Science.gov

Sample records for human malignant neuroblastoma

  1. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    SciTech Connect

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2012-08-01

    network formation ability of cells was significantly inhibited by survivin silencing and completely by combination of survivin silencing and EGCG treatment. Collectively, survivin silencing potentiated anti-cancer effects of EGCG in human malignant neuroblastoma cells having survivin overexpression. -- Highlights: Black-Right-Pointing-Pointer Survivin shRNA + EGCG controlled growth of human malignant neuroblastoma cells. Black-Right-Pointing-Pointer Survivin knockdown induced neuronal differentiation in neuroblastoma cells. Black-Right-Pointing-Pointer Survivin shRNA + EGCG induced morphological and biochemical features of apoptosis. Black-Right-Pointing-Pointer Combination therapy inhibited invasion, proliferation, and angiogenesis as well. Black-Right-Pointing-Pointer So, combination therapy showed multiple anti-cancer mechanisms in neuroblastoma.

  2. Symmetry breaking in human neuroblastoma cells.

    PubMed

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-01-01

    Asymmetric cell division (ACD) is a characteristic of cancer stem cells, which exhibit high malignant potential. However, the cellular mechanisms that regulate symmetric (self-renewal) and asymmetric cell divisions are mostly unknown. Using human neuroblastoma cells, we found that the oncosuppressor protein tripartite motif containing 32 (TRIM32) positively regulates ACD. PMID:27308367

  3. Symmetry breaking in human neuroblastoma cells

    PubMed Central

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-01-01

    Asymmetric cell division (ACD) is a characteristic of cancer stem cells, which exhibit high malignant potential. However, the cellular mechanisms that regulate symmetric (self-renewal) and asymmetric cell divisions are mostly unknown. Using human neuroblastoma cells, we found that the oncosuppressor protein tripartite motif containing 32 (TRIM32) positively regulates ACD. PMID:27308367

  4. Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes

    PubMed Central

    De Preter, Katleen; Vandesompele, Jo; Heimann, Pierre; Yigit, Nurten; Beckman, Siv; Schramm, Alexander; Eggert, Angelika; Stallings, Raymond L; Benoit, Yves; Renard, Marleen; Paepe, Anne De; Laureys, Geneviève; Påhlman, Sven; Speleman, Frank

    2006-01-01

    Background Neuroblastoma tumor cells are assumed to originate from primitive neuroblasts giving rise to the sympathetic nervous system. Because these precursor cells are not detectable in postnatal life, their transcription profile has remained inaccessible for comparative data mining strategies in neuroblastoma. This study provides the first genome-wide mRNA expression profile of these human fetal sympathetic neuroblasts. To this purpose, small islets of normal neuroblasts were isolated by laser microdissection from human fetal adrenal glands. Results Expression of catecholamine metabolism genes, and neuronal and neuroendocrine markers in the neuroblasts indicated that the proper cells were microdissected. The similarities in expression profile between normal neuroblasts and malignant neuroblastomas provided strong evidence for the neuroblast origin hypothesis of neuroblastoma. Next, supervised feature selection was used to identify the genes that are differentially expressed in normal neuroblasts versus neuroblastoma tumors. This approach efficiently sifted out genes previously reported in neuroblastoma expression profiling studies; most importantly, it also highlighted a series of genes and pathways previously not mentioned in neuroblastoma biology but that were assumed to be involved in neuroblastoma pathogenesis. Conclusion This unique dataset adds power to ongoing and future gene expression studies in neuroblastoma and will facilitate the identification of molecular targets for novel therapies. In addition, this neuroblast transcriptome resource could prove useful for the further study of human sympathoadrenal biogenesis. PMID:16989664

  5. Subsequent Malignant Neoplasms in Pediatric Patients Initially Diagnosed with Neuroblastoma

    PubMed Central

    Federico, Sara M.; Allewelt, Heather; Spunt, Sheri L.; Hudson, Melissa M.; Wu, Jianrong; Billups, Catherine A.; Jenkins, Jesse; Santana, Victor M.; Furman, Wayne L.; McGregor, Lisa M.

    2014-01-01

    Background Most prior studies evaluating subsequent malignant neoplasms (SMN) in patients with neuroblastoma are restricted to long-term survivors and/or their treatment exposures. This study investigates SMNs in patients diagnosed with neuroblastoma at our institution. Methods Records of 646 patients treated for neuroblastoma at St. Jude Children’s Research Hospital between 1961 and 2005 were reviewed. Data from patients with SMNs were analyzed and the 20-year and 30-year cumulative incidence of SMNs and standardized incidence ratio (SIR) were calculated. Results Twenty-one patients had a SMN. The 20- and 30-year cumulative incidences of a SMN were 2.6% ± 0.7% and 4.6% ± 1.1% respectively. The SIR was 8.3 (95% CI, 5.0–13.0). Five patients developed a SMN within 5 years from diagnosis. The median latency for the development of AML/MDS (n=4), sarcomas (n=7), and carcinomas (n=5) were 3.6 years, 9 years, and 24.2 years respectively. Nine patients died from their SMN, including all with AML/MDS. Conclusions Patients with neuroblastoma have an increased risk of secondary neoplasia. Modification of risk-adapted therapies will likely alter the affected patient population and the incidence of SMNs. Future studies are necessary to link SMNs to treatment exposures and to evaluate the risk of SMNs beyond 30 years from diagnosis. PMID:24633303

  6. HIV-1 propagates in human neuroblastoma cells.

    PubMed

    Shapshak, P; Sun, N C; Resnick, L; Thornthwaite, J T; Schiller, P; Yoshioka, M; Svenningsson, A; Tourtellotte, W W; Imagawa, D T

    1991-01-01

    A major question in the pathogenesis of AIDS encephalopathy and dementia is whether HIV-1 directly infects cells of the central nervous system (CNS). The propagation of HIV was attempted in six cell lines: three related and three unrelated to the nervous system. HIV was able to propagate in two human neuroblastoma cell lines and a lymphocytic cell line control but did not result in infections of African green monkey kidney cells, human cervix carcinoma cells, and one human brain astrocytoma cell line. Neuroblastoma cell lines infected with HIV showed peaks of reverse transcriptase activity at 10-14 days postinfection. After prolonged growth in cell cultures, one of the neuroblastoma cell lines showed multiphasic virus production, additional high peaks of reverse transcriptase activity, 20-fold greater than the first, lasting from 36 to 74 days and 110 to 140 days postinfection. The presence of HIV was confirmed by p24 antigen capture. The neuroblastoma cell lines had weak but detectable levels of CD4 immunoreactivity by immunoperoxidase and flow immunocytometric analysis. Although no T4-specific RNA sequences were detected by hybridization of Northern blots of total and poly A-selected RNA extracted from the two neuroblastoma cell lines by using a T4 specific complimentary DNA probe, monoclonal antibodies to the CD4 receptor blocked HIV infection in both neuroblastoma cell lines. Thus, the infection of neuroblastoma cells by HIV occurs in part by a CD4-dependent mechanism. Passaging the neuroblastoma cell lines weekly and bimonthly resulted in similar cell cycle-DNA content patterns for the more permissive cell line and with significant numbers of cells in the S phase. HIV-infected neuroblastoma cell lines provide an in vitro model for the evaluation of virus-host cell interactions and may be useful in addressing the issue of the persistence of HIV in the human CNS. PMID:1704060

  7. Neuroblastoma

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Neuroblastoma KidsHealth > For Parents > Neuroblastoma Print A A A ... infancy, the chance of recovery is good. About Neuroblastoma Neuroblastoma is a rare disease in which a ...

  8. Neuroblastoma

    PubMed Central

    Hoover, Eddie L.; Hsu, Hwei-Kang; Dressler, Carolyn; Fani, Kazim; Webb, Hueldine; Ketosugbo, Anukware; Kharma, Bassam

    1988-01-01

    Mediastinal neuroblastomas, which are common malignancies of childhood, are extremely rare in adults. This article presents a case of mediastinal neuroblastoma in a 57-year-old man. To the authors' knowledge, this is only the second recorded case of such a tumor in an adult. The patient's clinical course is described and is compared with other cases (in children, except for one instance) cited in the literature. The authors discuss the early diagnosis and surgical management of these uncommon lesions, which tend to be quite extensive and rapidly fatal, and which should be suspected in adults who present with a mediastinal mass. (Texas Heart Institute Journal 1988;15:107-112) Images PMID:15227261

  9. Nordihydroguaiaretic Acid Inhibits Insulin-Like Growth Factor Signaling, Growth, and Survival in Human Neuroblastoma Cells

    PubMed Central

    Meyer, Gary E.; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A.; Goldenberg, David D.; Youngren, Jack F.; Goldfine, Ira D.; Weiss, William A.; Matthay, Katherine K.; Rosenthal, Stephen M.

    2010-01-01

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  10. Neuroblastoma

    MedlinePlus

    Neuroblastoma is a very rare type of cancerous tumor that develops from nerve tissue. It usually occurs ... Neuroblastoma can occur in many areas of the body. It develops from the tissues that form the ...

  11. A Malignant Transformation of a Spinal Epidural Mass from Ganglioneuroblastoma to Neuroblastoma

    PubMed Central

    Bilgic, Bilge; Aras, Yavuz; Izgi, Nail

    2015-01-01

    Ganglioneuromas are benign tumors. Surgical excision is the treatment of choice with very good prognosis. However, neuroblastomatous malignant transformation of ganglioneuromas was previously reported. We report a patient with spinal neuroblastoma recurrent from a ganglioneuroblastoma after disease free survival of 13 years. This is one of the rare examples of spinal neuroblastoma and to our knowledge the second case report with malignant transformation from a ganglioneuroblastoma or a ganglioneuroma. The present case is the only report in the literature with further genetic investigations. PMID:25810863

  12. Impact of persistent cytomegalovirus infection on human neuroblastoma cell gene expression.

    PubMed

    Hoever, Gerold; Vogel, Jens-Uwe; Lukashenko, Polina; Hofmann, Wolf-Karsten; Komor, Martina; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2005-01-14

    In a model of human neuroblastoma (NB) cell lines persistently infected with human cytomegalovirus (HCMV) we previously showed that persistent HCMV infection is associated with an increased malignant phenotype, enhanced drug resistance, and invasive properties. To gain insights into the mechanisms of increased malignancy we analyzed the global changes in cellular gene expression induced by persistent HCMV infection of human neuroblastoma cells by use of high-density oligonucleotide microarrays (HG-U133A, Affymetrix) and RT-PCR. Comparing the gene expression of different NB cell lines with persistently infected cell sub-lines revealed 11 host cell genes regulated in a similar manner throughout all infected samples. Nine of these 11 genes may contribute to the previously observed changes in malignant phenotype of persistently HCMV infected NB cells by influencing invasive growth, apoptosis, angiogenesis, and proliferation. Thus, this work provides the basis for further functional studies. PMID:15582591

  13. Hyaluronan in human malignancies

    SciTech Connect

    Sironen, R.K.; Tammi, M.; Tammi, R.; Auvinen, P.K.; Anttila, M.; Kosma, V-M.

    2011-02-15

    Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma-cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial-mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.

  14. Second Malignancies in Patients with Neuroblastoma: The Effects of Risk-Based Therapy

    PubMed Central

    Applebaum, Mark A.; Henderson, Tara O.; Lee, Sang Mee; Pinto, Navin; Volchenboum, Samuel L.; Cohn, Susan L.

    2014-01-01

    Background To investigate the incidence of second malignant neoplasms (SMN) for patients with neuroblastoma, we analyzed patients from the SEER database according to three treatment eras (1: 1973–1989, 2: 1990–1996, 3: 1997–2006) corresponding to the introduction of multi-agent chemotherapy, risk-based treatment, and stem cell transplant. Procedure The SEER database was mined for all patients with neuroblastoma or ganglioneuroblastoma. Cumulative incidence of SMN was calculated with death as a competing risk. A poisson regression model was used to estimate incidence rate ratios and 95% confidence intervals to compare the rates of SMN between patients in different Eras. Results The analytic cohort included 2,801 patients. Thirty-four patients developed a SMN, accounting for 1.2% of all patients. Of the patients who developed a SMN, 47.1% received radiation for their primary neuroblastoma. Fourteen of the SMN were carcinomas, and 10 were hematologic malignancies, with 6 cases of acute myelogenous leukemia. There was no difference in the incidence of SMN in Era 1 compared to Era 3 (p=0.48). The cumulative incidence of SMN at 30 years for high-risk patients was 10.44% (95% CI 3.98–20.52%) compared to 3.57% (95% CI 1.87–6.12%) for non-high-risk patients (p<0.001). Conclusions This study showed no increase in the incidence of SMNs for children treated in the most recent treatment era as compared to earlier Eras. However, as the risk for developing SMN does not plateau, the number of SMNs will likely continue to rise in the cohort of patients treated after 1996. Comprehensive follow-up care for these survivors will be important. PMID:25251613

  15. Acetaminophen Induces Human Neuroblastoma Cell Death through NFKB Activation

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Ceña, Valentín

    2012-01-01

    Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β. PMID:23166834

  16. Of mice and men: olfactory neuroblastoma among animals and humans.

    PubMed

    Lubojemska, A; Borejko, M; Czapiewski, P; Dziadziuszko, R; Biernat, W

    2016-09-01

    Olfactory neuroblastoma (ONB) is a rare tumour of nasal cavity and paranasal sinuses that arises from the olfactory neuroepithelium and has unpredictable clinical course. As the sense of smell is phylogenetically one of the first senses and olfactory neuroepithelium is evolutionary conserved with striking similarities among different species, we performed an extensive analysis of the literature in order to evaluate the similarities and differences between animals and humans on the clinical, morphological, immunohistochemical, ultrastructural and molecular level. Our analysis revealed that ONB was reported mainly in mammals and showed striking similarities to human ONB. These observations provide rationale for introduction of therapy modalities used in humans into the veterinary medicine. Animal models of neuroblastoma should be considered for the preclinical studies evaluating novel therapies for ONB. PMID:25041470

  17. GALNT2 suppresses malignant phenotypes through IGF-1 receptor and predicts favorable prognosis in neuroblastoma

    PubMed Central

    Jeng, Yung-Ming; Lu, Meng-Yao; Yang, Yung-Li; Jou, Shiann-Tarng; Lin, Dong-Tsamn; Chang, Hsiu-Hao; Lin, Kai-Hsin; Hsu, Wen-Ming; Huang, Min-Chuan

    2014-01-01

    Aberrant expression of the simple mucin-type carbohydrate antigens such as Tn antigen is associated with malignant transformation and cancer progression. N-acetylgalactosaminyltransferase 2 (GALNT2), one of the enzymes that mediate the initial step of mucin-type O-glycosylation, is responsible for forming Tn antigen. GALNT2 is expressed differentially in nervous tissues during mouse embryogenesis; however, the role of GALNT2 in neuroblastoma (NB) remains unclear. Here we showed that increased GALNT2 expression evaluated using immunohistochemistry in NB tumor tissues correlated well with the histological grade of differentiation as well as younger age at diagnosis, early clinical stage, primary tumor originated from the extra-adrenal site, favorable INPC histology, and MYCN non-amplification. Multivariate analysis showed that GALNT2 expression is an independent prognostic factor for better survival for NB patients. GALNT2 overexpression suppressed IGF-1-induced cell growth, migration, and invasion of NB cells, whereas GALNT2 knockdown enhanced these NB phenotypes. Mechanistic investigations demonstrated that GALNT2 overexpression modified O-glycans on IGF-1R, which suppressed IGF-1-triggered IGF-1R dimerization and subsequent downstream signaling events. Conversely, these properties were reversed by GALNT2 knockdown in NB cells. Our findings suggest that GALNT2 regulates malignant phenotypes of NB cells through the IGF-1R signaling pathway, suggesting a critical role for GALNT2 in the pathogenesis of NB. PMID:25362349

  18. GALNT2 suppresses malignant phenotypes through IGF-1 receptor and predicts favorable prognosis in neuroblastoma.

    PubMed

    Ho, Wan-Ling; Chou, Chih-Hsing; Jeng, Yung-Ming; Lu, Meng-Yao; Yang, Yung-Li; Jou, Shiann-Tarng; Lin, Dong-Tsamn; Chang, Hsiu-Hao; Lin, Kai-Hsin; Hsu, Wen-Ming; Huang, Min-Chuan

    2014-12-15

    Aberrant expression of the simple mucin-type carbohydrate antigens such as Tn antigen is associated with malignant transformation and cancer progression. N-acetylgalactosaminyltransferase 2 (GALNT2), one of the enzymes that mediate the initial step of mucin-type O-glycosylation, is responsible for forming Tn antigen. GALNT2 is expressed differentially in nervous tissues during mouse embryogenesis; however, the role of GALNT2 in neuroblastoma (NB) remains unclear. Here we showed that increased GALNT2 expression evaluated using immunohistochemistry in NB tumor tissues correlated well with the histological grade of differentiation as well as younger age at diagnosis, early clinical stage, primary tumor originated from the extra-adrenal site, favorable INPC histology, and MYCN non-amplification. Multivariate analysis showed that GALNT2 expression is an independent prognostic factor for better survival for NB patients. GALNT2 overexpression suppressed IGF-1-induced cell growth, migration, and invasion of NB cells, whereas GALNT2 knockdown enhanced these NB phenotypes. Mechanistic investigations demonstrated that GALNT2 overexpression modified O-glycans on IGF-1R, which suppressed IGF-1-triggered IGF-1R dimerization and subsequent downstream signaling events. Conversely, these properties were reversed by GALNT2 knockdown in NB cells. Our findings suggest that GALNT2 regulates malignant phenotypes of NB cells through the IGF-1R signaling pathway, suggesting a critical role for GALNT2 in the pathogenesis of NB. PMID:25362349

  19. Synergistic efficacy of sorafenib and genistein in growth inhibition by down regulating angiogenic and survival factors and increasing apoptosis through upregulation of p53 and p21 in malignant neuroblastoma cells having N-Myc amplification or non-amplification.

    PubMed

    Roy Choudhury, Subhasree; Karmakar, Surajit; Banik, Naren L; Ray, Swapan K

    2010-12-01

    Neuroblastoma is an extracranial, solid, and heterogeneous malignancy in children. The conventional therapeutic modalities are mostly ineffective and thus new therapeutic strategies for malignant neuroblastoma are urgently warranted. We examined the synergistic efficacy of combination of sorafenib (SF) and genistein (GST) in human malignant neuroblastoma SK-N-DZ (N-Myc amplified) and SH-SY5Y (N-Myc non-amplified) cell lines. MTT assay showed dose-dependent decrease in cell viability and the combination therapy more prominently inhibited the cell proliferation in both cell lines than either treatment alone. Apoptosis was confirmed morphologically by Wright staining. Flow cytometric analysis of cell cycle phase distribution and Annexin V-FITC/PI staining showed increase in subG1 DNA content and early apoptosis, respectively, after treatment with the combination of drugs. Apoptosis was further confirmed by scanning electron microscopy. Combination therapy showed activation of caspase-8, cleavage of Bid to tBid, increase in p53 and p21 expression, down regulation of anti-apoptotic Mcl-1, and increase in Bax:Bcl-2 ratio to trigger apoptosis. Down regulation of MDR, hTERT, N-Myc, VEGF, FGF-2, NF-κB, p-Akt, and c-IAP2 indicated suppression of angiogenic and survival pathways. Mitochondrial release of cytochrome c and Smac into cytosol indicated involvement of mitochondia in apoptosis. Increases in proteolytic activities of calpain and caspase-3 were also confirmed. Our results suggested that combination of SF and GST inhibited angiogenic and survival factors and increased apoptosis via receptor and mitochondria mediated pathways in both neuroblastoma SK-N-DZ and SH-SY5Y cell lines. Thus, this combination of drugs could be a potential therapeutic strategy against human malignant neuroblastoma cells having N-Myc amplification or non-amplification. PMID:19777160

  20. The effect of explosive blast loading on human neuroblastoma cells.

    PubMed

    Zander, Nicole E; Piehler, Thuvan; Banton, Rohan; Boggs, Mary

    2016-07-01

    Diagnosis of mild to moderate traumatic brain injury is challenging because brain tissue damage progresses slowly and is not readily detectable by conventional imaging techniques. We have developed a novel in vitro model to study primary blast loading on dissociated neurons using nitroamine explosives such as those used on the battlefield. Human neuroblastoma cells were exposed to single and triple 50-psi explosive blasts and single 100-psi blasts. Changes in membrane permeability and oxidative stress showed a significant increase for the single and triple 100-psi blast conditions compared with single 50-psi blast and controls. PMID:27033003

  1. Identification of nuclear. tau. isoforms in human neuroblastoma cells

    SciTech Connect

    Loomis, P.A.; Howard, T.H.; Castleberry, R.P.; Binder, L.I. )

    1990-11-01

    The {tau} proteins have been reported only in association with microtubules and with ribosomes in situ, in the normal central nervous system. In addition, {tau} has been shown to be an integral component of paired helical filaments, the principal constituent of the neurofibrillary tangles found in brains of patients with Alzheimer's disease and of most aged individuals with Down syndrome (trisomy 21). The authors report here the localization of the well-characterized Tau-1 monoclonal antibody to the nucleolar organizer regions of the acrocentric chromosomes and to their interphase counterpart, the fibrillar component of the nucleolus, in human neuroblastoma cells. Similar localization to the nucleolar organizer regions was also observed in other human cell lines and in one monkey kidney cell line but was not seen in non-primate species. Immunochemically, they further demonstrated the existence of the entire {tau} molecule in the isolated nuclei of neuroblastoma cells. Nuclear {tau} proteins, like the {tau} proteins of the paired helical filaments, cannot be extracted in standard SDS-containing electrophoresis sample buffer but require pretreatment with formic acid prior to immunoblot analysis. This work indicates that {tau} may function in processes not directly associated with microtubules and that highly insoluble complexes of {tau} may also play a role in normal cellular physiology.

  2. Morphologic and phenotypic changes of human neuroblastoma cells in culture induced by cytosine arabinoside

    SciTech Connect

    Ponzoni, M.; Lanciotti, M.; Melodia, A.; Casalaro, A.; Cornaglia-Ferraris, P. )

    1989-03-01

    The effects of cytosine-arabinoside (ARA-C) on the growth and phenotypic expression of a new human neuroblastoma (NB) cell line (GI-ME-N) have been extensively tested. Low doses of ARA-C allowing more than 90% cell viability induce morphological differentiation and growth inhibition. Differentiated cells were larger and flattened with elongated dendritic processes; such cells appeared within 48 hours after a dose of ARA-C as low as 0.1 {mu}g/ml. The new morphological aspect reached the maximum expression after 5-6 days of culture being independent from the addition of extra drug to the culture. A decrease in ({sup 3}H)thymidine incorporation was also observed within 24 hours and the cell growth was completely inhibited on the sixth day. Moreover, ARA-C strongly inhibited anchorage-independent growth in soft agar assay. Membrane immunofluorescence showed several dramatic changes in NB-specific antigen expression after 5 days of treatment with ARA-C. At the same time ARA-C also modulated cytoskeletal proteins and slightly increased catecholamine expression. These findings suggest that noncytotoxic doses of ARA-C do promote the differentiation of GI-ME-N neuroblastoma cells associated with reduced expression of the malignant phenotype.

  3. TLR3 triggering regulates PD-L1 (CD274) expression in human neuroblastoma cells.

    PubMed

    Boes, Marianne; Meyer-Wentrup, Friederike

    2015-05-28

    Neuroblastoma is the most common extracranial solid tumor in children, causing 12% of all pediatric cancer mortality. Neuroblastoma specific T-cells have been detected in patients, but usually fail to attack and eradicate the tumors. Tumor immune evasion may thus play an important role in neuroblastoma pathogenicity. Recent research in adult cancer patients shows that targeting T-cell check-point molecules PD-1/PD-L1 (or CD279/CD274) may bolster immune reactivity against solid tumors. Also, infections can be associated with spontaneous neuroblastoma regression. In our current study, we therefore investigated if antibody targeting of PD-L1 and triggering of selective pathogen-receptor Toll-like receptors (TLRs) potentiates immunogenicity of neuroblastoma cells. We find this to be the case. TLR3 triggering induced strong upregulation of both MHC class I and PD-L1 on neuroblastoma cells. At the same time TGF-β levels decreased and IL-8 secretion was induced. The combined neuroblastoma cell treatment using PD-L1 blockade and TLR3 triggering using virus analog poly(I:C) moreover induced CD4(+) and CD8(+) T-cell activation. Thus, we propose combined treatment using PD-L1 blockade with synthetic TLR ligands as an avenue toward new immunotherapy against human neuroblastoma. PMID:25697485

  4. Tryptanthrin induces growth inhibition and neuronal differentiation in the human neuroblastoma LA-N-1 cells.

    PubMed

    Liao, Xuemei; Leung, Kwok Nam

    2013-04-25

    Neuroblastoma is one of the most common extracranial solid cancers found in young children. The prognosis of neuroblastoma patients in advanced stages having N-myc amplification remains poor despite intensive multimodal therapy. Agents that trigger neuroblastoma cells to undergo cellular differentiation and thereby stop proliferation have attracted considerable interest as an alternative therapy. Tryptanthrin (12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline) is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants known as Banlangen. It has been shown to possess various biological activities, such as anti-microbial, anti-inflammatory and anti-tumor activities. However, its effects and mechanism(s) of action on human neuroblastoma cells remain poorly understood. Therefore, the objective of this study is to investigate the effects of tryptanthrin on the growth and differentiation of human neuroblastoma LA-N-1 cells with N-myc amplification. Our results show that tryptanthrin inhibited the growth of the human neuroblastoma cells in a dose- and time-dependent manner. Mechanistic studies indicated that tryptanthrin induced cell cycle arrest of the human neuroblastoma LA-N-1 cells at the G0/G1 phase. Tryptanthrin also induced neuronal differentiation of LA-N-1 cells, as assessed by morphological criteria, enhancement of acetylcholine esterase activity and up-regulation of various differentiation markers. Moreover, tryptanthrin treatment led to the significant reduction of N-myc expression in LA-N-1 cells while siRNA directed against N-myc induced morphological differentiation of LA-N-1 cells. These results, when taken together, suggest that tryptanthrin suppressed the growth and induced neuronal differentiation in the human neuroblastoma LA-N-1 cells and might be exploited as a potential therapeutic candidate for the treatment of high-risk neuroblastomas with N-myc-amplification. PMID:23500671

  5. Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin

    PubMed Central

    Gangoda, Lahiru; Keerthikumar, Shivakumar; Fonseka, Pamali; Edgington, Laura E.; Ang, Ching-Seng; Ozcitti, Cemil; Bogyo, Matthew; Parker, Belinda S.; Mathivanan, Suresh

    2015-01-01

    Neuroblastoma arises from the sympathetic nervous system and accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc is reported to occur in more than 20% of patients. While N-Myc amplification status strongly correlates with higher tumour aggression and resistance to treatment, the role of N-Myc in the aggressive progression of the disease is poorly understood. N-Myc being a transcription factor can modulate the secretion of key proteins that may play a pivotal role in tumorigenesis. Characterising the soluble secreted proteins or secretome will aid in understanding their role in the tumour microenvironment, such as promoting cancer cell invasion and resistance to treatment. The aim of this study is to characterise the secretome of human malignant neuroblastoma SK-N-BE2 (N-Myc amplified, more aggressive) and SH-SY5Y (N-Myc non-amplified, less aggressive) cells. Conditioned media from SK-N-BE2 and SH-SY5Y cell lines were subjected to proteomics analysis. We report a catalogue of 894 proteins identified in the secretome isolated from the two neuroblastoma cell lines, SK-N-BE2 and SH-SY5Y. Functional enrichment analysis using FunRich software identified enhanced secretion of proteins implicated in cysteine peptidase activity in the aggressive N-Myc amplified SK-N-BE2 secretome compared to the less tumorigenic SH-SY5Y cells. Protein-protein interaction-based network analysis highlighted the enrichment of cathepsin and epithelial-to-mesenchymal transition sub-networks. For the first time, inhibition of cathepsins by inhibitors sensitized the resistant SK-N-BE2 cells to doxorubicin as well as decreased its migratory potential. The dataset of secretome proteins of N-Myc amplified (more aggressive) and non-amplified (less aggressive) neuroblastoma cells represent the first inventory of neuroblastoma secretome. The study also highlights the prominent role of cathepsins in the N-Myc amplified neuroblastoma pathogenesis. As N-Myc amplification

  6. Translocation involving 1p and 17q is a recurrent genetic alteration of human neuroblastoma cells

    SciTech Connect

    Savelyeva, L.; Corvi, R.; Schwab, M. )

    1994-08-01

    Human neuroblastoma cells often are monosomic for the distal portion of 1p (1p36). The authors report that the deleted 1p material in cells of neuroblastoma lines is preferentially replaced by material from chromosome 17, resulting from an unbalanced 1;17 translocation. Chromosome 17 often acquires instability, followed by the integration of fragments into various marker chromosomes. As a consequence, 17q material can increase over 17p material. The nonrandom frequency of 1;17 translocations appears to indicate an as-yet-undefined contribution to neuroblastoma development. 35 refs., 4 figs., 1 tab.

  7. Inhibition of Focal Adhesion Kinase and Src Increases Detachment and Apoptosis in Human Neuroblastoma Cell Lines

    PubMed Central

    Beierle, Elizabeth A.; Ma, Xiaojie; Trujillo, Angelica; Kurenova, Elena V.; Cance, William G.; Golubovskaya, Vita M.

    2010-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood. Focal adhesion kinase (FAK) is an intracellular kinase that is overexpressed in a number of human tumors including neuroblastoma, and regulates both cellular adhesion and survival. We have studied the effects of FAK inhibition upon neuroblastoma using adenovirus-containing FAK-CD (AdFAK-CD). Utilizing an isogenic MYCN+ / MYCN− neuroblastoma cell line, we found that the MYCN+ cells are more sensitive to FAK inhibition with AdFAK-CD than their MYCN negative counterparts. In addition, we have shown that phosphorylation of Src is increased in the untreated isogenic MYCN− neuroblastoma cells, and that the decreased sensitivity of the MYCN− neuroblastoma cells to FAK inhibition with AdFAK-CD is abrogated by the addition of the Src family kinase inhibitor, PP2. The results of the current study suggest that both FAK and Src play a role in protecting neuroblastoma cells from apoptosis, and that dual inhibition of these kinases may be important when designing therapeutic interventions for this tumor. PMID:19885861

  8. Molecular mechanism of action of opioids in human neuroblastoma cells

    SciTech Connect

    Yu, V.C.K.

    1987-01-01

    A series of human neuroblastoma cell lines was screened for the presence of opioid receptor sites. Of these cell lines, SK-N-SH was found to express approximately 50,000 ..mu.. and 10,000 delta opioid receptor sites/cell. In vitro characterization revealed that the binding properties of these receptor sites closely resembled those of human and rodent brain. Phosphatidylinositol turnover as a potential second messenger system for the ..mu.. receptor was examined in SK-N-SH cells. Neurotransmitter receptor systems were determined in the three sub-clones of SK-N-SH cells. Cells of the SH-SY5Y line, a phenotypically stable subclone of SK-N-SH cells, were induced to differentiate by treatment with various inducing agents, and changes of several neurotransmitter receptor systems were determined. Nerve growth factor (NGF) and retinoic acid (RA) up-regulated, while dBcAMP down-regulated opioid receptor sites. (/sup 3/H)Dopamine uptake was slightly enhanced only in RA-treated cells. Strikingly, the efficacy of PGE/sub 1/-stimulated accumulation of cAMP was enhanced by 15- to 30-fold upon RA treatment.

  9. Transcriptome profile of human neuroblastoma cells in the hypomagnetic field.

    PubMed

    Mo, WeiChuan; Liu, Ying; Bartlett, Perry F; He, RongQiao

    2014-04-01

    Research has shown that the hypomagnetic field (HMF) can affect embryo development, cell proliferation, learning and memory, and in vitro tubulin assembly. In the present study, we aimed to elucidate the molecular mechanism by which the HMF exerts its effect, by comparing the transcriptome profiles of human neuroblastoma cells exposed to either the HMF or the geomagnetic field. A total of 2464 differentially expressed genes (DEGs) were identified, 216 of which were up-regulated and 2248 of which were down-regulated after exposure to the HMF. These DEGs were found to be significantly clustered into several key processes, namely macromolecule localization, protein transport, RNA processing, and brain function. Seventeen DEGs were verified by real-time quantitative PCR, and the expression levels of nine of these DEGs were measured every 6 h. Most notably, MAPK1 and CRY2, showed significant up- and down-regulation, respectively, during the first 6 h of HMF exposure, which suggests involvement of the MAPK pathway and cryptochrome in the early bio-HMF response. Our results provide insights into the molecular mechanisms underlying the observed biological effects of the HMF. PMID:24777382

  10. Development and characterization of a human orthotopic neuroblastoma xenograft

    PubMed Central

    Stewart, Elizabeth; Shelat, Anang; Bradley, Cori; Chen, Xiang; Federico, Sara; Thiagarajan, Suresh; Shirinifard, Abbas; Bahrami, Armita; Pappo, Alberto; Qu, Chunxu; Finkelstein, David; Sablauer, Andras; Dyer, Michael A.

    2016-01-01

    Neuroblastoma is a pediatric cancer of the developing sympathoadrenal lineage. The tumors are known to develop from the adrenal gland or paraspinal ganglia and have molecular and cellular features of sympathetic neurons such as dense core vesicles and catecholamine production. Here we present the detailed molecular, cellular, genetic and epigenetic characterization of an orthotopic xenograft derived from a high-risk stage 4 neuroblastoma patient. Overall, the xenografted tumor retained the high risk features of the primary tumor and showed aggressive growth and metastasis in the mouse. Also, the genome was preserved with no additional copy number variations, structural variations or aneuploidy. There were 13 missense mutations identified in the xenograft that were not present in the patient’s primary tumor and there were no new nonsense mutations. None of the missense mutations acquired in the xenograft were in known cancer genes. We also demonstrate the feasibility of using the orthotopic neuroblastoma xenograft to test standard of care chemotherapy and molecular targeted therapeutics. Finally, we optimized a new approach to produce primary cultures of the neuroblastoma xenografts for high-throughput drug screening which can be used to test new combinations of therapeutic agents for neuroblastoma. PMID:25863122

  11. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells.

    PubMed

    Chen, Jong-Hang; Chou, Chin-Cheng

    2015-08-01

    This study explores human neuroblastoma (SH-SY5Y) and human glioblastoma (U-1240 MG) cellular differentiation changes under exposure to acrylamide (ACR). Differentiation of SH-SY5Y and U-1240 MG cells were induced by retinoic acid (RA) and butyric acid (BA), respectively. Morphological observations and MTT assay showed that the induced cellular differentiation and cell proliferation were inhibited by ACR in a time- and dose-dependent manner. ACR co-treatment with RA attenuated SH-SY5Y expressions of neurofilament protein-L (NF-L), microtubule-associated protein 1b (MAP1b; 1.2 to 0.7, p < 0.001), MAP2c (2.2 to 0.8, p < 0.05), and Janus kinase1 (JAK1; 1.9 to 0.6, p < 0.001), while ACR co-treatment with BA attenuated U-1240 MG expressions of glial fibrillary acidic protein (GFAP), MAP1b (1.2 to 0.6, p < 0.001), MAP2c (1.5 to 0.7, p < 0.01), and JAK1 (2.1 to 0.5, p < 0.001), respectively. ACR also decreased the phosphorylation of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) in U-1240 MG cells, while caffeine reversed this suppression of ERK and JNK phosphorylation caused by ACR treatment. These results showed that RA-induced neurogenesis of SH-SY5Y and BA-induced astrogliogenesis of U-1240 MG cells were attenuated by ACR and were associated with down-regulation of MAPs expression and JAK-STAT signaling. PMID:25959841

  12. MYCN sensitizes human neuroblastoma to apoptosis by HIPK2 activation through a DNA damage response.

    PubMed

    Petroni, Marialaura; Veschi, Veronica; Prodosmo, Andrea; Rinaldo, Cinzia; Massimi, Isabella; Carbonari, Maurizio; Dominici, Carlo; McDowell, Heather P; Rinaldi, Christian; Screpanti, Isabella; Frati, Luigi; Bartolazzi, Armando; Gulino, Alberto; Soddu, Silvia; Giannini, Giuseppe

    2011-01-01

    MYCN amplification occurs in approximately 20% of human neuroblastomas and is associated with early tumor progression and poor outcome, despite intensive multimodal treatment. However, MYCN overexpression also sensitizes neuroblastoma cells to apoptosis. Thus, uncovering the molecular mechanisms linking MYCN to apoptosis might contribute to designing more efficient therapies for MYCN-amplified tumors. Here we show that MYCN-dependent sensitization to apoptosis requires activation of p53 and its phosphorylation at serine 46. The p53(S46) kinase HIPK2 accumulates on MYCN expression, and its depletion by RNA interference impairs p53(S46) phosphorylation and apoptosis. Remarkably, MYCN induces a DNA damage response that accounts for the inhibition of HIPK2 degradation through an ATM- and NBS1-dependent pathway. Prompted by the rare occurrence of p53 mutations and by the broad expression of HIPK2 in our human neuroblastoma series, we evaluated the effects of the p53-reactivating compound Nutlin-3 on this pathway. At variance from other tumor histotypes, in MYCN-amplified neuroblastoma, Nutlin-3 further induced HIPK2 accumulation, p53(S46) phosphorylation, and apoptosis, and in combination with clastogenic agents purged virtually the entire cell population. Altogether, our data uncover a novel mechanism linking MYCN to apoptosis that can be triggered by the p53-reactivating compound Nutlin-3, supporting its use in the most difficult-to-treat subset of neuroblastoma. PMID:21173028

  13. LMNA Knock-Down Affects Differentiation and Progression of Human Neuroblastoma Cells

    PubMed Central

    Maresca, Giovanna; Natoli, Manuela; Nardella, Marta; Arisi, Ivan; Trisciuoglio, Daniela; Desideri, Marianna; Brandi, Rossella; D’Aguanno, Simona; Nicotra, Maria Rita; D’Onofrio, Mara; Urbani, Andrea; Natali, Pier Giorgio; Bufalo, Donatella Del

    2012-01-01

    Background Neuroblastoma (NB) is one of the most aggressive tumors that occur in childhood. Although genes, such as MYCN, have been shown to be involved in the aggressiveness of the disease, the identification of new biological markers is still desirable. The induction of differentiation is one of the strategies used in the treatment of neuroblastoma. A-type lamins are components of the nuclear lamina and are involved in differentiation. We studied the role of Lamin A/C in the differentiation and progression of neuroblastoma. Methodology/Principal Findings Knock-down of Lamin A/C (LMNA-KD) in neuroblastoma cells blocked retinoic acid-induced differentiation, preventing neurites outgrowth and the expression of neural markers. The genome-wide gene-expression profile and the proteomic analysis of LMNA-KD cells confirmed the inhibition of differentiation and demonstrated an increase of aggressiveness-related genes and molecules resulting in augmented migration/invasion, and increasing the drug resistance of the cells. The more aggressive phenotype acquired by LMNA-KD cells was also maintained in vivo after injection into nude mice. A preliminary immunohistochemistry analysis of Lamin A/C expression in nine primary stages human NB indicated that this protein is poorly expressed in most of these cases. Conclusions/Significance We demonstrated for the first time in neuroblastoma cells that Lamin A/C plays a central role in the differentiation, and that the loss of this protein gave rise to a more aggressive tumor phenotype. PMID:23049808

  14. Exogenous heat shock protein HSP70 reduces response of human neuroblastoma cells to lipopolysaccharide.

    PubMed

    Yurinskaya, M M; Funikov, S Y; Evgen'ev, M B; Vinokurov, M G

    2016-07-01

    The effect of exogenous heat shock protein HSP70 and lipopolysaccharide (LPS) on the production of reactive oxygen species (ROS), TNFα secretion, and mRNA expression by human neuroblastoma SK-N-SH cells. It was shown that exogenous HSP70 protects neuroblastoma cells from the action of LPS. The protection mechanism of HSP70 includes a reduction in the production of ROS and TNFα and a decrease in the expression of TLR4 and IL-1β mRNA in SK-N-SH cells induced by LPS. PMID:27599502

  15. Expression in cultured human neuroblastoma cells of epitopes associated with affected neurons in Alzheimer's disease.

    PubMed Central

    Ko, L. W.; Sheu, K. F.; Young, O.; Thaler, H.; Blass, J. P.

    1990-01-01

    Of three human neuroblastoma lines tested, IMR32K (and IMR32 parental line) was the only cell line that, after its exposure to a differentiation medium, consistently developed materials recognized immunocytochemically by a panel of antibodies against paired helical filaments (PHF). Ultrastructurally, these cells accumulated, at their perikarya and neuritic extensions, spatially discrete arrays of fibrils, which occasionally occurred in twisted pairs. When these fibrillar structures appeared as paired helices, they exhibited dimensions and configurations reminiscent of PHF found in affected Alzheimer neurons, although less compact. Immunoelectron microscope examinations of the fibrillar structures in these neuroblastoma cells with one of these anti-PHF immunoprobes revealed that only subsets of fibrillar structures that appeared thickened or aggregated to form bundles were selectively immunolabeled. Cultures of these immortal neuroblastoma lines may provide a convenient model for studying aspects of PHF formation that are hard to examine in Alzheimer brain obtained at autopsy. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1691594

  16. [NEUROBLASTOMA IN PEDIATRIC PATIENTS].

    PubMed

    Solovyov, A E; Morgun, V V; Paholchuk, A P

    2015-06-01

    Neuroblastoma the most common malignant tumor of childhood, which is often localized in the retroperitoneal space, mainly in the adrenal glands, paravertebral retroperitoneal space, at rare in the posterior mediastinum, in the neck, presacral area. First symptoms of neuroblastoma are nonspecific, mimic various diseases. In the following clinical manifestations depend on the localization of the tumor, stage presence and location of metastases. In the diagnosis of neuroblastoma using ultrasonography and computed tomography. Of the 26 children whose neuroblastoma detected in different periods have died 12. Radical removal of the tumor only effective the first year of life. Chemotherapy is effective in 50% of operated children. PMID:26521471

  17. Neuroblastoma: A neurochemical approach

    SciTech Connect

    Schor, N.F. )

    1991-07-01

    Neuroblastoma is among the most common malignancies of childhood. Despite greatly improved therapy for some pediatric tumors, the prognosis for children with metastatic neuroblastoma has not changed significantly in the past 10 years. With conventional chemotherapy, radiation therapy, and surgery, children with metastatic neuroblastoma have a 20% long-term survival rate. The authors describe here approaches to neuroblastoma that target its neuronal characteristics. On the one hand, the neurotransmitter receptors on the surface of the neuroblastoma cells and, on the other hand, specific isozymes that distinguish neuroblastoma cells from their normal counterparts are the focus of these experimental therapies. In the former case, specificity for tumor cells is effected by (1) selective protection of normal neuronal elements from toxicity, or (2) selective potentiation of toxicity for neural tumor cells. It is hoped that these strategies will be generalizable to other neural crest-derived tumors. 32 references.

  18. NCYM promotes calpain-mediated Myc-nick production in human MYCN-amplified neuroblastoma cells

    SciTech Connect

    Shoji, Wataru; Suenaga, Yusuke; Kaneko, Yoshiki; Islam, S.M. Rafiqul; Alagu, Jennifer; Yokoi, Sana; Nio, Masaki; Nakagawara, Akira

    2015-06-05

    NCYM is a cis-antisense gene of MYCN and is amplified in human neuroblastomas. High NCYM expression is associated with poor prognoses, and the NCYM protein stabilizes MYCN to promote proliferation of neuroblastoma cells. However, the molecular mechanisms of NCYM in the regulation of cell survival have remained poorly characterized. Here we show that NCYM promotes cleavage of MYCN to produce the anti-apoptotic protein, Myc-nick, both in vitro and in vivo. NCYM and Myc-nick were induced at G2/M phase, and NCYM knockdown induced apoptotic cell death accompanied by Myc-nick downregulation. These results reveal a novel function of NCYM as a regulator of Myc-nick production in human neuroblastomas. - Highlights: • NCYM promotes cleavages of MYC and MYCN to produce Myc-nick in vitro. • NCYM increases Myc-nick production in MYCN-amplified neuroblastoma cells. • NCYM knockdown decreases Myc-nick production and induces apoptosis at G2/M phase.

  19. Sorafenib treatment in children with relapsed and refractory neuroblastoma: an experience of four cases.

    PubMed

    Okada, Keiko; Nakano, Yoshiko; Yamasaki, Kai; Nitani, Chika; Fujisaki, Hiroyuki; Hara, Junichi

    2016-08-01

    Metastatic neuroblastoma is an aggressive malignancy with a poor prognosis. Recent findings have shown that sorafenib decreases cell viability and increases apoptosis in human neuroblastoma cell lines. We report an experience of compassionate use of sorafenib in children with treatment-refractory neuroblastoma. Sorafenib showed transient anti-tumor activity in all four patients without adverse effects. However, progression was observed after a short stabilization phase. While sorafenib showed minimal anti-tumor activity in our patients, it might still be effective in patients with neuroblastoma in an earlier stage. PMID:27264843

  20. Congenital neuroblastoma

    PubMed Central

    Evans, A. R.

    1965-01-01

    The clinical histories and post-mortem findings in five cases of neuroblastoma are described, and an account given of the microscopic characteristics of the tumours. In four of the cases the tumour was present at birth and was probably so in the fifth case. In only one case was the presence of the malignant tumour a significant factor in causing death. The differential diagnosis of such tumours is discussed. The accumulated evidence of many recorded cases suggests that neuroblastoma, becoming manifest in the early months or weeks of life, and congenital tumour, would be included in such a group, and has an appreciably better prognosis than has this same tumour when it becomes manifest in later childhood. The literature is briefly reviewed to illustrate this aspect of prognosis and possible reasons for it are indicated. Images PMID:14247705

  1. A GALECTIN-3-DEPENDENT PATHWAY UPREGULATES INTERLEUKIN-6 IN THE MICROENVIRONMENT OF HUMAN NEUROBLASTOMA

    PubMed Central

    Silverman, Ayaka M.; Nakata, Rie; Shimada, Hiroyuki; Sposto, Richard; DeClerck, Yves A.

    2013-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine with a broad range of physiological and pathological functions. Because in cancer IL-6 contributes to a microenvironment that promotes tumor cell survival, angiogenesis and inflammation, understanding the mechanism responsible for its production is important. In neuroblastoma, the second most common solid tumor in children, IL-6 is produced not by tumor cells but by stromal cells such as monocytes and bone marrow mesenchymal stem cells (BMMSC). Here we show that the production of IL-6 in BMMSC is in part stimulated by galectin-3 binding protein (Gal-3BP) secreted by neuroblastoma cells. We identified a distal region of the IL-6 promoter that contains 3 CCATT/enhancer binding protein (C/EBP) binding domains involved in the transcriptional upregulation of IL-6 by Gal-3BP.Gal-3BP interacted with Galectin-3 (Gal-3) present in BMMSC, and a Gal-3BP/Gal-3/Ras/MEK/ERK signaling pathway was responsible for the transcriptional upregulation of IL-6 in BMMSC where Gal-3 has a necessary function. In support of the role of this pathway in human neuroblastoma tumors, Gal-3BP was found to be present in tumor cells and in the adjacent extracellular matrix of 96% of 78 primary neuroblastoma tumor samples examined by immunohistochemistry. Considering the protumorigenic function of IL-6 in cancer, this tumor cell-stromal cell interactive pathway could be a target for anticancer therapy. PMID:22389450

  2. Acetaminophen potentiates staurosporine-induced death in a human neuroblastoma cell line

    PubMed Central

    Posadas, I; Vellecco, V; Santos, P; Prieto-Lloret, J; Ceña, V

    2007-01-01

    Background and purpose: Neuroblastoma is the most common solid tumour in infants characterized by a high resistance to apoptosis. Recently, the cyclo-oxygenase pathway has been considered a potential target in the treatment of different kinds of tumours. The aim of the present work was to investigate a possible relationship between cyclo-oxygenase pathway and stauroporine-induced apoptosis in the neuroblastoma cell line SH-SY5Y. Experimental approach: Cellular viability was measured by release of LDH. DNA fragmentation was visualized by electrophoresis on agarose gel containing ethidium bromide. Cyclo-oxygenase activity was measured in microsomal fractions obtained from cells by quantification of its final product PGE2 by RIA. Caspase-3 activity was measured fluorimetrically and Western blot analysis was performed to assess cytochrome c expression. Key results: We have found that staurosporine (500 nM) induced cellular death in a time-dependent manner in SH-SY5Y human neuroblastoma cells. Cyclo-oxygenase enzymatic activity was present in SH-SY5Y human neuroblastoma cells under basal conditions and pharmacological experiments using COX inhibitors indicate that cyclo-oxygenase-1 and cyclo-oxygenase-3 are the active isoforms in these cells. Co-incubation of SH-SY5Y cells with staurosporine (500 nM) and acetaminophen for 24 h potentiated staurosporine-mediated cellular death in a concentration-dependent manner. This process is mediated by an increase in cytochrome c release and caspase 3 activation and is prevented by N-acetylcysteine or the superoxide dismutase mimetic, MnTBAP. Conclusions and implications: Acetaminophen potentiates staurosporine-mediated neuroblastoma cell death. The mechanism of action of acetaminophen seems to be related to production of reactive oxygen species and decreased intracellular glutathione levels. PMID:17245372

  3. Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture

    SciTech Connect

    Dutta, S.K.; Subramoniam, A.; Ghosh, B.; Parshad, R.

    1984-01-01

    Monolayer cultures of human neuroblastoma cells were exposed to 915-MHz radiation, with or without sinusoidal amplitude modulation (80%) at 16 Hz, at specific absorption rates (SAR) for the culture medium and cells of 0.00, 0.01, 0.05, 0.075, 0.1, 0.5, 0.75, 1.0, 1.5, 2, or 5 mW/g. A significant increase in the efflux of calcium ions (45Ca2+) as compared to unexposed control cultures occurred at two SAR values: 0.05 and 1 mW/g. Increased efflux at 0.05 mW/g was dependent on the presence of amplitude modulation at 16 Hz but at the higher value it was not. These results indicate that human neuroblastoma cells are sensitive to extremely low levels of microwave radiation at certain narrow ranges of SAR.

  4. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.

    PubMed

    Celia, Christian; Trapasso, Elena; Locatelli, Marcello; Navarra, Michele; Ventura, Cinzia Anna; Wolfram, Joy; Carafa, Maria; Morittu, Valeria Maria; Britti, Domenico; Di Marzio, Luisa; Paolino, Donatella

    2013-12-01

    Citrus extracts, particularly bergamot essential oil (BEO) and its fractions, have been found to exhibit anticancer efficacy. However, the poor water solubility, low stability and limited bioavailability have prevented the use of BEO in cancer therapy. To overcome such drawbacks, we formulated BEO liposomes that improved the water solubility of the phytocomponents and increased their anticancer activity in vitro against human SH-SY5Y neuroblastoma cells. The results warrant further investigation of BEO liposomes for in vivo applications. PMID:24099646

  5. Mitochondrial Damage and Apoptosis Induced by Adenosine Deaminase Inhibition and Deoxyadenosine in Human Neuroblastoma Cell Lines.

    PubMed

    Garcia-Gil, Mercedes; Tozzi, Maria Grazia; Balestri, Francesco; Colombaioni, Laura; Camici, Marcella

    2016-07-01

    The treatment with deoxycoformycin, a strong adenosine deaminase inhibitor, in combination with deoxyadenosine, causes apoptotic cell death of two human neuroblastoma cell lines, SH-SY5Y and LAN5. Herein we demonstrate that, in SH-SY5Y cells, this combination rapidly decreases mitochondrial reactive oxygen species and, in parallel, increases mitochondrial mass, while, later, induces nuclear fragmentation, and activation of caspase-8, -9, and -3. In previous papers we have shown that a human astrocytoma cell line, subjected to the same treatment, undergoes apoptotic death as well. Therefore, both astrocytoma and neuroblastoma cell lines undergo apoptotic death following the combined treatment with deoxycoformycin and deoxyadenosine, but several differences have been found in the mode of action, possibly reflecting a different functional and metabolic profile of the two cell lines. Overall this work indicates that the neuroblastoma cell lines, like the line of astrocytic origin, are very sensitive to purine metabolism perturbation thus suggesting new therapeutic approaches to nervous system tumors. J. Cell. Biochem. 117: 1671-1679, 2016. © 2015 Wiley Periodicals, Inc. PMID:26659614

  6. Gangliosides do not affect ABC transporter function in human neuroblastoma cells.

    PubMed

    Dijkhuis, Anne-Jan; Klappe, Karin; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2006-06-01

    Previous studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines. This was established by three different assays: equilibrium radiolabeling, cholera toxin binding, and mass analysis. Fluorescence-activated cell sorting (FACS) analysis showed that ganglioside depletion only slightly and in the opposite direction affected Pgp- and MRP1-mediated efflux activity. Moreover, both effects were marginal compared with those of well-established inhibitors of either MRP1 (i.e., MK571) or Pgp (i.e., GF120918). t-PPPP slightly enhanced cellular sensitivity to vincristine, as determined by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide analysis, in both neuroblastoma cell lines, whereas NB-dNJ was without effect. MRP1 expression and its localization in detergent-resistant membranes were not affected by ganglioside depletion. Together, these results show that gangliosides are not relevant to ABC transporter-mediated MDR in neuroblastoma cells. PMID:16547352

  7. Cytotoxicity, differentiating activity and metabolism of tiazofurin in human neuroblastoma cells.

    PubMed

    Pillwein, K; Schuchter, K; Ressmańn, G; Gharehbaghi, K; Knoflach, A; Cermak, B; Jayaram, H N; Szalay, S M; Szekeres, T; Chiba, P

    1993-08-19

    The IMP dehydrogenase inhibitor, tiazofurin (TR)-2-beta-D-ribofuranosylthiazole-4-carboxamide, which exhibited oncolytic activity in patients with chronic myelogenous leukaemia (CML) in blast crisis was found to inhibit the growth of human neuroblastoma SK-N-SH cells with an IC50 of 4.2 microM. TR treatment of cells perturbed nucleic acid and catecholamine pathways. As biochemical markers of TR action decreased cellular GTP pools, increased inosine and hypoxanthine concentrations and depleted dopamine content were found. Incubation of tumour specimens obtained from paediatric patients with grade-IV neuroblastoma with TR resulted in the formation of the active metabolite, thiazole-4-carboxamide adenine dinucleotide, in concentrations sufficient to inhibit tumour growth. Cytotoxic and biochemical effects of TR were enhanced by combining it with allopurinol (an inhibitor of xanthine dehydrogenase), and hypoxanthine (an alternate substrate for hypoxanthine-guanine phosphoribosyltransferase). Induction of transdifferentiation of SK-N-SH cells from a neuroblast to an epitheloid, substrate-adherent phenotype was more pronounced with TR than with all-trans-retinoic acid. Transdifferentiating treatment with TR resulted in a 2-fold-enhanced sensitivity towards adriamycin. However, differentiation with all-trans-retinoic acid rendered the cells more resistant to adriamycin. Our results suggest that TR might be a promising agent for the treatment of children suffering from neuroblastoma. PMID:8344756

  8. Response of human neuroblastoma and melanoma multicellular tumor spheroids (MTS) to single dose irradiation

    SciTech Connect

    Evans, S.M.; Labs, L.M.; Yuhas, J.M.

    1986-06-01

    The growth characteristics of 6 human cell line derived multicellular tumor spheroids (MTS) were studied. Melanoma MTS (C32, HML-A, HML-B) were slow growing with baseline growth rates of 13.9 to 27.3 microns diameter/day. Neuroblastoma MTS (Lan-1, NB-100, NB-134) grew rapidly, with baseline growth rates of 32.1 to 40.3 microns diameter/day, that is, 1.2 to 2.9 times as fast as the melanomas. Delay constants were calculated for all six lines. The neuroblastomas were more sensitive to radiation than melanomas, as reflected in a greater value for the radiation-induced growth delay constant. One neuroblastoma line, Lan-1, was highly radioresponsive; that is, after a subcurative dose of radiation, the MTS diameter decreased beyond the original diameter, which was followed by recovery and regrowth. Irrespective of these initial changes in diameter, growth delay sensitivity (value of delay constant) was the same for Lan-1 and NB-100, an MTS line that did not show the responsive pattern.

  9. Cordycepin induces apoptosis and autophagy in human neuroblastoma SK-N-SH and BE(2)-M17 cells

    PubMed Central

    LI, YIFAN; LI, RONG; ZHU, SHENGLANG; ZHOU, RUYUN; WANG, LEI; DU, JIHUI; WANG, YONG; ZHOU, BEI; MAI, LIWEN

    2015-01-01

    Cordycepin, also termed 3′-deoxyadenosine, is a derivative of the nucleoside adenosine that represents a potential novel class of anticancer drugs targeting the 3′ untranslated region of RNAs. Cordycepin has been reported to induce apoptosis in certain cancer cell lines, but the effects of cordycepin on human neuroblastoma cells have not been studied. In the present study, an MTT assay revealed that cordycepin inhibits the viability of neuroblastoma SK-N-SH and BE(2)-M17 cells in a dose-dependent manner. In addition, cordycepin increases the early-apoptotic cell population of SK-N-SH cells, as determined by fluorescence-activated cell sorting analysis. The induction of apoptosis in neuroblastoma cells by cordycepin was further confirmed by western blotting, which revealed cleavage of caspase-3 and poly(adenosine diphosphate-ribose) polymerase 1 in the SK-N-SH and BE(2)-M17 cells. Cordycepin also induced the formation of a punctate pattern of light-chain 3 (LC3)-associated green fluorescence in the SK-N-SH cells transfected with a pEGFP-LC3 vector. Furthermore, western blotting revealed cleavage of LC3 A/B in cordycepin-treated neuroblastoma SK-N-SH cells. Taken together, the results indicate that cordycepin significantly increases apoptosis and autophagy in neuroblastoma cells, and may therefore be a drug candidate for neuroblastoma therapy, but requires additional evaluation. PMID:26137103

  10. Advances in neuroblastoma research

    SciTech Connect

    Evans, A.E.; D'Angio, G.J.; Seeger, R.C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Studies on the expression of the amplified domain in human neuroblastoma cells; Comparison studies of oncogenes in retinoblastoma and neuroblastoma; Chromosome abnormalities, gene amplification and tumor progression; and Peripheral neuroepithelioma: Genetic analysis of tumor derived cell lines.

  11. Anticancer Activity of γ-Bisabolene in Human Neuroblastoma Cells via Induction of p53-Mediated Mitochondrial Apoptosis.

    PubMed

    Jou, Yu-Jen; Hua, Chun-Hung; Lin, Chen-Sheng; Wang, Ching-Ying; Wan, Lei; Lin, Ying-Ju; Huang, Su-Hua; Lin, Cheng-Wen

    2016-01-01

    γ-Bisabolene has demonstrated antiproliferative activities against several human cancer cell lines. This study first discloses the antiproliferative and apoptosis induction activities of γ-bisabolene to human neuroblastoma TE671 cells. A CC50 value of γ-bisabolene was 8.2 μM to TE671 cells. Cell cycle analysis with PI staining showed γ-bisabolene elevating the sub-G1 fractions in a time-dependent manner. In addition, annexin V-FITC/PI staining showed γ-bisabolene significantly triggering early (annexin-V positive/PI negative) and late (annexin-V positive/PI positive) apoptosis in dose-dependent manners. γ-Bisabolene induced caspase 3/8/9 activation, intracellular ROS increase, and mitochondrial membrane potential decrease in apoptosis of human neuro-blastoma cells. Moreover, γ-bisabolene increased p53 phosphorylation and up-regulated p53-mediated apoptotic genes Bim and PUMA, as well as decreased the mRNA and protein levels of CK2α. Notably, the results indicated the involvement of CK2α-p53 pathways in mitochondria-mediated apoptosis of human neuroblastoma cells treated with γ-bisabolene. This study elucidated the apoptosis induction pathways of γ-bisabolene-treated neuroblastoma cells, in which could be useful for developing anti-neuroblastoma drugs. PMID:27164076

  12. Presence of fucosyl residues on the oligosaccharide antennae of membrane glycopeptides of human neuroblastoma cells

    SciTech Connect

    Santer, U.V.; Glick, M.C.

    1983-09-01

    Fucosyl residues linked alpha 1 leads to 3 or 4 to N-acetylglucosamine were found in large amounts on glycopeptides from the membranes of human tumor cells of neurectodermal origin but not on membrane glycopeptides from human fibroblasts. The fucosyl residues were detected by release of radioactive fucose from the glycopeptides with an almond alpha-L-fucosidase specific for fucosyl alpha 1 leads to 3(4)-N-acetylglucosamine. In other studies, the linkage was shown to be alpha 1 leads to 3 by nuclear magnetic resonance analysis. Glycopeptides containing these fucosyl residues from four human neuroblastoma cell lines were defined by binding to immobilized lectins. In addition, the glycopeptides from one human neuroblastoma cell line, CHP-134, were further characterized by enzyme degradation and columns calibrated for size and charge. The antennary position of fucosyl alpha 1 leads to 3-N-acetylglucosamine on the glycopeptides was demonstrated by the use of exoglycosidases and endoglycosidase D, since complete degradation to yield fucosyl-N-acetylglucosaminylasparagine was obtained only after treatment with almond alpha-L-fucosidase prior to the sequential degradation. Fucosyl alpha 1 leads to 3-N-acetylglucosamine was present on most size and charge classes of membrane glycopeptides and therefore was not limited to a few glycoproteins. Since the almond alpha-L-fucosidase cleaves fucosyl residues from glycoproteins, the physiological effects of the increased specific fucosylation on human tumors of neurectodermal origin can be examined.

  13. Trace metal content in distinct genotypes of human neuroblastoma cells: Preliminary results

    NASA Astrophysics Data System (ADS)

    Ortega, R.; Gouget, B.; Moretto, Ph.; Michelet, C.; Bénard, J.; Sergeant, C.; Llabador, Y.; Simonoff, M.

    1997-07-01

    Some transition metals play important regulatory roles in gene expression. The disturbance of their cellular levels could be involved in oncogene expression and tumorigenesis. Nuclear Microprobe Analysis (NMPA) was used to measure cellular trace metal levels (Mn, Fe, Cu, Zn) in two human neuroblastoma cell lines characterized by distinct genotypes. In this paper, a specific protocol established for sample preparation of neuronal cultured cells is described. Trace metal concentrations in SK-N-SH and IGR-N-91 cells exhibiting respectively a single copy, and 60 copies, of the N- myc oncogene are reported. A brief discussion on experiment design for NMPA of trace metal functions in gene expression is also presented.

  14. Synergistic interactions between PBDEs and PCBs in human neuroblastoma cells.

    PubMed

    Pellacani, C; Tagliaferri, S; Caglieri, A; Goldoni, M; Giordano, G; Mutti, A; Costa, L G

    2014-04-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants. Exposure to these chemicals has been associated with developmental neurotoxicity, endocrine dysfunction, and reproductive disorders. Humans and wildlife are generally exposed to a mixture of these environmental pollutants, highlighting the need to evaluate the potential effects of combined exposures. In this study, we investigated the cytotoxic effects of the combined exposure to two PBDEs and two PCBs in a human neuronal cell line. 2,2',4,4'-Tetrabromodiphenyl ether, 2,2',4,4',5-pentabromodiphenyl ether, PCB-126 (3,3',4,4',5-pentachlorobiphenyl; a dioxin-like PCB), and PCB-153 (2,2',4,4',5,5'-hexachlorobiphenyl; a non-dioxin-like PCB) were chosen, because their concentrations are among the highest in human tissues and the environment. The results suggest that the nature of interactions is related to the PCB structure. Mixtures of PCB-153 and both PBDEs had a prevalently synergistic effect. In contrast, mixtures of each PBDE congener with PCB-126 showed additive effects at threshold concentrations, and synergistic effects at higher concentrations. These results emphasize the concept that the toxicity of xenobiotics may be affected by possible interactions, which may be of significance given the common coexposures to multiple contaminants. PMID:22434561

  15. Comparative proteomic analysis of human SH-SY5Y neuroblastoma cells under simulated microgravity.

    PubMed

    Zhang, Yongqian; Wang, Hongbin; Lai, Chengjun; Wang, Lu; Deng, Yulin

    2013-02-01

    Microgravity is one of the most important features in spaceflight. Previous evidence has shown that neurophysiological impairment signs occurred under microgravity. The present study was undertaken to explore the change in protein abundance in human SH-SY5Y neuroblastoma cells that were grown in a microgravity environment. The comparative proteomic method based on the (18)O labeling technique was applied to investigate the up-regulated proteins and down-regulated proteins in SH-SY5Y under simulated microgravity. Twenty-two differentially abundant proteins were quantified in human SH-SY5Y neuroblastoma cells. The cell microfilament network was disrupted under simulated microgravity, which was determined by the immunocytochemistry. The concentration of reactive oxygen species, malondialdehyde, and free Ca2+ ion significantly increased, and the level of ATP significantly decreased under simulated microgravity. However, there was no obvious cell apoptosis observed under simulated microgravity. These results provide new molecular evidence for the change in protein abundance in SH-SY5Y cells under simulated microgravity, which might unfold biological mechanisms and the development of effective countermeasures to deal with microgravity-related neurological problems. We believe that the state-of-the-art proteomic assay may be a means by which aerospace scientists will begin to understand the underlying mechanisms of space life activities at the protein level. PMID:23421552

  16. Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture

    SciTech Connect

    Dutta, S.K.; Ghosh, B.; Blackman, C.F.

    1989-01-01

    To test the generality of radiofrequency radiation-induced changes in /sup 45/Ca2+ efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude-modulated (AM) at 16 Hz, at specific absorption rates (SAR) of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 W/kg. Significant /sup 45/Ca2+ efflux was obtained at SAR values of 0.05 and 0.005 W/kg. Enhanced efflux at 0.05 W/kg peaked at the 13-16 Hz and at the 57.5-60 Hz modulation ranges. A Chinese hamster-mouse hybrid neuroblastoma was also shown to exhibit enhanced radiation-induced /sup 45/Ca2+ efflux at an SAR of 0.05 W/kg, using 147 MHz, AM at 16 Hz. These results confirm that amplitude-modulated radiofrequency radiation can induce responses in cells of nervous tissue origin from widely different animal species, including humans. The results are also consistent with the reports of similar findings in avian and feline brain tissues and indicate the general nature of the phenomenon.

  17. Polyamine Metabolism Is Sensitive to Glycolysis Inhibition in Human Neuroblastoma Cells*

    PubMed Central

    Ruiz-Pérez, M. Victoria; Medina, Miguel Ángel; Urdiales, José Luis; Keinänen, Tuomo A.; Sánchez-Jiménez, Francisca

    2015-01-01

    Polyamines are essential for cell proliferation, and their levels are elevated in many human tumors. The oncogene n-myc is known to potentiate polyamine metabolism. Neuroblastoma, the most frequent extracranial solid tumor in children, harbors the amplification of n-myc oncogene in 25% of the cases, and it is associated with treatment failure and poor prognosis. We evaluated several metabolic features of the human neuroblastoma cell lines Kelly, IMR-32, and SK-N-SH. We further investigated the effects of glycolysis impairment in polyamine metabolism in these cell lines. A previously unknown linkage between glycolysis impairment and polyamine reduction is unveiled. We show that glycolysis inhibition is able to trigger signaling events leading to the reduction of N-Myc protein levels and a subsequent decrease of both ornithine decarboxylase expression and polyamine levels, accompanied by cell cycle blockade preceding cell death. New anti-tumor strategies could take advantage of the direct relationship between glucose deprivation and polyamine metabolism impairment, leading to cell death, and its apparent dependence on n-myc. Combined therapies targeting glucose metabolism and polyamine synthesis could be effective in the treatment of n-myc-expressing tumors. PMID:25593318

  18. Suppressive effect of topoisomerase inhibitors on JC polyomavirus propagation in human neuroblastoma cells.

    PubMed

    Nukuzuma, Souichi; Nakamichi, Kazuo; Kameoka, Masanori; Sugiura, Shigeki; Nukuzuma, Chiyoko; Tasaki, Takafumi; Takegami, Tsutomu

    2016-04-01

    JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system, in immunocompromised patients. Because no drugs have been approved for treating PML, many antiviral agents are currently being investigated for this purpose. The inhibitory effects of the topoisomerase I inhibitors topotecan and β-lapachone were assessed by investigating viral replication, propagation and viral protein 1 (VP1) production in cultured cells. JCPyV replication was assayed using the human neuroblastoma cell line IMR-32 transfected with the JCPyV plasmid and RT- PCR combined with Dpn I treatment. Dpn I digests the input plasmid DNA containing methylated adenosine, but not newly replicated JCPyV DNA, in IMR-32 cells. It was found that JCPyV replicates less in IMR-32 cells treated with topotecan or β-lapachone than in untreated cells. Moreover, drug treatment of JCI cells, which are IMR-32 cells persistently infected with JCPyV, led to a reduction in the amount of JCPyV DNA and population of VP1-positive cells. These results demonstrate that topotecan and β-lapachone affects JCPyV propagation in human neuroblastoma cell lines, suggesting that topotecan and β-lapachone could potentially be used to treat PML. PMID:26935240

  19. RADIOFREQUENCY RADIATION-INDUCED CALCIUM-ION-EFFLUX ENHANCEMENT FROM HUMAN AND OTHER NEUROBLASTOMA CELLS IN CULTURE

    EPA Science Inventory

    In order to test the generality of radiofrequency-radiation-induced change in alteration 45Ca2+ efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude modulated (AM) at 16 Hz, at specific absorption ra...

  20. Human neuroblastoma cells express alpha and beta platelet-derived growth factor receptors coupling with neurotrophic and chemotactic signaling.

    PubMed Central

    Matsui, T; Sano, K; Tsukamoto, T; Ito, M; Takaishi, T; Nakata, H; Nakamura, H; Chihara, K

    1993-01-01

    Both platelet-derived growth factor (PDGF) A- and B-chains are expressed in mammalian neurons, but their precise roles still remain to be clarified. In the present studies, we examined the expression of two PDGF receptor genes in human tumor cell lines derived from neural crest. The expression of alpha and/or beta PDGF receptors was detected in a wide variety of neural crest-derived human tumor cell lines such as neuroblastoma, primitive neuroectodermal tumor, and Ewing's sarcoma by RNA blot analysis, and confirmed by immunoblot analysis. We have also demonstrated that PDGF receptors on the human neuroblastoma cell lines were biologically functional. Accordingly, chemotactic and mitogenic activities were induced by either PDGF-AA or PDGF-BB in serum-free medium. PDGF isoforms as well as nerve growth factor induced morphological changes showing neuronal cell maturation. Moreover, PDGF coordinately increased the levels of the transcript of the midsize neurofilament gene. The neuroblastoma cell lines also expressed the transcripts of PDGF A- and B-chains. These findings suggest that PDGF isoforms are involved not only in the promotion of the neuroblastoma cell growth, but also in neuronal cell migration, growth, and differentiation in human brain development. Images PMID:8376577

  1. Identification of ALK as the Major Familial Neuroblastoma Predisposition Gene

    PubMed Central

    Mossë, Yalë P; Laudenslager, Marci; Longo, Luca; Cole, Kristina A; Wood, Andrew; Attiyeh, Edward F; Laquaglia, Michael J; Sennett, Rachel; Lynch, Jill E; Perri, Patrizia; Laureys, Geneviève; Speleman, Frank; Hakonarson, Hakon; Torkamani, Ali; Schork, Nicholas J; Brodeur, Garrett M; Tonini, Gian Paolo; Rappaport, Eric; Devoto, Marcella; Maris, John M

    2009-01-01

    SUMMARY Survival rates for the childhood cancer neuroblastoma have not substantively improved despite dramatic escalation in chemotherapy intensity. Like most human cancers, this embryonal malignancy can be inherited, but the genetic etiology of familial and sporadically occurring neuroblastoma was largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase gene (ALK) explain the majority of hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at the short arm of chromosome 2 (maximum nonparametric LOD=4.23 at rs1344063) using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate missense mutations in the tyrosine kinase domain of ALK (G1128A, R1192P and R1275Q) that segregated with the disease in eight separate families. Examination of 491 sporadically occurring human neuroblastoma samples showed that the ALK locus was gained in 22.8%, and highly amplified in an additional 3.3%, and that these aberrations were highly associated with death from disease (P=0.0003). Resequencing of 194 high-risk neuroblastoma samples showed somatically acquired mutations within the tyrosine kinase domain in 12.4%. Nine of the ten mutations map to critical regions of the kinase domain and were predicted to be oncogenic drivers with high probability. Mutations resulted in constitutive phosphorylation consistent with activation, and targeted knockdown of ALK mRNA resulted in profound growth inhibition of 4 of 4 cell lines harboring mutant or amplified ALK, as well as 2 of 6 wild type for ALK. Our results demonstrate that heritable mutations of ALK are the major cause of familial neuroblastoma, and that germline or acquired activation of this cell surface kinase is a tractable therapeutic target for this lethal pediatric malignancy. PMID:18724359

  2. 17β-Estradiol modulates huntingtin levels in rat tissues and in human neuroblastoma cell line.

    PubMed

    Nuzzo, Maria Teresa; Fiocchetti, Marco; Servadio, Michela; Trezza, Viviana; Ascenzi, Paolo; Marino, Maria

    2016-02-01

    17β-Estradiol (E2) exerts neurotrophic and neuroprotective functions in the brain. Here, E2-induced increased levels of huntingtin (HTT), a protein involved in several crucial neuronal functions is reported. E2 physiological concentrations up-regulate HTT in hippocampus and striatum of rats as well as in human neuroblastoma cells. This effect requires both nuclear and extra-nuclear estrogen receptor (ER)α activities. Intriguingly, HTT silencing completely prevents E2 protective effects against oxidative stress injury. In conclusion, these data indicate for the first time that HTT is an E2-inducible protein involved in the first steps of E2-induced signaling pathways committed to neuronal protection against oxidative stress. PMID:26264729

  3. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced cytotoxicity

    SciTech Connect

    Jung, Tae Woo; Lee, Ji Young; Shim, Wan Sub; Kang, Eun Seok; Kim, Soo Kyung; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo . E-mail: bscha@yumc.yonsei.ac.kr

    2006-02-03

    Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-{gamma} agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to ability to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease.

  4. Human malignant melanoma heterotransplanted to nude mice.

    PubMed

    Tropé, C; Johnsson, J E; Alm, P; Landberg, T; Olsson, H; Wennerberg, J

    1981-01-01

    Five different human malignant melanoma were heterotransplanted subcutaneously to nude mice. When small tissue pieces were used 3 out of 5 tumors grew. Subcutaneous injections of suspended tumor cells were also made, but all failed to take. Metastatic or infiltrative growth was never seen in the mice observed for up to 2.5 months. The successful grafts largely retained the original morphologicaL features. The three successfully transplanted tumors could all be serially transferred with 100% tumor take. In one case passage time was reduced from 40 days to 15 days. As measured with 3H-thymidine incorporation the proliferation rate increased during the passages. These changes might be due to a selection of more rapidly growing tumor cells in the nudes. PMID:7312076

  5. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells.

    PubMed

    Zargan, Jamil; Sajad, Mir; Umar, Sadiq; Naime, M; Ali, Shakir; Khan, Haider A

    2011-02-01

    Scorpion and its organs have been used to cure epilepsy, rheumatism, and male impotency since medieval times. Scorpion venom which contains different compounds like enzyme and non-enzyme proteins, ions, free amino acids, and other organic inorganic substances have been reported to posses antiproliferative, cytotoxic, apoptogenic, and immunosuppressive properties. We for the first time report the apoptotic and antiproliferative effects of scorpion venom (Odontobuthus doriae) in human neuroblastoma cells. After exposure of cells to medium containing varying concentrations of venom (10, 25, 50, 100, and 200 μg/ml), cell viability decreased to 90.75, 75.53, 55.52, 37.85, and 14.30%, respectively, after 24 h. Cells expressed morphological changes like swelling, inhibition of neurite outgrowth, irregular shape, aggregation, rupture of membrane, and release of cytosolic contents after treatment with venom. Lactate dehydrogenase (LDH) level increased in 50 and 100 μg/ml as compared to control, but there was no significant increase in LDH level at a dose of 10 and 20 μg/ml. Two concentrations viz. 50 and 100 μ/ml were selected because of the profound effect of these concentrations on the cellular health and population. Treatment with these two concentrations induced reactive nitrogen intermediates and depolarization in mitochondria. While caspase-3 activity increased in a concentration-dependent manner, only 50 μg/ml was able to fragment DNA. It was interesting to note that at higher dose, i.e., 100 μg/ml, the cells were killed, supposedly by acute necrosis. DNA synthesis evidenced by bromodeoxyuridine (BrdU) incorporation was inhibited in a concentration-dependent manner. The cells without treatment incorporated BrdU with high affinity confirming their cancerous nature whereas very less incorporation was noticed in treated cells. Our results show apoptotic and antiproliferative potential of scorpion venom (O. doriae) in human neuroblastoma cells. These properties

  6. What Is Neuroblastoma?

    MedlinePlus

    ... are the key statistics about neuroblastoma? What is neuroblastoma? Cancer starts when cells in the body begin ... see the section, “ Signs and symptoms of neuroblastoma ”). Neuroblastomas Neuroblastomas are cancers that start in early nerve ...

  7. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3

    SciTech Connect

    White, P.S.; Maris, J.M.; Beltinger, C.

    1995-06-06

    Deletion of the short arm of human chromosome 1 is the most common cytogenetic abnormality observed in neuroblastoma. To characterize the region of consistent deletion, we performed loss of heterozygosity (LOH) studies on 122 neuroblastoma tumor samples with 30 distal chromosome 1p polymorphisms. LOH was detected in 32 of the 122 tumors (26%). A single region of LOH, marked distally by D1Z2 and proximally by D1S228, was detected in all tumors demonstrating loss. Also, cells from a patient with a constitutional deletion of 1p36, and from a neuroblastoma cell line with a small 1p36 deletion, were analyzed by fluorescence in situ hybridization. Cells from both sources had interstitial deletions of 1p36.2-36.3 which overlapped the consensus region of LOH defined by the tumors. Interstitial deletion in the constitutional case was confirmed by allelic loss studies using the panel of polymorphic markers. Four proposed candidate genes-DAN, ID3 (heir-1), CDC2L1 (p58), and TNFR2-were shown to lie outside of the consensus region of allelic loss, as defined by the above deletions. These results more precisely define the location of a neuroblastoma suppressor gene within 1p36.2-36.3, eliminating 33 centimorgans of proximal 1p36 from consideration. Furthermore, a consensus region of loss, which excludes the four leading candidate genes, was found in all tumors with 1p36 LOH. 31 refs., 4 figs.

  8. Cellular processing of copper-67-labeled monoclonal antibody chCE7 by human neuroblastoma cells.

    PubMed

    Novak-Hofer, I; Amstutz, H P; Mäcke, H R; Schwarzbach, R; Zimmermann, K; Morgenthaler, J J; Schubiger, P A

    1995-01-01

    Monoclonal antibody chCE7, an internalizing neuroblastoma-specific chimeric antibody, was derivatized with the macrocyclic amine ligand 4-[(1,4,8,11-tetraazacyclotetradec-1-yl)-methyl] benzoic acid tetrahydrochloride and labeled with the potential therapeutic nuclide 67Cu. Using pulse labeling and an acid elution endocytosis assay, 67Cu-chCE7 was found to be internalized into human neuroblastoma (SKN-AS) cells at a similar rate and to a similar extent as 125I-labeled chCE7. Uptake of 67Cu-chCE7 and 125I-chCE7 into the acid stable (intracellular) pool proceeded with similar kinetics during the first 2 h of internalization. However, in contrast to 125I-chCE7-loaded cells, at later times intracellular radioactivity kept increasing in the case of 67Cu-chCE7-loaded cells. It was shown that this effect is due to the intracellular accumulation of a low M(r) degradation product consisting of the 67Cu-4[(1,4,8,11-tetraazacyclotetradec-1-yl)-methyl] benzoic acid complex, possibly with a short peptide attached to it. Degradation of both 125I-chCE7 and 67Cu-chCE7 was inhibited by chloroquine, indicating endosomal or lysosomal degradation, and a 43,000 M(r) fragment was found to be the major high M(r) degradation product in both cases. Although at times between 4 and 6 h of internalization intracellular breakdown of 67Cu-chCE7 was found to proceed more slowly, the major difference between the two immunoconjugates resides in the prolonged cellular retention of the 67Cu-chCE7 metabolite. PMID:7805039

  9. Immunoprevention of human papillomavirus-associated malignancies

    PubMed Central

    Wang1, Joshua W.; Hung, Chein-fu; Huh, Warner K.; Trimble, Cornelia L.; Roden, Richard B.S.

    2014-01-01

    Persistent infection by one of fifteen high risk human papillomavirus (hrHPV) types is a necessary but not sufficient cause of 5% of all human cancers. This provides a remarkable opportunity for cancer prevention via immunization. Since Harald zur Hausen’s pioneering identification of hrHPV types 16 and 18, found in ~50% and ~20% of cervical cancers respectively, two prophylactic HPV vaccines containing virus-like particles (VLP) of each genotype have been widely licensed. These vaccines are beginning to impact infection and HPV-associated neoplasia rates after immunization campaigns in adolescents. Here we review recent progress and opportunities to better prevent HPV-associated cancers, including: broadening immune-protection to cover all hrHPV types, reducing the cost of HPV vaccines especially for developing countries that have the highest rates of cervical cancer, and immune-based treatment of established HPV infections. Screening based upon George Papanicolaou’s cervical cytology testing, and more recently detection of hrHPV DNA/RNA, followed by ablative treatment of high grade cervical intraepithelial neoplasia (CIN2/3) have substantially reduced cervical cancer rates, and we examine their interplay with immune-based modalities for the prevention and eventual elimination of cervical cancer and other HPV-related malignancies. PMID:25488410

  10. Immunoprevention of human papillomavirus-associated malignancies.

    PubMed

    Wang, Joshua W; Hung, Chein-Fu; Huh, Warner K; Trimble, Cornelia L; Roden, Richard B S

    2015-02-01

    Persistent infection by one of 15 high-risk human papillomavirus (hrHPV) types is a necessary but not sufficient cause of 5% of all human cancers. This provides a remarkable opportunity for cancer prevention via immunization. Since Harald zur Hausen's pioneering identification of hrHPV types 16 and 18, found in approximately 50% and 20% of cervical cancers, respectively, two prophylactic HPV vaccines containing virus-like particles (VLP) of each genotype have been widely licensed. These vaccines are beginning to affect infection and HPV-associated neoplasia rates after immunization campaigns in adolescents. Here, we review recent progress and opportunities to better prevent HPV-associated cancers, including broadening immune protection to cover all hrHPV types, reducing the cost of HPV vaccines especially for developing countries that have the highest rates of cervical cancer, and immune-based treatment of established HPV infections. Screening based upon George Papanicolaou's cervical cytology testing, and more recently detection of hrHPV DNA/RNA, followed by ablative treatment of high-grade cervical intraepithelial neoplasia (CIN2/3) have substantially reduced cervical cancer rates, and we examine their interplay with immune-based modalities for the prevention and eventual elimination of cervical cancer and other HPV-related malignancies. PMID:25488410

  11. Interaction of caveolin-1, nitric oxide, and nitric oxide synthases in hypoxic human SK-N-MC neuroblastoma cells.

    PubMed

    Shen, Jiangang; Lee, Waisin; Li, Yue; Lau, Chi Fai; Ng, Kwong Man; Fung, Man Lung; Liu, Ke Jian

    2008-10-01

    Neuroblastoma cells are capable of hypoxic adaptation, but the mechanisms involved are not fully understood. We hypothesized that caveolin-1 (cav-1), a plasma membrane signal molecule, might play a role in protecting neuroblastoma cells from oxidative injury by modulating nitric oxide (NO) production. We investigated the alterations of cav-1, cav-2, nitric oxide synthases (NOS), and NO levels in human SK-N-MC neuroblastoma cells exposed to hypoxia with 2% [O2]. The major discoveries include: (i) cav-1 but not cav-2 was up-regulated in the cells exposed to 15 h of hypoxia; (ii) NO donor 1-[N, N-di-(2-aminoethyl) amino] diazen-1-ium-1, 2-diolate up-regulated the expression of cav-1, whereas the non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester and inducible NOS (iNOS) inhibitor 1400W each abolished the increase in cav-1 expression in the hypoxic SK-N-MC cells. These results suggest that iNOS-induced NO production contributes to the up-regulation of cav-1 in the hypoxic SK-N-MC cells. Furthermore, we studied the roles played by cav-1 in regulating NO, NOS, and apoptotic cell death in the SK-N-MC cells subjected to 15 h of hypoxic treatment. Both cav-1 transfection and cav-1 scaffolding domain peptide abolished the induction of iNOS, reduced the production of NO, and reduced the rates of apoptotic cell death in the hypoxic SK-N-MC cells. These results suggest that increased expression of cav-1 in response to hypoxic stimulation could prevent oxidative injury induced by reactive oxygen species. The interactions of cav-1, NO, and NOS could be an important signal pathway in protecting the neuroblastoma cells from oxidative injury, contributing to the hypoxic tolerance of neuroblastoma cells. PMID:18717816

  12. PTEN: Multiple Functions in Human Malignant Tumors

    PubMed Central

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M. A.; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica

    2015-01-01

    PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors. PMID:25763354

  13. Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen

    PubMed Central

    Ma, Dennis; Collins, Jonathan; Hudlicky, Tomas; Pandey, Siyaram

    2012-01-01

    Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells. PMID:22688195

  14. Inhibition of the focal adhesion kinase and vascular endothelial growth factor receptor-3 interaction leads to decreased survival in human neuroblastoma cell lines.

    PubMed

    Beierle, Elizabeth A; Ma, Xiaojie; Stewart, Jerry E; Megison, Michael; Cance, William G; Kurenova, Elena V

    2014-03-01

    Neuroblastoma continues to be a devastating childhood solid tumor and is responsible for over 15% of all childhood cancer-related deaths. Focal adhesion kinase (FAK) and vascular endothelial growth factor receptor-3 (VEGFR-3) are protein tyrosine kinases that are overexpressed in a number of human cancers, including neuroblastoma. These two kinases can directly interact and provide survival signals to cancer cells. In this study, we utilized siRNA to VEGFR-3 to demonstrate the biologic importance of this kinase in neuroblastoma cell survival. We also used confocal microscopy and immunoprecipitation to show that FAK and VEGFR-3 bind in neuroblastoma. Finally, employing a 12-amino-acid peptide (AV3) specific to VEGFR-3, we showed that the colocalization between FAK and VEGFR-3 could be disrupted, and that disruption resulted in decreased neuroblastoma cell survival. These studies provide insight to the FAK-VEGFR-3 interaction in neuroblastoma and demonstrate its importance in this tumor type. Focusing upon the FAK-VEGFR-3 interaction may provide a novel therapeutic target for the development of new strategies for treatment of neuroblastoma. PMID:23065847

  15. Fluorescence Spectroscopy of Human Nonmalignant and Malignant Cells and Tissues.

    NASA Astrophysics Data System (ADS)

    Glassman, Wenling Sha

    This thesis explores steady state and time resolved fluorescence spectroscopy from human malignant and non -malignant cells and tissues. The focus of these studies are the analysis of the excitation spectra, emission spectra, and decay time based on the contribution from several key intrinsic fluorophors: NAD(P)H, flavins, tryptophan, elastin and collagen that exist in different amounts in the human tissues and cells. The comparison between the spectra from malignant and non-malignant cells and tissues gives information on the changes that occur from non-malignancy to malignancy in the cells and tissues. The spectra of tissues and cells are also compared to help in understanding what fluorophors are responsible for fluorescence spectral differences between the malignant and non-malignant tissues and cells. The results in this thesis show that the spectral differences between the normal and cancerous tissues and cells exist in various wavelength ranges. The experimental data from GYN tissues have shown with over 95% of the sensitivity and specificity to separate malignant from non-malignant tissues using 300nm excitation. The 340nm band, which is mostly in response to intrinsic fluorophor (amino acid tryptophan), from malignant tissues were relatively higher then that from the non-malignant tissues. This might have been caused by the higher concentration of free tryptophan in the malignant tumor when compared to that of the normal tissue. This has been found in medical clinical study. The experimental data in this thesis also show that the fluorescence intensities around 450nm-460nm, which are mostly due to the intrinsic fluorophor coenzyme NADH, from both malignant cells in vitro and tissues in vitro are relatively higher than from non-malignant cells in vitro and tissues in vitro. These findings are reinforced by the faster decay time of the NADH fluorescence from normal cells in vitro than from neoplasm cells in vitro. Thus, the NADH in the mitochondria might be

  16. Trim32 facilitates degradation of MYCN on spindle poles and induces asymmetric cell division in human neuroblastoma cells.

    PubMed

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-10-01

    Asymmetric cell division (ACD) is a physiologic process during development and tissue homeostasis. ACD produces two unequal daughter cells: one has stem/progenitor cell activity and the other has potential for differentiation. Recent studies showed that misregulation of the balance between self-renewal and differentiation by ACD may lead to tumorigenesis in Drosophila neuroblasts. However, it is still largely unknown whether human cancer stem-like cells exhibit ACD or not. Here, using human neuroblastoma cells as an ACD model, we found that MYCN accumulates at spindle poles by GSK-3β phosphorylation during mitosis. In parallel, the ACD-related ubiquitin ligase Trim32 was recruited to spindle poles by CDK1/cyclin B-mediated phosphorylation. Trim32 interacted with MYCN at spindle poles during mitosis, facilitating proteasomal degradation of MYCN at spindle poles and inducing ACD. Trim32 also suppressed sphere formation of neuroblastoma-initiating cells, suggesting that the mechanisms of ACD produce differentiated neuroblastoma cells that will eventually die. Thus, Trim32 is a positive regulator of ACD that acts against MYCN and should be considered as a tumor-suppressor candidate. Our findings offer novel insights into the mechanisms of ACD and clarify its contributions to human tumorigenesis. PMID:25100564

  17. Human erythrocytes and neuroblastoma cells are affected in vitro by Au(III) ions

    SciTech Connect

    Suwalsky, Mario; Gonzalez, Raquel; Villena, Fernando; Aguilar, Luis F.; Sotomayor, Carlos P.; Bolognin, Silvia; Zatta, Paolo

    2010-06-25

    Gold compounds are well known for their neurological and nephrotoxic implications. However, haematological toxicity is one of the most serious toxic and less studied effects. The lack of information on these aspects of Au(III) prompted us to study the structural effects induced on cell membranes, particularly that of human erythrocytes. AuCl{sub 3} was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of multibilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, phospholipids classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence that Au(III) interacts with red cell membranes as follows: (a) in scanning electron microscopy studies on human erythrocytes it was observed that Au(III) induced shape changes at a concentration as low as 0.01 {mu}M; (b) in isolated unsealed human erythrocyte membranes Au(III) induced a decrease in the molecular dynamics and/or water content at the glycerol backbone level of the lipid bilayer polar groups in a 5-50 {mu}M concentration range, and (c) X-ray diffraction studies showed that Au(III) in the 10 {mu}m-1 mM range induced increasing structural perturbation only to dimyristoylphosphatidylcholine bilayers. Additional experiments were performed in human neuroblastoma cells SH-SY5Y. A statistically significant decrease of cell viability was observed with Au(III) ranging from 0.1 {mu}M to 100 {mu}M.

  18. Enterovirus 71 transmission by exosomes establishes a productive infection in human neuroblastoma cells.

    PubMed

    Mao, Lingxiang; Wu, Jing; Shen, Li; Yang, Jing; Chen, Jianguo; Xu, Huaxi

    2016-04-01

    Exosomes are small secreted cellular vesicles for intercellular communications which contain proteins, mRNAs, and microRNAs (miRNAs). Recent studies have shown that exosomes play an important role in the transmission of infectious agents including hepatitis C virus, human immunodeficiency virus, and so on. However, the role of exosomes in the transfer of enterovirus 71 (EV71) between host cells remains unknown. In this study, we show that the exosomes derived from EV71-infected rhabdomyosarcoma cells contain EV71 RNA and capsid protein VP1, determined by quantitative reverse transcription-PCR (QRT-PCR) and Western blot analysis. The shedding of exosomes containing virus can establish a productive infection in human neuroblastoma cell line (SK-N-SH). A comparative analysis of neutralization by EV71-specific immunoglobulins showed different levels of neutralization of exosomes-mediated infection compared with free virus. In conclusion, exosomes from EV71-infected cells may play an important role in virus dissemination and are partially resisted to antibody neutralization. Our results suggest that there is an exosomal route of EV71 transmission infection. PMID:26837894

  19. Differential expression of sphingolipids in P-glycoprotein or multidrug resistance-related protein 1 expressing human neuroblastoma cell lines.

    PubMed

    Dijkhuis, Anne-Jan; Douwes, Jenny; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2003-07-31

    The sphingolipid composition and multidrug resistance status of three human neuroblastoma cell lines were established. SK-N-FI cells displayed high expression and functional (efflux) activity of P-glycoprotein, while multidrug resistance-related protein 1 was relatively abundant and most active in SK-N-AS cells. These two cell lines exhibited higher sphingolipid levels, compared to SK-N-DZ, which had the lowest activity of either ATP-binding cassette transporter protein. SK-N-DZ cells also differed in ganglioside composition with predominant expression of b-series gangliosides. In conclusion, these three neuroblastoma cell lines offer a good model system to study sphingolipid metabolism in relation to ATP-binding cassette transporter protein function. PMID:12885402

  20. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells.

    PubMed

    Kim, Han Bit; Yoo, Byung Sun

    2016-07-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells. PMID:27437091

  1. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells

    PubMed Central

    Kim, Han Bit; Yoo, Byung Sun

    2016-01-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells. PMID:27437091

  2. Magnetic Shielding Accelerates the Proliferation of Human Neuroblastoma Cell by Promoting G1-Phase Progression

    PubMed Central

    Liu, Ying; Bartlett, Perry F.; He, Rong-qiao

    2013-01-01

    Organisms have been exposed to the geomagnetic field (GMF) throughout evolutionary history. Exposure to the hypomagnetic field (HMF) by deep magnetic shielding has recently been suggested to have a negative effect on the structure and function of the central nervous system, particularly during early development. Although changes in cell growth and differentiation have been observed in the HMF, the effects of the HMF on cell cycle progression still remain unclear. Here we show that continuous HMF exposure significantly increases the proliferation of human neuroblastoma (SH-SY5Y) cells. The acceleration of proliferation results from a forward shift of the cell cycle in G1-phase. The G2/M-phase progression is not affected in the HMF. Our data is the first to demonstrate that the HMF can stimulate the proliferation of SH-SY5Y cells by promoting cell cycle progression in the G1-phase. This provides a novel way to study the mechanism of cells in response to changes of environmental magnetic field including the GMF. PMID:23355897

  3. Am80 induces neuronal differentiation in a human neuroblastoma NH-12 cell line.

    PubMed

    Shiohira, Hideo; Kitaoka, Akira; Shirasawa, Hiromi; Enjoji, Munechika; Nakashima, Manabu

    2010-09-01

    Retinoids including natural vitamin A, its derivatives and synthetic compounds work as transcription factors through the retinoic acid receptors (RAR, RXR). All-trans retinoic acid (ATRA), a family of retinoids, is an internal ligand of RAR and well known as a useful differentiation inducer to treat acute promyelocytic leukemia (APL). ATRA therapy is now established as an initial treatment for APL. Recently, to improve therapeutic potency and reduce adverse effects of ATRA, a novel synthetic selective agonist for RARalpha and beta, Am80, was developed and applied to APL treatment. In this study, we tested whether Am80 was capable of inducing neuronal differentiation in a human neuroblastoma cell line, NH-12 and compared the differentiation effects between Am80 and ATRA. Morphological studies demonstrated that Am80 induced more potent neurite outgrowth and also proved lesser cell toxicity than ATRA. Am80 up-regulated the expression of tropomyosin-related kinase B as well as ATRA. Moreover, Am80 increased the expression of the neuronal marker, growth-associated protein 43. These findings suggest that Am80 induces neuronal differentiation to a greater extent than ATRA and thus may help establishing therapeutic strategies against neuronal degenerative disorders such as Parkinson's disease. PMID:20664956

  4. Nitric oxide changes distinct aspects of the glycophenotype of human neuroblastoma NB69 cells.

    PubMed

    Van de Wouwer, Marlies; André, Sabine; Gabius, Hans-J; Villalobo, Antonio

    2011-03-15

    It is an open question whether the presence of nitric oxide (NO) affects the cell glycophenotype. A panel of six plant lectins was used in this study to monitor distinct aspects of cell surface glycosylation under nitrosative stress. We determined that treating human neuroblastoma NB69 cells with the long-lived NO donor 2,2'-(hydroxynitrosohydrazono)bis-ethanimine (DETA/NO) and monitoring the non-apoptotic adherent cell population significantly increases the presentation of N-glycans as detected by concanavalin A. Examining fine-structural features, bisected N-glycans and branch-end tailoring including α2,6-sialylation were found to be enhanced. Confocal fluorescence microscopy and cell permeabilization experiments pointed to a major effect of NO on the extent of cell surface N-glycan presentation. We also show that NO increases the level of protein O-GlcNAcylation, a multifunctional post-translational modification. Our results thus establish the first evidence for NO as modulator of distinct aspects of cell glycosylation. PMID:21182976

  5. Protective effects of ginsenoside Rg1 against hydrogen peroxide-induced injury in human neuroblastoma cells

    PubMed Central

    Sun, Zhi-gao; Chen, Li-ping; Wang, Fa-wei; Xu, Cheng-yong; Geng, Miao

    2016-01-01

    The active ingredient of ginseng, ginsenosides Rg1, has been shown to scavenge free radicals and improve antioxidant capacity. This study hypothesized that ginsenosides Rg1 has a protective role in human neuroblastoma cells injured by H2O2. Ginsenosides Rg1 at different concentrations (50 and 100 μM) was used to treat H2O2 (150 μM)-injured SH-SY5Y cells. Results demonstrated that ginsenoside Rg1 elevated the survival rate of SH-SY5Y cells injured by H2O2, diminished the amount of leaked lactate dehydrogenase, and increased superoxide dismutase activity. Ginsenoside Rg1 effectively suppressed caspase-3 immunoreactivity, and contributed to heat shock protein 70 gene expression, in a dose-dependent manner. These results indicate that ginsenoside Rg1 has protective effects on SH-SY5Y cells injured by H2O2 and that its mechanism of action is associated with anti-oxidation and the inhibition of apoptosis.

  6. Indirubin 3'-Epoxide Induces Caspase-Independent Cell Death in Human Neuroblastoma.

    PubMed

    Kurita, Masahiro; Hanada, Satoshi; Ichimaru, Yoshimi; Saito, Hiroaki; Tabata, Keiichi; Asami, Satoru; Miyairi, Shinichi; Suzuki, Takashi

    2016-01-01

    Indirubin inhibits cyclin-dependent kinases by binding to their ATP-binding site, thereby exerting potent cytotoxicity on some tumor cells. We examined the anti-tumor effect of indirubin 3'-epoxide on human neuroblastoma cell lines (IMR-32, SK-N-SH, and NB-39). The results revealed potent cytotoxicity of indirubin 3'-epoxide against the IMR-32 (IC50: 0.16 µM) and SK-N-SH (IC50: 0.07 µM) cells. Furthermore, it also induced an increase of the sub-G1 population in the IMR-32 cells. Examination by Hoechst 33342 staining revealed apoptosis characterized by cell shrinkage, nuclear condensation and nuclear fragmentation in a concentration-dependent manner. Furthermore, annexin V-propidium iodide (PI) double-staining revealed an increase in the percentage of early apoptotic cells following treatment of the cells with indirubin 3'-epoxide without activation of caspases. In addition, significant decreases in the protein level of survivin and poly(ADP-ribose)polymerase (PARP), and increase in that of apoptosis-inducing factor (AIF) were found in the nuclei of the cells. These results suggest that indirubin 3'-epoxide induced caspase-independent apoptosis through mechanisms involving DNA fragmentation and inhibition of DNA repair. PMID:27251501

  7. Magnetic shielding accelerates the proliferation of human neuroblastoma cell by promoting G1-phase progression.

    PubMed

    Mo, Wei-chuan; Zhang, Zi-jian; Liu, Ying; Bartlett, Perry F; He, Rong-qiao

    2013-01-01

    Organisms have been exposed to the geomagnetic field (GMF) throughout evolutionary history. Exposure to the hypomagnetic field (HMF) by deep magnetic shielding has recently been suggested to have a negative effect on the structure and function of the central nervous system, particularly during early development. Although changes in cell growth and differentiation have been observed in the HMF, the effects of the HMF on cell cycle progression still remain unclear. Here we show that continuous HMF exposure significantly increases the proliferation of human neuroblastoma (SH-SY5Y) cells. The acceleration of proliferation results from a forward shift of the cell cycle in G1-phase. The G2/M-phase progression is not affected in the HMF. Our data is the first to demonstrate that the HMF can stimulate the proliferation of SH-SY5Y cells by promoting cell cycle progression in the G1-phase. This provides a novel way to study the mechanism of cells in response to changes of environmental magnetic field including the GMF. PMID:23355897

  8. Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells

    PubMed Central

    Mo, Wei-Chuan; Zhang, Zi-Jian; Wang, Dong-Liang; Liu, Ying; Bartlett, Perry F.; He, Rong-Qiao

    2016-01-01

    Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their GMF sensation but remain poorly understood so far. Previously, we found that the HMF represses expressions of genes associated with cell migration and cytoskeleton assembly in human neuroblastoma cells (SH-SY5Y cell line). Here, we measured the HMF-induced changes on cell morphology, adhesion, motility and actin cytoskeleton in SH-SY5Y cells. The HMF inhibited cell adhesion and migration accompanied with a reduction in cellular F-actin amount. Moreover, following exposure to the HMF, the number of cell processes was reduced and cells were smaller in size and more round in shape. Furthermore, disordered kinetics of actin assembly in vitro were observed during exposure to the HMF, as evidenced by the presence of granule and meshed products. These results indicate that elimination of the GMF affects assembly of the motility-related actin cytoskeleton, and suggest that F-actin is a target of HMF exposure and probably a mediator of GMF sensation. PMID:27029216

  9. Hypomethylation of DNA from Benign and Malignant Human Colon Neoplasms

    NASA Astrophysics Data System (ADS)

    Goelz, Susan E.; Vogelstein, Bert; Hamilton, Stanley R.; Feinberg, Andrew P.

    1985-04-01

    The methylation state of DNA from human colon tissue displaying neoplastic growth was determined by means of restriction endonuclease analysis. When compared to DNA from adjacent normal tissue, DNA from both benign colon polyps and malignant carcinomas was substantially hypomethylated. With the use of probes for growth hormone, γ -globin, α -chorionic gonadotropin, and γ -crystallin, methylation changes were detected in all 23 neoplastic growths examined. Benign polyps were hypomethylated to a degree similar to that in malignant tissue. These results indicate that hypomethylation is a consistent biochemical characteristic of human colonic tumors and is an alteration in the DNA that precedes malignancy.

  10. Primary orbital neuroblastoma with intraocular extension

    PubMed Central

    Vallinayagam, Muthukrishnan; Rao, Vasudev Anand; Pandian, Datta Gulnar; Akkara, John Davis; Ganesan, Niruban

    2015-01-01

    Neuroblastoma is an undifferentiated malignancy of primitive neuroblasts. Neuroblastoma is among the most common solid tumors of childhood. Orbital neuroblastoma is typically a metastatic tumor. In this case report, we describe a 2-year-old child with a rapidly progressing orbital tumor. Computed tomography revealed an orbital mass lesion with extraocular and intraocular components. An incisional biopsy was done, and a histopathological examination showed features suggestive of neuroblastoma. Systemic workup including ultrasonography of the abdomen, chest roentgenogram, whole body computed tomography, and bone scintigraphy showed no evidence of systemic involvement. The diagnosis of primary orbital neuroblastoma was made, and the child was subjected to chemotherapy followed by rapid melting of the tumor. Neuroblastoma should be considered in the differential diagnosis of childhood orbital tumors. PMID:26576531

  11. Cellular cytotoxicity mediated by isotype-switch variants of a monoclonal antibody to human neuroblastoma.

    PubMed Central

    d'Uscio, C. H.; Jungi, T. W.; Blaser, K.

    1991-01-01

    The biological property of an antibody is determined by its antigen binding characteristics and its isotype-related effector functions. We have established monoclonal antibodies of different isotypes by stepwise selection and cloning of the hybridoma CE7. The original CE7 secretes an IgG1/kappa (CE7 gamma 1) antibody that recognises a 185 kD cell surface glycoprotein expressed on all human sympatho-adrenomedullary cells. Isotype-switch variants were isolated in the following sequence: from the original CE7 gamma 1, CE7 gamma 2b variants were isolated, and from a CE7 gamma 2b variant CE7 gamma 2a variants were isolated. The antibodies of three different isotype variant cell lines possess identical antigen binding characteristics, but display distinct effector functions as demonstrated by antibody dependent cell-mediated cytotoxicity (ADCC). ADCC was performed with the neuroblastoma line IMR-32 as the target cells, and different FcR gamma positive cells were either freshly isolated from human peripheral blood leukocytes or cultured for 6-10 days and tested as potential effector cells. Tumour lysis mediated by monocyte-derived macrophages depended on the presence of CE7 gamma 2a antibodies; antibodies from the CE7 hybridomas of gamma 2b and gamma 1 isotypes were virtually inactive in ADCC assay. Pre-exposure of macrophages to rIFN-gamma enhanced their ADCC activity, a result that is compatible with the notion that the high affinity Fc IgG receptor (FcR gamma I/CD64) is involved in the triggering of ADCC in macrophages. In contrast to macrophages, mononuclear cells, nonadherent cells and monocytes displayed considerable non-specific lytic activity, which was little influenced by the presence of antibody regardless of the isotype added. PMID:1911183

  12. Neuroblastoma: Molecular Pathogenesis and Therapy

    PubMed Central

    Louis, Chrystal U; Shohet, Jason M

    2015-01-01

    Neuroblastoma is a developmental tumor of young children arising from the embryonic sympathoadrenal lineage of the neural crest. Currently neuroblastoma is the primary cause of death from pediatric cancer for children between the age of 1 and 5 years and accounts for approximately 13% of all pediatric cancer mortality. Its clinical impact and its unique biology have made this aggressive malignancy the focus of a large concerted translational research effort. New insights into tumor biology are driving the development of new classification schemas; novel targeted therapeutic approaches include small molecule inhibitors, epigenetic, non-coding RNA, and cell-based immunologic therapies. Recent insights regarding the pathogenesis and biology of neuroblastoma will be placed in context with the current understanding of tumor biology and tumor/host interactions. Systematic classification of patients coupled with therapeutic advances point to a future of improved clinical outcomes for this biologically distinct and highly aggressive pediatric malignancy. PMID:25386934

  13. Epidermal growth factor receptor is overexpressed in neuroblastoma tissues and cells.

    PubMed

    Zheng, Chao; Shen, Ruling; Li, Kai; Zheng, Na; Zong, Yuqing; Ye, Danrong; Wang, Qingcheng; Wang, Zuopeng; Chen, Lian; Ma, Yangyang

    2016-08-01

    Neuroblastoma is the most common abdominal malignant tumor in childhood. Immunotoxin (IT) that targets the tumor cell surface receptor is a new supplementary therapeutic treatment approach. The purpose of this study is to detect the expression of epidermal growth factor receptor (EGFR) in neuroblastoma cell lines and tissues, and to explore if IT therapy can be used to treat refractory neuroblastoma. The EGFR expression in human neuroblastoma tissue samples was detected by immunohistochemistry staining. The positive rate of EGFR expression was 81.0% in neuroblastoma tissue and 50.0% in gangliocytoma, respectively, but without statistical significance between them (P > 0.05). The positive rate of EGFR expression in favorable type and unfavorable type was 62.5% and 92.3%, respectively, but they were not statistically different (P > 0.05). Results from pre-chemotherapy and post-chemotherapy samples showed that there was no significant statistical difference (P > 0.05) between them in the EGFR expression. Furthermore, the EGFR expression levels in five neuroblastoma cell lines were measured using cell-based ELISA assay and western blot analysis. The results showed that the expression of EGFR was higher in KP-N-NS and BE(2)-C than those in other cell lines. Our results revealed that there are consistent and widespread expressions of EGFR in neuroblastoma tissues as well as in neuroblastoma cell lines, suggesting that it is possible to develop future treatment strategies of neuroblastoma by targeting at the EGFR. PMID:27353319

  14. Immunolocalization of neuroblastoma using radiolabeled monoclonal antibody UJ13A

    SciTech Connect

    Goldman, A.; Vivian, G.; Gordon, I.; Pritchard, J.; Kemshead, J.

    1984-08-01

    The monoclonal antibody UJ13A, raised after immunization of mice with human fetal brain, recognized an antigen expressed on human neuroblastoma cell lines and fresh tumors. Antibody was purified and radiolabeled with iodine isotopes using chloramine-T. In preclinical studies, 125I-labeled UJ13A was injected intravenously into nude mice bearing xenografts of human neuroblastoma. Radiolabeled UJ13A uptake by the tumors was four to 23 times greater than that by blood. In control animals, injected with a similar quantity of a monoclonal antibody known not to bind to neuroblastoma cells in vitro (FD44), there was no selective tumor uptake. Nine patients with histologically confirmed neuroblastoma each received 100 to 300 micrograms UJ13A radiolabeled with 1 to 2.8 mCi 123I or 131I. Sixteen positive sites were visible on gamma scans 1 to 7 days after injection: 15 were primary or secondary tumor sites, and one was a false positive; there were two false negatives. In two of the 15 positive sites, tumor had not been demonstrated by other imaging techniques; these were later confirmed as areas of malignant infiltration. No toxicity was encountered.

  15. Epigenetic Regulation of Cytosolic Phospholipase A2 in SH-SY5Y Human Neuroblastoma Cells.

    PubMed

    Tan, Charlene Siew-Hon; Ng, Yee-Kong; Ong, Wei-Yi

    2016-08-01

    Group IVA cytosolic phospholipase A2 (cPLA2 or PLA2G4A) is a key enzyme that contributes to inflammation via the generation of arachidonic acid and eicosanoids. While much is known about regulation of cPLA2 by posttranslational modification such as phosphorylation, little is known about its epigenetic regulation. In this study, treatment with histone deacetylase (HDAC) inhibitors, trichostatin A (TSA), valproic acid, tubacin and the class I HDAC inhibitor, MS-275, were found to increase cPLA2α messenger RNA (mRNA) expression in SH-SY5Y human neuroblastoma cells. Co-treatment of the histone acetyltransferase (HAT) inhibitor, anacardic acid, modulated upregulation of cPLA2α induced by TSA. Specific involvement of class I HDACs and HAT in cPLA2α regulation was further shown, and a Tip60-specific HAT inhibitor, NU9056, modulated the upregulation of cPLA2α induced by MS-275. In addition, co-treatment of with histone methyltransferase (HMT) inhibitor, 5'-deoxy-5'-methylthioadenosine (MTA) suppressed TSA-induced cPLA2α upregulation. The above changes in cPLA2 mRNA expression were reflected at the protein level by Western blots and immunocytochemistry. Chromatin immunoprecipitation (ChIP) showed TSA increased binding of trimethylated H3K4 to the proximal promoter region of the cPLA2α gene. Cell injury after TSA treatment as indicated by lactate dehydrogenase (LDH) release was modulated by anacardic acid, and a role of cPLA2 in mediating TSA-induced injury shown, after co-incubation with the cPLA2 selective inhibitor, arachidonoyl trifluoromethyl ketone (AACOCF3). Together, results indicate epigenetic regulation of cPLA2 and the potential of such regulation for treatment of chronic inflammation. PMID:26162318

  16. New Alzheimer amyloid beta responsive genes identified in human neuroblastoma cells by hierarchical clustering.

    PubMed

    Uhrig, Markus; Ittrich, Carina; Wiedmann, Verena; Knyazev, Yuri; Weninger, Annette; Riemenschneider, Matthias; Hartmann, Tobias

    2009-01-01

    Alzheimer's disease (AD) is characterized by neuronal degeneration and cell loss. Abeta(42), in contrast to Abeta(40), is thought to be the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored the transcriptomic responses to increased or decreased Abeta(40) and Abeta(42) levels, generated and derived from its precursor C99 (C-terminal fragment of APP comprising 99 amino acids) in human neuroblastoma cells. We identified fourteen differentially expressed transcripts by hierarchical clustering and discussed their involvement in AD. These fourteen transcripts were grouped into two main clusters each showing distinct differential expression patterns depending on Abeta(40) and Abeta(42) levels. Among these transcripts we discovered an unexpected inverse and strong differential expression of neurogenin 2 (NEUROG2) and KIAA0125 in all examined cell clones. C99-overexpression had a similar effect on NEUROG2 and KIAA0125 expression as a decreased Abeta(42)/Abeta(40) ratio. Importantly however, an increased Abeta(42)/Abeta(40) ratio, which is typical of AD, had an inverse expression pattern of NEUROG2 and KIAA0125: An increased Abeta(42)/Abeta(40) ratio up-regulated NEUROG2, but down-regulated KIAA0125, whereas the opposite regulation pattern was observed for a decreased Abeta(42)/Abeta(40) ratio. We discuss the possibilities that the so far uncharacterized KIAA0125 might be a counter player of NEUROG2 and that KIAA0125 could be involved in neurogenesis, due to the involvement of NEUROG2 in developmental neural processes. PMID:19707560

  17. New Alzheimer Amyloid β Responsive Genes Identified in Human Neuroblastoma Cells by Hierarchical Clustering

    PubMed Central

    Uhrig, Markus; Ittrich, Carina; Wiedmann, Verena; Knyazev, Yuri; Weninger, Annette; Riemenschneider, Matthias; Hartmann, Tobias

    2009-01-01

    Alzheimer's disease (AD) is characterized by neuronal degeneration and cell loss. Aβ42, in contrast to Aβ40, is thought to be the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored the transcriptomic responses to increased or decreased Aβ40 and Aβ42 levels, generated and derived from its precursor C99 (C-terminal fragment of APP comprising 99 amino acids) in human neuroblastoma cells. We identified fourteen differentially expressed transcripts by hierarchical clustering and discussed their involvement in AD. These fourteen transcripts were grouped into two main clusters each showing distinct differential expression patterns depending on Aβ40 and Aβ42 levels. Among these transcripts we discovered an unexpected inverse and strong differential expression of neurogenin 2 (NEUROG2) and KIAA0125 in all examined cell clones. C99-overexpression had a similar effect on NEUROG2 and KIAA0125 expression as a decreased Aβ42/Aβ40 ratio. Importantly however, an increased Aβ42/Aβ40 ratio, which is typical of AD, had an inverse expression pattern of NEUROG2 and KIAA0125: An increased Aβ42/Aβ40 ratio up-regulated NEUROG2, but down-regulated KIAA0125, whereas the opposite regulation pattern was observed for a decreased Aβ42/Aβ40 ratio. We discuss the possibilities that the so far uncharacterized KIAA0125 might be a counter player of NEUROG2 and that KIAA0125 could be involved in neurogenesis, due to the involvement of NEUROG2 in developmental neural processes. PMID:19707560

  18. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells.

    PubMed

    Mailloux, Ryan J; Yumvihoze, Emmanuel; Chan, Hing Man

    2015-12-15

    The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O2(-)), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O2(-)mediated degradation of MeHg in human neuroblastoma cells SH-K-SN. We also utilized paraquat (PQ) which generates O2(-) in the mitochondrial matrix. We found that the cleavage of the carbon-metal bond in MeHg was highly dependent on the topology of O2(-) production by mitochondria. Both rotenone and PQ, which increase O2(-) in the mitochondrial matrix at a dose-dependent manner, enhanced the conversion of MeHg to inorganic mercury (iHg). Surprisingly, antimycin A, which prompts emission of O2(-) into the intermembrane space, did not have the same effect even though antimycin A induced a dose dependent increase in O2(-) emission. Rotenone and PQ also enhanced the toxicity of sub-toxic doses (0.1 μM) MeHg which correlated with the accumulation of iHg in mitochondria and depletion of mitochondrial protein thiols. Taken together, our results demonstrate that MeHg degradation is mediated by mitochondrial O2(-), specifically within the matrix of mitochondria when O2(-) is in adequate supply. Our results also show that O2(-) amplifies MeHg toxicity specifically through its conversion to iHg and subsequent interaction with protein cysteine thiols (R-SH). The implications of our findings in mercury neurotoxicity are discussed herein. PMID:26545714

  19. Neurotoxin-induced pathway perturbation in human neuroblastoma SH-EP cells.

    PubMed

    Do, Jin Hwan

    2014-09-01

    The exact causes of cell death in Parkinson's disease (PD) remain unknown despite extensive studies on PD.The identification of signaling and metabolic pathways involved in PD might provide insight into the molecular mechanisms underlying PD. The neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) induces cellular changes characteristic of PD, and MPP(+)-based models have been extensively used for PD studies. In this study, pathways that were significantly perturbed in MPP(+)-treated human neuroblastoma SH-EP cells were identified from genome-wide gene expression data for five time points (1.5, 3, 9, 12, and 24 h) after treatment. The mitogen-activated protein kinase (MAPK) signaling pathway and endoplasmic reticulum (ER) protein processing pathway showed significant perturbation at all time points. Perturbation of each of these pathways resulted in the common outcome of upregulation of DNA-damage-inducible transcript 3 (DDIT3). Genes involved in ER protein processing pathway included ubiquitin ligase complex genes and ER-associated degradation (ERAD)-related genes. Additionally, overexpression of DDIT3 might induce oxidative stress via glutathione depletion as a result of overexpression of CHAC1. This study suggests that upregulation of DDIT3 caused by perturbation of the MAPK signaling pathway and ER protein processing pathway might play a key role in MPP(+)-induced neuronal cell death. Moreover, the toxicity signal of MPP(+) resulting from mitochondrial dysfunction through inhibition of complex I of the electron transport chain might feed back to the mitochondria via ER stress. This positive feedback could contribute to amplification of the death signal induced by MPP(+). PMID:25234470

  20. Neurotoxin-Induced Pathway Perturbation in Human Neuroblastoma SH-EP Cells

    PubMed Central

    Do, Jin Hwan

    2014-01-01

    The exact causes of cell death in Parkinson’s disease (PD) remain unknown despite extensive studies on PD.The identification of signaling and metabolic pathways involved in PD might provide insight into the molecular mechanisms underlying PD. The neurotoxin 1-methyl-4-phenylpyridinium (MPP+) induces cellular changes characteristic of PD, and MPP+-based models have been extensively used for PD studies. In this study, pathways that were significantly perturbed in MPP+-treated human neuroblastoma SH-EP cells were identified from genome-wide gene expression data for five time points (1.5, 3, 9, 12, and 24 h) after treatment. The mitogen-activated protein kinase (MAPK) signaling pathway and endoplasmic reticulum (ER) protein processing pathway showed significant perturbation at all time points. Perturbation of each of these pathways resulted in the common outcome of upregulation of DNA-damage-inducible transcript 3 (DDIT3). Genes involved in ER protein processing pathway included ubiquitin ligase complex genes and ER-associated degradation (ERAD)-related genes. Additionally, overexpression of DDIT3 might induce oxidative stress via glutathione depletion as a result of overexpression of CHAC1. This study suggests that upregulation of DDIT3 caused by perturbation of the MAPK signaling pathway and ER protein processing pathway might play a key role in MPP+-induced neuronal cell death. Moreover, the toxicity signal of MPP+ resulting from mitochondrial dysfunction through inhibition of complex I of the electron transport chain might feed back to the mitochondria via ER stress. This positive feedback could contribute to amplification of the death signal induced by MPP+. PMID:25234470

  1. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells

    PubMed Central

    Li, Tong; Paudel, Hemant K.

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer’s disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445–6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  2. Fenofibrate suppressed proliferation and migration of human neuroblastoma cells via oxidative stress dependent of TXNIP upregulation

    SciTech Connect

    Su, Cunjin; Shi, Aiming; Cao, Guowen; Tao, Tao; Chen, Ruidong; Hu, Zhanhong; Shen, Zhu; Tao, Hong; Cao, Bin; Hu, Duanmin; Bao, Junjie

    2015-05-15

    There are no appropriate drugs for metastatic neuroblastoma (NB), which is the most common extra-cranial solid tumor for childhood. Thioredoxin binding protein (TXNIP), the endogenous inhibitor of ROS elimination, has been identified as a tumor suppressor in various solid tumors. It reported that fenofibrate exerts anti-tumor effects in several human cancer cell lines. However, its detail mechanisms remain unclear. The present study assessed the effects of fenofibrate on NB cells and investigated TXNIP role in its anti-tumor mechanisms. We used MTT assay to detect cells proliferation, starch wound test to investigate cells migration, H{sub 2}DCF-DA to detect intracellular ROS, siRNA to interfere TXNIP and peroxisome proliferator-androgen receptor-alpha (PPAR-α) expression, western blot to determine protein levels, flow cytometry to analyze apoptosis. Fenofibrate suppressed proliferation and migration of NB cells, remarkably increased intracellular ROS, upregulated TXNIP expression, promoted cell apoptosis. Furthermore, inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. Our results indicated the anti-tumor role of fenofibrate on NB cells by exacerbating oxidative stress and inducing apoptosis was dependent on the upregulation of TXNIP. - Highlights: • We found that fenofibrate suppressed proliferation and migration of NB cells. • We found that fenofibrate remarkably increased intracellular ROS, upregulated TXNIP expression, and promoted cell apoptosis. • Inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. • Our results indicated the anti-tumor role of fenofibrate on NB cells was dependent on the upregulation of TXNIP.

  3. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells.

    PubMed

    Li, Tong; Paudel, Hemant K

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer's disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445-6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  4. Infrared absorption spectra of human malignant tumor tissues

    NASA Astrophysics Data System (ADS)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  5. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold.

    PubMed

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Norouzi Javidan, Abbas; Ai, Jafar

    2015-08-01

    Neural tissue engineering is an important area of research in the field of tissue-engineering especially for neurodegenerative disease such as spinal cord injury. The differentiation capacity of human endometrial stem cells (hEnSCs) into neuronal cells has yet to be elucidated. Here, the major aim of the present study was to investigate the differentiation ability of hEnSCs cultured on polylactic acid/chitosan (PLA/CS) nanofibrous scaffold into neuroglial cells in response to conditioned medium of BE(2)-C human neuroblastoma cells and growth factors. Here we investigated the use PLA/CS scaffold as a three dimensional (3D) system that increased neuro-glial cells differentiation. Human EnSCs after three passages were differentiated in neuro-glial like cells under neuroblastoma conditioned medium with FGF2/PDGF-AA on PLA/CS scaffold. By day 18, differentiated cells were analyzed for expression of neuroglial markers by qRT-PCR and immunofluorescence. The results revealed that hEnSCs attach, grow and differentiation on the nanofibrous PLA/CS scaffold. Additionally, our study showed the expression of neural and glial lineage markers such as Nestin, NF-L, MAP2, PDGFRa, CNP, Olig2, MBP, and GFAP in the level of mRNA and MAP2, Tuj-1, and NF-L in the protein level after 18 days. Our results demonstrate that hEnSCs cultured on PLA/CS nanofibrous scaffold have the potential to differentiate in neuronal and glial cells in presence of neuroblastoma conditioned medium on PLA/CS scaffold. The result of this study may have impact in tissue engineering and cells-base therapy of neurodegenerative diseases and have a great potential for wide application. PMID:25611196

  6. Human Neuroblastoma: From Basic Science to Clinical Debut of Cellular Oncogenes

    NASA Astrophysics Data System (ADS)

    Schwab, Manfred

    Neuroblastoma is a childhood embryonic tumor of migrating neuroectodermal cells derived from the neural crest and destined for the adrenal medulla and the sympathetic nervous system. It very often has a rapidly progressive clinical course, and although many advances have been made in understanding the development of this tumor, improving the survival rates particularly in patients with metastatic tumor has been a frustrating experience. The mechanisms leading to neuroblastoma are largely unclear, but nonrandom chromosomal changes discovered early suggested the involvement of genetic alterations. Most prominent among these is the amplification of the oncogene MYCN, which identifies a group of patients who have a particularly dire prognosis. Amplified MYCN is used today as a prognostic marker on which therapy design is based to a large extent. An unusual aspect of neuroblastoma is the high rate at which tumors regress spontaneously, even in infants with extensive liver involvement and numerous subcutaneous nodules. Identifying the molecular and cellular basis of spontaneous regression could result in improved therapeutic approaches. Neuroblastoma is a model tumor with many fascinating aspects but has remained a challenge to the pediatric oncologist

  7. EXAMINATION OF CULTURE CONDITIONS ON ESTERASE ACTIVITIES IN HUMAN AND MOUSE NEUROBLASTOMA CELLS

    EPA Science Inventory

    Because neuroblastoma cell lines have potential to be used as in vitro alternatives for screening of antiesterase compounds (e.g., organophosphates (OPs) and carbamates), information is needed on conditions under which the cells are grown as these conditions may contribute to exp...

  8. Promising therapeutic targets in neuroblastoma

    PubMed Central

    Matthay, Katherine K.; George, Rani E.; Yu, Alice L.

    2012-01-01

    Neuroblastoma, the most common extra- cranial solid tumor in children, is derived from neural crest cells. Nearly half of patients present with metastatic disease, and have 5-year EFS of less than 50%. New approaches with targeted therapy may improve efficacy without increased toxicity. The current review will evaluate three promising targeted therapies, including 131I-metaiodobenzylguanidine (MIBG), a radiopharmaceutical taken up by the human norepinephrine transporter expressed in 90% of neuroblastomas, immunotherapy with monoclonal antibodies targeting the GD2 ganglioside, expressed on 98% of neuroblastoma cells, and inhibitors of ALK, a tyrosine kinase which is mutated or amplified in approximately 10% of neuroblastoma and expressed on the surface of most neuroblastoma cells. Early phase trials have confirmed the activity of 131I-MIBG in relapsed neuroblastoma, with response rates of about 30%, but the technical aspects of administration of large amounts of radioactivity in young children and the limited access have hindered incorporation into treatment of newly diagnosed patients. Anti-GD2 antibodies have also demonstrated activity in relapsed disease, and a recent phase III randomized trial showed a significant improvement in event-free survival for patients receiving chimeric anti-GD2 (ch14.18) combined with cytokines and isotretinoin after myeloablative consolidation therapy. A recently approved small molecule inhibitor of ALK has promising pre-clinical activity for neuroblastoma, and is currently in phase I and II trials. This is the first agent directed to a specific mutation in neuroblastoma, and marks a new step toward personalized therapy for neuroblastoma. Further clinical development of targeted treatments offers new hope for children with neuroblastoma. PMID:22589483

  9. Promising therapeutic targets in neuroblastoma.

    PubMed

    Matthay, Katherine K; George, Rani E; Yu, Alice L

    2012-05-15

    Neuroblastoma, the most common extracranial solid tumor in children, is derived from neural crest cells. Nearly half of patients present with metastatic disease and have a 5-year event-free survival of <50%. New approaches with targeted therapy may improve efficacy without increased toxicity. In this review we evaluate 3 promising targeted therapies: (i) (131)I-metaiodobenzylguanidine (MIBG), a radiopharmaceutical that is taken up by human norepinephrine transporter (hNET), which is expressed in 90% of neuroblastomas; (ii) immunotherapy with monoclonal antibodies targeting the GD2 ganglioside, which is expressed on 98% of neuroblastoma cells; and (iii) inhibitors of anaplastic lymphoma kinase (ALK), a tyrosine kinase that is mutated or amplified in ~10% of neuroblastomas and expressed on the surface of most neuroblastoma cells. Early-phase trials have confirmed the activity of (131)I-MIBG in relapsed neuroblastoma, with response rates of ~30%, but the technical aspects of administering large amounts of radioactivity in young children and limited access to this agent have hindered its incorporation into treatment of newly diagnosed patients. Anti-GD2 antibodies have also shown activity in relapsed disease, and a recent phase III randomized trial showed a significant improvement in event-free survival for patients receiving chimeric anti-GD2 (ch14.18) combined with cytokines and isotretinoin after myeloablative consolidation therapy. A recently approved small-molecule inhibitor of ALK has shown promising preclinical activity for neuroblastoma and is currently in phase I and II trials. This is the first agent directed to a specific mutation in neuroblastoma, and marks a new step toward personalized therapy for neuroblastoma. Further clinical development of targeted treatments offers new hope for children with neuroblastoma. PMID:22589483

  10. Absence of point mutation in the 12th codon of transformed c-Ha-rasl genes of human cancer of the breast, stomach, melanoma, and neuroblastoma

    SciTech Connect

    Knyazev, P.G.; Schafer, R.; Willecke, K.V.; Seitz, I.F.

    1985-11-01

    In the authors' previous investigations, they established that the tumorous cell lines SK-BR-3 (breast cancer), LAN-1 (neuroblastoma), and a heterotransplant of malignant melanoma Jal contain transforming genes of Ha-ras type. Now, the authors report their results using restriction endonucleases of MspI and HpaII restriction to study nucleotide sequences 5'-CCGGC-3' and 3'GGCCG-5', which contain the 12th codon of GGC for the amino acid glycine in the normal allele of c-Ha-rasl in the three tumors listed above, in addition to human adenocarcinoma of the stomach (CaVSt) and normal cells corresponding to them. For hybridization of MspI/HpaII, fragments of chromosomal DNA isolated from cell lines SK-BR-3, and LAN-1, Ja-1 heterotransplant, and stomach adenocarcinoma CaVSt, the XmaI section of EJ oncogene, c-Ha-rasl (plasmid pEJ 6.6), labeled with /sup 32/P was used in down-translation reaction. Hybridization was performed in 3 x SSC buffer containing 5x Deinhardt's reagent and 10% dextran sulfate at 68/sup 0/C for 16-18 h. Washing of filters was conducted under rigid conditions. For autoradiography, Kodak XR-5 x-ray film in cartridges with reinforcing shields was used at -70/sup 0/C, exposure time of four to six days.

  11. Rare variants in TP53 and susceptibility to neuroblastoma.

    PubMed

    Diskin, Sharon J; Capasso, Mario; Diamond, Maura; Oldridge, Derek A; Conkrite, Karina; Bosse, Kristopher R; Russell, Mike R; Iolascon, Achille; Hakonarson, Hakon; Devoto, Marcella; Maris, John M

    2014-04-01

    TP53 is the most frequently mutated gene in human malignancies; however, de novo somatic mutations in childhood embryonal cancers such as neuroblastoma are rare. We report on the analysis of three independent case-control cohorts comprising 10290 individuals and demonstrate that rs78378222 and rs35850753, rare germline variants in linkage disequilibrium that map to the 3' untranslated region (UTR) of TP53 and 5' UTR of the Δ133 isoform of TP53, respectively, are robustly associated with neuroblastoma (rs35850753: odds ratio [OR] = 2.7, 95% confidence interval [CI] = 2.0 to 3.6, P combined = 3.43×10(-12); rs78378222: OR = 2.3, 95% CI = 1.8 to 2.9, P combined = 2.03×10(-11)). All statistical tests were two-sided. These findings add neuroblastoma to the complex repertoire of human cancers influenced by the rs78378222 hypomorphic allele, which impairs proper termination and polyadenylation of TP53 transcripts. Future studies using whole-genome sequencing data are likely to reveal additional rare variants with large effect sizes contributing to neuroblastoma tumorigenesis. PMID:24634504

  12. Meta-[{sup 211}At]astatobenzylguanidine (MABG): In vivo evaluation in an athymic mouse human neuroblastoma xenograft model

    SciTech Connect

    Vaidyanathan, G.; Friedman, H.S.; Keir, S.T.

    1996-05-01

    Because of the short range and high linear energy transfer of {sup 211}At {alpha}-particles, the MIBG analogue MABG might be useful for the therapy of micrometastatic neuroblastoma and previous in vitro studies have demonstrated that under single-cell conditions, the cytotoxicity of MABG is > 1000 times higher than [{sup 131}I]MIBG. A paired label protocol was used to compare the tissue distribution of MABG and [{sup 131}I]MIBG in athymic mice bearing subcutaneous SK-N-SH human neuroblastoma xenografts from 1-24 hr after injection. In tumor, significantly higher (p < 0.05) uptake was observed for MABG (3.8 {plus_minus} 0.8%ID/g vs 3.1 {plus_minus} 0.7%ID/g at 8 hr). Pretreatment with desipramine reduced tumor uptake of MABG by 43%, suggesting that accumulation was related to the uptake-1 mechanism. Significantly higher uptake of MABG also was observed in normal tissue targets. For example, at 8 hr, heart uptake of MABG was 6.0 {plus_minus} 0.9 % ID/g compared with 4.5 {plus_minus} 0.8%ID/g for [{sup 131}I]MIBG. Two strategies were investigated to increase the tumor-to-hear uptake ratio. Pretreatment of mice with unlabeled MIBG (4 mg/kg) increased MABG tumor uptake by 1.5-fold while reducing uptake in several normal tissues including heart. The vesicular uptake blocker tetrabenazine (TBZ; 20 mg/kg), reduced MABG hear uptake by 30% of control values with not significant decrease in tumor levels. We conclude that MABG deserves further evaluation as a potential agent for the treatment of neuroblastoma, particularly in combination with strategies to minimize radiation dose to normal target tissues.

  13. MYCN is retained in single copy at chromosome 2 band p23-24 during amplification in human neuroblastoma cells

    SciTech Connect

    Corvi, R.; Amler, L.C.; Savelyeva, L.; Gehring, M.; Schwab, M. )

    1994-06-07

    Amplification of the human N-myc protooncogene, MYCN, is frequently seen either in extrachromosomal double minutes or in homogeneously staining regions of aggressively growing neuroblastomas. MYCN maps to chromosome 2 band p23-24, but homogeneously staining regions have never been observed at this band, suggesting transposition of MYCN during amplification. The authors have employed fluorescence in situ hybridization to determine the status of MYCN at 2p23-24 in five human neuroblastoma cell lines. All five lines carried, in addition to amplified MYCN in homogeneously staining regions or double minutes, single-copy MYCN at the normal position. In one line there was coamplification of MYCN together with DNA of the host chromosome 12, to which MYCN had been transposed. The results suggest a model of amplification where MYCN is retained at its original location. They further sustain the view that either the initial events of MYCN amplification or the further evolution of amplified MYCN copies follow mechanisms different from those leading to amplification of drug-resistance genes.

  14. Radiofrequency radiation-induced calcium-ion-efflux enhancement from human and other neuroblastoma cells in culture: (Final technical report)

    SciTech Connect

    Dutta, S.K.; Ghosh, B.; Blackman, C.F.

    1988-01-01

    In order to test the generality of radiofrequency-radiation-induced change in alternation of /sup 45/Ca/sup 2/plus// efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude modulated (AM) at 16 Hz, at specific absorption rates (SAR) of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 Wkg. Significant /sup 45/Ca/sup 2/plus// efflux was obtained at SAR values of 0.05 and 0.005 Wkg. Enchanced efflux at 0.05 Wkg peaked at the 13-to-16 Hz and at the 57.5-to-60 Hz modulation ranges. A Chinese hamster-mouse hybrid neuroblastoma was also shown to exhibit enchanced radiation-induced /sup 45/Ca/sup 2/plus// efflux at an SAR of 0.05 Wkg, using 147 MHz, AM at 16 hz. These results confirm that amplitude-modulated radiofrequency radiation can induce response in cells of nervous tissue origin from widely different animal species including humans. The results are also consistent with reports of similar findings in avian and feline brain tissue reported by others and indicate the general nature of the phenomenon. 9 refs., 3 tabs.

  15. Inconspicuous Presentation of Metastatic Neuroblastoma.

    PubMed

    Hatten, James; McGuffin, Aaron; Mogul, Mark

    2016-01-01

    Neuroblastoma is a malignant tumor arising from nerve tissue that accounts for approximately 15 percent of pediatric cancer fatalities. Primary tumors most commonly arise in sympathetic nervous tissue of the abdomen and metastasize to the bone marrow, liver, and lymph nodes. This case report depicts a 3-year-old girl who presented with a recurring fever, runny nose, and a positive test for rhinovirus suggesting a simple case of the common cold. Further investigation, however, revealed stage 4 neuroblastoma. This patient experience emphasizes the importance of having a high level of suspicion to rule out more serious underlying pathology in a seemingly unremarkable patient presentation. PMID:27491101

  16. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2

    PubMed Central

    Xiao, Daibiao; Ren, Ping; Su, Hexiu; Yue, Ming; Xiu, Ruijuan; Hu, Yufeng; Liu, Hudan; Qing, Guoliang

    2015-01-01

    Deamidation of glutamine to glutamate by glutaminase 1 (GLS1, also called GLS) and GLS2 is an essential step in both glutaminolysis and glutathione (GSH) biosynthesis. However, mechanisms whereby cancer cells regulate glutamine catabolism remains largely unknown. We report here that N-Myc, an essential Myc family member, promotes conversion of glutamine to glutamate in MYCN-amplified neuroblastoma cells by directly activating GLS2, but not GLS1, transcription. Abrogation of GLS2 function profoundly inhibited glutaminolysis, which resulted in feedback inhibition of aerobic glycolysis likely due to thioredoxin-interacting protein (TXNIP) activation, dramatically decreasing cell proliferation and survival in vitro and in vivo. Moreover, elevated GLS2 expression is significantly elevated in MYCN-amplified neuroblastomas in comparison with non-amplified ones, correlating with unfavorable patient survival. In aggregate, these results reveal a novel mechanism deciphering context-dependent regulation of metabolic heterogeneities, uncovering a previously unsuspected link between Myc, GLS2 and tumor metabolism. PMID:26528759

  17. Characterization of multidrug transporter-mediated efflux of avermectins in human and mouse neuroblastoma cell lines.

    PubMed

    Dalzell, Abigail M; Mistry, Pratibha; Wright, Jayne; Williams, Faith M; Brown, Colin D A

    2015-06-15

    ABC transporters play an important role in the disposition of avermectins in several animal species. In this study the interactions of three key avermectins, abamectin, emamectin and ivermectin, with human and mouse homologues of MDR1 (ABCB1/Abcb1a) and MRP (ABCC/Abcc), transporters endogenously expressed by human SH-SY5Y and mouse N2a neuroblastoma cells were investigated. In both cell lines, retention of the fluorescent dye H33342 was found to be significantly increased in the presence of avermectins and cyclosporin A. These effects were shown to be unresponsive to the BCRP inhibitor Ko-143 and therefore MDR1/Mdr1-dependent. Avermectins inhibited MDR1/Mdr1a-mediated H33342 dye efflux, with apparent Ki values of 0.24±0.08 and 0.18±0.02μM (ivermectin); 0.60±0.07 and 0.56±0.02μM (emamectin) and 0.95±0.08 and 0.77±0.25μM (abamectin) in SH-SY5Y and N2a cells, respectively. There were some apparent affinity differences for MDR1 and Mdr1a within each cell line (affinity for ivermectin>emamectin≥abamectin, P<0.05 by One-Way ANOVA), but importantly, the Ki values for individual avermectins for human MDR1 or mouse Mdr1a were not significantly different. MK571-sensitive retention of GSMF confirmed the expression of MRP/Mrp efflux transporters in both cell lines. Avermectins inhibited MRP/Mrp-mediated dye efflux with IC50 values of 1.58±0.51 and 1.94±0.72μM (ivermectin); 1.87±0.57 and 2.74±1.01μM (emamectin) and 2.25±0.01 and 1.68±0.63μM (abamectin) in SH-SY5Y and N2a cells, respectively. There were no significant differences in IC50 values between individual avermectins or between human MRP and mouse Mrp. Kinetic data for endogenous human MDR1/MRP isoforms in SH-SY5Y cells and mouse Mdr1a/b/Mrp isoforms in N2a cells are comparable for the selected avermectins. All are effluxed at concentrations well above 0.05-0.1μM ivermectin detected in plasma (Ottesen and Campbell, 1994; Ottesen and Campbell, 1994) This is an important finding in the light of

  18. Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells

    SciTech Connect

    Smets, L.A.; Loesberg, C.; Janssen, M.; Metwally, E.A.; Huiskamp, R.

    1989-06-01

    Radioiodinated m-iodobenzylguanidine (MIBG), an analogue of the neurotransmitter norepinephrine (NE), is increasingly used in the diagnosis and treatment of neural crest tumors. Active uptake and subsequent retention of MIBG and NE was studied in human neuroblastoma SK-N-SH cells. Neuron-specific uptake of (125I)MIBG and (3H)NE saturated at extracellular concentration of 10(-6) M and exceeded by 20-30-fold that by passive diffusion alone. A minimum of 50% of accumulated MIBG remained permanently stored but the SK-N-SH cells were incapable of retaining recaptured (3H)NE. (125I)MIBG was displaced from intracellular binding sites by unlabeled MIBG with 10-fold higher potency than by unlabeled NE. MIBG stored in SK-N-SH cells was insensitive to depletion by the inhibitor of granular uptake reserpine (RSP) and was not precipitated in a granular fraction by differential centrifugation. Only few electron-dense granules were found in these cells by electron microscopy. In contrast, MIBG storage in PC-12 pheochromocytoma cells which contained many storage granules, was sensitive to RSP and part of accumulated drug was recovered in a granular fraction. Accordingly, storage of MIBG in the SK-N-SH neuroblastoma cells is predominantly extravesicular and thus essentially different from that of biogenic amines in normal adrenomedullary tissue or in pheochromocytoma tumors, while sharing with these tissues a common mechanism of active uptake.

  19. Salicin from Willow Bark can Modulate Neurite Outgrowth in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Wölfle, Ute; Haarhaus, Birgit; Kersten, Astrid; Fiebich, Bernd; Hug, Martin J; Schempp, Christoph M

    2015-10-01

    Salicin from willow bark has been used throughout centuries in China and Europe for the treatment of pain, headache, and inflammatory conditions. Recently, it could be demonstrated that salicin binds and activates the bitter taste receptor TAS2R16. Studies on rodent tissues showed the general expression of bitter taste receptors (TAS2Rs) in rodent brain. Here, we demonstrate the expression of hTAS2R16 in human neuronal tissues and the neuroblastoma cell line SH-SY5Y. The functionality was analyzed in the neuroblastoma cell line SH-SY5Y after stimulation with salicin, a known TAS2R16 agonist. In this setting salicin induced in SH-SY5Y cells phosphorylation of ERK and CREB, the key transcription factor of neuronal differentiation. PD98059, an inhibitor of the ERK pathway, as well as probenecid, a TAS2R16 antagonist, inhibited receptor phosphorylation as well as neurite outgrowth. These data show that salicin might modulate neurite outgrowth by bitter taste receptor activation. PMID:26096905

  20. Antiproliferative effects of mitraphylline, a pentacyclic oxindole alkaloid of Uncaria tomentosa on human glioma and neuroblastoma cell lines.

    PubMed

    García Prado, E; García Gimenez, M D; De la Puerta Vázquez, R; Espartero Sánchez, J L; Sáenz Rodríguez, M T

    2007-04-01

    Uncaria tomentosa inner bark extract is a popular plant remedy used in folk medicine to treat tumor and inflammatory processes. In this study, the anti-tumoral effects of its pentacyclic alkaloid mitraphylline were investigated. Furthermore, its growth-inhibitory and cytotoxic effects on glioma GAMG and neuroblastoma SKN-BE(2) cell lines were studied using cyclophosphamide and vincristine as controls. A colter counter was used to determine viable cell numbers, followed by application of the tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)2-(4-sulfophenyl)-2H-tetrazolium], inner salt, colorimetric method to evaluate cell viability in this cytotoxicity assay. Micromolar concentrations of mitraphylline (from 5 to 40 microM) inhibited the growth of both cell lines. It inhibited the growth of the two cell lines studied in a dose-dependent manner. The IC(50) values were 12.3 microM (30h) for SKN-BE(2) and 20 microM (48 h) for GAMG, respectively. This action suggests that mitraphylline is a new and promising agent in the treatment of human neuroblastoma and glioma. PMID:17296291

  1. Genetics Home Reference: neuroblastoma

    MedlinePlus

    ... Help Me Understand Genetics Home Health Conditions neuroblastoma neuroblastoma Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Neuroblastoma is a type of cancer that most often ...

  2. Differential expression of alpha-subunits of G-proteins in human neuroblastoma-derived cell clones.

    PubMed

    Klinz, F J; Yu, V C; Sadée, W; Costa, T

    1987-11-16

    The distribution of alpha- and beta-subunits of G-proteins was analyzed in membranes of three cell clones which are derived from the human neuroblastoma cell line SK-N-SH. The neuroblast-like clone SH-SY5Y shows a pattern of G-proteins very similar to that of human brain cortex with high levels of Gi alpha and Go alpha but low levels of G40 alpha. The intermediate clone SH-IN contains high levels of Go alpha and Gi alpha and moderate levels of G40 alpha. The non-neuronal clone SH-EP shows high levels of G40 alpha but lacks Go alpha. Differentiation of the neuroblast-like clone SH-SY5Y by retinoic acid or nerve growth factor does not change the amount of Gi alpha or Go alpha in the membrane. PMID:3119368

  3. Radiofrequency currents exert cytotoxic effects in NB69 human neuroblastoma cells but not in peripheral blood mononuclear cells

    PubMed Central

    HERNÁNDEZ-BULE, MARÍA LUISA; ROLDÁN, ERNESTO; MATILLA, JOAQUÍN; TRILLO, MARÍA ÁNGELES; ÚBEDA, ALEJANDRO

    2012-01-01

    Recently, a number of electric and electrothermal therapies have been applied to the treatment of specific cancer types. However, the cellular and molecular mechanisms involved in the response to such therapies have not been well characterized yet. Capacitive-resistive electric transfer (CRET) therapy uses electric currents at frequencies within the 0.45–0.6 MHz range to induce hyperthermia in target tissues. Preliminary trials in cancer patients have shown consistent signs that CRET could slow down growth of tumor tissues in brain gliomas, without inducing detectable damage in the surrounding healthy tissue. Previous studies by our group have shown that subthermal treatment with 0.57-MHz electric currents can induce a cytostatic, not cytotoxic response in HepG2 human hepatocarcinoma cells; such effect being mediated by cell cycle alterations. In contrast, the study of the response of NB69 human neuroblastoma cells to the same electric treatment revealed consistent indications of cytotoxic effects. The present study extends the knowledge on the response of NB69 cells to the subthermal stimulus, comparing it to that of primary cultures of human peripheral blood mononuclear cells (PBMC) exposed to the same treatment. The results showed no sensitivity of PBMC to the 0.57 MHz subthermal currents and confirmed that the treatment exerts a cytotoxic action in NB69 cells. The data also revealed a previously undetected cytostatic response of the neuroblastoma cell line. CRET currents affected NB69 cell proliferation by significantly reducing the fraction of cells in the phase G2/M of the cell cycle at 12 h of exposure. These data provide new information on the mechanisms of response to CRET therapy, and are consistent with a cytotoxic and/or cytostatic action of the electric treatment, which would affect human cells of tumor origin but not normal cells with a low proliferation rate. PMID:22843038

  4. Upregulation of CRABP1 in human neuroblastoma cells overproducing the Alzheimer-typical Aβ42 reduces their differentiation potential

    PubMed Central

    Uhrig, Markus; Brechlin, Peter; Jahn, Olaf; Knyazev, Yuri; Weninger, Annette; Busia, Laura; Honarnejad, Kamran; Otto, Markus; Hartmann, Tobias

    2008-01-01

    Background Alzheimer's disease (AD) is characterized by neurodegeneration and changes in cellular processes, including neurogenesis. Proteolytic processing of the amyloid precursor protein (APP) plays a central role in AD. Owing to varying APP processing, several β-amyloid peptides (Aβ) are generated. In contrast to the form with 40 amino acids (Aβ40), the variant with 42 amino acids (Aβ42) is thought to be the pathogenic form triggering the pathological cascade in AD. While total-Aβ effects have been studied extensively, little is known about specific genome-wide effects triggered by Aβ42 or Aβ40 derived from their direct precursor C99. Methods A combined transcriptomics/proteomics analysis was performed to measure the effects of intracellularly generated Aβ peptides in human neuroblastoma cells. Data was validated by real-time polymerase chain reaction (real-time PCR) and a functional validation was carried out using RNA interference. Results Here we studied the transcriptomic and proteomic responses to increased or decreased Aβ42 and Aβ40 levels generated in human neuroblastoma cells. Genome-wide expression profiles (Affymetrix) and proteomic approaches were combined to analyze the cellular response to the changed Aβ42- and Aβ40-levels. The cells responded to this challenge with significant changes in their expression pattern. We identified several dysregulated genes and proteins, but only the cellular retinoic acid binding protein 1 (CRABP1) was up-regulated exclusively in cells expressing an increased Aβ42/Aβ40 ratio. This consequently reduced all-trans retinoic acid (RA)-induced differentiation, validated by CRABP1 knock down, which led to recovery of the cellular response to RA treatment and cellular sprouting under physiological RA concentrations. Importantly, this effect was specific to the AD typical increase in the Aβ42/Aβ40 ratio, whereas a decreased ratio did not result in up-regulation of CRABP1. Conclusion We conclude that increasing

  5. A Constitutional Translocation t(1;17)(p36.2;q11.2) in a Neuroblastoma Patient Disrupts the Human NBPF1 and ACCN1 Genes

    PubMed Central

    Staes, Katrien; Vandesompele, Jo; Laureys, Geneviève; De Smet, Els; Berx, Geert; Speleman, Frank; van Roy, Frans

    2008-01-01

    The human 1p36 region is deleted in many different types of tumors, and so it probably harbors one or more tumor suppressor genes. In a Belgian neuroblastoma patient, a constitutional balanced translocation t(1;17)(p36.2;q11.2) may have led to the development of the tumor by disrupting or activating a gene. Here, we report the cloning of both translocation breakpoints and the identification of a novel gene that is disrupted by this translocation. This gene, named NBPF1 for Neuroblastoma BreakPoint Family member 1, belongs to a recently described gene family encoding highly similar proteins, the functions of which are unknown. The translocation truncates NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences derived from chromosome 17. On chromosome 17, the translocation disrupts one of the isoforms of ACCN1, a potential glioma tumor suppressor gene. Expression of the NBPF family in neuroblastoma cell lines is highly variable, but it is decreased in cell lines that have a deletion of chromosome 1p. More importantly, expression profiling of the NBPF1 gene showed that its expression is significantly lower in cell lines with heterozygous NBPF1 loss than in cell lines with a normal 1p chromosome. Meta-analysis of the expression of NBPF and ACCN1 in neuroblastoma tumors indicates a role for the NBPF genes and for ACCN1 in tumor aggressiveness. Additionally, DLD1 cells with inducible NBPF1 expression showed a marked decrease of clonal growth in a soft agar assay. The disruption of both NBPF1 and ACCN1 genes in this neuroblastoma patient indicates that these genes might suppress development of neuroblastoma and possibly other tumor types. PMID:18493581

  6. Differential penetration of targeting agents into multicellular spheroids derived from human neuroblastoma

    SciTech Connect

    Mairs, R.J.; Angerson, W.J.; Babich, J.W.; Murray, T. )

    1991-01-01

    The authors have used a multicellular tumour spheroid model for determination of the penetration of various targeting agents of potential use in the treatment of neuroblastoma. Both the radiopharmaceutical meta-iodobenzylguanidine (mIBG) and the {beta} subunit of nerve growth factor ({beta}-NGF) distributed uniformly throughout spheroids, though the latter was poorly concentrated relative to mIBG. In contrast, the anti-neuroectodermal monoclonal antibody. UJ13A bound only to peripheral cell layers with little accumulation in the spheroid interior. Differential penetration of targeting agents may influence the choice of conjugated radionuclide which is likely to achieve maximum therapeutic benefit.

  7. Tideglusib induces apoptosis in human neuroblastoma IMR32 cells, provoking sub-G0/G1 accumulation and ROS generation.

    PubMed

    Mathuram, Theodore Lemuel; Ravikumar, Vilwanathan; Reece, Lisa M; Karthik, Selvaraju; Sasikumar, Changam Sheela; Cherian, Kotturathu Mammen

    2016-09-01

    Neuroblastoma is the most common tumor amongst children amounting to nearly 15% of cancer deaths. This cancer is peculiar in its characteristics, exhibiting differentiation, maturation and metastatic transformation leading to poor prognosis and low survival rates among children. Chemotherapy, though toxic to normal cells, has shown to improve the survival of the patient with emphasis given more towards targeting angiogenesis. Recently, Tideglusib was designed as an 'Orphan Drug' to target the neurodegenerative Alzheimer's disease and gained significant momentum in its function during clinical trials. Duffy et al. recently reported a reduction in cell viability of human IMR32 neuroblastoma cells when treated with Tideglusib at varying concentrations. We investigated the effects of Tideglusib, at various concentrations, compared to Lithium chloride at various concentrations, on IMR32 cells. Lithium, a known GSK-3 inhibitor, was used as a standard to compare the efficiency of Tideglusib in a dose-dependent manner. Cell viability was assessed by MTT assay. The stages of apoptosis were evaluated by AO/EB staining and nuclear damage was determined by Hoechst 33258 staining. Reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) were assessed by DCFDA dye and Rhodamine-123 dye, respectively. Tideglusib reported a significant dose-dependent increase in pro-apoptotic proteins (PARP, Caspase-9, Caspase-7, Caspase-3) and tumor-related genes (FasL, TNF-α, Cox-2, IL-8, Caspase-3). Anti-GSK3 β, pGSK3 β, Bcl-2, Akt-1, p-Akt1 protein levels were observed with cells exposed to Tideglusib and Lithium chloride. No significant dose-dependent changes were observed for the mRNA expression of collagenase MMP-2, the tumor suppressor p53, or the cell cycle protein p21. Our study also reports Tideglusib reducing colony formation and increasing the level of sub-G0/G1 population in IMR32 cells. Our investigations report the significance of Tideglusib as a promising

  8. Effect of Citrus bergamia juice on human neuroblastoma cells in vitro and in metastatic xenograft models.

    PubMed

    Navarra, M; Ursino, M R; Ferlazzo, N; Russo, M; Schumacher, U; Valentiner, U

    2014-06-01

    Neuroblastoma is the most common extracranial pediatric solid tumor with poor prognosis in children with disseminated stage of disease. A number of studies show that molecules largely distributed in commonly consumed fruits and vegetables may have anti-tumor activity. In this study we evaluate the effect of Citrus bergamia (bergamot) juice (BJ) in vitro and in a spontaneous metastatic neuroblastoma SCID mouse model. Qualitative and quantitative characterizations of BJ flavonoid fractions were performed by RP-HPLC/PDA/MS. We show that BJ significantly affects SK-N-SH and LAN-1 cell proliferation in vitro, but fails to reduce primary tumor weight in vivo. Moreover, BJ reduced cell adhesiveness and invasion of LAN-1 and SK-N-SH cells in vitro and the number of pulmonary metastases under consideration of the number of tumor cells in the blood in mice inoculated with LAN-1 cells in vivo. These effects without any apparent sign of systemic toxicity confirm the potential clinical interest of BJ and lay the basis for further investigation in cancer. PMID:24594241

  9. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.

    PubMed

    Luciani, Paola; Deledda, Cristiana; Benvenuti, Susanna; Squecco, Roberta; Cellai, Ilaria; Fibbi, Benedetta; Marone, Ilaria Maddalena; Giuliani, Corinna; Modi, Giulia; Francini, Fabio; Vannelli, Gabriella Barbara; Peri, Alessandro

    2013-01-01

    Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i) the evaluation of neurite-like protrusions in 3D cell cultures, ii) the analysis of the expression of neuronal markers and iii) electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties. PMID:23990978

  10. Effect of 8-hydroxyquinoline and derivatives on human neuroblastoma SH-SY5Y cells under high glucose

    PubMed Central

    Suwanjang, Wilasinee; Prachayasittikul, Supaluk

    2016-01-01

    8-Hydroxyquinoline and derivatives exhibit multifunctional properties, including antioxidant, antineurodegenerative, anticancer, anti-inflammatory and antidiabetic activities. In biological systems, elevation of intracellular calcium can cause calpain activation, leading to cell death. Here, the effect of 8-hydroxyquinoline and derivatives (5-chloro-7-iodo-8-hydroxyquinoline or clioquinol and 8-hydroxy-5-nitroquinoline or nitroxoline) on calpain-dependent (calpain-calpastatin) pathways in human neuroblastoma (SH-SY5Y) cells was investigated. 8-Hydroxyquinoline and derivatives ameliorated high glucose toxicity in SH-SY5Y cells. The investigated compounds, particularly clioquinol, attenuated the increased expression of calpain, even under high-glucose conditions. 8-Hydroxyquinoline and derivatives thus adversely affected the promotion of neuronal cell death by high glucose via the calpain-calpastatin signaling pathways. These findings support the beneficial effects of 8-hydroxyquinolines for further therapeutic development.

  11. Aluminium and Alzheimer's disease: sites of aluminium binding in human neuroblastoma cells determined using 26Al and accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    King, S. J.; Templar, J.; Miller, R. V.; Day, J. P.; Dobson, C. B.; Itzhaki, R. F.; Fifield, L. K.; Allan, G. L.

    1994-06-01

    The aluminium distribution between the major cell compartments of human neuroblastoma cells grown in culture has been determined using 21Al and accelerator mass spectrometry (AMS). Cells (IMR-32) were grown for eight days in a culture medium containing Al-EDTA (0.2mM) spiked with 26Al, harvested, and fractionated by standard biochemical techniques. 26Al in fractions after ashing to Al 2O 3 was determined by AMS using the 14UD accelerator at ANU Canberra. The cytoplasmic and nuclear cell compartments appeared to have reached diffusive equilibrium with the culture medium. Whilst 26Al was retained by the nuclear proteins and nuclear sap, 26Al did not appear to bind to the nucleic acids (DNA/RNA).

  12. The "neuro" of neuroblastoma: Neuroblastoma as a neurodevelopmental disorder.

    PubMed

    Ratner, Nancy; Brodeur, Garrett M; Dale, Russell C; Schor, Nina F

    2016-07-01

    Neuroblastoma is a childhood cancer derived from cells of neural crest origin. The hallmarks of its enigmatic character include its propensity for spontaneous regression under some circumstances and its association with paraneoplastic opsoclonus, myoclonus, and ataxia. The neurodevelopmental underpinnings of its origins may provide important clues for development of novel therapeutic and preventive agents for this frequently fatal malignancy and for the associated paraneoplastic syndromes. Ann Neurol 2016;80:13-23. PMID:27043043

  13. Paraneoplastic syndromes in olfactory neuroblastoma

    PubMed Central

    Gabrych, Anna; Czapiewski, Piotr; Sworczak, Krzysztof

    2015-01-01

    Olfactory neuroblastoma (ONB) is a rare malignant neoplasm of sinonasal tract, derived from olfactory epithelium. Unilateral nasal obstruction, epistaxis, sinusitis, and headaches are common symptoms. Olfactory neuroblastoma shows neuroendocrine differentiation and similarly to other neuroendocrine tumors can produce several types of peptic substances and hormones. Excess production of these substances can be responsible for different types of endocrinological paraneoplastic syndromes (PNS). Moreover, besides endocrinological, in ONB may also occur neurological PNS, caused by immune cross-reactivity between tumor and normal host tissues in the nervous system. Paraneoplastic syndromes in ONB include: syndrome of inappropriate ADH secretion (SIADH), ectopic ACTH syndrome (EAS), humoral hypercalcemia of malignancy (HHM), hypertension due to catecholamine secretion by tumor, opsoclonus-myoclonus-ataxia (OMA) and paraneoplastic cerebellar degeneration. Paraneoplastic syndromes in ONB tend to have atypical features, therefore diagnosis may be difficult. In this review, we described initial symptoms, patterns of presentation, treatment and outcome of paraneoplastic syndromes in ONB, reported in the literature. PMID:26199564

  14. Eliminating malignant contamination from therapeutic human spermatogonial stem cells

    PubMed Central

    Dovey, Serena L.; Valli, Hanna; Hermann, Brian P.; Sukhwani, Meena; Donohue, Julia; Castro, Carlos A.; Chu, Tianjiao; Sanfilippo, Joseph S.; Orwig, Kyle E.

    2013-01-01

    Spermatogonial stem cell (SSC) transplantation has been shown to restore fertility in several species and may have application for treating some cases of male infertility (e.g., secondary to gonadotoxic therapy for cancer). To ensure safety of this fertility preservation strategy, methods are needed to isolate and enrich SSCs from human testis cell suspensions and also remove malignant contamination. We used flow cytometry to characterize cell surface antigen expression on human testicular cells and leukemic cells (MOLT-4 and TF-1a). We demonstrated via FACS that EpCAM is expressed by human spermatogonia but not MOLT-4 cells. In contrast, HLA-ABC and CD49e marked >95% of MOLT-4 cells but were not expressed on human spermatogonia. A multiparameter sort of MOLT-4–contaminated human testicular cell suspensions was performed to isolate EpCAM+/HLA-ABC–/CD49e– (putative spermatogonia) and EpCAM–/HLA-ABC+/CD49e+ (putative MOLT-4) cell fractions. The EpCAM+/HLA-ABC–/CD49e– fraction was enriched for spermatogonial colonizing activity and did not form tumors following human-to–nude mouse xenotransplantation. The EpCAM–/HLA-ABC+/CD49e+ fraction produced tumors following xenotransplantation. This approach could be generalized with slight modification to also remove contaminating TF-1a leukemia cells. Thus, FACS provides a method to isolate and enrich human spermatogonia and remove malignant contamination by exploiting differences in cell surface antigen expression. PMID:23549087

  15. Does MW Radiation Affect Gene Expression, Apoptotic Level, and Cell Cycle Progression of Human SH-SY5Y Neuroblastoma Cells?

    PubMed

    Kayhan, Handan; Esmekaya, Meric Arda; Saglam, Atiye Seda Yar; Tuysuz, Mehmed Zahid; Canseven, Ayşe Gulnihal; Yagci, Abdullah Munci; Seyhan, Nesrin

    2016-06-01

    Neuroblastoma (NB) is a cancer that occurs in sympathetic nervous system arising from neuroblasts and nerve tissue of the adrenal gland, neck, chest, or spinal cord. It is an embryonal malignancy and affects infants and children. In this study, we investigated the effects of microwave (MW) radiation on apoptotic activity, cell viability, and cell cycle progression in human SH-SY5Y NB cells which can give information about MW radiation effects on neural cells covering the period from the embryonic stages to infants. SH-SY5Y NB cells were exposed to 2.1 GHz W-CDMA modulated MW radiation for 24 h at a specific absorption rate of 0.491 W/kg. Control samples were in the same conditions with MW-exposed samples but they were not exposed to MW radiation. The apoptotic activity of cells was measured by Annexin-V-FITC and propidium iodide staining. Moreover, mRNA levels of proliferative and cell cycle proteins were determined by real-time RT-PCR. The change in cell cycle progression was observed by using CycleTest-Plus DNA reagent. No significant change was observed in apoptotic activity of MW-exposed cells compared to control cells. The mRNA levels of c-myc and cyclin D1 were significantly reduced in MW group (p < 0.05). The percentage of MW-exposed cells in G1 phase was significantly higher than the percentage of control cells in G1 phase. MW radiation caused cell cycle arrest in G1 phase. These results showed that 2.1 GHz W-CDMA modulated MW radiation did not cause apoptotic cell death but changed cell cycle progression. PMID:27260669

  16. Aluminum Activates PERK-EIF2α Signaling and Inflammatory Proteins in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Rizvi, Syed Husain Mustafa; Parveen, Arshiya; Ahmad, Israr; Ahmad, Iqbal; Verma, Anoop K; Arshad, Md; Mahdi, Abbas Ali

    2016-07-01

    Aluminum is the third most abundant element present in the earth's crust and human exposure to it is possible due to industrialization, utensils, medicines, antiperspirants, etc. Evidences suggest involvement of aluminum in a variety of neurodegenerative disorders including Alzheimer's disease. Endoplasmic reticulum (ER) stress has been implicated in various neurological disorders. ER stress may be a result of impaired calcium homeostasis due to perturbed redox balance and is known to elicit inflammation through the activation of unfolded protein response (UPR). In the present study, we aimed to investigate the role of aluminum in ER stress-mediated activation of inflammatory responses in neuroblastoma cells. Lactate dehydrogenase (LDH) release assay revealed that aluminum compromised the membrane integrity of neuroblastoma cells, probably due to membrane damage, as indicated by enhanced levels of lipid peroxidation (LPO). Besides this, our results clearly demonstrated elevated reactive oxygen species (ROS) levels and a weakened antioxidant defence system manifested by decrease in catalase (CAT) activity and cellular glutathione (GSH). Moreover, we studied the expression of key apoptosis-related proteins, ER stress-mediated activation of UPR, and its downstream inflammatory pathway. It was observed that aluminum potentially enhanced protein levels of PERK, EIF2α, caspase 9, caspase 3, and inflammatory markers like NF-κB, NLRP3, HMGB1, and nitric oxide (NO). Furthermore, aluminum altered TNFα, IL1β, IL6, and IL10 mRNA levels as well. The overall findings indicated that aluminum mediates UPR activation through ER stress, which results in induction of inflammatory pathway and apoptotic proteins in neuronal cells. PMID:26546554

  17. Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells.

    PubMed

    Mishra, Rachana; Kaur, Gurcharan

    2015-08-01

    Children diagnosed with neuroblastomas often suffer from severe side as well as late effects of conventional treatments like chemotherapy and radiotherapy. Recent advances in understanding of molecular pathways involved in cellular differentiation and apoptosis have helped in the development of new therapeutic approach based on differentiation-based therapy of malignant tumours. Natural medicines with their holistic therapeutic approach are known to selectively eliminate cancer cells thus provide a better substitute for the conventional treatment modes. The current study was aimed to investigate the anti-cancer potential of aqueous ethanolic extract of Tinospora cordifolia (TCE) using IMR-32 human neuroblastoma cell line as a model system. TCE is highly recommended in Ayurveda for its general body and metal health-promoting properties. TCE treatment was seen to arrest the majority of cells in G0/G1 phase and modulated the expression of DNA clamp sliding protein (PCNA) and cyclin D1. Further, TCE-treated cells showed differentiation as revealed by their morphology and the expression of neuronal cell specific differentiation markers NF200, MAP-2 and NeuN in neuroblastoma cells. The differentiated phenotype was associated with induction of senescence and pro-apoptosis pathways by enhancing expression of senescence marker mortalin and Rel A subunit of nuclear factor kappa beta (NFkB) along with decreased expression of anti-apoptotic marker, Bcl-xl. TCE exhibited anti-metastatic activity and significantly reduced cell migration in the scratched area along with downregulation of neural cell adhesion molecule (NCAM) polysialylation and secretion of matrix metalloproteinases (MMPs). Our data suggest that crude extract or active phytochemicals from this plant may be a potential candidate for differentiation-based therapy of malignant neuroblastoma cells. PMID:25280667

  18. Monoclonal antibodies and neuroblastoma

    SciTech Connect

    Miraldi, F. )

    1989-10-01

    Several antineuroblastoma monoclonal antibodies (MoAbs) have been described and two have been used in radioimmunoimaging and radioimmunotherapy in patients. MoAb 3F8 is a murine IgG3 antibody specific for the ganglioside GD2. Radioiodine-labeled 3F8 has been shown to specifically target human neuroblastoma in patients, and radioimmunoimaging with this agent has provided consistently high uptakes with tumor-to-background ratios of greater than or equal to 10:1. Radioimmunotherapy has been attempted with both MoAb 3F8 and MoAb UJ13A, and although encouraging results have been obtained, dosimetry data and tissue dose response information for these agents is lacking, which impedes the development of such therapy. 124I, a positron emitter, can be used with 3F8 in positron emission tomography (PET) scanning to provide dosimetry information for radioimmunotherapy. The tumor radiation dose response from radiolabeled MoAb also can be followed with PET images with fluorodeoxyglucose (FDG) scanning of neuroblastoma tumors. Results to date indicate that radioimmunoimaging has clinical use in the diagnosis of neuroblastoma and the potential for radioimmunotherapy for this cancer remains high.48 references.

  19. Olfactory neuroblastoma

    SciTech Connect

    O'Connor, T.A.; McLean, P.; Juillard, G.J.; Parker, R.G.

    1989-06-15

    Fifteen patients with olfactory neuroblastoma were treated during the 17-year period of 1969 to 1986. Data was analyzed with respect to age at presentation, sex, presenting signs and symptoms, stage, and results of treatment. Age ranged from 4 to 67 years with the median age being 27 years. Median follow-up was 8 years. Local control was achieved in nine of nine patients or 100% with successful surgical resection, i.e., minimal residual disease, followed by postoperative radiation therapy (45 to 65 Gy) was employed. There were no distant failures when the primary site was controlled. Regional lymph node metastases were infrequent: only 13% (two of 15 patients) presented with positive nodes. Three of four patients treated initially with surgery alone had a local recurrence, two of which were successfully salvaged by combined therapy. There were four patients treated with radiation therapy alone: three had persistent disease after radiation therapy, and one patient was controlled with 65 Gy. Olfactory neuroblastoma has a propensity to recur locally when treated with surgery alone. The authors' experience suggests excellent local control can be achieved with surgery immediately followed by radiation therapy. Thus the authors recommend planned combined treatment for all resectable lesions.

  20. Identification of alpha 2-adrenergic receptor sites in human retinoblastoma (Y-79) and neuroblastoma (SH-SY5Y) cells

    SciTech Connect

    Kazmi, S.M.; Mishra, R.K.

    1989-02-15

    The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. (/sup 3/H)Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, (/sup 3/H)Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.

  1. Generation and Characterization of a Human/Mouse Chimeric GD2-Mimicking Anti-Idiotype Antibody Ganglidiximab for Active Immunotherapy against Neuroblastoma.

    PubMed

    Eger, Christin; Siebert, Nikolai; Seidel, Diana; Zumpe, Maxi; Jüttner, Madlen; Brandt, Sven; Müller, Hans-Peter; Lode, Holger N

    2016-01-01

    Vaccination with proteins mimicking GD2 that is highly expressed on neuroblastoma (NB) cells is a promising strategy in treatment of NB, a pediatric malignancy with poor prognosis. We previously showed efficacy of ganglidiomab in vivo, a murine anti-idiotype (anti-Id) IgG1. In order to tailor immune responses to variable regions, we generated a new human/mouse chimeric anti-Id antibody (Ab) ganglidiximab by replacing murine constant fragments with corresponding human IgG1 regions. DNA sequences encoding for variable regions of heavy (VH) and light chains (VL) were synthesized by RT-PCR from total RNA of ganglidiomab-producing hybridoma cells and further ligated into mammalian expression plasmids with coding sequences for constant regions of human IgG1 heavy and light chains, respectively. We established a stable production cell line using Chinese hamster ovarian (CHO) cells co-transfected with two expression plasmids driving the expression of either ganglidiximab heavy or light chain. After purification from supernatants, anti-idiotypic characteristics of ganglidiximab were demonstrated. Binding of ganglidiximab to anti-GD2 Abs of the 14.18 family as well as to NK-92tr cells expressing a GD2-specific chimeric antigen receptor (scFv(ch14.18)-zeta) was shown using standard ELISA and flow cytometry analysis, respectively. Ganglidiximab binding affinities to anti-GD2 Abs were further determined by surface plasmon resonance technique. Moreover, binding of anti-GD2 Abs to the nominal antigen GD2 as well as GD2-specific Ab-mediated cytotoxicity (ADCC, CDC) was competitively inhibited by ganglidiximab. Finally, ganglidiximab was successfully used as a protein vaccine in vivo to induce a GD2-specific humoral immune response. In summary, we report generation and characterization of a new human/mouse chimeric anti-Id Ab ganglidiximab for active immunotherapy against NB. This Ab may be useful to tailor immune responses to the paratope regions mimicking GD2 overexpressed in NB

  2. Generation and Characterization of a Human/Mouse Chimeric GD2-Mimicking Anti-Idiotype Antibody Ganglidiximab for Active Immunotherapy against Neuroblastoma

    PubMed Central

    Eger, Christin; Siebert, Nikolai; Seidel, Diana; Zumpe, Maxi; Jüttner, Madlen; Brandt, Sven; Müller, Hans-Peter; Lode, Holger N.

    2016-01-01

    Vaccination with proteins mimicking GD2 that is highly expressed on neuroblastoma (NB) cells is a promising strategy in treatment of NB, a pediatric malignancy with poor prognosis. We previously showed efficacy of ganglidiomab in vivo, a murine anti-idiotype (anti-Id) IgG1. In order to tailor immune responses to variable regions, we generated a new human/mouse chimeric anti-Id antibody (Ab) ganglidiximab by replacing murine constant fragments with corresponding human IgG1 regions. DNA sequences encoding for variable regions of heavy (VH) and light chains (VL) were synthesized by RT-PCR from total RNA of ganglidiomab-producing hybridoma cells and further ligated into mammalian expression plasmids with coding sequences for constant regions of human IgG1 heavy and light chains, respectively. We established a stable production cell line using Chinese hamster ovarian (CHO) cells co-transfected with two expression plasmids driving the expression of either ganglidiximab heavy or light chain. After purification from supernatants, anti-idiotypic characteristics of ganglidiximab were demonstrated. Binding of ganglidiximab to anti-GD2 Abs of the 14.18 family as well as to NK-92tr cells expressing a GD2-specific chimeric antigen receptor (scFv(ch14.18)-zeta) was shown using standard ELISA and flow cytometry analysis, respectively. Ganglidiximab binding affinities to anti-GD2 Abs were further determined by surface plasmon resonance technique. Moreover, binding of anti-GD2 Abs to the nominal antigen GD2 as well as GD2-specific Ab-mediated cytotoxicity (ADCC, CDC) was competitively inhibited by ganglidiximab. Finally, ganglidiximab was successfully used as a protein vaccine in vivo to induce a GD2-specific humoral immune response. In summary, we report generation and characterization of a new human/mouse chimeric anti-Id Ab ganglidiximab for active immunotherapy against NB. This Ab may be useful to tailor immune responses to the paratope regions mimicking GD2 overexpressed in NB

  3. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model

    PubMed Central

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, René Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Introduction Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer’s oxidative phosphorylation system. Methods Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). Results Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. Conclusions Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting

  4. Heterogeneity and immunophenotypic plasticity of malignant cells in human liposarcomas

    PubMed Central

    Zhang, Yan; Young, Eric D.; Bill, Katelynn; Belousov, Roman; Peng, Tingsheng; Lazar, Alexander J; Pollock, Raphael E; Simmons, Paul J.; Lev, Dina; Kolonin, Mikhail G.

    2013-01-01

    Liposarcomas are tumors arising in white adipose tissue (WAT) with avidity for local recurrence. Aggressive dedifferentiated liposarcomas (DDLS) may arise from well-differentiated subtypes (WDLS) upon disease progression, however, this key issue is unresolved due in large part to knowledge gaps about liposarcoma cellular composition. Here, we wished to improve insights into liposarcoma cellular hierarchy. Tumor section analysis indicated that the populations, distinguishable based on expression of CD34 (a marker of adipocyte progenitors) and CD36 (a marker of adipocyte differentiation), occupy distinct intra-tumoral locations in both WDLS and DDLS. Taking advantage of these markers, we separated cells from a panel of fresh human surgical specimens by fluorescence-activated cell sorting (FACS). Based on chromosome analysis and the culture phenotypes of the composing populations, we demonstrate that malignant cells comprise four mesenchymal populations distinguished by expression of CD34 and CD36, while vascular (CD31+) and hematopoietic (CD45+) components are non-neoplastic. Finally, we show that mouse xenografts are derivable from both CD36-negative and CD36-positive DDLS cells, and that each population recreates the heterogeneity of CD36 expression in vivo. Combined, our results show that malignant cells in WDLS and DDLS can be classified according to distinct stages of adipogenesis and indicate immonophenotypic plasticity of malignant liposarcoma cells. PMID:23770802

  5. Comparative non-cholinergic neurotoxic effects of paraoxon and diisopropyl fluorophosphate (DFP) on human neuroblastoma and astrocytoma cell lines

    SciTech Connect

    Qian Yongchang; Venkatraj, Jijayanagaram; Barhoumi, Rola; Pal, Ranadip; Datta, Aniruddha; Wild, James R.; Tiffany-Castiglioni, Evelyn . E-mail: ecastiglioni@cvm.tamu.edu

    2007-03-15

    The objective of this study was to evaluate the comparative non-cholinergic neurotoxic effects of paraoxon, which is acutely neurotoxic, and diisopropyl fluorophosphate (DFP), which induces OPIDN, in the human neuroblastoma SY5Y and the human astrocytoma cell line CCF-STTG1. SY5Y cells have been studied extensively as a model for OP-induced neurotoxicity, but CCF cells have not previously been studied. We conducted a preliminary human gene array assay of OP-treated SY5Y cells in order to assess at the gene level whether these cells can distinguish between OP compounds that do and do not cause OPIDN. Paraoxon and DFP induced dramatically different profiles of gene expression. Two genes were upregulated and 13 downregulated by at least 2-fold in paraoxon-treated cells. In contrast, one gene was upregulated by DFP and none was downregulated at the 2-fold threshold. This finding is consistent with current and previous observations that SY5Y cells can distinguish between OPs that do or do not induce OPIDN. We also examined gene array results for possible novel target proteins or metabolic pathways for OP neurotoxicity. Protein levels of glucose regulated protein 78 (GRP78) revealed that paraoxon exposure at 3 {mu}M for 24 h significantly reduced GRP78 levels by 30% in neuroblastoma cells, whereas DFP treatment had no effect. In comparison with SY5Y neuroblastoma cells, paraoxon and DFP (3 {mu}M for 24 h) each significantly increased GRP78 levels by 23-24% in CCF astrocytoma cells. As we have previously evaluated intracellular changes in Ca{sup 2+} levels in SY5Y cells, we investigated the effects of paraoxon and DFP on cellular Ca{sup 2+} homeostasis in CCF by studying cytosolic and mitochondrial basal calcium levels. A significant decrease in the ratio of mitochondrial to cytosolic Ca{sup 2+} fluorescence was detected in CCF cultures treated for either 1 or 3 days with 1, 3, 10, or 30 {mu}M paraoxon. In contrast, treatment with DFP for 1 day had no significant effect

  6. N-Myc expression enhances the oncolytic effects of vesicular stomatitis virus in human neuroblastoma cells.

    PubMed

    Corredor, Juan C; Redding, Nicole; Bloté, Karen; Robbins, Stephen M; Senger, Donna L; Bell, John C; Beaudry, Paul

    2016-01-01

    N-myc oncogene amplification is associated but not present in all cases of high-risk neuroblastoma (NB). Since oncogene expression could often modulate sensitivity to oncolytic viruses, we wanted to examine if N-myc expression status would determine virotherapy efficacy to high-risk NB. We showed that induction of exogenous N-myc in a non-N-myc-amplified cell line background (TET-21N) increased susceptibility to oncolytic vesicular stomatitis virus (mutant VSVΔM51) and alleviated the type I IFN-induced antiviral state. Cells with basal N-myc, on the other hand, were less susceptible to virus-induced oncolysis and established a robust IFN-mediated antiviral state. The same effects were also observed in NB cell lines with and without N-myc amplification. Microarray analysis showed that N-myc overexpression in TET-21N cells downregulated IFN-stimulated genes (ISGs) with known antiviral functions. Furthermore, virus infection caused significant changes in global gene expression in TET-21N cells overexpressing N-myc. Such changes involved ISGs with various functions. Therefore, the present study showed that augmented susceptibility to VSVΔM51 by N-myc at least involves downregulation of ISGs with antiviral functions and alleviation of the IFN-stimulated antiviral state. Our studies suggest the potential utility of N-myc amplification/overexpression as a predictive biomarker of virotherapy response for high-risk NB using IFN-sensitive oncolytic viruses. PMID:27626059

  7. Sendai virus-mediated expression of reprogramming factors promotes plasticity of human neuroblastoma cells.

    PubMed

    Islam, S M Rafiqul; Suenaga, Yusuke; Takatori, Atsushi; Ueda, Yasuji; Kaneko, Yoshiki; Kawana, Hidetada; Itami, Makiko; Ohira, Miki; Yokoi, Sana; Nakagawara, Akira

    2015-10-01

    Neuroblastoma (NB) is the most common extracranial solid tumor that originates from multipotent neural crest cells. NB cell populations that express embryonic stem cell-associated genes have been identified and shown to retain a multipotent phenotype. However, whether somatic reprogramming of NB cells can produce similar stem-cell like populations is unknown. Here, we sought to reprogram NB cell lines using an integration-free Sendai virus vector system. Of four NB cell lines examined, only SH-IN cells formed induced pluripotent stem cell-like colonies (SH-IN 4F colonies) at approximately 6 weeks following transduction. These SH-IN 4F colonies were alkaline phosphatase-positive. Array comparative genomic hybridization analysis indicated identical genomic aberrations in the SH-IN 4F cells as in the parental cells. SH-IN 4F cells had the ability to differentiate into the three embryonic germ layers in vitro, but rather formed NBs in vivo. Furthermore, SH-IN 4F cells exhibited resistance to cisplatin treatment and differentiated into endothelial-like cells expressing CD31 in the presence of vascular endothelial growth factor. These results suggest that SH-IN 4F cells are partially reprogrammed NB cells, and could be a suitable model for investigating the plasticity of aggressive tumors. PMID:26190440

  8. N-Myc expression enhances the oncolytic effects of vesicular stomatitis virus in human neuroblastoma cells

    PubMed Central

    Corredor, Juan C; Redding, Nicole; Bloté, Karen; Robbins, Stephen M; Senger, Donna L; Bell, John C; Beaudry, Paul

    2016-01-01

    N-myc oncogene amplification is associated but not present in all cases of high-risk neuroblastoma (NB). Since oncogene expression could often modulate sensitivity to oncolytic viruses, we wanted to examine if N-myc expression status would determine virotherapy efficacy to high-risk NB. We showed that induction of exogenous N-myc in a non-N-myc-amplified cell line background (TET-21N) increased susceptibility to oncolytic vesicular stomatitis virus (mutant VSVΔM51) and alleviated the type I IFN-induced antiviral state. Cells with basal N-myc, on the other hand, were less susceptible to virus-induced oncolysis and established a robust IFN-mediated antiviral state. The same effects were also observed in NB cell lines with and without N-myc amplification. Microarray analysis showed that N-myc overexpression in TET-21N cells downregulated IFN-stimulated genes (ISGs) with known antiviral functions. Furthermore, virus infection caused significant changes in global gene expression in TET-21N cells overexpressing N-myc. Such changes involved ISGs with various functions. Therefore, the present study showed that augmented susceptibility to VSVΔM51 by N-myc at least involves downregulation of ISGs with antiviral functions and alleviation of the IFN-stimulated antiviral state. Our studies suggest the potential utility of N-myc amplification/overexpression as a predictive biomarker of virotherapy response for high-risk NB using IFN-sensitive oncolytic viruses. PMID:27626059

  9. Characterization of catechol-thioether-induced apoptosis in human SH-SY5Y neuroblastoma cells.

    PubMed

    Mosca, Luciana; Tempera, Italo; Lendaro, Eugenio; Di Francesco, Laura; d'Erme, Maria

    2008-03-01

    Recent work has highlighted the involvement of a dopamine derivative, 5-S-cysteinyl-dopamine (CysDA), in neurodegeneration and apoptotic cell death. In this paper we study in further detail the apoptotic process activated by this catechol-thioether derivative of dopamine in SH-SY5Y neuroblastoma cells. CysDA activates a cascade of events by an initial perturbation of Calcium homeostasis in the cell. Cell treatment with the catechol-thioether induces an immediate rise in intracellular Ca(2+) concentration, as demonstrated by a shift in the indo-1 dye emission spectrum, and a sustained high calcium concentration at long times of incubation. Fluorescence microscopy data show that the treatment of cells induces mitochondrial transmembrane potential depolarization, a clear evidence of the onset of apoptotic process. Programmed cell death activation is also demonstrated by cytochrome c release from the mitochondria, by an increased activity of both caspase-8 and -9 and by the poly(ADP-ribose)polymerase (PARP-1) cleavage, yielding the typical 86 kDa fragment due to caspase-3 activity. Overall, our data support the hypothesis that CysDA may induce apoptotic death in neuronal cells, via an initial perturbation of calcium homeostasis in the cytosol. PMID:17929313

  10. Differentiation of human neuroblastoma cells toward the osteogenic lineage by mTOR inhibitor

    PubMed Central

    Carpentieri, A; Cozzoli, E; Scimeca, M; Bonanno, E; Sardanelli, A M; Gambacurta, A

    2015-01-01

    Current hypothesis suggest that tumors can originate from adult cells after a process of 'reprogramming' driven by genetic and epigenetic alterations. These cancer cells, called cancer stem cells (CSCs), are responsible for the tumor growth and metastases. To date, the research effort has been directed to the identification, isolation and manipulation of this cell population. Independently of whether tumors were triggered by a reprogramming of gene expression or seeded by stem cells, their energetic metabolism is altered compared with a normal cell, resulting in a high aerobic glycolytic 'Warburg' phenotype and dysregulation of mitochondrial activity. This metabolic alteration is intricately linked to cancer progression.The aim of this work has been to demonstrate the possibility of differentiating a neoplastic cell toward different germ layer lineages, by evaluating the morphological, metabolic and functional changes occurring in this process. The cellular differentiation reported in this study brings to different conclusions from those present in the current literature. We demonstrate that 'in vitro' neuroblastoma cancer cells (chosen as experimental model) are able to differentiate directly into osteoblastic (by rapamycin, an mTOR inhibitor) and hepatic lineage without an intermediate 'stem' cell step. This process seems owing to a synergy among few master molecules, metabolic changes and scaffold presence acting in a concerted way to control the cell fate. PMID:26561783

  11. Neuroblastoma: A Tough Nut to Crack.

    PubMed

    Speleman, Frank; Park, Julie R; Henderson, Tara O

    2016-01-01

    Neuroblastoma, an embryonal tumor arising from neural crest-derived progenitor cells, is the most common solid tumor in childhood, with more than 700 cases diagnosed per year in the United States. In the past several decades, significant advances have been made in the treatment of neuroblastoma. Treatment advances reflect improved understanding of the biology of neuroblastoma. Although amplification of MYCN was discovered in the early 1980s, our understanding of neuroblastoma oncogenesis has advanced in the last decade as a result of high-throughput genomic analysis, exome and whole-genome sequencing, genome-wide association studies, and synthetic lethal drug screens. Our refined understanding of neuroblastoma biology and genetics is reflected in improved prognostic stratification and appropriate tailoring of therapy in recent clinical trials. Moreover, for high-risk neuroblastoma, a disease that was uniformly fatal 3 decades ago, recent clinical trials incorporating autologous hematopoietic transplant and immunotherapy utilizing anti-GD2 antibody plus cytokines have shown improved event-free and overall survival. These advances have resulted in a growing population of long-term survivors of neuroblastoma. Examination of the late effects and second malignant neoplasms (SMNs) in both older generations of survivors and more recently treated survivors will inform both design of future trials and surveillance guidelines for long-term follow-up. As a consequence of advances in understanding of the biology of neuroblastoma, successful clinical trials, and refined understanding of the late effects and SMNs of survivors, the promise of precision medicine is becoming a reality for patients with neuroblastoma. PMID:27249766

  12. Repression of BIRC5/Survivin by FOXO3/FKHRL1 Sensitizes Human Neuroblastoma Cells to DNA Damage-induced Apoptosis

    PubMed Central

    Hagenbuchner, Judith; Unterkircher, Thomas; Sachsenmaier, Nora; Seifarth, Christoph; Böck, Günther; Porto, Verena; Geiger, Kathrin; Ausserlechner, Michael

    2009-01-01

    The phosphatidylinositol 3-kinase (PI3K)–protein kinase B (PKB) pathway regulates survival and chemotherapy resistance of neuronal cells, and its deregulation in neuroblastoma (NB) tumors predicts an adverse clinical outcome. Here, we show that inhibition of PI3K-PKB signaling in human NB cells induces nuclear translocation of FOXO3/FKHRL1, represses the prosurvival protein BIRC5/Survivin, and sensitizes to DNA-damaging agents. To specifically address whether FKHRL1 contributes to Survivin regulation, we introduced a 4-hydroxy-tamoxifen-regulated FKHRL1(A3)ERtm allele into NB cells. Conditional FKHRL1 activation repressed Survivin transcription and protein expression. Transgenic Survivin exerted a significant antiapoptotic effect and prevented the accumulation of Bim and Bax at mitochondria, the loss of mitochondrial membrane potential as well as the release of cytochrome c during FKHRL1-induced apoptosis. In concordance, Survivin knockdown by retroviral short hairpin RNA technology accelerated FKHRL1-induced apoptosis. Low-dose activation of FKHRL1 sensitized to the DNA-damaging agents doxorubicin and etoposide, whereas the overexpression of Survivin diminished FKHRL1 sensitization to these drugs. These results suggest that repression of Survivin by FKHRL1 facilitates FKHRL1-induced apoptosis and sensitizes to cell death induced by DNA-damaging agents, which supports the central role of PI3K-PKB-FKHRL1 signaling in drug resistance of human NB. PMID:19211844

  13. Tumour progression of human neuroblastoma cells tagged with a lacZ marker gene: earliest events at ectopic injection sites.

    PubMed Central

    Kleinman, N. R.; Lewandowska, K.; Culp, L. A.

    1994-01-01

    Human Platt neuroblastoma cells were transfected with the marker gene, bacterial lacZ, to track cells at the earliest stages after ectopic injection at two different sites in athymic nude mice. Three clones (LZPt-1,-2 and -3) of differing morphologies were analysed. All clones yielded large primary tumours subcutaneously or intradermally with similar latency. While LZPt-2 and -3 clones generated well-staining primary tumours, LZPt-1 cells yielded many non-staining tumours, indicating greater instability of lacZ expression for this clone in situ (stability of lacZ expression in culture was similar for all three clones). After s.c. or intradermal injections, tumour cells were tracked for 1 h to > 3 weeks (palpable) to evaluate the topology and population expansion characteristics at the earliest times. From 1 h to 2 days, tumour cells were concentrated in central masses with 'crinkly hair' distributions emanating from the periphery. Between 3 and 7 days, these 'crinkly hair' patterns were cleared from the tissue, leaving dense ovoid patterns of tumour cells. These concentrations of cells expanded collectively, not by division of one or a few cells, but by division of many cells. For clone LZPt-1, cells stained well with X-gal for 2-3 days; by 7 days, most cells were non-staining. Evidence suggests that lacZ expression is turned off in these tumour cells, rather than a lacZ- cell type clonally dominating the population. For all three clones, tumour cells remained rounded and did not spread in any tissue environment at all time points, indicating very different matrix adhesion mechanisms operating in situ compared with their distinctive spreading patterns in culture. Angioneogenesis near primary tumours became evident by 2-3 days, leading to extensive vascularisation by 1-2 weeks. Overall, these studies indicate common tumour progression characteristics for three different clones of human neuroblastoma, insight into lacZ instability mechanisms operating in one of these

  14. Neuroblastoma in an adult: case presentation and literature review.

    PubMed

    Smith, Laura; Minter, Steve; O'Brien, Paul; Kraveka, Jacqueline M; Medina, Ana Maria; Lazarchick, John

    2013-01-01

    Neuroblastoma is the most common malignancy in children less than one year of age, but is rare in adults. Adult neuroblastoma differs from pediatric cases by lacking classical features including low incidence of MYCN amplification, elevated urinary catecholamimes, and MIBG avidity. The diagnosis may not be initially considered because of the rarity, which emphasizes the importance of immunohistochemical staining and cytogenetic testing in aiding the diagnosis. We present a case of neuroblastoma in a 39-year-old woman who failed to respond to intensive therapy for this malignancy and died within a year after diagnosis. PMID:23462610

  15. Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma

    PubMed Central

    Ostler, Kelly R.; Yang, Qiwei; Looney, Timothy J.; Zhang, Li; Vasanthakumar, Aparna; Tian, Yufeng; Kocherginsky, Masha; Raimondi, Stacey L.; DeMaio, Jessica G.; Salwen, Helen R.; Gu, Song; Chlenski, Alexandre; Naranjo, Arlene; Gill, Amy; Peddinti, Radhika; Lahn, Bruce T.; Cohn, Susan L.; Godley, Lucy A.

    2012-01-01

    Epigenetic changes in pediatric neuroblastoma may contribute to the aggressive pathophysiology of this disease, but little is known about the basis for such changes. In this study, we examined a role for the DNA methyltransferase DNMT3B, in particular, the truncated isoform DNMT3B7 which is generated frequently in cancer. To investigate if aberrant DNMT3B transcripts alter DNA methylation, gene expression, and phenotypic character in neuroblastoma, we measured DNMT3B expression in primary tumors. Higher levels of DNMT3B7 were detected in differentiated ganglioneuroblastomas compared to undifferentiated neuroblastomas, suggesting that expression of DNMT3B7 may induce a less aggressive clinical phenotype. To test this hypothesis, we investigated the effects of enforced DNMT3B7 expression in neuroblastoma cells, finding a significant inhibition of cell proliferation in vitro and angiogenesis and tumor growth in vivo. DNMT3B7-positive cells had higher levels of total genomic methylation and a dramatic decrease in expression of the FOS and JUN family members that comprise AP1 transcription factors. Consistent with an established antagonistic relationship between AP1 expression and retinoic acid receptor activity, increased differentiation was seen in the DNMT3B7-expressing neuroblastoma cells following treatment with all-trans retinoic acid (ATRA) compared to controls. Our results indicate that DNMT3B7 modifies the epigenome in neuroblastoma cells to induce changes in gene expression, inhibit tumor growth, and increase sensitivity to ATRA. PMID:22815530

  16. Opioid receptors in human neuroblastoma SH-SY5Y cells: evidence for distinct morphine (. mu. ) and enkephalin (delta) binding sites

    SciTech Connect

    Kazmi, S.M.I.; Mishra, R.K.

    1986-06-13

    Human neuroblastoma SH-SY5Y cells exhibited a heterogeneous population of ..mu.. and delta types of opioid binding sites. These specific binding sites displayed the characteristic saturability, stereospecificity and reversibility, expected of a receptor. Scatchard analysis of (/sup 3/H)-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin (DADLE) in the presence of 10/sup -5/M D-Pro/sup 4/-morphiceptin (to block the ..mu.. receptors) and the competitive displacement by various highly selective ligands yielded the binding parameters of delta sites which closely resemble those of the delta receptors in brain and mouse neuroblastoma clones. Similarly, the high affinity binding of (/sup 3/H)-dihydromorphine, together with the higher potency of morphine analogues to displace (/sup 3/H)-naloxone binding established the presence of ..mu.. sites. Guanine nucleotides and NaCl significantly inhibited the association and increased the dissociation of (/sup 3/H)-DADLE binding.

  17. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells.

    PubMed

    Rajan, Thangavelu Soundara; De Nicola, Gina Rosalinda; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2016-04-01

    Isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit tumorigenesis and they have received significant attention as potential chemotherapeutic agents against cancer. Astrocytoma grade IV is the most frequent and most malignant primary brain tumor in adults without any curative treatment. New therapeutic drugs are therefore urgently required. In the present study, we investigated the in vitro antitumor activity of the glycosylated isothiocyanate moringin [4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate] produced from quantitative myrosinase-induced hydrolysis of glucomoringin (GMG) under neutral pH value. We have evaluated the potency of moringin on apoptosis induction and cell death in human astrocytoma grade IV CCF-STTG1 cells. Moringin showed to be effective in inducing apoptosis through p53 and Bax activation and Bcl-2 inhibition. In addition, oxidative stress related Nrf2 transcription factor and its upstream regulator CK2 alpha expressions were modulated at higher doses, which indicated the involvement of oxidative stress-mediated apoptosis induced by moringin. Moreover, significant reduction in 5S rRNA was noticed with moringin treatment. Our in vitro results demonstrated the antitumor efficacy of moringin derived from myrosinase-hydrolysis of GMG in human malignant astrocytoma cells. PMID:26882972

  18. Antipsychotic drugs increase N-acetylaspartate and N-acetylaspartylglutamate in SH-SY5Y human neuroblastoma cells.

    PubMed

    Arun, Peethambaran; Madhavarao, Chikkathur N; Moffett, John R; Namboodiri, Aryan M A

    2008-08-01

    N-Acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) are related neuronal metabolites associated with the diagnosis and treatment of schizophrenia. NAA is a valuable marker of neuronal viability in magnetic resonance spectroscopy, a technique which has consistently shown NAA levels to be modestly decreased in the brains of schizophrenia patients. However, there are conflicting reports on the changes in brain NAA levels after treatment with antipsychotic drugs, which exert their therapeutic effects in part by blocking dopamine D(2) receptors. NAAG is reported to be an agonist of the metabotropic glutamate 2/3 receptor, which is linked to neurotransmitter release modulation, including glutamate release. Alterations in NAAG metabolism have been implicated in the development of schizophrenia possibly via dysregulation of glutamate neurotransmission. In the present study we have used high performance liquid chromatography to determine the effects of the antipsychotic drugs haloperidol and clozapine on NAA and NAAG levels in SH-SY5Y human neuroblastoma cells, a model system used to test the responses of dopaminergic neurons in vitro. The results indicate that the antipsychotic drugs haloperidol and clozapine increase both NAA and NAAG levels in SH-SY5Y cells in a dose and time dependant manner, providing evidence that NAA and NAAG metabolism in neurons is responsive to antipsychotic drug treatment. PMID:18631215

  19. Riluzole decreases synthesis of N-acetylaspartate and N-acetylaspartylglutamate in SH-SY5Y human neuroblastoma cells.

    PubMed

    Arun, Peethambaran; Moffett, John R; Namboodiri, Aryan M A

    2010-06-01

    N-acetylaspartate (NAA) is present at very high concentrations in the brain and is used as a non-invasive marker of neuronal viability in magnetic resonance spectroscopy. N-acetylaspartylglutamate (NAAG) is an acetylated dipeptide formed from NAA, and may be an agonist of the mGluR3 receptor. Both NAA and NAAG are synthesized primarily in neurons. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder resulting in motor neuron death, and progressive paralysis. Levels of both NAA and NAAG are reported to be decreased in ALS. Riluzole is a glutamatergic modulating agent used to treat ALS, but there are conflicting results in the literature concerning the recovery of NAA after riluzole treatment. We studied the effects of riluzole on the biosynthesis of both NAA and NAAG in SH-SY5Y human neuroblastoma cells. We used two methodologies to examine the effect; one involving radiolabel incorporation from corresponding substrates into NAA and NAAG, and the other involving the measurement of endogenous NAA and NAAG levels using HPLC. We show that riluzole treatment, which decreases glutamatergic neuronal excitation, decreases the synthesis and levels of both NAA and NAAG in SH-SY5Y cells in a dose and time dependant manner. These results suggest that the synthesis of NAA and NAAG may be coupled to glutamatergic neurotransmission, and further investigations along these lines are warranted. PMID:20394738

  20. Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via microglial activation.

    PubMed

    Ma, Kun; Wu, Hao-Yu; Zhang, Bo; He, Xi; Li, Bai-Xiang

    2015-11-01

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is a broad-spectrum herbicide with a wide range of applications worldwide. However, ATR is neurotoxic; it reduces dopamine levels in the substantia nigra and corpus striatum in the midbrain, affects the absorption of synaptic vesicles and synaptic bodies, and interferes with dopamine storage and uptake in synaptic vesicles, leading to neurodegenerative disorders. Microglia are resident immunocompetent and phagocytic cells that regulate and participate in the microenvironment in the central nervous system. They demonstrate macrophage characteristics after activation by releasing inflammatory cytokines and neurotoxic substances to increase the inflammatory response, and are thus involved in neurodegeneration. The aim of this study was to investigate the neurotoxic effects of ATR-activated microglia-mediated neuronal damage in terms of human dopaminergic neuroblastoma SH-SY5Y cell death. ATR was administered to BV-2 microglial cells at 12.5, 25, and 50 μM for 1, 6, 12, 24 and 48 h, respectively. ATR increased activated-microglia-induced overexpression of reactive oxygen species, inducible nitric oxide synthase, nitric oxide, gp91(phox), p47(phox), and the inflammatory cytokines tumor necrosis factor α and interleukin-1β, thus reducing SH-SY5Y cell viability. These results suggest that activated microglia may play a critical role in inflammation-mediated dopaminergic neuronal death, and provide the basis for further studies on the mechanisms of ATR-induced dopaminergic system toxicity. PMID:26256823

  1. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis

    SciTech Connect

    Wu, C.-W.; Ping, Y.-H.; Yen, J.-C.; Chang, C.-Y.; Wang, S.-F.; Yeh, C.-L.; Chi, C.-W.; Lee, H.-C. . E-mail: hclee2@ym.edu.tw

    2007-05-01

    Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive decline in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects.

  2. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells.

    PubMed

    Russo, Rossella; Ciociaro, Antonella; Berliocchi, Laura; Cassiano, Maria Gilda Valentina; Rombolà, Laura; Ragusa, Salvatore; Bagetta, Giacinto; Blandini, Fabio; Corasaniti, Maria Tiziana

    2013-09-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a widely used plant extract showing anxiolytic, analgesic and neuroprotective effects in rodents; also, BEO activates multiple death pathways in cancer cells. Despite detailed knowledge of its chemical composition, the constituent/s responsible for these pharmacological activities remain largely unknown. Aim of the present study was to identify the components of BEO implicated in cell death. To this end, limonene, linalyl acetate, linalool, γ-terpinene, β-pinene and bergapten were individually tested in human SH-SY5Y neuroblastoma cultures at concentrations comparable with those found in cytotoxic dilutions of BEO. None of the tested compounds elicited cell death. However, significant cytotoxicity was observed when cells were cotreated with limonene and linalyl acetate whereas no other associations were effective. Only cotreatment, but not the single exposure to limonene and linalyl acetate, replicated distinctive morphological and biochemical changes induced by BEO, including caspase-3 activation, PARP cleavage, DNA fragmentation, cell shrinkage, cytoskeletal alterations, together with necrotic and apoptotic cell death. Collectively, our findings suggest a major role for a combined action of these monoterpenes in cancer cell death induced by BEO. PMID:23707744

  3. [COMPARISON OF CYTOPROTECTIVE EFFECTS OF HEMANTANE AND AMANTADINE UNDER CONDITIONS OF 6-HYDROXYDOPAMINE NEUROTOXIN ACTION ON CULTURED HUMAN NEUROBLASTOMA CELLS].

    PubMed

    Logvinov, I O; Antipova, T A; Nepoklonov, A V; Valdman, E A

    2016-01-01

    Potential neuroprotective activity of the novel antiparkinsonian drug hemantane (hydrochloride N-2-(adamantyl)-hexamethylenimine) in comparison to amantadine has been studied in various regimes of administration on human neuroblastoma SH-SY5Y cell line injury induced by 6-hydroxydopamine (6-OHDA), which is used as in vitro model of dopaminergic neurons for Parkinson's disease. Two regimes of hemantane and amantadine administration in a range of final concentrations 10⁻⁶-10⁻⁸ M were used either prior to or immediately after 6-OHDA introduction. MTT colorimetric assay was used to assess the viability of test cells. Significant decrease in viability of SH-SY5Y cells treated with 6-OHDA was observed. The addition of hemantane to cell medium produced cytoprotective effects in both regimes of administration--before and after 6-OHDA--at concentrations 10⁻⁷ M and 10⁻⁶-10⁻⁸ M, respectively. Amantadine in con- centrations 10⁻⁷-10⁻⁸ M was effective to increase cell survival only when administered after 6-OHDA. These results show that hemantane has a greater neu-roprotective potential in comparison to amantadine. PMID:27159951

  4. Cyclophilin B protects SH-SY5Y human neuroblastoma cells against MPP(+)-induced neurotoxicity via JNK pathway.

    PubMed

    Oh, Yoojung; Jeong, Kwon; Kim, Kiyoon; Lee, Young-Seok; Jeong, Suyun; Kim, Sung Soo; Yoon, Kyung-Sik; Ha, Joohun; Kang, Insug; Choe, Wonchae

    2016-09-23

    Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. PD involves a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyidine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) inhibit the complex I of the mitochondrial electron transport chain, and have been widely used to construct PD models. Cyclophilin B (CypB) is an endoplasmic reticulum protein that binds to cyclosporine A as a cyclophilin family member. CypB has peptidyl-prolyl cis-trans isomerase (PPIase) activity. We investigated the protective effects of overexpressed CypB on MPP+-induced neurocytotoxicity in SH-SY5Y human neuroblastoma cells. Overexpressed CypB decreased MPP(+)-induced oxidative stress through the modulation of antioxidant enzymes including manganese superoxide dismutase and catalase, and prevented neurocytotoxicity via mitogen-activated protein kinase, especially the c-Jun N-terminal kinase pathway. In addition, CypB inhibited the activation of MPP(+)-induced the pro-apoptotic molecules poly (ADP-ribose) polymerase, Bax, and Bcl-2, and attenuated MPP(+)-induced mitochondrial dysfunction. The data suggest that overexpressed CypB protects neuronal cells from MPP+-induced dopaminergic neuronal cell death. PMID:27569281

  5. Neuroblastoma and Its Zebrafish Model.

    PubMed

    Zhu, Shizhen; Thomas Look, A

    2016-01-01

    Neuroblastoma, an important developmental tumor arising in the peripheral sympathetic nervous system (PSNS), accounts for approximately 10 % of all cancer-related deaths in children. Recent genomic analyses have identified a spectrum of genetic alterations in this tumor. Amplification of the MYCN oncogene is found in 20 % of cases and is often accompanied by mutational activation of the ALK (anaplastic lymphoma kinase) gene, suggesting their cooperation in tumor initiation and spread. Understanding how complex genetic changes function together in oncogenesis has been a continuing and daunting task in cancer research. This challenge was addressed in neuroblastoma by generating a transgenic zebrafish model that overexpresses human MYCN and activated ALK in the PSNS, leading to tumors that closely resemble human neuroblastoma and new opportunities to probe the mechanisms that underlie the pathogenesis of this tumor. For example, coexpression of activated ALK with MYCN in this model triples the penetrance of neuroblastoma and markedly accelerates tumor onset, demonstrating the interaction of these modified genes in tumor development. Further, MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. In the context of MYCN overexpression, activated ALK provides prosurvival signals that block this apoptotic response, allowing continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma. This application of the zebrafish model illustrates its value in rational assessment of the multigenic changes that define neuroblastoma pathogenesis and points the way to future studies to identify novel targets for therapeutic intervention. PMID:27165366

  6. The SK-N-AS human neuroblastoma cell line develops osteolytic bone metastases with increased angiogenesis and COX-2 expression

    PubMed Central

    Tsutsumimoto, Takahiro; Williams, Paul; Yoneda, Toshiyuki

    2014-01-01

    Neuroblastoma (NB), which arises from embryonic neural crest cells, is the most common extra-cranial solid tumor of childhood. Approximately half of NB patients manifest bone metastasis accompanied with bone pain, fractures and bone marrow failure, leading to disturbed quality of life and poor survival. To study the mechanism of bone metastasis of NB, we established an animal model in which intracardiac inoculation of the SK-N-AS human NB cells in nude mice developed osteolytic bone metastases with increased osteoclastogenesis. SK-N-AS cells induced the expression of receptor activator of NF-κB ligand and osteoclastogenesis in mouse bone marrow cells in the co-culture. SK-N-AS cells expressed COX-2 mRNA and produced substantial amounts of prostaglandin E2 (PGE2). In contrast, the SK-N-DZ and SK-N-FI human NB cells failed to develop bone metastases, induce osteoclastogenesis, express COX-2 mRNA and produce PGE2. Immunohistochemical examination of SK-N-AS bone metastasis and subcutaneous tumor showed strong expression of COX-2. The selective COX-2 inhibitor NS-398 inhibited PGE2 production and suppressed bone metastases with reduced osteoclastogenesis. NS-398 also inhibited subcutaneous SK-N-AS tumor development with decreased angiogenesis and vascular endothelial growth factor-A expression. Of interest, metastasis to the adrenal gland, a preferential site for NB development, was also diminished by NS-398. Our results suggest that COX2/PGE2 axis plays a critical role in the pathophysiology of osteolytic bone metastases and tumor development of the SK-NS-AS human NB. Inhibition of angiogenesis by suppressing COX-2/PGE2 may be an effective therapeutic approach for children with NB. PMID:26909300

  7. Neurofunctional endpoints assessed in human neuroblastoma SH-SY5Y cells for estimation of acute systemic toxicity

    SciTech Connect

    Gustafsson, Helena; Runesson, Johan; Lundqvist, Jessica; Lindegren, Helene; Axelsson, Viktoria; Forsby, Anna

    2010-06-01

    The objective of the EU-funded integrated project ACuteTox is to develop a strategy in which general cytotoxicity, together with organ-specific toxicity and biokinetic features, are used for the estimation of human acute systemic toxicity. Our role in the project is to characterise the effect of reference chemicals with regard to neurotoxicity. We studied cell membrane potential (CMP), noradrenalin (NA) uptake, acetylcholine esterase (AChE) activity, acetylcholine receptor (AChR) signalling and voltage-operated calcium channel (VOCC) function in human neuroblastoma SH-SY5Y cells after exposure to 23 pharmaceuticals, pesticides or industrial chemicals. Neurotoxic alert chemicals were identified by comparing the obtained data with cytotoxicity data from the neutral red uptake assay in 3T3 mouse fibroblasts. Furthermore, neurotoxic concentrations were correlated with estimated human lethal blood concentrations (LC50). The CMP assay was the most sensitive assay, identifying eight chemicals as neurotoxic alerts and improving the LC50 correlation for nicotine, lindane, atropine and methadone. The NA uptake assay identified five neurotoxic alert chemicals and improved the LC50 correlation for atropine, diazepam, verapamil and methadone. The AChE, AChR and VOCC assays showed limited potential for detection of acute toxicity. The CMP assay was further evaluated by testing 36 additional reference chemicals. Five neurotoxic alert chemicals were generated and orphendrine and amitriptyline showed improved LC50 correlation. Due to the high sensitivity and the simplicity of the test protocol, the CMP assay constitutes a good candidate assay to be included in an in vitro test strategy for prediction of acute systemic toxicity.

  8. Bcl-B Expression in Human Epithelial and Nonepithelial Malignancies

    PubMed Central

    Krajewska, Maryla; Kitada, Shinichi; Winter, Jane N.; Variakojis, Daina; Lichtenstein, Alan; Zhai, Dayong; Cuddy, Michael; Huang, Xianshu; Luciano, Frederic; Baker, Cheryl H.; Kim, Hoguen; Shin, Eunah; Kennedy, Susan; Olson, Allen H.; Badzio, Andrzej; Jassem, Jacek; Meinhold-Heerlein, Ivo; Duffy, Michael J.; Schimmer, Aaron D.; Tsao, Ming; Brown, Ewan; Sawyers, Anne; Andreeff, Michael; Mercola, Dan; Krajewski, Stan; Reed, John C.

    2014-01-01

    Purpose Apoptosis plays an important role in neoplastic processes. Bcl-B is an antiapoptotic Bcl-2 family member, which is known to change its phenotype upon binding to Nur77/TR3. The expression pattern of this protein in human malignancies has not been reported. Experimental Design We investigated Bcl-B expression in normal human tissues and several types of human epithelial and nonepithelial malignancy by immunohistochemistry, correlating results with tumor stage, histologic grade, and patient survival. Results Bcl-B protein was strongly expressed in all normal plasma cells but found in only18%of multiple myelomas (n = 133). Bcl-B immunostaining was also present in normal germinal center centroblasts and centrocytes and in approximately half of diffuse large B-cell lymphoma (n =48) specimens, whereas follicular lymphomas (n = 57) did not contain Bcl-B. In breast (n = 119), prostate (n = 66), gastric (n = 180), and colorectal (n = 106) adenocarcinomas, as well as in non – small cell lung cancers (n = 82), tumor-specific overexpression of Bcl-B was observed. Bcl-B expression was associated with variables of poor prognosis, such as high tumor grade in breast cancer (P = 0.009), microsatellite stability (P = 0.0002), and left-sided anatomic location (P = 0.02) of colorectal cancers, as well as with greater incidence of death from prostate cancer (P = 0.005) and shorter survival of patients with small cell lung cancer (P = 0.009). Conversely, although overexpressed in many gastric cancers, Bcl-B tended to correlate with better outcome (P = 0.01) and more differentiated tumor histology (P < 0.0001). Conclusions Tumor-specific alterations in Bcl-B expressionmay define subsets of nonepithelial and epithelial neoplasms with distinct clinical behaviors. PMID:18483366

  9. Cell Proliferation in Neuroblastoma.

    PubMed

    Stafman, Laura L; Beierle, Elizabeth A

    2016-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed. PMID:26771642

  10. Cell Proliferation in Neuroblastoma

    PubMed Central

    Stafman, Laura L.; Beierle, Elizabeth A.

    2016-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed. PMID:26771642

  11. GD2 ganglioside specific antibody treatment downregulates PI3K/Akt/mTOR signaling network in human neuroblastoma cell lines.

    PubMed

    Durbas, Małgorzata; Horwacik, Irena; Boratyn, Elżbieta; Kamycka, Elżbieta; Rokita, Hanna

    2015-09-01

    Mechanisms leading to inhibitory effects of an anti-GD2 ganglioside (GD2) 14G2a mouse monoclonal antibody (mAb) and PI3K/Akt/mTOR pathway inhibitors on human neuroblastoma cell survival were studied in vitro. We have recently shown on IMR-32, CHP‑134, and LA-N-1 neuroblastoma cells that targeting GD2 with the mAb decreases cell viability of the cell lines. In this study we used cytotoxicity assays, proteomic arrays and immunoblotting to evaluate the response of the three cell lines to the anti‑GD2 14G2a mAb and specific PI3K/Akt/mTOR pathway inhibitors. We show here that the mAb modulates intracellular signal transduction through changes in several kinases and their substrates phosphorylation. More detailed analysis of the PI3K/Akt/mTOR pathway showed significant decrease in activity of Akt, mTOR, p70 S6 and 4E-BP1 proteins and transient increase in PTEN (a suppressor of the pathway), leading to inhibition of the signaling network responsible for stimulation of translation and proliferation. Additionally, combining the GD2-specific 14G2a mAb with an Akt inhibitor (perifosine), dual mTOR/PI3K inhibitors (BEZ-235 and SAR245409), and a pan-PI3K inhibitor (LY294002) was shown to enhance cytotoxic effects against IMR-32, CHP‑134 and LA-N-1 cells. Our study extends knowledge on mechanisms of action of the 14G2a mAb on the neuroblastoma cells. Also, it stresses the need for further delineation of molecular signal orchestration aimed at more reasonable selection of drugs to target key cellular pathways in quest for better cure for neuroblastoma patients. PMID:26134970

  12. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo.

    PubMed

    Greening, David W; Ji, Hong; Chen, Maoshan; Robinson, Bruce W S; Dick, Ian M; Creaney, Jenette; Simpson, Richard J

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  13. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo

    PubMed Central

    Greening, David W.; Ji, Hong; Chen, Maoshan; Robinson, Bruce W. S.; Dick, Ian M.; Creaney, Jenette; Simpson, Richard J.

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  14. The role of human papilloma virus in urological malignancies.

    PubMed

    Heidegger, Isabel; Borena, Wegene; Pichler, Renate

    2015-05-01

    Human papillomavirus (HPV) is associated with cancer of the cervix uteri, penis, vulva, vagina, anus and oropharynx. However, the role of HPV infection in urological tumors is not yet clarified. HPV appears not to play a major causative role in renal and testicular carcinogenesis. However, HPV infection should be kept in mind regarding cases of prostate cancer, as well as in a sub-group of patients with bladder cancer with squamous differentiation. Concerning the role of HPV in penile cancer incidence, it is a recognized risk factor proven in a large number of studies. This short review provides an update regarding recent literature on HPV in urological malignancies, thereby, also discussing possible limitations on HPV detection in urological cancer. PMID:25964524

  15. IGF2 expression is a marker for paraganglionic/SIF cell differentiation in neuroblastoma.

    PubMed Central

    Hedborg, F.; Ohlsson, R.; Sandstedt, B.; Grimelius, L.; Hoehner, J. C.; Pählman, S.

    1995-01-01

    Neuroblastoma is a childhood tumor of the sympathetic nervous system. Observations in the Beckwith-Wiedemann syndrome suggest that sympathetic embryonal cells with an abundant expression of the insulin-like growth factor 2 gene (IGF2) may be involved in the genesis of low-malignant infant neuroblastomas. We have therefore compared the cell type-specific IGF2 expression of the human sympathetic nervous system during early development with that of neuroblastoma. An abundant expression in normal sympathetic tissue was specific to extra-adrenal chromaffin cells, ie, paraganglia and small intensely fluorescent (SIF) cells, whereas sympathetic neuronal cells were IGF2-negative. A subpopulation of neuroblastomas expressed IGF2, which correlated with an early age at diagnosis, an extra-adrenal tumor origin, and severe hemodynamic signs of catecholamine secretion. Histologically IGF2-expressing tumors displayed a lobular growth pattern, and expression was restricted to the most mature and least proliferative cells. Typically, these cells were morphologically and histochemically similar to paraganglia/SIF cells and formed distinct ring-like zones in the center of the lobules around a core of apoptosis-like tumor cells. The similarities found between IGF2-expressing neuroblastoma cells and paraganglia/SIF cells in terms of histological features, anatomical origin, and age-dependent growth suggest a paraganglionic/SIF cell lineage of most infant tumors and also of extra-adrenal tumors diagnosed after infancy. Furthermore, since paraganglia/SIF cells undergo postnatal involution, the same cellular mechanism may be responsible for spontaneous regression in infant neuroblastoma. Images Figure 2 Figure 3 p839-a Figure 4 PMID:7717451

  16. Butyrate modulates antioxidant enzyme expression in malignant and non-malignant human colon tissues.

    PubMed

    Jahns, Franziska; Wilhelm, Anne; Jablonowski, Nadja; Mothes, Henning; Greulich, Karl Otto; Glei, Michael

    2015-04-01

    The induction of antioxidant enzymes is an important mechanism in colon cancer chemoprevention, but the response of human colon tissue to butyrate, a gut fermentation product derived from dietary fiber, remains largely unknown. Therefore, our study investigated the effect of a butyrate treatment on catalase (CAT) and superoxide dismutase (SOD2) in matched human colon tissues of different transformation stages (n = 3-15 in each group) ex vivo. By performing quantitative real-time PCR, Western blot, and spectrophotometric measurements, we found an increase in SOD2 at expression and activity level in colonic adenocarcinomas (mRNA: 1.96-fold; protein: 1.41-fold, activity: 1.8-fold; P < 0.05). No difference was detectable for CAT between normal, adenoma, and carcinoma colon tissues. Treatment of normal colon epithelium (12 h) with a physiologically relevant concentration of butyrate (10 mM) resulted in a significant increase (P < 0.05) in CAT mRNA (1.24-fold) and protein (1.39-fold), without affecting the enzymatic activity. Consequently, preliminary experiments failed to show any protective effect of butyrate against H2 O2 -mediated DNA damage. Despite a significantly lowered SOD2 transcript (0.51-fold, P < 0.01) and, to a lesser extent, protein level (0.86-fold) after butyrate exposure of normal colon cells, the catalytic activity was significantly enhanced (1.19-fold, P < 0.05), suggesting an increased protection against tissue superoxide radicals. In malignant tissues, greater variations in response to butyrate were observed. Furthermore, both enzymes showed an age-dependent decrease in activity in normal colon epithelium (CAT: r = -0.49, P = 0.09; SOD2: r = -0.58, P = 0.049). In conclusion, butyrate exhibited potential antioxidant features ex vivo but cellular consequences need to be investigated more in depth. PMID:24677319

  17. Stress Conditions Increase Vimentin Cleavage by Omi/HtrA2 Protease in Human Primary Neurons and Differentiated Neuroblastoma Cells.

    PubMed

    Lucotte, Bérangère; Tajhizi, Mehdi; Alkhatib, Dareen; Samuelsson, Eva-Britt; Wiehager, Birgitta; Schedin-Weiss, Sophia; Sundström, Erik; Winblad, Bengt; Tjernberg, Lars O; Behbahani, Homira

    2015-12-01

    Dysfunctional Omi/HtrA2, a mitochondrial serine protease, has been implicated in various neurodegenerative disorders. Despite the wealth of evidence on the roles of Omi/HtrA2 in apoptosis, little is known about its cytosolic targets, the cleavage of which could account for the observed morphological changes such as cytoskeletal reorganizations in axons. By proteomic analysis, vimentin was identified as a substrate for Omi/HtrA2 and we have reported increased Omi/HtrA2 protease activity in Alzheimer disease (AD) brain. Here, we investigated a possible link between Omi/HtrA2 and vimentin cleavage, and consequence of this cleavage on mitochondrial distribution in neurons. In vitro protease assays showed vimentin to be cleaved by Omi/HtrA2 protease, and proximity ligation assay demonstrated an increased interaction between Omi/HtrA2 and vimentin in human primary neurons upon stress stimuli. Using differentiated neuroblastoma SH-SY5Y cells, we showed that Omi/HtrA2 under several different stress conditions induces cleavage of vimentin in wild-type as well as SH-SY5Y cells transfected with amyloid precursor protein with the Alzheimer disease-associated Swedish mutation. After stress treatment, inhibition of Omi/HtrA2 protease activity by the Omi/HtrA2 specific inhibitor, Ucf-101, reduced the cleavage of vimentin in wild-type cells. Following altered vimentin filaments integrity by stress stimuli, mitochondria was redistributed in differentiated SH-SY5Y cells and human primary neurons. In summary, the findings outlined in this paper suggest a role of Omi/HtrA2 in modulation of vimentin filamentous structure in neurons. Our results provide important findings for understanding the biological role of Omi/HtrA2 activity during stress conditions, and give knowledge of interplay between Omi/HtrA2 and vimentin which might affect mitochondrial distribution in neurons. PMID:25288153

  18. Effects of ethylene glycol ethers on cell viability in the human neuroblastoma SH-SY5Y cell line.

    PubMed

    Regulska, Magdalena; Pomierny, Bartosz; Basta-Kaim, Agnieszka; Starek, Andrzej; Filip, Małgorzata; Lasoń, Władysław; Budziszewska, Bogusława

    2010-01-01

    Ethylene glycol ethers (EGEs) are a class of chemicals used extensively in the manufacture of a wide range of domestic and industrial products, which may result in human exposure and toxicity. Hematologic and reproductive toxicity of EGEs are well known whereas their action on neuronal cell viability has not been studied so far. In the present study, we investigated the effects of some EGEs on cell viability and on the hydrogen peroxide-induced damage in the human neuroblastoma (SH-SY5Y) cells. It has been found that 2-phenoxyethanol in a concentration-dependent manner (5-25 mM, 24 h) increased the basal and H(2)O(2)-induced lactate dehydrogenase (LDH) release and 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide (MTT) reduction. 2-Butoxyethanol given alone did not affect LDH release and MTT reduction but concentration-dependently enhanced the cytotoxic effect of H(2)O(2). 2-Isopropoxyethanol significantly and concentration-dependently (1-25 mM) increased the basal LDH release and attenuated MTT reduction, but did not potentiate the cytotoxic effect of H(2)O(2). Contrary to this, 2-methoxyethanol did not show a cytotoxic effect while 2-ethoxyethanol at high concentrations intensified the hydrogen peroxide action. This study demonstrated that among the EGEs studied, 2-phenoxyethanol showed the most consistent cytotoxic effect on neurons in in vitro conditions and enhanced the hydrogen peroxide action. 2-Isopropoxyethanol had also a potent cytotoxic effect, but it did not enhance the hydrogen peroxide action, whereas 2-butoxyethanol only potentiated cytotoxic effect of H(2)O(2). It is concluded that the results of the present study should be confirmed in in vivo conditions and that some EGEs, especially 2-phenoxyethanol, 2-butoxyethanol and 2-isopropoxyethanol, may be responsible for initiation or exacerbation of neuronal cell damage. PMID:21273685

  19. Greatwall promotes cell transformation by hyperactivating AKT in human malignancies

    PubMed Central

    Vera, Jorge; Lartigue, Lydia; Vigneron, Suzanne; Gadea, Gilles; Gire, Veronique; Del Rio, Maguy; Soubeyran, Isabelle; Chibon, Frederic; Lorca, Thierry; Castro, Anna

    2015-01-01

    The PP2A phosphatase is often inactivated in cancer and is considered as a tumour suppressor. A new pathway controlling PP2A activity in mitosis has been recently described. This pathway includes the Greatwall (GWL) kinase and its substrates endosulfines. At mitotic entry, GWL is activated and phosphorylates endosulfines that then bind and inhibit PP2A. We analysed whether GWL overexpression could participate in cancer development. We show that GWL overexpression promotes cell transformation and increases invasive capacities of cells through hyperphosphorylation of the oncogenic kinase AKT. Interestingly, AKT hyperphosphorylation induced by GWL is independent of endosulfines. Rather, GWL induces GSK3 kinase dephosphorylation in its inhibitory sites and subsequent SCF-dependent degradation of the PHLPP phosphatase responsible for AKT dephosphorylation. In line with its oncogenic activity, we find that GWL is often overexpressed in human colorectal tumoral tissues. Thus, GWL is a human oncoprotein that promotes the hyperactivation of AKT via the degradation of its phosphatase, PHLPP, in human malignancies. DOI: http://dx.doi.org/10.7554/eLife.10115.001 PMID:26613407

  20. A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing

    PubMed Central

    Prapa, Malvina; Caldrer, Sara; Spano, Carlotta; Bestagno, Marco; Golinelli, Giulia; Grisendi, Giulia; Petrachi, Tiziana; Conte, Pierfranco; Horwitz, Edwin M.; Campana, Dario

    2015-01-01

    Chimeric antigen receptor (CAR)-expressing T cells are a promising therapeutic option for patients with cancer. We developed a new CAR directed against the disialoganglioside GD2, a surface molecule expressed in neuroblastoma and in other neuroectoderm-derived neoplasms. The anti-GD2 single-chain variable fragment (scFv) derived from a murine antibody of IgM class was linked, via a human CD8α hinge-transmembrane domain, to the signaling domains of the costimulatory molecules 4-1BB (CD137) and CD3-ζ. The receptor was expressed in T lymphocytes by retroviral transduction and anti-tumor activities were assessed by targeting GD2-positive neuroblastoma cells using in vitro cytotoxicity assays and a xenograft model. Transduced T cells expressed high levels of anti-GD2 CAR and exerted a robust and specific anti-tumor activity in 4- and 48-hour cultures with neuroblastoma cells. Cytotoxicity was associated with the release of pro-apoptotic molecules such as TRAIL and IFN-γ. These results were confirmed in a xenograft model, where anti-GD2 CAR T cells infiltrating tumors and persisting into blood circulation induced massive apoptosis of neuroblastoma cells and completely abrogated tumor growth. This anti-GD2 CAR represents a powerful new tool to redirect T cells against GD2. The preclinical results of this study warrant clinical testing of this approach in neuroblastoma and other GD2-positive malignancies. PMID:26298772

  1. A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing.

    PubMed

    Prapa, Malvina; Caldrer, Sara; Spano, Carlotta; Bestagno, Marco; Golinelli, Giulia; Grisendi, Giulia; Petrachi, Tiziana; Conte, Pierfranco; Horwitz, Edwin M; Campana, Dario; Paolucci, Paolo; Dominici, Massimo

    2015-09-22

    Chimeric antigen receptor (CAR)-expressing T cells are a promising therapeutic option for patients with cancer. We developed a new CAR directed against the disialoganglioside GD2, a surface molecule expressed in neuroblastoma and in other neuroectoderm-derived neoplasms. The anti-GD2 single-chain variable fragment (scFv) derived from a murine antibody of IgM class was linked, via a human CD8α hinge-transmembrane domain, to the signaling domains of the costimulatory molecules 4-1BB (CD137) and CD3-ζ. The receptor was expressed in T lymphocytes by retroviral transduction and anti-tumor activities were assessed by targeting GD2-positive neuroblastoma cells using in vitro cytotoxicity assays and a xenograft model. Transduced T cells expressed high levels of anti-GD2 CAR and exerted a robust and specific anti-tumor activity in 4- and 48-hour cultures with neuroblastoma cells. Cytotoxicity was associated with the release of pro-apoptotic molecules such as TRAIL and IFN-γ. These results were confirmed in a xenograft model, where anti-GD2 CAR T cells infiltrating tumors and persisting into blood circulation induced massive apoptosis of neuroblastoma cells and completely abrogated tumor growth. This anti-GD2 CAR represents a powerful new tool to redirect T cells against GD2. The preclinical results of this study warrant clinical testing of this approach in neuroblastoma and other GD2-positive malignancies. PMID:26298772

  2. HIV-1 coat protein gp120 stimulates interleukin-1β secretion from human neuroblastoma cells: evidence for a role in the mechanism of cell death

    PubMed Central

    Corasaniti, Maria Tiziana; Bilotta, Anna; Strongoli, Maria Concetta; Navarra, Michele; Bagetta, Giacinto; Renzo, Gianfranco Di

    2001-01-01

    The role of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the mechanism of cell death induced by the human immunodeficiency virus type 1 (HIV-1) recombinant coat glycoprotein, gp120 IIIB, has been studied in the human CHP100 neuroblastoma cell line maintained in culture. Death of neuroblastoma cells typically elicited by 10 pM gp120 or by human recombinant IL-1β (10 ng ml−1) has been minimized by the antagonist of IL-1 receptor, i.e. IL-1ra (0.5 and 50 ng ml−1, respectively), an endogenous molecule that antagonizes most of the biological actions of IL-1β, or by an antibody (5 and 50 ng ml−1) which blocks the human IL-1 receptor type I (IL-1RI). ELISA experiments have established that gp120 enhances immunoreactive IL-1β levels in the culture medium and this is prevented by exposure to the IL-1 converting enzyme (ICE) inhibitor t-butoxycarbonyl-L-aspartic acid benzyl ester-chloromethylketone [Boc-Asp(OBzl)-CMK] used at a concentration (2.5 μM) which significantly (P<0.001) reduces cell death. Death of CHP100 cells induced by gp120 is also prevented by acetyl-Tyr-Val-Ala-Asp-chloromethylketone (Ac-YVAD-CMK; 10 – 100 μM), a second inhibitor of ICE, supporting the concept that the viral protein stimulates the conversion of the 31 kDa pro-IL-1β in to the 17 kDa mature cytokine which is then secreted to cause death. In conclusion, our present data demonstrate that gp120 stimulates the secretion of IL-1β which then triggers CHP100 neuroblastoma cell death via stimulation of IL-1 receptor type I. PMID:11704656

  3. The M sub 1 muscarinic receptor and its second messenger coupling in human neuroblastoma cells and transfected murine fibroblast cells

    SciTech Connect

    Mei, Lin.

    1989-01-01

    The data of this study indicate that pirenzepine (PZ)-high affinity muscarinic receptors (mAChRs) are coupled to the hydrolysis of inositol lipids and not to the adenylate cyclase system in human neuroblastoma SH-SY5Y cells. The maximal carbachol(CCh)-stimulated ({sup 3}H)IP{sub 1} accumulation in the SH-SY5Y cells was decreased in the presence of 1{mu}g/ml pertussis toxin, suggesting that a pertussis toxin sensitive G-protein may be involved in the coupling. Several cell clones which express only M{sub 1} mAChR were generated by transfecting the murine fibroblast B82 cells with the cloned rat genomic m{sub 1} gene. The transfected B82 cells (cTB10) showed specific ({sup 3}H)(-)QNB binding activity. The mAChRs in these cells are of the M{sub 1} type defined by their high affinity for PZ and low affinity for AF-DX 116 and coupled to hydrolysis of inositol lipids, possibly via a pertussis toxin sensitive G protein. The relationship between the M{sub 1} mAChR density and the receptor-mediated hydrolysis of inositol lipids was studied in 7 clones. The M{sub 1} mAChR densities in these cells characterized by ({sup 3}H)(-)MQNB binding ranged from 12 fmol/10{sup 6} cells in LK3-1 cells to 260 fmol/10{sup 6} cells in the LK3-8 cells.

  4. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid

    PubMed Central

    2013-01-01

    Background Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. Results We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Conclusion Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity. PMID:23597229

  5. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y Cells

    SciTech Connect

    Liu, P.-S. . E-mail: psliu@mail.scu.edu.tw; Chiung, Y.-M.; Kao, Y.-Y.

    2006-03-01

    The mechanisms of TDI (2,4-toluene diisocyanate)-induced occupational asthma are not fully established. Previous studies have indicated that TDI induces non-specific bronchial hyperreactivity to methacholine and induces contraction of smooth muscle tissue by activating 'capsaicin-sensitive' nerves resulting asthma. Cytosolic-free calcium ion concentrations ([Ca{sup 2+}]{sub c}) are elevated when either capsaicin acts at vanilloid receptors, or methacholine at muscarinic receptors. This study therefore investigated the effects of TDI on Ca{sup 2+} mobilization in human neuroblastoma SH-SY5Y cells. TDI was found to elevate [Ca{sup 2+}]{sub c} by releasing Ca{sup 2+} from the intracellular stores and extracellular Ca{sup 2+} influx. 500 {mu}M TDI induced a net [Ca{sup 2+}]{sub c} increase of 112 {+-} 8 and 78 {+-} 6 nM in the presence and absence of extracellular Ca{sup 2+}, respectively. In Ca{sup 2+}-free buffer, TDI induced Ca{sup 2+} release from internal stores to reduce their Ca{sup 2+} content and this reduction was evidenced by a suppression occurring on the [Ca{sup 2+}]{sub c} rise induced by thapsigargin, ionomycin, and methacholine after TDI incubation. In the presence of extracellular Ca{sup 2+}, simultaneous exposure to TDI and methacholine led a higher level of [Ca{sup 2+}]{sub c} compared to single methacholine stimulation, that might explain that TDI induces bronchial hyperreactivity to methacholine. We conclude that TDI is capable of interfering the [Ca{sup 2+}]{sub c} homeostasis including releasing Ca{sup 2+} from internal stores and inducing extracellular Ca{sup 2+} influx. The interaction of this novel character and bronchial hyperreactivity need further investigation.

  6. Radiosensitization effect of zidovudine on human malignant glioma cells

    SciTech Connect

    Zhou Fuxiang; Liao Zhengkai; Dai Jing; Xiong Jie; Xie CongHua; Luo Zhiguo; Liu Shiquan; Zhou Yunfeng . E-mail: yfzhouwhu@163.com

    2007-03-09

    Telomeres are shortened with each cell division and play an important role in maintaining chromosomal integrity and function. Telomerase, responsible for telomere synthesis, is activated in 90% of human tumor cells but seldom in normal somatic cells. Zidovudine (AZT) is a reverse transcriptase inhibitor. In this study, we have investigated the effects of {gamma}-radiation in combination with AZT on telomerase activity (TA), telomere length, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and the changes in radiosensitivity of human malignant glioma cell line U251. The results showed that the TA was suppressed by AZT but enhanced by irradiation, resulting in a deceleration of restored rate of shortened telomere, decreased repair rate of DNA strand breaks, and increased radiosensitivity of U251 cells. Our results suggested that telomerase activity and telomere length may serve as markers for estimating the efficacy of cancer radiotherapy and reverse transcriptase inhibitors, such as AZT, may be used clinically as a new radiosensitizer in cancer radiotherapy.

  7. CCAAT-binding factor regulates expression of the beta1 subunit of soluble guanylyl cyclase gene in the BE2 human neuroblastoma cell line

    NASA Technical Reports Server (NTRS)

    Sharina, Iraida G.; Martin, Emil; Thomas, Anthony; Uray, Karen L.; Murad, Ferid

    2003-01-01

    Soluble guanylyl cyclase (sGC) is a cytosolic enzyme producing the intracellular messenger cyclic guanosine monophosphate (cGMP) on activation with nitric oxide (NO). sGC is an obligatory heterodimer composed of alpha and beta subunits. We investigated human beta1 sGC transcriptional regulation in BE2 human neuroblastoma cells. The 5' upstream region of the beta1 sGC gene was isolated and analyzed for promoter activity by using luciferase reporter constructs. The transcriptional start site of the beta1 sGC gene in BE2 cells was identified. The functional significance of consensus transcriptional factor binding sites proximal to the transcriptional start site was investigated by site deletions in the 800-bp promoter fragment. The elimination of CCAAT-binding factor (CBF) and growth factor independence 1 (GFI1) binding cores significantly diminished whereas deletion of the NF1 core elevated the transcription. Electrophoretic mobility-shift assay (EMSA) and Western analysis of proteins bound to biotinated EMSA probes confirmed the interaction of GFI1, CBF, and NF1 factors with the beta1 sGC promoter. Treatment of BE2 cells with genistein, known to inhibit the CBF binding to DNA, significantly reduced protein levels of beta1 sGC by inhibiting transcription. In summary, our study represents an analysis of the human beta1 sGC promoter regulation in human neuroblastoma BE2 cells and identifies CBF as a critically important factor in beta1 sGC expression.

  8. CCAAT-binding factor regulates expression of the β1 subunit of soluble guanylyl cyclase gene in the BE2 human neuroblastoma cell line

    PubMed Central

    Sharina, Iraida G.; Martin, Emil; Thomas, Anthony; Uray, Karen L.; Murad, Ferid

    2003-01-01

    Soluble guanylyl cyclase (sGC) is a cytosolic enzyme producing the intracellular messenger cyclic guanosine monophosphate (cGMP) on activation with nitric oxide (NO). sGC is an obligatory heterodimer composed of α and β subunits. We investigated human β1 sGC transcriptional regulation in BE2 human neuroblastoma cells. The 5′ upstream region of the β1 sGC gene was isolated and analyzed for promoter activity by using luciferase reporter constructs. The transcriptional start site of the β1 sGC gene in BE2 cells was identified. The functional significance of consensus transcriptional factor binding sites proximal to the transcriptional start site was investigated by site deletions in the 800-bp promoter fragment. The elimination of CCAAT-binding factor (CBF) and growth factor independence 1 (GFI1) binding cores significantly diminished whereas deletion of the NF1 core elevated the transcription. Electrophoretic mobility-shift assay (EMSA) and Western analysis of proteins bound to biotinated EMSA probes confirmed the interaction of GFI1, CBF, and NF1 factors with the β1 sGC promoter. Treatment of BE2 cells with genistein, known to inhibit the CBF binding to DNA, significantly reduced protein levels of β1 sGC by inhibiting transcription. In summary, our study represents an analysis of the human β1 sGC promoter regulation in human neuroblastoma BE2 cells and identifies CBF as a critically important factor in β1 sGC expression. PMID:14504408

  9. Primary pancreatic neuroblastoma presenting with opsoclonus–myoclonus syndrome

    PubMed Central

    Galgano, Samuel; Royal, Stuart

    2015-01-01

    Although neuroblastoma is a common solid organ malignancy in children, primary pancreatic neuroblastoma is a rare entity in children, with very few cases reported in the literature. The case discusses the presentation of a 21-month-old female presenting to the neurology clinic with ataxia and erratic eye movements. Our case illustrates the computed tomography, ultrasound, and scintigraphic findings of primary pancreatic neuroblastoma presenting as opsoclonus–myoclonus syndrome. Computed tomography and ultrasound demonstrated a vascular, enhancing mass in the pancreatic body clearly separate from the adrenal gland. Metaiodobenzylguanidine scan demonstrates focal intense uptake in the pancreatic body. The patient's diagnosis was confirmed with biopsy, and her malignancy responded well to conventional chemotherapy. The case is important in that it demonstrates the unusual imaging appearance of a primary pancreatic neuroblastoma. PMID:26973724

  10. Primary pancreatic neuroblastoma presenting with opsoclonus-myoclonus syndrome.

    PubMed

    Galgano, Samuel; Royal, Stuart

    2016-03-01

    Although neuroblastoma is a common solid organ malignancy in children, primary pancreatic neuroblastoma is a rare entity in children, with very few cases reported in the literature. The case discusses the presentation of a 21-month-old female presenting to the neurology clinic with ataxia and erratic eye movements. Our case illustrates the computed tomography, ultrasound, and scintigraphic findings of primary pancreatic neuroblastoma presenting as opsoclonus-myoclonus syndrome. Computed tomography and ultrasound demonstrated a vascular, enhancing mass in the pancreatic body clearly separate from the adrenal gland. Metaiodobenzylguanidine scan demonstrates focal intense uptake in the pancreatic body. The patient's diagnosis was confirmed with biopsy, and her malignancy responded well to conventional chemotherapy. The case is important in that it demonstrates the unusual imaging appearance of a primary pancreatic neuroblastoma. PMID:26973724

  11. The transcription of the human fructose-bisphosphate aldolase C gene is activated by nerve-growth-factor-induced B factor in human neuroblastoma cells.

    PubMed Central

    Buono, P; Conciliis, L D; Izzo, P; Salvatore, F

    1997-01-01

    A DNA region located at around -200 bp in the 5' flanking region (region D) of the human brain-type fructose-bisphosphate aldolase (aldolase C) gene has been analysed. We show by transient transfection assay and electrophoretic-mobility-shift assay (EMSA) that the binding of transcriptional activators to region D is much more efficient (80% versus 30%) in human neuroblastoma cells (SKNBE) than in the non-neuronal cell line A1251, which contains low levels of aldolase C mRNA. The sequence of region D, CAAGGTCA, is very similar to the AAAGGTCA motif present in the mouse steroid 21-hydroxylase gene; the latter motif binds nerve-growth-factor-induced B factor (NGFI-B), which is a member of the thyroid/steroid/retinoid nuclear receptor gene family. Competition experiments in EMSA and antibody-directed supershift experiments showed that NGFI-B is involved in the binding to region D of the human aldolase C gene. Furthermore, the regulation of the aldolase C gene (which is the second known target of NGFI-B) expression during development parallels that of NGFI-B. PMID:9173889

  12. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    SciTech Connect

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  13. Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

  14. Engraftment of human blood malignancies to the turkey embryo: a robust new in vivo model.

    PubMed

    Grinberg, Igor; Reis, Arbel; Ohana, Avivit; Taizi, Moran; Cipok, Michal; Tavor, Sigal; Rund, Deborah; Deutsch, Varda R; Goldstein, Ronald S

    2009-10-01

    Xenografting of human blood malignancies to immunodeficient SCID mice is a powerful research tool. We evaluate here whether the immunodeficient turkey embryo can also serve as a xenograft host for human blood malignancies. Human leukemia, lymphoma and myeloma lines engrafted robustly into medullary and extramedullary tissues of turkey embryos as detected by PCR, FACS and histology in 8-10 days. Four of eleven patient AML samples also engrafted the bone marrow. Grafts of two lines responded to chemotherapy with doxorubicin. The turkey embryo therefore has the potential to be a complementary xenograft model for the study of human blood malignancies. PMID:19297019

  15. Synchronous Ipsilateral Wilms’ Tumor and Neuroblastoma in an Infant

    PubMed Central

    Thakkar, Nirali Chirag; Sinha, Shalini

    2016-01-01

    Wilms’ tumor (WT) and neuroblastoma (NB), the two most common extra-cranial solid malignant tumors, are seldom seen together in the same patient. A 10-month girl presented with a right retroperitoneal mass. A preoperative diagnosis of Wilms’ tumor (WT) was made. She was given preoperative chemotherapy followed by surgery. At surgery a renal mass (WT) and a suprarenal mass (neuroblastoma – NB) were removed. She finally succumbed to metastatic NB in the postoperative period. PMID:26816675

  16. Identification of proteins sensitive to thermal stress in human neuroblastoma and glioma cell lines.

    PubMed

    Xu, Guilian; Stevens, Stanley M; Kobeissy, Firas; Kobiessy, Firas; Brown, Hilda; McClung, Scott; Gold, Mark S; Borchelt, David R

    2012-01-01

    Heat-shock is an acute insult to the mammalian proteome. The sudden elevation in temperature has far-reaching effects on protein metabolism, leads to a rapid inhibition of most protein synthesis, and the induction of protein chaperones. Using heat-shock in cells of neuronal (SH-SY5Y) and glial (CCF-STTG1) lineage, in conjunction with detergent extraction and sedimentation followed by LC-MS/MS proteomic approaches, we sought to identify human proteins that lose solubility upon heat-shock. The two cell lines showed largely overlapping profiles of proteins detected by LC-MS/MS. We identified 58 proteins in detergent insoluble fractions as losing solubility in after heat shock; 10 were common between the 2 cell lines. A subset of the proteins identified by LC-MS/MS was validated by immunoblotting of similarly prepared fractions. Ultimately, we were able to definitively identify 3 proteins as putatively metastable neural proteins; FEN1, CDK1, and TDP-43. We also determined that after heat-shock these cells accumulate insoluble polyubiquitin chains largely linked via lysine 48 (K-48) residues. Collectively, this study identifies human neural proteins that lose solubility upon heat-shock. These proteins may represent components of the human proteome that are vulnerable to misfolding in settings of proteostasis stress. PMID:23145051

  17. Olfactory neuroblastoma: A case report

    PubMed Central

    USLU, GONCA HANEDAN; CANYILMAZ, EMINE; ZENGIN, AHMET YASAR; MUNGAN, SEVDEGUL; YONEY, ADNAN; BAHADIR, OSMAN; GOCMEZ, HUSEYIN

    2015-01-01

    Olfactory neuroblastoma (ON) is a rare type of malignant neoplasm originating from the olfactory neuroepithelial cells of the nasal cavity. ON is also known as esthesioneuroblastoma or neuroendocrine carcinoma. The malignancy accounts for <3% of tumors originating in the nasal cavity. Through the nasal cavity, ON may infiltrate the sinuses, the orbit and the cranium. The tumor is characterized by a pattern of slow growth and local recurrences. Treatment options are surgical excision or surgery combined with a radiotherapy (RT) and/or chemotherapy combination treatment. The present study reports the case of a 69-year-old patient with a mass in the nasal cavity who was treated by combined surgical excision and RT. The literature for ON and the treatment of the tumor are also discussed. PMID:26788185

  18. Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells.

    PubMed

    Falone, Stefano; Marchesi, Nicoletta; Osera, Cecilia; Fassina, Lorenzo; Comincini, Sergio; Amadio, Marialaura; Pascale, Alessia

    2016-05-01

    Purpose The redox milieu, together with reactive oxygen species (ROS) accumulation, may play a role in mediating some biological effects of extremely-low-frequency electromagnetic fields (ELF-EMF). Some of us have recently reported that a pulsed EMF (PEMF) improves the antioxidant response of a drug-sensitive human neuroblastoma SH-SY5Y cell line to pro-oxidants. Since drug resistance may affect cell sensitivity to redox-based treatments, we wanted to verify whether drug-resistant human neuroblastoma SK-N-BE(2) cells respond to a PEMF in a similar fashion. Materials and methods SK-N-BE(2) cells were exposed to repeated 2 mT, 75 Hz PEMF (15 min each, repeated 3 times over 5 days), and ROS production, Mn-dependent superoxide dismutase (MnSOD)-based antioxidant protection and viability were assessed after 10 min or 30 min 1 mM hydrogen peroxide. Sham controls were kept at the same time in identical cell culture incubators. Results The PEMF increased the MnSOD-based antioxidant protection and reduced the ROS production in response to a pro-oxidant challenge. Conclusions Our work might lay foundation for the development of non-invasive PEMF-based approaches aimed at elevating endogenous antioxidant properties in cellular or tissue models. PMID:26940444

  19. Cytotoxic activity against human neuroblastoma and melanoma cells mediated by IgM antibodies derived from peripheral blood of healthy donors.

    PubMed

    Devarapu, Satish Kumar; Mamidi, Srinivas; Plöger, Frank; Dill, Othmar; Blixt, Ola; Kirschfink, Michael; Schwartz-Albiez, Reinhard

    2016-06-15

    A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies. PMID:26830059

  20. Pharmacological Management of High-risk Neuroblastoma in Children

    PubMed Central

    Ganeshan, Veena R.; Schor, Nina F.

    2015-01-01

    BACKGROUND Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Children with high-risk disease have a 3-year event-free survival rate of only 20%. Chemotherapy is the mainstay of the treatment of children with advanced neuroblastoma. OBJECTIVE To review and critically evaluate the pharmacotherapy of neuroblastoma. DATA SOURCES Peer-reviewed and review literature, 2000–2011. STUDY SELECTION All peer-reviewed, published human subjects studies of therapy for neuroblastoma in children were included. Animal model and in vitro studies were included only if they added to the understanding of the mechanism of a proposed or existing human neuroblastoma therapy. DATA SYNTHESIS Current therapeutic options for neuroblastoma involve insufficient differentiation of normal from neoplastic tissue. Critically needed new approaches will increasingly exploit targeting of therapy for unique characteristics of the neuroblastoma cell. CONCLUSIONS Pharmacotherapy for neuroblastoma still suffers from an inadequate therapeutic window. Enhancement of toxicity for tumor and safety for normal tissues will entail innovation in targeting neuroblastoma cells and rescuing or protecting normal tissue elements. PMID:21692548

  1. FHL2 interacts with and acts as a functional repressor of Id2 in human neuroblastoma cells

    PubMed Central

    Han, Weidong; Wu, Zhiqiang; Zhao, Yali; Meng, Yuanguang; Si, Yiling; Yang, Jie; Fu, Xiaobing; Yu, Li

    2009-01-01

    Inhibitor of differentiation 2 (Id2) is a natural inhibitor of the basic helix–loop–helix transcription factors. Although Id2 is well known to prevent differentiation and promote cell-cycle progression and tumorigenesis, the molecular events that regulate Id2 activity remain to be investigated. Here, we identified that Four-and-a-half LIM-only protein 2 (FHL2) is a novel functional repressor of Id2. Moreover, we demonstrated that FHL2 can directly interact with all members of the Id family (Id1–4) via an N-terminal loop–helix structure conserved in Id proteins. FHL2 antagonizes the inhibitory effect of Id proteins on basic helix–loop–helix protein E47-mediated transcription, which was abrogated by the deletion mutation of Ids that disrupted their interaction with FHL2. We also showed a competitive nature between FHL2 and E47 for binding Id2, whereby FHL2 prevents the formation of the Id2–E47 heterodimer, thus releasing E47 to DNA and restoring its transcriptional activity. FHL2 expression was remarkably up-regulated during retinoic acid-induced differentiation of neuroblastoma cells, during which the expression of Id2 was opposite to that. Ectopic FHL2 expression in neuroblastoma cells markedly reduces the transcriptional and cell-cycle promoting functions of Id2. Altogether, these results indicate that FHL2 is an important repressor of the oncogenic activity of Id2 in neuroblastoma cells. PMID:19417068

  2. Right adrenal gland neuroblastoma infiltrating the liver and mimicking mesenchymal hamartoma: A case report

    PubMed Central

    Abo-Elenain, Ahmed; Naiem, Yousif; Hamedhosam-eldin@hotmail.com, Hosam; Emam, Mohamed; Elkashef, Wagdi; AbdelRafee, Ahmed

    2015-01-01

    Introduction Neuroblastoma is the most common extracranial solid pediatric malignancy. The most common site is abdomen with predominance of suprarenal medulla. Infiltration of the tumour to the liver is rare. No cases were reported in the literature about the misdiagnosis of neuroblastoma as mesenchymal hamartoma in the liver. Presentation of case We represent a rare case of neuroblastoma misdiagnosed as mesenchymal hamartoma in liver in a six-month-old female infant presented with fever and abdominal mass. Abdominal computed tomography (CT) revealed large cystic lesion occupying most of the right liver enchroaching upon right suprarenal region and displacing the right kidney inferior suggestive for mesenchymal hamartoma. Right adrenalectomy with en-bloc resection of the adjacent liver segments was done. Postoperative pathology revealed neuroblastoma with positive specific immunohistochemistry (IHC). Discussion Although neuroblastoma is the second most common pediatric abdominal malignancy with specific diagnostic modalities, a misdiagnosis of a case with neuroblastoma as mesenchymal hamartoma is rare. Histopathological diagnosis of neuroblastoma with positive IHC is essential as shown in our case. Conclusion We represent a rare case of neuroblastoma which arose from the right adrenal gland and infiltrated the adjacent liver substance mimicking mesenchymal hamartoma of the liver. Neuroblastoma is rarely presented with pyrexia of unknown origin. Neuroblastoma should be considered in differential diagnosis of abdominal mass in all infants and children. PMID:26036461

  3. Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y.

    PubMed

    Raszewski, Grzegorz; Lemieszek, Marta Kinga; Łukawski, Krzysztof; Juszczak, Małgorzata; Rzeski, Wojciech

    2015-02-01

    Our previous in vivo studies showed that chlorpyrifos (CPF) and cypermethrin (CM) in a mixture dermally administered, strongly inhibited cholinesterase activity in plasma and the brain and were very toxic to the rat central nervous system. In this work, the mechanisms of neurotoxicity have not been elucidated. We used human undifferentiated SH-SY5Y cells to study mechanisms of pesticide-induced neuronal cell death. It was found that chlorpyrifos (CPF) and its mixture with cypermethrin (CPF+CM) induced cell death of SH-SY5Y cells in a dose- and time-dependent manner, as shown by MTT assays. Pesticide-induced SH-SY5Y cell death was characterized by concentration-dependent down-regulation of Bcl-2 and Bcl-xL as well as an increase in the caspase 3 activation. Pan-caspase inhibitor Q-VD-OPh produced a slight but significant reversal effect of pesticide-induced toxicity indicating that the major caspase pathways are not integral to CPF- and CPF+CM-induced cell death. Furthermore, signal transduction inhibitors PD98059, SL-327, SB202190, SP600125 and mecamylamine failed to attenuate pesticides effect. Atropine exhibited minimal ability to reverse toxicity. Finally, it was shown that inhibition of TNF-α by pomalidomide attenuated CPF-/CPF+CM-induced apoptosis. Overall, our data suggest that FAS/TNF signalling pathways may participate in CPF and CPF+CM toxicity. PMID:24975276

  4. Action of HMGB1 on miR-221/222 cluster in neuroblastoma cell lines

    PubMed Central

    Mari, Emanuela; Zicari, Alessandra; Fico, Flavia; Massimi, Isabella; Martina, Lolli; Mardente, Stefania

    2016-01-01

    microRNA (miR/miRNA) are small non-coding RNAs that control gene expression at the post-transcriptional level by targeting mRNAs. Aberrant expression of miRNAs is often observed in different types of cancer. Specific miRNAs function as tumor suppressors or oncogenes and interfere with various aspects of carcinogenesis, including differentiation, proliferation and invasion. Upregulation of miRNAs 221 and 222 has been shown to induce a malignant phenotype in numerous human cancers via inhibition of phosphatase and tensin homolog (PTEN) expression. Neuroblastoma is the most common extracranial solid malignancy in children, which is characterized by cellular heterogeneity that corresponds to different clinical outcomes. The different cellular phenotypes are associated with different gene mutations and miRs that control genetic and epigenetic factors. For this reason miRs are considered a potential therapeutic target in neuroblastoma. The aim of the present study was to investigate the mechanisms by which extracellular high mobility group box 1 (HMGB1) promotes cell growth in neuroblastoma. SK-N-BE(2) and SH-SY5Y neuroblastoma derived cell lines were transfected with the antisense oligonucleotides, anti-miR-221 and −222, followed by treatment with HMGB1 to investigate the expression of the oncosuppressor PTEN. In this study, it was demonstrated that HMGB1, which is released by damaged cells and tumor cells, upregulates miR-221/222 oncogenic clusters in the two human neuroblastoma derived cell lines. The results revealed that the oncogenic cluster miRs 221/222 were more highly expressed by the most undifferentiated cell line [SK-N-BE(2)] compared with the the less tumorigenic cell line (SH-SY5Y) and that exogenous HMGB1 increases this expression. In addition, HMGB1 modulates PTEN expression via miR-221/222, as demonstrated by transiently blocking miR-221/222 with anti-sense oligonucleotides. These results may lead to the development of novel therapeutic strategies for

  5. A PCNA-Derived Cell Permeable Peptide Selectively Inhibits Neuroblastoma Cell Growth

    PubMed Central

    Gu, Long; Smith, Shanna; Li, Caroline; Hickey, Robert J.; Stark, Jeremy M.; Fields, Gregg B.; Lang, Walter H.; Sandoval, John A.; Malkas, Linda H.

    2014-01-01

    Proliferating cell nuclear antigen (PCNA), through its interaction with various proteins involved in DNA synthesis, cell cycle regulation, and DNA repair, plays a central role in maintaining genome stability. We previously reported a novel cancer associated PCNA isoform (dubbed caPCNA), which was significantly expressed in a broad range of cancer cells and tumor tissues, but not in non-malignant cells. We found that the caPCNA-specific antigenic site lies between L126 and Y133, a region within the interconnector domain of PCNA that is known to be a major binding site for many of PCNA's interacting proteins. We hypothesized that therapeutic agents targeting protein-protein interactions mediated through this region may confer differential toxicity to normal and malignant cells. To test this hypothesis, we designed a cell permeable peptide containing the PCNA L126-Y133 sequence. Here, we report that this peptide selectively kills human neuroblastoma cells, especially those with MYCN gene amplification, with much less toxicity to non-malignant human cells. Mechanistically, the peptide is able to block PCNA interactions in cancer cells. It interferes with DNA synthesis and homologous recombination-mediated double-stranded DNA break repair, resulting in S-phase arrest, accumulation of DNA damage, and enhanced sensitivity to cisplatin. These results demonstrate conceptually the utility of this peptide for treating neuroblastomas, particularly, the unfavorable MYCN-amplified tumors. PMID:24728180

  6. The selective VEGFR1-3 inhibitor axitinib (AG-013736) shows antitumor activity in human neuroblastoma xenografts.

    PubMed

    Rössler, Jochen; Monnet, Yann; Farace, Francoise; Opolon, Paule; Daudigeos-Dubus, Estelle; Bourredjem, Abderrahmane; Vassal, Gilles; Geoerger, Birgit

    2011-06-01

    Tumor angiogenesis in childhood neuroblastoma is an important prognostic factor suggesting a potential role for antiangiogenic agents in the treatment of high-risk disease. Within the KidsCancerKinome project, we evaluated the new oral selective pan-VEGFR tyrosine kinase inhibitor axitinib (AG-013736) against neuroblastoma cell lines and the subcutaneous and orthotopic xenograft model IGR-N91 derived from a primary bone marrow metastasis. Axitinib reduced cell proliferation in a dose-dependent manner with IC(50) doses between 274 and >10,000 nmol/l. Oral treatment with 30 mg/kg BID for 2 weeks in advanced tumors yielded significant tumor growth delay, with a median time to reach five times initial tumor volume of 11.4 days compared to controls (p = 0.0006) and resulted in significant reduction in bioluminescence. Simultaneous inhibition of VEGFR downstream effector mTOR using rapamycin 20 mg/kg q2d×5 did not statistically enhance tumor growth delay compared to single agent activities. Axitinib downregulated VEGFR-2 phosphorylation resulting in significantly decreased microvessel density (MVD) and overall surface fraction of tumor vessels (OSFV) in all xenografts as measured by CD34 immunohistochemical staining (mean MVD ± SD and OSFV at 14 days 21.27 ± 10.03 in treated tumors vs. 48.79 ± 17.27 in controls and 0.56% vs. 1.29%; p = 0.0006, respectively). We further explored the effects of axitinib on circulating mature endothelial cells (CECs) and endothelial progenitor cells (CEPs) measured by flow cytometry. While only transient modification was observed for CECs, CEP counts were significantly reduced during and up to 14 days after end of treatment. Axitinib has potent antiangiogenic properties that may warrant further evaluation in neuroblastoma. PMID:20715103

  7. Upregulation of Human ST8Sia VI (α2,8-Sialyltransferase) Gene Expression by Physcion in SK-N-BE(2)-C Human Neuroblastoma Cells.

    PubMed

    Yoon, Hyun-Kyoung; An, Hyun-Kyu; Ko, Min Jung; Kim, Kyoung-Sook; Mun, Seo-Won; Kim, Dong-Hyun; Kim, Cheol Min; Kim, Cheorl-Ho; Choi, Young Whan; Lee, Young-Choon

    2016-01-01

    In this research, we firstly demonstrated that physcion, an anthraquinone derivative, specifically increased the expression of the human α2,8-sialyltransferase (hST8Sia VI) gene in SK-N-BE(2)-C human neuroblastoma cells. To establish the mechanism responsible for the up-regulation of hST8Sia VI gene expression in physcion-treated SK-N-BE(2)-C cells, the putative promoter region of the hST8Sia VI gene was functionally characterized. Promoter analysis with serially truncated fragments of the 5'-flanking region showed that the region between -320 and -240 is crucial for physcion-induced transcription of hST8Sia VI in SK-N-BE(2)-C cells. Putative binding sites for transcription factors Pax-5 and NF-Y are located at this region. The Pax-5 binding site at -262 to -256 was essential for the expression of the hST8Sia VI gene by physcion in SK-N-BE(2)-C cells. Moreover, the transcription of hST8Sia VI induced by physcion in SK-N-BE(2)-C cells was inhibited by extracellular signal-regulated protein kinase (ERK) inhibitor U0126 and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, but not c-Jun N-terminal kinase (JNK) inhibitor SP600125. These results suggest that physcion upregulates hST8Sia VI gene expression via ERK and p38 MAPK pathways in SK-N-BE(2)-C cells. PMID:27490539

  8. Upregulation of Human ST8Sia VI (α2,8-Sialyltransferase) Gene Expression by Physcion in SK-N-BE(2)-C Human Neuroblastoma Cells

    PubMed Central

    Yoon, Hyun-Kyoung; An, Hyun-Kyu; Ko, Min Jung; Kim, Kyoung-Sook; Mun, Seo-Won; Kim, Dong-Hyun; Kim, Cheol Min; Kim, Cheorl-Ho; Choi, Young Whan; Lee, Young-Choon

    2016-01-01

    In this research, we firstly demonstrated that physcion, an anthraquinone derivative, specifically increased the expression of the human α2,8-sialyltransferase (hST8Sia VI) gene in SK-N-BE(2)-C human neuroblastoma cells. To establish the mechanism responsible for the up-regulation of hST8Sia VI gene expression in physcion-treated SK-N-BE(2)-C cells, the putative promoter region of the hST8Sia VI gene was functionally characterized. Promoter analysis with serially truncated fragments of the 5′-flanking region showed that the region between −320 and −240 is crucial for physcion-induced transcription of hST8Sia VI in SK-N-BE(2)-C cells. Putative binding sites for transcription factors Pax-5 and NF-Y are located at this region. The Pax-5 binding site at −262 to −256 was essential for the expression of the hST8Sia VI gene by physcion in SK-N-BE(2)-C cells. Moreover, the transcription of hST8Sia VI induced by physcion in SK-N-BE(2)-C cells was inhibited by extracellular signal-regulated protein kinase (ERK) inhibitor U0126 and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, but not c-Jun N-terminal kinase (JNK) inhibitor SP600125. These results suggest that physcion upregulates hST8Sia VI gene expression via ERK and p38 MAPK pathways in SK-N-BE(2)-C cells. PMID:27490539

  9. Familial neuroblastoma. Case reports, literature review, and etiologic considerations.

    PubMed

    Kushner, B H; Gilbert, F; Helson, L

    1986-05-01

    The phenomenon of familial neuroblastoma is discussed in the context of case reports describing disseminated neuroblastoma in two of three half-brothers who share a common unaffected mother and who each have a different father. This family's cytogenetics proved to be unremarkable; also, the mother's peripheral blood DNA did not show tumorigenic capacities in transfection-nude mice experiments. An analysis of reported cases permits an updated examination of the clinical features of this entity and defines the limits of genetic counseling of families of all neuroblastoma patients. Multiple primaries are a hallmark of familial neuroblastoma. Most diagnoses are made in the first 18 months of life and at ages that fall within 12 months of the age of diagnosis of the other affected family member. Difficulties in determining the incidence and penetrance of an inherited susceptibility to neuroblastoma derive from undiagnosed tumors that have undergone regression or spontaneous maturation to benign ganglioneuroma, as well as from early deaths or long-term treatment complications that preclude reproduction and multigenerational pedigrees. Nevertheless, the risk of neuroblastoma in siblings or offspring of the large majority of persons with neuroblastoma appears to be less than 6%. Recent observations concerning chromosomal aberrations and oncogenes in embryonal malignancies are presented in an integrated model of tumorigenesis that corresponds to clinical experience. PMID:3955526

  10. ABC transporters and neuroblastoma.

    PubMed

    Yu, Denise M T; Huynh, Tony; Truong, Alan M; Haber, Michelle; Norris, Murray D

    2015-01-01

    Neuroblastoma is the most common cancer of infancy and accounts for 15% of all pediatric oncology deaths. Survival rates of high-risk neuroblastoma remain less than 50%, with amplification of the MYCN oncogene the most important aberration associated with poor outcome. Direct transcriptional targets of MYCN include a number of ATP-binding cassette (ABC) transporters, of which ABCC1 (MRP1), ABCC3 (MRP3), and ABCC4 (MRP4) are the best characterized. These three transporter genes have been shown to be strongly prognostic of neuroblastoma outcome in primary untreated neuroblastoma. In addition to their ability to efflux a number of chemotherapeutic drugs, evidence suggests that these transporters also contribute to neuroblastoma outcome independent of any role in cytotoxic drug efflux. Endogenous substrates of ABCC1 and ABCC4 that may be potential candidates affecting neuroblastoma biology include molecules such as prostaglandins and leukotrienes. These bioactive lipid mediators have the ability to influence biological processes contributing to cancer initiation and progression, such as angiogenesis, cell signaling, inflammation, proliferation, and migration and invasion. ABCC1 and ABCC4 are thus potential targets for therapeutic suppression in high-risk neuroblastoma, and recently developed small-molecule inhibitors may be an effective strategy in treating aggressive forms of this cancer, as well as other cancers that express high levels of these transporters. PMID:25640269

  11. Tumor spheroid model for the biologically targeted radiotherapy of neuroblastoma micrometastases

    SciTech Connect

    Walker, K.A.; Mairs, R.; Murray, T.; Hilditch, T.E.; Wheldon, T.E.; Gregor, A.; Hann, I.M. )

    1990-02-01

    Neuroblastoma is a pediatric malignancy with a poor prognosis at least partly attributable to an early pattern of dissemination. New approaches to treatment of micrometastases include targeted radiotherapy using radiolabeled antibodies or molecules which are taken up preferentially by tumor cells. Multicellular tumor spheroids (MTS) resemble micrometastases during the avascular phase of their development. A human neuroblastoma cell line (NBl-G) was grown as MTS and incubated briefly with a radiolabeled monoclonal antibody ({sup 131}I-UJ13A) directed against neuroectodermal antigens. Spheroid response was evaluated in terms of regrowth delay or proportion sterilized. A dose-response relationship was demonstrated in terms of {sup 131}I activity or duration of incubation. Control experiments using unlabeled UJ13A, radiolabeled nonspecific antibody (T2.10), radiolabeled human serum albumin, and radiolabeled sodium iodide showed these to be relatively ineffective compared to {sup 131}I-UJ13A. The cell line NBl-G grown as MTS has also been found to preferentially accumulate the radiolabeled catecholamine precursor molecule m-({sup 131}I)iodobenzylguanidine compared to cell lines derived from other tumor types. NBl-G cells grown as MTS provide a promising laboratory model for targeted radiotherapy of neuroblastoma micrometastases using radiolabeled antibodies or m-iodobenzylguanidine.

  12. Curcumin Regulates Low-Linear Energy Transfer {gamma}-Radiation-Induced NF{kappa}B-Dependent Telomerase Activity in Human Neuroblastoma Cells

    SciTech Connect

    Aravindan, Natarajan; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh; Herman, Terence S.; Natarajan, Mohan

    2011-03-15

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NF{kappa}B regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NF{kappa}B-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NF{kappa}B-dependent regulation was investigated either by luciferase reporter assays using pNF{kappa}B-, pGL3-354-, pGL3-347-, or pUSE-I{kappa}B{alpha}-Luc, p50/p65, or RelA siRNA-transfected cells. NF{kappa}B activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NF{kappa}B. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NF{kappa}B becomes functionally activated after IR and mediates TA upregulation by binding to the {kappa}B-binding region in the promoter region of the TERT gene. Consistently, elimination of the NF{kappa}B-recognition site on the telomerase promoter or inhibition of NF{kappa}B by the I{kappa}B{alpha} mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NF{kappa}B overexpressed cells. Furthermore, curcumin enhanced

  13. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    SciTech Connect

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S. . E-mail: jrhim@cpdr.org

    2006-04-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.

  14. Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human

    PubMed Central

    Kushwah, Rahul; Guezguez, Borhane; Lee, Jung Bok; Hopkins, Claudia I; Bhatia, Mickie

    2014-01-01

    The Notch signaling pathway is evolutionarily conserved across species and plays an important role in regulating cell differentiation, proliferation, and survival. It has been implicated in several different hematopoietic processes including early hematopoietic development as well as adult hematological malignancies in humans. This review focuses on recent developments in understanding the role of Notch signaling in the human hematopoietic system with an emphasis on hematopoietic initiation from human pluripotent stem cells and regulation within the bone marrow. Based on recent insights, we summarize potential strategies for treatment of human hematological malignancies toward the concept of targeting Notch signaling for fate regulation. PMID:25252682

  15. Neuroblastoma and MYCN

    PubMed Central

    Huang, Miller; Weiss, William A.

    2013-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to originate from undifferentiated neural crest cells. Amplification of the MYC family member, MYCN, is found in ∼25% of cases and correlates with high-risk disease and poor prognosis. Currently, amplification of MYCN remains the best-characterized genetic marker of risk in neuroblastoma. This article reviews roles for MYCN in neuroblastoma and highlights recent identification of other driver mutations. Strategies to target MYCN at the level of protein stability and transcription are also reviewed. PMID:24086065

  16. SINGLE-WALLED CARBON NANOTUBE–MEDIATED SMALL INTERFERING RNA DELIVERY AND SILENCING GASTRIN-RELEASING PEPTIDE RECEPTOR IN HUMAN NEUROBLASTOMA CELLS

    PubMed Central

    Qiao, Jingbo; Hong, Tu; Guo, Honglian; Xu, Ya-Qiong; Chung, Dai H.

    2015-01-01

    Small interfering RNA (siRNA) has the potential to influence expression with a high degree of target gene specificity. However, the clinical application of siRNA therapeutics has proven to be less promising as evidenced by poor intracellular uptake, instability in vivo, and non-specific immune stimulations. Recently, we have demonstrated that single-walled carbon nanotube (SWNT)-mediated siRNA delivery can enhance the efficiency of siRNA-mediated gastrin-releasing peptide receptor (GRP-R) gene silencing by stabilizing siRNA while selectively targeting tumor tissues. Based on our recent findings, we introduce a novel technique to silence specific gene(s) in human neuroblastoma through SWNT-mediated siRNA delivery in vitro and in vivo. PMID:23749575

  17. Localisation of [131I]MIBG in nude mice bearing SK-N-SH human neuroblastoma xenografts: effect of specific activity.

    PubMed Central

    Vaidyanathan, G.; Friedman, H. S.; Keir, S. T.; Zalutsky, M. R.

    1996-01-01

    The biodistribution of no-carrier-added (n.c.a.) meta-[131I]iodobenzylguanidine ([131I]MIBG) and that prepared by the standard isotopic exchange method were compared in athymic mice bearing SK-N-SH human neuroblastoma xenografts. No advantage in tumour uptake was observed for the n.c.a. preparation. BALB/c nu/nu mice exhibited lower uptake in highly innervated normal tissues (heart and adrenals) than normal BALB/c mice. In another experiment, the distribution of n.c.a. [131I]MIBG in the absence or presence (3-9 micrograms) of MIBG carrier was determined. At both 4 h and 24 h, the heart uptake was reduced by a factor of 1.5 even at a dose of 3 micrograms MIBG. Tumour uptake was not significantly altered by various amounts of unlabelled MIBG at either time point. PMID:8630274

  18. HIV-Tat Induces the Nrf2/ARE Pathway through NMDA Receptor-Elicited Spermine Oxidase Activation in Human Neuroblastoma Cells

    PubMed Central

    Mastrantonio, Roberta; Cervelli, Manuela; Pietropaoli, Stefano; Mariottini, Paolo; Colasanti, Marco; Persichini, Tiziana

    2016-01-01

    Previously, we reported that HIV-Tat elicits spermine oxidase (SMO) activity upregulation through NMDA receptor (NMDAR) stimulation in human SH-SY5Y neuroblastoma cells, thus increasing ROS generation, which in turn leads to GSH depletion, oxidative stress, and reduced cell viability. In several cell types, ROS can trigger an antioxidant cell response through the transcriptional induction of oxidative stress-responsive genes regulated by the nuclear factor erythroid 2-related factor 2 (Nrf2). Here, we demonstrate that Tat induces both antioxidant gene expression and Nrf2 activation in SH-SY5Y cells, mediated by SMO activity. Furthermore, NMDAR is involved in Tat-induced Nrf2 activation. These findings suggest that the NMDAR/SMO/Nrf2 pathway is an important target for protection against HIV-associated neurocognitive disorders. PMID:26895301

  19. Oncolytic virotherapy for human malignant mesothelioma: recent advances

    PubMed Central

    Boisgerault, Nicolas; Achard, Carole; Delaunay, Tiphaine; Cellerin, Laurent; Tangy, Frédéric; Grégoire, Marc; Fonteneau, Jean-François

    2015-01-01

    Cancer virotherapy is an attractive alternative to conventional treatments because it offers a wide range of antitumor effects due to 1) the diversity of the oncolytic viruses that are now available and 2) their multifaceted activities against both tumor cells and tumor vessels, in addition to their ability to induce antitumor immune responses. In this review, we summarize preclinical and clinical data regarding the targeting of malignant mesothelioma (MM) by oncolytic viruses. We also discuss the potential of other oncolytic viruses that have already shown antitumor effects against several malignancies in advanced clinical trials but are yet to be tested against MM cells. Finally, we review how the activation of the immune system and combinations with other types of anticancer treatments could support the development of oncolytic virotherapy for the treatment of MM. PMID:27512676

  20. MIBG in Neuroblastoma Diagnostic Imaging and Therapy.

    PubMed

    Sharp, Susan E; Trout, Andrew T; Weiss, Brian D; Gelfand, Michael J

    2016-01-01

    Neuroblastoma is a common malignancy observed in infants and young children. It has a varied prognosis, ranging from spontaneous regression to aggressive metastatic tumors with fatal outcomes despite multimodality therapy. Patients are divided into risk groups on the basis of age, stage, and biologic tumor factors. Multiple clinical and imaging tests are needed for accurate patient assessment. Iodine 123 ((123)I) metaiodobenzylguanidine (MIBG) is the first-line functional imaging agent used in neuroblastoma imaging. MIBG uptake is seen in 90% of neuroblastomas, identifying both the primary tumor and sites of metastatic disease. The addition of single photon emission computed tomography (SPECT) and SPECT/computed tomography to (123)I-MIBG planar images can improve identification and characterization of sites of uptake. During scan interpretation, use of MIBG semiquantitative scoring systems improves description of disease extent and distribution and may be helpful in defining prognosis. Therapeutic use of MIBG labeled with iodine 131 ((131)I) is being investigated as part of research trials, both as a single agent and in conjunction with other therapies. (131)I-MIBG therapy has been studied in patients with newly diagnosed neuroblastoma and those with relapsed disease. Development and implementation of an institutional (131)I-MIBG therapy research program requires extensive preparation with a focus on radiation protection. PMID:26761540

  1. Alterations in replication timing of cancer-related genes in malignant human breast cancer cells.

    PubMed

    Fritz, Andrew; Sinha, Seema; Marella, Narasimharao; Berezney, Ronald

    2013-05-01

    The replication timing of nine genes commonly involved in cancer was investigated in the MCF10 cell lines for human breast cancer progression. Six of these nine genes are part of a constellation of tumor suppressor genes that play a major role in familial human breast cancer (TP53, ATM, PTEN, CHK2, BRCA1, and BRCA2). Three other genes are involved in a large number of human cancers including breast as either tumor suppressors (RB1 and RAD51) or as an oncogene (cMYC). Five of these nine genes (TP53, RAD51, ATM, PTEN, and cMYC) show significant differences (P < 0.05) in replication timing between MCF10A normal human breast cells and the corresponding malignant MCF10CA1a cells. These differences are specific to the malignant state of the MCF10CA1a cells since there were no significant differences in the replication timing of these genes between normal MCF10A cells and the non-malignant cancer MCF10AT1 cells. Microarray analysis further demonstrated that three of these five genes (TP53, RAD51, and cMYC) showed significant changes in gene expression (≥2-fold) between normal and malignant cells. Our findings demonstrate an alteration in the replication timing of a small subset of cancer-related genes in malignant breast cancer cells. These alterations partially correlate with the major transcriptional changes characteristic of the malignant state in these cells. PMID:23161755

  2. Pre-Exposure to 50 Hz Magnetic Fields Modifies Menadione-Induced Genotoxic Effects in Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Luukkonen, Jukka; Liimatainen, Anu; Höytö, Anne; Juutilainen, Jukka; Naarala, Jonne

    2011-01-01

    Background Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. Methodology/Principal Findings Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. Conclusions The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome. PMID:21448285

  3. Apoptotic Cell Death in Neuroblastoma

    PubMed Central

    Li, Yuanyuan; Nakagawara, Akira

    2013-01-01

    Neuroblastoma (NB) is one of the most common malignant solid tumors in childhood, which derives from the sympathoadrenal lineage of the neural crest and exhibits extremely heterogeneous biological and clinical behaviors. The infant patients frequently undergo spontaneous regression even with metastatic disease, whereas the patients of more than one year of age who suffer from disseminated disease have a poor outcome despite intensive multimodal treatment. Spontaneous regression in favorable NBs has been proposed to be triggered by nerve growth factor (NGF) deficiency in the tumor with NGF dependency for survival, while aggressive NBs have defective apoptotic machinery which enables the tumor cells to evade apoptosis and confers the resistance to treatment. This paper reviews the molecules and pathways that have been recently identified to be involved in apoptotic cell death in NB and discusses their potential prospects for developing more effective therapeutic strategies against aggressive NB. PMID:24709709

  4. Immune Therapies for Neuroblastoma

    PubMed Central

    Navid, Fariba; Armstrong, Michael; Barfield, Raymond C.

    2009-01-01

    Neuroblastoma, a solid tumor arising from developing cells of the sympathetic nervous system, is the most common extracranial tumor in children. The prognosis for high-risk neuroblastoma remains poor with conventional treatment, and new approaches are therefore being explored to treat this disease. One such alternative therapy that holds promise is immune therapy. We review here the recent advances in 4 types of immune therapy – cytokine, vaccine, antibody, and cellular therapy – to treat neuroblastoma. We present preclinical research and clinical trials on several promising candidates such as IL-12, dendritic cell vaccines, anti-GD2 antibodies, and allogeneic hematopoietic stem cell transplant. An optimal treatment plan for neuroblastoma will most likely involve multimodal approaches and combinations of immune therapies. PMID:19342881

  5. How Is Neuroblastoma Diagnosed?

    MedlinePlus

    ... and can provide a picture of the entire skeleton at once. Neuroblastoma often causes bone damage, which ... settles in areas of damaged bone throughout the skeleton over the course of a couple of hours. ...

  6. Drugs Approved for Neuroblastoma

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for neuroblastoma. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  7. Malignancies in human immunodeficiency virus infected patients in India: Initial experience in the HAART era

    PubMed Central

    Sharma, Surendra K.; Soneja, Manish; Ranjan, Sanjay

    2015-01-01

    Background & objectives: Limited data are available on malignancies in human immunodeficiency virus (HIV)-infected patients from India. We undertook this study to assess the frequency and spectrum of malignancies in HIV-infected adult patients during the first eight years of highly active antiretroviral therapy (HAART) rollout under the National ART Programme at a tertiary care centre in New Delhi, India. Methods: Retrospective analysis of records of patients registered at the ART clinic between May 2005 and December 2013 was done. Results: The study included 2598 HIV-infected adult patients with 8315 person-years of follow up. Malignancies were diagnosed in 26 patients with a rate of 3.1 (IQR 2.1-4.5) cases per 1000 person-years. The median age for those diagnosed with malignancy was 45 (IQR 36-54) yr, which was significantly (P<0.01) higher compared with those not developing malignancies 35 (IQR 30-40) yr. The median baseline CD4+ T-cell count in patients with malignancy was 135 (IQR 68-269) cells/µl compared to 164 (IQR 86-243) cells/µl in those without malignancies. AIDS-defining cancers (ADCs) were seen in 19 (73%) patients, while non-AIDS-defining cancers (NADCs) were observed in seven (27%) patients. Malignancies diagnosed included non-Hodgkin's lymphoma (16), carcinoma cervix (3), Hodgkin's lymphoma (2), carcinoma lung (2), hepatocellular carcinoma (1), and urinary bladder carcinoma (1). One patient had primary central nervous system lymphoma. There was no case of Kaposi's sarcoma. Interpretation & conclusions: Malignancies in HIV-infected adult patients were infrequent in patients attending the clinic. Majority of the patients presented with advanced immunosuppression and the ADCs, NHL in particular, were the commonest malignancies. PMID:26658591

  8. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    SciTech Connect

    Yang, Yingbin; Cai, Shaoxi; Yang, Li; Yu, Shuhui; Jiang, Jiahuan; Yan, Xiaoqing; Zhang, Haoxing; Liu, Lan; Liu, Qun; Du, Jun; Cai, Shaohui; Sung, K.L. Paul

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  9. Dye-mediated photosensitization of murine neuroblastoma cells

    SciTech Connect

    Sieber, F.; Sieber-Blum, M.

    1986-04-01

    The purpose of this study was to determine if photosensitization mediated by the fluorescent dye, merocyanine 540, could be used to preferentially kill murine neuroblastoma cells in simulated autologous remission marrow grafts. Simultaneous exposure of Neuro 2a or NB41A3 neuroblastoma cells to merocyanine 540 and white light reduced the concentration of in vitro-clonogenic tumor cells 50,000-fold. By contrast, the same treatment had little effect on the graft's ability to rescue lethally irradiated syngeneic hosts. Lethally irradiated C57BL/6J X A/J F1 mice transplanted with photosensitized mixtures of neuroblastoma cells and normal marrow cells (1:100 or 1:10) survived without developing neuroblastomas. It is conceivable that merocyanine 540-mediated photosensitization will prove useful for the extracorporeal purging of residual neuroblastoma cells from human autologous remission marrow grafts.

  10. β-N-methylamino-L-alanine induces changes in both GSK3 and TDP-43 in human neuroblastoma.

    PubMed

    Muñoz-Saez, Emma; de Munck, Estefanía; Arahuetes, Rosa M; Solas, M Teresa; Martínez, Ana M; Miguel, Begoña G

    2013-01-01

    β-N-methylamino-L-alanine (L-BMAA) is a neurotoxic amino acid produced by most cyanobacteria, which are extensively distributed in different environments all over the world. L-BMAA has been linked to a variety of neurodegenerative diseases. This work aims to analyze the toxicological action of L-BMAA related to alterations observed in different neurodegenerative illness as Alzheimer disease and amyotrophic lateral sclerosis. Our results demonstrate that neuroblastoma cells treated with L-BMAA show an increase in glycogen synthase kinase 3 β (GSk3β) and induce accumulation of TAR DNA-binding protein 43 (TDP-43) truncated forms (C-terminal fragments), phosphorylated  and high molecular weight forms of TDP-43, that appears frequently in some neurodegenerative diseases. PMID:23665941

  11. Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway.

    PubMed

    Rahman, Md Ataur; Bishayee, Kausik; Huh, Sung-Oh

    2016-02-01

    Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3β activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy. PMID:26674967

  12. Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway

    PubMed Central

    Rahman, Md. Ataur; Bishayee, Kausik; Huh, Sung-Oh

    2016-01-01

    Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3β activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy. PMID:26674967

  13. Genome-wide expression profiling of 8-chloroadenosine- and 8-chloro-cAMP-treated human neuroblastoma cells using radioactive human cDNA microarray.

    PubMed

    Park, Gil Hong; Choe, Jaegol; Choo, Hyo-Jung; Park, Yun Gyu; Sohn, Jeongwon; Kim, Meyoung-kon

    2002-07-31

    Previous reports raised question as to whether 8-chloro-cyclic adenosine 3,5-monophosphate (8-Cl-cAMP) is a prodrug for its metabolite, 8-Cl-adenosine which exerts growth inhibition in a broad spectrum of cancer cells. The present study was carried out to clarify overall cellular affects of 8-Cl-cAMP and 8-Cl-adenosine on SK-N-DZ human neuroblastoma cells by systematically characterizing gene expression using radioactive human cDNA microarray. Microarray was prepared with PCR-amplified cDNA of 2,304 known genes spotted on nylon membranes, employing (33)P-labeled cDNAs of SK-N-DZ cells as a probe. The expression levels of approximately 100 cDNAs, representing about 8% of the total DNA elements on the array, were altered in 8-Cl-adenosine- or 8-Cl-cAMP-treated cells, respectively. The genome-wide expression of the two samples exhibited partial overlaps; different sets of up-regulated genes but the same set of down-regulated genes. 8-Cl-adenosine treatment up-regulated genes involved in differentiation and development (LIM protein, connexin 26, neogenin, neurofilament triplet L protein and p21(WAF1/CIP1)) and immune response such as natural killer cells protein 4, and down-regulated ones involved in proliferation and transformation (transforming growth factor-beta, DYRK2, urokinase-type plasminogen activator and proteins involved in transcription and translation) which were in close parallel with those by 8-Cl-cAMP. Our results indicated that the two drugs shared common genomic pathways for the down-regulation of certain genes, but used distinct pathways for the up-regulation of different gene clusters. Based on the findings, we suggest that the anti-cancer activity of 8-Cl-cAMP results at least in part through 8-Cl-adenosine. Thus, the systematic use of DNA arrays can provide insight into the dynamic cellular pathways involved in anticancer activities of chemotherapeutics. PMID:12216110

  14. Neuroprotective effect of arctigenin via upregulation of P-CREB in mouse primary neurons and human SH-SY5Y neuroblastoma cells.

    PubMed

    Zhang, Nan; Wen, Qingping; Ren, Lu; Liang, Wenbo; Xia, Yang; Zhang, Xiaodan; Zhao, Dan; Sun, Dong; Hu, Yv; Hao, Haiguang; Yan, Yaping; Zhang, Guangxian; Yang, Jingxian; Kang, Tingguo

    2013-01-01

    Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB. PMID:24025424

  15. Iodine-131 MIBG scintigraphy of the extremities in metastatic pheochromocytoma and neuroblastoma

    SciTech Connect

    Shulkin, B.L.; Shen, S.W.; Sisson, J.C.; Shapiro, B.

    1987-03-01

    Iodine-131 MIBG scintigraphy may be used to determine the presence or absence of metastases to the appendicular skeleton in malignant pheochromocytoma and neuroblastoma. Normal bones show no uptake of (/sup 131/I)MIBG and the joints are seen as photon-deficient areas surrounded by background muscle activity. Discrete concentrations of radioactivity in bone are often seen in patients with malignant pheochromocytoma and neuroblastoma. Bone marrow involvement in neuroblastoma may be indicated by diffuse uptake of (/sup 131/I)MIBG or focal accumulation at the metaphyses. Uncommonly, bone involvement may not be displayed by the (/sup 131/I)MIBG images. Since conventional bone scanning agents may also fail to detect these tumors, skeletal scintigraphy with both (/sup 131/I)MIBG and (/sup 99m/Tc)MDP is necessary to reliably stage malignant pheochromocytoma and neuroblastoma.

  16. Imaging in neuroblastoma: An update

    PubMed Central

    Kembhavi, Seema A; Shah, Sneha; Rangarajan, Venkatesh; Qureshi, Sajid; Popat, Palak; Kurkure, Purna

    2015-01-01

    Neuroblastoma is the third common tumor in children. Imaging plays an important role in the diagnosis, staging, treatment planning, response evaluation and in follow-up of a case of Neuroblastoma. The International Neuroblastoma Risk Group task force has recently introduced an imaging-based staging system and laid down guidelines for uniform reporting of imaging studies. This review is an update on imaging in neuroblastoma, with emphasis on these guidelines. PMID:25969636

  17. Isolation and fine mapping of 16 novel human zinc finger-encoding cDNAs identify putative candidate genes for developmental and malignant disorders

    SciTech Connect

    Tommerup, N.; Vissing, H.

    1995-05-20

    The authors have isolated and chromosomally fine-mapped 16 novel genes belonging to the human zinc finger Krueppel family (ZNF131-140, 142, 143, 148, 151, 154, and 155), including 1 of the GLI type (ZNF143) and 3 containing a KRAB (Krueppel-associated box) segment (ZNF133, 136, and 140). Based on their map position, several of these ZNF genes are putative candidate genes for both developmental and malignant disorders: ZNF138, ZNF139, and ZNF143 were localized to 7q11.2, 7q21.3-q22.1, and 11p15.3-p15.4, regions involved in deletions and/or translocations associated with Williams syndrome, split hand and foot disease (SHFD1), and Beckwith-Wiedemann syndrome, respectively. ZNF133 was localized to 20p11.2, close to, but probably distinct from, the region deleted in Alagille syndrome. Zinc finger genes mapping to regions commonly deleted in solid tumors included ZNF132, 134, 135, 137, 154, and 155, all located on 19q13 (thyroid adenoma), and ZNF151, at 1p36.1-p36.2 (neuroblastoma, colon cancer, and other tumors). In addition, several of the ZNFs mapped to regions implicated in recurrent chromosomal rearrangements in hematological malignancies (ZNF139, 7q21.3-q22.1; ZNF148, 3q21-q22; ZNF151, 1p36.1-p36.2). The study indicates that the number of ZNF genes in human is large and that systematic isolation and mapping of ZNF genes is a straightforward approach for the identification of novel candidate disease genes. 47 refs., 2 figs., 1 tab.

  18. PHOX2B is a suppressor of neuroblastoma metastasis

    PubMed Central

    Naftali, Osnat; Maman, Shelly; Meshel, Tsipi; Sagi-Assif, Orit; Ginat, Ravit; Witz, Isaac P.

    2016-01-01

    Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma. Lung micro-metastatic neuroblastoma (MicroNB) cells show high expression levels of PHOX2B and possess a less malignant and metastatic phenotype than lung macro metastatic neuroblastoma (MacroNB) cells, which hardly express PHOX2B. In vitro assays showed that PHOX2B knockdown in MicroNB cells did not affect cell viability; however it decreased the migratory capacity of the MicroNB-shPHOX2B cells. An orthotopic inoculation of MicroNB-shPHOX2B cells into the adrenal gland of nude mice resulted in significantly larger primary tumors and a heavier micro-metastatic load in the lungs and bone-marrow, than when control cells were inoculated. PHOX2B expression was found to be regulated by methylation. The PHOX2B promoter in MacroNB cells is significantly more methylated than in MicroNB cells. Demethylation assays using 5-azacytidine demonstrated that methylation can indeed inhibit PHOX2B transcription in MacroNB cells. These pre-clinical data strongly suggest that PHOX2B functions as a suppressor of neuroblastoma progression. PMID:26840262

  19. Deleted in liver cancer protein family in human malignancies (Review)

    PubMed Central

    Lukasik, D.; Wilczek, E.; Wasiutynski, A.; Gornicka, B.

    2011-01-01

    The Deleted in Liver Cancer (DLC) protein family comprises proteins that exert their function mainly by the Rho GTPase-activating protein (GAP) domain and by regulation of the small GTPases. Since Rho GTPases are key factors in cell proliferation, polarity, cytoskeletal remodeling and migration, the aberrant function of their regulators may lead to cell transformation. One subgroup of these proteins is the DLC family. It was found that the first identified gene from this family, DLC1, is often lost in hepatocellular carcinoma and may be involved as a tumor suppressor in the liver. Subsequent studies evaluated the hypothesis that the DLC1 gene acts as a tumor suppressor, not only in liver cancer, but also in other types of cancer. Following DLC1, two other members of the DLC protein family, DLC2 and DLC3, were identified. However, limited published data are available concerning the role of these proteins in malignant transformation. This review focuses on the structure and the role of DLC1 and its relatives in physiological conditions and summarizes data published thus far regarding DLC function in the neoplastic process. PMID:22866123

  20. Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx

    NASA Astrophysics Data System (ADS)

    Parmeswearan, Diagaradjane; Ganesan, Singaravelu; Nalini, R.; Aruna, Prakasa R.; Veeraganesh, V.; Alfano, Robert R.

    1997-08-01

    Many applications of native fluorescence spectroscopy of intrinsic biomolecules such as Try, Tyr, Phe, NADH and FAD are reported on both the characterization and the discrimination of malignant tissues from the normal. In the field of diagnostic oncology, extensive studies have been made to distinguish the normal from malignant condition in breast, cervix, colon and bronchus. From the studies made by Alfano and co-workers, it was found that the emission at 340 and 440 nm under UV excitation have shown statistically significant difference between normal and malignant tissues. As tissues are highly complex in nature, it is worth to known whether the changes arise from cells or from other extracellular tissue components, so as to enable us to have better understanding on the transformation mechanism of normal into malignant and to go for an improved approach in the effective optical diagnosis. In this context, the present study addresses the question of whether there are differences in the native cellular fluorescence characteristics between normal and malignant epithelial cells from human larynx. With this aim, the UV fluorescence emission spectra in the wavelength region of excitation between 270 - 310 nm and the excitation spectra for 340 nm emission were measured and analyzed. In order to quantify the altered fluorescence signal between the normal and malignant cells, different ratio parameters were introduced.

  1. Protective effect of Pycnogenol in human neuroblastoma SH-SY5Y cells following acrolein-induced cytotoxicity.

    PubMed

    Ansari, Mubeen A; Keller, Jeffrey N; Scheff, Stephen W

    2008-12-01

    Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer's disease (AD). Considerable attention has been focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-SY5Y neuroblastoma cells. Decreased cell survival in SH-SY5Y cultures treated with acrolein correlated with oxidative stress, increased NADPH oxidase activity, free radical production, protein oxidation/nitration (protein carbonyl, 3-nitrotyrosine), and lipid peroxidation (4-hydroxy-2-nonenal). Pretreatment with PYC significantly attenuated acrolein-induced cytotoxicity, protein damage, lipid peroxidation, and cell death. A dose-response study suggested that PYC showed protective effects against acrolein toxicity by modulating oxidative stress and increasing GSH. These findings provide support that PYC may provide a promising approach for the treatment of oxidative stress-related neurodegenerative diseases such as AD. PMID:18822368

  2. Myosin VI contributes to malignant proliferation of human glioma cells

    PubMed Central

    Xu, Rong; Fang, Xu-hao

    2016-01-01

    Previously characterized as a backward motor, myosin VI (MYO6), which belongs to myosin family, moves toward the minus end of the actin track, a direction opposite to all other known myosin members. Recent researches have illuminated the role of MYO6 in human cancers, particularly in prostate cancer. However, the role of MYO6 in glioma has not yet been determined. In this study, to explore the role of MYO6 in human glioma, lentivirus-delivered short hairpin RNA (shRNA) targeting MYO6 was designed to stably down-regulate its endogenous expression in glioblastoma cells U251. Knockdown of MYO6 signifi cantly inhibited viability and proliferation of U251 cells in vitro. Moreover, the cell cycle of U251 cells was arrested at G0/G1 phase with the absence of MYO6, which could contribute to the suppression of cell proliferation. In conclusion, we firstly identified the crucial involvement of MYO6 in human glioma. The inhibition of MYO6 by shRNA might be a potential therapeutic method in human glioma. PMID:26937209

  3. Malignant Transformation of Hymenolepis nana in a Human Host.

    PubMed

    Muehlenbachs, Atis; Bhatnagar, Julu; Agudelo, Carlos A; Hidron, Alicia; Eberhard, Mark L; Mathison, Blaine A; Frace, Michael A; Ito, Akira; Metcalfe, Maureen G; Rollin, Dominique C; Visvesvara, Govinda S; Pham, Cau D; Jones, Tara L; Greer, Patricia W; Vélez Hoyos, Alejandro; Olson, Peter D; Diazgranados, Lucy R; Zaki, Sherif R

    2015-11-01

    Neoplasms occur naturally in invertebrates but are not known to develop in tapeworms. We observed nests of monomorphic, undifferentiated cells in samples from lymph-node and lung biopsies in a man infected with the human immunodeficiency virus (HIV). The morphologic features and invasive behavior of the cells were characteristic of cancer, but their small size suggested a nonhuman origin. A polymerase-chain-reaction (PCR) assay targeting eukaryotes identified Hymenolepis nana DNA. Although the cells were unrecognizable as tapeworm tissue, immunohistochemical staining and probe hybridization labeled the cells in situ. Comparative deep sequencing identified H. nana structural genomic variants that are compatible with mutations described in cancer. Invasion of human tissue by abnormal, proliferating, genetically altered tapeworm cells is a novel disease mechanism that links infection and cancer. PMID:26535513

  4. Functional-metabolic imaging of neuroblastoma.

    PubMed

    Sharp, S E; Parisi, M T; Gelfand, M J; Yanik, G A; Shulkin, B L

    2013-03-01

    Neuroblastoma is the third most common malignant solid tumor of childhood. It originates from primitive neural crest cells of the sympathetic nervous system. Many imaging procedures help guide therapy and predict outcomes. Anatomic imaging methods, such as CT and MRI, are most useful for evaluation of the primary tumor mass and nearby involved lymph nodes. Functional imaging tracers, such as [123I]MIBG, [18F]FDG, and [99mTc]MDP, are used to assess the extent of disease and to search for distant metastases. [123I]MIBG is the principal functional imaging tracer for the detection and monitoring of neuroblastoma. [18F]FDG PET/CT is an alternative that is valuable in tumors with poor or no MIBG-uptake. [99mTc]MDP bone scans may be useful to assess cortical bone metastases. This article will review the use of [123I]MIBG and other functional imaging agents for the management of patients with neuroblastoma. PMID:23474631

  5. Sigma-2 Receptors Play a Role in Cellular Metabolism: Stimulation of Glycolytic Hallmarks by CM764 in Human SK-N-SH Neuroblastoma.

    PubMed

    Nicholson, Hilary; Mesangeau, Christophe; McCurdy, Christopher R; Bowen, Wayne D

    2016-02-01

    Sigma-2 receptors are attractive antineoplastic targets due to their ability to induce apoptosis and their upregulation in rapidly proliferating cancer cells compared with healthy tissue. However, this role is inconsistent with overexpression in cancer, which is typically associated with upregulation of prosurvival factors. Here, we report a novel metabolic regulatory function for sigma-2 receptors. CM764 [6-acetyl-3-(4-(4-(2-amino-4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one] binds with Ki values of 86.6 ± 2.8 and 3.5 ± 0.9 nM at the sigma-1 and sigma-2 receptors, respectively. CM764 increased reduction of MTT [3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide] in human SK-N-SH neuroblastoma compared with untreated cells, an effect not due to proliferation. This effect was attenuated by five different sigma antagonists, including CM572 [3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-isothiocyanatobenzo[d]oxazol-2(3H)-one], which has no significant affinity for sigma-1 receptors. This effect was also observed in MG-63 osteosarcoma and HEK293T cells, indicating that this function is not exclusive to neuroblastoma or to cancer cells. CM764 produced an immediate, robust, and transient increase in cytosolic calcium, consistent with sigma-2 receptor activation. Additionally, we observed an increase in the total NAD(+)/NADH level and the ATP level in CM764-treated SK-N-SH cells compared with untreated cells. After only 4 hours of treatment, basal levels of reactive oxygen species were reduced by 90% in cells treated with CM764 over untreated cells, and HIF1α and VEGF levels were increased after 3-24 hours of treatment. These data indicate that sigma-2 receptors may play a role in induction of glycolysis, representing a possible prosurvival function for the sigma-2 receptor that is consistent with its upregulation in cancer cells compared with healthy tissue. PMID:26574517

  6. Zebrafish as a Model for the Study of Human Myeloid Malignancies.

    PubMed

    Lu, Jeng-Wei; Hsieh, Meng-Shan; Liao, Heng-An; Yang, Yi-Ju; Ho, Yi-Jung; Lin, Liang-In

    2015-01-01

    Myeloid malignancies are heterogeneous disorders characterized by uncontrolled proliferation or/and blockage of differentiation of myeloid progenitor cells. Although a substantial number of gene alterations have been identified, the mechanism by which these abnormalities interact has yet to be elucidated. Over the past decades, zebrafish have become an important model organism, especially in biomedical research. Several zebrafish models have been developed to recapitulate the characteristics of specific myeloid malignancies that provide novel insight into the pathogenesis of these diseases and allow the evaluation of novel small molecule drugs. This report will focus on illustrative examples of applications of zebrafish models, including transgenesis, zebrafish xenograft models, and cell transplantation approaches, to the study of human myeloid malignancies. PMID:26064935

  7. Adult Neuroblastoma Complicated by Increased Intracranial Pressure: A Case Report and Review of the Literature

    PubMed Central

    Stevens, Patrick L.; Johnson, Douglas B.; Thompson, Mary Ann; Keedy, Vicki L.; Frangoul, Haydar A.; Snyder, Kristen M.

    2014-01-01

    Neuroblastoma is the third most commonly occurring malignancy of the pediatric population, although it is extremely rare in the adult population. In adults, neuroblastoma is often metastatic and portends an extremely poor overall survival. Our case report documents metastatic neuroblastoma occurring in a healthy 29-year-old woman whose course was complicated by an unusual presentation of elevated intracranial pressures. The patient was treated with systemic chemotherapy, I131 metaiodobenzylguanidine (MIBG) radiotherapy, and autologous stem cell transplant (SCT). Unfortunately the patient's response to therapy was limited and she subsequently died. We aim to review neuroblastoma in the context of increased intracranial pressure and the limited data of neuroblastoma occurring in the adult population, along with proposed treatment options. PMID:25328733

  8. Adult neuroblastoma complicated by increased intracranial pressure: a case report and review of the literature.

    PubMed

    Stevens, Patrick L; Johnson, Douglas B; Thompson, Mary Ann; Keedy, Vicki L; Frangoul, Haydar A; Snyder, Kristen M

    2014-01-01

    Neuroblastoma is the third most commonly occurring malignancy of the pediatric population, although it is extremely rare in the adult population. In adults, neuroblastoma is often metastatic and portends an extremely poor overall survival. Our case report documents metastatic neuroblastoma occurring in a healthy 29-year-old woman whose course was complicated by an unusual presentation of elevated intracranial pressures. The patient was treated with systemic chemotherapy, I(131) metaiodobenzylguanidine (MIBG) radiotherapy, and autologous stem cell transplant (SCT). Unfortunately the patient's response to therapy was limited and she subsequently died. We aim to review neuroblastoma in the context of increased intracranial pressure and the limited data of neuroblastoma occurring in the adult population, along with proposed treatment options. PMID:25328733

  9. Suppressive effect of nobiletin, a citrus polymethoxyflavonoid that downregulates thioredoxin-interacting protein expression, on tunicamycin-induced apoptosis in SK-N-SH human neuroblastoma cells.

    PubMed

    Ikeda, Ayaka; Nemoto, Kiyomitsu; Yoshida, Chiaki; Miyata, Shingo; Mori, Junki; Soejima, Saori; Yokosuka, Akihito; Mimaki, Yoshihiro; Ohizumi, Yasushi; Degawa, Masakuni

    2013-08-01

    Increased expression of thioredoxin-interacting protein (TXNIP) has recently been proved to be a crucial event for irremediable endoplasmic reticulum (ER) stress resulting in the programmed cell death (apoptosis) of pancreatic β-cells. The present study demonstrated that treatment with 1-10 μg/ml tunicamycin, a potent revulsant of ER stress, drastically induced TXNIP expression accompanied by the generation of cleaved caspase-3 as an indicator of apoptosis in SK-N-SH human neuroblastoma cells. This result substantiated that TXNIP is also involved in neurodegeneration triggered by ER stress. Moreover, we evaluated the effects of nobiletin, a citrus polymethoxyflavonoid, on tunicamycin-induced apoptosis and TXNIP expression in SK-N-SH cells, because we reported previously that this flavonoid might be able to reduce TXNIP expression. Co-treatment of SK-N-SH cells with 100 μM nobiletin and 1 μg/ml tunicamycin for 24h strongly suppressed apoptosis and increased TXNIP expression induced by 1 μg/ml tunicamycin treatment alone. In addition, we proved that the ability of 100 μM nobiletin treatment to reduce TXNIP expression is exerted from 3h after the onset of treatment. Therefore, the protective and ameliorative effects of nobiletin on neuronal degeneration and impaired memory, which several studies using animal models have demonstrated, might arise in part from nobiletin's ability to repress TXNIP expression. PMID:23774476

  10. Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Lantto, Tiina A.; Laakso, Into; Dorman, H. J. Damien; Mauriala, Timo; Hiltunen, Raimo; Kõks, Sulev; Raasmaja, Atso

    2016-01-01

    Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds. PMID:27420050