal metabolism and toxicity studies, justifies the comparison of paraben metabolism in human and minipig skin. Parabens are hydrolysed by carboxylesterases to 4-hydroxybenzoic acid. The effects of the carboxylesterase inhibitors paraoxon and bis-nitrophenylphosphate provided evidence of the involvement of dermal carboxylesterases in paraben hydrolysis. Loperamide, a specific inhibitor of human carboxylesterase-2 inhibited butyl- and benzylparaben hydrolysis in human skin but not methylparaben or ethylparaben. These results show that butyl- and benzylparaben are more selective substrates for human carboxylesterase-2 in skin than the other parabens examined. Parabens applied to the surface of human or minipig skin were absorbed to a similar amount and metabolised to 4-hydroxybenzoic acid during dermal absorption. These results demonstrate that the minipig is a suitable model for man for assessing dermal absorption and hydrolysis of parabens, although the carboxylesterase profile in skin differs between human and minipig. PMID:17889094

  19. Hydrolysis of a series of parabens by skin microsomes and cytosol from human and minipigs and in whole skin in short-term culture

    SciTech Connect

    Jewell, Christopher; Prusakiewicz, Jeffery J.; Ackermann, Chrisita; Payne, N. Ann; Fate, Gwendolyn; Voorman, Richard; Williams, Faith M.

    2007-12-01

    Parabens are esters of 4-hydroxybenzoic acid and used as anti-microbial agents in a wide variety of toiletries, cosmetics and pharmaceuticals. It is of interest to understand the dermal absorption and hydrolysis of parabens, and to evaluate their disposition after dermal exposure and their potential to illicit localised toxicity. The use of minipig as a surrogate model for human dermal metabolism and toxicity studies, justifies the comparison of paraben metabolism in human and minipig skin. Parabens are hydrolysed by carboxylesterases to 4-hydroxybenzoic acid. The effects of the carboxylesterase inhibitors paraoxon and bis-nitrophenylphosphate provided evidence of the involvement of dermal carboxylesterases in paraben hydrolysis. Loperamide, a specific inhibitor of human carboxylesterase-2 inhibited butyl- and benzylparaben hydrolysis in human skin but not methylparaben or ethylparaben. These results show that butyl- and benzylparaben are more selective substrates for human carboxylesterase-2 in skin than the other parabens examined. Parabens applied to the surface of human or minipig skin were absorbed to a similar amount and metabolised to 4-hydroxybenzoic acid during dermal absorption. These results demonstrate that the minipig is a suitable model for man for assessing dermal absorption and hydrolysis of parabens, although the carboxylesterase profile in skin differs between human and minipig.

  20. Micro FT-IR Characterization Of Human Lung Tumor Cells

    NASA Astrophysics Data System (ADS)

    Benedetti, Enzo; Teodori, L.; Vergamini, Piergiorgio; Trinca, M. L.; Mauro, F.; Salvati, F.; Spremolla, Giuliano

    1989-12-01

    FT-IR spectroscopy has opened up a new approach to the analytical study of cell transformation. Investigations carried out in normal and leukemic lymphocytes have evidenced an increase in DNA with respect to proteic components in neoplastic cells.(1) The evaluation of the ratio of the integrated areas(A) of the bands at 1080 cm-1 (mainly DNA) and at 1540 cm-1 (proteic components) has allowed us to establish a parameter which indicates, for values above 1.5, the neoplastic nature of cells. Recently, this approach has been applied to the study of human lung tumor cells. Several monocellular suspension procedures of the tissue fragment (mechanical and/or chemical) were tested to obtain reproducible and reliable spectra able to differentiate clearly between normal and patological cells. Chemical treatment (EDTA, Pepsin, Collagenase, etc.) produced additional bands in the spectra of the cells causing distortion of the profiles of some absorptions, and as a result, mechanical treatment was preferred. The normal and neoplastic cells homogeneously distributed by cytospin preparation on BaF2 windows were examined by means of FT-IR microscopy. An examination of several microareas of each sample yielded reproducible spectra, with values of the A 1080 cm-1 / A 1540 cm-1 parameter within a very narrow range for each sample, even if certain differences still remained among the different cases, in good agreement with the results obtained for leukemic cells.(1) The value of this parameter was found to be lower for cells isolated from the normal area of lung, than in the case of those corresponding to the tumoral area, meaning that an increase occurs in DNA with respect to the proteic components. These insights, which provide a basis to obtain indications at the molecular level, can open up new possibilities in clinical practice, in order to obtain diagnosis confirmation, to detect early stages of disease and to offer additional indications in cases of dubious interpretation.

  1. Microsomal metabolism of NDMA and analogs

    SciTech Connect

    Wade, D.; Yang, C.S.

    1987-05-01

    The metabolism of N-nitrosodimethylamine (NDMA), dimethylamine (DMA), N-nitro-DMA (N x NO/sub 2/ x DMA), N-nitrosodiethylamine (NDEA), and diethylamine (DEA) was studied using control, acetone (Ac)-, butylated hydroxytoluene (BHT)-, pregnenolone 16- ..cap alpha..-carbonitrile (PCN)-, and phenobarbital (PB)-induced rat liver microsomes. At low substrate concentrations, the NDMA demethylase activity of Ac-induced microsomes was 5-fold greater than that of control, BHT-, and PCN-induced microsomes. The rate of NDMA denitrosation was ca. 10% that of demethylation. N x NO/sub 2/ x DMA was metabolized to HCHO, but not to NO/sub 2//sup -/, and the rate of metabolism was greatest with Ac-induced microsomes; the K/sub m/ and V/sub max/ of Ac-induced microsomes were similar to those of NDMA. For the dealkylation of NDEA, Ac- and BHT-induced microsomes were twice as active as the control. Ratios of dealkylation/denitrosation for NDEA remained constant over a broad range of low substrate concentrations. BHT- or Ac-treatment appeared to cause a selective increase in the ability of microsomes to denitrosate NDEA. The activity of all microsome preparations with the amines, DMA and DEA was less than that with the nitrosamine or nitramine substrates. The results suggest that both the N-nitroso and N-nitro compounds are good substrates for microsomal P-450; the amines, which bear positive charges, are not. Denitrosation appeared to be a more important pathway with NDEA than with NDMA.

  2. Nanoparticle diffusion in respiratory mucus from humans without lung disease

    PubMed Central

    Schuster, Benjamin S.; Suk, Jung Soo; Woodworth, Graeme F.; Hanes, Justin

    2013-01-01

    A major role of respiratory mucus is to trap inhaled particles, including pathogens and environmental particulates, to limit body exposure. Despite the tremendous health implications, how particle size and surface chemistry affect mobility in respiratory mucus from humans without lung disease is not known. We prepared polymeric nanoparticles densely coated with low molecular weight polyethylene glycol (PEG) to minimize muco-adhesion, and compared their transport to that of uncoated particles in human respiratory mucus, which we collected from the endotracheal tubes of surgical patients with no respiratory comorbidities. We found that 100 and 200 nm diameter PEG-coated particles rapidly penetrated respiratory mucus, at rates exceeding their uncoated counterparts by approximately 15- and 35-fold, respectively. In contrast, PEG-coated particles ≥ 500 nm in diameter were sterically immobilized by the mucus mesh. Thus, even though respiratory mucus is a viscoelastic solid at the macroscopic level (as measured using a bulk rheometer), nanoparticles that are sufficiently small and muco-inert can penetrate the mucus as if it were primarily a viscous liquid. These findings help elucidate the barrier properties of respiratory mucus and provide design criteria for therapeutic nanoparticles capable of penetrating mucus to approach the underlying airway epithelium. PMID:23384790

  3. Frizzled-8 as a putative therapeutic target in human lung cancer

    SciTech Connect

    Wang, Hua-qing; Xu, Mei-lin; Ma, Jie; Zhang, Yi; Xie, Cong-hua

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fzd-8 is over-expressed in human lung cancer. Black-Right-Pointing-Pointer shRNA knock-down of Fzd-8 inhibits proliferation and Wnt pathway in lung cancer cells. Black-Right-Pointing-Pointer shRNA knock-down of Fzd-8 suppresses tumor growth in vivo. Black-Right-Pointing-Pointer shRNA knock-down Fzd-8 sensitizes lung cancer cells to chemotherapy Taxotere. -- Abstract: Lung cancer is the leading cause of cancer related deaths worldwide. It is necessary to better understand the molecular mechanisms involved in lung cancer in order to develop more effective therapeutics for the treatment of this disease. Recent reports have shown that Wnt signaling pathway is important in a number of cancer types including lung cancer. However, the role of Frizzled-8 (Fzd-8), one of the Frizzled family of receptors for the Wnt ligands, in lung cancer still remains to be elucidated. Here in this study we showed that Fzd-8 was over-expressed in human lung cancer tissue samples and cell lines. To investigate the functional importance of the Fzd-8 over-expression in lung cancer, we used shRNA to knock down Fzd-8 mRNA in lung cancer cells expressing the gene. We observed that Fzd-8 shRNA inhibited cell proliferation along with decreased activity of Wnt pathway in vitro, and also significantly suppressed A549 xenograft model in vivo (p < 0.05). Furthermore, we found that knocking down Fzd-8 by shRNA sensitized the lung cancer cells to chemotherapy Taxotere. These data suggest that Fzd-8 is a putative therapeutic target for human lung cancer and over-expression of Fzd-8 may be important for aberrant Wnt activation in lung cancer.

  4. The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR

    PubMed Central

    Brennan, Sarah C.; Wilkinson, William J.; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J.; Kemp, Paul J.; Riccardi, Daniela

    2016-01-01

    Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. PMID:26911344

  5. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase-2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells

    SciTech Connect

    Nagahama, Yu; Obama, Takashi; Usui, Michihiko; Kanazawa, Yukari; Iwamoto, Sanju; Suzuki, Kazushige; Miyazaki, Akira; Yamaguchi, Tomohiro; Yamamoto, Matsuo; Itabe, Hiroyuki

    2011-10-07

    Highlights: {yields} OxLDL-induced responses in human gingival epithelial cells were studied. {yields} OxLDL enhanced the production of IL-8, IL-1{beta} and PGE{sub 2} in Ca9-22 cells. {yields} An NF-{kappa}B inhibitor suppressed the expression of COX-2 and mPGES1 induced by oxLDL. {yields} Unlike the case in macrophages, oxLDL did not increase the CD36 level. -- Abstract: Periodontitis is characterized by chronic gingival tissue inflammation, and inflammatory mediators such as IL-8 and prostaglandin E{sub 2} (PGE{sub 2}) are associated with disease progression. Previously we showed that oxidatively modified low-density lipoprotein (oxLDL) was present in gingival crevicular fluid. In this study, the role of oxLDL in the gingival epithelial cell inflammatory response was further investigated using Ca9-22 cells and primary human oral keratinocytes (HOK). Treatment of Ca9-22 cells and HOK with oxLDL induced an up-regulation of IL-8 and the PGE{sub 2}-producing enzymes, cyclooxygenase-2 and microsomal PGE{sub 2} synthase-1. These responses induced by oxLDL were significantly suppressed by a nuclear factor-kappa B (NF-{kappa}B) inhibitor. However, unlike the result in macrophages, oxLDL did not lead to an increase in CD36 expression in these two cells. These results suggest that oxLDL elicits gingival epithelial cell inflammatory responses through an activation of the NF-{kappa}B pathway. These data suggest a mechanistic link between periodontal disease and lipid metabolism-related disorders, including atherosclerosis.

  6. Quantification of Flavin-containing Monooxygenases 1, 3, and 5 in Human Liver Microsomes by UPLC-MRM-Based Targeted Quantitative Proteomics and Its Application to the Study of Ontogeny.

    PubMed

    Chen, Yao; Zane, Nicole R; Thakker, Dhiren R; Wang, Michael Zhuo

    2016-07-01

    Flavin-containing monooxygenases (FMOs) have a significant role in the metabolism of small molecule pharmaceuticals. Among the five human FMOs, FMO1, FMO3, and FMO5 are the most relevant to hepatic drug metabolism. Although age-dependent hepatic protein expression, based on immunoquantification, has been reported previously for FMO1 and FMO3, there is very little information on hepatic FMO5 protein expression. To overcome the limitations of immunoquantification, an ultra-performance liquid chromatography (UPLC)-multiple reaction monitoring (MRM)-based targeted quantitative proteomic method was developed and optimized for the quantification of FMO1, FMO3, and FMO5 in human liver microsomes (HLM). A post-in silico product ion screening process was incorporated to verify LC-MRM detection of potential signature peptides before their synthesis. The developed method was validated by correlating marker substrate activity and protein expression in a panel of adult individual donor HLM (age 39-67 years). The mean (range) protein expression of FMO3 and FMO5 was 46 (26-65) pmol/mg HLM protein and 27 (11.5-49) pmol/mg HLM protein, respectively. To demonstrate quantification of FMO1, a panel of fetal individual donor HLM (gestational age 14-20 weeks) was analyzed. The mean (range) FMO1 protein expression was 7.0 (4.9-9.7) pmol/mg HLM protein. Furthermore, the ontogenetic protein expression of FMO5 was evaluated in fetal, pediatric, and adult HLM. The quantification of FMO proteins also was compared using two different calibration standards, recombinant proteins versus synthetic signature peptides, to assess the ratio between holoprotein versus total protein. In conclusion, a UPLC-MRM-based targeted quantitative proteomic method has been developed for the quantification of FMO enzymes in HLM. PMID:26839369

  7. Lung Epithelial Cell-Specific Expression of Human Lysosomal Acid Lipase Ameliorates Lung Inflammation and Tumor Metastasis in Lipa(-/-) Mice.

    PubMed

    Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong

    2016-08-01

    Lysosomal acid lipase (LAL), a key enzyme in the metabolic pathway of neutral lipids, has a close connection with inflammation and tumor progression. One major manifestation in LAL-deficient (Lipa(-/-)) mice is an increase of tumor growth and metastasis associated with expansion of myeloid-derived suppressor cells. In the lung, LAL is highly expressed in alveolar type II epithelial cells. To assess how LAL in lung epithelial cells plays a role in this inflammation-related pathogenic process, lung alveolar type II epithelial cell-specific expression of human LAL (hLAL) in Lipa(-/-) mice was established by crossbreeding of CCSP-driven rtTA transgene and (TetO)7-CMV-hLAL transgene into Lipa(-/-) mice (CCSP-Tg/KO). hLAL expression in lung epithelial cells not only reduced tumor-promoting myeloid-derived suppressor cells in the lung, but also down-regulated the synthesis and secretion of tumor-promoting cytokines and chemokines into the bronchoalveolar lavage fluid of Lipa(-/-) mice. hLAL expression reduced the immunosuppressive functions of bronchoalveolar lavage fluid cells, inhibited bone marrow cell transendothelial migration, and inhibited endothelial cell proliferation and migration in Lipa(-/-) mice. As a result, hLAL expression in CCSP-Tg/KO mice corrected pulmonary damage, and inhibited tumor cell proliferation and migration in vitro, and tumor metastasis to the lung in vivo. These results support a concept that LAL is a critical metabolic enzyme in lung epithelial cells that regulates lung homeostasis, immune response, and tumor metastasis. PMID:27461363

  8. CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs.

    PubMed

    Duan, M; Steinfort, D P; Smallwood, D; Hew, M; Chen, W; Ernst, M; Irving, L B; Anderson, G P; Hibbs, M L

    2016-03-01

    The development of easily accessible tools for human immunophenotyping to classify patients into discrete disease endotypes is advancing personalized therapy. However, no systematic approach has been developed for the study of inflammatory lung diseases with often complex and highly heterogeneous disease etiologies. We have devised an internally standardized flow cytometry approach that can identify parallel inflammatory alveolar macrophage phenotypes in both the mouse and human lungs. In mice, lung innate immune cell alterations during endotoxin challenge, influenza virus infection, and in two genetic models of chronic obstructive lung disease could be segregated based on the presence or absence of CD11b alveolar macrophage upregulation and lung eosinophilia. Additionally, heightened alveolar macrophage CD11b expression was a novel feature of acute lung exacerbations in the SHIP-1(-/-) model of chronic obstructive lung disease, and anti-CD11b antibody administration selectively blocked inflammatory CD11b(pos) but not homeostatic CD11b(neg) alveolar macrophages in vivo. The identification of analogous profiles in respiratory disease patients highlights this approach as a translational avenue for lung disease endotyping and suggests that heterogeneous innate immune cell phenotypes are an underappreciated component of the human lung disease microenvironment. PMID:26422753

  9. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells

    PubMed Central

    Huang, Sarah X L; Green, Michael D; de Carvalho, Ana Toste; Mumau, Melanie; Chen, Ya-Wen; D’Souza, Sunita L.; Snoeck, Hans-Willem

    2015-01-01

    Lung and airway epithelial cells generated in vitro from human pluripotent stem cells have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of human pluripotent stem cells into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development and takes approximately 50 days. First, definitive endoderm is induced in the presence of high concentrations of Activin A. Subsequently, lung-biased anterior foregut endoderm is specified by sequential inhibition of BMP, TGF-β and Wnt signaling. Anterior foregut endoderm is then ventralized by applying Wnt, BMP, FGF and RA signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, c-AMP and glucocorticoid agonism. This protocol is conducted in defined conditions, does not involve genetic manipulation of the cells, and results in cultures where the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells. PMID:25654758

  10. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts

    PubMed Central

    Guzmán-Silva, Alejandro; Vázquez de Lara, Luis G.; Torres-Jácome, Julián; Vargaz-Guadarrama, Ajelet; Flores-Flores, Marycruz; Pezzat Said, Elias; Lagunas-Martínez, Alfredo; Mendoza-Milla, Criselda; Tanzi, Franco; Moccia, Francesco; Berra-Romani, Roberto

    2015-01-01

    Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF. PMID:26230503

  11. Chemically-induced mouse lung tumors: applications to human health assessments [Poster 2014

    EPA Science Inventory

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the anal...

  12. Chemically-induced Mouse Lung Tumors: Applications to Human Health Assessments

    EPA Science Inventory

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbe...

  13. DEPOSITION PATTERNS OF AEROSOLIZED DRUGS WITHIN HUMAN LUNGS: EFFECTS OF VENTILATORY PARAMETERS

    EPA Science Inventory

    An analytical model is used to study the effects of ventilatory parameters on particle deposition patterns within the human lung. ased upon fluid dynamics considerations (Reynolds numbers), an original method of partitioning the lung is presented. he model is validated by compari...

  14. Ovine pulmonary adenocarcinoma: a large animal model for human lung cancer.

    PubMed

    Youssef, Gehad; Wallace, William A H; Dagleish, Mark P; Cousens, Chris; Griffiths, David J

    2015-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. Recent progress in understanding the molecular pathogenesis of this disease has resulted in novel therapeutic strategies targeting specific groups of patients. Further studies are required to provide additional advances in diagnosis and treatment. Animal models are valuable tools for studying oncogenesis in lung cancer, particularly during the early stages of disease where tissues are rarely available from human cases. Mice have traditionally been used for studying lung cancer in vivo, and a variety of spontaneous and transgenic models are available. However, it is recognized that other species may also be informative for studies of cancer. Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer of sheep caused by retrovirus infection and has several features in common with adenocarcinoma of humans, including a similar histological appearance and activation of common cell signaling pathways. Additionally, the size and organization of human lungs are much closer to those of sheep lungs than to those of mice, which facilitates experimental approaches in sheep that are not available in mice. Thus OPA presents opportunities for studying lung tumor development that can complement conventional murine models. Here we describe the potential applications of OPA as a model for human lung adenocarcinoma with an emphasis on the various in vivo and in vitro experimental systems available. PMID:25991702

  15. Comparative effects of cadmium, zinc, and lead in vitro on pulmonary, adrenal, and hepatic microsomal metabolism in the guinea pig

    SciTech Connect

    Colby, H.D.; Johnson, P.B.; Zulkoski, J.S.; Pope, M.R.; Miles, P.R.

    1981-11-01

    The in vitro effects of Cd, Zn, and Pb on pulmonary, adrenal, and hepatic microsomal enzyme activities in guinea pigs were compared. Cd and Zn produced concentration-dependent (20-200 ..mu..M) decreases in benzphetamine demethylase and biphenyl hydrozylase activities in adrenal, liver, and lung. Pb had no significant effect on either enzyme in any of the tissues studied. Adrenal and pulmonary enzymes were more sensitive to the effects of Cd and Zn than were hepatic enzymes. Benzo(a)pyrene hydroxylase and ethoxycoumarin demethylase activities were decreased by Zn, Cd and Pb in adrenal, liver, and lung microsomes. The inhibitory effects on benzo(a)pyrene and ethoxycoumarin methabolism were far greater than those on benzphetamine or biphenyl metabolism. The relative potencies of the metals as inhibitors of xenobiotic metabolism were Zn > Cd > Pb. Cd and Zn also inhibited steroid 21-hydroxylase activity in adrenal microsomes, but Pb had no effect on steroid metabolism. In addition, microsomal epoxide hydratase activity in adrenal, liver, and lung was inhibited by Cd but not by Zn or Pb. The results demonstrate that adrenal and pulmonary microsomal enzyme, like those in liver, are inhibited by various metals. Inhibition of mixed-function oxidases by metals in vitro is apparently not related to changes in cytochrome P-450 levels or substrate binding to cytochrome P-450. In addition, the actions of Cd, Zn, and Pb in each tissue are highly dependent on the substrates employed.

  16. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells

    SciTech Connect

    Weisheng, Lin; Huang, Yue-wern; Zhou, Xiao Dong; Ma, Yinfa

    2006-12-31

    With the fast development of nanotechnology, the nanomaterials start to cause people's attention for potential toxic effect. In this paper, the cytotoxicity and oxidative stress caused by 20-nm cerium oxide (CeO2) nanoparticles in cultured human lung cancer cells was investigated. The sulforhodamine B method was employed to assess cell viability after exposure to 3.5, 10.5, and 23.3 μg/ml of CeO2 nanoparticles for 24, 48, and 72 h. Cell viability decreased significantly as a function of nanoparticle dose and exposure time. Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species, glutathione, malondialdehyde, α-tocopherol, and lactate dehydrogenase, were quantitatively assessed. It is concluded from the results that free radicals generated by exposure to 3.5 to 23.3 μg/ml CeO2 nanoparticles produce significant oxidative stress in the cells, as reflected by reduced glutathione and α-tocopherol levels; the toxic effects of CeO2 nanoparticles are dose dependent and time dependent; elevated oxidative stress increases the production of malondialdehyde and lactate dehydrogenase, which are indicators of lipid peroxidation and cell membrane damage, respectively.

  17. The antifibrosis effect of adrenomedullin in human lung fibroblasts.

    PubMed

    Hao, Shu-Ling; Yu, Zhong-He; Qi, Bao-Shen; Luo, Ji-Zheng; Wang, Wei-Ping

    2011-12-01

    Adrenomedullin (AM) is a regulatory peptide involved in cellular proliferation and protein synthesis. The authors investigated AM and the AM receptor system in the human fetal lung fibroblasts (HFLFs), and assessed whether AM can inhibit proliferation and collagen synthesis in HFLFs under hypoxia. Fibroblasts were exposed to hypoxia (2% O(2)) after the addition of AM. The effects of AM and transforming growth factor β1 (TGF-β1) on the proliferation of fibroblasts were determined by the methanethiosulfonate (MTS) assay. Total collagen synthesis was determined by [(3)H]proline incorporation. TGF-β1 levels in the culture supernatant were measured by enzyme-linked immunosorbent assay (ELISA). The concentration of intracellular calciumion ([Ca(2+)](i)) in fibroblasts was detected with a laser scanning confocal microscope. AM, adrenomedullin receptor (ADMR), calcitonin receptor-like receptor (CRLR), AM receptor chaperone receptor activity-modifying protein-1 (RAMP1),RAMP2, and RAMP3 were detected in the HFLFs. The hypoxia-induced increases in cell proliferation, collagen synthesis, and TGF-β1 production were inhibited by AM. AM also inhibited proliferation and collagen synthesis in fibroblasts induced by TGF-β1. AM caused a decrease of the hypoxia-induced [Ca(2+)](i) in fibroblasts. This study suggests that AM is produced by HFLFs and AM may function as an antifibrosis factor that protects cells from hypoxic pulmonary damage through its receptors. PMID:22087514

  18. Kinetic modeling of β-chloroprene metabolism: Probabilistic in vitro-in vivo extrapolation of metabolism in the lung, liver and kidneys of mice, rats and humans.

    PubMed

    Yang, Yuching; Himmelstein, Matthew W; Clewell, Harvey J

    2012-09-01

    β-Chloroprene (chloroprene) is carcinogenic in inhalation bioassays with B6C3F1 mice and Fischer rats, but the potential effects in humans have not been adequately characterized. In order to provide a better basis for evaluating chloroprene exposures and potential effects in humans, we have explored species and tissue differences in chloroprene metabolism. This study implemented an in vitro-in vivo extrapolation (IVIVE) approach to parameterize a physiologically based pharmacokinetic (PBPK) model for chloroprene and evaluate the influence of species and gender differences in metabolism on target tissue dosimetry. Chloroprene metabolism was determined in vitro using liver, lung and kidney microsomes from male or female mice, rats, and humans. A two compartment PK model was used to estimate metabolism parameters for chloroprene in an in vitro closed vial system, which were then extrapolated to the whole body PBPK model. Two different strategies were used to estimate parameters for the oxidative metabolism of chloroprene: a deterministic point-estimation using the Nelder-Mead nonlinear optimization algorithm and probabilistic Bayesian analysis using the Markov Chain Monte Carlo technique. Target tissue dosimetry (average amount of chloroprene metabolized in lung per day) was simulated with the PBPK model using the in vitro-based metabolism parameters. The model-predicted target tissue dosimetry, as a surrogate for a risk estimate, was similar between the two approaches; however, the latter approach provided a measure of uncertainty in the metabolism parameters and the opportunity to evaluate the impact of that uncertainty on predicted risk estimates. PMID:22543297

  19. Studies on the mechanism of activation of microsomal benzo(a)pyrene hydroxylation by flavonoids

    SciTech Connect

    Huang, M.T.; Chang, R.L.; Fortner, J.G.; Conney, A.H.

    1981-07-10

    7,8-benzoflavone or flavone stimulates the hydroxylation of benzo(a)pyrene by liver microsomes from rabbit, hamster, and man severalfold. Little or no activation by the flavonoid occurs in liver microsomes from rat or guinea pig. Intact liver microsomal membranes are not required for the activation. Although 7,8-benzoflavone does not stimulate the NADPH-dependent reduction of cytochrome c by rabbit liver microsomes, the NADPH-dependent reduction of cytochrome P-450 is stimulated by 7,8-benzoflavone either in the presence or absence of benzo(a)pyrene. Purified cytochrome P-450 reductase causes an increase in the rate of benzo(a)pyrene hydroxylation in cholate-solubilized liver microsomes from all of the species studied. In cholate-solubilized microsomes from all of the species susceptible for flavonoid activation, 7,8-benzoflavone decreases the K/sub m/ for cytochrome P-450 reductase and increases the V/sub max/ for benzo(a)pyrene hydroxylation. With cholate-solubilized human liver microsomes, the K/sub m/ for cytochrome P-450 reductase in the absence of flavonoids was about 3-fold higher than in the presence of 100 ..mu..M 7,8-benzoflavone or 500 ..mu..M flavone. 7,8-benzoflavone and flavone stimulate the hydroxylation of benzo(a)pyrene in liver microsomes at least in part by enhancing the interaction between cytochrome P-450 and cytochrome P-450 reductase. 7,8-benzoflavone does not influence the K/sub m/ for benzo(a)pyrene or NADPH, but the V/sub max/ values for benzo(a)pyrene are increased from 2.5- to 4-fold in rabbit liver microsomes. 7,8-benzoflavone does not stimulate the cumene hydroperoxide-dependent hydroxylation of benzo(a)pyrene by rabbit liver microsomes. In two partially purified cytochrome P-450 fractions from rabbit liver microsomes, flavone has a specific stimulatory effect on one of the reconstituted partially purified cytochrome P-450 systems, but an inhibitory effect on the other.

  20. Experimental studies on lung carcinogenesis and their relationship to future research on radiation-induced lung cancer in humans

    SciTech Connect

    Cross, F.T.

    1991-03-01

    The usefulness of experimental systems for studying human lung carcinogenesis lies in the ease of studying components of a total problem. As an example, the main thrust of attack on possible synergistic interactions between radiation, cigarette smoke, and other irritants must be by means of research on animals. Because animals can be serially sacrificed, a systematic search can be made for progressive lung changes, thereby improving our understanding of carcinogenesis. The mechanisms of radiation-induced carcinogenesis have not yet been delineated, but modern concepts of molecular and cellular biology and of radiation dosimetry are being increasingly applied to both in vivo and in vitro exposure to determine the mechanisms of radiation-induced carcinogenesis, to elucidate human data, and to aid in extrapolating experimental animal data to human exposures. In addition, biologically based mathematical models of carcinogenesis are being developed to describe the nature of the events leading to malignancy; they are also an essential part of a rational approach to quantitative cancer risk assessment. This paper summarizes recent experimental and modeling data on radon-induced lung cancer and includes the confounding effects of cigarette-smoke exposures. The applicability of these data to understanding human exposures is emphasized, and areas of future research on human radiation-induced carcinogenesis are discussed. 7 refs., 2 figs., 3 tabs.

  1. Microvesicles Derived From Human Mesenchymal Stem Cells Restore Alveolar Fluid Clearance in Human Lungs Rejected for Transplantation

    PubMed Central

    Gennai, S.; Monsel, A.; Hao, Q.; Park, J.; Matthay, M. A.; Lee, J. W.

    2016-01-01

    The need to increase the donor pool for lung transplantation is a major public health issue. We previously found that administration of mesenchymal stem cells “rehabilitated” marginal donor lungs rejected for transplantation using ex vivo lung perfusion. However, the use of stem cells has some inherent limitation such as the potential for tumor formation. In the current study, we hypothesized that microvesicles, small anuclear membrane fragments constitutively released from mesenchymal stem cells, may be a good alternative to using stem cells. Using our well established ex vivo lung perfusion model, microvesicles derived from human mesenchymal stem cells increased alveolar fluid clearance (i.e. ability to absorb pulmonary edema fluid) in a dose-dependent manner, decreased lung weight gain following perfusion and ventilation, and improved airway and hemodynamic parameters compared to perfusion alone. Microvesicles derived from normal human lung fibroblasts as a control had no effect. Co-administration of microvesicles with anti-CD44 antibody attenuated these effects, suggesting a key role of the CD44 receptor in the internalization of the microvesicles into the injured host cell and its effect. In summary, microvesicles derived from human mesenchymal stem cells were as effective as the parent mesenchymal stem cells in rehabilitating marginal donor human lungs. PMID:25847030

  2. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    EPA Science Inventory

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  3. Resident Tissue-Specific Mesenchymal Progenitor Cells Contribute to Fibrogenesis in Human Lung Allografts

    PubMed Central

    Walker, Natalie; Badri, Linda; Wettlaufer, Scott; Flint, Andrew; Sajjan, Uma; Krebsbach, Paul H.; Keshamouni, Venkateshwar G.; Peters-Golden, Marc; Lama, Vibha N.

    2011-01-01

    Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation. We demonstrate that human lung allograft–derived MSCs uniquely express embryonic lung mesenchyme–associated transcription factors with a 35,000-fold higher expression of forkhead/winged helix transcription factor forkhead box (FOXF1) noted in lung compared with bone marrow MSCs. Fibrotic differentiation of MSCs isolated from normal lung allografts was noted in the presence of profibrotic mediators associated with BOS, including transforming growth factor-β and IL-13. MSCs isolated from patients with BOS demonstrated increased expression of α-SMA and collagen I when compared with non-BOS controls, consistent with a stable in vivo fibrotic phenotype. FOXF1 mRNA expression in the BAL cell pellet correlated with the number of MSCs in the BAL fluid, and myofibroblasts present in the fibrotic lesions expressed FOXF1 by in situ hybridization. These data suggest a key role for local tissue-specific, organ-resident, mesenchymal precursors in the fibrogenic processes in human adult lungs. PMID:21641374

  4. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    SciTech Connect

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.

  5. Receptor Tyrosine Kinase EphA5 Is a Functional Molecular Target in Human Lung Cancer*

    PubMed Central

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-01-01

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. PMID:25623065

  6. Cytochrome P-450 epitope typing in animals and humans with monoclonal antibodies to ethanol induced rat liver microsomal cytochrome P-450 (P-450et)

    SciTech Connect

    Park, S.S.; Ko, I.Y.; Yang, C.; Guengerich, F.G.; Schenkman, J.B.; Coon, M.J.; Gelboin, H.V.

    1986-05-01

    Hybridomas were prepared from mouse myeloma cells and spleen cells derived from BALB/c female mice that had been immunized with P-450et. The monoclonal antibody (MAb)-producing hybridomas were screened by RIA. Thirty one independent hybrid clones were isolated with each producing an MAb of a single immunoglobulin subclass. All of these MAbs had high affinities for P-450et but only one MAb had a strong inhibitory effect on aniline rho-hydroxylase and N-nitrosodimethylamine demethylase. Western blots and RIAs based on ten MAbs (C1-C10) were used to determine the epitope homology of purified cytochromes P-450 from rats, rabbits, and humans. All ten MAbs had high affinity for both P-450et and a rat P-450 which is induced by acetone (P-450ac). Classes of these MAbs were identified which crossreacted toward different forms of rat P-450. In addition, several MAbs (C3, C6, C9) recognized a P-450 form of human liver, while other MAbs (C7, C9) recognized P-450/sub LM2/ of rabbits. Three MAbs (C4, C5, C8) were specific for only P-450et and P-450ac. These results demonstrate the different degrees of epitope relatedness among the multiple forms of cytochrome P-450.

  7. Lung Diseases

    MedlinePlus

    ... many disorders affecting the lungs, such as asthma, COPD, infections like influenza, pneumonia and tuberculosis, lung cancer, and many other breathing problems. Some lung diseases can lead to respiratory failure. Dept. of Health and Human Services Office on Women's Health

  8. The roles of diol epoxide and o-quinone pathways in mouse lung tumorigenesis induced by benzo(a)pyrene: relevance to human lung carcinogenesis

    EPA Science Inventory

    There is sufficient epidemiological evidence supported by experimental data that some PAH-containing complex environmental mixtures pose risks to human health by increasing lung cancer incidence. The International Agency for Research on Cancer has determined that human respirator...

  9. Genotoxicity-Related Chemistry of Human Metabolites of Benzo[ghi]perylene (B[ghi]P) Investigated using Electro-optical Arrays and DNA/Microsome Biocolloid Reactors with LC-MS/MS

    PubMed Central

    Pan, Shenmin; Li, Dandan; Zhao, Linlin; Schenkman, John B.; Rusling, James F.

    2013-01-01

    There is limited and sometimes contradictory information about the genotoxicity of polycyclic aromatic hydrocarbon benzo[ghi]perylene (B[ghi]P). Using recently developed metabolic toxicity screening arrays and a biocolloid reactor-LC-MS/MS approach, both featuring films of DNA and human metabolic enzymes, we demonstrated relatively low reactivity of metabolically activated B[ghi]P towards DNA. Electro-optical toxicity screening arrays showed that B[ghi]P metabolites damage DNA at a 3-fold lower rate than benzo[a]pyrene (B[a]P), whose metabolites have a strong and well-understood propensity for DNA damage. Metabolic studies using magnetic bead biocolloid reactors coated with microsomal enzymes in 96-well plates showed that cyt P450s 1A1 and 1B1 provide high activity for B[ghi]P and B[a]P conversion. Consistent with published results, the major metabolism of B[ghi]P involved oxidations at 3,4 and 11,12 positions, leading to formation of B[ghi]P 3,4-oxide and B[ghi]P 3,4,11,12-bisoxide. B[ghi]P 3,4-oxide was synthesized and reacted with deoxyadenosine at N6 and N7 positions and with deoxyguanosine at the N2 position. B[ghi]P 3,4-oxide is hydrolytically unstable and transforms into the 3,4-diol or converts to 3- or 4-hydroxy B[ghi]P. LC-MS/MS of reaction products from the magnetic biocolloid reactor particles coated with DNA and human enzymes revealed for the first time that a major DNA adduct results from reaction between B[ghi]P 3,4,11,12-bisoxide and deoxyguanosine. Results also demonstrated 5-fold lower formation rates of the major DNA adduct for B[ghi]P metabolites compared to B[a]P. Overall, results from both ECL array and biocolloid reactor-LC-MS/MS consistently suggest a lower human genotoxicity profile of B[ghi]P than B[a]P. PMID:23879290

  10. Regulation of cytochrome P4501A1 expression by hyperoxia in human lung cell lines: Implications for hyperoxic lung injury

    SciTech Connect

    Bhakta, Kushal Y. Jiang, Weiwu; Couroucli, Xanthi I.; Fazili, Inayat S.; Muthiah, Kathirvel; Moorthy, Bhagavatula

    2008-12-01

    Supplemental oxygen, used to treat pulmonary insufficiency in newborns, contributes to the development of bronchopulmonary dysplasia (BPD). Cytochrome P4501A enzymes are induced by hyperoxia in animal models, but their role in human systems is unknown. Here we investigated the molecular mechanisms of induction of CYP1A1 by hyperoxia in human lung cell lines. Three human lung cell lines were exposed to hyperoxia (95% O2) for 0-72 h, and CYP1A1 activities, apoprotein contents, and mRNA levels were determined. Hyperoxia significantly induced CYP1A1 activity and protein contents (2-4 fold), and mRNA levels (30-40 fold) over control in each cell line. Transfection of a CYP1A1 promoter/luciferase reporter construct, followed by hyperoxia (4-72 h), showed marked (2-6 fold) induction of luciferase expression. EMSA and siRNA experiments strongly suggest that the Ah receptor (AHR) is involved in the hyperoxic induction of CYP1A1. MTT reduction assays showed attenuation of cell injury with the CYP1A1 inducer beta-naphthoflavone (BNF). Our results strongly suggest that hyperoxia transcriptionally activates CYP1A1 expression in human lung cell lines by AHR-dependent mechanisms, and that CYP1A1 induction is associated with decreased toxicity. This novel finding of induction of CYP1A1 in the absence of exogenous AHR ligands could lead to novel interventions in the treatment of BPD.

  11. Posture-Dependent Human 3He Lung Imaging in an Open Access MRI System: Initial Results

    PubMed Central

    Tsai, L. L.; Mair, R. W.; Li, C.-H.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-01-01

    Rationale and Objectives The human lung and its functions are extremely sensitive to orientation and posture, and debate continues as to the role of gravity and the surrounding anatomy in determining lung function and heterogeneity of perfusion and ventilation. However, study of these effects is difficult. The conventional high-field magnets used for most hyperpolarized 3He MRI of the human lung, and most other common radiological imaging modalities including PET and CT, restrict subjects to lying horizontally, minimizing most gravitational effects. Materials and Methods In this paper, we briefly review the motivation for posture-dependent studies of human lung function, and present initial imaging results of human lungs in the supine and vertical body orientations using inhaled hyperpolarized 3He gas and an open-access MRI instrument. The open geometry of this MRI system features a “walk-in” capability that permits subjects to be imaged in vertical and horizontal positions, and potentially allows for complete rotation of the orientation of the imaging subject in a two-dimensional plane. Results Initial results include two-dimensional lung images acquired with ~ 4 × 8 mm in-plane resolution and three-dimensional images with ~ 2 cm slice thickness. Conclusion Effects of posture variation are observed, including posture-related effects of the diaphragm and distension of the lungs while vertical. PMID:18486009

  12. ADH IB Expression, but Not ADH III, Is Decreased in Human Lung Cancer

    PubMed Central

    Mutka, Sarah C.; Green, Lucia H.; Verderber, Evie L.; Richards, Jane P.; Looker, Doug L.; Chlipala, Elizabeth A.; Rosenthal, Gary J.

    2012-01-01

    Endogenous S-nitrosothiols, including S-nitrosoglutathione (GSNO), mediate nitric oxide (NO)-based signaling, inflammatory responses, and smooth muscle function. Reduced GSNO levels have been implicated in several respiratory diseases, and inhibition of GSNO reductase, (GSNOR) the primary enzyme that metabolizes GSNO, represents a novel approach to treating inflammatory lung diseases. Recently, an association between decreased GSNOR expression and human lung cancer risk was proposed in part based on immunohistochemical staining using a polyclonal GSNOR antibody. GSNOR is an isozyme of the alcohol dehydrogenase (ADH) family, and we demonstrate that the antibody used in those studies cross reacts substantially with other ADH proteins and may not be an appropriate reagent. We evaluated human lung cancer tissue arrays using monoclonal antibodies highly specific for human GSNOR with minimal cross reactivity to other ADH proteins. We verified the presence of GSNOR in ≥85% of specimens examined, and extensive analysis of these samples demonstrated no difference in GSNOR protein expression between cancerous and normal lung tissues. Additionally, GSNOR and other ADH mRNA levels were evaluated quantitatively in lung cancer cDNA arrays by qPCR. Consistent with our immunohistochemical findings, GSNOR mRNA levels were not changed in lung cancer tissues, however the expression levels of other ADH genes were decreased. ADH IB mRNA levels were reduced (>10-fold) in 65% of the lung cancer cDNA specimens. We conclude that the previously reported results showed an incorrect association of GSNOR and human lung cancer risk, and a decrease in ADH IB, rather than GSNOR, correlates with human lung cancer. PMID:23285246

  13. ADH IB expression, but not ADH III, is decreased in human lung cancer.

    PubMed

    Mutka, Sarah C; Green, Lucia H; Verderber, Evie L; Richards, Jane P; Looker, Doug L; Chlipala, Elizabeth A; Rosenthal, Gary J

    2012-01-01

    Endogenous S-nitrosothiols, including S-nitrosoglutathione (GSNO), mediate nitric oxide (NO)-based signaling, inflammatory responses, and smooth muscle function. Reduced GSNO levels have been implicated in several respiratory diseases, and inhibition of GSNO reductase, (GSNOR) the primary enzyme that metabolizes GSNO, represents a novel approach to treating inflammatory lung diseases. Recently, an association between decreased GSNOR expression and human lung cancer risk was proposed in part based on immunohistochemical staining using a polyclonal GSNOR antibody. GSNOR is an isozyme of the alcohol dehydrogenase (ADH) family, and we demonstrate that the antibody used in those studies cross reacts substantially with other ADH proteins and may not be an appropriate reagent. We evaluated human lung cancer tissue arrays using monoclonal antibodies highly specific for human GSNOR with minimal cross reactivity to other ADH proteins. We verified the presence of GSNOR in ≥85% of specimens examined, and extensive analysis of these samples demonstrated no difference in GSNOR protein expression between cancerous and normal lung tissues. Additionally, GSNOR and other ADH mRNA levels were evaluated quantitatively in lung cancer cDNA arrays by qPCR. Consistent with our immunohistochemical findings, GSNOR mRNA levels were not changed in lung cancer tissues, however the expression levels of other ADH genes were decreased. ADH IB mRNA levels were reduced (>10-fold) in 65% of the lung cancer cDNA specimens. We conclude that the previously reported results showed an incorrect association of GSNOR and human lung cancer risk, and a decrease in ADH IB, rather than GSNOR, correlates with human lung cancer. PMID:23285246

  14. 27-Hydroxycholesterol accelerates cellular senescence in human lung resident cells.

    PubMed

    Hashimoto, Yuichiro; Sugiura, Hisatoshi; Togo, Shinsaku; Koarai, Akira; Abe, Kyoko; Yamada, Mitsuhiro; Ichikawa, Tomohiro; Kikuchi, Takashi; Numakura, Tadahisa; Onodera, Katsuhiro; Tanaka, Rie; Sato, Kei; Yanagisawa, Satoru; Okazaki, Tatsuma; Tamada, Tsutomu; Kikuchi, Toshiaki; Hoshikawa, Yasushi; Okada, Yoshinori; Ichinose, Masakazu

    2016-06-01

    Cellular senescence is reportedly involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously showed that 27-hydroxycholesterol (27-OHC) is elevated in the airways of COPD patients compared with those in healthy subjects. The aim of this study was to investigate whether lung fibroblasts of COPD patients are senescent and to determine the effects of 27-OHC on senescence of lung resident cells, including fibroblasts and airway epithelial cells. Localization of senescence-associated proteins and sterol 27-hydroxylase was investigated in the lungs of COPD patients by immunohistochemical staining. To evaluate whether 27-OHC accelerates cellular senescence, lung resident cells were exposed to 27-OHC. Senescence markers and fibroblast-mediated tissue repair were investigated in the 27-OHC-treated cells. Expression of senescence-associated proteins was significantly enhanced in lung fibroblasts of COPD patients. Similarly, expression of sterol 27-hydroxylase was significantly upregulated in lung fibroblasts and alveolar macrophages in these patients. Treatment with the concentration of 27-OHC detected in COPD airways significantly augmented expression of senescence-associated proteins and senescence-associated β-galactosidase activity, and delayed cell growth through the prostaglandin E2-reactive nitrogen species pathway. The 27-OHC-treated fibroblasts impaired tissue repair function. Fibroblasts from lungs of COPD patients showed accelerated senescence and were more susceptible to 27-OHC-induced cellular senescence compared with those of healthy subjects. In conclusion, 27-OHC accelerates cellular senescence in lung resident cells and may play a pivotal role in cellular senescence in COPD. PMID:27036870

  15. Investigation of the bovine leukemia virus proviral DNA in human leukemias and lung cancers in Korea.

    PubMed

    Lee, Jehoon; Kim, Yonggoo; Kang, Chang Suk; Cho, Dae Hyun; Shin, Dong Hwan; Yum, Young Na; Oh, Jae Ho; Kim, Sheen Hee; Hwang, Myung Sil; Lim, Chul Joo; Yang, Ki Hwa; Han, Kyungja

    2005-08-01

    The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis. This study investigated the presence of the BLV in leukemia (179 acute lymphoblastic leukemia, 292 acute myeloid leukemia and 46 chronic myelogenous leukemia cases) and 162 lung cancer patients (139 adenocarcinoma, 23 squamous cell carcinoma) to determine if the BLV is a causative organism of leukemia and lung cancer in Koreans. A BLV infection was confirmed in human cells by PCR using a BLV-8 primer combination. All 517 cases of human leukemia and 162 lung cancer were negative for a PCR of the BLV proviral DNA. In conclusion, although meat has been imported from BLV endemic areas, the BLV infection does not appear to be the cause of human leukemia or lung cancer in Koreans. These results can be used as a control for further studies on the BLV in Koreans. PMID:16100451

  16. In vitro generation of human pluripotent stem cell derived lung organoids

    PubMed Central

    Dye, Briana R; Hill, David R; Ferguson, Michael AH; Tsai, Yu-Hwai; Nagy, Melinda S; Dyal, Rachel; Wells, James M; Mayhew, Christopher N; Nattiv, Roy; Klein, Ophir D; White, Eric S; Deutsch, Gail H; Spence, Jason R

    2015-01-01

    Recent breakthroughs in 3-dimensional (3D) organoid cultures for many organ systems have led to new physiologically complex in vitro models to study human development and disease. Here, we report the step-wise differentiation of human pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids. By manipulating developmental signaling pathways hPSCs generate ventral-anterior foregut spheroids, which are then expanded into human lung organoids (HLOs). HLOs consist of epithelial and mesenchymal compartments of the lung, organized with structural features similar to the native lung. HLOs possess upper airway-like epithelium with basal cells and immature ciliated cells surrounded by smooth muscle and myofibroblasts as well as an alveolar-like domain with appropriate cell types. Using RNA-sequencing, we show that HLOs are remarkably similar to human fetal lung based on global transcriptional profiles, suggesting that HLOs are an excellent model to study human lung development, maturation and disease. DOI: http://dx.doi.org/10.7554/eLife.05098.001 PMID:25803487

  17. CYP4F Enzymes Are the Major Enzymes in Human Liver Microsomes That Catalyze the O-Demethylation of the Antiparasitic Prodrug DB289 [2,5-Bis(4-amidinophenyl)furan-bis-O-methylamidoxime

    PubMed Central

    Wang, Michael Zhuo; Saulter, Janelle Y.; Usuki, Etsuko; Cheung, Yen-Ling; Hall, Michael; Bridges, Arlene S.; Loewen, Greg; Parkinson, Oliver T.; Stephens, Chad E.; Allen, James L.; Zeldin, Darryl C.; Boykin, David W.; Tidwell, Richard R.; Parkinson, Andrew; Paine, Mary F.; Hall, James Edwin

    2007-01-01

    DB289 [2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime] is biotransformed to the potent antiparasitic diamidine DB75 [2,5-bis(4-amidinophenyl) furan] by sequential oxidative O-demethylation and reductive N-dehydroxylation reactions. Previous work demonstrated that the N-dehydroxylation reactions are catalyzed by cytochrome b5/NADH-cytochrome b5 reductase. Enzymes responsible for catalyzing the DB289 O-demethylation pathway have not been identified. We report an in vitro metabolism study to characterize enzymes in human liver microsomes (HLMs) that catalyze the initial O-demethylation of DB289 (M1 formation). Potent inhibition by 1-aminobenzotriazole confirmed that M1 formation is catalyzed by P450 enzymes. M1 formation by HLMs was NADPH-dependent, with a Km and Vmax of 0.5 μM and 3.8 nmol/min/mg protein, respectively. Initial screening showed that recombinant CYP1A1, CYP1A2, and CYP1B1 were efficient catalysts of M1 formation. However, none of these three enzymes was responsible for M1 formation by HLMs. Further screening showed that recombinant CYP2J2, CYP4F2, and CYP4F3B could also catalyze M1 formation. An antibody against CYP4F2, which inhibited both CYP4F2 and CYP4F3B, inhibited 91% of M1 formation by HLMs. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N′-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, effectively inhibited M1 formation by HLMs. Inhibition studies with ebastine and antibodies against CYP2J2 suggested that CYP2J2 was not involved in M1 formation by HLMs. Additionally, ketoconazole preferentially inhibited CYP4F2, but not CYP4F3B, and partially inhibited M1 formation by HLMs. We conclude that CYP4F enzymes (e.g., CYP4F2, CYP4F3B) are the major enzymes responsible for M1 formation by HLMs. These findings indicate that, in human liver, members of the CYP4F subfamily biotransform not only endogenous compounds but also xenobiotics. PMID:16997912

  18. Silencing Aurora-A with siRNA inhibits cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Zhong, Ning; Shi, Shunbin; Wang, Hongzhen; Wu, Guangzhou; Wang, Yunliang; Ma, Qiang; Wang, Hongwei; Liu, Yuanhua; Wang, Jinzhi

    2016-09-01

    Aurora kinase A (AURKA) is an oncogenic serine/threonine kinase, it plays important roles in tumorigenesis and chemoresistance. In this study, we investigated the expression of AURKA in lung adenocarcinoma tissues, the role of small interference RNA targeting AURKA on growth, cell cycle, and apoptosis of lung adenocarcinoma cell lines in vitro. The AURKA is highly expressed in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines. Lentivirus-mediated short hairpin RNA (shRNA) was used to knock down AURKA expression in human lung adenocarcinoma cell lines H1299 and A549. The results indicated that depletion of AURKA could inhibit cell growth, cause cell cycle arrest and apoptosis. The potential mechanisms of AURKA inhibition induced cell cycle arrest and apoptosis are associated with downregulated RAF-1, CCND2, CCND3, CDK4, PAK4, EGFR and upregulated WEE1 expression. Furthermore, AURKA knockdown cooperated with vincristine (VCR) to repress A549 cell proliferation. Therefore, AURKA plays important roles in the proliferation of human lung adenocarcinoma cells, which suggests that AURKA could be a promising tool for lung adenocarcinoma therapy. PMID:27571708

  19. A Human-Mouse Chimeric Model of Obliterative Bronchiolitis after Lung Transplantation

    PubMed Central

    Xue, Jianmin; Zhu, Xuehai; George, M. Patricia; Myerburg, Michael M.; Stoner, Michael W.; Pilewski, Joseph W.; Duncan, Steven R.

    2011-01-01

    Obliterative bronchiolitis is a frequent, morbid, and usually refractory complication of lung transplantation. Mechanistic study of obliterative bronchiolitis would be aided by development of a relevant model that uses human immune effector cells and airway targets. Our objective was to develop a murine chimera model that mimics obliterative bronchiolitis of lung allograft recipients in human airways in vivo. Human peripheral blood mononuclear cells were adoptively transferred to immunodeficient mice lacking activity of T, B, and NK cells, with and without concurrent transplantations of human small airways dissected from allogeneic cadaveric lungs. Chimerism with human T cells occurred in the majority of recipient animals. The chimeric T cells became highly activated, rapidly infiltrated into the small human airway grafts, and caused obliterative bronchiolitis. In contrast, airways implanted into control mice that did not also receive human peripheral blood mononuclear cell transfers remained intact. In vitro proliferation assays indicated that the chimeric T cells had enhanced specific proliferative responses to donor airway alloantigens. This model confirms the critical role of T cells in development of obliterative bronchiolitis among human lung allograft recipients and provides a novel and easily implemented mechanism for detailed, reductionist in vivo studies of human T-cell responses to allogeneic human small airways. PMID:21801868

  20. Identification of Genetic Mutations in Human Lung Cancer by Targeted Sequencing

    PubMed Central

    Feng, Hongxiang; Wang, Xiaowei; Zhang, Zhenrong; Tang, Chuanning; Ye, Hua; Jones, Lindsey; Lou, Feng; Zhang, Dandan; Jiang, Shouwen; Sun, Hong; Dong, Haichao; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; Yan, He; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Nandakumar, Vijayalakshmi; Huang, Xue F; Chen, Si-Yi; Liu, Deruo

    2015-01-01

    Lung cancer remains the most prevalent malignancy and the primary cause of cancer-related deaths worldwide. Unique mutations patterns can be found in lung cancer subtypes, in individual cancers, or within a single tumor, and drugs that target these genetic mutations and signal transduction pathways are often beneficial to patients. In this study, we used the Ion Torrent AmpliSeq Cancer Panel to sequence 737 loci from 45 cancer-related genes and oncogenes to identify genetic mutations in 48 formalin-fixed, paraffin-embedded (FFPE) human lung cancer samples from Chinese patients. We found frequent mutations in EGFR, KRAS, PIK3CA, and TP53 genes. Moreover, we observed that a portion of the lung cancer samples harbored two or more mutations in these key genes. This study demonstrates the feasibility of using the Ion Torrent sequencing to efficiently identify genetic mutations in individual tumors for targeted lung cancer therapy. PMID:26244006

  1. Thermal effect of endoscopic thermal vapour ablation on the lung surface in human ex vivo tissue

    PubMed Central

    Henne, Erik; Anderson, Joseph C.; Barry, Robert; Kesten, Steven

    2012-01-01

    Purpose: An investigation of the thermal effect and the potential for injury at the lung surface following thermal vapour ablation (InterVapor), an energy-based method of achieving endoscopic lung volume reduction. Methods: Heated water vapour was delivered to fifteen ex vivo human lungs using standard clinical procedure, and the thermal effect at the visceral pleura was monitored with an infrared camera. The time–temperature response was analysed mathematically to determine a cumulative injury quotient, which was compared to published thresholds. Results: The cumulative injury quotients for all 71 treatments of ex vivo tissue were found to be below the threshold for first degree burn and no other markers of tissue injury at the lung surface were observed. Conclusion: The safety profile for thermal vapour ablation is further supported by the demonstration that the thermal effect in a worst-case model is not expected to cause injury at the lung surface. PMID:22690896

  2. Radiographic comparison of human lung shape during normal gravity and weightlessness.

    PubMed

    Michels, D B; Friedman, P J; West, J B

    1979-10-01

    Human lung shape was measured during zero gravity (0 G) to decide whether the normal vertical regional differences in ventilation are due directly to distortion of the elastic lung by its own weight, or instead, due indirectly to the effect of gravity on the shape of the rib cage and diaphragm. This was important because we previously established that weightlessness virtually abolishes the normal topographical inequality of ventilation (J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 987-998, 1978). Chest radiographs were made after 10 s of a weightless flight trajectory aboard a NASA-Ames Research Center Learjet in both posterior-anterior and left lateral projections on five seated volunteers at residual volume, functional residual capacity, and total lung capacity. Lung shape was assessed by measuring lung heights and widths in upper, middle, and lower lung regions. We found no significant differences between any of the normal gravity (1 G) and o G measurements, although there was a slight tendency for the lung to become shorter and wider at o G (mean changes generally less than 3% or about 0.5 cm). By contrast, Grassino et al. (J. Appl. Physiol. 39: 997-1003, 1975) found no change in the vertical distribution of ventilation after voluntarily changing lung dimensions by more than 1 cm by moving the abdomen in or out. We conclude that gravity produces the topographical distribution of ventilation in the upright human lung by distorting the elastic lung tissue within the chest rather than by altering the shape of the rib cage and diaphragm. PMID:511694

  3. Expression of secretory phospholipase A2 enzymes in lungs of humans with pneumonia and their potential prostaglandin-synthetic function in human lung-derived cells.

    PubMed

    Masuda, Seiko; Murakami, Makoto; Mitsuishi, Michiko; Komiyama, Kazuo; Ishikawa, Yukio; Ishii, Toshiharu; Kudo, Ichiro

    2005-04-01

    Although a number of sPLA2 (secretory phospholipase A2) enzymes have been identified in mammals, the localization and functions of individual enzymes in human pathologic tissues still remain obscure. In the present study, we have examined the expression and function of sPLA2s in human lung-derived cells and in human lungs with pneumonia. Group IID, V and X sPLA2s were expressed in cultured human bronchial epithelial cells (BEAS-2B) and normal human pulmonary fibroblasts with distinct requirement for cytokines (interleukin-1b, tumour necrosis factor a and interferon-g). Lentivirus- or adenovirus-mediated transfection of various sPLA2s into BEAS-2B or normal human pulmonary fibroblast cells revealed that group V and X sPLA2s increased arachidonate release and prostaglandin production in both cell types, whereas group IIA and IID sPLA2s failed to do so. Immunohistochemistry of human lungs with pneumonia demonstrated that group V and X sPLA2s were widely expressed in the airway epithelium, interstitium and alveolar macrophages, in which group IID sPLA2 was also positive, whereas group IIA sPLA2 was restricted to the pulmonary arterial smooth muscle layers and bronchial chondrocytes, and group IIE and IIF sPLA2s were minimally detected. These results suggest that group V and X sPLA2s affect lung pathogenesis by facilitating arachidonate metabolism or possibly through other functions. PMID:15509193

  4. Formation of (4R)- and (4S)-4-hydroxyochratoxin A from ochratoxin A by liver microsomes from various species.

    PubMed Central

    Størmer, F C; Hansen, C E; Pedersen, J I; Hvistendahl, G; Aasen, A J

    1981-01-01

    Two metabolic products were formed from ochratoxin A by human, pig, and rat liver microsomal fractions in the presence of reduced nicotinamide adenine dinucleotide phosphate. They were isolated from the incubation mixture in the presence of pig liver microsomes by extraction, thin-layer chromatography, and high-pressure liquid chromatography Their structures are suggested to be (4R)- and (4S)-4-hydroxyochratoxin A on the basis of mass and nuclear magnetic resonance spectroscopy. Km and the maximum velocity for the formation of the two metabolites by human, pig, and rat microsomes were determined. Their formation was inhibited by carbon monoxide and metyrapone. The results indicate that the microsomal hydroxylation system is a cytochrome P-450 and that different species are involved in the formation of the two epimeric forms of 4-hydroxyochratoxin A. PMID:7316512

  5. Short-term hypoxic exposure at rest and during exercise reduces lung water in healthy humans.

    PubMed

    Snyder, Eric M; Beck, Kenneth C; Hulsebus, Minelle L; Breen, Jerome F; Hoffman, Eric A; Johnson, Bruce D

    2006-12-01

    Hypoxia and hypoxic exercise increase pulmonary arterial pressure, cause pulmonary capillary recruitment, and may influence the ability of the lungs to regulate fluid. To examine the influence of hypoxia, alone and combined with exercise, on lung fluid balance, we studied 25 healthy subjects after 17-h exposure to 12.5% inspired oxygen (barometric pressure = 732 mmHg) and sequentially after exercise to exhaustion on a cycle ergometer with 12.5% inspired oxygen. We also studied subjects after a rapid saline infusion (30 ml/kg over 15 min) to demonstrate the sensitivity of our techniques to detect changes in lung water. Pulmonary capillary blood volume (Vc) and alveolar-capillary conductance (D(M)) were determined by measuring the diffusing capacity of the lungs for carbon monoxide and nitric oxide. Lung tissue volume and density were assessed using computed tomography. Lung water was estimated by subtracting measures of Vc from computed tomography lung tissue volume. Pulmonary function [forced vital capacity (FVC), forced expiratory volume after 1 s (FEV(1)), and forced expiratory flow at 50% of vital capacity (FEF(50))] was also assessed. Saline infusion caused an increase in Vc (42%), tissue volume (9%), and lung water (11%), and a decrease in D(M) (11%) and pulmonary function (FVC = -12 +/- 9%, FEV(1) = -17 +/- 10%, FEF(50) = -20 +/- 13%). Hypoxia and hypoxic exercise resulted in increases in Vc (43 +/- 19 and 51 +/- 16%), D(M) (7 +/- 4 and 19 +/- 6%), and pulmonary function (FVC = 9 +/- 6 and 4 +/- 3%, FEV(1) = 5 +/- 2 and 4 +/- 3%, FEF(50) = 4 +/- 2 and 12 +/- 5%) and decreases in lung density and lung water (-84 +/- 24 and -103 +/- 20 ml vs. baseline). These data suggest that 17 h of hypoxic exposure at rest or with exercise resulted in a decrease in lung water in healthy humans. PMID:16902060

  6. IGFBP7 is a p53 target gene inactivated in human lung cancer by DNA hypermethylation.

    PubMed

    Chen, Yuan; Cui, Tiantian; Knösel, Thomas; Yang, Linlin; Zöller, Kristin; Petersen, Iver

    2011-07-01

    Insulin-like growth factor binding protein 7 (IGFBP7) was considered a tumor suppressor gene in lung cancer. However, the mechanism responsible for the downregulation of this gene has not yet been fully understood. In this study, we analyzed the epigenetic inactivation of IGFBP7 expression in human lung cancer. We found that 14 out of 16 lung cancer cell lines showed decreased expression of IGFBP7 compared to control cells by real-time RT-PCR, and 42 out of 90 patients (46.7%) with primary lung tumor exhibited negative staining of IGFBP7 by immunohistochemistry analysis. The IGFBP7 expression could be restored by demethylation agent 5-aza-2'-deoxycytidine (DAC) in 7 cancer cell lines. Methylation status of IGFBP7 was further evaluated by bisulfite sequencing (BS) and methylation-specific-PCR (MSP). It turned out that low expression of IGFBP7 was associated with DNA methylation in lung cancer cell lines and in primary lung tumors (P=0.019). To explore the regulatory role of p53 on IGFBP7, we transfected a wild type p53 expression vector into lung cancer cell lines H1299, H2228, and H82. Forced expression of p53 increased IGFBP7 expression only in H82 harboring no IGFBP7 methylation, while transfection in combination with DAC induced the expression of IGFBP7 in H1299 and H2228, in which IGFBP7 was methylated. Additionally, treatment with p53 inducer adriamycin (ADR) alone or in combination with DAC increased the expression of IGFBP7 in the 3 cell lines. Our data suggest that IGFBP7 is inactivated in lung cancer by DNA hypermethylation in both lung cancer cell lines and primary lung tumors, and IGFBP7 might be regulated by p53 in lung cancer cells. PMID:21095038

  7. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation.

    PubMed

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J; Ambalavanan, Namasivayam

    2015-07-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  8. Alterations in Gene Expression and DNA Methylation during Murine and Human Lung Alveolar Septation

    PubMed Central

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K.; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J.

    2015-01-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  9. Lysine-specific demethylase 1-mediated demethylation of histone H3 lysine 9 contributes to interleukin 1β-induced microsomal prostaglandin E synthase 1 expression in human osteoarthritic chondrocytes

    PubMed Central

    2014-01-01

    Introduction Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the terminal step in the biosynthesis of PGE2, a critical mediator in the pathophysiology of osteoarthritis (OA). Histone methylation plays an important role in epigenetic gene regulation. In this study, we investigated the roles of histone H3 lysine 9 (H3K9) methylation in interleukin 1β (IL-1β)-induced mPGES-1 expression in human chondrocytes. Methods Chondrocytes were stimulated with IL-1β, and the expression of mPGES-1 mRNA was evaluated using real-time RT-PCR. H3K9 methylation and the recruitment of the histone demethylase lysine-specific demethylase 1 (LSD1) to the mPGES-1 promoter were evaluated using chromatin immunoprecipitation assays. The role of LSD1 was further evaluated using the pharmacological inhibitors tranylcypromine and pargyline and small interfering RNA (siRNA)-mediated gene silencing. The LSD1 level in cartilage was determined by RT-PCR and immunohistochemistry. Results The induction of mPGES-1 expression by IL-1β correlated with decreased levels of mono- and dimethylated H3K9 at the mPGES-1 promoter. These changes were concomitant with the recruitment of the histone demethylase LSD1. Treatment with tranylcypromine and pargyline, which are potent inhibitors of LSD1, prevented IL-1β-induced H3K9 demethylation at the mPGES-1 promoter and expression of mPGES-1. Consistently, LSD1 gene silencing with siRNA prevented IL-1β-induced H3K9 demethylation and mPGES-1 expression, suggesting that LSD1 mediates IL-1β-induced mPGES-1 expression via H3K9 demethylation. We show that the level of LSD1 was elevated in OA compared to normal cartilage. Conclusion These results indicate that H3K9 demethylation by LSD1 contributes to IL-1β-induced mPGES-1 expression and suggest that this pathway could be a potential target for pharmacological intervention in the treatment of OA and possibly other arthritic conditions. PMID:24886859

  10. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    DOE PAGESBeta

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; et al

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less

  11. Design and Synthesis of an Artificial Pulmonary Pleura for High Throughput Studies in Acellular Human Lungs

    PubMed Central

    Wagner, Darcy E.; Fenn, Spencer L.; Bonenfant, Nicholas R.; Marks, Elliot R.; Borg, Zachary; Saunders, Patrick; Oldinski, Rachael A.; Weiss, Daniel J.

    2015-01-01

    Whole organ decellularization of complex organs, such as lungs, presents a unique opportunity for use of acellular scaffolds for ex vivo tissue engineering or for studying cell-extracellular matrix interactions ex vivo. A growing body of literature investigating decellularizing and recellularizing rodent lungs has provided important proof of concept models and rodent lungs are readily available for high throughput studies. In contrast, comparable progress in large animal and human lungs has been impeded owing to more limited availability and difficulties in handling larger tissue. While the use of smaller segments of acellular large animal or human lungs would maximize usage from a single lung, excision of small acellular segments compromises the integrity of the pleural layer, leaving the terminal ends of blood vessels and airways exposed. We have developed a novel pleural coating using non-toxic ionically crosslinked alginate or photocrosslinked methacrylated alginate which can be applied to excised acellular lung segments, permits inflation of small segments, and significantly enhances retention of cells inoculated through cannulated airways or blood vessels. Further, photocrosslinking methacrylated alginate, using eosin Y and triethanolamine (TEOA) at 530nm wavelength, results in a mechanically stable pleural coating that permits effective cyclic 3-dimensional stretch, i.e. mechanical ventilation, of individual segments. PMID:25750684

  12. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging

    PubMed Central

    Fecher, David; Hofmann, Elisabeth; Buck, Andreas; Bundschuh, Ralph; Nietzer, Sarah; Dandekar, Gudrun; Walles, Thorsten; Walles, Heike; Lückerath, Katharina; Steinke, Maria

    2016-01-01

    Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and –testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future. PMID:27501455

  13. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging.

    PubMed

    Fecher, David; Hofmann, Elisabeth; Buck, Andreas; Bundschuh, Ralph; Nietzer, Sarah; Dandekar, Gudrun; Walles, Thorsten; Walles, Heike; Lückerath, Katharina; Steinke, Maria

    2016-01-01

    Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future. PMID:27501455

  14. Correlating 3D morphology with molecular pathology: fibrotic remodelling in human lung biopsies.

    PubMed

    Kellner, Manuela; Wehling, Judith; Warnecke, Gregor; Heidrich, Marko; Izykowski, Nicole; Vogel-Claussen, Jens; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios; Janciauskiene, Sabina; Grothausmann, Roman; Knudsen, Lars; Ripken, Tammo; Meyer, Heiko; Kreipe, Hans; Ochs, Matthias; Jonigk, Danny; Kühnel, Mark Philipp

    2015-12-01

    Assessing alterations of the parenchymal architecture is essential in understanding fibrosing interstitial lung diseases. Here, we present a novel method to visualise fibrotic remodelling in human lungs and correlate morphological three-dimensional (3D) data with gene and protein expression in the very same sample. The key to our approach is a novel embedding resin that clears samples to full optical transparency and simultaneously allows 3D laser tomography and preparation of sections for histology, immunohistochemistry and RNA isolation. Correlating 3D laser tomography with molecular diagnostic techniques enables new insights into lung diseases. This approach has great potential to become an essential tool in pulmonary research. PMID:26108569

  15. 2009 pandemic H1N1 influenza virus replicates in human lung tissues

    PubMed Central

    Zhang, Jinxia; Zhang, Zengfeng; Fan, Xiaohui; Liu, Yuansheng; Wang, Jia; Zheng, Zuoyi; Chen, Rirong; Wang, Pui; Song, Wenjun; Chen, Honglin; Guan, Yi

    2009-01-01

    Replication activity of 2009 pandemic H1N1 influenza virus in human lung cells was evaluated in this study. Twenty-two surgically removed human lung tissue samples were infected ex vivo with pandemic H1N1, A/California/04/2009, seasonal human H1N1 virus, A/ST/92/2009, or a highly pathogenic H5N1 virus, A/Vietnam/1194/04. Examination of nucleoprotein (NP) protein expression and vRNA replication in infected human lung tissues showed that while CA/04 replication varied between tissue samples, overall, it replicated more efficiently than seasonal H1N1 but less efficiently than H5N1 virus. Double immunostaining for viral antigens and cellular markers indicated that CA/04 replicates in type II alveolar epithelial cells. PMID:20370480

  16. Tumor-Associated Neutrophils Show Phenotypic and Functional Divergence in Human Lung Cancer.

    PubMed

    Saha, Shilpi; Biswas, Subhra K

    2016-07-11

    Studies in murine cancer models have demonstrated the phenotypic and functional divergence of neutrophils; however, their role in pro- or anti-tumor responses in human remains elusive. In this issue of Cancer Cell, Singhal et al. report the existence of specialized subsets of neutrophils in human lung cancer with diverging functions. PMID:27411583

  17. EFFECT OF ANTIOXIDANT SUPPLEMENTATION ON OZONE-INDUCED LUNG INJURY IN HUMAN SUBJECTS

    EPA Science Inventory

    Epidemiological, in vitro and animal studies suggest that dietary antioxidants can modulate the cellular and physiologic effects of ozone (O3) inhalation in humans. To determine whether antioxidants can influence human susceptibility to O3-induced changes in lung function and a...

  18. Quantitation of microsomal alpha-hydroxylation of the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

    PubMed

    Peterson, L A; Mathew, R; Hecht, S S

    1991-10-15

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is activated to DNA alkylating species via two different alpha-hydroxylation pathways. Methylene hydroxylation leads to DNA methylation, whereas methyl hydroxylation yields DNA pyridyloxobutylation. We have developed a high-pressure liquid chromatography assay utilizing radiochemical detection that permits the determination of the extent of metabolism through each pathway in microsomal preparations. Levels of 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) were used to measure the extent of methyl hydroxylation, whereas levels of the aldehyde, 4-oxo-1-(3-pyridyl)-1-butanone (OPB), were used to quantify the extent of methylene hydroxylation. Incubations of [5-3H]NNK with microsomes and cofactors were conducted in the presence of 5 mM sodium bisulfite to trap the reactive OPB. The inclusion of bisulfite did not affect the rate of NNK metabolism. Trapping the aldehyde also inhibited its further oxidation to the corresponding acid or reduction to HPB. Furthermore, the conversion of HPB to OPB made only a minor contribution to the OPB levels under our incubation conditions. Analysis of incubation mixtures containing [5-3H]NNK, cofactors, and either A/J mouse liver or lung microsomes demonstrated that OPB was a significant metabolite of NNK. The OPB:HPB ratio was greater in liver (1.5) than in lung (0.2-1) microsomal preparations. Apparent Km values for OPB and HPB formation in lung microsomes were 23.7 and 3.6 microM, respectively, whereas the corresponding values for liver microsomes were 19.1 and 73.8 microM, respectively. These data are consistent with the involvement of more than one cytochrome P-450 isozyme in the activation of NNK to DNA reactive species. PMID:1913670

  19. Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo

    PubMed Central

    Yogesh, Bendale; Vineeta, Bendale; Rammesh, Natu; Saili, Paul

    2016-01-01

    Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached 70 ─ 75 mm3, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer. PMID:27386144

  20. Treatment with HIF-1α Antagonist PX-478 Inhibits Progression and Spread of Orthotopic Human Small Cell Lung Cancer and Lung Adenocarcinoma in Mice

    PubMed Central

    Jacoby, Jörg J.; Erez, Baruch; Korshunova, Maria V.; Williams, Ryan R.; Furutani, Kazuhisa; Takahashi, Osamu; Kirkpatrick, Lynn; Lippman, Scott M.; Powis, Garth; O’Reilly, Michael S.; Herbst, Roy S.

    2011-01-01

    Introduction PX-478 is a potent small-molecule inhibitor of HIF-1α. In preclinical studies, it had antitumor activity against various solid tumors in subcutaneous xenografts but had no measurable activity against a non-small cell lung cancer (NSCLC) xenograft. To determine the effectiveness of PX-478 against lung tumors, we investigated HIF-1α expression in several lung cancer cell lines, both in vitro and in vivo, and treated orthotopic mouse models of human lung cancer with PX-478. Methods Cells from two human lung adenocarcinoma cell models (PC14-PE6 and NCI-H441) or two human small cell lung cancer (SCLC) models (NCI-H187 and NCI-N417) were injected into the left lungs of nude mice and were randomized 16 to 18 days after injection with daily oral treatment with PX-478 or vehicle for 5 days. Results In the PC14-PE6 NSCLC model, treatment with 20 mg/kg PX-478 significantly reduced the median primary lung tumor volume by 87% (p = 0.005) compared with the vehicle-treated group. PX-478 treatment also markedly reduced mediastinal metastasis and prolonged survival. Similar results were obtained in a second NSCLC model. In SCLC models, PX-478 was even more effective. In the NCI-H187 model, the median primary lung tumor volume was reduced by 99% (p = 0.0001). The median survival duration was increased by 132%. In the NCI-N417 model, the median primary lung tumor volume was reduced by 97% (p = 0.008). Conclusions We demonstrated that the PX-478, HIF-1α inhibitor, had significant antitumor activity against two orthotopic models of lung adenocarcinomas and two models of SCLC. These results suggest the inclusion of lung cancer patients in phase I clinical trials of PX-478. PMID:20512076

  1. A genomics-based classification of human lung tumors.

    PubMed

    2013-10-30

    We characterized genome alterations in 1255 clinically annotated lung tumors of all histological subgroups to identify genetically defined and clinically relevant subtypes. More than 55% of all cases had at least one oncogenic genome alteration potentially amenable to specific therapeutic intervention, including several personalized treatment approaches that are already in clinical evaluation. Marked differences in the pattern of genomic alterations existed between and within histological subtypes, thus challenging the original histomorphological diagnosis. Immunohistochemical studies confirmed many of these reassigned subtypes. The reassignment eliminated almost all cases of large cell carcinomas, some of which had therapeutically relevant alterations. Prospective testing of our genomics-based diagnostic algorithm in 5145 lung cancer patients enabled a genome-based diagnosis in 3863 (75%) patients, confirmed the feasibility of rational reassignments of large cell lung cancer, and led to improvement in overall survival in patients with EGFR-mutant or ALK-rearranged cancers. Thus, our findings provide support for broad implementation of genome-based diagnosis of lung cancer. PMID:24174329

  2. A Genomics-Based Classification of Human Lung Tumors

    PubMed Central

    2014-01-01

    We characterized genome alterations in 1255 clinically annotated lung tumors of all histological subgroups to identify genetically defined and clinically relevant subtypes. More than 55% of all cases had at least one oncogenic genome alteration potentially amenable to specific therapeutic intervention, including several personalized treatment approaches that are already in clinical evaluation. Marked differences in the pattern of genomic alterations existed between and within histological subtypes, thus challenging the original histomorphological diagnosis. Immunohistochemical studies confirmed many of these reassigned subtypes. The reassignment eliminated almost all cases of large cell carcinomas, some of which had therapeutically relevant alterations. Prospective testing of our genomics-based diagnostic algorithm in 5145 lung cancer patients enabled a genome-based diagnosis in 3863 (75%) patients, confirmed the feasibility of rational reassignments of large cell lung cancer, and led to improvement in overall survival in patients with EGFR-mutant or ALK-rearranged cancers. Thus, our findings provide support for broad implementation of genome-based diagnosis of lung cancer. PMID:24174329

  3. AIRWAY CELL AND NUCLEAR DEPTH DISTRIBUTION IN HUMAN RAT LUNGS

    EPA Science Inventory

    To predict the critical cells that are subject to injury from inhaled radon and other alpha particle sources it is necessary to calculate the dose absorbed by the different cells in the lungs. n order to provide information necessary to make these dose determinations, the airway ...

  4. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts

    SciTech Connect

    Ohshimo, Shinichiro; Yokoyama, Akihito . E-mail: yokoyan@hiroshima-u.ac.jp; Hattori, Noboru; Ishikawa, Nobuhisa; Hirasawa, Yutaka; Kohno, Nobuoki

    2005-12-30

    The serum level of KL-6, a MUC1 mucin, is a clinically useful marker for various interstitial lung diseases. Previous studies demonstrated that KL-6 promotes chemotaxis of human fibroblasts. However, the pathophysiological role of KL-6 remains poorly understood. Here, we further investigate the functional aspects of KL-6 in proliferation and apoptosis of lung fibroblasts. KL-6 accelerated the proliferation and inhibited the apoptosis of all human lung fibroblasts examined. An anti-KL-6 monoclonal antibody counteracted both of these effects induced by KL-6 on human lung fibroblasts. The pro-fibroproliferative and anti-apoptotic effects of KL-6 are greater than and additive to those of the maximum effective concentrations of platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-{beta}. These findings indicate that increased levels of KL-6 in the epithelial lining fluid may stimulate fibrotic processes in interstitial lung diseases and raise the possibility of applying an anti-KL-6 antibody to treat interstitial lung diseases.

  5. Cell-associated bacteria in the human lung microbiome

    PubMed Central

    2014-01-01

    Background Recent studies have revealed that bronchoalveolar lavage (BAL) fluid contains previously unappreciated communities of bacteria. In vitro and in vivo studies have shown that host inflammatory signals prompt bacteria to disperse from cell-associated biofilms and adopt a virulent free-living phenotype. The proportion of the lung microbiota that is cell-associated is unknown. Results Forty-six BAL specimens were obtained from lung transplant recipients and divided into two aliquots: ‘whole BAL’ and ‘acellular BAL,’ the latter processed with a low-speed, short-duration centrifugation step. Both aliquots were analyzed via bacterial 16S rRNA gene pyrosequencing. The BAL specimens represented a wide spectrum of lung health, ranging from healthy and asymptomatic to acutely infected. Bacterial signal was detected in 52% of acellular BAL aliquots, fewer than were detected in whole BAL (96%, p ≤ 0.0001). Detection of bacteria in acellular BAL was associated with indices of acute infection [BAL neutrophilia, high total bacterial (16S) DNA, low community diversity, p < 0.01 for all] and, independently, with low relative abundance of specific taxonomic groups (p < 0.05). When whole and acellular aliquots from the same bronchoscopy were directly compared, acellular BAL contained fewer bacterial species (p < 0.05); whole and acellular BAL similarity was positively associated with evidence of infection and negatively associated with relative abundance of several prominent taxa (p < 0.001). Acellular BAL contained decreased relative abundance of Prevotella spp. (p < 0.05) and Pseudomonas fluorescens (p < 0.05). Conclusions We present a novel methodological and analytical approach to the localization of lung microbiota and show that prominent members of the lung microbiome are cell-associated, potentially via biofilms, cell adhesion, or intracellularity. PMID:25206976

  6. Proteomic and Bioinformatics Analyses of Mouse Liver Microsomes

    PubMed Central

    Peng, Fang; Zhan, Xianquan; Li, Mao-Yu; Fang, Fan; Li, Guoqing; Li, Cui; Zhang, Peng-Fei; Chen, Zhuchu

    2012-01-01

    Microsomes are derived mostly from endoplasmic reticulum and are an ideal target to investigate compound metabolism, membrane-bound enzyme functions, lipid-protein interactions, and drug-drug interactions. To better understand the molecular mechanisms of the liver and its diseases, mouse liver microsomes were isolated and enriched with differential centrifugation and sucrose gradient centrifugation, and microsome membrane proteins were further extracted from isolated microsomal fractions by the carbonate method. The enriched microsome proteins were arrayed with two-dimensional gel electrophoresis (2DE) and carbonate-extracted microsome membrane proteins with one-dimensional gel electrophoresis (1DE). A total of 183 2DE-arrayed proteins and 99 1DE-separated proteins were identified with tandem mass spectrometry. A total of 259 nonredundant microsomal proteins were obtained and represent the proteomic profile of mouse liver microsomes, including 62 definite microsome membrane proteins. The comprehensive bioinformatics analyses revealed the functional categories of those microsome proteins and provided clues into biological functions of the liver. The systematic analyses of the proteomic profile of mouse liver microsomes not only reveal essential, valuable information about the biological function of the liver, but they also provide important reference data to analyze liver disease-related microsome proteins for biomarker discovery and mechanism clarification of liver disease. PMID:22500222

  7. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    SciTech Connect

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Ngalame, Ntube N. Olive; Waalkes, Michael P.

    2013-12-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship

  8. Expression of Carcinoembryonic Cell Adhesion Molecule 6 and Alveolar Epithelial Cell Markers in Lungs of Human Infants with Chronic Lung Disease.

    PubMed

    Gonzales, Linda W; Gonzalez, Robert; Barrette, Anne Marie; Wang, Ping; Dobbs, Leland; Ballard, Philip L

    2015-12-01

    The membrane protein carcinoembryonic antigen cell adhesion molecule (CEACAM6) is expressed in the epithelium of various tissues, participating in innate immune defense, cell proliferation and differentiation, with overexpression in gastrointestinal tract, pancreatic and lung tumors. It is developmentally and hormonally regulated in fetal human lung, with an apparent increased production in preterm infants with respiratory failure. To further examine the expression and cell localization of CEACAM6, we performed immunohistochemical and biochemical studies in lung specimens from infants with and without chronic lung disease. CEACAM6 protein and mRNA were increased ~4-fold in lungs from infants with chronic lung disease as compared with controls. By immunostaining, CEACAM6 expression was markedly increased in the lung parenchyma of infants and children with a variety of chronic lung disorders, localizing to hyperplastic epithelial cells with a ~7-fold elevated proliferative rate by PCNA staining. Some of these cells also co-expressed membrane markers of both type I and type II cells, which is not observed in normal postnatal lung, suggesting they are transitional epithelial cells. We suggest that CEACAM6 is both a marker of lung epithelial progenitor cells and a contributor to the proliferative response after injury due to its anti-apoptotic and cell adhesive properties. PMID:26374831

  9. Amplification and expression of the c-myc oncogene in human lung cancer cell lines.

    PubMed

    Little, C D; Nau, M M; Carney, D N; Gazdar, A F; Minna, J D

    Genetic changes involving the c-myc oncogene have been observed in human tumours. In particular, the c-myc gene is translocated in Burkitt's lymphoma and is amplified in the human promyelocytic leukaemia cell line, HL-60, which contains double minute chromosomes (DMs). More recently, an amplified c-myc gene has been positioned on a chromosomal homogeneous staining region (HSR) in a human colon cancer cell line, COLO 320, with neuroendocrine properties. Furthermore, c-myc is expressed in increased amounts in some human tumour lines, and in some cases, human small cell lung cancers (SCLC) contain DMs and HSRs. These findings prompted us to study the c-myc gene and its RNA expression in a series of human lung cancer cell lines. We now report amplification and expression of the c-myc oncogene in a system other than B-cell lymphomas, namely human lung cancer. Of 18 human lung cancer cell lines tested, 8 showed an amplified 12.5-kilobase (kb) EcoRI c-myc DNA band. Of particular interest are five SCLC lines with a high degree of c-myc DNA amplification (20-76-fold) and greatly increased levels of c-myc RNA. All five lines reside in the variant class of SCLC (SCLC-V) characterized by altered morphology, lack of expression of some SCLC-differentiated functions and more malignant behaviour than pure SCLC. Three of the five lines which have been karyotyped also contain DMs or HSRs. The finding of a greatly amplified c-myc gene in all cell lines of the SCLC-V class examined strongly suggests a role for the c-myc gene in the phenotypic conversion and malignant behaviour of human lung cancer. PMID:6646201

  10. NRF2/miR-140 signaling confers radioprotection to human lung fibroblasts.

    PubMed

    Duru, Nadire; Gernapudi, Ramkishore; Zhang, Yongshu; Yao, Yuan; Lo, Pang-Kuo; Wolfson, Benjamin; Zhou, Qun

    2015-12-01

    Breast and lung cancer patients who are treated with radiotherapy often have severe side effects, including radiation-induced lung damage and secondary cancers. Activation of the NRF2 pathway is a well-known mechanism that protects cells against radiation induced oxidative stress, but its role in radiation-induced lung damage is not well understood. Using human lung fibroblasts (HLFs) we found that ionizing radiation (IR) leads to BRCA1-dependent activation of NRF2 through the inhibition of KEAP1 function, promoting the nuclear accumulation of NRF2, and activating critical radioprotective mechanisms. We discovered that NRF2 directly binds to the miR-140 promoter and increases its expression in response to IR treatment. Gain and loss of function studies further showed the ability of miR-140 to regulate lung fibroblast self-renewal upon irradiation, a potential mechanism to contribute to the regulation of DNA repair. We verified our in vitro findings using primary lung fibroblast cultures from wild type and Nrf2 (KO) mice. Using these models we showed that IR induces overexpression of Brca1, Nrf2 and miR-140 in lung tissue after irradiation. These data reveal a novel radioprotective mechanism in which IR promotes NRF2 nuclear translocation and subsequent activation of miR-140 transcription in HLFs. PMID:26300493

  11. NRF2/miR-140 signaling confers radioprotection to human lung fibroblasts

    PubMed Central

    Duru, Nadire; Gernapudi, Ramkishore; Zhang, Yongshu; Yao, Yuan; Lo, Pang-Kuo; Wolfson, Benjamin; Zhou, Qun

    2016-01-01

    Breast and lung cancer patients who are treated with radiotherapy often have severe side effects, including radiation-induced lung damage and secondary cancers. Activation of the NRF2 pathway is a well-known mechanism that protects cells against radiation induced oxidative stress, but its role in radiation-induced lung damage is not well understood. Using human lung fibroblasts (HLFs) we found that ionizing radiation (IR) leads to BRCA1-dependent activation of NRF2 through the inhibition of KEAP1 function, promoting the nuclear accumulation of NRF2, and activating critical radioprotective mechanisms. We discovered that NRF2 directly binds to the miR-140 promoter and increases its expression in response to IR treatment. Gain and loss of function studies further showed the ability of miR-140 to regulate lung fibroblast self-renewal upon irradiation, a potential mechanism to contribute to the regulation of DNA repair. We verified our in vitro findings using primary lung fibroblast cultures from wild type and Nrf2 (KO) mice. Using these models we showed that IR induces overexpression of Brca1, Nrf2 and miR-140 in lung tissue after irradiation. These data reveal a novel radioprotective mechanism in which IR promotes NRF2 nuclear translocation and subsequent activation of miR-140 transcription in HLFs. PMID:26300493

  12. Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress.

    PubMed

    Lu, Jun; Chen, Jian; Xu, Nianjun; Wu, Jun; Kang, Yani; Shen, Tingting; Kong, Hualei; Ma, Chao; Cheng, Ming; Shao, Zhifeng; Xu, Ling; Zhao, Xiaodong

    2016-09-01

    Application of cisplatin (DDP) for treating lung cancer is restricted due to its toxicity and lung cancer's drug resistance. In this study, we examined the effect of Jinfukang (JFK), an effective herbal medicine against lung cancer, on DDP-induced cytotoxicity in lung cancer cells. Morphologically, we observed that JFK increases DDP-induced pro-apoptosis in A549 cells in a synergistic manner. Transcriptome profiling analysis indicated that the combination of JFK and DDP regulates genes involved in apoptosis-related signaling pathways. Moreover, we found that the combination of JFK and DDP produces synergistic pro-apoptosis effect in other lung cancer cell lines, such as NCI-H1975, NCI-H1650, and NCI-H2228. Particularly, we demonstrated that AIFM2 is activated by the combined treatment of JFK and DDP and partially mediates the synergistic pro-apoptosis effect. Collectively, this study not only offered the first evidence that JFK promotes DDP-induced cytotoxicity, and activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress, but also provided a novel insight for improving cytotoxicity by combining JFK with DDP to treat lung cancer cells. PMID:27392435

  13. Effect of TRAF6 on the biological behavior of human lung adenocarcinoma cell.

    PubMed

    Zhong, Lou; Cao, Fei; You, Qingsheng

    2013-02-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a unique adaptor protein of the tumor necrosis factor receptor-associated factor family that mediates both tumor necrosis factor receptor and interleukin-1 receptor/Toll-like receptor signaling. A recent study showed that TRAF6 played an important role in tumorigenesis and invasion through activation of nuclear factor kappa B (NF-κB). However, the biological role of TRAF6 remains unknown in lung cancer up to now. To address the expression of TRAF6 in lung cancer cells, four lung cancer cell lines (A549, HCC827, NCI-H292, and 95-D) and human bronchial epithelial cells were used to detect the expression of TRAF6 protein by western blotting. Results indicated that TRAF6 displayed an upregulation in human lung cancer cell lines. To investigate the effects of TRAF6 on the biological behavior of human lung adenocarcinoma cell, we generated human lung adenocarcinoma A549 cell line in which TRAF6 was depleted. The results showed that downregulation of TRAF6 could decrease cell viability, suppress cell proliferation and invasion, and promote cell apoptosis. At the same time, we explored the effects of TRAF6 on the expression of the following proteins: phosphor-NF-κB (p-p65), cyclin D1, caspase-3, and matrix metalloproteinase 9 (MMP9). Downregulation of TRAF6 could decrease the expression of p-p65, cyclin D1, and MMP9 and increase the expression of caspase-3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, and invasion of A549 cell line, as well as the inhibition of A549 cell apoptosis by the activation of NF-κB. To make a long story short, the overexpression of TRAF6 might be related to the tumorigenesis and invasion of lung cancer. PMID:23055197

  14. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model.

    PubMed

    Rivera-Burgos, Dinelia; Sarkar, Ujjal; Lever, Amanda R; Avram, Michael J; Coppeta, Jonathan R; Wishnok, John S; Borenstein, Jeffrey T; Tannenbaum, Steven R

    2016-02-01

    The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-β hydroxysteroid dehydrogenase 2 (11βHSD2) over 11βHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior. PMID:26586376

  15. Identification of a microsomal retinoic acid synthase as a microsomal cytochrome P-450-linked monooxygenase system.

    PubMed

    Tomita, S; Tsujita, M; Matsuo, Y; Yubisui, T; Ichikawa, Y

    1993-12-01

    1. To characterize an enzyme which metabolizes retinal in liver microsomes, several properties of the enzymatic reaction from retinal to retinoic acid were investigated using rabbit liver microsomes. 2. The maximum pH of the reaction in the liver microsomes was 7.6. 3. The Km and Vmax values for all-trans, 9-cis and 13-cis-retinals were determined. 4. The reaction proceeded in the presence of NADPH and molecular oxygen. 5. The incorporation of one atom of molecular oxygen into retinal was confirmed by using oxygen-18, showing that the reaction comprised monooxygenation, not dehydrogenation. 6. The monooxygenase activity was inhibited by carbon monoxide, phenylisocyanide and anti-NADPH-cytochrome P-450 reductase IgG, but not by anti-cytochrome b5 IgG. 7. The enzymatic activity inhibited by carbon monoxide was photoreversibly restored by light of a wavelength of around 450 nm. 8. The retinal-induced spectra of liver microsomes with three isomeric retinals were type I spectra. 9. The microsomal monooxygenase activity induced by phenobarbital or ethanol were more effective than that by 3-methylcholanthrene, clotrimazole or beta-naphthoflavone. 10. These results showed that the monooxygenase reaction from retinal to retinoic acid in liver microsomes is catalyzed by a cytochrome P-450-linked monooxygenase system. PMID:8138015

  16. Comparison of Airflows in Weibel-based and CT-based Human Lung Geometries

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Long; Hoffman, Eric A.

    2004-11-01

    The need for patient specific lung geometry for study of pulmonary air flow and drug delivery has been emphasized recently due to the complexity of individual airway tree geometry. The objective of this paper is to assess the notion of patient specific geometry by comparing airflows in an idealized Weibel-based lung model and two realistic human lung geometries. The Weibel-based model is composed of cylinders of differing diameters for various branching and has been used extensively for modeling airflow in lungs. Here a 4-generation Weibel model is considered. The realistic lung geometries are segmented and reconstructured from computerized tomography (CT) images as part of an effort to build a normative atlas (NIH HL-04368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. The custom developed Taylor-Galerkin finite element code, which solves the incompressible Navier-Stokes equations, is applied to simulate airflows in these lung geometries. The velocity wave form recorded from a mechanical ventilator is adopted as the inlet pulsatile boundary condition. At the outlets, both the pressure and outflow boundary conditions are applied and compared. The counter-rotating vortices are observed in the Weibel model during both the inspiratory and expiratory cycles, being consistent with previous studies. The flow structures in the CT-based models are much more complicated and counter-rotating vortices are only evident in some regions.

  17. GATA2 is epigenetically repressed in human and mouse lung tumors and is not requisite for survival of KRAS mutant lung cancer

    PubMed Central

    Tessema, Mathewos; Yingling, Christin M.; Snider, Amanda M.; Do, Kieu; Juri, Daniel E.; Picchi, Maria A.; Zhang, Xiequn; Liu, Yushi; Leng, Shuguang; Tellez, Carmen S.; Belinsky, Steven A.

    2014-01-01

    Introduction GATA2 was recently described as a critical survival factor and therapeutic target for KRAS mutant non-small cell lung cancer (NSCLC). However, whether this role is affected by epigenetic repression of GATA2 in lung cancer is unclear. Methods GATA2 expression and promoter CpG island methylation were evaluated using human and mouse NSCLC cell lines and tumor-normal pairs. In vitro assays were used to study GATA2 repression on cell survival and during tobacco carcinogen-induced transformation. Results GATA2 expression in KRAS wild-type (n=15) and mutant (n=10) NSCLC cell lines and primary lung tumors (n=24) was significantly lower, 1.3–33.6-fold (p=2.2×10−9), compared to corresponding normal lung. GATA2 promoter was unmethylated in normal lung (0/10) but frequently methylated in lung tumors (96%, 159/165) and NSCLC cell lines (97%, 30/31). This highly prevalent aberrant methylation was independently validated using TCGA data for 369 NSCLC tumor-normal pairs. In vitro studies using an established carcinogen-induced pre-malignancy model revealed that GATA2 expression was initially repressed by chromatin remodeling followed by cytosine methylation during transformation. Similarly, expression of Gata2 in NNK-induced mouse lung tumors (n=6) and cell lines (n=5) was 5-fold and 100-fold lower, respectively, than normal mouse lung. Finally, siRNA-mediated knockdown of GATA2 in KRAS mutant [human (n=4) and murine (n=5)] and wild-type [human (n=4)] NSCLC cell lines showed that further reduction of expression (up to 95%) does not induce cell death. Conclusion GATA2 is epigenetically repressed in human and mouse lung tumors and its further inhibition is not a valid therapeutic strategy for KRAS mutant lung cancer. PMID:24807155

  18. The Audible Human Project: Modeling Sound Transmission in the Lungs and Torso

    NASA Astrophysics Data System (ADS)

    Dai, Zoujun

    Auscultation has been used qualitatively by physicians for hundreds of years to aid in the monitoring and diagnosis of pulmonary diseases. Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable changes in lung sound production and transmission. Numerous acoustic measurements have revealed the differences of breath sounds and transmitted sounds in the lung under normal and pathological conditions. Compared to the extensive cataloging of lung sound measurements, the mechanism of sound transmission in the pulmonary system and how it changes with alterations of lung structural and material properties has received less attention. A better understanding of sound transmission and how it is altered by injury and disease might improve interpretation of lung sound measurements, including new lung imaging modalities that are based on an array measurement of the acoustic field on the torso surface via contact sensors or are based on a 3-dimensional measurement of the acoustic field throughout the lungs and torso using magnetic resonance elastography. A long-term goal of the Audible Human Project (AHP ) is to develop a computational acoustic model that would accurately simulate generation, transmission and noninvasive measurement of sound and vibration within the pulmonary system and torso caused by both internal (e.g. respiratory function) and external (e.g. palpation) sources. The goals of this dissertation research, fitting within the scope of the AHP, are to develop specific improved theoretical understandings, computational algorithms and experimental methods aimed at transmission and measurement. The research objectives undertaken in this dissertation are as follows. (1) Improve theoretical modeling and experimental identification of viscoelasticity in soft biological tissues. (2) Develop a poroviscoelastic model for lung tissue vibroacoustics. (3) Improve lung airway acoustics modeling and its

  19. Effects of theanine on growth of human lung cancer and leukemia cells as well as migration and invasion of human lung cancer cells.

    PubMed

    Liu, Qian; Duan, Huiying; Luan, Jinling; Yagasaki, Kazumi; Zhang, Guoying

    2009-04-01

    The aim of this study is to investigate the effects of theanine, a tea characteristic amino acid, on human lung cancer and leukemia cells. In the present study, we have demonstrated that theanine suppressed the in vitro and ex vivo growth of human non-small cell lung cancer A549 and leukemia K562 cell lines in dose- and time-dependant manners. In addition, theanine displayed the inhibitory effect on the migration of A549 cells. More importantly, theanine enhanced the anticancer activity of anticancer agents such as trichostatin A (the histone deacetylase inhibitor), berbamine and norcantharidin (the anticancer drugs in China) by strongly reducing the viability and/or migration rate in A549 cells. In addition, theanine significantly suppressed A549 cell invasion. Suppression of A549 cell migration may be one of the important mechanisms of action of theanine against the A549 cell invasion. Our present results suggest that theanine may have the wide therapeutic and/or adjuvant therapeutic application in the treatment of human lung cancer and leukemia. PMID:19760127

  20. The lung mycobiome: an emerging field of the human respiratory microbiome

    PubMed Central

    Nguyen, Linh D. N.; Viscogliosi, Eric; Delhaes, Laurence

    2015-01-01

    The lung microbiome, which is believed to be stable or at least transient in healthy people, is now considered as a poly-microorganism component contributing to disease pathogenesis. Most research studies on the respiratory microbiome have focused on bacteria and their impact on lung health, but there is evidence that other non-bacterial organisms, comprising the viruses (virome) and fungi (mycobiome), are also likely to play an important role in healthy people as well as in patients. In the last few years, the lung mycobiome (previously named the fungal microbiota or microbiome) has drawn closer attention. There is growing evidence that the lung mycobiome has a significant impact on clinical outcome of chronic respiratory diseases (CRD) such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and bronchiectasis. Thanks to advances in culture independent methods, especially next generation sequencing, a number of fungi not detected by culture methods have been molecularly identified in human lungs. It has been shown that the structure and diversity of the lung mycobiome vary in different populations (healthy and different diseased individuals) which could play a role in CRD. Moreover, the link between lung mycobiome and different biomes of other body sites, especially the gut, has also been unraveled. By interacting with the bacteriome and/or virome, the respiratory mycobiome appears to be a cofactor in inflammation and in the host immune response, and therefore may contribute to the decline of the lung function and the disease progression. In this review, we report the recent limited explorations of the human respiratory mycobiome, and discuss the mycobiome’s connections with other local microbial communities, as well as the relationships with the different biomes of other body sites. These studies suggest several outlooks for this understudied emerging field, which will certainly call for a renewal of our understanding of pulmonary diseases. PMID

  1. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    SciTech Connect

    Smith, Leah J.; Holmes, Amie L.; Kandpal, Sanjeev Kumar; Mason, Michael D.; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  2. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells.

    PubMed

    Martino, Julieta; Holmes, Amie L; Xie, Hong; Wise, Sandra S; Wise, John Pierce

    2015-10-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification. PMID:26293554

  3. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles

    PubMed Central

    Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter–driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter’s tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP’s gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter–driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk–carrying JCPyV VLPs. In mice injected with pSPB-tk–carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma. PMID:27322500

  4. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    PubMed

    Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma. PMID:27322500

  5. Application of peptide displaying phage as a novel diagnostic probe for human lung adenocarcinoma.

    PubMed

    Lee, Kyoung Jin; Lee, Jae Hee; Chung, Hye Kyung; Ju, Eun Jin; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung

    2016-04-01

    Despite the increasing lung cancer-associated death rate, its therapy has been constrained by impasse of early diagnosis. To apply non-invasive imaging for potential cancer diagnosis system, we screened human lung adenocarcinoma-specific peptides using the phage display technique. For in vivo phage-displayed peptide screening, M13 phage library displaying 2.9 × 10(9) random peptides was injected through tail vein to lung adenocarcinoma cell-derived xenograft mouse model. Through four rounds of biopanning, a specific peptide sequence (CAKATCPAC) was screened out with the highest frequency and was named as Pep-1, and it was analyzed for its targeting ability as an imaging probe by in vitro competitive assay to test its cell-binding ability, immunohistochemical detection in the tumor tissue, and in vivo NIR fluorescent optical imaging. The specificity of Pep-1 toward lung cancer was ensured by in vivo imaging using xenograft animals of various cancer types. The results suggest that Pep-1 is a promising diagnostic lead molecule for rapid and accurate detection of human lung adenocarcinoma. In addition, it was found that the targeting ability was much enhanced by ionizing radiation in both cell-derived and patient-derived lung adenocarcinoma xenografts, suggesting the possibility of applying Pep-1 for prognostic diagnosis after radiotherapy. Taken together, this study suggests that Pep-1 possesses a specific-targeting ability for human lung adenocarcinoma and that this peptide could be directly used as a clinically applicable imaging probe. PMID:26759016

  6. Helium-3 Diffusion MR Imaging of the Human Lung over Multiple Time Scales

    PubMed Central

    Mugler, John P.; Wang, Chengbo; Miller, G. Wilson; Cates, Gordon D.; Mata, Jaime F.; Brookeman, James R.; de Lange, Eduard E.; Altes, Talissa A.

    2008-01-01

    Rationale and Objectives Diffusion MRI with hyperpolarized 3He gas is a powerful technique for probing the characteristics of the lung microstructure. A key parameter for this technique is the diffusion time, which is the period during which the atoms are allowed to diffuse within the lung for measurement of the signal attenuation. The relationship between diffusion time and the length scales that can be explored is discussed, and representative, preliminary results are presented from ongoing studies of the human lung for diffusion times ranging from milliseconds to several seconds. Materials and Methods 3He diffusion MR imaging of the human lung was performed on a 1.5T Siemens Sonata scanner. Using gradient-echo-based and stimulated-echo-based techniques for short and medium-to-long diffusion times, respectively, measurements were performed for times ranging from 2 ms to 6.5 s in two healthy subjects, a subject with sub-clinical chronic obstructive pulmonary disease and a subject with bronchopulmonary dysplasia. Results In healthy subjects, the apparent diffusion coefficient decreased by about 10-fold, from approximately 0.2 to 0.02 cm2/s, as the diffusion time increased from approximately 1 ms to 1 s. Results in subjects with disease suggest that measurements made at diffusion times substantially longer than 1 ms may provide improved sensitivity for detecting certain pathological changes in the lung microstructure. Conclusion With appropriately designed pulse sequences it is possible to explore the diffusion of hyperpolarized 3He in the human lung over more than a 1000-fold variation of the diffusion time. Such measurements provide a new opportunity for exploring and characterizing the microstructure of the healthy and diseased lung. PMID:18486006

  7. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody.

    PubMed

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L; Ornitz, David M

    2016-05-01

    Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  8. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    PubMed Central

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L.; Ornitz, David M.

    2016-01-01

    ABSTRACT Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  9. Sensitivity of NCI-H292 human lung mucoepidermoid cells for respiratory and other human viruses.

    PubMed Central

    Hierholzer, J C; Castells, E; Banks, G G; Bryan, J A; McEwen, C T

    1993-01-01

    NCI-H292 mucoepidermoid carcinoma cells from human lungs were shown in an earlier report to be a fully adequate substitute for primary rhesus monkey kidney (MK) cells for the isolation and propagation of the human paramyxoviruses. Although sensitivity for ortho- and paramyxoviruses was the principal reason for using MK cells, the cells were also sensitive to many other viruses, which constituted another important value of MK cells. That MK cells supported the initial isolation and growth of so many respiratory viruses made it a mandatory cell type for any clinical laboratory. We therefore felt it was imperative to evaluate the virus spectrum of NCI-H292 cells, which are being used as a substitute for MK cells in many laboratories. In the present report, we show that NCI-H292 cells are sensitive for vaccinia virus, herpes simplex virus, adenoviruses, BK polyomavirus, reoviruses, measles virus, respiratory syncytial virus, some strains of influenza virus type A, most enteroviruses, and rhinoviruses, in addition to the parainfluenza and mumps viruses originally reported. Furthermore, these viruses replicate in NCI-H292 cells to the same virus and antigen titers and at the same speed of replication as they do in their usually preferred cells. The NCI-H292 cells are therefore an excellent substitute for MK cells in terms of laboratory safety, ease of availability, paramyxovirus isolation, and broad virus spectrum but cannot substitute for MK cells for the isolation of influenza viruses. Images PMID:8314992

  10. Comparative Microscopic Study of Human and Rat Lungs After Overexposure to Welding Fume

    PubMed Central

    ANTONINI, JAMES M.; ROBERTS, JENNY R.; SCHWEGLER-BERRY, DIANE; MERCER, ROBERT R.

    2015-01-01

    particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable. PMID:23798603

  11. Comparative microscopic study of human and rat lungs after overexposure to welding fume.

    PubMed

    Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R

    2013-11-01

    particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable. PMID:23798603

  12. Identification of protein components of the microsomal glucose 6-phosphate transporter by photoaffinity labelling.

    PubMed Central

    Kramer, W; Burger, H J; Arion, W J; Corsiero, D; Girbig, F; Weyland, C; Hemmerle, H; Petry, S; Habermann, P; Herling, A

    1999-01-01

    The glucose-6-phosphatase system catalyses the terminal step of hepatic glucose production from both gluconeogenesis and glycogenolysis and is thus a key regulatory factor of blood glucose homoeostasis. To identify the glucose 6-phosphate transporter T1, we have performed photoaffinity labelling of human and rat liver microsomes by using the specific photoreactive glucose-6-phosphate translocase inhibitors S 0957 and S 1743. Membrane proteins of molecular mass 70, 55, 33 and 31 kDa were labelled in human microsomes by [3H]S 0957, whereas in rat liver microsomes bands at 95, 70, 57, 54, 50, 41, 33 and 31 kDa were detectable. The photoprobe [3H]S 1743 led to the predominant labelling of a 57 kDa and a 50 kDa protein in the rat. Stripping of microsomes with 0.3% CHAPS retains the specific binding of T1 inhibitors; photoaffinity labelling of such CHAPS-treated microsomes resulted in the labelling of membrane proteins of molecular mass 55, 33 and 31 kDa in human liver and 50, 33 and 31 kDa in rat liver. Photoaffinity labelling of human liver tissue samples from a healthy individual and from liver samples of patients with a diagnosed glycogen-storage disease type 1b (GSD type 1b; von Gierke's disease) revealed the absence of the 55 kDa protein from one of the patients with GSD type 1. These findings support the identity of the glucose 6-phosphate transporter T1, with endoplasmic reticulum protein of molecular mass 50 kDa in rat liver and 55 kDa in human liver. PMID:10215602

  13. Identification of protein components of the microsomal glucose 6-phosphate transporter by photoaffinity labelling.

    PubMed

    Kramer, W; Burger, H J; Arion, W J; Corsiero, D; Girbig, F; Weyland, C; Hemmerle, H; Petry, S; Habermann, P; Herling, A

    1999-05-01

    The glucose-6-phosphatase system catalyses the terminal step of hepatic glucose production from both gluconeogenesis and glycogenolysis and is thus a key regulatory factor of blood glucose homoeostasis. To identify the glucose 6-phosphate transporter T1, we have performed photoaffinity labelling of human and rat liver microsomes by using the specific photoreactive glucose-6-phosphate translocase inhibitors S 0957 and S 1743. Membrane proteins of molecular mass 70, 55, 33 and 31 kDa were labelled in human microsomes by [3H]S 0957, whereas in rat liver microsomes bands at 95, 70, 57, 54, 50, 41, 33 and 31 kDa were detectable. The photoprobe [3H]S 1743 led to the predominant labelling of a 57 kDa and a 50 kDa protein in the rat. Stripping of microsomes with 0.3% CHAPS retains the specific binding of T1 inhibitors; photoaffinity labelling of such CHAPS-treated microsomes resulted in the labelling of membrane proteins of molecular mass 55, 33 and 31 kDa in human liver and 50, 33 and 31 kDa in rat liver. Photoaffinity labelling of human liver tissue samples from a healthy individual and from liver samples of patients with a diagnosed glycogen-storage disease type 1b (GSD type 1b; von Gierke's disease) revealed the absence of the 55 kDa protein from one of the patients with GSD type 1. These findings support the identity of the glucose 6-phosphate transporter T1, with endoplasmic reticulum protein of molecular mass 50 kDa in rat liver and 55 kDa in human liver. PMID:10215602

  14. Sulfation of chlorotyrosine and nitrotyrosine by human lung endothelial and epithelial cells: Role of the human SULT1A3

    SciTech Connect

    Yasuda, Shin; Yasuda, Tomoko; Liu, Ming-Yih; Shetty, Sreerama; Idell, Steven; Boggaram, Vijayakumar; Suiko, Masahito; Sakakibara, Yoichi; Fu Jian; Liu, Ming-Cheh

    2011-03-01

    During inflammation, potent reactive oxidants formed may cause chlorination and nitration of both free and protein-bound tyrosine. In addition to serving as biomarkers of inflammation-mediated oxidative stress, elevated levels of chlorotyrosine and nitrotyrosine have been linked to the pathogenesis of lung and vascular disorders. The current study was designed to investigate whether the lung cells are equipped with mechanisms for counteracting these tyrosine derivatives. By metabolic labeling, chlorotyrosine O-[{sup 35}S]sulfate and nitrotyrosine O-[{sup 35}S]sulfate were found to be generated and released into the labeling media of human lung endothelial and epithelial cells labeled with [{sup 35}S]sulfate in the presence of added chlorotyrosine and nitrotyrosine. Enzymatic assays using the eleven known human cytosolic sulfotransferases (SULTs) revealed SULT1A3 as the enzyme responsible for catalyzing the sulfation of chlorotyrosine and nitrotyrosine. Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated the expression of SULT1A3 in the lung endothelial and epithelial cells used in this study. Kinetic constants of the sulfation of chlorotyrosine and nitrotyrosine by SULT1A3 were determined. Collectively, these results suggest that sulfation by SULT1A3 in lung endothelial and epithelial cells may play a role in the inactivation and/or disposal of excess chlorotyrosine and nitrotyrosine generated during inflammation.

  15. Mechanism of action of ozone on the human lung

    SciTech Connect

    Hazucha, M.J.; Bates, D.V.; Bromberg, P.A. )

    1989-10-01

    Fourteen healthy normal volunteers were randomly exposed to air and 0.5 ppm of ozone (O3) in a controlled exposure chamber for a 2-h period during which 15 min of treadmill exercise sufficient to produce a ventilation of approximately 40 l/min was alternated with 15-min rest periods. Before testing an esophageal balloon was inserted, and lung volumes, flow rates, maximal inspiratory (at residual volume and functional residual capacity) and expiratory (at total lung capacity and functional residual capacity) mouth pressures, and pulmonary mechanics (static and dynamic compliance and airway resistance) were measured before and immediately after the exposure period. After the postexposure measurements had been completed, the subjects inhaled an aerosol of 20% lidocaine until response to citric acid aerosol inhalation was abolished. All of the measurements were immediately repeated. We found that the O3 exposure (1) induced a significant mean decrement of 17.8% in vital capacity (this change was the result of a marked fall in inspiratory capacity without significant increase in residual volume), (2) significantly increased mean airway resistance and specific airway resistance but did not change dynamic or static pulmonary compliance or viscous or elastic work, (3) significantly reduced maximal transpulmonary pressure (by 19%) but produced no changes in inspiratory or expiratory maximal mouth pressures, and (4) significantly increased respiratory rate (in 5 subjects by more than 6 breaths/min) and decreased tidal volume.

  16. Arachidonic acid pathway activates multidrug resistance related protein in cultured human lung cells.

    PubMed

    Torky, Abdelrahman; Raemisch, Anja; Glahn, Felix; Foth, Heidi

    2008-05-01

    Primary cultures of human lung cells can serve as a model system to study the mechanisms underlying the effects of irritants in air and to get a deeper insight into the (patho)physiological roles of the xenobiotic detoxification systems. For 99 human lung cancer cases the culture duration for bronchial epithelium and peripheral lung cells (PLC) are given in term of generations and weeks. Using this system, we investigated whether and how prostaglandins (PG) modify multidrug resistance related protein (MRP) function in normal human lung cells. PGF2alpha had no effect on MRP function, whereas PGE2 induced MRP activity in cultured NHBECs. The transport activity study of MRP in NHBEC, PLC, and A549 under the effect of exogenously supplied PGF2alpha (10 microM, 1 day) using single cell fluorimetry revealed no alteration in transport activity of MRP. PG concentrations were within the physiological range. COX I and II inhibitors indomethacin (5, 10 microM) and celecoxib (5, 10 microM) could substantially decrease the transport activity of MRP in NHBEC, PLC, and A549 in 1- and 4-day trials. Prostaglandin E2 did not change cadmium-induced caspase 3/7 activation in NHBECs and had no own effect on caspase 3/7 activity. Cadmium chloride (5, 10 microM) was an effective inducer of caspase 3/7 activation in NHBECs with a fivefold and ninefold rise of activity. In primary human lung cells arachidonic acid activates MRP transport function only in primary epithelial lung cells by prostaglandin E2 but not by F2alpha mediated pathways and this effect needs some time to develop. PMID:17943274

  17. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    PubMed Central

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Olive Ngalame, Ntube N.; Waalkes, Michael P.

    2013-01-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell’s ability to adapt to chronic cadmium exposure. PMID:23811327

  18. Lentivirus-mediated silencing of SCIN inhibits proliferation of human lung carcinoma cells.

    PubMed

    Liu, Hongxu; Shi, Daiwang; Liu, Tieqin; Yu, Zhanwu; Zhou, Chuanjiang

    2015-01-01

    SCIN (scinderin) is a calcium-dependent actin severing and capping protein. Homologue in zebrafish has been found to be related with cell death. In the present study, we found that SCIN is highly expressed in human lung cancer specimens. However, the role of SCIN in lung cancer has not yet been determined. To investigate the function of SCIN in lung carcinoma cells, we took advantage of lentivirus-mediated RNA interference (RNAi) to knockdown SCIN expression in two lung carcinoma cell lines A549 and H1299. Silencing of SCIN significantly inhibited the proliferation and colony formation ability of both cell lines in vitro. Moreover, flow cytometry analysis showed that knockdown of SCIN led to G0/G1 phase cell cycle arrest as well as an excess accumulation of cells in the sub-G1 phase. Furthermore, depletion of SCIN resulted in a significant increase in Cyclin B1, p21 and PARP expression, and a little decrease in Cyclin D1 expression. These results suggest that SCIN plays an important role in lung carcinoma cell proliferation, and lentivirus-mediated silencing of SCIN might be a potential therapeutic approach for the treatment of lung cancer. PMID:25303873

  19. Nicotine prevents the apoptosis induced by menadione in human lung cancer cells

    SciTech Connect

    Zhang Tao; Lu Heng; Shang Xuan; Tian Yihao; Zheng Congyi; Wang Shiwen; Cheng Hanhua . E-mail: hhcheng@whu.edu.cn; Zhou Rongjia . E-mail: rjzhou@whu.edu.cn

    2006-04-14

    Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role of anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-{kappa}B was up-regulated. Interference analysis of NF-{kappa}B in A549 cells showed that knock down of NF-{kappa}B resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-{kappa}B inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer.

  20. The association between human papillomavirus infection and female lung cancer: A population-based cohort study.

    PubMed

    Lin, Frank Cheau-Feng; Huang, Jing-Yang; Tsai, Stella Ching-Shao; Nfor, Oswald Ndi; Chou, Ming-Chih; Wu, Ming-Fang; Lee, Chun-Te; Jan, Cheng-Feng; Liaw, Yung-Po

    2016-06-01

    Lung cancer is the leading cause of cancer deaths among Taiwanese women. Human papillomavirus (HPV) has been detected in lung cancer tissues. The aim of this study was to investigate the association between HPV infection and lung cancer among the Taiwanese women. The analytical data were collected from the longitudinal health insurance databases (LHID 2005 and 2010) of the National Health Insurance Research Database (NHIRD). The study participants were 30 years and older and included 24,162 individuals who were identified with HPV infection from 2001 to 2004 and 1,026,986 uninfected individuals. Lung cancer incidence among infected and uninfected individuals was compared using the univariate and multivariate regression models. Among the total participants, 24,162 individuals were diagnosed with HPV. After adjusting for age, gender, low income, residential area, and comorbidity, the risk of lung cancer was higher in women (hazard ratio [HR] 1.263, 95% CI 1.015-1.571), while all cancer risks were high in both men and women with corresponding hazard ratios (HR) of 1.161 (95% CI 1.083-1.245) and HR 1.240 (95% CI 1.154-1.331), respectively. This study showed a significant increase in lung cancer risk among Taiwanese women who were exposed to HPV infection. PMID:27281096

  1. Metabolism of the carcinogen alpha-asarone in liver microsomes.

    PubMed

    Cartus, Alexander T; Schrenk, Dieter

    2016-01-01

    Alpha-asarone (1) is a naturally occurring phenylpropene found in several plants, e.g. Acorus calamus. 1-containing plant materials and essential oils thereof are used for flavoring foods and in many phytopharmaceuticals. 1 has been claimed to have positive pharmacological effects, however, it is carcinogenic in male mice (liver) and probably genotoxic. Since the metabolic pathways of 1 have not been investigated and its carcinogenic mode of action is unknown, we investigated the metabolism of 1 in liver microsomes of rat, bovine, porcine, and human origin using HPLC-DAD and LC-ESI-MS/MS and derived kinetic data on the metabolite formation. The main metabolic pathway was the side-chain hydroxylation leading to (E)-3'-hydroxyasarone (2). Epoxidation of 1 presumably led to (E)-asarone-1',2'-epoxide (4) which instantly hydrolyzed to form erythro- and threo-configured diols (5b+5a). As a minor reaction O-demethylation of 1 was observed. The metabolite formation showed little species-specific differences with the exception of porcine liver microsomes for which the formation of diols 5b+5a exceeded the formation of alcohol 2. The kinetic parameters imply a dependence of the pattern of metabolite formation from substrate concentration. On the basis of our results and earlier findings we hypothesize the genotoxic epoxide 4 being the ultimate carcinogen metabolically formed from 1. PMID:26678343

  2. TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT

    EPA Science Inventory

    TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT. J Gallagher1, J Inmon1, S Schlaegle2, A Levine2, T Rogers3, J Scott1, F Green4, M Schenker5, K Pinkerton5 1NHEERL, US-EPA, RTP, NC, USA; 2RJ Lee Group Inc, Monroeville, Pa, USA; ...

  3. Diesel Exhaust Modulates Ozone-induced Lung Function Decrements in Healthy Human Volunteers

    EPA Science Inventory

    The potential effects of combinations of dilute whole diesel exhaust (DE) and ozone (03), each a common component of ambient airborne pollutant mixtures, on lung function were examined. Healthy young human volunteers were exposed for 2 hr to pollutants while exercising (~50 L/min...

  4. Effects of combinations of diesel exhaust and ozone exposure on lung function in human volunteers.

    EPA Science Inventory

    Ozone (03) exposure induces changes in human lung function, typically seen as a decrease in forced expiratory volume in one sec (FEV1) and forced vital capacity (FVC). Because people are usually exposed to other ambient air pollutants simultaneously with 03, there may be interact...

  5. PREDICTIONS OF OZONE ABSORPTION IN HUMAN LUNGS FROM NEWBORN TO ADULT

    EPA Science Inventory

    Dosimetry models for gases mainly have been used to predict absorption in adult humans and laboratory animals. he lack of lower respiratory tract (LRT) lung models for children has discouraged the application of theoretical gaseous dosimetry to this important subpopulation. o fil...

  6. OZONE-INDUCED RESPIRATORY SYMPTOMS AND LUNG FUNCTION DECREMENTS IN HUMANS: EXPOSURE-RESPONSE MODELS

    EPA Science Inventory

    Short duration exposure to ozone (<8 hr) is known to result in lung function decrements and respiratory symptoms in humans. The magnitudes of these responses are functions of ozone concentration (C), activity level measured by minute ventilation (Ve), duration of exposure (T), a...

  7. Association between human papillomavirus and EGFR mutations in advanced lung adenocarcinoma

    PubMed Central

    Li, Ming; Deng, Fang; Qian, Li-Ting; Meng, Shui-Ping; Zhang, Yang; Shan, Wu-Lin; Zhang, Xiao-Lei; Wang, Bao-Long

    2016-01-01

    Previous studies have demonstrated an association between human papillomavirus (HPV) and mutations in the epidermal growth factor receptor (EGFR) gene in lung cancer patients; however, few studies have investigated this association in advanced lung adenocarcinoma patients undergoing gefitinib treatment. The present study investigated the association between HPV and EGFR mutations in advanced lung adenocarcinoma patients. A total of 95 advanced lung adenocarcinoma patients were enrolled in the study. The HPV infection status and presence of EGFR mutations in tumor tissue was evaluated. Patient clinical characteristics were also determined and compared with HPV infection and EGFR mutation status to analyze their impact on progression-free survival. HPV DNA was identified in 27/95 (28.4%) lung adenocarcinoma tumors and was most common in patients with lymph node metastasis (P=0.016). A total of 44/95 (46.3%) cases exhibited EGFR mutations, which were predominantly observed in female patients and non-smokers. The presence of HPV DNA was significantly associated with EGFR mutations (P=0.012) and multivariate analysis also revealed that HPV DNA was significantly associated with EGFR mutations (odds ratio=3.971) in advanced lung adenocarcinoma. Patients with both HPV infections and EGFR mutations exhibit a marked decrease in the risk of lung cancer progression when compared with those without HPV infection or EGFR mutations (adjusted HR=0.640; 95% confidence interval: 0.488–0.840; P=0.001). HPV infection was significantly associated with EGFR mutations in advanced lung adenocarcinoma patients. Furthermore, patients with HPV infections exhibited the longest progression-free survival times, which may be due to good response to tyrosine kinase inhibitor- or platinum-based-adjuvant therapy in these patients. Patients with EGFR mutations exhibited a better prognosis when compared with those exhibiting wild-type EGFR, regardless of HPV status. PMID:27602120

  8. Anti-tumor efficacy of paclitaxel against human lung cancer xenografts.

    PubMed

    Yamori, T; Sato, S; Chikazawa, H; Kadota, T

    1997-12-01

    We examined paclitaxel for anti-tumor activity against human lung cancer xenografts in nude mice and compared its efficacy with that of cisplatin, currently a key drug for lung cancer chemotherapy. Five non-small cell lung cancers (A549, NCI-H23, NCI-H226, NCI-H460 and NCI-H522) and 2 small cell lung cancers (DMS114 and DMS273) were chosen for this study, since these cell lines have been well characterized as regards in vitro and in vivo drug sensitivity. These cells were exposed to graded concentrations of paclitaxel (0.1 to 1000 nM) for 48 h. The 50% growth-inhibitory concentrations (GI50) for the cell lines ranged from 4 to 24 nM, which are much lower than the achievable peak plasma concentration of paclitaxel. In the in vivo study, 4 cell lines (A549, NCI-H23, NCI-H460, DMS-273) were grown as subcutaneous tumors xenografts in nude mice. Paclitaxel was given intravenously as consecutive daily injections for 5 days at the doses of 24 and 12 mg/kg/day. Against every xenograft, paclitaxel produced a statistically significant tumor growth inhibition compared to the saline control. Paclitaxel at 24 mg/kg/day was more effective than cisplatin at 3 mg/kg/day with the same dosing schedule as above, although the toxicity of paclitaxel was similar to or rather lower than that of cisplatin, in terms of body weight loss. In addition, paclitaxel showed potent activity against 2 other lung cancer xenografts (NCI-H226 and DMS114). Therefore, paclitaxel showed more effective, wider-spectrum anti-tumor activity than cisplatin in this panel of 6 lung cancer xenografts. These findings support the potential utility of paclitaxel in the treatment of human lung cancer. PMID:9473739

  9. Differences in Redox Regulatory Systems in Human Lung and Liver Tumors Suggest Different Avenues for Therapy

    PubMed Central

    Tobe, Ryuta; Carlson, Bradley A.; Tsuji, Petra A.; Lee, Byeong Jae; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2015-01-01

    A common characteristic of many cancer cells is that they suffer from oxidative stress. They, therefore, require effective redox regulatory systems to combat the higher levels of reactive oxygen species that accompany accelerated growth compared to the normal cells of origin. An elevated dependence on these systems in cancers suggests that targeting these systems may provide an avenue for retarding the malignancy process. Herein, we examined the redox regulatory systems in human liver and lung cancers by comparing human lung adenocarcinoma and liver carcinoma to their respective surrounding normal tissues. Significant differences were found in the two major redox systems, the thioredoxin and glutathione systems. Thioredoxin reductase 1 levels were elevated in both malignancies, but thioredoxin was highly upregulated in lung tumor and only slightly upregulated in liver tumor, while peroxiredoxin 1 was highly elevated in lung tumor, but downregulated in liver tumor. There were also major differences within the glutathione system between the malignancies and their normal tissues. The data suggest a greater dependence of liver on either the thioredoxin or glutathione system to drive the malignancy, while lung cancer appeared to depend primarily on the thioredoxin system. PMID:26569310

  10. Constitutive expression of human keratin 14 gene in mouse lung induces premalignant lesions and squamous differentiation.

    PubMed

    Dakir, E L Habib; Feigenbaum, Lionel; Linnoila, R Ilona

    2008-12-01

    Squamous cell carcinoma accounts for 20% of all human lung cancers and is strongly linked to cigarette smoking. It develops through premalignant changes that are characterized by high levels of keratin 14 (K14) expression in the airway epithelium and evolve through basal cell hyperplasia, squamous metaplasia and dysplasia to carcinoma in situ and invasive carcinoma. In order to explore the impact of K14 in the pulmonary epithelium that normally lacks both squamous differentiation and K14 expression, human keratin 14 gene hK14 was constitutively expressed in mouse airway progenitor cells using a mouse Clara cell specific 10 kDa protein (CC10) promoter. While the lungs of CC10-hK14 transgenic mice developed normally, we detected increased expression of K14 and the molecular markers of squamous differentiation program such as involucrin, loricrin, small proline-rich protein 1A, transglutaminase 1 and cholesterol sulfotransferase 2B1. In contrast, wild-type lungs were negative. Aging CC10-hK14 mice revealed multifocal airway cell hyperplasia, occasional squamous metaplasia and their lung tumors displayed evidence for multidirectional differentiation. We conclude that constitutive expression of hK14 initiates squamous differentiation program in the mouse lung, but fails to promote squamous maturation. Our study provides a novel model for assessing the mechanisms of premalignant lesions in vivo by modifying differentiation and proliferation of airway progenitor cells. PMID:18701433

  11. Regional pulmonary perfusion following human heart-lung transplantation

    SciTech Connect

    Lisbona, R.; Hakim, T.S.; Dean, G.W.; Langleben, D.; Guerraty, A.; Levy, R.D. )

    1989-08-01

    Ventilation and perfusion scans were obtained in six subjects who had undergone heart-lung transplantation with consequent denervation of the cardiopulmonary axis. Two of the subjects had developed obliterative bronchiolitis, which is believed to be a form of chronic rejection. Their pulmonary function tests demonstrated airflow obstruction and their scintigraphic studies were abnormal. In the remaining four subjects without obstructive airways disease, ventilation and planar perfusion scans were normal. Single photon emission computed tomography imaging of pulmonary perfusion in these patients revealed a layered distribution of blood flow indistinguishable from that of normal individuals. It is concluded that neurogenic mechanisms have little influence on the pattern of local pulmonary blood flow at rest.

  12. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  13. Regional deposition of particles in human lung after induced bronchoconstriction.

    PubMed

    Svartengren, M; Philipson, K; Linnman, L; Camner, P

    1986-01-01

    The percentage 24-hr lung retention (Ret24), a measure of penetration to the aveoli, of 4 micron monodispersed Teflon particles, aerodynamic diameter 6 micron, was studied in 8 healthy nonsmokers. The particles were inhaled at 0.2 1/sec with maximally deep breaths. Bronchoconstriction was induced by inhalation of a methacholinebromide aerosol for one exposure before and for one exposure after inhalation of the Teflon particles. Airway resistance (Raw) was measured using a whole body pletysmograph before and after the induction of bronchoconstriction and increased on an average by a factor 2-3. Ret24 was significantly lower when the Teflon particles were inhaled during bronchoconstriction than when bronchoconstriction was induced after inhalation of the Teflon particles, 26 +/- 12% and 48 +/- 6% (mean +/- SD), respectively. These experimental data agree fairly well with data on deposition due to impaction and sedimentation using a lung model where the diameters of the airways were varied so that an increase in airway resistance occurs similar to that produced in our experimental subjects. However, the experimental data tended to be lower than the theoretical ones when the particles were inhaled during the induced bronchoconstriction. In this study, where the mucociliary transport system was stimulated by methacholinebromide, the percentage 3-hr retention (Ret3) was highly correlated with Ret24, r = 0.97, i.e., Ret3 can be used instead of the Ret24. This implies that radionuclides with shorter half-lives which give lower radiation doses, can be used, and that subjects can be studied within shorter periods of time. PMID:3516667

  14. Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase.

    PubMed Central

    Sampson, P M; Rochester, C L; Freundlich, B; Elias, J A

    1992-01-01

    We characterized the mechanisms by which recombinant (r) tumor necrosis factor (TNF), IFN-gamma, and IL-1, alone and in combination, regulate human lung fibroblast hyaluronic acid (HA) production. Each cytokine stimulated fibroblast HA production. The combination of rTNF and rIFN-gamma resulted in a synergistic increase in the production of high molecular weight HA. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous decrease in HA degradation. In contrast, when rTNF and rIL-1 were combined, an additive increase in low molecular weight HA was noted. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous increase in HA degradation. Human lung fibroblasts contained a hyaluronidase that, at pH 3.7, depolymerized high molecular weight HA to 10-40 kD end products of digestion. However, hyaluronidase activity did not correlate with fibroblast HA degradation. Instead, HA degradation correlated with fibroblast-HA binding, which was increased by rIL-1 plus rTNF and decreased by rIFN-gamma plus rTNF. Recombinant IL-1 and rTNF weakly stimulated and rIL-1 and rTNF in combination further augmented the levels of CD44 mRNA in lung fibroblasts. In contrast, rIFN-gamma did not significantly alter the levels of CD44 mRNA in unstimulated or rTNF stimulated cells. These studies demonstrate that rIL-1, rTNF, and rIFN-gamma have complex effects on biosynthesis and degradation which alter the quantity and molecular weight of the HA produced by lung fibroblasts. They also show that fibroblast HA degradation is mediated by a previously unrecognized lysosomal-type hyaluronidase whose function may be regulated by altering fibroblast-HA binding. Lastly, they suggest that the CD44 HA receptor may be involved in this process. Images PMID:1401082

  15. Lung dosimetry and risk assessment of nanoparticles: Evaluating and extending current models in rats and humans

    SciTech Connect

    Kuempel, E.D.; Tran, C.L.; Castranova, V.; Bailer, A.J.

    2006-09-15

    Risk assessment of occupational exposure to nanomaterials is needed. Human data are limited, but quantitative data are available from rodent studies. To use these data in risk assessment, a scientifically reasonable approach for extrapolating the rodent data to humans is required. One approach is allometric adjustment for species differences in the relationship between airborne exposure and internal dose. Another approach is lung dosimetry modeling, which provides a biologically-based, mechanistic method to extrapolate doses from animals to humans. However, current mass-based lung dosimetry models may not fully account for differences in the clearance and translocation of nanoparticles. In this article, key steps in quantitative risk assessment are illustrated, using dose-response data in rats chronically exposed to either fine or ultrafine titanium dioxide (TiO{sub 2}), carbon black (CB), or diesel exhaust particulate (DEP). The rat-based estimates of the working lifetime airborne concentrations associated with 0.1% excess risk of lung cancer are approximately 0.07 to 0.3 mg/m{sup 3} for ultrafine TiO{sub 2}, CB, or DEP, and 0.7 to 1.3 mg/m{sup 3} for fine TiO{sub 2}. Comparison of observed versus model-predicted lung burdens in rats shows that the dosimetry models predict reasonably well the retained mass lung burdens of fine or ultrafine poorly soluble particles in rats exposed by chronic inhalation. Additional model validation is needed for nanoparticles of varying characteristics, as well as extension of these models to include particle translocation to organs beyond the lungs. Such analyses would provide improved prediction of nanoparticle dose for risk assessment.

  16. Dengue viruses can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES.

    PubMed

    Lee, Ying-Ray; Su, Ching-Yao; Chow, Nan-Haw; Lai, Wu-Wei; Lei, Huan-Yao; Chang, Chia-Lun; Chang, Tsuey-Yu; Chen, Shun-Hua; Lin, Yee-Shin; Yeh, Trai-Ming; Liu, Hsiao-Sheng

    2007-06-01

    Dengue viruses (DENV) are herein demonstrated for the first time as being able to infect and replicate in human primary lung epithelium and various lung cancer cell lines. The detection of dengue virus particles and viral negative strand RNA synthesis in the cell, in conjunction with the release of viral progenies in culture supernatants, support the notion that lung cells are susceptible to dengue virus infection. The replication efficiency of DENV in lung cancer cells from high to low is: DEN-2 (dengue virus type-2), DEN-3, DEN-4 and DEN-1. Moreover, the susceptibility of the six lung cancer cell lines to DEN-2 infection is: SW1573>A549>H1435; H23; H520; Bes2B. DEN-2 infection significantly increased the expression levels of IL-6 and RANTES in four of the six lung cancer cell lines, which is consistent with the high expression levels of these molecules in DHF/DSS patients. IL-6 expression induced by DEN-2 infection was NF-kappaB dependent. In summary, our results indicate that lung epithelial cell is a possible target of dengue viruses and IL-6 and RANTES may play pivotal roles in lung related immuno-pathogenesis. PMID:17416433

  17. Aortic Carboxypeptidase-Like Protein Is Expressed in Fibrotic Human Lung and its Absence Protects against Bleomycin-Induced Lung Fibrosis

    PubMed Central

    Schissel, Scott L.; Dunsmore, Sarah E.; Liu, Xiaoli; Shine, Robert W.; Perrella, Mark A.; Layne, Matthew D.

    2009-01-01

    The pathological hallmarks of idiopathic pulmonary fibrosis include proliferating fibroblasts and myofibroblasts, as well as excessive collagen matrix deposition. In addition, both myofibroblast contraction and remodeling of the collagen-rich matrix contribute to the abnormal structure and function of the fibrotic lung. Little is known, however, about collagen-associated proteins that promote fibroblast and myofibroblast retention, as well as the proliferation of these cells on the extracellular matrix. In this study, we demonstrate that aortic carboxypeptidase-like protein (ACLP), a collagen-associated protein with a discoidin-like domain, is expressed at high levels in human fibrotic lung tissue and human fibroblasts, and that its expression increases markedly in the lungs of bleomycin-injured mice. Importantly, ACLP-deficient mice accumulated significantly fewer myofibroblasts and less collagen in the lung after bleomycin injury, as compared with wild-type controls, despite equivalent levels of bleomycin-induced inflammation. ACLP that is secreted by lung fibroblasts was retained on fibrillar collagen, and ACLP-deficient lung fibroblasts that were cultured on collagen exhibited changes in cell spreading, proliferation, and contraction of the collagen matrix. Finally, the addition of recombinant discoidin-like domain of ACLP to cultured ACLP-deficient lung fibroblasts restored cell spreading and increased the contraction of collagen gels. Therefore, both ACLP and its discoidin-like domain may be novel targets for anti-myofibroblast-based therapies for the treatment of pulmonary fibrosis. PMID:19179605

  18. The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer

    PubMed Central

    Navarro, Alfons; Tejero, Rut; Viñolas, Nuria; Cordeiro, Anna; Marrades, Ramon M.; Fuster, Dolors; Caritg, Oriol; Moises, Jorge; Muñoz, Carmen; Molins, Laureano; Ramirez, Josep; Monzo, Mariano

    2015-01-01

    The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression. PMID:25742785

  19. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases.

    PubMed

    Lecaille, Fabien; Lalmanach, Gilles; Andrault, Pierre-Marie

    2016-03-01

    Lung antimicrobial proteins and peptides (AMPs) are major sentinels of innate immunity by preventing microbial colonization and infection. Nevertheless bactericidal activity of AMPs against Gram-positive and Gram-negative bacteria is compromised in patients with chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) and asthma. Evidence is accumulating that expression of harmful human serine proteases, matrix metalloproteases and cysteine cathepsins is markedely increased in these chronic lung diseases. The local imbalance between proteases and protease inhibitors compromises lung tissue integrity and function, by not only degrading extracellular matrix components, but also non-matrix proteins. Despite the fact that AMPs are somewhat resistant to proteolytic degradation, some human proteases cleave them efficiently and impair their antimicrobial potency. By contrast, certain AMPs may be effective as antiproteases. Host proteases participate in concert with bacterial proteases in the degradation of key innate immunity peptides/proteins and thus may play immunomodulatory activities during chronic lung diseases. In this context, the present review highlights the current knowledge and recent discoveries on the ability of host enzymes to interact with AMPs, providing a better understanding of the role of human proteases in innate host defense. PMID:26341472

  20. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    SciTech Connect

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun; Chiu, Chien-Chih; Su, Chun-Li; Chen, Kwun-Min; Fang, Kang

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  1. Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue

    PubMed Central

    Shi, Jianxin; Marconett, Crystal N.; Duan, Jubao; Hyland, Paula L.; Li, Peng; Wang, Zhaoming; Wheeler, William; Zhou, Beiyun; Campan, Mihaela; Lee, Diane S.; Huang, Jing; Zhou, Weiyin; Triche, Tim; Amundadottir, Laufey; Warner, Andrew; Hutchinson, Amy; Chen, Po-Han; Chung, Brian S.I.; Pesatori, Angela C.; Consonni, Dario; Bertazzi, Pier Alberto; Bergen, Andrew W.; Freedman, Mathew; Siegmund, Kimberly D.; Berman, Benjamin P.; Borok, Zea; Chatterjee, Nilanjan; Tucker, Margaret A.; Caporaso, Neil E.; Chanock, Stephen J.; Laird-Offringa, Ite A.; Landi, Maria Teresa

    2014-01-01

    The genetic regulation of the human epigenome is not fully appreciated. Here we describe the effects of genetic variants on the DNA methylome in human lung based on methylation-quantitative trait loci (meQTL) analyses. We report 34,304 cis- and 585 trans-meQTLs, a genetic-epigenetic interaction of surprising magnitude, including a regulatory hotspot. These findings are replicated in both breast and kidney tissues and show distinct patterns: cis-meQTLs mostly localize to CpG sites outside of genes, promoters, and CpG islands (CGIs), while trans-meQTLs are over-represented in promoter CGIs. meQTL SNPs are enriched in CTCF binding sites, DNaseI hypersensitivity regions and histone marks. Importantly, 4 of the 5 established lung cancer risk loci in European ancestry are cis-meQTLs and, in aggregate, cis-meQTLs are enriched for lung cancer risk in a genome-wide analysis of 11,587 subjects. Thus, inherited genetic variation may affect lung carcinogenesis by regulating the human methylome. PMID:24572595

  2. DEPOSITION OF SULFATE ACID AEROSOLS IN THE DEVELOPING HUMAN LUNG

    EPA Science Inventory

    Computations of aerosol deposition as affected by (i) aerosol hygroscopicity, (ii) human age, and (iii) respiratory intensity are accomplished using a validated mathematical model. he interactive effects are very complicated but systematic. ew general observations can be made; ra...

  3. Comparative proteomic analysis of human lung telocytes with fibroblasts

    PubMed Central

    Zheng, Yonghua; Cretoiu, Dragos; Yan, Guoquan; Cretoiu, Sanda Maria; Popescu, Laurentiu M; Wang, Xiangdong

    2014-01-01

    Telocytes (TCs) were recently described as interstitial cells with very long prolongations named telopodes (Tps; http://www.telocytes.com). Establishing the TC proteome is a priority to show that TCs are a distinct type of cells. Therefore, we examined the molecular aspects of lung TCs by comparison with fibroblasts (FBs). Proteins extracted from primary cultures of these cells were analysed by automated 2-dimensional nano-electrospray ionization liquid chromatography tandem mass spectrometry (2D Nano-ESI LC-MS/MS). Differentially expressed proteins were screened by two-sample t-test (P < 0.05) and fold change (>2), based on the bioinformatics analysis. We identified hundreds of proteins up- or down-regulated, respectively, in TCs as compared with FBs. TC proteins with known identities are localized in the cytoskeleton (87%) and plasma membrane (13%), while FB up-regulated proteins are in the cytoskeleton (75%) and destined to extracellular matrix (25%). These identified proteins were classified into different categories based on their molecular functions and biological processes. While the proteins identified in TCs are mainly involved in catalytic activity (43%) and as structural molecular activity (25%), the proteins in FBs are involved in catalytic activity (24%) and in structural molecular activity, particularly synthesis of collagen and other extracellular matrix components (25%). Anyway, our data show that TCs are completely different from FBs. In conclusion, we report here the first extensive identification of proteins from TCs using a quantitative proteomics approach. Protein expression profile shows many up-regulated proteins e.g. myosin-14, periplakin, suggesting that TCs might play specific roles in mechanical sensing and mechanochemical conversion task, tissue homoeostasis and remodelling/renewal. Furthermore, up-regulated proteins matching those found in extracellular vesicles emphasize TCs roles in intercellular signalling and stem cell niche

  4. Enhancement of microsomal aniline and acetanilide hydroxylation by haemoglobin.

    PubMed

    Jonen, H G; Kahl, R; Kahl, G F

    1976-05-01

    1. Haemogloblin and myoglobin enhance rat liver microsomal p-hydroxylation of aniline and acetanilide. Microsomal N-demethylation of ethylmorphine and aminopyrine is not increased by haemoproteins. 2. The enhancement of microsomal p-hydroxylation is maximal at high substrate concentration and high haeme compound concentration. 3. Detergent-purified NADPH-cytochrome c reductase, free flavins and manganese ions considerably increase the haemoglobin-mediated, tissue-free hydroxylation of aniline. Microsomal aniline hydroxylation is not enhanced by haeme, ferric ion or albumin. 4 Catalase and cyanide ions are powerful inhibitors of haemoglobin-mediated aniline hydroxylation both in the presence and absence of tissue. Carbon monoxide inhibits the hydroxylase activity of the tissue-free system to a smaller extent than that of a system containing microsomes plus haemoglobin whereas p-chloromercuribenzoate inhibits only the flavoprotein-dependent hydroxylation of aniline mediated by haemoglobin. 5. Several possibilities of interactions between substrate, microsomes and haeme compounds are proposed. PMID:820088

  5. Ferromagnetic contamination in the lungs and other organs of the human body.

    PubMed

    Cohen, D

    1973-05-18

    Contaminating particles which are ferromagnetic have been found in the human body. Their distribution was measured by applying an external magnetic field to the torso for a short time, and then, in a shielded room, mapping the steady magnetic field around the torso due to the magnetized particles. Maps of subjects show various distributions, including particles in the stomach from food cans and in the lungs from are welding. The fields from these two sources are strong enough to be detected with a flux-gate magnetometer, without the need for a shielded room. This simplicity of detection of larger amounts of ferromagnetic contamination suggests that this method may be used in two applications: in detecting the presence of large amounts of asbestos (ferromagnetic and harmful) in the lungs of asbestos workers, and in tests of the condition of the lung where FE(3)O(4) dust (ferromagnetic and harmless) would be used as an inhaled tracer material. PMID:4702572

  6. Biopersistence of man-made vitreous silicate fibers in the human lung.

    PubMed Central

    Sébastien, P

    1994-01-01

    There is now a substantial body of experimental data on the pulmonary biopersistence of man-made vitreous silicate fibers (MMVSF), but human data are seriously lacking. Our knowledge in this field is essentially limited to a few reports of measurements of fibers retained in lung tissue samples taken at autopsy from workers manufacturing these products. Three types of exposure were studied: fibrous glass, mineral wool, and refractory ceramic fibers. Overall, the available data do not provide evidence for substantial long-term retention of fibers in the human lung after occupational exposure to MMVSF dusts. A word of caution, however; the amount of data supporting the previous statement is much greater for fibrous glass than for either mineral wool or refractory ceramic fibers. There is no human data on the key question of the kinetics of pulmonary clearance of inhaled MMVSF. PMID:7882938

  7. Serotype 1 and 8 Pneumococci Evade Sensing by Inflammasomes in Human Lung Tissue

    PubMed Central

    Fatykhova, Diana; Rabes, Anne; Machnik, Christoph; Guruprasad, Kunchur; Pache, Florence; Berg, Johanna; Toennies, Mario; Bauer, Torsten T.; Schneider, Paul; Schimek, Maria; Eggeling, Stephan; Mitchell, Timothy J.; Mitchell, Andrea M.; Hilker, Rolf; Hain, Torsten; Suttorp, Norbert; Hippenstiel, Stefan

    2015-01-01

    Streptococcus pneumoniae is a major cause of pneumonia, sepsis and meningitis. The pore-forming toxin pneumolysin is a key virulence factor of S. pneumoniae, which can be sensed by the NLRP3 inflammasome. Among the over 90 serotypes, serotype 1 pneumococci (particularly MLST306) have emerged across the globe as a major cause of invasive disease. The cause for its particularity is, however, incompletely understood. We therefore examined pneumococcal infection in human cells and a human lung organ culture system mimicking infection of the lower respiratory tract. We demonstrate that different pneumococcal serotypes differentially activate inflammasome-dependent IL-1β production in human lung tissue and cells. Whereas serotype 2, 3, 6B, 9N pneumococci expressing fully haemolytic pneumolysins activate NLRP3 inflammasome-dependent responses, serotype 1 and 8 strains expressing non-haemolytic toxins are poor activators of IL-1β production. Accordingly, purified haemolytic pneumolysin but not serotype 1-associated non-haemolytic toxin activates strong IL-1β production in human lungs. Our data suggest that the evasion of inflammasome-dependent innate immune responses by serotype 1 pneumococci might contribute to their ability to cause invasive diseases in humans. PMID:26317436

  8. Serotype 1 and 8 Pneumococci Evade Sensing by Inflammasomes in Human Lung Tissue.

    PubMed

    Fatykhova, Diana; Rabes, Anne; Machnik, Christoph; Guruprasad, Kunchur; Pache, Florence; Berg, Johanna; Toennies, Mario; Bauer, Torsten T; Schneider, Paul; Schimek, Maria; Eggeling, Stephan; Mitchell, Timothy J; Mitchell, Andrea M; Hilker, Rolf; Hain, Torsten; Suttorp, Norbert; Hippenstiel, Stefan; Hocke, Andreas C; Opitz, Bastian

    2015-01-01

    Streptococcus pneumoniae is a major cause of pneumonia, sepsis and meningitis. The pore-forming toxin pneumolysin is a key virulence factor of S. pneumoniae, which can be sensed by the NLRP3 inflammasome. Among the over 90 serotypes, serotype 1 pneumococci (particularly MLST306) have emerged across the globe as a major cause of invasive disease. The cause for its particularity is, however, incompletely understood. We therefore examined pneumococcal infection in human cells and a human lung organ culture system mimicking infection of the lower respiratory tract. We demonstrate that different pneumococcal serotypes differentially activate inflammasome-dependent IL-1β production in human lung tissue and cells. Whereas serotype 2, 3, 6B, 9N pneumococci expressing fully haemolytic pneumolysins activate NLRP3 inflammasome-dependent responses, serotype 1 and 8 strains expressing non-haemolytic toxins are poor activators of IL-1β production. Accordingly, purified haemolytic pneumolysin but not serotype 1-associated non-haemolytic toxin activates strong IL-1β production in human lungs. Our data suggest that the evasion of inflammasome-dependent innate immune responses by serotype 1 pneumococci might contribute to their ability to cause invasive diseases in humans. PMID:26317436

  9. Three Dimensional Imaging of Paraffin Embedded Human Lung Tissue Samples by Micro-Computed Tomography

    PubMed Central

    Scott, Anna E.; Vasilescu, Dragos M.; Seal, Katherine A. D.; Keyes, Samuel D.; Mavrogordato, Mark N.; Hogg, James C.; Sinclair, Ian; Warner, Jane A.; Hackett, Tillie-Louise; Lackie, Peter M.

    2015-01-01

    Background Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. Methods FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. Results The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. Conclusion We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis. PMID:26030902

  10. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    SciTech Connect

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin . E-mail: pplin@nhri.org.tw

    2007-05-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17{beta}-estradiol (E{sub 2}) resulted from an interaction between TCDD and E{sub 2} could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE{sub 2}), especially 4-MeOE{sub 2}, accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E{sub 2}. In the present study, we demonstrate unique accumulation of 4-MeOE{sub 2}, as a result of TCDD/E{sub 2} interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE{sub 2}-treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE{sub 2}-treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE{sub 2} were unaffected by NAC. We concluded that 4-MeOE{sub 2} accumulation resulting from TCDD and E{sub 2} interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD.

  11. Effect of transforming growth factor beta on synthesis of glycosaminoglycans by human lung fibroblasts

    SciTech Connect

    Dubaybo, B.A.; Thet, L.A. )

    1990-09-01

    The processes of lung growth, injury, and repair are characterized by alterations in fibroblast synthesis and interstitial distribution of extracellular matrix components. Transforming growth factor beta (TGF-beta), which is postulated to play a role in modulating lung repair, alters the distribution of several matrix components such as collagen and fibronectin. We studied the effect of TGF-beta on the synthesis and distribution of the various glycosaminoglycans (GAGs) and whether these effects may explain its role in lung repair. Human diploid lung fibroblasts (IMR-90) were exposed to various concentrations of TGF-beta (0-5 nM) for variable periods of time (0-18 h). Newly synthesized GAGs were labeled with either (3H)glucosamine or (35S)sulfate. Individual GAGs were separated by size exclusion chromatography after serial enzymatic and chemical digestions and quantitated using scintillation counting. There was a dose-dependent increase in total GAG synthesis with maximal levels detected after 6 h of exposure. This increase was noted in all individual GAG types measured and was observed in both the cell associated GAGs (cell-matrix fraction) as well as the GAGs released into the medium (medium fraction). In the cell-matrix fraction, TGF-beta increased the proportion of heparan sulfate that was membrane bound as well as the proportion of dermatan sulfate in the intracellular compartment. In the medium fraction, TGF-beta increased the proportion of hyaluronic acid, chondroitin sulfate and dermatan sulfate released. We conclude that the role of TGF-beta in lung growth and repair may be related to increased synthesis of GAGs by human lung fibroblasts as well as alterations in the distribution of individual GAGs.

  12. Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles.

    PubMed

    Zhou, Yi-Ge; Mohamadi, Reza M; Poudineh, Mahla; Kermanshah, Leyla; Ahmed, Sharif; Safaei, Tina Saberi; Stojcic, Jessica; Nam, Robert K; Sargent, Edward H; Kelley, Shana O

    2016-02-10

    A chip-based approach for electrochemical characterization and detection of microsomes and exosomes based on direct electro-oxidation of metal nanoparticles (MNPs) that specifically recognize surface markers of these vesicles is reported. It is found that exosomes and microsomes derived from prostate cancer cells can be identified by their surface proteins EpCAM and PSMA, suggesting the potential of exosomes and microsomes for use as diagnostic biomarkers. PMID:26707703

  13. [In vitro chemosensitivity of lung cancer and other chest tumors evaluated by human tumor colony assay].

    PubMed

    Lee, K; Kuze, F; Hashimura, T; Tanigawa, N

    1984-12-01

    In vitro chemosensitivity of lung cancer and other chest tumors was evaluated by human tumor colony assay (HTCA). From 61 specimens 33 (54%) grew more than 30 colonies from which evaluation of chemosensitivity could be performed. Of 41 specimens of lung cancer, 26 (63%) yielded adequate growth for drug testing. Nine out of 26 specimens of non-small cell lung cancer showed more than 50% reduction in colony formation, and in 4 of the 26 specimens, more than 70% reduction was obtained with more than one of the drugs tested. Specimens obtained from metastatic lesions of lung cancer showed higher plating efficiency and drug sensitivity than those from primary lesions. Plating efficiency of non-epithelial tumors was lower than that of epithelial tumors. HTCA has a potential value for screening anticancer agents against lung cancer and other chest tumors. However, the assay still has many problems to be resolved, such as difficulty in obtaining single-cell suspensions and poor plating efficiency. PMID:6095761

  14. 4DCT-based assessment of regional airflow distribution in healthy human lungs during tidal breathing

    NASA Astrophysics Data System (ADS)

    Choi, Jiwoong; Jahani, Nariman; Choi, Sanghun; Hoffman, Eric; Lin, Ching-Long

    2014-11-01

    Nonlinear dynamics of regional airflow distribution in healthy human lungs are studied with four-dimensional computed tomography (4DCT) quantitative imaging of four subjects. During the scanning session, subjects continuously breathed with tidal volumes controlled by the dual piston system. For each subject, 10 instantaneous volumetric image data sets (5 inspiratory and 5 expiratory phases) were reconstructed. A mass-preserving image registration was then applied to pairs of these image data to construct a breathing lung model. Regional distributions of local flow rate fractions are computed from time-varying local air volumes. The 4DCT registration-based method provides the link between local and global air volumes of the lung, allowing derivation of time-varying regional flow rates during the tidal breathing for computational fluid dynamics analysis. The local flow rate fraction remains greater in the lower lobes than in the upper lobes, being qualitatively consistent with those derived from three static CT (3SCT) images (Yin et al. JCP 2013). However, unlike 3SCT, the 4DCT data exhibit lung hysteresis between inspiration and expiration, providing more sensitive measures of regional ventilation and lung mechanics. NIH Grants U01-HL114494, R01-HL094315 and S10-RR022421.

  15. Chemoprevention of Lung Cancer: Prospects and Disappointments in Human Clinical Trials

    PubMed Central

    Greenberg, Alissa K.; Tsay, Jun-Chieh; Tchou-Wong, Kam-Meng; Jorgensen, Anna; Rom, William N.

    2013-01-01

    Decreasing the risk of lung cancer, or preventing its development in high-risk individuals, would have a huge impact on public health. The most effective means to decrease lung cancer incidence is to eliminate exposure to carcinogens. However, with recent advances in the understanding of pulmonary carcinogenesis and the identification of intermediate biomarkers, the prospects for the field of chemoprevention research have improved dramatically. Here we review the most recent research in lung cancer chemoprevention—focusing on those agents that have been investigated in human clinical trials. These agents fall into three major categories. First, oxidative stress plays an important role in pulmonary carcinogenesis; and therefore, antioxidants (including vitamins, selenium, green tea extracts, and isothiocyanates) may be particularly effective in preventing the development of lung cancer. Second, inflammation is increasingly accepted as a crucial factor in carcinogenesis, and many investigators have focused on anti-inflammatory agents, such as glucocorticoids, NSAIDs, statins, and PPARγ agonists. Finally, the PI3K/AKT/mTOR pathway is recognized to play a central role in tobacco-induced carcinogenesis, and inhibitors of this pathway, including myoinositol and metformin, are promising agents for lung cancer prevention. Successful chemoprevention will likely require targeting of multiple pathways to carcinogenesis—both to minimize toxicity and maximize efficacy. PMID:24216701

  16. The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer

    SciTech Connect

    Shen, Yuzhou; Pan, Xufeng; Zhao, Heng

    2014-08-15

    Highlights: • PHF8 overexpresses in human NSCLC and predicts poor survival. • PHF8 regulates lung cancer cell growth and transformation. • PHF8 regulates apoptosis in human lung cancer cells. • PHF8 promotes miR-21 expression in human lung cancer. • MiR-21 is critically essential for PHF8 function in human lung cancer cells. - Abstract: PHF8 is a JmjC domain-containing protein and erases repressive histone marks including H4K20me1 and H3K9me1/2. It binds to H3K4me3, an active histone mark usually located at transcription start sites (TSSs), through its plant homeo-domain, and is thus recruited and enriched in gene promoters. PHF8 is involved in the development of several types of cancer, including leukemia, prostate cancer, and esophageal squamous cell carcinoma. Herein we report that PHF8 is an oncogenic protein in human non-small cell lung cancer (NSCLC). PHF8 is up-regulated in human NSCLC tissues, and high PHF8 expression predicts poor survival. Our in vitro and in vivo evidence demonstrate that PHF8 regulates lung cancer cell proliferation and cellular transformation. We found that PHF8 knockdown induces DNA damage and apoptosis in lung cancer cells. PHF8 promotes miR-21 expression in human lung cancer, and miR-21 knockdown blocks the effects of PHF8 on proliferation and apoptosis of lung cancer cells. In summary, PHF8 promotes lung cancer cell growth and survival by regulating miR-21.

  17. Development of ferret as a human lung cancer model by injecting4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of new animal lung cancer models that are relevant to human lung carcinogenesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino...

  18. Three-Dimensionally Engineered Normal Human Lung Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.

    2008-01-01

    In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.

  19. Dioscorea japonica extract down-regulates prostaglandin E2 synthetic pathway and induces apoptosis in lung cancer cells

    PubMed Central

    Suzuki-Yamamoto, Toshiko; Tanaka, Sayuri; Tsukayama, Izumi; Takafuji, Miki; Hanada, Takae; Arakawa, Toshiya; Kawakami, Yuki; Kimoto, Masumi; Takahashi, Yoshitaka

    2014-01-01

    Prostaglandin E2 plays a role in an array of pathophysiological responses, including inflammation, carcinogenesis and so on. Prostaglandin E2 is synthesized from arachidonic acid by the enzymes cyclooxygenase and prostaglandin E synthase. In some pathological conditions, the isozymes cyclooxygenase-2 and microsomal prostaglandin E synthase-1 are transiently induced, leading to prostaglandin E2 overproduction. The present study showed that Dioscorea japonica extract suppresses mRNA expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in human non-small-cell lung carcinoma A549 cells in a dose-dependent manner. The suppressive effects of Dioscorea japonica extract on the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 were confirmed by Western blotting, cyclooxygenase activity and prostaglandin E2 production. Dioscorea japonica extract induced the translocation of nuclear factor-κB from the nucleus to the cytosol and inhibited the activity of the cyclooxygenase-2 promoter. Furthermore Dioscorea japonica extract suppressed the expression of the anti-apoptotic factor B-cell chronic lymphocytic leukemia/lymphoma 2 and enhanced apoptotic terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive intensity in A549 cells. These results suggest that Dioscorea japonica extract suppresses the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1, with the regulation of the transcriptional activity of cyclooxygenase-2, and induces apoptosis in cancer cells. Thus, Dioscorea japonica may contribute to the prevention of prostaglandin E2-mediated pathophysiological responses such as carcinogenesis and inflammation. PMID:25411520

  20. Discovery of a Novel Microsomal Epoxide Hydrolase-Catalyzed Hydration of a Spiro Oxetane.

    PubMed

    Li, Xue-Qing; Hayes, Martin A; Grönberg, Gunnar; Berggren, Kristina; Castagnoli, Neal; Weidolf, Lars

    2016-08-01

    Oxetane moieties are increasingly being used by the pharmaceutical industry as building blocks in drug candidates because of their pronounced ability to improve physicochemical parameters and metabolic stability of drug candidates. The enzymes that catalyze the biotransformation of the oxetane moiety are, however, not well studied. The in vitro metabolism of a spiro oxetane-containing compound AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-ethoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] was studied and one of its metabolites, M1, attracted our interest because its formation was NAD(P)H independent. The focus of this work was to elucidate the structure of M1 and to understand the mechanism(s) of its formation. We established that M1 was formed via hydration and ring opening of the oxetanyl moiety of AZD1979. Incubations of AZD1979 using various human liver subcellular fractions revealed that the hydration reaction leading to M1 occurred mainly in the microsomal fraction. The underlying mechanism as a hydration, rather than an oxidation reaction, was supported by the incorporation of (18)O from H2 (18)O into M1. Enzyme kinetics were performed probing the formation of M1 in human liver microsomes. The formation of M1 was substantially inhibited by progabide, a microsomal epoxide hydrolase inhibitor, but not by trans-4-[4-(1-adamantylcarbamoylamino)cyclohexyloxy]benzoic acid, a soluble epoxide hydrolase inhibitor. On the basis of these results, we propose that microsomal epoxide hydrolase catalyzes the formation of M1. The substrate specificity of microsomal epoxide hydrolase should therefore be expanded to include not only epoxides but also the oxetanyl ring system present in AZD1979. PMID:27256986

  1. CHMP4C Disruption Sensitizes the Human Lung Cancer Cells to Irradiation

    PubMed Central

    Li, Kang; Liu, Jianxiang; Tian, Mei; Gao, Gang; Qi, Xuesong; Pan, Yan; Ruan, Jianlei; Liu, Chunxu; Su, Xu

    2015-01-01

    Human lung cancer is highly invasive and the most malignant among human tumors. Adenocarcinoma as a specific type of non-small cell lung cancer occurs with high frequency and is also highly resistant to radiation therapy. Thus, how to avoid radiation resistance and improve radiotherapy effectiveness is a crucial question. In the present study, human lung cancer A549 and H1299 cells were irradiated using γ-rays from a Co60 irradiator. Protein expression was detected by Western blotting. Cell cycle and apoptosis were measured by flow cytometry. Surviving fraction was determined by colony formation assay. γH2AX and 53BP1 foci formation were examined by fluorescence microscopy. In the results, we show that CHMP4C, a subunit of Endosomal sorting complex-III (ESCRT-III), is involved in radiation-induced cellular response. Radiation-induced Aurora B expression enhances CHMP4C phosphorylation in non-small cell lung cancer (NSCLC) cells, maintaining cell cycle check-point and cellular viability as well as resisting apoptosis. CHMP4C depletion enhances cellular sensitivity to radiation, delays S-phase of cell cycle and reduces ionizing radiation (IR)-induced γH2AX foci formation. We found that Aurora B targets CHMP4C and inhibition of Aurora B exhibits similar effects with silencing of CHMP4C in radioresistance. We also confirm that CHMP4C phosphorylation is elevated after IR both in p53-positive and-negative cells, indicating that the close correlation between CHMP4C and Aurora B signaling pathway in mediating radiation resistance is not p53 dependent. Together, our work establishes a new function of CHMP4C in radiation resistance, which will offer a potential strategy for non-small cell lung cancer by disrupting CHMP4C. PMID:26712741

  2. CHMP4C Disruption Sensitizes the Human Lung Cancer Cells to Irradiation.

    PubMed

    Li, Kang; Liu, Jianxiang; Tian, Mei; Gao, Gang; Qi, Xuesong; Pan, Yan; Ruan, Jianlei; Liu, Chunxu; Su, Xu

    2016-01-01

    Human lung cancer is highly invasive and the most malignant among human tumors. Adenocarcinoma as a specific type of non-small cell lung cancer occurs with high frequency and is also highly resistant to radiation therapy. Thus, how to avoid radiation resistance and improve radiotherapy effectiveness is a crucial question. In the present study, human lung cancer A549 and H1299 cells were irradiated using γ-rays from a Co60 irradiator. Protein expression was detected by Western blotting. Cell cycle and apoptosis were measured by flow cytometry. Surviving fraction was determined by colony formation assay. γH2AX and 53BP1 foci formation were examined by fluorescence microscopy. In the results, we show that CHMP4C, a subunit of Endosomal sorting complex-III (ESCRT-III), is involved in radiation-induced cellular response. Radiation-induced Aurora B expression enhances CHMP4C phosphorylation in non-small cell lung cancer (NSCLC) cells, maintaining cell cycle check-point and cellular viability as well as resisting apoptosis. CHMP4C depletion enhances cellular sensitivity to radiation, delays S-phase of cell cycle and reduces ionizing radiation (IR)-induced γH2AX foci formation. We found that Aurora B targets CHMP4C and inhibition of Aurora B exhibits similar effects with silencing of CHMP4C in radioresistance. We also confirm that CHMP4C phosphorylation is elevated after IR both in p53-positive and-negative cells, indicating that the close correlation between CHMP4C and Aurora B signaling pathway in mediating radiation resistance is not p53 dependent. Together, our work establishes a new function of CHMP4C in radiation resistance, which will offer a potential strategy for non-small cell lung cancer by disrupting CHMP4C. PMID:26712741

  3. The isolation and culture of endothelial colony-forming cells from human and rat lungs.

    PubMed

    Alphonse, Rajesh S; Vadivel, Arul; Zhong, Shumei; Zong, Shumei; McConaghy, Suzanne; Ohls, Robin; Yoder, Mervin C; Thébaud, Bernard

    2015-11-01

    Blood vessels are crucial for the normal development, lifelong repair and homeostasis of tissues. Recently, vascular progenitor cell-driven 'postnatal vasculogenesis' has been suggested as an important mechanism that contributes to new blood vessel formation and organ repair. Among several described progenitor cell types that contribute to blood vessel formation, endothelial colony-forming cells (ECFCs) have received widespread attention as lineage-specific 'true' vascular progenitors. Here we describe a protocol for the isolation of pulmonary microvascular ECFCs from human and rat lung tissue. Our technique takes advantage of an earlier protocol for the isolation of circulating ECFCs from the mononuclear cellular fraction of peripheral blood. We adapted the earlier protocol to isolate resident ECFCs from the distal lung tissue. After enzymatic dispersion of rat or human lung samples into a cellular suspension, CD31-expressing cells are positively selected using magnetic-activated cell sorting and plated in endothelial-specific growth conditions. The colonies arising after 1-2 weeks in culture are carefully separated and expanded to yield pure ECFC cultures after a further 2-3 weeks. The resulting cells demonstrate the defining characteristics of ECFCs such as (i) 'cobblestone' morphology of cultured cell monolayers; (ii) acetylated low-density lipoprotein uptake and Ulex europaeus lectin binding; (iii) tube-like network formation in Matrigel; (iv) expression of endothelial cell-specific surface markers and the absence of hematopoietic or myeloid surface antigens; (v) self-renewal potential displayed by the most proliferative cells; and (vi) contribution to de novo vessel formation in an in vivo mouse implant model. Assuming typical initial cell adhesion and proliferation rates, the entire procedure can be completed within 4 weeks. Isolation and culture of lung vascular ECFCs will allow assessment of the functional state of these cells in experimental and human

  4. Tomato Lycopene and Lung Cancer Prevention: From Experimental to Human Studies

    PubMed Central

    Palozza, Paola; Simone, Rossella E.; Catalano, Assunta; Mele, Maria Cristina

    2011-01-01

    Increasing evidence suggests that tomato lycopene may be preventive against the formation and the development of lung cancer. Experimental studies demonstrated that lycopene may inhibit the growth of several cultured lung cancer cells and prevent lung tumorigenesis in animal models through various mechanisms, including a modulation of redox status, cell cycle arrest and/or apoptosis induction, a regulation of growth factor signaling, changes in cell growth-related enzymes, an enhancement of gap junction communication and a prevention of smoke-induced inflammation. In addition, lycopene also inhibited cell invasion, angiogenesis, and metastasis. Several lycopene metabolites have been identified, raising the question as to whether the preventive effects of lycopene on cancer risk is, at least in part, due to its metabolites. Despite these promising reports, it is difficult at the moment to directly relate available experimental data to human pathophysiology. More well controlled clinical intervention trials are needed to further clarify the exact role of lycopene in the prevention of lung cancer cell growth. Such studies should take into consideration subject selection, specific markers of analysis, the levels of carotenoids being tested, metabolism and isomerization of lycopene, interaction with other bioactive food components. This article reviews data on the cancer preventive activities of lycopene, possible mechanisms involved, and the relationship between lycopene consumption and human cancer risk. PMID:24212813

  5. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway

    PubMed Central

    Jiang, Shulong; Gao, Yebo; Hou, Wei; Liu, Rui; Qi, Xin; Xu, Xia; Li, Jie; Bao, Yanju; Zheng, Honggang; Hua, Baojin

    2016-01-01

    Increasing evidence suggests that the failure of lung cancer treatment may occur as a result of tumor invasion and metastasis. Signal transducer and activator of transcription 3 (STAT3), an epithelial-mesenchymal transition-inducing transcription factor, is a key signaling molecule involved in the proliferation, apoptosis, invasion and metastasis of tumor cells. Sinomenine is an alkaloid compound with an antineoplastic potential against a variety of cancer cells. The aim of the present study was to assess the antitumor mechanisms of sinomenine in the A549 human lung cancer cell line. The results demonstrated that sinomenine manifested dose-dependent cytotoxicity and induced apoptosis in A549 cells. The protein expression of Janus kinase 2, STAT3, phosphorylated-STAT3, Snail, N-cadherin and vimentin decreased in sinomenine-treated cells, while E-cadherin protein expression increased. The regulation of STAT3, N-cadherin and E-cadherin by sinomenine was further confirmed by reverse transcription-quantitative polymerase chain reaction and immunofluorescent staining. It was demonstrated that sinomenine exerts inhibitory effects on A549 human lung cancer cell invasion, possibly through the inhibition of STAT3 signaling. These results provide a novel insight into the role of sinomenine in the treatment of non-small cell lung cancer. PMID:27446441

  6. Cyclopentenylcytosine does not enhance cisplatin-induced radiosensitization in human lung tumour cells

    PubMed Central

    RODERMOND, HANS M.; CATE, ROSEMARIE TEN; HAVEMAN, JAAP; VAN KUILENBURG, ANDRÉ; MEDEMA, JAN PAUL; VAN BREE, CHRIS; FRANKEN, NICOLAAS A.P.

    2010-01-01

    The search for agents that enhance the effect of ionizing radiation has been an object of study for decades. In this study, the sensitizing properties of cyclopentenylcytosine (CPEC) on radiation and cisplatin-induced radiosensitization in human squamous lung carcinoma cells were investigated. Human lung tumour SW-1573 cells (SWp, parental; SWg, gemcitabine-resistant) were incubated with CPEC and cisplatin and subsequently irradiated with different doses of γ-rays. Clonogenic survival was determined to measure the effectiveness of the treatments. CPEC (1 or 2 μM) treatment for 4 h decreased the plating efficiency to 75 and 50% in SWp and SWg cells, respectively. In the SWg cells, 0.1 and 1 μM CPEC for 4 h enhanced the cell killing effect of cisplatin. However, an increase was not noted in the SWp cells. Due to the moderate toxicity of 1 μM for 4 h, this CPEC dose was used in the radiosensitization experiments. However, CPEC neither radiosensitized the lung tumour cells nor enhanced the radiosensitizing effect of cisplatin. A 2-h incubation with 4 μM cisplatin also decreased the plating efficiency to 75–80% in the two cell lines. Using this cisplatin dose, radiosensitization was obtained in the two cell lines. Although cisplatin treatment clearly radiosensitized the lung tumour cells, CPEC treatment did not. Cisplatin-induced radiosensitization was also not enhanced by CPEC. PMID:22966339

  7. Bimodal targeting of microsomal cytochrome P450s to mitochondria: implications in drug metabolism and toxicity

    PubMed Central

    Sangar, Michelle C; Bansal, Seema

    2010-01-01

    Importance of the field Microsomal cytochrome P450s are critical for drug metabolism and toxicity. Recent studies show that these CYPs are also present in the mitochondrial compartment of human and rodent tissues. Mitochondrial CYP1A1 and 2E1 show both overlapping and distinct metabolic activities compared to microsomal forms. Mitochondrial CYP2E1 also induces oxidative stress. The mechanisms of mitochondria targeting of CYPs and their role in drug metabolism and toxicity are important factors to consider while determining the drug dose and in drug development. Areas covered in this review This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and microsomes. The review also discusses differences in structure and function of mitochondrial CYPs. What the readers will gain A comprehensive review of the literature on drug metabolism in the mitochondrial compartment, and their potential for inducing mitochondrial dysfunction. Take home message Studies on the biochemistry, pharmacology and pharmacogenetic analysis of CYPs are mostly focused on the molecular forms associated with the microsomal membrane. However, the mitochondrial CYPs in some individuals can represent a substantial part of the tissue pool and contribute in a significant way to drug metabolism, clearance and toxicity. PMID:20629582

  8. Immunohistochemical Detection of Markers for Translational Studies of Lung Disease in Pigs and Humans.

    PubMed

    Meyerholz, David K; Lambertz, Allyn M; Reznikov, Leah R; Ofori-Amanfo, Georgina K; Karp, Phil H; McCray, Paul B; Welsh, Michael J; Stoltz, David A

    2016-04-01

    Genetically engineered pigs are increasingly recognized as valuable models for the study of human disease. Immunohistochemical study of cellular markers of disease is an important tool for the investigation of these novel models so as to evaluate genotype and treatment differences. Even so, there remains a lack of validated markers for pig tissues that can serve as a translational link to human disease in organs such as the lung. Herein, we evaluate markers of cellular inflammation (cluster of differentiation [CD]3, CD79a, B cell lymphoma [BCL] 6, ionized calcium-binding adapter molecule [IBA]1, and myeloperoxidase) and those that may be involved with tissue remodeling (alpha-smooth muscle actin, beta-tubulin-III, lactoferrin, mucin [MUC]5AC, MUC5B, and cystic fibrosis transmembrane conductance regulator [CFTR]) for study of lung tissues. We compare the utility of these markers between pig and human lungs to validate translational relevance of each marker. Our results suggest these markers can be a useful addition in the pathological evaluation of porcine models of human disease. PMID:26511846

  9. PROLONGED EXPOSURE OF HUMANS TO AMBIENT LEVELS OF OZONE CAUSES CELLULAR AND BIOCHEMICAL CHANGES IN THE LUNG

    EPA Science Inventory

    An acute (2h) exposure of humans to 0.4 ppm ozone initiates biochemical changes in the lung resulting in the production of components which mediate inflammation and acute lung damage as well as components which have the potential to lead to long term effects such as fibrosis. owe...

  10. Expression and Localization of Lung Surfactant Proteins in Human Testis

    PubMed Central

    Wagner, Walter; Matthies, Cord; Ruf, Christian; Hartmann, Arndt; Garreis, Fabian; Paulsen, Friedrich

    2015-01-01

    Background Surfactant proteins (SPs) have been described in various tissues and fluids including tissues of the nasolacrimal apparatus, airways and digestive tract. Human testis have a glandular function as a part of the reproductive and the endocrine system, but no data are available on SPs in human testis and prostate under healthy and pathologic conditions. Objective The aim of the study was the detection and characterization of the surfactant proteins A, B, C and D (SP-A, SP-B, SP-C, SP-D) in human testis. Additionally tissue samples affected by testicular cancer were investigated. Results Surfactant proteins A, B, C and D were detected using RT-PCR in healthy testis. By means of Western blot analysis, these SPs were detected at the protein level in normal testis, seminoma and seminal fluid, but not in spermatozoa. Expression of SPs was weaker in seminoma compared to normal testicular tissue. SPs were localized in combination with vimentin immunohistochemically in cells of Sertoli and Leydig. Conclusion Surfactant proteins seem to be inherent part of the human testis. By means of physicochemical properties the proteins appear to play a role during immunological and rheological process of the testicular tissue. The presence of SP-B and SP-C in cells of Sertoli correlates with their function of fluid secretion and may support transportation of spermatozoa. In seminoma the expression of all SP's was generally weaker compared to normal germ cells. This could lead to a reduction of immunomodulatory and rheology processes in the germ cell tumor. PMID:26599233

  11. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s

    SciTech Connect

    Pechurskaya, Tatiana A. . E-mail: usanov@iboch.bas-net.by

    2007-02-16

    The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major role in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.

  12. The Audible Human Project: Modeling Sound Transmission in the Lungs and Torso

    NASA Astrophysics Data System (ADS)

    Dai, Zoujun

    Auscultation has been used qualitatively by physicians for hundreds of years to aid in the monitoring and diagnosis of pulmonary diseases. Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable changes in lung sound production and transmission. Numerous acoustic measurements have revealed the differences of breath sounds and transmitted sounds in the lung under normal and pathological conditions. Compared to the extensive cataloging of lung sound measurements, the mechanism of sound transmission in the pulmonary system and how it changes with alterations of lung structural and material properties has received less attention. A better understanding of sound transmission and how it is altered by injury and disease might improve interpretation of lung sound measurements, including new lung imaging modalities that are based on an array measurement of the acoustic field on the torso surface via contact sensors or are based on a 3-dimensional measurement of the acoustic field throughout the lungs and torso using magnetic resonance elastography. A long-term goal of the Audible Human Project (AHP ) is to develop a computational acoustic model that would accurately simulate generation, transmission and noninvasive measurement of sound and vibration within the pulmonary system and torso caused by both internal (e.g. respiratory function) and external (e.g. palpation) sources. The goals of this dissertation research, fitting within the scope of the AHP, are to develop specific improved theoretical understandings, computational algorithms and experimental methods aimed at transmission and measurement. The research objectives undertaken in this dissertation are as follows. (1) Improve theoretical modeling and experimental identification of viscoelasticity in soft biological tissues. (2) Develop a poroviscoelastic model for lung tissue vibroacoustics. (3) Improve lung airway acoustics modeling and its

  13. A System for Open-Access 3He Human Lung Imaging at Very Low Field

    PubMed Central

    RUSET, I.C.; TSAI, L.L.; MAIR, R.W.; PATZ, S.; HROVAT, M.I.; ROSEN, M.S.; MURADIAN, I.; NG, J.; TOPULOS, G.P.; BUTLER, J.P.; WALSWORTH, R.L.; HERSMAN, F.W.

    2010-01-01

    We describe a prototype system built to allow open-access very-low-field MRI of human lungs using laser-polarized 3He gas. The system employs an open four-coil electromagnet with an operational B0 field of 4 mT, and planar gradient coils that generate gradient fields up to 0.18 G/cm in the x and y direction and 0.41 G/cm in the z direction. This system was used to obtain 1H and 3He phantom images and supine and upright 3He images of human lungs. We include discussion on challenges unique to imaging at 50 –200 kHz, including noise filtering and compensation for narrow-bandwidth coils. PMID:20354575

  14. Interactive lung segmentation in abnormal human and animal chest CT scans

    SciTech Connect

    Kockelkorn, Thessa T. J. P. Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  15. Distribution of particulate matter and tissue remodeling in the human lung.

    PubMed Central

    Pinkerton, K E; Green, F H; Saiki, C; Vallyathan, V; Plopper, C G; Gopal, V; Hung, D; Bahne, E B; Lin, S S; Ménache, M G; Schenker, M B

    2000-01-01

    We examined the relationship between intrapulmonary particle distribution of carbonaceous and mineral dusts and remodeling of the airways along anatomically distinct airway paths in the lungs of Hispanic males from the central valley of California. Lung autopsy specimens from the Fresno County Coroner's Office were prepared by intratracheal instillation of 2% glutaraldehyde at 30 cm H(2)O pressure. Two distinct airway paths into the apico-posterior and apico-anterior portions of the left upper lung lobe were followed. Tissue samples for histologic analysis were generally taken from the intrapulmonary second, fourth, sixth, and ninth airway generations. Parenchymal tissues beyond the 12th airway generation of each airway path were also analyzed. There was little evidence of visible particle accumulation in the larger conducting airways (generations 2-6), except in bronchial-associated lymphoid tissues and within peribronchial connective tissue. In contrast, terminal and respiratory bronchioles arising from each pathway revealed varying degrees of wall thickening and remodeling. Walls with marked thickening contained moderate to heavy amounts of carbonaceous and mineral dusts. Wall thickening was associated with increases in collagen and interstitial inflammatory cells, including dust-laden macrophages. These changes were significantly greater in first-generation respiratory bronchioles compared to second- and third-generation respiratory bronchioles. These findings suggest that accumulation of carbonaceous and mineral dust in the lungs is significantly affected by lung anatomy with the greatest retention in centers of lung acini. Furthermore, there is significant remodeling of this transitional zone in humans exposed to ambient particulate matter. PMID:11102298

  16. Biodegradability of para-aramid respirable-sized fiber-shaped particulates (RFP) in human lung cells.

    PubMed

    Warheit, D B; Reed, K L; Stonehuerner, J D; Ghio, A J; Webb, T R

    2006-01-01

    Using both in vivo (inhalation) and in vitro (cell culture) studies, we previously reported that p-aramid respirable fibers (RFP--defined as respirable-sized fiber-shaped particulates) are biodegraded in lungs and lung cells of rats following exposures. The current studies were undertaken to determine whether shortening mechanisms of p-aramid RFP biodegradability are also operative in human lung cells. Cultures of human A549 lung epithelial cells (A549), primary alveolar macrophages (HBAL) (collected via bronchoalveolar lavage [BAL]) from volunteers), and co-cultures (Co) of the A549 and HBAL were incubated with p-aramid RFP for either 1 h, 1 day, or 1 week to assess RFP shortening. Lengths of RFP were measured using scanning electron microscopy (SEM) following fixation, digestion of culture tissue components, and processing. Similar to findings using rat lung cells, only slight RFP shortening was measured in A549 cultures at 1-day and 1-week post-incubation. More importantly, in HBAL and Co groups, greater transverse cleavage of p-aramid RFP was measured at 1-day and 1-week postexposure compared to 1-h HBAL or Co groups, or in any A549 groups. In contrast, cellulose RFP, a biopersistent reference control fiber, were not measurably shortened under similar circumstances. Second, p-aramid RFP were incubated either with phosphate-buffered saline (PBS), or acellular BAL fluids from human volunteers or rats and processed for SEM analysis of RFP lengths. Mean lengths of p-aramid RFP incubated with human or rat BAL fluids were substantially decreased compared to PBS. Similar to our findings with rat lung cells, components of human lung fluids coat the p-aramid RFP as a prerequisite for subsequent enzymatic cleavage by human phagocytic lung cells and this finding reinforces the concept that inhaled p-aramid RFP are likely to be biodegradable in the lungs of humans. PMID:16237190

  17. Interactions among Cytochromes P450 in Microsomal Membranes

    PubMed Central

    Davydov, Dmitri R.; Davydova, Nadezhda Y.; Sineva, Elena V.; Halpert, James R.

    2015-01-01

    The body of evidence of physiologically relevant P450-P450 interactions in microsomal membranes continues to grow. Here we probe oligomerization of human CYP3A4, CYP3A5, and CYP2E1 in microsomal membranes. Using a technique based on luminescence resonance energy transfer, we demonstrate that all three proteins are subject to a concentration-dependent equilibrium between the monomeric and oligomeric states. We also observed the formation of mixed oligomers in CYP3A4/CYP3A5, CYP3A4/CYP2E1, and CYP3A5/CYP2E1 pairs and demonstrated that the association of either CYP3A4 or CYP3A5 with CYP2E1 causes activation of the latter enzyme. Earlier we hypothesized that the intersubunit interface in CYP3A4 oligomers is similar to that observed in the crystallographic dimers of some microsomal drug-metabolizing cytochromes P450 (Davydov, D. R., Davydova, N. Y., Sineva, E. V., Kufareva, I., and Halpert, J. R. (2013) Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochem. J. 453, 219–230). Here we report the results of intermolecular cross-linking of CYP3A4 oligomers with thiol-reactive bifunctional reagents as well as the luminescence resonance energy transfer measurements of interprobe distances in the oligomers of labeled CYP3A4 single-cysteine mutants. The results provide compelling support for the physiological relevance of the dimer-specific peripheral ligand-binding site observed in certain CYP3A4 structures. According to our interpretation, these results reveal an important general mechanism that regulates the activity and substrate specificity of the cytochrome P450 ensemble through interactions between multiple P450 species. As a result of P450-P450 cross-talk, the catalytic properties of the cytochrome P450 ensemble cannot be predicted by simple summation of the properties of the individual P450 species. PMID:25533469

  18. Natural innate cytokine response to immunomodulators and adjuvants in human precision-cut lung slices

    SciTech Connect

    Switalla, S.; Lauenstein, L.; Prenzler, F.; Knothe, S.; Foerster, C.; Fieguth, H.-G.; Pfennig, O.; Schaumann, F.; Martin, C.; Guzman, C.A.; Ebensen, T.; Mueller, M.; Hohlfeld, J.M.; Krug, N.; Braun, A.; Sewald, K.

    2010-08-01

    Prediction of lung innate immune responses is critical for developing new drugs. Well-established immune modulators like lipopolysaccharides (LPS) can elicit a wide range of immunological effects. They are involved in acute lung diseases such as infections or chronic airway diseases such as COPD. LPS has a strong adjuvant activity, but its pyrogenicity has precluded therapeutic use. The bacterial lipopeptide MALP-2 and its synthetic derivative BPPcysMPEG are better tolerated. We have compared the effects of LPS and BPPcysMPEG on the innate immune response in human precision-cut lung slices. Cytokine responses were quantified by ELISA, Luminex, and Meso Scale Discovery technology. The initial response to LPS and BPPcysMPEG was marked by coordinated and significant release of the mediators IL-1{beta}, MIP-1{beta}, and IL-10 in viable PCLS. Stimulation of lung tissue with BPPcysMPEG, however, induced a differential response. While LPS upregulated IFN-{gamma}, BPPcysMPEG did not. This traces back to their signaling pathways via TLR4 and TLR2/6. The calculated exposure doses selected for LPS covered ranges occurring in clinical studies with human beings. Correlation of obtained data with data from human BAL fluid after segmental provocation with endotoxin showed highly comparable effects, resulting in a coefficient of correlation > 0.9. Furthermore, we were interested in modulating the response to LPS. Using dexamethasone as an immunosuppressive drug for anti-inflammatory therapy, we found a significant reduction of GM-CSF, IL-1{beta}, and IFN-{gamma}. The PCLS-model offers the unique opportunity to test the efficacy and toxicity of biological agents intended for use by inhalation in a complex setting in humans.

  19. [Update of human tumor clonogenic assay in carcinoma of the lung].

    PubMed

    Kanzawa, F

    1985-08-01

    The human tumor clonogenic assay (HTCA) is a double-layer agar technique, which provides an in vitro prediction of the response of an individual patient's tumor to an antitumor agent. This paper briefly provides an outline of HTCA and its potential use in chemotherapy on patients with lung cancer. In our experience with culturing 123 carcinomas of the lung, 105 specimens (85%) could be subject to more than 5 chemosensitivity tests each by modifying the preparation method of single cell suspension in this system. Growth rate was improved in all types of primary human lung cancer with reasonable consistency. Further, metastatic tumors were capable of being successfully grown in a high percentage of cases, which was comparable to the results obtained for other kinds of tumors. There was no correlation of growth or cloning efficiency with histology, source, or previous chemotherapy. Using 50% or more inhibition on to colony formation as the criterion for chemosensitivity, response rates to vindesine or mitomycin C were 19% or 16%, respectively. The in vitro response rates of these or almost all other antitumor drugs seemed to be comparable to the clinical responses reported by various investigators. Correlation between in vitro chemosensitivity in HTCA and clinical response has been evaluated by various investigators, and the pooled data have demonstrated a good association between in vitro drug sensitivity and clinical response or lack of response. In lung cancer, HTCA had a 57% true positive rate and an 85% true negative rate for the prediction of drug sensitivity and resistance, respectively, of cancer patients to specific chemotherapeutic drugs. Although the system still has to undergo modification to resolve a number of theoretical and practical problems, it has potential uses in lung cancer chemotherapy. PMID:2992395

  20. Chronic exposure to particulate chromate induces spindle assembly checkpoint bypass in human lung cells.

    PubMed

    Wise, Sandra S; Holmes, Amie L; Xie, Hong; Thompson, W Douglas; Wise, John Pierce

    2006-11-01

    One of the hallmarks of lung cancer is chromosome instability (CIN), particularly a tetraploid phenotype, which is normally prevented by the spindle assembly checkpoint. Hexavalent chromium Cr(VI) is an established human lung carcinogen, and Cr(VI) induces tumors at lung bifurcation sites where Cr(VI) particles impact and persist. However, the effects of Cr(VI) on the spindle assembly checkpoint are unknown and little is known about prolonged exposure to particulate Cr(VI). Accordingly, we investigated particulate Cr(VI)-induced bypass of the spindle assembly checkpoint after several days of exposure in WHTBF-6 cells. We found that lead chromate indeed induces spindle assembly checkpoint bypass in human lung cells, as 72, 96, and 120 h treatments with 0.5 or 1 microg/cm2 lead chromate induced significant increases in the percentage of cells with aberrant mitotic figures. For example, treatment with 1 microg/cm2 lead chromate for 96 h induced 11, 12.3, and 14% of cells with premature anaphase, centromere spreading and premature centromere division, respectively. In addition, we found a disruption of mitosis with more cells accumulating in anaphase; cells treated for 96 h increased from 18% in controls to 31% in cells treated with lead chromate. To confirm involvement of the spindle assembly checkpoint, Mad2 expression was used as a marker. Mad2 expression was decreased in cells exposed to chronic treatments of lead chromate, consistent with disruption of the checkpoint. We also found concentration- and time-dependent increases in tetraploid cells, which continued to grow and form colonies. When cells were treated with chronic lead alone there was no increase in aberrant mitotic cells or polyploidy; however, chronic exposure to a soluble Cr(VI) showed an increase in aberrant mitotic cells and polyploidy. These data suggest that lead chromate does induce CIN and may be one mechanism in the development of Cr(VI)-induced lung cancer. PMID:17112237

  1. Noncanonical WNT-5B signaling induces inflammatory responses in human lung fibroblasts.

    PubMed

    van Dijk, Eline M; Menzen, Mark H; Spanjer, Anita I R; Middag, Laurens D C; Brandsma, Corry-Anke A; Gosens, Reinoud

    2016-06-01

    COPD is a progressive chronic lung disease characterized by pulmonary inflammation. Several recent studies indicate aberrant expression of WNT ligands and Frizzled receptors in the disease. For example, WNT-5A/B ligand expression was recently found to be increased in lung fibroblasts of COPD patients. However, possible effects of WNT-5A and WNT-5B on inflammation have not been investigated yet. In this study, we assessed the regulation of inflammatory cytokine release in response to WNT-5A/B signaling in human lung fibroblasts. Primary human fetal lung fibroblasts (MRC-5), and primary lung fibroblasts from COPD patients and non-COPD controls were treated with recombinant WNT-5A or WNT-5B to assess IL-6 and CXCL8 cytokine secretion and gene expression levels. Following WNT-5B, and to a lesser extent WNT-5A stimulation, fibroblasts showed increased IL-6 and CXCL8 cytokine secretion and mRNA expression. WNT-5B-mediated IL-6 and CXCL8 release was higher in fibroblasts from COPD patients than in non-COPD controls. In MRC-5 fibroblasts, WNT-5B-induced CXCL8 release was mediated primarily via the Frizzled-2 receptor and TAK1 signaling, whereas canonical β-catenin signaling was not involved. In further support of noncanonical signaling, we showed activation of JNK, p38, and p65 NF-κB by WNT-5B. Furthermore, inhibition of JNK and p38 prevented WNT-5B-induced IL-6 and CXCL8 secretion, whereas IKK inhibition prevented CXCL8 secretion only, indicating distinct pathways for WNT-5B-induced IL-6 and CXCL8 release. WNT-5B induces IL-6 and CXCL8 secretion in pulmonary fibroblasts. In summary, WNT-5B mediates this via Frizzled-2 and TAK1. As WNT-5 signaling is increased in COPD, this WNT-5-induced inflammatory response could represent a therapeutic target. PMID:27036869

  2. Tsr Chemoreceptor Interacts With IL-8 Provoking E. coli Transmigration Across Human Lung Epithelial Cells

    PubMed Central

    Han, Bing; Li, Manshu; Xu, Yonghao; Islam, Diana; Khang, Julie; Del Sorbo, Lorenzo; Lee, Warren; Szaszi, Katalin; Zhong, Nanshan; Slutsky, Arthur S.; Li, Yimin; Zhang, Haibo

    2016-01-01

    Bacterial colonization of epithelial surfaces and subsequent transmigration across the mucosal barrier are essential for the development of infection. We hypothesized that the methyl-accepting proteins (MCPs), known as chemoreceptors expressed on Escherichia coli (E. coli) bacterial surface, play an important role in mediating bacterial transmigration. We demonstrated a direct interaction between human interleukin-8 (IL-8) and Tsr receptor, a major MCP chemoreceptor. Stimulation of human lung epithelial cell monolayer with IL-8 resulted in increased E. coli adhesion and transmigration of the native strain (RP437) and a strain expressing only Tsr (UU2373), as compared to a strain (UU2599) with Tsr truncation. The augmented E. coli adhesion and migration was associated with a higher expression of carcinoembryonic antigen-related cell adhesion molecule 6 and production of inflammatory cytokines/chemokines, and a lower expression of the tight junction protein claudin-1 and the plasma membrane protein caveolin-1 in lung epithelial cells. An increased E. coli colonization and pulmonary cytokine production induced by the RP437 and UU2373 strains was attenuated in mice challenged with the UU2599 strain. Our results suggest a critical role of the E. coli Tsr chemoreceptor in mediating bacterial colonization and transmigration across human lung epithelium during development of pulmonary infections. PMID:27506372

  3. Differential elastic responses to barrier-altering agonists in two types of human lung endothelium.

    PubMed

    Viswanathan, P; Ephstein, Y; Garcia, J G N; Cho, M; Dudek, S M

    2016-09-16

    Vascular integrity is primarily determined by endothelial cell (EC) cytoskeletal structure that is differentially regulated by various stimuli. In this study, atomic force microscopy (AFM) was used to characterize structural and mechanical properties in the cytoskeleton of cultured human pulmonary artery EC (HPAEC) and human lung microvascular EC (HLMVEC) by determining elastic properties (Young's modulus) in response to endogenous barrier protective agents sphingosine 1-phosphate (S1P) and hepatocyte growth factor (HGF), or the barrier disruptive molecule thrombin. Initial studies in unstimulated cells indicate higher baseline peripheral elastic modulus values in HPAEC (mean 2.9 KPa) than in HLMVEC (1.8 KPa). After 30 min of stimulation, S1P induced the highest Young's modulus increase (6.1 KPa) compared to the other barrier enhancing stimuli, HGF (5.8 KPa) and the pharmaceutical agent and S1P analog FTY720 (4.1 KPa). In contrast, the barrier disruptive agent thrombin decreased values from 2.5 KPa to 0.7 KPa depending on the cell type and treatment time. AFM topographical imaging supports these quantitative biophysical data regarding differential peripheral elastic properties in EC. Overall, these AFM studies provide novel insights into the biomechanical properties of human lung EC that regulate vascular barrier function and have potential applicability to pathophysiologic vascular leak syndromes such as acute lung injury. PMID:27473658

  4. Tsr Chemoreceptor Interacts With IL-8 Provoking E. coli Transmigration Across Human Lung Epithelial Cells.

    PubMed

    Han, Bing; Li, Manshu; Xu, Yonghao; Islam, Diana; Khang, Julie; Del Sorbo, Lorenzo; Lee, Warren; Szaszi, Katalin; Zhong, Nanshan; Slutsky, Arthur S; Li, Yimin; Zhang, Haibo

    2016-01-01

    Bacterial colonization of epithelial surfaces and subsequent transmigration across the mucosal barrier are essential for the development of infection. We hypothesized that the methyl-accepting proteins (MCPs), known as chemoreceptors expressed on Escherichia coli (E. coli) bacterial surface, play an important role in mediating bacterial transmigration. We demonstrated a direct interaction between human interleukin-8 (IL-8) and Tsr receptor, a major MCP chemoreceptor. Stimulation of human lung epithelial cell monolayer with IL-8 resulted in increased E. coli adhesion and transmigration of the native strain (RP437) and a strain expressing only Tsr (UU2373), as compared to a strain (UU2599) with Tsr truncation. The augmented E. coli adhesion and migration was associated with a higher expression of carcinoembryonic antigen-related cell adhesion molecule 6 and production of inflammatory cytokines/chemokines, and a lower expression of the tight junction protein claudin-1 and the plasma membrane protein caveolin-1 in lung epithelial cells. An increased E. coli colonization and pulmonary cytokine production induced by the RP437 and UU2373 strains was attenuated in mice challenged with the UU2599 strain. Our results suggest a critical role of the E. coli Tsr chemoreceptor in mediating bacterial colonization and transmigration across human lung epithelium during development of pulmonary infections. PMID:27506372

  5. Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma

    PubMed Central

    Panngom, K; Baik, K Y; Nam, M K; Han, J H; Rhim, H; Choi, E H

    2013-01-01

    The distinctive cellular and mitochondrial dysfunctions of two human lung cancer cell lines (H460 and HCC1588) from two human lung normal cell lines (MRC5 and L132) have been studied by dielectric barrier discharge (DBD) plasma treatment. This cytotoxicity is exposure time-dependent, which is strongly mediated by the large amount of H2O2 and NOx in culture media generated by DBD nonthermal plasma. It is found that the cell number of lung cancer cells has been reduced more than that of the lung normal cells. The mitochondrial vulnerability to reactive species in H460 may induce distinctively selective responses. Differential mitochondrial membrane potential decrease, mitochondrial enzymatic dysfunction, and mitochondrial morphological alteration are exhibited in two cell lines. These results suggest the nonthermal plasma treatment as an efficacious modality in lung cancer therapy. PMID:23703387

  6. Aerosolized human extracellular superoxide dismutase prevents hyperoxia-induced lung injury.

    PubMed

    Yen, Chih-Ching; Lai, Yi-Wen; Chen, Hsiao-Ling; Lai, Cheng-Wei; Lin, Chien-Yu; Chen, Wei; Kuan, Yu-Ping; Hsu, Wu-Huei; Chen, Chuan-Mu

    2011-01-01

    An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated the ability of aerosolized extracellular superoxide dismutase (EC-SOD) to protect the lungs from hyperoxic injury. Recombinant human EC-SOD (rhEC-SOD) was produced from a synthetic cassette constructed in the methylotrophic yeast Pichia pastoris. Female CD-1 mice were exposed in hyperoxia (FiO2>95%) to induce lung injury. The therapeutic effects of EC-SOD and copper-zinc SOD (CuZn-SOD) via an aerosol delivery system for lung injury and systemic oxidative stress at 24, 48, 72 and 96 h of hyperoxia were measured by bronchoalveolar lavage, wet/dry ratio, lung histology, and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lung and liver tissues. After exposure to hyperoxia, the wet/dry weight ratio remained stable before day 2 but increased significantly after day 3. The levels of oxidative biomarker 8-oxo-dG in the lung and liver were significantly decreased on day 2 (P<0.01) but the marker in the liver increased abruptly after day 3 of hyperoxia when the mortality increased. Treatment with aerosolized rhEC-SOD increased the survival rate at day 3 under hyperoxia to 95.8%, which was significantly higher than that of the control group (57.1%), albumin treated group (33.3%), and CuZn-SOD treated group (75%). The protective effects of EC-SOD against hyperoxia were further confirmed by reduced lung edema and systemic oxidative stress. Aerosolized EC-SOD protected mice against oxygen toxicity and reduced mortality in a hyperoxic model. The results encourage the use of an aerosol therapy with EC-SOD in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure, including acute

  7. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications

    PubMed Central

    2016-01-01

    Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy. PMID:27375834

  8. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications.

    PubMed

    Vilema-Enríquez, Gabriela; Arroyo, Aurora; Grijalva, Marcelo; Amador-Zafra, Ricardo Israel; Camacho, Javier

    2016-01-01

    Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy. PMID:27375834

  9. Dendritic Cells and Monocytes with Distinct Inflammatory Responses Reside in Lung Mucosa of Healthy Humans.

    PubMed

    Baharom, Faezzah; Thomas, Saskia; Rankin, Gregory; Lepzien, Rico; Pourazar, Jamshid; Behndig, Annelie F; Ahlm, Clas; Blomberg, Anders; Smed-Sörensen, Anna

    2016-06-01

    Every breath we take contains potentially harmful pathogens or allergens. Dendritic cells (DCs), monocytes, and macrophages are essential in maintaining a delicate balance of initiating immunity without causing collateral damage to the lungs because of an exaggerated inflammatory response. To document the diversity of lung mononuclear phagocytes at steady-state, we performed bronchoscopies on 20 healthy subjects, sampling the proximal and distal airways (bronchial wash and bronchoalveolar lavage, respectively), as well as mucosal tissue (endobronchial biopsies). In addition to a substantial population of alveolar macrophages, we identified subpopulations of monocytes, myeloid DCs (MDCs), and plasmacytoid DCs in the lung mucosa. Intermediate monocytes and MDCs were highly frequent in the airways compared with peripheral blood. Strikingly, the density of mononuclear phagocytes increased upon descending the airways. Monocytes from blood and airways produced 10-fold more proinflammatory cytokines than MDCs upon ex vivo stimulation. However, airway monocytes were less inflammatory than blood monocytes, suggesting a more tolerant nature. The findings of this study establish how to identify human lung mononuclear phagocytes and how they function in normal conditions, so that dysregulations in patients with respiratory diseases can be detected to elucidate their contribution to immunity or pathogenesis. PMID:27183618

  10. Changes in tumor-antigen expression profile as human small-cell lung cancers progress

    PubMed Central

    Ge, Li-Sheng; Hoa, Neil T.; Lambrecht, Nils; Dacosta-Iyer, Maria; Ouyang, Yi; Abolhoda, Amir; Jadus, Martin R.

    2015-01-01

    Objective Our group has previously observed that in patients with small-cell lung cancers (SCLCs), the expression of a tumor antigen, glioma big potassium (gBK) ion channel, is higher at the time of death than when the cancer is first treated by surgical resection. This study aimed to determine whether this dichotomy was common in other potential lung tumor antigens by examining the same patient samples using our more extensive profile analysis of tumor-antigen precursor protein (TAPP). We then tested the hypothesis that therapeutic intervention may inadvertently cause this increased gBK production. Methods SCLC samples (eight surgical resections and three autopsy samples) and three control lungs were examined by quantitative real-time polymerase chain reaction for 42 potential TAPPs that represent potential T-cell-mediated immunological targets. Results Twenty-two TAPP mRNAs displayed the same profile as gBK, i.e., more mRNAs were expressed at autopsy than in their surgical counterparts. B-cyclin and mouse double minute 2, human homolog of P53-binding protein were elevated in both autopsy and surgical specimens above the normal-lung controls. When HTB119 cells were incubated with doxorubicin, gBK was strongly induced, as confirmed by intracellular flow cytometry with a gBK-specific antibody. Conclusion Our findings suggested that more immunological targets became available as the tumor responded to chemotherapy and proceeded toward its terminal stages. PMID:26175925

  11. Downregulation of connexin 26 in human lung cancer is related to promoter methylation.

    PubMed

    Chen, Yuan; Hühn, Daniela; Knösel, Thomas; Pacyna-Gengelbach, Manuela; Deutschmann, Nicole; Petersen, Iver

    2005-01-01

    Cell-Cell communication via gap junctions plays a key role in carcinogenesis and in growth control. One of the gap junction proteins, Connexin 26 (Cx26) was considered as tumor suppressor in various cancers. In our study, the expression of Cx26 was analyzed in human lung cancer. The reduced mRNA expression was observed in 17 lung cancer cell lines examined by Northern blot analysis and RT-PCR. In 138 primary carcinomas comprising all subtypes analyzed by immunohistochemistry, 85 cases (62%) exhibited no expression of Cx26, whereas in other 53 cases the Cx26 staining was positive (38%). Additionally, an association between Cx26 protein expression and higher grading of tumors was found in whole tumor samples (p =0.028) but no statistically significant correlations could be observed with tumor stage, tumor size and node status. In squamous cell carcinoma, tumors with higher stage and grading were linked to higher expression of Cx26 (p = 0.015 and 0.017, respectively). To explore the mechanism responsible for the downregulation of Cx26, we treated 2 lung cancer cell lines H2170 and H226 with the demethylation agent 5-aza-2'-deoxycytidine and found the reexpression of Cx26 mRNA. Methylation status of these 2 cell lines was further analyzed by PCR amplification of bisulfite modified DNA and sequencing. A heterogeneous methylation pattern turned out. Our results suggest the inactivation of Cx26 in lung cancer may be explained by promoter methylation. PMID:15386363

  12. An alternatively spliced surfactant protein B mRNA in normal human lung: disease implication.

    PubMed Central

    Lin, Z; Wang, G; Demello, D E; Floros, J

    1999-01-01

    We identified an alternatively-spliced surfactant protein B (SP-B) mRNA from normal human lung with a 12 nt deletion at the beginning of exon 8. This deletion causes a loss of four amino acids in the SP-B precursor protein. Sequence comparison of the 3' splice sites reveals only one difference in the frequency of U/C in the 11 predominantly-pyrimidine nucleotide tract, 73% for the normal and 45% for the alternatively-spliced SP-B mRNA (77-99% for the consensus sequence). Analysis of SP-B mRNA in lung indicates that the abundance of the alternatively-spliced form is very low and varies among individuals. Although the relative abundance of the deletion form of SP-B mRNA remains constant among normal lungs, it is found with relatively higher abundance in the lungs of some individuals with diseases such as congenital alveolar proteinosis, respiratory distress syndrome, bronchopulmonary dysplasia, alveolar capillary dysplasia and hypophosphatasia. This observation points to the possibility that the alternative splicing is a potential regulatory mechanism of SP-B and may play a role in the pathogenesis of disease under certain circumstances. PMID:10493923

  13. Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage.

    PubMed Central

    Hunninghake, G. W.; Gadek, J. E.; Kawanami, O.; Ferrans, V. J.; Crystal, R. G.

    1979-01-01

    Bronchoalveolar lavage is an invaluable means of accurately evaluating the inflammatory and immune processes of the human lung. Although lavage recovers only those cells and proteins present on the epithelial surface of the lower respiratory tract, comparison with open lung biopsies shows that these constituents are representative of the inflammatory and immune systems of the alveolar structures. With the use of these techniques, sufficient materials are obtained from normal individuals to allow characterization of not only the types of cells and proteins present but their functions as well. Such observations have been useful in defining the inflammatory and immune capabilities of the normal lung and provide a basis for the study of lung disease. Lavage methods have been used to characterize inflammatory and immune processes of the lower respiratory tract in destructive, infectious, neoplastic, and interstitial disorders. From the data already acquired, it is apparent that bronchoalveolar lavage will yield major insights into the pathogenesis, staging, and therapy decisions involved in these disorders. (Am J Pathol 97:149--206, 1979). Images Figure 9 Figure 1 Figure 2 Figure 10 Figure 7 Figure 8 Figure 4 Figure 5 Figure 6 Figure 3 PMID:495693

  14. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer

    PubMed Central

    Eruslanov, Evgeniy B.; Bhojnagarwala, Pratik S.; Quatromoni, Jon G.; Stephen, Tom Li; Ranganathan, Anjana; Deshpande, Charuhas; Akimova, Tatiana; Vachani, Anil; Litzky, Leslie; Hancock, Wayne W.; Conejo-Garcia, José R.; Feldman, Michael; Albelda, Steven M.; Singhal, Sunil

    2014-01-01

    Infiltrating inflammatory cells are highly prevalent within the tumor microenvironment and mediate many processes associated with tumor progression; however, the contribution of specific populations remains unclear. For example, the nature and function of tumor-associated neutrophils (TANs) in the cancer microenvironment is largely unknown. The goal of this study was to provide a phenotypic and functional characterization of TANs in surgically resected lung cancer patients. We found that TANs constituted 5%–25% of cells isolated from the digested human lung tumors. Compared with blood neutrophils, TANs displayed an activated phenotype (CD62LloCD54hi) with a distinct repertoire of chemokine receptors that included CCR5, CCR7, CXCR3, and CXCR4. TANs produced substantial quantities of the proinflammatory factors MCP-1, IL-8, MIP-1α, and IL-6, as well as the antiinflammatory IL-1R antagonist. Functionally, both TANs and neutrophils isolated from distant nonmalignant lung tissue were able to stimulate T cell proliferation and IFN-γ release. Cross-talk between TANs and activated T cells led to substantial upregulation of CD54, CD86, OX40L, and 4-1BBL costimulatory molecules on the neutrophil surface, which bolstered T cell proliferation in a positive-feedback loop. Together our results demonstrate that in the earliest stages of lung cancer, TANs are not immunosuppressive, but rather stimulate T cell responses. PMID:25384214

  15. Phenobarbital increases DNA adduct and metabolites formed by ochratoxin A: role of CYP 2C9 and microsomal glutathione-S-transferase.

    PubMed

    El Adlouni, C; Pinelli, E; Azémar, B; Zaoui, D; Beaune, P; Pfohl-Leszkowicz, A

    2000-01-01

    Ochratoxin A (OTA), a mycotoxin that induces nephrotoxicity and urinary tract tumors, is genotoxic and can be metabolized not only by different cytochromes P450 (CYP) but also by peroxidases involved in the arachidonic cascade, although the exact nature of the metabolites involved in the genotoxic process is still unknown. In order to establish the relation between OTA genotoxicity and the formation of metabolites, we chose three experimental models: kidney microsomes from rabbit, human bronchial epithelial cells, and microsomes from yeast that specifically express the human cytochrome P450 2C9 or 2B6 genes. OTA-DNA adducts were analyzed by (32)P postlabeling and the OTA derivatives formed were isolated by HPLC after incubation of OTA in the presence of: (1) kidney microsomes from rabbit pretreated or not with phenobarbital (PB); (2) human pulmonary epithelial cells simultaneously pretreated (or not) with PB alone or in the presence of ethacrynic acid (EA); (3) microsomes expressing CYP 2B6 and 2C9. PB pretreatment significantly increased DNA adducts formed after OTA treatment, both in the presence of kidney microsomes and bronchial epithelial cells, and induced the formation of new adducts. Ethacrynic acid, which inhibits microsomal glutathione-S-transferase, reduced DNA adduct level. DNA adducts were detected when OTA were incubated with microsomes expressing human CYP 2C9 but not with those expressing CYP 2B6. Several metabolites detected by HPLC were increased after PB treatment. Some of them could be related to DNA-adduct formation. In conclusion, OTA biotransformation, enhanced by PB pretreatment, increased DNA-adduct formation through pathways involving microsomal glutathion-S-transferase and CYP 2C9. PMID:10712746

  16. Free radical metabolism of ethanol by deermouse microsomes

    SciTech Connect

    Knecht, K.T.; Thurman, R.G.; Mason, R.P. NIEHS, Research Triangle Park, NC )

    1991-03-15

    One-electron oxidation of ethanol to the {alpha}-hydroxyethyl radical by rat liver microsomes was previously found to be cytochrome P-450-dependent in the presence of Desferal. With deermouse microsomes, the formation of {alpha}-hydroxyethyl radical from ethanol was demonstrated with the electron paramagnetic resonance (EPR) technique of spin trapping. Free radical formation was enhanced by pretreatment of the animals with ethanol. Boiling of the microsomes, omission of NADPH, or addition of superoxide dismutase abolished free radical formation, but addition of catalase or azide had no affect. Free radicals from the hydroxyl radical scavenger formate were detected when ethanol in the incubation medium was replaced by formate. When equal concentrations of ethanol and formate were added to microsomes, the intensity of each radical adduct signal was decreased by half. Thus, it is concluded that free radical formation in deermouse microsomes is mediated by a P-450-derived, superoxide-dependent oxidizing species.

  17. Carotenoid incorporation into microsomes: yields, stability and membrane dynamics

    NASA Astrophysics Data System (ADS)

    Socaciu, Carmen; Jessel, Robert; Diehl, Horst A.

    2000-12-01

    The carotenoids β-carotene (BC), lycopene (LYC), lutein (LUT), zeaxanthin (ZEA), canthaxanthin (CTX) and astaxanthin (ASTA) have been incorporated into pig liver microsomes. Effective incorporation concentrations in the range of about 1-6 nmol/mg microsomal protein were obtained. A stability test at room temperature revealed that after 3 h BC and LYC had decayed totally whereas, gradually, CTX (46%), LUT (21%), ASTA (17%) and ZEA (5%) decayed. Biophysical parameters of the microsomal membrane were changed hardly by the incorporation of carotenoids. A small rigidification may occur. Membrane anisotropy seems to offer only a small tolerance for incorporation of carotenoids and seems to limit the achievable incorporation concentrations of the carotenoids into microsomes. Microsomes instead of liposomes should be preferred as a membrane model to study mutual effects of carotenoids and membrane dynamics.

  18. Aluminum is More Cytotoxic than Lunar Dust in Human Skin and Lung Fibroblasts

    NASA Technical Reports Server (NTRS)

    Hammond, D.; Shehata, T.; Hammond, D.; Shehata, T.; Wise, J.P.; Martino, J; Wise, J.P.; Wise, J.P.

    2009-01-01

    NASA plans to build a permanent space station on the moon to explore its surface. The surface of the moon is covered in lunar dust, which consists of fine particles that contain silicon, aluminum and titanium, among others. Because this will be a manned base, the potential toxicity of this dust has to be studied. Also, toxicity standards for potential exposure have to be set. To properly address the potential toxicity of lunar dust we need to understand the toxicity of its individual components, as well as their combined effects. In order to study this we compared NASA simulant JSC-1AVF (volcanic ash particles), that simulates the dust found on the moon, to aluminum, the 3rd most abundant component in lunar dust. We tested the cytotoxicity of both compounds on human lung and skin fibroblasts (WTHBF-6 and BJhTERT cell lines, respectively). Aluminum oxide was more cytotoxic than lunar dust to both cell lines. In human lung fibroblasts 5, 10 and 50 g/sq cm of aluminum oxide induced 85%, 61% and 30% relative survival, respectively. For human skin fibroblasts the same concentrations induced 58%, 41% and 58% relative survival. Lunar dust was also cytotoxic to both cell lines, but its effects were seen at higher concentrations: 50, 100, 200 and 400 g/sq cm of lunar dust induced a 69%, 46%, 35% and 30% relative survival in the skin cells and 53%, 16%, 8% and 2% on the lung cells. Overall, for both compounds, lung cells were more sensitive than skin cells. This work was supported by a NASA EPSCoR grant through the Maine Space Grant Consortium (JPW), the Maine Center for Toxicology and Environmental Health., a Fulbright Grant (JM) and a Delta Kappa Gamma Society International World Fellowship (JM).

  19. Silica induces NLRP3 inflammasome activation in human lung epithelial cells

    PubMed Central

    2013-01-01

    Background In myeloid cells the inflammasome plays a crucial role in innate immune defenses against pathogen- and danger-associated patterns such as crystalline silica. Respirable mineral particles impinge upon the lung epithelium causing irreversible damage, sustained inflammation and silicosis. In this study we investigated lung epithelial cells as a target for silica-induced inflammasome activation. Methods A human bronchial epithelial cell line (BEAS-2B) and primary normal human bronchial epithelial cells (NHBE) were exposed to toxic but nonlethal doses of crystalline silica over time to perform functional characterization of NLRP3, caspase-1, IL-1β, bFGF and HMGB1. Quantitative RT-PCR, caspase-1 enzyme activity assay, Western blot techniques, cytokine-specific ELISA and fibroblast (MRC-5 cells) proliferation assays were performed. Results We were able to show transcriptional and translational upregulation of the components of the NLRP3 intracellular platform, as well as activation of caspase-1. NLRP3 activation led to maturation of pro-IL-1β to secreted IL-1β, and a significant increase in the unconventional release of the alarmins bFGF and HMGB1. Moreover, release of bFGF and HMGB1 was shown to be dependent on particle uptake. Small interfering RNA experiments using siNLRP3 revealed the pivotal role of the inflammasome in diminished release of pro-inflammatory cytokines, danger molecules and growth factors, and fibroblast proliferation. Conclusion Our novel data indicate the presence and functional activation of the NLRP3 inflammasome by crystalline silica in human lung epithelial cells, which prolongs an inflammatory signal and affects fibroblast proliferation, mediating a cadre of lung diseases. PMID:23402370

  20. Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration

    PubMed Central

    Peyrot, Donald A.; Lefort, Claire; Steffenhagen, Marie; Mansuryan, Tigran; Ducourthial, Guillaume; Abi-Haidar, Darine; Sandeau, Nicolas; Vever-Bizet, Christine; Kruglik, Sergei G.; Thiberville, Luc; Louradour, Frédéric; Bourg-Heckly, Geneviève

    2012-01-01

    Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle. PMID:22567579

  1. Identification of gene fusions from human lung cancer mass spectrometry data

    PubMed Central

    2013-01-01

    Background Tandem mass spectrometry (MS/MS) technology has been applied to identify proteins, as an ultimate approach to confirm the original genome annotation. To be able to identify gene fusion proteins, a special database containing peptides that cross over gene fusion breakpoints is needed. Methods It is impractical to construct a database that includes all possible fusion peptides originated from potential breakpoints. Focusing on 6259 reported and predicted gene fusion pairs from ChimerDB 2.0 and Cancer Gene Census, we for the first time created a database CanProFu that comprehensively annotates fusion peptides formed by exon-exon linkage between these pairing genes. Results Applying this database to mass spectrometry datasets of 40 human non-small cell lung cancer (NSCLC) samples and 39 normal lung samples with stringent searching criteria, we were able to identify 19 unique fusion peptides characterizing gene fusion events. Among them 11 gene fusion events were only found in NSCLC samples. And also, 4 alternative splicing events were characterized in cancerous or normal lung samples. Conclusions The database and workflow in this work can be flexibly applied to other MS/MS based human cancer experiments to detect gene fusions as potential disease biomarkers or drug targets. PMID:24564548

  2. Interaction of Mycoplasma pneumoniae with human lung fibroblasts: characterization of the in vitro model.

    PubMed Central

    Gabridge, M G; Taylor-Robinson, D; Davies, H A; Dourmashkin, R R

    1979-01-01

    The interaction of pathogenic Mycoplasma pneumoniae and host cells was studied in cell cultures of MRC-5 human lung fibroblasts. A comparison of results obtained with fibroblasts in a monolayer format and with hamster tracheal explant cultures indicated that the former can bind significantly larger numbers of mycoplasmas. In addition, the attachment was 96% specific, that is, mediated through a neuraminidase-sensitive receptor on the host cell. Uptake of mycoplasmas was directly related to the number of mycoplasma cells present in the inoculum, and attachment was virtually complete within a 30-min period at 37 degrees C. High doses of M. pneumoniae induced a marked cytopathic effect, whereas doses of less than or equal to 10(6) colony-forming units per ml produced grossly observable cell damage that was moderate and variable. Transmission electron microscopy studies indicated that attachment of M. pneumoniae to the surface of lung fibroblasts occurred with the specialized terminal structure or binding site oriented closest to the epithelial cell surface. The filamentous mycoplasma cells were spatially arranged in several configurations and were not limited to a vertical orientation. The advantages and disadvantages of human lung fibroblast monolayer cultures, in reference to other in vitro models are discussed. A new mycoplasma agar medium (G-200 agar) with a defined tissue culture base and 10% horse serum is also described. Images PMID:113348

  3. TRAF6 is an amplified oncogene bridging the RAS and NF-κB pathways in human lung cancer

    PubMed Central

    Starczynowski, Daniel T.; Lockwood, William W.; Deléhouzée, Sophie; Chari, Raj; Wegrzyn, Joanna; Fuller, Megan; Tsao, Ming-Sound; Lam, Stephen; Gazdar, Adi F.; Lam, Wan L.; Karsan, Aly

    2011-01-01

    Somatic mutations and copy number alterations (as a result of deletion or amplification of large portions of a chromosome) are major drivers of human lung cancers. Detailed analysis of lung cancer–associated chromosomal amplifications could identify novel oncogenes. By performing an integrative cytogenetic and gene expression analysis of non–small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) cell lines and tumors, we report here the identification of a frequently recurring amplification at chromosome 11 band p13. Within this region, only TNF receptor–associated factor 6 (TRAF6) exhibited concomitant mRNA overexpression and gene amplification in lung cancers. Inhibition of TRAF6 in human lung cancer cell lines suppressed NF-κB activation, anchorage-independent growth, and tumor formation. In these lung cancer cell lines, RAS required TRAF6 for its oncogenic capabilities. Furthermore, TRAF6 overexpression in NIH3T3 cells resulted in NF-κB activation, anchorage-independent growth, and tumor formation. Our findings show that TRAF6 is an oncogene that is important for RAS-mediated oncogenesis and provide a mechanistic explanation for the previously apparent importance of constitutive NF-κB activation in RAS-driven lung cancers. PMID:21911935

  4. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  5. Atypical Protein Kinase Cι Expression and Aurothiomalate Sensitivity in Human Lung Cancer Cells

    PubMed Central

    Regala, Roderick P.; Thompson, E. Aubrey; Fields, Alan P.

    2008-01-01

    The anti-rheumatoid agent aurothiomalate (ATM) is a potent inhibitor of oncogenic PKCι ATM inhibits non-small lung cancer (NSCLC) growth by binding PKCι and blocking activation of a PKCι-Par6-Rac1-Pak-Mek 1,2-Erk 1,2 signaling pathway. Here, we assessed the growth inhibitory activity of ATM in a panel of human cell lines representing major lung cancer subtypes. ATM inhibited anchorage-independent growth in all lines tested with IC50s ranging from ~300 nM – >100 µM. ATM sensitivity correlates positively with expression of PKCι and Par6, but not with the PKCι binding protein p62, or the proposed targets of ATM in rheumatoid arthritis (RA), thioredoxin reductase 1 or 2 (TrxR1 and TrxR2). PKCι expression profiling revealed that a significant subset of primary NSCLC tumors express PKCι at or above the level associated with ATM sensitivity. ATM sensitivity is not associated with general sensitivity to the cytotoxic agents cis-platin, placitaxel and gemcitabine. ATM inhibits tumorigenicity of both sensitive and insensitive lung cell tumors in vivo at plasma drug concentrations achieved in RA patients undergoing ATM therapy. ATM inhibits Mek/Erk signaling and decreases proliferative index without effecting tumor apoptosis or vascularization in vivo. We conclude that ATM exhibits potent anti-tumor activity against major lung cancer subtypes, particularly tumor cells that express high levels of the ATM target PKCι and Par6. Our results indicate that PKCι expression profiling will be useful in identifying lung cancer patients most likely to respond to ATM therapy in an ongoing clinical trial. PMID:18632643

  6. Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer

    PubMed Central

    Marquez-Garban, Diana C.; Mah, Vei; Alavi, Mohammad; Maresh, Erin L.; Chen, Hsiao-Wang; Bagryanova, Lora; Horvath, Steve; Chia, David; Garon, Edward; Goodglick, Lee; Pietras, Richard J.

    2011-01-01

    Lung cancer is the most common cause of cancer mortality in male and female patients in the US. Although it is clear that tobacco smoking is a major cause of lung cancer, about half of all women with lung cancer worldwide are never-smokers. Despite a declining smoking population, the incidence of non-small cell lung cancer (NSCLC), the predominant form of lung cancer, has reached epidemic proportions particularly in women. Emerging data suggest that factors other than tobacco, namely endogenous and exogenous female sex hormones, have a role in stimulating NSCLC progression. Aromatase, a key enzyme for estrogen biosynthesis, is expressed in NSCLC. Clinical data show that women with high levels of tumor aromatase (and high intratumoral estrogen) have worse survival than those with low aromatase. The present and previous studies also reveal significant expression and activity of estrogen receptors (ERα, ERβ) in both extranuclear and nuclear sites in most NSCLC. We now report further on the expression of progesterone receptor (PR) transcripts and protein in NSCLC. PR transcripts were significantly lower in cancerous as compared to non-malignant tissue. Using immunohistochemistry, expression of PR was observed in the nucleus and/or extranuclear compartments in the majority of human tumor specimens examined. Combinations of estrogen and progestins administered in vitro cooperate in promoting tumor secretion of vascular endothelial growth factor and, consequently, support tumor-associated angiogenesis. Further, dual treatment with estradiol and progestin increased the numbers of putative tumor stem/progenitor cells. Thus, ER- and/or PR-targeted therapies may offer new approaches to manage NSCLC. PMID:21600232

  7. Human CD34+ Progenitor Cells Freshly Isolated from Umbilical Cord Blood Attenuate Inflammatory Lung Injury following LPS Challenge

    PubMed Central

    Huang, Xiaojia; Sun, Kai; Zhao, Yidan D.; Vogel, Stephen M.; Song, Yuanling; Mahmud, Nadim; Zhao, You-Yang

    2014-01-01

    Adult stem cell-based therapy is a promising novel approach for treatment of acute lung injury. Here we investigated the therapeutic potential of freshly isolated human umbilical cord blood CD34+ progenitor cells (fCB-CD34+ cells) in a mouse model of acute lung injury. At 3 h post-lipopolysaccharide (LPS) challenge, fCB-CD34+ cells were transplanted i.v. to mice while CD34− cells or PBS were administered as controls in separate cohorts of mice. We observed that fCB-CD34+ cell treatment inhibited lung vascular injury evident by decreased lung vascular permeability. In contrast, CD34− cells had no effects on lung vascular injury. Lung inflammation determined by myeloperoxidase activity, neutrophil sequestration and expression of pro-inflammatory mediators was attenuated in fCB-CD34+ cell-treated mice at 26 h post-LPS challenge compared to PBS or CD34− cell-treated controls. Importantly, lung inflammation in fCB-CD34+ cell-treated mice was returned to normal levels as seen in basal mice at 52 h post-LPS challenge whereas PBS or CD34− cell-treated control mice exhibited persistent lung inflammation. Accordingly, fCB-CD34+ cell-treated mice exhibited a marked increase of survival rate. Employing in vivo 5-bromo-2′-deoxyuridine incorporation assay, we found a drastic induction of lung endothelial proliferation in fCB-CD34+ cell-treated mice at 52 h post-LPS compared to PBS or CD34− cell-treated controls, which contributed to restoration of vascular integrity and thereby inhibition of lung inflammation. Taken together, these data have demonstrated the protective effects of fCB-CD34+ cell on acute lung injury induced by LPS challenge, suggesting fCB-CD34+ cells are an important source of stem cells for the treatment of acute lung injury. PMID:24558433

  8. ER stress and autophagy are involved in the apoptosis induced by cisplatin in human lung cancer cells

    PubMed Central

    SHI, SHAOMIN; TAN, PING; YAN, BINGDI; GAO, RONG; ZHAO, JIANJUN; WANG, JING; GUO, JIA; LI, NING; MA, ZHONGSEN

    2016-01-01

    Cisplatin [cis-diamminedichloroplatinum II (CDDP)] is one of the most classical and effective chemotherapeutic drugs for the treatment of cancers including lung cancer. However, the presence of cisplatin resistance in cancer lowers its curative effect and limits its usage in the clinic. The aim of the present study was to investigate the underlying mechanisms of cisplatin resistance in lung cancer involving endoplasmic reticulum (ER) stress and autophagy. In the present study, we detected the effect of cisplatin on cell viability, ER stress and autophagy in lung cancer cell lines A549 and H460. We also tested the effects of ER stress and autophagy on apoptosis induced by cisplatin. The results showed that cisplatin induced apoptosis, ER stress and autophagy in lung cancer cell lines. In addition, the inhibition of ER stress by 4-phenylbutyric acid (4-PBA) or tauroursodeoxycholic acid sodium (TUDC) enhanced cisplatin-induced apoptosis in the human lung cancer cells. Meanwhile, combination treatment with the autophagic inhibitor 3-methyladenine (3-MA) or chloroquine (CQ) further increased the apoptosis induced by cisplatin in the human lung cancer cells. The present study provides a novel treatment strategy - cisplatin in combination with an autophagic inhibitor or an ER stress inhibitor leads to increased apoptosis in human lung cancer cells. PMID:26985651

  9. ER stress and autophagy are involved in the apoptosis induced by cisplatin in human lung cancer cells.

    PubMed

    Shi, Shaomin; Tan, Ping; Yan, Bingdi; Gao, Rong; Zhao, Jianjun; Wang, Jing; Guo, Jia; Li, Ning; Ma, Zhongsen

    2016-05-01

    Cisplatin [cis-diamminedichloroplatinum II (CDDP)] is one of the most classical and effective chemotherapeutic drugs for the treatment of cancers including lung cancer. However, the presence of cisplatin resistance in cancer lowers its curative effect and limits its usage in the clinic. The aim of the present study was to investigate the underlying mechanisms of cisplatin resistance in lung cancer involving endoplasmic reticulum (ER) stress and autophagy. In the present study, we detected the effect of cisplatin on cell viability, ER stress and autophagy in lung cancer cell lines A549 and H460. We also tested the effects of ER stress and autophagy on apoptosis induced by cisplatin. The results showed that cisplatin induced apoptosis, ER stress and autophagy in lung cancer cell lines. In addition, the inhibition of ER stress by 4-phenylbutyric acid (4-PBA) or tauroursodeoxycholic acid sodium (TUDC) enhanced cisplatin-induced apoptosis in the human lung cancer cells. Meanwhile, combination treatment with the autophagic inhibitor 3-methyladenine (3-MA) or chloroquine (CQ) further increased the apoptosis induced by cisplatin in the human lung cancer cells. The present study provides a novel treatment strategy - cisplatin in combination with an autophagic inhibitor or an ER stress inhibitor leads to increased apoptosis in human lung cancer cells. PMID:26985651

  10. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    SciTech Connect

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  11. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation

    PubMed Central

    2014-01-01

    Background We have previously reported the presence of novel subpopulations of pulmonary monocyte-like cells (PMLC) in the human lung; resident PMLC (rPMLC, HLA-DR+CD14++CD16+cells) and inducible PMLC (iPMLC, HLA-DR+CD14++CD16- cells). iPMLC are significantly increased in bronchoalveolar lavage (BAL) fluid following inhalation of lipopolysaccharide (LPS). We have carried out the first functional evaluation of PMLC subpopulations in the inflamed lung, following the isolation of these cells, and other lineages, from BAL fluid using novel and complex protocols. Methods iPMLC, rPMLC, alveolar macrophages (AM), neutrophils, and regulatory T cells were quantified in BAL fluid of healthy subjects at 9 hours post-LPS inhalation (n = 15). Cell surface antigen expression by iPMLC, rPMLC and AM and the ability of each lineage to proliferate and to undergo phagocytosis were investigated using flow cytometry. Basal cytokine production by iPMLC compared to AM following their isolation from BAL fluid and the responsiveness of both cell types following in vitro treatment with the synthetic corticosteroid dexamethasone were assessed. Results rPMLC have a significantly increased expression of mature macrophage markers and of the proliferation antigen Ki67, compared to iPMLC. Our cytokine data revealed a pro-inflammatory, corticosteroid-resistant phenotype of iPMLC in this model. Conclusions These data emphasise the presence of functionally distinct subpopulations of the monocyte/macrophage lineage in the human lung in experimental acute lung inflammation. PMID:24684897

  12. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway

    PubMed Central

    Holcomb, Nathaniel; Goswami, Mamta; Han, Sung Gu; Clark, Samuel; Orren, David K.; Gairola, C. Gary; Mellon, Isabel

    2016-01-01

    Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER) pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC), a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6–4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6–4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke. PMID:27391141

  13. Global DNA methylation and PTEN hypermethylation alterations in lung tissues from human silicosis

    PubMed Central

    Zhang, Xianan; Jia, Xiaowei; Mei, Liangying; Zheng, Min; Yu, Chen

    2016-01-01

    Background Silicosis is a respiratory disease caused by long-term silica dust exposure. Our previous study has demonstrated that silica mediates the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/serine or threonine kinase (AKT)/mitogen-activated protein kinases (MAPK)/AP-1 pathway in human embryo lung fibroblasts (HELFs). The purpose of this study is to identify genome-wide aberrant DNA methylation profiling in lung tissues from silicosis patients. Methods We performed Illumina Human Methylation 450K Beadchip arrays to investigate the methylation alteration in formalin-fixed, paraffin-embedded (FFPE) lung specimens, immunohistochemistry to detect the level of c-Jun and PTEN proteins; methylation specific PCR (MS-PCR) to identify PTEN and c-Jun promoter methylation in HELFs. Results We found 86,770 CpG sites and 79,660 CpG sites significantly differed in methylation status in early-stage and advanced-stage compared with GEO normal lung methylation data. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the methylated status of MAPK signaling pathway was considered changed. The number of PTEN and c-Jun CpG promoter methylated-sites were increased in advanced-stage. Early-stage showed the positive expression of c-Jun and PTEN protein and negative or mild expression in advanced-stage. PTEN promoter was no differentially methylated and c-Jun promoter differed at 12 and 24 h in HELFs. Conclusions Abnormal DNA methylation on genome-scale was implicated in silicosis, and PTEN promoter hypermethylation might be associated with decrease of PTEN protein.

  14. Effect of cadmium on the expression levels of interleukin-1α and interleukin-10 cytokines in human lung cells

    PubMed Central

    ODEWUMI, CAROLINE; LATINWO, LEKAN M.; SINCLAIR, ANDRE; BADISA, VEERA L.D.; ABDULLAH, AHKINYALA; BADISA, RAMESH B.

    2015-01-01

    Cadmium is an environmentally hazardous metal, which causes toxicity in humans. Inhalation of cigarette smoke and industrial fumes containing cadmium are sources of cadmium exposure. It is responsible for the malfunction of various organs, leading to disease particularly in the lungs, liver and kidneys. In the present study, the effect of cadmium chloride (CdCl2) on cell viability, and the expression levels of interleukin (IL)-1α and IL-10 cytokines at various concentrations and incubation durations were assessed in MRC-9 human normal lung and A549 human lung cancer cells to elucidate the mechanism of cadmium toxicity. Cell viability was measured using a crystal violet dye binding assay. The expression levels of the cytokines were measured by cytokine specific enzyme-linked immunosorbent assay kits. The viability assay results revealed higher sensitivity of the A549 lung cancer cells to CdCl2 compared with the normal MRC-9 lung cells. In the normal MRC-9 lung cells, higher expression levels of the cytokines were observed at the lowest CdCl2 concentration at a shorter exposure time compared with the lung cancer cells. Higher levels of the cytokines were observed in the A549 lung cancer cells at all other times and concentrations compared with the MRC-9 cells, indicating higher levels of inflammation. The cytokine levels were reduced at higher CdCl2 concentrations and longer exposure durations, demonstrating the toxic effect of cadmium. The results indicated that CdCl2 affected the expression levels of the cytokines and led to cytotoxicity in human lung cells, and suggested that compounds which reduce inflammation may prevent cadmium toxicity. PMID:26397147

  15. Pyrogallol induces G2-M arrest in human lung cancer cells and inhibits tumor growth in an animal model.

    PubMed

    Yang, Chih-Jen; Wang, Chuan-Sheng; Hung, Jen-Yu; Huang, Hurng-Wern; Chia, Yi-Chen; Wang, Pei-Hui; Weng, Ching-Feng; Huang, Ming-Shyan

    2009-11-01

    Pyrogallol, a catechin compound, is an active component of Emblica officinalis extracts and has an anti-proliferative effect on some human cancer cell lines. In our preliminary study, pyrogallol had highly cytotoxic effect on human lung cancer cell lines and less effect on human bronchial epithelium cell line. This study was performed to investigate the beneficial effect of pyrogallol on human lung cancer cell lines - H441 (lung adenocarcinoma) and H520 (lung squamous cell carcinoma). The MTT (cytotoxic) data showed the inhibition growth of lung cancer cells followed pyrogallol treatment. The cell cycle of lung cancer cells was arrested in G2/M phase using flow cytometry. Using Western blot analysis, the cell cycle related proteins - cyclin B1 and Cdc25c were decreased in a time-dependent manner and the phosphorylated Cdc2 (Thr14) was increased within 4h pyrogallol treatment. Moreover, the higher cleavage of poly (ADP)-ribose polymerase (PARP), the increased of Bax concurrent with the decreased of Bcl-2 indicated that pyrogallol treatment resulted in apoptosis of lung cancer cells. The cell apoptosis was also directly demonstrated using Annexin V-FITC and TUNEL stain. Additionally, the tumoricidal effect of pyrogallol was measured using a xenograft nude mice model. After 5 weeks of pyrogallol treatment could cause the regression of tumor. Taken in vitro and in vivo studies together, these results suggest that pyrogallol can be developed as a promising anti-lung cancer drug particular for the non-small cell lung cancer (NSCLC). PMID:19233505

  16. The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report.

    PubMed

    2000-01-01

    On 23-24 March 1998, the International Life Sciences Institute (ILSI) Risk Science Institute convened a workshop entitled "Relevance of the Rat Lung Response to Particle Overload for Human Risk Assessment." The workshop addressed the numerous study reports of lung tumors in rats resulting from chronic inhalation exposures to poorly soluble, nonfibrous particles of low acute toxicity and not directly genotoxic. These poorly soluble particles, indicated by the acronym PSPs (e.g., carbon black, coal dust, diesel soot, nonasbestiform talc, and titanium dioxide), elicit tumors in rats when deposition overwhelms the clearance mechanisms of the lung resulting in a condition referred to as "overload." These PSPs have been shown not to induce tumors in mice and hamsters, and the available data in humans are consistently negative. The objectives were twofold: (1) to provide guidance for risk assessment on the interpretation of neoplastic and nonneoplastic responses of the rat lung to PSPs; and (2) to identify important data gaps in our understanding of the lung responses of rats and other species to PSPs. Utilizing the five critical reviews of relevant literature that follow herein and the combined expertise and experience of the 30 workshop participants, a number of questions were addressed. The consensus views of the workshop participants are presented in this report. Because it is still not known with certainty whether high lung burdens of PSPs can lead to lung cancer in humans via mechanisms similar to those of the rat, in the absence of mechanistic data to the contrary it must be assumed that the rat model can identify potential carcinogenic hazards to humans. Since the apparent responsiveness of the rat model at overload is dependent on coexistent chronic active inflammation and cell proliferation, at lower lung doses where chronic active inflammation and cell proliferation are not present, no lung cancer hazard is anticipated. PMID:10715616

  17. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells.

    PubMed

    Zhang, Hui; Kho, Alvin T; Wu, Qing; Halayko, Andrew J; Limbert Rempel, Karen; Chase, Robert P; Sweezey, Neil B; Weiss, Scott T; Kaplan, Feige

    2016-09-01

    Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoid-regulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymal-epithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/- mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymal-epithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)-induced human fetal lung fibroblast line (MRC5). LPS-induced upregulation of the proinflammatory cytokines IL-8 and CCL2 was exacerbated in MRC5-CRISPLD2(knockdown) cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of IL-8, IL-6, CCL2. LPS-stimulated expression of proinflammatory mediators by human lung epithelial HAEo- cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLF-CRISPLD2(knockdown) suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood. PMID:27597766

  18. Determination of liver microsomal glucose-6-phosphatase.

    PubMed

    Zak, B; Epstein, E; Baginski, E S

    1977-01-01

    A procedure for the determination of liver microsomal glucose-6-phosphatase is described. Homogenization and ultracentrifrigation were used to prepare a precipitate whose character was defined by monitoring the desire enzyme activity which serves as a marker. Activity of the enzyme was determined by means of a sensitive colorimetric reaction for the product, inorganic phosphate. Non-enzymatic hydrolysis problems with the substrate are minimized in this procedure by the masking action of citrate. The final heteropoly blue color appears to be considerably sensitized by interaction of phosphomolybdous ion with arsenite. The stability of the relatively labile enzyme was ensured by chelating any metals present with ethylene diamine tetraacetic acid. The overall results obtained by the procedure appear to be useful as an aid in the diagnosis of Type I glycogenosis, a glycogen storage disease called Von Gierke's disease. PMID:192125

  19. Chromosomal and Genetic Analysis of a Human Lung Adenocarcinoma Cell Line OM

    PubMed Central

    Li, Yong-Wu; Bai, Lin; Dai, Lyu-Xia; He, Xu; Zhou, Xian-Ping

    2016-01-01

    Background: Lung cancer has become the leading cause of death in many regions. Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes. The aim of this study was to investigate the chromosome and gene alterations in the human lung adenocarcinoma cell line OM. Methods: We used Giemsa banding and multiplex fluorescence in situ hybridization focusing on the human lung adenocarcinoma cell line OM to analyze its chromosome alterations. In addition, the gains and losses in the specific chromosome regions were identified by comparative genomic hybridization (CGH) and the amplifications of cancer-related genes were also detected by polymerase chain reaction (PCR). Results: We identified a large number of chromosomal numerical alterations on all chromosomes except chromosome X and 19. Chromosome 10 is the most frequently involved in translocations with six different interchromosomal translocations. CGH revealed the gains on chromosome regions of 3q25.3-28, 5p13, 12q22-23.24, and the losses on 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33 and 17p13.1-13.3. And PCR showed the amplification of genes: Membrane metalloendopeptidase (MME), sucrase-isomaltase (SI), butyrylcholinesterase (BCHE), and kininogen (KNG). Conclusions: The lung adenocarcinoma cell line OM exhibited multiple complex karyotypes, and chromosome 10 was frequently involved in chromosomal translocation, which may play key roles in tumorigenesis. We speculated that the oncogenes may be located at 3q25.3-28, 5p13, 12q22-23.24, while tumor suppressor genes may exist in 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33, and 17p13.1-13.3. Moreover, at least four genes (MME, SI, BCHE, and KNG) may be involved in the human lung adenocarcinoma cell line OM. PMID:26879013

  20. Development of an Ex Vivo Tissue Platform To Study the Human Lung Response to Coxiella burnetii.

    PubMed

    Graham, Joseph G; Winchell, Caylin G; Kurten, Richard C; Voth, Daniel E

    2016-05-01

    Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute debilitating flu-like illness that can also present as chronic endocarditis. Disease typically occurs following inhalation of contaminated aerosols, resulting in an initial pulmonary infection. In human cells, C. burnetii generates a replication niche termed the parasitophorous vacuole (PV) by directing fusion with autophagosomes and lysosomes. C. burnetii requires this lysosomal environment for replication and uses a Dot/Icm type IV secretion system to generate the large PV. However, we do not understand how C. burnetii evades the intracellular immune surveillance that triggers an inflammatory response. We recently characterized human alveolar macrophage (hAM) infection in vitro and found that avirulent C. burnetii triggers sustained interleukin-1β (IL-1β) production. Here, we evaluated infection of ex vivo human lung tissue, defining a valuable approach for characterizing C. burnetii interactions with a human host. Within whole lung tissue, C. burnetii preferentially replicated in hAMs. Additionally, IL-1β production correlated with formation of an apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC)-dependent inflammasome in response to infection. We also assessed potential activation of a human-specific noncanonical inflammasome and found that caspase-4 and caspase-5 are processed during infection. Interestingly, although inflammasome activation is closely linked to pyroptosis, lytic cell death did not occur following C. burnetii-triggered inflammasome activation, indicating an atypical response after intracellular detection. Together, these studies provide a novel platform for studying the human innate immune response to C. burnetii. PMID:26902725

  1. Human lung cancer cells express functionally active Toll-like receptor 9

    PubMed Central

    Droemann, Daniel; Albrecht, Dirk; Gerdes, Johannes; Ulmer, Artur J; Branscheid, Detlev; Vollmer, Ekkehard; Dalhoff, Klaus; Zabel, Peter; Goldmann, Torsten

    2005-01-01

    Background CpG-oligonucleotides (CpG-ODN), which induce signaling through Toll-like receptor 9 (TLR9), are currently under investigation as adjuvants in therapy against infections and cancer. CpG-ODN function as Th-1 adjuvants and are able to activate dendritic cells. In humans TLR9 has been described to be strongly expressed in B-lymphocytes, monocytes, plasmacytoid dendritic cells and at low levels in human respiratory cells. We determined whether a direct interaction of bacterial DNA with the tumor cells themselves is possible and investigated the expression and function of TLR9 in human malignant solid tumors and cell lines. TLR9 expression by malignant tumor cells, would affect treatment approaches using CpG-ODN on the one hand, and, on the other hand, provide additional novel information about the role of tumor cells in tumor-immunology. Methods The expression of TLR9 in HOPE-fixed non-small lung cancer, non-malignant tissue and tumor cell lines was assessed using immunohistochemistry, confocal microscopy, in situ hybridization, RT-PCR and DNA-sequencing. Apoptosis and chemokine expression was detected by FACS analysis and the Bio-Plex system. Results We found high TLR9 signal intensities in the cytoplasm of tumor cells in the majority of lung cancer specimens as well as in all tested tumor cell lines. In contrast to this non-malignant lung tissues showed only sporadically weak expression. Stimulation of HeLa and A549 cells with CpG-ODN induced secretion of monocyte chemoattractant protein-1 and reduction of spontaneous and tumor necrosis factor-alpha induced apoptosis. Conclusions Here we show that TLR9 is expressed in a selection of human lung cancer tissues and various tumor cell lines. The expression of functionally active TLR9 in human malignant tumors might affect treatment approaches using CpG-ODN and shows that malignant cells can be regarded as active players in tumor-immunology. PMID:15631627