Science.gov

Sample records for human lupus autoimmunity

  1. Autoimmunity induced by human cytomegalovirus in patients with systemic lupus erythematosus

    PubMed Central

    2012-01-01

    Human cytomegalovirus is a common herpesvirus that is linked to autoimmunity, especially in genetically predisposed persons. The article by Hsieh and colleagues in a previous issue of Arthritis Research & Therapy suggests that a C-terminal peptide of the human cytomegalovirus protein pp65 is highly immunogenic in patients with systemic lupus erythematosus and that antibodies against this peptide cross-react with nuclear proteins and double-stranded DNA, which are highly frequent autoantibodies in systemic lupus erythematosus patients. These observations highlight the fact that immunization with one small cytomegalovirus-specific peptide results in multiple autoreactive antibodies, probably through molecular mimicry and epitope spreading, in genetically predisposed persons. PMID:22277352

  2. Glomerular autoimmune multicomponents of human lupus nephritis in vivo: α-enolase and annexin AI.

    PubMed

    Bruschi, Maurizio; Sinico, Renato Alberto; Moroni, Gabriella; Pratesi, Federico; Migliorini, Paola; Galetti, Maricla; Murtas, Corrado; Tincani, Angela; Madaio, Michael; Radice, Antonella; Franceschini, Franco; Trezzi, Barbara; Bianchi, Laura; Giallongo, Agata; Gatti, Rita; Tardanico, Regina; Scaloni, Andrea; D'Ambrosio, Chiara; Carnevali, Maria Luisa; Messa, Piergiorgio; Ravani, Pietro; Barbano, Giancarlo; Bianco, Beatrice; Bonanni, Alice; Scolari, Francesco; Martini, Alberto; Candiano, Giovanni; Allegri, Landino; Ghiggeri, Gian Marco

    2014-11-01

    Renal targets of autoimmunity in human lupus nephritis (LN) are unknown. We sought to identify autoantibodies and glomerular target antigens in renal biopsy samples from patients with LN and determine whether the same autoantibodies can be detected in circulation. Glomeruli were microdissected from biopsy samples of 20 patients with LN and characterized by proteomic techniques. Serum samples from large cohorts of patients with systemic lupus erythematosus (SLE) with and without LN and other glomerulonephritides were tested. Glomerular IgGs recognized 11 podocyte antigens, with reactivity varying by LN pathology. Notably, IgG2 autoantibodies against α-enolase and annexin AI were detected in 11 and 10 of the biopsy samples, respectively, and predominated over other autoantibodies. Immunohistochemistry revealed colocalization of α-enolase or annexin AI with IgG2 in glomeruli. High levels of serum anti-α-enolase (>15 mg/L) IgG2 and/or anti-annexin AI (>2.7 mg/L) IgG2 were detected in most patients with LN but not patients with other glomerulonephritides, and they identified two cohorts: patients with high anti-α-enolase/low anti-annexin AI IgG2 and patients with low anti-α-enolase/high anti-annexin AI IgG2. Serum levels of both autoantibodies decreased significantly after 12 months of therapy for LN. Anti-α-enolase IgG2 recognized specific epitopes of α-enolase and did not cross-react with dsDNA. Furthermore, nephritogenic monoclonal IgG2 (clone H147) derived from lupus-prone MRL-lpr/lpr mice recognized human α-enolase, suggesting homology between animal models and human LN. These data show a multiantibody composition in LN, where IgG2 autoantibodies against α-enolase and annexin AI predominate in the glomerulus and can be detected in serum. PMID:24790181

  3. Glomerular Autoimmune Multicomponents of Human Lupus Nephritis In Vivo: α-Enolase and Annexin AI

    PubMed Central

    Bruschi, Maurizio; Sinico, Renato Alberto; Moroni, Gabriella; Pratesi, Federico; Migliorini, Paola; Galetti, Maricla; Murtas, Corrado; Tincani, Angela; Madaio, Michael; Radice, Antonella; Franceschini, Franco; Trezzi, Barbara; Bianchi, Laura; Giallongo, Agata; Gatti, Rita; Tardanico, Regina; Scaloni, Andrea; D’Ambrosio, Chiara; Carnevali, Maria Luisa; Messa, Piergiorgio; Ravani, Pietro; Barbano, Giancarlo; Bianco, Beatrice; Bonanni, Alice; Scolari, Francesco; Martini, Alberto; Candiano, Giovanni; Allegri, Landino

    2014-01-01

    Renal targets of autoimmunity in human lupus nephritis (LN) are unknown. We sought to identify autoantibodies and glomerular target antigens in renal biopsy samples from patients with LN and determine whether the same autoantibodies can be detected in circulation. Glomeruli were microdissected from biopsy samples of 20 patients with LN and characterized by proteomic techniques. Serum samples from large cohorts of patients with systemic lupus erythematosus (SLE) with and without LN and other glomerulonephritides were tested. Glomerular IgGs recognized 11 podocyte antigens, with reactivity varying by LN pathology. Notably, IgG2 autoantibodies against α-enolase and annexin AI were detected in 11 and 10 of the biopsy samples, respectively, and predominated over other autoantibodies. Immunohistochemistry revealed colocalization of α-enolase or annexin AI with IgG2 in glomeruli. High levels of serum anti–α-enolase (>15 mg/L) IgG2 and/or anti-annexin AI (>2.7 mg/L) IgG2 were detected in most patients with LN but not patients with other glomerulonephritides, and they identified two cohorts: patients with high anti–α-enolase/low anti-annexin AI IgG2 and patients with low anti–α-enolase/high anti-annexin AI IgG2. Serum levels of both autoantibodies decreased significantly after 12 months of therapy for LN. Anti–α-enolase IgG2 recognized specific epitopes of α-enolase and did not cross-react with dsDNA. Furthermore, nephritogenic monoclonal IgG2 (clone H147) derived from lupus-prone MRL-lpr/lpr mice recognized human α-enolase, suggesting homology between animal models and human LN. These data show a multiantibody composition in LN, where IgG2 autoantibodies against α-enolase and annexin AI predominate in the glomerulus and can be detected in serum. PMID:24790181

  4. Glomerular Autoimmune Multicomponents of Human Lupus Nephritis In Vivo (2): Planted Antigens.

    PubMed

    Bruschi, Maurizio; Galetti, Maricla; Sinico, Renato Alberto; Moroni, Gabriella; Bonanni, Alice; Radice, Antonella; Tincani, Angela; Pratesi, Federico; Migliorini, Paola; Murtas, Corrado; Franceschini, Franco; Trezzi, Barbara; Brunini, Francesca; Gatti, Rita; Tardanico, Regina; Barbano, Giancarlo; Piaggio, Giorgio; Messa, Piergiorgio; Ravani, Pietro; Scolari, Francesco; Candiano, Giovanni; Martini, Alberto; Allegri, Landino; Ghiggeri, Gian Marco

    2015-08-01

    Glomerular planted antigens (histones, DNA, and C1q) are potential targets of autoimmunity in lupus nephritis (LN). However, the characterization of these antigens in human glomeruli in vivo remains inconsistent. We eluted glomerular autoantibodies recognizing planted antigens from laser-microdissected renal biopsy samples of 20 patients with LN. Prevalent antibody isotypes were defined, levels were determined, and glomerular colocalization was investigated. Renal and circulating antibodies were matched, and serum levels were compared in 104 patients with LN, 84 patients with SLE without LN, and 50 patients with rheumatoid arthritis (RA). Autoantibodies against podocyte antigens (anti-α-enolase/antiannexin AI) were also investigated. IgG2 autoantibodies against DNA, histones (H2A, H3, and H4), and C1q were detected in 50%, 55%, and 70% of biopsy samples, respectively. Anti-DNA IgG3 was the unique non-IgG2 anti-DNA deposit, and anti-C1q IgG4 was mainly detected in subepithelial membranous deposits. Anti-H3, anti-DNA, and anti-C1q IgG2 autoantibodies were also prevalent in LN serum, which also contained IgG3 against the antigen panel and anti-C1q IgG4. Serum and glomerular levels of autoantibodies were not strictly associated. High serum levels of all autoantibodies detected, including anti-α-enolase and antiannexin AI, identified LN versus SLE and RA. Anti-H3 and anti-α-enolase IgG2 levels had the most remarkable increase in LN serum and represented a discriminating feature of LN in principal component analysis. The highest levels of these two autoantibodies were also associated with proteinuria>3.5 g/24 hours and creatinine>1.2 mg/dl. Our findings suggest that timely autoantibody characterization might allow outcome prediction and targeted therapies for patients with nephritis. PMID:25398787

  5. Glomerular Autoimmune Multicomponents of Human Lupus Nephritis In Vivo (2): Planted Antigens

    PubMed Central

    Bruschi, Maurizio; Galetti, Maricla; Sinico, Renato Alberto; Moroni, Gabriella; Bonanni, Alice; Radice, Antonella; Tincani, Angela; Pratesi, Federico; Migliorini, Paola; Murtas, Corrado; Franceschini, Franco; Trezzi, Barbara; Brunini, Francesca; Gatti, Rita; Tardanico, Regina; Barbano, Giancarlo; Piaggio, Giorgio; Messa, Piergiorgio; Ravani, Pietro; Scolari, Francesco; Candiano, Giovanni; Martini, Alberto; Allegri, Landino

    2015-01-01

    Glomerular planted antigens (histones, DNA, and C1q) are potential targets of autoimmunity in lupus nephritis (LN). However, the characterization of these antigens in human glomeruli in vivo remains inconsistent. We eluted glomerular autoantibodies recognizing planted antigens from laser-microdissected renal biopsy samples of 20 patients with LN. Prevalent antibody isotypes were defined, levels were determined, and glomerular colocalization was investigated. Renal and circulating antibodies were matched, and serum levels were compared in 104 patients with LN, 84 patients with SLE without LN, and 50 patients with rheumatoid arthritis (RA). Autoantibodies against podocyte antigens (anti–α-enolase/antiannexin AI) were also investigated. IgG2 autoantibodies against DNA, histones (H2A, H3, and H4), and C1q were detected in 50%, 55%, and 70% of biopsy samples, respectively. Anti-DNA IgG3 was the unique non-IgG2 anti-DNA deposit, and anti-C1q IgG4 was mainly detected in subepithelial membranous deposits. Anti-H3, anti-DNA, and anti-C1q IgG2 autoantibodies were also prevalent in LN serum, which also contained IgG3 against the antigen panel and anti-C1q IgG4. Serum and glomerular levels of autoantibodies were not strictly associated. High serum levels of all autoantibodies detected, including anti–α-enolase and antiannexin AI, identified LN versus SLE and RA. Anti-H3 and anti–α-enolase IgG2 levels had the most remarkable increase in LN serum and represented a discriminating feature of LN in principal component analysis. The highest levels of these two autoantibodies were also associated with proteinuria>3.5 g/24 hours and creatinine>1.2 mg/dl. Our findings suggest that timely autoantibody characterization might allow outcome prediction and targeted therapies for patients with nephritis. PMID:25398787

  6. Lupus

    MedlinePlus

    What is lupus? Lupus is an autoimmune disease. This means that your immune system attacks healthy cells and tissues by mistake. This can ... vessels, and brain. There are several kinds of lupus Systemic lupus erythematosus (SLE) is the most common ...

  7. Immunodeficiency and autoimmunity: lessons from systemic lupus erythematosus

    PubMed Central

    Grammatikos, Alexandros P.; Tsokos, George C.

    2011-01-01

    Recent evidence suggests that systemic autoimmunity and immunodeficiency are not separate entities, but rather interconnected processes. Immunodeficiency results from distinct defects of the immune response and primarily presents as infections, but also frequently with autoimmune features. Systemic autoimmunity is the combined effect of multiple genetic variations, infectious and immunoregulatory factors that result in dominant autoimmune manifestations in addition to frequent and opportunistic infections. The overlap in disease manifestations and symptoms suggests that immunodeficiency should be considered in the presence of autoimmunity, and vice versa. In this review, we present the shared or similar aspects of immunodeficiency and autoimmunity using systemic lupus erythematosus as a paradigm and discuss the implications for clinical care. PMID:22177735

  8. Alterations in nuclear structure promote lupus autoimmunity in a mouse model

    PubMed Central

    Singh, Namrata; Johnstone, Duncan B.; Martin, Kayla A.; Tempera, Italo; Kaplan, Mariana J.

    2016-01-01

    ABSTRACT Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the development of autoantibodies that recognize components of the cell nucleus. The vast majority of lupus research has focused on either the contributions of immune cell dysfunction or the genetics of the disease. Because granulocytes isolated from human SLE patients had alterations in neutrophil nuclear morphology that resembled the Pelger–Huet anomaly, and had prominent mis-splicing of mRNA encoding the nuclear membrane protein lamin B receptor (LBR), consistent with their Pelger–Huet-like nuclear morphology, we used a novel mouse model system to test the hypothesis that a disruption in the structure of the nucleus itself also contributes to the development of lupus autoimmunity. The lupus-prone mouse strain New Zealand White (NZW) was crossed with c57Bl/6 mice harboring a heterozygous autosomal dominant mutation in Lbr (B6.Lbric/+), and the (NZW×B6.Lbric)F1 offspring were evaluated for induction of lupus autoimmunity. Only female (NZW×B6.Lbric)F1 mice developed lupus autoimmunity, which included splenomegaly, kidney damage and autoantibodies. Kidney damage was accompanied by immune complex deposition, and perivascular and tubule infiltration of mononuclear cells. The titers of anti-chromatin antibodies exceeded those of aged female MRL-Faslpr mice, and were predominantly of the IgG2 subclasses. The anti-nuclear antibody staining profile of female (NZW×B6.Lbric)F1 sera was complex, and consisted of an anti-nuclear membrane reactivity that colocalized with the A-type lamina, in combination with a homogeneous pattern that was related to the recognition of histones with covalent modifications that are associated with gene activation. An anti-neutrophil IgM recognizing calreticulin, but not myeloperoxidase (MPO) or proteinase 3 (PR3), was also identified. Thus, alterations in nuclear structure contribute to lupus autoimmunity when expressed in the context of a lupus

  9. Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases

    PubMed Central

    Hedrich, Christian M.; Tsokos, George C.

    2011-01-01

    The pathogenic origin of autoimmune diseases can be traced to both genetic susceptibility and epigenetic modifications arising from exposure to the environment. Epigenetic modifications influence gene-expression and alter cellular functions without modifying the genomic sequence. CpG-DNA methylation, histone-tail modifications, and micro-RNAs (miRNAs) are the main epigenetic mechanisms of gene regulation. Understanding the molecular mechanisms that are involved in the pathophysiology of autoimmune diseases is essential for the introduction of effective, target-directed, and tolerated therapies. In this review, we summarize recent findings that signify the importance of epigenetic modifications in autoimmune disorders while focusing on systemic lupus erythematosus (SLE). We discuss future directions in basic research, autoimmune diagnostics, and applied therapy. PMID:21885342

  10. The SLAM family member CD48 (Slamf2) protects lupus-prone mice from autoimmune nephritis

    PubMed Central

    Koh, Anna E.; Njoroge, Sarah W.; Feliu, Marianela; Cook, Alexis; Selig, Martin K.; Latchman, Yvette E.; Sharpe, Arlene H.; Colvin, Robert B.; Paul, Elahna

    2011-01-01

    Polymorphisms in the SLAM family of leukocyte cell surface regulatory molecules have been associated with lupus-like phenotypes in both humans and mice. The murine Slamf gene cluster lies within the lupus-associated Sle1b region of mouse chromosome 1. Non-autoreactive C57BL/6 (B6) mice that have had this region replaced by syntenic segments from other mouse strains (i.e. 129, NZB and NZW) are B6 congenic strains that spontaneously produce non-nephritogenic lupus-like autoantibodies. We have recently reported that genetic ablation of the SLAM family member CD48 (Slamf2) drives full-blown autoimmune disease with severe proliferative glomerulonephritis (CD48GN) in B6 mice carrying 129 sequences of the Sle1b region (B6.129CD48-/-). We also discovered that BALB/c mice with the same 129-derived CD48-null allele (BALB.129CD48-/-) have neither nephritis nor anti-DNA autoantibodies, indicating that strain specific background genes modulate the effects of CD48 deficiency. Here we further examine this novel model of lupus nephritis in which CD48 deficiency transforms benign autoreactivity into fatal nephritis. CD48GN is characterized by glomerular hypertrophy with mesangial expansion, proliferation and leukocytic infiltration. Immune complexes deposit in mesangium and in sub-endothelial, sub-epithelial and intramembranous sites along the glomerular basement membrane. Afflicted mice have low grade proteinuria, intermittent hematuria and their progressive renal injury manifests with elevated urine NGAL levels and with uremia. In contrast to the lupus-like B6.129CD48-/- animals, neither BALB.129CD48-/- mice nor B6 × BALB/c F1.129CD48-/- progeny have autoimmune traits, indicating that B6-specific background genes modulate the effect of CD48 on lupus nephritis in a recessive manner. PMID:21561736

  11. Autoimmune thyroid disease in systemic lupus erythematosus

    PubMed Central

    Pyne, D; Isenberg, D

    2002-01-01

    Objective: To report the prevalence of autoimmune thyroid disease and thyroid antibodies in 300 patients with SLE, followed up at our centre between 1978 and 2000, by a retrospective analysis of case notes. Results: The prevalence (5.7%) of hypothyroidism in our cohort was higher than in the normal population (1%), while that of hyperthyroidism (1.7%) was not significantly different. Overall 42/300 (14%) of our cohort had thyroid antibodies, rising to 15/22 (68%) in the subgroup who also had thyroid disease (p<0.001). Both antimicrosomal and antithyroglobulin antibodies were detected. The antibodies were found in equally high frequency in the hyperthyroid subgroup (80% patients), whereas in the hypothyroid subgroup antimicrosomal antibodies were more frequent than antithyroglobulin antibodies (64% v 41%). There was no significant difference in the frequency with which antimicrosomal or antithyroglobulin antibodies were detected between the hyperthyroid and hypothyroid subgroups (p>0.2). Conclusion: Our patients with SLE had a prevalence of hypothyroidism, but not hyperthyroidism, greater than that of the normal population. The presence of either condition was associated with a higher frequency of both antimicrosomal and antithyroglobulin antibodies. PMID:11779764

  12. Human papillomavirus vaccine and systemic lupus erythematosus.

    PubMed

    Gatto, Mariele; Agmon-Levin, Nancy; Soriano, Alessandra; Manna, Raffaele; Maoz-Segal, Ramit; Kivity, Shaye; Doria, Andrea; Shoenfeld, Yehuda

    2013-09-01

    To investigate the association between human papillomavirus (HPV) vaccination and autoimmune manifestations compatible with systemic lupus erythematosus (SLE) or SLE-like disease, the medical history of six women who presented with SLE or SLE-like disease following HPV immunization was collected. Data regarding type of vaccine, number of immunization, family and personal, clinical and serological features, as well as response to treatments were analyzed. In the reported cases, several common features were observed, such as personal or familial susceptibility to autoimmunity or adverse response to a prior dose of the vaccine, both of which may be associated with a higher risk of post-vaccination autoimmunity. Favorable response to immunosuppressant was observed in all patients. In the current study, a temporal association between immunization with HPV vaccine and the appearance of a spectrum of SLE-like conditions is reported. Additionally, among the patients described, several common features were observed that may enable better identification of subjects at risk. Further studies are required to assess the safety of immunization with the HPV vaccine in patients with autoimmune-rheumatic diseases or in subject at risk of autoimmunity as well as the potential beneficial effect of preventive immunosuppressants. PMID:23624585

  13. Silica-Triggered Autoimmunity in Lupus-Prone Mice Blocked by Docosahexaenoic Acid Consumption

    PubMed Central

    Bates, Melissa A.; Brandenberger, Christina; Langohr, Ingeborg I.; Kumagai, Kazuyoshi; Lock, Adam L.; Harkema, Jack R.; Holian, Andrij; Pestka, James J.

    2016-01-01

    Occupational exposure to respirable crystalline silica (cSiO2, quartz) is etiologically linked to systemic lupus erythematosus (lupus) and other human autoimmune diseases (ADs). In the female NZBWF1 mouse, a widely used animal model that is genetically prone to lupus, short-term repeated intranasal exposure to cSiO2 triggers premature initiation of autoimmune responses in the lungs and kidneys. In contrast to cSiO2’s triggering action, consumption of the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) prevents spontaneous onset of autoimmunity in this mouse strain. The aim of this study was to test the hypothesis that consumption of DHA will prevent cSiO2-triggered autoimmunity in the female NZBWF1 mouse. Mice (6 wk old) were fed isocaloric AIN-93G diets containing 0.0, 0.4, 1.2 or 2.4% DHA. Two wk after initiating feeding, mice were intranasally instilled with 1 mg cSiO2 once per wk for 4 wk and maintained on experimental diets for an additional 12 wk. Mice were then sacrificed and the lung, blood and kidney assessed for markers of inflammation and autoimmunity. DHA was incorporated into lung, red blood cells and kidney from diet in a concentration-dependent fashion. Dietary DHA dose-dependently suppressed cSiO2-triggered perivascular leukocyte infiltration and ectopic lymphoid tissue neogenesis in the lung. DHA consumption concurrently inhibited cSiO2–driven elevation of proinflammatory cytokines, B-cell proliferation factors, IgG and anti-dsDNA Ig in both bronchoalveolar lavage fluid and plasma. DHA’s prophylactic effects were further mirrored in reduced proteinuria and glomerulonephritis in cSiO2-treated mice. Taken together, these results reveal that DHA consumption suppresses cSiO2 triggering of autoimmunity in female NZBWF1 mice as manifested in the lung, blood and kidney. Our findings provide novel insight into how dietary modulation of the lipidome might be used to prevent or delay triggering of AD by cSiO2. Such knowledge opens the

  14. Silica-Triggered Autoimmunity in Lupus-Prone Mice Blocked by Docosahexaenoic Acid Consumption.

    PubMed

    Bates, Melissa A; Brandenberger, Christina; Langohr, Ingeborg I; Kumagai, Kazuyoshi; Lock, Adam L; Harkema, Jack R; Holian, Andrij; Pestka, James J

    2016-01-01

    Occupational exposure to respirable crystalline silica (cSiO2, quartz) is etiologically linked to systemic lupus erythematosus (lupus) and other human autoimmune diseases (ADs). In the female NZBWF1 mouse, a widely used animal model that is genetically prone to lupus, short-term repeated intranasal exposure to cSiO2 triggers premature initiation of autoimmune responses in the lungs and kidneys. In contrast to cSiO2's triggering action, consumption of the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) prevents spontaneous onset of autoimmunity in this mouse strain. The aim of this study was to test the hypothesis that consumption of DHA will prevent cSiO2-triggered autoimmunity in the female NZBWF1 mouse. Mice (6 wk old) were fed isocaloric AIN-93G diets containing 0.0, 0.4, 1.2 or 2.4% DHA. Two wk after initiating feeding, mice were intranasally instilled with 1 mg cSiO2 once per wk for 4 wk and maintained on experimental diets for an additional 12 wk. Mice were then sacrificed and the lung, blood and kidney assessed for markers of inflammation and autoimmunity. DHA was incorporated into lung, red blood cells and kidney from diet in a concentration-dependent fashion. Dietary DHA dose-dependently suppressed cSiO2-triggered perivascular leukocyte infiltration and ectopic lymphoid tissue neogenesis in the lung. DHA consumption concurrently inhibited cSiO2-driven elevation of proinflammatory cytokines, B-cell proliferation factors, IgG and anti-dsDNA Ig in both bronchoalveolar lavage fluid and plasma. DHA's prophylactic effects were further mirrored in reduced proteinuria and glomerulonephritis in cSiO2-treated mice. Taken together, these results reveal that DHA consumption suppresses cSiO2 triggering of autoimmunity in female NZBWF1 mice as manifested in the lung, blood and kidney. Our findings provide novel insight into how dietary modulation of the lipidome might be used to prevent or delay triggering of AD by cSiO2. Such knowledge opens the possibility

  15. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model

    PubMed Central

    Rowland, Sarah L.; Riggs, Jeffrey M.; Gilfillan, Susan; Bugatti, Mattia; Vermi, William; Kolbeck, Roland; Unanue, Emil R.; Sanjuan, Miguel A.

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) have long been implicated in the pathogenesis of lupus. However, this conclusion has been largely based on a correlative link between the copious production of IFN-α/β by pDCs and the IFN-α/β “signature” often seen in human lupus patients. The specific contribution of pDCs to disease in vivo has not been investigated in detail. For this reason, we generated a strain of BXSB lupus-prone mice in which pDCs can be selectively depleted in vivo. Early, transient ablation of pDCs before disease initiation resulted in reduced splenomegaly and lymphadenopathy, impaired expansion and activation of T and B cells, reduced antibodies against nuclear autoantigens and improved kidney pathology. Amelioration of pathology coincided with decreased transcription of IFN-α/β–induced genes in tissues. PDC depletion had an immediate impact on the activation of immune cells, and importantly, the beneficial effects on pathology were sustained even though pDCs later recovered, indicating an early pDC contribution to disease. Together, our findings demonstrate a critical function for pDCs during the IFN-α/β–dependent initiation of autoimmune lupus and point to pDCs as an attractive therapeutic target for the treatment of SLE. PMID:25180065

  16. Endogenous interleukin (IL)-17A promotes pristane-induced systemic autoimmunity and lupus nephritis induced by pristane.

    PubMed

    Summers, S A; Odobasic, D; Khouri, M B; Steinmetz, O M; Yang, Y; Holdsworth, S R; Kitching, A R

    2014-06-01

    Interleukin (IL)-17A is increased both in serum and in kidney biopsies from patients with lupus nephritis, but direct evidence of pathogenicity is less well established. Administration of pristane to genetically intact mice results in the production of autoantibodies and proliferative glomerulonephritis, resembling human lupus nephritis. These studies sought to define the role of IL-17A in experimental lupus induced by pristane administration. Pristane was administered to wild-type (WT) and IL-17A(-/-) mice. Local and systemic immune responses were assessed after 6 days and 8 weeks, and autoimmunity, glomerular inflammation and renal injury were measured at 7 months. IL-17A production increased significantly 6 days after pristane injection, with innate immune cells, neutrophils (Ly6G(+)) and macrophages (F4/80(+)) being the predominant source of IL-17A. After 8 weeks, while systemic IL-17A was still readily detected in WT mice, the levels of proinflammatory cytokines, interferon (IFN)-γ and tumour necrosis factor (TNF) were diminished in the absence of endogenous IL-17A. Seven months after pristane treatment humoral autoimmunity was diminished in the absence of IL-17A, with decreased levels of immunoglobulin (Ig)G and anti-dsDNA antibodies. Renal inflammation and injury was less in the absence of IL-17A. Compared to WT mice, glomerular IgG, complement deposition, glomerular CD4(+) T cells and intrarenal expression of T helper type 1 (Th1)-associated proinflammatory mediators were decreased in IL-17A(-/-) mice. WT mice developed progressive proteinuria, but functional and histological renal injury was attenuated in the absence of IL-17A. Therefore, IL-17A is required for the full development of autoimmunity and lupus nephritis in experimental SLE, and early in the development of autoimmunity, innate immune cells produce IL-17A. PMID:24528105

  17. An unusual association of three autoimmune disorders: celiac disease, systemic lupus erythematosus and Hashimoto's thyroiditis.

    PubMed

    Boccuti, Viera; Perrone, Antonio; D'Introno, Alessia; Campobasso, Anna; Sangineto, Moris; Sabbà, Carlo

    2016-12-01

    Autoimmune disorders are known to be more frequent in women and often associated each others, but it is rare to see multiple autoimmune diseases in a single patient. Recently, the concept of multiple autoimmune syndrome has been introduced to describe patients with at least three autoimmune diseases. We describe a case of a young man with a clinical history of psychiatric symptoms and celiac disease (CD) who was diagnosed to have other two autoimmune disorders: systemic lupus erythematosus (SLE) and Hashimoto's thyroiditis. This case is unusual upon different patterns: the rare combination of the three autoimmune diseases, their appearance in a man and the atypical onset of the diseases with psychiatric symptoms likely to be related either to CD or to SLE. PMID:27383232

  18. SLE - Complex cytokine effects in a complex autoimmune disease: tumor necrosis factor in systemic lupus erythematosus

    PubMed Central

    Aringer, Martin; Smolen, Josef S

    2003-01-01

    Tumor necrosis factor (TNF) is a proinflammatory cytokine and a B-cell growth factor. It has numerous possible effects on T lymphocytes and dendritic cells, and it influences apoptosis. These differential effects may in part explain why patients under TNF-blocker therapy can develop autoantibodies to nuclear antigens, and may shed some light on the finding that low TNF fosters autoimmune disease in some mouse strains. On the contrary, TNF is increased in the blood and in the inflamed kidneys of systemic lupus erythematosus patients. Several studies in lupus-prone mice other than the F1 generation of New Zealand Black mice crossed with New Zealand White mice suggest that TNF is highly proinflammatory in the efferent limb and is potentially detrimental in lupus organ disease. Therefore, TNF blockade probably constitutes an efficacious therapeutic option. PMID:12823847

  19. Inflammasomes and human autoimmunity: A comprehensive review.

    PubMed

    Yang, Chin-An; Chiang, Bor-Luen

    2015-07-01

    Inflammasomes are multi-protein complexes composed of a NOD-like receptor (NLR)/an AIM-like receptor (ALR), the adapter molecule apoptosis-associated speck-like protein that contains a CARD (ASC), and caspase-1. Active caspase-1 cleaves pro-IL-1β and pro-IL-18 to IL-1β and IL-18, resulting in inflammation. Genetic mutations in inflammasomes were first recognized to result in autoinflammatory diseases, which are characterized by the absence of both autoantibodies and autoreactive-T/B cells. However, there is increasing attention being placed on genetic polymorphisms that are involved in the components of inflammasomes, and these have implications for innate immunity and the natural history of autoimmune diseases. For example, while the NOD-like receptor family, pyrin domain containing 1 (NLRP1) haplotypes contributes to susceptibility to developing vitiligo; there are other single nucleotide polymorphisms (SNPs) that alters the susceptibility and severity of rheumatoid arthritis (RA) and juvenile idiopathic arthritis. Indeed, there are multiple factors that contribute to lowering the threshold of immunity and inflammasomes play a key role in this threshold. For example, IL-1β and IL-18 further perpetuate Th17 responses and endothelial cell damage, which potentiate a number of autoimmune diseases, including synovitis in RA, cardiovascular disease, and systemic lupus erythematosus (SLE). There is also increasing data on the role of innate immunity in experimental autoimmune encephalomyelitis (EAE), in lupus nephritis, and in a variety of autoimmune pathologies in which activation of the innate immune system is the driver for the adaptive system. Indeed, it is likely that the chronic pathology of autoimmunity is mediated in part by otherwise innocent bystander cells, augmented by inflammasomes. PMID:26005048

  20. Perspectives on autoimmunity

    SciTech Connect

    Cohen, I.R.

    1987-01-01

    The contents of this book are: HLA and Autoimmunity; Self-Recognition and Symmetry in the Immune System; Immunology of Insulin Dependent Diabetes Mellitus; Multiple Sclerosis; Autoimmunity and Immune Pathological Aspects of Virus Disease; Analyses of the Idiotypes and Ligand Binding Characteristics of Human Monoclonal Autoantibodies to DNA: Do We Understand Better Systemic Lupus Erythematosus. Autoimmunity and Rheumatic Fever; Autoimmune Arthritis Induced by Immunization to Mycobacterial Antigens; and The Interaction Between Genetic Factors and Micro-Organisms in Ankylosing Spondylitis: Facts and Fiction.

  1. Autoimmune Myelofibrosis in Systemic Lupus Erythematosus Report of Two Cases and Review of the Literature.

    PubMed

    Koduri, Prasad R; Parvez, Mohammad; Kaza, Sashidhar; Vanajakshi, S

    2016-09-01

    Autoimmune myelofibrosis (AIMF) is a rare entity of steroid-responsive bone marrow fibrosis that accompanies a variety of autoimmune diseases, particularly systemic lupus erythematosus (SLE). Rarely it may occur in patients with autoimmune markers but no definable autoimmune disease (Primary-AIMF). We report the cases of two young women with SLE-associated AIMF (SLE-AIMF). The first patient was a young woman who had pancytopenia, massive splenomegaly and reticulin fibrosis in the marrow biopsy. The pancytopenia and splenomegaly resolved completely within weeks of treatment with corticosteroids. Repeat marrow biopsy showed marked regression of marrow fibrosis. The second patient was a young woman with fever, anasarca, bicytopenia and reticulin fibrosis in the marrow biopsy. Steroid therapy resulted in rapid clinical improvement and resolution of pancytopenia. A review of the literature revealed a total of 30 patients with SLE-AIMF reported to-date. Patients with SLE-AIMF are young women with SLE and blood cytopenia who are found to have increased bone marrow reticulin on marrow biopsy. Steroid therapy results in rapid hematological recovery and regression of marrow fibrosis. Whether AIMF is one of several hematological complications of SLE, or represents a unique and distinct subset of patients with SLE in not clear. Prospective studies with longer follow-up are needed to better define the prevalence and clinical spectrum of SLE-AIMF. PMID:27429532

  2. Association of autoimmune hepatitis and systemic lupus erythematodes: A case series and review of the literature

    PubMed Central

    Beisel, Claudia; Weiler-Normann, Christina; Teufel, Andreas; Lohse, Ansgar W

    2014-01-01

    Liver test abnormalities have been described in up to 60% of patients with systemic lupus erythematodes (SLE) at some point during the course of their disease. Prior treatment with potentially hepatotoxic drugs or viral hepatitis is commonly considered to be the main cause of liver disease in SLE patients. However, in rare cases elevated liver enzymes may be due to concurrent autoimmune hepatitis (AIH). To distinguish whether the patient has primary liver disease with associated autoimmune clinical and laboratory features resembling SLE - such as AIH - or the elevation of liver enzymes is a manifestation of SLE remains a difficult challenge for the treating physician. Here, we present six female patients with complex autoimmune disorders and hepatitis. Patient charts were reviewed in order to investigate the complex relationship between SLE and AIH. All patients had coexisting autoimmune disease in their medical history. At the time of diagnosis of AIH, patients presented with arthralgia, abdominal complaints, cutaneous involvement and fatigue as common symptoms. All patients fulfilled the current diagnostic criteria of both, AIH and SLE. Remission of acute hepatitis was achieved in all cases after the initiation of immunosuppressive therapy. In addition to this case study a literature review was conducted. PMID:25253972

  3. Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease.

    PubMed

    Eames, Hayley L; Corbin, Alastair L; Udalova, Irina A

    2016-01-01

    Interferon regulatory factor 5 (IRF5) has been demonstrated as a key transcription factor of the immune system, playing important roles in modulating inflammatory immune responses in numerous cell types including dendritic cells, macrophages, and B cells. As well as driving the expression of type I interferon in antiviral responses, IRF5 is also crucial for driving macrophages toward a proinflammatory phenotype by regulating cytokine and chemokine expression and modulating B-cell maturity and antibody production. This review highlights the functional importance of IRF5 in a disease setting, by discussing polymorphic mutations at the human Irf5 locus that lead to susceptibility to systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. In concordance with this, we also discuss lessons in IRF5 functionality learned from murine in vivo models of autoimmune disease and inflammation and hypothesize that modulation of IRF5 activity and expression could provide potential therapeutic benefits in the clinic. PMID:26207886

  4. Lupus

    MedlinePlus

    If you have lupus, your immune system attacks healthy cells and tissues by mistake. This can damage your joints, skin, blood vessels and organs. There are many kinds of lupus. The most common type, systemic lupus erythematosus, affects ...

  5. Ascending paresis as presentation of an unusual association between necrotizing autoimmune myopathy and systemic lupus erythematosus.

    PubMed

    García-Reynoso, Marco Julio; Veramendi-Espinoza, Liz Eliana; Ruiz-Garcia, Henry Jeison

    2014-01-01

    A 45 year-old man went to the emergency room due to disease duration of 15 days of insidious onset and progressive course. It began with symmetrical weakness and pain in feet and ankles that extends upward to the knees. Later, this progressed to paraparesis with Creatine phosphokinase levels of 44,270 U/L and respiratory failure that required mechanical ventilation. Electromyography and muscle biopsy of quadriceps were made. The patient responded to corticotherapy in pulses and supporting management. The presentation of ascending paresis suggested the diagnosis of Guillain-Barré syndrome. However, the degree of muscle involvement with rhabdomyolysis explains the neurological damage by itself. The biopsy revealed pathological criteria for necrotizing autoimmune myopathy (NAM), as well as other clinical and laboratory evidence. Patient disease continued and reached criteria for systemic lupus erythematosus (SLE). To our best knowledge, this is the first report of the NAM and SLE association. PMID:23906548

  6. Silica Triggers Inflammation and Ectopic Lymphoid Neogenesis in the Lungs in Parallel with Accelerated Onset of Systemic Autoimmunity and Glomerulonephritis in the Lupus-Prone NZBWF1 Mouse

    PubMed Central

    Bates, Melissa A.; Brandenberger, Christina; Langohr, Ingeborg; Kumagai, Kazuyoshi; Harkema, Jack R.; Holian, Andrij; Pestka, James J.

    2015-01-01

    Genetic predisposition and environmental factors influence the development of human autoimmune disease. Occupational exposure to crystalline silica (cSiO2) has been etiologically linked to increased incidence of autoimmunity, including systemic lupus erythematosus (SLE), but the underlying mechanisms are poorly understood. The purpose of this study was to test the hypothesis that early repeated short-term cSiO2 exposure will modulate both latency and severity of autoimmunity in the lupus-prone female NZBWF1 mouse. Weekly intranasal exposure to cSiO2 (0.25 and 1.0 mg) for 4 wk beginning at 9 wk of age both reduced latency and increased intensity of glomerulonephritis. cSiO2 elicited robust inflammatory responses in the lungs as evidenced by extensive perivascular and peribronchial lymphoplasmacytic infiltration consisting of IgG-producing plasma cells, and CD45R+ and CD3+ lymphocytes that were highly suggestive of ectopic lymphoid tissue (ELT). In addition, there were elevated concentrations of immunoglobulins and the cytokines MCP-1, TNF-α and IL-6 in bronchoalveolar lavage fluid. cSiO2-associated kidney and lung effects paralleled dose-dependent elevations of autoantibodies and proinflammatory cytokines in plasma. Taken together, cSiO2-induced pulmonary inflammation and ectopic lymphoid neogenesis in the NZBWF1 mouse corresponded closely to systemic inflammatory and autoimmune responses as well as the early initiation of pathological outcomes in the kidney. These findings suggest that following airway exposure to crystalline silica, in mice genetically prone to SLE, the lung serves as a platform for triggering systemic autoimmunity and glomerulonephritis. PMID:25978333

  7. Human autoimmune diseases: a comprehensive update.

    PubMed

    Wang, Lifeng; Wang, Fu-Sheng; Gershwin, M Eric

    2015-10-01

    There have been significant advances in our understanding of human autoimmunity that have led to improvements in classification and diagnosis and, most importantly, research advances in new therapies. The importance of autoimmunity and the mechanisms that lead to clinical disease were first recognized about 50 years ago following the pioneering studies of Macfarlane Burnett and his Nobel Prize-winning hypothesis of the 'forbidden clone'. Such pioneering efforts led to a better understanding not only of autoimmunity, but also of lymphoid cell development, thymic education, apoptosis and deletion of autoreactive cells. Contemporary theories suggest that the development of an autoimmune disease requires a genetic predisposition and environmental factors that trigger the immune pathways that lead, ultimately, to tissue destruction. Despite extensive research, there are no genetic tools that can be used clinically to predict the risk of autoimmune disease. Indeed, the concordance of autoimmune disease in identical twins is 12-67%, highlighting not only a role for environmental factors, but also the potential importance of stochastic or epigenetic phenomena. On the other hand, the identification of cytokines and chemokines, and their cognate receptors, has led to novel therapies that block pathological inflammatory responses within the target organ and have greatly improved the therapeutic effect in patients with autoimmune disease, particularly rheumatoid arthritis. Further advances involving the use of multiplex platforms for diagnosis and identification of new therapeutic agents should lead to major breakthroughs within the next decade. PMID:26212387

  8. Sirolimus for Autoimmune Disease of Blood Cells

    ClinicalTrials.gov

    2016-04-22

    Autoimmune Pancytopenia; Autoimmune Lymphoproliferative Syndrome (ALPS); Evans Syndrome; Idiopathic Thrombocytopenic Purpura; Anemia, Hemolytic, Autoimmune; Autoimmune Neutropenia; Lupus Erythematosus, Systemic; Inflammatory Bowel Disease; Rheumatoid Arthritis

  9. B cells are required for lupus nephritis in the polygenic, Fas-intact MRL model of systemic autoimmunity.

    PubMed

    Chan, O T; Madaio, M P; Shlomchik, M J

    1999-10-01

    B cells are required for both the expression of lupus nephritis and spontaneous T cell activation/memory cell accumulation in MRL-Faslpr mice (MRL/lpr). Autoimmunity in the MRL/lpr strain is the result of Fas-deficiency and multiple background genes; however, the precise roles of background genes vs Fas-deficiency have not been fully defined. Fas-deficiency (i.e., the lpr defect) is required in B cells for optimal autoantibody expression, raising the possibility that the central role for B cells in MRL/lpr mice may not extend to MRL/+ mice and, thus, to lupus models that do not depend on Fas-deficiency ("polygenic lupus"). To address this issue, B cell-deficient, Fas-intact MRL/+ mice (JHd-MRL/) were created; and disease was evaluated in aged animals (>9 mo). The JHd-MRL/+ animals did not develop nephritis or vasculitis at a time when the B cell-intact littermates had severe disease. In addition, while activated/memory CD4+ and CD8+ T cells accumulated in B cell-intact mice, such accumulation was substantially inhibited in the absence of B cells. This effect appeared to be restricted to the MRL strain because it was not seen in B cell-deficient BALB/c mice (JHd-BALB) of similar ages. The results indicate that B cells are essential in promoting systemic autoimmunity in a Fas-independent model. Therefore, B cells have an important role in pathogenesis, generalizable to lupus models that depend on multiple genes even when Fas expression is intact. The results provide further rationale for B cell suppression as therapy for systemic lupus erythematosus. PMID:10490951

  10. Reduced proportions of natural killer T cells are present in the relatives of lupus patients and are associated with autoimmunity

    PubMed Central

    Wither, Joan; Cai, Yong-chun; Lim, Sooyeol; McKenzie, Tamara; Roslin, Nicole; Claudio, Jaime O; Cooper, Glinda S; Hudson, Thomas J; Paterson, Andrew D; Greenwood, Celia MT; Gladman, Dafna; Pope, Janet; Pineau, Christian A; Smith, C Douglas; Hanly, John G; Peschken, Christine; Boire, Gilles; Fortin, Paul R

    2008-01-01

    Introduction Systemic lupus erythematosus is a genetically complex disease. Currently, the precise allelic polymorphisms associated with this condition remain largely unidentified. In part this reflects the fact that multiple genes, each having a relatively minor effect, act in concert to produce disease. Given this complexity, analysis of subclinical phenotypes may aid in the identification of susceptibility alleles. Here, we used flow cytometry to investigate whether some of the immune abnormalities that are seen in the peripheral blood lymphocyte population of lupus patients are seen in their first-degree relatives. Methods Peripheral blood mononuclear cells were isolated from the subjects, stained with fluorochrome-conjugated monoclonal antibodies to identify various cellular subsets, and analyzed by flow cytometry. Results We found reduced proportions of natural killer (NK)T cells among 367 first-degree relatives of lupus patients as compared with 102 control individuals. There were also slightly increased proportions of memory B and T cells, suggesting increased chronic low-grade activation of the immune system in first-degree relatives. However, only the deficiency of NKT cells was associated with a positive anti-nuclear antibody test and clinical autoimmune disease in family members. There was a significant association between mean parental, sibling, and proband values for the proportion of NKT cells, suggesting that this is a heritable trait. Conclusions The findings suggest that analysis of cellular phenotypes may enhance the ability to detect subclinical lupus and that genetically determined altered immunoregulation by NKT cells predisposes first-degree relatives of lupus patients to the development of autoimmunity. PMID:18783591

  11. Autoimmune hepatitis

    MedlinePlus

    ... diseases. These include: Graves disease Inflammatory bowel disease Rheumatoid arthritis Scleroderma Sjogren syndrome Systemic lupus erythematosus Thyroiditis Type 1 diabetes Ulcerative colitis Autoimmune hepatitis may occur in family ...

  12. The autoimmune diseases

    SciTech Connect

    Rose, N.R.; Mackay, I.R.

    1985-01-01

    This book contains 25 chapters. Some of the chapter titles are: Genetic Predisposition to Autoimmune Diseases; Systemic Lupus Erythematosus; Autoimmune Aspects of Rheumatoid Arthritis; Immunology of Insulin-Dependent Diabetes; and Adrenal Autoimmunity and Autoimmune Polyglandular Syndromes.

  13. Cutaneous manifestations of lupus erythematosus.

    PubMed

    Laman, S D; Provost, T T

    1994-02-01

    Lupus erythematosus is an autoimmune disease that demonstrates cutaneous, systemic, or both cutaneous and systemic manifestations. This article reviews the cutaneous manifestations of lupus erythematosus. PMID:8153399

  14. [Multiple autoimmune syndrome. Reynolds-syndrome (acral scleroderma, primary biliary cirrhosis, Sjögren syndrome) associated with the lupus erythematosus/lichen planus overlap syndrome].

    PubMed

    Müller, F B; Groth, W; Mahrle, G

    2004-05-01

    A female patient presented with acral scleroderma, Sjögren syndrome, antibodies specific for primary biliary cirrhosis and clinical as well as histological features of lichen planus and subacute lupus erythematosus. In addition an euthyroid Hashimoto thyroiditis was found. Her findings correspond to type II of the multiple autoimmune syndrome (MAS) and can be described as an association of Reynolds syndrome and the lupus erythematosus/lichen planus-overlap syndrome. PMID:15138654

  15. The role of molecular mimicry and other factors in the association of Human Endogenous Retroviruses and autoimmunity.

    PubMed

    Trela, Malgorzata; Nelson, Paul N; Rylance, Paul B

    2016-01-01

    Human Endogenous Retroviruses (HERVs) have been implicated in autoimmune and other diseases. Molecular mimicry has been postulated as a potential mechanism of autoimmunity. Exogenous viruses have also been reported to be associated with the same diseases, as have genetic and environmental factors. If molecular mimicry were to be shown to be an initiating mechanism of some autoimmune diseases, then therapeutic options of blocking antibodies and peptides might be of benefit in halting diseases at the outset. Bioinformatic and molecular modelling techniques have been employed to investigate molecular mimicry and the evidence for the association of HERVs and autoimmunity is reviewed. The most convincing evidence for molecular mimicry is in rheumatoid arthritis, where HERV K-10 shares amino acid sequences with IgG1Fc, a target for rheumatoid factor. Systemic lupus erythematosus is an example of a condition associated with several autoantibodies, and several endogenous and exogenous viruses have been reported to be associated with the disease. The lack of a clear link between one virus and this condition, and the spectrum of clinical manifestations, suggests that genetic, environmental and the inflammatory response to a virus or viruses might also be major factors in the pathogenesis of lupus and other autoimmune conditions. Where there are strong associations between a virus and an autoimmune condition, such as in hepatitis C and cryoglobulinaemia, the use of bioinformatics and molecular modelling can also be utilized to help to understand the role of molecular mimicry in how HERVs might trigger disease. PMID:26818264

  16. Epratuzumab for systemic lupus erythematosus.

    PubMed

    Wallace, D J; Goldenberg, D M

    2013-04-01

    Epratuzumab (EMab, UCB, Immunomedics) is a humanized monoclonal antibody targeting CD22 that is being studied in clinical trials for patients with a variety of rheumatic and hematologic conditions, including systemic lupus erythematosus (SLE). An overview of its mechanism of action is followed by a summary of completed lupus studies, and a preview of studies in progress. The agent clearly has anti-inflammatory activity and is a potentially useful agent in the management of autoimmune disorders. PMID:23553783

  17. Melanocyte antigen triggers autoimmunity in human psoriasis

    PubMed Central

    Arakawa, Akiko; Siewert, Katherina; Stöhr, Julia; Besgen, Petra; Kim, Song-Min; Rühl, Geraldine; Nickel, Jens; Vollmer, Sigrid; Thomas, Peter; Krebs, Stefan; Pinkert, Stefan; Spannagl, Michael; Held, Kathrin; Kammerbauer, Claudia; Besch, Robert; Dornmair, Klaus

    2015-01-01

    Psoriasis vulgaris is a common T cell–mediated inflammatory skin disease with a suspected autoimmune pathogenesis. The human leukocyte antigen (HLA) class I allele, HLA-C*06:02, is the main psoriasis risk gene. Epidermal CD8+ T cells are essential for psoriasis development. Functional implications of HLA-C*06:02 and mechanisms of lesional T cell activation in psoriasis, however, remained elusive. Here we identify melanocytes as skin-specific target cells of an HLA-C*06:02–restricted psoriatic T cell response. We found that a Vα3S1/Vβ13S1 T cell receptor (TCR), which we had reconstituted from an epidermal CD8+ T cell clone of an HLA-C*06:02–positive psoriasis patient specifically recognizes HLA-C*06:02–positive melanocytes. Through peptide library screening, we identified ADAMTS-like protein 5 (ADAMTSL5) as an HLA-C*06:02–presented melanocytic autoantigen of the Vα3S1/Vβ13S1 TCR. Consistent with the Vα3S1/Vβ13S1-TCR reactivity, we observed numerous CD8+ T cells in psoriasis lesions attacking melanocytes, the only epidermal cells expressing ADAMTSL5. Furthermore, ADAMTSL5 stimulation induced the psoriasis signature cytokine, IL-17A, in CD8+ T cells from psoriasis patients only, supporting a role as psoriatic autoantigen. This unbiased analysis of a TCR obtained directly from tissue-infiltrating CD8+ T cells reveals that in psoriasis HLA-C*06:02 directs an autoimmune response against melanocytes through autoantigen presentation. We propose that HLA-C*06:02 may predispose to psoriasis via this newly identified autoimmune pathway. PMID:26621454

  18. Melanocyte antigen triggers autoimmunity in human psoriasis.

    PubMed

    Arakawa, Akiko; Siewert, Katherina; Stöhr, Julia; Besgen, Petra; Kim, Song-Min; Rühl, Geraldine; Nickel, Jens; Vollmer, Sigrid; Thomas, Peter; Krebs, Stefan; Pinkert, Stefan; Spannagl, Michael; Held, Kathrin; Kammerbauer, Claudia; Besch, Robert; Dornmair, Klaus; Prinz, Jörg C

    2015-12-14

    Psoriasis vulgaris is a common T cell-mediated inflammatory skin disease with a suspected autoimmune pathogenesis. The human leukocyte antigen (HLA) class I allele, HLA-C*06:02, is the main psoriasis risk gene. Epidermal CD8(+) T cells are essential for psoriasis development. Functional implications of HLA-C*06:02 and mechanisms of lesional T cell activation in psoriasis, however, remained elusive. Here we identify melanocytes as skin-specific target cells of an HLA-C*06:02-restricted psoriatic T cell response. We found that a Vα3S1/Vβ13S1 T cell receptor (TCR), which we had reconstituted from an epidermal CD8(+) T cell clone of an HLA-C*06:02-positive psoriasis patient specifically recognizes HLA-C*06:02-positive melanocytes. Through peptide library screening, we identified ADAMTS-like protein 5 (ADAMTSL5) as an HLA-C*06:02-presented melanocytic autoantigen of the Vα3S1/Vβ13S1 TCR. Consistent with the Vα3S1/Vβ13S1-TCR reactivity, we observed numerous CD8(+) T cells in psoriasis lesions attacking melanocytes, the only epidermal cells expressing ADAMTSL5. Furthermore, ADAMTSL5 stimulation induced the psoriasis signature cytokine, IL-17A, in CD8(+) T cells from psoriasis patients only, supporting a role as psoriatic autoantigen. This unbiased analysis of a TCR obtained directly from tissue-infiltrating CD8(+) T cells reveals that in psoriasis HLA-C*06:02 directs an autoimmune response against melanocytes through autoantigen presentation. We propose that HLA-C*06:02 may predispose to psoriasis via this newly identified autoimmune pathway. PMID:26621454

  19. Regulation of Autoimmune Germinal Center Reactions in Lupus-Prone BXD2 Mice by Follicular Helper T Cells

    PubMed Central

    Kim, Young Uk; Lim, Hoyong; Jung, Ha Eun; Wetsel, Rick A.; Chung, Yeonseok

    2015-01-01

    BXD2 mice spontaneously develop autoantibodies and subsequent glomerulonephritis, offering a useful animal model to study autoimmune lupus. Although initial studies showed a critical contribution of IL-17 and Th17 cells in mediating autoimmune B cell responses in BXD2 mice, the role of follicular helper T (Tfh) cells remains incompletely understood. We found that both the frequency of Th17 cells and the levels of IL-17 in circulation in BXD2 mice were comparable to those of wild-type. By contrast, the frequency of PD-1+CXCR5+ Tfh cells was significantly increased in BXD2 mice compared with wild-type mice, while the frequency of PD-1+CXCR5+Foxp3+ follicular regulatory T (Tfr) cells was reduced in the former group. The frequency of Tfh cells rather than that of Th17 cells was positively correlated with the frequency of germinal center B cells as well as the levels of autoantibodies to dsDNA. More importantly, CXCR5+ CD4+ T cells isolated from BXD2 mice induced the production of IgG from naïve B cells in an IL-21-dependent manner, while CCR6+ CD4+ T cells failed to do so. These results together demonstrate that Tfh cells rather than Th17 cells contribute to the autoimmune germinal center reactions in BXD2 mice. PMID:25768299

  20. Autoimmunity-related neutrophilic dermatosis: a newly described entity that is not exclusive of systemic lupus erythematosus.

    PubMed

    Saeb-Lima, Marcela; Charli-Joseph, Yann; Rodríguez-Acosta, Elva Dalia; Domínguez-Cherit, Judith

    2013-08-01

    Neutrophilic dermatoses have long been known to be associated with autoinmune systemic diseases. Recently, a small number of cases of a disorder distinct from Sweet syndrome or bullous lupus erythematosus (LE) have been described as specifically related to systemic LE under diverse terms, including nonbullous neutrophilic dermatosis, nonbullous neutrophilic LE, and Sweet-like neutrophilic dermatosis. We describe 7 patients that developed urticarial lesions in the context of a known or concurrently diagnosed autoimmune connective tissue disease. Of a total of 7 patients, 6 were afflicted by systemic LE and 1 by rheumatoid arthritis and secondary Sjögren syndrome. Histological findings in all patients included an interstitial and perivascular neutrophilic infiltrate with leukocytoclasia, vacuolar alteration along the dermal-edidermal junction, and no vasculitis. Most patients had active systemic disease at the time of the cutaneous eruption. Skin lesions resolved rapidly after the administration of immunomodulating agents. In conclusion, we provide additional evidence of the existence of a recently defined nonbullous neutrophilic dermatosis in the context of autoimmune connective tissue diseases and propose the term autoimmunity-related neutrophilic dermatosis as an appropriate designation. Furthermore, we believe that this entity should prompt physicians to screen the presence of an active systemic disorder in afflicted patients. PMID:23518639

  1. A Genomic Approach to Human Autoimmune Diseases

    PubMed Central

    Pascual, Virginia; Chaussabel, Damien; Banchereau, Jacques

    2010-01-01

    The past decade has seen an explosion in the use of DNA-based microarrays. These techniques permit to assess RNA abundance on a genome-wide scale. Medical applications emerged in the field of cancer, with studies of both solid tumors and hematological malignancies leading to the development of tests that are now used to personalize therapeutic options. Microarrays have also been used to analyze the blood transcriptome in a wide range of diseases. In human autoimmune diseases, these studies are showing potential for identifying therapeutic targets as well as biomarkers for diagnosis, assessment of disease activity and response to treatment. More quantitative and sensitive high throughput RNA profiling methods are starting to be available and will be necessary for transcriptome analyses to become routine tests in the clinical setting. We expect this to crystallize within the coming decade, as they become part of the personalized medicine armamentarium. PMID:20192809

  2. Systemic lupus erythematosus in association with ulcerative colitis: related autoimmune diseases.

    PubMed

    Stevens, H P; Ostlere, L S; Rustin, M H

    1994-03-01

    We report a patient who developed urticaria, angio-oedema and polyarthropathy secondary to the hypocomplementaemic urticarial vasculitis syndrome, a year prior to the onset of ulcerative colitis. Ten years later, primary sclerosing cholangitis and the antiphospholipid syndrome developed concomitantly. We believe this patient represents only the second reported case of idiopathic systemic lupus erythematosus (SLE) occurring in association with ulcerative colitis. PMID:8148283

  3. Defining and analyzing geoepidemiology and human autoimmunity.

    PubMed

    Shapira, Yinon; Agmon-Levin, Nancy; Shoenfeld, Yehuda

    2010-05-01

    Autoimmune diseases cumulatively affect 5-10% of the industrial world population and are a significant cause of morbidity and mortality. In recent decades rates are rising worldwide, and autoimmunity can no longer be associated solely with the more developed "Western" countries. Geoepidemiology of autoimmune diseases portrays the burden of these illnesses across various regions and ethnic populations. Furthermore, Geoepidemiology may yield important clues to the genetic and triggering environmental mechanisms of autoimmunity. In this review we compiled and discuss in depth abundant geoepidemiological data pertaining to four major autoimmune conditions, namely type-1 diabetes mellitus, multiple sclerosis, autoimmune thyroid disease, and inflammatory bowel disease. The following key results manifested in this review: 1) Ethno-geographic gradients in autoimmune disease risk are attributable to a complex interplay of genetic and environmental pressures. 2) Industrial regions, particularly Northern Europe and North America, still exhibit the highest rates for most autoimmune diseases. 3) Methods particularly useful in demonstrating the significant influence of genetic and environmental factors include comparative ethnic differences studies, migration studies, and recognition of 'hotspots'. 4) Key environmental determinants of geographical differences include diminished ultraviolet radiation exposure, Western or affluence-related lifestyle, infection exposure, environmental pollutants, nutritional factors and disease-specific precipitants (e.g., iodine exposure). PMID:20034761

  4. Implication of human endogenous retroviruses in the development of autoimmune diseases.

    PubMed

    Balada, Eva; Vilardell-Tarrés, Miquel; Ordi-Ros, Josep

    2010-08-01

    Retroviruses can exist in an endogenous form, in which viral sequences are integrated into the human germ line and are vertically transmitted in a Mendelian fashion. Human endogenous retroviruses (HERVs), probably representing footprints of ancient germ-cell retroviral infections, occupy about 1% of the human genome. Some HERVs emerged in the genome over 25 million years ago, while others have appeared rather recently, at about the time of hominid and ape lineages divergence. Although some of these elements show mutations and deletions, some HERVs are transcriptionally active and produce functional proteins. Some medical conditions, such as cancer and autoimmune diseases, are linked to the transcription of some of the HERVs genes, to the expression of HERVs proteins (that may act as superantigens, for example), and/or to the development of antibodies against them that might cross-react with our own proteins. Their genetic sequences may also be, totally or partially, integrated into genes that regulate the immune response. These mechanisms could give rise to autoimmune diseases, such as lupus erythematosus, insulin-dependent diabetes mellitus, multiple sclerosis, Sjögren's syndrome, and rheumatoid arthritis, among others. This review is aimed at discussing evidence for a possible role of HERVs in the etiopathogenesis of different autoimmune diseases. PMID:20635879

  5. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    PubMed Central

    Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung

    2016-01-01

    The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032

  6. Toll-like receptor 8 deletion accelerates autoimmunity in a mouse model of lupus through a Toll-like receptor 7-dependent mechanism

    PubMed Central

    Tran, Ngoc Lan; Manzin-Lorenzi, Céline; Santiago-Raber, Marie-Laure

    2015-01-01

    Systemic lupus erythematosus is an autoimmune disorder characterized by increased levels of lymphocyte activation, antigen presentation by dendritic cells, and the formation of autoantibodies. This leads to immune complex-mediated glomerulonephritis. Toll-like receptor 7 (T7) and TLR9 localize to the endosomal compartment and play important roles in the generation of autoantibodies against nuclear components, as they recognize RNA and DNA, respectively. In contrast, very little is known about endogenous TLR8 activation in mice. We therefore tested whether TLR8 could affect autoimmune responses in a murine model of lupus. We introduced a Tlr8 null mutation into C57BL/6 mice congenic for the Nba2 (NZB autoimmunity 2) locus and bearing the Yaa (Y-linked autoimmune acceleration) mutation containing a tlr8 duplicated gene, and monitored disease development, autoantibody production, and glomerulonephritis-associated mortality. Cellular responses were investigated in female Nba2.TLR8−/− mice bearing no copy of tlr8. The TLR8 deficiency accelerated disease progression and mortality, increased the number of circulating antibodies and activated monocytes, and heightened cellular responses to TLR7 ligation. TLR8-deficient antigen-presenting cells exhibited increased levels of MHC class II expression. The ability of dendritic cells to present antigens to allogeneic T cells after TLR7 ligation was also improved by TLR8 deficiency. TLR8 deletion accelerated autoimmunity in lupus-prone mice in response to TLR7 activation. Antigen-presenting cell function seemed to play a key role in mediating the effects of TLR8 deficiency. PMID:25424423

  7. The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share.

    PubMed

    Kottyan, Leah C; Zoller, Erin E; Bene, Jessica; Lu, Xiaoming; Kelly, Jennifer A; Rupert, Andrew M; Lessard, Christopher J; Vaughn, Samuel E; Marion, Miranda; Weirauch, Matthew T; Namjou, Bahram; Adler, Adam; Rasmussen, Astrid; Glenn, Stuart; Montgomery, Courtney G; Hirschfield, Gideon M; Xie, Gang; Coltescu, Catalina; Amos, Chris; Li, He; Ice, John A; Nath, Swapan K; Mariette, Xavier; Bowman, Simon; Rischmueller, Maureen; Lester, Sue; Brun, Johan G; Gøransson, Lasse G; Harboe, Erna; Omdal, Roald; Cunninghame-Graham, Deborah S; Vyse, Tim; Miceli-Richard, Corinne; Brennan, Michael T; Lessard, James A; Wahren-Herlenius, Marie; Kvarnström, Marika; Illei, Gabor G; Witte, Torsten; Jonsson, Roland; Eriksson, Per; Nordmark, Gunnel; Ng, Wan-Fai; Anaya, Juan-Manuel; Rhodus, Nelson L; Segal, Barbara M; Merrill, Joan T; James, Judith A; Guthridge, Joel M; Scofield, R Hal; Alarcon-Riquelme, Marta; Bae, Sang-Cheol; Boackle, Susan A; Criswell, Lindsey A; Gilkeson, Gary; Kamen, Diane L; Jacob, Chaim O; Kimberly, Robert; Brown, Elizabeth; Edberg, Jeffrey; Alarcón, Graciela S; Reveille, John D; Vilá, Luis M; Petri, Michelle; Ramsey-Goldman, Rosalind; Freedman, Barry I; Niewold, Timothy; Stevens, Anne M; Tsao, Betty P; Ying, Jun; Mayes, Maureen D; Gorlova, Olga Y; Wakeland, Ward; Radstake, Timothy; Martin, Ezequiel; Martin, Javier; Siminovitch, Katherine; Moser Sivils, Kathy L; Gaffney, Patrick M; Langefeld, Carl D; Harley, John B; Kaufman, Kenneth M

    2015-01-15

    Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5-TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5-TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10(-49); OR = 1.38-1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10(-27)-10(-32), OR = 1.7-1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5-TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5-TNPO3. PMID:25205108

  8. Toll-like receptors in autoimmunity with special reference to systemic lupus erythematosus.

    PubMed

    Pradhan, Vandana D; Das, Swaptagni; Surve, Prathamesh; Ghosh, Kanjaksha

    2012-05-01

    The Toll-like receptor (TLR) family plays a fundamental role in host innate immunity by mounting a rapid and potent inflammatory response to pathogen infection. TLRs recognize distinct microbial components and activate intracellular signaling pathways that induce expression of host inflammatory genes. Several studies have indicated that TLRs are implicated in many inflammatory and immune disorders. Extensive research in the past decade to understand TLR-mediated mechanisms of innate immunity has enabled pharmaceutical companies to begin to develop novel therapeutics for the purpose of controlling an inflammatory disease. The roles of TLRs in the development of autoimmune diseases have been studied. TLR7 and TLR9 have key roles in production of autoantibodies and/or in development of systemic autoimmune disease. It remains to be determined their role in apoptosis, in the pathogenesis of RNA containing immune complexes, differential expression of TLRs by T regulatory cells. PMID:23162288

  9. Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases.

    PubMed Central

    Bashir, S; Harris, G; Denman, M A; Blake, D R; Winyard, P G

    1993-01-01

    OBJECTIVES--To estimate the extent of genomic DNA damage and killing of lymphocytes by reactive oxygen intermediates in autoimmune diseases. METHODS--8-Oxo-7-hydrodeoxyguanosine (8-oxodG), a promutagenic DNA lesion induced by reactive oxygen intermediates, was measured by high performance liquid chromatography, coupled with electrochemical detection, in hydrolysates of DNA which had been extracted from lymphocyte and polymorphonuclear leucocyte fractions of human blood. In addition, human primary blood lymphocytes stimulated by concanavalin A were assayed for cytotoxicity induced by hydrogen peroxide on day 0, by assessing cell proliferation during seven days of culture. RESULTS--Constitutive 8-oxodG was detectable (mean (2 SEM) moles 8-oxodG/10(6) moles deoxyguanosine) in DNA isolated from normal human blood lymphocytes (68 (8), n = 26) and polymorphonuclear leucocytes (118 (24), n = 24). Lymphocyte DNA from donors with the following inflammatory autoimmune diseases contained significantly higher levels of 8-oxodG than that from healthy donors: rheumatoid arthritis (98 (16)), systemic lupus erythematosus (137 (28)), vasculitis (100 (32)), and Behçet's disease (92 (19)). Lymphocyte 8-oxodG levels in non-autoimmune controls and patients with scleroderma were not significantly different from those of healthy controls. The levels of 8-oxodG were significantly higher in the DNA from normal polymorphonuclear leucocytes than in paired DNA samples from normal lymphocytes, but there were no differences between levels of 8-oxodG in polymorphonuclear leucocytes from normal subjects and the patients studied. Levels of 8-oxodG did not correlate with disease duration, disease severity, or age. Lymphocytes from patients with systemic lupus erythematosus and rheumatoid arthritis, but not those with scleroderma, also showed cellular hypersensitivity to the toxic effects of hydrogen peroxide. CONCLUSION--There was increased genomic DNA damage, and increased susceptibility to

  10. LAPping up dead cells to prevent lupus nephritis: a novel role for noncanonical autophagy in autoimmunity.

    PubMed

    Leventhal, Jeremy S; Ross, Michael J

    2016-08-01

    The mechanisms underlying the development of systemic lupus erythematosus and lupus nephritis remain poorly understood. A recent study demonstrates that deficiencies in the immune system's ability to degrade scavenged dead cells via noncanonical autophagy is sufficient to break immune tolerance and produce features commonly seen in lupus, including circulating autoantibodies, inflammatory cytokines, and nephritis. This work provides a possible mechanism for the association of polymorphisms in autophagy genes with the risk of lupus. PMID:27418084

  11. Autoimmune/auto-inflammatory syndrome induced by adjuvants (ASIA) after quadrivalent human papillomavirus vaccination in Colombians: a call for personalised medicine.

    PubMed

    Anaya, Juan-Manuel; Reyes, Benjamin; Perdomo-Arciniegas, Ana M; Camacho-Rodríguez, Bernardo; Rojas-Villarraga, Adriana

    2015-01-01

    This was a case study in which 3 patients with autoimmune/auto-inflammatory syndrome induced by adjuvants (ASIA) after quadrivalent human papillomavirus vaccination (HPV) were evaluated and described. All the patients were women. Diagnosis consisted of HLA-B27 enthesitis related arthritis, rheumatoid arthritis and systemic lupus erythematous, respectively. Our results highlight the risk of developing ASIA after HPV vaccination and may serve to increase the awareness of such a complication. Factors that are predictive of developing autoimmune diseases should be examined at the population level in order to establish preventive measures in at-risk individuals for whom healthcare should be personalized and participatory. PMID:25962455

  12. The human microbiome in rheumatic autoimmune diseases: A comprehensive review.

    PubMed

    Coit, Patrick; Sawalha, Amr H

    2016-09-01

    The human microbiome consists of the total diversity of microbiota and their genes. High-throughput sequencing has allowed for inexpensive and rapid evaluation of taxonomic representation and functional capability of the microbiomes of human body sites. Autoimmune and inflammatory rheumatic diseases are characterized by dysbiosis of the microbiome. Microbiome dysbiosis can be influenced by host genetics and environmental factors. Dysbiosis is also associated with shifts in certain functional pathways. The goal of this article is to provide a current and comprehensive review of the unique characteristics of the microbiome of patients with autoimmune and inflammatory rheumatic diseases, measured using high-throughput sequencing. We also highlight the need for broader studies utilizing a longitudinal approach to better understand how the human microbiome contributes to disease susceptibility, and to characterize the role of the interaction between host genetics and microbial diversity in the pathogenesis of autoimmune diseases, disease manifestations, and progression. PMID:27493014

  13. The indirect costs of systemic autoimmune diseases, systemic lupus erythematosus, systemic sclerosis and sarcoidosis: a summary of 2012 real-life data from the Social Insurance Institution in Poland.

    PubMed

    Kawalec, Paweł P; Malinowski, Krzysztof P

    2015-01-01

    Systemic lupus erythematosus, systemic sclerosis and sarcoidosis are three different autoimmune systemic diseases that generate a significant burden to society due to treatment costs and also those caused by a work disability or absenteeism among patients. Relevant 2012 data referring to the three components of absenteeism produced by autoimmune systemic diseases, sick leave, short-term and long-term work disability, were obtained from the Social Insurance Institution in Poland (PSII). By applying the Human Capital Approach using gross domestic product per capita, gross value added per worker and gross income per worker in 2012, total indirect costs for the diseases were calculated. All costs were presented in euros and were valid for 2012. The PSII recorded 1600 patients with systemic lupus erythematosus, 500 patients with systemic sclerosis and 2700 patients with sarcoidosis in the 2012 - total indirect costs were as high as 7,260,595, 2,268,571 and 4,027,575 EUR, respectively. Costs were estimated using gross domestic product per capita; 17,485,412, 5,463,312 and 9,699,455 EUR, accordingly, calculated using gross value added per worker and 5,346,933, 1,670,648 and 2,966,034 EUR estimated using gross income per worker, respectively. Considering only data on absenteeism gathered by the PSII we can conclude that the three autoimmune systemic diseases bore great indirect costs. Their social burden for Poland could be even greater when considering presenteeism as well as other components of absenteeism such as loss of unpaid work, a gray economy or loss of leisure time. PMID:26153642

  14. Control of Cytokine Production by Human Fc Gamma Receptors: Implications for Pathogen Defense and Autoimmunity

    PubMed Central

    Vogelpoel, Lisa T. C.; Baeten, Dominique L. P.; de Jong, Esther C.; den Dunnen, Jeroen

    2015-01-01

    Control of cytokine production by immune cells is pivotal for counteracting infections via orchestration of local and systemic inflammation. Although their contribution has long been underexposed, it has recently become clear that human Fc gamma receptors (FcγRs), which are receptors for the Fc region of immunoglobulin G (IgG) antibodies, play a critical role in this process by controlling tissue- and pathogen-specific cytokine production. Whereas individual stimulation of FcγRs does not evoke cytokine production, FcγRs cell-type specifically interact with various other receptors for selective amplification or inhibition of particular cytokines, thereby tailoring cytokine responses to the immunological context. The physiological function of FcγR-mediated control of cytokine production is to counteract infections with various classes of pathogens. Upon IgG opsonization, pathogens are simultaneously recognized by FcγRs as well as by various pathogen-sensing receptors, leading to the induction of pathogen class-specific immune responses. However, when erroneously activated, the same mechanism also contributes to the development of autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. In this review, we discuss control of cytokine production as a novel function of FcγRs in human innate immune cells in the context of homeostasis, infection, and autoimmunity and address the possibilities for future therapeutic exploitation. PMID:25759693

  15. Auto-antibodies to vascular endothelial cadherin in humans: association with autoimmune diseases.

    PubMed

    Bouillet, L; Baudet, A E; Deroux, A; Sidibé, A; Dumestre-Perard, C; Mannic, T; Treillard, B; Arboleas, M A; Chiquet, C A; Gulino-Debrac, D G; Vilgrain, I Y

    2013-11-01

    To identify patients with autoimmune diseases who are at high risk of developing vascular cell dysfunction, early biomarkers must be identified. This study was designed to detect and characterize circulating autoantibodies to VE-cadherin (AAVEs) in patients with early-stage autoimmune diseases. An enzyme-linked immunosorbent assay (ELISA) was developed to capture autoantibodies, using a recombinant human VE-cadherin fragment covering the extracellular domains as a target antigen. AAVEs specificity for the target antigen was confirmed by western blotting. Basal AAVEs levels were determined for healthy donors (n=75). Sera from patients (n=100) with various autoimmune diseases, including rheumatoid arthritis (n=23), systemic lupus erythematosus (SLE, n=31), systemic sclerosis (n=30), and Behçet's disease (BD, n=16) were also tested. Levels of AAVEs were significantly higher in rheumatoid arthritis (P<0.0001), SLE (P<0.05), and BD (P<0.05) populations than in healthy subjects. Purified immunoglobulin G (IgG) from a BD patient with exceptionally high AAVEs levels recognized the EC1-4 fragment in western blots. Further characterization of the epitopes recognized by AAVEs showed that BD patients had antibodies specific for the EC3 and EC4 domains, whereas SLE patients preferentially recognized the EC1 fragment. This suggests that distinct epitopes of human VE-cadherin might be recognized in different immune diseases. Purified IgG from BD patients was found to induce endothelial cell retraction, redistribution of VE-cadherin, and cause the formation of numerous intercellular gaps. Altogether, these data demonstrate a potential pathogenic effect of AAVEs isolated from patients with dysimmune disease. This is the first description of AAVEs in humans. Because regions EC1 and EC3-4 have been shown to be involved in homophilic VE-cadherin interactions, AAVEs produced in the course of dysimmune diseases might be specific biomarkers for endothelial injury, which is part of the

  16. Human umbilical cord derived mesenchymal stem cells promote interleukin-17 production from human peripheral blood mononuclear cells of healthy donors and systemic lupus erythematosus patients.

    PubMed

    Ren, S; Hu, J; Chen, Y; Yuan, T; Hu, H; Li, S

    2016-03-01

    Inflammation instigated by interleukin (IL)-17-producing cells is central to the development and pathogenesis of several human autoimmune diseases and animal models of autoimmunity. The expansion of IL-17-producing cells from healthy donors is reportedly promoted by mesenchymal stem cells derived from fetal bone marrow. In the present study, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were examined for their effects on lymphocytes from healthy donors and from patients with systemic lupus erythematosus (SLE). Significantly higher levels of IL-17 were produced when CD4(+) T cells from healthy donors were co-cultured with hUC-MSCs than those that were cultured alone. Blocking experiments identified that this effect might be mediated partially through prostaglandin E2 (PGE2 ) and IL-1β, without IL-23 involvement. We then co-cultured hUC-MSCs with human CD4(+) T cells from systemic lupus erythematosus patients. Ex-vivo inductions of IL-17 by hUC-MSCs in stimulated lymphocytes were significantly higher in SLE patients than in healthy donors. This effect was not observed for IL-23. Taken together, our results represent that hUC-MSCs can promote the IL-17 production from CD4(+) T cells in both healthy donor and SLE patients. PGE2 and IL-1β might also be partially involved in the promotive effect of hUC-MSCs. PMID:26507122

  17. Superantigen influence in conjunction with cytokine polymorphism potentiates autoimmunity in systemic lupus erythematosus patients.

    PubMed

    Dar, Sajad Ahmad; Janahi, Essam Mohammed Ahmed; Haque, Shafiul; Akhter, Naseem; Jawed, Arshad; Wahid, Mohd; Ramachandran, Vishnampettai Ganapathysubramanian; Bhattacharya, Sambit Nath; Banerjee, Basu Dev; Das, Shukla

    2016-08-01

    Risk posed by microbial superantigens in triggering or exacerbating SLE in genetically predisposed individuals, thereby altering the response to its treatment strategies, has not been studied. Using streptococcal pyrogenic exotoxin A and staphylococcal enterotoxin B as prototype superantigens, we have demonstrated that they profoundly affect the magnitude of polyclonal T cell response, particularly CD4(+) T cells and expression of CD45RA and CD45RO, and cytokine secretion in vitro in SLE patient PBMCs. Also, reduced proportions of FoxP3 expressing CD4(+)CD25(+) T cells were detected in SLE as compared to healthy control PBMCs. Furthermore, polymorphism in IL-10 and TGF-β showed significant association with SLE in our study population. These results indicate that accumulation of superantigen-reactive T cells and cytokine polymorphism may cause disease exacerbation, relapse, or therapeutic resistance in SLE patients. Attempts to contain colonizing and/or superantigen-producing microbial agents in SLE patients in addition to careful monitoring of their therapy may be worthwhile in decreasing disease severity or preventing frequent relapses. The study suggests that superantigen interference in conjunction with cytokine polymorphism may play a role in immune dysregulation, thereby contributing to autoimmunity in SLE. Therefore, changes in T cell phenotypes and cytokine secretion might be good indicators of therapeutic efficacy in these patients. PMID:26676360

  18. Natural human antibodies to synthetic peptide autoantigens: correlations with age and autoimmune disease.

    PubMed

    Marchalonis, J J; Schluter, S F; Wilson, L; Yocum, D E; Boyer, J T; Kay, M M

    1993-01-01

    M reactivities to both band 3 and Tcr beta peptides than do normals, with this effect being less pronounced in the distinct autoimmune disease systemic lupus erythematosus. Studies of normal humans ranging in age from 20 to 90 years suggest two major patterns for the IgM natural antibody response to synthetic peptides giving high response. The first is that the level of IgM reactivity is high early in life and remains high throughout. The second pattern is one in which the reaction is high in younger individuals, but diminishes substantially in the latter decades of life.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8514202

  19. Drug-induced lupus erythematosus: incidence, management and prevention.

    PubMed

    Chang, Christopher; Gershwin, M Eric

    2011-05-01

    The generation of autoantibodies and autoimmune diseases such as systemic lupus erythematosus has been associated with the use of certain drugs in humans. Early reports suggested that procainamide and hydralazine were associated with the highest risk of developing lupus, quinidine with a moderate risk and all other drugs were considered low or very low risk. More recently, drug-induced lupus has been associated with the use of the newer biological modulators such as tumour necrosis factor (TNF)-α inhibitors and interferons. The clinical features and laboratory findings of TNFα inhibitor-induced lupus are different from that of traditional drug-induced lupus or idiopathic lupus, and standardized criteria for the diagnosis of drug-induced lupus have not been established. The mechanism(s) responsible for the development of drug-induced lupus may vary depending on the drug or even on the patient. Besides lupus, other autoimmune diseases have been associated with drugs or toxins. Diagnosis of drug-induced lupus requires identification of a temporal relationship between drug administration and symptom development, and in traditional drug-induced lupus there must be no pre-existing lupus. Resolution of symptoms generally occurs after cessation of the drug. In this review, we will discuss those drugs that are more commonly associated with drug-induced lupus, with an emphasis on the new biologicals and the difficulty of making the diagnosis of drug-induced lupus against a backdrop of the autoimmune diseases that these drugs are used to treat. Stimulation of the immune system by these drugs to cause autoimmunity may in fact be associated with an increased effectiveness in treating the pathology for which they are prescribed, leading to the dilemma of deciding which is worse, the original disease or the adverse effect of the drug. Optimistically, one must hope that ongoing research in drug development and in pharmacogenetics will help to treat patients with the maximum

  20. Human parvovirus B19 and autoimmune diseases. Review of the literature and pathophysiological hypotheses.

    PubMed

    Page, Cyril; François, Catherine; Goëb, Vincent; Duverlie, Gilles

    2015-11-01

    A number of arguments support the role played by PVB19 in autoimmunity, in the broad sense of the term essentially derived from numerous clinical case reports and/or small series over the past 20-30 years in the medical literature. PVB19 can induce a very broad spectrum of autoantibody production, especially including: anti-soluble nuclear antigen antibodies, antiphospholipid antibodies anti-native DNA antibodies, antilymphocyte antibody, anticardiolipin antibodies, antinuclear antibodies and rheumatoid factor. Notably acute PVB19 infection can mimic or stimulate autoimmune systemic diseases as rheumatoid arthritis or systemic lupus erythematosus. However, at the present time, there is no formal scientific evidence demonstrating a direct role of PVB19 in autoimmunity, bearing in mind that there are also no formal arguments against it. Further large studies are needed to understand the eventual role of PVB19 in autoimmune diseases. PMID:26433772

  1. Immunogenicity and safety of the human papillomavirus vaccine in patients with autoimmune diseases: A systematic review.

    PubMed

    Pellegrino, Paolo; Radice, Sonia; Clementi, Emilio

    2015-07-01

    Whereas safety and efficacy of HPV vaccines in healthy women have been shown in several randomised controlled clinical trials and in post marketing analyses, only few data exist in patients affected by autoimmune diseases. These issues are significant as autoimmune conditions are recognised as a risk factor for the persistence of HPV infection. Herein we review and systematise the existing literature to assess immunogenicity and safety of HPV vaccination in patients with autoimmune diseases, including systemic lupus erythematosus and juvenile idiopathic arthritis. The results of our literature revision suggest that the HPV vaccines are efficacious and safe in most of the patients affected by autoimmune diseases. Yet, some points of concern remain to be tackled, including the effects of concomitant therapies, the risk of disease exacerbation and the cost-effectiveness of such immunisation programmes in these populations. PMID:26036945

  2. ABIN1 Dysfunction as a Genetic Basis for Lupus Nephritis

    PubMed Central

    Caster, Dawn J.; Korte, Erik A.; Nanda, Sambit K.; McLeish, Kenneth R.; Oliver, Rebecca K.; G'Sell, Rachel T.; Sheehan, Ryan M.; Freeman, Darrell W.; Coventry, Susan C.; Kelly, Jennifer A.; Guthridge, Joel M.; James, Judith A.; Sivils, Kathy L.; Alarcon-Riquelme, Marta E.; Scofield, R. Hal; Adrianto, Indra; Gaffney, Patrick M.; Stevens, Anne M.; Freedman, Barry I.; Langefeld, Carl D.; Tsao, Betty P.; Pons-Estel, Bernardo A.; Jacob, Chaim O.; Kamen, Diane L.; Gilkeson, Gary S.; Brown, Elizabeth E.; Alarcon, Graciela S.; Edberg, Jeffrey C.; Kimberly, Robert P.; Martin, Javier; Merrill, Joan T.; Harley, John B.; Kaufman, Kenneth M.; Reveille, John D.; Anaya, Juan-Manuel; Criswell, Lindsey A.; Vila, Luis M.; Petri, Michelle; Ramsey-Goldman, Rosalind; Bae, Sang-Cheol; Boackle, Susan A.; Vyse, Timothy J.; Niewold, Timothy B.; Cohen, Philip

    2013-01-01

    The genetic factors underlying the pathogenesis of lupus nephritis associated with systemic lupus erythematosus are largely unknown, although animal studies indicate that nuclear factor (NF)-κB is involved. We reported previously that a knockin mouse expressing an inactive form of ABIN1 (ABIN1[D485N]) develops lupus-like autoimmune disease and demonstrates enhanced activation of NF-κB and mitogen-activated protein kinases in immune cells after toll-like receptor stimulation. In the current study, we show that ABIN1[D485N] mice develop progressive GN similar to class III and IV lupus nephritis in humans. To investigate the clinical relevance of ABIN1 dysfunction, we genotyped five single-nucleotide polymorphisms in the gene encoding ABIN1, TNIP1, in samples from European-American, African American, Asian, Gullah, and Hispanic participants in the Large Lupus Association Study 2. Comparing cases of systemic lupus erythematosus with nephritis and cases of systemic lupus erythematosus without nephritis revealed strong associations with lupus nephritis at rs7708392 in European Americans and rs4958881 in African Americans. Comparing cases of systemic lupus erythematosus with nephritis and healthy controls revealed a stronger association at rs7708392 in European Americans but not at rs4958881 in African Americans. Our data suggest that variants in the TNIP1 gene are associated with the risk for lupus nephritis and could be mechanistically involved in disease development via aberrant regulation of NF-κB and mitogen-activated protein kinase activity. PMID:23970121

  3. B-cell targeted therapies in human autoimmune diseases: an updated perspective.

    PubMed

    Townsend, Michael J; Monroe, John G; Chan, Andrew C

    2010-09-01

    The advent of therapies that specifically target the B-lymphocyte lineage in human disease has rejuvenated interest in the mechanistic biology by which B cells mediate autoimmunity. B cells have a multitude of effector functions including production of self-reactive antibodies, ability to present antigen to T lymphocytes in the context of costimulation, involvement in generation and maintenance of neo-organogenesis at sites of disease, and opposing function through production of both immunostimulatory and immunomodulatory cytokines. In this review, we first discuss the role of B cells in driving autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, and Sjögren's syndrome, and discuss how studies in these diseases have revealed differentially important roles for the multiple B-cell effector functions. These data reveal the complex and interrelated roles of B cells working in concert with other components of the innate and adaptive immune system to drive pathogenesis. We then focus on data from mouse and human in which B cells in the setting of disease have been targeted with drugs directed against CD20, CD22, and the BAFF (B-cell activating factor belonging to the tumor necrosis factor family)/APRIL (a proliferation inducing ligand) pathways. Pre-clinical studies in animal models in addition to and clinical trials targeting B cells have added further to the understanding of the differential roles B cells play in disease both through demonstration of clinical efficacy in the context of B-cell depletion or modulation, and also by failure of B-cell targeting in some diseases and disease patient subgroups. Moving forward, it will be imperative to apply these lessons to new interventional trials to ensure better targeting of the B-cell lineage and concomitantly better selection of patients most likely to benefit from these therapies. PMID:20727041

  4. Diet, microbiota and autoimmune diseases.

    PubMed

    Vieira, S M; Pagovich, O E; Kriegel, M A

    2014-05-01

    There is growing evidence that the commensal bacteria in the gastrointestinal tract (the gut microbiota) influence the development of autoimmunity in rodent models. Since humans have co-evolved with commensals for millennia, it is likely that people, who are genetically predisposed to autoimmunity, harbor gut microbial communities that similarly influence the onset and/or severity of disease. Beyond the current efforts to identify such disease-promoting or -preventing commensals ("pathobionts" or "symbionts"), it will be important to determine what factors modulate them. Dietary changes are known to affect both the composition and function of the gut microbial communities, which in turn can alter the innate and adaptive immune system. In this review, we focus on the relationships between diet, microbiota, and autoimmune diseases. We hypothesize that the beneficial and life-prolonging effects of caloric restriction on a variety of autoimmune models including lupus might partly be mediated by its effects on the gut microbiome and associated virome, the collection of all viruses in the gut. We give recent examples of the immunomodulatory potential of select gut commensals and their products or diet-derived metabolites in murine models of arthritis, multiple sclerosis, and type 1 diabetes. Lastly, we summarize the published phenotypes of germ-free mouse models of lupus and speculate on any role of the diet-sensitive microbiome and virome in systemic lupus and the related antiphospholipid syndrome. PMID:24763536

  5. Autoantibodies with Enzymatic Properties in Human Autoimmune Diseases

    PubMed Central

    Wootla, Bharath; Lacroix-Desmazes, Sébastien; Warrington, Arthur E.; Bieber, Allan J.; Kaveri, Srini V.; Rodriguez, Moses

    2011-01-01

    Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. In addition to this plethora of functions, some antibodies express enzymatic activity. Antibodies endowed with enzymatic properties have been described in human autoimmune manifestations for more than a decade in a variety of disorders such as autoimmune thyroiditis, systemic erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), multiple sclerosis (MS) and acquired hemophilia (AH). Antibodies isolated from these conditions were able to specifically hydrolyze thyroglobulin, DNA, RNA, myelin basic protein (MBP), and factor VIII (FVIII) or factor IX (FIX), respectively. The therapeutic relevance of these findings is discussed. PMID:21624820

  6. Network Analysis Identifies Proinflammatory Plasma Cell Polarization for Secretion of ISG15 in Human Autoimmunity.

    PubMed

    Care, Matthew A; Stephenson, Sophie J; Barnes, Nicholas A; Fan, Im; Zougman, Alexandre; El-Sherbiny, Yasser M; Vital, Edward M; Westhead, David R; Tooze, Reuben M; Doody, Gina M

    2016-08-15

    Plasma cells (PCs) as effectors of humoral immunity produce Igs to match pathogenic insult. Emerging data suggest more diverse roles exist for PCs as regulators of immune and inflammatory responses via secretion of factors other than Igs. The extent to which such responses are preprogrammed in B-lineage cells or can be induced in PCs by the microenvironment is unknown. In this study, we dissect the impact of IFNs on the regulatory networks of human PCs. We show that core PC programs are unaffected, whereas PCs respond to IFNs with distinctive transcriptional responses. The IFN-stimulated gene 15 (ISG15) system emerges as a major transcriptional output induced in a sustained fashion by IFN-α in PCs and linked both to intracellular conjugation and ISG15 secretion. This leads to the identification of ISG15-secreting plasmablasts/PCs in patients with active systemic lupus erythematosus. Thus, ISG15-secreting PCs represent a distinct proinflammatory PC subset providing an Ig-independent mechanism of PC action in human autoimmunity. PMID:27357150

  7. Network Analysis Identifies Proinflammatory Plasma Cell Polarization for Secretion of ISG15 in Human Autoimmunity

    PubMed Central

    Care, Matthew A.; Stephenson, Sophie J.; Barnes, Nicholas A.; Fan, Im; Zougman, Alexandre; El-Sherbiny, Yasser M.; Vital, Edward M.; Westhead, David R.; Tooze, Reuben M.

    2016-01-01

    Plasma cells (PCs) as effectors of humoral immunity produce Igs to match pathogenic insult. Emerging data suggest more diverse roles exist for PCs as regulators of immune and inflammatory responses via secretion of factors other than Igs. The extent to which such responses are preprogrammed in B-lineage cells or can be induced in PCs by the microenvironment is unknown. In this study, we dissect the impact of IFNs on the regulatory networks of human PCs. We show that core PC programs are unaffected, whereas PCs respond to IFNs with distinctive transcriptional responses. The IFN-stimulated gene 15 (ISG15) system emerges as a major transcriptional output induced in a sustained fashion by IFN-α in PCs and linked both to intracellular conjugation and ISG15 secretion. This leads to the identification of ISG15-secreting plasmablasts/PCs in patients with active systemic lupus erythematosus. Thus, ISG15-secreting PCs represent a distinct proinflammatory PC subset providing an Ig-independent mechanism of PC action in human autoimmunity. PMID:27357150

  8. Autoimmunity and dysmetabolism of human acquired immunodeficiency syndrome.

    PubMed

    Huang, Yan-Mei; Hong, Xue-Zhi; Xu, Jia-Hua; Luo, Jiang-Xi; Mo, Han-You; Zhao, Hai-Lu

    2016-06-01

    Acquired immunodeficiency syndrome (AIDS) remains ill-defined by lists of symptoms, infections, tumors, and disorders in metabolism and immunity. Low CD4 cell count, severe loss of body weight, pneumocystis pneumonia, and Kaposi's sarcoma are the major disease indicators. Lines of evidence indicate that patients living with AIDS have both immunodeficiency and autoimmunity. Immunodeficiency is attributed to deficits in the skin- and mucosa-defined innate immunity, CD4 T cells and regulatory T cells, presumably relating human immunodeficiency virus (HIV) infection. The autoimmunity in AIDS is evident by: (1) overproduction of autoantibodies, (2) impaired response of CD4 cells and CD8 cells, (3) failure of clinical trials of HIV vaccines, and (4) therapeutic benefits of immunosuppression following solid organ transplantation and bone marrow transplantation in patients at risk of AIDS. Autoantibodies are generated in response to antigens such as debris and molecules de novo released from dead cells, infectious agents, and catabolic events. Disturbances in metabolic homeostasis occur at the interface of immunodeficiency and autoimmunity in the development of AIDS. Optimal treatments favor therapeutics targeting on the regulation of metabolism to restore immune homeostasis. PMID:26676359

  9. Human leukocyte Antigen-DM polymorphisms in autoimmune diseases

    PubMed Central

    Morrison, Eliot; Wieczorek, Marek; Sticht, Jana; Freund, Christian

    2016-01-01

    Classical MHC class II (MHCII) proteins present peptides for CD4+ T-cell surveillance and are by far the most prominent risk factor for a number of autoimmune disorders. To date, many studies have shown that this link between particular MHCII alleles and disease depends on the MHCII's particular ability to bind and present certain peptides in specific physiological contexts. However, less attention has been paid to the non-classical MHCII molecule human leucocyte antigen-DM, which catalyses peptide exchange on classical MHCII proteins acting as a peptide editor. DM function impacts the presentation of both antigenic peptides in the periphery and key self-peptides during T-cell development in the thymus. In this way, DM activity directly influences the response to pathogens, as well as mechanisms of self-tolerance acquisition. While decreased DM editing of particular MHCII proteins has been proposed to be related to autoimmune disorders, no experimental evidence for different DM catalytic properties had been reported until recently. Biochemical and structural investigations, together with new animal models of loss of DM activity, have provided an attractive foundation for identifying different catalytic efficiencies for DM allotypes. Here, we revisit the current knowledge of DM function and discuss how DM function may impart autoimmunity at the organism level. PMID:27534821

  10. Dissection of the role of MHC class II A and E genes in autoimmune susceptibility in murine lupus models with intragenic recombination.

    PubMed

    Zhang, Danqing; Fujio, Keishi; Jiang, Yi; Zhao, Jingyuan; Tada, Norihiro; Sudo, Katsuko; Tsurui, Hiromichi; Nakamura, Kazuhiro; Yamamoto, Kazuhiko; Nishimura, Hiroyuki; Shira, Toshikazu; Hirose, Sachiko

    2004-09-21

    Systemic lupus erythematosus (SLE) is a multigenic autoimmune disease, and the major histocompatibility complex (MHC) class II polymorphism serves as a key genetic element. In SLE-prone (NZB x NZW)F(1) mice, the MHC H-2(d/z) heterozygosity (H-2(d) of NZB and H-2(z) of NZW) has a strong impact on disease; thus, congenic H-2(d/d) homozygous F(1) mice do not develop severe disease. In this study, we used Ea-deficient intra-H-2 recombination to establish A(d/d)-congenic (NZB x NZW)F(1) mice, with or without E molecule expression, and dissected the role of class II A and E molecules. Here we found that A(d/d) homozygous F(1) mice lacking E molecules developed severe SLE similar to that seen in wild-type F1 mice, including lupus nephritis, autoantibody production, and spontaneously occurring T cell activation. Additional evidence revealed that E molecules prevent the disease in a dose-dependent manner; however, the effect is greatly influenced by the haplotype of A molecules, because wild-type H-2(d/z) F(1) mice develop SLE, despite E molecule expression. Studies on the potential of dendritic cells to present a self-antigen chromatin indicated that dendritic cells from wild-type F(1) mice induced a greater response of chromatin-specific T cells than did those from A(d/d) F(1) mice, irrespective of the presence or absence of E molecules, suggesting that the self-antigen presentation is mediated by A, but not by E, molecules. Our mouse models are useful for analyzing the molecular mechanisms by which MHC class II regions regulate the process of autoimmune responses. PMID:15361580

  11. Overexpression of membrane-bound fas ligand (CD95L) exacerbates autoimmune disease and renal pathology in pristane-induced lupus.

    PubMed

    Bossaller, Lukas; Rathinam, Vijay A K; Bonegio, Ramon; Chiang, Ping-I; Busto, Patricia; Wespiser, Adam R; Caffrey, Daniel R; Li, Quan-Zhen; Mohan, Chandra; Fitzgerald, Katherine A; Latz, Eicke; Marshak-Rothstein, Ann

    2013-09-01

    Loss-of-function mutations in the Fas death receptor or its ligand result in a lymphoproliferative syndrome and exacerbate clinical disease in most lupus-prone strains of mice. One exception is mice injected with 2,6,10,14-tetramethylpentadecane (TMPD), a hydrocarbon oil commonly known as pristane, which induces systemic lupus erythematosus-like disease. Although Fas/Fas ligand (FasL) interactions have been strongly implicated in the activation-induced cell death of both lymphocytes and other APCs, FasL can also trigger the production of proinflammatory cytokines. FasL is a transmembrane protein with a matrix metalloproteinase cleavage site in the ectodomain. Matrix metalloproteinase cleavage inactivates membrane-bound FasL and releases a soluble form reported to have both antagonist and agonist activity. To better understand the impact of FasL cleavage on both the proapoptotic and proinflammatory activity of FasL, its cleavage site was deleted through targeted mutation to produce the deleted cleavage site (ΔCS) mouse line. ΔCS mice express higher levels of membrane-bound FasL than do wild-type mice and fail to release soluble FasL. To determine to what extent FasL promotes inflammation in lupus mice, TMPD-injected FasL-deficient and ΔCS BALB/c mice were compared with control TMPD-injected BALB/c mice. We found that FasL deficiency significantly reduced the early inflammatory exudate induced by TMPD injection. In contrast, ΔCS mice developed a markedly exacerbated disease profile associated with a higher frequency of splenic neutrophils and macrophages, a profound change in anti-nuclear Ab specificity, and markedly increased proteinuria and kidney pathology compared with controls. These results demonstrate that FasL promotes inflammation in TMPD-induced autoimmunity, and its cleavage limits FasL proinflammatory activity. PMID:23918976

  12. Understanding Lupus

    MedlinePlus

    ... treat lupus? What causes lupus? What are the risk factors for developing lupus? How does lupus affect the nervous system? What is the history of lupus? Is stress related to lupus? Can hormones trigger the development ...

  13. Sex differences in the expression of lupus-associated miRNAs in splenocytes from lupus-prone NZB/WF1 mice

    PubMed Central

    2013-01-01

    Background A majority of autoimmune diseases, including systemic lupus erythematosus (SLE), occur predominantly in females. Recent studies have identified specific dysregulated microRNAs (miRNAs) in both human and murine lupus, implying an important contribution of these miRNAs to lupus pathogenesis. However, to date, there is no study that examined sex differences in miRNA expression in immune cells as a plausible basis for sex differences in autoimmune disease. This study addresses this aspect in NZB/WF1 mice, a classical murine lupus model with marked female bias, and further investigates estrogen regulation of lupus-associated miRNAs. Methods The Taqman miRNA assay system was used to quantify the miRNA expression in splenocytes from male and female NZB/WF1 mice at 17–18, 23, and 30 weeks (wks) of age. To evaluate potential estrogen's effect on lupus-associated miRNAs, 6-wk-old NZB/WF1 male mice were orchidectomized and surgically implanted with empty (placebo) or estrogen implants for 4 and 26 wks, respectively. To assess the lupus status in the NZB/WF1 mice, serum anti-dsDNA autoantibody levels, proteinuria, and renal histological changes were determined. Results The sex differences in the expression of lupus-associated miRNAs, including the miR-182-96-183 cluster, miR-155, miR-31, miR-148a, miR-127, and miR-379, were markedly evident after the onset of lupus, especially at 30 wks of age when female NZB/WF1 mice manifested moderate to severe lupus when compared to their male counterparts. Our limited data also suggested that estrogen treatment increased the expression of aforementioned lupus-associated miRNAs, with the exception of miR-155, in orchidectomized male NZB/WF1 mice to a similar level in age-matched intact female NZB/WF1 mice. It is noteworthy that orchiectomy, itself, did not affect the expression of lupus-associated miRNAs. Conclusion To our knowledge, this is the first study that demonstrated sex differences in the expression of lupus

  14. Silica, Silicosis, and Autoimmunity

    PubMed Central

    Pollard, Kenneth Michael

    2016-01-01

    Inhalation of dust containing crystalline silica is associated with a number of acute and chronic diseases including systemic autoimmune diseases. Evidence for the link with autoimmune disease comes from epidemiological studies linking occupational exposure to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regarding the mechanism by which silica exposure leads to systemic autoimmune disease, there is a voluminous literature on silica exposure and silicosis that may help identify immune processes that precede development of autoimmunity. The pathophysiology of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of these particles by macrophages initiates an inflammatory response, which stimulates fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen leading to fibrosis and the nodular lesions characteristic of the disease. The steps in the development of silicosis, including acute and chronic inflammation and fibrosis, have different molecular and cellular requirements, suggesting that silica-induced inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear whether silica-induced inflammation and fibrosis contribute similarly to the development of autoimmunity. Nonetheless, the findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage. The variable frequency of these immunological features following silica exposure suggests substantial genetic involvement and gene/environment interaction in silica-induced autoimmunity. However, numerous questions remain unanswered. PMID:27014276

  15. Silica, Silicosis, and Autoimmunity.

    PubMed

    Pollard, Kenneth Michael

    2016-01-01

    Inhalation of dust containing crystalline silica is associated with a number of acute and chronic diseases including systemic autoimmune diseases. Evidence for the link with autoimmune disease comes from epidemiological studies linking occupational exposure to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regarding the mechanism by which silica exposure leads to systemic autoimmune disease, there is a voluminous literature on silica exposure and silicosis that may help identify immune processes that precede development of autoimmunity. The pathophysiology of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of these particles by macrophages initiates an inflammatory response, which stimulates fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen leading to fibrosis and the nodular lesions characteristic of the disease. The steps in the development of silicosis, including acute and chronic inflammation and fibrosis, have different molecular and cellular requirements, suggesting that silica-induced inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear whether silica-induced inflammation and fibrosis contribute similarly to the development of autoimmunity. Nonetheless, the findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage. The variable frequency of these immunological features following silica exposure suggests substantial genetic involvement and gene/environment interaction in silica-induced autoimmunity. However, numerous questions remain unanswered. PMID:27014276

  16. Induction of lupus autoantibodies by adjuvants

    USGS Publications Warehouse

    Satoh, M.; Kuroda, Y.; Yoshida, H.; Behney, K.M.; Mizutani, A.; Akaogi, J.; Nacionales, D.C.; Lorenson, T.D.; Rosenbauer, R.J.; Reeves, W.H.

    2003-01-01

    Exposure to the hydrocarbon oil pristane induces lupus specific autoantibodies in non-autoimmune mice. We investigated whether the capacity to induce lupus-like autoimmunity is a unique property of pristane or is shared by other adjuvant oils. Seven groups of 3-month-old female BALB/cJ mice received a single intraperitoneal injection of pristane, squalene (used in the adjuvant MF59), incomplete Freund's adjuvant (IFA), three different medicinal mineral oils, or saline, respectively. Serum autoantibodies and peritoneal cytokine production were measured. In addition to pristane, the mineral oil Bayol F (IFA) and the endogenous hydrocarbon squalene both induced anti-nRNP/Sm and -Su autoantibodies (20% and 25% of mice, respectively). All of these hydrocarbons had prolonged effects on cytokine production by peritoneal APCs. However, high levels of IL-6, IL-12, and TNF?? production 2-3 months after intraperitoneal injection appeared to be associated with the ability to induce lupus autoantibodies. The ability to induce lupus autoantibodies is shared by several hydrocarbons and is not unique to pristane. It correlates with stimulation of the production of IL-12 and other cytokines, suggesting a relationship with a hydrocarbon's adjuvanticity. The potential to induce autoimmunity may complicate the use of oil adjuvants in human and veterinary vaccines. ?? 2003 Elsevier Ltd. All rights reserved.

  17. B Cell Signature during Inactive Systemic Lupus Is Heterogeneous: Toward a Biological Dissection of Lupus

    PubMed Central

    Blaison, Gilles; Knapp, Anne-Marie; Dembele, Doulaye; Ruer-Laventie, Julie; Korganow, Anne-Sophie; Martin, Thierry; Soulas-Sprauel, Pauline; Pasquali, Jean-Louis

    2011-01-01

    Systemic lupus erythematosous (SLE) is an autoimmune disease with an important clinical and biological heterogeneity. B lymphocytes appear central to the development of SLE which is characterized by the production of a large variety of autoantibodies and hypergammaglobulinemia. In mice, immature B cells from spontaneous lupus prone animals are able to produce autoantibodies when transferred into immunodeficient mice, strongly suggesting the existence of intrinsic B cell defects during lupus. In order to approach these defects in humans, we compared the peripheral B cell transcriptomas of quiescent lupus patients to normal B cell transcriptomas. When the statistical analysis is performed on the entire group of patients, the differences between patients and controls appear quite weak with only 14 mRNA genes having a false discovery rate ranging between 11 and 17%, with 6 underexpressed genes (PMEPA1, TLR10, TRAF3IP2, LDOC1L, CD1C and EGR1). However, unforced hierarchical clustering of the microarrays reveals a subgroup of lupus patients distinct from both the controls and the other lupus patients. This subgroup has no detectable clinical or immunological phenotypic peculiarity compared to the other patients, but is characterized by 1/an IL-4 signature and 2/the abnormal expression of a large set of genes with an extremely low false discovery rate, mainly pointing to the biological function of the endoplasmic reticulum, and more precisely to genes implicated in the Unfolded Protein Response, suggesting that B cells entered an incomplete BLIMP1 dependent plasmacytic differentiation which was undetectable by immunophenotyping. Thus, this microarray analysis of B cells during quiescent lupus suggests that, despite a similar lupus phenotype, different biological roads can lead to human lupus. PMID:21886837

  18. The IRF5–TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share

    PubMed Central

    Kottyan, Leah C.; Zoller, Erin E.; Bene, Jessica; Lu, Xiaoming; Kelly, Jennifer A.; Rupert, Andrew M.; Lessard, Christopher J.; Vaughn, Samuel E.; Marion, Miranda; Weirauch, Matthew T.; Namjou, Bahram; Adler, Adam; Rasmussen, Astrid; Glenn, Stuart; Montgomery, Courtney G.; Hirschfield, Gideon M.; Xie, Gang; Coltescu, Catalina; Amos, Chris; Li, He; Ice, John A.; Nath, Swapan K.; Mariette, Xavier; Bowman, Simon; Rischmueller, Maureen; Lester, Sue; Brun, Johan G.; Gøransson, Lasse G.; Harboe, Erna; Omdal, Roald; Cunninghame-Graham, Deborah S.; Vyse, Tim; Miceli-Richard, Corinne; Brennan, Michael T.; Lessard, James A.; Wahren-Herlenius, Marie; Kvarnström, Marika; Illei, Gabor G.; Witte, Torsten; Jonsson, Roland; Eriksson, Per; Nordmark, Gunnel; Ng, Wan-Fai; Anaya, Juan-Manuel; Rhodus, Nelson L.; Segal, Barbara M.; Merrill, Joan T.; James, Judith A.; Guthridge, Joel M.; Hal Scofield, R.; Alarcon-Riquelme, Marta; Bae, Sang-Cheol; Boackle, Susan A.; Criswell, Lindsey A.; Gilkeson, Gary; Kamen, Diane L.; Jacob, Chaim O.; Kimberly, Robert; Brown, Elizabeth; Edberg, Jeffrey; Alarcón, Graciela S.; Reveille, John D.; Vilá, Luis M.; Petri, Michelle; Ramsey-Goldman, Rosalind; Freedman, Barry I.; Niewold, Timothy; Stevens, Anne M.; Tsao, Betty P.; Ying, Jun; Mayes, Maureen D.; Gorlova, Olga Y.; Wakeland, Ward; Radstake, Timothy; Martin, Ezequiel; Martin, Javier; Siminovitch, Katherine; Moser Sivils, Kathy L.; Gaffney, Patrick M.; Langefeld, Carl D.; Harley, John B.; Kaufman, Kenneth M.

    2015-01-01

    Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5–TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5–TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10−49; OR = 1.38–1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10−27–10−32, OR = 1.7–1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5–TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5–TNPO3. PMID:25205108

  19. Human adjuvant disease: remission of silicone induced autoimmune disease after explanation of breast augmentation.

    PubMed Central

    kaiser, W; Biesenbach, G; Stuby, U; Grafinger, P; Zazgornik, J

    1990-01-01

    Autoimmune diseases following silicone or paraffin implantation are rarely encountered complications of plastic surgery. A 42 year old woman is presented who developed clinical and immunological features of systemic lupus erythematosus 11 years after silicone augmentation. After explanation antinuclear antibody titres decreased from 1/1280 to 1/160, C4 complement fraction and the previously raised angiotensin converting enzyme normalised in step with clinical improvement. It is important that plastic surgeons and rheumatologists should be aware of this possible association. PMID:2256743

  20. A case of human immunodeficiency virus infection with cerebellar ataxia that suggested by an association with autoimmunity.

    PubMed

    Nagao, Shigeto; Kondo, Takayuki; Nakamura, Takashi; Nakagawa, Tomokazu; Matsumoto, Sadayuki

    2016-04-28

    We report a case of human immunodeficiency virus (HIV) infection that showed subacute progressive cerebellar ataxia without HIV encephalopathy or other encephalopathies, including progressive multifocal leukoencephalopathy or encephalitis of other human herpes virus (HHV) infections. A 43-year-old man exhibited unsteady gait. Neurological examination disclosed ataxia of the trunk and lower extremities. Personality change and dementia were absent. Magnetic resonance imaging did not reveal any abnormal finding, including of the cerebellum. The serum HIV-1-RNA was 1.2 × 10(5) copies/ml, and the absolute CD4 lymphocyte count was 141 cells/ml. Remarkably, the serum anti-Yo antibody, as an anti-cerebellar antibody of paraneoplastic syndrome, and anti-gliadin antibody, associated with celiac disease or gluten ataxia, were positive. The cerebrospinal fluid (CSF) immunoglobulin G index was 1.2 (< 0.8), and oligoclonal bands were present. PCR of the CSF was negative for HIV, JC virus, other HHVs, and mycosis. Previous reports presented HIV-infected patients with concurrent autoimmune diseases such as systemic lupus erythematosus, anti-phospholipid syndrome, autoimmune thrombocytopenia, vasculitis, polymyositis and dermatomyositis, sarcoidosis, Graves' disease, and hepatic diseases. These might have been present in patients with a CD4 T lymphocyte count of more than 200 cells/ml. On the other hand, paraneoplastic syndrome, gluten ataxia, cerebellar ataxia associated with anti-glutamic acid decarboxylase antibody, and Hashimoto's encephalopathy might manifest as autoimmune cerebellar ataxia. As regards the association of HIV infection and autoimmune cerebellar ataxia, a previous report suggested that anti-gliadin antibody was detected in about 30% of HIV-infected children, though there is no reference to an association with cerebellar ataxia. Moreover, to our knowledge, detection of anti-Yo antibody in an HIV-infected patient with cerebellar ataxia has not been reported

  1. The intricate role of complement component C4 in human systemic lupus erythematosus.

    PubMed

    Yang, Yan; Chung, Erwin K; Zhou, Bi; Lhotta, Karl; Hebert, Lee A; Birmingham, Daniel J; Rovin, Brad H; Yu, C Yung

    2004-01-01

    It was observed about 50 years ago that low serum complement activity or low protein concentrations of complement C4 concurred with disease activities of systemic lupus erythematosus (SLE). Complete deficiencies of complement components C4A and C4B, albeit rare in human populations, are among the strongest genetic risk factors for SLE or lupus-like disease, across HLA haplotypes and racial backgrounds. However, whether heterozygous or partial deficiency of C4A (C4AQ0) or C4B (C4BQ0) is a predisposing factor for SLE has been a highly controversial topic. In this review we critically analyzed past epidemiologic studies on deficiency of C4A or C4B in human SLE. Cumulative results from more than 35 different studies revealed that heterozygous and homozygous deficiencies of C4A were present in 40-60% of SLE patients from almost all ethnic groups or races investigated, which included northern and central Europeans, Anglo-Saxons, Caucasians in the US, African Americans, Asian Chinese, Koreans and Japanese. In addition, French SLE and control populations had relatively low frequencies of C4AQ0, but the difference between the patient and control groups was statistically significant. The relative risk of C4AQ0 in SLE varied between 2.3 and 5.3 among different ethnic groups. In Caucasian and African SLE patients, the two major causes for C4AQ0 are (1) the presence of a mono-S RCCX (RP-C4-CYP21-TNX) module with a single, short C4B gene in the major histocompatibility complex; and (2) a 2-bp insertion into the sequence for codon 1213 at exon 29 of the mutant C4A gene. Both mono-S structures and 2-bp insertion in exon 29 are absent or extremely rare in the C4AQ0 of Oriental SLE patients. The highly significant association of C4AQ0 with SLE across multiple HLA haplotypes and ethnic groups, and the presence of different mechanisms leading to a C4A protein deficiency among SLE patients suggested that deficiency or low expression level of C4A protein is a primary risk factor for SLE

  2. Prolactin, systemic lupus erythematosus, and autoreactive B cells: lessons learnt from murine models.

    PubMed

    Saha, Subhrajit; Tieng, Arlene; Pepeljugoski, K Peter; Zandamn-Goddard, Gisele; Peeva, Elena

    2011-02-01

    The predominant prevalence of autoimmune diseases in women of reproductive age has led to the investigation of the effects of sex hormones on immune regulation and in autoimmune diseases, in particular the prototypic systemic autoimmune disease lupus. The female hormone prolactin has receptors beyond the reproductive axis including immune cells, and it is thought to promote autoimmunity in human and murine lupus. Induced hyperprolactinemia in experimental lupus models, regardless of gender, exacerbates disease activity and leads to premature death. Prolactin treatment in mice that are not prone to develop lupus leads to the development of a lupus-like phenotype. Persistent mild-moderate hyperprolactinemia alters the selection of the naïve B cell repertoire. Recent studies demonstrate that prolactin impairs all three mechanisms of B cell tolerance induction (negative selection, receptor editing, and anergy) and thereby contributes to the pathogenesis of autoimmunity. The effects of prolactin are genetically determined as shown by the differential response to the hormone in the different mice strains. Bromocriptine, a drug that inhibits prolactin secretion, abrogates some of the immune effects of this hormone. Further research is required to elucidate molecular mechanisms involved in immune effects of prolactin and to develop novel targeted treatments for SLE patients with prolactin-responsive disease. PMID:19937157

  3. Liver injury correlates with biomarkers of autoimmunity and disease activity and represents an organ system involvement in patients with systemic lupus erythematosus.

    PubMed

    Liu, Yuxin; Yu, Jianghong; Oaks, Zachary; Marchena-Mendez, Ivan; Francis, Lisa; Bonilla, Eduardo; Aleksiejuk, Phillip; Patel, Jessica; Banki, Katalin; Landas, Steve K; Perl, Andras

    2015-10-01

    Liver disease (LD), defined as ≥ 2-fold elevation of aspartate aminotransferase (AST) or alanine aminotransferase (ALT), was examined in a longitudinal study of systemic lupus erythematosus (SLE) patients. Among 435 patients, 90 (20.7%) had LD with a greater prevalence in males (15/39; 38.5%) than females (75/396; 18.9%; p = 0.01). SLE disease activity index (SLEDAI) was greater in LD patients (7.8 ± 0.7) relative to those without (5.8 ± 0.3; p = 0.0025). Anti-smooth muscle antibodies, anti-DNA antibodies, hypocomplementemia, proteinuria, leucopenia, thrombocytopenia, and anti-phospholipid syndrome were increased in LD. An absence of LD was noted in patients receiving rapamycin relative to azathioprine, cyclosporine A, or cyclophosphamide. An absence of LD was also noted in patients treated with N-acetylcysteine. LFTs were normalized and SLEDAI was diminished with increased prednisone use in 76/90 LD patients over 12.1 ± 2.6 months. Thus, LD is attributed to autoimmunity and disease activity, it responds to prednisone, and it is potentially preventable by rapamycin or N-acetylcysteine treatment. PMID:26160213

  4. Purine receptor antagonist modulates serology and affective behaviors in lupus-prone mice: evidence of autoimmune-induced pain?

    PubMed Central

    Ballok, David A.; Sakic, Boris

    2008-01-01

    Neurologic and psychiatric (NP) manifestations are severe complications of systemic lupus erythematosus (SLE). As commonly seen in patients, spontaneous disease onset in the MRL/MpJ-Faslpr/ J (MRL-lpr) mouse model of NP-SLE is accompanied by increased autoantibodies, proinflammatorycytokines and behavioral dysfunction which precede neuroinflammation and structural brain lesions. The role of purinergic receptors in the regulation of immunity and behavior remains largely unexplored in the field of neuropsychiatry. To examine the possibility that purinoception is involved in the development of affective behaviors, the P2X purinoceptor antagonist, suramin, was administered to lupus-prone mice from 5 to 14 weeks of age. In addition to food and water measures, novel object and sucrose preference tests were performed to assess neophobic anxiety- and anhedonic-like behaviors. Enzyme-linked immunosorbant assays for anti-nuclear antibodies (ANA) and pro-inflammatory cytokines were employed in immunopathological analyses. Changes in dendritic morphology in the hippocampal CA1 region were examined by a Golgi impregnation method. Suramin significantly lowered serum ANA and prevented behavioral deficits, but did not prevent neuronal atrophy in MRL-lpr animals. In a new batch of asymptomatic mice, systemic administration of corticosterone was found to induce aberrations in CA1 dendrites, comparable to the “stress” of chronic disease. The precise mechanism(s) through which purine receptor inhibition exerted beneficial effects is not known. The present data supports the hypothesis that activation of the peripheral immune system induces nociceptive-related behavioral symptomatology which is attenuated by the analgesic effects of suramin. Hypercortisolemia may also initiate neuronal damage, and metabolic perturbations may underlie neuro-immuno-endocrine imbalances in MRL-lpr mice. PMID:18601998

  5. Hippocampal Damage in Mouse and Human Forms of Systemic Autoimmune Disease

    PubMed Central

    Ballok, David A.; Woulfe, John; Sur, Monalisa; Cyr, Michael; Sakic, Boris

    2006-01-01

    Systemic lupus erythematosus (SLE) is frequently accompanied by neuropsychiatric (NP) and cognitive deficits of unknown etiology. By using autoimmune MRL-lpr mice as an animal model of NP-SLE, we examine the relationship between autoimmunity, hippocampal damage, and behavioral dysfunction. Fluoro Jade B (FJB) staining and anti-ubiquitin (anti-Ub) immunocytochemistry were used to assess neuronal damage in young (asymptomatic) and aged (diseased) mice, while spontaneous alternation behavior (SAB) was used to estimate the severity of hippocampal dysfunction. The causal relationship between autoimmunity and neuropathology was tested by prolonged administration of the immunosuppressive drug cyclophosphamide (CY). In comparison to congenic MRL +/+ controls, SAB acquisition rates and performance in the “reversal” trial were impaired in diseased MRL-lpr mice, suggesting limited use of the spatial learning strategy. FJB-positive neurons and anti-Ub particles were frequent in the CA3 region. Conversely, CY treatment attenuated the SAB deficit and overall FJB staining. Similarly to mouse brain, the hippocampus from a patient who died from NP-SLE showed reduced neuronal density in the CA3 region and dentate gyrus, as well as increased FJB positivity in these regions. Gliosis and neuronal loss were observed in the gray matter, and T lymphocytes and stromal calcifications were common in the choroid plexus. Taken together, these results suggest that systemic autoimmunity induces significant hippocampal damage, which may underlie affective and cognitive deficits in NP-SLE. PMID:15301441

  6. THE CAROLINA LUPUS STUDY (CLU)

    EPA Science Inventory

    Carolina Lupus (CLU) Study, an epidemiologic study of risk factors for systemic lupus erythematosus (SLE). SLE is a severe, chronic, systemic autoimmune disease that disproportionately affects women and African-Americans. The CLU Study focuses on measures of endogenous hormone ex...

  7. Amyloid-DNA composites of bacterial biofilms stimulate autoimmunity

    PubMed Central

    Gallo, Paul M.; Rapsinski, Glenn J.; Wilson, R. Paul; Oppong, Gertrude O.; Sriram, Uma; Goulian, Mark; Buttaro, Bettina; Caricchio, Roberto; Gallucci, Stefania; Tükel, Çagla

    2015-01-01

    SUMMARY Research on the human microbiome has established that commensal and pathogenic bacteria can influence obesity, cancer, and autoimmunity through mechanisms mostly unknown. We found that a component of bacterial biofilms, the amyloid protein curli, irreversibly formed fibers with bacterial DNA during biofilm formation. This interaction accelerated amyloid polymerization and created potent immunogenic complexes that activated immune cells, including dendritic cells, to produce cytokines such as Type I interferons, which are pathogenic in systemic lupus erythematosus (SLE). When given systemically, curli-DNA composites triggered immune activation and production of autoantibodies in lupus-prone and wild-type mice. We also found that the infection of lupus-prone mice with curli-producing bacteria triggered higher autoantibody titers compared to curli-deficient bacteria. These data provide a mechanism by which the microbiome and biofilm-producing enteric infections may contribute to the progression of SLE and point to a potential molecular target for treatment of autoimmunity. PMID:26084027

  8. Induction of a systemic lupus erythematosus-like disease in mice by a common human anti-DNA idiotype

    SciTech Connect

    Mendlovic, S.; Brocke, S.; Meshorer, A.; Mozes, E. ); Shoenfeld, Y.; Bakimer, R. ); Ben-Bassat, M. )

    1988-04-01

    Systemic lupus erythematosus (SLE) is considered to be the quintessential autoimmune disease. It has not been possible to induce SLE in animal models by DNA immunization or by challenge with anti-DNA antibodies. The authors report a murine model of SLE-like disease induced by immunization of C3H.SW female mice with a common human monoclonal anti-DNA idiotype (16/6 idiotype). Following a booster injection with the 16/6 idiotype, high levels of murine anti-16/6 and anti-anti-16/6 antibodies (associated with anti-DNA activity) were detected in the sera of the immunized mice. Elevated titers of autoantibodies reacting with DNA, poly(I), poly(dT), ribonucleoprotein, autoantigens (Sm, SS-A (Ro), and SS-B (La)), and cardiolipin were noted. The serological findings were associated with increased erythrocyte sedimentation rate, leukopenia, proteinuria, immune complex deposition in the glomerular mesangium, and sclerosis of the glomeruli. The immune complexes in the kidneys were shown to contain the 16/6 idiotype. This experimental SLE-like model may be used to elucidate the mechanisms underlying SLE.

  9. Helicobacter pylori and skin autoimmune diseases.

    PubMed

    Magen, Eli; Delgado, Jorge-Shmuel

    2014-02-14

    Autoimmune skin diseases are characterized by dysregulation of the immune system resulting in a loss of tolerance to skin self-antigen(s). The prolonged interaction between the bacterium and host immune mechanisms makes Helicobacter pylori (H. pylori) a plausible infectious agent for triggering autoimmunity. Epidemiological and experimental data now point to a strong relation of H. pylori infection on the development of many extragastric diseases, including several allergic and autoimmune diseases. H. pylori antigens activate cross-reactive T cells and induce autoantibodies production. Microbial heat shock proteins (HSP) play an important role of in the pathogenesis of autoimmune diseases because of the high level of sequence homology with human HSP. Eradication of H. pylori infection has been shown to be effective in some patients with chronic autoimmune urticaria, psoriasis, alopecia areata and Schoenlein-Henoch purpura. There is conflicting and controversial data regarding the association of H. pylori infection with Behçet's disease, scleroderma and autoimmune bullous diseases. No data are available evaluating the association of H. pylori infection with other skin autoimmune diseases, such as vitiligo, cutaneous lupus erythematosus and dermatomyositis. The epidemiological and experimental evidence for a possible role of H. pylori infection in skin autoimmune diseases are the subject of this review. PMID:24587626

  10. Assessment of attachment behaviour to human caregivers in wolf pups (Canis lupus lupus).

    PubMed

    Hall, Nathaniel J; Lord, Kathryn; Arnold, Anne-Marie K; Wynne, Clive D L; Udell, Monique A R

    2015-01-01

    Previous research suggested that 16-week old dog pups, but not wolf pups, show attachment behaviour to a human caregiver. Attachment to a caregiver in dog pups has been demonstrated by differential responding to a caregiver compared to a stranger in the Ainsworth Strange Situation Test. We show here that 3-7 week old wolf pups also show attachment-like behaviour to a human caregiver as measured by preferential proximity seeking, preferential contact, and preferential greeting to a human caregiver over a human stranger in a modified and counterbalanced version of the Ainsworth Strange Situation Test. In addition, our results show that preferential responding to a caregiver over a stranger is only apparent following brief isolation. In initial episodes, wolf pups show no differentiation between the caregiver and the stranger; however, following a 2-min separation, the pups show proximity seeking, more contact, and more greeting to the caregiver than the stranger. These results suggest intensive human socialization of a wolf can lead to attachment--like responding to a human caregiver during the first two months of a wolf pup's life. PMID:25447510

  11. Breakdown of Immune Tolerance in Systemic Lupus Erythematosus by Dendritic Cells

    PubMed Central

    Reihl, Alec M.

    2016-01-01

    Dendritic cells (DC) play an important role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease with multiple tissue manifestations. In this review, we summarize recent studies on the roles of conventional DC and plasmacytoid DC in the development of both murine lupus and human SLE. In the past decade, studies using selective DC depletions have demonstrated critical roles of DC in lupus progression. Comprehensive in vitro and in vivo studies suggest activation of DC by self-antigens in lupus pathogenesis, followed by breakdown of immune tolerance to self. Potential treatment strategies targeting DC have been developed. However, many questions remain regarding the mechanisms by which DC modulate lupus pathogenesis that require further investigations. PMID:27034965

  12. Lupus Nephritis: Animal Modeling of a Complex Disease Syndrome Pathology

    PubMed Central

    McGaha, Tracy L; Madaio, Michael P.

    2014-01-01

    Nephritis as a result of autoimmunity is a common morbidity associated with Systemic Lupus Erythematosus (SLE). There is substantial clinical and industry interest in medicinal intervention in the SLE nephritic process; however, clinical trials to specifically treat lupus nephritis have not resulted in complete and sustained remission in all patients. Multiple mouse models have been used to investigate the pathologic interactions between autoimmune reactivity and SLE pathology. While several models bear a remarkable similarity to SLE-driven nephritis, there are limitations for each that can make the task of choosing the appropriate model for a particular aspect of SLE pathology challenging. This is not surprising given the variable and diverse nature of human disease. In many respects, features among murine strains mimic some (but never all) of the autoimmune and pathologic features of lupus patients. Although the diversity often limits universal conclusions relevant to pathogenesis, they provide insights into the complex process that result in phenotypic manifestations of nephritis. Thus nephritis represents a microcosm of systemic disease, with variable lesions and clinical features. In this review, we discuss some of the most commonly used models of lupus nephritis (LN) and immune-mediated glomerular damage examining their relative strengths and weaknesses, which may provide insight in the human condition. PMID:25722732

  13. Inhibition of SHP2 ameliorates the pathogenesis of systemic lupus erythematosus

    PubMed Central

    Wang, Jianxun; Zeng, Li-Fan; Bronson, Roderick; Finnell, Michele; Terhorst, Cox; Kyttaris, Vasileios C.; Zhang, Zhong-Yin; Kontaridis, Maria I.

    2016-01-01

    Systemic lupus erythematosus (SLE) is a devastating multisystemic autoimmune disorder. However, the molecular mechanisms underlying its pathogenesis remain elusive. Some patients with Noonan syndrome, a congenital disorder predominantly caused by gain-of-function mutations in the protein tyrosine phosphatase SH2 domain–containing PTP (SHP2), have been shown to develop SLE, suggesting a functional correlation between phosphatase activity and systemic autoimmunity. To test this directly, we measured SHP2 activity in spleen lysates isolated from lupus-prone MRL/lpr mice and found it was markedly increased compared with that in control mice. Similar increases in SHP2 activity were seen in peripheral blood mononuclear cells isolated from lupus patients relative to healthy patients. To determine whether SHP2 alters autoimmunity and related immunopathology, we treated MRL/lpr mice with an SHP2 inhibitor and found increased life span, suppressed crescentic glomerulonephritis, reduced spleen size, and diminished skin lesions. SHP2 inhibition also reduced numbers of double-negative T cells, normalized ERK/MAPK signaling, and decreased production of IFN-γ and IL-17A/F, 2 cytokines involved in SLE-associated organ damage. Moreover, in cultured human lupus T cells, SHP2 inhibition reduced proliferation and decreased production of IFN-γ and IL-17A/F, further implicating SHP2 in lupus-associated immunopathology. Taken together, these data identify SHP2 as a critical regulator of SLE pathogenesis and suggest targeting of its activity as a potent treatment for lupus patients. PMID:27183387

  14. Lupus - resources

    MedlinePlus

    Resources - lupus ... The following organizations are good resources for information on systemic lupus erythematosus : The Lupus Foundation of America -- www.lupus.org The National Institute of Arthritis and Musculoskeletal ...

  15. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans.

    PubMed

    Vatanen, Tommi; Kostic, Aleksandar D; d'Hennezel, Eva; Siljander, Heli; Franzosa, Eric A; Yassour, Moran; Kolde, Raivo; Vlamakis, Hera; Arthur, Timothy D; Hämäläinen, Anu-Maaria; Peet, Aleksandr; Tillmann, Vallo; Uibo, Raivo; Mokurov, Sergei; Dorshakova, Natalya; Ilonen, Jorma; Virtanen, Suvi M; Szabo, Susanne J; Porter, Jeffrey A; Lähdesmäki, Harri; Huttenhower, Curtis; Gevers, Dirk; Cullen, Thomas W; Knip, Mikael; Xavier, Ramnik J

    2016-05-01

    According to the hygiene hypothesis, the increasing incidence of autoimmune diseases in western countries may be explained by changes in early microbial exposure, leading to altered immune maturation. We followed gut microbiome development from birth until age three in 222 infants in Northern Europe, where early-onset autoimmune diseases are common in Finland and Estonia but are less prevalent in Russia. We found that Bacteroides species are lowly abundant in Russians but dominate in Finnish and Estonian infants. Therefore, their lipopolysaccharide (LPS) exposures arose primarily from Bacteroides rather than from Escherichia coli, which is a potent innate immune activator. We show that Bacteroides LPS is structurally distinct from E. coli LPS and inhibits innate immune signaling and endotoxin tolerance; furthermore, unlike LPS from E. coli, B. dorei LPS does not decrease incidence of autoimmune diabetes in non-obese diabetic mice. Early colonization by immunologically silencing microbiota may thus preclude aspects of immune education. PMID:27133167

  16. Beyond Apoptosis in Lupus

    PubMed Central

    Colonna, Lucrezia; Lood, Christian; Elkon, Keith B.

    2014-01-01

    Purpose of review Systemic lupus erythematosus (SLE) is characterized by autoantibodies directed against nuclear autoantigens normally concealed from immune recognition in healthy individuals. Here we summarize recently identified mechanisms of abnormal cell death leading to exposure and aberrant processing of nucleoprotein self antigens, and discuss their role in the SLE pathogenesis. Recent findings During the past few years, the unveiling of several new forms of cell death has expanded our understanding beyond the simple view of “apoptotic” versus “necrotic” cell death. SLE patients show abnormalities in cell death at several levels, including increased rates of apoptosis, necrosis, and autophagy, as well as reduced clearance of dying cells. These abnormalities lead to an increased autoantigen burden and also antigen modifications, such as nucleic acid oxidation that increase the inflammatory properties of self antigens. Recent investigations have highlighted the role of opsonins in determining the immunogenic versus tolerogenic characteristics of self antigens. Summary Dysregulation of different forms of programmed cell death contributes to increased exposure, availability, and immunogenic characteristic of intracellular self antigens, which all participate in development of lupus autoimmunity. As our understanding of abnormalities of cell death in SLE advances, potential therapeutic opportunities await human implementation. PMID:25036095

  17. Low-dose exposure to inorganic mercury accelerates disease and mortality in acquired murine lupus.

    PubMed Central

    Via, Charles S; Nguyen, Phuong; Niculescu, Florin; Papadimitriou, John; Hoover, Dennis; Silbergeld, Ellen K

    2003-01-01

    Inorganic mercury (iHg) is known to induce autoimmune disease in susceptible rodent strains. Additionally, in inbred strains of mice prone to autoimmune disease, iHg can accelerate and exacerbate disease manifestations. Despite these well-known links between iHg and autoimmunity in animal models, no association between iHg alone and autoimmune disease in humans has been documented. However, it is possible that low-level iHg exposure can interact with disease triggers to enhance disease expression or susceptibility. To address whether exposure to iHg can alter the course of subsequent acquired autoimmune disease, we used a murine model of acquired autoimmunity, lupus-like chronic graft-versus-host disease (GVHD), in which autoimmunity is induced using normal, nonautoimmune prone donor and F1 recipient mice resistant to Hg-induced autoimmunity. Our results indicate that a 2-week exposure to low-dose iHg (20 or 200 micro g/kg every other day) to donor and host mice ending 1 week before GVHD induction can significantly worsen parameters of disease severity, resulting in premature mortality. iHg pretreatment clearly worsened chronic lupus-like disease, rather than GVHD worsening iHg immunotoxicity. These results are consistent with the hypothesis that low-level, nontoxic iHg preexposure may interact with other risk factors, genetic or acquired, to promote subsequent autoimmune disease development. PMID:12896845

  18. Immune complexes activate human endothelium involving the cell-signaling HMGB1-RAGE axis in the pathogenesis of lupus vasculitis.

    PubMed

    Sun, Wenping; Jiao, Yulian; Cui, Bin; Gao, Xuejun; Xia, Yu; Zhao, Yueran

    2013-06-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the formation of immune complexes (ICs), which contain a complex mixture of autoantigens nucleic acids, nucleic acids-associated proteins and corresponding autoantibodies. In SLE, ICs are deposited in multiple organs. Vasculopathy and vasculitis in SLE are typical complications and are associated with deposition of ICs on endothelium, endothelial activation and inflammatory cell infiltration. However, the effects of ICs on endothelial cells and the mechanisms involved remain unclear. In this study, we have demonstrated for the first time that ICs upregulated cell surface expression of the receptor for advanced glycation end products (RAGE), the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), increased the secretion of the chemokines interleukin 8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), the proinflammatoy cytokines interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and promoted the activation of the transcription factor NF-κB p65 in human endothelial cells (P<0.05). ICs also increased transendothelial migration of monocytes (P<0.05). One of the mechanisms underlying these activating effects of ICs on human endothelial cells involves cell signaling by high-mobility group box 1 protein (HMGB1)-RAGE axis, as these effects can be partially blocked by HMGB1 A-box, soluble RAGE (sRAGE), SB203580, PD98059, Bay 117082 (P<0.05) and co-treatment with these agents (P<0.05). In conclusion, ICs elicit proinflammatory responses in human endothelial cells and alter their function involving cellular signaling via the HMGB1-RAGE axis in the pathogenesis of SLE vasculitis. PMID:23628898

  19. Annotation: PANDAS--A Model for Human Autoimmune Disease

    ERIC Educational Resources Information Center

    Swedo, Susan E.; Grant, Paul J.

    2005-01-01

    Background: Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus infections (PANDAS) is a recently recognized syndrome in which pre-adolescent children have abrupt onsets of tics and/or obsessive-compulsive symptoms, a recurring and remitting course of illness temporally related to streptococcal infections, and associated…

  20. [Genetics of lupus erythematosus].

    PubMed

    Günther, Claudia

    2015-02-01

    Lupus erythematosus is a prototypic autoimmune disease that can be triggered in genetically predisposed individuals by environmental exposures. The disease is based on an uncontrolled activation of the immune system that recognizes self antigens and induces inflammatory disease flares. The multifactorial pathogenesis is based on a polygenic model of inheritance with multiple various susceptibility genes elevating the disease risk. Many of these polymorphisms have been recently identified by genome-wide association studies. Monogenic forms of lupus erythematosus are rare. The identification of their underlying pathogenesis is important for the recognition of main mechanistic pathways in lupus as demonstrated by the history of defects in the complement system. The monogenic, autosomal dominant inherited familial chilblain lupus is characterized by cold-induced infiltrates on acral locations occurring in early childhood. Molecular exploration of the disease pathogenesis revealed that autoimmunity and especially lupus erythematosus can be induced by defects in intracellular elimination of nucleic acids and the subsequent type I-IFN-dependent activation of the innate immune system. This mechanism extends the concept of lupus pathogenesis: both defects in the extra- and intracellular elimination of autoantigens can lead to activation of the innate and adaptive immune system. PMID:25659384

  1. A case-control study of quadrivalent human papillomavirus vaccine-associated autoimmune adverse events.

    PubMed

    Geier, David A; Geier, Mark R

    2015-07-01

    GARDASIL (Merck & Co., Inc., Whitehouse Station, NJ, USA) is a quadrivalent human papillomavirus (HPV4) vaccine. An epidemiological study was undertaken to evaluate concerns about the potential for HPV4 vaccination to induce serious autoimmune adverse events (SAAEs). The vaccine adverse event reporting system (VAERS) database was examined for adverse event reports associated with vaccines administered from January 2006 through December 2012 to recipients between 18 and 39 years old with a listed residence in the USA and a specified female gender. It was observed that cases with the SAAE outcomes of gastroenteritis (odds ratio (OR) = 4.6, 95% confidence interval (CI) = 1.3-18.5), arthritis (OR = 2.5, 95% CI = 1.4-4.3), systemic lupus erythematosus (OR = 5.3, 95% CI = 1.5-20.5), vasculitis (OR = 4, 95% CI = 1.01-16.4), alopecia (OR = 8.3, 95% CI = 4.5-15.9), or CNS conditions (OR = 1.8, 95% CI = 1.04-2.9) were significantly more likely than controls to have received HPV4 vaccine (median onset of SAAE symptoms from 6 to 55 days post-HPV4 vaccination). Cases with the outcomes of Guillain-Barre syndrome (OR = 0.75, 95% CI = 0.42-1.3) or thrombocytopenia (OR = 1.3, 95% CI = 0.48-3.5) were no more likely than controls to have received HPV4 vaccine. Cases with the general health outcomes of infection (OR = 0.72, 95% CI = 0.27-1.7), conjunctivitis (OR = 0.88, 95% CI = 0.29-2.7), or diarrhea (OR = 1.01, 95% CI = 0.83-1.22) were no more likely than controls to have received HPV4 vaccine. Previous case series of SAAEs and biological plausibility support the observed results. Additional studies should be conducted to further evaluate the potential biological mechanisms involved in HPV4 vaccine-associated SAAEs in animal model systems, and to examine the potential epidemiological relationship between HPV4 vaccine-associated SAAEs in other databases and populations. PMID:25535199

  2. Interaction of Intestinal Microorganisms with the Human Host in the Framework of Autoimmune Diseases.

    PubMed

    Sánchez, Borja; Hevia, Arancha; González, Sonia; Margolles, Abelardo

    2015-01-01

    Autoimmune diseases, such as systemic lupus erythematosus (SLE), are caused by a complex interaction of environmental-, genetic-, and sex-related factors. Although SLE has traditionally been considered independent from the microbiota, recent work published during the last 5 years suggests a strong connection between SLE and the composition of our gut commensals as one of the main environmental factors linked to this disease. Preliminary data have evidenced that (i) interaction of certain microbial-derived molecules with specific cell receptors and (ii) the influence of certain commensal microorganisms over specific immune cell subsets plays an important role in the pathogenesis of SLE and SLE-like diseases. In addition, epigenetic changes driven by certain microbial groups have been recently proposed as an additional link between gut microbiota and SLE. As immune responses elicited against commensal bacteria are deeply dependent on the composition of the latter, and as microbial populations can be modified by dietary interventions, identifying the precise gut microorganisms responsible for worsening the SLE symptoms is of crucial importance for this and other SLE-related diseases, including antiphospholipid syndrome or lupus nephritis. In this minireview, the current knowledge on the relationships between microbes and SLE and SLE-related diseases is compiled and discussed. PMID:26635808

  3. Interaction of Intestinal Microorganisms with the Human Host in the Framework of Autoimmune Diseases

    PubMed Central

    Sánchez, Borja; Hevia, Arancha; González, Sonia; Margolles, Abelardo

    2015-01-01

    Autoimmune diseases, such as systemic lupus erythematosus (SLE), are caused by a complex interaction of environmental-, genetic-, and sex-related factors. Although SLE has traditionally been considered independent from the microbiota, recent work published during the last 5 years suggests a strong connection between SLE and the composition of our gut commensals as one of the main environmental factors linked to this disease. Preliminary data have evidenced that (i) interaction of certain microbial-derived molecules with specific cell receptors and (ii) the influence of certain commensal microorganisms over specific immune cell subsets plays an important role in the pathogenesis of SLE and SLE-like diseases. In addition, epigenetic changes driven by certain microbial groups have been recently proposed as an additional link between gut microbiota and SLE. As immune responses elicited against commensal bacteria are deeply dependent on the composition of the latter, and as microbial populations can be modified by dietary interventions, identifying the precise gut microorganisms responsible for worsening the SLE symptoms is of crucial importance for this and other SLE-related diseases, including antiphospholipid syndrome or lupus nephritis. In this minireview, the current knowledge on the relationships between microbes and SLE and SLE-related diseases is compiled and discussed. PMID:26635808

  4. M. paratuberculosis Heat Shock Protein 65 and Human Diseases: Bridging Infection and Autoimmunity

    PubMed Central

    Dow, Coad Thomas

    2012-01-01

    Mycobacterium avium subspecies paratuberculosis (MAP) is the known infectious cause of Johne's disease, an enteric inflammatory disease mostly studied in ruminant animals. MAP has also been implicated in the very similar Crohn's disease of humans as well as sarcoidosis. Recently, MAP has been associated with juvenile sarcoidosis (Blau syndrome), autoimmune diabetes, autoimmune thyroiditis, and multiple sclerosis. While it is intuitive to implicate MAP in granulomatous diseases where the microbe participates in the granuloma, it is more difficult to assign a role for MAP in diseases where autoantibodies are a primary feature. MAP may trigger autoimmune antibodies via its heat shock proteins. Mycobacterial heat shock protein 65 (HSP65) is an immunodominant protein that shares sequential and conformational elements with several human host proteins. This molecular mimicry is the proposed etiopathology by which MAP stimulates autoantibodies associated with autoimmune (type 1) diabetes, autoimmune (Hashimoto's) thyroiditis, and multiple sclerosis. This paper proposes that MAP is a source of mycobacterial HSP65 and acts as a trigger of autoimmune disease. PMID:23056923

  5. Exhausted Cytotoxic Control of Epstein-Barr Virus in Human Lupus

    PubMed Central

    Larsen, Martin; Sauce, Delphine; Deback, Claire; Arnaud, Laurent; Mathian, Alexis; Miyara, Makoto; Boutolleau, David; Parizot, Christophe; Dorgham, Karim; Papagno, Laura; Appay, Victor; Amoura, Zahir; Gorochov, Guy

    2011-01-01

    Systemic Lupus Erythematosus (SLE) pathology has long been associated with an increased Epstein-Barr Virus (EBV) seropositivity, viremia and cross-reactive serum antibodies specific for both virus and self. It has therefore been postulated that EBV triggers SLE immunopathology, although the mechanism remains elusive. Here, we investigate whether frequent peaks of EBV viral load in SLE patients are a consequence of dysfunctional anti-EBV CD8+ T cell responses. Both inactive and active SLE patients (n = 76 and 42, respectively), have significantly elevated EBV viral loads (P = 0.003 and 0.002, respectively) compared to age- and sex-matched healthy controls (n = 29). Interestingly, less EBV-specific CD8+ T cells are able to secrete multiple cytokines (IFN-γ, TNF-α, IL-2 and MIP-1β) in inactive and active SLE patients compared to controls (P = 0.0003 and 0.0084, respectively). Moreover, EBV-specific CD8+ T cells are also less cytotoxic in SLE patients than in controls (CD107a expression: P = 0.0009, Granzyme B release: P = 0.0001). Importantly, cytomegalovirus (CMV)-specific responses were not found significantly altered in SLE patients. Furthermore, we demonstrate that EBV-specific CD8+ T cell impairment is a consequence of their Programmed Death 1 (PD-1) receptor up-regulation, as blocking this pathway reverses the dysfunctional phenotype. Finally, prospective monitoring of lupus patients revealed that disease flares precede EBV reactivation. In conclusion, EBV-specific CD8+ T cell responses in SLE patients are functionally impaired, but EBV reactivation appears to be an aggravating consequence rather than a cause of SLE immunopathology. We therefore propose that autoimmune B cell activation during flares drives frequent EBV reactivation, which contributes in a vicious circle to the perpetuation of immune activation in SLE patients. PMID:22028659

  6. Exhausted cytotoxic control of Epstein-Barr virus in human lupus.

    PubMed

    Larsen, Martin; Sauce, Delphine; Deback, Claire; Arnaud, Laurent; Mathian, Alexis; Miyara, Makoto; Boutolleau, David; Parizot, Christophe; Dorgham, Karim; Papagno, Laura; Appay, Victor; Amoura, Zahir; Gorochov, Guy

    2011-10-01

    Systemic Lupus Erythematosus (SLE) pathology has long been associated with an increased Epstein-Barr Virus (EBV) seropositivity, viremia and cross-reactive serum antibodies specific for both virus and self. It has therefore been postulated that EBV triggers SLE immunopathology, although the mechanism remains elusive. Here, we investigate whether frequent peaks of EBV viral load in SLE patients are a consequence of dysfunctional anti-EBV CD8+ T cell responses. Both inactive and active SLE patients (n = 76 and 42, respectively), have significantly elevated EBV viral loads (P = 0.003 and 0.002, respectively) compared to age- and sex-matched healthy controls (n = 29). Interestingly, less EBV-specific CD8+ T cells are able to secrete multiple cytokines (IFN-γ, TNF-α, IL-2 and MIP-1β) in inactive and active SLE patients compared to controls (P = 0.0003 and 0.0084, respectively). Moreover, EBV-specific CD8+ T cells are also less cytotoxic in SLE patients than in controls (CD107a expression: P = 0.0009, Granzyme B release: P = 0.0001). Importantly, cytomegalovirus (CMV)-specific responses were not found significantly altered in SLE patients. Furthermore, we demonstrate that EBV-specific CD8+ T cell impairment is a consequence of their Programmed Death 1 (PD-1) receptor up-regulation, as blocking this pathway reverses the dysfunctional phenotype. Finally, prospective monitoring of lupus patients revealed that disease flares precede EBV reactivation. In conclusion, EBV-specific CD8+ T cell responses in SLE patients are functionally impaired, but EBV reactivation appears to be an aggravating consequence rather than a cause of SLE immunopathology. We therefore propose that autoimmune B cell activation during flares drives frequent EBV reactivation, which contributes in a vicious circle to the perpetuation of immune activation in SLE patients. PMID:22028659

  7. miR-155 Deficiency Ameliorates Autoimmune Inflammation of Systemic Lupus Erythematosus by Targeting S1pr1 in Faslpr/lpr Mice.

    PubMed

    Xin, Qian; Li, Jiangxia; Dang, Jie; Bian, Xianli; Shan, Shan; Yuan, Jupeng; Qian, Yanyan; Liu, Zhaojian; Liu, Guangyi; Yuan, Qianqian; Liu, Na; Ma, Xiaochun; Gao, Fei; Gong, Yaoqin; Liu, Qiji

    2015-06-01

    MicroRNA-155 (miR-155) was previously found involved in the development of systemic lupus erythematosus (SLE) and other autoimmune diseases and the inflammatory response; however, the detailed mechanism of miR-155 in SLE is not fully understood. To explore the in vivo role of miR-155 in the pathogenesis of SLE, miR-155-deficient Fas(lpr/lpr) (miR-155(-/-)Fas(lpr/lpr)) mice were obtained by crossing miR-155(-/-) and Fas(lpr/lpr) mice. Clinical SLE features such as glomerulonephritis, autoantibody levels, and immune system cell populations were compared between miR-155(-/-)Fas(lpr/lpr) and Fas(lpr/lpr) mice. Microarray analysis, RT-PCR, Western blot, and luciferase reporter gene assay were used to identify the target gene of miR-155. miR-155(-/-)Fas(lpr/lpr) mice showed milder SLE clinical features than did Fas(lpr/lpr)mice. As compared with Fas(lpr/lpr) mice, miR-155(-/-)Fas(lpr/lpr) mice showed less deposition of total IgA, IgM, and IgG and less infiltration of inflammatory cells in the kidney. Moreover, the serum levels of IL-4 and IL-17a, secreted by Th2 and Th17 cells, were lower in miR-155(-/-)Fas(lpr/lpr) than Fas(lpr/lpr) mice; the CD4(+)/CD8(+) T cell ratio was restored in miR-155(-/-)Fas(lpr/lpr) mice as well. Sphingosine-1-phosphate receptor 1 (S1PR1) was found as a new target gene of miR-155 by in vitro and in vivo studies; its expression was decreased in SLE patients and Fas(lpr/lpr) mice. miR-155(-/-)Fas(lpr/lpr) mice are resistant to the development of SLE by the regulation of the target gene S1pr1. miR-155 might be a new target for therapeutic intervention in SLE. PMID:25911753

  8. Dietary amino acid-induced systemic lupus erythematosus.

    PubMed

    Montanaro, A; Bardana, E J

    1991-05-01

    The effects of dietary manipulations on autoimmune disease are understood poorly. In this article, we detail our experience with a human subject who developed autoimmune hemolytic anemia while participating in a research study that required the ingestion of alfalfa seeds. Subsequent experimental studies in primates ingesting alfalfa sprout seeds and L-canavanine (a prominent amino acid constituent of alfalfa) is presented. The results of these studies indicate a potential toxic and immunoregulatory role of L-canavanine in the induction of a systemic lupus-like disease in primates. PMID:1862241

  9. HTLV-1, Immune Response and Autoimmunity

    PubMed Central

    Quaresma, Juarez A S; Yoshikawa, Gilberto T; Koyama, Roberta V L; Dias, George A S; Fujihara, Satomi; Fuzii, Hellen T

    2015-01-01

    Human T-lymphotropic virus type-1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATL). Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM) is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Sjögren’s Syndrome (SS). The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4+ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4+ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity. PMID:26712781

  10. CD8(+) T cells in human autoimmune arthritis: the unusual suspects.

    PubMed

    Petrelli, Alessandra; van Wijk, Femke

    2016-07-01

    CD8(+) T cells are key players in the body's defence against viral infections and cancer. To date, data on the role of CD8(+) T cells in autoimmune diseases have been scarce, especially when compared with the wealth of research on CD4(+) T cells. However, growing evidence suggests that CD8(+) T-cell homeostasis is impaired in human autoimmune diseases. The contribution of CD8(+) T cells to autoimmune arthritis is indicated by the close association of MHC class I polymorphisms with disease risk, as well as the correlation between CD8(+) T-cell phenotype and disease outcome. The heterogeneous phenotype, resistance to regulation and impaired regulatory function of CD8(+) T cells - especially at the target organ - might contribute to the persistence of autoimmune inflammation. Moreover, newly identified populations of tissue-resident CD8(+) T cells and their interaction with antigen-presenting cells might have a key role in disease pathology. In this Review, we assess the link between CD8(+) T cells, autoimmune arthritis and the basis of their homeostatic changes under inflammatory conditions. Improved insight into CD8(+) T cell-specific pathogenicity will be essential for a better understanding of autoimmune arthritis and the identification of new therapeutic targets. PMID:27256711

  11. Circulating non-human microfilaria in a patient with systemic lupus erythematosus.

    PubMed

    Greene, B M; Otto, G F; Greenough, W B

    1978-09-01

    A 12-yr-old girl with systemic lupus erythematosus requiring steroid therapy was found to have a circulating microfilaria during an exacerbation of her illness. Morphologically, the microfilaria does not correspond precisely with any previously described species, though similarities exist between the patient's microfilaria and those of Dipetalonema reconditum of the dog and D. interstitium of the grey squirrel. The organism reported here is probably an undescribed species from a wild mammal. Although the association may be merely coincidental, this case suggests that compromised immunity might have led to this unusual infection with a non-human filaria. PMID:568893

  12. Progranulin antibodies in autoimmune diseases.

    PubMed

    Thurner, Lorenz; Preuss, Klaus-Dieter; Fadle, Natalie; Regitz, Evi; Klemm, Philipp; Zaks, Marina; Kemele, Maria; Hasenfus, Andrea; Csernok, Elena; Gross, Wolfgang L; Pasquali, Jean-Louis; Martin, Thierry; Bohle, Rainer Maria; Pfreundschuh, Michael

    2013-05-01

    Systemic vasculitides constitute a heterogeneous group of diseases. Autoimmunity mediated by B lymphocytes and their humoral effector mechanisms play a major role in ANCA-associated vasculitis (AAV) as well as in non-ANCA associated primary systemic vasculitides and in the different types of autoimmune connective tissue disorders and rheumatoid arthritis. In order to detect autoantibodies in systemic vasculitides, we screened protein macroarrays of human cDNA expression libraries with sera from patients with ANCA-associated and ANCA-negative primary systemic vasculitides. This approach led to the identification of antibodies against progranulin, a 88 kDA secreted glycoprotein with strong anti-inflammatory activity in the course of disease of giant-cell arteritis/polymyalgia rheumatica (14/65), Takayasu's arteritis (4/13), classical panarteritis nodosa (4/10), Behcet's disease (2/6) and in the course of disease in granulomatosis with polyangiitis (31/75), Churg-Strauss syndrome (7/23) and in microscopic polyangiitis (7/19). In extended screenings the progranulin antibodies were also detected in other autoimmune diseases such as systemic lupus erythematosus (39/91) and rheumatoid arthritis (16/44). Progranulin antibodies were detected only in 1 of 97 healthy controls. Anti-progranulin positive patients with systemic vasculitides, systemic lupus erythematosus or rheumatoid arthritis had significant lower progranulin plasma levels, indicating a neutralizing effect. In light of the anti-inflammatory effects of progranulin, progranulin antibodies might exert pro-inflammatory effects thus contributing to the pathogenesis of the respective autoimmune diseases and might serve as a marker for disease activity. This hypothesis is supported by the fact that a positive progranulin antibody status was associated with active disease in granulomatosis with polyangiitis. PMID:23149338

  13. Btk inhibition treats TLR7/IFN driven murine lupus.

    PubMed

    Bender, Andrew T; Pereira, Albertina; Fu, Kai; Samy, Eileen; Wu, Yin; Liu-Bujalski, Lesley; Caldwell, Richard; Chen, Yi-Ying; Tian, Hui; Morandi, Federica; Head, Jared; Koehler, Ursula; Genest, Melinda; Okitsu, Shinji L; Xu, Daigen; Grenningloh, Roland

    2016-03-01

    Bruton's tyrosine kinase (Btk) is expressed in a variety of immune cells and previous work has demonstrated that blocking Btk is a promising strategy for treating autoimmune diseases. Herein, we utilized a tool Btk inhibitor, M7583, to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon. In BXSB-Yaa lupus mice, Btk inhibition reduced autoantibodies, nephritis, and mortality. In the pristane-induced DBA/1 lupus model, Btk inhibition suppressed arthritis, but autoantibodies and the IFN gene signature were not significantly affected; suggesting efficacy was mediated through inhibition of Fc receptors. In vitro studies using primary human macrophages revealed that Btk inhibition can block activation by immune complexes and TLR7 which contributes to tissue damage in SLE. Overall, our results provide translational insight into how Btk inhibition may provide benefit to a variety of SLE patients by affecting both BCR and FcR signaling. PMID:26821304

  14. C5a alters blood–brain barrier integrity in a human in vitro model of systemic lupus erythematosus

    PubMed Central

    Mahajan, Supriya D; Parikh, Neil U; Woodruff, Trent M; Jarvis, James N; Lopez, Molly; Hennon, Teresa; Cunningham, Patrick; Quigg, Richard J; Schwartz, Stanley A; Alexander, Jessy J

    2015-01-01

    The blood–brain barrier (BBB) plays a crucial role in brain homeostasis, thereby maintaining the brain environment precise for optimal neuronal function. Its dysfunction is an intriguing complication of systemic lupus erythematosus (SLE). SLE is a systemic autoimmune disorder where neurological complications occur in 5–50% of cases and is associated with impaired BBB integrity. Complement activation occurs in SLE and is an important part of the clinical profile. Our earlier studies demonstrated that C5a generated by complement activation caused the loss of brain endothelial layer integrity in rodents. The goal of the current study was to determine the translational potential of these studies to a human system. To assess this, we used a two dimensional in vitro BBB model constructed using primary human brain microvascular endothelial cells and astroglial cells, which closely emulates the in vivo BBB allowing the assessment of BBB integrity. Increased permeability monitored by changes in transendothelial electrical resistance and cytoskeletal remodelling caused by actin fiber rearrangement were observed when the cells were exposed to lupus serum and C5a, similar to the observations in mice. In addition, our data show that C5a/C5aR1 signalling alters nuclear factor-κB translocation into nucleus and regulates the expression of the tight junction proteins, claudin-5 and zonula occludens 1 in this setting. Our results demonstrate for the first time that C5a regulates BBB integrity in a neuroinflammatory setting where it affects both endothelial and astroglial cells. In addition, we also demonstrate that our previous findings in a mouse model, were emulated in human cells in vitro, bringing the studies one step closer to understanding the translational potential of C5a/C5aR1 blockade as a promising therapeutic strategy in SLE and other neurodegenerative diseases. PMID:26059553

  15. An evolutionary analysis of RAC2 identifies haplotypes associated with human autoimmune diseases.

    PubMed

    Sironi, Manuela; Guerini, Franca Rosa; Agliardi, Cristina; Biasin, Mara; Cagliani, Rachele; Fumagalli, Matteo; Caputo, Domenico; Cassinotti, Andrea; Ardizzone, Sandro; Zanzottera, Milena; Bolognesi, Elisabetta; Riva, Stefania; Kanari, Yasuyoshi; Miyazawa, Masaaki; Clerici, Mario

    2011-12-01

    The human RAC2 gene encodes a small GTP-binding protein with a pivotal role in immune activation and in the induction of peripheral immune tolerance through restimulation-induced cell death (RICD). Different human pathogens target the protein product of RAC2, suggesting that the gene may be subject to natural selection, and that variants in RAC2 may affect immunological phenotypes in humans. We scanned the genomic region encompassing the entire transcription unit for the presence of putative noncoding regulatory elements conserved across mammals. This information was used to select two RAC2 gene regions and analyze their intraspecific genetic diversity. Results suggest that a region covering the 3' untranslated region has been a target of multiallelic balancing selection (or diversifying selection), and three major RAC2 haplogroups occur in human populations. Haplotypes belonging to one of these clades are associated with increased susceptibility to multiple sclerosis (P = 0.022) and earlier onset of disease symptoms (P = 0.025). This same haplogroup is significantly more common in patients with Crohn's disease compared with healthy controls (P = 0.048). These data reinforce recent evidences that susceptibility alleles/haplotypes are shared among multiple autoimmune disorders and support a causal "role for RAC2" variants in the pathogenesis of autoimmune diseases. Other genes with a role in RICD have previously been associated with autoimmunity in humans, suggesting that this pathway and RAC2 may represent novel therapeutic targets in autoimmune disorders. PMID:21680873

  16. Defective selection of thymic regulatory T cells accompanies autoimmunity and pulmonary infiltrates in Tcra-deficient mice double transgenic for human La/SS-B and human La-specific T cell receptor1

    PubMed Central

    Yaciuk, Jane C.; Pan, Yujun; Schwarz, Karen; Pan, Zi-jian; Maier-Moore, Jacen S.; Kosanke, Stanley D.; Lawrence, Christina; Farris, A. Darise

    2014-01-01

    A human La/SS-B (hLa)-specific TCR/hLa neo-self antigen double transgenic mouse model was developed and used to investigate cellular tolerance and autoimmunity to the ubiquitous RNA-binding La antigen often targeted in systemic lupus erythematosus and Sjögren's syndrome. Extensive thymic clonal deletion of CD4+ T cells occurred in H-2k/k double transgenic mice presenting high levels of the I-Ek-restricted hLa T cell epitope. In contrast, deletion was less extensive in H-2k/b double transgenic mice presenting lower levels of the epitope, and some surviving thymocytes were positively selected as thymic regulatory T cells (tTreg). These mice remained serologically tolerant to hLa and healthy. H-2k/b double transgenic mice deficient of all endogenous Tcra genes, a deficiency known to impair Treg development and function, produced IgG anti-hLa autoantibodies and displayed defective tTreg development. These autoimmune mice had interstitial lung disease characterized by lymphocytic aggregates containing transgenic T cells with an activated, effector memory phenotype. Salivary gland infiltrates were notably absent. Thus, expression of nuclear hLa antigen induces thymic clonal deletion and tTreg selection, and lymphocytic infiltration of the lung is a consequence of La-specific CD4+ T cell autoimmunity. PMID:25582858

  17. Docosahexaenoic acid-enriched fish oil attenuates kidney disease and prolongs median and maximal life span of autoimmune lupus-prone mice

    PubMed Central

    Halade, Ganesh V; Rahman, Md Mizanur; Bhattacharya, Arunabh; Barnes, Jeffery; Chandrasekar, Bysani; Fernandes, Gabriel

    2010-01-01

    The therapeutic efficacy of individual components of fish oils (FO) in various human inflammatory diseases still remains unresolved, possibly due to low levels of n-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) or lower ratio of DHA to EPA. Since FO enriched with DHA (FO-DHA) or EPA (FO-EPA) has become available recently, we investigated their efficacy on survival and inflammatory kidney disease in a well-established animal model of human Systemic Lupus Erythematosus (SLE). Results show for the first time that FO-DHA dramatically extends both the median (658 days) and maximal (848 days) lifespan of (NZB × NZW)F1 (B × W) mice. In contrast, FO-EPA fed mice had a median and maximal lifespan of ~384 and 500 days, respectively. Investigations into possible survival mechanisms revealed that FO-DHA (Vs. FO-EPA) lowers serum anti-dsDNA antibodies, IgG deposition in kidneys, and proteinuria. Further, FO-DHA lowered LPS-mediated increases in serum IL-18 levels and caspase-1-dependent cleavage of pro-IL-18 to mature IL-18 in kidneys. Moreover, FO-DHA suppressed LPS-mediated PI3K, Akt, and NF-κB activations in kidney. These data indicate that DHA, but not EPA, is the most potent n-3 fatty acid that suppresses glomerulonephritis and extends lifespan of SLE-prone short-lived B × W mice, possibly via inhibition of IL-18 induction and IL-18-dependent signaling. PMID:20368275

  18. Development and management of systemic lupus erythematosus in an HIV-infected man with hepatitis C and B co-infection following interferon therapy: a case report

    PubMed Central

    2009-01-01

    Introduction The association of human immunodeficiency virus and immune dysfunction leading to development of autoimmune markers is well described, but human immunodeficiency virus infection is relatively protective for the development of systemic lupus erythematosus. In contrast, development of systemic lupus erythematosus with hepatitis C and with interferon therapy is well described in a number of case reports. We here describe the first case of systemic lupus erythematosus developing in a man infected with human immunodeficiency virus, hepatitis C and hepatitis B co-infection where the onset seems to have been temporally related to interferon therapy. Case presentation We report the occurrence of systemic lupus erythematosus complicating interferon-α therapy for hepatitis C in a 47-year-old asplenic male with haemophilia co-infected with human immunodeficiency virus and hepatitis B. He presented with a truncal rash, abdominal pains and headache and later developed grade IV lupus nephritis requiring haemodialysis, mycophenolate mofetil and steroid therapy. We were able to successfully withdraw dialysis and mycophenolate while maintaining stable renal function. Conclusion Interferon-α is critical in antiviral immunity against hepatitis C but also acts as a pathogenic mediator for systemic lupus erythematosus, a condition associated with activation of plasmacytoid dendritic cells that are depleted in human immunodeficiency virus infection. The occurrence of auto-antibodies and lupus-like features in the coinfections with hepatitis C require careful assessment. Immunosuppressant therapy for lupus risks exacerbating underlying infections in patients with concurrent human immunodeficiency virus, hepatitis B and C. PMID:19830165

  19. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease.

    PubMed

    Lohr, Naomi J; Molleston, Jean P; Strauss, Kevin A; Torres-Martinez, Wilfredo; Sherman, Eric A; Squires, Robert H; Rider, Nicholas L; Chikwava, Kudakwashe R; Cummings, Oscar W; Morton, D Holmes; Puffenberger, Erik G

    2010-03-12

    Ubiquitin ligases play an important role in the regulation of the immune system. Absence of Itch E3 ubiquitin ligase in mice has been shown to cause severe autoimmune disease. Using autozygosity mapping in a large Amish kindred, we identified a linkage region on chromosome 20 and selected candidate genes for screening. We describe, in ten patients, identification of a mutation resulting in truncation of ITCH. These patients represent the first reported human phenotype associated with ITCH deficiency. These patients not only have multisystem autoimmune disease but also display morphologic and developmental abnormalities. This disorder underscores the importance of ITCH ubiquitin ligase in many cellular processes. PMID:20170897

  20. Human ITCH E3 Ubiquitin Ligase Deficiency Causes Syndromic Multisystem Autoimmune Disease

    PubMed Central

    Lohr, Naomi J.; Molleston, Jean P.; Strauss, Kevin A.; Torres-Martinez, Wilfredo; Sherman, Eric A.; Squires, Robert H.; Rider, Nicholas L.; Chikwava, Kudakwashe R.; Cummings, Oscar W.; Morton, D. Holmes; Puffenberger, Erik G.

    2010-01-01

    Ubiquitin ligases play an important role in the regulation of the immune system. Absence of Itch E3 ubiquitin ligase in mice has been shown to cause severe autoimmune disease. Using autozygosity mapping in a large Amish kindred, we identified a linkage region on chromosome 20 and selected candidate genes for screening. We describe, in ten patients, identification of a mutation resulting in truncation of ITCH. These patients represent the first reported human phenotype associated with ITCH deficiency. These patients not only have multisystem autoimmune disease but also display morphologic and developmental abnormalities. This disorder underscores the importance of ITCH ubiquitin ligase in many cellular processes. PMID:20170897

  1. Mercury and autoimmunity: implications for occupational and environmental health

    SciTech Connect

    Silbergeld, Ellen K. . E-mail: esilberg@jhsph.edu; Silva, Ines A.; Nyland, Jennifer F.

    2005-09-01

    Mercury (Hg) has long been recognized as a neurotoxicant; however, recent work in animal models has implicated Hg as an immunotoxicant. In particular, Hg has been shown to induce autoimmune disease in susceptible animals with effects including overproduction of specific autoantibodies and pathophysiologic signs of lupus-like disease. However, these effects are only observed at high doses of Hg that are above the levels to which humans would be exposed through contaminated fish consumption. While there is presently no evidence to suggest that Hg induces frank autoimmune disease in humans, a recent epidemiological study has demonstrated a link between occupational Hg exposure and lupus. In our studies, we have tested the hypothesis that Hg does not cause autoimmune disease directly, but rather that it may interact with triggering events, such as genetic predisposition, exposure to antigens, or infection, to exacerbate disease. Treatment of mice that are not susceptible to Hg-induced autoimmune disease with very low doses and short term exposures of inorganic Hg (20-200 {mu}g/kg) exacerbates disease and accelerates mortality in the graft versus host disease model of chronic lupus in C57Bl/6 x DBA/2 mice. Furthermore, low dose Hg exposure increases the severity and prevalence of experimental autoimmune myocarditis (induced by immunization with cardiac myosin peptide in adjuvant) in A/J mice. To test our hypothesis further, we examined sera from Amazonian populations exposed to Hg through small-scale gold mining, with and without current or past malaria infection. We found significantly increased prevalence of antinuclear and antinucleolar antibodies and a positive interaction between Hg and malaria. These results suggest a new model for Hg immunotoxicity, as a co-factor in autoimmune disease, increasing the risks and severity of clinical disease in the presence of other triggering events, either genetic or acquired.

  2. Human lymph-node CD8+ T cells display an altered phenotype during systemic autoimmunity

    PubMed Central

    Ramwadhdoebe, Tamara H; Hähnlein, Janine; van Kuijk, Bo J; Choi, Ivy Y; van Boven, Leonard J; Gerlag, Danielle M; Tak, Paul P; van Baarsen, Lisa G

    2016-01-01

    Although many studies are focused on auto-reactive CD4+ T cells, the precise role of CD8+ T cells in autoimmunity is poorly understood. The objective of this study is to provide more insight into the phenotype and function CD8+ T cells during the development of autoimmune disease by studying CD8+ T cells in human lymph-node biopsies and peripheral blood obtained during the earliest phases of rheumatoid arthritis (RA). Here, we show that lymphoid pro-inflammatory CD8+ T cells exhibit a less-responsive phenotype already during the earliest phases of autoimmunity compared with healthy individuals. We found an increase in CD8+ memory T cells in lymphoid tissue during the earliest phases of autoimmunity, even before clinical onset of RA, accompanied by an increased frequency of non-circulating or recently activated (CD69+) CD8+ T cells in lymphoid tissue and peripheral blood. Importantly, lymphoid pro-inflammatory CD8+IL-17A+ T cells displayed a decreased capacity of cytokine production, which was related to disease activity in early RA patients. In addition, a decreased frequency of regulatory CD8+IL-10+ T cells in peripheral blood was also related to disease activity in early RA patients. Our results suggest that different CD8+ T-cell subsets are affected already during the earliest phases of systemic autoimmunity. PMID:27195110

  3. 77 FR 9678 - Prospective Grant of Exclusive License: The Development of Human Anti-CD22 Monoclonal Antibodies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Human Anti-CD22 Monoclonal Antibodies for the Treatment of Human Cancers and Autoimmune Disease AGENCY... autoimmune disease. The Licensed Field of Use includes the use of the antibodies in the form of an... disease such as lupus and Sjogren's syndrome. The specific antibodies covered by this technology...

  4. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases

    PubMed Central

    Buckner, Jane Hoyt

    2011-01-01

    A lack of regulatory T (TReg) cells that express CD4, CD25 and forkhead box P3 (FOXP3) results in severe autoimmunity in both mice and humans. Since the discovery of TReg cells, there has been intense investigation aimed at determining how they protect an organism from autoimmunity and whether defects in their number or function contribute to the development of autoimmunity in model systems. The next phase of investigation — that is, to define the role that defects in TReg cells have in human autoimmunity — is now underway. This Review summarizes our progress so far towards understanding the role of CD4+CD25+FOXP3+ TReg cells in human autoimmune diseases and the impact that this knowledge might have on the diagnosis and treatment of these diseases. PMID:21107346

  5. Lupus and pregnancy.

    PubMed

    Baer, Alan N; Witter, Frank R; Petri, Michelle

    2011-10-01

    Systemic lupus erythematosus (SLE) disproportionately affects women in their reproductive age years. Pregnancy in this systemic autoimmune disease has long been associated with poor obstetric outcomes. However, the frequency of pregnancy loss in lupus has dropped to a level commensurate with that of the general US population. The outcomes of lupus pregnancies are better if conception is delayed until the disease has been inactive for at least 6 months, and the medication regimen has been adjusted in advance. Pregnancy in lupus is prone to complications, including flares of disease activity during pregnancy or in the postpartum period, preeclampsia, miscarriage, stillbirth, intrauterine growth retardation, and preterm birth. Active lupus nephritis poses the greatest risk. The recognition of a lupus flare during pregnancy may be difficult because the signs and symptoms may mimic those of normal pregnancy. Monitoring should include baseline and monthly laboratory tests, serial ultrasonography, fetal surveillance tests, and fetal m-mode echocardiography for mothers with SS-A (Ro) or SS-B (La) antibodies. In the absence of any signs or symptoms of active SLE, affected patients require no specific treatment during pregnancy. If hydroxychloroquine was in use before conception, it should be maintained throughout pregnancy. If a woman with SLE has antiphospholipid antibodies, prophylactic treatment with aspirin and/or low-molecular weight heparin is indicated to prevent fetal loss. Lupus flares during pregnancy are generally treated with hydroxychloroquine, low-dose prednisone, pulse intravenous methylprednisolone, and azathioprine. High-dose prednisone and cyclophosphamide are reserved for severe lupus complications but are associated with significant pregnancy-related complications and poor obstetrical outcomes. PMID:22112525

  6. Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation

    PubMed Central

    Jones, Joanne L.; Thompson, Sara A. J.; Loh, Priscilla; Davies, Jessica L.; Tuohy, Orla C.; Curry, Allison J.; Azzopardi, Laura; Hill-Cawthorne, Grant; Fahey, Michael T.; Compston, Alastair; Coles, Alasdair J.

    2013-01-01

    The association between lymphopenia and autoimmunity is recognized, but the underlying mechanisms are poorly understood and have not been studied systematically in humans. People with multiple sclerosis treated with the lymphocyte-depleting monoclonal antibody alemtuzumab offer a unique opportunity to study this phenomenon; one in three people develops clinical autoimmunity, and one in three people develops asymptomatic autoantibodies after treatment. Here, we show that T-cell recovery after alemtuzumab is driven by homeostatic proliferation, leading to the generation of chronically activated (CD28−CD57+), highly proliferative (Ki67+), oligoclonal, memory-like CD4 and CD8 T cells (CCR7−CD45RA− or CCR7−CD45RA+) capable of producing proinflammatory cytokines. Individuals who develop autoimmunity after treatment are no more lymphopenic than their nonautoimmune counterparts, but they show reduced thymopoiesis and generate a more restricted T-cell repertoire. Taken together, these findings demonstrate that homeostatic proliferation drives lymphopenia-associated autoimmunity in humans. PMID:24282306

  7. Multi-antibody composition in lupus nephritis: isotype and antigen specificity make the difference.

    PubMed

    Bonanni, Alice; Vaglio, Augusto; Bruschi, Maurizio; Sinico, Renato Alberto; Cavagna, Lorenzo; Moroni, Gabriella; Franceschini, Franco; Allegri, Landino; Pratesi, Federico; Migliorini, Paola; Candiano, Giovanni; Pesce, Giampaola; Ravelli, Angelo; Puppo, Francesco; Martini, Alberto; Tincani, Angela; Ghiggeri, Gian Marco

    2015-08-01

    Research on autoimmune processes involved in glomerulonephritis has been for years based on experimental models. Recent progress in proteomics has radically modified perspectives: laser microdissection and proteomics were crucial for an in vivo analysis of autoantibodies eluted from human biopsies. Lupus nephritis has been the subject of recent independent researches. Main topics have been the definition of renal autoimmune components in human lupus biopsies; methods were laser capture of glomeruli and/or of single cells (CD38+ or Ki-67+) from tubulointerstitial areas as starting step followed by elution and characterization of renal antibodies by proteomics. The innovative approach highlighted different panels of autoantibodies deposited in glomeruli and in tubulo-interstitial areas that actually represented the unique autoimmune components in these patients. IgG2 was the major isotype; new podocyte proteins (αenolase, annexin AI) and already known implanted molecules (DNA, histone 3, C1q) were their target antigens in glomeruli. Vimentin was the antigen in tubulo-interstitial areas. Matching renal autoantibodies with serum allowed the definition of a typical autoantibody serum map that included the same anti-αenolase, anti-annexin AI, anti-DNA, and anti-histone 3 IgG2 already detected in renal tissue. Serum levels of specific autoantibodies were tenfold increased in patients with lupus nephritis allowing a clear differentiation from both rheumatoid arthritis and other glomerulonephritis. In all cases, targeted antigens were characterized as components of lupus NETosis. Matching renal/serum autoantibody composition in vivo furnishes new insights on human lupus nephritis and allows to refine composition of circulating antibodies in patients with lupus. A thoughtful passage from bench to bedside of new knowledge would expand our clinical and therapeutic opportunities. PMID:25888464

  8. Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans.

    PubMed

    Liu, Kui; Li, Quan-Zhen; Delgado-Vega, Angelica M; Abelson, Anna-Karin; Sánchez, Elena; Kelly, Jennifer A; Li, Li; Liu, Yang; Zhou, Jinchun; Yan, Mei; Ye, Qiu; Liu, Shenxi; Xie, Chun; Zhou, Xin J; Chung, Sharon A; Pons-Estel, Bernardo; Witte, Torsten; de Ramón, Enrique; Bae, Sang-Cheol; Barizzone, Nadia; Sebastiani, Gian Domenico; Merrill, Joan T; Gregersen, Peter K; Gilkeson, Gary G; Kimberly, Robert P; Vyse, Timothy J; Kim, Il; D'Alfonso, Sandra; Martin, Javier; Harley, John B; Criswell, Lindsey A; Wakeland, Edward K; Alarcón-Riquelme, Marta E; Mohan, Chandra

    2009-04-01

    Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody-induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that maybe responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody-induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family,which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody-induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms,some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody-induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody-induced nephritis and lupus. PMID:19307730

  9. Kallikrein genes are associated with lupus and glomerular basement membrane–specific antibody–induced nephritis in mice and humans

    PubMed Central

    Liu, Kui; Li, Quan-Zhen; Delgado-Vega, Angelica M.; Abelson, Anna-Karin; Sánchez, Elena; Kelly, Jennifer A.; Li, Li; Liu, Yang; Zhou, Jinchun; Yan, Mei; Ye, Qiu; Liu, Shenxi; Xie, Chun; Zhou, Xin J.; Chung, Sharon A.; Pons-Estel, Bernardo; Witte, Torsten; de Ramón, Enrique; Bae, Sang-Cheol; Barizzone, Nadia; Sebastiani, Gian Domenico; Merrill, Joan T.; Gregersen, Peter K.; Gilkeson, Gary G.; Kimberly, Robert P.; Vyse, Timothy J.; Kim, Il; D’Alfonso, Sandra; Martin, Javier; Harley, John B.; Criswell, Lindsey A.; Wakeland, Edward K.; Alarcón-Riquelme, Marta E.; Mohan, Chandra

    2009-01-01

    Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody–induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that may be responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody–induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family, which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody–induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms, some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody–induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody–induced nephritis and lupus. PMID:19307730

  10. MicroRNA in autoimmunity and autoimmune diseases

    PubMed Central

    Pauley, Kaleb M.; Cha, Seunghee; Chan, Edward K.L.

    2009-01-01

    MicroRNAs (miRNAs) are small conserved non-coding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3′ untranslated region (UTR) of specific messenger RNAs (mRNAs) for degradation or translational repression. miRNA-mediated gene regulation is critical for normal cellular functions such as the cell cycle, differentiation, and apoptosis, and as much as one-third of human mRNAs may be miRNA targets. Emerging evidence has demonstrated that miRNAs play a vital role in the regulation of immunological functions and the prevention of autoimmunity. Here we review the many newly discovered roles of miRNA regulation in immune functions and in the development of autoimmunity and autoimmune disease. Specifically, we discuss the involvement of miRNA regulation in innate and adaptive immune responses, immune cell development, T regulatory cell stability and function, and differential miRNA expression in rheumatoid arthritis and systemic lupus erythematosus. PMID:19303254

  11. Possible Role of Human Herpesvirus 6 as a Trigger of Autoimmune Disease

    PubMed Central

    Broccolo, Francesco; Fusetti, Lisa; Ceccherini-Nelli, Luca

    2013-01-01

    Human herpesvirus 6 (HHV-6) infection is common and has a worldwide distribution. Recently, HHV-6A and HHV-6B have been reclassified into two distinct species based on different biological features (genetic, antigenic, and cell tropism) and disease associations. A role for HHV-6A/B has been proposed in several autoimmune disorders (AD), including multiple sclerosis (MS), autoimmune connective tissue diseases, and Hashimoto's thyroiditis. The focus of this review is to discuss the above-mentioned AD associated with HHV-6 and the mechanisms proposed for HHV-6A/B-induced autoimmunity. HHV-6A/B could trigger autoimmunity by exposing high amounts of normally sequestered cell antigens, through lysis of infected cells. Another potential trigger is represented by molecular mimicry, with the synthesis of viral proteins that resemble cellular molecules, as a mechanism of immune escape. The virus could also induce aberrant expression of histocompatibility molecules thereby promoting the presentation of autoantigens. CD46-HHV-6A/B interaction is a new attractive mechanism proposed: HHV-6A/B (especially HHV-6A) could participate in neuroinflammation in the context of MS by promoting inflammatory processes through CD46 binding. Although HHV-6A/B has the ability to trigger all the above-mentioned mechanisms, more studies are required to fully elucidate the possible role of HHV-6A/B as a trigger of AD. PMID:24282390

  12. Comparative effects of n-3, n-6 and n-9 unsaturated fatty acid-rich diet consumption on lupus nephritis, autoantibody production and CD4+ T cell-related gene responses in the autoimmune NZBWF1 mouse.

    PubMed

    Pestka, James J; Vines, Laura L; Bates, Melissa A; He, Kaiyu; Langohr, Ingeborg

    2014-01-01

    Mortality from systemic lupus erythematosus (SLE), a prototypical autoimmune disease, correlates with the onset and severity of kidney glomerulonephritis. There are both preclinical and clinical evidence that SLE patients may benefit from consumption of n-3 polyunsaturated fatty acids (PUFA) found in fish oil, but the mechanisms remain unclear. Here we employed the NZBWF1 SLE mouse model to compare the effects of dietary lipids on the onset and severity of autoimmune glomerulonephritis after consuming: 1) n-3 PUFA-rich diet containing docosahexaenoic acid-enriched fish oil (DFO), 2) n-6 PUFA-rich Western-type diet containing corn oil (CRN) or 3) n-9 monounsaturated fatty acid (MUFA)-rich Mediterranean-type diet containing high oleic safflower oil (HOS). Elevated plasma autoantibodies, proteinuria and glomerulonephritis were evident in mice fed either the n-6 PUFA or n-9 MUFA diets, however, all three endpoints were markedly attenuated in mice that consumed the n-3 PUFA diet until 34 wk of age. A focused PCR array was used to relate these findings to the expression of 84 genes associated with CD4+ T cell function in the spleen and kidney both prior to and after the onset of the autoimmune nephritis. n-3 PUFA suppression of autoimmunity in NZBWF1 mice was found to co-occur with a generalized downregulation of CD4+ T cell-related genes in kidney and/or spleen at wk 34. These genes were associated with the inflammatory response, antigen presentation, T cell activation, B cell activation/differentiation and leukocyte recruitment. Quantitative RT-PCR of representative affected genes confirmed that n-3 PUFA consumption was associated with reduced expression of CD80, CTLA-4, IL-10, IL-18, CCL-5, CXCR3, IL-6, TNF-α and osteopontin mRNAs in kidney and/or spleens as compared to mice fed n-6 PUFA or n-9 MUFA diets. Remarkably, many of the genes identified in this study are currently under consideration as biomarkers and/or biotherapeutic targets for SLE and other autoimmune

  13. MicroRNA regulation of lymphocyte tolerance and autoimmunity

    PubMed Central

    Simpson, Laura J.; Ansel, K. Mark

    2015-01-01

    Understanding the cell-intrinsic cues that permit self-reactivity in lymphocytes, and therefore autoimmunity, requires an understanding of the transcriptional and posttranscriptional regulation of gene expression in these cells. In this Review, we address seminal and recent research on microRNA (miRNA) regulation of central and peripheral tolerance. Human and mouse studies demonstrate that the PI3K pathway is a critical point of miRNA regulation of immune cell development and function that affects the development of autoimmunity. We also discuss how miRNA expression profiling in human autoimmune diseases has inspired mechanistic studies of miRNA function in the pathogenesis of multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes, and asthma. PMID:26030228

  14. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus

    PubMed Central

    Brooks, Wesley H.; Renaudineau, Yves

    2015-01-01

    Autoimmune diseases occur more often in females, suggesting a key role for the X chromosome. X chromosome inactivation, a major epigenetic feature in female cells that provides dosage compensation of X-linked genes to avoid overexpression, presents special vulnerabilities that can contribute to the disease process. Disruption of X inactivation can result in loss of dosage compensation with expression from previously sequestered genes, imbalance of gene products, and altered endogenous material out of normal epigenetic context. In addition, the human X has significant differences compared to other species and these differences can contribute to the frequency and intensity of the autoimmune disease in humans as well as the types of autoantigens encountered. Here a link is demonstrated between autoimmune diseases, such as systemic lupus erythematosus, and the X chromosome by discussing cases in which typically non-autoimmune disorders complicated with X chromosome abnormalities also present lupus-like symptoms. The discussion is then extended to the reported spatial and temporal associations of the inactive X chromosome with the nucleolus. When frequent episodes of cellular stress occur, the inactive X chromosome may be disrupted and inadvertently become involved in the nucleolar stress response. Development of autoantigens, many of which are at least transiently components of the nucleolus, is then described. Polyamines, which aid in nucleoprotein complex assembly in the nucleolus, increase further during cell stress, and appear to have an important role in the autoimmune disease process. Autoantigenic endogenous material can potentially be stabilized by polyamines. This presents a new paradigm for autoimmune diseases: that many are antigen-driven and the autoantigens originate from altered endogenous material due to episodes of cellular stress that disrupt epigenetic control. This suggests that epigenetics and the X chromosome are important aspects of autoimmune

  15. Human FoxP3+ regulatory T cells in systemic autoimmune diseases.

    PubMed

    Miyara, Makoto; Gorochov, Guy; Ehrenstein, Michael; Musset, Lucile; Sakaguchi, Shimon; Amoura, Zahir

    2011-10-01

    Since the characterization of CD4(+)CD25(+) regulatory T (Treg) cells in mice, significant progress has been made in the definitions of the phenotype and the function of human Treg cells in health and in pathological conditions. Recent advances in the field leading to a better molecular definition of Treg subsets in humans and the description of the dynamics of differentiation of Treg cells should bring new insights in the understanding of human chronic systemic autoimmune diseases. How Treg cells are compromised in these diseases is a challenging issue because the elucidation of the mechanisms leading to such anomaly might lead to promising novel therapeutic approaches. PMID:21621000

  16. Autoimmune activation toward embryo implantation is rare in immune-privileged human endometrium.

    PubMed

    Haller-Kikkatalo, Kadri; Altmäe, Signe; Tagoma, Aili; Uibo, Raivo; Salumets, Andres

    2014-09-01

    Human embryo implantation represents embryo apposition, adhesion to the endometrial epithelium, and invasion into the stromal extracellular matrix within 1 to 2 days during days 6 to 9 after ovulation. The major molecular mechanisms mediating implantation include adhesion molecules, including mucins, selectins, integrins, and cadherins; extracellular matrix components, such as laminins and collagens and their degrading enzymes; phospholipids and immune regulatory molecules, including prostaglandins, cytokines; and immunosuppressive molecules expressed by invasive trophoblasts and endometrial cells. Many of these molecules are the targets for autoimmune reactions in autoimmune diseases and cancer; however, the relevance of those in immune-mediated implantation failure has not been defined. In this review, we will describe the molecules involved in 2-day event of human embryo implantation, which may also be involved in immune system activation and subsequently cause immune-mediated implantation failure. We speculate that the data in the literature are limited concerning antiendometrial antibodies because the endometrium might be taken as an immune-privileged site that avoids autoimmune activation that might harm the implantation process. Antibodies affecting human fertility in ways other than impairing implantation are outside the scope of the current article and will not be discussed. PMID:24959819

  17. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality?

    PubMed Central

    Simoni, Y; Diana, J; Ghazarian, L; Beaudoin, L; Lehuen, A

    2013-01-01

    T cells reactive to lipids and restricted by major histocompatibility complex (MHC) class I-like molecules represent more than 15% of all lymphocytes in human blood. This heterogeneous population of innate cells includes the invariant natural killer T cells (iNK T), type II NK T cells, CD1a,b,c-restricted T cells and mucosal-associated invariant T (MAIT) cells. These populations are implicated in cancer, infection and autoimmunity. In this review, we focus on the role of these cells in autoimmunity. We summarize data obtained in humans and preclinical models of autoimmune diseases such as primary biliary cirrhosis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, psoriasis and atherosclerosis. We also discuss the promise of NK T cell manipulations: restoration of function, specific activation, depletion and the relevance of these treatments to human autoimmune diseases. PMID:23199318

  18. Autoimmune disease: A role for new anti-viral therapies?

    PubMed

    Dreyfus, David H

    2011-12-01

    Many chronic human diseases may have an underlying autoimmune mechanism. In this review, the author presents a case of autoimmune CIU (chronic idiopathic urticaria) in stable remission after therapy with a retroviral integrase inhibitor, raltegravir (Isentress). Previous reports located using the search terms "autoimmunity" and "anti-viral" and related topics in the pubmed data-base are reviewed suggesting that novel anti-viral agents such as retroviral integrase inhibitors, gene silencing therapies and eventually vaccines may provide new options for anti-viral therapy of autoimmune diseases. Cited epidemiologic and experimental evidence suggests that increased replication of epigenomic viral pathogens such as Epstein-Barr Virus (EBV) in chronic human autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus Erythematosus (SLE), and multiple sclerosis (MS) may activate endogenous human retroviruses (HERV) as a pathologic mechanism. Memory B cells are the reservoir of infection of EBV and also express endogenous retroviruses, thus depletion of memory b-lymphocytes by monoclonal antibodies (Rituximab) may have therapeutic anti-viral effects in addition to effects on B-lymphocyte presentation of both EBV and HERV superantigens. Other novel anti-viral therapies of chronic autoimmune diseases, such as retroviral integrase inhibitors, could be effective, although not without risk. PMID:21871974

  19. Total lymphoid irradiation in alloimmunity and autoimmunity

    SciTech Connect

    Strober, S.

    1987-12-01

    Total lymphoid irradiation has been used as an immunosuppressive regimen in autoimmune disease and organ transplantation. The rationale for its use originated from studies of patients with Hodgkin disease, in whom this radiotherapy regimen was noted to induce profound and long-lasting immune suppression and yet was well tolerated, with few long-term side effects. Total lymphoid irradiation is a unique immunosuppressive regimen that produces a selective (and long-lasting) reduction in the number and function of helper T cells and certain subsets of B cells. Conventional immunosuppressive drugs show little selectivity, and their effects are short-lived. The most important aspect of total lymphoid irradiation is the potential for achieving transplantation tolerance and permanent remissions in autoimmune disease in laboratory animals. Attempts are being made to achieve similar goals in humans given total lymphoid irradiation, so that immunosuppressive drugs can be ultimately withdrawn from transplant recipients and patients with lupus nephritis. 28 references.

  20. Structure and specificity of T cell receptors expressed by potentially pathogenic anti-DNA autoantibody-inducing T cells in human lupus.

    PubMed Central

    Desai-Mehta, A; Mao, C; Rajagopalan, S; Robinson, T; Datta, S K

    1995-01-01

    The production of potentially pathogenic anti-DNA autoantibodies in SLE is driven by special, autoimmune T helper (Th) cells. Herein, we sequenced the T cell receptor (TCR) alpha and beta chain genes expressed by 42 autoimmune Th lines from lupus patients that were mostly CD4+ and represented the strongest inducers of such autoantibodies. These autoimmune TCRs displayed a recurrent motif of highly charged residues in their CDR3 loops that were contributed by N-nucleotide additions and also positioned there by the recombination process. Furthermore, Th lines from four of the five patients showed a marked increase in the usage of the V alpha 8 gene family. Several independent Th lines expressed identical TCR alpha and/or beta chain sequences indicating again antigenic selection. 10 of these Th lines could be tested further for antigenic specificity. 4 of the 10 pathogenic anti-DNA autoantibody-inducing Th lines responded to the non-histone chromosomal protein HMG and two responded to nucleosomal histone proteins; all presented by HLA-DR molecules. Another Th line responded to purified DNA more than nucleosomes. Thus, these autoimmune Th cells of lupus patients respond to charged epitopes in various DNA-binding nucleoproteins that are probably processed and presented by the anti-DNA B cells they selectively help. PMID:7860735

  1. Progesterone and Autoimmune Disease

    PubMed Central

    Hughes, Grant C.

    2011-01-01

    Sexual dimorphism in human immune systems is most apparent in the female predominance of certain autoimmune diseases (ADs) like systemic lupus erythematosus (SLE). Epidemiologic, observational and experimental evidence strongly suggest sex steroids are important modulators of genetic risk in human AD. In this regard, the roles of progesterone (Pg), an immunomodulatory female sex steroid, are poorly understood. Several lines of investigation indicate Pg and synthetic progestins impact risk of AD and immune-mediated injury in different ways depending on their concentrations and their engagement of various Pg receptors expressed in immune organs, immune cells or tissues targeted by immune attack. At low physiologic levels, Pg may enhance interferon-alpha (IFN-α) pathways important in SLE pathogenesis. Commonly used synthetic progestins may have the opposite effect. At pregnancy levels, Pg may suppress disease activity in rheumatoid arthritis (RA) and multiple sclerosis (MS) via inhibition of T helper type 1 (Th1) and Th17 pathways and induction of anti-inflammatory molecules. Importantly, Pg’s immunomodulatory effects differ from those of estrogens and androgens. An additional layer of complexity arises from apparent interdependence of sex hormone signaling pathways. Identifying mechanisms by which Pg and other sex steroids modulate risk of AD and immune-mediated injury will require clarification of their cellular and molecular targets in vivo. These future studies should be informed by recent genetic discoveries in human AD, particularly those revealing their sex-specific genetic associations. PMID:22193289

  2. Lupus nephritis

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000481.htm Lupus nephritis To use the sharing features on this page, please enable JavaScript. Lupus nephritis is a kidney disorder which is a complication ...

  3. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70.

    PubMed

    Chan, Alice Y; Punwani, Divya; Kadlecek, Theresa A; Cowan, Morton J; Olson, Jean L; Mathes, Erin F; Sunderam, Uma; Fu, Shu Man; Srinivasan, Rajgopal; Kuriyan, John; Brenner, Steven E; Weiss, Arthur; Puck, Jennifer M

    2016-02-01

    A brother and sister developed a previously undescribed constellation of autoimmune manifestations within their first year of life, with uncontrollable bullous pemphigoid, colitis, and proteinuria. The boy had hemophilia due to a factor VIII autoantibody and nephrotic syndrome. Both children required allogeneic hematopoietic cell transplantation (HCT), which resolved their autoimmunity. The early onset, severity, and distinctive findings suggested a single gene disorder underlying the phenotype. Whole-exome sequencing performed on five family members revealed the affected siblings to be compound heterozygous for two unique missense mutations in the 70-kD T cell receptor ζ-chain associated protein (ZAP-70). Healthy relatives were heterozygous mutation carriers. Although pre-HCT patient T cells were not available, mutation effects were determined using transfected cell lines and peripheral blood from carriers and controls. Mutation R192W in the C-SH2 domain exhibited reduced binding to phosphorylated ζ-chain, whereas mutation R360P in the N lobe of the catalytic domain disrupted an autoinhibitory mechanism, producing a weakly hyperactive ZAP-70 protein. Although human ZAP-70 deficiency can have dysregulated T cells, and autoreactive mouse thymocytes with weak Zap-70 signaling can escape tolerance, our patients' combination of hypomorphic and activating mutations suggested a new disease mechanism and produced previously undescribed human ZAP-70-associated autoimmune disease. PMID:26783323

  4. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70

    PubMed Central

    Chan, Alice Y.; Punwani, Divya; Kadlecek, Theresa A.; Cowan, Morton J.; Olson, Jean L.; Mathes, Erin F.; Sunderam, Uma; Man Fu, Shu; Srinivasan, Rajgopal; Kuriyan, John; Brenner, Steven E.; Weiss, Arthur

    2016-01-01

    A brother and sister developed a previously undescribed constellation of autoimmune manifestations within their first year of life, with uncontrollable bullous pemphigoid, colitis, and proteinuria. The boy had hemophilia due to a factor VIII autoantibody and nephrotic syndrome. Both children required allogeneic hematopoietic cell transplantation (HCT), which resolved their autoimmunity. The early onset, severity, and distinctive findings suggested a single gene disorder underlying the phenotype. Whole-exome sequencing performed on five family members revealed the affected siblings to be compound heterozygous for two unique missense mutations in the 70-kD T cell receptor ζ-chain associated protein (ZAP-70). Healthy relatives were heterozygous mutation carriers. Although pre-HCT patient T cells were not available, mutation effects were determined using transfected cell lines and peripheral blood from carriers and controls. Mutation R192W in the C-SH2 domain exhibited reduced binding to phosphorylated ζ-chain, whereas mutation R360P in the N lobe of the catalytic domain disrupted an autoinhibitory mechanism, producing a weakly hyperactive ZAP-70 protein. Although human ZAP-70 deficiency can have dysregulated T cells, and autoreactive mouse thymocytes with weak Zap-70 signaling can escape tolerance, our patients’ combination of hypomorphic and activating mutations suggested a new disease mechanism and produced previously undescribed human ZAP-70–associated autoimmune disease. PMID:26783323

  5. Toll-Like Receptor and Accessory Molecule mRNA Expression in Humans and Mice as Well as in Murine Autoimmunity, Transient Inflammation, and Progressive Fibrosis

    PubMed Central

    Ramaiah, Santhosh Kumar Vankayala; Günthner, Roman; Lech, Maciej; Anders, Hans-Joachim

    2013-01-01

    The cell type-, organ-, and species-specific expression of the Toll-like receptors (TLRs) are well described, but little is known about the respective expression profiles of their accessory molecules. We therefore determined the mRNA expression levels of LBP, MD2, CD36, CD14, granulin, HMGB1, LL37, GRP94, UNC93b1, TRIL, PRAT4A, AP3B1, AEP and the respective TLRs in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. In addition, the expression profiles in transient tissue inflammation upon renal ischemia-reperfusion injury, in spleens and kidneys from mice with lupus-like systemic autoimmunity, and in progressive tissue fibrosis upon unilateral ureteral obstruction were studied. Several TLR co-factors were specifically regulated during the different phases of these disease entities, suggesting a functional involvement in the disease process. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to TLR-mediated innate immunity, which seems to be involved in the tissue injury phase, in the phase of tissue regeneration, and in progressive tissue remodelling. PMID:23803655

  6. A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus

    PubMed Central

    Orrú, Valeria; Tsai, Sophia J.; Rueda, Blanca; Fiorillo, Edoardo; Stanford, Stephanie M.; Dasgupta, Jhimli; Hartiala, Jaana; Zhao, Lei; Ortego-Centeno, Norberto; D’Alfonso, Sandra; Arnett, Frank C.; Wu, Hui; Gonzalez-Gay, Miguel A.; Tsao, Betty P.; Pons-Estel, Bernardo; Alarcon-Riquelme, Marta E.; He, Yantao; Zhang, Zhong-Yin; Allayee, Hooman; Chen, Xiaojiang S.; Martin, Javier; Bottini, Nunzio

    2009-01-01

    A gain-of-function R620W polymorphism in the PTPN22 gene, encoding the lymphoid tyrosine phosphatase LYP, has recently emerged as an important risk factor for human autoimmunity. Here we report that another missense substitution (R263Q) within the catalytic domain of LYP leads to reduced phosphatase activity. High-resolution structural analysis revealed the molecular basis for this loss of function. Furthermore, the Q263 variant conferred protection against human systemic lupus erythematosus, reinforcing the proposal that inhibition of LYP activity could be beneficial in human autoimmunity. PMID:18981062

  7. Induction of Regulatory t Cells by Low Dose il2 in Autoimmune and Inflammatory Diseases

    ClinicalTrials.gov

    2016-04-18

    Rheumatoid Arthritis; Ankylosing Spondylitis; Systemic Lupus Erythematosus; Psoriasis; Behcet's Disease; Wegener's Granulomatosis; Takayasu's Disease; Crohn's Disease; Ulcerative Colitis; Autoimmune Hepatitis; Sclerosing Cholangitis

  8. Th1/Th17 Plasticity Is a Marker of Advanced β Cell Autoimmunity and Impaired Glucose Tolerance in Humans

    PubMed Central

    Reinert-Hartwall, Linnea; Honkanen, Jarno; Salo, Harri M.; Nieminen, Janne K.; Luopajärvi, Kristiina; Härkönen, Taina; Veijola, Riitta; Simell, Olli; Ilonen, Jorma; Peet, Aleksandr; Tillmann, Vallo; Knip, Mikael; Knip, Mikael; Koski, Katriina; Koski, Matti; Härkönen, Taina; Ryhänen, Samppa; Hämäläinen, Anu-Maaria; Ormisson, Anne; Peet, Aleksandr; Tillmann, Vallo; Ulich, Valentina; Kuzmicheva, Elena; Mokurov, Sergei; Markova, Svetlana; Pylova, Svetlana; Isakova, Marina; Shakurova, Elena; Petrov, Vladimir; Dorshakova, Natalya V.; Karapetyan, Tatyana; Varlamova, Tatyana; Ilonen, Jorma; Kiviniemi, Minna; Alnek, Kristi; Janson, Helis; Uibo, Raivo; Salum, Tiit; von Mutius, Erika; Weber, Juliane; Ahlfors, Helena; Kallionpää, Henna; Laajala, Essi; Lahesmaa, Riitta; Lähdesmäki, Harri; Moulder, Robert; Nieminen, Janne; Ruohtula, Terhi; Vaarala, Outi; Honkanen, Hanna; Hyöty, Heikki; Kondrashova, Anita; Oikarinen, Sami; Harmsen, Hermie J. M.; De Goffau, Marcus C.; Welling, Gjalt; Alahuhta, Kirsi; Virtanen, Suvi M.

    2015-01-01

    Upregulation of IL-17 immunity and detrimental effects of IL-17 on human islets have been implicated in human type 1 diabetes. In animal models, the plasticity of Th1/Th17 cells contributes to the development of autoimmune diabetes. In this study, we demonstrate that the upregulation of the IL-17 pathway and Th1/Th17 plasticity in peripheral blood are markers of advanced β cell autoimmunity and impaired β cell function in human type 1 diabetes. Activated Th17 immunity was observed in the late stage of preclinical diabetes in children with β cell autoimmunity and impaired glucose tolerance, but not in children with early β cell autoimmunity. We found an increased ratio of IFN-γ/IL-17 expression in Th17 cells in children with advanced β cell autoimmunity, which correlated with HbA1c and plasma glucose concentrations in an oral glucose tolerance test, and thus impaired β cell function. Low expression of Helios was seen in Th17 cells, suggesting that Th1/Th17 cells are not converted thymus-derived regulatory T cells. Our results suggest that the development of Th1/Th17 plasticity may serve as a biomarker of disease progression from β cell autoantibody positivity to type 1 diabetes. These data in human type 1 diabetes emphasize the role of Th1/Th17 plasticity as a potential contributor to tissue destruction in autoimmune conditions. PMID:25480564

  9. Lupus risk variants in the PXK locus alter B-cell receptor internalization.

    PubMed

    Vaughn, Samuel E; Foley, Corinne; Lu, Xiaoming; Patel, Zubin H; Zoller, Erin E; Magnusen, Albert F; Williams, Adrienne H; Ziegler, Julie T; Comeau, Mary E; Marion, Miranda C; Glenn, Stuart B; Adler, Adam; Shen, Nan; Nath, Swapan; Stevens, Anne M; Freedman, Barry I; Tsao, Betty P; Jacob, Chaim O; Kamen, Diane L; Brown, Elizabeth E; Gilkeson, Gary S; Alarcón, Graciela S; Reveille, John D; Anaya, Juan-Manuel; James, Judith A; Moser, Kathy L; Criswell, Lindsey A; Vilá, Luis M; Alarcón-Riquelme, Marta E; Petri, Michelle; Scofield, R Hal; Kimberly, Robert P; Ramsey-Goldman, Rosalind; Binjoo, Young; Choi, Jeongim; Bae, Sang-Cheol; Boackle, Susan A; Vyse, Timothy J; Guthridge, Joel M; Namjou, Bahram; Gaffney, Patrick M; Langefeld, Carl D; Kaufman, Kenneth M; Kelly, Jennifer A; Harley, Isaac T W; Harley, John B; Kottyan, Leah C

    2014-01-01

    Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3' UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10(-10), OR 0.81 (0.75-0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity. PMID:25620976

  10. The emergence of systemic lupus erythematosus in hypothyroid patients: two case reports and mini review.

    PubMed

    Bakr, A; Laimon, W; El-Ziny, M A; Hammad, A; El-Hawary, A K; Elsharkawy, A A; El-Refaey, A M; Salem, N A; El-Mougy, A; Zedan, M M; Aboelenin, H M; Eid, R; Sarhan, A

    2014-07-01

    Systemic lupus erythematosus (SLE) is a multi-systemic autoimmune disease that involves almost all the organs in the human body and is characterized by auto antibodies formation. Autoimmune thyroid diseases (AITD) are organ-specific diseases that are associated with a production of a variety of antibodies such as antinuclear antibodies, anti-double-stranded DNA, anti-Ro antibodies, anti-cardiolipin antibodies, and others. The diagnosis of AITD in patients with SLE is well known, but the reverse is rarely reported. We present two cases of adolescent girls in whom SLE evolved one year after being diagnosed with hypothyroidism. PMID:24569395

  11. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    NASA Astrophysics Data System (ADS)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  12. Unscrambling the role of human parvovirus B19 signaling in systemic autoimmunity.

    PubMed

    Tsay, Gregory J; Zouali, Moncef

    2006-11-30

    Despite enormous progress in understanding how the immune system works, the pathogenesis of autoimmune diseases still remains unclear. Growing evidence indicates that infectious agents can be potent initial triggers, subverting and exploiting host cell signaling pathways. This role is exemplified by the association of parvovirus B19 (B19) with human autoimmune disease. Infection with this common virus exhibits striking similarities with systemic autoimmune diseases, and can be associated with elevated serum autoantibody titers. The B19 virus produces proline-rich, 11-kDa proteins that have been implicated in modulation of host signaling cascades involved in virulence and pathogenesis. Additionally, B19 produces a non-structural protein (NS1) that functions as a transcription regulator by directly binding the p6 promoter and the Sp1/Sp3 transcription factors. The protein is also involved in DNA replication, cell cycle arrest and initiation of apoptotic damage, particularly in erythroid cells. When transfected to non-permissive cells, NS1 recruits the mitochondria cell death pathway. It is even more remarkable that NS1 functions as a trans-acting transcription activator for the IL6 promoter, up-regulating IL6 expression in host cells. Hence, B19 infection may play a pivotal role in triggering inflammatory disorders. By promoting apoptotic damage and trans-activating pro-inflammatory cytokine promoters, B19 may break the delicate balance between cell survival and apoptosis, and may contribute to immune deregulation. Understanding the mechanisms used by B19 to alter the cell signaling machinery may provide further insight into the mechanism by which autoimmune diseases develop. PMID:16764828

  13. Inhibition of the alternative complement pathway by antisense oligonucleotides targeting complement factor B improves lupus nephritis in mice.

    PubMed

    Grossman, Tamar R; Hettrick, Lisa A; Johnson, Robert B; Hung, Gene; Peralta, Raechel; Watt, Andrew; Henry, Scott P; Adamson, Peter; Monia, Brett P; McCaleb, Michael L

    2016-06-01

    Systemic lupus erythematosus is an autoimmune disease that manifests in widespread complement activation and deposition of complement fragments in the kidney. The complement pathway is believed to play a significant role in the pathogenesis and in the development of lupus nephritis. Complement factor B is an important activator of the alternative complement pathway and increasing evidence supports reducing factor B as a potential novel therapy to lupus nephritis. Here we investigated whether pharmacological reduction of factor B expression using antisense oligonucleotides could be an effective approach for the treatment of lupus nephritis. We identified potent and well tolerated factor B antisense oligonucleotides that resulted in significant reductions in hepatic and plasma factor B levels when administered to normal mice. To test the effects of factor B antisense oligonucleotides on lupus nephritis, we used two different mouse models, NZB/W F1 and MRL/lpr mice, that exhibit lupus nephritis like renal pathology. Antisense oligonucleotides mediated reductions in circulating factor B levels were associated with significant improvements in renal pathology, reduced glomerular C3 deposition and proteinuria, and improved survival. These data support the strategy of using factor B antisense oligonucleotides for treatment of lupus nephritis in humans. PMID:26307001

  14. C1q and systemic lupus erythematosus.

    PubMed

    Walport, M J; Davies, K A; Botto, M

    1998-08-01

    In this chapter we review the association between SLE and C1q. In the first part of the chapter we discuss the clinical associations of C1q deficiency, and tabulate the available information in the literature relating to C1q deficiency and autoimmune disease. Other clinical associations of C1q deficiency are then considered, and we mention briefly the association between other genetically determined complement deficiencies and lupus. In the review we explore the relationship between C1q consumption and lupus and we discuss the occurrence of low molecular weight (7S) C1q in lupus, which raises the possibility that increased C1q turnover in the disease may result in unbalanced chain synthesis of the molecule. Anti-C1q antibodies are also strongly associated with severe SLE affecting the kidney, and with hypocomplementaemic urticarial vasculitis, and these associations are also examined. We address the question of how C1q deficiency may cause SLE, discussing the possibility that this may be due to abnormalities of immune complex processing, which have been well characterised in a umber of different human models. There is clear evidence that immune complex processing is abnormal in patients with hypocomplementaemia, and this is compatible with the hypothesis that ineffective immune complex clearance could cause tissue injury, and this may in turn stimulate an autoantibody response. We have also considered the possibility that C1q-C1q receptor interactions are critical in the regulation of apoptosis, and we explore the hypothesis that dysregulation of apoptosis could explain important features in the development of autoimmune disease associated with C1q deficiency. An abnormally high rate of apoptosis, or defective clearance of apoptotic cells, could promote the accumulation of abnormal cellular products that might drive an autoimmune response. Anti-C1q antibodies have been described in a number of murine models of lupus, and these are also briefly discussed. We focus

  15. Recombinant human tumor necrosis factor alpha suppresses autoimmune diabetes in nonobese diabetic mice.

    PubMed Central

    Satoh, J; Seino, H; Abo, T; Tanaka, S; Shintani, S; Ohta, S; Tamura, K; Sawai, T; Nobunaga, T; Oteki, T

    1989-01-01

    We previously reported that administration of a streptococcal preparation (OK-432) inhibited insulitis and development of autoimmune diabetes in nonobese diabetic (NOD) mice and BB rats as animals models of insulin-dependent diabetes mellitus. In this study, we screened various cytokines that could be induced by OK-432 in vivo, for their preventive effect against diabetes in NOD mice. Among recombinant mouse IFN gamma, human IL1 alpha, human IL2, mouse granulocyte-macrophage colony-stimulating factor and human TNF alpha, only human TNF alpha suppressed insulitis and significantly (P less than 0.001) inhibited development of diabetes. NOD mice were the lowest producers of the mRNA of TNF and serum TNF on stimulation with OK-432 or with IFN gamma plus LPS, compared with C57BL/6, C3H/He, and Balb/c mice. The results imply a role for low productivity of TNF in the pathogenesis of autoimmune diabetes in NOD mice. Images PMID:2794065

  16. Siglec-1-positive plasmacytoid dendritic cells (pDCs) in human peripheral blood: A semi-mature and myeloid-like subset imbalanced during protective and autoimmune responses.

    PubMed

    Wilhelm, Theresa R; Taddeo, Adriano; Winter, Oliver; Schulz, Axel Ronald; Mälzer, Julia-Nora; Domingo, Cristina; Biesen, Robert; Alexander, Tobias; Thiel, Andreas; Radbruch, Andreas; Hiepe, Falk; Gerl, Velia

    2016-02-01

    Plasmacytoid dendritic cells (pDCs) play a central role in the pathogenesis of systemic lupus erythematosus (SLE) as IFN-α producers and promoters of T-cell activation or tolerance. Here, we demonstrated by flow-cytometry and confocal microscopy that Siglec-1, a molecule involved in the regulation of adaptive immunoresponses, is expressed in a subset of semi-mature, myeloid-like pDCs in human blood. These pDCs express lower BDCA-2 and CD123 and higher HLA-DR and CD11c than Siglec-1-negative pDCs and do not produce IFN-α via TLR7/TLR9 engagement. In vitro, Siglec-1 expression was induced in Siglec-1-negative pDCs by influenza virus. Proportions of Siglec-1-positive/Siglec-1-negative pDCs were higher in SLE than in healthy controls and correlated with disease activity. Healthy donors immunized with yellow fever vaccine YFV-17D displayed different kinetics of the two pDC subsets during protective immune response. PDCs can be subdivided into two subsets according to Siglec-1 expression. These subsets may play specific roles in (auto)immune responses. PMID:26674280

  17. Functional Domains of Autoimmune Regulator (AIRE) Modulate INS-VNTR Transcription in Human Thymic Epithelial Cells.

    PubMed

    Sparks, Avis E; Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2016-05-20

    INS-VNTR (insulin-variable number of tandem repeats) and AIRE (autoimmune regulator) have been associated with the modulation of insulin gene expression in thymus, which is essential to induce either insulin tolerance or the development of insulin autoimmunity and type 1 diabetes. We sought to analyze whether each functional domain of AIRE is critical for the activation of INS-VNTR in human thymic epithelial cells. Twelve missense or nonsense mutations in AIRE and two chimeric AIRE constructs were generated. A luciferase reporter assay and a pulldown assay using biotinylated INS-class I VNTR probe were performed to examine the transactivation and binding activities of WT, mutant, and chimeric AIREs on the INS-VNTR promoter. Confocal microscopy analysis was performed for WT or mutant AIRE cellular localization. We found that all of the AIRE mutations resulted in loss of transcriptional activation of INS-VNTR except mutant P252L. Using WT/mutant AIRE heterozygous forms to modulate the INS-VNTR target revealed five mutations (R257X, G228W, C311fsX376, L397fsX478, and R433fsX502) that functioned in a dominant negative fashion. The LXXLL-3 motif is identified for the first time to be essential for DNA binding to INS-VNTR, whereas the intact PHD1, PHD2, LXXLL-3, and LXXLL-4 motifs were important for successful transcriptional activation. AIRE nuclear localization in the human thymic epithelial cell line was disrupted by mutations in the homogenously staining region domain and the R257X mutation in the PHD1 domain. This study supports the notion that AIRE mutation could specifically affect human insulin gene expression in thymic epithelial cells through INS-VNTR and subsequently induce either insulin tolerance or autoimmunity. PMID:27048654

  18. Chrysin suppresses human CD14(+) monocyte-derived dendritic cells and ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Zhang, Kai; Ge, Zhenzhen; Xue, Zhenyi; Huang, Wenjing; Mei, Mei; Zhang, Qi; Li, Yan; Li, Wen; Zhang, Zhihui; Zhang, Zimu; Zhang, Lijuan; Wang, Huafeng; Cai, Jinzhen; Yao, Zhi; Zhang, Rongxin; Da, Yurong

    2015-11-15

    Chrysin, a naturally flavonoid of plant, has various biological activities. However, the effects of chrysin on dendritic cells (DCs) and multiple sclerosis (MS) remain unknown. In this study, we demonstrate that chrysin inhibited human DC differentiation, maturation, function and the expression of the Th1 cells polarizing cytokines IFN-γ and IL-12p35 form DCs. In addition, chrysin ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model of MS, by reducing CNS inflammation and demyelination. Furthermore, chrysin suppressed DCs and Th1 cells in the EAE mice. Taken together, chrysin exerts anti-inflammatory and immune suppressive effects, and suggests a possible therapeutic application of chrysin in MS. PMID:26531689

  19. AKT isoforms modulate Th1-like Treg generation and function in human autoimmune disease.

    PubMed

    Kitz, Alexandra; de Marcken, Marine; Gautron, Anne-Sophie; Mitrovic, Mitja; Hafler, David A; Dominguez-Villar, Margarita

    2016-08-01

    Foxp3(+) regulatory T cells (Tregs) exhibit plasticity, which dictates their function. Secretion of the inflammatory cytokine IFNγ, together with the acquisition of a T helper 1 (Th1)-like effector phenotype as observed in cancer, infection, and autoimmune diseases, is associated with loss of Treg suppressor function through an unknown mechanism. Here, we describe the signaling events driving the generation of human Th1-Tregs. Using a genome-wide gene expression approach and pathway analysis, we identify the PI3K/AKT/Foxo1/3 signaling cascade as the major pathway involved in IFNγ secretion by human Tregs. Furthermore, we describe the opposing roles of AKT isoforms in Th1-Treg generation ex vivo Finally, we employ multiple sclerosis as an in vivo model with increased but functionally defective Th1-Tregs. We show that the PI3K/AKT/Foxo1/3 pathway is activated in ex vivo-isolated Tregs from untreated relapsing-remitting MS patients and that blockade of the pathway inhibits IFNγ secretion and restores the immune suppressive function of Tregs. These data define a fundamental pathway regulating the function of human Tregs and suggest a novel treatment paradigm for autoimmune diseases. PMID:27312110

  20. Mutation of POL B Causes Lupus in Mice

    PubMed Central

    Senejani, Alireza G.; Liu, Yanfeng; Kidane, Dawit; Maher, Stephen E.; Zeiss, Caroline J; Park, Hong-Jae; Kashgarian, Michael; McNiff, Jennifer M.; Zelterman, Daniel; Bothwell, Alfred L. M.; Sweasy, Joann B.

    2014-01-01

    Summary A replication study of a previous genome-wide association study (GWAS) suggested that a single nucleotide polymorphism (SNP) linked to the POLB gene is associated with systemic lupus erythematosus (SLE). This SNP is correlated with decreased POLB expression (Pol β). To determine if decreased Pol β activity results in SLE, we constructed a mouse model of POLB that encodes an enzyme with slow DNA polymerase activity. Pol β is a key enzyme in the base excision repair (BER) pathway.. We show that mice expressing this hypomorphic POLB allele develop autoimmune pathology strongly resembling SLE. Of note, the immunoglobulin heavy chain junctions from the POL BY265C/C mice have shorter lengths, and somatic hypermutation is dramatically increased. These results demonstrate that decreased Pol β activity during the generation of immune diversity leads to lupus-like disease in mice and suggest that decreased expression of Pol β in humans is an underlying cause of SLE. PMID:24388753

  1. GWAS implicates a role for quantitative immune traits and threshold effects in risk for human autoimmune disorders

    PubMed Central

    Gregersen, Peter K.; Diamond, Betty; Plenge, Robert M.

    2016-01-01

    Genome wide association studies in human autoimmune disorders has provided a long list of alleles with rather modest degrees of risk. A large fraction of these associations are likely due to either quantitative differences in gene expression or amino acid changes that regulate quantitative aspects of the immune response. While functional studies are still lacking for most of these associations, we present examples of autoimmune disease risk alleles that influence quantitative changes in lymphocyte activation, cytokine signaling and dendritic cell function. The analysis of immune quantitative traits associated with autoimmune loci is clearly going to be an important component of understanding the pathogenesis of autoimmunity. This will require both new and more efficient ways of characterizing the normal immune system, as well as large population resources with which genotype-phenotype correlations can be convincingly demonstrated. Future development of new therapies will depend on understanding the mechanistic underpinnings of immune regulation by these new risk loci. PMID:23026397

  2. MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases

    PubMed Central

    2011-01-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of mi- RNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly onto center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress. PMID:22194706

  3. [Recent advance in genetics of systemic lupus erythematosus].

    PubMed

    Feng, Xuebing; Chen, Sunle; Shen, Nan

    2002-12-01

    Systemic lupus erythematosus (SLE) is the prototype systemic autoimmune disease and genetic component seems to play an important role in disease susceptibility. Studies from murine models have shown that about 30 loci are related to the disease. Meanwhile, 50 loci have been found in linkage to SLE in human genomic studies, especially 1q23-24, 1q41-42, 2q37, 4p16-15.2, 6p21-11 and 16q13. A lot of candidate genes contribute to the disease susceptibility and different combinations of genes at multiple loci in individual patient may result in the development of diverse clinical features. PMID:12476427

  4. Possible Role of Staphylococcal Enterotoxin B in the Pathogenesis of Autoimmune Diseases.

    PubMed

    Li, Jing; Yang, Jie; Lu, Yu-wei; Wu, Song; Wang, Ming-rui; Zhu, Ji-min

    2015-09-01

    As a member of superantigens (SAgs) produced by Staphylococcus aureus, staphylococcal enterotoxin B (SEB) is a exotoxin superantigen that can regulate the activity of immunomodulatory and pro-inflammatory cell types. In addition, SEB plays a critical role in the pathogenesis of autoimmune disorders either by initiating the autoimmune process or by inducing a relapse in an individual in clinical remission from an autoimmune disorder. SEB can directly activate T lymphocytes, leading to the release of cytokines, superoxides, or other mediators of inflammation either directly or indirectly, because of its unique ability to cross-link human major histocompatibility complex (MHC) class II and T cell receptors (TCR), forming a trimolecular complex. This review discusses the potential effects of SEB in the pathogenesis of autoimmune diseases such as multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis, and explores some updated therapeutic medications to neutralize SEB. PMID:26086678

  5. Vitamin D and Systemic Lupus Erythematosus: Myth or Reality?

    PubMed

    Watad, Abdulla; Neumann, Shana G; Soriano, Alessandra; Amital, Howard; Shoenfeld, Yehuda

    2016-01-01

    There is growing interest in the contribution of vitamin D deficiency to autoimmunity. Several studies have shown an association between low levels of vitamin D and autoimmune disorders, including multiple sclerosis, rheumatoid arthritis, type 1 diabetes, autoimmune thyroid diseases, celiac disease, and systemic lupus erythematosus (SLE). Vitamin D receptor ligands can mediate immunosuppressive effects. It has been suggested that low levels of this hormone contribute to the immune activation in lupus and other autoimmune diseases. This review updates and summarizes the literature on the association between vitamin D and SLE, and discusses the various correlations between vitamin D and SLE activity, clinical expressions, serology, and gene polymorphisms of vitamin D receptors. PMID:27228639

  6. EBV and Autoimmunity.

    PubMed

    Ascherio, Alberto; Munger, Kassandra L

    2015-01-01

    Although a role of EBV in autoimmunity is biologically plausible and evidence of altered immune responses to EBV is abundant in several autoimmune diseases, inference on causality requires the determination that disease risk is higher in individuals infected with EBV than in those uninfected and that in the latter it increases following EBV infection. This determination has so far been possible only for multiple sclerosis (MS) and, to some extent, for systemic lupus erythematosus (SLE), whereas evidence is either lacking or not supportive for other autoimmune conditions. In this chapter, we present the main epidemiological findings that justify the conclusion that EBV is a component cause of MS and SLE and possible mechanisms underlying these effects. PMID:26424654

  7. Subacute Cutaneous Lupus Erythematosus Triggered by Radiotherapy

    PubMed Central

    Kolm, I.; Pawlik, E.; Eggmann, N.; Kamarachev, J.; Kerl, K.; French, L.E.; Hofbauer, G.F.L.

    2013-01-01

    Background The origin of collagen autoimmune diseases is not fully understood. Some studies postulate a mechanism of molecular mimicry or heterologous immunity following viral infections triggering autoimmunity. Apart from infections, other exogenous factors such as visible light or X-rays have been reported to incite autoimmunity. Case Report We report a case of histologically and serologically confirmed subacute lupus erythematosus (SCLE) following radiotherapy for breast cancer. Discussion The close temporal and spatial correlation between radiotherapy and onset of SCLE in this patient suggests that an autoimmune reaction may have been triggered locally by functionally altering the immune system and breaking self-tolerance. PMID:24019776

  8. Autoimmunity in 2013.

    PubMed

    Selmi, Carlo

    2014-08-01

    The peer-reviewed publications in the field of autoimmunity published in 2013 represented a significant proportion of immunology articles and grew since the previous year to indicate that more immune-mediated phenomena may recognize an autoimmune mechanism and illustrated by osteoarthritis and atherosclerosis. As a result, our understanding of the mechanisms of autoimmunity is becoming the paradigm for translational research in which the progress in disease pathogenesis for both tolerance breakdown and inflammation perpetuation is rapidly followed by new treatment approaches and clinical management changes. The similarities across the autoimmune disease spectrum outnumber differences, particularly when treatments are compared. Indeed, the therapeutics of autoimmune diseases are based on a growing armamentarium that currently includes monoclonal antibodies and small molecules which act by targeting molecular markers or intracellular mediators with high specificity. Among the over 100 conditions considered as autoimmune, the common grounds are well illustrated by the data reported for systemic lupus erythematosus and rheumatoid arthritis or by the plethora of studies on Th17 cells and biomarkers, particularly serum autoantibodies. Further, we are particularly intrigued by studies on the genomics, epigenetics, and microRNA at different stages of disease development or on the safe and effective use of abatacept acting on the costimulation of T and B cells in rheumatoid arthritis. We are convinced that the data published in 2013 represent a promising background for future developments that will exponentially impact the work of laboratory and clinical scientists over the next years. PMID:24819586

  9. Cutting Edge: Autoimmune Disease Risk Variant of STAT4 Confers Increased Sensitivity to IFN-α in Lupus Patients In Vivo1

    PubMed Central

    Kariuki, Silvia N.; Kirou, Kyriakos A.; MacDermott, Emma J.; Barillas-Arias, Lilliana; Crow, Mary K.; Niewold, Timothy B.

    2009-01-01

    Increased IFN-α signaling is a primary pathogenic factor in systemic lupus erythematosus (SLE). STAT4 is a transcription factor that is activated by IFN-α signaling, and genetic variation of STAT4 has been associated with risk of SLE and rheumatoid arthritis. We measured serum IFN-α activity and simultaneous IFN-α-induced gene expression in PBMC in a large SLE cohort. The risk variant of STAT4 (T allele; rs7574865) was simultaneously associated with both lower serum IFN-α activity and greater IFN-α-induced gene expression in PBMC in SLE patients in vivo. Regression analyses confirmed that the risk allele of STAT4 was associated with increased sensitivity to IFN-α signaling. The IFN regulatory factor 5 SLE risk genotype was associated with higher serum IFN-α activity; however, STAT4 showed dominant influence on the sensitivity of PBMC to serum IFN-α. These data provide biologic relevance for the risk variant of STAT4 in the IFN-α pathway in vivo. PMID:19109131

  10. Patterns of Exposure of Iberian Wolves (Canis lupus) to Canine Viruses in Human-Dominated Landscapes.

    PubMed

    Millán, Javier; López-Bao, José Vicente; García, Emilio J; Oleaga, Álvaro; Llaneza, Luis; Palacios, Vicente; de la Torre, Ana; Rodríguez, Alejandro; Dubovi, Edward J; Esperón, Fernando

    2016-03-01

    Wildlife inhabiting human-dominated landscapes is at risk of pathogen spill-over from domestic species. With the aim of gaining knowledge in the dynamics of viral infections in Iberian wolves (Canis lupus) living in anthropized landscapes of northern Spain, we analysed between 2010 and 2013 the samples of 54 wolves by serology and polymerase chain reaction (PCR) for exposure to four pathogenic canine viruses: canine distemper virus (CDV), canine parvovirus-2 (CPV), canine adenovirus 1 and 2 (CAV-1 and CAV-2) and canine herpesvirus. Overall, 76% of the studied wolves presented evidence of exposure to CPV (96% by HI, 66% by PCR) and 75% to CAV (75% by virus neutralization (VN), 76% by PCR, of which 70% CAV-1 and 6% CAV-2). This represents the first detection of CAV-2 infection in a wild carnivore. CPV/CAV-1 co-infection occurred in 51% of the wolves. The probability of wolf exposure to CPV was positively and significantly correlated with farm density in a buffer zone around the place where the wolf was found, indicating that rural dogs might be the origin of CPV infecting wolves. CPV and CAV-1 appear to be enzootic in the Iberian wolf population, which is supported by the absence of seasonal and inter-annual variations in the proportion of positive samples detected. However, while CPV may depend on periodical introductions by dogs, CAV-1 may be maintained within the wolf population. All wolves were negative for exposure to CDV (by VN and PCR) and CHV (by PCR). The absence of acquired immunity against CDV in this population may predispose it to an elevated rate of mortality in the event of a distemper spill-over via dogs. PMID:26589403

  11. IFN-γ licenses CD11b(+) cells to induce progression of systemic lupus erythematosus.

    PubMed

    Shaabani, Namir; Honke, Nadine; Dolff, Sebastian; Görg, Boris; Khairnar, Vishal; Merches, Katja; Duhan, Vikas; Metzger, Sabine; Recher, Mike; Barthuber, Carmen; Hardt, Cornelia; Proksch, Peter; Häussinger, Dieter; Witzke, Oliver; Lang, Philipp A; Lang, Karl S

    2015-08-01

    Autoantibodies are a hallmark of autoimmune diseases, such as rheumatoid arthritis, autoimmune hepatitis, and systemic lupus erythematosus (SLE). High titers of anti-nuclear antibodies are used as surrogate marker for SLE, however their contribution to pathogenesis remains unclear. Using murine model of SLE and human samples, we studied the effect of immune stimulation on relapsing of SLE. Although autoantibodies bound to target cells in vivo, only additional activation of CD8(+) T cells converted this silent autoimmunity into overt disease. In mice as well as in humans CD8(+) T cells derived IFN-γ enhanced expression of Fc-receptors on CD11b(+) cells. High expression of Fc-receptors allowed CD11b(+) cells to bind to antibody covered target cells and to destroy them in vivo. We found that autoantibodies induce clinically relevant disease when adaptive immunity, specific for disease non-related antigen, is activated. PMID:26094774

  12. Animal Models of Interferon Signature Positive Lupus.

    PubMed

    Zhuang, Haoyang; Szeto, Christopher; Han, Shuhong; Yang, Lijun; Reeves, Westley H

    2015-01-01

    Human lupus is strongly associated with a gene expression signature characterized by over-expression of Type I interferon-regulated genes. A strong interferon signature generally is not seen in the standard mouse models of lupus, despite considerable evidence for the involvement of toll-like receptor-driven interferon production. In contrast, pristane-induced lupus exhibits a prominent TLR7-dependent interferon signature. Importantly, genetic disorders with dysregulated interferon production in both human beings and mice cause severe autoinflammatory diseases but not the typical manifestations of lupus, suggesting that interferon over-production is insufficient to cause systemic lupus erythematosus itself. Single-gene models in mice suggest that lupus-like disease may result from abnormalities in B-cell activation and the clearance of dead cells. Pristane may mimic human systemic lupus erythematosus by causing synergistic abnormalities in interferon production along with defective clearance of apoptotic cells and over-active B-cell signaling. PMID:26097482

  13. Animal Models of Interferon Signature Positive Lupus

    PubMed Central

    Zhuang, Haoyang; Szeto, Christopher; Han, Shuhong; Yang, Lijun; Reeves, Westley H.

    2015-01-01

    Human lupus is strongly associated with a gene expression signature characterized by over-expression of Type I interferon-regulated genes. A strong interferon signature generally is not seen in the standard mouse models of lupus, despite considerable evidence for the involvement of toll-like receptor-driven interferon production. In contrast, pristane-induced lupus exhibits a prominent TLR7-dependent interferon signature. Importantly, genetic disorders with dysregulated interferon production in both human beings and mice cause severe autoinflammatory diseases but not the typical manifestations of lupus, suggesting that interferon over-production is insufficient to cause systemic lupus erythematosus itself. Single-gene models in mice suggest that lupus-like disease may result from abnormalities in B-cell activation and the clearance of dead cells. Pristane may mimic human systemic lupus erythematosus by causing synergistic abnormalities in interferon production along with defective clearance of apoptotic cells and over-active B-cell signaling. PMID:26097482

  14. Conditioned Medium from the Stem Cells of Human Exfoliated Deciduous Teeth Ameliorates Experimental Autoimmune Encephalomyelitis.

    PubMed

    Shimojima, Chiaki; Takeuchi, Hideyuki; Jin, Shijie; Parajuli, Bijay; Hattori, Hisashi; Suzumura, Akio; Hibi, Hideharu; Ueda, Minoru; Yamamoto, Akihito

    2016-05-15

    Multiple sclerosis (MS) is a major neuroinflammatory demyelinating disease of the CNS. Current MS treatments, including immunomodulators and immunosuppressants, do not result in complete remission. Stem cells from human exfoliated deciduous teeth (SHEDs) are mesenchymal stem cells derived from dental pulp. Both SHED and SHED-conditioned medium (SHED-CM) exhibit immunomodulatory and regenerative activities and have the potential to treat various diseases. In this study, we investigated the efficacy of SHED-CM in treating experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. EAE mice treated with a single injection of SHED-CM exhibited significantly improved disease scores, reduced demyelination and axonal injury, and reduced inflammatory cell infiltration and proinflammatory cytokine expression in the spinal cord, which was associated with a shift in the microglia/macrophage phenotype from M1 to M2. SHED-CM also inhibited the proliferation of myelin oligodendrocyte glycoprotein-specific CD4(+) T cells, as well as their production of proinflammatory cytokines in vitro. Treatment of EAE mice with the secreted ectodomain of sialic acid-binding Ig-like lectin-9, a major component of SHED-CM, recapitulated the effects of SHED-CM treatment. Our data suggest that SHED-CM and secreted ectodomain of sialic acid-binding Ig-like lectin-9 may be novel therapeutic treatments for autoimmune diseases, such as MS. PMID:27053763

  15. Intersection of population variation and autoimmunity genetics in human T cell activation.

    PubMed

    Ye, Chun Jimmie; Feng, Ting; Kwon, Ho-Keun; Raj, Towfique; Wilson, Michael T; Asinovski, Natasha; McCabe, Cristin; Lee, Michelle H; Frohlich, Irene; Paik, Hyun-il; Zaitlen, Noah; Hacohen, Nir; Stranger, Barbara; De Jager, Philip; Mathis, Diane; Regev, Aviv; Benoist, Christophe

    2014-09-12

    T lymphocyte activation by antigen conditions adaptive immune responses and immunopathologies, but we know little about its variation in humans and its genetic or environmental roots. We analyzed gene expression in CD4(+) T cells during unbiased activation or in T helper 17 (T(H)17) conditions from 348 healthy participants representing European, Asian, and African ancestries. We observed interindividual variability, most marked for cytokine transcripts, with clear biases on the basis of ancestry, and following patterns more complex than simple T(H)1/2/17 partitions. We identified 39 genetic loci specifically associated in cis with activated gene expression. We further fine-mapped and validated a single-base variant that modulates YY1 binding and the activity of an enhancer element controlling the autoimmune-associated IL2RA gene, affecting its activity in activated but not regulatory T cells. Thus, interindividual variability affects the fundamental immunologic process of T helper activation, with important connections to autoimmune disease. PMID:25214635

  16. The persistent challenge of lupus nephritis.

    PubMed

    Valesini, Guido; Conti, Fabrizio

    2011-06-01

    Systemic lupus erythematosus has long been considered the prototypic autoimmune disease. Although the etiology remains enigmatic, there has been vigorous definition of the clinical features and the natural history. In this issue, we review the persistent challenge of lupus nephritis and, in particular, features of diagnosis as well as treatment options. It is clear that major therapeutic advances have occurred but there is still a considerable unmet need in the population. This issue does not review all the clinical problems of lupus nephritis, but rather attempts to place the most recent data in perspective for the clinician. PMID:20811786

  17. Immunopathogenesis of environmentally induced lupus in mice.

    PubMed

    Shaheen, V M; Satoh, M; Richards, H B; Yoshida, H; Shaw, M; Jennette, J C; Reeves, W H

    1999-10-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune syndrome defined by clinical and serologic features, including arthritis, glomerulonephritis, and certain autoantibodies such as anti-nuclear ribonucleoprotein (nRNP)/Smith antigen (Sm), DNA, and ribosomal P. Although lupus is considered primarily a genetic disorder, we recently demonstrated the induction of a syndrome strikingly similar to spontaneous lupus in many nonautoimmune strains of mice exposed to the isoprenoid alkane pristane (2,6,10,14-tetramethylpentadecane), a component of mineral oil. Intraperitoneal injection of pristane leads to the formation of lipogranulomas consisting of phagocytic cells that have engulfed the oil and collections of lymphocytes. Subsequently, pristane-treated BALB/c and SJL mice develop autoantibodies characteristic of SLE, including anti-nRNP/Sm, antiribosomal P, anti-Su, antichromatin, anti-single-stranded DNA, and anti-double-stranded DNA. This is accompanied by a severe glomerulonephritis with immune complex deposition, mesangial or mesangiocapillary proliferation, and proteinuria. All inbred mice examined appear to be susceptible to this novel form of chemically induced lupus. Pristane-induced lupus is the only inducible model of autoimmunity associated with the clinical syndrome as well as with the characteristic serologic abnormalities of SLE. Defining the immunopathogenesis of pristane-induced lupus in mice may provide insight into the causes of spontaneous (idiopathic) lupus and also may lead to information concerning possible risks associated with the ingestion or inhalation of mineral oil and exposure to hydrocarbons in the environment. PMID:10502537

  18. Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity.

    PubMed

    Shaw, C A; Tomljenovic, L

    2013-07-01

    We have examined the neurotoxicity of aluminum in humans and animals under various conditions, following different routes of administration, and provide an overview of the various associated disease states. The literature demonstrates clearly negative impacts of aluminum on the nervous system across the age span. In adults, aluminum exposure can lead to apparently age-related neurological deficits resembling Alzheimer's and has been linked to this disease and to the Guamanian variant, ALS-PDC. Similar outcomes have been found in animal models. In addition, injection of aluminum adjuvants in an attempt to model Gulf War syndrome and associated neurological deficits leads to an ALS phenotype in young male mice. In young children, a highly significant correlation exists between the number of pediatric aluminum-adjuvanted vaccines administered and the rate of autism spectrum disorders. Many of the features of aluminum-induced neurotoxicity may arise, in part, from autoimmune reactions, as part of the ASIA syndrome. PMID:23609067

  19. Systemic lupus erythematosus

    MedlinePlus

    Disseminated lupus erythematosus; SLE; Lupus; Lupus erythematosus; Butterfly rash-SLE; Discoid lupus ... Mouth sores. Sensitivity to sunlight. Skin rash: A "butterfly" rash in about half the people with SLE. ...

  20. Autoimmunity in visual loss.

    PubMed

    Petzold, Axel; Wong, Sui; Plant, Gordon T

    2016-01-01

    There are a number of autoimmune disorders which can affect visual function. There are a very large number of mechanisms in the visual pathway which could potentially be the targets of autoimmune attack. In practice it is the retina and the anterior visual pathway (optic nerve and chiasm) that are recognised as being affected in autoimmune disorders. Multiple Sclerosis is one of the commonest causes of visual loss in young adults because of the frequency of attacks of optic neuritis in that condition, however the basis of the inflammation in Multiple Sclerosis and the confirmation of autoimmunity is lacking. The immune process is known to be highly unusual in that it is not systemic and confined to the CNS compartment. Previously an enigmatic partner to Multiple Sclerosis, Neuromyelitis Optica is now established to be autoimmune and two antibodies - to Aquaporin4 and to Myelin Oligodendrocyte Glycoprotein - have been implicated in the pathogenesis. The term Chronic Relapsing Inflammatory Optic Neuropathy is applied to those cases of optic neuritis which require long term immunosuppression and hence are presumed to be autoimmune but where no autoimmune pathogenesis has been confirmed. Optic neuritis occurring post-infection and post vaccination and conditions such as Systemic Lupus Erythematosus and various vasculitides may cause direct autoimmune attack to visual structures or indirect damage through occlusive vasculopathy. Chronic granulomatous disorders such as Sarcoidosis affect vision commonly by a variety of mechanisms, whether and how these are placed in the autoimmune panoply is unknown. As far as the retina is concerned Cancer Associated Retinopathy and Melanoma Associated Retinopathy are well characterised clinically but a candidate autoantibody (recoverin) is only described in the former disorder. Other, usually monophasic, focal retinal inflammatory disorders (Idiopathic Big Blind Spot Syndrome, Acute Zonal Occult Outer Retinopathy and Acute Macular

  1. Autoimmunity and Asbestos Exposure

    PubMed Central

    Pfau, Jean C.; Serve, Kinta M.; Noonan, Curtis W.

    2014-01-01

    Despite a body of evidence supporting an association between asbestos exposure and autoantibodies indicative of systemic autoimmunity, such as antinuclear antibodies (ANA), a strong epidemiological link has never been made to specific autoimmune diseases. This is in contrast with another silicate dust, crystalline silica, for which there is considerable evidence linking exposure to diseases such as systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Instead, the asbestos literature is heavily focused on cancer, including mesothelioma and pulmonary carcinoma. Possible contributing factors to the absence of a stronger epidemiological association between asbestos and autoimmune disease include (a) a lack of statistical power due to relatively small or diffuse exposure cohorts, (b) exposure misclassification, (c) latency of clinical disease, (d) mild or subclinical entities that remain undetected or masked by other pathologies, or (e) effects that are specific to certain fiber types, so that analyses on mixed exposures do not reach statistical significance. This review summarizes epidemiological, animal model, and in vitro data related to asbestos exposures and autoimmunity. These combined data help build toward a better understanding of the fiber-associated factors contributing to immune dysfunction that may raise the risk of autoimmunity and the possible contribution to asbestos-related pulmonary disease. PMID:24876951

  2. Autoimmune basal ganglia disorders.

    PubMed

    Dale, Russell C; Brilot, Fabienne

    2012-11-01

    The basal ganglia are deep nuclei in the brain that include the caudate, putamen, globus pallidus, and substantia nigra. Pathological processes involving the basal ganglia often result in disorders of movement and behavior. A number of different autoimmune disorders predominantly involve the basal ganglia and can result in movement and psychiatric disorders. The classic basal ganglia autoimmune disorder is Sydenham chorea, a poststreptococcal neuropsychiatric disorder. Resurgence in the interest in Sydenham chorea is the result of the descriptions of other poststreptococcal neuropsychiatric disorders including tics and obsessive-compulsive disorder, broadly termed pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection. Encephalitic processes affecting the basal ganglia are also described including the syndromes basal ganglia encephalitis, encephalitis lethargica, and bilateral striatal necrosis. Last, systemic autoimmune disorders such as systemic lupus erythematosus and antiphospholipid syndrome can result in chorea or parkinsonism. Using paradigms learned from other autoantibody associated disorders, the authors discuss the autoantibody hypothesis and the role of systemic inflammation in autoimmune basal ganglia disorders. Identification of these entities is important as the clinician has an increasing therapeutic repertoire to modulate or suppress the aberrant immune system. PMID:22832771

  3. [Juvenile systemic lupus erythematosus with unusual manifestation of lupus-associated panniculitis].

    PubMed

    Hashemie, H; Klossowski, N; Oommen, P T; Neubert, J; Homey, B; Hoff, N-P; Reifenberger, J; Meller, S

    2015-10-01

    Juvenile systemic lupus erythematosus (JSLE) is a rare multisystem autoimmune disease with broad heterogeneity of clinical manifestations. Diagnosing JSLE is often very challenging. This life-threatening, unpredictable, and relapsing disease, which may affect various organ systems, requires interdisciplinary, lifelong care. Here, we report the case of a 13-year-old patient with JSLE suffering from recurrent arthralgia, lupus panniculitis, and rashes that were successfully treated with hydroxychloroquine and prednisolone. PMID:26335858

  4. Environmentally induced autoimmune diseases: potential mechanisms.

    PubMed Central

    Rao, T; Richardson, B

    1999-01-01

    Environmental and other xenobiotic agents can cause autoimmunity. Examples include drug-induced lupus, toxic oil syndrome, and contaminated l-tryptophan ingestion. Numerous mechanisms, based on (italic)in vitro(/italic) evidence and animal models, have been proposed to explain how xenobiotics induce or accelerate autoimmunity. The majority of these can be divided into three general categories. The first is those inhibiting the processes involved in establishing tolerance by deletion. Inhibiting deletion can result in the release of newly generated autoreactive cells into the periphery. The second mechanism is the modification of gene expression in the cells participating in the immune response, permitting lymphocytes to respond to signals normally insufficient to initiate a response or allowing the antigen-presenting cells to abnormally stimulate a response. Abnormal gene expression can thus disrupt tolerance maintained by suppression or anergy, permitting activation of autoreactive cells. The third is the modification of self-molecules such that they are recognized by the immune system as foreign. Examples illustrating these concepts are presented, and related mechanisms that have the potential to similarly affect the immune system are noted. Some mechanisms appear to be common to a variety of agents, and different mechanisms appear to produce similar diseases. However, evidence that any of these mechanisms are actually responsible for xenobiotic-induced human autoimmune disease is still largely lacking, and the potential for numerous and as yet unidentified mechanisms also exists. PMID:10502539

  5. Oxidative Stress and Treg and Th17 Dysfunction in Systemic Lupus Erythematosus.

    PubMed

    Yang, Ji; Yang, Xue; Zou, Hejian; Li, Ming

    2016-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organ systems. The pathogenic mechanisms that cause SLE remain unclear; however, it is well recognized that the immune balance is disturbed and that this imbalance contributes to the autoimmune symptoms of SLE. Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and the ability of the biological system to readily detoxify the reactive intermediates or to repair the resulting damage. In humans, oxidative stress is involved in many diseases, including atherosclerosis, myocardial infarction, and autoimmune diseases. Numerous studies have confirmed that oxidative stress plays an important role in the pathogenesis of SLE. This review mainly focuses on the recent research advances with respect to oxidative stress and regulatory T (Treg)/helper T 17 (Th17) cell dysfunction in the pathogenesis of SLE. PMID:27597882

  6. Oxidative Stress and Treg and Th17 Dysfunction in Systemic Lupus Erythematosus

    PubMed Central

    Yang, Xue

    2016-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organ systems. The pathogenic mechanisms that cause SLE remain unclear; however, it is well recognized that the immune balance is disturbed and that this imbalance contributes to the autoimmune symptoms of SLE. Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and the ability of the biological system to readily detoxify the reactive intermediates or to repair the resulting damage. In humans, oxidative stress is involved in many diseases, including atherosclerosis, myocardial infarction, and autoimmune diseases. Numerous studies have confirmed that oxidative stress plays an important role in the pathogenesis of SLE. This review mainly focuses on the recent research advances with respect to oxidative stress and regulatory T (Treg)/helper T 17 (Th17) cell dysfunction in the pathogenesis of SLE. PMID:27597882

  7. Complicating autoimmune diseases in myasthenia gravis: a review

    PubMed Central

    Nacu, Aliona; Andersen, Jintana Bunpan; Lisnic, Vitalie; Owe, Jone Furlund; Gilhus, Nils Erik

    2015-01-01

    Abstract Myasthenia gravis (MG) is a rare autoimmune disease of skeletal muscle endplates. MG subgroup is relevant for comorbidity, but usually not accounted for. MG patients have an increased risk for complicating autoimmune diseases, most commonly autoimmune thyroid disease, systemic lupus erythematosus and rheumatoid arthritis. In this review, we present concomitant autoimmune disorders associated with the different MG subgroups, and show how this influences treatment and prognosis. Concomitant MG should always be considered in patients with an autoimmune disorder and developing new neuromuscular weakness, fatigue or respiratory failure. When a second autoimmune disorder is suspected, MG should be included as a differential diagnosis. PMID:25915571

  8. Pre-B cell leukemia homeobox 1 is associated with lupus susceptibility in mice and humans

    PubMed Central

    Cuda, Carla M.; Li, Shiwu; Liang, Shujuan; Yin, Yiming; Potula, Hari Hara S.K.; Xu, Zhiwei; Sengupta, Mayami; Chen, Yifang; Butfiloski, Edward; Baker, Henry; Chang, Lung-Ji; Dozmorov, Igor; Sobel, Eric S.; Morel, Laurence

    2011-01-01

    Sle1a.1 is part of the Sle1 susceptibility locus, which has the strongest association with lupus nephritis in the NZM2410 mouse model. Here we show that Sle1a.1 results in the production of activated and autoreactive CD4+ T cells. In addition, Sle1a.1 expression reduces the peripheral regulatory T cell (Treg) pool, as well as induces a defective response of CD4+ T cells to the retinoic acid (RA) expansion of TGFβ-induced Tregs. At the molecular level, Sle1a.1 corresponds to an increased expression of a novel splice isoform of Pbx1, Pbx1-d. Pbx1-d over-expression is sufficient to induce an activated/inflammatory phenotype in Jurkat T cells, and to decrease their apoptotic response to RA. PBX1-d is expressed more frequently in the CD4+ T cells from lupus patients than from healthy controls, and its presence correlates with an increased central memory T cell population. These findings indicate that Pbx1 is a novel lupus susceptibility gene that regulates T cell activation and tolerance. PMID:22180614

  9. Treating Lupus

    MedlinePlus

    ... Awards Investigator Grants, Fellowships and Career Development Awards & Prizes Peer-Reviewed Grant Program LIFELINE Grant Program 2015 ... Postal Code: Spam Control Text: Please leave this field empty Get social Facebook Twitter Instgram Lupus.org ...

  10. Proinsulin multi-peptide immunotherapy induces antigen-specific regulatory T cells and limits autoimmunity in a humanized model.

    PubMed

    Gibson, V B; Nikolic, T; Pearce, V Q; Demengeot, J; Roep, B O; Peakman, M

    2015-12-01

    Peptide immunotherapy (PIT) is a targeted therapeutic approach, involving administration of disease-associated peptides, with the aim of restoring antigen-specific immunological tolerance without generalized immunosuppression. In type 1 diabetes, proinsulin is a primary antigen targeted by the autoimmune response, and is therefore a strong candidate for exploitation via PIT in this setting. To elucidate the optimal conditions for proinsulin-based PIT and explore mechanisms of action, we developed a preclinical model of proinsulin autoimmunity in a humanized HLA-DRB1*0401 transgenic HLA-DR4 Tg mouse. Once proinsulin-specific tolerance is broken, HLA-DR4 Tg mice develop autoinflammatory responses, including proinsulin-specific T cell proliferation, interferon (IFN)-γ and autoantibody production. These are preventable and quenchable by pre- and post-induction treatment, respectively, using intradermal proinsulin-PIT injections. Intradermal proinsulin-PIT enhances proliferation of regulatory [forkhead box protein 3 (FoxP3(+))CD25(high) ] CD4 T cells, including those capable of proinsulin-specific regulation, suggesting this as its main mode of action. In contrast, peptide delivered intradermally on the surface of vitamin D3-modulated (tolerogenic) dendritic cells, controls autoimmunity in association with proinsulin-specific IL-10 production, but no change in regulatory CD4 T cells. These studies define a humanized, translational model for in vivo optimization of PIT to control autoimmunity in type 1 diabetes and indicate that dominant mechanisms of action differ according to mode of peptide delivery. PMID:26206289

  11. Autoimmune Hepatitis

    MedlinePlus

    ... Organizations ​​ (PDF, 341 KB)​​​​​ Alternate Language URL Autoimmune Hepatitis Page Content On this page: What is autoimmune ... Points to Remember Clinical Trials What is autoimmune hepatitis? Autoimmune hepatitis is a chronic—or long lasting— ...

  12. Thyroid disorders in systemic lupus erythematosus.

    PubMed Central

    Goh, K L; Wang, F

    1986-01-01

    Of 319 patients with systemic lupus erythematosus (SLE), nine had thyrotoxicosis, three had hypothyroidism, and two had thyroiditis. This prevalence seems greater than that of similar thyroid disorders seen in the general population. It is suggested that patients with autoimmune thyroid disorders may develop SLE or vice versa. This association requires confirmation by prospective study. PMID:3740982

  13. Lupus a Tough Disease to Spot, Treat

    MedlinePlus

    ... Español You Are Here: Home → Latest Health News → Article URL of this page: https://medlineplus.gov/news/fullstory_159098.html Lupus a Tough Disease to Spot, Treat But experts say scientists are working to unearth genetic causes of autoimmune ...

  14. The Role of Autophagy in Lupus Nephritis.

    PubMed

    Wang, Linlin; Law, Helen Ka Wai

    2015-01-01

    Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by the generation of immune responses to self-antigens. Lupus nephritis is one of the most common and severe complications in SLE patients. Though the pathogenesis of lupus nephritis has been studied extensively, unresolved questions are still left and new therapeutic methods are needed for disease control. Autophagy is a conserved catabolic process through which cytoplasmic constituents can be degraded in lysosome and reused. Autophagy plays vital roles in maintaining cell homeostasis and is involved in the pathogenesis of many diseases. In particular, autophagy can affect almost all parts of the immune system and is involved in autoimmune diseases. Based on genetic analysis, cell biology, and mechanism studies of the classic and innovative therapeutic drugs, there are growing lines of evidence suggesting the relationship between autophagy and lupus nephritis. In the present review, we summarize the recent publications investigating the relationship between autophagy and lupus nephritis and provide a new perspective towards the pathogenesis of lupus nephritis. PMID:26506346

  15. The Role of Autophagy in Lupus Nephritis

    PubMed Central

    Wang, Linlin; Law, Helen Ka Wai

    2015-01-01

    Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by the generation of immune responses to self-antigens. Lupus nephritis is one of the most common and severe complications in SLE patients. Though the pathogenesis of lupus nephritis has been studied extensively, unresolved questions are still left and new therapeutic methods are needed for disease control. Autophagy is a conserved catabolic process through which cytoplasmic constituents can be degraded in lysosome and reused. Autophagy plays vital roles in maintaining cell homeostasis and is involved in the pathogenesis of many diseases. In particular, autophagy can affect almost all parts of the immune system and is involved in autoimmune diseases. Based on genetic analysis, cell biology, and mechanism studies of the classic and innovative therapeutic drugs, there are growing lines of evidence suggesting the relationship between autophagy and lupus nephritis. In the present review, we summarize the recent publications investigating the relationship between autophagy and lupus nephritis and provide a new perspective towards the pathogenesis of lupus nephritis. PMID:26506346

  16. Cytokine Gene Polymorphisms and Human Autoimmune Disease in the Era of Genome-Wide Association Studies

    PubMed Central

    2012-01-01

    Cytokine (receptor) genes have traditionally attracted great interest as plausible genetic risk factors for autoimmune disease. Since 2007, the implementation of genome-wide association studies has facilitated the robust identification of allelic variants in more than 35 cytokine loci as susceptibility factors for a wide variety of over 15 autoimmune disorders. In this review, we catalog the gene loci of interleukin, chemokine, and tumor necrosis factor receptor superfamily and ligands that have emerged as autoimmune risk factors. We examine recent progress made in the clarification of the functional mechanisms by which polymorphisms in the genes coding for interleukin-2 receptor alpha (IL2RA), IL7R, and IL23R may alter risk for autoimmune disease, and discuss opposite autoimmune risk alleles found, among others, at the IL10 locus. PMID:22191464

  17. Use of Humanized Mice to Study the Pathogenesis of Autoimmune and Inflammatory Diseases

    PubMed Central

    Koboziev, Iurii; Jones-Hall, Yava; Valentine, John F.; Webb, Cynthia Reinoso; Furr, Kathryn L.; Grisham, Matthew B.

    2015-01-01

    Animal models of disease have been used extensively by the research community for the past several decades to better understand the pathogenesis of different diseases as well as assess the efficacy and toxicity of different therapeutic agents. Retrospective analyses of numerous preclinical intervention studies using mouse models of acute and chronic inflammatory diseases reveal a generalized failure to translate promising interventions or therapeutics into clinically-effective treatments in patients. Although several possible reasons have been suggested to account for this generalized failure to translate therapeutic efficacy from the laboratory bench to the patient’s bedside, it is becoming increasingly apparent that the mouse immune system may not adequately recapitulate the immuno-pathological mechanisms observed in human diseases. Indeed, it is well-known that >80 major differences exist between mouse and human immunology; all of which contribute to significant differences in immune system development, activation and responses to challenges in innate and adaptive immunity. This inconvenient reality has prompted investigators to attempt to humanize the mouse immune system in order to address important, human-specific questions that are impossible to study in patients. The successful long-term engraftment of human hemato-lymphoid cells in mice would provide investigators with a relatively inexpensive, small animal model to study clinically-relevant mechanisms as well as facilitate the evaluation of human-specific therapies in vivo. The discovery that targeted mutation of the IL-2 receptor common gamma chain in lymphopenic mice allows for the long-term engraftment of functional human immune cells has advanced greatly our ability to humanize the mouse immune system. The objective of this review is to present a brief overview of the recent advances that have been made in the development and use of humanized mice with special emphasis on autoimmune and chronic

  18. Alpha 1 Antitrypsin Inhibits Dendritic Cell Activation and Attenuates Nephritis in a Mouse Model of Lupus.

    PubMed

    Elshikha, Ahmed S; Lu, Yuanqing; Chen, Mong-Jen; Akbar, Mohammad; Zeumer, Leilani; Ritter, Andrea; Elghamry, Hanaa; Mahdi, Mahmoud A; Morel, Laurence; Song, Sihong

    2016-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder with a worldwide distribution and considerable mortality and morbidity. Although the pathogenesis of this disease remains elusive, over-reactive dendritic cells (DCs) play a critical role in the disease development. It has been shown that human alpha-1 antitrypsin (hAAT) has protective effects in type 1 diabetes and rheumatoid arthritis mouse models. In the present study, we tested the effect of AAT on DC differentiation and functions, as well as its protective effect in a lupus-prone mouse model. We showed that hAAT treatment significantly inhibited LPS (TLR4 agonist) and CpG (TLR9 agonist) -induced bone-marrow (BM)-derived conventional and plasmacytoid DC (cDC and pDC) activation and reduced the production of inflammatory cytokines including IFN-I, TNF-α and IL-1β. In MRL/lpr mice, hAAT treatment significantly reduced BM-derived DC differentiation, serum autoantibody levels, and importantly attenuated renal pathology. Our results for the first time demonstrate that hAAT inhibits DC activation and function, and it also attenuates autoimmunity and renal damage in the MRL/lpr lupus model. These results imply that hAAT has a therapeutic potential for the treatment of SLE in humans. PMID:27232337

  19. Alpha 1 Antitrypsin Inhibits Dendritic Cell Activation and Attenuates Nephritis in a Mouse Model of Lupus

    PubMed Central

    Elshikha, Ahmed S.; Lu, Yuanqing; Chen, Mong-Jen; Akbar, Mohammad; Zeumer, Leilani; Ritter, Andrea; Elghamry, Hanaa; Mahdi, Mahmoud A.; Morel, Laurence; Song, Sihong

    2016-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder with a worldwide distribution and considerable mortality and morbidity. Although the pathogenesis of this disease remains elusive, over-reactive dendritic cells (DCs) play a critical role in the disease development. It has been shown that human alpha-1 antitrypsin (hAAT) has protective effects in type 1 diabetes and rheumatoid arthritis mouse models. In the present study, we tested the effect of AAT on DC differentiation and functions, as well as its protective effect in a lupus-prone mouse model. We showed that hAAT treatment significantly inhibited LPS (TLR4 agonist) and CpG (TLR9 agonist) -induced bone-marrow (BM)-derived conventional and plasmacytoid DC (cDC and pDC) activation and reduced the production of inflammatory cytokines including IFN-I, TNF-α and IL-1β. In MRL/lpr mice, hAAT treatment significantly reduced BM-derived DC differentiation, serum autoantibody levels, and importantly attenuated renal pathology. Our results for the first time demonstrate that hAAT inhibits DC activation and function, and it also attenuates autoimmunity and renal damage in the MRL/lpr lupus model. These results imply that hAAT has a therapeutic potential for the treatment of SLE in humans. PMID:27232337

  20. [Diagnostics of autoimmune diseases].

    PubMed

    Beleznay, Zsuzsanna; Regenass, Stephan

    2008-09-01

    Autoantibodies play a key role in diagnostic laboratories as markers of autoimmune diseases. In addition to their role as markers they mediate diverse effects in vivo. Autoantibodies with protective effect have been described. Natural protective IgM autoantibodies against tumour-antigens of malignant cells or their precursors may contribute to increased survival rates of carcinoma patients. In a mouse model of systemic lupus erythematosus it has been shown that anti-dsDNA IgM autoantibodies protect from glomerular damage. In contrast, a direct pathogenic role of autoantibodies has been well established e.g. in myasthenia gravis or in Goodpasture syndrome. Similarly autoantibodies against SSA Ro52 are detrimental in neonatal lupus erythematosus with congenital heart block. Moreover, putatively protective autoantibodies may become pathogenic during the course of the disease such as the onconeuronal autoantibodies whose pathogenicity depends on their compartmentalisation. In patients with paraneoplastic syndromes tumour cells express proteins that are also naturally present in the brain. Anti-tumour autoantibodies which temporarily suppress tumour growth can provoke an autoimmune attack on neurons once having crossed the blood-brain barrier and cause specific neurological symptoms. Only a restricted number of autoantibodies are useful follow-up markers for the effectiveness of treatment in autoimmune diseases. Certain autoantibodies hold prognostic value and appear years or even decades before the diagnosis of disease such as the antimitochondrial antibodies in primary biliary cirrhosis or anti-citrullinated protein (CCP)-antibodies in rheumatoid arthritis. It is crucial to know whether the autoantibodies in question recognise linear or conformational epitopes in order to choose the appropriate detection methods. Indirect immunofluorescence microscopy remains a very useful tool for confirmation of results of commercially available immunoassays and for detection of

  1. MicroRNAs Implicated in the Immunopathogenesis of Lupus Nephritis

    PubMed Central

    Chafin, Cristen B.; Reilly, Christopher M.

    2013-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the deposition of immune complexes due to widespread loss of immune tolerance to nuclear self-antigens. Deposition in the renal glomeruli results in the development of lupus nephritis (LN), the leading cause of morbidity and mortality in SLE. In addition to the well-recognized genetic susceptibility to SLE, disease pathogenesis is influenced by epigenetic regulators such as microRNAs (miRNAs). miRNAs are small, noncoding RNAs that bind to the 3′ untranslated region of target mRNAs resulting in posttranscriptional gene modulation. miRNAs play an important and dynamic role in the activation of innate immune cells and are critical in regulating the adaptive immune response. Immune stimulation and the resulting cytokine milieu alter miRNA expression while miRNAs themselves modify cellular responses to stimulation. Here we examine dysregulated miRNAs implicated in LN pathogenesis from human SLE patients and murine lupus models. The effects of LN-associated miRNAs in the kidney, peripheral blood mononuclear cells, macrophages, mesangial cells, dendritic cells, and splenocytes are discussed. As the role of miRNAs in immunopathogenesis becomes delineated, it is likely that specific miRNAs may serve as targets for therapeutic intervention in the treatment of LN and other pathologies. PMID:23983769

  2. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    PubMed Central

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia

    2014-01-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  3. Role of neutrophils in systemic autoimmune diseases

    PubMed Central

    2013-01-01

    Neutrophils have emerged as important regulators of innate and adaptive immune responses. Recent evidence indicates that neutrophils display marked abnormalities in phenotype and function in various systemic autoimmune diseases, and may play a central role in initiation and perpetuation of aberrant immune responses and organ damage in these conditions. This review discusses the putative roles that neutrophils and aberrant neutrophil cell death play in the pathogenesis of various systemic autoimmune diseases, including systemic lupus erythematosus, small vessel vasculitis and rheumatoid arthritis. PMID:24286137

  4. Nonbilayer Phospholipid Arrangements Are Toll-Like Receptor-2/6 and TLR-4 Agonists and Trigger Inflammation in a Mouse Model Resembling Human Lupus

    PubMed Central

    Wong-Baeza, Carlos; Tescucano, Alonso; Astudillo, Horacio; Reséndiz, Albany; Landa, Carla; España, Luis; Serafín-López, Jeanet; Estrada-García, Iris; Estrada-Parra, Sergio; Flores-Romo, Leopoldo; Wong, Carlos; Baeza, Isabel

    2015-01-01

    Systemic lupus erythematosus is characterized by dysregulated activation of T and B cells and autoantibodies to nuclear antigens and, in some cases, lipid antigens. Liposomes with nonbilayer phospholipid arrangements induce a disease resembling human lupus in mice, including IgM and IgG antibodies against nonbilayer phospholipid arrangements. As the effect of these liposomes on the innate immune response is unknown and innate immune system activation is necessary for efficient antibody formation, we evaluated the effect of these liposomes on Toll-like receptor (TLR) signaling, cytokine production, proinflammatory gene expression, and T, NKT, dendritic, and B cells. Liposomes induce TLR-4- and, to a lesser extent, TLR-2/TLR-6-dependent signaling in TLR-expressing human embryonic kidney (HEK) cells and bone marrow-derived macrophages. Mice with the lupus-like disease had increased serum concentrations of proinflammatory cytokines, C3a and C5a; they also had more TLR-4-expressing splenocytes, a higher expression of genes associated with TRIF-dependent TLR-4-signaling and complement activation, and a lower expression of apoptosis-related genes, compared to healthy mice. The percentage of NKT and the percentage and activation of dendritic and B2 cells were also increased. Thus, TLR-4 and TLR-2/TLR-6 activation by nonbilayer phospholipid arrangements triggers an inflammatory response that could contribute to autoantibody production and the generation of a lupus-like disease in mice. PMID:26568960

  5. Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus.

    PubMed

    Dörner, Thomas; Kaufmann, Joerg; Wegener, William A; Teoh, Nick; Goldenberg, David M; Burmester, Gerd R

    2006-01-01

    B cells play an important role in the pathogenesis of systemic lupus erythematosus (SLE), so the safety and activity of anti-B cell immunotherapy with the humanized anti-CD22 antibody epratuzumab was evaluated in SLE patients. An open-label, single-center study of 14 patients with moderately active SLE (total British Isles Lupus Assessment Group (BILAG) score 6 to 12) was conducted. Patients received 360 mg/m2 epratuzumab intravenously every 2 weeks for 4 doses with analgesic/antihistamine premedication (but no steroids) prior to each dose. Evaluations at 6, 10, 18 and 32 weeks (6 months post-treatment) follow-up included safety, SLE activity (BILAG score), blood levels of epratuzumab, B and T cells, immunoglobulins, and human anti-epratuzumab antibody (HAHA) titers. Total BILAG scores decreased by > or = 50% in all 14 patients at some point during the study (including 77% with a > or = 50% decrease at 6 weeks), with 92% having decreases of various amounts continuing to at least 18 weeks (where 38% showed a >/= 50% decrease). Almost all patients (93%) experienced improvements in at least one BILAG B- or C-level disease activity at 6, 10 and 18 weeks. Additionally, 3 patients with multiple BILAG B involvement at baseline had completely resolved all B-level disease activities by 18 weeks. Epratuzumab was well tolerated, with a median infusion time of 32 minutes. Drug serum levels were measurable for at least 4 weeks post-treatment and detectable in most samples at 18 weeks. B cell levels decreased by an average of 35% at 18 weeks and remained depressed at 6 months post-treatment. Changes in routine safety laboratory tests were infrequent and without any consistent pattern, and there was no evidence of immunogenicity or significant changes in T cells, immunoglobulins, or autoantibody levels. In patients with mild to moderate active lupus, 360 mg/m2 epratuzumab was well tolerated, with evidence of clinical improvement after the first infusion and durable clinical

  6. Ranking the impact of human health disorders on gut metabolism: systemic lupus erythematosus and obesity as study cases.

    PubMed

    Rojo, David; Hevia, Arancha; Bargiela, Rafael; López, Patricia; Cuervo, Adriana; González, Sonia; Suárez, Ana; Sánchez, Borja; Martínez-Martínez, Mónica; Milani, Christian; Ventura, Marco; Barbas, Coral; Moya, Andrés; Suárez, Antonio; Margolles, Abelardo; Ferrer, Manuel

    2015-01-01

    Multiple factors have been shown to alter intestinal microbial diversity. It remains to be seen, however, how multiple collective pressures impact the activity in the gut environment and which, if any, is positioned as a dominant driving factor determining the final metabolic outcomes. Here, we describe the results of a metabolome-wide scan of gut microbiota in 18 subjects with systemic lupus erythematosus (SLE) and 17 healthy control subjects and demonstrate a statistically significant difference (p < 0.05) between the two groups. Healthy controls could be categorized (p < 0.05) based on their body mass index (BMI), whereas individuals with SLE could not. We discuss the prevalence of SLE compared with BMI as the dominant factor that regulates gastrointestinal microbial metabolism and provide plausible explanatory causes. Our results uncover novel perspectives with clinical relevance for human biology. In particular, we rank the importance of various pathophysiologies for gut homeostasis. PMID:25655524

  7. Neo-epitopes on methylglyoxal modified human serum albumin lead to aggressive autoimmune response in diabetes.

    PubMed

    Jyoti; Mir, Abdul Rouf; Habib, Safia; Siddiqui, Sheelu Shafiq; Ali, Asif; Moinuddin

    2016-05-01

    Glyco-oxidation of proteins has implications in the progression of diabetes type 2. Human serum albumin is prone to glyco-oxidative attack by sugars and methylglyoxal being a strong glycating agent may have severe impact on its structure and consequent role in diabetes. This study has probed the methylglyoxal mediated modifications of HSA, the alterations in its immunological characteristics and possible role in autoantibody induction. We observed an exposure of chromophoric groups, loss in the fluorescence intensity, generation of AGEs, formation of cross-linked products, decrease in α-helical content, increase in hydrophobic clusters, FTIR band shift, attachment of methylglyoxal to HSA and the formation of N(ε)-(carboxyethyl) lysine in the modified HSA, when compared to the native albumin. MG-HSA was found to be highly immunogenic with additional immunogenicity invoking a highly specific immune response than its native counterpart. The binding characteristics of circulating autoantibodies in type 2 diabetes mellitus (DM) patients showed the generation of anti-MG-HSA auto-antibodies in the these patients, that are preferentially recognized by the modified albumin. We propose that MG induced structural perturbations in HSA, result in the generation of neo-epitopes leading to an aggressive auto-immune response and may contribute to the immunopathogenesis of diabetes type 2 associated complications. PMID:26861824

  8. Effective Arrestin–Specific Immunotherapy of Experimental Autoimmune Uveitis with RTL: A Prospect for Treatment of Human Uveitis

    PubMed Central

    Kyger, Madison; Worley, Aneta; Huan, Jianya; McDowell, Hugh; Smith, W. Clay; Burrows, Gregory G.; Mattapallil, Mary J.; Caspi, Rachel R.; Adamus, Grazyna

    2013-01-01

    Purpose: To evaluate the immunotherapeutic efficacy of recombinant T cell receptor ligands (RTLs) specific for arrestin immunity in treatment of experimental autoimmune uveitis (EAU) in humanized leukocyte antigen (HLA-DR3) transgenic (Tg) mice. Methods: We generated de novo recombinant human DR3-derived RTLs bearing covalently tethered arrestin peptides 291–310 (RTL351) or 305–324 (RTL352). EAU was induced by immunization of HLA-DR3 mice with arrestin or arrestin peptide and treated with RTLs by subcutaneous delivery. T cell proliferation and cytokine expression was measured in RTL-treated and control mice. Results: RTL351 prevented the migration of cells outside of the spleen and the recruitment of inflammatory cells into the eye, and provided full protection against inflammation from EAU induced with arrestin or arrestin peptides. RTL351 significantly inhibited T cell proliferation and secretion of inflammatory cytokines interleukin 2 (IL-2), interferon γ (IFN-γ), IL-6, and IL-17 and chemokines (macrophage inflammatory proteins [MIP-1a] and regulated and normal T cell expressed and secreted [RANTES]), which is in agreement with the suppression of intraocular inflammation. RTL350 (“empty,” no peptide) and RTL352 were not effective. Conclusions: Immunotherapy with a single RTL351 successfully prevented and treated arrestin-induced EAU in HLA-DR3 mice and provided proof of concept for therapy of autoimmune uveitis in human patients. The beneficial effects of RTL351 should be attributed to a significant decrease in Th1/Th17 mediated inflammation. Translational Relevance: Successful therapies for autoimmune uveitis must specifically inhibit pathogenic inflammation without inducing generalized immunosuppression. RTLs can offer such an option. The single retina-specific RTLs may have a value as potential immunotherapeutic drug for human autoimmune uveitis because they effectively prevent disease induced by multiple T cell specificities. PMID:24049712

  9. Genetic basis of autoimmunity

    PubMed Central

    Marson, Alexander; Housley, William J.; Hafler, David A.

    2015-01-01

    Autoimmune diseases affect up to approximately 10% of the population. While rare Mendelian autoimmunity syndromes can result from monogenic mutations disrupting essential mechanisms of central and peripheral tolerance, more common human autoimmune diseases are complex disorders that arise from the interaction between polygenic risk factors and environmental factors. Although the risk attributable to most individual nucleotide variants is modest, genome-wide association studies (GWAS) have the potential to provide an unbiased view of biological pathways that drive human autoimmune diseases. Interpretation of GWAS requires integration of multiple genomic datasets including dense genotyping, cis-regulatory maps of primary immune cells, and genotyped studies of gene expression in relevant cell types and cellular conditions. Improved understanding of the genetic basis of autoimmunity may lead to a more sophisticated understanding of underlying cellular phenotypes and, eventually, novel diagnostics and targeted therapies. PMID:26030227

  10. [Hydroxychloroquine for autoimmune diseases].

    PubMed

    Danza, Álvaro; Graña, Diego; Goñi, Mabel; Vargas, Andrea; Ruiz-Irastorza, Guillermo

    2016-02-01

    Hydroxychloroquine (HCQ) is by far the most frequently used antimalarial for the management of Systemic Autoimmune Diseases. It has immunomodulatory, hypolipidemic, hypoglycemic and antithrombotic properties and it diminishes the risk of malignancies. The most important mechanisms to explain the immunomodulatory actions are its ability to reduce inflammatory pathways and Toll-like receptors activation. The safety profile is favorable. In spite of its low frequency, retinal toxicity is potentially severe. In systemic lupus erythematous HCQ therapy reduces activity, the accrual of organ damage, risk of infections and thrombosis and improves the cardiometabolic profile. It contributes to induce lupus nephritis remission, spares steroid use and increases survival rates. In rheumatoid arthritis, it improves cardiometabolic risk and has a favorable effect in joint inflammation. In Sjögren's syndrome, an increased lacrimal quality as well as an improvement in objective and subjective inflammatory markers has been demonstrated with HCQ. In Antiphospholipid Syndrome, HCQ is effective in primary and secondary thrombosis prevention. The effectiveness of the drug in other systemic autoimmune diseases is less established. HCQ therapy may improve dermatological manifestations in Dermatomyositis and may have a positive effects in the treatment of Sarcoidosis and Still disease. PMID:27092678

  11. Metals and kidney autoimmunity.

    PubMed Central

    Bigazzi, P E

    1999-01-01

    The causes of autoimmune responses leading to human kidney pathology remain unknown. However, environmental agents such as microorganisms and/or xenobiotics are good candidates for that role. Metals, either present in the environment or administered for therapeutic reasons, are prototypical xenobiotics that cause decreases or enhancements of immune responses. In particular, exposure to gold and mercury may result in autoimmune responses to various self-antigens as well as autoimmune disease of the kidney and other tissues. Gold compounds, currently used in the treatment of patients with progressive polyarticular rheumatoid arthritis, can cause a nephrotic syndrome. Similarly, an immune-mediated membranous nephropathy frequently occurred when drugs containing mercury were commonly used. Recent epidemiologic studies have shown that occupational exposure to mercury does not usually result in autoimmunity. However, mercury induces antinuclear antibodies, sclerodermalike disease, lichen planus, or membranous nephropathy in some individuals. Laboratory investigations have confirmed that the administration of gold or mercury to experimental animals leads to autoimmune disease quite similar to that observed in human subjects exposed to these metals. In addition, studies of inbred mice and rats have revealed that a few strains are susceptible to the autoimmune effects of gold and mercury, whereas the majority of inbred strains are resistant. These findings have emphasized the importance of genetic (immunogenetic and pharmacogenetic) factors in the induction of metal-associated autoimmunity. (italic)In vitro(/italic) and (italic)in vivo(/italic) research of autoimmune disease caused by mercury and gold has already yielded valuable information and answered a number of important questions. At the same time it has raised new issues about possible immunostimulatory or immunosuppressive mechanisms of xenobiotic activity. Thus it is evident that investigations of metal

  12. Transient Expression of Transgenic IL-12 in Mouse Liver Triggers Unremitting Inflammation Mimicking Human Autoimmune Hepatitis.

    PubMed

    Gil-Farina, Irene; Di Scala, Marianna; Salido, Eduardo; López-Franco, Esperanza; Rodríguez-García, Estefania; Blasi, Mercedes; Merino, Juana; Aldabe, Rafael; Prieto, Jesús; Gonzalez-Aseguinolaza, Gloria

    2016-09-15

    The etiopathogenesis of autoimmune hepatitis (AIH) remains poorly understood. In this study, we sought to develop an animal model of human AIH to gain insight into the immunological mechanisms driving this condition. C57BL/6 mice were i.v. injected with adeno-associated viral vectors encoding murine IL-12 or luciferase under the control of a liver-specific promoter. Organ histology, response to immunosuppressive therapy, and biochemical and immunological parameters, including Ag-specific humoral and cellular response, were analyzed. Mechanistic studies were carried out using genetically modified mice and depletion of lymphocyte subpopulations. Adeno-associated virus IL-12-treated mice developed histological, biochemical, and immunological changes resembling type 1 AIH, including marked and persistent liver mononuclear cell infiltration, hepatic fibrosis, hypergammaglobulinemia, anti-nuclear and anti-smooth muscle actin Abs, and disease remission with immunosuppressive drugs. Interestingly, transgenic IL-12 was short-lived, but endogenous IL-12 expression was induced, and both IL-12 and IFN-γ remained elevated during the entire study period. IFN-γ was identified as an essential mediator of liver damage, and CD4 and CD8 T cells but not NK, NKT, or B cells were essential executors of hepatic injury. Furthermore, both MHC class I and MHC class II expression was upregulated at the hepatocellular membrane, and induction of autoreactive liver-specific T cells was detected. Remarkably, although immunoregulatory mechanisms were activated, they only partially mitigated liver damage. Thus, low and transient expression of transgenic IL-12 in hepatocytes causes loss of tolerance to hepatocellular Ags, leading to chronic hepatitis resembling human AIH type 1. This model provides a practical tool to explore AIH pathogenesis and novel therapies. PMID:27511737

  13. Autoimmune disease-associated variants of extracellular endoplasmic reticulum aminopeptidase 1 induce altered innate immune responses by human immune cells

    PubMed Central

    Aldhamen, Yasser A.; Pepelyayeva, Yuliya; Rastall, David P.W.; Seregin, Sergey S.; Zervoudi, Efthalia; Koumantou, Despoina; Aylsworth, Charles F.; Quiroga, Dionisia; Godbehere, Sarah; Georgiadis, Dimitris; Stratikos, Efstratios; Amalfitano, Andrea

    2015-01-01

    ERAP1 gene polymorphisms have been linked to several autoimmune diseases; however, the molecular mechanisms underlying these associations are not well understood. Recently, we have demonstrated that ERAP1 regulates key aspects of the innate immune response. Moreover, previous studies show ERAP1 to be ER-localized and secreted during inflammation. Herein, we investigate the possible roles that ERAP1 polymorphic variants may have in modulating innate immune responses of human PBMCs using two experimental methods: extracellular exposure of hPBMCs to ERAP1 variants and adenovirus-based ERAP1 expression. We found that exposure of hPBMCs to ERAP1 variant proteins as well as ERAP1 overexpression by Ad vectors increased inflammatory cytokine and chemokine production, and enhanced immune cell activation. Investigating the molecular mechanisms behind these responses revealed that ERAP1 is able to activate innate immunity via multiple pathways, including the NLRP3 inflammasome. Importantly, these responses varied if autoimmune-disease-associated variants of ERAP1 were examined in the assay systems. Unexpectedly, blocking ERAP1 cellular internalization augmented IL-1β production. To our knowledge, this is the first report identifying ERAP1 as being involved in modulating innate responses of human immune cells, a finding that may explain why ERAP1 has been genetically associated with several autoimmune diseases. PMID:25591727

  14. Autoimmune disease-associated variants of extracellular endoplasmic reticulum aminopeptidase 1 induce altered innate immune responses by human immune cells.

    PubMed

    Aldhamen, Yasser A; Pepelyayeva, Yuliya; Rastall, David P W; Seregin, Sergey S; Zervoudi, Efthalia; Koumantou, Despoina; Aylsworth, Charles F; Quiroga, Dionisia; Godbehere, Sarah; Georgiadis, Dimitris; Stratikos, Efstratios; Amalfitano, Andrea

    2015-01-01

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) gene polymorphisms have been linked to several autoimmune diseases; however, the molecular mechanisms underlying these associations are not well understood. Recently, we demonstrated that ERAP1 regulates key aspects of the innate immune response. Previous studies show ERAP1 to be endoplasmic reticulum-localized and secreted during inflammation. Herein, we investigate the possible roles that ERAP1 polymorphic variants may have in modulating the innate immune responses of human peripheral blood mononuclear cells (hPBMCs) using two experimental methods: extracellular exposure of hPBMCs to ERAP1 variants and adenovirus (Ad)-based ERAP1 expression. We found that exposure of hPBMCs to ERAP1 variant proteins as well as ERAP1 overexpression by Ad5 vectors increased inflammatory cytokine and chemokine production, and enhanced immune cell activation. Investigating the molecular mechanisms behind these responses revealed that ERAP1 is able to activate innate immunity via multiple pathways, including the NLRP3 (NOD-like receptor, pyrin domain-containing 3) inflammasome. Importantly, these responses varied if autoimmune disease-associated variants of ERAP1 were examined in the assay systems. Unexpectedly, blocking ERAP1 cellular internalization augmented IL-1β production. To our knowledge, this is the first report identifying ERAP1 as being involved in modulating innate responses of human immune cells, a finding that may explain why ERAP1 has been genetically associated with several autoimmune diseases. PMID:25591727

  15. IL-10 regulates murine lupus.

    PubMed

    Yin, Zhinan; Bahtiyar, Gul; Zhang, Na; Liu, Lanzhen; Zhu, Ping; Robert, Marie E; McNiff, Jennifer; Madaio, Michael P; Craft, Joe

    2002-08-15

    MRL/MpJ-Tnfrsf6(lpr) (MRL/MpJ-Fas(lpr); MRL-Fas(lpr)) mice develop a spontaneous lupus syndrome closely resembling human systemic lupus erythematosus. To define the role of IL-10 in the regulation of murine lupus, IL-10 gene-deficient (IL-10(-/-)) MRL-Fas(lpr) (MRL-Fas(lpr) IL-10(-/-)) mice were generated and their disease phenotype was compared with littermates with one or two copies of an intact IL-10 locus (MRL-Fas(lpr) IL-10(+/-) and MRL-Fas(lpr) IL-10(+/+) mice, respectively). MRL-Fas(lpr) IL-10(-/-) mice developed severe lupus, with earlier appearance of skin lesions, increased lymphadenopathy, more severe glomerulonephritis, and higher mortality than their IL-10-intact littermate controls. The increased severity of lupus in MRL-Fas(lpr) IL-10(-/-) mice was closely associated with enhanced IFN-gamma production by both CD4(+) and CD8(+) cells and increased serum concentration of IgG2a anti-dsDNA autoantibodies. The protective effect of IL-10 in this lupus model was further supported by the observation that administration of rIL-10 reduced IgG2a anti-dsDNA autoantibody production in wild-type MRL-Fas(lpr) animals. In summary, our results provide evidence that IL-10 can down-modulate murine lupus through inhibition of pathogenic Th1 cytokine responses. Modulation of the level of IL-10 may be of potential therapeutic benefit for human lupus. PMID:12165544

  16. IL-17 promotes murine lupus.

    PubMed

    Amarilyo, Gil; Lourenço, Elaine V; Shi, Fu-Dong; La Cava, Antonio

    2014-07-15

    The proinflammatory activity of IL-17-producing Th17 cells has been associated with the pathogenesis of several autoimmune diseases. In this article, we provide direct evidence for a role of IL-17 in the pathogenesis of systemic lupus erythematosus (SLE). The induction of SLE by pristane in IL-17-sufficient wild-type mice did not occur in IL-17-deficient mice, which were protected from development of lupus autoantibodies and glomerulonephritis. The protection from SLE in IL-17-deficient mice was associated with a reduced frequency of CD3(+)CD4(-)CD8(-) double-negative T cells and an expansion of CD4(+) regulatory T cells, and did not depend on Stat-1 signaling. These data affirm the key role of IL-17 in the pathogenesis of SLE and strengthen the support for IL-17 blockade in the therapy of SLE. PMID:24920843

  17. Fatigue in systemic lupus erythematosus.

    PubMed

    Ahn, Grace E; Ramsey-Goldman, Rosalind

    2012-04-01

    Systemic lupus erythematosus is a chronic inflammatory autoimmune disease often characterized by fatigue, with significant effects on physical functioning and wellbeing. The definition, prevalence and factors associated with fatigue, including physical activity, obesity, sleep, depression, anxiety, mood, cognitive dysfunction, vitamin D deficiency/insufficiency, pain, effects of medications and comorbidities, as well as potential therapeutic options of fatigue in the systemic lupus erythematosus population are reviewed. Due to variability in the reliability and validity of various fatigue measures used in clinical studies, clinical trial data have been challenging to interpret. Further investigation into the relationships between these risk factors and fatigue, and improved measures of fatigue, may lead to an improvement in the management of this chronic inflammatory disease. PMID:22737181

  18. Recent Advances and Opportunities in Research on Lupus: Environmental Influences and Mechanisms of Disease

    PubMed Central

    Cooper, Glinda S.; Gilbert, Kathleen M.; Greidinger, Eric L.; James, Judith A.; Pfau, Jean C.; Reinlib, Leslie; Richardson, Bruce C.; Rose, Noel R.

    2008-01-01

    Objectives In this review we summarize research on mechanisms through which environmental agents may affect the pathogenesis of lupus, discuss three exposures that have been the focus of research in this area, and propose recommendations for new research initiatives. Data sources and synthesis We examined studies pertaining to key mechanistic events and specific exposures. Apoptosis leading to increased production or decreased clearance of immunogenic intracellular self-antigens and defective apoptosis of autoreactive immune cells both have been implicated in the loss of self-tolerance. The adjuvant or bystander effect is also needed to produce a sustained autoimmune response. Activation of toll-like receptors is one mechanism through which these effects may occur. Abnormal DNA methylation may also contribute to the pathogenesis of lupus. Each of the specific exposures we examined—Epstein-Barr virus, silica, and trichloroethylene—has been shown, in humans or in mice, to act upon one or more of these pathogenic steps. Specific recommendations for the continued advancement of our understanding of environmental influences on lupus and other autoimmune diseases include the development and use of mouse models with varying degrees of penetrance and manifestations of disease, identification of molecular or physiologic targets of specific exposures, development and use of improved exposure assessment methodologies, and multisite collaborations designed to examine understudied environmental exposures in humans. Conclusions The advances made in the past decade concerning our understanding of mechanisms involved in the development of lupus and the influence of environmental agents on this process provide a strong foundation for further developments in this field. PMID:18560522

  19. Systemic autoimmune disease induced by dendritic cells that have captured necrotic but not apoptotic cells in susceptible mouse strains.

    PubMed

    Ma, Liang; Chan, Kwok-Wah; Trendell-Smith, Nigel J; Wu, Adrian; Tian, Lina; Lam, Audrey C; Chan, Albert K; Lo, Chi-Kin; Chik, Stanley; Ko, King-Hung; To, Christina K W; Kam, Siu-Kee; Li, Xiao-Song; Yang, Cui-Hong; Leung, Suet Yi; Ng, Mun-Hon; Stott, David I; MacPherson, G Gordon; Huang, Fang-Ping

    2005-11-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder of a largely unknown etiology. Anti-double-stranded (ds) DNA antibodies are a classic hallmark of the disease, although the mechanism underlying their induction remains unclear. We demonstrate here that, in both lupus-prone and normal mouse strains, strong anti-dsDNA antibody responses can be induced by dendritic cells (DC) that have ingested syngeneic necrotic (DC/nec), but not apoptotic (DC/apo), cells. Clinical manifestations of lupus were evident, however, only in susceptible mouse strains, which correlate with the ability of DC/nec to release IFN-gamma and to induce the pathogenic IgG2a anti-dsDNA antibodies. Injection of DC/nec not only accelerated disease progression in the MRL/MpJ-lpr/lpr lupus-prone mice but also induced a lupus-like disease in the MRL/MpJ-+/+ wild-type control strain. Immune complex deposition was readily detectable in the kidneys, and the mice developed proteinuria. Strikingly, female MRL/MpJ-+/+ mice that had received DC/nec, but not DC/apo, developed a 'butterfly' facial lesion resembling a cardinal feature of human SLE. Our study therefore demonstrates that DC/nec inducing a Th1 type of responses, which are otherwise tightly regulated in a normal immune system, may play a pivotal role in SLE pathogenesis. PMID:16224814

  20. Autoimmune disorders

    MedlinePlus

    ... Multiple sclerosis Myasthenia gravis Pernicious anemia Reactive arthritis Rheumatoid arthritis Sjögren syndrome Systemic lupus erythematosus Type I diabetes Symptoms Symptoms will vary based on the type ...

  1. Comparative Effects of Human Neural Stem Cells and Oligodendrocyte Progenitor Cells on the Neurobehavioral Disorders of Experimental Autoimmune Encephalomyelitis Mice

    PubMed Central

    Bae, Dae-Kwon; Park, Dongsun; Lee, Sun Hee; Yang, Goeun; Kyung, Jangbeen; Kim, Dajeong; Shin, Kyungha; Choi, Ehn-Kyoung; Kim, Gonhyung; Hong, Jin Tae; Kim, Seung U.

    2016-01-01

    Since multiple sclerosis (MS) is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs) with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG-) induced experimental autoimmune encephalomyelitis (EAE) model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 106/mouse) were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP). The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF), and leukemia inhibitory factor (LIF). In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS. PMID:27429621

  2. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation

    PubMed Central

    Weindel, Chi G; Richey, Lauren J; Bolland, Silvia; Mehta, Abhiruchi J; Kearney, John F; Huber, Brigitte T

    2015-01-01

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, defined by loss of B cell self-tolerance that results in production of antinuclear antibodies (ANA) and chronic inflammation. While the initiating events in lupus development are not well defined, overexpression of the RNA-recognizing toll-like receptor (TLR)7 has been linked to SLE in humans and mice. We postulated that autophagy plays an essential role in TLR7 activation of B cells for the induction of SLE by delivering RNA ligands to the endosomes, where this innate immune receptor resides. To test this hypothesis, we compared SLE development in Tlr7 transgenic (Tg) mice with or without B cell-specific ablation of autophagy (Cd19-Cre Atg5f/f). We observed that in the absence of B cell autophagy the 2 hallmarks of SLE, ANA and inflammation, were eliminated, thus curing these mice of lupus. This was also evident in the significantly extended survival of the autophagy-deficient mice compared to Tlr7.1 Tg mice. Furthermore, glomerulonephritis was ameliorated, and the serum levels of inflammatory cytokines in the knockout (KO) mice were indistinguishable from those of control mice. These data provide direct evidence that B cells require TLR7-dependent priming through an autophagy-dependent mechanism before autoimmunity is induced, thereafter involving many cell types. Surprisingly, hyper-IgM production persisted in Tlr7.1 Tg mice in the absence of autophagy, likely involving a different activation pathway than the production of autoantibodies. Furthermore, these mice still presented with anemia, but responded with a striking increase in extramedullary hematopoiesis (EMH), possibly due to the absence of pro-inflammatory cytokines. PMID:26120731

  3. Belimumab in systemic lupus erythematosus

    PubMed Central

    Vilas-Boas, Andreia; Morais, Sandra A; Isenberg, David A

    2015-01-01

    Systemic lupus erythematosus (SLE) is one of the most challenging autoimmune disorders with a complex pathophysiology and diverse clinical presentation. Many drugs have been used to treat SLE with suboptimal results, especially in patients with moderate-to-severe disease. Belimumab is the first biological drug to be approved for the treatment of SLE in more than 50 years. This monoclonal antibody blocks B-cell activating factor, a cytokine important for B-cell differentiation and survival. In this review we focus on the activity of belimumab in patients with SLE and discuss the controversies of its use. PMID:26509047

  4. Contribution of Defective PS Recognition and Efferocytosis to Chronic Inflammation and Autoimmunity

    PubMed Central

    Kimani, Stanley Gititu; Geng, Ke; Kasikara, Canan; Kumar, Sushil; Sriram, Ganapathy; Wu, Yi; Birge, Raymond B.

    2014-01-01

    The rapid and efficient clearance of apoptotic cells results in the elimination of auto-antigens and provides a strong anti-inflammatory and immunosuppressive signal to prevent autoimmunity. While professional and non-professional phagocytes utilize a wide array of surface receptors to recognize apoptotic cells, the recognition of phosphatidylserine (PS) on apoptotic cells by PS receptors on phagocytes is the emblematic signal for efferocytosis in metazoans. PS-dependent efferocytosis is associated with the production of anti-inflammatory factors such as IL-10 and TGF-β that function, in part, to maintain tolerance to auto-antigens. In contrast, when apoptotic cells fail to be recognized and processed for degradation, auto-antigens persist, such as self-nucleic acids, which can trigger immune activation leading to autoantibody production and autoimmunity. Despite the fact that genetic mouse models clearly demonstrate that loss of PS receptors can lead to age-dependent auto-immune diseases reminiscent of systemic lupus erythematosus (SLE), the link between PS and defective clearance in chronic inflammation and human autoimmunity is not well delineated. In this perspective, we review emerging questions developing in the field that may be of relevance to SLE and human autoimmunity. PMID:25426118

  5. Protein tyrosine phosphatase SHP-1: resurgence as new drug target for human autoimmune disorders.

    PubMed

    Sharma, Yadhu; Bashir, Samina; Bhardwaj, Puja; Ahmad, Altaf; Khan, Farah

    2016-08-01

    Recognition of self-antigen and its destruction by the immune system is the hallmark of autoimmune diseases. During the developmental stages, immune cells are introduced to the self-antigen, for which tolerance develops. The inflammatory insults that break the immune tolerance provoke immune system against self-antigen, progressively leading to autoimmune diseases. SH2 domain containing protein tyrosine phosphatase (PTP), SHP-1, was identified as hematopoietic cell-specific PTP that regulates immune function from developing immune tolerance to mediating cell signaling post-immunoreceptor activation. The extensive research on SHP-1-deficient mice elucidated the diversified role of SHP-1 in immune regulation, and inflammatory process and related disorders such as cancer, autoimmunity, and neurodegenerative diseases. The present review focalizes upon the implication of SHP-1 in the pathogenesis of autoimmune disorders, such as allergic asthma, neutrophilic dermatosis, atopic dermatitis, rheumatoid arthritis, and multiple sclerosis, so as to lay the background in pursuance of developing therapeutic strategies targeting SHP-1. Also, new SHP-1 molecular targets have been suggested like SIRP-α, PIPKIγ, and RIP-1 that may prove to be the focal point for the development of therapeutic strategies. PMID:27216862

  6. Neuroimmunopathology in a murine model of neuropsychiatric lupus

    PubMed Central

    Ballok, David A.

    2008-01-01

    Animal models are extremely useful tools in defining pathogenesis and treatment of human disease. For many years researchers believed that structural damage to the brain of neuropsychiatric (NP) patients lead to abnormal mental function, but this possibility was not extensively explored until recently. Imaging studies of NP-systemic lupus erythematosus (SLE) support the notion that brain cell death accounts for the emergence of neurologic and psychiatric symptoms, and evidence suggests that it is an autoimmunity-induced brain disorder characterized by profound metabolic alterations and progressive neuronal loss. While there are a number of murine models of SLE, this article reviews recent literature on the immunological connections to neurodegeneration and behavioral dysfunction in the Fas-deficient MRL model of NP-SLE. Probable links between spontaneous peripheral immune activation, the subsequent central autoimmune/inflammatory responses in MRL/MpJ-Tnfrsf6lpr (MRL–lpr) mice and the sequential mode of events leading to Fas-independent neurodegenerative autoimmune-induced encephalitis will be reviewed. The role of hormones, alternative mechanisms of cell death, the impact of central dopaminergic degeneration on behavior, and germinal layer lesions on developmental/regenerative capacity of MRL–lpr brains will also be explored. This model can provide direction for future therapeutic interventions in patients with this complex neuroimmunological syndrome. PMID:17223198

  7. Human immunodeficiency virus infection and autoimmune hepatitis during highly active anti-retroviral treatment: a case report and review of the literature

    PubMed Central

    2011-01-01

    Introduction The emergence of hepatic injury in patients with human immunodeficiency virus infection during highly active therapy presents a diagnostic dilemma. It may represent treatment side effects or autoimmune disorders, such as autoimmune hepatitis, emerging during immune restoration. Case presentation We present the case of a 42-year-old African-American woman with human immunodeficiency virus infection who presented to our emergency department with severe abdominal pain and was found to have autoimmune hepatitis. A review of the literature revealed 12 reported cases of autoimmune hepatitis in adults with human immunodeficiency virus infection, only three of whom were diagnosed after highly active anti-retroviral treatment was initiated. All four cases (including our patient) were women, and one had a history of other autoimmune disorders. In our patient (the one patient case we are reporting), a liver biopsy revealed interface hepatitis, necrosis with lymphocytes and plasma cell infiltrates and variable degrees of fibrosis. All four cases required treatment with corticosteroids and/or other immune modulating agents and responded well. Conclusion Our review suggests that autoimmune hepatitis is a rare disorder which usually develops in women about six to eight months after commencing highly active anti-retroviral treatment during the recovery of CD4 lymphocytes. It represents either re-emergence of a pre-existing condition that was unrecognized or a de novo manifestation during immune reconstitution. PMID:21702972

  8. Meta-analysis of relationships between human offtake, total mortality and population dynamics of gray wolves (Canis lupus).

    PubMed

    Creel, Scott; Rotella, Jay J

    2010-01-01

    Following the growth and geographic expansion of wolf (Canis lupus) populations reintroduced to Yellowstone National Park and central Idaho in 1995-1996, Rocky Mountain wolves were removed from the endangered species list in May 2009. Idaho and Montana immediately established hunting seasons with quotas equaling 20% of the regional wolf population. Combining hunting with predator control, 37.1% of Montana and Idaho wolves were killed in the year of delisting. Hunting and predator control are well-established methods to broaden societal acceptance of large carnivores, but it is unprecedented for a species to move so rapidly from protection under the Endangered Species Act to heavy direct harvest, and it is important to use all available data to assess the likely consequences of these changes in policy. For wolves, it is widely argued that human offtake has little effect on total mortality rates, so that a harvest of 28-50% per year can be sustained. Using previously published data from 21 North American wolf populations, we related total annual mortality and population growth to annual human offtake. Contrary to current conventional wisdom, there was a strong association between human offtake and total mortality rates across North American wolf populations. Human offtake was associated with a strongly additive or super-additive increase in total mortality. Population growth declined as human offtake increased, even at low rates of offtake. Finally, wolf populations declined with harvests substantially lower than the thresholds identified in current state and federal policies. These results should help to inform management of Rocky Mountain wolves. PMID:20927363

  9. Meta-Analysis of Relationships between Human Offtake, Total Mortality and Population Dynamics of Gray Wolves (Canis lupus)

    PubMed Central

    Creel, Scott; Rotella, Jay J.

    2010-01-01

    Following the growth and geographic expansion of wolf (Canis lupus) populations reintroduced to Yellowstone National Park and central Idaho in 1995–1996, Rocky Mountain wolves were removed from the endangered species list in May 2009. Idaho and Montana immediately established hunting seasons with quotas equaling 20% of the regional wolf population. Combining hunting with predator control, 37.1% of Montana and Idaho wolves were killed in the year of delisting. Hunting and predator control are well-established methods to broaden societal acceptance of large carnivores, but it is unprecedented for a species to move so rapidly from protection under the Endangered Species Act to heavy direct harvest, and it is important to use all available data to assess the likely consequences of these changes in policy. For wolves, it is widely argued that human offtake has little effect on total mortality rates, so that a harvest of 28–50% per year can be sustained. Using previously published data from 21 North American wolf populations, we related total annual mortality and population growth to annual human offtake. Contrary to current conventional wisdom, there was a strong association between human offtake and total mortality rates across North American wolf populations. Human offtake was associated with a strongly additive or super-additive increase in total mortality. Population growth declined as human offtake increased, even at low rates of offtake. Finally, wolf populations declined with harvests substantially lower than the thresholds identified in current state and federal policies. These results should help to inform management of Rocky Mountain wolves. PMID:20927363

  10. Ultrastructural localization of DNA in immune deposits of human lupus nephritis.

    PubMed Central

    Malide, D.; Londoño, I.; Russo, P.; Bendayan, M.

    1993-01-01

    DNA molecules were revealed in the glomerular wall of lupus nephritis patients by applying two specific colloidal gold cytochemical approaches at the electron microscope level: immunocytochemistry using a monoclonal anti-DNA antibody in conjunction with protein A-gold and enzyme-gold cytochemistry using DNAse-gold complexes. Application of both techniques has demonstrated that DNA molecules are preferentially located over the electron-dense deposits found in the glomerular basement membrane and mesangial matrix of SLE patients, as well as over the nuclei. Their distribution within the glomerular wall was correlated with electron-dense immune deposits revealed by anti-light chain antibodies. In normal control kidney, DNA labeling was restricted to the cell nuclei. Several control experiments have demonstrated the high specificity of the results. These data thus suggest a possible role for DNA as an antigenic component in the formation of immune complexes. Images Figure 1 Figure 2 and 3 Figure 4 and 5 Figure 6 Figure 7 PMID:8317553

  11. Persistent scarring, atrophy, and dyspigmentation in a preteen girl with neonatal lupus erythematosus.

    PubMed

    High, Whitney A; Costner, Melissa I

    2003-04-01

    Neonatal lupus erythematosus is an uncommon autoimmune disease with distinctive cutaneous findings. Descriptions of chronic cutaneous sequelae are rare. We describe a 12-year-old girl with persistent dyspigmentation, scarring, and atrophy as a result of neonatal lupus occurring during infancy. PMID:12664034

  12. The Autoimmunity-Associated Gene CLEC16A Modulates Thymic Epithelial Cell Autophagy and Alters T Cell Selection.

    PubMed

    Schuster, Cornelia; Gerold, Kay D; Schober, Kilian; Probst, Lilli; Boerner, Kevin; Kim, Mi-Jeong; Ruckdeschel, Anna; Serwold, Thomas; Kissler, Stephan

    2015-05-19

    CLEC16A variation has been associated with multiple immune-mediated diseases, including type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, celiac disease, Crohn's disease, Addison's disease, primary biliary cirrhosis, rheumatoid arthritis, juvenile idiopathic arthritis, and alopecia areata. Despite strong genetic evidence implicating CLEC16A in autoimmunity, this gene's broad association with disease remains unexplained. We generated Clec16a knock-down (KD) mice in the nonobese diabetic (NOD) model for type 1 diabetes and found that Clec16a silencing protected against autoimmunity. Disease protection was attributable to T cell hyporeactivity, which was secondary to changes in thymic epithelial cell (TEC) stimuli that drive thymocyte selection. Our data indicate that T cell selection and reactivity were impacted by Clec16a variation in thymic epithelium owing to Clec16a's role in TEC autophagy. These findings provide a functional link between human CLEC16A variation and the immune dysregulation that underlies the risk of autoimmunity. PMID:25979422

  13. Plasmacytoid Dendritic Cell Activation and IFN-α Production Are Prominent Features of Murine Autoimmune Pancreatitis and Human IgG4-Related Autoimmune Pancreatitis.

    PubMed

    Arai, Yasuyuki; Yamashita, Kouhei; Kuriyama, Katsutoshi; Shiokawa, Masahiro; Kodama, Yuzo; Sakurai, Toshiharu; Mizugishi, Kiyomi; Uchida, Kazushige; Kadowaki, Norimitsu; Takaori-Kondo, Akifumi; Kudo, Masatoshi; Okazaki, Kazuichi; Strober, Warren; Chiba, Tsutomu; Watanabe, Tomohiro

    2015-10-01

    The abnormal immune response accompanying IgG4-related autoimmune pancreatitis (AIP) is presently unclear. In this study, we examined the role of plasmacytoid dendritic cell (pDC) activation and IFN-α production in this disease as well as in a murine model of AIP (MRL/Mp mice treated with polyinosinic-polycytidylic acid). We found that the development of AIP in treated MRL/Mp mice occurred in parallel with pancreatic accumulation of pDCs producing IFN-α, and with pDC depletion and IFN-α-blocking studies, we showed that such accumulation was necessary for AIP induction. In addition, we found that the pancreas of treated MRL/Mp mice contained neutrophil extracellular traps (NETs) shown previously to stimulate pDCs to produce IFN-α. Consistent with these findings, we found that patients with IgG4-related AIP also exhibited pancreatic tissue localization of IFN-α-expressing pDCs and had significantly higher serum IFN-α levels than healthy controls. In addition, the inflamed pancreas of these patients but not controls also contained NETs that were shown to be capable of pDC activation. More importantly, patient pDCs cultured in the presence of NETs produced greatly increased levels of IFN-α and induced control B cells to produce IgG4 (but not IgG1) as compared with control pDCs. These data suggest that pDC activation and production of IFN-α is a major cause of murine AIP; in addition, the increased pDC production of IFN-α and its relation to IgG4 production observed in IgG4-related AIP suggest that this mechanism also plays a role in the human disease. PMID:26297761

  14. Lupus erythematosus

    SciTech Connect

    Tuffanelli, D.L.

    1981-02-01

    Lupus erythematosus (LE) is a multisystem disease. Genetic predisposition, altered immunity, hormones, drugs, viruses, and ultraviolet light all may play a role in etiology. A wide range of cutaneous lesions occur, and variants such as subacute cutaneous LE, complement-deficient LE, and neonatal LE have recently been emphasized. Management of the LE patient, including appropriate diagnostic studies and therapy relevant to the dermatologist, is discussed in the review.

  15. Effective combination of human bone marrow mesenchymal stem cells and minocycline in experimental autoimmune encephalomyelitis mice

    PubMed Central

    2013-01-01

    Introduction Multiple sclerosis (MS) is the most common inflammatory demyelinating disorder of the central nervous system (CNS). Minocycline ameliorates the clinical severity of MS and exhibits antiinflammatory, neuroprotective activities, and good tolerance for long-term use, whereas it is toxic to the CNS. Recently, the immunomodulation and neuroprotection capabilities of human bone marrow mesenchymal stem cells (hBM-MSCs) were shown in experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated whether the combination of hBM-MSCs and a low-dose minocycline could produce beneficial effects in EAE mice. Methods The sensitivity of hBM-MSCs to minocycline was determined by an established cell-viability assay. Minocycline-treated hBM-MSCs were also characterized with flow cytometry by using MSC surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by using immunization with MOG35-55. Immunopathology assays were used to detect the inflammatory cells, demyelination, and neuroprotection. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct Th1 and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). terminal dUTP nick-end labeling (TUNEL) staining was performed to elucidate the cell apoptosis in the spinal cords of EAE mice. Results Minocycline did not affect the viability, surface phenotypes, or differentiation capacity of hBM-MSCs, while minocycline affected the viability of astrocytes at a high dose. In vivo efficacy experiments showed that combined treatment, compared to the use of minocycline or hBM-MSCs alone, resulted in a significant reduction in clinical scores, along with attenuation of inflammation, demyelination, and neurodegeneration. Moreover, the combined treatment with hBM-MSCs and minocycline enhanced the immunomodulatory effects, which suppressed proinflammatory

  16. Extracellular Vesicles as Biomarkers of Systemic Lupus Erythematosus

    PubMed Central

    Perez-Hernandez, Javier; Cortes, Raquel

    2015-01-01

    Systemic lupus erythematosus is an autoimmune disease that predominantly affects women and typically manifests in multiple organs. The damage caused by this disorder is characterized by a chronic inflammatory state. Extracellular vesicles (EVs), including microvesicles (also known as microparticles), apoptotic bodies, and exosomes, are recognized vehicles of intercellular communication, carrying autoantigens, cytokines, and surface receptors. Therefore, the evidence of EVs and their cargo as biomarkers of autoimmune disease is rapidly expanding. This review will focus on biogenesis of extracellular vesicles, their pathophysiological roles, and their potential as biomarkers and therapeutics in inflammatory disease, especially in systemic lupus erythematosus. PMID:26435565

  17. Systemic lupus erythematosus flare triggered by a spider bite.

    PubMed

    Martín Nares, Eduardo; López Iñiguez, Alvaro; Ontiveros Mercado, Heriberto

    2016-01-01

    Systemic lupus erythematosus is a chronic autoimmune disease with a relapsing and remitting course characterized by disease flares. Flares are a major cause of hospitalization, morbidity and mortality in patients with systemic lupus erythematosus. Some triggers for these exacerbations have been identified, including infections, vaccines, pregnancy, environmental factors such as weather, stress and drugs. We report a patient who presented with a lupus flare with predominantly mucocutaneous, serosal and cardiac involvement after being bitten by a spider and we present the possible mechanisms by which the venom elicited such a reaction. To the best of our knowledge, this is the first such case reported in the literature. PMID:26494589

  18. Cell-mediated Immunity to Human Tamm-Horsfall Glycoprotein in Autoimmune Liver Disease with Renal Tubular Acidosis

    PubMed Central

    Tsantoulas, D. C.; McFarlane, I. G.; Portmann, B.; Eddleston, A. L. W. F.; Williams, Roger

    1974-01-01

    Cell-mediated immune responses to Tamm-Horsfall glycoprotein isolated from human urine were investigated using the leucocyte migration test. Abnormal responses were found in 91% of patients with active chronic hepatitis or primary biliary cirrhosis with an associated renal tubular acidosis (R.T.A.) but in only 19% of those without R.T.A. In nearly all of a group of patients without autoimmune liver disease and in a control group of normal subjects results were within normal limits. In addition, using an immunofluorescent technique with rabbit antibody to human Tamm-Horsfall glycoprotein, it was possible to show the presence in human liver cell membrane of material reacting immunologically as Tamm-Horsfall. These findings suggest that the development of an immune response to this glycoprotein, initiated by release of cross-reacting antigens from damaged hepatocytes, could be the mechanism underlying the occurrence of R.T.A. in some patients with autoimmune liver disease. ImagesFIG. 3 PMID:4611578

  19. Antagonist-mediated down-regulation of toll-like receptors increases the prevalence of human papillomavirus infection in systemic lupus erythematosus

    PubMed Central

    2012-01-01

    Introduction Prevalence of an abnormal Papanicolaou smear was significantly increased in lupus patients in cross-sectional studies, associated with a higher prevalence of high-risk human papillomavirus (HPV) infection. The nucleic acid-specific Toll-like receptors (TLRs) locate at the endolysosomal compartments and trigger the induction of cytokines for the innate immune response. This study evaluated whether abnormal host innate immune response in lupus patients may enhance HPV persistence. Methods Protein levels of TLRs 3, 7, 8 and 9 in cervical epithelial cells of lupus patients and controls with or without HPV infection were assessed using flow cytometry. Characteristics associated with the differential expression of TLRs in systemic lupus erythematosus (SLE) were elucidated. The effect and interferon-stimulated genes (ISGs) (ISG15 and Mx-1) gene expressions were then measured in oncogenic HeLa (HPV18), CaSki (HPV) and C33A (HPV negative) cell lines using flow cytometry and quantitative real-time PCR. Ex vivo productions of cytokines and interferon-gamma (IFN-γ) upon TLR ligands stimulations were subsequently measured using cytometric bead array and ELISA. Results For subjects with HPV infection, levels of TLR3 and TLR7 were significantly lower in lupus patients compared with controls. Significantly decreased TLRs 7, 8 and 9 levels were observed in HPV-negative SLE compared to healthy controls. For SLE with and without HPV infection, TLR7 and 9 levels were significantly lower in infected SLE than those in HPV-negative patients. Independent explanatory variables associated with down-regulation of TLR7 level included HPV infection and a higher cumulative dose of prednisolone; while a higher cumulative dose of hydroxychloroquine and HPV infection were associated with down-regulation of TLR9 level. In cervical cell lines, TLRs 3, 7, 8, 9 protein levels and antiviral ISG15 and Mx-1 gene expressions were inhibited in two oncogenic HPV types. Functional data showed

  20. Induction of excessive B cell proliferation and differentiation by an in vitro stimulus in culture in human systemic lupus erythematosus.

    PubMed Central

    Suzuki, N; Sakane, T

    1989-01-01

    B cell hyperactivity present in the body in patients with systemic lupus erythematosus (SLE) can be detectable via almost any measure of B cell function. Nonetheless, the basis for the B cell hyperactivity is difficult to study in vitro. In this study, we have obtained the resting B cells from patients with entirely inactive SLE by collecting them sedimenting in a high density fraction on a Percoll density gradient. These resting SLE B cells proliferated in vitro at a higher rate than normal B cells when exposed to Staphylococcus aureus Cowan I (SAC). In addition, significant proliferation was observed earlier in the course of culture in SLE patients than in normal controls. Moreover, the SLE resting B cells, once triggered by SAC produced abnormally high numbers of immunoglobulin-secreting cells in response to T cell-derived soluble factors. There was less frequency of circulating Leu 1+ B cells in the SLE patients than in normal controls. Moreover, not only Leu 1+ B cells but also Leu 1- B cells of SLE patients were more responsive to SAC than those of normal controls. The results indicate that the B cell hyperactivity in human SLE can be induced by in vitro stimuli, and may not be limited to the Leu 1+ B cell subset. PMID:2646322

  1. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus

    PubMed Central

    Graham, Robert R.; Kyogoku, Chieko; Sigurdsson, Snaevar; Vlasova, Irina A.; Davies, Leela R. L.; Baechler, Emily C.; Plenge, Robert M.; Koeuth, Thearith; Ortmann, Ward A.; Hom, Geoffrey; Bauer, Jason W.; Gillett, Clarence; Burtt, Noel; Cunninghame Graham, Deborah S.; Onofrio, Robert; Petri, Michelle; Gunnarsson, Iva; Svenungsson, Elisabet; Rönnblom, Lars; Nordmark, Gunnel; Gregersen, Peter K.; Moser, Kathy; Gaffney, Patrick M.; Criswell, Lindsey A.; Vyse, Timothy J.; Syvänen, Ann-Christine; Bohjanen, Paul R.; Daly, Mark J.; Behrens, Timothy W.; Altshuler, David

    2007-01-01

    Systematic genome-wide studies to map genomic regions associated with human diseases are becoming more practical. Increasingly, efforts will be focused on the identification of the specific functional variants responsible for the disease. The challenges of identifying causal variants include the need for complete ascertainment of genetic variants and the need to consider the possibility of multiple causal alleles. We recently reported that risk of systemic lupus erythematosus (SLE) is strongly associated with a common SNP in IFN regulatory factor 5 (IRF5), and that this variant altered spicing in a way that might provide a functional explanation for the reproducible association to SLE risk. Here, by resequencing and genotyping in patients with SLE, we find evidence for three functional alleles of IRF5: the previously described exon 1B splice site variant, a 30-bp in-frame insertion/deletion variant of exon 6 that alters a proline-, glutamic acid-, serine- and threonine-rich domain region, and a variant in a conserved polyA+ signal sequence that alters the length of the 3′ UTR and stability of IRF5 mRNAs. Haplotypes of these three variants define at least three distinct levels of risk to SLE. Understanding how combinations of variants influence IRF5 function may offer etiological and therapeutic insights in SLE; more generally, IRF5 and SLE illustrates how multiple common variants of the same gene can together influence risk of common disease. PMID:17412832

  2. The Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human MicroRNA Pathway.

    PubMed

    Hasler, Daniele; Lehmann, Gerhard; Murakawa, Yasuhiro; Klironomos, Filippos; Jakob, Leonhard; Grässer, Friedrich A; Rajewsky, Nikolaus; Landthaler, Markus; Meister, Gunter

    2016-07-01

    The Lupus autoantigen La is an RNA-binding protein that stabilizes RNA polymerase III (Pol III) transcripts and supports RNA folding and has in addition been implicated in the mammalian microRNA (miRNA) pathway. Here, we have analyzed effects of La depletion on Argonaute (Ago)-bound small RNAs in human cells. We find that in the absence of La, distinct tRNA fragments are loaded into Ago proteins. Thus, La functions as gatekeeper ensuring correct tRNA maturation and protecting the miRNA pathway from potentially functional tRNA fragments. However, one specific isoleucin pre-tRNA produces both a functional tRNA and a miRNA even when La is present. We demonstrate that the fully complementary 5' leader and 3' trailer of the pre-tRNA-Ile form a double-stranded RNA molecule that has low affinity to La. Instead, Exportin-5 (Xpo5) recognizes it as miRNA precursor and transports it into the cytoplasm for Dicer processing and Ago loading. PMID:27345152

  3. 10% liquid human immunoglobulin (KIOVIG(®)) for immunomodulation in autoimmune disorders.

    PubMed

    Nikolov, Nikolai; Reisinger, Jürgen; Schwarz, Hans P

    2016-07-01

    Intravenous immunoglobulins have been used to treat autoimmune disorders (ADs) for over 50 years. The etiologies of various ADs are not fully understood and although intravenous immunoglobulin treatment has proved its immunomodulatory properties, the roles of proposed mechanisms of action also remain a matter of speculation. A systemic search of the literature regarding KIOVIG(®) (Baxalta US, Inc., MA, USA) use in clinical trials on patients with ADs and a detailed review of retrieved articles revealed eight relevant publications. These articles reported KIOVIG use in multifocal motor neuropathy, chronic inflammatory demyelinating polyneuropathy, idiopathic thrombocytopenic purpura, Kawasaki disease, Guillain-Barré syndrome and other autoimmune and neurologic disorders and showed that KIOVIG is an effective, safe and well-tolerated treatment in the studied populations. Nevertheless, further studies on larger patient cohorts are needed. PMID:27126341

  4. Human T lymphotropic virus type I in arthropathy and autoimmune disorders.

    PubMed

    Nishioka, K; Sumida, T; Hasunuma, T

    1996-08-01

    The progressive nature of the disease and the persistent inflammation affecting various organs are common features of idiopathic autoimmune disorders of unknown etiology. Therefore, the HTLV-I-associated disorders described in the present review are outstandingly important models for our understanding of the pathologic mechanisms of organ-specific immune disorders. HTLV-I arthropathy is characterized by chronic inflammatory and proliferative synovitis with lymphoid follicles and pannus formation in the affected joints, indistinguishable from the findings in idiopathic RA. The presence of the tax gene in HTLV-I-negative SS patients suggests that it is responsible for the exocrine gland abnormality, characterized by extensive lymphoproliferative epithelial lesions. Furthermore, the pulmonary lesions of HTLV-I bronchopneumonopathy are similar to those of idiopathic interstitial pneumonitis. Based on these observations, the clinical findings associated with the immunologic abnormalities in HTLV-I-infected patients provide us with valuable information for understanding the pathogenetic mechanisms of chronic inflammatory conditions associated with immune regulatory disorders. Although the clinical and pathologic features of the 2 common HTLV-I-associated disorders, ATL and HAM/TSP, have been well characterized and are clearly distinguishable from those of the idiopathic forms of these disorders, other HTLV-I-related autoimmune diseases, e.g., arthropathy, SS, or bronchopneumonopathy, are clinically indistinguishable from the idiopathic forms of the diseases. Such similarity may serve as a clue to the pathogenetic mechanisms of idiopathic autoimmune disorders. PMID:8702452

  5. Targeting FcγRs to treat antibody-dependent autoimmunity.

    PubMed

    Yu, Xiaojie; Lazarus, Alan H

    2016-06-01

    Self-reactive antibodies represent a significant force in autoimmune disease induction. In antibody-dependent autoimmune syndromes such as immune thrombocytopenia (ITP), systemic lupus erythematosus (SLE), myasthenia gravis and rheumatoid arthritis (RA), autoantibodies exert their inflammatory effect through FcγRs, a well-established class of cell surface receptors that interact with the Fc domain of IgG. Down-regulating FcγR functionality presents an attractive strategy to treat antibody-dependent autoimmune diseases. Various approaches, including nonspecific blocking of the IgG binding site as well as specific targeting using antagonistic monoclonal antibodies, have been explored to modulate the interaction between the Fc portion of IgG and FcγRs. The exquisite specificity and favorable pharmacokinetics of IgG make monoclonal antibodies a preferred choice. Indeed, the first antagonistic monoclonal antibody against the human FcγRIIIA had shown efficacy in refractory ITP patients; however, the practicality of using anti-FcγRIII antibody as a therapeutic was hindered by its associated adverse events, a phenomenon recapitulated in animal models. In this review, we discuss the role of FcγRs in autoimmune diseases, and focus on a novel monovalent approach to target FcγRs to resolve antibody-mediated autoimmunity. PMID:26854400

  6. Prevention of autoimmune demyelination in non-human primates by a cAMP-specific phosphodiesterase inhibitor.

    PubMed Central

    Genain, C P; Roberts, T; Davis, R L; Nguyen, M H; Uccelli, A; Faulds, D; Li, Y; Hedgpeth, J; Hauser, S L

    1995-01-01

    Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system that serves as a model for the human disease multiple sclerosis. We evaluated rolipram, a type IV phosphodiesterase inhibitor, for its efficacy in preventing EAE in the common marmoset Callithrix jacchus. In a blinded experimental design, clinical signs of EAE developed within 17 days of immunization with human white matter in two placebo-treated animals but in none of three monkeys that received rolipram (10 mg/kg s.c. every other day) beginning 1 week after immunization. In controls, signs of EAE were associated with development of cerebrospinal fluid pleocytosis and cerebral MRI abnormalities. In the treatment group, there was sustained protection from clinical EAE, transient cerebrospinal fluid pleocytosis in only one of three animals, no MRI abnormality, and marked reduction in histopathologic findings. Rolipram-treated and control animals equally developed circulating antibodies to myelin basic protein. Thus, inhibition of type IV phosphodiesterase, initiated after sensitization to central nervous system antigens, protected against autoimmune demyelinating disease. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7536938

  7. Autoimmune myelopathies.

    PubMed

    Flanagan, Eoin P

    2016-01-01

    Autoimmune myelopathies are a heterogeneous group of immune-mediated spinal cord disorders with a broad differential diagnosis. They encompass myelopathies with an immune attack on the spinal cord (e.g., aquaporin-4-IgG (AQP4-IgG) seropositive neuromyelitis optica (NMO) and its spectrum disorders (NMOSD)), myelopathies occurring with systemic autoimmune disorders (which may also be due to coexisting NMO/NMOSD), paraneoplastic autoimmune myelopathies, postinfectious autoimmune myelopathies (e.g., acute disseminated encephalomyelitis), and myelopathies thought to be immune-related (e.g., multiple sclerosis and spinal cord sarcoidosis). Spine magnetic resonance imaging is extremely useful in the evaluation of autoimmune myelopathies as the location of signal change, length of the lesion, gadolinium enhancement pattern, and evolution over time narrow the differential diagnosis considerably. The recent discovery of multiple novel neural-specific autoantibodies accompanying autoimmune myelopathies has improved their classification. These autoantibodies may be pathogenic (e.g., AQP4-IgG) or nonpathogenic and more reflective of a cytotoxic T-cell-mediated autoimmune response (collapsin response mediator protein-5(CRMP5)-IgG). The presence of an autoantibody may help guide cancer search, assist treatment decisions, and predict outcome/relapse. With paraneoplastic myelopathies the initial goal is detection and treatment of the underlying cancer. The aim of immunotherapy in all autoimmune myelopathies is to maximize reversibility, maintain benefits (while preventing relapse), and minimize side effects. PMID:27112686

  8. Induced murine models of systemic lupus erythematosus.

    PubMed

    Xu, Yuan; Zeumer, Leilani; Reeves, Westley H; Morel, Laurence

    2014-01-01

    Induced mouse models of systemic lupus erythematosus (SLE) have been developed to complement the spontaneous models. This chapter describes the methods used in the pristane-induced model and the chronic graft-versus-host disease (cGVHD) model, both of which have been extensively used. We will also outline the specific mechanisms of systemic autoimmunity that can be best characterized using each of these models. PMID:24497358

  9. Systemic Lupus Erythematosus in Children and Adolescents

    PubMed Central

    Levy, Deborah M.; Kamphuis, Sylvia

    2012-01-01

    Synopsis Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease that can involve any organ system with a wide range of disease manifestations, and can lead to significant morbidity and even mortality. This article reviews the epidemiology, common clinical features, complications of disease, and briefly discusses the available treatment options. In addition, important medical and psychosocial issues relevant to the pediatrician caring for children and adolescents with SLE are discussed. PMID:22560574

  10. Somatic mutations in the variable regions of a human IgG anti-double-stranded DNA autoantibody suggest a role for antigen in the induction of systemic lupus erythematosus.

    PubMed

    van Es, J H; Gmelig Meyling, F H; van de Akker, W R; Aanstoot, H; Derksen, R H; Logtenberg, T

    1991-02-01

    The processes that govern the generation of pathogenic anti-DNA autoantibodies in human systemic lupus erythematosus (SLE) are largely unknown. Autoantibodies may arise as a consequence of polyclonal B cell activation and/or antigen-driven B cell activation and selection. The role of these processes in humoral autoimmunity may be studied by molecular genetic analysis of immunoglobulin (Ig) variable (V) regions of antibodies that are characteristic of SLE. We have analyzed the gene elements that encode a high affinity, IgG anti-double-stranded DNA autoantibody secreted by a monoclonal Epstein-Barr virus (EBV)-transformed cell line derived from a patient with active SLE. In addition, we have identified, cloned, and sequenced the germline counterparts of the VH and VL genes expressed in this autoantibody. The comparison of both sets of gene elements shows that the autoantibody VH and VL regions harbor numerous somatic mutations characteristic of an antigen-driven immune response. The light chain expressed in this autoantibody is a somatically mutated variant of the kv325 germline gene that is frequently associated with paraproteins having autoantibody activity and with Ig molecules produced by malignant B cells that express the CD5 antigen. Furthermore, the utilized DH segment has been repeatedly found in multireactive, low affinity IgM anti-DNA autoantibodies from SLE patients and healthy individuals. These results suggest that pathogenic IgG anti-DNA autoantibodies in human SLE may arise through antigen-driven selection of somatic mutations in the gene elements that frequently encode multireactive IgM autoantibodies. PMID:1899104