Science.gov

Sample records for human malignant neuroblastoma

  1. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    SciTech Connect

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2012-08-01

    network formation ability of cells was significantly inhibited by survivin silencing and completely by combination of survivin silencing and EGCG treatment. Collectively, survivin silencing potentiated anti-cancer effects of EGCG in human malignant neuroblastoma cells having survivin overexpression. -- Highlights: Black-Right-Pointing-Pointer Survivin shRNA + EGCG controlled growth of human malignant neuroblastoma cells. Black-Right-Pointing-Pointer Survivin knockdown induced neuronal differentiation in neuroblastoma cells. Black-Right-Pointing-Pointer Survivin shRNA + EGCG induced morphological and biochemical features of apoptosis. Black-Right-Pointing-Pointer Combination therapy inhibited invasion, proliferation, and angiogenesis as well. Black-Right-Pointing-Pointer So, combination therapy showed multiple anti-cancer mechanisms in neuroblastoma.

  2. Symmetry breaking in human neuroblastoma cells.

    PubMed

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-01-01

    Asymmetric cell division (ACD) is a characteristic of cancer stem cells, which exhibit high malignant potential. However, the cellular mechanisms that regulate symmetric (self-renewal) and asymmetric cell divisions are mostly unknown. Using human neuroblastoma cells, we found that the oncosuppressor protein tripartite motif containing 32 (TRIM32) positively regulates ACD. PMID:27308367

  3. Symmetry breaking in human neuroblastoma cells

    PubMed Central

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-01-01

    Asymmetric cell division (ACD) is a characteristic of cancer stem cells, which exhibit high malignant potential. However, the cellular mechanisms that regulate symmetric (self-renewal) and asymmetric cell divisions are mostly unknown. Using human neuroblastoma cells, we found that the oncosuppressor protein tripartite motif containing 32 (TRIM32) positively regulates ACD. PMID:27308367

  4. Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes

    PubMed Central

    De Preter, Katleen; Vandesompele, Jo; Heimann, Pierre; Yigit, Nurten; Beckman, Siv; Schramm, Alexander; Eggert, Angelika; Stallings, Raymond L; Benoit, Yves; Renard, Marleen; Paepe, Anne De; Laureys, Geneviève; Påhlman, Sven; Speleman, Frank

    2006-01-01

    Background Neuroblastoma tumor cells are assumed to originate from primitive neuroblasts giving rise to the sympathetic nervous system. Because these precursor cells are not detectable in postnatal life, their transcription profile has remained inaccessible for comparative data mining strategies in neuroblastoma. This study provides the first genome-wide mRNA expression profile of these human fetal sympathetic neuroblasts. To this purpose, small islets of normal neuroblasts were isolated by laser microdissection from human fetal adrenal glands. Results Expression of catecholamine metabolism genes, and neuronal and neuroendocrine markers in the neuroblasts indicated that the proper cells were microdissected. The similarities in expression profile between normal neuroblasts and malignant neuroblastomas provided strong evidence for the neuroblast origin hypothesis of neuroblastoma. Next, supervised feature selection was used to identify the genes that are differentially expressed in normal neuroblasts versus neuroblastoma tumors. This approach efficiently sifted out genes previously reported in neuroblastoma expression profiling studies; most importantly, it also highlighted a series of genes and pathways previously not mentioned in neuroblastoma biology but that were assumed to be involved in neuroblastoma pathogenesis. Conclusion This unique dataset adds power to ongoing and future gene expression studies in neuroblastoma and will facilitate the identification of molecular targets for novel therapies. In addition, this neuroblast transcriptome resource could prove useful for the further study of human sympathoadrenal biogenesis. PMID:16989664

  5. Subsequent Malignant Neoplasms in Pediatric Patients Initially Diagnosed with Neuroblastoma

    PubMed Central

    Federico, Sara M.; Allewelt, Heather; Spunt, Sheri L.; Hudson, Melissa M.; Wu, Jianrong; Billups, Catherine A.; Jenkins, Jesse; Santana, Victor M.; Furman, Wayne L.; McGregor, Lisa M.

    2014-01-01

    Background Most prior studies evaluating subsequent malignant neoplasms (SMN) in patients with neuroblastoma are restricted to long-term survivors and/or their treatment exposures. This study investigates SMNs in patients diagnosed with neuroblastoma at our institution. Methods Records of 646 patients treated for neuroblastoma at St. Jude Children’s Research Hospital between 1961 and 2005 were reviewed. Data from patients with SMNs were analyzed and the 20-year and 30-year cumulative incidence of SMNs and standardized incidence ratio (SIR) were calculated. Results Twenty-one patients had a SMN. The 20- and 30-year cumulative incidences of a SMN were 2.6% ± 0.7% and 4.6% ± 1.1% respectively. The SIR was 8.3 (95% CI, 5.0–13.0). Five patients developed a SMN within 5 years from diagnosis. The median latency for the development of AML/MDS (n=4), sarcomas (n=7), and carcinomas (n=5) were 3.6 years, 9 years, and 24.2 years respectively. Nine patients died from their SMN, including all with AML/MDS. Conclusions Patients with neuroblastoma have an increased risk of secondary neoplasia. Modification of risk-adapted therapies will likely alter the affected patient population and the incidence of SMNs. Future studies are necessary to link SMNs to treatment exposures and to evaluate the risk of SMNs beyond 30 years from diagnosis. PMID:24633303

  6. HIV-1 propagates in human neuroblastoma cells.

    PubMed

    Shapshak, P; Sun, N C; Resnick, L; Thornthwaite, J T; Schiller, P; Yoshioka, M; Svenningsson, A; Tourtellotte, W W; Imagawa, D T

    1991-01-01

    A major question in the pathogenesis of AIDS encephalopathy and dementia is whether HIV-1 directly infects cells of the central nervous system (CNS). The propagation of HIV was attempted in six cell lines: three related and three unrelated to the nervous system. HIV was able to propagate in two human neuroblastoma cell lines and a lymphocytic cell line control but did not result in infections of African green monkey kidney cells, human cervix carcinoma cells, and one human brain astrocytoma cell line. Neuroblastoma cell lines infected with HIV showed peaks of reverse transcriptase activity at 10-14 days postinfection. After prolonged growth in cell cultures, one of the neuroblastoma cell lines showed multiphasic virus production, additional high peaks of reverse transcriptase activity, 20-fold greater than the first, lasting from 36 to 74 days and 110 to 140 days postinfection. The presence of HIV was confirmed by p24 antigen capture. The neuroblastoma cell lines had weak but detectable levels of CD4 immunoreactivity by immunoperoxidase and flow immunocytometric analysis. Although no T4-specific RNA sequences were detected by hybridization of Northern blots of total and poly A-selected RNA extracted from the two neuroblastoma cell lines by using a T4 specific complimentary DNA probe, monoclonal antibodies to the CD4 receptor blocked HIV infection in both neuroblastoma cell lines. Thus, the infection of neuroblastoma cells by HIV occurs in part by a CD4-dependent mechanism. Passaging the neuroblastoma cell lines weekly and bimonthly resulted in similar cell cycle-DNA content patterns for the more permissive cell line and with significant numbers of cells in the S phase. HIV-infected neuroblastoma cell lines provide an in vitro model for the evaluation of virus-host cell interactions and may be useful in addressing the issue of the persistence of HIV in the human CNS. PMID:1704060

  7. Neuroblastoma

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Neuroblastoma KidsHealth > For Parents > Neuroblastoma Print A A A ... infancy, the chance of recovery is good. About Neuroblastoma Neuroblastoma is a rare disease in which a ...

  8. Neuroblastoma

    PubMed Central

    Hoover, Eddie L.; Hsu, Hwei-Kang; Dressler, Carolyn; Fani, Kazim; Webb, Hueldine; Ketosugbo, Anukware; Kharma, Bassam

    1988-01-01

    Mediastinal neuroblastomas, which are common malignancies of childhood, are extremely rare in adults. This article presents a case of mediastinal neuroblastoma in a 57-year-old man. To the authors' knowledge, this is only the second recorded case of such a tumor in an adult. The patient's clinical course is described and is compared with other cases (in children, except for one instance) cited in the literature. The authors discuss the early diagnosis and surgical management of these uncommon lesions, which tend to be quite extensive and rapidly fatal, and which should be suspected in adults who present with a mediastinal mass. (Texas Heart Institute Journal 1988;15:107-112) Images PMID:15227261

  9. Nordihydroguaiaretic Acid Inhibits Insulin-Like Growth Factor Signaling, Growth, and Survival in Human Neuroblastoma Cells

    PubMed Central

    Meyer, Gary E.; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A.; Goldenberg, David D.; Youngren, Jack F.; Goldfine, Ira D.; Weiss, William A.; Matthay, Katherine K.; Rosenthal, Stephen M.

    2010-01-01

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  10. Neuroblastoma

    MedlinePlus

    Neuroblastoma is a very rare type of cancerous tumor that develops from nerve tissue. It usually occurs ... Neuroblastoma can occur in many areas of the body. It develops from the tissues that form the ...

  11. A Malignant Transformation of a Spinal Epidural Mass from Ganglioneuroblastoma to Neuroblastoma

    PubMed Central

    Bilgic, Bilge; Aras, Yavuz; Izgi, Nail

    2015-01-01

    Ganglioneuromas are benign tumors. Surgical excision is the treatment of choice with very good prognosis. However, neuroblastomatous malignant transformation of ganglioneuromas was previously reported. We report a patient with spinal neuroblastoma recurrent from a ganglioneuroblastoma after disease free survival of 13 years. This is one of the rare examples of spinal neuroblastoma and to our knowledge the second case report with malignant transformation from a ganglioneuroblastoma or a ganglioneuroma. The present case is the only report in the literature with further genetic investigations. PMID:25810863

  12. Impact of persistent cytomegalovirus infection on human neuroblastoma cell gene expression.

    PubMed

    Hoever, Gerold; Vogel, Jens-Uwe; Lukashenko, Polina; Hofmann, Wolf-Karsten; Komor, Martina; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2005-01-14

    In a model of human neuroblastoma (NB) cell lines persistently infected with human cytomegalovirus (HCMV) we previously showed that persistent HCMV infection is associated with an increased malignant phenotype, enhanced drug resistance, and invasive properties. To gain insights into the mechanisms of increased malignancy we analyzed the global changes in cellular gene expression induced by persistent HCMV infection of human neuroblastoma cells by use of high-density oligonucleotide microarrays (HG-U133A, Affymetrix) and RT-PCR. Comparing the gene expression of different NB cell lines with persistently infected cell sub-lines revealed 11 host cell genes regulated in a similar manner throughout all infected samples. Nine of these 11 genes may contribute to the previously observed changes in malignant phenotype of persistently HCMV infected NB cells by influencing invasive growth, apoptosis, angiogenesis, and proliferation. Thus, this work provides the basis for further functional studies. PMID:15582591

  13. Hyaluronan in human malignancies

    SciTech Connect

    Sironen, R.K.; Tammi, M.; Tammi, R.; Auvinen, P.K.; Anttila, M.; Kosma, V-M.

    2011-02-15

    Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma-cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial-mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.

  14. Second Malignancies in Patients with Neuroblastoma: The Effects of Risk-Based Therapy

    PubMed Central

    Applebaum, Mark A.; Henderson, Tara O.; Lee, Sang Mee; Pinto, Navin; Volchenboum, Samuel L.; Cohn, Susan L.

    2014-01-01

    Background To investigate the incidence of second malignant neoplasms (SMN) for patients with neuroblastoma, we analyzed patients from the SEER database according to three treatment eras (1: 1973–1989, 2: 1990–1996, 3: 1997–2006) corresponding to the introduction of multi-agent chemotherapy, risk-based treatment, and stem cell transplant. Procedure The SEER database was mined for all patients with neuroblastoma or ganglioneuroblastoma. Cumulative incidence of SMN was calculated with death as a competing risk. A poisson regression model was used to estimate incidence rate ratios and 95% confidence intervals to compare the rates of SMN between patients in different Eras. Results The analytic cohort included 2,801 patients. Thirty-four patients developed a SMN, accounting for 1.2% of all patients. Of the patients who developed a SMN, 47.1% received radiation for their primary neuroblastoma. Fourteen of the SMN were carcinomas, and 10 were hematologic malignancies, with 6 cases of acute myelogenous leukemia. There was no difference in the incidence of SMN in Era 1 compared to Era 3 (p=0.48). The cumulative incidence of SMN at 30 years for high-risk patients was 10.44% (95% CI 3.98–20.52%) compared to 3.57% (95% CI 1.87–6.12%) for non-high-risk patients (p<0.001). Conclusions This study showed no increase in the incidence of SMNs for children treated in the most recent treatment era as compared to earlier Eras. However, as the risk for developing SMN does not plateau, the number of SMNs will likely continue to rise in the cohort of patients treated after 1996. Comprehensive follow-up care for these survivors will be important. PMID:25251613

  15. Acetaminophen Induces Human Neuroblastoma Cell Death through NFKB Activation

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Ceña, Valentín

    2012-01-01

    Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β. PMID:23166834

  16. Of mice and men: olfactory neuroblastoma among animals and humans.

    PubMed

    Lubojemska, A; Borejko, M; Czapiewski, P; Dziadziuszko, R; Biernat, W

    2016-09-01

    Olfactory neuroblastoma (ONB) is a rare tumour of nasal cavity and paranasal sinuses that arises from the olfactory neuroepithelium and has unpredictable clinical course. As the sense of smell is phylogenetically one of the first senses and olfactory neuroepithelium is evolutionary conserved with striking similarities among different species, we performed an extensive analysis of the literature in order to evaluate the similarities and differences between animals and humans on the clinical, morphological, immunohistochemical, ultrastructural and molecular level. Our analysis revealed that ONB was reported mainly in mammals and showed striking similarities to human ONB. These observations provide rationale for introduction of therapy modalities used in humans into the veterinary medicine. Animal models of neuroblastoma should be considered for the preclinical studies evaluating novel therapies for ONB. PMID:25041470

  17. GALNT2 suppresses malignant phenotypes through IGF-1 receptor and predicts favorable prognosis in neuroblastoma

    PubMed Central

    Jeng, Yung-Ming; Lu, Meng-Yao; Yang, Yung-Li; Jou, Shiann-Tarng; Lin, Dong-Tsamn; Chang, Hsiu-Hao; Lin, Kai-Hsin; Hsu, Wen-Ming; Huang, Min-Chuan

    2014-01-01

    Aberrant expression of the simple mucin-type carbohydrate antigens such as Tn antigen is associated with malignant transformation and cancer progression. N-acetylgalactosaminyltransferase 2 (GALNT2), one of the enzymes that mediate the initial step of mucin-type O-glycosylation, is responsible for forming Tn antigen. GALNT2 is expressed differentially in nervous tissues during mouse embryogenesis; however, the role of GALNT2 in neuroblastoma (NB) remains unclear. Here we showed that increased GALNT2 expression evaluated using immunohistochemistry in NB tumor tissues correlated well with the histological grade of differentiation as well as younger age at diagnosis, early clinical stage, primary tumor originated from the extra-adrenal site, favorable INPC histology, and MYCN non-amplification. Multivariate analysis showed that GALNT2 expression is an independent prognostic factor for better survival for NB patients. GALNT2 overexpression suppressed IGF-1-induced cell growth, migration, and invasion of NB cells, whereas GALNT2 knockdown enhanced these NB phenotypes. Mechanistic investigations demonstrated that GALNT2 overexpression modified O-glycans on IGF-1R, which suppressed IGF-1-triggered IGF-1R dimerization and subsequent downstream signaling events. Conversely, these properties were reversed by GALNT2 knockdown in NB cells. Our findings suggest that GALNT2 regulates malignant phenotypes of NB cells through the IGF-1R signaling pathway, suggesting a critical role for GALNT2 in the pathogenesis of NB. PMID:25362349

  18. GALNT2 suppresses malignant phenotypes through IGF-1 receptor and predicts favorable prognosis in neuroblastoma.

    PubMed

    Ho, Wan-Ling; Chou, Chih-Hsing; Jeng, Yung-Ming; Lu, Meng-Yao; Yang, Yung-Li; Jou, Shiann-Tarng; Lin, Dong-Tsamn; Chang, Hsiu-Hao; Lin, Kai-Hsin; Hsu, Wen-Ming; Huang, Min-Chuan

    2014-12-15

    Aberrant expression of the simple mucin-type carbohydrate antigens such as Tn antigen is associated with malignant transformation and cancer progression. N-acetylgalactosaminyltransferase 2 (GALNT2), one of the enzymes that mediate the initial step of mucin-type O-glycosylation, is responsible for forming Tn antigen. GALNT2 is expressed differentially in nervous tissues during mouse embryogenesis; however, the role of GALNT2 in neuroblastoma (NB) remains unclear. Here we showed that increased GALNT2 expression evaluated using immunohistochemistry in NB tumor tissues correlated well with the histological grade of differentiation as well as younger age at diagnosis, early clinical stage, primary tumor originated from the extra-adrenal site, favorable INPC histology, and MYCN non-amplification. Multivariate analysis showed that GALNT2 expression is an independent prognostic factor for better survival for NB patients. GALNT2 overexpression suppressed IGF-1-induced cell growth, migration, and invasion of NB cells, whereas GALNT2 knockdown enhanced these NB phenotypes. Mechanistic investigations demonstrated that GALNT2 overexpression modified O-glycans on IGF-1R, which suppressed IGF-1-triggered IGF-1R dimerization and subsequent downstream signaling events. Conversely, these properties were reversed by GALNT2 knockdown in NB cells. Our findings suggest that GALNT2 regulates malignant phenotypes of NB cells through the IGF-1R signaling pathway, suggesting a critical role for GALNT2 in the pathogenesis of NB. PMID:25362349

  19. Synergistic efficacy of sorafenib and genistein in growth inhibition by down regulating angiogenic and survival factors and increasing apoptosis through upregulation of p53 and p21 in malignant neuroblastoma cells having N-Myc amplification or non-amplification.

    PubMed

    Roy Choudhury, Subhasree; Karmakar, Surajit; Banik, Naren L; Ray, Swapan K

    2010-12-01

    Neuroblastoma is an extracranial, solid, and heterogeneous malignancy in children. The conventional therapeutic modalities are mostly ineffective and thus new therapeutic strategies for malignant neuroblastoma are urgently warranted. We examined the synergistic efficacy of combination of sorafenib (SF) and genistein (GST) in human malignant neuroblastoma SK-N-DZ (N-Myc amplified) and SH-SY5Y (N-Myc non-amplified) cell lines. MTT assay showed dose-dependent decrease in cell viability and the combination therapy more prominently inhibited the cell proliferation in both cell lines than either treatment alone. Apoptosis was confirmed morphologically by Wright staining. Flow cytometric analysis of cell cycle phase distribution and Annexin V-FITC/PI staining showed increase in subG1 DNA content and early apoptosis, respectively, after treatment with the combination of drugs. Apoptosis was further confirmed by scanning electron microscopy. Combination therapy showed activation of caspase-8, cleavage of Bid to tBid, increase in p53 and p21 expression, down regulation of anti-apoptotic Mcl-1, and increase in Bax:Bcl-2 ratio to trigger apoptosis. Down regulation of MDR, hTERT, N-Myc, VEGF, FGF-2, NF-κB, p-Akt, and c-IAP2 indicated suppression of angiogenic and survival pathways. Mitochondrial release of cytochrome c and Smac into cytosol indicated involvement of mitochondia in apoptosis. Increases in proteolytic activities of calpain and caspase-3 were also confirmed. Our results suggested that combination of SF and GST inhibited angiogenic and survival factors and increased apoptosis via receptor and mitochondria mediated pathways in both neuroblastoma SK-N-DZ and SH-SY5Y cell lines. Thus, this combination of drugs could be a potential therapeutic strategy against human malignant neuroblastoma cells having N-Myc amplification or non-amplification. PMID:19777160

  20. The effect of explosive blast loading on human neuroblastoma cells.

    PubMed

    Zander, Nicole E; Piehler, Thuvan; Banton, Rohan; Boggs, Mary

    2016-07-01

    Diagnosis of mild to moderate traumatic brain injury is challenging because brain tissue damage progresses slowly and is not readily detectable by conventional imaging techniques. We have developed a novel in vitro model to study primary blast loading on dissociated neurons using nitroamine explosives such as those used on the battlefield. Human neuroblastoma cells were exposed to single and triple 50-psi explosive blasts and single 100-psi blasts. Changes in membrane permeability and oxidative stress showed a significant increase for the single and triple 100-psi blast conditions compared with single 50-psi blast and controls. PMID:27033003

  1. Identification of nuclear. tau. isoforms in human neuroblastoma cells

    SciTech Connect

    Loomis, P.A.; Howard, T.H.; Castleberry, R.P.; Binder, L.I. )

    1990-11-01

    The {tau} proteins have been reported only in association with microtubules and with ribosomes in situ, in the normal central nervous system. In addition, {tau} has been shown to be an integral component of paired helical filaments, the principal constituent of the neurofibrillary tangles found in brains of patients with Alzheimer's disease and of most aged individuals with Down syndrome (trisomy 21). The authors report here the localization of the well-characterized Tau-1 monoclonal antibody to the nucleolar organizer regions of the acrocentric chromosomes and to their interphase counterpart, the fibrillar component of the nucleolus, in human neuroblastoma cells. Similar localization to the nucleolar organizer regions was also observed in other human cell lines and in one monkey kidney cell line but was not seen in non-primate species. Immunochemically, they further demonstrated the existence of the entire {tau} molecule in the isolated nuclei of neuroblastoma cells. Nuclear {tau} proteins, like the {tau} proteins of the paired helical filaments, cannot be extracted in standard SDS-containing electrophoresis sample buffer but require pretreatment with formic acid prior to immunoblot analysis. This work indicates that {tau} may function in processes not directly associated with microtubules and that highly insoluble complexes of {tau} may also play a role in normal cellular physiology.

  2. Morphologic and phenotypic changes of human neuroblastoma cells in culture induced by cytosine arabinoside

    SciTech Connect

    Ponzoni, M.; Lanciotti, M.; Melodia, A.; Casalaro, A.; Cornaglia-Ferraris, P. )

    1989-03-01

    The effects of cytosine-arabinoside (ARA-C) on the growth and phenotypic expression of a new human neuroblastoma (NB) cell line (GI-ME-N) have been extensively tested. Low doses of ARA-C allowing more than 90% cell viability induce morphological differentiation and growth inhibition. Differentiated cells were larger and flattened with elongated dendritic processes; such cells appeared within 48 hours after a dose of ARA-C as low as 0.1 {mu}g/ml. The new morphological aspect reached the maximum expression after 5-6 days of culture being independent from the addition of extra drug to the culture. A decrease in ({sup 3}H)thymidine incorporation was also observed within 24 hours and the cell growth was completely inhibited on the sixth day. Moreover, ARA-C strongly inhibited anchorage-independent growth in soft agar assay. Membrane immunofluorescence showed several dramatic changes in NB-specific antigen expression after 5 days of treatment with ARA-C. At the same time ARA-C also modulated cytoskeletal proteins and slightly increased catecholamine expression. These findings suggest that noncytotoxic doses of ARA-C do promote the differentiation of GI-ME-N neuroblastoma cells associated with reduced expression of the malignant phenotype.

  3. TLR3 triggering regulates PD-L1 (CD274) expression in human neuroblastoma cells.

    PubMed

    Boes, Marianne; Meyer-Wentrup, Friederike

    2015-05-28

    Neuroblastoma is the most common extracranial solid tumor in children, causing 12% of all pediatric cancer mortality. Neuroblastoma specific T-cells have been detected in patients, but usually fail to attack and eradicate the tumors. Tumor immune evasion may thus play an important role in neuroblastoma pathogenicity. Recent research in adult cancer patients shows that targeting T-cell check-point molecules PD-1/PD-L1 (or CD279/CD274) may bolster immune reactivity against solid tumors. Also, infections can be associated with spontaneous neuroblastoma regression. In our current study, we therefore investigated if antibody targeting of PD-L1 and triggering of selective pathogen-receptor Toll-like receptors (TLRs) potentiates immunogenicity of neuroblastoma cells. We find this to be the case. TLR3 triggering induced strong upregulation of both MHC class I and PD-L1 on neuroblastoma cells. At the same time TGF-β levels decreased and IL-8 secretion was induced. The combined neuroblastoma cell treatment using PD-L1 blockade and TLR3 triggering using virus analog poly(I:C) moreover induced CD4(+) and CD8(+) T-cell activation. Thus, we propose combined treatment using PD-L1 blockade with synthetic TLR ligands as an avenue toward new immunotherapy against human neuroblastoma. PMID:25697485

  4. Tryptanthrin induces growth inhibition and neuronal differentiation in the human neuroblastoma LA-N-1 cells.

    PubMed

    Liao, Xuemei; Leung, Kwok Nam

    2013-04-25

    Neuroblastoma is one of the most common extracranial solid cancers found in young children. The prognosis of neuroblastoma patients in advanced stages having N-myc amplification remains poor despite intensive multimodal therapy. Agents that trigger neuroblastoma cells to undergo cellular differentiation and thereby stop proliferation have attracted considerable interest as an alternative therapy. Tryptanthrin (12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline) is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants known as Banlangen. It has been shown to possess various biological activities, such as anti-microbial, anti-inflammatory and anti-tumor activities. However, its effects and mechanism(s) of action on human neuroblastoma cells remain poorly understood. Therefore, the objective of this study is to investigate the effects of tryptanthrin on the growth and differentiation of human neuroblastoma LA-N-1 cells with N-myc amplification. Our results show that tryptanthrin inhibited the growth of the human neuroblastoma cells in a dose- and time-dependent manner. Mechanistic studies indicated that tryptanthrin induced cell cycle arrest of the human neuroblastoma LA-N-1 cells at the G0/G1 phase. Tryptanthrin also induced neuronal differentiation of LA-N-1 cells, as assessed by morphological criteria, enhancement of acetylcholine esterase activity and up-regulation of various differentiation markers. Moreover, tryptanthrin treatment led to the significant reduction of N-myc expression in LA-N-1 cells while siRNA directed against N-myc induced morphological differentiation of LA-N-1 cells. These results, when taken together, suggest that tryptanthrin suppressed the growth and induced neuronal differentiation in the human neuroblastoma LA-N-1 cells and might be exploited as a potential therapeutic candidate for the treatment of high-risk neuroblastomas with N-myc-amplification. PMID:23500671

  5. Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin

    PubMed Central

    Gangoda, Lahiru; Keerthikumar, Shivakumar; Fonseka, Pamali; Edgington, Laura E.; Ang, Ching-Seng; Ozcitti, Cemil; Bogyo, Matthew; Parker, Belinda S.; Mathivanan, Suresh

    2015-01-01

    Neuroblastoma arises from the sympathetic nervous system and accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc is reported to occur in more than 20% of patients. While N-Myc amplification status strongly correlates with higher tumour aggression and resistance to treatment, the role of N-Myc in the aggressive progression of the disease is poorly understood. N-Myc being a transcription factor can modulate the secretion of key proteins that may play a pivotal role in tumorigenesis. Characterising the soluble secreted proteins or secretome will aid in understanding their role in the tumour microenvironment, such as promoting cancer cell invasion and resistance to treatment. The aim of this study is to characterise the secretome of human malignant neuroblastoma SK-N-BE2 (N-Myc amplified, more aggressive) and SH-SY5Y (N-Myc non-amplified, less aggressive) cells. Conditioned media from SK-N-BE2 and SH-SY5Y cell lines were subjected to proteomics analysis. We report a catalogue of 894 proteins identified in the secretome isolated from the two neuroblastoma cell lines, SK-N-BE2 and SH-SY5Y. Functional enrichment analysis using FunRich software identified enhanced secretion of proteins implicated in cysteine peptidase activity in the aggressive N-Myc amplified SK-N-BE2 secretome compared to the less tumorigenic SH-SY5Y cells. Protein-protein interaction-based network analysis highlighted the enrichment of cathepsin and epithelial-to-mesenchymal transition sub-networks. For the first time, inhibition of cathepsins by inhibitors sensitized the resistant SK-N-BE2 cells to doxorubicin as well as decreased its migratory potential. The dataset of secretome proteins of N-Myc amplified (more aggressive) and non-amplified (less aggressive) neuroblastoma cells represent the first inventory of neuroblastoma secretome. The study also highlights the prominent role of cathepsins in the N-Myc amplified neuroblastoma pathogenesis. As N-Myc amplification

  6. Translocation involving 1p and 17q is a recurrent genetic alteration of human neuroblastoma cells

    SciTech Connect

    Savelyeva, L.; Corvi, R.; Schwab, M. )

    1994-08-01

    Human neuroblastoma cells often are monosomic for the distal portion of 1p (1p36). The authors report that the deleted 1p material in cells of neuroblastoma lines is preferentially replaced by material from chromosome 17, resulting from an unbalanced 1;17 translocation. Chromosome 17 often acquires instability, followed by the integration of fragments into various marker chromosomes. As a consequence, 17q material can increase over 17p material. The nonrandom frequency of 1;17 translocations appears to indicate an as-yet-undefined contribution to neuroblastoma development. 35 refs., 4 figs., 1 tab.

  7. Inhibition of Focal Adhesion Kinase and Src Increases Detachment and Apoptosis in Human Neuroblastoma Cell Lines

    PubMed Central

    Beierle, Elizabeth A.; Ma, Xiaojie; Trujillo, Angelica; Kurenova, Elena V.; Cance, William G.; Golubovskaya, Vita M.

    2010-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood. Focal adhesion kinase (FAK) is an intracellular kinase that is overexpressed in a number of human tumors including neuroblastoma, and regulates both cellular adhesion and survival. We have studied the effects of FAK inhibition upon neuroblastoma using adenovirus-containing FAK-CD (AdFAK-CD). Utilizing an isogenic MYCN+ / MYCN− neuroblastoma cell line, we found that the MYCN+ cells are more sensitive to FAK inhibition with AdFAK-CD than their MYCN negative counterparts. In addition, we have shown that phosphorylation of Src is increased in the untreated isogenic MYCN− neuroblastoma cells, and that the decreased sensitivity of the MYCN− neuroblastoma cells to FAK inhibition with AdFAK-CD is abrogated by the addition of the Src family kinase inhibitor, PP2. The results of the current study suggest that both FAK and Src play a role in protecting neuroblastoma cells from apoptosis, and that dual inhibition of these kinases may be important when designing therapeutic interventions for this tumor. PMID:19885861

  8. Molecular mechanism of action of opioids in human neuroblastoma cells

    SciTech Connect

    Yu, V.C.K.

    1987-01-01

    A series of human neuroblastoma cell lines was screened for the presence of opioid receptor sites. Of these cell lines, SK-N-SH was found to express approximately 50,000 ..mu.. and 10,000 delta opioid receptor sites/cell. In vitro characterization revealed that the binding properties of these receptor sites closely resembled those of human and rodent brain. Phosphatidylinositol turnover as a potential second messenger system for the ..mu.. receptor was examined in SK-N-SH cells. Neurotransmitter receptor systems were determined in the three sub-clones of SK-N-SH cells. Cells of the SH-SY5Y line, a phenotypically stable subclone of SK-N-SH cells, were induced to differentiate by treatment with various inducing agents, and changes of several neurotransmitter receptor systems were determined. Nerve growth factor (NGF) and retinoic acid (RA) up-regulated, while dBcAMP down-regulated opioid receptor sites. (/sup 3/H)Dopamine uptake was slightly enhanced only in RA-treated cells. Strikingly, the efficacy of PGE/sub 1/-stimulated accumulation of cAMP was enhanced by 15- to 30-fold upon RA treatment.

  9. Transcriptome profile of human neuroblastoma cells in the hypomagnetic field.

    PubMed

    Mo, WeiChuan; Liu, Ying; Bartlett, Perry F; He, RongQiao

    2014-04-01

    Research has shown that the hypomagnetic field (HMF) can affect embryo development, cell proliferation, learning and memory, and in vitro tubulin assembly. In the present study, we aimed to elucidate the molecular mechanism by which the HMF exerts its effect, by comparing the transcriptome profiles of human neuroblastoma cells exposed to either the HMF or the geomagnetic field. A total of 2464 differentially expressed genes (DEGs) were identified, 216 of which were up-regulated and 2248 of which were down-regulated after exposure to the HMF. These DEGs were found to be significantly clustered into several key processes, namely macromolecule localization, protein transport, RNA processing, and brain function. Seventeen DEGs were verified by real-time quantitative PCR, and the expression levels of nine of these DEGs were measured every 6 h. Most notably, MAPK1 and CRY2, showed significant up- and down-regulation, respectively, during the first 6 h of HMF exposure, which suggests involvement of the MAPK pathway and cryptochrome in the early bio-HMF response. Our results provide insights into the molecular mechanisms underlying the observed biological effects of the HMF. PMID:24777382

  10. Development and characterization of a human orthotopic neuroblastoma xenograft

    PubMed Central

    Stewart, Elizabeth; Shelat, Anang; Bradley, Cori; Chen, Xiang; Federico, Sara; Thiagarajan, Suresh; Shirinifard, Abbas; Bahrami, Armita; Pappo, Alberto; Qu, Chunxu; Finkelstein, David; Sablauer, Andras; Dyer, Michael A.

    2016-01-01

    Neuroblastoma is a pediatric cancer of the developing sympathoadrenal lineage. The tumors are known to develop from the adrenal gland or paraspinal ganglia and have molecular and cellular features of sympathetic neurons such as dense core vesicles and catecholamine production. Here we present the detailed molecular, cellular, genetic and epigenetic characterization of an orthotopic xenograft derived from a high-risk stage 4 neuroblastoma patient. Overall, the xenografted tumor retained the high risk features of the primary tumor and showed aggressive growth and metastasis in the mouse. Also, the genome was preserved with no additional copy number variations, structural variations or aneuploidy. There were 13 missense mutations identified in the xenograft that were not present in the patient’s primary tumor and there were no new nonsense mutations. None of the missense mutations acquired in the xenograft were in known cancer genes. We also demonstrate the feasibility of using the orthotopic neuroblastoma xenograft to test standard of care chemotherapy and molecular targeted therapeutics. Finally, we optimized a new approach to produce primary cultures of the neuroblastoma xenografts for high-throughput drug screening which can be used to test new combinations of therapeutic agents for neuroblastoma. PMID:25863122

  11. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells.

    PubMed

    Chen, Jong-Hang; Chou, Chin-Cheng

    2015-08-01

    This study explores human neuroblastoma (SH-SY5Y) and human glioblastoma (U-1240 MG) cellular differentiation changes under exposure to acrylamide (ACR). Differentiation of SH-SY5Y and U-1240 MG cells were induced by retinoic acid (RA) and butyric acid (BA), respectively. Morphological observations and MTT assay showed that the induced cellular differentiation and cell proliferation were inhibited by ACR in a time- and dose-dependent manner. ACR co-treatment with RA attenuated SH-SY5Y expressions of neurofilament protein-L (NF-L), microtubule-associated protein 1b (MAP1b; 1.2 to 0.7, p < 0.001), MAP2c (2.2 to 0.8, p < 0.05), and Janus kinase1 (JAK1; 1.9 to 0.6, p < 0.001), while ACR co-treatment with BA attenuated U-1240 MG expressions of glial fibrillary acidic protein (GFAP), MAP1b (1.2 to 0.6, p < 0.001), MAP2c (1.5 to 0.7, p < 0.01), and JAK1 (2.1 to 0.5, p < 0.001), respectively. ACR also decreased the phosphorylation of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) in U-1240 MG cells, while caffeine reversed this suppression of ERK and JNK phosphorylation caused by ACR treatment. These results showed that RA-induced neurogenesis of SH-SY5Y and BA-induced astrogliogenesis of U-1240 MG cells were attenuated by ACR and were associated with down-regulation of MAPs expression and JAK-STAT signaling. PMID:25959841

  12. MYCN sensitizes human neuroblastoma to apoptosis by HIPK2 activation through a DNA damage response.

    PubMed

    Petroni, Marialaura; Veschi, Veronica; Prodosmo, Andrea; Rinaldo, Cinzia; Massimi, Isabella; Carbonari, Maurizio; Dominici, Carlo; McDowell, Heather P; Rinaldi, Christian; Screpanti, Isabella; Frati, Luigi; Bartolazzi, Armando; Gulino, Alberto; Soddu, Silvia; Giannini, Giuseppe

    2011-01-01

    MYCN amplification occurs in approximately 20% of human neuroblastomas and is associated with early tumor progression and poor outcome, despite intensive multimodal treatment. However, MYCN overexpression also sensitizes neuroblastoma cells to apoptosis. Thus, uncovering the molecular mechanisms linking MYCN to apoptosis might contribute to designing more efficient therapies for MYCN-amplified tumors. Here we show that MYCN-dependent sensitization to apoptosis requires activation of p53 and its phosphorylation at serine 46. The p53(S46) kinase HIPK2 accumulates on MYCN expression, and its depletion by RNA interference impairs p53(S46) phosphorylation and apoptosis. Remarkably, MYCN induces a DNA damage response that accounts for the inhibition of HIPK2 degradation through an ATM- and NBS1-dependent pathway. Prompted by the rare occurrence of p53 mutations and by the broad expression of HIPK2 in our human neuroblastoma series, we evaluated the effects of the p53-reactivating compound Nutlin-3 on this pathway. At variance from other tumor histotypes, in MYCN-amplified neuroblastoma, Nutlin-3 further induced HIPK2 accumulation, p53(S46) phosphorylation, and apoptosis, and in combination with clastogenic agents purged virtually the entire cell population. Altogether, our data uncover a novel mechanism linking MYCN to apoptosis that can be triggered by the p53-reactivating compound Nutlin-3, supporting its use in the most difficult-to-treat subset of neuroblastoma. PMID:21173028

  13. LMNA Knock-Down Affects Differentiation and Progression of Human Neuroblastoma Cells

    PubMed Central

    Maresca, Giovanna; Natoli, Manuela; Nardella, Marta; Arisi, Ivan; Trisciuoglio, Daniela; Desideri, Marianna; Brandi, Rossella; D’Aguanno, Simona; Nicotra, Maria Rita; D’Onofrio, Mara; Urbani, Andrea; Natali, Pier Giorgio; Bufalo, Donatella Del

    2012-01-01

    Background Neuroblastoma (NB) is one of the most aggressive tumors that occur in childhood. Although genes, such as MYCN, have been shown to be involved in the aggressiveness of the disease, the identification of new biological markers is still desirable. The induction of differentiation is one of the strategies used in the treatment of neuroblastoma. A-type lamins are components of the nuclear lamina and are involved in differentiation. We studied the role of Lamin A/C in the differentiation and progression of neuroblastoma. Methodology/Principal Findings Knock-down of Lamin A/C (LMNA-KD) in neuroblastoma cells blocked retinoic acid-induced differentiation, preventing neurites outgrowth and the expression of neural markers. The genome-wide gene-expression profile and the proteomic analysis of LMNA-KD cells confirmed the inhibition of differentiation and demonstrated an increase of aggressiveness-related genes and molecules resulting in augmented migration/invasion, and increasing the drug resistance of the cells. The more aggressive phenotype acquired by LMNA-KD cells was also maintained in vivo after injection into nude mice. A preliminary immunohistochemistry analysis of Lamin A/C expression in nine primary stages human NB indicated that this protein is poorly expressed in most of these cases. Conclusions/Significance We demonstrated for the first time in neuroblastoma cells that Lamin A/C plays a central role in the differentiation, and that the loss of this protein gave rise to a more aggressive tumor phenotype. PMID:23049808

  14. Exogenous heat shock protein HSP70 reduces response of human neuroblastoma cells to lipopolysaccharide.

    PubMed

    Yurinskaya, M M; Funikov, S Y; Evgen'ev, M B; Vinokurov, M G

    2016-07-01

    The effect of exogenous heat shock protein HSP70 and lipopolysaccharide (LPS) on the production of reactive oxygen species (ROS), TNFα secretion, and mRNA expression by human neuroblastoma SK-N-SH cells. It was shown that exogenous HSP70 protects neuroblastoma cells from the action of LPS. The protection mechanism of HSP70 includes a reduction in the production of ROS and TNFα and a decrease in the expression of TLR4 and IL-1β mRNA in SK-N-SH cells induced by LPS. PMID:27599502

  15. Expression in cultured human neuroblastoma cells of epitopes associated with affected neurons in Alzheimer's disease.

    PubMed Central

    Ko, L. W.; Sheu, K. F.; Young, O.; Thaler, H.; Blass, J. P.

    1990-01-01

    Of three human neuroblastoma lines tested, IMR32K (and IMR32 parental line) was the only cell line that, after its exposure to a differentiation medium, consistently developed materials recognized immunocytochemically by a panel of antibodies against paired helical filaments (PHF). Ultrastructurally, these cells accumulated, at their perikarya and neuritic extensions, spatially discrete arrays of fibrils, which occasionally occurred in twisted pairs. When these fibrillar structures appeared as paired helices, they exhibited dimensions and configurations reminiscent of PHF found in affected Alzheimer neurons, although less compact. Immunoelectron microscope examinations of the fibrillar structures in these neuroblastoma cells with one of these anti-PHF immunoprobes revealed that only subsets of fibrillar structures that appeared thickened or aggregated to form bundles were selectively immunolabeled. Cultures of these immortal neuroblastoma lines may provide a convenient model for studying aspects of PHF formation that are hard to examine in Alzheimer brain obtained at autopsy. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1691594

  16. [NEUROBLASTOMA IN PEDIATRIC PATIENTS].

    PubMed

    Solovyov, A E; Morgun, V V; Paholchuk, A P

    2015-06-01

    Neuroblastoma the most common malignant tumor of childhood, which is often localized in the retroperitoneal space, mainly in the adrenal glands, paravertebral retroperitoneal space, at rare in the posterior mediastinum, in the neck, presacral area. First symptoms of neuroblastoma are nonspecific, mimic various diseases. In the following clinical manifestations depend on the localization of the tumor, stage presence and location of metastases. In the diagnosis of neuroblastoma using ultrasonography and computed tomography. Of the 26 children whose neuroblastoma detected in different periods have died 12. Radical removal of the tumor only effective the first year of life. Chemotherapy is effective in 50% of operated children. PMID:26521471

  17. Neuroblastoma: A neurochemical approach

    SciTech Connect

    Schor, N.F. )

    1991-07-01

    Neuroblastoma is among the most common malignancies of childhood. Despite greatly improved therapy for some pediatric tumors, the prognosis for children with metastatic neuroblastoma has not changed significantly in the past 10 years. With conventional chemotherapy, radiation therapy, and surgery, children with metastatic neuroblastoma have a 20% long-term survival rate. The authors describe here approaches to neuroblastoma that target its neuronal characteristics. On the one hand, the neurotransmitter receptors on the surface of the neuroblastoma cells and, on the other hand, specific isozymes that distinguish neuroblastoma cells from their normal counterparts are the focus of these experimental therapies. In the former case, specificity for tumor cells is effected by (1) selective protection of normal neuronal elements from toxicity, or (2) selective potentiation of toxicity for neural tumor cells. It is hoped that these strategies will be generalizable to other neural crest-derived tumors. 32 references.

  18. NCYM promotes calpain-mediated Myc-nick production in human MYCN-amplified neuroblastoma cells

    SciTech Connect

    Shoji, Wataru; Suenaga, Yusuke; Kaneko, Yoshiki; Islam, S.M. Rafiqul; Alagu, Jennifer; Yokoi, Sana; Nio, Masaki; Nakagawara, Akira

    2015-06-05

    NCYM is a cis-antisense gene of MYCN and is amplified in human neuroblastomas. High NCYM expression is associated with poor prognoses, and the NCYM protein stabilizes MYCN to promote proliferation of neuroblastoma cells. However, the molecular mechanisms of NCYM in the regulation of cell survival have remained poorly characterized. Here we show that NCYM promotes cleavage of MYCN to produce the anti-apoptotic protein, Myc-nick, both in vitro and in vivo. NCYM and Myc-nick were induced at G2/M phase, and NCYM knockdown induced apoptotic cell death accompanied by Myc-nick downregulation. These results reveal a novel function of NCYM as a regulator of Myc-nick production in human neuroblastomas. - Highlights: • NCYM promotes cleavages of MYC and MYCN to produce Myc-nick in vitro. • NCYM increases Myc-nick production in MYCN-amplified neuroblastoma cells. • NCYM knockdown decreases Myc-nick production and induces apoptosis at G2/M phase.

  19. Sorafenib treatment in children with relapsed and refractory neuroblastoma: an experience of four cases.

    PubMed

    Okada, Keiko; Nakano, Yoshiko; Yamasaki, Kai; Nitani, Chika; Fujisaki, Hiroyuki; Hara, Junichi

    2016-08-01

    Metastatic neuroblastoma is an aggressive malignancy with a poor prognosis. Recent findings have shown that sorafenib decreases cell viability and increases apoptosis in human neuroblastoma cell lines. We report an experience of compassionate use of sorafenib in children with treatment-refractory neuroblastoma. Sorafenib showed transient anti-tumor activity in all four patients without adverse effects. However, progression was observed after a short stabilization phase. While sorafenib showed minimal anti-tumor activity in our patients, it might still be effective in patients with neuroblastoma in an earlier stage. PMID:27264843

  20. Congenital neuroblastoma

    PubMed Central

    Evans, A. R.

    1965-01-01

    The clinical histories and post-mortem findings in five cases of neuroblastoma are described, and an account given of the microscopic characteristics of the tumours. In four of the cases the tumour was present at birth and was probably so in the fifth case. In only one case was the presence of the malignant tumour a significant factor in causing death. The differential diagnosis of such tumours is discussed. The accumulated evidence of many recorded cases suggests that neuroblastoma, becoming manifest in the early months or weeks of life, and congenital tumour, would be included in such a group, and has an appreciably better prognosis than has this same tumour when it becomes manifest in later childhood. The literature is briefly reviewed to illustrate this aspect of prognosis and possible reasons for it are indicated. Images PMID:14247705

  1. A GALECTIN-3-DEPENDENT PATHWAY UPREGULATES INTERLEUKIN-6 IN THE MICROENVIRONMENT OF HUMAN NEUROBLASTOMA

    PubMed Central

    Silverman, Ayaka M.; Nakata, Rie; Shimada, Hiroyuki; Sposto, Richard; DeClerck, Yves A.

    2013-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine with a broad range of physiological and pathological functions. Because in cancer IL-6 contributes to a microenvironment that promotes tumor cell survival, angiogenesis and inflammation, understanding the mechanism responsible for its production is important. In neuroblastoma, the second most common solid tumor in children, IL-6 is produced not by tumor cells but by stromal cells such as monocytes and bone marrow mesenchymal stem cells (BMMSC). Here we show that the production of IL-6 in BMMSC is in part stimulated by galectin-3 binding protein (Gal-3BP) secreted by neuroblastoma cells. We identified a distal region of the IL-6 promoter that contains 3 CCATT/enhancer binding protein (C/EBP) binding domains involved in the transcriptional upregulation of IL-6 by Gal-3BP.Gal-3BP interacted with Galectin-3 (Gal-3) present in BMMSC, and a Gal-3BP/Gal-3/Ras/MEK/ERK signaling pathway was responsible for the transcriptional upregulation of IL-6 in BMMSC where Gal-3 has a necessary function. In support of the role of this pathway in human neuroblastoma tumors, Gal-3BP was found to be present in tumor cells and in the adjacent extracellular matrix of 96% of 78 primary neuroblastoma tumor samples examined by immunohistochemistry. Considering the protumorigenic function of IL-6 in cancer, this tumor cell-stromal cell interactive pathway could be a target for anticancer therapy. PMID:22389450

  2. Acetaminophen potentiates staurosporine-induced death in a human neuroblastoma cell line

    PubMed Central

    Posadas, I; Vellecco, V; Santos, P; Prieto-Lloret, J; Ceña, V

    2007-01-01

    Background and purpose: Neuroblastoma is the most common solid tumour in infants characterized by a high resistance to apoptosis. Recently, the cyclo-oxygenase pathway has been considered a potential target in the treatment of different kinds of tumours. The aim of the present work was to investigate a possible relationship between cyclo-oxygenase pathway and stauroporine-induced apoptosis in the neuroblastoma cell line SH-SY5Y. Experimental approach: Cellular viability was measured by release of LDH. DNA fragmentation was visualized by electrophoresis on agarose gel containing ethidium bromide. Cyclo-oxygenase activity was measured in microsomal fractions obtained from cells by quantification of its final product PGE2 by RIA. Caspase-3 activity was measured fluorimetrically and Western blot analysis was performed to assess cytochrome c expression. Key results: We have found that staurosporine (500 nM) induced cellular death in a time-dependent manner in SH-SY5Y human neuroblastoma cells. Cyclo-oxygenase enzymatic activity was present in SH-SY5Y human neuroblastoma cells under basal conditions and pharmacological experiments using COX inhibitors indicate that cyclo-oxygenase-1 and cyclo-oxygenase-3 are the active isoforms in these cells. Co-incubation of SH-SY5Y cells with staurosporine (500 nM) and acetaminophen for 24 h potentiated staurosporine-mediated cellular death in a concentration-dependent manner. This process is mediated by an increase in cytochrome c release and caspase 3 activation and is prevented by N-acetylcysteine or the superoxide dismutase mimetic, MnTBAP. Conclusions and implications: Acetaminophen potentiates staurosporine-mediated neuroblastoma cell death. The mechanism of action of acetaminophen seems to be related to production of reactive oxygen species and decreased intracellular glutathione levels. PMID:17245372

  3. Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture

    SciTech Connect

    Dutta, S.K.; Subramoniam, A.; Ghosh, B.; Parshad, R.

    1984-01-01

    Monolayer cultures of human neuroblastoma cells were exposed to 915-MHz radiation, with or without sinusoidal amplitude modulation (80%) at 16 Hz, at specific absorption rates (SAR) for the culture medium and cells of 0.00, 0.01, 0.05, 0.075, 0.1, 0.5, 0.75, 1.0, 1.5, 2, or 5 mW/g. A significant increase in the efflux of calcium ions (45Ca2+) as compared to unexposed control cultures occurred at two SAR values: 0.05 and 1 mW/g. Increased efflux at 0.05 mW/g was dependent on the presence of amplitude modulation at 16 Hz but at the higher value it was not. These results indicate that human neuroblastoma cells are sensitive to extremely low levels of microwave radiation at certain narrow ranges of SAR.

  4. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.

    PubMed

    Celia, Christian; Trapasso, Elena; Locatelli, Marcello; Navarra, Michele; Ventura, Cinzia Anna; Wolfram, Joy; Carafa, Maria; Morittu, Valeria Maria; Britti, Domenico; Di Marzio, Luisa; Paolino, Donatella

    2013-12-01

    Citrus extracts, particularly bergamot essential oil (BEO) and its fractions, have been found to exhibit anticancer efficacy. However, the poor water solubility, low stability and limited bioavailability have prevented the use of BEO in cancer therapy. To overcome such drawbacks, we formulated BEO liposomes that improved the water solubility of the phytocomponents and increased their anticancer activity in vitro against human SH-SY5Y neuroblastoma cells. The results warrant further investigation of BEO liposomes for in vivo applications. PMID:24099646

  5. Mitochondrial Damage and Apoptosis Induced by Adenosine Deaminase Inhibition and Deoxyadenosine in Human Neuroblastoma Cell Lines.

    PubMed

    Garcia-Gil, Mercedes; Tozzi, Maria Grazia; Balestri, Francesco; Colombaioni, Laura; Camici, Marcella

    2016-07-01

    The treatment with deoxycoformycin, a strong adenosine deaminase inhibitor, in combination with deoxyadenosine, causes apoptotic cell death of two human neuroblastoma cell lines, SH-SY5Y and LAN5. Herein we demonstrate that, in SH-SY5Y cells, this combination rapidly decreases mitochondrial reactive oxygen species and, in parallel, increases mitochondrial mass, while, later, induces nuclear fragmentation, and activation of caspase-8, -9, and -3. In previous papers we have shown that a human astrocytoma cell line, subjected to the same treatment, undergoes apoptotic death as well. Therefore, both astrocytoma and neuroblastoma cell lines undergo apoptotic death following the combined treatment with deoxycoformycin and deoxyadenosine, but several differences have been found in the mode of action, possibly reflecting a different functional and metabolic profile of the two cell lines. Overall this work indicates that the neuroblastoma cell lines, like the line of astrocytic origin, are very sensitive to purine metabolism perturbation thus suggesting new therapeutic approaches to nervous system tumors. J. Cell. Biochem. 117: 1671-1679, 2016. © 2015 Wiley Periodicals, Inc. PMID:26659614

  6. Gangliosides do not affect ABC transporter function in human neuroblastoma cells.

    PubMed

    Dijkhuis, Anne-Jan; Klappe, Karin; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2006-06-01

    Previous studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines. This was established by three different assays: equilibrium radiolabeling, cholera toxin binding, and mass analysis. Fluorescence-activated cell sorting (FACS) analysis showed that ganglioside depletion only slightly and in the opposite direction affected Pgp- and MRP1-mediated efflux activity. Moreover, both effects were marginal compared with those of well-established inhibitors of either MRP1 (i.e., MK571) or Pgp (i.e., GF120918). t-PPPP slightly enhanced cellular sensitivity to vincristine, as determined by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide analysis, in both neuroblastoma cell lines, whereas NB-dNJ was without effect. MRP1 expression and its localization in detergent-resistant membranes were not affected by ganglioside depletion. Together, these results show that gangliosides are not relevant to ABC transporter-mediated MDR in neuroblastoma cells. PMID:16547352

  7. Response of human neuroblastoma and melanoma multicellular tumor spheroids (MTS) to single dose irradiation

    SciTech Connect

    Evans, S.M.; Labs, L.M.; Yuhas, J.M.

    1986-06-01

    The growth characteristics of 6 human cell line derived multicellular tumor spheroids (MTS) were studied. Melanoma MTS (C32, HML-A, HML-B) were slow growing with baseline growth rates of 13.9 to 27.3 microns diameter/day. Neuroblastoma MTS (Lan-1, NB-100, NB-134) grew rapidly, with baseline growth rates of 32.1 to 40.3 microns diameter/day, that is, 1.2 to 2.9 times as fast as the melanomas. Delay constants were calculated for all six lines. The neuroblastomas were more sensitive to radiation than melanomas, as reflected in a greater value for the radiation-induced growth delay constant. One neuroblastoma line, Lan-1, was highly radioresponsive; that is, after a subcurative dose of radiation, the MTS diameter decreased beyond the original diameter, which was followed by recovery and regrowth. Irrespective of these initial changes in diameter, growth delay sensitivity (value of delay constant) was the same for Lan-1 and NB-100, an MTS line that did not show the responsive pattern.

  8. Cytotoxicity, differentiating activity and metabolism of tiazofurin in human neuroblastoma cells.

    PubMed

    Pillwein, K; Schuchter, K; Ressmańn, G; Gharehbaghi, K; Knoflach, A; Cermak, B; Jayaram, H N; Szalay, S M; Szekeres, T; Chiba, P

    1993-08-19

    The IMP dehydrogenase inhibitor, tiazofurin (TR)-2-beta-D-ribofuranosylthiazole-4-carboxamide, which exhibited oncolytic activity in patients with chronic myelogenous leukaemia (CML) in blast crisis was found to inhibit the growth of human neuroblastoma SK-N-SH cells with an IC50 of 4.2 microM. TR treatment of cells perturbed nucleic acid and catecholamine pathways. As biochemical markers of TR action decreased cellular GTP pools, increased inosine and hypoxanthine concentrations and depleted dopamine content were found. Incubation of tumour specimens obtained from paediatric patients with grade-IV neuroblastoma with TR resulted in the formation of the active metabolite, thiazole-4-carboxamide adenine dinucleotide, in concentrations sufficient to inhibit tumour growth. Cytotoxic and biochemical effects of TR were enhanced by combining it with allopurinol (an inhibitor of xanthine dehydrogenase), and hypoxanthine (an alternate substrate for hypoxanthine-guanine phosphoribosyltransferase). Induction of transdifferentiation of SK-N-SH cells from a neuroblast to an epitheloid, substrate-adherent phenotype was more pronounced with TR than with all-trans-retinoic acid. Transdifferentiating treatment with TR resulted in a 2-fold-enhanced sensitivity towards adriamycin. However, differentiation with all-trans-retinoic acid rendered the cells more resistant to adriamycin. Our results suggest that TR might be a promising agent for the treatment of children suffering from neuroblastoma. PMID:8344756

  9. Cordycepin induces apoptosis and autophagy in human neuroblastoma SK-N-SH and BE(2)-M17 cells

    PubMed Central

    LI, YIFAN; LI, RONG; ZHU, SHENGLANG; ZHOU, RUYUN; WANG, LEI; DU, JIHUI; WANG, YONG; ZHOU, BEI; MAI, LIWEN

    2015-01-01

    Cordycepin, also termed 3′-deoxyadenosine, is a derivative of the nucleoside adenosine that represents a potential novel class of anticancer drugs targeting the 3′ untranslated region of RNAs. Cordycepin has been reported to induce apoptosis in certain cancer cell lines, but the effects of cordycepin on human neuroblastoma cells have not been studied. In the present study, an MTT assay revealed that cordycepin inhibits the viability of neuroblastoma SK-N-SH and BE(2)-M17 cells in a dose-dependent manner. In addition, cordycepin increases the early-apoptotic cell population of SK-N-SH cells, as determined by fluorescence-activated cell sorting analysis. The induction of apoptosis in neuroblastoma cells by cordycepin was further confirmed by western blotting, which revealed cleavage of caspase-3 and poly(adenosine diphosphate-ribose) polymerase 1 in the SK-N-SH and BE(2)-M17 cells. Cordycepin also induced the formation of a punctate pattern of light-chain 3 (LC3)-associated green fluorescence in the SK-N-SH cells transfected with a pEGFP-LC3 vector. Furthermore, western blotting revealed cleavage of LC3 A/B in cordycepin-treated neuroblastoma SK-N-SH cells. Taken together, the results indicate that cordycepin significantly increases apoptosis and autophagy in neuroblastoma cells, and may therefore be a drug candidate for neuroblastoma therapy, but requires additional evaluation. PMID:26137103

  10. Advances in neuroblastoma research

    SciTech Connect

    Evans, A.E.; D'Angio, G.J.; Seeger, R.C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Studies on the expression of the amplified domain in human neuroblastoma cells; Comparison studies of oncogenes in retinoblastoma and neuroblastoma; Chromosome abnormalities, gene amplification and tumor progression; and Peripheral neuroepithelioma: Genetic analysis of tumor derived cell lines.

  11. Anticancer Activity of γ-Bisabolene in Human Neuroblastoma Cells via Induction of p53-Mediated Mitochondrial Apoptosis.

    PubMed

    Jou, Yu-Jen; Hua, Chun-Hung; Lin, Chen-Sheng; Wang, Ching-Ying; Wan, Lei; Lin, Ying-Ju; Huang, Su-Hua; Lin, Cheng-Wen

    2016-01-01

    γ-Bisabolene has demonstrated antiproliferative activities against several human cancer cell lines. This study first discloses the antiproliferative and apoptosis induction activities of γ-bisabolene to human neuroblastoma TE671 cells. A CC50 value of γ-bisabolene was 8.2 μM to TE671 cells. Cell cycle analysis with PI staining showed γ-bisabolene elevating the sub-G1 fractions in a time-dependent manner. In addition, annexin V-FITC/PI staining showed γ-bisabolene significantly triggering early (annexin-V positive/PI negative) and late (annexin-V positive/PI positive) apoptosis in dose-dependent manners. γ-Bisabolene induced caspase 3/8/9 activation, intracellular ROS increase, and mitochondrial membrane potential decrease in apoptosis of human neuro-blastoma cells. Moreover, γ-bisabolene increased p53 phosphorylation and up-regulated p53-mediated apoptotic genes Bim and PUMA, as well as decreased the mRNA and protein levels of CK2α. Notably, the results indicated the involvement of CK2α-p53 pathways in mitochondria-mediated apoptosis of human neuroblastoma cells treated with γ-bisabolene. This study elucidated the apoptosis induction pathways of γ-bisabolene-treated neuroblastoma cells, in which could be useful for developing anti-neuroblastoma drugs. PMID:27164076

  12. Presence of fucosyl residues on the oligosaccharide antennae of membrane glycopeptides of human neuroblastoma cells

    SciTech Connect

    Santer, U.V.; Glick, M.C.

    1983-09-01

    Fucosyl residues linked alpha 1 leads to 3 or 4 to N-acetylglucosamine were found in large amounts on glycopeptides from the membranes of human tumor cells of neurectodermal origin but not on membrane glycopeptides from human fibroblasts. The fucosyl residues were detected by release of radioactive fucose from the glycopeptides with an almond alpha-L-fucosidase specific for fucosyl alpha 1 leads to 3(4)-N-acetylglucosamine. In other studies, the linkage was shown to be alpha 1 leads to 3 by nuclear magnetic resonance analysis. Glycopeptides containing these fucosyl residues from four human neuroblastoma cell lines were defined by binding to immobilized lectins. In addition, the glycopeptides from one human neuroblastoma cell line, CHP-134, were further characterized by enzyme degradation and columns calibrated for size and charge. The antennary position of fucosyl alpha 1 leads to 3-N-acetylglucosamine on the glycopeptides was demonstrated by the use of exoglycosidases and endoglycosidase D, since complete degradation to yield fucosyl-N-acetylglucosaminylasparagine was obtained only after treatment with almond alpha-L-fucosidase prior to the sequential degradation. Fucosyl alpha 1 leads to 3-N-acetylglucosamine was present on most size and charge classes of membrane glycopeptides and therefore was not limited to a few glycoproteins. Since the almond alpha-L-fucosidase cleaves fucosyl residues from glycoproteins, the physiological effects of the increased specific fucosylation on human tumors of neurectodermal origin can be examined.

  13. Trace metal content in distinct genotypes of human neuroblastoma cells: Preliminary results

    NASA Astrophysics Data System (ADS)

    Ortega, R.; Gouget, B.; Moretto, Ph.; Michelet, C.; Bénard, J.; Sergeant, C.; Llabador, Y.; Simonoff, M.

    1997-07-01

    Some transition metals play important regulatory roles in gene expression. The disturbance of their cellular levels could be involved in oncogene expression and tumorigenesis. Nuclear Microprobe Analysis (NMPA) was used to measure cellular trace metal levels (Mn, Fe, Cu, Zn) in two human neuroblastoma cell lines characterized by distinct genotypes. In this paper, a specific protocol established for sample preparation of neuronal cultured cells is described. Trace metal concentrations in SK-N-SH and IGR-N-91 cells exhibiting respectively a single copy, and 60 copies, of the N- myc oncogene are reported. A brief discussion on experiment design for NMPA of trace metal functions in gene expression is also presented.

  14. Synergistic interactions between PBDEs and PCBs in human neuroblastoma cells.

    PubMed

    Pellacani, C; Tagliaferri, S; Caglieri, A; Goldoni, M; Giordano, G; Mutti, A; Costa, L G

    2014-04-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants. Exposure to these chemicals has been associated with developmental neurotoxicity, endocrine dysfunction, and reproductive disorders. Humans and wildlife are generally exposed to a mixture of these environmental pollutants, highlighting the need to evaluate the potential effects of combined exposures. In this study, we investigated the cytotoxic effects of the combined exposure to two PBDEs and two PCBs in a human neuronal cell line. 2,2',4,4'-Tetrabromodiphenyl ether, 2,2',4,4',5-pentabromodiphenyl ether, PCB-126 (3,3',4,4',5-pentachlorobiphenyl; a dioxin-like PCB), and PCB-153 (2,2',4,4',5,5'-hexachlorobiphenyl; a non-dioxin-like PCB) were chosen, because their concentrations are among the highest in human tissues and the environment. The results suggest that the nature of interactions is related to the PCB structure. Mixtures of PCB-153 and both PBDEs had a prevalently synergistic effect. In contrast, mixtures of each PBDE congener with PCB-126 showed additive effects at threshold concentrations, and synergistic effects at higher concentrations. These results emphasize the concept that the toxicity of xenobiotics may be affected by possible interactions, which may be of significance given the common coexposures to multiple contaminants. PMID:22434561

  15. Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture

    SciTech Connect

    Dutta, S.K.; Ghosh, B.; Blackman, C.F.

    1989-01-01

    To test the generality of radiofrequency radiation-induced changes in /sup 45/Ca2+ efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude-modulated (AM) at 16 Hz, at specific absorption rates (SAR) of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 W/kg. Significant /sup 45/Ca2+ efflux was obtained at SAR values of 0.05 and 0.005 W/kg. Enhanced efflux at 0.05 W/kg peaked at the 13-16 Hz and at the 57.5-60 Hz modulation ranges. A Chinese hamster-mouse hybrid neuroblastoma was also shown to exhibit enhanced radiation-induced /sup 45/Ca2+ efflux at an SAR of 0.05 W/kg, using 147 MHz, AM at 16 Hz. These results confirm that amplitude-modulated radiofrequency radiation can induce responses in cells of nervous tissue origin from widely different animal species, including humans. The results are also consistent with the reports of similar findings in avian and feline brain tissues and indicate the general nature of the phenomenon.

  16. Suppressive effect of topoisomerase inhibitors on JC polyomavirus propagation in human neuroblastoma cells.

    PubMed

    Nukuzuma, Souichi; Nakamichi, Kazuo; Kameoka, Masanori; Sugiura, Shigeki; Nukuzuma, Chiyoko; Tasaki, Takafumi; Takegami, Tsutomu

    2016-04-01

    JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system, in immunocompromised patients. Because no drugs have been approved for treating PML, many antiviral agents are currently being investigated for this purpose. The inhibitory effects of the topoisomerase I inhibitors topotecan and β-lapachone were assessed by investigating viral replication, propagation and viral protein 1 (VP1) production in cultured cells. JCPyV replication was assayed using the human neuroblastoma cell line IMR-32 transfected with the JCPyV plasmid and RT- PCR combined with Dpn I treatment. Dpn I digests the input plasmid DNA containing methylated adenosine, but not newly replicated JCPyV DNA, in IMR-32 cells. It was found that JCPyV replicates less in IMR-32 cells treated with topotecan or β-lapachone than in untreated cells. Moreover, drug treatment of JCI cells, which are IMR-32 cells persistently infected with JCPyV, led to a reduction in the amount of JCPyV DNA and population of VP1-positive cells. These results demonstrate that topotecan and β-lapachone affects JCPyV propagation in human neuroblastoma cell lines, suggesting that topotecan and β-lapachone could potentially be used to treat PML. PMID:26935240

  17. Comparative proteomic analysis of human SH-SY5Y neuroblastoma cells under simulated microgravity.

    PubMed

    Zhang, Yongqian; Wang, Hongbin; Lai, Chengjun; Wang, Lu; Deng, Yulin

    2013-02-01

    Microgravity is one of the most important features in spaceflight. Previous evidence has shown that neurophysiological impairment signs occurred under microgravity. The present study was undertaken to explore the change in protein abundance in human SH-SY5Y neuroblastoma cells that were grown in a microgravity environment. The comparative proteomic method based on the (18)O labeling technique was applied to investigate the up-regulated proteins and down-regulated proteins in SH-SY5Y under simulated microgravity. Twenty-two differentially abundant proteins were quantified in human SH-SY5Y neuroblastoma cells. The cell microfilament network was disrupted under simulated microgravity, which was determined by the immunocytochemistry. The concentration of reactive oxygen species, malondialdehyde, and free Ca2+ ion significantly increased, and the level of ATP significantly decreased under simulated microgravity. However, there was no obvious cell apoptosis observed under simulated microgravity. These results provide new molecular evidence for the change in protein abundance in SH-SY5Y cells under simulated microgravity, which might unfold biological mechanisms and the development of effective countermeasures to deal with microgravity-related neurological problems. We believe that the state-of-the-art proteomic assay may be a means by which aerospace scientists will begin to understand the underlying mechanisms of space life activities at the protein level. PMID:23421552

  18. Polyamine Metabolism Is Sensitive to Glycolysis Inhibition in Human Neuroblastoma Cells*

    PubMed Central

    Ruiz-Pérez, M. Victoria; Medina, Miguel Ángel; Urdiales, José Luis; Keinänen, Tuomo A.; Sánchez-Jiménez, Francisca

    2015-01-01

    Polyamines are essential for cell proliferation, and their levels are elevated in many human tumors. The oncogene n-myc is known to potentiate polyamine metabolism. Neuroblastoma, the most frequent extracranial solid tumor in children, harbors the amplification of n-myc oncogene in 25% of the cases, and it is associated with treatment failure and poor prognosis. We evaluated several metabolic features of the human neuroblastoma cell lines Kelly, IMR-32, and SK-N-SH. We further investigated the effects of glycolysis impairment in polyamine metabolism in these cell lines. A previously unknown linkage between glycolysis impairment and polyamine reduction is unveiled. We show that glycolysis inhibition is able to trigger signaling events leading to the reduction of N-Myc protein levels and a subsequent decrease of both ornithine decarboxylase expression and polyamine levels, accompanied by cell cycle blockade preceding cell death. New anti-tumor strategies could take advantage of the direct relationship between glucose deprivation and polyamine metabolism impairment, leading to cell death, and its apparent dependence on n-myc. Combined therapies targeting glucose metabolism and polyamine synthesis could be effective in the treatment of n-myc-expressing tumors. PMID:25593318

  19. RADIOFREQUENCY RADIATION-INDUCED CALCIUM-ION-EFFLUX ENHANCEMENT FROM HUMAN AND OTHER NEUROBLASTOMA CELLS IN CULTURE

    EPA Science Inventory

    In order to test the generality of radiofrequency-radiation-induced change in alteration 45Ca2+ efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude modulated (AM) at 16 Hz, at specific absorption ra...

  20. Human neuroblastoma cells express alpha and beta platelet-derived growth factor receptors coupling with neurotrophic and chemotactic signaling.

    PubMed Central

    Matsui, T; Sano, K; Tsukamoto, T; Ito, M; Takaishi, T; Nakata, H; Nakamura, H; Chihara, K

    1993-01-01

    Both platelet-derived growth factor (PDGF) A- and B-chains are expressed in mammalian neurons, but their precise roles still remain to be clarified. In the present studies, we examined the expression of two PDGF receptor genes in human tumor cell lines derived from neural crest. The expression of alpha and/or beta PDGF receptors was detected in a wide variety of neural crest-derived human tumor cell lines such as neuroblastoma, primitive neuroectodermal tumor, and Ewing's sarcoma by RNA blot analysis, and confirmed by immunoblot analysis. We have also demonstrated that PDGF receptors on the human neuroblastoma cell lines were biologically functional. Accordingly, chemotactic and mitogenic activities were induced by either PDGF-AA or PDGF-BB in serum-free medium. PDGF isoforms as well as nerve growth factor induced morphological changes showing neuronal cell maturation. Moreover, PDGF coordinately increased the levels of the transcript of the midsize neurofilament gene. The neuroblastoma cell lines also expressed the transcripts of PDGF A- and B-chains. These findings suggest that PDGF isoforms are involved not only in the promotion of the neuroblastoma cell growth, but also in neuronal cell migration, growth, and differentiation in human brain development. Images PMID:8376577

  1. Identification of ALK as the Major Familial Neuroblastoma Predisposition Gene

    PubMed Central

    Mossë, Yalë P; Laudenslager, Marci; Longo, Luca; Cole, Kristina A; Wood, Andrew; Attiyeh, Edward F; Laquaglia, Michael J; Sennett, Rachel; Lynch, Jill E; Perri, Patrizia; Laureys, Geneviève; Speleman, Frank; Hakonarson, Hakon; Torkamani, Ali; Schork, Nicholas J; Brodeur, Garrett M; Tonini, Gian Paolo; Rappaport, Eric; Devoto, Marcella; Maris, John M

    2009-01-01

    SUMMARY Survival rates for the childhood cancer neuroblastoma have not substantively improved despite dramatic escalation in chemotherapy intensity. Like most human cancers, this embryonal malignancy can be inherited, but the genetic etiology of familial and sporadically occurring neuroblastoma was largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase gene (ALK) explain the majority of hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at the short arm of chromosome 2 (maximum nonparametric LOD=4.23 at rs1344063) using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate missense mutations in the tyrosine kinase domain of ALK (G1128A, R1192P and R1275Q) that segregated with the disease in eight separate families. Examination of 491 sporadically occurring human neuroblastoma samples showed that the ALK locus was gained in 22.8%, and highly amplified in an additional 3.3%, and that these aberrations were highly associated with death from disease (P=0.0003). Resequencing of 194 high-risk neuroblastoma samples showed somatically acquired mutations within the tyrosine kinase domain in 12.4%. Nine of the ten mutations map to critical regions of the kinase domain and were predicted to be oncogenic drivers with high probability. Mutations resulted in constitutive phosphorylation consistent with activation, and targeted knockdown of ALK mRNA resulted in profound growth inhibition of 4 of 4 cell lines harboring mutant or amplified ALK, as well as 2 of 6 wild type for ALK. Our results demonstrate that heritable mutations of ALK are the major cause of familial neuroblastoma, and that germline or acquired activation of this cell surface kinase is a tractable therapeutic target for this lethal pediatric malignancy. PMID:18724359

  2. 17β-Estradiol modulates huntingtin levels in rat tissues and in human neuroblastoma cell line.

    PubMed

    Nuzzo, Maria Teresa; Fiocchetti, Marco; Servadio, Michela; Trezza, Viviana; Ascenzi, Paolo; Marino, Maria

    2016-02-01

    17β-Estradiol (E2) exerts neurotrophic and neuroprotective functions in the brain. Here, E2-induced increased levels of huntingtin (HTT), a protein involved in several crucial neuronal functions is reported. E2 physiological concentrations up-regulate HTT in hippocampus and striatum of rats as well as in human neuroblastoma cells. This effect requires both nuclear and extra-nuclear estrogen receptor (ER)α activities. Intriguingly, HTT silencing completely prevents E2 protective effects against oxidative stress injury. In conclusion, these data indicate for the first time that HTT is an E2-inducible protein involved in the first steps of E2-induced signaling pathways committed to neuronal protection against oxidative stress. PMID:26264729

  3. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced cytotoxicity

    SciTech Connect

    Jung, Tae Woo; Lee, Ji Young; Shim, Wan Sub; Kang, Eun Seok; Kim, Soo Kyung; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo . E-mail: bscha@yumc.yonsei.ac.kr

    2006-02-03

    Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-{gamma} agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to ability to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease.

  4. Human malignant melanoma heterotransplanted to nude mice.

    PubMed

    Tropé, C; Johnsson, J E; Alm, P; Landberg, T; Olsson, H; Wennerberg, J

    1981-01-01

    Five different human malignant melanoma were heterotransplanted subcutaneously to nude mice. When small tissue pieces were used 3 out of 5 tumors grew. Subcutaneous injections of suspended tumor cells were also made, but all failed to take. Metastatic or infiltrative growth was never seen in the mice observed for up to 2.5 months. The successful grafts largely retained the original morphologicaL features. The three successfully transplanted tumors could all be serially transferred with 100% tumor take. In one case passage time was reduced from 40 days to 15 days. As measured with 3H-thymidine incorporation the proliferation rate increased during the passages. These changes might be due to a selection of more rapidly growing tumor cells in the nudes. PMID:7312076

  5. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells.

    PubMed

    Zargan, Jamil; Sajad, Mir; Umar, Sadiq; Naime, M; Ali, Shakir; Khan, Haider A

    2011-02-01

    Scorpion and its organs have been used to cure epilepsy, rheumatism, and male impotency since medieval times. Scorpion venom which contains different compounds like enzyme and non-enzyme proteins, ions, free amino acids, and other organic inorganic substances have been reported to posses antiproliferative, cytotoxic, apoptogenic, and immunosuppressive properties. We for the first time report the apoptotic and antiproliferative effects of scorpion venom (Odontobuthus doriae) in human neuroblastoma cells. After exposure of cells to medium containing varying concentrations of venom (10, 25, 50, 100, and 200 μg/ml), cell viability decreased to 90.75, 75.53, 55.52, 37.85, and 14.30%, respectively, after 24 h. Cells expressed morphological changes like swelling, inhibition of neurite outgrowth, irregular shape, aggregation, rupture of membrane, and release of cytosolic contents after treatment with venom. Lactate dehydrogenase (LDH) level increased in 50 and 100 μg/ml as compared to control, but there was no significant increase in LDH level at a dose of 10 and 20 μg/ml. Two concentrations viz. 50 and 100 μ/ml were selected because of the profound effect of these concentrations on the cellular health and population. Treatment with these two concentrations induced reactive nitrogen intermediates and depolarization in mitochondria. While caspase-3 activity increased in a concentration-dependent manner, only 50 μg/ml was able to fragment DNA. It was interesting to note that at higher dose, i.e., 100 μg/ml, the cells were killed, supposedly by acute necrosis. DNA synthesis evidenced by bromodeoxyuridine (BrdU) incorporation was inhibited in a concentration-dependent manner. The cells without treatment incorporated BrdU with high affinity confirming their cancerous nature whereas very less incorporation was noticed in treated cells. Our results show apoptotic and antiproliferative potential of scorpion venom (O. doriae) in human neuroblastoma cells. These properties

  6. What Is Neuroblastoma?

    MedlinePlus

    ... are the key statistics about neuroblastoma? What is neuroblastoma? Cancer starts when cells in the body begin ... see the section, “ Signs and symptoms of neuroblastoma ”). Neuroblastomas Neuroblastomas are cancers that start in early nerve ...

  7. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3

    SciTech Connect

    White, P.S.; Maris, J.M.; Beltinger, C.

    1995-06-06

    Deletion of the short arm of human chromosome 1 is the most common cytogenetic abnormality observed in neuroblastoma. To characterize the region of consistent deletion, we performed loss of heterozygosity (LOH) studies on 122 neuroblastoma tumor samples with 30 distal chromosome 1p polymorphisms. LOH was detected in 32 of the 122 tumors (26%). A single region of LOH, marked distally by D1Z2 and proximally by D1S228, was detected in all tumors demonstrating loss. Also, cells from a patient with a constitutional deletion of 1p36, and from a neuroblastoma cell line with a small 1p36 deletion, were analyzed by fluorescence in situ hybridization. Cells from both sources had interstitial deletions of 1p36.2-36.3 which overlapped the consensus region of LOH defined by the tumors. Interstitial deletion in the constitutional case was confirmed by allelic loss studies using the panel of polymorphic markers. Four proposed candidate genes-DAN, ID3 (heir-1), CDC2L1 (p58), and TNFR2-were shown to lie outside of the consensus region of allelic loss, as defined by the above deletions. These results more precisely define the location of a neuroblastoma suppressor gene within 1p36.2-36.3, eliminating 33 centimorgans of proximal 1p36 from consideration. Furthermore, a consensus region of loss, which excludes the four leading candidate genes, was found in all tumors with 1p36 LOH. 31 refs., 4 figs.

  8. Cellular processing of copper-67-labeled monoclonal antibody chCE7 by human neuroblastoma cells.

    PubMed

    Novak-Hofer, I; Amstutz, H P; Mäcke, H R; Schwarzbach, R; Zimmermann, K; Morgenthaler, J J; Schubiger, P A

    1995-01-01

    Monoclonal antibody chCE7, an internalizing neuroblastoma-specific chimeric antibody, was derivatized with the macrocyclic amine ligand 4-[(1,4,8,11-tetraazacyclotetradec-1-yl)-methyl] benzoic acid tetrahydrochloride and labeled with the potential therapeutic nuclide 67Cu. Using pulse labeling and an acid elution endocytosis assay, 67Cu-chCE7 was found to be internalized into human neuroblastoma (SKN-AS) cells at a similar rate and to a similar extent as 125I-labeled chCE7. Uptake of 67Cu-chCE7 and 125I-chCE7 into the acid stable (intracellular) pool proceeded with similar kinetics during the first 2 h of internalization. However, in contrast to 125I-chCE7-loaded cells, at later times intracellular radioactivity kept increasing in the case of 67Cu-chCE7-loaded cells. It was shown that this effect is due to the intracellular accumulation of a low M(r) degradation product consisting of the 67Cu-4[(1,4,8,11-tetraazacyclotetradec-1-yl)-methyl] benzoic acid complex, possibly with a short peptide attached to it. Degradation of both 125I-chCE7 and 67Cu-chCE7 was inhibited by chloroquine, indicating endosomal or lysosomal degradation, and a 43,000 M(r) fragment was found to be the major high M(r) degradation product in both cases. Although at times between 4 and 6 h of internalization intracellular breakdown of 67Cu-chCE7 was found to proceed more slowly, the major difference between the two immunoconjugates resides in the prolonged cellular retention of the 67Cu-chCE7 metabolite. PMID:7805039

  9. Immunoprevention of human papillomavirus-associated malignancies

    PubMed Central

    Wang1, Joshua W.; Hung, Chein-fu; Huh, Warner K.; Trimble, Cornelia L.; Roden, Richard B.S.

    2014-01-01

    Persistent infection by one of fifteen high risk human papillomavirus (hrHPV) types is a necessary but not sufficient cause of 5% of all human cancers. This provides a remarkable opportunity for cancer prevention via immunization. Since Harald zur Hausen’s pioneering identification of hrHPV types 16 and 18, found in ~50% and ~20% of cervical cancers respectively, two prophylactic HPV vaccines containing virus-like particles (VLP) of each genotype have been widely licensed. These vaccines are beginning to impact infection and HPV-associated neoplasia rates after immunization campaigns in adolescents. Here we review recent progress and opportunities to better prevent HPV-associated cancers, including: broadening immune-protection to cover all hrHPV types, reducing the cost of HPV vaccines especially for developing countries that have the highest rates of cervical cancer, and immune-based treatment of established HPV infections. Screening based upon George Papanicolaou’s cervical cytology testing, and more recently detection of hrHPV DNA/RNA, followed by ablative treatment of high grade cervical intraepithelial neoplasia (CIN2/3) have substantially reduced cervical cancer rates, and we examine their interplay with immune-based modalities for the prevention and eventual elimination of cervical cancer and other HPV-related malignancies. PMID:25488410

  10. Immunoprevention of human papillomavirus-associated malignancies.

    PubMed

    Wang, Joshua W; Hung, Chein-Fu; Huh, Warner K; Trimble, Cornelia L; Roden, Richard B S

    2015-02-01

    Persistent infection by one of 15 high-risk human papillomavirus (hrHPV) types is a necessary but not sufficient cause of 5% of all human cancers. This provides a remarkable opportunity for cancer prevention via immunization. Since Harald zur Hausen's pioneering identification of hrHPV types 16 and 18, found in approximately 50% and 20% of cervical cancers, respectively, two prophylactic HPV vaccines containing virus-like particles (VLP) of each genotype have been widely licensed. These vaccines are beginning to affect infection and HPV-associated neoplasia rates after immunization campaigns in adolescents. Here, we review recent progress and opportunities to better prevent HPV-associated cancers, including broadening immune protection to cover all hrHPV types, reducing the cost of HPV vaccines especially for developing countries that have the highest rates of cervical cancer, and immune-based treatment of established HPV infections. Screening based upon George Papanicolaou's cervical cytology testing, and more recently detection of hrHPV DNA/RNA, followed by ablative treatment of high-grade cervical intraepithelial neoplasia (CIN2/3) have substantially reduced cervical cancer rates, and we examine their interplay with immune-based modalities for the prevention and eventual elimination of cervical cancer and other HPV-related malignancies. PMID:25488410

  11. Interaction of caveolin-1, nitric oxide, and nitric oxide synthases in hypoxic human SK-N-MC neuroblastoma cells.

    PubMed

    Shen, Jiangang; Lee, Waisin; Li, Yue; Lau, Chi Fai; Ng, Kwong Man; Fung, Man Lung; Liu, Ke Jian

    2008-10-01

    Neuroblastoma cells are capable of hypoxic adaptation, but the mechanisms involved are not fully understood. We hypothesized that caveolin-1 (cav-1), a plasma membrane signal molecule, might play a role in protecting neuroblastoma cells from oxidative injury by modulating nitric oxide (NO) production. We investigated the alterations of cav-1, cav-2, nitric oxide synthases (NOS), and NO levels in human SK-N-MC neuroblastoma cells exposed to hypoxia with 2% [O2]. The major discoveries include: (i) cav-1 but not cav-2 was up-regulated in the cells exposed to 15 h of hypoxia; (ii) NO donor 1-[N, N-di-(2-aminoethyl) amino] diazen-1-ium-1, 2-diolate up-regulated the expression of cav-1, whereas the non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester and inducible NOS (iNOS) inhibitor 1400W each abolished the increase in cav-1 expression in the hypoxic SK-N-MC cells. These results suggest that iNOS-induced NO production contributes to the up-regulation of cav-1 in the hypoxic SK-N-MC cells. Furthermore, we studied the roles played by cav-1 in regulating NO, NOS, and apoptotic cell death in the SK-N-MC cells subjected to 15 h of hypoxic treatment. Both cav-1 transfection and cav-1 scaffolding domain peptide abolished the induction of iNOS, reduced the production of NO, and reduced the rates of apoptotic cell death in the hypoxic SK-N-MC cells. These results suggest that increased expression of cav-1 in response to hypoxic stimulation could prevent oxidative injury induced by reactive oxygen species. The interactions of cav-1, NO, and NOS could be an important signal pathway in protecting the neuroblastoma cells from oxidative injury, contributing to the hypoxic tolerance of neuroblastoma cells. PMID:18717816

  12. PTEN: Multiple Functions in Human Malignant Tumors

    PubMed Central

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M. A.; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica

    2015-01-01

    PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors. PMID:25763354

  13. Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen

    PubMed Central

    Ma, Dennis; Collins, Jonathan; Hudlicky, Tomas; Pandey, Siyaram

    2012-01-01

    Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells. PMID:22688195

  14. Inhibition of the focal adhesion kinase and vascular endothelial growth factor receptor-3 interaction leads to decreased survival in human neuroblastoma cell lines.

    PubMed

    Beierle, Elizabeth A; Ma, Xiaojie; Stewart, Jerry E; Megison, Michael; Cance, William G; Kurenova, Elena V

    2014-03-01

    Neuroblastoma continues to be a devastating childhood solid tumor and is responsible for over 15% of all childhood cancer-related deaths. Focal adhesion kinase (FAK) and vascular endothelial growth factor receptor-3 (VEGFR-3) are protein tyrosine kinases that are overexpressed in a number of human cancers, including neuroblastoma. These two kinases can directly interact and provide survival signals to cancer cells. In this study, we utilized siRNA to VEGFR-3 to demonstrate the biologic importance of this kinase in neuroblastoma cell survival. We also used confocal microscopy and immunoprecipitation to show that FAK and VEGFR-3 bind in neuroblastoma. Finally, employing a 12-amino-acid peptide (AV3) specific to VEGFR-3, we showed that the colocalization between FAK and VEGFR-3 could be disrupted, and that disruption resulted in decreased neuroblastoma cell survival. These studies provide insight to the FAK-VEGFR-3 interaction in neuroblastoma and demonstrate its importance in this tumor type. Focusing upon the FAK-VEGFR-3 interaction may provide a novel therapeutic target for the development of new strategies for treatment of neuroblastoma. PMID:23065847

  15. Fluorescence Spectroscopy of Human Nonmalignant and Malignant Cells and Tissues.

    NASA Astrophysics Data System (ADS)

    Glassman, Wenling Sha

    This thesis explores steady state and time resolved fluorescence spectroscopy from human malignant and non -malignant cells and tissues. The focus of these studies are the analysis of the excitation spectra, emission spectra, and decay time based on the contribution from several key intrinsic fluorophors: NAD(P)H, flavins, tryptophan, elastin and collagen that exist in different amounts in the human tissues and cells. The comparison between the spectra from malignant and non-malignant cells and tissues gives information on the changes that occur from non-malignancy to malignancy in the cells and tissues. The spectra of tissues and cells are also compared to help in understanding what fluorophors are responsible for fluorescence spectral differences between the malignant and non-malignant tissues and cells. The results in this thesis show that the spectral differences between the normal and cancerous tissues and cells exist in various wavelength ranges. The experimental data from GYN tissues have shown with over 95% of the sensitivity and specificity to separate malignant from non-malignant tissues using 300nm excitation. The 340nm band, which is mostly in response to intrinsic fluorophor (amino acid tryptophan), from malignant tissues were relatively higher then that from the non-malignant tissues. This might have been caused by the higher concentration of free tryptophan in the malignant tumor when compared to that of the normal tissue. This has been found in medical clinical study. The experimental data in this thesis also show that the fluorescence intensities around 450nm-460nm, which are mostly due to the intrinsic fluorophor coenzyme NADH, from both malignant cells in vitro and tissues in vitro are relatively higher than from non-malignant cells in vitro and tissues in vitro. These findings are reinforced by the faster decay time of the NADH fluorescence from normal cells in vitro than from neoplasm cells in vitro. Thus, the NADH in the mitochondria might be

  16. Trim32 facilitates degradation of MYCN on spindle poles and induces asymmetric cell division in human neuroblastoma cells.

    PubMed

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-10-01

    Asymmetric cell division (ACD) is a physiologic process during development and tissue homeostasis. ACD produces two unequal daughter cells: one has stem/progenitor cell activity and the other has potential for differentiation. Recent studies showed that misregulation of the balance between self-renewal and differentiation by ACD may lead to tumorigenesis in Drosophila neuroblasts. However, it is still largely unknown whether human cancer stem-like cells exhibit ACD or not. Here, using human neuroblastoma cells as an ACD model, we found that MYCN accumulates at spindle poles by GSK-3β phosphorylation during mitosis. In parallel, the ACD-related ubiquitin ligase Trim32 was recruited to spindle poles by CDK1/cyclin B-mediated phosphorylation. Trim32 interacted with MYCN at spindle poles during mitosis, facilitating proteasomal degradation of MYCN at spindle poles and inducing ACD. Trim32 also suppressed sphere formation of neuroblastoma-initiating cells, suggesting that the mechanisms of ACD produce differentiated neuroblastoma cells that will eventually die. Thus, Trim32 is a positive regulator of ACD that acts against MYCN and should be considered as a tumor-suppressor candidate. Our findings offer novel insights into the mechanisms of ACD and clarify its contributions to human tumorigenesis. PMID:25100564

  17. Human erythrocytes and neuroblastoma cells are affected in vitro by Au(III) ions

    SciTech Connect

    Suwalsky, Mario; Gonzalez, Raquel; Villena, Fernando; Aguilar, Luis F.; Sotomayor, Carlos P.; Bolognin, Silvia; Zatta, Paolo

    2010-06-25

    Gold compounds are well known for their neurological and nephrotoxic implications. However, haematological toxicity is one of the most serious toxic and less studied effects. The lack of information on these aspects of Au(III) prompted us to study the structural effects induced on cell membranes, particularly that of human erythrocytes. AuCl{sub 3} was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of multibilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, phospholipids classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence that Au(III) interacts with red cell membranes as follows: (a) in scanning electron microscopy studies on human erythrocytes it was observed that Au(III) induced shape changes at a concentration as low as 0.01 {mu}M; (b) in isolated unsealed human erythrocyte membranes Au(III) induced a decrease in the molecular dynamics and/or water content at the glycerol backbone level of the lipid bilayer polar groups in a 5-50 {mu}M concentration range, and (c) X-ray diffraction studies showed that Au(III) in the 10 {mu}m-1 mM range induced increasing structural perturbation only to dimyristoylphosphatidylcholine bilayers. Additional experiments were performed in human neuroblastoma cells SH-SY5Y. A statistically significant decrease of cell viability was observed with Au(III) ranging from 0.1 {mu}M to 100 {mu}M.

  18. Enterovirus 71 transmission by exosomes establishes a productive infection in human neuroblastoma cells.

    PubMed

    Mao, Lingxiang; Wu, Jing; Shen, Li; Yang, Jing; Chen, Jianguo; Xu, Huaxi

    2016-04-01

    Exosomes are small secreted cellular vesicles for intercellular communications which contain proteins, mRNAs, and microRNAs (miRNAs). Recent studies have shown that exosomes play an important role in the transmission of infectious agents including hepatitis C virus, human immunodeficiency virus, and so on. However, the role of exosomes in the transfer of enterovirus 71 (EV71) between host cells remains unknown. In this study, we show that the exosomes derived from EV71-infected rhabdomyosarcoma cells contain EV71 RNA and capsid protein VP1, determined by quantitative reverse transcription-PCR (QRT-PCR) and Western blot analysis. The shedding of exosomes containing virus can establish a productive infection in human neuroblastoma cell line (SK-N-SH). A comparative analysis of neutralization by EV71-specific immunoglobulins showed different levels of neutralization of exosomes-mediated infection compared with free virus. In conclusion, exosomes from EV71-infected cells may play an important role in virus dissemination and are partially resisted to antibody neutralization. Our results suggest that there is an exosomal route of EV71 transmission infection. PMID:26837894

  19. Differential expression of sphingolipids in P-glycoprotein or multidrug resistance-related protein 1 expressing human neuroblastoma cell lines.

    PubMed

    Dijkhuis, Anne-Jan; Douwes, Jenny; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2003-07-31

    The sphingolipid composition and multidrug resistance status of three human neuroblastoma cell lines were established. SK-N-FI cells displayed high expression and functional (efflux) activity of P-glycoprotein, while multidrug resistance-related protein 1 was relatively abundant and most active in SK-N-AS cells. These two cell lines exhibited higher sphingolipid levels, compared to SK-N-DZ, which had the lowest activity of either ATP-binding cassette transporter protein. SK-N-DZ cells also differed in ganglioside composition with predominant expression of b-series gangliosides. In conclusion, these three neuroblastoma cell lines offer a good model system to study sphingolipid metabolism in relation to ATP-binding cassette transporter protein function. PMID:12885402

  20. Magnetic Shielding Accelerates the Proliferation of Human Neuroblastoma Cell by Promoting G1-Phase Progression

    PubMed Central

    Liu, Ying; Bartlett, Perry F.; He, Rong-qiao

    2013-01-01

    Organisms have been exposed to the geomagnetic field (GMF) throughout evolutionary history. Exposure to the hypomagnetic field (HMF) by deep magnetic shielding has recently been suggested to have a negative effect on the structure and function of the central nervous system, particularly during early development. Although changes in cell growth and differentiation have been observed in the HMF, the effects of the HMF on cell cycle progression still remain unclear. Here we show that continuous HMF exposure significantly increases the proliferation of human neuroblastoma (SH-SY5Y) cells. The acceleration of proliferation results from a forward shift of the cell cycle in G1-phase. The G2/M-phase progression is not affected in the HMF. Our data is the first to demonstrate that the HMF can stimulate the proliferation of SH-SY5Y cells by promoting cell cycle progression in the G1-phase. This provides a novel way to study the mechanism of cells in response to changes of environmental magnetic field including the GMF. PMID:23355897

  1. Am80 induces neuronal differentiation in a human neuroblastoma NH-12 cell line.

    PubMed

    Shiohira, Hideo; Kitaoka, Akira; Shirasawa, Hiromi; Enjoji, Munechika; Nakashima, Manabu

    2010-09-01

    Retinoids including natural vitamin A, its derivatives and synthetic compounds work as transcription factors through the retinoic acid receptors (RAR, RXR). All-trans retinoic acid (ATRA), a family of retinoids, is an internal ligand of RAR and well known as a useful differentiation inducer to treat acute promyelocytic leukemia (APL). ATRA therapy is now established as an initial treatment for APL. Recently, to improve therapeutic potency and reduce adverse effects of ATRA, a novel synthetic selective agonist for RARalpha and beta, Am80, was developed and applied to APL treatment. In this study, we tested whether Am80 was capable of inducing neuronal differentiation in a human neuroblastoma cell line, NH-12 and compared the differentiation effects between Am80 and ATRA. Morphological studies demonstrated that Am80 induced more potent neurite outgrowth and also proved lesser cell toxicity than ATRA. Am80 up-regulated the expression of tropomyosin-related kinase B as well as ATRA. Moreover, Am80 increased the expression of the neuronal marker, growth-associated protein 43. These findings suggest that Am80 induces neuronal differentiation to a greater extent than ATRA and thus may help establishing therapeutic strategies against neuronal degenerative disorders such as Parkinson's disease. PMID:20664956

  2. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells.

    PubMed

    Kim, Han Bit; Yoo, Byung Sun

    2016-07-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells. PMID:27437091

  3. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells

    PubMed Central

    Kim, Han Bit; Yoo, Byung Sun

    2016-01-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells. PMID:27437091

  4. Indirubin 3'-Epoxide Induces Caspase-Independent Cell Death in Human Neuroblastoma.

    PubMed

    Kurita, Masahiro; Hanada, Satoshi; Ichimaru, Yoshimi; Saito, Hiroaki; Tabata, Keiichi; Asami, Satoru; Miyairi, Shinichi; Suzuki, Takashi

    2016-01-01

    Indirubin inhibits cyclin-dependent kinases by binding to their ATP-binding site, thereby exerting potent cytotoxicity on some tumor cells. We examined the anti-tumor effect of indirubin 3'-epoxide on human neuroblastoma cell lines (IMR-32, SK-N-SH, and NB-39). The results revealed potent cytotoxicity of indirubin 3'-epoxide against the IMR-32 (IC50: 0.16 µM) and SK-N-SH (IC50: 0.07 µM) cells. Furthermore, it also induced an increase of the sub-G1 population in the IMR-32 cells. Examination by Hoechst 33342 staining revealed apoptosis characterized by cell shrinkage, nuclear condensation and nuclear fragmentation in a concentration-dependent manner. Furthermore, annexin V-propidium iodide (PI) double-staining revealed an increase in the percentage of early apoptotic cells following treatment of the cells with indirubin 3'-epoxide without activation of caspases. In addition, significant decreases in the protein level of survivin and poly(ADP-ribose)polymerase (PARP), and increase in that of apoptosis-inducing factor (AIF) were found in the nuclei of the cells. These results suggest that indirubin 3'-epoxide induced caspase-independent apoptosis through mechanisms involving DNA fragmentation and inhibition of DNA repair. PMID:27251501

  5. Nitric oxide changes distinct aspects of the glycophenotype of human neuroblastoma NB69 cells.

    PubMed

    Van de Wouwer, Marlies; André, Sabine; Gabius, Hans-J; Villalobo, Antonio

    2011-03-15

    It is an open question whether the presence of nitric oxide (NO) affects the cell glycophenotype. A panel of six plant lectins was used in this study to monitor distinct aspects of cell surface glycosylation under nitrosative stress. We determined that treating human neuroblastoma NB69 cells with the long-lived NO donor 2,2'-(hydroxynitrosohydrazono)bis-ethanimine (DETA/NO) and monitoring the non-apoptotic adherent cell population significantly increases the presentation of N-glycans as detected by concanavalin A. Examining fine-structural features, bisected N-glycans and branch-end tailoring including α2,6-sialylation were found to be enhanced. Confocal fluorescence microscopy and cell permeabilization experiments pointed to a major effect of NO on the extent of cell surface N-glycan presentation. We also show that NO increases the level of protein O-GlcNAcylation, a multifunctional post-translational modification. Our results thus establish the first evidence for NO as modulator of distinct aspects of cell glycosylation. PMID:21182976

  6. Magnetic shielding accelerates the proliferation of human neuroblastoma cell by promoting G1-phase progression.

    PubMed

    Mo, Wei-chuan; Zhang, Zi-jian; Liu, Ying; Bartlett, Perry F; He, Rong-qiao

    2013-01-01

    Organisms have been exposed to the geomagnetic field (GMF) throughout evolutionary history. Exposure to the hypomagnetic field (HMF) by deep magnetic shielding has recently been suggested to have a negative effect on the structure and function of the central nervous system, particularly during early development. Although changes in cell growth and differentiation have been observed in the HMF, the effects of the HMF on cell cycle progression still remain unclear. Here we show that continuous HMF exposure significantly increases the proliferation of human neuroblastoma (SH-SY5Y) cells. The acceleration of proliferation results from a forward shift of the cell cycle in G1-phase. The G2/M-phase progression is not affected in the HMF. Our data is the first to demonstrate that the HMF can stimulate the proliferation of SH-SY5Y cells by promoting cell cycle progression in the G1-phase. This provides a novel way to study the mechanism of cells in response to changes of environmental magnetic field including the GMF. PMID:23355897

  7. Protective effects of ginsenoside Rg1 against hydrogen peroxide-induced injury in human neuroblastoma cells

    PubMed Central

    Sun, Zhi-gao; Chen, Li-ping; Wang, Fa-wei; Xu, Cheng-yong; Geng, Miao

    2016-01-01

    The active ingredient of ginseng, ginsenosides Rg1, has been shown to scavenge free radicals and improve antioxidant capacity. This study hypothesized that ginsenosides Rg1 has a protective role in human neuroblastoma cells injured by H2O2. Ginsenosides Rg1 at different concentrations (50 and 100 μM) was used to treat H2O2 (150 μM)-injured SH-SY5Y cells. Results demonstrated that ginsenoside Rg1 elevated the survival rate of SH-SY5Y cells injured by H2O2, diminished the amount of leaked lactate dehydrogenase, and increased superoxide dismutase activity. Ginsenoside Rg1 effectively suppressed caspase-3 immunoreactivity, and contributed to heat shock protein 70 gene expression, in a dose-dependent manner. These results indicate that ginsenoside Rg1 has protective effects on SH-SY5Y cells injured by H2O2 and that its mechanism of action is associated with anti-oxidation and the inhibition of apoptosis.

  8. Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells

    PubMed Central

    Mo, Wei-Chuan; Zhang, Zi-Jian; Wang, Dong-Liang; Liu, Ying; Bartlett, Perry F.; He, Rong-Qiao

    2016-01-01

    Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their GMF sensation but remain poorly understood so far. Previously, we found that the HMF represses expressions of genes associated with cell migration and cytoskeleton assembly in human neuroblastoma cells (SH-SY5Y cell line). Here, we measured the HMF-induced changes on cell morphology, adhesion, motility and actin cytoskeleton in SH-SY5Y cells. The HMF inhibited cell adhesion and migration accompanied with a reduction in cellular F-actin amount. Moreover, following exposure to the HMF, the number of cell processes was reduced and cells were smaller in size and more round in shape. Furthermore, disordered kinetics of actin assembly in vitro were observed during exposure to the HMF, as evidenced by the presence of granule and meshed products. These results indicate that elimination of the GMF affects assembly of the motility-related actin cytoskeleton, and suggest that F-actin is a target of HMF exposure and probably a mediator of GMF sensation. PMID:27029216

  9. Hypomethylation of DNA from Benign and Malignant Human Colon Neoplasms

    NASA Astrophysics Data System (ADS)

    Goelz, Susan E.; Vogelstein, Bert; Hamilton, Stanley R.; Feinberg, Andrew P.

    1985-04-01

    The methylation state of DNA from human colon tissue displaying neoplastic growth was determined by means of restriction endonuclease analysis. When compared to DNA from adjacent normal tissue, DNA from both benign colon polyps and malignant carcinomas was substantially hypomethylated. With the use of probes for growth hormone, γ -globin, α -chorionic gonadotropin, and γ -crystallin, methylation changes were detected in all 23 neoplastic growths examined. Benign polyps were hypomethylated to a degree similar to that in malignant tissue. These results indicate that hypomethylation is a consistent biochemical characteristic of human colonic tumors and is an alteration in the DNA that precedes malignancy.

  10. Primary orbital neuroblastoma with intraocular extension

    PubMed Central

    Vallinayagam, Muthukrishnan; Rao, Vasudev Anand; Pandian, Datta Gulnar; Akkara, John Davis; Ganesan, Niruban

    2015-01-01

    Neuroblastoma is an undifferentiated malignancy of primitive neuroblasts. Neuroblastoma is among the most common solid tumors of childhood. Orbital neuroblastoma is typically a metastatic tumor. In this case report, we describe a 2-year-old child with a rapidly progressing orbital tumor. Computed tomography revealed an orbital mass lesion with extraocular and intraocular components. An incisional biopsy was done, and a histopathological examination showed features suggestive of neuroblastoma. Systemic workup including ultrasonography of the abdomen, chest roentgenogram, whole body computed tomography, and bone scintigraphy showed no evidence of systemic involvement. The diagnosis of primary orbital neuroblastoma was made, and the child was subjected to chemotherapy followed by rapid melting of the tumor. Neuroblastoma should be considered in the differential diagnosis of childhood orbital tumors. PMID:26576531

  11. Cellular cytotoxicity mediated by isotype-switch variants of a monoclonal antibody to human neuroblastoma.

    PubMed Central

    d'Uscio, C. H.; Jungi, T. W.; Blaser, K.

    1991-01-01

    The biological property of an antibody is determined by its antigen binding characteristics and its isotype-related effector functions. We have established monoclonal antibodies of different isotypes by stepwise selection and cloning of the hybridoma CE7. The original CE7 secretes an IgG1/kappa (CE7 gamma 1) antibody that recognises a 185 kD cell surface glycoprotein expressed on all human sympatho-adrenomedullary cells. Isotype-switch variants were isolated in the following sequence: from the original CE7 gamma 1, CE7 gamma 2b variants were isolated, and from a CE7 gamma 2b variant CE7 gamma 2a variants were isolated. The antibodies of three different isotype variant cell lines possess identical antigen binding characteristics, but display distinct effector functions as demonstrated by antibody dependent cell-mediated cytotoxicity (ADCC). ADCC was performed with the neuroblastoma line IMR-32 as the target cells, and different FcR gamma positive cells were either freshly isolated from human peripheral blood leukocytes or cultured for 6-10 days and tested as potential effector cells. Tumour lysis mediated by monocyte-derived macrophages depended on the presence of CE7 gamma 2a antibodies; antibodies from the CE7 hybridomas of gamma 2b and gamma 1 isotypes were virtually inactive in ADCC assay. Pre-exposure of macrophages to rIFN-gamma enhanced their ADCC activity, a result that is compatible with the notion that the high affinity Fc IgG receptor (FcR gamma I/CD64) is involved in the triggering of ADCC in macrophages. In contrast to macrophages, mononuclear cells, nonadherent cells and monocytes displayed considerable non-specific lytic activity, which was little influenced by the presence of antibody regardless of the isotype added. PMID:1911183

  12. Neuroblastoma: Molecular Pathogenesis and Therapy

    PubMed Central

    Louis, Chrystal U; Shohet, Jason M

    2015-01-01

    Neuroblastoma is a developmental tumor of young children arising from the embryonic sympathoadrenal lineage of the neural crest. Currently neuroblastoma is the primary cause of death from pediatric cancer for children between the age of 1 and 5 years and accounts for approximately 13% of all pediatric cancer mortality. Its clinical impact and its unique biology have made this aggressive malignancy the focus of a large concerted translational research effort. New insights into tumor biology are driving the development of new classification schemas; novel targeted therapeutic approaches include small molecule inhibitors, epigenetic, non-coding RNA, and cell-based immunologic therapies. Recent insights regarding the pathogenesis and biology of neuroblastoma will be placed in context with the current understanding of tumor biology and tumor/host interactions. Systematic classification of patients coupled with therapeutic advances point to a future of improved clinical outcomes for this biologically distinct and highly aggressive pediatric malignancy. PMID:25386934

  13. Epidermal growth factor receptor is overexpressed in neuroblastoma tissues and cells.

    PubMed

    Zheng, Chao; Shen, Ruling; Li, Kai; Zheng, Na; Zong, Yuqing; Ye, Danrong; Wang, Qingcheng; Wang, Zuopeng; Chen, Lian; Ma, Yangyang

    2016-08-01

    Neuroblastoma is the most common abdominal malignant tumor in childhood. Immunotoxin (IT) that targets the tumor cell surface receptor is a new supplementary therapeutic treatment approach. The purpose of this study is to detect the expression of epidermal growth factor receptor (EGFR) in neuroblastoma cell lines and tissues, and to explore if IT therapy can be used to treat refractory neuroblastoma. The EGFR expression in human neuroblastoma tissue samples was detected by immunohistochemistry staining. The positive rate of EGFR expression was 81.0% in neuroblastoma tissue and 50.0% in gangliocytoma, respectively, but without statistical significance between them (P > 0.05). The positive rate of EGFR expression in favorable type and unfavorable type was 62.5% and 92.3%, respectively, but they were not statistically different (P > 0.05). Results from pre-chemotherapy and post-chemotherapy samples showed that there was no significant statistical difference (P > 0.05) between them in the EGFR expression. Furthermore, the EGFR expression levels in five neuroblastoma cell lines were measured using cell-based ELISA assay and western blot analysis. The results showed that the expression of EGFR was higher in KP-N-NS and BE(2)-C than those in other cell lines. Our results revealed that there are consistent and widespread expressions of EGFR in neuroblastoma tissues as well as in neuroblastoma cell lines, suggesting that it is possible to develop future treatment strategies of neuroblastoma by targeting at the EGFR. PMID:27353319

  14. Immunolocalization of neuroblastoma using radiolabeled monoclonal antibody UJ13A

    SciTech Connect

    Goldman, A.; Vivian, G.; Gordon, I.; Pritchard, J.; Kemshead, J.

    1984-08-01

    The monoclonal antibody UJ13A, raised after immunization of mice with human fetal brain, recognized an antigen expressed on human neuroblastoma cell lines and fresh tumors. Antibody was purified and radiolabeled with iodine isotopes using chloramine-T. In preclinical studies, 125I-labeled UJ13A was injected intravenously into nude mice bearing xenografts of human neuroblastoma. Radiolabeled UJ13A uptake by the tumors was four to 23 times greater than that by blood. In control animals, injected with a similar quantity of a monoclonal antibody known not to bind to neuroblastoma cells in vitro (FD44), there was no selective tumor uptake. Nine patients with histologically confirmed neuroblastoma each received 100 to 300 micrograms UJ13A radiolabeled with 1 to 2.8 mCi 123I or 131I. Sixteen positive sites were visible on gamma scans 1 to 7 days after injection: 15 were primary or secondary tumor sites, and one was a false positive; there were two false negatives. In two of the 15 positive sites, tumor had not been demonstrated by other imaging techniques; these were later confirmed as areas of malignant infiltration. No toxicity was encountered.

  15. Neurotoxin-induced pathway perturbation in human neuroblastoma SH-EP cells.

    PubMed

    Do, Jin Hwan

    2014-09-01

    The exact causes of cell death in Parkinson's disease (PD) remain unknown despite extensive studies on PD.The identification of signaling and metabolic pathways involved in PD might provide insight into the molecular mechanisms underlying PD. The neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) induces cellular changes characteristic of PD, and MPP(+)-based models have been extensively used for PD studies. In this study, pathways that were significantly perturbed in MPP(+)-treated human neuroblastoma SH-EP cells were identified from genome-wide gene expression data for five time points (1.5, 3, 9, 12, and 24 h) after treatment. The mitogen-activated protein kinase (MAPK) signaling pathway and endoplasmic reticulum (ER) protein processing pathway showed significant perturbation at all time points. Perturbation of each of these pathways resulted in the common outcome of upregulation of DNA-damage-inducible transcript 3 (DDIT3). Genes involved in ER protein processing pathway included ubiquitin ligase complex genes and ER-associated degradation (ERAD)-related genes. Additionally, overexpression of DDIT3 might induce oxidative stress via glutathione depletion as a result of overexpression of CHAC1. This study suggests that upregulation of DDIT3 caused by perturbation of the MAPK signaling pathway and ER protein processing pathway might play a key role in MPP(+)-induced neuronal cell death. Moreover, the toxicity signal of MPP(+) resulting from mitochondrial dysfunction through inhibition of complex I of the electron transport chain might feed back to the mitochondria via ER stress. This positive feedback could contribute to amplification of the death signal induced by MPP(+). PMID:25234470

  16. Neurotoxin-Induced Pathway Perturbation in Human Neuroblastoma SH-EP Cells

    PubMed Central

    Do, Jin Hwan

    2014-01-01

    The exact causes of cell death in Parkinson’s disease (PD) remain unknown despite extensive studies on PD.The identification of signaling and metabolic pathways involved in PD might provide insight into the molecular mechanisms underlying PD. The neurotoxin 1-methyl-4-phenylpyridinium (MPP+) induces cellular changes characteristic of PD, and MPP+-based models have been extensively used for PD studies. In this study, pathways that were significantly perturbed in MPP+-treated human neuroblastoma SH-EP cells were identified from genome-wide gene expression data for five time points (1.5, 3, 9, 12, and 24 h) after treatment. The mitogen-activated protein kinase (MAPK) signaling pathway and endoplasmic reticulum (ER) protein processing pathway showed significant perturbation at all time points. Perturbation of each of these pathways resulted in the common outcome of upregulation of DNA-damage-inducible transcript 3 (DDIT3). Genes involved in ER protein processing pathway included ubiquitin ligase complex genes and ER-associated degradation (ERAD)-related genes. Additionally, overexpression of DDIT3 might induce oxidative stress via glutathione depletion as a result of overexpression of CHAC1. This study suggests that upregulation of DDIT3 caused by perturbation of the MAPK signaling pathway and ER protein processing pathway might play a key role in MPP+-induced neuronal cell death. Moreover, the toxicity signal of MPP+ resulting from mitochondrial dysfunction through inhibition of complex I of the electron transport chain might feed back to the mitochondria via ER stress. This positive feedback could contribute to amplification of the death signal induced by MPP+. PMID:25234470

  17. Epigenetic Regulation of Cytosolic Phospholipase A2 in SH-SY5Y Human Neuroblastoma Cells.

    PubMed

    Tan, Charlene Siew-Hon; Ng, Yee-Kong; Ong, Wei-Yi

    2016-08-01

    Group IVA cytosolic phospholipase A2 (cPLA2 or PLA2G4A) is a key enzyme that contributes to inflammation via the generation of arachidonic acid and eicosanoids. While much is known about regulation of cPLA2 by posttranslational modification such as phosphorylation, little is known about its epigenetic regulation. In this study, treatment with histone deacetylase (HDAC) inhibitors, trichostatin A (TSA), valproic acid, tubacin and the class I HDAC inhibitor, MS-275, were found to increase cPLA2α messenger RNA (mRNA) expression in SH-SY5Y human neuroblastoma cells. Co-treatment of the histone acetyltransferase (HAT) inhibitor, anacardic acid, modulated upregulation of cPLA2α induced by TSA. Specific involvement of class I HDACs and HAT in cPLA2α regulation was further shown, and a Tip60-specific HAT inhibitor, NU9056, modulated the upregulation of cPLA2α induced by MS-275. In addition, co-treatment of with histone methyltransferase (HMT) inhibitor, 5'-deoxy-5'-methylthioadenosine (MTA) suppressed TSA-induced cPLA2α upregulation. The above changes in cPLA2 mRNA expression were reflected at the protein level by Western blots and immunocytochemistry. Chromatin immunoprecipitation (ChIP) showed TSA increased binding of trimethylated H3K4 to the proximal promoter region of the cPLA2α gene. Cell injury after TSA treatment as indicated by lactate dehydrogenase (LDH) release was modulated by anacardic acid, and a role of cPLA2 in mediating TSA-induced injury shown, after co-incubation with the cPLA2 selective inhibitor, arachidonoyl trifluoromethyl ketone (AACOCF3). Together, results indicate epigenetic regulation of cPLA2 and the potential of such regulation for treatment of chronic inflammation. PMID:26162318

  18. New Alzheimer amyloid beta responsive genes identified in human neuroblastoma cells by hierarchical clustering.

    PubMed

    Uhrig, Markus; Ittrich, Carina; Wiedmann, Verena; Knyazev, Yuri; Weninger, Annette; Riemenschneider, Matthias; Hartmann, Tobias

    2009-01-01

    Alzheimer's disease (AD) is characterized by neuronal degeneration and cell loss. Abeta(42), in contrast to Abeta(40), is thought to be the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored the transcriptomic responses to increased or decreased Abeta(40) and Abeta(42) levels, generated and derived from its precursor C99 (C-terminal fragment of APP comprising 99 amino acids) in human neuroblastoma cells. We identified fourteen differentially expressed transcripts by hierarchical clustering and discussed their involvement in AD. These fourteen transcripts were grouped into two main clusters each showing distinct differential expression patterns depending on Abeta(40) and Abeta(42) levels. Among these transcripts we discovered an unexpected inverse and strong differential expression of neurogenin 2 (NEUROG2) and KIAA0125 in all examined cell clones. C99-overexpression had a similar effect on NEUROG2 and KIAA0125 expression as a decreased Abeta(42)/Abeta(40) ratio. Importantly however, an increased Abeta(42)/Abeta(40) ratio, which is typical of AD, had an inverse expression pattern of NEUROG2 and KIAA0125: An increased Abeta(42)/Abeta(40) ratio up-regulated NEUROG2, but down-regulated KIAA0125, whereas the opposite regulation pattern was observed for a decreased Abeta(42)/Abeta(40) ratio. We discuss the possibilities that the so far uncharacterized KIAA0125 might be a counter player of NEUROG2 and that KIAA0125 could be involved in neurogenesis, due to the involvement of NEUROG2 in developmental neural processes. PMID:19707560

  19. New Alzheimer Amyloid β Responsive Genes Identified in Human Neuroblastoma Cells by Hierarchical Clustering

    PubMed Central

    Uhrig, Markus; Ittrich, Carina; Wiedmann, Verena; Knyazev, Yuri; Weninger, Annette; Riemenschneider, Matthias; Hartmann, Tobias

    2009-01-01

    Alzheimer's disease (AD) is characterized by neuronal degeneration and cell loss. Aβ42, in contrast to Aβ40, is thought to be the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored the transcriptomic responses to increased or decreased Aβ40 and Aβ42 levels, generated and derived from its precursor C99 (C-terminal fragment of APP comprising 99 amino acids) in human neuroblastoma cells. We identified fourteen differentially expressed transcripts by hierarchical clustering and discussed their involvement in AD. These fourteen transcripts were grouped into two main clusters each showing distinct differential expression patterns depending on Aβ40 and Aβ42 levels. Among these transcripts we discovered an unexpected inverse and strong differential expression of neurogenin 2 (NEUROG2) and KIAA0125 in all examined cell clones. C99-overexpression had a similar effect on NEUROG2 and KIAA0125 expression as a decreased Aβ42/Aβ40 ratio. Importantly however, an increased Aβ42/Aβ40 ratio, which is typical of AD, had an inverse expression pattern of NEUROG2 and KIAA0125: An increased Aβ42/Aβ40 ratio up-regulated NEUROG2, but down-regulated KIAA0125, whereas the opposite regulation pattern was observed for a decreased Aβ42/Aβ40 ratio. We discuss the possibilities that the so far uncharacterized KIAA0125 might be a counter player of NEUROG2 and that KIAA0125 could be involved in neurogenesis, due to the involvement of NEUROG2 in developmental neural processes. PMID:19707560

  20. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells.

    PubMed

    Mailloux, Ryan J; Yumvihoze, Emmanuel; Chan, Hing Man

    2015-12-15

    The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O2(-)), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O2(-)mediated degradation of MeHg in human neuroblastoma cells SH-K-SN. We also utilized paraquat (PQ) which generates O2(-) in the mitochondrial matrix. We found that the cleavage of the carbon-metal bond in MeHg was highly dependent on the topology of O2(-) production by mitochondria. Both rotenone and PQ, which increase O2(-) in the mitochondrial matrix at a dose-dependent manner, enhanced the conversion of MeHg to inorganic mercury (iHg). Surprisingly, antimycin A, which prompts emission of O2(-) into the intermembrane space, did not have the same effect even though antimycin A induced a dose dependent increase in O2(-) emission. Rotenone and PQ also enhanced the toxicity of sub-toxic doses (0.1 μM) MeHg which correlated with the accumulation of iHg in mitochondria and depletion of mitochondrial protein thiols. Taken together, our results demonstrate that MeHg degradation is mediated by mitochondrial O2(-), specifically within the matrix of mitochondria when O2(-) is in adequate supply. Our results also show that O2(-) amplifies MeHg toxicity specifically through its conversion to iHg and subsequent interaction with protein cysteine thiols (R-SH). The implications of our findings in mercury neurotoxicity are discussed herein. PMID:26545714

  1. Fenofibrate suppressed proliferation and migration of human neuroblastoma cells via oxidative stress dependent of TXNIP upregulation

    SciTech Connect

    Su, Cunjin; Shi, Aiming; Cao, Guowen; Tao, Tao; Chen, Ruidong; Hu, Zhanhong; Shen, Zhu; Tao, Hong; Cao, Bin; Hu, Duanmin; Bao, Junjie

    2015-05-15

    There are no appropriate drugs for metastatic neuroblastoma (NB), which is the most common extra-cranial solid tumor for childhood. Thioredoxin binding protein (TXNIP), the endogenous inhibitor of ROS elimination, has been identified as a tumor suppressor in various solid tumors. It reported that fenofibrate exerts anti-tumor effects in several human cancer cell lines. However, its detail mechanisms remain unclear. The present study assessed the effects of fenofibrate on NB cells and investigated TXNIP role in its anti-tumor mechanisms. We used MTT assay to detect cells proliferation, starch wound test to investigate cells migration, H{sub 2}DCF-DA to detect intracellular ROS, siRNA to interfere TXNIP and peroxisome proliferator-androgen receptor-alpha (PPAR-α) expression, western blot to determine protein levels, flow cytometry to analyze apoptosis. Fenofibrate suppressed proliferation and migration of NB cells, remarkably increased intracellular ROS, upregulated TXNIP expression, promoted cell apoptosis. Furthermore, inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. Our results indicated the anti-tumor role of fenofibrate on NB cells by exacerbating oxidative stress and inducing apoptosis was dependent on the upregulation of TXNIP. - Highlights: • We found that fenofibrate suppressed proliferation and migration of NB cells. • We found that fenofibrate remarkably increased intracellular ROS, upregulated TXNIP expression, and promoted cell apoptosis. • Inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. • Our results indicated the anti-tumor role of fenofibrate on NB cells was dependent on the upregulation of TXNIP.

  2. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells

    PubMed Central

    Li, Tong; Paudel, Hemant K.

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer’s disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445–6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  3. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells.

    PubMed

    Li, Tong; Paudel, Hemant K

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer's disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445-6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  4. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold.

    PubMed

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Norouzi Javidan, Abbas; Ai, Jafar

    2015-08-01

    Neural tissue engineering is an important area of research in the field of tissue-engineering especially for neurodegenerative disease such as spinal cord injury. The differentiation capacity of human endometrial stem cells (hEnSCs) into neuronal cells has yet to be elucidated. Here, the major aim of the present study was to investigate the differentiation ability of hEnSCs cultured on polylactic acid/chitosan (PLA/CS) nanofibrous scaffold into neuroglial cells in response to conditioned medium of BE(2)-C human neuroblastoma cells and growth factors. Here we investigated the use PLA/CS scaffold as a three dimensional (3D) system that increased neuro-glial cells differentiation. Human EnSCs after three passages were differentiated in neuro-glial like cells under neuroblastoma conditioned medium with FGF2/PDGF-AA on PLA/CS scaffold. By day 18, differentiated cells were analyzed for expression of neuroglial markers by qRT-PCR and immunofluorescence. The results revealed that hEnSCs attach, grow and differentiation on the nanofibrous PLA/CS scaffold. Additionally, our study showed the expression of neural and glial lineage markers such as Nestin, NF-L, MAP2, PDGFRa, CNP, Olig2, MBP, and GFAP in the level of mRNA and MAP2, Tuj-1, and NF-L in the protein level after 18 days. Our results demonstrate that hEnSCs cultured on PLA/CS nanofibrous scaffold have the potential to differentiate in neuronal and glial cells in presence of neuroblastoma conditioned medium on PLA/CS scaffold. The result of this study may have impact in tissue engineering and cells-base therapy of neurodegenerative diseases and have a great potential for wide application. PMID:25611196

  5. Infrared absorption spectra of human malignant tumor tissues

    NASA Astrophysics Data System (ADS)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  6. Human Neuroblastoma: From Basic Science to Clinical Debut of Cellular Oncogenes

    NASA Astrophysics Data System (ADS)

    Schwab, Manfred

    Neuroblastoma is a childhood embryonic tumor of migrating neuroectodermal cells derived from the neural crest and destined for the adrenal medulla and the sympathetic nervous system. It very often has a rapidly progressive clinical course, and although many advances have been made in understanding the development of this tumor, improving the survival rates particularly in patients with metastatic tumor has been a frustrating experience. The mechanisms leading to neuroblastoma are largely unclear, but nonrandom chromosomal changes discovered early suggested the involvement of genetic alterations. Most prominent among these is the amplification of the oncogene MYCN, which identifies a group of patients who have a particularly dire prognosis. Amplified MYCN is used today as a prognostic marker on which therapy design is based to a large extent. An unusual aspect of neuroblastoma is the high rate at which tumors regress spontaneously, even in infants with extensive liver involvement and numerous subcutaneous nodules. Identifying the molecular and cellular basis of spontaneous regression could result in improved therapeutic approaches. Neuroblastoma is a model tumor with many fascinating aspects but has remained a challenge to the pediatric oncologist

  7. EXAMINATION OF CULTURE CONDITIONS ON ESTERASE ACTIVITIES IN HUMAN AND MOUSE NEUROBLASTOMA CELLS

    EPA Science Inventory

    Because neuroblastoma cell lines have potential to be used as in vitro alternatives for screening of antiesterase compounds (e.g., organophosphates (OPs) and carbamates), information is needed on conditions under which the cells are grown as these conditions may contribute to exp...

  8. Promising therapeutic targets in neuroblastoma.

    PubMed

    Matthay, Katherine K; George, Rani E; Yu, Alice L

    2012-05-15

    Neuroblastoma, the most common extracranial solid tumor in children, is derived from neural crest cells. Nearly half of patients present with metastatic disease and have a 5-year event-free survival of <50%. New approaches with targeted therapy may improve efficacy without increased toxicity. In this review we evaluate 3 promising targeted therapies: (i) (131)I-metaiodobenzylguanidine (MIBG), a radiopharmaceutical that is taken up by human norepinephrine transporter (hNET), which is expressed in 90% of neuroblastomas; (ii) immunotherapy with monoclonal antibodies targeting the GD2 ganglioside, which is expressed on 98% of neuroblastoma cells; and (iii) inhibitors of anaplastic lymphoma kinase (ALK), a tyrosine kinase that is mutated or amplified in ~10% of neuroblastomas and expressed on the surface of most neuroblastoma cells. Early-phase trials have confirmed the activity of (131)I-MIBG in relapsed neuroblastoma, with response rates of ~30%, but the technical aspects of administering large amounts of radioactivity in young children and limited access to this agent have hindered its incorporation into treatment of newly diagnosed patients. Anti-GD2 antibodies have also shown activity in relapsed disease, and a recent phase III randomized trial showed a significant improvement in event-free survival for patients receiving chimeric anti-GD2 (ch14.18) combined with cytokines and isotretinoin after myeloablative consolidation therapy. A recently approved small-molecule inhibitor of ALK has shown promising preclinical activity for neuroblastoma and is currently in phase I and II trials. This is the first agent directed to a specific mutation in neuroblastoma, and marks a new step toward personalized therapy for neuroblastoma. Further clinical development of targeted treatments offers new hope for children with neuroblastoma. PMID:22589483

  9. Promising therapeutic targets in neuroblastoma

    PubMed Central

    Matthay, Katherine K.; George, Rani E.; Yu, Alice L.

    2012-01-01

    Neuroblastoma, the most common extra- cranial solid tumor in children, is derived from neural crest cells. Nearly half of patients present with metastatic disease, and have 5-year EFS of less than 50%. New approaches with targeted therapy may improve efficacy without increased toxicity. The current review will evaluate three promising targeted therapies, including 131I-metaiodobenzylguanidine (MIBG), a radiopharmaceutical taken up by the human norepinephrine transporter expressed in 90% of neuroblastomas, immunotherapy with monoclonal antibodies targeting the GD2 ganglioside, expressed on 98% of neuroblastoma cells, and inhibitors of ALK, a tyrosine kinase which is mutated or amplified in approximately 10% of neuroblastoma and expressed on the surface of most neuroblastoma cells. Early phase trials have confirmed the activity of 131I-MIBG in relapsed neuroblastoma, with response rates of about 30%, but the technical aspects of administration of large amounts of radioactivity in young children and the limited access have hindered incorporation into treatment of newly diagnosed patients. Anti-GD2 antibodies have also demonstrated activity in relapsed disease, and a recent phase III randomized trial showed a significant improvement in event-free survival for patients receiving chimeric anti-GD2 (ch14.18) combined with cytokines and isotretinoin after myeloablative consolidation therapy. A recently approved small molecule inhibitor of ALK has promising pre-clinical activity for neuroblastoma, and is currently in phase I and II trials. This is the first agent directed to a specific mutation in neuroblastoma, and marks a new step toward personalized therapy for neuroblastoma. Further clinical development of targeted treatments offers new hope for children with neuroblastoma. PMID:22589483

  10. Absence of point mutation in the 12th codon of transformed c-Ha-rasl genes of human cancer of the breast, stomach, melanoma, and neuroblastoma

    SciTech Connect

    Knyazev, P.G.; Schafer, R.; Willecke, K.V.; Seitz, I.F.

    1985-11-01

    In the authors' previous investigations, they established that the tumorous cell lines SK-BR-3 (breast cancer), LAN-1 (neuroblastoma), and a heterotransplant of malignant melanoma Jal contain transforming genes of Ha-ras type. Now, the authors report their results using restriction endonucleases of MspI and HpaII restriction to study nucleotide sequences 5'-CCGGC-3' and 3'GGCCG-5', which contain the 12th codon of GGC for the amino acid glycine in the normal allele of c-Ha-rasl in the three tumors listed above, in addition to human adenocarcinoma of the stomach (CaVSt) and normal cells corresponding to them. For hybridization of MspI/HpaII, fragments of chromosomal DNA isolated from cell lines SK-BR-3, and LAN-1, Ja-1 heterotransplant, and stomach adenocarcinoma CaVSt, the XmaI section of EJ oncogene, c-Ha-rasl (plasmid pEJ 6.6), labeled with /sup 32/P was used in down-translation reaction. Hybridization was performed in 3 x SSC buffer containing 5x Deinhardt's reagent and 10% dextran sulfate at 68/sup 0/C for 16-18 h. Washing of filters was conducted under rigid conditions. For autoradiography, Kodak XR-5 x-ray film in cartridges with reinforcing shields was used at -70/sup 0/C, exposure time of four to six days.

  11. Rare variants in TP53 and susceptibility to neuroblastoma.

    PubMed

    Diskin, Sharon J; Capasso, Mario; Diamond, Maura; Oldridge, Derek A; Conkrite, Karina; Bosse, Kristopher R; Russell, Mike R; Iolascon, Achille; Hakonarson, Hakon; Devoto, Marcella; Maris, John M

    2014-04-01

    TP53 is the most frequently mutated gene in human malignancies; however, de novo somatic mutations in childhood embryonal cancers such as neuroblastoma are rare. We report on the analysis of three independent case-control cohorts comprising 10290 individuals and demonstrate that rs78378222 and rs35850753, rare germline variants in linkage disequilibrium that map to the 3' untranslated region (UTR) of TP53 and 5' UTR of the Δ133 isoform of TP53, respectively, are robustly associated with neuroblastoma (rs35850753: odds ratio [OR] = 2.7, 95% confidence interval [CI] = 2.0 to 3.6, P combined = 3.43×10(-12); rs78378222: OR = 2.3, 95% CI = 1.8 to 2.9, P combined = 2.03×10(-11)). All statistical tests were two-sided. These findings add neuroblastoma to the complex repertoire of human cancers influenced by the rs78378222 hypomorphic allele, which impairs proper termination and polyadenylation of TP53 transcripts. Future studies using whole-genome sequencing data are likely to reveal additional rare variants with large effect sizes contributing to neuroblastoma tumorigenesis. PMID:24634504

  12. Meta-[{sup 211}At]astatobenzylguanidine (MABG): In vivo evaluation in an athymic mouse human neuroblastoma xenograft model

    SciTech Connect

    Vaidyanathan, G.; Friedman, H.S.; Keir, S.T.

    1996-05-01

    Because of the short range and high linear energy transfer of {sup 211}At {alpha}-particles, the MIBG analogue MABG might be useful for the therapy of micrometastatic neuroblastoma and previous in vitro studies have demonstrated that under single-cell conditions, the cytotoxicity of MABG is > 1000 times higher than [{sup 131}I]MIBG. A paired label protocol was used to compare the tissue distribution of MABG and [{sup 131}I]MIBG in athymic mice bearing subcutaneous SK-N-SH human neuroblastoma xenografts from 1-24 hr after injection. In tumor, significantly higher (p < 0.05) uptake was observed for MABG (3.8 {plus_minus} 0.8%ID/g vs 3.1 {plus_minus} 0.7%ID/g at 8 hr). Pretreatment with desipramine reduced tumor uptake of MABG by 43%, suggesting that accumulation was related to the uptake-1 mechanism. Significantly higher uptake of MABG also was observed in normal tissue targets. For example, at 8 hr, heart uptake of MABG was 6.0 {plus_minus} 0.9 % ID/g compared with 4.5 {plus_minus} 0.8%ID/g for [{sup 131}I]MIBG. Two strategies were investigated to increase the tumor-to-hear uptake ratio. Pretreatment of mice with unlabeled MIBG (4 mg/kg) increased MABG tumor uptake by 1.5-fold while reducing uptake in several normal tissues including heart. The vesicular uptake blocker tetrabenazine (TBZ; 20 mg/kg), reduced MABG hear uptake by 30% of control values with not significant decrease in tumor levels. We conclude that MABG deserves further evaluation as a potential agent for the treatment of neuroblastoma, particularly in combination with strategies to minimize radiation dose to normal target tissues.

  13. MYCN is retained in single copy at chromosome 2 band p23-24 during amplification in human neuroblastoma cells

    SciTech Connect

    Corvi, R.; Amler, L.C.; Savelyeva, L.; Gehring, M.; Schwab, M. )

    1994-06-07

    Amplification of the human N-myc protooncogene, MYCN, is frequently seen either in extrachromosomal double minutes or in homogeneously staining regions of aggressively growing neuroblastomas. MYCN maps to chromosome 2 band p23-24, but homogeneously staining regions have never been observed at this band, suggesting transposition of MYCN during amplification. The authors have employed fluorescence in situ hybridization to determine the status of MYCN at 2p23-24 in five human neuroblastoma cell lines. All five lines carried, in addition to amplified MYCN in homogeneously staining regions or double minutes, single-copy MYCN at the normal position. In one line there was coamplification of MYCN together with DNA of the host chromosome 12, to which MYCN had been transposed. The results suggest a model of amplification where MYCN is retained at its original location. They further sustain the view that either the initial events of MYCN amplification or the further evolution of amplified MYCN copies follow mechanisms different from those leading to amplification of drug-resistance genes.

  14. Radiofrequency radiation-induced calcium-ion-efflux enhancement from human and other neuroblastoma cells in culture: (Final technical report)

    SciTech Connect

    Dutta, S.K.; Ghosh, B.; Blackman, C.F.

    1988-01-01

    In order to test the generality of radiofrequency-radiation-induced change in alternation of /sup 45/Ca/sup 2/plus// efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude modulated (AM) at 16 Hz, at specific absorption rates (SAR) of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 Wkg. Significant /sup 45/Ca/sup 2/plus// efflux was obtained at SAR values of 0.05 and 0.005 Wkg. Enchanced efflux at 0.05 Wkg peaked at the 13-to-16 Hz and at the 57.5-to-60 Hz modulation ranges. A Chinese hamster-mouse hybrid neuroblastoma was also shown to exhibit enchanced radiation-induced /sup 45/Ca/sup 2/plus// efflux at an SAR of 0.05 Wkg, using 147 MHz, AM at 16 hz. These results confirm that amplitude-modulated radiofrequency radiation can induce response in cells of nervous tissue origin from widely different animal species including humans. The results are also consistent with reports of similar findings in avian and feline brain tissue reported by others and indicate the general nature of the phenomenon. 9 refs., 3 tabs.

  15. Inconspicuous Presentation of Metastatic Neuroblastoma.

    PubMed

    Hatten, James; McGuffin, Aaron; Mogul, Mark

    2016-01-01

    Neuroblastoma is a malignant tumor arising from nerve tissue that accounts for approximately 15 percent of pediatric cancer fatalities. Primary tumors most commonly arise in sympathetic nervous tissue of the abdomen and metastasize to the bone marrow, liver, and lymph nodes. This case report depicts a 3-year-old girl who presented with a recurring fever, runny nose, and a positive test for rhinovirus suggesting a simple case of the common cold. Further investigation, however, revealed stage 4 neuroblastoma. This patient experience emphasizes the importance of having a high level of suspicion to rule out more serious underlying pathology in a seemingly unremarkable patient presentation. PMID:27491101

  16. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2

    PubMed Central

    Xiao, Daibiao; Ren, Ping; Su, Hexiu; Yue, Ming; Xiu, Ruijuan; Hu, Yufeng; Liu, Hudan; Qing, Guoliang

    2015-01-01

    Deamidation of glutamine to glutamate by glutaminase 1 (GLS1, also called GLS) and GLS2 is an essential step in both glutaminolysis and glutathione (GSH) biosynthesis. However, mechanisms whereby cancer cells regulate glutamine catabolism remains largely unknown. We report here that N-Myc, an essential Myc family member, promotes conversion of glutamine to glutamate in MYCN-amplified neuroblastoma cells by directly activating GLS2, but not GLS1, transcription. Abrogation of GLS2 function profoundly inhibited glutaminolysis, which resulted in feedback inhibition of aerobic glycolysis likely due to thioredoxin-interacting protein (TXNIP) activation, dramatically decreasing cell proliferation and survival in vitro and in vivo. Moreover, elevated GLS2 expression is significantly elevated in MYCN-amplified neuroblastomas in comparison with non-amplified ones, correlating with unfavorable patient survival. In aggregate, these results reveal a novel mechanism deciphering context-dependent regulation of metabolic heterogeneities, uncovering a previously unsuspected link between Myc, GLS2 and tumor metabolism. PMID:26528759

  17. Characterization of multidrug transporter-mediated efflux of avermectins in human and mouse neuroblastoma cell lines.

    PubMed

    Dalzell, Abigail M; Mistry, Pratibha; Wright, Jayne; Williams, Faith M; Brown, Colin D A

    2015-06-15

    ABC transporters play an important role in the disposition of avermectins in several animal species. In this study the interactions of three key avermectins, abamectin, emamectin and ivermectin, with human and mouse homologues of MDR1 (ABCB1/Abcb1a) and MRP (ABCC/Abcc), transporters endogenously expressed by human SH-SY5Y and mouse N2a neuroblastoma cells were investigated. In both cell lines, retention of the fluorescent dye H33342 was found to be significantly increased in the presence of avermectins and cyclosporin A. These effects were shown to be unresponsive to the BCRP inhibitor Ko-143 and therefore MDR1/Mdr1-dependent. Avermectins inhibited MDR1/Mdr1a-mediated H33342 dye efflux, with apparent Ki values of 0.24±0.08 and 0.18±0.02μM (ivermectin); 0.60±0.07 and 0.56±0.02μM (emamectin) and 0.95±0.08 and 0.77±0.25μM (abamectin) in SH-SY5Y and N2a cells, respectively. There were some apparent affinity differences for MDR1 and Mdr1a within each cell line (affinity for ivermectin>emamectin≥abamectin, P<0.05 by One-Way ANOVA), but importantly, the Ki values for individual avermectins for human MDR1 or mouse Mdr1a were not significantly different. MK571-sensitive retention of GSMF confirmed the expression of MRP/Mrp efflux transporters in both cell lines. Avermectins inhibited MRP/Mrp-mediated dye efflux with IC50 values of 1.58±0.51 and 1.94±0.72μM (ivermectin); 1.87±0.57 and 2.74±1.01μM (emamectin) and 2.25±0.01 and 1.68±0.63μM (abamectin) in SH-SY5Y and N2a cells, respectively. There were no significant differences in IC50 values between individual avermectins or between human MRP and mouse Mrp. Kinetic data for endogenous human MDR1/MRP isoforms in SH-SY5Y cells and mouse Mdr1a/b/Mrp isoforms in N2a cells are comparable for the selected avermectins. All are effluxed at concentrations well above 0.05-0.1μM ivermectin detected in plasma (Ottesen and Campbell, 1994; Ottesen and Campbell, 1994) This is an important finding in the light of

  18. Salicin from Willow Bark can Modulate Neurite Outgrowth in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Wölfle, Ute; Haarhaus, Birgit; Kersten, Astrid; Fiebich, Bernd; Hug, Martin J; Schempp, Christoph M

    2015-10-01

    Salicin from willow bark has been used throughout centuries in China and Europe for the treatment of pain, headache, and inflammatory conditions. Recently, it could be demonstrated that salicin binds and activates the bitter taste receptor TAS2R16. Studies on rodent tissues showed the general expression of bitter taste receptors (TAS2Rs) in rodent brain. Here, we demonstrate the expression of hTAS2R16 in human neuronal tissues and the neuroblastoma cell line SH-SY5Y. The functionality was analyzed in the neuroblastoma cell line SH-SY5Y after stimulation with salicin, a known TAS2R16 agonist. In this setting salicin induced in SH-SY5Y cells phosphorylation of ERK and CREB, the key transcription factor of neuronal differentiation. PD98059, an inhibitor of the ERK pathway, as well as probenecid, a TAS2R16 antagonist, inhibited receptor phosphorylation as well as neurite outgrowth. These data show that salicin might modulate neurite outgrowth by bitter taste receptor activation. PMID:26096905

  19. Antiproliferative effects of mitraphylline, a pentacyclic oxindole alkaloid of Uncaria tomentosa on human glioma and neuroblastoma cell lines.

    PubMed

    García Prado, E; García Gimenez, M D; De la Puerta Vázquez, R; Espartero Sánchez, J L; Sáenz Rodríguez, M T

    2007-04-01

    Uncaria tomentosa inner bark extract is a popular plant remedy used in folk medicine to treat tumor and inflammatory processes. In this study, the anti-tumoral effects of its pentacyclic alkaloid mitraphylline were investigated. Furthermore, its growth-inhibitory and cytotoxic effects on glioma GAMG and neuroblastoma SKN-BE(2) cell lines were studied using cyclophosphamide and vincristine as controls. A colter counter was used to determine viable cell numbers, followed by application of the tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)2-(4-sulfophenyl)-2H-tetrazolium], inner salt, colorimetric method to evaluate cell viability in this cytotoxicity assay. Micromolar concentrations of mitraphylline (from 5 to 40 microM) inhibited the growth of both cell lines. It inhibited the growth of the two cell lines studied in a dose-dependent manner. The IC(50) values were 12.3 microM (30h) for SKN-BE(2) and 20 microM (48 h) for GAMG, respectively. This action suggests that mitraphylline is a new and promising agent in the treatment of human neuroblastoma and glioma. PMID:17296291

  20. Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells

    SciTech Connect

    Smets, L.A.; Loesberg, C.; Janssen, M.; Metwally, E.A.; Huiskamp, R.

    1989-06-01

    Radioiodinated m-iodobenzylguanidine (MIBG), an analogue of the neurotransmitter norepinephrine (NE), is increasingly used in the diagnosis and treatment of neural crest tumors. Active uptake and subsequent retention of MIBG and NE was studied in human neuroblastoma SK-N-SH cells. Neuron-specific uptake of (125I)MIBG and (3H)NE saturated at extracellular concentration of 10(-6) M and exceeded by 20-30-fold that by passive diffusion alone. A minimum of 50% of accumulated MIBG remained permanently stored but the SK-N-SH cells were incapable of retaining recaptured (3H)NE. (125I)MIBG was displaced from intracellular binding sites by unlabeled MIBG with 10-fold higher potency than by unlabeled NE. MIBG stored in SK-N-SH cells was insensitive to depletion by the inhibitor of granular uptake reserpine (RSP) and was not precipitated in a granular fraction by differential centrifugation. Only few electron-dense granules were found in these cells by electron microscopy. In contrast, MIBG storage in PC-12 pheochromocytoma cells which contained many storage granules, was sensitive to RSP and part of accumulated drug was recovered in a granular fraction. Accordingly, storage of MIBG in the SK-N-SH neuroblastoma cells is predominantly extravesicular and thus essentially different from that of biogenic amines in normal adrenomedullary tissue or in pheochromocytoma tumors, while sharing with these tissues a common mechanism of active uptake.

  1. Genetics Home Reference: neuroblastoma

    MedlinePlus

    ... Help Me Understand Genetics Home Health Conditions neuroblastoma neuroblastoma Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Neuroblastoma is a type of cancer that most often ...

  2. Differential expression of alpha-subunits of G-proteins in human neuroblastoma-derived cell clones.

    PubMed

    Klinz, F J; Yu, V C; Sadée, W; Costa, T

    1987-11-16

    The distribution of alpha- and beta-subunits of G-proteins was analyzed in membranes of three cell clones which are derived from the human neuroblastoma cell line SK-N-SH. The neuroblast-like clone SH-SY5Y shows a pattern of G-proteins very similar to that of human brain cortex with high levels of Gi alpha and Go alpha but low levels of G40 alpha. The intermediate clone SH-IN contains high levels of Go alpha and Gi alpha and moderate levels of G40 alpha. The non-neuronal clone SH-EP shows high levels of G40 alpha but lacks Go alpha. Differentiation of the neuroblast-like clone SH-SY5Y by retinoic acid or nerve growth factor does not change the amount of Gi alpha or Go alpha in the membrane. PMID:3119368

  3. Radiofrequency currents exert cytotoxic effects in NB69 human neuroblastoma cells but not in peripheral blood mononuclear cells

    PubMed Central

    HERNÁNDEZ-BULE, MARÍA LUISA; ROLDÁN, ERNESTO; MATILLA, JOAQUÍN; TRILLO, MARÍA ÁNGELES; ÚBEDA, ALEJANDRO

    2012-01-01

    Recently, a number of electric and electrothermal therapies have been applied to the treatment of specific cancer types. However, the cellular and molecular mechanisms involved in the response to such therapies have not been well characterized yet. Capacitive-resistive electric transfer (CRET) therapy uses electric currents at frequencies within the 0.45–0.6 MHz range to induce hyperthermia in target tissues. Preliminary trials in cancer patients have shown consistent signs that CRET could slow down growth of tumor tissues in brain gliomas, without inducing detectable damage in the surrounding healthy tissue. Previous studies by our group have shown that subthermal treatment with 0.57-MHz electric currents can induce a cytostatic, not cytotoxic response in HepG2 human hepatocarcinoma cells; such effect being mediated by cell cycle alterations. In contrast, the study of the response of NB69 human neuroblastoma cells to the same electric treatment revealed consistent indications of cytotoxic effects. The present study extends the knowledge on the response of NB69 cells to the subthermal stimulus, comparing it to that of primary cultures of human peripheral blood mononuclear cells (PBMC) exposed to the same treatment. The results showed no sensitivity of PBMC to the 0.57 MHz subthermal currents and confirmed that the treatment exerts a cytotoxic action in NB69 cells. The data also revealed a previously undetected cytostatic response of the neuroblastoma cell line. CRET currents affected NB69 cell proliferation by significantly reducing the fraction of cells in the phase G2/M of the cell cycle at 12 h of exposure. These data provide new information on the mechanisms of response to CRET therapy, and are consistent with a cytotoxic and/or cytostatic action of the electric treatment, which would affect human cells of tumor origin but not normal cells with a low proliferation rate. PMID:22843038

  4. Upregulation of CRABP1 in human neuroblastoma cells overproducing the Alzheimer-typical Aβ42 reduces their differentiation potential

    PubMed Central

    Uhrig, Markus; Brechlin, Peter; Jahn, Olaf; Knyazev, Yuri; Weninger, Annette; Busia, Laura; Honarnejad, Kamran; Otto, Markus; Hartmann, Tobias

    2008-01-01

    Background Alzheimer's disease (AD) is characterized by neurodegeneration and changes in cellular processes, including neurogenesis. Proteolytic processing of the amyloid precursor protein (APP) plays a central role in AD. Owing to varying APP processing, several β-amyloid peptides (Aβ) are generated. In contrast to the form with 40 amino acids (Aβ40), the variant with 42 amino acids (Aβ42) is thought to be the pathogenic form triggering the pathological cascade in AD. While total-Aβ effects have been studied extensively, little is known about specific genome-wide effects triggered by Aβ42 or Aβ40 derived from their direct precursor C99. Methods A combined transcriptomics/proteomics analysis was performed to measure the effects of intracellularly generated Aβ peptides in human neuroblastoma cells. Data was validated by real-time polymerase chain reaction (real-time PCR) and a functional validation was carried out using RNA interference. Results Here we studied the transcriptomic and proteomic responses to increased or decreased Aβ42 and Aβ40 levels generated in human neuroblastoma cells. Genome-wide expression profiles (Affymetrix) and proteomic approaches were combined to analyze the cellular response to the changed Aβ42- and Aβ40-levels. The cells responded to this challenge with significant changes in their expression pattern. We identified several dysregulated genes and proteins, but only the cellular retinoic acid binding protein 1 (CRABP1) was up-regulated exclusively in cells expressing an increased Aβ42/Aβ40 ratio. This consequently reduced all-trans retinoic acid (RA)-induced differentiation, validated by CRABP1 knock down, which led to recovery of the cellular response to RA treatment and cellular sprouting under physiological RA concentrations. Importantly, this effect was specific to the AD typical increase in the Aβ42/Aβ40 ratio, whereas a decreased ratio did not result in up-regulation of CRABP1. Conclusion We conclude that increasing

  5. A Constitutional Translocation t(1;17)(p36.2;q11.2) in a Neuroblastoma Patient Disrupts the Human NBPF1 and ACCN1 Genes

    PubMed Central

    Staes, Katrien; Vandesompele, Jo; Laureys, Geneviève; De Smet, Els; Berx, Geert; Speleman, Frank; van Roy, Frans

    2008-01-01

    The human 1p36 region is deleted in many different types of tumors, and so it probably harbors one or more tumor suppressor genes. In a Belgian neuroblastoma patient, a constitutional balanced translocation t(1;17)(p36.2;q11.2) may have led to the development of the tumor by disrupting or activating a gene. Here, we report the cloning of both translocation breakpoints and the identification of a novel gene that is disrupted by this translocation. This gene, named NBPF1 for Neuroblastoma BreakPoint Family member 1, belongs to a recently described gene family encoding highly similar proteins, the functions of which are unknown. The translocation truncates NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences derived from chromosome 17. On chromosome 17, the translocation disrupts one of the isoforms of ACCN1, a potential glioma tumor suppressor gene. Expression of the NBPF family in neuroblastoma cell lines is highly variable, but it is decreased in cell lines that have a deletion of chromosome 1p. More importantly, expression profiling of the NBPF1 gene showed that its expression is significantly lower in cell lines with heterozygous NBPF1 loss than in cell lines with a normal 1p chromosome. Meta-analysis of the expression of NBPF and ACCN1 in neuroblastoma tumors indicates a role for the NBPF genes and for ACCN1 in tumor aggressiveness. Additionally, DLD1 cells with inducible NBPF1 expression showed a marked decrease of clonal growth in a soft agar assay. The disruption of both NBPF1 and ACCN1 genes in this neuroblastoma patient indicates that these genes might suppress development of neuroblastoma and possibly other tumor types. PMID:18493581

  6. Differential penetration of targeting agents into multicellular spheroids derived from human neuroblastoma

    SciTech Connect

    Mairs, R.J.; Angerson, W.J.; Babich, J.W.; Murray, T. )

    1991-01-01

    The authors have used a multicellular tumour spheroid model for determination of the penetration of various targeting agents of potential use in the treatment of neuroblastoma. Both the radiopharmaceutical meta-iodobenzylguanidine (mIBG) and the {beta} subunit of nerve growth factor ({beta}-NGF) distributed uniformly throughout spheroids, though the latter was poorly concentrated relative to mIBG. In contrast, the anti-neuroectodermal monoclonal antibody. UJ13A bound only to peripheral cell layers with little accumulation in the spheroid interior. Differential penetration of targeting agents may influence the choice of conjugated radionuclide which is likely to achieve maximum therapeutic benefit.

  7. Tideglusib induces apoptosis in human neuroblastoma IMR32 cells, provoking sub-G0/G1 accumulation and ROS generation.

    PubMed

    Mathuram, Theodore Lemuel; Ravikumar, Vilwanathan; Reece, Lisa M; Karthik, Selvaraju; Sasikumar, Changam Sheela; Cherian, Kotturathu Mammen

    2016-09-01

    Neuroblastoma is the most common tumor amongst children amounting to nearly 15% of cancer deaths. This cancer is peculiar in its characteristics, exhibiting differentiation, maturation and metastatic transformation leading to poor prognosis and low survival rates among children. Chemotherapy, though toxic to normal cells, has shown to improve the survival of the patient with emphasis given more towards targeting angiogenesis. Recently, Tideglusib was designed as an 'Orphan Drug' to target the neurodegenerative Alzheimer's disease and gained significant momentum in its function during clinical trials. Duffy et al. recently reported a reduction in cell viability of human IMR32 neuroblastoma cells when treated with Tideglusib at varying concentrations. We investigated the effects of Tideglusib, at various concentrations, compared to Lithium chloride at various concentrations, on IMR32 cells. Lithium, a known GSK-3 inhibitor, was used as a standard to compare the efficiency of Tideglusib in a dose-dependent manner. Cell viability was assessed by MTT assay. The stages of apoptosis were evaluated by AO/EB staining and nuclear damage was determined by Hoechst 33258 staining. Reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) were assessed by DCFDA dye and Rhodamine-123 dye, respectively. Tideglusib reported a significant dose-dependent increase in pro-apoptotic proteins (PARP, Caspase-9, Caspase-7, Caspase-3) and tumor-related genes (FasL, TNF-α, Cox-2, IL-8, Caspase-3). Anti-GSK3 β, pGSK3 β, Bcl-2, Akt-1, p-Akt1 protein levels were observed with cells exposed to Tideglusib and Lithium chloride. No significant dose-dependent changes were observed for the mRNA expression of collagenase MMP-2, the tumor suppressor p53, or the cell cycle protein p21. Our study also reports Tideglusib reducing colony formation and increasing the level of sub-G0/G1 population in IMR32 cells. Our investigations report the significance of Tideglusib as a promising

  8. Effect of Citrus bergamia juice on human neuroblastoma cells in vitro and in metastatic xenograft models.

    PubMed

    Navarra, M; Ursino, M R; Ferlazzo, N; Russo, M; Schumacher, U; Valentiner, U

    2014-06-01

    Neuroblastoma is the most common extracranial pediatric solid tumor with poor prognosis in children with disseminated stage of disease. A number of studies show that molecules largely distributed in commonly consumed fruits and vegetables may have anti-tumor activity. In this study we evaluate the effect of Citrus bergamia (bergamot) juice (BJ) in vitro and in a spontaneous metastatic neuroblastoma SCID mouse model. Qualitative and quantitative characterizations of BJ flavonoid fractions were performed by RP-HPLC/PDA/MS. We show that BJ significantly affects SK-N-SH and LAN-1 cell proliferation in vitro, but fails to reduce primary tumor weight in vivo. Moreover, BJ reduced cell adhesiveness and invasion of LAN-1 and SK-N-SH cells in vitro and the number of pulmonary metastases under consideration of the number of tumor cells in the blood in mice inoculated with LAN-1 cells in vivo. These effects without any apparent sign of systemic toxicity confirm the potential clinical interest of BJ and lay the basis for further investigation in cancer. PMID:24594241

  9. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.

    PubMed

    Luciani, Paola; Deledda, Cristiana; Benvenuti, Susanna; Squecco, Roberta; Cellai, Ilaria; Fibbi, Benedetta; Marone, Ilaria Maddalena; Giuliani, Corinna; Modi, Giulia; Francini, Fabio; Vannelli, Gabriella Barbara; Peri, Alessandro

    2013-01-01

    Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i) the evaluation of neurite-like protrusions in 3D cell cultures, ii) the analysis of the expression of neuronal markers and iii) electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties. PMID:23990978

  10. Effect of 8-hydroxyquinoline and derivatives on human neuroblastoma SH-SY5Y cells under high glucose

    PubMed Central

    Suwanjang, Wilasinee; Prachayasittikul, Supaluk

    2016-01-01

    8-Hydroxyquinoline and derivatives exhibit multifunctional properties, including antioxidant, antineurodegenerative, anticancer, anti-inflammatory and antidiabetic activities. In biological systems, elevation of intracellular calcium can cause calpain activation, leading to cell death. Here, the effect of 8-hydroxyquinoline and derivatives (5-chloro-7-iodo-8-hydroxyquinoline or clioquinol and 8-hydroxy-5-nitroquinoline or nitroxoline) on calpain-dependent (calpain-calpastatin) pathways in human neuroblastoma (SH-SY5Y) cells was investigated. 8-Hydroxyquinoline and derivatives ameliorated high glucose toxicity in SH-SY5Y cells. The investigated compounds, particularly clioquinol, attenuated the increased expression of calpain, even under high-glucose conditions. 8-Hydroxyquinoline and derivatives thus adversely affected the promotion of neuronal cell death by high glucose via the calpain-calpastatin signaling pathways. These findings support the beneficial effects of 8-hydroxyquinolines for further therapeutic development.

  11. Aluminium and Alzheimer's disease: sites of aluminium binding in human neuroblastoma cells determined using 26Al and accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    King, S. J.; Templar, J.; Miller, R. V.; Day, J. P.; Dobson, C. B.; Itzhaki, R. F.; Fifield, L. K.; Allan, G. L.

    1994-06-01

    The aluminium distribution between the major cell compartments of human neuroblastoma cells grown in culture has been determined using 21Al and accelerator mass spectrometry (AMS). Cells (IMR-32) were grown for eight days in a culture medium containing Al-EDTA (0.2mM) spiked with 26Al, harvested, and fractionated by standard biochemical techniques. 26Al in fractions after ashing to Al 2O 3 was determined by AMS using the 14UD accelerator at ANU Canberra. The cytoplasmic and nuclear cell compartments appeared to have reached diffusive equilibrium with the culture medium. Whilst 26Al was retained by the nuclear proteins and nuclear sap, 26Al did not appear to bind to the nucleic acids (DNA/RNA).

  12. The "neuro" of neuroblastoma: Neuroblastoma as a neurodevelopmental disorder.

    PubMed

    Ratner, Nancy; Brodeur, Garrett M; Dale, Russell C; Schor, Nina F

    2016-07-01

    Neuroblastoma is a childhood cancer derived from cells of neural crest origin. The hallmarks of its enigmatic character include its propensity for spontaneous regression under some circumstances and its association with paraneoplastic opsoclonus, myoclonus, and ataxia. The neurodevelopmental underpinnings of its origins may provide important clues for development of novel therapeutic and preventive agents for this frequently fatal malignancy and for the associated paraneoplastic syndromes. Ann Neurol 2016;80:13-23. PMID:27043043

  13. Paraneoplastic syndromes in olfactory neuroblastoma

    PubMed Central

    Gabrych, Anna; Czapiewski, Piotr; Sworczak, Krzysztof

    2015-01-01

    Olfactory neuroblastoma (ONB) is a rare malignant neoplasm of sinonasal tract, derived from olfactory epithelium. Unilateral nasal obstruction, epistaxis, sinusitis, and headaches are common symptoms. Olfactory neuroblastoma shows neuroendocrine differentiation and similarly to other neuroendocrine tumors can produce several types of peptic substances and hormones. Excess production of these substances can be responsible for different types of endocrinological paraneoplastic syndromes (PNS). Moreover, besides endocrinological, in ONB may also occur neurological PNS, caused by immune cross-reactivity between tumor and normal host tissues in the nervous system. Paraneoplastic syndromes in ONB include: syndrome of inappropriate ADH secretion (SIADH), ectopic ACTH syndrome (EAS), humoral hypercalcemia of malignancy (HHM), hypertension due to catecholamine secretion by tumor, opsoclonus-myoclonus-ataxia (OMA) and paraneoplastic cerebellar degeneration. Paraneoplastic syndromes in ONB tend to have atypical features, therefore diagnosis may be difficult. In this review, we described initial symptoms, patterns of presentation, treatment and outcome of paraneoplastic syndromes in ONB, reported in the literature. PMID:26199564

  14. Eliminating malignant contamination from therapeutic human spermatogonial stem cells

    PubMed Central

    Dovey, Serena L.; Valli, Hanna; Hermann, Brian P.; Sukhwani, Meena; Donohue, Julia; Castro, Carlos A.; Chu, Tianjiao; Sanfilippo, Joseph S.; Orwig, Kyle E.

    2013-01-01

    Spermatogonial stem cell (SSC) transplantation has been shown to restore fertility in several species and may have application for treating some cases of male infertility (e.g., secondary to gonadotoxic therapy for cancer). To ensure safety of this fertility preservation strategy, methods are needed to isolate and enrich SSCs from human testis cell suspensions and also remove malignant contamination. We used flow cytometry to characterize cell surface antigen expression on human testicular cells and leukemic cells (MOLT-4 and TF-1a). We demonstrated via FACS that EpCAM is expressed by human spermatogonia but not MOLT-4 cells. In contrast, HLA-ABC and CD49e marked >95% of MOLT-4 cells but were not expressed on human spermatogonia. A multiparameter sort of MOLT-4–contaminated human testicular cell suspensions was performed to isolate EpCAM+/HLA-ABC–/CD49e– (putative spermatogonia) and EpCAM–/HLA-ABC+/CD49e+ (putative MOLT-4) cell fractions. The EpCAM+/HLA-ABC–/CD49e– fraction was enriched for spermatogonial colonizing activity and did not form tumors following human-to–nude mouse xenotransplantation. The EpCAM–/HLA-ABC+/CD49e+ fraction produced tumors following xenotransplantation. This approach could be generalized with slight modification to also remove contaminating TF-1a leukemia cells. Thus, FACS provides a method to isolate and enrich human spermatogonia and remove malignant contamination by exploiting differences in cell surface antigen expression. PMID:23549087

  15. Does MW Radiation Affect Gene Expression, Apoptotic Level, and Cell Cycle Progression of Human SH-SY5Y Neuroblastoma Cells?

    PubMed

    Kayhan, Handan; Esmekaya, Meric Arda; Saglam, Atiye Seda Yar; Tuysuz, Mehmed Zahid; Canseven, Ayşe Gulnihal; Yagci, Abdullah Munci; Seyhan, Nesrin

    2016-06-01

    Neuroblastoma (NB) is a cancer that occurs in sympathetic nervous system arising from neuroblasts and nerve tissue of the adrenal gland, neck, chest, or spinal cord. It is an embryonal malignancy and affects infants and children. In this study, we investigated the effects of microwave (MW) radiation on apoptotic activity, cell viability, and cell cycle progression in human SH-SY5Y NB cells which can give information about MW radiation effects on neural cells covering the period from the embryonic stages to infants. SH-SY5Y NB cells were exposed to 2.1 GHz W-CDMA modulated MW radiation for 24 h at a specific absorption rate of 0.491 W/kg. Control samples were in the same conditions with MW-exposed samples but they were not exposed to MW radiation. The apoptotic activity of cells was measured by Annexin-V-FITC and propidium iodide staining. Moreover, mRNA levels of proliferative and cell cycle proteins were determined by real-time RT-PCR. The change in cell cycle progression was observed by using CycleTest-Plus DNA reagent. No significant change was observed in apoptotic activity of MW-exposed cells compared to control cells. The mRNA levels of c-myc and cyclin D1 were significantly reduced in MW group (p < 0.05). The percentage of MW-exposed cells in G1 phase was significantly higher than the percentage of control cells in G1 phase. MW radiation caused cell cycle arrest in G1 phase. These results showed that 2.1 GHz W-CDMA modulated MW radiation did not cause apoptotic cell death but changed cell cycle progression. PMID:27260669

  16. Aluminum Activates PERK-EIF2α Signaling and Inflammatory Proteins in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Rizvi, Syed Husain Mustafa; Parveen, Arshiya; Ahmad, Israr; Ahmad, Iqbal; Verma, Anoop K; Arshad, Md; Mahdi, Abbas Ali

    2016-07-01

    Aluminum is the third most abundant element present in the earth's crust and human exposure to it is possible due to industrialization, utensils, medicines, antiperspirants, etc. Evidences suggest involvement of aluminum in a variety of neurodegenerative disorders including Alzheimer's disease. Endoplasmic reticulum (ER) stress has been implicated in various neurological disorders. ER stress may be a result of impaired calcium homeostasis due to perturbed redox balance and is known to elicit inflammation through the activation of unfolded protein response (UPR). In the present study, we aimed to investigate the role of aluminum in ER stress-mediated activation of inflammatory responses in neuroblastoma cells. Lactate dehydrogenase (LDH) release assay revealed that aluminum compromised the membrane integrity of neuroblastoma cells, probably due to membrane damage, as indicated by enhanced levels of lipid peroxidation (LPO). Besides this, our results clearly demonstrated elevated reactive oxygen species (ROS) levels and a weakened antioxidant defence system manifested by decrease in catalase (CAT) activity and cellular glutathione (GSH). Moreover, we studied the expression of key apoptosis-related proteins, ER stress-mediated activation of UPR, and its downstream inflammatory pathway. It was observed that aluminum potentially enhanced protein levels of PERK, EIF2α, caspase 9, caspase 3, and inflammatory markers like NF-κB, NLRP3, HMGB1, and nitric oxide (NO). Furthermore, aluminum altered TNFα, IL1β, IL6, and IL10 mRNA levels as well. The overall findings indicated that aluminum mediates UPR activation through ER stress, which results in induction of inflammatory pathway and apoptotic proteins in neuronal cells. PMID:26546554

  17. Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells.

    PubMed

    Mishra, Rachana; Kaur, Gurcharan

    2015-08-01

    Children diagnosed with neuroblastomas often suffer from severe side as well as late effects of conventional treatments like chemotherapy and radiotherapy. Recent advances in understanding of molecular pathways involved in cellular differentiation and apoptosis have helped in the development of new therapeutic approach based on differentiation-based therapy of malignant tumours. Natural medicines with their holistic therapeutic approach are known to selectively eliminate cancer cells thus provide a better substitute for the conventional treatment modes. The current study was aimed to investigate the anti-cancer potential of aqueous ethanolic extract of Tinospora cordifolia (TCE) using IMR-32 human neuroblastoma cell line as a model system. TCE is highly recommended in Ayurveda for its general body and metal health-promoting properties. TCE treatment was seen to arrest the majority of cells in G0/G1 phase and modulated the expression of DNA clamp sliding protein (PCNA) and cyclin D1. Further, TCE-treated cells showed differentiation as revealed by their morphology and the expression of neuronal cell specific differentiation markers NF200, MAP-2 and NeuN in neuroblastoma cells. The differentiated phenotype was associated with induction of senescence and pro-apoptosis pathways by enhancing expression of senescence marker mortalin and Rel A subunit of nuclear factor kappa beta (NFkB) along with decreased expression of anti-apoptotic marker, Bcl-xl. TCE exhibited anti-metastatic activity and significantly reduced cell migration in the scratched area along with downregulation of neural cell adhesion molecule (NCAM) polysialylation and secretion of matrix metalloproteinases (MMPs). Our data suggest that crude extract or active phytochemicals from this plant may be a potential candidate for differentiation-based therapy of malignant neuroblastoma cells. PMID:25280667

  18. Monoclonal antibodies and neuroblastoma

    SciTech Connect

    Miraldi, F. )

    1989-10-01

    Several antineuroblastoma monoclonal antibodies (MoAbs) have been described and two have been used in radioimmunoimaging and radioimmunotherapy in patients. MoAb 3F8 is a murine IgG3 antibody specific for the ganglioside GD2. Radioiodine-labeled 3F8 has been shown to specifically target human neuroblastoma in patients, and radioimmunoimaging with this agent has provided consistently high uptakes with tumor-to-background ratios of greater than or equal to 10:1. Radioimmunotherapy has been attempted with both MoAb 3F8 and MoAb UJ13A, and although encouraging results have been obtained, dosimetry data and tissue dose response information for these agents is lacking, which impedes the development of such therapy. 124I, a positron emitter, can be used with 3F8 in positron emission tomography (PET) scanning to provide dosimetry information for radioimmunotherapy. The tumor radiation dose response from radiolabeled MoAb also can be followed with PET images with fluorodeoxyglucose (FDG) scanning of neuroblastoma tumors. Results to date indicate that radioimmunoimaging has clinical use in the diagnosis of neuroblastoma and the potential for radioimmunotherapy for this cancer remains high.48 references.

  19. Olfactory neuroblastoma

    SciTech Connect

    O'Connor, T.A.; McLean, P.; Juillard, G.J.; Parker, R.G.

    1989-06-15

    Fifteen patients with olfactory neuroblastoma were treated during the 17-year period of 1969 to 1986. Data was analyzed with respect to age at presentation, sex, presenting signs and symptoms, stage, and results of treatment. Age ranged from 4 to 67 years with the median age being 27 years. Median follow-up was 8 years. Local control was achieved in nine of nine patients or 100% with successful surgical resection, i.e., minimal residual disease, followed by postoperative radiation therapy (45 to 65 Gy) was employed. There were no distant failures when the primary site was controlled. Regional lymph node metastases were infrequent: only 13% (two of 15 patients) presented with positive nodes. Three of four patients treated initially with surgery alone had a local recurrence, two of which were successfully salvaged by combined therapy. There were four patients treated with radiation therapy alone: three had persistent disease after radiation therapy, and one patient was controlled with 65 Gy. Olfactory neuroblastoma has a propensity to recur locally when treated with surgery alone. The authors' experience suggests excellent local control can be achieved with surgery immediately followed by radiation therapy. Thus the authors recommend planned combined treatment for all resectable lesions.

  20. Identification of alpha 2-adrenergic receptor sites in human retinoblastoma (Y-79) and neuroblastoma (SH-SY5Y) cells

    SciTech Connect

    Kazmi, S.M.; Mishra, R.K.

    1989-02-15

    The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. (/sup 3/H)Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, (/sup 3/H)Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.

  1. Generation and Characterization of a Human/Mouse Chimeric GD2-Mimicking Anti-Idiotype Antibody Ganglidiximab for Active Immunotherapy against Neuroblastoma.

    PubMed

    Eger, Christin; Siebert, Nikolai; Seidel, Diana; Zumpe, Maxi; Jüttner, Madlen; Brandt, Sven; Müller, Hans-Peter; Lode, Holger N

    2016-01-01

    Vaccination with proteins mimicking GD2 that is highly expressed on neuroblastoma (NB) cells is a promising strategy in treatment of NB, a pediatric malignancy with poor prognosis. We previously showed efficacy of ganglidiomab in vivo, a murine anti-idiotype (anti-Id) IgG1. In order to tailor immune responses to variable regions, we generated a new human/mouse chimeric anti-Id antibody (Ab) ganglidiximab by replacing murine constant fragments with corresponding human IgG1 regions. DNA sequences encoding for variable regions of heavy (VH) and light chains (VL) were synthesized by RT-PCR from total RNA of ganglidiomab-producing hybridoma cells and further ligated into mammalian expression plasmids with coding sequences for constant regions of human IgG1 heavy and light chains, respectively. We established a stable production cell line using Chinese hamster ovarian (CHO) cells co-transfected with two expression plasmids driving the expression of either ganglidiximab heavy or light chain. After purification from supernatants, anti-idiotypic characteristics of ganglidiximab were demonstrated. Binding of ganglidiximab to anti-GD2 Abs of the 14.18 family as well as to NK-92tr cells expressing a GD2-specific chimeric antigen receptor (scFv(ch14.18)-zeta) was shown using standard ELISA and flow cytometry analysis, respectively. Ganglidiximab binding affinities to anti-GD2 Abs were further determined by surface plasmon resonance technique. Moreover, binding of anti-GD2 Abs to the nominal antigen GD2 as well as GD2-specific Ab-mediated cytotoxicity (ADCC, CDC) was competitively inhibited by ganglidiximab. Finally, ganglidiximab was successfully used as a protein vaccine in vivo to induce a GD2-specific humoral immune response. In summary, we report generation and characterization of a new human/mouse chimeric anti-Id Ab ganglidiximab for active immunotherapy against NB. This Ab may be useful to tailor immune responses to the paratope regions mimicking GD2 overexpressed in NB

  2. Generation and Characterization of a Human/Mouse Chimeric GD2-Mimicking Anti-Idiotype Antibody Ganglidiximab for Active Immunotherapy against Neuroblastoma

    PubMed Central

    Eger, Christin; Siebert, Nikolai; Seidel, Diana; Zumpe, Maxi; Jüttner, Madlen; Brandt, Sven; Müller, Hans-Peter; Lode, Holger N.

    2016-01-01

    Vaccination with proteins mimicking GD2 that is highly expressed on neuroblastoma (NB) cells is a promising strategy in treatment of NB, a pediatric malignancy with poor prognosis. We previously showed efficacy of ganglidiomab in vivo, a murine anti-idiotype (anti-Id) IgG1. In order to tailor immune responses to variable regions, we generated a new human/mouse chimeric anti-Id antibody (Ab) ganglidiximab by replacing murine constant fragments with corresponding human IgG1 regions. DNA sequences encoding for variable regions of heavy (VH) and light chains (VL) were synthesized by RT-PCR from total RNA of ganglidiomab-producing hybridoma cells and further ligated into mammalian expression plasmids with coding sequences for constant regions of human IgG1 heavy and light chains, respectively. We established a stable production cell line using Chinese hamster ovarian (CHO) cells co-transfected with two expression plasmids driving the expression of either ganglidiximab heavy or light chain. After purification from supernatants, anti-idiotypic characteristics of ganglidiximab were demonstrated. Binding of ganglidiximab to anti-GD2 Abs of the 14.18 family as well as to NK-92tr cells expressing a GD2-specific chimeric antigen receptor (scFv(ch14.18)-zeta) was shown using standard ELISA and flow cytometry analysis, respectively. Ganglidiximab binding affinities to anti-GD2 Abs were further determined by surface plasmon resonance technique. Moreover, binding of anti-GD2 Abs to the nominal antigen GD2 as well as GD2-specific Ab-mediated cytotoxicity (ADCC, CDC) was competitively inhibited by ganglidiximab. Finally, ganglidiximab was successfully used as a protein vaccine in vivo to induce a GD2-specific humoral immune response. In summary, we report generation and characterization of a new human/mouse chimeric anti-Id Ab ganglidiximab for active immunotherapy against NB. This Ab may be useful to tailor immune responses to the paratope regions mimicking GD2 overexpressed in NB

  3. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model

    PubMed Central

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, René Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Introduction Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer’s oxidative phosphorylation system. Methods Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). Results Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. Conclusions Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting

  4. Heterogeneity and immunophenotypic plasticity of malignant cells in human liposarcomas

    PubMed Central

    Zhang, Yan; Young, Eric D.; Bill, Katelynn; Belousov, Roman; Peng, Tingsheng; Lazar, Alexander J; Pollock, Raphael E; Simmons, Paul J.; Lev, Dina; Kolonin, Mikhail G.

    2013-01-01

    Liposarcomas are tumors arising in white adipose tissue (WAT) with avidity for local recurrence. Aggressive dedifferentiated liposarcomas (DDLS) may arise from well-differentiated subtypes (WDLS) upon disease progression, however, this key issue is unresolved due in large part to knowledge gaps about liposarcoma cellular composition. Here, we wished to improve insights into liposarcoma cellular hierarchy. Tumor section analysis indicated that the populations, distinguishable based on expression of CD34 (a marker of adipocyte progenitors) and CD36 (a marker of adipocyte differentiation), occupy distinct intra-tumoral locations in both WDLS and DDLS. Taking advantage of these markers, we separated cells from a panel of fresh human surgical specimens by fluorescence-activated cell sorting (FACS). Based on chromosome analysis and the culture phenotypes of the composing populations, we demonstrate that malignant cells comprise four mesenchymal populations distinguished by expression of CD34 and CD36, while vascular (CD31+) and hematopoietic (CD45+) components are non-neoplastic. Finally, we show that mouse xenografts are derivable from both CD36-negative and CD36-positive DDLS cells, and that each population recreates the heterogeneity of CD36 expression in vivo. Combined, our results show that malignant cells in WDLS and DDLS can be classified according to distinct stages of adipogenesis and indicate immonophenotypic plasticity of malignant liposarcoma cells. PMID:23770802

  5. Comparative non-cholinergic neurotoxic effects of paraoxon and diisopropyl fluorophosphate (DFP) on human neuroblastoma and astrocytoma cell lines

    SciTech Connect

    Qian Yongchang; Venkatraj, Jijayanagaram; Barhoumi, Rola; Pal, Ranadip; Datta, Aniruddha; Wild, James R.; Tiffany-Castiglioni, Evelyn . E-mail: ecastiglioni@cvm.tamu.edu

    2007-03-15

    The objective of this study was to evaluate the comparative non-cholinergic neurotoxic effects of paraoxon, which is acutely neurotoxic, and diisopropyl fluorophosphate (DFP), which induces OPIDN, in the human neuroblastoma SY5Y and the human astrocytoma cell line CCF-STTG1. SY5Y cells have been studied extensively as a model for OP-induced neurotoxicity, but CCF cells have not previously been studied. We conducted a preliminary human gene array assay of OP-treated SY5Y cells in order to assess at the gene level whether these cells can distinguish between OP compounds that do and do not cause OPIDN. Paraoxon and DFP induced dramatically different profiles of gene expression. Two genes were upregulated and 13 downregulated by at least 2-fold in paraoxon-treated cells. In contrast, one gene was upregulated by DFP and none was downregulated at the 2-fold threshold. This finding is consistent with current and previous observations that SY5Y cells can distinguish between OPs that do or do not induce OPIDN. We also examined gene array results for possible novel target proteins or metabolic pathways for OP neurotoxicity. Protein levels of glucose regulated protein 78 (GRP78) revealed that paraoxon exposure at 3 {mu}M for 24 h significantly reduced GRP78 levels by 30% in neuroblastoma cells, whereas DFP treatment had no effect. In comparison with SY5Y neuroblastoma cells, paraoxon and DFP (3 {mu}M for 24 h) each significantly increased GRP78 levels by 23-24% in CCF astrocytoma cells. As we have previously evaluated intracellular changes in Ca{sup 2+} levels in SY5Y cells, we investigated the effects of paraoxon and DFP on cellular Ca{sup 2+} homeostasis in CCF by studying cytosolic and mitochondrial basal calcium levels. A significant decrease in the ratio of mitochondrial to cytosolic Ca{sup 2+} fluorescence was detected in CCF cultures treated for either 1 or 3 days with 1, 3, 10, or 30 {mu}M paraoxon. In contrast, treatment with DFP for 1 day had no significant effect

  6. N-Myc expression enhances the oncolytic effects of vesicular stomatitis virus in human neuroblastoma cells.

    PubMed

    Corredor, Juan C; Redding, Nicole; Bloté, Karen; Robbins, Stephen M; Senger, Donna L; Bell, John C; Beaudry, Paul

    2016-01-01

    N-myc oncogene amplification is associated but not present in all cases of high-risk neuroblastoma (NB). Since oncogene expression could often modulate sensitivity to oncolytic viruses, we wanted to examine if N-myc expression status would determine virotherapy efficacy to high-risk NB. We showed that induction of exogenous N-myc in a non-N-myc-amplified cell line background (TET-21N) increased susceptibility to oncolytic vesicular stomatitis virus (mutant VSVΔM51) and alleviated the type I IFN-induced antiviral state. Cells with basal N-myc, on the other hand, were less susceptible to virus-induced oncolysis and established a robust IFN-mediated antiviral state. The same effects were also observed in NB cell lines with and without N-myc amplification. Microarray analysis showed that N-myc overexpression in TET-21N cells downregulated IFN-stimulated genes (ISGs) with known antiviral functions. Furthermore, virus infection caused significant changes in global gene expression in TET-21N cells overexpressing N-myc. Such changes involved ISGs with various functions. Therefore, the present study showed that augmented susceptibility to VSVΔM51 by N-myc at least involves downregulation of ISGs with antiviral functions and alleviation of the IFN-stimulated antiviral state. Our studies suggest the potential utility of N-myc amplification/overexpression as a predictive biomarker of virotherapy response for high-risk NB using IFN-sensitive oncolytic viruses. PMID:27626059

  7. Characterization of catechol-thioether-induced apoptosis in human SH-SY5Y neuroblastoma cells.

    PubMed

    Mosca, Luciana; Tempera, Italo; Lendaro, Eugenio; Di Francesco, Laura; d'Erme, Maria

    2008-03-01

    Recent work has highlighted the involvement of a dopamine derivative, 5-S-cysteinyl-dopamine (CysDA), in neurodegeneration and apoptotic cell death. In this paper we study in further detail the apoptotic process activated by this catechol-thioether derivative of dopamine in SH-SY5Y neuroblastoma cells. CysDA activates a cascade of events by an initial perturbation of Calcium homeostasis in the cell. Cell treatment with the catechol-thioether induces an immediate rise in intracellular Ca(2+) concentration, as demonstrated by a shift in the indo-1 dye emission spectrum, and a sustained high calcium concentration at long times of incubation. Fluorescence microscopy data show that the treatment of cells induces mitochondrial transmembrane potential depolarization, a clear evidence of the onset of apoptotic process. Programmed cell death activation is also demonstrated by cytochrome c release from the mitochondria, by an increased activity of both caspase-8 and -9 and by the poly(ADP-ribose)polymerase (PARP-1) cleavage, yielding the typical 86 kDa fragment due to caspase-3 activity. Overall, our data support the hypothesis that CysDA may induce apoptotic death in neuronal cells, via an initial perturbation of calcium homeostasis in the cytosol. PMID:17929313

  8. Differentiation of human neuroblastoma cells toward the osteogenic lineage by mTOR inhibitor

    PubMed Central

    Carpentieri, A; Cozzoli, E; Scimeca, M; Bonanno, E; Sardanelli, A M; Gambacurta, A

    2015-01-01

    Current hypothesis suggest that tumors can originate from adult cells after a process of 'reprogramming' driven by genetic and epigenetic alterations. These cancer cells, called cancer stem cells (CSCs), are responsible for the tumor growth and metastases. To date, the research effort has been directed to the identification, isolation and manipulation of this cell population. Independently of whether tumors were triggered by a reprogramming of gene expression or seeded by stem cells, their energetic metabolism is altered compared with a normal cell, resulting in a high aerobic glycolytic 'Warburg' phenotype and dysregulation of mitochondrial activity. This metabolic alteration is intricately linked to cancer progression.The aim of this work has been to demonstrate the possibility of differentiating a neoplastic cell toward different germ layer lineages, by evaluating the morphological, metabolic and functional changes occurring in this process. The cellular differentiation reported in this study brings to different conclusions from those present in the current literature. We demonstrate that 'in vitro' neuroblastoma cancer cells (chosen as experimental model) are able to differentiate directly into osteoblastic (by rapamycin, an mTOR inhibitor) and hepatic lineage without an intermediate 'stem' cell step. This process seems owing to a synergy among few master molecules, metabolic changes and scaffold presence acting in a concerted way to control the cell fate. PMID:26561783

  9. Sendai virus-mediated expression of reprogramming factors promotes plasticity of human neuroblastoma cells.

    PubMed

    Islam, S M Rafiqul; Suenaga, Yusuke; Takatori, Atsushi; Ueda, Yasuji; Kaneko, Yoshiki; Kawana, Hidetada; Itami, Makiko; Ohira, Miki; Yokoi, Sana; Nakagawara, Akira

    2015-10-01

    Neuroblastoma (NB) is the most common extracranial solid tumor that originates from multipotent neural crest cells. NB cell populations that express embryonic stem cell-associated genes have been identified and shown to retain a multipotent phenotype. However, whether somatic reprogramming of NB cells can produce similar stem-cell like populations is unknown. Here, we sought to reprogram NB cell lines using an integration-free Sendai virus vector system. Of four NB cell lines examined, only SH-IN cells formed induced pluripotent stem cell-like colonies (SH-IN 4F colonies) at approximately 6 weeks following transduction. These SH-IN 4F colonies were alkaline phosphatase-positive. Array comparative genomic hybridization analysis indicated identical genomic aberrations in the SH-IN 4F cells as in the parental cells. SH-IN 4F cells had the ability to differentiate into the three embryonic germ layers in vitro, but rather formed NBs in vivo. Furthermore, SH-IN 4F cells exhibited resistance to cisplatin treatment and differentiated into endothelial-like cells expressing CD31 in the presence of vascular endothelial growth factor. These results suggest that SH-IN 4F cells are partially reprogrammed NB cells, and could be a suitable model for investigating the plasticity of aggressive tumors. PMID:26190440

  10. N-Myc expression enhances the oncolytic effects of vesicular stomatitis virus in human neuroblastoma cells

    PubMed Central

    Corredor, Juan C; Redding, Nicole; Bloté, Karen; Robbins, Stephen M; Senger, Donna L; Bell, John C; Beaudry, Paul

    2016-01-01

    N-myc oncogene amplification is associated but not present in all cases of high-risk neuroblastoma (NB). Since oncogene expression could often modulate sensitivity to oncolytic viruses, we wanted to examine if N-myc expression status would determine virotherapy efficacy to high-risk NB. We showed that induction of exogenous N-myc in a non-N-myc-amplified cell line background (TET-21N) increased susceptibility to oncolytic vesicular stomatitis virus (mutant VSVΔM51) and alleviated the type I IFN-induced antiviral state. Cells with basal N-myc, on the other hand, were less susceptible to virus-induced oncolysis and established a robust IFN-mediated antiviral state. The same effects were also observed in NB cell lines with and without N-myc amplification. Microarray analysis showed that N-myc overexpression in TET-21N cells downregulated IFN-stimulated genes (ISGs) with known antiviral functions. Furthermore, virus infection caused significant changes in global gene expression in TET-21N cells overexpressing N-myc. Such changes involved ISGs with various functions. Therefore, the present study showed that augmented susceptibility to VSVΔM51 by N-myc at least involves downregulation of ISGs with antiviral functions and alleviation of the IFN-stimulated antiviral state. Our studies suggest the potential utility of N-myc amplification/overexpression as a predictive biomarker of virotherapy response for high-risk NB using IFN-sensitive oncolytic viruses. PMID:27626059

  11. Neuroblastoma: A Tough Nut to Crack.

    PubMed

    Speleman, Frank; Park, Julie R; Henderson, Tara O

    2016-01-01

    Neuroblastoma, an embryonal tumor arising from neural crest-derived progenitor cells, is the most common solid tumor in childhood, with more than 700 cases diagnosed per year in the United States. In the past several decades, significant advances have been made in the treatment of neuroblastoma. Treatment advances reflect improved understanding of the biology of neuroblastoma. Although amplification of MYCN was discovered in the early 1980s, our understanding of neuroblastoma oncogenesis has advanced in the last decade as a result of high-throughput genomic analysis, exome and whole-genome sequencing, genome-wide association studies, and synthetic lethal drug screens. Our refined understanding of neuroblastoma biology and genetics is reflected in improved prognostic stratification and appropriate tailoring of therapy in recent clinical trials. Moreover, for high-risk neuroblastoma, a disease that was uniformly fatal 3 decades ago, recent clinical trials incorporating autologous hematopoietic transplant and immunotherapy utilizing anti-GD2 antibody plus cytokines have shown improved event-free and overall survival. These advances have resulted in a growing population of long-term survivors of neuroblastoma. Examination of the late effects and second malignant neoplasms (SMNs) in both older generations of survivors and more recently treated survivors will inform both design of future trials and surveillance guidelines for long-term follow-up. As a consequence of advances in understanding of the biology of neuroblastoma, successful clinical trials, and refined understanding of the late effects and SMNs of survivors, the promise of precision medicine is becoming a reality for patients with neuroblastoma. PMID:27249766

  12. Repression of BIRC5/Survivin by FOXO3/FKHRL1 Sensitizes Human Neuroblastoma Cells to DNA Damage-induced Apoptosis

    PubMed Central

    Hagenbuchner, Judith; Unterkircher, Thomas; Sachsenmaier, Nora; Seifarth, Christoph; Böck, Günther; Porto, Verena; Geiger, Kathrin; Ausserlechner, Michael

    2009-01-01

    The phosphatidylinositol 3-kinase (PI3K)–protein kinase B (PKB) pathway regulates survival and chemotherapy resistance of neuronal cells, and its deregulation in neuroblastoma (NB) tumors predicts an adverse clinical outcome. Here, we show that inhibition of PI3K-PKB signaling in human NB cells induces nuclear translocation of FOXO3/FKHRL1, represses the prosurvival protein BIRC5/Survivin, and sensitizes to DNA-damaging agents. To specifically address whether FKHRL1 contributes to Survivin regulation, we introduced a 4-hydroxy-tamoxifen-regulated FKHRL1(A3)ERtm allele into NB cells. Conditional FKHRL1 activation repressed Survivin transcription and protein expression. Transgenic Survivin exerted a significant antiapoptotic effect and prevented the accumulation of Bim and Bax at mitochondria, the loss of mitochondrial membrane potential as well as the release of cytochrome c during FKHRL1-induced apoptosis. In concordance, Survivin knockdown by retroviral short hairpin RNA technology accelerated FKHRL1-induced apoptosis. Low-dose activation of FKHRL1 sensitized to the DNA-damaging agents doxorubicin and etoposide, whereas the overexpression of Survivin diminished FKHRL1 sensitization to these drugs. These results suggest that repression of Survivin by FKHRL1 facilitates FKHRL1-induced apoptosis and sensitizes to cell death induced by DNA-damaging agents, which supports the central role of PI3K-PKB-FKHRL1 signaling in drug resistance of human NB. PMID:19211844

  13. Tumour progression of human neuroblastoma cells tagged with a lacZ marker gene: earliest events at ectopic injection sites.

    PubMed Central

    Kleinman, N. R.; Lewandowska, K.; Culp, L. A.

    1994-01-01

    Human Platt neuroblastoma cells were transfected with the marker gene, bacterial lacZ, to track cells at the earliest stages after ectopic injection at two different sites in athymic nude mice. Three clones (LZPt-1,-2 and -3) of differing morphologies were analysed. All clones yielded large primary tumours subcutaneously or intradermally with similar latency. While LZPt-2 and -3 clones generated well-staining primary tumours, LZPt-1 cells yielded many non-staining tumours, indicating greater instability of lacZ expression for this clone in situ (stability of lacZ expression in culture was similar for all three clones). After s.c. or intradermal injections, tumour cells were tracked for 1 h to > 3 weeks (palpable) to evaluate the topology and population expansion characteristics at the earliest times. From 1 h to 2 days, tumour cells were concentrated in central masses with 'crinkly hair' distributions emanating from the periphery. Between 3 and 7 days, these 'crinkly hair' patterns were cleared from the tissue, leaving dense ovoid patterns of tumour cells. These concentrations of cells expanded collectively, not by division of one or a few cells, but by division of many cells. For clone LZPt-1, cells stained well with X-gal for 2-3 days; by 7 days, most cells were non-staining. Evidence suggests that lacZ expression is turned off in these tumour cells, rather than a lacZ- cell type clonally dominating the population. For all three clones, tumour cells remained rounded and did not spread in any tissue environment at all time points, indicating very different matrix adhesion mechanisms operating in situ compared with their distinctive spreading patterns in culture. Angioneogenesis near primary tumours became evident by 2-3 days, leading to extensive vascularisation by 1-2 weeks. Overall, these studies indicate common tumour progression characteristics for three different clones of human neuroblastoma, insight into lacZ instability mechanisms operating in one of these

  14. Neuroblastoma in an adult: case presentation and literature review.

    PubMed

    Smith, Laura; Minter, Steve; O'Brien, Paul; Kraveka, Jacqueline M; Medina, Ana Maria; Lazarchick, John

    2013-01-01

    Neuroblastoma is the most common malignancy in children less than one year of age, but is rare in adults. Adult neuroblastoma differs from pediatric cases by lacking classical features including low incidence of MYCN amplification, elevated urinary catecholamimes, and MIBG avidity. The diagnosis may not be initially considered because of the rarity, which emphasizes the importance of immunohistochemical staining and cytogenetic testing in aiding the diagnosis. We present a case of neuroblastoma in a 39-year-old woman who failed to respond to intensive therapy for this malignancy and died within a year after diagnosis. PMID:23462610

  15. Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma

    PubMed Central

    Ostler, Kelly R.; Yang, Qiwei; Looney, Timothy J.; Zhang, Li; Vasanthakumar, Aparna; Tian, Yufeng; Kocherginsky, Masha; Raimondi, Stacey L.; DeMaio, Jessica G.; Salwen, Helen R.; Gu, Song; Chlenski, Alexandre; Naranjo, Arlene; Gill, Amy; Peddinti, Radhika; Lahn, Bruce T.; Cohn, Susan L.; Godley, Lucy A.

    2012-01-01

    Epigenetic changes in pediatric neuroblastoma may contribute to the aggressive pathophysiology of this disease, but little is known about the basis for such changes. In this study, we examined a role for the DNA methyltransferase DNMT3B, in particular, the truncated isoform DNMT3B7 which is generated frequently in cancer. To investigate if aberrant DNMT3B transcripts alter DNA methylation, gene expression, and phenotypic character in neuroblastoma, we measured DNMT3B expression in primary tumors. Higher levels of DNMT3B7 were detected in differentiated ganglioneuroblastomas compared to undifferentiated neuroblastomas, suggesting that expression of DNMT3B7 may induce a less aggressive clinical phenotype. To test this hypothesis, we investigated the effects of enforced DNMT3B7 expression in neuroblastoma cells, finding a significant inhibition of cell proliferation in vitro and angiogenesis and tumor growth in vivo. DNMT3B7-positive cells had higher levels of total genomic methylation and a dramatic decrease in expression of the FOS and JUN family members that comprise AP1 transcription factors. Consistent with an established antagonistic relationship between AP1 expression and retinoic acid receptor activity, increased differentiation was seen in the DNMT3B7-expressing neuroblastoma cells following treatment with all-trans retinoic acid (ATRA) compared to controls. Our results indicate that DNMT3B7 modifies the epigenome in neuroblastoma cells to induce changes in gene expression, inhibit tumor growth, and increase sensitivity to ATRA. PMID:22815530

  16. Opioid receptors in human neuroblastoma SH-SY5Y cells: evidence for distinct morphine (. mu. ) and enkephalin (delta) binding sites

    SciTech Connect

    Kazmi, S.M.I.; Mishra, R.K.

    1986-06-13

    Human neuroblastoma SH-SY5Y cells exhibited a heterogeneous population of ..mu.. and delta types of opioid binding sites. These specific binding sites displayed the characteristic saturability, stereospecificity and reversibility, expected of a receptor. Scatchard analysis of (/sup 3/H)-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin (DADLE) in the presence of 10/sup -5/M D-Pro/sup 4/-morphiceptin (to block the ..mu.. receptors) and the competitive displacement by various highly selective ligands yielded the binding parameters of delta sites which closely resemble those of the delta receptors in brain and mouse neuroblastoma clones. Similarly, the high affinity binding of (/sup 3/H)-dihydromorphine, together with the higher potency of morphine analogues to displace (/sup 3/H)-naloxone binding established the presence of ..mu.. sites. Guanine nucleotides and NaCl significantly inhibited the association and increased the dissociation of (/sup 3/H)-DADLE binding.

  17. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells.

    PubMed

    Rajan, Thangavelu Soundara; De Nicola, Gina Rosalinda; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2016-04-01

    Isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit tumorigenesis and they have received significant attention as potential chemotherapeutic agents against cancer. Astrocytoma grade IV is the most frequent and most malignant primary brain tumor in adults without any curative treatment. New therapeutic drugs are therefore urgently required. In the present study, we investigated the in vitro antitumor activity of the glycosylated isothiocyanate moringin [4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate] produced from quantitative myrosinase-induced hydrolysis of glucomoringin (GMG) under neutral pH value. We have evaluated the potency of moringin on apoptosis induction and cell death in human astrocytoma grade IV CCF-STTG1 cells. Moringin showed to be effective in inducing apoptosis through p53 and Bax activation and Bcl-2 inhibition. In addition, oxidative stress related Nrf2 transcription factor and its upstream regulator CK2 alpha expressions were modulated at higher doses, which indicated the involvement of oxidative stress-mediated apoptosis induced by moringin. Moreover, significant reduction in 5S rRNA was noticed with moringin treatment. Our in vitro results demonstrated the antitumor efficacy of moringin derived from myrosinase-hydrolysis of GMG in human malignant astrocytoma cells. PMID:26882972

  18. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis

    SciTech Connect

    Wu, C.-W.; Ping, Y.-H.; Yen, J.-C.; Chang, C.-Y.; Wang, S.-F.; Yeh, C.-L.; Chi, C.-W.; Lee, H.-C. . E-mail: hclee2@ym.edu.tw

    2007-05-01

    Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive decline in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects.

  19. Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via microglial activation.

    PubMed

    Ma, Kun; Wu, Hao-Yu; Zhang, Bo; He, Xi; Li, Bai-Xiang

    2015-11-01

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is a broad-spectrum herbicide with a wide range of applications worldwide. However, ATR is neurotoxic; it reduces dopamine levels in the substantia nigra and corpus striatum in the midbrain, affects the absorption of synaptic vesicles and synaptic bodies, and interferes with dopamine storage and uptake in synaptic vesicles, leading to neurodegenerative disorders. Microglia are resident immunocompetent and phagocytic cells that regulate and participate in the microenvironment in the central nervous system. They demonstrate macrophage characteristics after activation by releasing inflammatory cytokines and neurotoxic substances to increase the inflammatory response, and are thus involved in neurodegeneration. The aim of this study was to investigate the neurotoxic effects of ATR-activated microglia-mediated neuronal damage in terms of human dopaminergic neuroblastoma SH-SY5Y cell death. ATR was administered to BV-2 microglial cells at 12.5, 25, and 50 μM for 1, 6, 12, 24 and 48 h, respectively. ATR increased activated-microglia-induced overexpression of reactive oxygen species, inducible nitric oxide synthase, nitric oxide, gp91(phox), p47(phox), and the inflammatory cytokines tumor necrosis factor α and interleukin-1β, thus reducing SH-SY5Y cell viability. These results suggest that activated microglia may play a critical role in inflammation-mediated dopaminergic neuronal death, and provide the basis for further studies on the mechanisms of ATR-induced dopaminergic system toxicity. PMID:26256823

  20. [COMPARISON OF CYTOPROTECTIVE EFFECTS OF HEMANTANE AND AMANTADINE UNDER CONDITIONS OF 6-HYDROXYDOPAMINE NEUROTOXIN ACTION ON CULTURED HUMAN NEUROBLASTOMA CELLS].

    PubMed

    Logvinov, I O; Antipova, T A; Nepoklonov, A V; Valdman, E A

    2016-01-01

    Potential neuroprotective activity of the novel antiparkinsonian drug hemantane (hydrochloride N-2-(adamantyl)-hexamethylenimine) in comparison to amantadine has been studied in various regimes of administration on human neuroblastoma SH-SY5Y cell line injury induced by 6-hydroxydopamine (6-OHDA), which is used as in vitro model of dopaminergic neurons for Parkinson's disease. Two regimes of hemantane and amantadine administration in a range of final concentrations 10⁻⁶-10⁻⁸ M were used either prior to or immediately after 6-OHDA introduction. MTT colorimetric assay was used to assess the viability of test cells. Significant decrease in viability of SH-SY5Y cells treated with 6-OHDA was observed. The addition of hemantane to cell medium produced cytoprotective effects in both regimes of administration--before and after 6-OHDA--at concentrations 10⁻⁷ M and 10⁻⁶-10⁻⁸ M, respectively. Amantadine in con- centrations 10⁻⁷-10⁻⁸ M was effective to increase cell survival only when administered after 6-OHDA. These results show that hemantane has a greater neu-roprotective potential in comparison to amantadine. PMID:27159951

  1. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells.

    PubMed

    Russo, Rossella; Ciociaro, Antonella; Berliocchi, Laura; Cassiano, Maria Gilda Valentina; Rombolà, Laura; Ragusa, Salvatore; Bagetta, Giacinto; Blandini, Fabio; Corasaniti, Maria Tiziana

    2013-09-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a widely used plant extract showing anxiolytic, analgesic and neuroprotective effects in rodents; also, BEO activates multiple death pathways in cancer cells. Despite detailed knowledge of its chemical composition, the constituent/s responsible for these pharmacological activities remain largely unknown. Aim of the present study was to identify the components of BEO implicated in cell death. To this end, limonene, linalyl acetate, linalool, γ-terpinene, β-pinene and bergapten were individually tested in human SH-SY5Y neuroblastoma cultures at concentrations comparable with those found in cytotoxic dilutions of BEO. None of the tested compounds elicited cell death. However, significant cytotoxicity was observed when cells were cotreated with limonene and linalyl acetate whereas no other associations were effective. Only cotreatment, but not the single exposure to limonene and linalyl acetate, replicated distinctive morphological and biochemical changes induced by BEO, including caspase-3 activation, PARP cleavage, DNA fragmentation, cell shrinkage, cytoskeletal alterations, together with necrotic and apoptotic cell death. Collectively, our findings suggest a major role for a combined action of these monoterpenes in cancer cell death induced by BEO. PMID:23707744

  2. Antipsychotic drugs increase N-acetylaspartate and N-acetylaspartylglutamate in SH-SY5Y human neuroblastoma cells.

    PubMed

    Arun, Peethambaran; Madhavarao, Chikkathur N; Moffett, John R; Namboodiri, Aryan M A

    2008-08-01

    N-Acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) are related neuronal metabolites associated with the diagnosis and treatment of schizophrenia. NAA is a valuable marker of neuronal viability in magnetic resonance spectroscopy, a technique which has consistently shown NAA levels to be modestly decreased in the brains of schizophrenia patients. However, there are conflicting reports on the changes in brain NAA levels after treatment with antipsychotic drugs, which exert their therapeutic effects in part by blocking dopamine D(2) receptors. NAAG is reported to be an agonist of the metabotropic glutamate 2/3 receptor, which is linked to neurotransmitter release modulation, including glutamate release. Alterations in NAAG metabolism have been implicated in the development of schizophrenia possibly via dysregulation of glutamate neurotransmission. In the present study we have used high performance liquid chromatography to determine the effects of the antipsychotic drugs haloperidol and clozapine on NAA and NAAG levels in SH-SY5Y human neuroblastoma cells, a model system used to test the responses of dopaminergic neurons in vitro. The results indicate that the antipsychotic drugs haloperidol and clozapine increase both NAA and NAAG levels in SH-SY5Y cells in a dose and time dependant manner, providing evidence that NAA and NAAG metabolism in neurons is responsive to antipsychotic drug treatment. PMID:18631215

  3. Riluzole decreases synthesis of N-acetylaspartate and N-acetylaspartylglutamate in SH-SY5Y human neuroblastoma cells.

    PubMed

    Arun, Peethambaran; Moffett, John R; Namboodiri, Aryan M A

    2010-06-01

    N-acetylaspartate (NAA) is present at very high concentrations in the brain and is used as a non-invasive marker of neuronal viability in magnetic resonance spectroscopy. N-acetylaspartylglutamate (NAAG) is an acetylated dipeptide formed from NAA, and may be an agonist of the mGluR3 receptor. Both NAA and NAAG are synthesized primarily in neurons. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder resulting in motor neuron death, and progressive paralysis. Levels of both NAA and NAAG are reported to be decreased in ALS. Riluzole is a glutamatergic modulating agent used to treat ALS, but there are conflicting results in the literature concerning the recovery of NAA after riluzole treatment. We studied the effects of riluzole on the biosynthesis of both NAA and NAAG in SH-SY5Y human neuroblastoma cells. We used two methodologies to examine the effect; one involving radiolabel incorporation from corresponding substrates into NAA and NAAG, and the other involving the measurement of endogenous NAA and NAAG levels using HPLC. We show that riluzole treatment, which decreases glutamatergic neuronal excitation, decreases the synthesis and levels of both NAA and NAAG in SH-SY5Y cells in a dose and time dependant manner. These results suggest that the synthesis of NAA and NAAG may be coupled to glutamatergic neurotransmission, and further investigations along these lines are warranted. PMID:20394738

  4. Cyclophilin B protects SH-SY5Y human neuroblastoma cells against MPP(+)-induced neurotoxicity via JNK pathway.

    PubMed

    Oh, Yoojung; Jeong, Kwon; Kim, Kiyoon; Lee, Young-Seok; Jeong, Suyun; Kim, Sung Soo; Yoon, Kyung-Sik; Ha, Joohun; Kang, Insug; Choe, Wonchae

    2016-09-23

    Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. PD involves a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyidine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) inhibit the complex I of the mitochondrial electron transport chain, and have been widely used to construct PD models. Cyclophilin B (CypB) is an endoplasmic reticulum protein that binds to cyclosporine A as a cyclophilin family member. CypB has peptidyl-prolyl cis-trans isomerase (PPIase) activity. We investigated the protective effects of overexpressed CypB on MPP+-induced neurocytotoxicity in SH-SY5Y human neuroblastoma cells. Overexpressed CypB decreased MPP(+)-induced oxidative stress through the modulation of antioxidant enzymes including manganese superoxide dismutase and catalase, and prevented neurocytotoxicity via mitogen-activated protein kinase, especially the c-Jun N-terminal kinase pathway. In addition, CypB inhibited the activation of MPP(+)-induced the pro-apoptotic molecules poly (ADP-ribose) polymerase, Bax, and Bcl-2, and attenuated MPP(+)-induced mitochondrial dysfunction. The data suggest that overexpressed CypB protects neuronal cells from MPP+-induced dopaminergic neuronal cell death. PMID:27569281

  5. Neuroblastoma and Its Zebrafish Model.

    PubMed

    Zhu, Shizhen; Thomas Look, A

    2016-01-01

    Neuroblastoma, an important developmental tumor arising in the peripheral sympathetic nervous system (PSNS), accounts for approximately 10 % of all cancer-related deaths in children. Recent genomic analyses have identified a spectrum of genetic alterations in this tumor. Amplification of the MYCN oncogene is found in 20 % of cases and is often accompanied by mutational activation of the ALK (anaplastic lymphoma kinase) gene, suggesting their cooperation in tumor initiation and spread. Understanding how complex genetic changes function together in oncogenesis has been a continuing and daunting task in cancer research. This challenge was addressed in neuroblastoma by generating a transgenic zebrafish model that overexpresses human MYCN and activated ALK in the PSNS, leading to tumors that closely resemble human neuroblastoma and new opportunities to probe the mechanisms that underlie the pathogenesis of this tumor. For example, coexpression of activated ALK with MYCN in this model triples the penetrance of neuroblastoma and markedly accelerates tumor onset, demonstrating the interaction of these modified genes in tumor development. Further, MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. In the context of MYCN overexpression, activated ALK provides prosurvival signals that block this apoptotic response, allowing continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma. This application of the zebrafish model illustrates its value in rational assessment of the multigenic changes that define neuroblastoma pathogenesis and points the way to future studies to identify novel targets for therapeutic intervention. PMID:27165366

  6. Neurofunctional endpoints assessed in human neuroblastoma SH-SY5Y cells for estimation of acute systemic toxicity

    SciTech Connect

    Gustafsson, Helena; Runesson, Johan; Lundqvist, Jessica; Lindegren, Helene; Axelsson, Viktoria; Forsby, Anna

    2010-06-01

    The objective of the EU-funded integrated project ACuteTox is to develop a strategy in which general cytotoxicity, together with organ-specific toxicity and biokinetic features, are used for the estimation of human acute systemic toxicity. Our role in the project is to characterise the effect of reference chemicals with regard to neurotoxicity. We studied cell membrane potential (CMP), noradrenalin (NA) uptake, acetylcholine esterase (AChE) activity, acetylcholine receptor (AChR) signalling and voltage-operated calcium channel (VOCC) function in human neuroblastoma SH-SY5Y cells after exposure to 23 pharmaceuticals, pesticides or industrial chemicals. Neurotoxic alert chemicals were identified by comparing the obtained data with cytotoxicity data from the neutral red uptake assay in 3T3 mouse fibroblasts. Furthermore, neurotoxic concentrations were correlated with estimated human lethal blood concentrations (LC50). The CMP assay was the most sensitive assay, identifying eight chemicals as neurotoxic alerts and improving the LC50 correlation for nicotine, lindane, atropine and methadone. The NA uptake assay identified five neurotoxic alert chemicals and improved the LC50 correlation for atropine, diazepam, verapamil and methadone. The AChE, AChR and VOCC assays showed limited potential for detection of acute toxicity. The CMP assay was further evaluated by testing 36 additional reference chemicals. Five neurotoxic alert chemicals were generated and orphendrine and amitriptyline showed improved LC50 correlation. Due to the high sensitivity and the simplicity of the test protocol, the CMP assay constitutes a good candidate assay to be included in an in vitro test strategy for prediction of acute systemic toxicity.

  7. The SK-N-AS human neuroblastoma cell line develops osteolytic bone metastases with increased angiogenesis and COX-2 expression

    PubMed Central

    Tsutsumimoto, Takahiro; Williams, Paul; Yoneda, Toshiyuki

    2014-01-01

    Neuroblastoma (NB), which arises from embryonic neural crest cells, is the most common extra-cranial solid tumor of childhood. Approximately half of NB patients manifest bone metastasis accompanied with bone pain, fractures and bone marrow failure, leading to disturbed quality of life and poor survival. To study the mechanism of bone metastasis of NB, we established an animal model in which intracardiac inoculation of the SK-N-AS human NB cells in nude mice developed osteolytic bone metastases with increased osteoclastogenesis. SK-N-AS cells induced the expression of receptor activator of NF-κB ligand and osteoclastogenesis in mouse bone marrow cells in the co-culture. SK-N-AS cells expressed COX-2 mRNA and produced substantial amounts of prostaglandin E2 (PGE2). In contrast, the SK-N-DZ and SK-N-FI human NB cells failed to develop bone metastases, induce osteoclastogenesis, express COX-2 mRNA and produce PGE2. Immunohistochemical examination of SK-N-AS bone metastasis and subcutaneous tumor showed strong expression of COX-2. The selective COX-2 inhibitor NS-398 inhibited PGE2 production and suppressed bone metastases with reduced osteoclastogenesis. NS-398 also inhibited subcutaneous SK-N-AS tumor development with decreased angiogenesis and vascular endothelial growth factor-A expression. Of interest, metastasis to the adrenal gland, a preferential site for NB development, was also diminished by NS-398. Our results suggest that COX2/PGE2 axis plays a critical role in the pathophysiology of osteolytic bone metastases and tumor development of the SK-NS-AS human NB. Inhibition of angiogenesis by suppressing COX-2/PGE2 may be an effective therapeutic approach for children with NB. PMID:26909300

  8. Bcl-B Expression in Human Epithelial and Nonepithelial Malignancies

    PubMed Central

    Krajewska, Maryla; Kitada, Shinichi; Winter, Jane N.; Variakojis, Daina; Lichtenstein, Alan; Zhai, Dayong; Cuddy, Michael; Huang, Xianshu; Luciano, Frederic; Baker, Cheryl H.; Kim, Hoguen; Shin, Eunah; Kennedy, Susan; Olson, Allen H.; Badzio, Andrzej; Jassem, Jacek; Meinhold-Heerlein, Ivo; Duffy, Michael J.; Schimmer, Aaron D.; Tsao, Ming; Brown, Ewan; Sawyers, Anne; Andreeff, Michael; Mercola, Dan; Krajewski, Stan; Reed, John C.

    2014-01-01

    Purpose Apoptosis plays an important role in neoplastic processes. Bcl-B is an antiapoptotic Bcl-2 family member, which is known to change its phenotype upon binding to Nur77/TR3. The expression pattern of this protein in human malignancies has not been reported. Experimental Design We investigated Bcl-B expression in normal human tissues and several types of human epithelial and nonepithelial malignancy by immunohistochemistry, correlating results with tumor stage, histologic grade, and patient survival. Results Bcl-B protein was strongly expressed in all normal plasma cells but found in only18%of multiple myelomas (n = 133). Bcl-B immunostaining was also present in normal germinal center centroblasts and centrocytes and in approximately half of diffuse large B-cell lymphoma (n =48) specimens, whereas follicular lymphomas (n = 57) did not contain Bcl-B. In breast (n = 119), prostate (n = 66), gastric (n = 180), and colorectal (n = 106) adenocarcinomas, as well as in non – small cell lung cancers (n = 82), tumor-specific overexpression of Bcl-B was observed. Bcl-B expression was associated with variables of poor prognosis, such as high tumor grade in breast cancer (P = 0.009), microsatellite stability (P = 0.0002), and left-sided anatomic location (P = 0.02) of colorectal cancers, as well as with greater incidence of death from prostate cancer (P = 0.005) and shorter survival of patients with small cell lung cancer (P = 0.009). Conversely, although overexpressed in many gastric cancers, Bcl-B tended to correlate with better outcome (P = 0.01) and more differentiated tumor histology (P < 0.0001). Conclusions Tumor-specific alterations in Bcl-B expressionmay define subsets of nonepithelial and epithelial neoplasms with distinct clinical behaviors. PMID:18483366

  9. Cell Proliferation in Neuroblastoma.

    PubMed

    Stafman, Laura L; Beierle, Elizabeth A

    2016-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed. PMID:26771642

  10. Cell Proliferation in Neuroblastoma

    PubMed Central

    Stafman, Laura L.; Beierle, Elizabeth A.

    2016-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed. PMID:26771642

  11. GD2 ganglioside specific antibody treatment downregulates PI3K/Akt/mTOR signaling network in human neuroblastoma cell lines.

    PubMed

    Durbas, Małgorzata; Horwacik, Irena; Boratyn, Elżbieta; Kamycka, Elżbieta; Rokita, Hanna

    2015-09-01

    Mechanisms leading to inhibitory effects of an anti-GD2 ganglioside (GD2) 14G2a mouse monoclonal antibody (mAb) and PI3K/Akt/mTOR pathway inhibitors on human neuroblastoma cell survival were studied in vitro. We have recently shown on IMR-32, CHP‑134, and LA-N-1 neuroblastoma cells that targeting GD2 with the mAb decreases cell viability of the cell lines. In this study we used cytotoxicity assays, proteomic arrays and immunoblotting to evaluate the response of the three cell lines to the anti‑GD2 14G2a mAb and specific PI3K/Akt/mTOR pathway inhibitors. We show here that the mAb modulates intracellular signal transduction through changes in several kinases and their substrates phosphorylation. More detailed analysis of the PI3K/Akt/mTOR pathway showed significant decrease in activity of Akt, mTOR, p70 S6 and 4E-BP1 proteins and transient increase in PTEN (a suppressor of the pathway), leading to inhibition of the signaling network responsible for stimulation of translation and proliferation. Additionally, combining the GD2-specific 14G2a mAb with an Akt inhibitor (perifosine), dual mTOR/PI3K inhibitors (BEZ-235 and SAR245409), and a pan-PI3K inhibitor (LY294002) was shown to enhance cytotoxic effects against IMR-32, CHP‑134 and LA-N-1 cells. Our study extends knowledge on mechanisms of action of the 14G2a mAb on the neuroblastoma cells. Also, it stresses the need for further delineation of molecular signal orchestration aimed at more reasonable selection of drugs to target key cellular pathways in quest for better cure for neuroblastoma patients. PMID:26134970

  12. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo.

    PubMed

    Greening, David W; Ji, Hong; Chen, Maoshan; Robinson, Bruce W S; Dick, Ian M; Creaney, Jenette; Simpson, Richard J

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  13. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo

    PubMed Central

    Greening, David W.; Ji, Hong; Chen, Maoshan; Robinson, Bruce W. S.; Dick, Ian M.; Creaney, Jenette; Simpson, Richard J.

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  14. IGF2 expression is a marker for paraganglionic/SIF cell differentiation in neuroblastoma.

    PubMed Central

    Hedborg, F.; Ohlsson, R.; Sandstedt, B.; Grimelius, L.; Hoehner, J. C.; Pählman, S.

    1995-01-01

    Neuroblastoma is a childhood tumor of the sympathetic nervous system. Observations in the Beckwith-Wiedemann syndrome suggest that sympathetic embryonal cells with an abundant expression of the insulin-like growth factor 2 gene (IGF2) may be involved in the genesis of low-malignant infant neuroblastomas. We have therefore compared the cell type-specific IGF2 expression of the human sympathetic nervous system during early development with that of neuroblastoma. An abundant expression in normal sympathetic tissue was specific to extra-adrenal chromaffin cells, ie, paraganglia and small intensely fluorescent (SIF) cells, whereas sympathetic neuronal cells were IGF2-negative. A subpopulation of neuroblastomas expressed IGF2, which correlated with an early age at diagnosis, an extra-adrenal tumor origin, and severe hemodynamic signs of catecholamine secretion. Histologically IGF2-expressing tumors displayed a lobular growth pattern, and expression was restricted to the most mature and least proliferative cells. Typically, these cells were morphologically and histochemically similar to paraganglia/SIF cells and formed distinct ring-like zones in the center of the lobules around a core of apoptosis-like tumor cells. The similarities found between IGF2-expressing neuroblastoma cells and paraganglia/SIF cells in terms of histological features, anatomical origin, and age-dependent growth suggest a paraganglionic/SIF cell lineage of most infant tumors and also of extra-adrenal tumors diagnosed after infancy. Furthermore, since paraganglia/SIF cells undergo postnatal involution, the same cellular mechanism may be responsible for spontaneous regression in infant neuroblastoma. Images Figure 2 Figure 3 p839-a Figure 4 PMID:7717451

  15. The role of human papilloma virus in urological malignancies.

    PubMed

    Heidegger, Isabel; Borena, Wegene; Pichler, Renate

    2015-05-01

    Human papillomavirus (HPV) is associated with cancer of the cervix uteri, penis, vulva, vagina, anus and oropharynx. However, the role of HPV infection in urological tumors is not yet clarified. HPV appears not to play a major causative role in renal and testicular carcinogenesis. However, HPV infection should be kept in mind regarding cases of prostate cancer, as well as in a sub-group of patients with bladder cancer with squamous differentiation. Concerning the role of HPV in penile cancer incidence, it is a recognized risk factor proven in a large number of studies. This short review provides an update regarding recent literature on HPV in urological malignancies, thereby, also discussing possible limitations on HPV detection in urological cancer. PMID:25964524

  16. Stress Conditions Increase Vimentin Cleavage by Omi/HtrA2 Protease in Human Primary Neurons and Differentiated Neuroblastoma Cells.

    PubMed

    Lucotte, Bérangère; Tajhizi, Mehdi; Alkhatib, Dareen; Samuelsson, Eva-Britt; Wiehager, Birgitta; Schedin-Weiss, Sophia; Sundström, Erik; Winblad, Bengt; Tjernberg, Lars O; Behbahani, Homira

    2015-12-01

    Dysfunctional Omi/HtrA2, a mitochondrial serine protease, has been implicated in various neurodegenerative disorders. Despite the wealth of evidence on the roles of Omi/HtrA2 in apoptosis, little is known about its cytosolic targets, the cleavage of which could account for the observed morphological changes such as cytoskeletal reorganizations in axons. By proteomic analysis, vimentin was identified as a substrate for Omi/HtrA2 and we have reported increased Omi/HtrA2 protease activity in Alzheimer disease (AD) brain. Here, we investigated a possible link between Omi/HtrA2 and vimentin cleavage, and consequence of this cleavage on mitochondrial distribution in neurons. In vitro protease assays showed vimentin to be cleaved by Omi/HtrA2 protease, and proximity ligation assay demonstrated an increased interaction between Omi/HtrA2 and vimentin in human primary neurons upon stress stimuli. Using differentiated neuroblastoma SH-SY5Y cells, we showed that Omi/HtrA2 under several different stress conditions induces cleavage of vimentin in wild-type as well as SH-SY5Y cells transfected with amyloid precursor protein with the Alzheimer disease-associated Swedish mutation. After stress treatment, inhibition of Omi/HtrA2 protease activity by the Omi/HtrA2 specific inhibitor, Ucf-101, reduced the cleavage of vimentin in wild-type cells. Following altered vimentin filaments integrity by stress stimuli, mitochondria was redistributed in differentiated SH-SY5Y cells and human primary neurons. In summary, the findings outlined in this paper suggest a role of Omi/HtrA2 in modulation of vimentin filamentous structure in neurons. Our results provide important findings for understanding the biological role of Omi/HtrA2 activity during stress conditions, and give knowledge of interplay between Omi/HtrA2 and vimentin which might affect mitochondrial distribution in neurons. PMID:25288153

  17. Effects of ethylene glycol ethers on cell viability in the human neuroblastoma SH-SY5Y cell line.

    PubMed

    Regulska, Magdalena; Pomierny, Bartosz; Basta-Kaim, Agnieszka; Starek, Andrzej; Filip, Małgorzata; Lasoń, Władysław; Budziszewska, Bogusława

    2010-01-01

    Ethylene glycol ethers (EGEs) are a class of chemicals used extensively in the manufacture of a wide range of domestic and industrial products, which may result in human exposure and toxicity. Hematologic and reproductive toxicity of EGEs are well known whereas their action on neuronal cell viability has not been studied so far. In the present study, we investigated the effects of some EGEs on cell viability and on the hydrogen peroxide-induced damage in the human neuroblastoma (SH-SY5Y) cells. It has been found that 2-phenoxyethanol in a concentration-dependent manner (5-25 mM, 24 h) increased the basal and H(2)O(2)-induced lactate dehydrogenase (LDH) release and 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide (MTT) reduction. 2-Butoxyethanol given alone did not affect LDH release and MTT reduction but concentration-dependently enhanced the cytotoxic effect of H(2)O(2). 2-Isopropoxyethanol significantly and concentration-dependently (1-25 mM) increased the basal LDH release and attenuated MTT reduction, but did not potentiate the cytotoxic effect of H(2)O(2). Contrary to this, 2-methoxyethanol did not show a cytotoxic effect while 2-ethoxyethanol at high concentrations intensified the hydrogen peroxide action. This study demonstrated that among the EGEs studied, 2-phenoxyethanol showed the most consistent cytotoxic effect on neurons in in vitro conditions and enhanced the hydrogen peroxide action. 2-Isopropoxyethanol had also a potent cytotoxic effect, but it did not enhance the hydrogen peroxide action, whereas 2-butoxyethanol only potentiated cytotoxic effect of H(2)O(2). It is concluded that the results of the present study should be confirmed in in vivo conditions and that some EGEs, especially 2-phenoxyethanol, 2-butoxyethanol and 2-isopropoxyethanol, may be responsible for initiation or exacerbation of neuronal cell damage. PMID:21273685

  18. Butyrate modulates antioxidant enzyme expression in malignant and non-malignant human colon tissues.

    PubMed

    Jahns, Franziska; Wilhelm, Anne; Jablonowski, Nadja; Mothes, Henning; Greulich, Karl Otto; Glei, Michael

    2015-04-01

    The induction of antioxidant enzymes is an important mechanism in colon cancer chemoprevention, but the response of human colon tissue to butyrate, a gut fermentation product derived from dietary fiber, remains largely unknown. Therefore, our study investigated the effect of a butyrate treatment on catalase (CAT) and superoxide dismutase (SOD2) in matched human colon tissues of different transformation stages (n = 3-15 in each group) ex vivo. By performing quantitative real-time PCR, Western blot, and spectrophotometric measurements, we found an increase in SOD2 at expression and activity level in colonic adenocarcinomas (mRNA: 1.96-fold; protein: 1.41-fold, activity: 1.8-fold; P < 0.05). No difference was detectable for CAT between normal, adenoma, and carcinoma colon tissues. Treatment of normal colon epithelium (12 h) with a physiologically relevant concentration of butyrate (10 mM) resulted in a significant increase (P < 0.05) in CAT mRNA (1.24-fold) and protein (1.39-fold), without affecting the enzymatic activity. Consequently, preliminary experiments failed to show any protective effect of butyrate against H2 O2 -mediated DNA damage. Despite a significantly lowered SOD2 transcript (0.51-fold, P < 0.01) and, to a lesser extent, protein level (0.86-fold) after butyrate exposure of normal colon cells, the catalytic activity was significantly enhanced (1.19-fold, P < 0.05), suggesting an increased protection against tissue superoxide radicals. In malignant tissues, greater variations in response to butyrate were observed. Furthermore, both enzymes showed an age-dependent decrease in activity in normal colon epithelium (CAT: r = -0.49, P = 0.09; SOD2: r = -0.58, P = 0.049). In conclusion, butyrate exhibited potential antioxidant features ex vivo but cellular consequences need to be investigated more in depth. PMID:24677319

  19. A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing.

    PubMed

    Prapa, Malvina; Caldrer, Sara; Spano, Carlotta; Bestagno, Marco; Golinelli, Giulia; Grisendi, Giulia; Petrachi, Tiziana; Conte, Pierfranco; Horwitz, Edwin M; Campana, Dario; Paolucci, Paolo; Dominici, Massimo

    2015-09-22

    Chimeric antigen receptor (CAR)-expressing T cells are a promising therapeutic option for patients with cancer. We developed a new CAR directed against the disialoganglioside GD2, a surface molecule expressed in neuroblastoma and in other neuroectoderm-derived neoplasms. The anti-GD2 single-chain variable fragment (scFv) derived from a murine antibody of IgM class was linked, via a human CD8α hinge-transmembrane domain, to the signaling domains of the costimulatory molecules 4-1BB (CD137) and CD3-ζ. The receptor was expressed in T lymphocytes by retroviral transduction and anti-tumor activities were assessed by targeting GD2-positive neuroblastoma cells using in vitro cytotoxicity assays and a xenograft model. Transduced T cells expressed high levels of anti-GD2 CAR and exerted a robust and specific anti-tumor activity in 4- and 48-hour cultures with neuroblastoma cells. Cytotoxicity was associated with the release of pro-apoptotic molecules such as TRAIL and IFN-γ. These results were confirmed in a xenograft model, where anti-GD2 CAR T cells infiltrating tumors and persisting into blood circulation induced massive apoptosis of neuroblastoma cells and completely abrogated tumor growth. This anti-GD2 CAR represents a powerful new tool to redirect T cells against GD2. The preclinical results of this study warrant clinical testing of this approach in neuroblastoma and other GD2-positive malignancies. PMID:26298772

  20. A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing

    PubMed Central

    Prapa, Malvina; Caldrer, Sara; Spano, Carlotta; Bestagno, Marco; Golinelli, Giulia; Grisendi, Giulia; Petrachi, Tiziana; Conte, Pierfranco; Horwitz, Edwin M.; Campana, Dario

    2015-01-01

    Chimeric antigen receptor (CAR)-expressing T cells are a promising therapeutic option for patients with cancer. We developed a new CAR directed against the disialoganglioside GD2, a surface molecule expressed in neuroblastoma and in other neuroectoderm-derived neoplasms. The anti-GD2 single-chain variable fragment (scFv) derived from a murine antibody of IgM class was linked, via a human CD8α hinge-transmembrane domain, to the signaling domains of the costimulatory molecules 4-1BB (CD137) and CD3-ζ. The receptor was expressed in T lymphocytes by retroviral transduction and anti-tumor activities were assessed by targeting GD2-positive neuroblastoma cells using in vitro cytotoxicity assays and a xenograft model. Transduced T cells expressed high levels of anti-GD2 CAR and exerted a robust and specific anti-tumor activity in 4- and 48-hour cultures with neuroblastoma cells. Cytotoxicity was associated with the release of pro-apoptotic molecules such as TRAIL and IFN-γ. These results were confirmed in a xenograft model, where anti-GD2 CAR T cells infiltrating tumors and persisting into blood circulation induced massive apoptosis of neuroblastoma cells and completely abrogated tumor growth. This anti-GD2 CAR represents a powerful new tool to redirect T cells against GD2. The preclinical results of this study warrant clinical testing of this approach in neuroblastoma and other GD2-positive malignancies. PMID:26298772

  1. Greatwall promotes cell transformation by hyperactivating AKT in human malignancies

    PubMed Central

    Vera, Jorge; Lartigue, Lydia; Vigneron, Suzanne; Gadea, Gilles; Gire, Veronique; Del Rio, Maguy; Soubeyran, Isabelle; Chibon, Frederic; Lorca, Thierry; Castro, Anna

    2015-01-01

    The PP2A phosphatase is often inactivated in cancer and is considered as a tumour suppressor. A new pathway controlling PP2A activity in mitosis has been recently described. This pathway includes the Greatwall (GWL) kinase and its substrates endosulfines. At mitotic entry, GWL is activated and phosphorylates endosulfines that then bind and inhibit PP2A. We analysed whether GWL overexpression could participate in cancer development. We show that GWL overexpression promotes cell transformation and increases invasive capacities of cells through hyperphosphorylation of the oncogenic kinase AKT. Interestingly, AKT hyperphosphorylation induced by GWL is independent of endosulfines. Rather, GWL induces GSK3 kinase dephosphorylation in its inhibitory sites and subsequent SCF-dependent degradation of the PHLPP phosphatase responsible for AKT dephosphorylation. In line with its oncogenic activity, we find that GWL is often overexpressed in human colorectal tumoral tissues. Thus, GWL is a human oncoprotein that promotes the hyperactivation of AKT via the degradation of its phosphatase, PHLPP, in human malignancies. DOI: http://dx.doi.org/10.7554/eLife.10115.001 PMID:26613407

  2. HIV-1 coat protein gp120 stimulates interleukin-1β secretion from human neuroblastoma cells: evidence for a role in the mechanism of cell death

    PubMed Central

    Corasaniti, Maria Tiziana; Bilotta, Anna; Strongoli, Maria Concetta; Navarra, Michele; Bagetta, Giacinto; Renzo, Gianfranco Di

    2001-01-01

    The role of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the mechanism of cell death induced by the human immunodeficiency virus type 1 (HIV-1) recombinant coat glycoprotein, gp120 IIIB, has been studied in the human CHP100 neuroblastoma cell line maintained in culture. Death of neuroblastoma cells typically elicited by 10 pM gp120 or by human recombinant IL-1β (10 ng ml−1) has been minimized by the antagonist of IL-1 receptor, i.e. IL-1ra (0.5 and 50 ng ml−1, respectively), an endogenous molecule that antagonizes most of the biological actions of IL-1β, or by an antibody (5 and 50 ng ml−1) which blocks the human IL-1 receptor type I (IL-1RI). ELISA experiments have established that gp120 enhances immunoreactive IL-1β levels in the culture medium and this is prevented by exposure to the IL-1 converting enzyme (ICE) inhibitor t-butoxycarbonyl-L-aspartic acid benzyl ester-chloromethylketone [Boc-Asp(OBzl)-CMK] used at a concentration (2.5 μM) which significantly (P<0.001) reduces cell death. Death of CHP100 cells induced by gp120 is also prevented by acetyl-Tyr-Val-Ala-Asp-chloromethylketone (Ac-YVAD-CMK; 10 – 100 μM), a second inhibitor of ICE, supporting the concept that the viral protein stimulates the conversion of the 31 kDa pro-IL-1β in to the 17 kDa mature cytokine which is then secreted to cause death. In conclusion, our present data demonstrate that gp120 stimulates the secretion of IL-1β which then triggers CHP100 neuroblastoma cell death via stimulation of IL-1 receptor type I. PMID:11704656

  3. The M sub 1 muscarinic receptor and its second messenger coupling in human neuroblastoma cells and transfected murine fibroblast cells

    SciTech Connect

    Mei, Lin.

    1989-01-01

    The data of this study indicate that pirenzepine (PZ)-high affinity muscarinic receptors (mAChRs) are coupled to the hydrolysis of inositol lipids and not to the adenylate cyclase system in human neuroblastoma SH-SY5Y cells. The maximal carbachol(CCh)-stimulated ({sup 3}H)IP{sub 1} accumulation in the SH-SY5Y cells was decreased in the presence of 1{mu}g/ml pertussis toxin, suggesting that a pertussis toxin sensitive G-protein may be involved in the coupling. Several cell clones which express only M{sub 1} mAChR were generated by transfecting the murine fibroblast B82 cells with the cloned rat genomic m{sub 1} gene. The transfected B82 cells (cTB10) showed specific ({sup 3}H)(-)QNB binding activity. The mAChRs in these cells are of the M{sub 1} type defined by their high affinity for PZ and low affinity for AF-DX 116 and coupled to hydrolysis of inositol lipids, possibly via a pertussis toxin sensitive G protein. The relationship between the M{sub 1} mAChR density and the receptor-mediated hydrolysis of inositol lipids was studied in 7 clones. The M{sub 1} mAChR densities in these cells characterized by ({sup 3}H)(-)MQNB binding ranged from 12 fmol/10{sup 6} cells in LK3-1 cells to 260 fmol/10{sup 6} cells in the LK3-8 cells.

  4. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid

    PubMed Central

    2013-01-01

    Background Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. Results We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Conclusion Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity. PMID:23597229

  5. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y Cells

    SciTech Connect

    Liu, P.-S. . E-mail: psliu@mail.scu.edu.tw; Chiung, Y.-M.; Kao, Y.-Y.

    2006-03-01

    The mechanisms of TDI (2,4-toluene diisocyanate)-induced occupational asthma are not fully established. Previous studies have indicated that TDI induces non-specific bronchial hyperreactivity to methacholine and induces contraction of smooth muscle tissue by activating 'capsaicin-sensitive' nerves resulting asthma. Cytosolic-free calcium ion concentrations ([Ca{sup 2+}]{sub c}) are elevated when either capsaicin acts at vanilloid receptors, or methacholine at muscarinic receptors. This study therefore investigated the effects of TDI on Ca{sup 2+} mobilization in human neuroblastoma SH-SY5Y cells. TDI was found to elevate [Ca{sup 2+}]{sub c} by releasing Ca{sup 2+} from the intracellular stores and extracellular Ca{sup 2+} influx. 500 {mu}M TDI induced a net [Ca{sup 2+}]{sub c} increase of 112 {+-} 8 and 78 {+-} 6 nM in the presence and absence of extracellular Ca{sup 2+}, respectively. In Ca{sup 2+}-free buffer, TDI induced Ca{sup 2+} release from internal stores to reduce their Ca{sup 2+} content and this reduction was evidenced by a suppression occurring on the [Ca{sup 2+}]{sub c} rise induced by thapsigargin, ionomycin, and methacholine after TDI incubation. In the presence of extracellular Ca{sup 2+}, simultaneous exposure to TDI and methacholine led a higher level of [Ca{sup 2+}]{sub c} compared to single methacholine stimulation, that might explain that TDI induces bronchial hyperreactivity to methacholine. We conclude that TDI is capable of interfering the [Ca{sup 2+}]{sub c} homeostasis including releasing Ca{sup 2+} from internal stores and inducing extracellular Ca{sup 2+} influx. The interaction of this novel character and bronchial hyperreactivity need further investigation.

  6. Radiosensitization effect of zidovudine on human malignant glioma cells

    SciTech Connect

    Zhou Fuxiang; Liao Zhengkai; Dai Jing; Xiong Jie; Xie CongHua; Luo Zhiguo; Liu Shiquan; Zhou Yunfeng . E-mail: yfzhouwhu@163.com

    2007-03-09

    Telomeres are shortened with each cell division and play an important role in maintaining chromosomal integrity and function. Telomerase, responsible for telomere synthesis, is activated in 90% of human tumor cells but seldom in normal somatic cells. Zidovudine (AZT) is a reverse transcriptase inhibitor. In this study, we have investigated the effects of {gamma}-radiation in combination with AZT on telomerase activity (TA), telomere length, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and the changes in radiosensitivity of human malignant glioma cell line U251. The results showed that the TA was suppressed by AZT but enhanced by irradiation, resulting in a deceleration of restored rate of shortened telomere, decreased repair rate of DNA strand breaks, and increased radiosensitivity of U251 cells. Our results suggested that telomerase activity and telomere length may serve as markers for estimating the efficacy of cancer radiotherapy and reverse transcriptase inhibitors, such as AZT, may be used clinically as a new radiosensitizer in cancer radiotherapy.

  7. CCAAT-binding factor regulates expression of the β1 subunit of soluble guanylyl cyclase gene in the BE2 human neuroblastoma cell line

    PubMed Central

    Sharina, Iraida G.; Martin, Emil; Thomas, Anthony; Uray, Karen L.; Murad, Ferid

    2003-01-01

    Soluble guanylyl cyclase (sGC) is a cytosolic enzyme producing the intracellular messenger cyclic guanosine monophosphate (cGMP) on activation with nitric oxide (NO). sGC is an obligatory heterodimer composed of α and β subunits. We investigated human β1 sGC transcriptional regulation in BE2 human neuroblastoma cells. The 5′ upstream region of the β1 sGC gene was isolated and analyzed for promoter activity by using luciferase reporter constructs. The transcriptional start site of the β1 sGC gene in BE2 cells was identified. The functional significance of consensus transcriptional factor binding sites proximal to the transcriptional start site was investigated by site deletions in the 800-bp promoter fragment. The elimination of CCAAT-binding factor (CBF) and growth factor independence 1 (GFI1) binding cores significantly diminished whereas deletion of the NF1 core elevated the transcription. Electrophoretic mobility-shift assay (EMSA) and Western analysis of proteins bound to biotinated EMSA probes confirmed the interaction of GFI1, CBF, and NF1 factors with the β1 sGC promoter. Treatment of BE2 cells with genistein, known to inhibit the CBF binding to DNA, significantly reduced protein levels of β1 sGC by inhibiting transcription. In summary, our study represents an analysis of the human β1 sGC promoter regulation in human neuroblastoma BE2 cells and identifies CBF as a critically important factor in β1 sGC expression. PMID:14504408

  8. CCAAT-binding factor regulates expression of the beta1 subunit of soluble guanylyl cyclase gene in the BE2 human neuroblastoma cell line

    NASA Technical Reports Server (NTRS)

    Sharina, Iraida G.; Martin, Emil; Thomas, Anthony; Uray, Karen L.; Murad, Ferid

    2003-01-01

    Soluble guanylyl cyclase (sGC) is a cytosolic enzyme producing the intracellular messenger cyclic guanosine monophosphate (cGMP) on activation with nitric oxide (NO). sGC is an obligatory heterodimer composed of alpha and beta subunits. We investigated human beta1 sGC transcriptional regulation in BE2 human neuroblastoma cells. The 5' upstream region of the beta1 sGC gene was isolated and analyzed for promoter activity by using luciferase reporter constructs. The transcriptional start site of the beta1 sGC gene in BE2 cells was identified. The functional significance of consensus transcriptional factor binding sites proximal to the transcriptional start site was investigated by site deletions in the 800-bp promoter fragment. The elimination of CCAAT-binding factor (CBF) and growth factor independence 1 (GFI1) binding cores significantly diminished whereas deletion of the NF1 core elevated the transcription. Electrophoretic mobility-shift assay (EMSA) and Western analysis of proteins bound to biotinated EMSA probes confirmed the interaction of GFI1, CBF, and NF1 factors with the beta1 sGC promoter. Treatment of BE2 cells with genistein, known to inhibit the CBF binding to DNA, significantly reduced protein levels of beta1 sGC by inhibiting transcription. In summary, our study represents an analysis of the human beta1 sGC promoter regulation in human neuroblastoma BE2 cells and identifies CBF as a critically important factor in beta1 sGC expression.

  9. Primary pancreatic neuroblastoma presenting with opsoclonus-myoclonus syndrome.

    PubMed

    Galgano, Samuel; Royal, Stuart

    2016-03-01

    Although neuroblastoma is a common solid organ malignancy in children, primary pancreatic neuroblastoma is a rare entity in children, with very few cases reported in the literature. The case discusses the presentation of a 21-month-old female presenting to the neurology clinic with ataxia and erratic eye movements. Our case illustrates the computed tomography, ultrasound, and scintigraphic findings of primary pancreatic neuroblastoma presenting as opsoclonus-myoclonus syndrome. Computed tomography and ultrasound demonstrated a vascular, enhancing mass in the pancreatic body clearly separate from the adrenal gland. Metaiodobenzylguanidine scan demonstrates focal intense uptake in the pancreatic body. The patient's diagnosis was confirmed with biopsy, and her malignancy responded well to conventional chemotherapy. The case is important in that it demonstrates the unusual imaging appearance of a primary pancreatic neuroblastoma. PMID:26973724

  10. Primary pancreatic neuroblastoma presenting with opsoclonus–myoclonus syndrome

    PubMed Central

    Galgano, Samuel; Royal, Stuart

    2015-01-01

    Although neuroblastoma is a common solid organ malignancy in children, primary pancreatic neuroblastoma is a rare entity in children, with very few cases reported in the literature. The case discusses the presentation of a 21-month-old female presenting to the neurology clinic with ataxia and erratic eye movements. Our case illustrates the computed tomography, ultrasound, and scintigraphic findings of primary pancreatic neuroblastoma presenting as opsoclonus–myoclonus syndrome. Computed tomography and ultrasound demonstrated a vascular, enhancing mass in the pancreatic body clearly separate from the adrenal gland. Metaiodobenzylguanidine scan demonstrates focal intense uptake in the pancreatic body. The patient's diagnosis was confirmed with biopsy, and her malignancy responded well to conventional chemotherapy. The case is important in that it demonstrates the unusual imaging appearance of a primary pancreatic neuroblastoma. PMID:26973724

  11. The transcription of the human fructose-bisphosphate aldolase C gene is activated by nerve-growth-factor-induced B factor in human neuroblastoma cells.

    PubMed Central

    Buono, P; Conciliis, L D; Izzo, P; Salvatore, F

    1997-01-01

    A DNA region located at around -200 bp in the 5' flanking region (region D) of the human brain-type fructose-bisphosphate aldolase (aldolase C) gene has been analysed. We show by transient transfection assay and electrophoretic-mobility-shift assay (EMSA) that the binding of transcriptional activators to region D is much more efficient (80% versus 30%) in human neuroblastoma cells (SKNBE) than in the non-neuronal cell line A1251, which contains low levels of aldolase C mRNA. The sequence of region D, CAAGGTCA, is very similar to the AAAGGTCA motif present in the mouse steroid 21-hydroxylase gene; the latter motif binds nerve-growth-factor-induced B factor (NGFI-B), which is a member of the thyroid/steroid/retinoid nuclear receptor gene family. Competition experiments in EMSA and antibody-directed supershift experiments showed that NGFI-B is involved in the binding to region D of the human aldolase C gene. Furthermore, the regulation of the aldolase C gene (which is the second known target of NGFI-B) expression during development parallels that of NGFI-B. PMID:9173889

  12. Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

  13. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    SciTech Connect

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  14. Engraftment of human blood malignancies to the turkey embryo: a robust new in vivo model.

    PubMed

    Grinberg, Igor; Reis, Arbel; Ohana, Avivit; Taizi, Moran; Cipok, Michal; Tavor, Sigal; Rund, Deborah; Deutsch, Varda R; Goldstein, Ronald S

    2009-10-01

    Xenografting of human blood malignancies to immunodeficient SCID mice is a powerful research tool. We evaluate here whether the immunodeficient turkey embryo can also serve as a xenograft host for human blood malignancies. Human leukemia, lymphoma and myeloma lines engrafted robustly into medullary and extramedullary tissues of turkey embryos as detected by PCR, FACS and histology in 8-10 days. Four of eleven patient AML samples also engrafted the bone marrow. Grafts of two lines responded to chemotherapy with doxorubicin. The turkey embryo therefore has the potential to be a complementary xenograft model for the study of human blood malignancies. PMID:19297019

  15. Synchronous Ipsilateral Wilms’ Tumor and Neuroblastoma in an Infant

    PubMed Central

    Thakkar, Nirali Chirag; Sinha, Shalini

    2016-01-01

    Wilms’ tumor (WT) and neuroblastoma (NB), the two most common extra-cranial solid malignant tumors, are seldom seen together in the same patient. A 10-month girl presented with a right retroperitoneal mass. A preoperative diagnosis of Wilms’ tumor (WT) was made. She was given preoperative chemotherapy followed by surgery. At surgery a renal mass (WT) and a suprarenal mass (neuroblastoma – NB) were removed. She finally succumbed to metastatic NB in the postoperative period. PMID:26816675

  16. Identification of proteins sensitive to thermal stress in human neuroblastoma and glioma cell lines.

    PubMed

    Xu, Guilian; Stevens, Stanley M; Kobeissy, Firas; Kobiessy, Firas; Brown, Hilda; McClung, Scott; Gold, Mark S; Borchelt, David R

    2012-01-01

    Heat-shock is an acute insult to the mammalian proteome. The sudden elevation in temperature has far-reaching effects on protein metabolism, leads to a rapid inhibition of most protein synthesis, and the induction of protein chaperones. Using heat-shock in cells of neuronal (SH-SY5Y) and glial (CCF-STTG1) lineage, in conjunction with detergent extraction and sedimentation followed by LC-MS/MS proteomic approaches, we sought to identify human proteins that lose solubility upon heat-shock. The two cell lines showed largely overlapping profiles of proteins detected by LC-MS/MS. We identified 58 proteins in detergent insoluble fractions as losing solubility in after heat shock; 10 were common between the 2 cell lines. A subset of the proteins identified by LC-MS/MS was validated by immunoblotting of similarly prepared fractions. Ultimately, we were able to definitively identify 3 proteins as putatively metastable neural proteins; FEN1, CDK1, and TDP-43. We also determined that after heat-shock these cells accumulate insoluble polyubiquitin chains largely linked via lysine 48 (K-48) residues. Collectively, this study identifies human neural proteins that lose solubility upon heat-shock. These proteins may represent components of the human proteome that are vulnerable to misfolding in settings of proteostasis stress. PMID:23145051

  17. Olfactory neuroblastoma: A case report

    PubMed Central

    USLU, GONCA HANEDAN; CANYILMAZ, EMINE; ZENGIN, AHMET YASAR; MUNGAN, SEVDEGUL; YONEY, ADNAN; BAHADIR, OSMAN; GOCMEZ, HUSEYIN

    2015-01-01

    Olfactory neuroblastoma (ON) is a rare type of malignant neoplasm originating from the olfactory neuroepithelial cells of the nasal cavity. ON is also known as esthesioneuroblastoma or neuroendocrine carcinoma. The malignancy accounts for <3% of tumors originating in the nasal cavity. Through the nasal cavity, ON may infiltrate the sinuses, the orbit and the cranium. The tumor is characterized by a pattern of slow growth and local recurrences. Treatment options are surgical excision or surgery combined with a radiotherapy (RT) and/or chemotherapy combination treatment. The present study reports the case of a 69-year-old patient with a mass in the nasal cavity who was treated by combined surgical excision and RT. The literature for ON and the treatment of the tumor are also discussed. PMID:26788185

  18. Cytotoxic activity against human neuroblastoma and melanoma cells mediated by IgM antibodies derived from peripheral blood of healthy donors.

    PubMed

    Devarapu, Satish Kumar; Mamidi, Srinivas; Plöger, Frank; Dill, Othmar; Blixt, Ola; Kirschfink, Michael; Schwartz-Albiez, Reinhard

    2016-06-15

    A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies. PMID:26830059

  19. Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells.

    PubMed

    Falone, Stefano; Marchesi, Nicoletta; Osera, Cecilia; Fassina, Lorenzo; Comincini, Sergio; Amadio, Marialaura; Pascale, Alessia

    2016-05-01

    Purpose The redox milieu, together with reactive oxygen species (ROS) accumulation, may play a role in mediating some biological effects of extremely-low-frequency electromagnetic fields (ELF-EMF). Some of us have recently reported that a pulsed EMF (PEMF) improves the antioxidant response of a drug-sensitive human neuroblastoma SH-SY5Y cell line to pro-oxidants. Since drug resistance may affect cell sensitivity to redox-based treatments, we wanted to verify whether drug-resistant human neuroblastoma SK-N-BE(2) cells respond to a PEMF in a similar fashion. Materials and methods SK-N-BE(2) cells were exposed to repeated 2 mT, 75 Hz PEMF (15 min each, repeated 3 times over 5 days), and ROS production, Mn-dependent superoxide dismutase (MnSOD)-based antioxidant protection and viability were assessed after 10 min or 30 min 1 mM hydrogen peroxide. Sham controls were kept at the same time in identical cell culture incubators. Results The PEMF increased the MnSOD-based antioxidant protection and reduced the ROS production in response to a pro-oxidant challenge. Conclusions Our work might lay foundation for the development of non-invasive PEMF-based approaches aimed at elevating endogenous antioxidant properties in cellular or tissue models. PMID:26940444

  20. Pharmacological Management of High-risk Neuroblastoma in Children

    PubMed Central

    Ganeshan, Veena R.; Schor, Nina F.

    2015-01-01

    BACKGROUND Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Children with high-risk disease have a 3-year event-free survival rate of only 20%. Chemotherapy is the mainstay of the treatment of children with advanced neuroblastoma. OBJECTIVE To review and critically evaluate the pharmacotherapy of neuroblastoma. DATA SOURCES Peer-reviewed and review literature, 2000–2011. STUDY SELECTION All peer-reviewed, published human subjects studies of therapy for neuroblastoma in children were included. Animal model and in vitro studies were included only if they added to the understanding of the mechanism of a proposed or existing human neuroblastoma therapy. DATA SYNTHESIS Current therapeutic options for neuroblastoma involve insufficient differentiation of normal from neoplastic tissue. Critically needed new approaches will increasingly exploit targeting of therapy for unique characteristics of the neuroblastoma cell. CONCLUSIONS Pharmacotherapy for neuroblastoma still suffers from an inadequate therapeutic window. Enhancement of toxicity for tumor and safety for normal tissues will entail innovation in targeting neuroblastoma cells and rescuing or protecting normal tissue elements. PMID:21692548

  1. FHL2 interacts with and acts as a functional repressor of Id2 in human neuroblastoma cells

    PubMed Central

    Han, Weidong; Wu, Zhiqiang; Zhao, Yali; Meng, Yuanguang; Si, Yiling; Yang, Jie; Fu, Xiaobing; Yu, Li

    2009-01-01

    Inhibitor of differentiation 2 (Id2) is a natural inhibitor of the basic helix–loop–helix transcription factors. Although Id2 is well known to prevent differentiation and promote cell-cycle progression and tumorigenesis, the molecular events that regulate Id2 activity remain to be investigated. Here, we identified that Four-and-a-half LIM-only protein 2 (FHL2) is a novel functional repressor of Id2. Moreover, we demonstrated that FHL2 can directly interact with all members of the Id family (Id1–4) via an N-terminal loop–helix structure conserved in Id proteins. FHL2 antagonizes the inhibitory effect of Id proteins on basic helix–loop–helix protein E47-mediated transcription, which was abrogated by the deletion mutation of Ids that disrupted their interaction with FHL2. We also showed a competitive nature between FHL2 and E47 for binding Id2, whereby FHL2 prevents the formation of the Id2–E47 heterodimer, thus releasing E47 to DNA and restoring its transcriptional activity. FHL2 expression was remarkably up-regulated during retinoic acid-induced differentiation of neuroblastoma cells, during which the expression of Id2 was opposite to that. Ectopic FHL2 expression in neuroblastoma cells markedly reduces the transcriptional and cell-cycle promoting functions of Id2. Altogether, these results indicate that FHL2 is an important repressor of the oncogenic activity of Id2 in neuroblastoma cells. PMID:19417068

  2. Right adrenal gland neuroblastoma infiltrating the liver and mimicking mesenchymal hamartoma: A case report

    PubMed Central

    Abo-Elenain, Ahmed; Naiem, Yousif; Hamedhosam-eldin@hotmail.com, Hosam; Emam, Mohamed; Elkashef, Wagdi; AbdelRafee, Ahmed

    2015-01-01

    Introduction Neuroblastoma is the most common extracranial solid pediatric malignancy. The most common site is abdomen with predominance of suprarenal medulla. Infiltration of the tumour to the liver is rare. No cases were reported in the literature about the misdiagnosis of neuroblastoma as mesenchymal hamartoma in the liver. Presentation of case We represent a rare case of neuroblastoma misdiagnosed as mesenchymal hamartoma in liver in a six-month-old female infant presented with fever and abdominal mass. Abdominal computed tomography (CT) revealed large cystic lesion occupying most of the right liver enchroaching upon right suprarenal region and displacing the right kidney inferior suggestive for mesenchymal hamartoma. Right adrenalectomy with en-bloc resection of the adjacent liver segments was done. Postoperative pathology revealed neuroblastoma with positive specific immunohistochemistry (IHC). Discussion Although neuroblastoma is the second most common pediatric abdominal malignancy with specific diagnostic modalities, a misdiagnosis of a case with neuroblastoma as mesenchymal hamartoma is rare. Histopathological diagnosis of neuroblastoma with positive IHC is essential as shown in our case. Conclusion We represent a rare case of neuroblastoma which arose from the right adrenal gland and infiltrated the adjacent liver substance mimicking mesenchymal hamartoma of the liver. Neuroblastoma is rarely presented with pyrexia of unknown origin. Neuroblastoma should be considered in differential diagnosis of abdominal mass in all infants and children. PMID:26036461

  3. Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y.

    PubMed

    Raszewski, Grzegorz; Lemieszek, Marta Kinga; Łukawski, Krzysztof; Juszczak, Małgorzata; Rzeski, Wojciech

    2015-02-01

    Our previous in vivo studies showed that chlorpyrifos (CPF) and cypermethrin (CM) in a mixture dermally administered, strongly inhibited cholinesterase activity in plasma and the brain and were very toxic to the rat central nervous system. In this work, the mechanisms of neurotoxicity have not been elucidated. We used human undifferentiated SH-SY5Y cells to study mechanisms of pesticide-induced neuronal cell death. It was found that chlorpyrifos (CPF) and its mixture with cypermethrin (CPF+CM) induced cell death of SH-SY5Y cells in a dose- and time-dependent manner, as shown by MTT assays. Pesticide-induced SH-SY5Y cell death was characterized by concentration-dependent down-regulation of Bcl-2 and Bcl-xL as well as an increase in the caspase 3 activation. Pan-caspase inhibitor Q-VD-OPh produced a slight but significant reversal effect of pesticide-induced toxicity indicating that the major caspase pathways are not integral to CPF- and CPF+CM-induced cell death. Furthermore, signal transduction inhibitors PD98059, SL-327, SB202190, SP600125 and mecamylamine failed to attenuate pesticides effect. Atropine exhibited minimal ability to reverse toxicity. Finally, it was shown that inhibition of TNF-α by pomalidomide attenuated CPF-/CPF+CM-induced apoptosis. Overall, our data suggest that FAS/TNF signalling pathways may participate in CPF and CPF+CM toxicity. PMID:24975276

  4. Action of HMGB1 on miR-221/222 cluster in neuroblastoma cell lines

    PubMed Central

    Mari, Emanuela; Zicari, Alessandra; Fico, Flavia; Massimi, Isabella; Martina, Lolli; Mardente, Stefania

    2016-01-01

    microRNA (miR/miRNA) are small non-coding RNAs that control gene expression at the post-transcriptional level by targeting mRNAs. Aberrant expression of miRNAs is often observed in different types of cancer. Specific miRNAs function as tumor suppressors or oncogenes and interfere with various aspects of carcinogenesis, including differentiation, proliferation and invasion. Upregulation of miRNAs 221 and 222 has been shown to induce a malignant phenotype in numerous human cancers via inhibition of phosphatase and tensin homolog (PTEN) expression. Neuroblastoma is the most common extracranial solid malignancy in children, which is characterized by cellular heterogeneity that corresponds to different clinical outcomes. The different cellular phenotypes are associated with different gene mutations and miRs that control genetic and epigenetic factors. For this reason miRs are considered a potential therapeutic target in neuroblastoma. The aim of the present study was to investigate the mechanisms by which extracellular high mobility group box 1 (HMGB1) promotes cell growth in neuroblastoma. SK-N-BE(2) and SH-SY5Y neuroblastoma derived cell lines were transfected with the antisense oligonucleotides, anti-miR-221 and −222, followed by treatment with HMGB1 to investigate the expression of the oncosuppressor PTEN. In this study, it was demonstrated that HMGB1, which is released by damaged cells and tumor cells, upregulates miR-221/222 oncogenic clusters in the two human neuroblastoma derived cell lines. The results revealed that the oncogenic cluster miRs 221/222 were more highly expressed by the most undifferentiated cell line [SK-N-BE(2)] compared with the the less tumorigenic cell line (SH-SY5Y) and that exogenous HMGB1 increases this expression. In addition, HMGB1 modulates PTEN expression via miR-221/222, as demonstrated by transiently blocking miR-221/222 with anti-sense oligonucleotides. These results may lead to the development of novel therapeutic strategies for

  5. A PCNA-Derived Cell Permeable Peptide Selectively Inhibits Neuroblastoma Cell Growth

    PubMed Central

    Gu, Long; Smith, Shanna; Li, Caroline; Hickey, Robert J.; Stark, Jeremy M.; Fields, Gregg B.; Lang, Walter H.; Sandoval, John A.; Malkas, Linda H.

    2014-01-01

    Proliferating cell nuclear antigen (PCNA), through its interaction with various proteins involved in DNA synthesis, cell cycle regulation, and DNA repair, plays a central role in maintaining genome stability. We previously reported a novel cancer associated PCNA isoform (dubbed caPCNA), which was significantly expressed in a broad range of cancer cells and tumor tissues, but not in non-malignant cells. We found that the caPCNA-specific antigenic site lies between L126 and Y133, a region within the interconnector domain of PCNA that is known to be a major binding site for many of PCNA's interacting proteins. We hypothesized that therapeutic agents targeting protein-protein interactions mediated through this region may confer differential toxicity to normal and malignant cells. To test this hypothesis, we designed a cell permeable peptide containing the PCNA L126-Y133 sequence. Here, we report that this peptide selectively kills human neuroblastoma cells, especially those with MYCN gene amplification, with much less toxicity to non-malignant human cells. Mechanistically, the peptide is able to block PCNA interactions in cancer cells. It interferes with DNA synthesis and homologous recombination-mediated double-stranded DNA break repair, resulting in S-phase arrest, accumulation of DNA damage, and enhanced sensitivity to cisplatin. These results demonstrate conceptually the utility of this peptide for treating neuroblastomas, particularly, the unfavorable MYCN-amplified tumors. PMID:24728180

  6. The selective VEGFR1-3 inhibitor axitinib (AG-013736) shows antitumor activity in human neuroblastoma xenografts.

    PubMed

    Rössler, Jochen; Monnet, Yann; Farace, Francoise; Opolon, Paule; Daudigeos-Dubus, Estelle; Bourredjem, Abderrahmane; Vassal, Gilles; Geoerger, Birgit

    2011-06-01

    Tumor angiogenesis in childhood neuroblastoma is an important prognostic factor suggesting a potential role for antiangiogenic agents in the treatment of high-risk disease. Within the KidsCancerKinome project, we evaluated the new oral selective pan-VEGFR tyrosine kinase inhibitor axitinib (AG-013736) against neuroblastoma cell lines and the subcutaneous and orthotopic xenograft model IGR-N91 derived from a primary bone marrow metastasis. Axitinib reduced cell proliferation in a dose-dependent manner with IC(50) doses between 274 and >10,000 nmol/l. Oral treatment with 30 mg/kg BID for 2 weeks in advanced tumors yielded significant tumor growth delay, with a median time to reach five times initial tumor volume of 11.4 days compared to controls (p = 0.0006) and resulted in significant reduction in bioluminescence. Simultaneous inhibition of VEGFR downstream effector mTOR using rapamycin 20 mg/kg q2d×5 did not statistically enhance tumor growth delay compared to single agent activities. Axitinib downregulated VEGFR-2 phosphorylation resulting in significantly decreased microvessel density (MVD) and overall surface fraction of tumor vessels (OSFV) in all xenografts as measured by CD34 immunohistochemical staining (mean MVD ± SD and OSFV at 14 days 21.27 ± 10.03 in treated tumors vs. 48.79 ± 17.27 in controls and 0.56% vs. 1.29%; p = 0.0006, respectively). We further explored the effects of axitinib on circulating mature endothelial cells (CECs) and endothelial progenitor cells (CEPs) measured by flow cytometry. While only transient modification was observed for CECs, CEP counts were significantly reduced during and up to 14 days after end of treatment. Axitinib has potent antiangiogenic properties that may warrant further evaluation in neuroblastoma. PMID:20715103

  7. Upregulation of Human ST8Sia VI (α2,8-Sialyltransferase) Gene Expression by Physcion in SK-N-BE(2)-C Human Neuroblastoma Cells.

    PubMed

    Yoon, Hyun-Kyoung; An, Hyun-Kyu; Ko, Min Jung; Kim, Kyoung-Sook; Mun, Seo-Won; Kim, Dong-Hyun; Kim, Cheol Min; Kim, Cheorl-Ho; Choi, Young Whan; Lee, Young-Choon

    2016-01-01

    In this research, we firstly demonstrated that physcion, an anthraquinone derivative, specifically increased the expression of the human α2,8-sialyltransferase (hST8Sia VI) gene in SK-N-BE(2)-C human neuroblastoma cells. To establish the mechanism responsible for the up-regulation of hST8Sia VI gene expression in physcion-treated SK-N-BE(2)-C cells, the putative promoter region of the hST8Sia VI gene was functionally characterized. Promoter analysis with serially truncated fragments of the 5'-flanking region showed that the region between -320 and -240 is crucial for physcion-induced transcription of hST8Sia VI in SK-N-BE(2)-C cells. Putative binding sites for transcription factors Pax-5 and NF-Y are located at this region. The Pax-5 binding site at -262 to -256 was essential for the expression of the hST8Sia VI gene by physcion in SK-N-BE(2)-C cells. Moreover, the transcription of hST8Sia VI induced by physcion in SK-N-BE(2)-C cells was inhibited by extracellular signal-regulated protein kinase (ERK) inhibitor U0126 and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, but not c-Jun N-terminal kinase (JNK) inhibitor SP600125. These results suggest that physcion upregulates hST8Sia VI gene expression via ERK and p38 MAPK pathways in SK-N-BE(2)-C cells. PMID:27490539

  8. Upregulation of Human ST8Sia VI (α2,8-Sialyltransferase) Gene Expression by Physcion in SK-N-BE(2)-C Human Neuroblastoma Cells

    PubMed Central

    Yoon, Hyun-Kyoung; An, Hyun-Kyu; Ko, Min Jung; Kim, Kyoung-Sook; Mun, Seo-Won; Kim, Dong-Hyun; Kim, Cheol Min; Kim, Cheorl-Ho; Choi, Young Whan; Lee, Young-Choon

    2016-01-01

    In this research, we firstly demonstrated that physcion, an anthraquinone derivative, specifically increased the expression of the human α2,8-sialyltransferase (hST8Sia VI) gene in SK-N-BE(2)-C human neuroblastoma cells. To establish the mechanism responsible for the up-regulation of hST8Sia VI gene expression in physcion-treated SK-N-BE(2)-C cells, the putative promoter region of the hST8Sia VI gene was functionally characterized. Promoter analysis with serially truncated fragments of the 5′-flanking region showed that the region between −320 and −240 is crucial for physcion-induced transcription of hST8Sia VI in SK-N-BE(2)-C cells. Putative binding sites for transcription factors Pax-5 and NF-Y are located at this region. The Pax-5 binding site at −262 to −256 was essential for the expression of the hST8Sia VI gene by physcion in SK-N-BE(2)-C cells. Moreover, the transcription of hST8Sia VI induced by physcion in SK-N-BE(2)-C cells was inhibited by extracellular signal-regulated protein kinase (ERK) inhibitor U0126 and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, but not c-Jun N-terminal kinase (JNK) inhibitor SP600125. These results suggest that physcion upregulates hST8Sia VI gene expression via ERK and p38 MAPK pathways in SK-N-BE(2)-C cells. PMID:27490539

  9. Familial neuroblastoma. Case reports, literature review, and etiologic considerations.

    PubMed

    Kushner, B H; Gilbert, F; Helson, L

    1986-05-01

    The phenomenon of familial neuroblastoma is discussed in the context of case reports describing disseminated neuroblastoma in two of three half-brothers who share a common unaffected mother and who each have a different father. This family's cytogenetics proved to be unremarkable; also, the mother's peripheral blood DNA did not show tumorigenic capacities in transfection-nude mice experiments. An analysis of reported cases permits an updated examination of the clinical features of this entity and defines the limits of genetic counseling of families of all neuroblastoma patients. Multiple primaries are a hallmark of familial neuroblastoma. Most diagnoses are made in the first 18 months of life and at ages that fall within 12 months of the age of diagnosis of the other affected family member. Difficulties in determining the incidence and penetrance of an inherited susceptibility to neuroblastoma derive from undiagnosed tumors that have undergone regression or spontaneous maturation to benign ganglioneuroma, as well as from early deaths or long-term treatment complications that preclude reproduction and multigenerational pedigrees. Nevertheless, the risk of neuroblastoma in siblings or offspring of the large majority of persons with neuroblastoma appears to be less than 6%. Recent observations concerning chromosomal aberrations and oncogenes in embryonal malignancies are presented in an integrated model of tumorigenesis that corresponds to clinical experience. PMID:3955526

  10. ABC transporters and neuroblastoma.

    PubMed

    Yu, Denise M T; Huynh, Tony; Truong, Alan M; Haber, Michelle; Norris, Murray D

    2015-01-01

    Neuroblastoma is the most common cancer of infancy and accounts for 15% of all pediatric oncology deaths. Survival rates of high-risk neuroblastoma remain less than 50%, with amplification of the MYCN oncogene the most important aberration associated with poor outcome. Direct transcriptional targets of MYCN include a number of ATP-binding cassette (ABC) transporters, of which ABCC1 (MRP1), ABCC3 (MRP3), and ABCC4 (MRP4) are the best characterized. These three transporter genes have been shown to be strongly prognostic of neuroblastoma outcome in primary untreated neuroblastoma. In addition to their ability to efflux a number of chemotherapeutic drugs, evidence suggests that these transporters also contribute to neuroblastoma outcome independent of any role in cytotoxic drug efflux. Endogenous substrates of ABCC1 and ABCC4 that may be potential candidates affecting neuroblastoma biology include molecules such as prostaglandins and leukotrienes. These bioactive lipid mediators have the ability to influence biological processes contributing to cancer initiation and progression, such as angiogenesis, cell signaling, inflammation, proliferation, and migration and invasion. ABCC1 and ABCC4 are thus potential targets for therapeutic suppression in high-risk neuroblastoma, and recently developed small-molecule inhibitors may be an effective strategy in treating aggressive forms of this cancer, as well as other cancers that express high levels of these transporters. PMID:25640269

  11. Tumor spheroid model for the biologically targeted radiotherapy of neuroblastoma micrometastases

    SciTech Connect

    Walker, K.A.; Mairs, R.; Murray, T.; Hilditch, T.E.; Wheldon, T.E.; Gregor, A.; Hann, I.M. )

    1990-02-01

    Neuroblastoma is a pediatric malignancy with a poor prognosis at least partly attributable to an early pattern of dissemination. New approaches to treatment of micrometastases include targeted radiotherapy using radiolabeled antibodies or molecules which are taken up preferentially by tumor cells. Multicellular tumor spheroids (MTS) resemble micrometastases during the avascular phase of their development. A human neuroblastoma cell line (NBl-G) was grown as MTS and incubated briefly with a radiolabeled monoclonal antibody ({sup 131}I-UJ13A) directed against neuroectodermal antigens. Spheroid response was evaluated in terms of regrowth delay or proportion sterilized. A dose-response relationship was demonstrated in terms of {sup 131}I activity or duration of incubation. Control experiments using unlabeled UJ13A, radiolabeled nonspecific antibody (T2.10), radiolabeled human serum albumin, and radiolabeled sodium iodide showed these to be relatively ineffective compared to {sup 131}I-UJ13A. The cell line NBl-G grown as MTS has also been found to preferentially accumulate the radiolabeled catecholamine precursor molecule m-({sup 131}I)iodobenzylguanidine compared to cell lines derived from other tumor types. NBl-G cells grown as MTS provide a promising laboratory model for targeted radiotherapy of neuroblastoma micrometastases using radiolabeled antibodies or m-iodobenzylguanidine.

  12. Curcumin Regulates Low-Linear Energy Transfer {gamma}-Radiation-Induced NF{kappa}B-Dependent Telomerase Activity in Human Neuroblastoma Cells

    SciTech Connect

    Aravindan, Natarajan; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh; Herman, Terence S.; Natarajan, Mohan

    2011-03-15

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NF{kappa}B regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NF{kappa}B-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NF{kappa}B-dependent regulation was investigated either by luciferase reporter assays using pNF{kappa}B-, pGL3-354-, pGL3-347-, or pUSE-I{kappa}B{alpha}-Luc, p50/p65, or RelA siRNA-transfected cells. NF{kappa}B activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NF{kappa}B. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NF{kappa}B becomes functionally activated after IR and mediates TA upregulation by binding to the {kappa}B-binding region in the promoter region of the TERT gene. Consistently, elimination of the NF{kappa}B-recognition site on the telomerase promoter or inhibition of NF{kappa}B by the I{kappa}B{alpha} mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NF{kappa}B overexpressed cells. Furthermore, curcumin enhanced

  13. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    SciTech Connect

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S. . E-mail: jrhim@cpdr.org

    2006-04-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.

  14. Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human

    PubMed Central

    Kushwah, Rahul; Guezguez, Borhane; Lee, Jung Bok; Hopkins, Claudia I; Bhatia, Mickie

    2014-01-01

    The Notch signaling pathway is evolutionarily conserved across species and plays an important role in regulating cell differentiation, proliferation, and survival. It has been implicated in several different hematopoietic processes including early hematopoietic development as well as adult hematological malignancies in humans. This review focuses on recent developments in understanding the role of Notch signaling in the human hematopoietic system with an emphasis on hematopoietic initiation from human pluripotent stem cells and regulation within the bone marrow. Based on recent insights, we summarize potential strategies for treatment of human hematological malignancies toward the concept of targeting Notch signaling for fate regulation. PMID:25252682

  15. Neuroblastoma and MYCN

    PubMed Central

    Huang, Miller; Weiss, William A.

    2013-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to originate from undifferentiated neural crest cells. Amplification of the MYC family member, MYCN, is found in ∼25% of cases and correlates with high-risk disease and poor prognosis. Currently, amplification of MYCN remains the best-characterized genetic marker of risk in neuroblastoma. This article reviews roles for MYCN in neuroblastoma and highlights recent identification of other driver mutations. Strategies to target MYCN at the level of protein stability and transcription are also reviewed. PMID:24086065

  16. SINGLE-WALLED CARBON NANOTUBE–MEDIATED SMALL INTERFERING RNA DELIVERY AND SILENCING GASTRIN-RELEASING PEPTIDE RECEPTOR IN HUMAN NEUROBLASTOMA CELLS

    PubMed Central

    Qiao, Jingbo; Hong, Tu; Guo, Honglian; Xu, Ya-Qiong; Chung, Dai H.

    2015-01-01

    Small interfering RNA (siRNA) has the potential to influence expression with a high degree of target gene specificity. However, the clinical application of siRNA therapeutics has proven to be less promising as evidenced by poor intracellular uptake, instability in vivo, and non-specific immune stimulations. Recently, we have demonstrated that single-walled carbon nanotube (SWNT)-mediated siRNA delivery can enhance the efficiency of siRNA-mediated gastrin-releasing peptide receptor (GRP-R) gene silencing by stabilizing siRNA while selectively targeting tumor tissues. Based on our recent findings, we introduce a novel technique to silence specific gene(s) in human neuroblastoma through SWNT-mediated siRNA delivery in vitro and in vivo. PMID:23749575

  17. Localisation of [131I]MIBG in nude mice bearing SK-N-SH human neuroblastoma xenografts: effect of specific activity.

    PubMed Central

    Vaidyanathan, G.; Friedman, H. S.; Keir, S. T.; Zalutsky, M. R.

    1996-01-01

    The biodistribution of no-carrier-added (n.c.a.) meta-[131I]iodobenzylguanidine ([131I]MIBG) and that prepared by the standard isotopic exchange method were compared in athymic mice bearing SK-N-SH human neuroblastoma xenografts. No advantage in tumour uptake was observed for the n.c.a. preparation. BALB/c nu/nu mice exhibited lower uptake in highly innervated normal tissues (heart and adrenals) than normal BALB/c mice. In another experiment, the distribution of n.c.a. [131I]MIBG in the absence or presence (3-9 micrograms) of MIBG carrier was determined. At both 4 h and 24 h, the heart uptake was reduced by a factor of 1.5 even at a dose of 3 micrograms MIBG. Tumour uptake was not significantly altered by various amounts of unlabelled MIBG at either time point. PMID:8630274

  18. HIV-Tat Induces the Nrf2/ARE Pathway through NMDA Receptor-Elicited Spermine Oxidase Activation in Human Neuroblastoma Cells

    PubMed Central

    Mastrantonio, Roberta; Cervelli, Manuela; Pietropaoli, Stefano; Mariottini, Paolo; Colasanti, Marco; Persichini, Tiziana

    2016-01-01

    Previously, we reported that HIV-Tat elicits spermine oxidase (SMO) activity upregulation through NMDA receptor (NMDAR) stimulation in human SH-SY5Y neuroblastoma cells, thus increasing ROS generation, which in turn leads to GSH depletion, oxidative stress, and reduced cell viability. In several cell types, ROS can trigger an antioxidant cell response through the transcriptional induction of oxidative stress-responsive genes regulated by the nuclear factor erythroid 2-related factor 2 (Nrf2). Here, we demonstrate that Tat induces both antioxidant gene expression and Nrf2 activation in SH-SY5Y cells, mediated by SMO activity. Furthermore, NMDAR is involved in Tat-induced Nrf2 activation. These findings suggest that the NMDAR/SMO/Nrf2 pathway is an important target for protection against HIV-associated neurocognitive disorders. PMID:26895301

  19. Oncolytic virotherapy for human malignant mesothelioma: recent advances

    PubMed Central

    Boisgerault, Nicolas; Achard, Carole; Delaunay, Tiphaine; Cellerin, Laurent; Tangy, Frédéric; Grégoire, Marc; Fonteneau, Jean-François

    2015-01-01

    Cancer virotherapy is an attractive alternative to conventional treatments because it offers a wide range of antitumor effects due to 1) the diversity of the oncolytic viruses that are now available and 2) their multifaceted activities against both tumor cells and tumor vessels, in addition to their ability to induce antitumor immune responses. In this review, we summarize preclinical and clinical data regarding the targeting of malignant mesothelioma (MM) by oncolytic viruses. We also discuss the potential of other oncolytic viruses that have already shown antitumor effects against several malignancies in advanced clinical trials but are yet to be tested against MM cells. Finally, we review how the activation of the immune system and combinations with other types of anticancer treatments could support the development of oncolytic virotherapy for the treatment of MM. PMID:27512676

  20. MIBG in Neuroblastoma Diagnostic Imaging and Therapy.

    PubMed

    Sharp, Susan E; Trout, Andrew T; Weiss, Brian D; Gelfand, Michael J

    2016-01-01

    Neuroblastoma is a common malignancy observed in infants and young children. It has a varied prognosis, ranging from spontaneous regression to aggressive metastatic tumors with fatal outcomes despite multimodality therapy. Patients are divided into risk groups on the basis of age, stage, and biologic tumor factors. Multiple clinical and imaging tests are needed for accurate patient assessment. Iodine 123 ((123)I) metaiodobenzylguanidine (MIBG) is the first-line functional imaging agent used in neuroblastoma imaging. MIBG uptake is seen in 90% of neuroblastomas, identifying both the primary tumor and sites of metastatic disease. The addition of single photon emission computed tomography (SPECT) and SPECT/computed tomography to (123)I-MIBG planar images can improve identification and characterization of sites of uptake. During scan interpretation, use of MIBG semiquantitative scoring systems improves description of disease extent and distribution and may be helpful in defining prognosis. Therapeutic use of MIBG labeled with iodine 131 ((131)I) is being investigated as part of research trials, both as a single agent and in conjunction with other therapies. (131)I-MIBG therapy has been studied in patients with newly diagnosed neuroblastoma and those with relapsed disease. Development and implementation of an institutional (131)I-MIBG therapy research program requires extensive preparation with a focus on radiation protection. PMID:26761540

  1. Pre-Exposure to 50 Hz Magnetic Fields Modifies Menadione-Induced Genotoxic Effects in Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Luukkonen, Jukka; Liimatainen, Anu; Höytö, Anne; Juutilainen, Jukka; Naarala, Jonne

    2011-01-01

    Background Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. Methodology/Principal Findings Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. Conclusions The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome. PMID:21448285

  2. Alterations in replication timing of cancer-related genes in malignant human breast cancer cells.

    PubMed

    Fritz, Andrew; Sinha, Seema; Marella, Narasimharao; Berezney, Ronald

    2013-05-01

    The replication timing of nine genes commonly involved in cancer was investigated in the MCF10 cell lines for human breast cancer progression. Six of these nine genes are part of a constellation of tumor suppressor genes that play a major role in familial human breast cancer (TP53, ATM, PTEN, CHK2, BRCA1, and BRCA2). Three other genes are involved in a large number of human cancers including breast as either tumor suppressors (RB1 and RAD51) or as an oncogene (cMYC). Five of these nine genes (TP53, RAD51, ATM, PTEN, and cMYC) show significant differences (P < 0.05) in replication timing between MCF10A normal human breast cells and the corresponding malignant MCF10CA1a cells. These differences are specific to the malignant state of the MCF10CA1a cells since there were no significant differences in the replication timing of these genes between normal MCF10A cells and the non-malignant cancer MCF10AT1 cells. Microarray analysis further demonstrated that three of these five genes (TP53, RAD51, and cMYC) showed significant changes in gene expression (≥2-fold) between normal and malignant cells. Our findings demonstrate an alteration in the replication timing of a small subset of cancer-related genes in malignant breast cancer cells. These alterations partially correlate with the major transcriptional changes characteristic of the malignant state in these cells. PMID:23161755

  3. Apoptotic Cell Death in Neuroblastoma

    PubMed Central

    Li, Yuanyuan; Nakagawara, Akira

    2013-01-01

    Neuroblastoma (NB) is one of the most common malignant solid tumors in childhood, which derives from the sympathoadrenal lineage of the neural crest and exhibits extremely heterogeneous biological and clinical behaviors. The infant patients frequently undergo spontaneous regression even with metastatic disease, whereas the patients of more than one year of age who suffer from disseminated disease have a poor outcome despite intensive multimodal treatment. Spontaneous regression in favorable NBs has been proposed to be triggered by nerve growth factor (NGF) deficiency in the tumor with NGF dependency for survival, while aggressive NBs have defective apoptotic machinery which enables the tumor cells to evade apoptosis and confers the resistance to treatment. This paper reviews the molecules and pathways that have been recently identified to be involved in apoptotic cell death in NB and discusses their potential prospects for developing more effective therapeutic strategies against aggressive NB. PMID:24709709

  4. How Is Neuroblastoma Diagnosed?

    MedlinePlus

    ... and can provide a picture of the entire skeleton at once. Neuroblastoma often causes bone damage, which ... settles in areas of damaged bone throughout the skeleton over the course of a couple of hours. ...

  5. Immune Therapies for Neuroblastoma

    PubMed Central

    Navid, Fariba; Armstrong, Michael; Barfield, Raymond C.

    2009-01-01

    Neuroblastoma, a solid tumor arising from developing cells of the sympathetic nervous system, is the most common extracranial tumor in children. The prognosis for high-risk neuroblastoma remains poor with conventional treatment, and new approaches are therefore being explored to treat this disease. One such alternative therapy that holds promise is immune therapy. We review here the recent advances in 4 types of immune therapy – cytokine, vaccine, antibody, and cellular therapy – to treat neuroblastoma. We present preclinical research and clinical trials on several promising candidates such as IL-12, dendritic cell vaccines, anti-GD2 antibodies, and allogeneic hematopoietic stem cell transplant. An optimal treatment plan for neuroblastoma will most likely involve multimodal approaches and combinations of immune therapies. PMID:19342881

  6. Drugs Approved for Neuroblastoma

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for neuroblastoma. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  7. Malignancies in human immunodeficiency virus infected patients in India: Initial experience in the HAART era

    PubMed Central

    Sharma, Surendra K.; Soneja, Manish; Ranjan, Sanjay

    2015-01-01

    Background & objectives: Limited data are available on malignancies in human immunodeficiency virus (HIV)-infected patients from India. We undertook this study to assess the frequency and spectrum of malignancies in HIV-infected adult patients during the first eight years of highly active antiretroviral therapy (HAART) rollout under the National ART Programme at a tertiary care centre in New Delhi, India. Methods: Retrospective analysis of records of patients registered at the ART clinic between May 2005 and December 2013 was done. Results: The study included 2598 HIV-infected adult patients with 8315 person-years of follow up. Malignancies were diagnosed in 26 patients with a rate of 3.1 (IQR 2.1-4.5) cases per 1000 person-years. The median age for those diagnosed with malignancy was 45 (IQR 36-54) yr, which was significantly (P<0.01) higher compared with those not developing malignancies 35 (IQR 30-40) yr. The median baseline CD4+ T-cell count in patients with malignancy was 135 (IQR 68-269) cells/µl compared to 164 (IQR 86-243) cells/µl in those without malignancies. AIDS-defining cancers (ADCs) were seen in 19 (73%) patients, while non-AIDS-defining cancers (NADCs) were observed in seven (27%) patients. Malignancies diagnosed included non-Hodgkin's lymphoma (16), carcinoma cervix (3), Hodgkin's lymphoma (2), carcinoma lung (2), hepatocellular carcinoma (1), and urinary bladder carcinoma (1). One patient had primary central nervous system lymphoma. There was no case of Kaposi's sarcoma. Interpretation & conclusions: Malignancies in HIV-infected adult patients were infrequent in patients attending the clinic. Majority of the patients presented with advanced immunosuppression and the ADCs, NHL in particular, were the commonest malignancies. PMID:26658591

  8. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    SciTech Connect

    Yang, Yingbin; Cai, Shaoxi; Yang, Li; Yu, Shuhui; Jiang, Jiahuan; Yan, Xiaoqing; Zhang, Haoxing; Liu, Lan; Liu, Qun; Du, Jun; Cai, Shaohui; Sung, K.L. Paul

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  9. Dye-mediated photosensitization of murine neuroblastoma cells

    SciTech Connect

    Sieber, F.; Sieber-Blum, M.

    1986-04-01

    The purpose of this study was to determine if photosensitization mediated by the fluorescent dye, merocyanine 540, could be used to preferentially kill murine neuroblastoma cells in simulated autologous remission marrow grafts. Simultaneous exposure of Neuro 2a or NB41A3 neuroblastoma cells to merocyanine 540 and white light reduced the concentration of in vitro-clonogenic tumor cells 50,000-fold. By contrast, the same treatment had little effect on the graft's ability to rescue lethally irradiated syngeneic hosts. Lethally irradiated C57BL/6J X A/J F1 mice transplanted with photosensitized mixtures of neuroblastoma cells and normal marrow cells (1:100 or 1:10) survived without developing neuroblastomas. It is conceivable that merocyanine 540-mediated photosensitization will prove useful for the extracorporeal purging of residual neuroblastoma cells from human autologous remission marrow grafts.

  10. β-N-methylamino-L-alanine induces changes in both GSK3 and TDP-43 in human neuroblastoma.

    PubMed

    Muñoz-Saez, Emma; de Munck, Estefanía; Arahuetes, Rosa M; Solas, M Teresa; Martínez, Ana M; Miguel, Begoña G

    2013-01-01

    β-N-methylamino-L-alanine (L-BMAA) is a neurotoxic amino acid produced by most cyanobacteria, which are extensively distributed in different environments all over the world. L-BMAA has been linked to a variety of neurodegenerative diseases. This work aims to analyze the toxicological action of L-BMAA related to alterations observed in different neurodegenerative illness as Alzheimer disease and amyotrophic lateral sclerosis. Our results demonstrate that neuroblastoma cells treated with L-BMAA show an increase in glycogen synthase kinase 3 β (GSk3β) and induce accumulation of TAR DNA-binding protein 43 (TDP-43) truncated forms (C-terminal fragments), phosphorylated  and high molecular weight forms of TDP-43, that appears frequently in some neurodegenerative diseases. PMID:23665941

  11. Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway.

    PubMed

    Rahman, Md Ataur; Bishayee, Kausik; Huh, Sung-Oh

    2016-02-01

    Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3β activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy. PMID:26674967

  12. Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway

    PubMed Central

    Rahman, Md. Ataur; Bishayee, Kausik; Huh, Sung-Oh

    2016-01-01

    Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3β activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy. PMID:26674967

  13. Genome-wide expression profiling of 8-chloroadenosine- and 8-chloro-cAMP-treated human neuroblastoma cells using radioactive human cDNA microarray.

    PubMed

    Park, Gil Hong; Choe, Jaegol; Choo, Hyo-Jung; Park, Yun Gyu; Sohn, Jeongwon; Kim, Meyoung-kon

    2002-07-31

    Previous reports raised question as to whether 8-chloro-cyclic adenosine 3,5-monophosphate (8-Cl-cAMP) is a prodrug for its metabolite, 8-Cl-adenosine which exerts growth inhibition in a broad spectrum of cancer cells. The present study was carried out to clarify overall cellular affects of 8-Cl-cAMP and 8-Cl-adenosine on SK-N-DZ human neuroblastoma cells by systematically characterizing gene expression using radioactive human cDNA microarray. Microarray was prepared with PCR-amplified cDNA of 2,304 known genes spotted on nylon membranes, employing (33)P-labeled cDNAs of SK-N-DZ cells as a probe. The expression levels of approximately 100 cDNAs, representing about 8% of the total DNA elements on the array, were altered in 8-Cl-adenosine- or 8-Cl-cAMP-treated cells, respectively. The genome-wide expression of the two samples exhibited partial overlaps; different sets of up-regulated genes but the same set of down-regulated genes. 8-Cl-adenosine treatment up-regulated genes involved in differentiation and development (LIM protein, connexin 26, neogenin, neurofilament triplet L protein and p21(WAF1/CIP1)) and immune response such as natural killer cells protein 4, and down-regulated ones involved in proliferation and transformation (transforming growth factor-beta, DYRK2, urokinase-type plasminogen activator and proteins involved in transcription and translation) which were in close parallel with those by 8-Cl-cAMP. Our results indicated that the two drugs shared common genomic pathways for the down-regulation of certain genes, but used distinct pathways for the up-regulation of different gene clusters. Based on the findings, we suggest that the anti-cancer activity of 8-Cl-cAMP results at least in part through 8-Cl-adenosine. Thus, the systematic use of DNA arrays can provide insight into the dynamic cellular pathways involved in anticancer activities of chemotherapeutics. PMID:12216110

  14. Neuroprotective effect of arctigenin via upregulation of P-CREB in mouse primary neurons and human SH-SY5Y neuroblastoma cells.

    PubMed

    Zhang, Nan; Wen, Qingping; Ren, Lu; Liang, Wenbo; Xia, Yang; Zhang, Xiaodan; Zhao, Dan; Sun, Dong; Hu, Yv; Hao, Haiguang; Yan, Yaping; Zhang, Guangxian; Yang, Jingxian; Kang, Tingguo

    2013-01-01

    Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB. PMID:24025424

  15. Iodine-131 MIBG scintigraphy of the extremities in metastatic pheochromocytoma and neuroblastoma

    SciTech Connect

    Shulkin, B.L.; Shen, S.W.; Sisson, J.C.; Shapiro, B.

    1987-03-01

    Iodine-131 MIBG scintigraphy may be used to determine the presence or absence of metastases to the appendicular skeleton in malignant pheochromocytoma and neuroblastoma. Normal bones show no uptake of (/sup 131/I)MIBG and the joints are seen as photon-deficient areas surrounded by background muscle activity. Discrete concentrations of radioactivity in bone are often seen in patients with malignant pheochromocytoma and neuroblastoma. Bone marrow involvement in neuroblastoma may be indicated by diffuse uptake of (/sup 131/I)MIBG or focal accumulation at the metaphyses. Uncommonly, bone involvement may not be displayed by the (/sup 131/I)MIBG images. Since conventional bone scanning agents may also fail to detect these tumors, skeletal scintigraphy with both (/sup 131/I)MIBG and (/sup 99m/Tc)MDP is necessary to reliably stage malignant pheochromocytoma and neuroblastoma.

  16. Imaging in neuroblastoma: An update

    PubMed Central

    Kembhavi, Seema A; Shah, Sneha; Rangarajan, Venkatesh; Qureshi, Sajid; Popat, Palak; Kurkure, Purna

    2015-01-01

    Neuroblastoma is the third common tumor in children. Imaging plays an important role in the diagnosis, staging, treatment planning, response evaluation and in follow-up of a case of Neuroblastoma. The International Neuroblastoma Risk Group task force has recently introduced an imaging-based staging system and laid down guidelines for uniform reporting of imaging studies. This review is an update on imaging in neuroblastoma, with emphasis on these guidelines. PMID:25969636

  17. Isolation and fine mapping of 16 novel human zinc finger-encoding cDNAs identify putative candidate genes for developmental and malignant disorders

    SciTech Connect

    Tommerup, N.; Vissing, H.

    1995-05-20

    The authors have isolated and chromosomally fine-mapped 16 novel genes belonging to the human zinc finger Krueppel family (ZNF131-140, 142, 143, 148, 151, 154, and 155), including 1 of the GLI type (ZNF143) and 3 containing a KRAB (Krueppel-associated box) segment (ZNF133, 136, and 140). Based on their map position, several of these ZNF genes are putative candidate genes for both developmental and malignant disorders: ZNF138, ZNF139, and ZNF143 were localized to 7q11.2, 7q21.3-q22.1, and 11p15.3-p15.4, regions involved in deletions and/or translocations associated with Williams syndrome, split hand and foot disease (SHFD1), and Beckwith-Wiedemann syndrome, respectively. ZNF133 was localized to 20p11.2, close to, but probably distinct from, the region deleted in Alagille syndrome. Zinc finger genes mapping to regions commonly deleted in solid tumors included ZNF132, 134, 135, 137, 154, and 155, all located on 19q13 (thyroid adenoma), and ZNF151, at 1p36.1-p36.2 (neuroblastoma, colon cancer, and other tumors). In addition, several of the ZNFs mapped to regions implicated in recurrent chromosomal rearrangements in hematological malignancies (ZNF139, 7q21.3-q22.1; ZNF148, 3q21-q22; ZNF151, 1p36.1-p36.2). The study indicates that the number of ZNF genes in human is large and that systematic isolation and mapping of ZNF genes is a straightforward approach for the identification of novel candidate disease genes. 47 refs., 2 figs., 1 tab.

  18. PHOX2B is a suppressor of neuroblastoma metastasis

    PubMed Central

    Naftali, Osnat; Maman, Shelly; Meshel, Tsipi; Sagi-Assif, Orit; Ginat, Ravit; Witz, Isaac P.

    2016-01-01

    Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma. Lung micro-metastatic neuroblastoma (MicroNB) cells show high expression levels of PHOX2B and possess a less malignant and metastatic phenotype than lung macro metastatic neuroblastoma (MacroNB) cells, which hardly express PHOX2B. In vitro assays showed that PHOX2B knockdown in MicroNB cells did not affect cell viability; however it decreased the migratory capacity of the MicroNB-shPHOX2B cells. An orthotopic inoculation of MicroNB-shPHOX2B cells into the adrenal gland of nude mice resulted in significantly larger primary tumors and a heavier micro-metastatic load in the lungs and bone-marrow, than when control cells were inoculated. PHOX2B expression was found to be regulated by methylation. The PHOX2B promoter in MacroNB cells is significantly more methylated than in MicroNB cells. Demethylation assays using 5-azacytidine demonstrated that methylation can indeed inhibit PHOX2B transcription in MacroNB cells. These pre-clinical data strongly suggest that PHOX2B functions as a suppressor of neuroblastoma progression. PMID:26840262

  19. Deleted in liver cancer protein family in human malignancies (Review)

    PubMed Central

    Lukasik, D.; Wilczek, E.; Wasiutynski, A.; Gornicka, B.

    2011-01-01

    The Deleted in Liver Cancer (DLC) protein family comprises proteins that exert their function mainly by the Rho GTPase-activating protein (GAP) domain and by regulation of the small GTPases. Since Rho GTPases are key factors in cell proliferation, polarity, cytoskeletal remodeling and migration, the aberrant function of their regulators may lead to cell transformation. One subgroup of these proteins is the DLC family. It was found that the first identified gene from this family, DLC1, is often lost in hepatocellular carcinoma and may be involved as a tumor suppressor in the liver. Subsequent studies evaluated the hypothesis that the DLC1 gene acts as a tumor suppressor, not only in liver cancer, but also in other types of cancer. Following DLC1, two other members of the DLC protein family, DLC2 and DLC3, were identified. However, limited published data are available concerning the role of these proteins in malignant transformation. This review focuses on the structure and the role of DLC1 and its relatives in physiological conditions and summarizes data published thus far regarding DLC function in the neoplastic process. PMID:22866123

  20. Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx

    NASA Astrophysics Data System (ADS)

    Parmeswearan, Diagaradjane; Ganesan, Singaravelu; Nalini, R.; Aruna, Prakasa R.; Veeraganesh, V.; Alfano, Robert R.

    1997-08-01

    Many applications of native fluorescence spectroscopy of intrinsic biomolecules such as Try, Tyr, Phe, NADH and FAD are reported on both the characterization and the discrimination of malignant tissues from the normal. In the field of diagnostic oncology, extensive studies have been made to distinguish the normal from malignant condition in breast, cervix, colon and bronchus. From the studies made by Alfano and co-workers, it was found that the emission at 340 and 440 nm under UV excitation have shown statistically significant difference between normal and malignant tissues. As tissues are highly complex in nature, it is worth to known whether the changes arise from cells or from other extracellular tissue components, so as to enable us to have better understanding on the transformation mechanism of normal into malignant and to go for an improved approach in the effective optical diagnosis. In this context, the present study addresses the question of whether there are differences in the native cellular fluorescence characteristics between normal and malignant epithelial cells from human larynx. With this aim, the UV fluorescence emission spectra in the wavelength region of excitation between 270 - 310 nm and the excitation spectra for 340 nm emission were measured and analyzed. In order to quantify the altered fluorescence signal between the normal and malignant cells, different ratio parameters were introduced.

  1. Protective effect of Pycnogenol in human neuroblastoma SH-SY5Y cells following acrolein-induced cytotoxicity.

    PubMed

    Ansari, Mubeen A; Keller, Jeffrey N; Scheff, Stephen W

    2008-12-01

    Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer's disease (AD). Considerable attention has been focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-SY5Y neuroblastoma cells. Decreased cell survival in SH-SY5Y cultures treated with acrolein correlated with oxidative stress, increased NADPH oxidase activity, free radical production, protein oxidation/nitration (protein carbonyl, 3-nitrotyrosine), and lipid peroxidation (4-hydroxy-2-nonenal). Pretreatment with PYC significantly attenuated acrolein-induced cytotoxicity, protein damage, lipid peroxidation, and cell death. A dose-response study suggested that PYC showed protective effects against acrolein toxicity by modulating oxidative stress and increasing GSH. These findings provide support that PYC may provide a promising approach for the treatment of oxidative stress-related neurodegenerative diseases such as AD. PMID:18822368

  2. Myosin VI contributes to malignant proliferation of human glioma cells

    PubMed Central

    Xu, Rong; Fang, Xu-hao

    2016-01-01

    Previously characterized as a backward motor, myosin VI (MYO6), which belongs to myosin family, moves toward the minus end of the actin track, a direction opposite to all other known myosin members. Recent researches have illuminated the role of MYO6 in human cancers, particularly in prostate cancer. However, the role of MYO6 in glioma has not yet been determined. In this study, to explore the role of MYO6 in human glioma, lentivirus-delivered short hairpin RNA (shRNA) targeting MYO6 was designed to stably down-regulate its endogenous expression in glioblastoma cells U251. Knockdown of MYO6 signifi cantly inhibited viability and proliferation of U251 cells in vitro. Moreover, the cell cycle of U251 cells was arrested at G0/G1 phase with the absence of MYO6, which could contribute to the suppression of cell proliferation. In conclusion, we firstly identified the crucial involvement of MYO6 in human glioma. The inhibition of MYO6 by shRNA might be a potential therapeutic method in human glioma. PMID:26937209

  3. Functional-metabolic imaging of neuroblastoma.

    PubMed

    Sharp, S E; Parisi, M T; Gelfand, M J; Yanik, G A; Shulkin, B L

    2013-03-01

    Neuroblastoma is the third most common malignant solid tumor of childhood. It originates from primitive neural crest cells of the sympathetic nervous system. Many imaging procedures help guide therapy and predict outcomes. Anatomic imaging methods, such as CT and MRI, are most useful for evaluation of the primary tumor mass and nearby involved lymph nodes. Functional imaging tracers, such as [123I]MIBG, [18F]FDG, and [99mTc]MDP, are used to assess the extent of disease and to search for distant metastases. [123I]MIBG is the principal functional imaging tracer for the detection and monitoring of neuroblastoma. [18F]FDG PET/CT is an alternative that is valuable in tumors with poor or no MIBG-uptake. [99mTc]MDP bone scans may be useful to assess cortical bone metastases. This article will review the use of [123I]MIBG and other functional imaging agents for the management of patients with neuroblastoma. PMID:23474631

  4. Malignant Transformation of Hymenolepis nana in a Human Host.

    PubMed

    Muehlenbachs, Atis; Bhatnagar, Julu; Agudelo, Carlos A; Hidron, Alicia; Eberhard, Mark L; Mathison, Blaine A; Frace, Michael A; Ito, Akira; Metcalfe, Maureen G; Rollin, Dominique C; Visvesvara, Govinda S; Pham, Cau D; Jones, Tara L; Greer, Patricia W; Vélez Hoyos, Alejandro; Olson, Peter D; Diazgranados, Lucy R; Zaki, Sherif R

    2015-11-01

    Neoplasms occur naturally in invertebrates but are not known to develop in tapeworms. We observed nests of monomorphic, undifferentiated cells in samples from lymph-node and lung biopsies in a man infected with the human immunodeficiency virus (HIV). The morphologic features and invasive behavior of the cells were characteristic of cancer, but their small size suggested a nonhuman origin. A polymerase-chain-reaction (PCR) assay targeting eukaryotes identified Hymenolepis nana DNA. Although the cells were unrecognizable as tapeworm tissue, immunohistochemical staining and probe hybridization labeled the cells in situ. Comparative deep sequencing identified H. nana structural genomic variants that are compatible with mutations described in cancer. Invasion of human tissue by abnormal, proliferating, genetically altered tapeworm cells is a novel disease mechanism that links infection and cancer. PMID:26535513

  5. Sigma-2 Receptors Play a Role in Cellular Metabolism: Stimulation of Glycolytic Hallmarks by CM764 in Human SK-N-SH Neuroblastoma.

    PubMed

    Nicholson, Hilary; Mesangeau, Christophe; McCurdy, Christopher R; Bowen, Wayne D

    2016-02-01

    Sigma-2 receptors are attractive antineoplastic targets due to their ability to induce apoptosis and their upregulation in rapidly proliferating cancer cells compared with healthy tissue. However, this role is inconsistent with overexpression in cancer, which is typically associated with upregulation of prosurvival factors. Here, we report a novel metabolic regulatory function for sigma-2 receptors. CM764 [6-acetyl-3-(4-(4-(2-amino-4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one] binds with Ki values of 86.6 ± 2.8 and 3.5 ± 0.9 nM at the sigma-1 and sigma-2 receptors, respectively. CM764 increased reduction of MTT [3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide] in human SK-N-SH neuroblastoma compared with untreated cells, an effect not due to proliferation. This effect was attenuated by five different sigma antagonists, including CM572 [3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-isothiocyanatobenzo[d]oxazol-2(3H)-one], which has no significant affinity for sigma-1 receptors. This effect was also observed in MG-63 osteosarcoma and HEK293T cells, indicating that this function is not exclusive to neuroblastoma or to cancer cells. CM764 produced an immediate, robust, and transient increase in cytosolic calcium, consistent with sigma-2 receptor activation. Additionally, we observed an increase in the total NAD(+)/NADH level and the ATP level in CM764-treated SK-N-SH cells compared with untreated cells. After only 4 hours of treatment, basal levels of reactive oxygen species were reduced by 90% in cells treated with CM764 over untreated cells, and HIF1α and VEGF levels were increased after 3-24 hours of treatment. These data indicate that sigma-2 receptors may play a role in induction of glycolysis, representing a possible prosurvival function for the sigma-2 receptor that is consistent with its upregulation in cancer cells compared with healthy tissue. PMID:26574517

  6. Zebrafish as a Model for the Study of Human Myeloid Malignancies.

    PubMed

    Lu, Jeng-Wei; Hsieh, Meng-Shan; Liao, Heng-An; Yang, Yi-Ju; Ho, Yi-Jung; Lin, Liang-In

    2015-01-01

    Myeloid malignancies are heterogeneous disorders characterized by uncontrolled proliferation or/and blockage of differentiation of myeloid progenitor cells. Although a substantial number of gene alterations have been identified, the mechanism by which these abnormalities interact has yet to be elucidated. Over the past decades, zebrafish have become an important model organism, especially in biomedical research. Several zebrafish models have been developed to recapitulate the characteristics of specific myeloid malignancies that provide novel insight into the pathogenesis of these diseases and allow the evaluation of novel small molecule drugs. This report will focus on illustrative examples of applications of zebrafish models, including transgenesis, zebrafish xenograft models, and cell transplantation approaches, to the study of human myeloid malignancies. PMID:26064935

  7. Adult Neuroblastoma Complicated by Increased Intracranial Pressure: A Case Report and Review of the Literature

    PubMed Central

    Stevens, Patrick L.; Johnson, Douglas B.; Thompson, Mary Ann; Keedy, Vicki L.; Frangoul, Haydar A.; Snyder, Kristen M.

    2014-01-01

    Neuroblastoma is the third most commonly occurring malignancy of the pediatric population, although it is extremely rare in the adult population. In adults, neuroblastoma is often metastatic and portends an extremely poor overall survival. Our case report documents metastatic neuroblastoma occurring in a healthy 29-year-old woman whose course was complicated by an unusual presentation of elevated intracranial pressures. The patient was treated with systemic chemotherapy, I131 metaiodobenzylguanidine (MIBG) radiotherapy, and autologous stem cell transplant (SCT). Unfortunately the patient's response to therapy was limited and she subsequently died. We aim to review neuroblastoma in the context of increased intracranial pressure and the limited data of neuroblastoma occurring in the adult population, along with proposed treatment options. PMID:25328733

  8. Adult neuroblastoma complicated by increased intracranial pressure: a case report and review of the literature.

    PubMed

    Stevens, Patrick L; Johnson, Douglas B; Thompson, Mary Ann; Keedy, Vicki L; Frangoul, Haydar A; Snyder, Kristen M

    2014-01-01

    Neuroblastoma is the third most commonly occurring malignancy of the pediatric population, although it is extremely rare in the adult population. In adults, neuroblastoma is often metastatic and portends an extremely poor overall survival. Our case report documents metastatic neuroblastoma occurring in a healthy 29-year-old woman whose course was complicated by an unusual presentation of elevated intracranial pressures. The patient was treated with systemic chemotherapy, I(131) metaiodobenzylguanidine (MIBG) radiotherapy, and autologous stem cell transplant (SCT). Unfortunately the patient's response to therapy was limited and she subsequently died. We aim to review neuroblastoma in the context of increased intracranial pressure and the limited data of neuroblastoma occurring in the adult population, along with proposed treatment options. PMID:25328733

  9. Am80 induces neuronal differentiation via increased tropomyosin-related kinase B expression in a human neuroblastoma SH-SY5Y cell line.

    PubMed

    Shiohira, Hideo; Kitaoka, Akira; Enjoji, Munechika; Uno, Tsukasa; Nakashima, Manabu

    2012-01-01

    Am80, a synthetic retinoid, has been used in differentiation therapy for acute promyelocytic leukemia (APL). All-trans retinoic acid (ATRA) as one of natural retinoid has been also used to treat APL. ATRA treatment causes neuronal differentiation by inducing tropomyosin-related kinase B (TrkB) expression and increasing the sensitivity to brain-derived neurotrophic factor (BDNF), a TrkB ligand. In the present study, we investigated the effects of Am80 on neuronal differentiation, BDNF sensitivity and TrkB expression in human neuroblastoma SH-SY5Y cells. Treatment with Am80 induced morphological differentiation of neurite outgrowth and increased the expression of GAP43 mRNA, a neuronal differentiation marker. Additionally, TrkB protein was also increased, and exogenous BDNF stimulation after treatment with Am80 induced greater neurite outgrowth than without BDNF treatment. These results suggest that Am80 induced neuronal differentiation by increasing TrkB expression and BDNF sensitivity. PMID:23124249

  10. Impact of plant extracts tested in attention-deficit/hyperactivity disorder treatment on cell survival and energy metabolism in human neuroblastoma SH-SY5Y cells.

    PubMed

    Schmidt, Andreas Johannes; Krieg, Jürgen-Christian; Hemmeter, Ulrich Michael; Kircher, Tilo; Schulz, Eberhard; Clement, Hans-Willi; Heiser, Philip

    2010-10-01

    Plant extracts such as Hypericum perforatum and Pycnogenol have been tested as alternatives to the classical ADHD drugs. It has been possible to describe neuroprotective effects of such plant extracts. A reduction of ADHD symptoms could be shown in clinical studies after the application of Pycnogenol, which is a pine bark extract. The impacts of the standardized herbal extracts Hypericum perforatum, Pycnogenol and Enzogenol up to a concentration of 5000 ng/mL on cell survival and energy metabolism in human SH-SY5Y neuroblastoma cells has been investigated in the present examination. Hypericum perforatum significantly decreased the survival of cells after treatment with a concentration of 5000 ng/mL, whereas lower concentrations exerted no significant effects. Pycnogenol( induced a significant increase of cell survival after incubation with a concentration of 32.25 ng/mL and a concentration of 250 ng/mL. Other applied concentrations of Pycnogenol failed to exert significant effects. Treatment with Enzogenol did not lead to significant changes in cell survival.Concerning energy metabolism, the treatment of cells with a concentration of 5000 ng/mL Hypericum perforatum led to a significant increase of ATP levels, whereas treatment with a concentration of 500 ng/mL had no significant effect. Incubation of cells with Pycnogenol and Enzogenol exerted no significant effects.None of the tested substances caused any cytotoxic effect when used in therapeutically relevant concentrations. PMID:20878709

  11. Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells.

    PubMed

    Meng, Pengfei; Yoshida, Hidemi; Tanji, Kunikazu; Matsumiya, Tomoh; Xing, Fei; Hayakari, Ryo; Wang, Liang; Tsuruga, Kazushi; Tanaka, Hiroshi; Mimura, Junsei; Kosaka, Kunio; Itoh, Ken; Takahashi, Ippei; Kawaguchi, Shogo; Imaizumi, Tadaatsu

    2015-05-01

    Amyloid-beta (Aβ) peptides, Aβ 1-42 (Aβ42) and Aβ43 in particular, cause neurotoxicity and cell death in the brain of Alzheimer's disease (AD) at higher concentrations. Carnosic acid (CA), a phenolic diterpene compound in the labiate herbs rosemary and sage, serves as an activator for neuroprotective and neurotrophic functions in brain cells. We investigated the effect of CA on apoptosis induced by Aβ42 or Aβ43 in cultured SH-SY5Y human neuroblastoma cells. Treatment of the cells with Aβ42 or Aβ43 (monomer, 10 μM each) induced apoptosis, which was confirmed by the cleavage of poly-(ADP-ribose) polymerase (PARP) and apoptosis-inducing factor (AIF). Concurrently, the Aβ treatment induced the activation of caspase (Casp) cascades including an effector Casp (Casp3) and initiator Casps (Casp4, Casp8 and Casp9). Pretreatment of the cells with CA (10 μM) partially attenuated the apoptosis induced by Aβ42 or Aβ43. CA pretreatment also reduced the cellular oligomers of Aβ42 and Aβ43. These results suggest that CA suppressed the activation of Casp cascades by reducing the intracellular oligomerization of exogenous Aβ42/43 monomer. The ingestion of an adequate amount of CA may have a potential in the prevention of Aβ-mediated diseases, particularly AD. PMID:25510380

  12. Involvement of Mu Opioid Receptor Signaling in the Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis

    PubMed Central

    Eftekhar-Vaghefi, Shahrzad; Esmaeili-Mahani, Saeed; Elyasi, Leila; Abbasnejad, Mehdi

    2015-01-01

    Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamine-induced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson’s disease. Cell damage was induced by 150 μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular calcium, reactive oxygen species and mitochondrial membrane potential were assessed by fluorescence spectrophotometry method. Immunoblot technique was used to evaluate cytochrome-c and activated caspase-3 as biochemical markers of apoptosis induction. Results: The data showed that 6-OHDA caused significant cell damage, loss of mitochondrial membrane potential and increase in intracellular reactive oxygen species and calcium levels as well as activated caspase-3 and cytochrome-c release. Incubation of SH-SY5Y cells with μ-opioid agonists, morphine and DAMGO, but not with δ-opioid agonist, DADLE, elicited protective effect and reduced biochemical markers of cell damage and death. Discussion: The results suggest that μ-opioid receptors signaling participate in the opioid neuroprotective effects against 6-OHDA-induced neurotoxicity. PMID:26904174

  13. Suppressive effect of nobiletin, a citrus polymethoxyflavonoid that downregulates thioredoxin-interacting protein expression, on tunicamycin-induced apoptosis in SK-N-SH human neuroblastoma cells.

    PubMed

    Ikeda, Ayaka; Nemoto, Kiyomitsu; Yoshida, Chiaki; Miyata, Shingo; Mori, Junki; Soejima, Saori; Yokosuka, Akihito; Mimaki, Yoshihiro; Ohizumi, Yasushi; Degawa, Masakuni

    2013-08-01

    Increased expression of thioredoxin-interacting protein (TXNIP) has recently been proved to be a crucial event for irremediable endoplasmic reticulum (ER) stress resulting in the programmed cell death (apoptosis) of pancreatic β-cells. The present study demonstrated that treatment with 1-10 μg/ml tunicamycin, a potent revulsant of ER stress, drastically induced TXNIP expression accompanied by the generation of cleaved caspase-3 as an indicator of apoptosis in SK-N-SH human neuroblastoma cells. This result substantiated that TXNIP is also involved in neurodegeneration triggered by ER stress. Moreover, we evaluated the effects of nobiletin, a citrus polymethoxyflavonoid, on tunicamycin-induced apoptosis and TXNIP expression in SK-N-SH cells, because we reported previously that this flavonoid might be able to reduce TXNIP expression. Co-treatment of SK-N-SH cells with 100 μM nobiletin and 1 μg/ml tunicamycin for 24h strongly suppressed apoptosis and increased TXNIP expression induced by 1 μg/ml tunicamycin treatment alone. In addition, we proved that the ability of 100 μM nobiletin treatment to reduce TXNIP expression is exerted from 3h after the onset of treatment. Therefore, the protective and ameliorative effects of nobiletin on neuronal degeneration and impaired memory, which several studies using animal models have demonstrated, might arise in part from nobiletin's ability to repress TXNIP expression. PMID:23774476

  14. Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Lantto, Tiina A.; Laakso, Into; Dorman, H. J. Damien; Mauriala, Timo; Hiltunen, Raimo; Kõks, Sulev; Raasmaja, Atso

    2016-01-01

    Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds. PMID:27420050

  15. The novel VIP-like hypothalamic polypeptide PACAP interacts with high affinity receptors in the human neuroblastoma cell line NB-OK

    SciTech Connect

    Cauvin, A.; Buscail, L.; Gourlet, P.; De Neef, P.; Gossen, D.; Arimura, A.; Miyata, A.; Coy, D.H.; Robberecht, P.; Christophe, J. )

    1990-07-01

    We investigated the ability of two forms of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP-38, the 38 amino acid peptide isolated from ovine hypothalamus, and PACAP-27, a shorter N-terminal (1-27) amidated version) to interact with specific receptors in membranes from the human neuroblastoma cell line NB-OK. ({sup 125}I)PACAP-27 bound rapidly and specifically to one class of high affinity sites (Kd 0.5 nM). VIP inhibited ({sup 125}I)PACAP-27 binding 300- to 1000-fold less potently than PACAP-27 and PACAP-38. One microM PHI prevented tracer binding only partially and secretin, glucagon and GRF(1-29)NH2 were ineffective in this respect. PACAP-27 and PACAP-38 stimulated adenylate cyclase activity dose dependently and with similar efficacy (Kact 0.2-0.3 nM), this activation being compatible with the occupancy of specific high affinity PACAP receptor. VIP was markedly less potent and less efficient on this enzyme than PACAP. Chemical cross-linking of ({sup 125}I)PACAP-27 followed by SDS-PAGE and autoradiography revealed specific cross-linking with a 68 kDa protein.

  16. Aluminium inhibits muscarinic agonist-induced inositol 1,4,5-trisphosphate production and calcium mobilization in permeabilized SH-SY5Y human neuroblastoma cells.

    PubMed

    Wood, P C; Wojcikiewicz, R J; Burgess, J; Castleden, C M; Nahorski, S R

    1994-06-01

    The effects of aluminium (as Al3+) on carbachol-induced inositol 1,4,5-trisphosphate (InsP3) production and Ca2+ mobilisation were assessed in electropermeabilised human SH-SY5Y neuroblastoma cells. Al3+ had no effect on InsP3-induced Ca2+ release but appreciably reduced carbachol-induced Ca2+ release (IC50 of approximately 90 microM). Al3+ also inhibited InsP3 production (IC50 of approximately 15 microM). Dimethyl hydroxypyridin-4-one, a potent Al3+ chelator (Ks = 31), at 100 microM was able to abort and reverse the effects of Al3+ on both Ca2+ release and InsP3 production. These data suggest that, in permeabilised cells, the effect of Al3+ on the phosphoinositide-mediated signalling pathway is at the level of phosphatidylinositol 4,5-bisphosphate hydrolysis. This may reflect interference with receptor-G protein-phospholipase C coupling or an interaction with phosphatidylinositol 4,5-bisphosphate. PMID:8189229

  17. Inhibition of low- and high-threshold Ca2+ channels of human neuroblastoma IMR32 cells by Lambert-Eaton myasthenic syndrome (LEMS) IgGs.

    PubMed

    Grassi, C; Magnelli, V; Carabelli, V; Sher, E; Carbone, E

    1994-11-01

    IgGs from two LEMS patients applied to human neuroblastoma IMR32 cells reduced the density of low- (LVA; T) and high-threshold (HVA; L and N) Ba2+ currents by different percentages: 36% (LVA) and 56% (HVA) for one and 48% and 45% for the other. A pharmacological assay of IgGs action based on the block of L-type channel by nifedipine and on the delayed activation of N-type channel by noradrenaline, indicated a preferential inhibition of the N-type current in IMR32 cells (55% and 47% for the two patients). The L-type current, contributing to approximately one-third of the total, was also depressed by LEMS IgGs but to a minor degree (49% and 30%). Except for an increase of single N-type channel inactivation, LEMS antibodies preserved the elementary properties of single HVA channels, suggesting that the macroscopic current reduction after IgGs treatment is likely due to a decrease in the number of active HVA Ca2+ channels. PMID:7898770

  18. Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells.

    PubMed

    Lantto, Tiina A; Laakso, Into; Dorman, H J Damien; Mauriala, Timo; Hiltunen, Raimo; Kõks, Sulev; Raasmaja, Atso

    2016-01-01

    Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds. PMID:27420050

  19. Cloning and physical mapping of DNA sequences encompassing a region in N-myc amplicons of a human neuroblastoma cell line.

    PubMed Central

    Akiyama, K; Nishi, Y

    1991-01-01

    Cloning and physical mapping of DNA sequences encompassing N-myc amplicons of a human neuroblastoma cell line were done. A number of lambda phage clones within this region were isolated using the probes prepared by the phenol emulsion reassociation technique. Based on the restriction mapping, they were integrated into 8 contigs with sizes of 25-60 kb which, in total, encompassed a 330 kb region. Several amplicons, 100, 420, 480 and 520 kb in size as a Notl fragment, were identified using hexagonal field gel electrophoresis, and the contigs were assigned in these Notl fragments. The region encompassed by the contigs was equivalent to some 60-80% of the amplicons identified as a Notl fragment. In order to compare the amplified regions flanking the N-myc gene among the cell lines, the phage clones to cover the whole contigs were used for hybridization as a probe. The results showed that the portions of the whole contigs ranging 18-45% were also amplified in the cell lines examined. These results allowed us to identified the 'rearranged sites' which were rather evenly distributed, one at every 40 kb, through the contigs. These observations lead to the idea that an amplified DNA domain is constructed after the multiple rearrangements and then increases in number, finally resulting in the formation of subsets of amplicons with sequence homogeneity. Images PMID:1762918

  20. Carnosic Acid Prevents Beta-Amyloid-Induced Injury in Human Neuroblastoma SH-SY5Y Cells via the Induction of Autophagy.

    PubMed

    Liu, Jie; Su, Hua; Qu, Qiu-Min

    2016-09-01

    Beta-amyloid (Aβ), the hallmark protein in Alzheimer's disease (AD), induces neurotoxicity that involves oxidative stress and mitochondrial dysfunction, leading to cell death. Carnosic acid (CA), a polyphenolic diterpene isolated from the herb rosemary (Rosemarinus officinalis), was investigated in our study to assess its neuroprotective effect and underlying mechanism against Aβ-induced injury in human neuroblastoma SH-SY5Y cells. We found that CA pretreatment alleviated the Aβ25-35-induced loss of cell viability, inhibited both Aβ1-42 accumulation and tau hyperphosphorylation, reduced reactive oxygen species generation, and maintained the mitochondrial membrane potential. Moreover, CA increased the microtubule-associated protein light chain 3 (LC3)-II/I ratio and decreased SQSTM1(p62), indicating that CA could induce autophagy. Autophagy inhibitor 3-methyladenine (3-MA) attenuated the neuroprotective effect of CA, suggesting that autophagy was involved in the neuroprotection of CA. It was also observed that CA activated AMP-activated protein kinase (AMPK) but inhibited mammalian target of rapamycin (mTOR). Furthermore, blocking AMPK with si-AMPKα successfully inhibited the upregulation of LC3-II/I, prevented the downregulation of phosphorylation of mTOR and SQSTM1(p62), indicating that CA induced autophagy in SH-SY5Y cells via the activation of AMPK. These results suggested that CA might be a potential agent for preventing AD. PMID:27168327

  1. Assessment of cell surface glycoconjugates in normal, benign and malignant human nasal mucosa.

    PubMed

    Fang, S Y; Ohyama, M

    1997-12-01

    Aberrant glycosylation of proteins is a common characteristic of neoplastic changes. No reports exist relating cell surface glycoconjugates to normal, benign and malignant human nasal mucosa. Using lectin affinity histochemistry, glycoconjugate reactivities for peanut agglutinin (PNA), concanavalin A (Con A), Griffonia simplicifolia agglutinin II (GSA-II), soy bean agglutinin (SBA) and Ulex europaeus agglutinin l (UEA-I) were analysed in the following groups: normal, benign (polyp, papilloma, and inverted papilloma) and malignant (squamous cell carcinoma (SCC) alone, SCC arising in inverted papilloma, and adenocarcinoma). The positive rate of lectin staining was evaluated using a quantitative AutoCAD programme. We correlated glycoconjugate expression to clinical features, diagnosis, and malignant transformation. The positive rate of PNA after neuraminidase pre-treatment (NA-PNA) staining was higher in inverted papilloma, while all-negative in polyp and papilloma. NA-PNA staining may be used as a differential diagnostic tool. Both inverted papilloma portions and SCC portions of the SCC synchronized with inverted papilloma subjects showed similar Con A and NA-PNA staining patterns. The biological characteristics define inverted papilloma as a pre-malignant neoplasm. The positive rate of PNA staining was significantly higher in inverted papilloma (inverted papilloma transformed to SCC) compared to inverted papilloma alone. Hence, PNA staining may predict malignant transformation of inverted papilloma. However, further investigations are required to prove this possibly worthwhile prognostic marker. PMID:9532636

  2. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers

    PubMed Central

    Mendillo, Marc L.; Santagata, Sandro; Koeva, Martina; Bell, George W.; Hu, Rong; Tamimi, Rulla M.; Fraenkel, Ernest; Ince, Tan A.; Whitesell, Luke; Lindquist, Susan

    2012-01-01

    SUMMARY Heat-Shock Factor 1 (HSF1), master regulator of the heat-shock response, facilitates malignant transformation, cancer cell survival and proliferation in model systems. The common assumption is that these effects are mediated through regulation of heat-shock protein (HSP) expression. However, the transcriptional network that HSF1 coordinates directly in malignancy and its relationship to the heat-shock response have never been defined. By comparing cells with high and low malignant potential alongside their non-transformed counterparts, we identify an HSF1-regulated transcriptional program specific to highly malignant cells and distinct from heat shock. Cancer-specific genes in this program support oncogenic processes: cell-cycle regulation, signaling, metabolism, adhesion and translation. HSP genes are integral to this program, however, many are uniquely regulated in malignancy. This HSF1 cancer program is active in breast, colon and lung tumors isolated directly from human patients and is strongly associated with metastasis and death. Thus, HSF1 rewires the transcriptome in tumorigenesis, with prognostic and therapeutic implications. PMID:22863008

  3. Advances in the translational genomics of neuroblastoma: From improving risk stratification and revealing novel biology to identifying actionable genomic alterations.

    PubMed

    Bosse, Kristopher R; Maris, John M

    2016-01-01

    Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. PMID:26539795

  4. Bilateral Synchronous Ectopic Ethmoid Sinus Olfactory Neuroblastoma: A Case Report.

    PubMed

    Leon-Soriano, Elena; Alfonso, Carolina; Yebenes, Laura; Garcia-Polo, Julio; Lassaletta, Luis; Gavilan, Javier

    2016-01-01

    BACKGROUND Olfactory neuroblastoma (ONB), also known as esthesioneuroblastoma, is a rare malignant head and neck cancer thought to originate from the olfactory epithelium. It typically invades contiguous structures at presentation. We report a very rare case of multifocal and ectopic ONB. CASE REPORT A 41-year-old man presented with left nasal obstruction and occasional left epistaxis associated with headache. Endoscopic examination of the nasal cavities and computed tomography suggested bilateral polypoid masses. Histopathological diagnosis after endoscopic resection established bilateral olfactory neuroblastoma of the ethmoid sinuses. The patient received postoperative radiotherapy. He remains free of disease 4 years after treatment. CONCLUSIONS To the best of our knowledge this is the second documented case of multifocal ectopic olfactory neuroblastoma. Clinicians should consider ONB in the differential diagnosis of bilateral synchronous nasal and paranasal masses to avoid delayed diagnosis. Endoscopic resection of ONB could be an option in selected cases. PMID:27097989

  5. Confocal reflectance imaging of excised malignant human bladder biopsies

    NASA Astrophysics Data System (ADS)

    Daniltchenko, Dmitri I.; Kastein, Albrecht; Koenig, Frank; Sachs, Markus; Schnorr, Dietmar; Al-Shukri, Salman; Loening, Stefan A.

    2004-08-01

    To evaluate the potential of reflectance confocal scanning laser microscopy (CM) for rapid imaging of non-processed freshly excised human bladder biopsies and cystectomy specimens. Freshly excised bladder tumors from three cystectomy specimens and random biopsies from twenty patients with a history of superficial bladder tumors were imaged with CM. Additional acetic acid washing prior to CM imaging was performed in some of the samples. Confocal images were compared to corresponding routine histologic sections. CM allows imaging of unprocessed bladder tissue at a subcellular resolution. Urothelial cell layers, collagen, vessels and muscle fibers can be rapidly visualized, in native state. In this regard, umbrella cells, basement membrane elucidated. Besides obvious limitations partly due to non-use of exogenous dyes, CM imaging offers several advantages: rapid imaging of the tissue in its native state like the basement membrane, normally seen only by using immunohistopathology. Reflectance CM opens a new avenue for imaging bladder cancer.

  6. Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell Lines upon Differentiation

    PubMed Central

    Filograna, Roberta; Civiero, Laura; Ferrari, Vanni; Codolo, Gaia; Greggio, Elisa; Bubacco, Luigi; Beltramini, Mariano; Bisaglia, Marco

    2015-01-01

    Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate) on the human neuroblastoma SH-SY5Y and BE(2)-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2)-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2)-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2)-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2)-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2)-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2)-M17 represent two alternative cell models for the neuroscience field. PMID:26317353

  7. What Are the Key Statistics about Neuroblastoma?

    MedlinePlus

    ... risk factors for neuroblastoma? What are the key statistics about neuroblastoma? Neuroblastoma is by far the most ... parts of the body when it is diagnosed. Statistics related to survival are discussed in the section “ ...

  8. Telomerase activation by genomic rearrangements in high-risk neuroblastoma

    PubMed Central

    Peifer, Martin; Hertwig, Falk; Roels, Frederik; Dreidax, Daniel; Gartlgruber, Moritz; Menon, Roopika; Krämer, Andrea; Roncaioli, Justin L.; Sand, Frederik; Heuckmann, Johannes M.; Ikram, Fakhera; Schmidt, Rene; Ackermann, Sandra; Engesser, Anne; Kahlert, Yvonne; Vogel, Wenzel; Altmüller, Janine; Nürnberg, Peter; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Mariappan, Aruljothi; Heynck, Stefanie; Mariotti, Erika; Henrich, Kai-Oliver; Glöckner, Christian; Bosco, Graziella; Leuschner, Ivo; Schweiger, Michal R.; Savelyeva, Larissa; Watkins, Simon C.; Shao, Chunxuan; Bell, Emma; Höfer, Thomas; Achter, Viktor; Lang, Ulrich; Theissen, Jessica; Volland, Ruth; Saadati, Maral; Eggert, Angelika; de Wilde, Bram; Berthold, Frank; Peng, Zhiyu; Zhao, Chen; Shi, Leming; Ortmann, Monika; Büttner, Reinhard; Perner, Sven; Hero, Barbara; Schramm, Alexander; Schulte, Johannes H.; Herrmann, Carl; O’Sullivan, Roderick J.; Westermann, Frank; Thomas, Roman K.; Fischer, Matthias

    2016-01-01

    Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system1. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive2–4. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type1,2,5. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours. PMID:26466568

  9. Telomerase activation by genomic rearrangements in high-risk neuroblastoma.

    PubMed

    Peifer, Martin; Hertwig, Falk; Roels, Frederik; Dreidax, Daniel; Gartlgruber, Moritz; Menon, Roopika; Krämer, Andrea; Roncaioli, Justin L; Sand, Frederik; Heuckmann, Johannes M; Ikram, Fakhera; Schmidt, Rene; Ackermann, Sandra; Engesser, Anne; Kahlert, Yvonne; Vogel, Wenzel; Altmüller, Janine; Nürnberg, Peter; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Mariappan, Aruljothi; Heynck, Stefanie; Mariotti, Erika; Henrich, Kai-Oliver; Gloeckner, Christian; Bosco, Graziella; Leuschner, Ivo; Schweiger, Michal R; Savelyeva, Larissa; Watkins, Simon C; Shao, Chunxuan; Bell, Emma; Höfer, Thomas; Achter, Viktor; Lang, Ulrich; Theissen, Jessica; Volland, Ruth; Saadati, Maral; Eggert, Angelika; de Wilde, Bram; Berthold, Frank; Peng, Zhiyu; Zhao, Chen; Shi, Leming; Ortmann, Monika; Büttner, Reinhard; Perner, Sven; Hero, Barbara; Schramm, Alexander; Schulte, Johannes H; Herrmann, Carl; O'Sullivan, Roderick J; Westermann, Frank; Thomas, Roman K; Fischer, Matthias

    2015-10-29

    Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours. PMID:26466568

  10. Selective induction of apoptosis through the FADD/caspase-8 pathway by a p53 c-terminal peptide in human pre-malignant and malignant cells.

    PubMed

    Li, Yin; Mao, Yuehua; Rosal, Ramon V; Dinnen, Richard D; Williams, Ann C; Brandt-Rauf, Paul W; Fine, Robert L

    2005-05-20

    A p53 C-terminal peptide (aa 361-382, p53p), fused at its C-terminus to the minimal carrier peptide of antennapedia (17 aa, Ant; p53p-Ant), induced rapid apoptosis in human cancer cells, via activation of the Fas pathway. We examined p53p-Ant mechanism of action, toxicity in various human normal, non-malignant, pre-malignant and malignant cancer cells and investigated its biophysical characteristics. p53p-Ant selectively induced cell death in only pre-malignant or malignant cells in a p53-dependent manner and was not toxic to normal and non-malignant cells. p53p-Ant was more toxic to the mutant p53 than wild-type p53 phenotype in H1299 lung cancer cells stably expressing human temperature-sensitive p53 mutant 143Ala. Surface plasmon resonance (BIACORE) analysis demonstrated that this peptide had higher binding affinity to mutant p53 as compared to wild-type p53. p53p-Ant induced-cell death had the classical morphological characteristics of apoptosis and had no features of necrosis. The mechanism of cell death by p53p-Ant was through the FADD/caspase-8-dependent pathway without the involvement of the TRAIL pathway, Bcl-2 family and cell cycle changes. Blocking Fas with antibody did not alter the peptide's effect, suggesting that Fas itself did not interact with the peptide. Transfection with a dominant-negative FADD with a deleted N-terminus inhibited p53p-Ant-induced apoptosis. Its mechanism of action is related to the FADD-induced pathway without restoration of other p53 functions. p53p-Ant is a novel anticancer agent with unique selectivity for human cancer cells and could be useful as a prototype for the development of new anti-cancer agents. PMID:15645452

  11. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice

    NASA Astrophysics Data System (ADS)

    Kuperwasser, Charlotte; Chavarria, Tony; Wu, Min; Magrane, Greg; Gray, Joe W.; Carey, Loucinda; Richardson, Andrea; Weinberg, Robert A.

    2004-04-01

    The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.

  12. Left atrial mass 16 years after radiation therapy for mediastinal neuroblastoma

    SciTech Connect

    Ensing, G.J.; Driscoll, D.J.; Smithson, W.A.

    1987-01-01

    Tumors involving the heart during childhood are rare. However, neuroblastoma, a common pediatric malignancy, has been described to involve the cardiovascular system in 3%-12% of patients dying with this tumor. Rarely is such involvement diagnosed ante mortem and never, to our knowledge, has a benign cardiac tumor been reported to present in childhood after successful eradication of neuroblastoma. We describe the identification and surgical resection of a nodular, hypertrophied, calcified, pedunculated left atrial mass in a 16-year-old boy who was complaining of exercise-associated presyncope and headaches 16 years after irradiation and chemotherapy for mediastinal neuroblastoma.

  13. Chromosome 3p microsatellite allelotyping in neuroblastoma: a report on the technical hurdles.

    PubMed

    Hoebeeck, Jasmien; De Wilde, Bram; Michels, Evi; Combaret, Valérie; Yigit, Nurten; De Smet, Els; Van Roy, Nadine; Stanbridge, Eric; Ru, Ning; Laureys, Geneviève; De Paepe, Anne; Speleman, Frank; Vandesompele, Jo

    2009-10-01

    Pinpointing critical regions of recurrent loss may help localize tumor suppressor genes. To determine the regions of loss on chromosome 3p in neuroblastoma, we performed loss of heterozygosity analysis using 16 microsatellite markers in a series of 65 primary tumors and 29 neuroblastoma cell lines. In this study, we report the results and discuss the technical hurdles that we encountered during data generation and interpretation that are of relevance for current studies or tests employing microsatellites. To provide functional support for the implication of 3p tumor suppressor genes in this childhood malignancy, we performed a microcell-mediated chromosome 3 transfer in neuroblastoma cells. PMID:19544108

  14. Resolution of Elevated Urine Glycosaminoglycans and Clinical Features of Mucopolysaccharidosis After Successful Treatment of Neuroblastoma.

    PubMed

    Hilgers, Megan V; Whitley, Chester B; Moertel, Christopher L

    2016-08-01

    We report a patient with stage 3 ganglioneuroblastoma who initially presented with clinical and laboratory features consistent with mucopolysaccharidosis including coarse facial features, developmental delay, and an elevated quantitative urine glycosaminoglycan (GAG) level. All mucopolysaccharidosis features resolved following successful treatment of neuroblastoma. High GAG levels have been documented in the pediatric oncology literature, yet not as a potential marker of malignancy or other target for clinical utility. This patient prompts further investigation into the relationship between neuroblastoma and elevated GAG levels. PMID:27203570

  15. The genetic landscape of high-risk neuroblastoma | Office of Cancer Genomics

    Cancer.gov

    Abstract: Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 affected individuals (cases) using a combination of whole-exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative.

  16. A catecholamine-secreting neuroblastoma leading to hydrops fetalis.

    PubMed

    Inoue, T; Ito, Y; Nakamura, T; Matsuoka, K; Sago, H

    2014-05-01

    A case of fetal neuroblastoma of the right adrenal gland, with rapid development of hydrops fetalis due to catecholamine-induced cardiomyopathy, is reported. A fetus with a right suprarenal mass detected during ultrasonography at 32 weeks gestation progressively developed into hydrops fetalis by 35.2 weeks gestation. An emergent cesarean section was performed. At birth, the female neonate was hypertensive, with markedly elevated catecholamine levels; echocardiography showed poor contractility. Morphine, human atrial natriuretic peptide, milrinone, nitroprusside and dobutamine were initiated and her blood pressure was maintained within the normal range and her cardiac contractility improved 2 weeks after birth. Neuroblastoma cells were detected in the placenta, resulting in the right adrenal mass being diagnosed as a neuroblastoma. She was well, and the mass diminished in size within 4 months, without surgery. A fetus with suspected neuroblastoma, indicated by a suprarenal mass, should be managed with appropriate consideration of hydrops. PMID:24776602

  17. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    PubMed Central

    Huang, Tzuu-Yuan; Hsu, Che-Wen; Chang, Weng-Cheng; Wang, Miin-Yau; Wu, June-Fu; Hsu, Yi-Chiang

    2012-01-01

    Demethoxycurcumin (DMC; a curcumin-related demethoxy compound) has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM) and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP), DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways. PMID:22454662

  18. The softening of human bladder cancer cells happens at an early stage of the malignancy process

    PubMed Central

    Ramos, Jorge R; Pabijan, Joanna

    2014-01-01

    Summary Various studies have demonstrated that alterations in the deformability of cancerous cells are strongly linked to the actin cytoskeleton. By using atomic force microscopy (AFM), it is possible to determine such changes in a quantitative way in order to distinguish cancerous from non-malignant cells. In the work presented here, the elastic properties of human bladder cells were determined by means of AFM. The measurements show that non-malignant bladder HCV29 cells are stiffer (higher Young’s modulus) than cancerous cells (HTB-9, HT1376, and T24 cell lines). However, independently of the histological grade of the studied bladder cancer cells, all cancerous cells possess a similar level of the deformability of about a few kilopascals, significantly lower than non-malignant cells. This underlines the diagnostic character of stiffness that can be used as a biomarker of bladder cancer. Similar stiffness levels, observed for cancerous cells, cannot be fully explained by the organization of the actin cytoskeleton since it is different in all malignant cells. Our results underline that it is neither the spatial organization of the actin filaments nor the presence of stress fibers, but the overall density and their 3D-organization in a probing volume play the dominant role in controlling the elastic response of the cancerous cell to an external force. PMID:24778971

  19. Mechanisms of neuroblastoma regression

    PubMed Central

    Brodeur, Garrett M.; Bagatell, Rochelle

    2014-01-01

    Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179

  20. Inhibition of FAK and VEGFR-3 binding decreases tumorigenicity in neuroblastoma.

    PubMed

    Stewart, Jerry E; Ma, Xiaojie; Megison, Michael; Nabers, Hugh; Cance, William G; Kurenova, Elena V; Beierle, Elizabeth A

    2015-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. Vascular endothelial growth factor receptor-3 (VEGFR-3), another tyrosine kinase, has also been found to be important in the development of many human tumors including neuroblastoma. Recent reports have found that FAK and VEGFR-3 interact, and we have previously shown that both of these kinases interact in neuroblastoma. We have hypothesized that interruption of the FAK-VEGFR-3 interaction would lead to decreased neuroblastoma cell survival. In the current study, we examined the effects of a small molecule, chloropyramine hydrochloride (C4), designed to disrupt the FAK-VEGFR-3 interaction, upon cellular attachment, migration, and survival in two human neuroblastoma cell lines. We also utilized a murine xenograft model to study the impact of C4 upon tumor growth. In these studies, we showed that disruption of the FAK-VEGFR-3 interaction led to decreased cellular attachment, migration, and survival in vitro. In addition, treatment of murine xenografts with chloropyramine hydrochloride decreased neuroblastoma xenograft growth. Further, this molecule acted synergistically with standard chemotherapy to further decrease neuroblastoma xenograft growth. The findings from this current study help to further our understanding of the regulation of neuroblastoma tumorigenesis, and may provide novel therapeutic strategies and targets for neuroblastoma and other solid tumors of childhood. PMID:23868727

  1. Organic solvent-induced changes in membrane geometry in human SH-SY5Y neuroblastoma cells - a common narcotic effect?

    PubMed

    Meulenberg, Cécil J W; de Groot, Aart; Westerink, Remco H S; Vijverberg, Henk P M

    2016-07-01

    Exposure to organic solvents may cause narcotic effects. At the cellular level, these narcotic effects have been associated with a reduction in neuronal excitability caused by changes in membrane structure and function. In order to critically test whether changes in membrane geometry contribute to these narcotic effects, cultured human SH-SY5Y neuroblastoma cells have been exposed to selected organic solvents. The solvent-induced changes in cell membrane capacitance were investigated using the whole-cell patch clamp technique for real-time capacitance measurements. Exposure of SH-SY5Y cells to the cyclic hydrocarbons m-xylene, toluene, and cyclohexane caused a rapid and reversible increase of membrane capacitance. The aliphatic, nonpolar n-hexane did not cause a detectable change of whole-cell membrane capacitance, whereas the amphiphiles n-hexanol and n-hexylamine caused an increase of membrane capacitance and a concomitant reduction in membrane resistance. Despite a large difference in dielectric properties, the chlorinated hydrocarbons 1,1,2,2-tetrachoroethane and tetrachloroethylene caused a similar magnitude increase in membrane capacitance. The theory on membrane capacitance has been applied to deduce changes in membrane geometry caused by solvent partitioning. Although classical observations have shown that solvents increase the membrane capacitance per unit area of membrane, i.e., increase membrane thickness, the present results demonstrate that solvent partitioning predominantly leads to an increase in membrane surface area and to a lesser degree to an increase in membrane thickness. Moreover, the present results indicate that the physicochemical properties of each solvent are important determinants for its specific effects on membrane geometry. This implies that the hypothesis that solvent partitioning is associated with a common perturbation of membrane structure needs to be revisited and cannot account for the commonly observed narcotic effects of

  2. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y).

    PubMed

    Santillo, Michael F; Liu, Yitong

    2015-01-01

    Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of the neurotransmitter acetylcholine, and inhibition of AChE can have therapeutic applications (e.g., drugs for Alzheimer's disease) or neurotoxic consequences (e.g., pesticides). A common absorbance-based AChE activity assay that uses 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) can have limited sensitivity and be prone to interference. Therefore, an alternative assay was developed, in which AChE activity was determined by measuring fluorescence of resorufin produced from coupled enzyme reactions involving acetylcholine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). The Amplex Red assay was used for two separate applications. First, AChE activity was measured in rat whole blood, which is a biomarker for exposure to AChE inhibitor pesticides. Activity was quantified from a 10(5)-fold dilution of whole blood, and there was a linear correlation between Amplex Red and DTNB assays. For the second application, Amplex Red assay was used to measure AChE inhibition potency in a human neuroblastoma cell line (SH-SY5Y), which is important for assessing pharmacological and toxicological potential of AChE inhibitors including drugs, phytochemicals, and pesticides. Five known reversible inhibitors were evaluated (IC50, 7-225 nM), along with irreversible inhibitors chlorpyrifos-oxon (ki=1.01 nM(-1)h(-1)) and paraoxon (ki=0.16 nM(-1)h(-1)). Lastly, in addition to inhibition, AChE reactivation was measured in SH-SY5Y cells incubated with pralidoxime chloride (2-PAM). The Amplex Red assay is a sensitive, specific, and reliable fluorescence method for measuring AChE activity in both rat whole blood and cultured SH-SY5Y cells. PMID:26165232

  3. Paullinia cupana Mart. var. Sorbilis protects human dopaminergic neuroblastoma SH-SY5Y cell line against rotenone-induced cytotoxicity.

    PubMed

    de Oliveira, Diêgo Madureira; Barreto, George; Galeano, Pablo; Romero, Juan Ignacio; Holubiec, Mariana Inés; Badorrey, Maria Sol; Capani, Francisco; Alvarez, Lisandro Diego Giraldez

    2011-09-01

    Paullinia cupana Mart. var. Sorbilis, commonly known as Guaraná, is a Brazilian plant frequently cited for its antioxidant properties and different pharmacological activities on the central nervous system. The potential beneficial uses of Guaraná in neurodegenerative disorders, such as in Parkinson's disease (PD), the pathogenesis of which is associated with mitochondrial dysfunction and oxidative stress, has not yet been assessed. Therefore, the main aim of the present study was to evaluate if an extract of commercial powdered seeds of Guaraná could protect human dopaminergic neuroblastoma SH-SY5Y cell line against rotenone-induced cytotoxicity. Two concentration of Guaraná dimethylsulfoxide extract (0.312 and 0.625 mg/mL) were added to SH-SY5Y cells treated with 300 nM rotenone for 48 h, and the cytoprotective effects were assessed by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, measuring lactate dehydrogenase (LDH) levels, and analyzing nuclear integrity with Hoechst33258 stain. Results showed that the addition of Guaraná extract significantly increased the cell viability of SH-SY5Y cells treated with rotenone, in a dose-dependent manner. On the other hand, LDH levels were significantly reduced by addition of 0.312 mg/mL of Guaraná, but unexpectedly, no changes were observed with the higher concentration. Moreover, chromatin condensation and nuclear fragmentation were significantly reduced by addition of any of both concentrations of the extract. The results obtained in this work could provide relevant information about the mechanisms underlying the degeneration of dopaminergic neurons in PD and precede in vivo experiments. Further studies are needed to investigate which active constituent is responsible for the cytoprotective effect produced by Paullinia cupana. PMID:21081703

  4. Overexpression of myristoylated alanine-rich C-kinase substrate enhances activation of phospholipase D by protein kinase C in SK-N-MC human neuroblastoma cells.

    PubMed Central

    Morash, S C; Rosé, S D; Byers, D M; Ridgway, N D; Cook, H W

    1998-01-01

    Signal transduction can involve the activation of protein kinase C (PKC) and the subsequent phosphorylation of protein substrates, including myristoylated alanine-rich C kinase substrate (MARCKS). Previously we showed that stimulation of phosphatidylcholine (PtdCho) synthesis by PMA in SK-N-MC human neuroblastoma cells required overexpression of MARCKS, whereas PKCalpha alone was insufficient. We have now investigated the role of MARCKS in PMA-stimulated PtdCho hydrolysis by phospholipase D (PLD). Overexpression of MARCKS enhanced PLD activity 1.3-2.5-fold compared with vector controls in unstimulated cells, and 3-4-fold in cells stimulated with 100 nM PMA. PMA-stimulated PLD activity was blocked by the PKC inhibitor bisindolylmaleimide. Activation of PLD by PMA was linear with time to 60 min, whereas stimulation of PtdCho synthesis by PMA in clones overexpressing MARCKS was observed after a 15 min time lag, suggesting that the hydrolysis of PtdCho by PLD preceded synthesis. The formation of phosphatidylbutanol by PLD was greatest when PtdCho was the predominantly labelled phospholipid, indicating that PtdCho was the preferred, but not the only, phospholipid substrate for PLD. Cells overexpressing MARCKS had 2-fold higher levels of PKCalpha than in vector control cells analysed by Western blot analysis; levels of PKCbeta and PLD were similar in all clones. The loss of both MARCKS and PKCalpha expression at higher subcultures of the clones was paralleled by the loss of stimulation of PLD activity and PtdCho synthesis by PMA. Our results show that MARCKS is an essential link in the PKC-mediated activation of PtdCho-specific PLD in these cells and that the stimulation of PtdCho synthesis by PMA is a secondary response. PMID:9601059

  5. L-BMAA induced ER stress and enhanced caspase 12 cleavage in human neuroblastoma SH-SY5Y cells at low nonexcitotoxic concentrations.

    PubMed

    Okle, Oliver; Stemmer, Kerstin; Deschl, Ulrich; Dietrich, Daniel R

    2013-01-01

    The cyanobacterial β-N-methylamino-L-alanine (L-BMAA) is described as a low-potency excitotoxin, possibly a factor in the increased incidence of amyotrophic lateral sclerosis (ALS) and Parkinsonism-dementia complex (PDC) in Guam. The latter association is intensively disputed, as L-BMAA concentrations required for toxic effects exceed those assumed to occur via food. The question thus was raised whether L-BMAA leads to neurodegeneration at nonexcitotoxic conditions. Using human SH-SY5Y neuroblastoma cells, L-BMAA-transport, incorporation into proteins, and subsequent impairment of cellular protein homeostasis were investigated. Binding of L-BMAA to intracellular proteins, but no clear protein incorporation was detected in response to (14)C-L-BMAA exposures. Nevertheless, low L-BMAA concentrations (≥ 0.1mM, 48 h) increased protein ubiquitination, 20S proteasomal and caspase 12 activity, expression of the endoplasmic reticulum (ER) stress marker CHOP, and enhanced phosphorylation of elf2α in SH-SY5Y cells. In contrast, high L-BMAA concentrations (≥ 1mM, 48 h) increased reactive oxygen species and protein oxidization, which were partially ameliorated by coincubation with vitamin E. L-BMAA-mediated cytotoxicity was observable 48 h following ≥ 2mM L-BMAA treatment. Consequently, the data presented here suggest that low L-BMAA concentrations result in a dysregulation of the cellular protein homeostasis with ensuing ER stress that is independent from high-concentration effects such as excitotoxicity and oxidative stress. Thus, the latter could be a contributing factor in the onset and slow progression of ALS/PDC in Guam. PMID:23047912

  6. Human neuroblastoma cell growth in xenogeneic hosts: comparison of T cell-deficient and NK-deficient hosts, and subcutaneous or intravenous injection routes.

    PubMed

    Turner, W J; Chatten, J; Lampson, L A

    1990-04-01

    We have examined two features of neuroblastoma cells that had not been well-characterized in a xenogeneic model: The cells display unusual immunologic properties in other experimental systems, and the original tumors display widespread and characteristic patterns of metastasis. To determine the most appropriate immunodeficient host for primary tumor growth, T cell-deficient nude mice, NK-deficient beige mice, beige-nudes, and controls were injected with the well-characterized line CHP-100. To define the pattern of tumor spread, complete autopsies were performed following subcutaneous, intraperitoneal and intravenous injections. CHP-100 consistently formed subcutaneous tumors in T cell-deficient mice (nude and beige-nude), but not in T cell-competent mice (beige, heterozygous nu/+ and bg/+, or wild-type). The growth rate and final size of the subcutaneous tumors were not greater in beige-nudes than in nudes. All mice showed early CHP-100 cell death after subcutaneous injection; the nature of the immunodeficiency was more relevant for the surviving subpopulation. Widespread dissemination was seen following intravenous injection, particularly in beige-nudes. Aspects of the growth patterns were appropriate to the tumor of origin. The behavior in immunodeficient mice suggests that T cells can play a role in controlling the growth of these cells; the next steps will be to define the effector mechanisms, and to determine if they can be exploited for human patients. The hematogenous spread following intravenous injection suggests that insights into the control of blood-borne tumor may also come from further study of this model. PMID:2358846

  7. Retinoic acid-induced differentiation of human neuroblastoma SH-SY5Y cells is associated with changes in the abundance of G proteins.

    PubMed

    Ammer, H; Schulz, R

    1994-04-01

    Western blot analysis, using subtype-specific anti-G protein antibodies, revealed the presence of the following G protein subunits in human neuroblastoma SH-SY5Y cells: Gs alpha, Gi alpha 1, Gi alpha 2, Go alpha, Gz alpha, and G beta. Differentiation of the cells by all-trans-retinoic acid (RA) treatment (10 mumol/L; 6 days) caused substantial alterations in the abundance of distinct G protein subunits. Concomitant with an enhanced expression of mu-opioid binding sites, the levels of the inhibitory G proteins Gi alpha 1 and Gi alpha 2 were found to be significantly increased. This coordinate up-regulation is accompanied by functional changes in mu-opioid receptor-stimulated low-Km GTPase, mu-receptor-mediated adenylate cyclase inhibition, and receptor-independent guanosine 5'-(beta gamma-imido)triphosphate [Gpp(NH)p; 10 nmol/L]-mediated attenuation of adenylate cyclase activity. In contrast, increased levels of inhibitory G proteins had no effect on muscarinic cholinergic receptor-mediated adenylate cyclase inhibition. With respect to stimulatory receptor systems, a reciprocal regulation was observed for prostaglandin E1 (PGE1) receptors and Gs alpha, the G protein subunit activating adenylate cyclase. RA treatment of SH-SY5Y cells increases both the number of PGE1 binding sites and PGE1-stimulated adenylate cyclase activity, but significantly reduced amounts of Gs alpha were found. This down-regulation is paralleled by a decrease in the stimulatory activity of Gs alpha as assessed in S49 cyc- reconstitution assays.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8133263

  8. Muscarinic receptor stimulation of D-aspartate uptake into human SH-SY5Y neuroblastoma cells is attenuated by hypoosmolarity.

    PubMed

    Foster, Daniel J; Heacock, Anne M; Fisher, Stephen K

    2010-04-01

    In addition to its function as an excitatory neurotransmitter, glutamate plays a major role as an osmolyte within the central nervous system (CNS). Accordingly, mechanisms that regulate glutamate release and uptake are of physiological importance not only during conditions in which cell volume remains constant but also when cells are subjected to hypoosmotic stress. In the present study, the ability of muscarinic cholinergic receptors (mAChRs) to regulate the uptake of glutamate (monitored as D-aspartate) into human SH-SY5Y neuroblastoma cells under isotonic or hypotonic conditions has been examined. In isotonic media, agonist activation of mAChRs resulted in a significant increase (250-300% of control) in the uptake of D-aspartate and, concurrently, a cellular redistribution of the excitatory amino acid transporter 3 (EAAT3) to the plasma membrane. mAChR-mediated increases in d-aspartate uptake were potently blocked by the EAAT3 inhibitor l-beta-threo-benzyl-aspartate. In hypotonic media, the ability of mAChR activation to facilitate D-aspartate uptake was significantly attenuated (40-50%), and the cellular distribution of EAAT3 was disrupted. Reduction of mAChR-stimulated D-aspartate uptake under hypoosmotic conditions could be fully reversed upon re-exposure of the cells to isotonic media. Under both isotonic and hypotonic conditions, mAChR-mediated increases in D-aspartate uptake depended on cytoskeletal integrity, protein kinase C and phosphatidylinositol 3-kinase activities, and the availability of intracellular Ca2+. In contrast, dependence on extracellular Ca2+ was observed only under isotonic conditions. The results suggest that, although the uptake of D-aspartate into SH-SY5Y cells is enhanced after mAChR activation, this process is markedly attenuated by hypoosmolarity. PMID:20080957

  9. Dioctanoylglycerol stimulates accumulation of [methyl-14C]choline and its incorporation into acetylcholine and phosphatidylcholine in a human cholinergic neuroblastoma cell line

    NASA Technical Reports Server (NTRS)

    Slack, B. E.; Richardson, U. I.; Nitsch, R. M.; Wurtman, R. J.

    1992-01-01

    Dioctanoylglycerol, a synthetic diacylglycerol, stimulated [14C]choline uptake in cultured human neuroblastoma (LA-N-2) cells. As this effect has not, to our knowledge, been reported before, it was of interest to characterize it in more detail. In the presence of 500 microM dioctanoylglycerol the levels of [14C]choline attained during a 2 hour labeling period were elevated by 78 +/- 12%, while [14C]acetylcholine and long fatty acyl chain [14C]phosphatidylcholine levels increased by 26 +/- 2% and 19 +/- 5%, respectively (mean +/- S.E.M.). Total (long chain plus dioctanoyl-) [14C]phosphatidylcholine was increased by 198 +/- 33%. Kinetic analysis showed that dioctanoylglycerol reduced the apparent Km for choline uptake to 56 +/- 9% of control (n = 4). The Vmax was not significantly altered. The stimulation of [14C]choline accumulation by dioctanoylglycerol was not dependent on protein kinase C activation; the effect was not mimicked by phorbol ester or by 1-oleoyl-2-acetylglycerol, and was not inhibited by the protein kinase C inhibitors H-7 or staurosporine, or by prolonged pretreatment with phorbol 12-myristate 13-acetate. The effect of dioctanoylglycerol was slightly (but not significantly) reduced by EGTA and strongly inhibited by the cell-permeant calcium chelator bis(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)ester. Although these results implicate elevated intracellular calcium in the response, dioctanoylglycerol did not increase phosphatidylinositol hydrolysis in LA-N-2 cells, and its effect was not inhibited by the diacylglycerol kinase inhibitor R 59 022 (which blocks the conversion of diacylglycerol to phosphatidic acid, a known stimulator of phosphatidylinositol hydrolysis).(ABSTRACT TRUNCATED AT 250 WORDS).

  10. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells.

    PubMed

    Luukkonen, Jukka; Liimatainen, Anu; Juutilainen, Jukka; Naarala, Jonne

    2014-02-01

    Epidemiological studies have suggested that exposure to 50Hz magnetic fields (MF) increases the risk of childhood leukemia, but there is no mechanistic explanation for carcinogenic effects. In two previous studies we have observed that a 24-h pre-exposure to MF alters cellular responses to menadione-induced DNA damage. The aim of this study was to investigate the cellular changes that must occur already during the first 24h of exposure to MF, and to explore whether the MF-induced changes in DNA damage response can lead to genomic instability in the progeny of the exposed cells. In order to answer these questions, human SH-SY5Y neuroblastoma cells were exposed to a 50-Hz, 100-μT MF for 24h, followed by 3-h exposure to menadione. The main finding was that MF exposure was associated with increased level of micronuclei, used as an indicator of induced genomic instability, at 8 and 15d after the exposures. Other delayed effects in MF-exposed cells included increased mitochondrial activity at 8d, and increased reactive oxygen species (ROS) production and lipid peroxidation at 15d after the exposures. Oxidative processes (ROS production, reduced glutathione level, and mitochondrial superoxide level) were affected by MF immediately after the exposure. In conclusion, the present results suggest that MF exposure disturbs oxidative balance immediately after the exposure, which might explain our previous findings on MF altered cellular responses to menadione-induced DNA damage. Persistently elevated levels of micronuclei were found in the progeny of MF-exposed cells, indicating induction of genomic instability. PMID:24374227

  11. Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis

    NASA Astrophysics Data System (ADS)

    Hu, Yaogai; Shen, Aiguo; Jiang, Tao; Ai, Yong; Hu, Jiming

    2008-02-01

    Thirty-two samples from the human gastric mucosa tissue, including 13 normal and 19 malignant tissue samples were measured by confocal Raman microspectroscopy. The low signal-to-background ratio spectra from human gastric mucosa tissues were obtained by this technique without any sample preparation. Raman spectral interferences include a broad featureless sloping background due to fluorescence and noise. They mask most Raman spectral feature and lead to problems with precision and quantitation of the original spectral information. A preprocessed algorithm based on wavelet analysis was used to reduce noise and eliminate background/baseline of Raman spectra. Comparing preprocessed spectra of malignant gastric mucosa tissues with those of counterpart normal ones, there were obvious spectral changes, including intensity increase at ˜1156 cm -1 and intensity decrease at ˜1587 cm -1. The quantitative criterion based upon the intensity ratio of the ˜1156 and ˜1587 cm -1 was extracted for classification of the normal and malignant gastric mucosa tissue samples. This could result in a new diagnostic method, which would assist the early diagnosis of gastric cancer.

  12. Validated detection of human anti-chimeric immune responses in serum of neuroblastoma patients treated with ch14.18/CHO.

    PubMed

    Siebert, Nikolai; Eger, Christin; Seidel, Diana; Jüttner, Madlen; Lode, Holger N

    2014-05-01

    Human/mouse chimeric monoclonal antibody (mAb) ch14.18/CHO is directed against disialoganglioside GD2. Activity and efficacy of this mAb are currently determined in ongoing clinical Phase II and -III studies in high-risk neuroblastoma (NB). Based on the chimeric nature of this mAb, some patients may develop a human anti-chimeric immune response (Mirick et al., 2004) which impacts on pharmacokinetics and may induce anti-anti-idiotype (Id) mAb with a potential survival benefit. Therefore, a validated method of quantitative detection of human anti-chimeric antibodies (HACA) in serum samples of NB patients treated with ch14.18/CHO is an important tool for monitoring of clinical trials. Here, we report a validated sandwich enzyme-linked immunosorbent assay (ELISA) according to the one arm binding principle using ch14.18/CHO as a capture mAb and biotinylated ch14.18/CHO mAb for detection. Ganglidiomab, a monoclonal anti-Id Ab to ch14.18/CHO (Lode et al., 2013), was used as a standard for assay validation and HACA quantification. Systematic evaluation of the established ELISA procedure revealed an optimal serum sample dilution factor of 1:160. Assay validation was accomplished with a set of tailored quality controls (QC) containing distinct concentrations of ganglidiomab (3 and 15μg/ml). The coefficients of variation (CV) for all within-assay and inter-assay measurements using QCs were under 20% and the limit of detection (LOD) was 1.1μg/ml. Three patients (P1, P2, P3) treated with a 10day continuous infusion of 100mg/m(2) of ch14.18/CHO were selected for analysis with this assay. Selection was based on ch14.18/CHO drug level on day 8 in cycle 2 of >10μg/ml (expected) (P1) and of <2μg/ml (unexpected) (P2 and P3). Both patients with unexpected low ch14.18/CHO levels revealed a strong signal in the HACA ELISA. Interestingly, ch14.18/CHO-mediated complement-dependent cytotoxicity (CDC) could not be detected in P2 in contrast to P3 suggesting anti-NB activity even in the

  13. Role of Phosphodiesterase 2 in Growth and Invasion of Human Malignant Melanoma Cells

    PubMed Central

    Hiramoto, Kenichi; Murata, Taku; Shimizu, Kasumi; Morita, Hiroshi; Inui, Madoka; Manganiello, Vincent C.; Tagawa, Toshiro; Arai, Naoya

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) regulate the intracellular concentrations and effects of adenosine 3’,5’-cyclic monophosphate (cAMP) and guanosine 3’,5’-cyclic monophosphate (cGMP). The role of PDEs in malignant tumor cells is still uncertain. The role of PDEs, especially PDE2, in human malignant melanoma PMP cell line was examined in this study. In PMP cells, 8-bromo-cAMP, a cAMP analog, inhibited cell growth and invasion. However, 8-bromo-cGMP, a cGMP analog, had little or no effect. PDE2 and PDE4, but not PDE3, were expressed in PMP cells. Growth and invasion of PMP cells were inhibited by erythro-9-(2-Hydroxy-3-nonyl) adenine (EHNA), a specific PDE2 inhibitor, but not by rolipram, a specific PDE4 inhibitor. Moreover, cell growth and invasion were inhibited by transfection of small interfering RNAs (siRNAs) specific for PDE2A and a catalytically-dead mutant of PDE2A. After treating cells with EHNA or rolipram, intracellular cAMP concentrations were increased. Growth and invasion were stimulated by PKA14-22, a PKA inhibitor, and inhibited by N6-benzoyl-c AMP, a PKA specific cAMP analogue, whereas 8-(4-chlorophenylthio)-2’-O-methyl-cAMP, an Epac specific cAMP analogue, did not. Invasion, but not growth, was stimulated by A-kinase anchor protein (AKAP) St-Ht31 inhibitory peptide. Based on these results, PDE2 appears to play an important role in growth and invasion of the human malignant melanoma PMP cell line. Selectively suppressing PDE2 might possibly inhibit growth and invasion of other malignant tumor cell lines. PMID:24705027

  14. Role of phosphodiesterase 2 in growth and invasion of human malignant melanoma cells.

    PubMed

    Hiramoto, Kenichi; Murata, Taku; Shimizu, Kasumi; Morita, Hiroshi; Inui, Madoka; Manganiello, Vincent C; Tagawa, Toshiro; Arai, Naoya

    2014-09-01

    Cyclic nucleotide phosphodiesterases (PDEs) regulate the intracellular concentrations and effects of adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). The role of PDEs in malignant tumor cells is still uncertain. The role of PDEs, especially PDE2, in human malignant melanoma PMP cell line was examined in this study. In PMP cells, 8-bromo-cAMP, a cAMP analog, inhibited cell growth and invasion. However, 8-bromo-cGMP, a cGMP analog, had little or no effect. PDE2 and PDE4, but not PDE3, were expressed in PMP cells. Growth and invasion of PMP cells were inhibited by erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), a specific PDE2 inhibitor, but not by rolipram, a specific PDE4 inhibitor. Moreover, cell growth and invasion were inhibited by transfection of small interfering RNAs (siRNAs) specific for PDE2A and a catalytically-dead mutant of PDE2A. After treating cells with EHNA or rolipram, intracellular cAMP concentrations were increased. Growth and invasion were stimulated by PKA14-22, a PKA inhibitor, and inhibited by N(6)-benzoyl-c AMP, a PKA specific cAMP analog, whereas 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, an Epac specific cAMP analog, did not. Invasion, but not growth, was stimulated by A-kinase anchor protein (AKAP) St-Ht31 inhibitory peptide. Based on these results, PDE2 appears to play an important role in growth and invasion of the human malignant melanoma PMP cell line. Selectively suppressing PDE2 might possibly inhibit growth and invasion of other malignant tumor cell lines. PMID:24705027

  15. The genetics of splicing in neuroblastoma

    PubMed Central

    Chen, Justin; Hackett, Christopher S.; Zhang, Shile; Song, Young K.; Bell, Robert J.A.; Molinaro, Annette M.; Quigley, David A.; Balmain, Allan; Song, Jun S.; Costello, Joseph F.; Gustafson, W. Clay; Dyke, Terry Van; Kwok, Pui-Yan; Khan, Javed; Weiss, William A.

    2015-01-01

    Regulation of mRNA splicing, a critical and tightly regulated cellular function, underlies the majority of proteomic diversity, and is frequently disrupted in disease. Using an integrative genomics approach, we combined both genome and exon level transcriptome data in two somatic tissues (cerebella and peripheral ganglia) from a transgenic mouse model of neuroblastoma, a tumor that arises from peripheral neural crest. Here we describe splicing quantitative trait loci (sQTL) associated with differential splicing across the genome that we use to identify genes with previously unknown functions within the splicing pathway and to define de novo intronic splicing motifs that influence splicing from hundreds of bases away. Our results show that these splicing motifs represent sites for functional recurrent mutations and highlight novel candidate genes in human cancers, including childhood neuroblastoma. PMID:25637275

  16. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    SciTech Connect

    Qiao, Jingbo; Paul, Pritha; Lee, Sora; Qiao, Lan; Josifi, Erlena; Tiao, Joshua R.; Chung, Dai H.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  17. Gas1 Knockdown Increases the Neuroprotective Effect of Glial Cell-Derived Neurotrophic Factor Against Glutamate-Induced Cell Injury in Human SH-SY5Y Neuroblastoma Cells.

    PubMed

    Wang, Ke; Zhu, Xue; Zhang, Kai; Zhou, Fanfan; Zhu, Ling

    2016-05-01

    Growth arrest-specific 1 (Gas1) protein acts as an inhibitor of cell growth and a mediator of cell death in nervous system during development and is also re-expressed in adult neurons during excitotoxic insult. Due to its structural similarity to the glial cell-derived neurotrophic factor family receptors α (GFRα), Gas1 is likely to interfere with the neuroprotective effect of GDNF. In the present study, we investigated the expression profile of Gas1 during glutamate insults in human SH-SY5Y neuroblastoma cells as well as the influence of Gas1 inhibition on the protective effect of GDNF against glutamate-induced cell injury. Our data showed that Gas1 expression was significantly increased with the treatment of glutamate in SH-SY5Y cells. The silencing of Gas1 by small interfering RNA promoted the protective effect of GDNF against glutamate-induced cytotoxicity as well as cell apoptosis, which effect was likely mediated through activating Akt/PI3 K-dependent cell survival signaling pathway and inhibiting mitochondrial-dependent cell apoptosis signaling pathway via Bad dephosphorylation blockade. In summary, this study showed the synergistic effect of Gas1 inhibition and GDNF against glutamate-induced cell injury in human SH-SY5Y neuroblastoma cells, which information might significantly contribute to better understanding the function of Gas1 in neuronal cells and form the basis of the therapeutic development of GDNF in treating human neurodegenerative diseases in the future. PMID:26215053

  18. Uptake of silica nanoparticles: neurotoxicity and Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells.

    PubMed

    Yang, Xifei; He, Chun'e; Li, Jie; Chen, Hongbin; Ma, Quan; Sui, Xiaojing; Tian, Shengli; Ying, Ming; Zhang, Qian; Luo, Yougen; Zhuang, Zhixiong; Liu, Jianjun

    2014-08-17

    Growing concern has been raised over the potential adverse effects of engineered nanoparticles on human health due to their increasing use in commercial and medical applications. Silica nanoparticles (SiNPs) are one of the most widely used nanoparticles in industry and have been formulated for cellular and non-viral gene delivery in the central nerve system. However, the potential neurotoxicity of SiNPs remains largely unclear. In this study, we investigated the cellular uptake of SiNPs in human SK-N-SH and mouse neuro2a (N2a) neuroblastoma cells treated with 10.0 μg/ml of 15-nm SiNPs for 24 h by transmission electron microscopy. We found that SiNPs were mainly localized in the cytoplasm of the treated cells. The treatment of SiNPs at various concentrations impaired the morphology of SK-N-SH and N2a cells, characterized by increased number of round cells, diminishing of dendrite-like processes and decreased cell density. SiNPs significantly decreased the cell viability, induced cellular apoptosis, and elevated the levels of intracellular reactive oxygen species (ROS) in a dose-dependent manner in both cell lines. Additionally, increased deposit of intracellular β-amyloid 1-42 (Aβ(1-42)) and enhanced phosphorylation of tau at Ser262 and Ser396, two specific pathological hallmarks of Alzheimer's disease (AD), were observed in both cell lines with SiNPs treatment. Concomitantly, the expression of amyloid precursor protein (APP) was up-regulated, while amyloid-β-degrading enzyme neprilysin was down-regulated in SiNP-treated cells. Finally, activity-dependent phosphorylation of glycogen syntheses kinase (GSK)-3β at Ser9 (inactive form) was significantly decreased in SiNP-treated SK-N-SH cells. Taken together, these data demonstrated that exposure to SiNPs induced neurotoxicity and pathological signs of AD. The pre-Alzheimer-like pathology induced by SiNPs might result from the dys-regulated expression of APP/neprilysin and activation of GSK-3β. This is the first

  19. Dynamic holographic endoscopy--ex vivo investigations of malignant tumors in the human stomach.

    PubMed

    Avenhaus, Wolfgang; Kemper, Björn; Knoche, Sabine; Domagk, Dirk; Poremba, Christopher; von Bally, Gert; Domschke, Wolfram

    2005-01-01

    Laser holographic interferometry is based on the superimposition of the holograms of different motional states of an object on a single holographic storing medium. Using a combination of holographic interferometry and endoscopic imaging, we tried to detect areas of focally disturbed tissue elasticity in gastric cancer preparations. By connecting a mobile electronic speckle pattern interferometry (ESPI) camera system (light source: double frequency Nd:YAG laser, lambda = 532 nm) to different types of endoscopes, ex vivo experiments were performed on ten formalin fixed human stomachs, nine containing adenocarcinomas and one with a gastric lymphoma. Linking the endoscopic ESPI camera complex to a fast image processing system, the method of double pulse exposure image subtraction was applied at a video frame rate of 12.5 Hz. Speckle correlation patterns and corresponding phase difference distributions resulting from gastric wall deformation by gentle touch with a guide wire were analyzed. Tumor-free gastric areas showed high-contrast concentric fringes around the point of stimulation. In contrast, fringe patterns and filtered phase difference distributions corresponding to the areas of malignancy in all the cases were characterized by largely parallel lines, indicating that stimulation of rigid tumor tissue primarily led to tilting. Our ex vivo investigations of malignant gastric tumors show that the application of dynamic holographic endoscopy makes it possible to distinguish areas of malignancy from surrounding healthy tissue based on the differences in tissue elasticity. PMID:15726298

  20. Expression of cyclin D1 correlates with malignancy in human ovarian tumours.

    PubMed Central

    Barbieri, F.; Cagnoli, M.; Ragni, N.; Pedullà, F.; Foglia, G.; Alama, A.

    1997-01-01

    Cyclin D1 is a cell cycle regulator of G1 progression that has been suggested to play a relevant role in the pathogenesis of several human cancer types. In the current study, the expression of cyclin D1 has been investigated in a series of 33 patients, with benign (10 patients), borderline (five patients) and malignant (18 patients) ovarian disease. Cyclin D1 protein and mRNA content were analysed by Western blotting and reverse transcriptase polymerase chain reaction respectively. The levels of cyclin D1 protein were undetectable in patients with benign disease, detectable in the majority of patients with borderline disease and elevated in those with ovarian carcinomas, being significantly related to the degree of malignancy (carcinoma vs benign, P = 0.0001; benign vs borderline, P = 0.0238). A significant relationship between cyclin D1 expression and tumour proliferative activity was also found (P = 0.000001). Moreover, eight benign lesions, two borderline tumours and 11 carcinomas proved to be suitable for the analysis of cyclin D1 transcript, and emerging data demonstrated significant agreement between protein abundance and mRNA expression. Results from the current study suggest that cyclin D1 expression is associated with the degree of transformation and most probably plays a role in the early development of ovarian malignancy. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:9155044

  1. Spinal deformity in children treated for neuroblastoma

    SciTech Connect

    Mayfield, J.K.; Riseborough, E.J.; Jaffe, N.; Nehme, M.E.

    1981-02-01

    Of seventy-four children who were treated at a mean age of seventeen months for neuroblastoma and survived more than five years, fifty-six had spinal deformity due either to the disease or to the treatment after a mean follow-up of 12.9 years. Of these fifty-six, 50 per cent had post-radiation scoliosis, and 16 per cent had post-radiation kyphosis, most frequently at the thoracolumbar junction, at the time of follow-up. Two kyphotic thoracolumbar curve patterns were identified: an angular kyphosis with a short radius of curvature and its apex at the twelfth thoracic and first lumbar vertebrae, and a thoracic kyphosis with a long radius of curvature that extended into the lumbar spine. The post-radiation deformity - both the scoliosis and the kyphosis - progressed with growth, the scoliosis at a rate of 1 degree per year and the kyphosis at a rate of 3 degrees per year. Epidural spread of the neuroblastoma was associated with most of the cases of severe scoliosis and kyphosis. The deformity was due either to the laminectomy or to the paraplegia acting in conjunction with the radiation. Eighteen per cent of 419 children with this malignant disease survived more than five years, and of the survivors, 20 per cent had spinal deformity severe enough to warrant treatment. The factors associated with the development of spinal deformity in patient treated for neuroblastoma were: orthovoltage radiation exceeding 3000 rads, asymmetrical radiation of the spine, thoracolumbar kyphosis, and epidural spread of the tumor.

  2. Inhibition of hemopoiesis in vitro by neuroblastoma-derived gangliosides.

    PubMed

    Sietsma, H; Nijhof, W; Dontje, B; Vellenga, E; Kamps, W A; Kok, J W

    1998-11-01

    Hemopoiesis is disturbed in bone marrow-involving cancers like leukemia and neuroblastoma. Shedding of gangliosides by tumor cells may contribute to this tumor-induced bone marrow suppression. We studied in vitro the inhibitory effects of murine neuroblastoma cells (Neuro-2a and C1300) and their gangliosides on hemopoiesis using normal murine hemopoietic progenitor colony-forming assays. Transwell cultured neuroblastoma cells showed a dose-dependent inhibition on hemopoiesis, indicating that a soluble factor was responsible for this effect. Furthermore, the supernatant of Neuro-2a cultured cells inhibited hemopoietic proliferation and differentiation. To determine whether the inhibitory effect was indeed due to shed gangliosides and not, for instance, caused by cytokines, the effect of DL-threo-1 -phenyl-2-decanoylamino-3-morpholino-1-propanol (DL-PDMP) on Neuro-2a cells was studied. DL-PDMP is a potent inhibitor of glucosylceramide synthase, resulting in inhibition of the synthesis and shedding of gangliosides. The initially observed inhibitory effect of supernatant of Neuro-2a cells was abrogated by culturing these cells for 3 days in the presence of 10 microM DL-PDMP. Moreover, gangliosides isolated from Neuro-2a cell membranes inhibited hemopoietic growth. To determine whether the described phenomena in vitro are a reflection of bone marrow suppression occurring in vivo, gangliosides isolated from plasma of neuroblastoma patients were tested for their effects on human hemopoietic progenitor colony-forming assays. These human neuroblastoma-derived gangliosides inhibited normal erythropoiesis (colony-forming unit-erythroid/burst-forming unit-erythroid) and myelopoiesis (colony-forming unit-granulocyte/macrophage) to a higher extent compared with gangliosides isolated from control plasma. Altogether these results suggest that gangliosides shed by neuroblastoma cells inhibit hemopoiesis and may contribute to the observed bone marrow depression in neuroblastoma

  3. Human lung epithelial cells progressed to malignancy through specific oncogenic manipulations

    PubMed Central

    Sato, Mitsuo; Larsen, Jill E.; Lee, Woochang; Sun, Han; Shames, David S.; Dalvi, Maithili P.; Ramirez, Ruben D.; Tang, Hao; DiMaio, J. Michael; Gao, Boning; Xie, Yang; Wistuba, Ignacio I.; Gazdar, Adi F.; Shay, Jerry W.; Minna, John D.

    2013-01-01

    We used CDK4/hTERT-immortalized normal human bronchial epithelial cells (HBECs) from several individuals to study lung cancer pathogenesis by introducing combinations of common lung cancer oncogenic changes (p53, KRAS, MYC) and followed the stepwise transformation of HBECs to full malignancy. This model demonstrated that: 1) the combination of five genetic alterations (CDK4, hTERT, sh-p53, KRASV12, and c-MYC) is sufficient for full tumorigenic conversion of HBECs; 2) genetically-identical clones of transformed HBECs exhibit pronounced differences in tumor growth, histology, and differentiation; 3) HBECs from different individuals vary in their sensitivity to transformation by these oncogenic manipulations; 4) high levels of KRASV12 are required for full malignant transformation of HBECs, however prior loss of p53 function is required to prevent oncogene-induced senescence; 5) over-expression of c-MYC greatly enhances malignancy but only in the context of sh-p53+KRASV12; 6) growth of parental HBECs in serum-containing medium induces differentiation while growth of oncogenically manipulated HBECs in serum increases in vivo tumorigenicity, decreases tumor latency, produces more undifferentiated tumors, and induces epithelial-to-mesenchymal transition (EMT); 7) oncogenic transformation of HBECs leads to increased sensitivity to standard chemotherapy doublets; 8) an mRNA signature derived by comparing tumorigenic vs. non-tumorigenic clones was predictive of outcome in lung cancer patients. Collectively, our findings demonstrate this HBEC model system can be used to study the effect of oncogenic mutations, their expression levels, and serum-derived environmental effects in malignant transformation, while also providing clinically translatable applications such as development of prognostic signatures and drug response phenotypes. PMID:23449933

  4. p27 modulates cell cycle progression and chemosensitivity in human malignant glioma.

    PubMed

    Naumann, U; Weit, S; Rieger, L; Meyermann, R; Weller, M

    1999-08-11

    The cell cycle regulatory protein p27, an inhibitor of cyclin-dependent kinases (CDK), has been attributed a role in (i) prognosis in breast and colon cancer, (ii) induction of apoptosis in cancer cells, and (iii) resistance to cancer chemotherapy. Here we report that p27 is widely expressed in human malignant gliomas in vivo and in glioma cell lines in vitro. Serum deprivation or confluency promotes p27 protein accumulation in vitro. Neither baseline p27 levels nor p27 levels induced by confluency or serum deprivation correlate with p53 status or drug sensitivity of human glioma cell lines. Expression of antisense p27 mRNA increased the doubling times in T98G glioma cells, whereas sense p27 mRNA had no such effect. There was a density-dependent and drug-specific modulation of chemosensitivity by sense or antisense mRNA expression in T98G cells. Taken together, these data define a strong p27 response to altered growth conditions and suggest a role for p27 in modulating response to chemotherapy in human malignant glioma cells. PMID:10441521

  5. Human malignant mesothelioma is recapitulated in immunocompetent BALB/c mice injected with murine AB cells

    PubMed Central

    Mezzapelle, Rosanna; Rrapaj, Eltjona; Gatti, Elena; Ceriotti, Chiara; Marchis, Francesco De; Preti, Alessandro; Spinelli, Antonello E.; Perani, Laura; Venturini, Massimo; Valtorta, Silvia; Moresco, Rosa Maria; Pecciarini, Lorenza; Doglioni, Claudio; Frenquelli, Michela; Crippa, Luca; Recordati, Camilla; Scanziani, Eugenio; de Vries, Hilda; Berns, Anton; Frapolli, Roberta; Boldorini, Renzo; D’Incalci, Maurizio; Bianchi, Marco E.; Crippa, Massimo P.

    2016-01-01

    Malignant Mesothelioma is a highly aggressive cancer, which is difficult to diagnose and treat. Here we describe the molecular, cellular and morphological characterization of a syngeneic system consisting of murine AB1, AB12 and AB22 mesothelioma cells injected in immunocompetent BALB/c mice, which allows the study of the interplay of tumor cells with the immune system. Murine mesothelioma cells, like human ones, respond to exogenous High Mobility Group Box 1 protein, a Damage-Associated Molecular Pattern that acts as a chemoattractant for leukocytes and as a proinflammatory mediator. The tumors derived from AB cells are morphologically and histologically similar to human MM tumors, and respond to treatments used for MM patients. Our system largely recapitulates human mesothelioma, and we advocate its use for the study of MM development and treatment. PMID:26961782

  6. Human malignant mesothelioma is recapitulated in immunocompetent BALB/c mice injected with murine AB cells.

    PubMed

    Mezzapelle, Rosanna; Rrapaj, Eltjona; Gatti, Elena; Ceriotti, Chiara; Marchis, Francesco De; Preti, Alessandro; Spinelli, Antonello E; Perani, Laura; Venturini, Massimo; Valtorta, Silvia; Moresco, Rosa Maria; Pecciarini, Lorenza; Doglioni, Claudio; Frenquelli, Michela; Crippa, Luca; Recordati, Camilla; Scanziani, Eugenio; de Vries, Hilda; Berns, Anton; Frapolli, Roberta; Boldorini, Renzo; D'Incalci, Maurizio; Bianchi, Marco E; Crippa, Massimo P

    2016-01-01

    Malignant Mesothelioma is a highly aggressive cancer, which is difficult to diagnose and treat. Here we describe the molecular, cellular and morphological characterization of a syngeneic system consisting of murine AB1, AB12 and AB22 mesothelioma cells injected in immunocompetent BALB/c mice, which allows the study of the interplay of tumor cells with the immune system. Murine mesothelioma cells, like human ones, respond to exogenous High Mobility Group Box 1 protein, a Damage-Associated Molecular Pattern that acts as a chemoattractant for leukocytes and as a proinflammatory mediator. The tumors derived from AB cells are morphologically and histologically similar to human MM tumors, and respond to treatments used for MM patients. Our system largely recapitulates human mesothelioma, and we advocate its use for the study of MM development and treatment. PMID:26961782

  7. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells.

    PubMed

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  8. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  9. Long noncoding RNAs and neuroblastoma

    PubMed Central

    Pandey, Gaurav Kumar; Kanduri, Chandrasekhar

    2015-01-01

    Neuroblastoma is a disease that affects infants and despite intense multimodal therapy, high-risk patients have low survival rates (<50%). In recent years long noncoding RNAs (lncRNAs) have become the cutting edge of cancer research with inroads made in understanding their roles in multiple cancer types, including prostate and breast cancers. The roles of lncRNAs in neuroblastoma have just begun to be elucidated. This review summarises where we are with regards to lncRNAs in neuroblastoma. The known mechanistic roles of lncRNAs during neuroblastoma pathogenesis are discussed, as well as the relationship between lncRNA expression and the differentiation capacity of neuroblastoma cells. We speculate about the use of some of these lncRNAs, such as those mapping to the 6p22 hotspot, as biomarkers for neuroblastoma prognosis and treatment. This novel way of thinking about both neuroblastoma and lncRNAs brings a new perspective to the prognosis and treatment of high-risk patients. PMID:26087192

  10. Decline in c-myc mRNA expression but not the induction of c-fos mRNA expression is associated with differentiation of SH-SY5Y human neuroblastoma cells

    SciTech Connect

    Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O. )

    1988-11-01

    The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA and DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.

  11. The combination of the novel glycolysis inhibitor 3-BrOP and rapamycin is effective against neuroblastoma

    PubMed Central

    Levy, Alejandro G.; Akers, Lauren J.; Ghisoli, Maurizio L.; Chen, Zhao; Fang, Wendy; Kannan, Sankaranarayanan; Graham, Timothy; Zeng, Lizhi; Franklin, Anna R.; Huang, Peng; Zweidler-McKay, Patrick A.

    2016-01-01

    Summary Children with high-risk and recurrent neuroblastoma have poor survival rates, and novel therapies are needed. Many cancer cells have been found to preferentially employ the glycolytic pathway for energy generation, even in the presence of oxygen. 3-BrOP is a novel inhibitor of glycolysis, and has demonstrated efficacy against a wide range of tumor types. To determine whether human neuroblastoma cells are susceptible to glycolysis inhibition, we evaluated the role of 3-BrOP in neuroblastoma model systems. Neuroblastoma tumor cell lines demonstrated high rates of lactate accumulation and low rates of oxygen consumption, suggesting a potential susceptibility to inhibitors of glycolysis. In all ten human tested neuroblastoma tumor cell lines, 3-BrOP induced cell death via apoptosis in a dose and time dependent manner. Furthermore, 3-BrOP-induced depletion of ATP levels correlated with decreased neuroblastoma cell viability. In a mouse neuroblastoma xenograft model, glycolysis inhibition with 3-BrOP demonstrated significantly reduced final tumor weight. In neuroblastoma tumor cells, treatment with 3-BrOP induced mTOR activation, and the combination of 3-BrOP and mTOR inhibition with rapamycin demonstrated synergistic efficacy. Based on these results, neuroblastoma tumor cells are sensitive to treatment with inhibitors of glycolysis, and the demonstrated synergy with rapamycin suggests that the combination of glycolysis and mTOR inhibitors represents a novel therapeutic approach for neuroblastoma that warrants further investigation. PMID:20890785

  12. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells

    PubMed Central

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-01-01

    Objective To estimate electroporation (EP) influence on malignant and normal cells. Methods Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). Results In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. Conclusions We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells. PMID:23569735

  13. Lysophosphatidic acid-mediated Ca2+ mobilization in human SH-SY5Y neuroblastoma cells is independent of phosphoinositide signalling, but dependent on sphingosine kinase activation.

    PubMed

    Young, K W; Challiss, R A; Nahorski, S R; MacKrill, J J

    1999-10-01

    Extracellular application of lysophosphatidic acid (LPA) elevated intracellular Ca(2+) concentration ([Ca(2+)](i)) in human SH-SY5Y neuroblastoma cells. The maximal response to LPA occurred between 0. 1 and 1 microM, at which point [Ca(2+)](i) was increased by approx. 500 nM. This increase was of similar magnitude to that caused by the muscarinic acetylcholine receptor agonist methacholine (MCh), although the initial rate of release by LPA was slower. Both LPA and MCh released Ca(2+) from intracellular stores, as assessed by inhibition of their effects by thapsigargin, a blocker of endoplasmic reticular Ca(2+) uptake, and by the persistence of their action in nominally Ca(2+)-free extracellular medium. Similarly, both agonists appeared to stimulate store-refilling Ca(2+) entry. MCh produced a marked elevation in cellular Ins(1,4,5)P(3) and stimulated [(3)H]InsP accumulation in the presence of Li(+). In contrast, LPA failed to stimulate detectable phosphoinositide turnover. Chronic down-regulation of Ins(1,4,5)P(3) receptor (InsP(3)R) proteins with MCh did not affect Ca(2+) responses to LPA. In addition, heparin, a competitive antagonist of InsP(3)Rs, blocked Ca(2+)-mobilization in permeabilized SH-SY5Y cells in response to MCh or exogenously added Ins(1,4,5)P(3), but failed to inhibit Ca(2+)-release induced by LPA. Elevation of [Ca(2+)](i) elicited by LPA was blocked by guanosine 5'-[beta-thio]-diphosphate, indicating that this agonist acts via a G-protein-coupled receptor. However, pertussis toxin was without effect on LPA-evoked [Ca(2+)](i) responses, suggesting that G(i/o)-proteins were not involved. In the absence of extracellular Ca(2+), N,N-dimethylsphingosine (DMS, 30 microM), a competitive inhibitor of sphingosine kinase, blocked LPA-induced Ca(2+) responses by almost 90%. In addition, MCh-induced Ca(2+) responses were also diminished by the addition of DMS, although to a lesser extent than with LPA. We conclude that LPA mobilizes intracellular Ca(2

  14. 10-Hydroxycamptothecin induces apoptosis in human neuroblastoma SMS-KCNR cells through p53, cytochrome c and caspase 3 pathways.

    PubMed

    Yuan, Z F; Tang, Y M; Xu, X J; Li, S S; Zhang, J Y

    2016-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor in childhood, remains one of the most challenging types of cancer to treat. Therefore, the search for novel effective drugs for its treatment is essential. The present study used 10-hydroxycamptothecin (HCPT), which is a naturally occurring alkaloid anticancer agent extracted from the Chinese tree, Camptotheca acuminata, and has a strong anticancer activity in vitro and in vivo. HCPT is able to induce apoptosis in cells of various tumor types. However, few studies have been conducted on its efficacy in NB, and its apoptosis-inducing mechanism has not been elucidated. In the present study, the in vitro effects of HCPT on apoptosis in the human NB cell line, SMS-KCNR, and its underlying molecular mechanisms were investigated. Cell proliferation was measured by an MTT assay and apoptosis was measured using DAPI staining and flow cytometric analysis. In addition, western blot analysis was used to evaluate the apoptosis-associated signaling pathways. HCPT was observed to markedly inhibit cell proliferation and induce apoptosis in SMS-KCNR cells at a relatively low concentration (2.5-20 nM). DAPI staining revealed typical apoptotic feature, namely apoptotic body formation. The flow cytometric analysis revealed that the number of apoptotic cells increased from 20.89% (for 2.5 nM) to 97.66% (for 20 nM) following HCPT treatment for 48 h. Western blot analysis revealed that p53, cytoplasmic cytochrome c, cleaved caspase-3 and poly ADP-ribose polymerase (PARP) proteins were significantly upregulated, while the mitochondrial cytochrome c and pro-caspase-3 proteins were downregulated. However, the B-cell lymphoma 2 and Bcl-2-associated X proteins were unaffected. The results indicated that HCPT may inhibit proliferation and induce apoptosis in the SMS-KCNR cells. The possible mechanism of apoptosis induction is the p53-mediated mitochondrial apoptotic signaling pathway, which promotes cytochrome c release and

  15. The Selective Estrogen Receptor Modulator Raloxifene Regulates Arginine-Vasopressin Gene Expression in Human Female Neuroblastoma Cells Through G Protein-Coupled Estrogen Receptor and ERK Signaling.

    PubMed

    Grassi, Daniela; Ghorbanpoor, Samar; Acaz-Fonseca, Estefania; Ruiz-Palmero, Isabel; Garcia-Segura, Luis M

    2015-10-01

    The selective estrogen receptor modulator raloxifene reduces blood pressure in hypertensive postmenopausal women. In the present study we have explored whether raloxifene regulates gene expression of arginine vasopressin (AVP), which is involved in the pathogenesis of hypertension. The effect of raloxifene was assessed in human female SH-SY5Y neuroblastoma cells, which have been recently identified as a suitable cellular model to study the estrogenic regulation of AVP. Raloxifene, within a concentration ranging from 10(-10) M to 10(-6) M, decreased the mRNA levels of AVP in SH-SY5Y cells with maximal effect at 10(-7) M. This effect of raloxifene was imitated by an agonist (±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone of G protein-coupled estrogen receptor-1 (GPER) and blocked by an antagonist (3aS*,4R*,9bR*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline of GPER and by GPER silencing. Raloxifene induced a time-dependent increase in the level of phosphorylated ERK1 and ERK2, by a mechanism blocked by the GPER antagonist. The treatment of SH-SY5Y cells with either a MAPK/ERK kinase 1/2-specific inhibitor (1,4-diamino-2, 3-dicyano-1,4-bis(2-aminophenylthio)butadine) or a protein kinase C inhibitor (sotrastaurin) blocked the effects of raloxifene on the phosphorylation of ERK1/2 and the regulation of AVP mRNA levels. These results reveal a mechanism mediating the regulation of AVP expression by raloxifene, involving the activation of GPER, which in turn activates protein kinase C, MAPK/ERK kinase, and ERK. The regulation of AVP by raloxifene and GPER may have implications for the treatment of blood hypertension(.). PMID:26200092

  16. Muscarinic stimulation of SK-N-BE(2) human neuroblastoma cells elicits phosphoinositide and phosphatidylcholine hydrolysis: relationship to diacylglycerol and phosphatidic acid accumulation.

    PubMed Central

    Pacini, L; Limatola, C; Frati, L; Luly, P; Spinedi, A

    1993-01-01

    Muscarinic stimulation of the human neuroblastoma cell line SK-N-BE(2) elicits hydrolysis of phosphoinositides and phosphatidylcholine (PtdCho) and produces a rapid and sustained elevation of diacylglycerol (DG) mass. PtdIns(4,5)P2 cleavage by phospholipase C (PLC) occurred immediately after carbachol (CCh) addition, and phosphoinositide hydrolysis was then sustained for at least 5 min. Cell stimulation, after extensive PtdCho labelling by long-term [3H]choline administration, resulted in an enhanced release of [3H]phosphocholine (PCho) into the external medium; enhanced [3H]PCho release, which occurred with a 15 s delay with respect to CCh addition, was particularly pronounced within the first minute of stimulation and proved to be caused by PtdCho-specific PLC activation. In fact, when cells were exposed to [3H]choline for a short period, to extensively label the intracellular PCho pool but not PtdCho, stimulation did not result in an enhanced release of [3H]PCho into the medium. PtdCho-specific phospholipase D (PLD) activation was documented by the accumulation of [3H]phosphatidylethanol in cells prelabelled with [3H]myristic acid and stimulated in the presence of 1% (v/v) ethanol; this metabolic pathway, however, proved to be a minor one leading to generation of phosphatidic acid (PtdOH) during cell stimulation, whereas DG production by the sequential action of PtdCho-specific PLD and PtdOH phosphohydrolase was not observed. Studies on cells which were double-labelled with [3H]myristic acid and [14C]arachidonic acid indicated that within 15 s of stimulation DG is uniquely derived from PtdIns(4,5)P2, whereas PtdCho is the major source at later times. Evidence is provided that rapid and selective conversion of phosphoinositide-derived DG into PtdOH may play an important role in determining the temporal accumulation profile of DG from the above-mentioned sources. PMID:8380986

  17. Ferulic Acid Regulates the Nrf2/Heme Oxygenase-1 System and Counteracts Trimethyltin-Induced Neuronal Damage in the Human Neuroblastoma Cell Line SH-SY5Y

    PubMed Central

    Catino, Stefania; Paciello, Fabiola; Miceli, Fiorella; Rolesi, Rolando; Troiani, Diana; Calabrese, Vittorio; Santangelo, Rosaria; Mancuso, Cesare

    2016-01-01

    Over the past years, several lines of evidence have pointed out the efficacy of ferulic acid (FA) in counteracting oxidative stress elicited by β-amyloid or free radical initiators, based on the ability of this natural antioxidant to up-regulate the heme oxygenase-1 (HO-1) and biliverdin reductase (BVR) system. However, scarce results can be found in literature regarding the cytoprotective effects of FA in case of damage caused by neurotoxicants. The aim of this work is to investigate the mechanisms through which FA exerts neuroprotection in SH-SY5Y neuroblastoma cells exposed to the neurotoxin trimethyltin (TMT). FA (1–10 μM for 6 h) dose-dependently increased both basal and TMT (10 μM for 24 h)-induced HO-1 expression in SH-SY5Y cells by fostering the nuclear translocation of the transcriptional activator Nrf2. In particular, the co-treatment of FA (10 μM) with TMT was also responsible for the nuclear translocation of HO-1 in an attempt to further increase cell stress response in SH-SY5Y cells. In addition to HO-1, FA (1–10 μM for 6 h) dose-dependently increased the basal expression of BVR. The antioxidant and neuroprotective features of FA, through the increase of HO activity, were supported by the evidence that FA inhibited TMT (10 μM)-induced lipid peroxidation (evaluated by detecting 4-hydroxy-nonenal) and DNA fragmentation in SH-SY5Y cells and that this antioxidant effect was reversed by the HO inhibitor Zinc-protoporphyrin-IX (5 μM). Among the by-products of the HO/BVR system, carbon monoxide (CORM-2, 50 nM) and bilirubin (BR, 50 nM) significantly inhibited TMT-induced superoxide anion formation in SH-SY5Y cells. All together, these results corroborate the neuroprotective effect of FA through the up-regulation of the HO-1/BVR system, via carbon monoxide and BR formation, and provide the first evidence on the role of HO-1/Nrf2 axis in FA-related enhancement of cell stress response in human neurons. PMID:26779023

  18. Recurrent 1; 17 translocations in human neuroblastoma reveal nonhomologous mitotic recombination during the S/G2 phase as a novel mechanism for loss of heterozygosity

    SciTech Connect

    Caron, H.; Sluis, P. van; Westerveld, A.; Slater, R.; Versteeg, R.; Kraker, J. de; Voute, P.A. ); Roy, N. van; Speleman, F.

    1994-08-01

    Neuroblastomas often show loss of heterozygosity of the chromosomal region 1p36 (LOH 1p), probably reflecting loss of a tumor-suppressor gene. Here the authors describe three neuroblastoma tumors and two cell lines in which LOH 1p results from an unbalanced translocation between the p arm of chromosome 1 and the q arm of chromosome 17. Southern blot and cytogenetic analyses show that in all cases the chromosome 17 homologue from which the 1;17 translocation was derived is still present and intact. This suggests a model in which a translocation between the short arm of chromosome 1 and the long arm of chromosome 17 takes place in the S/G2 phase of the cell cycle and results in LOH 1p. Nonhomologous mitotic recombination in the S/G2 phase is a novel mechanism of LOH. 24 refs., 5 figs., 1 tab.

  19. Recurrent 1;17 translocations in human neuroblastoma reveal nonhomologous mitotic recombination during the S/G2 phase as a novel mechanism for loss of heterozygosity.

    PubMed Central

    Caron, H.; van Sluis, P.; van Roy, N.; de Kraker, J.; Speleman, F.; Voûte, P. A.; Westerveld, A.; Slater, R.; Versteeg, R.

    1994-01-01

    Neuroblastomas often show loss of heterozygosity of the chromosomal region 1p36 (LOH 1p), probably reflecting loss of a tumor-suppressor gene. Here we describe three neuroblastoma tumors and two cell lines in which LOH 1p results from an unbalanced translocation between the p arm of chromosome 1 and the q arm of chromosome 17. Southern blot and cytogenetic analyses show that in all cases the chromosome 17 homologue from which the 1;17 translocation was derived is still present and intact. This suggests a model in which a translocation between the short arm of chromosome 1 and the long arm of chromosome 17 takes place in the S/G2 phase of the cell cycle and results in LOH 1p. Nonhomologous mitotic recombination in the S/G2 phase is a novel mechanism of LOH. Images Figure 1 Figure 2 Figure 3 PMID:8037211

  20. Expression of protein kinase A regulatory subunits in benign and malignant human thyroid tissues: A systematic review.

    PubMed

    Del Gobbo, Alessandro; Peverelli, Erika; Treppiedi, Donatella; Lania, Andrea; Mantovani, Giovanna; Ferrero, Stefano

    2016-08-01

    In this review, we discuss the molecular mechanisms and prognostic implications of the protein kinase A (PKA) signaling pathway in human tumors, with special emphasis on the malignant thyroid. The PKA signaling pathway is differentially activated by the expression of regulatory subunits 1 (R1) and 2 (R2), whose levels change during development, differentiation, and neoplastic transformation. Following the identification of gene mutations within the PKA regulatory subunit R1A (PRKAR1A) that cause Carney complex-associated neoplasms, several investigators have studied PRKAR1A expression in sporadic thyroid tumors. The PKA regulatory subunit R2B (PRKAR2B) is highly expressed in benign, as well as in malignant differentiated and undifferentiated lesions. PRKAR1A is highly expressed in follicular adenomas and malignant lesions with a statistically significant gradient between benign and malignant tumors; however, it is not expressed in hyperplastic nodules. Although the importance of PKA in human malignancy outcomes is not completely understood, PRKAR1A expression correlates with tumor dimension in malignant lesions. Additional studies are needed to determine whether a relationship exists between PKA subunit expression and clinical outcomes, particularly in undifferentiated tumors. In conclusion, the R1A subunit might be a good molecular candidate for the targeted treatment of malignant thyroid tumors. PMID:27321957

  1. Regulation of proteolytic cleavage of brain-derived neurotrophic factor precursor by antidepressants in human neuroblastoma cells

    PubMed Central

    Lin, Pao-Yen

    2015-01-01

    Evidence has supported the role of brain-derived neurotrophic factor (BDNF) in antidepressant effect. The precursor of BDNF (proBDNF) often exerts opposing biological effects on mature BDNF (mBDNF). Hence, the balance between proBDNF and mBDNF might be critical in total neurotrophic effects, leading to susceptibility to or recovery from depression. In the current study, we measured the protein expression levels of proBDNF, and its proteolytic products, truncated BDNF, and mBDNF, in human SH-SY5Y cells treated with different antidepressants. We found that the treatment significantly increased the production of mBDNF, but decreased the production of truncated BDNF and proBDNF. These results support that antidepressants can promote proBDNF cleavage. Further studies are needed to clarify whether proBDNF cleavage plays a role in antidepressant mechanisms. PMID:26491331

  2. Preparation of [125I-Tyr27,Leu5]beta h-endorphin and its use for crosslinking of opioid binding sites in human striatum and NG108-15 neuroblastoma-glioma cells.

    PubMed Central

    Helmeste, D M; Hammonds, R G; Li, C H

    1986-01-01

    A radioligand suitable for crosslinking studies to opioid receptors has been obtained by radioiodination and purification of the monoiodotyrosine-27 derivative of the synthetic human beta-endorphin (beta h-endorphin) analogue [5-leucine]beta h-endorphin. The derivative, [27-[125I]monoiodotyrosine,5-leucine]beta h-endorphin, was crosslinked to human striatal (caudate and putamen) and NG108-15 neuroblastoma-glioma cell membranes by using disuccinimidyl suberate. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis under reducing conditions revealed four specifically labeled bands at 68, 40, 30, and 25 kDa for both human caudate and putamen, whereas NG108-15 cell membranes gave specifically labeled bands at 92, 56, 38, and 23 kDa. Images PMID:3014499

  3. Bilateral Synchronous Ectopic Ethmoid Sinus Olfactory Neuroblastoma: A Case Report

    PubMed Central

    Leon-Soriano, Elena; Alfonso, Carolina; Yebenes, Laura; Garcia-Polo, Julio; Lassaletta, Luis; Gavilan, Javier

    2016-01-01

    Patient: Male, 41 Final Diagnosis: Olfactory neuroblastoma Symptoms: Left nasal obstruction • occasional left epistaxis • headache Medication: None Clinical Procedure: Nasal endoscopic examination • neck palpation • CT • bilateral endoscopic resection • MRI • PET-CT • postoperative radiotherapy Specialty: Otolaryngology Objective: Unusual clinical course Background: Olfactory neuroblastoma (ONB), also known as esthesioneuroblastoma, is a rare malignant head and neck cancer thought to originate from the olfactory epithelium. It typically invades contiguous structures at presentation. We report a very rare case of multifocal and ectopic ONB. Case Report: A 41-year-old man presented with left nasal obstruction and occasional left epistaxis associated with headache. Endoscopic examination of the nasal cavities and computed tomography suggested bilateral polypoid masses. Histopathological diagnosis after endoscopic resection established bilateral olfactory neuroblastoma of the ethmoid sinuses. The patient received postoperative radiotherapy. He remains free of disease 4 years after treatment. Conclusions: To the best of our knowledge this is the second documented case of multifocal ectopic olfactory neuroblastoma. Clinicians should consider ONB in the differential diagnosis of bilateral synchronous nasal and paranasal masses to avoid delayed diagnosis. Endoscopic resection of ONB could be an option in selected cases. PMID:27097989

  4. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    PubMed

    Ogawa, Hisataka; Wu, Xin; Kawamoto, Koichi; Nishida, Naohiro; Konno, Masamitsu; Koseki, Jun; Matsui, Hidetoshi; Noguchi, Kozou; Gotoh, Noriko; Yamamoto, Tsuyoshi; Miyata, Kanjiro; Nishiyama, Nobuhiro; Nagano, Hiroaki; Yamamoto, Hirofumi; Obika, Satoshi; Kataoka, Kazunori; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2015-01-01

    Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR) 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors. PMID:25970424

  5. A Hybrid Robotic Control System Using Neuroblastoma Cultures

    NASA Astrophysics Data System (ADS)

    Ferrández, J. M.; Lorente, V.; Cuadra, J. M.; Delapaz, F.; Álvarez-Sánchez, José Ramón; Fernández, E.

    The main objective of this work is to analyze the computing capabilities of human neuroblastoma cultured cells and to define connection schemes for controlling a robot behavior. Multielectrode Array (MEA) setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. This paper describes the process of growing human neuroblastoma cells over MEA substrates and tries to modulate the natural physiologic responses of these cells by tetanic stimulation of the culture. We show that the large neuroblastoma networks developed in cultured MEAs are capable of learning: establishing numerous and dynamic connections, with modifiability induced by external stimuli and we propose an hybrid system for controlling a robot to avoid obstacles.

  6. Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies.

    PubMed

    Yasmin, Rehana; Siraj, Sami; Hassan, Amjad; Khan, Abdul Rehman; Abbasi, Rashda; Ahmad, Nafees

    2015-01-01

    Inflammation is a multifaceted defense response of immune system against infection. Chronic inflammation has been implicated as an imminent threat for major human malignancies and is directly linked to various steps involved in tumorigenesis. Inflammatory cytokines, interleukins, interferons, transforming growth factors, chemokines, and adhesion molecules have been associated with chronic inflammation. Numerous cytokines are reported to be aberrantly regulated by different epigenetic mechanisms like DNA methylation and histone modifications in tumor tissues, contributing to pathogenesis of tumor in multiple ways. Some of these cytokines also work as epigenetic regulators of other crucial genes in tumor biology, either directly or indirectly. Such regulations are reported in lung, breast, cervical, gastric, colorectal, pancreatic, prostate, and head and neck cancers. Epigenetics of inflammatory mediators in cancer is currently subject of extensive research. These investigations may help in understanding cancer biology and to develop effective therapeutic strategies. The purpose of this paper is to have a brief view of the aberrant regulation of inflammatory cytokines in human malignancies. PMID:25814785

  7. Epigenetic Regulation of Inflammatory Cytokines and Associated Genes in Human Malignancies

    PubMed Central

    Yasmin, Rehana; Hassan, Amjad; Khan, Abdul Rehman; Abbasi, Rashda; Ahmad, Nafees

    2015-01-01

    Inflammation is a multifaceted defense response of immune system against infection. Chronic inflammation has been implicated as an imminent threat for major human malignancies and is directly linked to various steps involved in tumorigenesis. Inflammatory cytokines, interleukins, interferons, transforming growth factors, chemokines, and adhesion molecules have been associated with chronic inflammation. Numerous cytokines are reported to be aberrantly regulated by different epigenetic mechanisms like DNA methylation and histone modifications in tumor tissues, contributing to pathogenesis of tumor in multiple ways. Some of these cytokines also work as epigenetic regulators of other crucial genes in tumor biology, either directly or indirectly. Such regulations are reported in lung, breast, cervical, gastric, colorectal, pancreatic, prostate, and head and neck cancers. Epigenetics of inflammatory mediators in cancer is currently subject of extensive research. These investigations may help in understanding cancer biology and to develop effective therapeutic strategies. The purpose of this paper is to have a brief view of the aberrant regulation of inflammatory cytokines in human malignancies. PMID:25814785

  8. Clinical significance of the integrin α6β4 in human malignancies

    PubMed Central

    Stewart, Rachel L.; O’Connor, Kathleen L.

    2015-01-01

    Integrin α6β4 is a cellular adhesion molecule that binds to laminins in the extracellular matrix and nucleates the formation of hemidesmosomes. During carcinoma progression, integrin α6β4 is released from hemidesmosomes, where it can then signal to facilitate multiple aspects of tumor progression including sustaining proliferative signaling, tumor invasion and metastasis, evasion of apoptosis, and stimulation of angiogenesis. The integrin achieves these ends by cooperating with growth factor receptors including EGFR, ErbB-2, and c-Met to amplify downstream pathways such as PI3K, AKT, MAPK and the Rho family small GTPases. Furthermore, it dramatically alters the transcriptome toward a more invasive phenotype by controlling promoter DNA demethylation of invasion and metastasis-associated proteins, such as S100A4 and autotaxin, and upregulates and activates key tumor promoting transcription factors such as the NFATs and NFkB. Expression of integrin α6β4 has been studied in many human malignancies where its overexpression is associated with aggressive behavior and a poor prognosis. This review provides an assessment of integrin α6β4 expression patterns and their prognostic significance in human malignancies, and describes key signaling functions of integrin α6β4 that contribute to tumor progression. PMID:26121317

  9. [Human recombinant leukocyte interferon alpha-2-A in 22 cases of metastatic malignant melanoma].

    PubMed

    Maral, J; Steinberg, M; Weil, M; Chleq, C; Khayat, D; Banzet, P; Jacquillat, C

    1987-06-01

    Twenty-two patients with metastatic malignant melanoma received either 36 X 10(6) U (15 patients) or 18 X 10(6) U (7 patients) of human recombinant interferon alpha-2-A daily for 3 months by the intramuscular route, with progressive increase of dosage. This was followed in responders by a maintenance treatment consisting of 3 intramuscular injections per week in the same doses as those received at the end of the induction treatment. Out of 18 patients assessable for effectiveness, 1 had complete remission (7 months +) and 3 had partial response (52,61 and 82 days respectively), an overall improvement rate of 22%. The main side-effects observed were: pseudoinfluenza syndrome (100%), fatigue (100%), somnolence (95%), anorexia (90%) and haematological disorders. Dosage reduction was necessary in 13 of the 15 patients receiving 36 MU. This study shows that human recombinant interferon alpha-2-A has antitumoral activity in metastatic malignant melanoma. Other studies, notably with therapeutic combinations, are needed to determine the optimal dosage regimen of the drug and to increase its effectiveness. PMID:2955323

  10. MiR-137 functions as a tumor suppressor in neuroblastoma by downregulating KDM1A.

    PubMed

    Althoff, Kristina; Beckers, Anneleen; Odersky, Andrea; Mestdagh, Pieter; Köster, Johannes; Bray, Isabella M; Bryan, Kenneth; Vandesompele, Jo; Speleman, Frank; Stallings, Raymond L; Schramm, Alexander; Eggert, Angelika; Sprüssel, Annika; Schulte, Johannes H

    2013-09-01

    Neuroblastoma is the most common extracranial solid tumor of childhood, and accounts for ∼15% of all childhood cancer deaths. The histone demethylase, lysine-specific demethylase 1 (KDM1A, previously known as LSD1), is strongly expressed in neuroblastomas, and overexpression correlates with poor patient prognosis. Inducing differentiation in neuroblastoma cells has previously been shown to down regulate KDM1A, and siRNA-mediated KDM1A knockdown inhibited neuroblastoma cell viability. The microRNA, miR-137, has been reported to be downregulated in several human cancers, and KDM1A mRNA was reported as a putative target of miR-137 in colon cancer. We hypothesized that miR-137 might have a tumor-suppressive role in neuroblastoma mediated via downregulation of KDM1A. Indeed, low levels of miR-137 expression in primary neuroblastomas correlated with poor patient prognosis. Re-expressing miR-137 in neuroblastoma cell lines increased apoptosis and decreased cell viability and proliferation. KDM1A mRNA was repressed by miR-137 in neuroblastoma cells, and was validated as a direct target of miR-137 using reporter assays in SHEP and HEK293 cells. Furthermore, siRNA-mediated KDM1A knockdown phenocopied the miR-137 re-expression phenotype in neuroblastoma cells. We conclude that miR-137 directly targets KDM1A mRNA in neuroblastoma cells, and activates cell properties consistent with tumor suppression. Therapeutic strategies to re-express miR-137 in neuroblastomas could be useful to reduce tumor aggressiveness. PMID:23400681

  11. Inhibition of hedgehog signaling reduces the side population in human malignant mesothelioma cell lines

    PubMed Central

    Kim, H-A; Kim, M-C; Kim, N-Y; Kim, Y

    2015-01-01

    Deregulation of crucial embryonic pathways, including hedgehog signaling, has been frequently implicated in a variety of human cancers and is emerging as an important target for anticancer therapy. This study evaluated the potential anticancer effects of cyclopamine, a chemical inhibitor of hedgehog signaling, in human malignant mesothelioma (HMM) cell lines. Cyclopamine treatment significantly decreased the proliferation of HMM cells by promoting apoptosis and shifting the cell cycle toward dormant phase. The clonogenicity and mobility of HMM cells were significantly decreased by cyclopamine treatment. Treatment of HMM cells with cyclopamine significantly reduced the abundance of side population cells, which were measured using an assay composed of Hoechst 33342 dye staining and subsequent flow cytometry. Furthermore, the expression levels of stemness-related genes were significantly affected by cyclopamine treatment. Taken together, the present study showed that targeting hedgehog signaling could reduce a more aggressive subpopulation of the cancer cells, suggesting an alternative approach for HMM therapy. PMID:26206198

  12. Neuroblastoma: diagnostic imaging and staging

    SciTech Connect

    Stark, D.D.; Moss, A.A.; Brasch, R.C.; deLorimier, A.A.; Albin, A.R.; London, D.A.; Gooding, C.A.

    1983-07-01

    Results of computed tomography (CT), scintigraphy, excretory urography, and other imaging tests used to diagnose and stage 38 cases of neuroblastoma prior to treatment were reviewed. Findings of these examinations were correlated with clinical data, laboratory data, results of biopsy, and surgical findings. CT was the most sensitive single test (100%) for the detection and delineation of the primary tumor. Calcifications that suggested the histologic diagnosis of neuroblastoma were present in 79% of the cases. Rim calcifications, the most specific pattern for neuroblastoma, were identified in 29% of all cases. CT alone accurately staged 82% of cases; when complemented by bone marrow biopsy, staging accuracy was 97%. CT alone was more accurate than any combination of imaging tests that excluded CT. An algorithm using CT is presented for the diagnosis and staging of neuroblastoma at reduced cost and with increased efficiency.

  13. Characterization of phosphodiesterase 2A in human malignant melanoma PMP cells

    PubMed Central

    MORITA, HIROSHI; MURATA, TAKU; SHIMIZU, KASUMI; OKUMURA, KENYA; INUI, MADOKA; TAGAWA, TOSHIRO

    2013-01-01

    The prognosis for malignant melanoma is poor; therefore, new diagnostic methods and treatment strategies are urgently needed. Phosphodiesterase 2 (PDE2) is one of 21 phosphodiesterases, which are divided into 11 families (PDE1-PDE11). PDE2 hydrolyzes cyclic AMP (cAMP) and cyclic GMP (cGMP), and its binding to cGMP enhances the hydrolysis of cAMP. We previously reported the expression of PDE1, PDE3 and PDE5 in human malignant melanoma cells. However, the expression of PDE2 in these cells has not been investigated. Herein, we examined the expression of PDE2A and its role in human oral malignant melanoma PMP cells. Sequencing of RT-PCR products revealed that PDE2A2 was the only variant expressed in PMP cells. Four point mutations were detected; one missense mutation at nucleotide position 734 (from C to T) resulted in the substitution of threonine with isoleucine at amino acid position 214. The other three were silent mutations. An in vitro migration assay and a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay revealed that suppressing PDE2 activity with its specific inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), had no impact on cell motility or apoptosis. Furthermore, the cytotoxicity of EHNA, assessed using a trypan blue exclusion assay, was negligible. On the other hand, assessment of cell proliferation by BrdU incorporation and cell cycle analysis by flow cytometry revealed that EHNA treatment inhibited DNA synthesis and increased the percentage of G2/M-arrested cells. Furthermore, cyclin A mRNA expression was downregulated, while cyclin E mRNA expression was upregulated in EHNA-treated cells. Our results demonstrated that the PDE2A2 variant carrying point mutations is expressed in PMP cells and may affect cell cycle progression by modulating cyclin A expression. Thus, PDE2A2 is a possible new molecular target for the treatment of malignant melanoma. PMID:23381931

  14. Histone deacetylase inhibitors valproate and trichostatin A are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells

    PubMed Central

    Hřebačková, Jana; Poljaková, Jitka; Eckschlager, Tomáš; Hraběta, Jan; Procházka, Pavel; Smutný, Svatopluk; Stiborová, Marie

    2009-01-01

    Histone deacetylase inhibitors such as valproic acid (VPA) and trichostatin A (TSA) were shown to exert antitumor activity. Here, the toxicity of both drugs to human neuroblastoma cell lines was investigated using MTT test, and IC50 values for both compounds were determined. Another target of this work was to evaluate the effects of both drugs on expression of cytochrome P450 (CYP) 1A1, 1B1 and 3A4 enzymes, which are known to be expressed in neuroblastoma cells. A malignant subset of neuroblastoma cells, so-called N-type cells (UKF-NB-3 cells) and the more benign S-type neuroblastoma cells (UKF-NB-4 and SK-N-AS cell lines) were studied from both two points of view. VPA and TSA inhibited the growth of neuroblastoma cells in a dose-dependent manner. The IC50 values ranging from 1.0 to 2.8 mM and from 69.8 to 129.4 nM were found for VPA and TSA, respectively. Of the neuroblastoma tested here, the N-type UKF-NB-3 cell line was the most sensitive to both drugs. The different effects of VPA and TSA were found on expression of CYP1A1, 1B1 and 3A4 enzymes in individual neuroblastoma cells tested in the study. Protein expression of all these CYP enzymes in the S-type SK-N-AS cell line was not influenced by either of studied drugs. On the contrary, in another S-type cell line, UKF-NB-4, VPA and TSA induced expression of CYP1A1, depressed levels of CYP1B1 and had no effect on expression levels of CYP3A4 enzyme. In the N-type UKF-NB-3 cell line, the expression of CYP1A1 was strongly induced, while that of CYP1B1 depressed by VPA and TSA. VPA also induced the expression of CYP3A4 in this neuroblastoma cell line. PMID:21217856

  15. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism | Office of Cancer Genomics

    Cancer.gov

    Neuroblastoma is a paediatric malignancy that typically arises in early childhood, and is derived from the developing sympathetic nervous system. Clinical phenotypes range from localized tumours with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40% despite intensive therapy. A previous genome-wide association study identified common polymorphisms at the LMO1 gene locus that are highly associated with neuroblastoma susceptibility and oncogenic addiction to LMO1 in the tumour cells.

  16. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism

    PubMed Central

    Mandriota, Stefano J.; Valentijn, Linda J.; Lesne, Laurence; Betts, David R.; Marino, Denis; Boudal-Khoshbeen, Mary; London, Wendy B.; Rougemont, Anne-Laure; Attiyeh, Edward F.; Maris, John M.; Hogarty, Michael D.; Koster, Jan; Molenaar, Jan J.; Versteeg, Rogier

    2015-01-01

    Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma. PMID:26053094

  17. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism.

    PubMed

    Mandriota, Stefano J; Valentijn, Linda J; Lesne, Laurence; Betts, David R; Marino, Denis; Boudal-Khoshbeen, Mary; London, Wendy B; Rougemont, Anne-Laure; Attiyeh, Edward F; Maris, John M; Hogarty, Michael D; Koster, Jan; Molenaar, Jan J; Versteeg, Rogier; Ansari, Marc; Gumy-Pause, Fabienne

    2015-07-30

    Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma. PMID:26053094

  18. Targeting Aurora Kinase a Downregulates Cell Proliferation and Angiogenesis in Neuroblastoma

    PubMed Central

    Romain, Carmelle; Paul, Pritha; Kim, Kwang Woon; Lee, Sora; Qiao, Jingbo; Chung, Dai H.

    2014-01-01

    Purpose Aurora kinase A (AURKA) overexpression is associated with poor prognosis in neuroblastoma and has been described to upregulate VEGF in gastric cancer cells. However, the exact role of AURKA in the regulation of neuroblastoma tumorigenesis remains unknown. We hypothesize that AURKA-mediated stabilization of N-Myc may affect VEGF expression and angiogenesis in neuroblastoma. Therefore, we sought to determine whether inhibition of AURKA modulates neuroblastoma angiogenesis. Methods Cell viability and anchorage-independent growth were determined after silencing AURKA or after treatment with MLN8237, AURKA inhibitor. Immunofluorescence was used to determine N-Myc localization. Human umbilical vein endothelial cells (HUVECs) were used to assess angiogenesis in vitro. Real time-PCR and ELISA were performed to determine VEGF transcription and secretion, respectively. Results Knockdown of AURKA significantly reduced cell proliferation and inhibited anchorage-independent growth. It also decreased N-Myc protein levels and nuclear localization. AURKA inhibition also decreased HUVECs tubule formation along with VEGF transcription and secretion. Similarly, MLN8237 treatment decreased neuroblastoma tumorigenicity in vitro. Conclusions Our findings demonstrate that AURKA plays a critical role in neuroblastoma angiogenesis. AURKA regulates nuclear translocation of N-Myc in neuroblastoma cells, thus potentially affecting cell proliferation, anchorage-independent cell growth, and angiogenesis. Targeting AURKA might provide a novel therapeutic strategy in treating aggressive neuroblastomas. PMID:24439602

  19. Overexpression of CD99 Increases the Migration and Invasiveness of Human Malignant Glioma Cells.

    PubMed

    Seol, Ho Jun; Chang, Jong Hee; Yamamoto, Junkoh; Romagnuolo, Rocco; Suh, Youngchul; Weeks, Adrienne; Agnihotri, Sameer; Smith, Christian A; Rutka, James T

    2012-09-01

    The malignant glioma is the most common primary human brain tumor, and its migration and invasiveness away from the primary tumor mass are considered a leading cause of tumor recurrence and treatment failure. Recently, gene expression profiling revealed that the transmembrane glycoprotein CD99 is more highly expressed in malignant glioma than in normal brain. Although its function is not completely understood, CD99 is implicated in cell adhesion and migration in a variety of different cell types. CD99 has wild-type and splice variant isoforms. Previous studies have shown that wild-type CD99 may be an oncosuppressor in some tumors, distinct from the role of the splice variant isoform. In this study, our data reveal that only wild-type CD99 is expressed in human glioma cells and tissues. Using a tissue microarray, we validated that gliomas demonstrate higher expression of CD99 compared with nonneoplastic brain. To assess the role of CD99 in glioma migration and invasion, we inhibited CD99 expression by siRNA and demonstrated decreased glioma migration and invasion. In contrast, when CD99 was overexpressed in glioma cells, we observed enhancement of cell migration and invasiveness. An orthotopic brain tumor model demonstrates that CD99 overexpression significantly increases invasiveness and decreases survival rate. Interestingly, Rac activity was decreased and Rho activity was increased in CD99 overexpressing glioma cells, and the proportion of amoeboid cells to mesenchymal cells was significantly increased. Taken together, our findings suggest that CD99 may play an important role in the migration and invasion of human gliomas independent of Akt, ERK, or JNK signaling pathways. Moreover, CD99 might be involved in amoeboid-mesenchymal transition in glioma migration. CD99 may be an important future target to inhibit migration and invasion, especially in CD99-expressing gliomas. PMID:23486730

  20. Genetic modification of human T lymphocytes for the treatment of hematologic malignancies

    PubMed Central

    Hoyos, Valentina; Savoldo, Barbara; Dotti, Gianpietro

    2012-01-01

    Modern chemotherapy regimens and supportive care have produced remarkable improvements in the overall survival of patients with hematologic malignancies. However, the development of targeted small molecules, monoclonal antibodies, and biological therapies that demonstrate greater efficacy and lower toxicity remains highly desirable in hematology, and oncology in general. In the context of biological therapies, T-lymphocyte based treatments have enormous potential. Donor lymphocyte infusion in patients relapsed after allogeneic hematopoietic stem cell transplant pioneered the concept that T lymphocytes can effectively control tumor growth, and this was then followed by the development of cell culture strategies to generate T lymphocytes with selective activity against tumor cells. Over the past decade, it has become clear that the adoptive transfer of ex vivo expanded antigen-specific cytotoxic T lymphocytes promotes sustained antitumor effects in patients with virus-associated lymphomas, such as Epstein-Barr virus related post-transplant lymphomas and Hodgkin's lymphomas. Because of this compelling clinical evidence and the concomitant development of methodologies for robust gene transfer to human T lymphocytes, the field has rapidly evolved, offering new opportunities to extend T-cell based therapies. This review summarizes the most recent biological and clinical developments using genetically manipulated T cells for the treatment of hematologic malignancies. PMID:22929977

  1. Intracellular ionized calcium concentration in muscles from humans with malignant hyperthermia.

    PubMed

    López, J R; Alamo, L; Caputo, C; Wikinski, J; Ledezma, D

    1985-06-01

    Ca2+ selective microelectrodes have been used to determine the free myoplasmic [Ca2+] in human skeletal muscle obtained from patients who had developed early signs associated with malignant hyperthermia (MH) during anesthesia. Intercostal muscle biopsies were performed under local anesthesia in four MH patients 15 days to 4 months after developing the MH crisis and in three control subjects. We used only microelectrodes that showed a Nernstian response between pCa3 and pCa7 (30.5 mV per decade at 37 degrees C). Membrane resting potential (V(m)) and calcium potential (V(Ca)) were obtained from superficial fibers. The free cytosolic [Ca2+] was 0.39 +/- 0.1 microM (mean +/- SEM, n = 18) in muscle fibers obtained from malignant hyperthermic patients, whereas in control subjects it was 0.11 +/- 0.02 microM (n = 10). These results suggest that this syndrome might be related to an abnormally high myoplasmic free resting calcium concentration, probably due to a defective function of the plasma membrane or the sarcoplasmic reticulum. PMID:16758579

  2. The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease

    PubMed Central

    Hieken, Tina J.; Chen, Jun; Hoskin, Tanya L.; Walther-Antonio, Marina; Johnson, Stephen; Ramaker, Sheri; Xiao, Jian; Radisky, Derek C.; Knutson, Keith L.; Kalari, Krishna R.; Yao, Janet Z.; Baddour, Larry M.; Chia, Nicholas; Degnim, Amy C.

    2016-01-01

    Globally breast cancer is the leading cause of cancer death among women. The breast consists of epithelium, stroma and a mucosal immune system that make up a complex microenvironment. Growing awareness of the role of microbes in the microenvironment recently has led to a series of findings important for human health. The microbiome has been implicated in cancer development and progression at a variety of body sites including stomach, colon, liver, lung, and skin. In this study, we assessed breast tissue microbial signatures in intraoperatively obtained samples using 16S rDNA hypervariable tag sequencing. Our results indicate a distinct breast tissue microbiome that is different from the microbiota of breast skin tissue, breast skin swabs, and buccal swabs. Furthermore, we identify distinct microbial communities in breast tissues from women with cancer as compared to women with benign breast disease. Malignancy correlated with enrichment in taxa of lower abundance including the genera Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus. This work confirms the existence of a distinct breast microbiome and differences between the breast tissue microbiome in benign and malignant disease. These data provide a foundation for future investigation on the role of the breast microbiome in breast carcinogenesis and breast cancer prevention. PMID:27485780

  3. The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease.

    PubMed

    Hieken, Tina J; Chen, Jun; Hoskin, Tanya L; Walther-Antonio, Marina; Johnson, Stephen; Ramaker, Sheri; Xiao, Jian; Radisky, Derek C; Knutson, Keith L; Kalari, Krishna R; Yao, Janet Z; Baddour, Larry M; Chia, Nicholas; Degnim, Amy C

    2016-01-01

    Globally breast cancer is the leading cause of cancer death among women. The breast consists of epithelium, stroma and a mucosal immune system that make up a complex microenvironment. Growing awareness of the role of microbes in the microenvironment recently has led to a series of findings important for human health. The microbiome has been implicated in cancer development and progression at a variety of body sites including stomach, colon, liver, lung, and skin. In this study, we assessed breast tissue microbial signatures in intraoperatively obtained samples using 16S rDNA hypervariable tag sequencing. Our results indicate a distinct breast tissue microbiome that is different from the microbiota of breast skin tissue, breast skin swabs, and buccal swabs. Furthermore, we identify distinct microbial communities in breast tissues from women with cancer as compared to women with benign breast disease. Malignancy correlated with enrichment in taxa of lower abundance including the genera Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus. This work confirms the existence of a distinct breast microbiome and differences between the breast tissue microbiome in benign and malignant disease. These data provide a foundation for future investigation on the role of the breast microbiome in breast carcinogenesis and breast cancer prevention. PMID:27485780

  4. Value of human chorionic gonadotropin compared to CEA in discriminating benign from malignant effusions.

    PubMed

    Lamerz, R; Stoetzer, O J; Mezger, J; Brandt, A; Darsow, M; Wilmanns, W

    1999-01-01

    Human chorionic gonadotropin (HCG) is expressed in germ cell tumors and urothelial, breast, lung and colon cancers. The aim of the study was to investigate if the determination of HCG in comparison with CEA is able to discriminate between malignant and benign effusions. Effusion and partially serum samples of 61 patients with benign (g.i., heart/kidney isnuff.) and 116 patients with malignant diseases (g.i., gynec., lung, misc., CUP) were investigated. HCG was specifically determined by an IRMA using 2 monoclonal antibodies, CEA by a conventional double Ab RIA. Cytological staining was preformed using the Pappenheim-method on cytospin preparations. Significant differences (p < 0.001) were found for HCG between benign and malignant ascitic effusions with the best discrimination at 5 IU/l (ROC) and an overall sensitivity of 31.3% (spec. vs benign eff. 93.4%) increasing in subgroups from hematol. (5.8%) < misc. (31.3%) < gynec. (32.1%) < g.i. (36%) < lung (38.1%) to CUP (50%). CEA also showed significant differences between benign and malignant total and ascitic effusions, and weaker for the pleural subgroup (cutoff 9 ng/ml) with a total sensitivity of 44.6% (sp = 100%) increasing from misc. (30.8%) < lung (47.1%) < CUP (50%) < gynec. (60%) < g.i. (60.9%). Comparative cytology and TM determinations increased the positiverate of cytology (45.2%) to 58.3% for either cytology or HCG positive cases, or to 61.6% for either cytology or CEA positive cases. For the combined determination of cytologoy and HCG and CEA, the overall TM positive rate for 33 cytology-pos. cases was 78.8%, but in 40 cytology-negative cases 37.5% for TM positive cases. In conclusion HCG is useful in ascitic > pleural effusions with high specificity (90% at 5 IU/l) but low sensitivity of 31% increasing in g.i., lung and gynecologic cases, CEA a more general TM with higher sensitivity of 45% increasing in g.i., gynecologic and lung cases (sp. 100% at 9 ng/ml) both adding significantly to cytology

  5. Silencing of CDC42 inhibits neuroblastoma cell proliferation and transformation

    PubMed Central

    Lee, Sora; Craig, Brian T.; Romain, Carmelle V.; Qiao, Jingbo; Chung, Dai H.

    2014-01-01

    Cell division cycle 42 (CDC42), a small GTPase of the Rho-subfamily, regulates diverse cellular functions including proliferation, cytoskeletal rearrangement and even promotes malignant transformation. Here, we found that increased expression of CDC42 correlated with undifferentiated neuroblastoma as compared to a more benign phenotype. CDC42 inhibition decreased cell growth and soft agar colony formation, and increased cell death in BE(2)-C and BE(2)-M17 cell lines, but not in SK-N-AS. In addition, silencing of CDC42 decreased expression of N-myc in BE(2)-C and BE(2)-M17 cells. Our findings suggest that CDC42 may play a role in the regulation of aggressive neuroblastoma behavior. PMID:25264923

  6. Lin28 Enhances Tumorigenesis and is Associated With Advanced Human Malignancies

    PubMed Central

    Viswanathan, Srinivas R.; Powers, John T.; Einhorn, William; Hoshida, Yujin; Ng, Tony; Toffanin, Sara; O'Sullivan, Maureen; Lu, Jun; Philips, Letha A.; Lockhart, Victoria L.; Shah, Samar P.; Tanwar, Pradeep S.; Mermel, Craig H.; Beroukhim, Rameen; Azam, Mohammad; Teixeira, Jose; Meyerson, Matthew; Hughes, Timothy P.; Llovet, Josep M; Radich, Jerald; Mullighan, Charles G.; Golub, Todd R.; Sorensen, Poul H.; Daley, George Q.

    2009-01-01

    Multiple members of the let-7 family of miRNAs are often repressed in human cancers1,2, thereby promoting oncogenesis by de-repressing the targets K-Ras, c-Myc, and HMGA2 3,4. However, the mechanism by which let-7 miRNAs are coordinately repressed is unclear. The RNA-binding proteins Lin28 and Lin28B block let-7 precursors from being processed to mature miRNAs5–8, suggesting that over-expression of Lin28/Lin28B might promote malignancy via repression of let-7. Here we show that LIN28 and LIN28B are over-expressed in primary human tumors and human cancer cell lines (overall frequency ∼15%), and that over-expression is linked to repression of let-7 family miRNAs and de-repression of let-7 targets. Lin28/Lin28B facilitate cellular transformation in vitro, and over-expression is associated with advanced disease across multiple tumor types. Our work provides a mechanism for the coordinate repression of let-7 miRNAs observed in a subset of human cancers, and associates activation of LIN28/LIN28B with poor clinical prognosis. PMID:19483683

  7. What's New in Neuroblastoma Research and Treatment?

    MedlinePlus

    ... treatment Next Topic Additional resources for neuroblastoma What’s new in neuroblastoma research and treatment? Important research into ... cells different from normal cells may lead to new approaches to treating this disease. Newer drugs that ...

  8. Frequency analysis of multispectral photoacoustic images for differentiating malignant region from normal region in excised human prostate

    NASA Astrophysics Data System (ADS)

    Sinha, Saugata; Rao, Navalgund A.; Valluru, Keerthi S.; Chinni, Bhargava K.; Dogra, Vikram S.; Helguera, Maria

    2014-03-01

    Frequency domain analysis of the photoacoustic (PA) radio frequency signals can potentially be used as a tool for characterizing microstructure of absorbers in tissue. This study investigates the feasibility of analyzing the spectrum of multiwavelength PA signals generated by excised human prostate tissue samples to differentiate between malignant and normal prostate regions. Photoacoustic imaging at five different wavelengths, corresponding to peak absorption coefficients of deoxyhemoglobin, whole blood, oxyhemoglobin, water and lipid in the near infrared (NIR) (700 nm - 1000 nm) region, was performed on freshly excised prostate specimens taken from patients undergoing prostatectomy for biopsy confirmed prostate cancer. The PA images were co-registered with the histopathology images of the prostate specimens to determine the region of interest (ROI) corresponding to malignant and normal tissue. The calibrated power spectrum of each PA signal from a selected ROI was fit to a linear model to extract the corresponding slope, midband fit and intercept parameters. The mean value of each parameter corresponding to malignant and adjacent normal prostate ROI was calculated for each of the five wavelengths. The results obtained for 9 different human prostate specimens, show that the mean values of midband fit and intercept are significantly different between malignant and normal regions. In addition, the average midband fit and intercept values show a decreasing trend with increasing wavelength. These preliminary results suggest that frequency analysis of multispectral PA signals can be used to differentiate malignant region from the adjacent normal region in human prostate tissue.

  9. FTIR microscopic comparative study on normal, premalignant, and malignant tissues of human intenstine

    NASA Astrophysics Data System (ADS)

    Mordechai, Shaul; Argov, Shmuel; Salman, Ahmad O.; Cohen, Beny; Ramesh, Jagannathan; Erukhimovitch, Vitaly; Goldstein, Jed; Sinelnikov, Igor

    2000-07-01

    Fourier-Transform Infrared Spectroscopy (FTIR) employs a unique approach to optical diagnosis of tissue pathology based on the characteristic molecular vibrational spectra of the tissue. The architectural changes in the cellular and sub-cellular levels developing in abnormal tissue, including a majority of cancer forms, manifest themselves in different optical signatures, which can be detected in infrared spectroscopy. The biological systems we have studied include normal, premalignant (polyp) and malignant human colonic tissues from three patients. Our method is based on microscopic infrared study (FTIR-microscopy) of thin tissue specimens and a direct comparison with normal histopathological analysis, which serves as a `gold' reference. The normal intestine tissue has a stronger absorption than polyp and cancerous types over a wide region in all three cases. The detailed analysis showed that there is a significant decrease in total phosphate and creatine contents for polyp and cancerous tissue types in comparison to the controls.

  10. Malignant transformation in human chondrosarcoma cells supported by telomerase activation and tumor suppressor inactivation.

    PubMed

    Martin, James A; Forest, Erin; Block, Joel A; Klingelhutz, Aloysius J; Whited, Brent; Gitelis, Steven; Wilkey, Andrew; Buckwalter, Joseph A

    2002-09-01

    Human chondrosarcomas do not respond to current chemotherapies or radiation therapy, and their size and histological appearance do not reliably predict the risk of local recurrence and metastases, making selection of surgical treatment difficult. Identifying mechanisms responsible for the proliferation and invasive behavior of these tumors would be of immense clinical value. We hypothesized that telomerase expression is one of these mechanisms. We detected telomerase expression in 7 of 16 chondrosarcomas, but cells cultured from telomerase-negative chondrosarcomas acquired strong telomerase activity and lost tumor suppressor activity after their establishment in culture. These changes were associated with accelerated indefinite cell proliferation, morphological transition, and increased invasive activity, indicating that telomerase activation and loss of cell cycle control leads to the emergence of aggressive cells from chondrosarcoma cell populations. These observations may lead to better understanding of the factors responsible for malignant transformation, local recurrence, and metastases of cartilage neoplasms. PMID:12354749

  11. Prognostic significance of neoplastic cell proliferation parameters in human haematological malignancies.

    PubMed

    Kotelnikov, V M

    1990-01-01

    High percentage of neoplastic cells in S, G2 and M phases of cell cycle is unfavourable prognostic sign in human haematological malignancies. In chronic leukaemias (CML and CLL) it is true for peripheral blood leukaemic cells, in non-Hodgkin lymphomas--for lymph node cells, in multiple myeloma--for bone marrow plasma cells. In acute leukaemia results are controversial: some authors found a correlation between proliferation parameters of bone marrow blast cells while others did not. These parameters correlate positively with the rate of complete remission and negatively with its duration. It is concluded that proliferation parameters of neoplastic cells may be used for individual prognosis in patients with haematological tumours especially in combination with other biological and clinical prognostic markers. PMID:1703108

  12. Phase I study of recombinant human tumor necrosis factor-alpha in patients with advanced malignancies.

    PubMed

    Bartsch, H H; Nagel, G A; Mull, R; Flener, R; Pfizenmaier, K

    1988-01-01

    A clinical phase I trial with recombinant human tumor necrosis factor-alpha (rTNF-alpha) was performed in 30 patients with advanced malignancies. The maximal tolerated dose (MTD) by 3 times weekly intramuscular (i.m.) application was 150 micrograms m-2. Main subjective toxicities including chills, fever, hypotension, fatigue, and anorexia were dose-related. In addition, transient changes in hematologic parameters and lipid metabolism were noted. Two out of 25 evaluated patients showed a minor tumor response after eight weeks of therapy. There was evidence for an improvement of in vivo immuneresponsiveness as revealed from positive delayed type hypersensitivity (DTH) skin tests of 3 out of 6 pretherapeutically anergic patients. We conclude from this phase I trial that rTNF-alpha can be safely administered at doses up to 150 micrograms m-2 i.m., 3 times weekly, without evidence of cumulative toxicity in long-term treatment. PMID:3267369

  13. A B-Cell Superantigen Induces the Apoptosis of Murine and Human Malignant B Cells.

    PubMed

    Lorenzo, Daniela; Duarte, Alejandra; Mundiñano, Juliana; Berguer, Paula; Nepomnaschy, Irene; Piazzon, Isabel

    2016-01-01

    B-cell superantigens (Sags) bind to conserved sites of the VH or VL regions of immunoglobulin molecules outside their complementarity-determining regions causing the apoptosis of normal cognate B cells. No attempts to investigate whether B-cell Sags are able to induce the apoptosis of cognate malignant B cells were reported. In the present study we show that protein L (PpL), secreted by Finegoldia magna, a B-cell Sag which interacts with κ+ bearing cells, induces the apoptosis of murine and human κ+ lymphoma B cells both in vitro and in vivo. Apoptosis was not altered by caspase-8 inhibitor. No alterations in the levels of Bid, Fas and Fas-L were found suggesting that PpL does not activate the extrinsic pathway of apoptosis. The involvement of the intrinsic pathway was clearly indicated by: i) alterations in mitochondrial membrane potential (ΔΨm) both in murine and human lymphoma cells exposed to PpL; ii) decreased levels of apoptosis in the presence of caspase-9 inhibitor; iii) significant increases of Bim and Bax protein levels and downregulation of Bcl-2; iv) the translocation from the cytoplasm to the mitochondria of Bax and Bim pro-apoptotic proteins and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor and v) the translocation of Bcl-2 protein from the mitochondria to the cytosol and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor. The possibility of a therapeutic use of Sags in lymphoma/leukemia B cell malignancies is discussed. PMID:27603942

  14. Gene therapy as a potential tool for treating neuroblastoma-a focused review.

    PubMed

    Kumar, M D; Dravid, A; Kumar, A; Sen, D

    2016-05-01

    Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged <5 years. Several approaches and strategies developed and tested to cure neuroblastoma have met with limited success due to different reasons. Many oncogenes are deregulated during the onset and development of neuroblastoma and thus offer an opportunity to circumvent this disease if the expression of these genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma. PMID:27080224

  15. Surface charge characteristics of cells from malignant cell lines and normal cell lines of the human hematopoietic system.

    PubMed

    Marikovsky, Y; Ben-Bassat, H; Leibovich, S J; Cividalli, L; Fischler, H; Danon, D

    1979-02-01

    Cells from malignant and normal lines of human hematopoietic origin were studied for their surface charge characteristics with the use of the following criteria: 1) the electron microscopic appearance of cell membranes after labeling with cationized ferritin (CF) either before or after glutaraldehyde fixation, 2) electrophoretic mobility, 3) total sialic acid content, and 4) agglutinability with poly-L-lysine (PLL). CF induced a time-dependent redistribution of surface receptors in unfixed malignant cells but not in unfixed normal cells. After 10 seconds of labeling with CF, both normal and malignant unfixed cells showed a uniform and even labeling pattern. After 5 minutes of labeling, malignant cells exhibited a highly pronounced pattern of clusters and patches, as distinct from a random and even pattern exhibited by normal cells. Both normal and malignant cells after fixation exhibited an equivalent random and even labeling pattern with CF, independent of the duration of labeling. The malignant cells studied possessed less sialic acid, had a lower electric mobility, and were agglutinated more readily with PLL than were the normal cells. PMID:310907

  16. Regulation of the Notch target gene Hes-1 by TGF{alpha} induced Ras/MAPK signaling in human neuroblastoma cells

    SciTech Connect

    Stockhausen, Marie-Therese; Sjoelund, Jonas; Axelson, Hakan . E-mail: hakan.axelson@molmed.mas.lu.se

    2005-10-15

    Ras and Notch signaling have recently been shown to cooperate in the maintenance of neoplastic transformation. Here, we show that TGF{alpha}, a known activator of Ras signaling, can drive cell proliferation and at the same time induce the expression of the Notch target Hes-1 in the neuroblastoma cell line SK-N-BE(2)c. The up-regulation of Hes-1 occurred both at the transcriptional and protein levels and by use of EGFR and MEK inhibitors we could show that the Hes-1 response was dependent on activation of the MAP kinase ERK. Blocking Notch activation by {gamma}-secretase inhibition did not profoundly affect the Hes-1 levels, neither in untreated nor in TGF{alpha} treated cells. The up-regulation of Hes-1 was associated with down-regulation of its pro-neuronal target gene Hash-1. Taken together, these results show that TGF{alpha} is a potent mitogen of neuroblastoma cells and suggest a connection between activation of ERK and Hes-1, thus providing a link between the Ras and Notch signaling pathways.

  17. Two new trifunctional antibodies for the therapy of human malignant melanoma.

    PubMed

    Ruf, Peter; Jäger, Michael; Ellwart, Joachim; Wosch, Susanne; Kusterer, Elisabeth; Lindhofer, Horst

    2004-02-20

    Trifunctional antibodies are able to redirect T cells and Fcgamma receptor(+) accessory immune cells to tumor targets. The simultaneous activation of these different classes of effector cells results in efficient killing of the tumor cells by different mechanisms such as phagocytosis and perforin-mediated cytotoxicity. Here, we introduce 2 new trifunctional antibodies specific for human melanoma. These trifunctional antibodies recognize with one binding arm CD3 on human T cells. The other binding arm is directed against melanoma-associated proteoglycans or melanoma-associated gangliosides (GD2 as well as GD3). They mediate specific lysis of various melanoma cell lines in correlation with the level of antigen expression in short-term cytotoxicity experiments. A combination of the 2 trifunctional antibodies was equally or even more efficient. Moreover, they induced a strong Th1 cytokine pattern with high amounts of IFN-gamma and low or no IL-4. Accordingly, CD4(+) and especially CD8(+) T cells expanded, whereas B cells, NK cells and monocytes decreased. The cytokine response was up to 16-fold higher when tumor cells were present. IFN-gamma reached cytotoxic concentrations for SK-MEL-23 melanoma cells. The induction of a T-cell-activatory and melanoma cell-inhibitory cytokine milieu together with the redirection of T-cell- and accessory cell-mediated cytotoxicity are interesting features of these trifunctional antibodies. They may be a new option for the therapy of human malignant melanoma. PMID:14696099

  18. Long-term morphine treatment enhances proteasome-dependent degradation of G beta in human neuroblastoma SH-SY5Y cells: correlation with onset of adenylate cyclase sensitization.

    PubMed

    Moulédous, Lionel; Neasta, Jérémie; Uttenweiler-Joseph, Sandrine; Stella, Alexandre; Matondo, Mariette; Corbani, Maïthé; Monsarrat, Bernard; Meunier, Jean-Claude

    2005-08-01

    The initial aim of this study was to identify protein changes associated with long-term morphine treatment in a recombinant human neuroblastoma SH-SY5Y clone (sc2) stably overexpressing the human mu-opioid (MOP) receptor. In MOP receptor-overexpressing sc2 cells, short-term morphine exposure was found to be much more potent and efficacious in inhibiting forskolin-elicited production of cAMP, and long-term morphine exposure was shown to induce a substantially higher degree of opiate dependence, as reflected by adenylate cyclase sensitization, than it did in wild-type neuroblastoma cells. Differential proteomic analysis of detergent-resistant membrane rafts isolated from untreated and chronically morphine-treated sc2 cells revealed long-term morphine exposure to have reliably induced a 30 to 40% decrease in the abundance of five proteins, subsequently identified by mass spectrometry as G protein subunits alphai(2), alphai(3), beta(1), and beta(2), and prohibitin. Quantitative Western blot analyses of whole-cell extracts showed that long-term morphine treatment-induced down-regulation of Gbeta but not of the other proteins is highly correlated (r(2) = 0.96) with sensitization of adenylate cyclase. Down-regulation of Gbeta and adenylate cyclase sensitization elicited by long-term morphine treatment were suppressed in the presence of carbobenzoxy-l-leucyl-l-leucyl-l-norvalinal (MG-115) or lactacystin. Thus, sustained activation of the MOP receptor by morphine in sc2 cells seems to promote proteasomal degradation of Gbeta to sensitize adenylate cyclase. Together, our data suggest that the long-term administration of opiates may elicit dependence by altering the neuronal balance of heterotrimeric G proteins and adenylate cyclases, with the ubiquitin-proteasome pathway playing a pivotal role. PMID:15901846

  19. Activation of recombinant human TRPV1 receptors expressed in SH-SY5Y human neuroblastoma cells increases [Ca(2+)](i), initiates neurotransmitter release and promotes delayed cell death.

    PubMed

    Lam, Patricia M W; Hainsworth, Atticus H; Smith, Graham D; Owen, Davina E; Davies, James; Lambert, David G

    2007-08-01

    The transient receptor potential (TRP) vanilloid receptor subtype 1 (TRPV1) is a ligand-gated, Ca(2+)-permeable ion channel in the TRP superfamily of channels. We report the establishment of the first neuronal model expressing recombinant human TRPV1 (SH-SY5Y(hTRPV1)). SH-SY5Y human neuroblastoma cells were stably transfected with hTRPV1 using the Amaxa Biosystem (hTRPV1 in pIREShyg2 with hygromycin selection). Capsaicin, olvanil, resiniferatoxin and the endocannabinoid anandamide increased [Ca(2+)](i) with potency (EC(50)) values of 2.9 nmol/L, 34.7 nmol/L, 0.9 nmol/L and 4.6 micromol/L, respectively. The putative endovanilloid N-arachidonoyl-dopamine increased [Ca(2+)](i) but this response did not reach a maximum. Capsaicin, anandamide, resiniferatoxin and olvanil mediated increases in [Ca(2+)](i) were inhibited by the TRPV1 antagonists capsazepine and iodo-resiniferatoxin with potencies (K(B)) of approximately 70 nmol/L and 2 nmol/L, respectively. Capsaicin stimulated the release of pre-labelled [(3)H]noradrenaline from monolayers of SH-SY5Y(hTRPV1) cells with an EC(50) of 0.6 nmol/L indicating amplification between [Ca(2+)](i) and release. In a perfusion system, we simultaneously measured [(3)H]noradrenaline release and [Ca(2+)](i) and observed that increased [Ca(2+)](i) preceded transmitter release. Capsaicin treatment also produced a cytotoxic response (EC(50) 155 nmol/L) that was antagonist-sensitive and mirrored the [Ca(2+)](I) response. This model displays pharmacology consistent with TRPV1 heterologously expressed in standard non-neuronal cells and native neuronal cultures. The advantage of SH-SY5Y(hTRPV1) is the ability of hTRPV1 to couple to neuronal biochemical machinery and produce large quantities of cells. PMID:17442052

  20. Improved Mitochondrial and Methylglyoxal-Related Metabolisms Support Hyperproliferation Induced by 50 Hz Magnetic Field in Neuroblastoma Cells.

    PubMed

    Falone, Stefano; Santini, Silvano; di Loreto, Silvia; Cordone, Valeria; Grannonico, Marta; Cesare, Patrizia; Cacchio, Marisa; Amicarelli, Fernanda

    2016-09-01

    Extremely low frequency magnetic fields (ELF-MF) are common environmental agents that are suspected to promote later stages of tumorigenesis, especially in brain-derived malignancies. Even though ELF magnetic fields have been previously linked to increased proliferation in neuroblastoma cells, no previous work has studied whether ELF-MF exposure may change key biomolecular features, such as anti-glycative defence and energy re-programming, both of which are currently considered as crucial factors involved in the phenotype and progression of many malignancies. Our study investigated whether the hyperproliferation that is induced in SH-SY5Y human neuroblastoma cells by a 50 Hz, 1 mT ELF magnetic field is supported by an improved defense towards methylglyoxal (MG), which is an endogenous cancer-static and glycating α-oxoaldehyde, and by rewiring of energy metabolism. Our findings show that not only the ELF magnetic field interfered with the biology of neuron-derived malignant cells, by de-differentiating further the cellular phenotype and by increasing the proliferative activity, but also triggered cytoprotective mechanisms through the enhancement of the defense against MG, along with a more efficient management of metabolic energy, presumably to support the rapid cell outgrowth. Intriguingly, we also revealed that the MF-induced bioeffects took place after an initial imbalance of the cellular homeostasis, which most likely created a transient unstable milieu. The biochemical pathways and molecular targets revealed in this research could be exploited for future approaches aimed at limiting or suppressing the deleterious effects of ELF magnetic fields. J. Cell. Physiol. 231: 2014-2025, 2016. © 2016 Wiley Periodicals, Inc. PMID:26757151

  1. Influence of zinc deficiency on AKT-MDM2-P53 signaling axes in normal and malignant human prostate cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With prostate being the highest zinc-accumulating tissue before the onset of cancer, the effects of physiologic levels of zinc on Akt-Mdm2-p53 and Akt-p21 signaling axes in human normal prostate epithelial cells (PrEC) and malignant prostate LNCaP cells were examined. Cells were cultured for 6 d in...

  2. Frequent detection of high human papillomavirus DNA loads in oral potentially malignant disorders.

    PubMed

    Pierangeli, A; Cannella, F; Scagnolari, C; Gentile, M; Sciandra, I; Antonelli, G; Ciolfi, C; Russo, C; Palaia, G; Romeo, U; Polimeni, A

    2016-01-01

    Human papillomavirus (HPV) is estimated to be the cause of 40--80% of the squamous cell carcinoma of the oropharynx but only of a small fraction of the oral cavity cancers. The prevalence of oral HPV infection has significantly increased in the last decade, raising concerns about the role of HPV in progression of oral potentially malignant disorders (OPMD) toward squamous cell carcinomas. We sought to study HPV infection in patients with oral lesions, and in control individuals, using non-invasive and site-specific oral brushing and sensitive molecular methods. HPV DNA positivity and viral loads were evaluated in relation to patient data and clinical diagnosis. We enrolled 116 individuals attending Dental Clinics: 62 patients with benign oral lesions (e.g. fibromas, papillomatosis, ulcers) or OPMD (e.g. lichen, leukoplakia) and 54 controls. Oral cells were collected with Cytobrush and HPV-DNA was detected with quantitative real-time PCR for the more common high-risk (HR) and low-risk (LR) genotypes. HPV detection rate, percentage of HR HPVs and HPV-DNA loads (namely HPV16 and in particular, HPV18) were significantly higher in patients than in controls. Lichen planus cases had the highest HPV-positive rate (75.0%), hairy leukoplakia the lowest (33.3%). This study detected unexpectedly high rates of HPV infection in cells of the oral mucosa. The elevated HR HPV loads found in OPMD suggest the effectiveness of quantitative PCR in testing oral lesions. Prospective studies are needed to establish whether elevated viral loads represent a clinically useful marker of the risk of malignant progression. PMID:26408278

  3. Human papillomavirus infection and the malignant transformation of sinonasal inverted papilloma: A meta-analysis.

    PubMed

    Zhao, Ren-Wu; Guo, Zhi-Qiang; Zhang, Ru-Xin

    2016-06-01

    A growing number of molecular epidemiological studies have been conducted to evaluate the association between human papillomavirus (HPV) infection and the malignancy of sinonasal inverted papilloma (SNIP). However, the results remain inconclusive. Here, a meta-analysis was conducted to quantitatively assess this association. Case-control studies investigating SNIP tissues for presence of HPV DNA were identified. The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by the Mantel-Haenszel method. An assessment of publication bias and sensitivity analysis were also performed. We calculated a pooled OR of 2.16 (95% CI=1.46-3.21, P<0.001) without statistically significant heterogeneity or publication bias. Stratification by HPV type showed a stronger association for patients with high-risk HPV (hrHPV) types, HPV-16, HPV-18, and HPV-16/18 infection (OR=8.8 [95% CI: 4.73-16.38], 8.04 [95% CI: 3.34-19.39], 18.57 [95% CI: 4.56-75.70], and 26.24 [4.35-158.47], respectively). When only using PCR studies, pooled ORs for patients with hrHPV, HPV-16, and HPV18 infection still reached statistical significance. However, Egger's test reflected significant publication bias in the HPV-16 sub-analysis (P=0.06), and the adjusted OR was no longer statistically significant (OR=1.65, 95%CI: 0.58-4.63). These results suggest that HPV infection, especially hrHPV (HPV-18), is significantly associated with malignant SNIP. PMID:27085508

  4. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma

    PubMed Central

    Favoni, Roberto E; Daga, Antonio; Malatesta, Paolo; Florio, Tullio

    2012-01-01

    The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth. PMID:22289125

  5. Isolation and characterization of human malignant glioma cells from histologically normal brain.

    PubMed

    Silbergeld, D L; Chicoine, M R

    1997-03-01

    Brain invasion prevents complete surgical extirpation of malignant gliomas; however, invasive cells from distant, histologically normal brain previously have not been isolated, cultured, and characterized. To evaluate invasive human malignant glioma cells, the authors established cultures from gross tumor and histologically normal brain. Three men and one woman, with a mean age of 67 years, underwent two frontal and two temporal lobectomies for tumors, which yielded specimens of both gross tumor and histologically normal brain. Each specimen was acquired a minimum of 4 cm from the gross tumor. The specimens were split: a portion was sent for neuropathological evaluation (three glioblastomas multiforme and one oligodendroglioma) and a portion was used to establish cell lines. Morphologically, the specimens of gross tumor and histologically normal brain were identical in three of the four cell culture pairs. Histochemical staining characteristics were consistent both within each pair and when compared with the specimens sent for neuropathological evaluation. Cultures demonstrated anchorage-independent growth in soft agarose and neoplastic karyotypes. Growth rates in culture were greater for histologically normal brain than for gross tumor in three of the four culture pairs. Although the observed increases in growth rates of histologically normal brain cultures do not correlate with in vivo behavior, these findings corroborate the previously reported stem cell potential of invasive glioma cells. Using the radial dish assay, no significant differences in motility between cultures of gross tumor and histologically normal brain were found. In summary, tumor cells were cultured from histologically normal brain acquired from a distance greater than 4 cm from the gross tumor, indicating the relative insensitivity of standard histopathological identification of invasive glioma cells (and hence the inadequacy of frozen-section evaluation of resection margins). Cell lines

  6. Horizontal Transmission and Retention of Malignancy, as well as Functional Human Genes, After Spontaneous Fusion of Human Glioblastoma and Hamster Host Cells In Vivo

    PubMed Central

    Goldenberg, David M.; Zagzag, David; Heselmeyer-Haddad, Kerstin M.; Berroa Garcia, Lissa Y; Ried, Thomas; Loo, Meiyu; Chang, Chien-Hsing; Gold, David V.

    2011-01-01

    Cell fusion in vitro has been used to study cancer, gene mapping and regulation, and the production of antibodies via hybridomas. However, in-vivo heterosynkaryon formation by cell-cell fusion has received less attention. This investigation describes the spontaneous fusion of a human glioblastoma with normal hamster cells after xenogeneic transplantation, resulting in malignant cells that express both human and hamster genes and gene products, and retention of glioblastoma traits with an enhanced ability to metastasize. Three of 7 human genes found showed translation of their proteins during serial propagation in vivo or in vitro for years; namely, CD74, CXCR4, and PLAGL2, each implicated with malignancy or glioblastoma. This supports the thesis that genetic hybridization of cancer and normal cells can transmit malignancy and also, as first described herein, regulatory genes involved in the tumor’s organotypic morphology. Evidence also is increasing that even cell-free human cancer DNA can induce malignancy and transfer genetic information to normal cells. Hence, we posit that the transfer of genetic information between tumor and stromal cells, whether by cell-cell fusion or other mechanisms, is implicated in the progression of malignancy, and may further define the crosstalk between cancer cells and their stromal neighbors. PMID:21796629

  7. Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen.

    PubMed

    Michaelis, Martin; Agha, Bishr; Rothweiler, Florian; Löschmann, Nadine; Voges, Yvonne; Mittelbronn, Michel; Starzetz, Tatjana; Harter, Patrick N; Abhari, Behnaz A; Fulda, Simone; Westermann, Frank; Riecken, Kristoffer; Spek, Silvia; Langer, Klaus; Wiese, Michael; Dirks, Wilhelm G; Zehner, Richard; Cinatl, Jaroslav; Wass, Mark N; Cinatl, Jindrich

    2015-01-01

    Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells. PMID:25644037

  8. Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity

    PubMed Central

    Mussai, Francis; Egan, Sharon; Hunter, Stuart; Webber, Hannah; Fisher, Jonathan; Wheat, Rachel; McConville, Carmel; Sbirkov, Yordan; Wheeler, Kate; Bendle, Gavin; Petrie, Kevin; Anderson, John; Chesler, Louis; De Santo, Carmela

    2015-01-01

    Neuroblastoma is the most common extra cranial solid tumour of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumour cells suppress T cell proliferation, through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34+ progenitor proliferation. Finally we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1 specific TCR and GD2-specific CAR engineered T cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for neuroblastoma patients. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumour and blood that leads to impaired immune surveillance and sub-optimal efficacy of immunotherapeutic approaches. PMID:26054597

  9. Dual CDK4/CDK6 Inhibition Induces Cell Cycle Arrest and Senescence in Neuroblastoma

    PubMed Central

    Rader, JulieAnn; Russell, Mike R.; Hart, Lori S.; Nakazawa, Michael S.; Belcastro, Lili T.; Martinez, Daniel; Li, Yimei; Carpenter, Erica L.; Attiyeh, Edward F.; Diskin, Sharon J.; Kim, Sunkyu; Parasuraman, Sudha; Caponigro, Giordano; Schnepp, Robert W.; Wood, Andrew C.; Pawel, Bruce; Cole, Kristina A.; Maris, John M.

    2013-01-01

    Purpose Neuroblastoma is a pediatric cancer that continues to exact significant morbidity and mortality. Recently, a number of cell cycle proteins, particularly those within the Cyclin D/CDK4/CDK6/RB network, have been shown to exert oncogenic roles in neuroblastoma, suggesting that their therapeutic exploitation might improve patient outcomes. Experimental Procedures We evaluated the effect of dual CDK4/CDK6 inhibition on neuroblastoma viability using LEE011, a highly specific CDK4/6 inhibitor. Results Treatment with LEE011 significantly reduced proliferation in 12 of 17 human neuroblastoma-derived cell lines by inducing cytostasis at nanomolar concentrations (mean IC50 = 307 ± 68 nM in sensitive lines). LEE011 caused cell cycle arrest and cellular senescence that was attributed to dose-dependent decreases in phosphorylated RB and FOXM1, respectively. In addition, responsiveness of neuroblastoma xenografts to LEE011 translated to the in vivo setting in that there was a direct correlation of in vitro IC50 values with degree of subcutaneous xenograft growth delay. While our data indicate that neuroblastomas sensitive to LEE011 were more likely to contain genomic amplification of MYCN (p = 0.01), the identification of additional clinically accessible biomarkers is of high importance. Conclusions Taken together, our data show that LEE011 is active in a large subset of neuroblastoma cell line and xenograft models, and supports the clinical development of this CDK4/6 inhibitor as a therapy for patients with this disease. PMID:24045179

  10. Ex vivo activation of CD56(+) immune cells that eradicate neuroblastoma.

    PubMed

    Rujkijyanont, Piya; Chan, Wing Keung; Eldridge, Paul W; Lockey, Timothy; Holladay, Martha; Rooney, Barbara; Davidoff, Andrew M; Leung, Wing; Vong, Queenie

    2013-04-15

    Despite the use of intensive contemporary multimodal therapy, the overall survival of patients with high-risk neuroblastoma is still less than 50%. Therefore, immunotherapy without cross-resistance and overlapping toxicity has been proposed. In this study, we report the development of a novel strategy to specifically activate and expand human CD56(+) (NCAM1) natural killer (NK) immune cells from normal donors and patients with neuroblastoma. Enriched CD56(+) cells from peripheral blood were mixed with CD56(-) fraction at 1:1 ratio and cultured in the presence of OKT3, interleukin (IL)-2, and -15 for five days and then without OKT3 for 16 more days. The final products contained more than 90% CD56(+) cells and could kill neuroblastoma cells effectively that were originally highly resistant to nonprocessed NK cells. Mechanistically, cytolysis of neuroblastoma was mediated through natural cytotoxicity receptor (NCR), DNAX accessory molecule-1 (DNAM-1; CD226), perforin, and granzyme B. Successful clinical scale-up in a good manufacturing practices (GMP)-compliant bioreactor yielded effector cells that in a neuroblastoma xenograft model slowed tumor growth and extended survival without GVHD. Investigation of CD56(+) cells from patients with neuroblastoma revealed a similar postactivation phenotype and lytic activity. Our findings establish a novel and clinically expedient strategy to generate allogeneic or autologous CD56(+) cells that are highly cytotoxic against neuroblastoma with minimal risk of GVHD. PMID:23440424

  11. Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen

    PubMed Central

    Michaelis, Martin; Agha, Bishr; Rothweiler, Florian; Löschmann, Nadine; Voges, Yvonne; Mittelbronn, Michel; Starzetz, Tatjana; Harter, Patrick N.; Abhari, Behnaz A.; Fulda, Simone; Westermann, Frank; Riecken, Kristoffer; Spek, Silvia; Langer, Klaus; Wiese, Michael; Dirks, Wilhelm G.; Zehner, Richard; Cinatl, Jaroslav; Wass, Mark N.; Cinatl, Jindrich

    2015-01-01

    Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells. PMID:25644037

  12. Emerging Role and Targeting of Carcinoembryonic Antigen-related Cell Adhesion Molecule 6 (CEACAM6) in Human Malignancies

    PubMed Central

    Johnson, Benny; Mahadevan, Daruka

    2015-01-01

    Background: Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is a member of the CEA family of cell adhesion proteins that belong to the immunoglobulin superfamily. CEACAM6 is normally expressed on the surface of myeloid (CD66c) and epithelial surfaces. Stiochiomertic expression of members of the CEA family (CEACAM1, 5, 6, 7) on epithelia maintains normal tissue architecture through homo-and hetero-philic interactions. Dysregulated over-expression of CEACAM6 is oncogenic, is associated with anoikis resistance and an invasive phenotype mediated by excessive TGFβ, AKT, FAK and SRC signaling in human malignancies. Methods: Extensive literature review through PubMed was conducted to identify relevant preclinical and clinical research publications regarding CEACAM6 over the last decade and was summarized in this manuscript. Results: CEACAM5 and 6 are over-expressed in nearly 70% of epithelial malignancies including colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDA), hepatobiliary, gastric, breast, non-small cell lung and head/neck cancers. Importantly, CEACAM6 is a poor prognostic marker in CRC, while its expression correlates with tumor stage, metastasis and post-operative survival in PDA. CEACAM6 appears to be an immune checkpoint suppressor in hematologic malignancies including acute lymphoblastic leukemia and multiple myeloma. Several therapeutic monoclonal antibodies or antibody fragments targeting CEACAM6 have been designed and developed as a targeted therapy for human malignancies. A Llama antibody targeting CEACAM6 is being evaluated in early phase clinical trials. Conclusion: This review focuses on the role of CEACAM6 in the pathogenesis and signaling of the malignant phenotype in solid and hematologic malignancies and highlights its potential as a therapeutic target for anti-cancer therapy.

  13. The genetic landscape of high-risk neuroblastoma

    PubMed Central

    Pugh, Trevor J.; Morozova, Olena; Attiyeh, Edward F.; Asgharzadeh, Shahab; Wei, Jun S.; Auclair, Daniel; Carter, Scott L.; Cibulskis, Kristian; Hanna, Megan; Kiezun, Adam; Kim, Jaegil; Lawrence, Michael S.; Lichenstein, Lee; McKenna, Aaron; Pedamallu, Chandra Sekhar; Ramos, Alex H.; Shefler, Erica; Sivachenko, Andrey; Sougnez, Carrie; Stewart, Chip; Ally, Adrian; Birol, Inanc; Chiu, Readman; Corbett, Richard D.; Hirst, Martin; Jackman, Shaun D.; Kamoh, Baljit; Khodabakshi, Alireza Hadj; Krzywinski, Martin; Lo, Allan; Moore, Richard A.; Mungall, Karen L.; Qian, Jenny; Tam, Angela; Thiessen, Nina; Zhao, Yongjun; Cole, Kristina A.; Diamond, Maura; Diskin, Sharon J.; Mosse, Yael P.; Wood, Andrew C.; Ji, Lingyun; Sposto, Richard; Badgett, Thomas; London, Wendy B.; Moyer, Yvonne; Gastier-Foster, Julie M.; Smith, Malcolm A.; Auvil, Jaime M. Guidry; Gerhard, Daniela S.; Hogarty, Michael D.; Jones, Steven J. M.; Lander, Eric S.; Gabriel, Stacey B.; Getz, Gad; Seeger, Robert C.; Khan, Javed; Marra, Marco A.; Meyerson, Matthew; Maris, John M.

    2013-01-01

    Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%1. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 cases using a combination of whole exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per megabase (0.48 non-silent), and remarkably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, an additional 7.1% had focal deletions), MYCN (1.7%, a recurrent p.Pro44Leu alteration), and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1, and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies reliant upon frequently altered oncogenic drivers. PMID:23334666

  14. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias

    PubMed Central

    Scala, Stefania; Portella, Giuseppe; Fedele, Monica; Chiappetta, Gennaro; Fusco, Alfredo

    2000-01-01

    High mobility group I (HMGI) proteins are overexpressed in several human malignant tumors. We previously demonstrated that inhibition of HMGI synthesis prevents thyroid cell transformation. Here, we report that an adenovirus carrying the HMGI(Y) gene in an antisense orientation (Ad-Yas) induced programmed cell death of two human thyroid anaplastic carcinoma cell lines (ARO and FB-1), but not normal thyroid cells. The Ad-Yas virus led to death of lung, colon, and breast carcinoma cells. A control adenovirus carrying the lacZ gene did not inhibit the growth of either normal or neoplastic cells. Ad-Yas treatment of tumors induced in athymic mice by ARO cells caused a drastic reduction in tumor size. Therefore, suppression of HMGI(Y) protein synthesis by an HMGI(Y) antisense adenoviral vector may be a useful treatment strategy in a variety of human malignant neoplasias, in which HMGI(Y) gene overexpression is a general event. PMID:10759549

  15. (18)F-DOPA PET/CT for assessment of response to induction chemotherapy in a child with high-risk neuroblastoma.

    PubMed

    Piccardo, Arnoldo; Lopci, Egesta; Foppiani, Luca; Morana, Giovanni; Conte, Massimo

    2014-03-01

    Functional imaging plays a crucial role in the assessment of neuroblastoma. The evaluation of response to induction chemotherapy is a cornerstone in scheduling proper treatment management in patients affected by high-risk neuroblastoma. (123)I-metaiodobenzylguanidine has been recognized as the radiopharmaceutical of choice in neuroblastoma assessment. To date, the clinical role of PET/CT in pediatric malignancy is not well established.(18)F-DOPA-PET/CT has been recently used in neuroblastoma, and compared with (123)I-MIBG-scan. Scant new data are available about the role of this tool in the evaluation of treatment response after induction chemotherapy. We investigate the role of (18)F-DOPA-PET/CT in characterizing the response to induction chemotherapy in a child affected by high-risk-neuroblastoma, in whom the rare association of (123)I-MIBG-negative primary tumor and MIBG-positive bone marrow metastases was observed. PMID:24247818

  16. Congenital neuroblastoma with placental involvement.

    PubMed

    Kume, Ayako; Morikawa, Teppei; Ogawa, Makiko; Yamashita, Aki; Yamaguchi, Shunichi; Fukayama, Masashi

    2014-01-01

    We describe an extremely rare case of congenital neuroblastoma with placental involvement. A fetus with a left abdominal mass detected during ultrasonography at 23 weeks' gestation developed hydrops fetalis by 26 weeks' gestation. The mother developed hypertension at 26 5/7 weeks' gestation. Based on a clinical diagnosis of pregnancy-induced hypertension, labor was induced at 26 6/7 weeks. However, intrauterine fetal death was diagnosed during delivery. Postmortern examination revealed a solid tumor at the site of the left adrenal gland. Histological examination of the tumor revealed dense proliferation of small round tumor cells with sparse cytoplasm and hyperchromatic nuclei. Some tumor-cell complexes contained abundant neurofibrils and Hormer-Wright rosettes were observed. A diagnosis of neuroblastoma of the left adrenal gland was made. The liver was markedly enlarged and was extensively replaced by neuroblastoma cells. In addition, small nests of tumor cells were detected in the blood vessels of various organs including the heart, lung, spleen, kidneys, stomach, small and large intestine, thyroid gland, testis, spinal cord, and bone marrow. Histological examination of the enlarged placenta revealed numerous neuroblastoma cells in the villous fetal capillary spaces. The present case was unusual in that the tumor cells were found not only in the chorionic villi, but also in the intervillous space of the maternal vascular system. However, there was no clinical evidence of maternal metastasis. PMID:25550872

  17. Human Cytomegalovirus Antigens in Malignant Gliomas as Targets for Adoptive Cellular Therapy

    PubMed Central

    Landi, Daniel; Hegde, Meenakshi; Ahmed, Nabil

    2014-01-01

    Malignant gliomas are the most common primary brain tumor in adults, with over 12,000 new cases diagnosed in the United States each year. Over the last decade, investigators have reliably identified human cytomegalovirus (HCMV) proteins, nucleic acids, and virions in most high-grade gliomas, including glioblastoma (GBM). This discovery is significant because HCMV gene products can be targeted by immune-based therapies. In this review, we describe the current level of understanding regarding the presence and role in pathogenesis of HCMV in GBM. We describe our success detecting and expanding HCMV-specific cytotoxic T lymphocytes to kill GBM cells and explain how these cells can be used as a platform for enhanced cellular therapies. We discuss alternative approaches that capitalize on HCMV infection to treat patients with HCMV-positive tumors. Adoptive cellular therapy for HCMV-positive GBM has been tried in a small number of patients with some benefit, but we reason why, to date, these approaches generally fail to generate long-term remission or cure. We conjecture how cellular therapy for GBM can be improved and describe the barriers that must be overcome to cure these patients. PMID:25505736

  18. Function and significance of MicroRNAs in benign and malignant human stem cells.

    PubMed

    Utikal, Jochen; Abba, Mohammed; Novak, Daniel; Moniuszko, Marcin; Allgayer, Heike

    2015-12-01

    MicroRNAs now not only represent a significant mechanism for post-transcriptional gene regulation, but have come to be appreciated as molecules with far reaching tentacles affecting diverse processes and pathologies by modulating amongst others, cellular gene expression, epigentic mechanisms, complex signaling cascades, cell-cell communication, the immune system and microenvironmental interactions between several cell types, tissues and organ systems. In this review, we systematically reflect on the impact of miRNAs on all types of benign and malignant human stem cells, looking at the roles they play in maintaining or changing the stem cell state, and review how aberrations of their expression and function within diverse types of stem cells orchestrate carcinogenesis and metastasis. As a conclusion, we consider it striking to see how similar some miR-driven mechanisms are between different types of stem cells and cancer cells, and how this might support hypotheses of miR-driven embryologic pathway reactivation in metastasis or propose putative functions of miRs in important novel cross-topic fields such as obesity and cancer. PMID:26192966

  19. Human metapneumovirus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review.

    PubMed

    Shah, Dimpy P; Shah, Pankil K; Azzi, Jacques M; El Chaer, Firas; Chemaly, Roy F

    2016-08-28

    Over the past decade, reported incidence of human metapneumovirus (hMPV) has increased owing to the use of molecular assays for diagnosis of respiratory viral infections in cancer patients. The seasonality of these infections, differences in sampling strategies across institutions, and small sample size of published studies make it difficult to appreciate the true incidence and impact of hMPV infections. In this systematic review, we summarized the published data on hMPV infections in hematopoietic cell transplant recipients and patients with hematologic malignancy, focusing on incidence, hMPV-associated lower respiratory tract infection (LRTI), mortality, prevention, and management with ribavirin and/or intravenous immunoglobulins. Although the incidence of hMPV infections and hMPV-associated LRTI in this patient population is similar to respiratory syncytial virus or parainfluenza virus and despite lack of directed antiviral therapy, the mortality rate remains low unless patients develop LRTI. In the absence of vaccine to prevent hMPV, infection control measures are recommended to reduce its burden in cancer patients. PMID:27260872

  20. Analgesic-antitumor peptide inhibits proliferation and migration of SHG-44 human malignant glioma cells.

    PubMed

    Zhao, Youlong; Cai, Xueting; Ye, Tingmei; Huo, Jiege; Liu, Chao; Zhang, Shuangquan; Cao, Peng

    2011-09-01

    Malignant gliomas, the most common subtype of primary brain tumors, are characterized by high proliferation, great invasion, and neurological destruction and considered to be the deadliest of human cancers. Analgesic-antitumor peptide (AGAP), one of scorpion toxic polypeptides, has been shown to have antitumor activity. Here, we show that recombinant AGAP (rAGAP) not only inhibits the proliferation of gliomas cell SHG-44 and rat glioma cell C6, but also suppresses the migration of SHG-44 cells during wound healing. To explain these phenomena, we find that rAGAP leads to cell cycle of SHG-44 arrested in G1 phase accompanied by suppressing G1 cell cycle regulatory proteins CDK2, CDK6, and p-RB by means of the down-regulated protein expression of p-AKT. Meanwhile, rAGAP significantly decreases the production of NF-κB, BCL-2, p-p38, p-c-Jun, and p-Erk1/2 and further suppresses the activation of VEGF and MMP-9 in SHG-44 cells. These findings suggest rAGAP inhibit proliferation and migration of SHG-44 cells by arresting cell cycle and interfering p-AKT, NF-κB, BCL-2, and MAPK signaling pathways. PMID:21538480

  1. β-lapachone suppresses the proliferation of human malignant melanoma cells by targeting specificity protein 1.

    PubMed

    Bang, Woong; Jeon, Young-Joo; Cho, Jin Hyoung; Lee, Ra Ham; Park, Seon-Min; Shin, Jae-Cheon; Choi, Nag-Jin; Choi, Yung Hyun; Cho, Jung-Jae; Seo, Jae-Min; Lee, Seung-Yeop; Shim, Jung-Hyun; Chae, Jung-Il

    2016-02-01

    β-lapachone (β-lap), a novel natural quinone derived from the bark of the Pink trumpet tree (Tabebuia avellanedae) has been demonstrated to have anticancer activity. In this study, we investigated whether β-lap exhibits anti-proliferative effects on two human malignant melanoma (HMM) cell lines, G361 and SK-MEL-28. The effects of β-lap on the HMM cell lines were investigated using 3-(4,5-dimethylthiazol-2-yl)‑5-(3-carboxymethoxyphenyl)‑2-(4-sulfophenyl-2H-tetrazolium (MTS) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V and Dead cell assay, mitochondrial membrane potential (MMP) assay and western blot analysis. We demonstrated that β-lap significantly induced apoptosis and suppressed cell viability in the HMM cells. Intriguingly, the transcription factor specificity protein 1 (Sp1) was significantly downregulated by β-lap in a dose- and time-dependent manner. Furthermore, β-lap modulated the protein expression level of the Sp1 regulatory genes including cell cycle regulatory proteins and apoptosis-associated proteins. Taken together, our findings indicated that β-lap modulates Sp1 transactivation and induces apoptotic cell death through the regulation of cell cycle- and apoptosis-associated proteins. Thus, β-lap may be used as a promising anticancer drug for cancer prevention and may improve the clinical outcome of patients with cancer. PMID:26718788

  2. [Phase I study of human lymphoblastoid alpha-interferon on malignant tumor].

    PubMed

    Furue, H

    1986-04-01

    A phase I study with human lymphoblastoid alpha-interferon (IFN-alpha) was conducted in 31 patients with malignant tumors. IFN-alpha was administered by intravenous drip infusion, intramuscular injection or local injection. In each patient, the dose was increased in 6 steps from 3 X 10(6) IU/body up to 54 X 10(6) IU/body for the purpose of investigating the safety, optimal regimen, pharmacokinetics and antitumor effect. The following findings were obtained: 1) Fever as a side effect was most frequently (in about 80%) found. However, the temperature did not exceed 40 degrees C in most cases and, on the next day, spontaneously fell to normal. 2) The dose-limiting factors (DLF) may include the subjective symptoms of anorexia, general fatigue and nausea/vomiting and the objective symptom of pancytopenia. 3) The maximum tolerated dose (MTD) was estimated to be between 36 X 10(6) and 54 X 10(6) IU/body per dose. 4) As for the route of administration, the intramuscular one was considered most suitable on the basis of the plasma concentration profile of INF-alpha. It was therefore concluded that the drug may be further submitted to a phase II study which is to be conducted with due consideration of its safety. PMID:3963861

  3. Molecular Mechanisms of Malignant Transformation by Low Dose Cadmium in Normal Human Bronchial Epithelial Cells

    PubMed Central

    Kluz, Thomas; Cohen, Lisa; Shen, Steven S.; Costa, Max

    2016-01-01

    Cadmium is a carcinogenic metal, the mechanisms of which are not fully understood. In this study, human bronchial epithelial cells were transformed with sub-toxic doses of cadmium (0.01, 0.05, and 0.1 μM) and transformed clones were characterized for gene expression changes using RNA-seq, as well as other molecular measurements. 440 genes were upregulated and 47 genes were downregulated in cadmium clones relative to control clones over 1.25-fold. Upregulated genes were associated mostly with gene ontology terms related to embryonic development, immune response, and cell movement, while downregulated genes were associated with RNA metabolism and regulation of transcription. Several embryonic genes were upregulated, including the transcription regulator SATB2. SATB2 is critical for normal skeletal development and has roles in gene expression regulation and chromatin remodeling. Small hairpin RNA knockdown of SATB2 significantly inhibited growth in soft agar, indicating its potential as a driver of metal-induced carcinogenesis. An increase in oxidative stress and autophagy was observed in cadmium clones. In addition, the DNA repair protein O6-methylguanine-DNA-methyltransferase was depleted by transformation with cadmium. MGMT loss caused significant decrease in cell viability after treatment with the alkylating agent temozolomide, demonstrating diminished capacity to repair such damage. Results reveal various mechanisms of cadmium-induced malignant transformation in BEAS-2B cells including upregulation of SATB2, downregulation of MGMT, and increased oxidative stress. PMID:27186882

  4. Preliminary micro-Raman images of normal and malignant human skin cells

    NASA Astrophysics Data System (ADS)

    Short, Michael A.; Lui, Harvey; McLean, David I.; Zeng, Haishan; Chen, Michael X.

    2006-02-01

    Micro-Raman spectroscopy covering a frequency range from 200 to 4000 cm -1 was used to image human skin melanocytes and keratinocytes with a spatial resolution of 0.5 μm. The cells were either cultivated on glass microscope slides or were located within thin sections of skin biopsies mounted on low fluorescence BaF II. A commercially available system was used to obtain the spectra utilizing a x100 long working distance objective with a numerical aperture of 0.8, and a cooled CCD. Both 633 and 515 nm excitations were tried, although the latter proved to be more effcient at producing Raman emission mostly due to the 1/λ 4 dependence in light scattering. Fluorescence emission from the cells was surprisingly low. The excitation power at the sample was kept below about 2 mW to avoid damaging the cells; this was the limiting factor on how quickly a Raman image could be obtained. Despite this diffculty we were able to obtain Raman images with rich information about the spectroscopic and structural features within the cytoplasm and cell nuclei. Differences were observed between the Raman images of normal and malignant cells. Spectra from purified DNA, RNA, lipids, proteins and melanin were obtained and these spectra were compared with the skin cell spectra with the aim of understanding how they are distributed over a cell and how the distribution changes between different cells.

  5. Anti-Endosialin Antibody-Drug Conjugate: Potential in Sarcoma and Other Malignancies.

    PubMed

    Rouleau, Cecile; Gianolio, Diego A; Smale, Robert; Roth, Stephanie D; Krumbholz, Roy; Harper, Jay; Munroe, Kenneth J; Green, Tessa L; Horten, Bruce C; Schmid, Steven M; Teicher, Beverly A

    2015-09-01

    Endosialin/TEM1/CD248 is a cell surface protein expressed at high levels by the malignant cells of about 50% of sarcomas and neuroblastomas. The antibody-drug conjugate (ADC) anti-endosialin-MC-VC-PABC-MMAE was selectively cytotoxic to endosialin-positive cells in vitro and achieved profound and durable antitumor efficacy in preclinical human tumor xenograft models of endosialin-positive disease. MC-VC-PABC-MMAE was conjugated with anti-endosialin with 3-4 MMAE molecules per ADC. The anti-endosialin-MC-VC-PABC-MMAE conjugate was tested for activity in four human cell lines with varied endosialin levels. The HT-1080 fibrosarcoma cells do not express endosialin, A-673 Ewing sarcoma cells and SK-N-AS neuroblastoma cells are moderate expressers of endosialin, and SJSA-1 osteosarcoma cells express very high levels of endosialin. To determine whether endosialin expression was maintained in vivo, A-673 Ewing sarcoma, SK-N-AS neuroblastoma, and SJSA-1 osteosarcoma cells were grown as xenograft tumors in nude mice. The SK-N-AS neuroblastoma and the A-673 Ewing sarcoma lines were selected for in vivo efficacy testing of the anti-endosialin-MC-VC-PABC-MMAE conjugate. The treatment groups included a vehicle control, unconjugated anti-endosialin, an admix control consisting of anti-endosialin and a dose of free MMAE equivalent to the dose administered as the ADC, and the anti-endosialin-MC-VC-PABC-MMAE conjugate. The unconjugated anti-endosialin had no antitumor activity and resulted in similar tumor growth as the vehicle control. The admix control produced a modest tumor growth delay. Administration of the anti-endosialin-MC-VC-PABC-MMAE conjugate resulted in a marked prolonged tumor response of both xenograts. These proof-of-concept results break new ground and open a promising drug discovery approach to these rare and neglected tumors. PMID:26184481

  6. Analysis and significance of the malignant 'eclipse' during the progression of primary cutaneous human melanomas.

    PubMed

    Kerbel, R S; Kobayashi, H; Graham, C H; Lu, C

    1996-04-01

    Why is it that primary melanomas which are less than 0.76 mm in thickness are almost always curable by surgery whereas thicker lesions are associated with a worse prognosis? Put in another way, why is it that such small increases in tumor thickness beyond 0.76 mm are often associated with the eventual formation of distant metastases and death? Part of the answer lies in the dramatic qualitative changes which can accompany small increases in the size of primary human melanomas. Thus, primary melanomas less than 0.76 mm in thickness usually contain very low proportions of metastatically competent tumor cells, whereas slightly thicker lesions can contain very high proportions of such cells, resulting from a selective growth advantage of the latter in the dermal mesenchyme. This overgrowth process is akin to a 'malignant eclipse' phenomenon (by analogy with a solar eclipse). We have been studying the causes of the malignant eclipse in melanoma, for which there are at least four possibilities: 1) an increase in autocrine, mitogenic growth factors by melanoma cells; 2) a decreased rate of apoptosis in the same population; 3) an acquired resistance to paracrine growth inhibitory factors; and 4) an increased ability to induce an angiogenic response. Evidence exists for all four possibilities. Our experimental approach to studying this problem has relied heavily on the use of cell lines obtained from early stage radial growth phase or vertical growth phase lesions which have a clinical-like inability to grow progressively in nude mice, and variants obtained from such lines which are aggressively tumorigenic. Using such paired lines, and other experimental systems, we have obtained evidence that shows early stage melanoma cell lines may be deficient in inducing angiogenesis, are highly sensitive to the growth inhibitory effects of a plethora of cytokines, including transforming growth factor beta, interleukin-6, and oncostatin M, and are more sensitive to undergoing

  7. Expression of Human Herpesvirus-6 Antigens in Benign and Malignant Lymphoproliferative Diseases

    PubMed Central

    Luppi, Mario; Barozzi, Patrizia; Garber, Richard; Maiorana, Antonio; Bonacorsi, Goretta; Artusi, Tullio; Trovato, Raffaella; Marasca, Roberto; Torelli, Giuseppe

    1998-01-01

    Immunohistochemistry was used to look for the expression of human herpesvirus-6 (HHV-6) antigens in a well characterized series of benign, atypical, and malignant lymphoid lesions, which tested positive for the presence of HHV-6 DNA. A panel of specific antibodies against HHV-6 antigens, characteristic either of the early (p41) or late (p101K, gp106, and gp116) phases of the viral cycle, was applied to the lymphoid tissues from 15 non-Hodgkin’s lymphomas, 14 Hodgkin’s disease cases, 5 angioimmunoblastic lymphadenopathies with dysproteinemia, 14 reactive lymphadenopathies, and 2 cases of sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease). In lymphomatous tissues, the expression of late antigens was documented only in reactive cells, and mainly in plasma cells. Of interest, the expression of the early p41 antigen was detected in the so-called “mummified” Reed-Sternberg cells, in two Hodgkin’s disease cases. In reactive lymphadenopathies, the HHV-6 late antigen-expressing cells were plasma cells, histiocytes, and rare granulocytes distributed in interfollicular areas. In both cases of Rosai-Dorfman disease, the p101K showed an intense staining in follicular dendritic cells of germinal centers, whereas the gp106 exhibited an intense cytoplasmic reaction in the abnormal histiocytes, which represent the histological hallmark of the disease. The expression of HHV-6 antigens is tightly controlled in lymphoid tissues. The lack of HHV-6 antigen expression in neoplastic cells and the limited expression in degenerating Reed-Sternberg cells argue against a major pathogenetic role of the virus in human lymphomagenesis. The detection of a rather unique pattern of viral late antigen expression in Rosai-Dorfman disease suggests a possible pathogenetic involvement of HHV-6 in some cases of this rare lymphoproliferative disorder. PMID:9736030

  8. Comprehensive Glycomics of a Multistep Human Brain Tumor Model Reveals Specific Glycosylation Patterns Related to Malignancy

    PubMed Central

    Okada, Kazue; Kimura, Taichi; Piao, Jinhua; Tanaka, Shinya; Shinohara, Yasuro

    2015-01-01

    Cancer cells frequently express glycans at different levels and/or with fundamentally different structures from those expressed by normal cells, and therefore elucidation and manipulation of these glycosylations may provide a beneficial approach to cancer therapy. However, the relationship between altered glycosylation and causal genetic alteration(s) is only partially understood. Here, we employed a unique approach that applies comprehensive glycomic analysis to a previously described multistep tumorigenesis model. Normal human astrocytes were transformed via the serial introduction of hTERT, SV40ER, H-RasV12, and myrAKT, thereby mimicking human brain tumor grades I-IV. More than 160 glycans derived from three major classes of cell surface glycoconjugates (N- and O-glycans on glycoproteins, and glycosphingolipids) were quantitatively explored, and specific glycosylation patterns related to malignancy were systematically identified. The sequential introduction of hTERT, SV40ER, H-RasV12, and myrAKT led to (i) temporal expression of pauci-mannose/mono-antennary type N-glycans and GD3 (hTERT); (ii) switching from ganglio- to globo-series glycosphingolipids and the appearance of Neu5Gc (hTERT and SV40ER); (iii) temporal expression of bisecting GlcNAc residues, α2,6-sialylation, and stage-specific embryonic antigen-4, accompanied by suppression of core 2 O-glycan biosynthesis (hTERT, SV40ER and Ras); and (iv) increased expression of (neo)lacto-series glycosphingolipids and fucosylated N-glycans (hTERT, SV40ER, Ras and AKT). These sequential and transient glycomic alterations may be useful for tumor grade diagnosis and tumor prognosis, and also for the prediction of treatment response. PMID:26132161

  9. A Three-dimensional Tissue Culture Model to Study Primary Human Bone Marrow and its Malignancies

    PubMed Central

    Parikh, Mukti R.; Belch, Andrew R.; Pilarski, Linda M; Kirshner, Julia

    2014-01-01

    Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions

  10. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    PubMed

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors. PMID:24789042

  11. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions

    PubMed Central

    Lakiotaki, Eleftheria; Giaginis, Constantinos; Tolia, Maria; Alexandrou, Paraskevi; Delladetsima, Ioanna; Giannopoulou, Ioanna; Kyrgias, George; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins' expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n = 43) and malignant (n = 44) lesions and was statistically analyzed with clinicopathological parameters, follicular cells' proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA) staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0010 and p = 0.0005, resp.). Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p = 0.0097 and p = 0.0110, resp.). In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p = 0.0301). Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p = 0.1165), lymphatic (p = 0.1989), and vascular invasion (p = 0.0555), as well as in those with increased risk of recurrence rate (p = 0.1165), at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia. PMID:26539529

  12. Malignant mesothelioma

    PubMed Central

    Moore, Alastair J; Parker, Robert J; Wiggins, John

    2008-01-01

    Malignant mesothelioma is a fatal asbestos-associated malignancy originating from the lining cells (mesothelium) of the pleural and peritoneal cavities, as well as the pericardium and the tunica vaginalis. The exact prevalence is unknown but it is estimated that mesotheliomas represent less than 1% of all cancers. Its incidence is increasing, with an expected peak in the next 10–20 years. Pleural malignant mesothelioma is the most common form of mesothelioma. Typical presenting features are those of chest pain and dyspnoea. Breathlessness due to a pleural effusion without chest pain is reported in about 30% of patients. A chest wall mass, weight loss, sweating, abdominal pain and ascites (due to peritoneal involvement) are less common presentations. Mesothelioma is directly attributable to occupational asbestos exposure with a history of exposure in over 90% of cases. There is also evidence that mesothelioma may result from both para-occupational exposure and non-occupational "environmental" exposure. Idiopathic or spontaneous mesothelioma can also occur in the absence of any exposure to asbestos, with a spontaneous rate in humans of around one per million. A combination of accurate exposure history, along with examination radiology and pathology are essential to make the diagnosis. Distinguishing malignant from benign pleural disease can be challenging. The most helpful CT findings suggesting malignant pleural disease are 1) a circumferential pleural rind, 2) nodular pleural thickening, 3) pleural thickening of > 1 cm and 4) mediastinal pleural involvement. Involvement of a multidisciplinary team is recommended to ensure prompt and appropriate management, using a framework of radiotherapy, chemotherapy, surgery and symptom palliation with end of life care. Compensation issues must also be considered. Life expectancy in malignant mesothelioma is poor, with a median survival of about one year following diagnosis. PMID:19099560

  13. Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers.

    PubMed

    Walsh, Kyle M; Whitehead, Todd P; de Smith, Adam J; Smirnov, Ivan V; Park, Minsun; Endicott, Alyson A; Francis, Stephen S; Codd, Veryan; Samani, Nilesh J; Metayer, Catherine; Wiemels, Joseph L

    2016-06-01

    Aberrant telomere lengthening is an important feature of cancer cells in adults and children. In addition to somatic mutations, germline polymorphisms in telomere maintenance genes impact telomere length. Whether these telomere-associated polymorphisms affect risk of childhood malignancies remains largely unexplored. We collected genome-wide data from three groups with pediatric malignancies [neuroblastoma (N = 1516), acute lymphoblastic leukemia (ALL) (N = 958) and osteosarcoma (N = 660)] and three control populations (N = 6892). Using case-control comparisons, we analyzed eight single nucleotide polymorphisms (SNPs) in genes definitively associated with interindividual variation in leukocyte telomere length (LTL) in prior genome-wide association studies: ACYP2, TERC, NAF1, TERT, OBFC1, CTC1, ZNF208 and RTEL1 Six of these SNPs were associated (P < 0.05) with neuroblastoma risk, one with leukemia risk and one with osteosarcoma risk. The allele associated with longer LTL increased cancer risk for all these significantly associated SNPs. Using a weighted linear combination of the eight LTL-associated SNPs, we observed that neuroblastoma patients were predisposed to longer LTL than controls, with each standard deviation increase in genotypically estimated LTL associated with a 1.15-fold increased odds of neuroblastoma (95%CI = 1.09-1.22; P = 7.9×10(-7)). This effect was more pronounced in adolescent-onset neuroblastoma patients (OR = 1.46; 95%CI = 1.03-2.08). A one standard deviation increase in genotypically estimated LTL was more weakly associated with osteosarcoma risk (OR = 1.10; 95%CI = 1.01-1.19; P = 0.017) and leukemia risk (OR = 1.07; 95%CI = 1.00-1.14; P = 0.044), specifically for leukemia patients who relapsed (OR = 1.19; 95%CI = 1.01-1.40; P = 0.043). These results indicate that genetic predisposition to longer LTL is a newly identified risk factor for neuroblastoma and potentially for other cancers of childhood. PMID:27207662

  14. CASC15-S is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus

    PubMed Central

    Russell, Mike R.; Penikis, Annalise; Oldridge, Derek A.; Alvarez-Dominguez, Juan R.; McDaniel, Lee; Diamond, Maura; Padovan, Olivia; Raman, Pichai; Li, Yimei; Wei, Jun S.; Zhang, Shile; Gnanchandran, Janahan; Seeger, Robert; Asgharzadeh, Shahab; Khan, Javed; Diskin, Sharon J.; Maris, John M.; Cole, Kristina A.

    2015-01-01

    Chromosome 6p22 was identified recently as a neuroblastoma susceptibility locus, but its mechanistic contributions to tumorigenesis are as yet undefined. Here we report that the most highly significant single nucleotide polymorphism (SNP) associations reside within CASC15, a long non-coding RNA that we define as a tumor suppressor at 6p22. Low-level expression of a short CASC15 isoform (CASC15-S) associated highly with advanced neuroblastoma and poor patient survival. In human neuroblastoma cells, attenuating CASC15-S increased cellular growth and migratory capacity. Gene expression analysis revealed downregulation of neuroblastoma-specific markers in cells with attenuated CASC15-S, with concomitant increases in cell adhesion and extracellular matrix transcripts. Altogether, our results point to CASC15-S as a mediator of neural growth and differentiation, which impacts neuroblastoma initiation and progression. PMID:26100672

  15. Lycopene protects human SH‑SY5Y neuroblastoma cells against hydrogen peroxide‑induced death via inhibition of oxidative stress and mitochondria‑associated apoptotic pathways.

    PubMed

    Feng, Chunsheng; Luo, Tianfei; Zhang, Shuyan; Liu, Kai; Zhang, Yanhong; Luo, Yinan; Ge, Pengfei

    2016-05-01

    Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)‑induced neuronal damage remains unclear. In the present study, pretreatment with lycopene was observed to protect SH‑SY5Y neuroblastoma cells against H2O2‑induced death via inhibition of apoptosis resulting from activation of caspase‑3 and translocation of apoptosis inducing factor (AIF) to the nucleus. Furthermore, the over‑produced ROS, as well as the reduced activities of anti‑oxidative enzymes, superoxide dismutase and catalase, were demonstrated to be alleviated by lycopene. Additionally, lycopene counteracted H2O2‑induced mitochondrial dysfunction, which was evidenced by suppression of mitochondrial permeability transition pore opening, attenuation of the decline of the mitochondrial membrane potential, and inhibition of the increase of Bax and decrease of Bcl‑2 levels within the mitochondria. The release of cytochrome c and AIF from the mitochondria was also reduced. These results indicate that lycopene is a potent neuroprotectant against apoptosis, oxidative stress and mitochondrial dysfunction, and could be administered to prevent neuronal injury or death. PMID:27035331

  16. Choline availability modulates human neuroblastoma cell proliferation and alters the methylation of the promoter region of the cyclin-dependent kinase inhibitor 3 gene.

    PubMed

    Niculescu, Mihai D; Yamamuro, Yutaka; Zeisel, Steven H

    2004-06-01

    Choline is an important methyl donor and a component of membrane phospholipids. In this study, we tested the hypothesis that choline availability can modulate cell proliferation and the methylation of genes that regulate cell cycling. In several other model systems, hypomethylation of cytosine bases that are followed by a guanosine (CpG) sites in the promoter region of a gene is associated with increased gene expression. We found that in choline-deficient IMR-32 neuroblastoma cells, the promoter of the cyclin-dependent kinase inhibitor 3 gene (CDKN3) was hypomethylated. This change was associated with increased expression of CDKN3 and increased levels of its gene product, kinase-associated phosphatase (KAP), which inhibits the G(1)/S transition of the cell cycle by dephosphorylating cyclin-dependent kinases. Choline deficiency also reduced global DNA methylation. The percentage of cells that accumulated bromodeoxyuridine (proportional to cell proliferation) was 1.8 times lower in the choline-deficient cells than in the control cells. Phosphorylated retinoblastoma (p110) levels were 3 times lower in the choline-deficient cells than in control cells. These findings suggest that the mechanism whereby choline deficiency inhibits cell proliferation involves hypomethylation of key genes regulating cell cycling. This may be a mechanism for our previously reported observation that stem cell proliferation in hippocampus neuroepithelium is decreased in choline-deficient rat and mouse fetuses. PMID:15147518

  17. Choline availability modulates human neuroblastoma cell proliferation and alters the methylation of the promoter region of the cyclin-dependent kinase inhibitor 3 gene

    PubMed Central

    Niculescu, Mihai D.; Yamamuro, Yutaka; Zeisel, Steven H.

    2006-01-01

    Choline is an important methyl donor and a component of membrane phospholipids. In this study, we tested the hypothesis that choline availability can modulate cell proliferation and the methylation of genes that regulate cell cycling. In several other model systems, hypomethylation of cytosine bases that are followed by a guanosine (CpG) sites in the promoter region of a gene is associated with increased gene expression. We found that in choline-deficient IMR-32 neuroblastoma cells, the promoter of the cyclin-dependent kinase inhibitor 3 gene (CDKN3) was hypomethylated. This change was associated with increased expression of CDKN3 and increased levels of its gene product, kinase-associated phosphatase (KAP), which inhibits the G1/S transition of the cell cycle by dephosphorylating cyclin-dependent kinases. Choline deficiency also reduced global DNA methylation. The percentage of cells that accumulated bromodeoxyuridine (proportional to cell proliferation) was 1.8 times lower in the choline-deficient cells than in the control cells. Phosphorylated retinoblastoma (p110) levels were 3 times lower in the choline-deficient cells than in control cells. These findings suggest that the mechanism whereby choline deficiency inhibits cell proliferation involves hypomethylation of key genes regulating cell cycling. This may be a mechanism for our previously reported observation that stem cell proliferation in hippocampus neuroepithelium is decreased in choline-deficient rat and mouse fetuses. PMID:15147518

  18. Lycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways

    PubMed Central

    FENG, CHUNSHENG; LUO, TIANFEI; ZHANG, SHUYAN; LIU, KAI; ZHANG, YANHONG; LUO, YINAN; GE, PENGFEI

    2016-01-01

    Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)-induced neuronal damage remains unclear. In the present study, pretreatment with lycopene was observed to protect SH-SY5Y neuroblastoma cells against H2O2-induced death via inhibition of apoptosis resulting from activation of caspase-3 and translocation of apoptosis inducing factor (AIF) to the nucleus. Furthermore, the over-produced ROS, as well as the reduced activities of anti-oxidative enzymes, superoxide dismutase and catalase, were demonstrated to be alleviated by lycopene. Additionally, lycopene counteracted H2O2-induced mitochondrial dysfunction, which was evidenced by suppression of mitochondrial permeability transition pore opening, attenuation of the decline of the mitochondrial membrane potential, and inhibition of the increase of Bax and decrease of Bcl-2 levels within the mitochondria. The release of cytochrome c and AIF from the mitochondria was also reduced. These results indicate that lycopene is a potent neuroprotectant against apoptosis, oxidative stress and mitochondrial dysfunction, and could be administered to prevent neuronal injury or death. PMID:27035331

  19. The Guanine Nucleotide Exchange Factor SWAP-70 Modulates the Migration and Invasiveness of Human Malignant Glioma Cells12

    PubMed Central

    Seol, Ho Jun; Smith, Christian A; Salhia, Bodour; Rutka, James T

    2009-01-01

    The malignant glioma is the most common primary human brain tumor. Its tendency to invade away from the primary tumor mass is considered a leading cause of tumor recurrence and treatment failure. Accordingly, the molecular pathogenesis of glioma invasion is currently under investigation. Previously, we examined a gene expression array database comparing human gliomas to nonneoplastic controls and identified several Rac guanine nucleotide exchange factors with differential expression. Here, we report that the guanine nucleotide exchange factor SWAP-70 has increased expression in malignant gliomas and strongly correlates with lowered patient survival. SWAP-70 is a multifunctional signaling protein involved in membrane ruffling that works cooperatively with activated Rac. Using a glioma tissue microarray, we validated that SWAP-70 demonstrates higher expression in malignant gliomas compared with low-grade gliomas or nonneoplastic brain tissue. Through immunofluorescence, SWAP-70 localizes to membrane ruffles in response to the growth factor, epidermal growth factor. To assess the role of SWAP-70 in glioma migration and invasion, we inhibited its expression withsmall interfering RNAs and observed decreased glioma cell migration and invasion. SWAP-70 overexpression led to increased levels of active Rac even in low-serum conditions. In addition, when SWAP-70 was overexpressed in glioma cells, we observed enhanced membrane ruffle formation followed by increased cellmigration and invasiveness. Taken together, our findings suggest that the guanine nucleotide exchange factor SWAP-70 plays an important role in the migration and invasion of human gliomas into the surrounding tissue. PMID:19956392

  20. The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors

    PubMed Central

    Lai, Wen-Lin; Harn, Horng-jyh; Hung, Pei-Hsiu; Hsieh, Ming-Chang; Chang, Kai-Fu; Huang, Xiao-Fan; Liao, Kuang-Wen; Lee, Ming-Shih; Tsai, Nu-Man

    2013-01-01

    Glioblastoma multiforme (GBM) is a highly vascularized and invasive neoplasm. The methanol extract of Angelica sinensis (AS-M) is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis. AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival. In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer. PMID:24319475

  1. Elevated TrkA receptor expression is associated with all-trans retinoic acid-induced neuroblastoma differentiation.

    PubMed

    Gao, Q; Chen, C F; Dong, Q; Hou, L; Chen, X; Zhi, Y L; Li, X; Lu, H T; Zhang, H Y

    2015-01-01

    Neuroblastoma is the most common and one of the deadliest among pediatric tumors; however, a subset of infants with neuroblastoma display spontaneous regression. The mechanism of spontaneous regression remains to be elucidated. TrkA plays an essential role in the differentiation and functionality of neurons; abundant TrkA expression is associated with favorable prognosis of neuroblastoma. All-trans retinoic acid (ATRA), a first-line drug for acute promyelocytic leukemia (APL) treatment, has been shown to induce differentiation and inhibit cell growth. Neuroblastoma tissues in our hospital inpatient were collected, primary cell culture was performed, and the cells were separated and purified to be cell line. Trypan blue exclusion was used to count the numbers of cells alive, morphological changes were observed under the phase-contrast microscope. RT-PCR was used to determine the expression level of TrkA. In this study, a human neuroblastoma cell line was successfully established; in addition, we demonstrated that ATRA induces growth arrest and promotes the differentiation of neuroblastoma cells. In addition, ATRA was shown to significantly increase the levels of TrkA mRNA expression. Therefore, we concluded that the elevated expression of the TrkA receptor is associated with ATRA-induced growth arrest and differentiation o neuroblastoma cells. The results of this study provide a theoretical basis for the clinical application of differentiation-inducing ATRA for neuroblastoma therapy. PMID:26535632

  2. p53 mutations in human lymphoid malignancies: Association with Burkitt lymphoma and chronic lymphocytic leukemia

    SciTech Connect

    Gaidano, G.; Ballerini, P.; Gong, J.Z.; Inghirami, G.; Knowles, D.M.; Dalla-Favera, R. ); Neri, A, Centro Malattie del Sangue G. Marcora, Milan ); Newcomb, E.W. ); Magrath, I.T. )

    1991-06-15

    The authors have investigated the frequency of p53 mutations in B- and T-cell human lymphoid malignancies, including acute lymphoblastic leukemia, the major subtypes of non-Hodgkin lymphoma, and chronic lymphocytic leukemia. p53 exons 5-9 were studied by using genomic DNA from 197 primary tumors and 27 cell lines by single-strand conformation polymorphism analysis and by direst sequencing of PCR-amplified fragments. Mutations were found associated with (i) Burkitt lymphoma (9/27 biopsoes; 17/27 cell lines) and its leukemic counterpart L{sub 3}-type B-cell acute lymphoblastic leukemia (5/9), both of which also carry activated c-myc oncogenes, and (ii) B-cell chronic lymphocytic leukemia (6/40) and, in particular, its stage of progression known as Richter's transformation (3/7). Mutations were not found at any significant frequency in other types of non-Hodgkin lymphoma or acute lymphoblastic leukemia. In many cases, only the mutated allele was detectable, implying loss of the normal allele. These results suggest that (1) significant differences in the frequency of p53 mutations are present among subtypes of neoplasms derived from the same tissue; (2) p53 may play a role in tumor progression in B-cell chronic lymphocytic leukemia; (3) the presence of both p53 loss/inactivation and c-myc oncogene activation may be important in the pathogenesis of Burkitt lymphoma and its leukemia form L{sub 3}-type B-cell acute lymphoblastic leukemia.

  3. In vivo imaging of human malignant mesothelioma grown orthotopically in the peritoneal cavity of nude mice.

    PubMed

    Feng, Mingqian; Zhang, Jingli; Anver, Miriam; Hassan, Raffit; Ho, Mitchell

    2011-01-01

    Malignant mesothelioma (MM) causes significant morbidity and mortality in patients. With increasing efforts devoted to developing therapeutics targeting mesothelioma, a xenograft mouse model with in vivo tumor imaging is especially desired for evaluating anti-tumor therapies. In the present study, we fluorescently labeled the NCI-H226 human mesothelioma cell line by a lentiviral vector harboring a luciferase-GFP (Luc/GFP) fusion gene driven by the RNA polymerase II promoter. After single-cell cloning by flow cytometry, a clone (named LMB-H226-GL) that stably expresses high levels of Luc/GFP was obtained. The in vivo tumorigenicity of Luc/GFP-labeled LMB-H226-GL was determined by using intraperitoneal injections of the cells in nude mice. LMB-H226-GL was found to be able to consistently form solid tumors in the peritoneum of mice. Tumor growth and aggressive progression could be quantitated via in vivo bioluminescence imaging. The model exhibited the pathological hallmarks consistent with the clinical progression of MM in terms of tumor growth and spread inside the peritoneal cavity. To evaluate the in vivo efficacy of drugs targeting mesothelioma, we treated mice with SS1P, a recombinant immunotoxin currently evaluated in Phase II clinical trials for treatment of mesothelioma. All the tumor-bearing mice had a significant response to SS1P treatment. Our results showed that this is a well-suited model for mesothelioma, and may be useful for evaluating other novel agents for mesothelioma treatment in vivo. PMID:21479131

  4. In Vivo Imaging of Human Malignant Mesothelioma Grown Orthotopically in the Peritoneal Cavity of Nude Mice

    PubMed Central

    Feng, Mingqian; Zhang, Jingli; Anver, Miriam; Hassan, Raffit; Ho, Mitchell

    2011-01-01

    Malignant mesothelioma (MM) causes significant morbidity and mortality in patients. With increasing efforts devoted to developing therapeutics targeting mesothelioma, a xenograft mouse model with in vivo tumor imaging is especially desired for evaluating anti-tumor therapies. In the present study, we fluorescently labeled the NCI-H226 human mesothelioma cell line by a lentiviral vector harboring a luciferase-GFP (Luc/GFP) fusion gene driven by the RNA polymerase II promoter. After single-cell cloning by flow cytometry, a clone (named LMB-H226-GL) that stably expresses high levels of Luc/GFP was obtained. The in vivo tumorigenicity of Luc/GFP-labeled LMB-H226-GL was determined by using intraperitoneal injections of the cells in nude mice. LMB-H226-GL was found to be able to consistently form solid tumors in the peritoneum of mice. Tumor growth and aggressive progression could be quantitated via in vivo bioluminescence imaging. The model exhibited the pathological hallmarks consistent with the clinical progression of MM in terms of tumor growth and spread inside the peritoneal cavity. To evaluate the in vivo efficacy of drugs targeting mesothelioma, we treated mice with SS1P, a recombinant immunotoxin currently evaluated in Phase II clinical trials for treatment of mesothelioma. All the tumor-bearing mice had a significant response to SS1P treatment. Our results showed that this is a well-suited model for mesothelioma, and may be useful for evaluating other novel agents for mesothelioma treatment in vivo. PMID:21479131

  5. Catalase ameliorates polychlorinated biphenyl-induced cytotoxicity in non-malignant human breast epithelial cells

    PubMed Central

    Venkatesha, Venkatasubbaiah A.; Venkataraman, Sujatha; Sarsour, Ehab H.; Kalen, Amanda L.; Buettner, Garry R.; Robertson, Larry W.; Lehmler, Hans-Joachim; Goswami, Prabhat C.

    2008-01-01

    Polychlorinated biphenyls (PCBs) are environmental chemical contaminants believed to adversely affect cellular processes. We investigated the hypothesis that PCB-induced changes in the levels of cellular reactive oxygen species (ROS) induce DNA damage resulting in cytotoxicity. Exponentially growing cultures of human non-malignant breast epithelial cells (MCF10A) were incubated with PCBs for 3 days and assayed for cell number, ROS levels, DNA damage, and cytotoxicity. Exposure to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) or 2-(4-chlorophenyl)benzo-1,4-quinone (4-Cl-BQ), a metabolite of 4-chlorobiphenyl (PCB3) significantly decreased cell number, MTS reduction, and increased the percentage of cells with sub G1 DNA content. Results from electron paramagnetic resonance (EPR) spectroscopy showed a 4-fold increase in the steady-state levels of ROS, which was suppressed in cells pre-treated with catalase. EPR measurements in cells treated with 4-Cl-BQ detected the presence of a semiquinone radical, suggesting that the increased levels of ROS could be due to the redox-cycling of 4-Cl-BQ. A dose-dependent increase in micronuclei frequency was observed in PCB-treated cells, consistent with an increase in histone 2AX-phosphorylation. Treatment of cells with catalase blunted the PCB-induced increase in micronuclei frequency and H2AX phosphorylation that was consistent with an increase in cell survival. Our results demonstrate a PCB-induced increase in cellular levels of ROS causing DNA damage, resulting in cell killing. PMID:18691649

  6. Virus-like particles for the prevention of human papillomavirus-associated malignancies

    PubMed Central

    Wang, Joshua W.; Roden, Richard B.S.

    2013-01-01

    As compared to peptide/protein-based vaccines, naked DNA vectors and even traditional attenuated or inactived virus vaccines, virus-like particles (VLPs) are an attractive vaccine platform because they offer a combination of safety, ease of production, and both high density B cell epitope display and intracellular presentation of T cell epitopes that induce potent humoral and cellular immune responses respectively. Indeed, human papillomavirus (HPV) vaccines based on VLP production by recombinant expression of major capsid antigen L1 in yeast (Gardasil®, Merck & Co.) or insect cells (Cervarix®, GlaxoSmithKline) have been licensed for the prevention of cervical and anogenital infection and disease associated with the genotypes targeted by each vaccine. These HPV vaccines however have not been demonstrated as effective to treat existing infections, and efforts to develop a therapeutic HPV vaccine continue. Furthermore, current HPV L1-VLP vaccines provide type-restricted protection, requiring highly multivalent formulations to broaden coverage to the dozen or more oncogenic HPV genotypes. This raises the complexity and cost of vaccine production. The lack of access to screening and high disease burden in developing countries has spurred efforts to develop second generation HPV vaccines that are more affordable, induce wider protective coverage and offer therapeutic coverage against HPV-associated malignancies. Given the previous success with L1 VLP-based vaccines against HPV, VLPs have been also adopted as platforms for many second generation HPV and non-HPV vaccine candidates with both prophylactic and therapeutic intent. Here we examine the progress and challenges of these efforts, with a focus on how they inform VLP vaccine design. PMID:23414405

  7. Identification of linc-NeD125, a novel long non coding RNA that hosts miR-125b-1 and negatively controls proliferation of human neuroblastoma cells.

    PubMed

    Bevilacqua, Valeria; Gioia, Ubaldo; Di Carlo, Valerio; Tortorelli, Anna F; Colombo, Teresa; Bozzoni, Irene; Laneve, Pietro; Caffarelli, Elisa

    2015-01-01

    The human genome contains some thousands of long non coding RNAs (lncRNAs). Many of these transcripts are presently considered crucial regulators of gene expression and functionally implicated in developmental processes in Eukaryotes. Notably, despite a huge number of lncRNAs are expressed in the Central Nervous System (CNS), only a few of them have been characterized in terms of molecular structure, gene expression regulation and function. In the present study, we identify linc-NeD125 as a novel cytoplasmic, neuronal-induced long intergenic non coding RNA (lincRNA). Linc-NeD125 represents the host gene for miR-125b-1, a microRNA with an established role as negative regulator of human neuroblastoma cell proliferation. Here, we demonstrate that these two overlapping non coding RNAs are coordinately induced during in vitro neuronal differentiation, and that their expression is regulated by different mechanisms. While the production of miR-125b-1 relies on transcriptional regulation, linc-NeD125 is controlled at the post-transcriptional level, through modulation of its stability. We also demonstrate that linc-NeD125 functions independently of the hosted microRNA, by reducing cell proliferation and activating the antiapoptotic factor BCL-2. PMID:26480000

  8. Prostaglandin E2 promotes MYCN non-amplified neuroblastoma cell survival via β-catenin stabilization

    PubMed Central

    Jansen, Sepp R; Holman, Rian; Hedemann, Ilja; Frankes, Ewoud; Elzinga, Carolina R S; Timens, Wim; Gosens, Reinoud; de Bont, Eveline S; Schmidt, Martina

    2015-01-01

    Amplification of MYCN is the most well-known prognostic marker of neuroblastoma risk classification, but still is only observed in 25% of cases. Recent evidence points to the cyclic adenosine monophosphate (cAMP) elevating ligand prostaglandin E2 (PGE2) and β-catenin as two novel players in neuroblastoma. Here, we aimed to define the potential role of PGE2 and cAMP and its potential interplay with β-catenin, both of which may converge on neuroblastoma cell behaviour. Gain and loss of β-catenin function, PGE2, the adenylyl cyclase activator forskolin and pharmacological inhibition of cyclooxygenase-2 (COX-2) were studied in two human neuroblastoma cell lines without MYCN amplification. Our findings show that PGE2 enhanced cell viability through the EP4 receptor and cAMP elevation, whereas COX-2 inhibitors attenuated cell viability. Interestingly, PGE2 and forskolin promoted glycogen synthase kinase 3β inhibition, β-catenin phosphorylation at the protein kinase A target residue ser675, β-catenin nuclear translocation and TCF-dependent gene transcription. Ectopic expression of a degradation-resistant β-catenin mutant enhances neuroblastoma cell viability and inhibition of β-catenin with XAV939 prevented PGE2-induced cell viability. Finally, we show increased β-catenin expression in human high-risk neuroblastoma tissue without MYCN amplification. Our data indicate that PGE2 enhances neuroblastoma cell viability, a process which may involve cAMP-mediated β-catenin stabilization, and suggest that this pathway is of relevance to high-risk neuroblastoma without MYCN amplification. PMID:25266063

  9. Nogo-A inhibits the migration and invasion of human malignant glioma U87MG cells.

    PubMed

    Jin, Shu-Guang; Ryu, Hyang-Hwa; Li, Song-Yuan; Li, Chun-Hao; Lim, Sa-Hoe; Jang, Woo-Youl; Jung, Shin

    2016-06-01

    Nogo or reticulon-4 (RTN4), also known as neurite outgrowth inhibitor, is a member of the reticulon family of genes. Nogo-A, one of the three isoforms, is enriched in the central nervous system (CNS). The extracellular domain of Nogo-A, Nogo-66, has neurite growth inhibitory activity that is specific for neurons and is mediated by the Nogo receptor. However, most of its functions are not known yet. We investigated whether Nogo-A modulates the migration and invasion of a glioblastoma cell line, as well as the factors that have an effect on Nogo-A. The expression of Nogo-A was evaluated using western blotting and immunohistochemistry in human brain tumor specimens. U87MG cells were transfected with a sense-Nogo-A cDNA construct (U87-Nogo-A cells expressing Nogo-A) and an empty vector (U87MG-E cells not expressing Nogo-A). The migration and invasion abilities of these cells were investigated using simple scratch and Matrigel invasion assays. Morphologic and cytoskeletal changes were documented by confocal microscopy. The proliferation rate was estimated using doubling time assay. The effects of Nogo-A on Rho activity and phosphorylated cofilin were determined by a Rho activity assay and western blotting. Among primary brain tumors, Nogo-A expression was found in a higher percentage of oligodendrogliomas (90.0%) compared with the percentage in the glioblastomas (68.4%). In addition, the percentage in mixed gliomas was 42.9%, while it was not expressed in pituitary adenomas or schwannomas. The migration and invasion abilities of the U87-Nogo-A cells were decreased compared with the control. In the U87-Nogo-A cell line, Rho activity and phosphorylated cofilin expression were also decreased and morphology became more flat in comparison with the U87MG-E cell line. Nogo-A may inhibit the migration and invasion of human malignant glioma cells via the downregulation of RhoA-cofilin signaling. PMID:27109183

  10. [Cervical neuroblastoma in an infant].

    PubMed

    Arvai, Krisztina; Tóth, Judit; Németh, Tamás; Kiss, Csongor; Molnár, Péter; Oláh, Eva

    2004-01-01

    The case of a one-month-old patient admitted to the Department of Pediatrics (Medical and Health Science Center, Debrecen University) because of respiratory distress caused by a cervical mass compressing the upper respiratory pathways is presented. The mass could only be partially removed, the histological diagnosis proved to be neuroblastoma (SBCT: "small blue cell tumor"). Despite the fact that the DNA index of tumor cells (ploidy measurements) and the age of the patient suggested a favourable prognosis, the tumor continued to grow and metastases appeared. Because of symptoms of compression exerted on the respiratory system by the tumor, chemotherapy had to be applied. Since a standard OPEC/OJEC chemotherapeutic protocol proved to be not entirely effective and a residual tumor was still present, retinoic acid and interferon treatment was introduced. Presently, 4 years after the diagnosis, the patient is in complete remission and can be considered to be cured. The case presented here demonstrates that despite the favorable prognosis of the majority of infant neuroblastomas, in some cases the anatomic location of the tumor, leading to disturbance of vital functions, may serve as indication of chemotherapy. Our experience also proved the efficacy of retinoic acid and interferon treatment in relapsed neuroblastoma. PMID:15105902

  11. Association of epigenetic alterations in the human C7orf24 gene with the aberrant gene expression in malignant cells.

    PubMed

    Ohno, Yuji; Hattori, Akira; Yoshiki, Tatsuhiro; Kakeya, Hideaki

    2013-10-01

    Human chromosome 7 open reading frame 24 (C7orf24)/γ-glutamyl cyclotransferase has been suggested to be a potential diagnostic marker for several cancers, including carcinomas in the bladder urothelium, breast and endometrial epithelium. We here investigated the epigenetic regulation of the human C7orf24 promoter in normal diploid ARPE-19 and IMR-90 cells and in the MCF-7 and HeLa cancer cell lines to understand the transcriptional basis for the malignant-associated high expression of C7orf24. Chromatin immunoprecipitation analysis revealed that histone modifications associated with active chromatin were enriched in the proximal region but not in the distal region of the C7orf24 promoter in HeLa and MCF-7 cells. In contrast, elevated levels of histone modifications leading to transcriptional repression and accumulation of heterochromatin proteins in the C7orf24 promoter were observed in the ARPE-19 and IMR-90 cells, compared to the levels in HeLa and MCF-7 cancer cells. In parallel, the CpG island of the C7orf24 promoter was methylated to a greater extent in the normal cells than in the cancer cells. These results suggest that the transcriptional silencing of the C7orf24 gene in the non-malignant cells is elicited through heterochromatin formation in its promoter region; aberrant expression of C7orf24 associated with malignant alterations results from changes in chromatin dynamics. PMID:23853312

  12. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation

    SciTech Connect

    Serafino, A. Balestrieri, E.; Pierimarchi, P.; Matteucci, C.; Moroni, G.; Oricchio, E.; Rasi, G.; Mastino, A.; Spadafora, C.; Garaci, E.; Vallebona, P. Sinibaldi

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derived non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.

  13. Binding of tissue-type plasminogen activator to the glucose-regulated protein 78 (GRP78) modulates plasminogen activation and promotes human neuroblastoma cell proliferation in vitro.

    PubMed

    Gonzalez-Gronow, Mario; Gomez, Cristian Farias; de Ridder, Gustaaf G; Ray, Rupa; Pizzo, Salvatore V

    2014-09-01

    The glucose-regulated protein 78 (GRP78) is a plasminogen (Pg) receptor on the cell surface. In this study, we demonstrate that GRP78 also binds the tissue-type plasminogen activator (t-PA), which results in a decrease in K(m) and an increase in the V(max) for both its amidolytic activity and activation of its substrate, Pg. This results in accelerated Pg activation when GRP78, t-PA, and Pg are bound together. The increase in t-PA activity is the result of a mechanism involving a t-PA lysine-dependent binding site in the GRP78 amino acid sequence (98)LIGRTWNDPSVQQDIKFL(115). We found that GRP78 is expressed on the surface of neuroblastoma SK-N-SH cells where it is co-localized with the voltage-dependent anion channel (VDAC), which is also a t-PA-binding protein in these cells. We demonstrate that both Pg and t-PA serve as a bridge between GRP78 and VDAC bringing them together to facilitate Pg activation. t-PA induces SK-N-SH cell proliferation via binding to GRP78 on the cell surface. Furthermore, Pg binding to the COOH-terminal region of GRP78 stimulates cell proliferation via its microplasminogen domain. This study confirms previous findings from our laboratory showing that GRP78 acts as a growth factor-like receptor and that its association with t-PA, Pg, and VDAC on the cell surface may be part of a system controlling cell growth. PMID:25059665

  14. Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine

    SciTech Connect

    Molina-Jimenez, Maria Francisca . E-mail: jbenedi@farm.ucm.es

    2005-12-15

    Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Recently, it has been shown that fraxetin (coumarin) and myricetin (flavonoid) have significant neuroprotective effects against apoptosis induced by rotenone, increase the total glutathione levels in vitro, and inhibit lipid peroxidation. Thus, these considerations prompted us to investigate the way in which fraxetin and myricetin affect the endogenous antioxidant defense system, such as Mn and CuZn superoxide dismutase (MnSOD, CuZnSOD), catalase, glutathione reductase (GR), and glutathione peroxidase (GPx) on rotenone neurotoxicity in neuroblastoma cells. N-acetylcysteine (NAC), a potent antioxidant, was employed as a comparative agent. Also, the expression and protein levels of HSP70 by Northern and Western blot analysis were assayed in SH-SY5Y cells. After incubation for 16 h, rotenone significantly increased the expression and activity of MnSOD, GPx, and catalase. When cells were preincubated with fraxetin, there was a decrease in the protein levels and activity of both MnSOD and catalase, in comparison with the rotenone treatment. The myricetin effect was less pronounced. Activity and expression of GPx were increased by rotenone and pre-treatment with fraxetin did not modify significantly these levels. The significant enhancement in HSP70 expression at mRNA and protein levels induced by fraxetin was observed by pre-treatment of cells 0.5 h before rotenone insult. These data suggest that major features of rotenone-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that fraxetin partially protects against rotenone toxicity affecting the main protection system of the cells against oxidative injury.

  15. Expression of URG4/URGCP, Cyclin D1, Bcl-2, and Bax genes in retinoic acid treated SH-SY5Y human neuroblastoma cells

    PubMed Central

    Gundogdu, Gulsah; Koc, Tugba; Yonguc, G. Nilufer; Kucukatay, Vural; Satiroglu-Tufan, N. Lale

    2013-01-01

    Retinoic acid (RA) plays important roles in development, growth, and differentiation by regulating the expression of its target genes. The pro-apoptotic Bax gene may form channels through oligomerization in the mitochondrial membrane and facilitate the cytosolic release of cytochrome c. The anti-apoptotic Bcl-2 gene can inhibit this process. Up-regulated gene 4/Upregulator of cell proliferation (URG4/URGCP) is a novel gene located on 7p13. URG4/URGCP also stimulates cyclin D1 (CCND1) mRNA expression, and RNAi-mediated URG4/URGCP silencing diminishes CCND1 mRNA expression in HepG2 cells. In this study, the effects of RA treatment on URG4/URGCP, CCND1, Bcl-2 and Bax gene expression changes in undifferentiated and differentiated SHSY5Y neuroblastoma cells was analyzed. SHSY5Y cells were cultured in the appropriate conditions. To induce differentiation, the cells were treated with 10 micromolar RA in the dark for 3-10 days. SHSY5Y cells possess small processes in an undifferentiated state, and after treatment with RA, the cells developed long neurites, resembling a neuronal phenotype. Total RNA was isolated with Tri-Reagent. Expression profiles of the target genes were determined by semi-quantitative RT-PCR. According to the results, Bcl-2 and CCND1 gene expression levels were increased, while URG4/URGCP and Bax gene expression was decreased in RA treated cells compared to the control cells. Our preliminary results suggest that RA may induce cell proliferation and escape apoptosis using a novel pathway by the URG4/URGCP gene. Further investigations are needed to clarify more direct transcriptional targets of RA signaling and the interaction of RA pathways with other pro-regenerative signals. PMID:24592121

  16. Evaluation of T and B lymphocyte membrane markers in human non-Hodgkin malignant lymphomata.

    PubMed Central

    Brouet, J. C.; Labaume, S.; Seligmann, M.

    1975-01-01

    Lymphoma cells from 25 patients were studied for the presence of B lymphocytes (membrane bound Ig and Fc receptor) and T lymphocytes (rosette formation with sheep erythrocytes) membrane markers. All cases of well differentiated lymphocytic lymphoma and of acute lymphosarcoma cell leukaemia and most cases of poorly differentiated lymphocytic lymphoma behaved as B cell monoclonal malignancies. However, the malignant cells of some patients were not definitely classified according to their B or T cell origin or lacked these membrane markers. The latter situation was encountered in 4 reticulum cell sarcomata. Polyclonal Ig were found on the surface of B cells in a case of hyperbasophilic undifferentiated lymphoma. The need for using several membrane markers to study the abnormal lymphoma cells is outlined. Such studies improve our understanding of these malignancies and may lead in the future to a satisfactory classification of non-Hodgkin lymphomata. PMID:1081001

  17. Human non-Hodgkin's malignant lymphomas serially transplanted in nude mice conditioned with whole-body irradiation.

    PubMed Central

    Igarashi, T.; Oka, K.; Miyamoto, T.

    1989-01-01

    Direct transplantation of non-Hodgkin's malignant lymphoma into athymic nude mice was successfully achieved after whole-body irradiation (5 Gy). Twenty-seven per cent (6/22) of transplanted lymphomas were established as nude mouse lines. The successful lines were derived solely from the patients with diffuse lymphoma who showed advanced clinical stage, high LDH value, large mass and poor prognosis. The histological, immunophenotypic and chromosomal characteristics of the nude mouse lines were compared with those of the original lymphomas, and the proliferative characteristics of the lines were examined. The transplanted lymphomas substantially retained the characteristics of the original lymphomas, and could be useful in biological, oncological and therapeutic studies of human malignant lymphoma. Images Figure 1 Figure 2 Figure 3 PMID:2649134

  18. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells

    PubMed Central

    Guglielmi, L; Cinnella, C; Nardella, M; Maresca, G; Valentini, A; Mercanti, D; Felsani, A; D'Agnano, I

    2014-01-01

    Neuroblastoma is an embryonic tumour of the sympathetic nervous system and is one of the most common cancers in childhood. A high differentiation stage has been associated with a favourable outcome; however, the mechanisms governing neuroblastoma cell differentiation are not completely understood. The MYCN gene is considered the hallmark of neuroblastoma. Even though it has been reported that MYCN has a role during embryonic development, it is needed its decrease so that differentiation can be completed. We aimed to better define the role of MYCN in the differentiation processes, particularly during the early stages. Considering the ability of MYCN to regulate non-coding RNAs, our hypothesis was that N-Myc protein might be necessary to activate differentiation (mimicking embryonic development events) by regulating miRNAs critical for this process. We show that MYCN expression increased in embryonic cortical neural precursor cells at an early stage after differentiation induction. To investigate our hypothesis, we used human neuroblastoma cell lines. In LAN-5 neuroblastoma cells, MYCN was upregulated after 2 days of differentiation induction before its expected downregulation. Positive modulation of various differentiation markers was associated with the increased MYCN expression. Similarly, MYCN silencing inhibited such differentiation, leading to negative modulation of various differentiation markers. Furthermore, MYCN gene overexpression in the poorly differentiating neuroblastoma cell line SK-N-AS restored the ability of such cells to differentiate. We identified three key miRNAs, which could regulate the onset of differentiation programme in the neuroblastoma cells in which we modulated MYCN. Interestingly, these effects were accompanied by changes in the apoptotic compartment evaluated both as expression of apoptosis-related genes and as fraction of apoptotic cells. Therefore, our idea is that MYCN is necessary during the activation of neuroblastoma

  19. Intracellular fragment of NLRR3 (NLRR3-ICD) stimulates ATRA-dependent neuroblastoma differentiation

    SciTech Connect

    Akter, Jesmin; Takatori, Atsushi; Islam, Md. Sazzadul; Nakazawa, Atsuko; Ozaki, Toshinori; Nagase, Hiroki; Nakagawara, Akira

    2014-10-10

    Highlights: • NLRR3 is a membrane protein highly expressed in favorable neuroblastoma. • NLRR3-ICD was produced through proteolytic processing by secretases. • NLRR3-ICD was induced to be translocated into cell nucleus following ATRA exposure. • NLRR3-ICD plays a pivotal role in ATRA-mediated neuroblastoma differentiation. - Abstract: We have previously identified neuronal leucine-rich repeat protein-3 (NLRR3) gene which is preferentially expressed in favorable human neuroblastomas as compared with unfavorable ones. In this study, we have found for the first time that NLRR3 is proteolytically processed by secretases and its intracellular domain (NLRR3-ICD) is then released to translocate into cell nucleus during ATRA-mediated neuroblastoma differentiation. According to our present observations, NLRR3-ICD was induced to accumulate in cell nucleus of neuroblastoma SH-SY5Y cells following ATRA treatment. Since the proteolytic cleavage of NLRR3 was blocked by α- or γ-secretase inhibitor, it is likely that NLRR3-ICD is produced through the secretase-mediated processing of NLRR3. Intriguingly, forced expression of NLRR3-ICD in neuroblastoma SK-N-BE cells significantly suppressed their proliferation as examined by a live-cell imaging system and colony formation assay. Similar results were also obtained in neuroblastoma TGW cells. Furthermore, overexpression of NLRR3-ICD stimulated ATRA-dependent neurite elongation in SK-N-BE cells. Together, our present results strongly suggest that NLRR3-ICD produced by the secretase-mediated proteolytic processing of NLRR3 plays a crucial role in ATRA-mediated neuronal differentiation, and provide a clue to develop a novel therapeutic strategy against aggressive neuroblastomas.

  20. Preclinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma.

    PubMed

    Waters, Alicia M; Stewart, Jerry E; Atigadda, Venkatram R; Mroczek-Musulman, Elizabeth; Muccio, Donald D; Grubbs, Clinton J; Beierle, Elizabeth A

    2015-07-01

    Neuroblastoma remains a common cause of pediatric cancer deaths, especially for children who present with advanced stage or recurrent disease. Currently, retinoic acid therapy is used as maintenance treatment to induce differentiation and reduce tumor recurrence following induction therapy for neuroblastoma, but unavoidable side effects are seen. A novel retinoid, UAB30, has been shown to generate negligible toxicities. In the current study, we hypothesized that UAB30 would have a significant impact on multiple neuroblastoma cell lines in vitro and in vivo. Cellular survival, cell-cycle analysis, migration, and invasion were studied using AlamarBlue assays, FACS, and Transwell assays, respectively, in multiple cell lines following treatment with UAB30. In addition, an in vivo murine model of human neuroblastoma was utilized to study the effects of UAB30 upon tumor xenograft growth and animal survival. We successfully demonstrated decreased cellular survival, invasion, and migration, cell-cycle arrest, and increased apoptosis after treatment with UAB30. Furthermore, inhibition of tumor growth and increased survival was observed in a murine neuroblastoma xenograft model. The results of these in vitro and in vivo studies suggest a potential therapeutic role for the low toxicity synthetic retinoid X receptor selective agonist, UAB30, in neuroblastoma treatment. PMID:25944918

  1. MnSOD downregulation induced by extremely low 0.1 mGy single and fractionated X-rays and microgravity treatment in human neuroblastoma cell line, NB-1.

    PubMed

    Indo, Hiroko P; Tomiyoshi, Tsukasa; Suenaga, Shigeaki; Tomita, Kazuo; Suzuki, Hiromi; Masuda, Daisuke; Terada, Masahiro; Ishioka, Noriaki; Gusev, Oleg; Cornette, Richard; Okuda, Takashi; Mukai, Chiaki; Majima, Hideyuki J

    2015-09-01

    A human neuroblastoma cell line, NB-1, was treated with 24 h of microgravity simulation by clinostat, or irradiated with extremely small X-ray doses of 0.1 or 1.0 mGy using single and 10 times fractionation regimes with 1 and 2 h time-intervals. A quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) examination was performed for apoptosis related factors (BAX, CYTC, APAF1, VDAC1-3, CASP3, CASP8, CASP9 P53, AIF, ANT1 and 2, BCL2, MnSOD, autophagy related BECN and necrosis related CYP-40. The qRT-PCR results revealed that microgravity did not result in significant changes except for a upregulation of proapoptotic VDAC2, and downregulations of proapoptotic CASP9 and antiapoptotic MnSOD. After 0.1 mGy fractionation irradiation, there was increased expression of proapoptotic APAF1 and downregulation of proapoptotic CYTC, VDAC2, VDAC3, CASP8, AIF, ANT1, and ANT2, as well as an increase in expression of antiapoptotic BCL2. There was also a decrease in MnSOD expression with 0.1 mGy fractionation irradiation. These results suggest that microgravity and low-dose radiation may decrease apoptosis but may potentially increase oxidative stress. PMID:26388666

  2. Melatonin prevents cytosolic calcium overload, mitochondrial damage and cell death due to toxically high doses of dexamethasone-induced oxidative stress in human neuroblastoma SH-SY5Y cells.

    PubMed

    Suwanjang, Wilasinee; Abramov, Andrey Y; Charngkaew, Komgrid; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-07-01

    Stressor exposure activates the hypothalamic-pituitary-adrenal (HPA) axis and causes elevations in the levels of glucocorticoids (GC) from the adrenal glands. Increasing evidence has demonstrated that prolonged exposure to high GC levels can lead to oxidative stress, calcium deregulation, mitochondrial dysfunction and apoptosis in a number of cell types. However, melatonin, via its antioxidant activity, exhibits a neuroprotective effect against oxidative stress-induced cell death. Therefore, in the present study, we explored the protective effect of melatonin in GC-induced toxicity in human neuroblastoma SH-SY5Y cells. Cellular treatment with the toxically high doses of the synthetic GC receptor agonist, dexamethasone (DEX) elicited marked decreases in the levels of glutathione and increases in ROS production, lipid peroxidation and cell death. DEX toxicity also induced increases in the levels of cytosolic calcium and mitochondrial fusion proteins (Mfn1 and Opa1) but decreases in the levels of mitochondrial fission proteins (Fis1 and Drp1). Mitochondrial damage was observed in large proportions of the DEX-treated cells. Pretreatment of the cells with melatonin substantially prevented the DEX-induced toxicity. These results suggest that melatonin might exert protective effects against oxidative stress, cytosolic calcium overload and mitochondrial damage in DEX-induced neurotoxicity. PMID:27155536

  3. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling.

    PubMed

    Huang, Yen-Ning; Lin, Ching-I; Liao, Hsiang; Liu, Chin-Yu; Chen, Yue-Hua; Chiu, Wan-Chun; Lin, Shyh-Hsiang

    2016-07-22

    Epidemiological investigations have shown that Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. It has been indicated that the cholesterol concentration in the brain of AD patients is higher than that in normal people. In this study, we investigated the effects of cholesterol concentrations, 0, as the control, 3.125, 12.5, and 25μM, on cholesterol metabolism, neuron survival, AD-related protein expressions, and cell morphology and apoptosis using SH-SY5Y human neuroblastoma cells. We observed that expressions of cholesterol hydroxylase (Cyp46), flotillin-2 (a marker of lipid raft content), and truncated tyrosine kinase B (TrkBtc) increased, while expressions of brain-derived neurotrophic factor (BDNF) and full-length TrkB (TrkBfl) decreased as the concentration of cholesterol loading increased. Down-regulation of the PI3K-Akt-glycogen synthase kinase (GSK)-3β cascade and cell apoptosis were also observed at higher concentrations of cholesterol, along with elevated levels of β-amyloid (Aβ), β-secretase (BACE), and reactive oxygen species (ROS). In conclusion, we found that cholesterol overload in neuronal cells imbalanced the cholesterol homeostasis and increased the protein expressions causing cell apoptosis, which illustrates the neurodegenerative pathology of abnormally elevated cholesterol concentrations found in AD patients. PMID:27155148

  4. MnSOD downregulation induced by extremely low 0.1 mGy single and fractionated X-rays and microgravity treatment in human neuroblastoma cell line, NB-1

    PubMed Central

    Indo, Hiroko P.; Tomiyoshi, Tsukasa; Suenaga, Shigeaki; Tomita, Kazuo; Suzuki, Hiromi; Masuda, Daisuke; Terada, Masahiro; Ishioka, Noriaki; Gusev, Oleg; Cornette, Richard; Okuda, Takashi; Mukai, Chiaki; Majima, Hideyuki J.

    2015-01-01

    A human neuroblastoma cell line, NB-1, was treated with 24 h of microgravity simulation by clinostat, or irradiated with extremely small X-ray doses of 0.1 or 1.0 mGy using single and 10 times fractionation regimes with 1 and 2 h time-intervals. A quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) examination was performed for apoptosis related factors (BAX, CYTC, APAF1, VDAC1–3, CASP3, CASP8, CASP9 P53, AIF, ANT1 and 2, BCL2, MnSOD, autophagy related BECN and necrosis related CYP-40. The qRT-PCR results revealed that microgravity did not result in significant changes except for a upregulation of proapoptotic VDAC2, and downregulations of proapoptotic CASP9 and antiapoptotic MnSOD. After 0.1 mGy fractionation irradiation, there was increased expression of proapoptotic APAF1 and downregulation of proapoptotic CYTC, VDAC2, VDAC3, CASP8, AIF, ANT1, and ANT2, as well as an increase in expression of antiapoptotic BCL2. There was also a decrease in MnSOD expression with 0.1 mGy fractionation irradiation. These results suggest that microgravity and low-dose radiation may decrease apoptosis but may potentially increase oxidative stress. PMID:26388666

  5. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion.

    PubMed

    Tangmansakulchai, Kulvadee; Abubakar, Zuroida; Kitiyanant, Narisorn; Suwanjang, Wilasinee; Leepiyasakulchai, Chaniya; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-09-01

    Calpain is an intracellular Ca(2+)-dependent protease, and the activation of calpain has been implicated in neurodegenerative diseases. Calpain activity can be regulated by calpastatin, an endogenous specific calpain inhibitor. Several lines of evidence have demonstrated a potential role of calpastatin in preventing calpain-mediated pathogenesis. Additionally, several studies have revealed that calpain activation and mitochondrial damage are involved in the cell death process; however, recent evidence has not clearly indicated a neuroprotective mechanism of calpastatin against calpain-dependent mitochondrial impairment in the process of neuronal cell death. Therefore, the purpose of this study was to investigate the potential ability of calpastatin to inhibit calpain activation and mitochondrial impairment in oxidative stress-induced neuron degeneration. Calpastatin was stably overexpressed in human neuroblastoma SH-SY5Y cells. In non-calpastatin overexpressing SH-SY5Y cells, hydrogen peroxide significantly decreased cell viability, superoxide dismutase activity, mitochondrial membrane potential, ATP production and mitochondrial fusion protein (Opa1) levels in the mitochondrial fraction but increased reactive oxygen species formation, calpain and calcineurin activation, mitochondrial fission protein (Fis1 and Drp1) levels in the mitochondrial fraction and apoptotic cells. Nevertheless, these toxic effects were abolished in hydrogen peroxide-treated calpastatin-overexpressing SH-SY5Y cells. The results of the present study demonstrate the potential ability of calpastatin to diminish calpain and calcineurin activation and mitochondrial impairment in neurons that are affected by oxidative damage. PMID:27453331

  6. Chikusetsu saponin V attenuates H2O2-induced oxidative stress in human neuroblastoma SH-SY5Y cells through Sirt1/PGC-1α/Mn-SOD signaling pathways.

    PubMed

    Wan, Jingzhi; Deng, Lili; Zhang, Changcheng; Yuan, Qin; Liu, Jing; Dun, Yaoyan; Zhou, Zhiyong; Zhao, Haixia; Liu, Chaoqi; Yuan, Ding; Wang, Ting

    2016-09-01

    Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Chikusetsu saponin V (CsV), the most abundant member of saponins from Panax japonicus (SPJ), has attracted increasing attention for its potential to treat neurodegenerative diseases. However, the mechanisms are unclear. Our study intended to investigate the antioxidative effects of CsV in human neuroblastoma SH-SY5Y cells. Our data showed that CsV attenuated H2O2-induced cytotoxicity, inhibited ROS accumulation, increased the activities of superoxide dismutase (SOD) and GSH, and increased mitochondrial membrane potential dose-dependently. Further exploration of the mechanisms showed that CsV exhibited these effects through increasing the activation of oxidative-stress-associated factors including Sirt1, PGC-1α, and Mn-SOD. Moreover, CsV inhibited H2O2-induced down-regulation of Bcl-2 and up-regulation of Bax in a dose-dependent manner and, thus, increased the ratio of Bcl-2/Bax. In conclusion, our study demonstrated that CsV exhibited neuroprotective effects possibly through Sirt1/PGC-1α/Mn-SOD signaling pathways. PMID:27332950

  7. Treatment with the neurotoxic Aβ (25-35) peptide modulates the expression of neuroprotective factors Pin1, Sirtuin 1, and brain-derived neurotrophic factor in SH-SY5Y human neuroblastoma cells.

    PubMed

    Lattanzio, Francesca; Carboni, Lucia; Carretta, Donatella; Candeletti, Sanzio; Romualdi, Patrizia

    2016-05-01

    The deposition of Amyloid β peptide plaques is a pathological hallmark of Alzheimer's disease (AD). The Aβ (25-35) peptide is regarded as the toxic fragment of full-length Aβ (1-42). The mechanism of its toxicity is not completely understood, along with its contribution to AD pathological processes. The aim of this study was to investigate the effect of the neurotoxic Aβ (25-35) peptide on the expression of the neuroprotective factors Pin1, Sirtuin1, and Bdnf in human neuroblastoma cells. Levels of Pin1, Sirtuin 1, and Bdnf were compared by real-time PCR and Western blotting in SH-SY5Y cells treated with Aβ (25-35) or administration vehicle. The level of Pin1 gene and protein expression was significantly decreased in cells exposed to 25μM Aβ (25-35) compared to vehicle-treated controls. Similarly, Sirtuin1 expression was significantly reduced by Aβ (25-35) exposure. In contrast, both Bdnf mRNA and protein levels were significantly increased by Aβ (25-35) treatment, suggesting the activation of a compensatory response to the insult. Both Pin1 and Sirtuin 1 exert a protective role by reducing the probability of plaque deposition, since they promote amyloid precursor protein processing through non-amyloidogenic pathways. The present results show that Aβ (25-35) peptide reduced the production of these neuroprotective proteins, thus further increasing Aβ generation. PMID:26915812

  8. Fas-mediated apoptosis of melanoma cells and infiltrating lymphocytes in human malignant melanomas.

    PubMed

    Shukuwa, Tetsuo; Katayama, Ichiro; Koji, Takehiko

    2002-04-01

    In a rodent system, melanoma cells expressing Fas ligand (FasL) could kill Fas-positive lymphocytes, suggesting that FasL expression was an essential factor for melanoma cell survival in vivo. These findings led us to investigate apoptosis, and to histochemically analyze involvement of Fas and FasL in the induction of apoptosis, in human malignant melanoma tissues. The percentages of terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick end-labeling (TUNEL)-positive melanoma cells and of proliferating cell nuclear antigen (PCNA)-positive melanoma cells in melanoma tissues (n = 22) were greater than those in melanocytes in uninvolved skin (n = 6) and nevus cells in nevi tissues (n = 9). The infiltrating lymphocytes around melanomas were also TUNEL positive. Immunohistochemistry revealed expression of Fas and FasL in melanoma cells and lymphocytes, whereas no Fas or FasL expression was detected in normal skin melanocytes and nevus cells. There was significant correlation between Fas-positive indices and TUNEL indices in melanoma tissues. Moreover, TUNEL-, Fas-, and FasL-positive indices of melanoma cells from patients with Stage 3 melanomas were significantly lower than those with Stage 2 melanomas. The PCNA index of Stage 1 melanoma was significantly lower than that of the other stages, although the difference of PCNA index was insignificant among Stages 2 to 4. Among Stages 1 to 4, there was no difference in the PCNA, TUNEL-, and Fas-positive indices of lymphocytes, although the FasL-positive index of lymphocytes from Stage 3 melanomas was significantly lower than in that from Stage 2. These data reveal that melanoma cells and infiltrating lymphocytes have the potential to induce their own apoptosis regulated by Fas and FasL in an autocrine and/or paracrine fashion and that the decline of Fas-mediated apoptosis of melanoma cells, rather than the apoptosis of infiltrating lymphocytes, may affect the prognosis of melanoma patients, possibly through the

  9. [The role of MicroRNAs in the pathophysiology of neuroblastoma and their possible use in diagnosis, prognosis and therapy].

    PubMed

    Vinklárek, J; Novák, J; Bienertová-Vašků, J; Stěrba, J; Slabý, O

    2014-01-01

    Neuroblastoma (NBL) is a typical childhood tumor developing from the precursor cells of the sympathetic nervous tissue and accounting for approximately 7% of total malignancies in pediatrics and 15% of deaths associated with this malignancy. MicroRNAs (miRNAs) are small single-stranded RNA molecules that are involved in posttranscriptional regulation of gene expression, whereas the pathophysiology of neuroblastoma tumor growth involves both upregulation of the protooncogenic miRNAs as well as downregulation of the tumor-suppresor ones. Comparison of the expression profiles of miRNAs in specific subtypes of neuroblastoma seems to be a useful tool adding to the classification of the diseases, and the assessment of the levels of specific miRNAs may be useful for estimation of the individual treatment response as well as prognosis of the patient. This paper provides the basic review of the studies focused on the role of miRNAs in pathogenesis of neuroblastoma and provides a survey of current/ possible use of these miRNAs in diagnostics, therapy or prognosis estimation in the neuroblastoma patients. PMID:25312710

  10. ABCC Multidrug Transporters in Childhood Neuroblastoma: Clinical and Biological Effects Independent of Cytotoxic Drug Efflux

    PubMed Central

    Henderson, Michelle J.; Porro, Antonio; Munoz, Marcia A.; Iraci, Nunzio; Xue, Chengyuan; Murray, Jayne; Flemming, Claudia L.; Smith, Janice; Fletcher, Jamie I.; Gherardi, Samuele; Kwek, Chin-Kiat; Russell, Amanda J.; Valli, Emanuele; London, Wendy B.; Buxton, Allen B.; Ashton, Lesley J.; Sartorelli, Alan C.; Cohn, Susan L.; Schwab, Manfred; Marshall, Glenn M.; Norris, Murray D.

    2011-01-01

    Background Although the prognostic value of the ATP-binding cassette, subfamily C (ABCC) transporters in childhood neuroblastoma is usually attributed to their role in cytotoxic drug efflux, certain observations have suggested that these multidrug transporters might contribute to the malignant phenotype independent of cytotoxic drug efflux. Methods A v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN)–driven transgenic mouse neuroblastoma model was crossed with an Abcc1-deficient mouse strain (658 hMYCN1/−, 205 hMYCN+/1 mice) or, alternatively, treated with the ABCC1 inhibitor, Reversan (n = 20). ABCC genes were suppressed using short interfering RNA or overexpressed by stable transfection in neuroblastoma cell lines BE(2)-C, SH-EP, and SH-SY5Y, which were then assessed for wound closure ability, clonogenic capacity, morphological differentiation, and cell growth. Real-time quantitative polymerase chain reaction was used to examine the clinical significance of ABCC family gene expression in a large prospectively accrued cohort of patients (n = 209) with primary neuroblastomas. Kaplan–Meier survival analysis and Cox regression were used to test for associations with event-free and overall survival. Except where noted, all statistical tests were two-sided. Results Inhibition of ABCC1 statistically significantly inhibited neuroblastoma development in hMYCN transgenic mice (mean age for palpable tumor: treated mice, 47.2 days; control mice, 41.9 days; hazard ratio [HR] = 9.3, 95% confidence interval [CI] = 2.65 to 32; P < .001). Suppression of ABCC1 in vitro inhibited wound closure (P < .001) and clonogenicity (P = .006); suppression of ABCC4 enhanced morphological differentiation (P < .001) and inhibited cell growth (P < .001). Analysis of 209 neuroblastoma patient tumors revealed that, in contrast with ABCC1 and ABCC4, low rather than high ABCC3 expression was associated with reduced event-free survival (HR of recurrence or death = 2

  11. TLR9-mediated siRNA delivery for targeting of normal and malignant human hematopoietic cells in vivo.

    PubMed

    Zhang, Qifang; Hossain, Dewan Md Sakib; Nechaev, Sergey; Kozlowska, Anna; Zhang, Wang; Liu, Yong; Kowolik, Claudia M; Swiderski, Piotr; Rossi, John J; Forman, Stephen; Pal, Sumanta; Bhatia, Ravi; Raubitschek, Andrew; Yu, Hua; Kortylewski, Marcin

    2013-02-21

    STAT3 operates in both cancer cells and tumor-associated immune cells to promote cancer progression. As a transcription factor, it is a highly desirable but difficult target for pharmacologic inhibition. We have recently shown that the TLR9 agonists CpG oligonucleotides can be used for targeted siRNA delivery to mouse immune cells. In the present study, we demonstrate that a similar strategy allows for targeted gene silencing in both normal and malignant human TLR9(+) hematopoietic cells in vivo. We have developed new human cell-specific CpG(A)-STAT3 siRNA conjugates capable of inducing TLR9-dependent gene silencing and activation of primary immune cells such as myeloid dendritic cells, plasmacytoid dendritic cells, and B cells in vitro. TLR9 is also expressed by several human hematologic malignancies, including B-cell lymphoma, multiple myeloma, and acute myeloid leukemia. We further demonstrate that oncogenic proteins such as STAT3 or BCL-X(L) are effectively knocked down by specific CpG(A)-siRNAs in TLR9(+) hematologic tumor cells in vivo. Targeting survival signaling using CpG(A)-siRNAs inhibits the growth of several xenotransplanted multiple myeloma and acute myeloid leukemia tumors. CpG(A)-STAT3 siRNA is immunostimulatory and nontoxic for normal human leukocytes in vitro. The results of the present study show the potential of using tumoricidal/immunostimulatory CpG-siRNA oligonucleotides as a novel 2-pronged therapeutic strategy for hematologic malignancies. PMID:23287859

  12. PTHrP promotes malignancy of human oral cancer cell downstream of the EGFR signaling

    SciTech Connect

    Yamada, Tamaki; Tsuda, Masumi; Ohba, Yusuke Kawaguchi, Hideaki; Totsuka, Yasunori; Shindoh, Masanobu

    2008-04-11

    Parathyroid hormone-related protein (PTHrP) is detected in many aggressive tumors and involved in malignant conversion; however, the underlying mechanism remains obscure. Here, we identified PTHrP as a mediator of epidermal growth factor receptor (EGFR) signaling to promote the malignancies of oral cancers. PTHrP mRNA was abundantly expressed in most of the quiescent oral cancer cells, and was significantly upregulated by EGF stimulation via ERK and p38 MAPK. PTHrP silencing by RNA interference, as well as EGFR inhibitor AG1478 treatment, significantly suppressed cell proliferation, migration, and invasiveness. Furthermore, combined treatment of AG1478 and PTHrP knockdown achieved synergistic inhibition of malignant phenotypes. Recombinant PTHrP substantially promoted cell motility, and rescued the inhibition by PTHrP knockdown, suggesting the paracrine/autocrine function of PTHrP. These data indicate that PTHrP contributes to the malignancy of oral cancers downstream of EGFR signaling, and may thus provide a therapeutic target for oral cancer.

  13. Sublethal irradiation promotes invasiveness of neuroblastoma cells

    SciTech Connect

    Schweigerer, Lothar; Rave-Fraenk, Margret; Schmidberger, Heinz; Hecht, Monica . E-mail: monica.hecht@med.uni-goettingen.de

    2005-05-13

    Neuroblastoma is the most frequent extracranial solid tumour of childhood. Despite multiple clinical efforts, clinical outcome has remained poor. Neuroblastoma is considered to be radiosensitive, but some clinical studies including the German trial NB90 failed to show a clinical benefit of radiation therapy. The mechanisms underlying this apparent discrepancy are still unclear. We have therefore investigated the effects of radiation on neuroblastoma cell behaviour in vitro. We show that sublethal doses of irradiation up-regulated the expression of the hepatocyte growth factor (HGF) and its receptor c-Met in some neuroblastoma cell lines. The increase in HGF/c-Met expression was correlated with enhanced invasiveness and activation of proteases degrading the extracellular matrix. Thus, irradiation at sublethal doses may promote the metastatic dissemination of neuroblastoma cells through activating the HGF/c-Met pathway and triggering matrix degradation.

  14. Anti-neuroinflammatory properties of synthetic cryptolepine in human neuroblastoma cells: possible involvement of NF-κB and p38 MAPK inhibition.

    PubMed

    Olajide, Olumayokun A; Bhatia, Harsharan S; de Oliveira, Antonio C P; Wright, Colin W; Fiebich, Bernd L

    2013-05-01

    Cryptolepis sanguinolenta and its bioactive alkaloid, cryptolepine have shown anti-inflammatory activity. However, the underlying mechanism of anti-inflammatory action in neuronal cells has not been investigated. In the present study we evaluated an extract of C. sanguinolenta (CSE) and cryptolepine (CAS) on neuroinflammation induced with IL-1β in SK-N-SH neuroblastoma cells. We then attempted to elucidate the mechanisms underlying the anti-neuroinflammatory effects of CAS in SK-N-SH cells. Cells were stimulated with 10 U/ml of IL-1β in the presence or absence of different concentrations of CSE (25-200 μg/ml) and CAS (2.5-20 μM). After 24 h incubation, culture media were collected to measure the production of PGE2 and the pro-inflammatory cytokines (TNFα and IL-6). Protein and gene expressions of cyclooxygenase (COX-2) and microsomal prostaglandin synthase-1 (mPGES-1) were studied by immunoblotting and qPCR, respectively. CSE produced significant (p < 0.05) inhibition of TNFα, IL-6 and PGE2 production in SK-N-SH cells. Studies on CAS showed significant and dose-dependent inhibition of TNFα, IL-6 and PGE2 production in IL-1β-stimulated cells without affecting viability. Pre-treatment with CAS (10 and 20 μM) was also found to inhibit IL-1β-induced protein and gene expressions of COX-2 and mPGES-1. Further studies to determine the mechanism of action of CAS showed inhibition of NF-κBp65 nuclear translocation, but not IκB phosphorylation. At 10 and 20 μM, CAS inhibited IL-1β-induced phosphorylation of p38 MAPK. Studies on the downstream substrate of p38, MAPK-activated protein kinase 2 (MAPKAPK2) showed that CAS produced significant (p < 0.05) and dose dependent inhibition of MAPKAPK2 phosphorylation in IL-1β-stimulated SK-N-SH cells. This study clearly shows that cryptolepine (CAS) inhibits neuroinflammation through mechanisms involving inhibition of COX-2 and mPGES-1. It is suggested that these actions are probably mediated through NF

  15. Nano-Bio-Mechanics of Neuroblastoma Cells Using AFM

    NASA Astrophysics Data System (ADS)

    Bastatas, Lyndon; Matthews, James; Kang, Min; Park, Soyeun

    2011-10-01

    We have conducted an in vitro study to determine the elastic moduli of neurobalstoma cell lines using atomic force microscopy. Using a panel of cell lines established from neuroblastoma patients at different stages of disease progress and treatment, we have investigated the differences in elastic moduli during a course of cancer progression and chemotherapy. The cells were grown on the hard substrates that are chemically functionalized to enhance adhesion. We have performed the AFM indentation experiments with different applied forces from the AFM probe. For the purpose of the comparison between cell lines, the indentations were performed only on cell centers. The obtained force-distance curves were analyzed using the Hertz model in order to extract the elastic moduli. We have found that the elastic moduli of human neuroblastoma cells significantly varied during the disease progression. We postulate that the observed difference might be affected by the treatment and chemotherapy.

  16. Glutathione biosynthesis is upregulated at the initiation of MYCN-driven neuroblastoma tumorigenesis.

    PubMed

    Carter, Daniel R; Sutton, Selina K; Pajic, Marina; Murray, Jayne; Sekyere, Eric O; Fletcher, Jamie; Beckers, Anneleen; De Preter, Katleen; Speleman, Frank; George, Rani E; Haber, Michelle; Norris, Murray D; Cheung, Belamy B; Marshall, Glenn M

    2016-06-01

    The MYCN gene is amplified and overexpressed in a large proportion of high stage neuroblastoma patients and has been identified as a key driver of tumorigenesis. However, the mechanism by which MYCN promotes tumor initiation is poorly understood. Here we conducted metabolic profiling of pre-malignant sympathetic ganglia and tumors derived from the TH-MYCN mouse model of neuroblastoma, compared to non-malignant ganglia from wildtype littermates. We found that metabolites involved in the biosynthesis of glutathione, the most abundant cellular antioxidant, were the most significantly upregulated metabolic pathway at tumor initiation, and progressively increased to meet the demands of tumorigenesis. A corresponding increase in the expression of genes involved in ribosomal biogenesis suggested that MYCN-driven transactivation of the protein biosynthetic machinery generated the necessary substrates to drive glutathione biosynthesis. Pre-malignant sympathetic ganglia from TH-MYCN mice had higher antioxidant capacity and required glutathione upregulation for cell survival, when compared to wildtype ganglia. Moreover, in vivo administration of inhibitors of glutathione biosynthesis significantly delayed tumorigenesis when administered prophylactically and potentiated the anticancer activity of cytotoxic chemotherapy against established tumors. Together these results identify enhanced glutathione biosynthesis as a selective metabolic adaptation required for initiation of MYCN-driven neuroblastoma, and suggest that glutathione-targeted agents may be used as a potential preventative strategy, or as an adjuvant to existing chemotherapies in established disease. PMID:26996379

  17. PME-1 protects ERK pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma

    PubMed Central

    Puustinen, Pietri; Junttila, Melissa R.; Vanhatupa, Sari; Sablina, Anna A.; Hector, Melissa E.; Teittinen, Kaisa; Raheem, Olayinka; Ketola, Kirsi; Lin, Shujun; Kast, Juergen; Haapasalo, Hannu; Hahn, William C.; Westermarck, Jukka

    2010-01-01

    ERK/MAPK pathway activity is regulated by the antagonist function of activating kinases and inactivating protein phosphatases. Sustained ERK pathway activity is commonly observed in human malignancies, however the mechanisms by which the pathway is protected from phosphatase-mediated inactivation in the tumor tissue remain obscure. Here we show that methylesterase PME-1-mediated inhibition of the protein phosphatase 2A (PP2A) promotes basal ERK pathway activity, and is required for efficient growth factor response. Mechanistically PME-1 is shown to support ERK pathway signaling upstream of Raf, but downstream of growth factor receptors and PKC. In malignant glioblastoma, PME-1 expression levels correlate with both ERK activity and cell proliferation in vivo. Moreover, PME-1 expression significantly correlates with disease progression in human astrocytic gliomas (N=222). Together, these observations identify PME-1 expression as one mechanism by which ERK pathway activity is maintained in cancer cells, and suggest important functional role for PME-1 in the disease progression of human astrocytic gliomas. PMID:19293187

  18. MYC-Driven Neuroblastomas Are Addicted to a Telomerase-Independent Function of Dyskerin.

    PubMed

    O'Brien, Rosemary; Tran, Sieu L; Maritz, Michelle F; Liu, Bing; Kong, Cheng Fei; Purgato, Stefania; Yang, Chen; Murray, Jayne; Russell, Amanda J; Flemming, Claudia L; von Jonquieres, Georg; Pickett, Hilda A; London, Wendy B; Haber, Michelle; Gunaratne, Preethi H; Norris, Murray D; Perini, Giovanni; Fletcher, Jamie I; MacKenzie, Karen L

    2016-06-15

    The RNA-binding protein dyskerin, encoded by the DKC1 gene, functions as a core component of the telomerase holoenzyme as well as ribonuclear protein complexes involved in RNA processing and ribosome biogenesis. The diverse roles of dyskerin across many facets of RNA biology implicate its potential contribution to malignancy. In this study, we examined the expression and function of dyskerin in neuroblastoma. We show that DKC1 mRNA levels were elevated relative to normal cells across a panel of 15 neuroblastoma cell lines, where both N-Myc and c-Myc directly targeted the DKC1 promoter. Upregulation of MYCN was shown to dramatically increase DKC1 expression. In two independent neuroblastoma patient cohorts, high DKC1 expression correlated strongly with poor event-free and overall survival (P < 0.0001), independently of established prognostic factors. RNAi-mediated depletion of dyskerin inhibited neuroblastoma cell proliferation, including cells immortalized via the telomerase-independent ALT mechanism. Furthermore, dyskerin attenuation impaired anchorage-independent proliferation and tumor growth. Overexpression of the telomerase RNA component, hTR, demonstrated that this proliferative impairment was not a consequence of telomerase suppression. Instead, ribosomal stress, evidenced by depletion of small nucleolar RNAs and nuclear dispersal of ribosomal proteins, was the likely cause of the proliferative impairment in dyskerin-depleted cells. Accordingly, dyskerin suppression caused p53-dependent G1 cell-cycle arrest in p53 wild-type cells, and a p53-independent pathway impaired proliferation in cells with p53 dysfunction. Together, our findings highlight dyskerin as a new therapeutic target in neuroblastoma with crucial telomerase-independent functions and broader implications for the spectrum of malignancies driven by MYC family oncogenes. Cancer Res; 76(12); 3604-17. ©2016 AACR. PMID:27197171

  19. Targeting the Interleukin-6/Jak/Stat Pathway in Human Malignancies

    PubMed Central

    Sansone, Pasquale; Bromberg, Jacqueline

    2012-01-01

    The Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway was discovered 20 years ago as a mediator of cytokine signaling. Since this time, more than 2,500 articles have been published demonstrating the importance of this pathway in virtually all malignancies. Although there are dozens of cytokines and cytokine receptors, four Jaks, and seven Stats, it seems that interleukin-6–mediated activation of Stat3 is a principal pathway implicated in promoting tumorigenesis. This transcription factor regulates the expression of numerous critical mediators of tumor formation and metastatic progression. This review will examine the relative importance and function of this pathway in nonmalignant conditions as well as malignancies (including tumor intrinsic and extrinsic), the influence of other Stats, the development of inhibitors to this pathway, and the potential role of inhibitors in controlling or eradicating cancers. PMID:22355058

  20. Olfactory Neuroblastoma: A Case Report.

    PubMed

    Olmo, Heather R; Stokes, Steven Marc; Foss, Robert D

    2016-06-01

    A 43-year-old female presented with persistent nasal congestion with intermittent epistaxis without resolution for the preceding 5 years. Clinical examination revealed a large pink rubbery mass, medial to the middle turbinate in the right nasal cavity extending to the choana. Radiographic images demonstrated a heterogeneously enhancing lobular soft tissue mass filling the right nasal cavity, causing lateral bowing of the right medial orbital wall and extending posteriorly to the right anterior ethmoid sinus. The clinical, radiographic, histologic, and immunohistochemical features of olfactory neuroblastoma are discussed. PMID:26316323

  1. Salsolinol Damaged Neuroblastoma SH-SY5Y Cells Induce Proliferation of Human Monocyte THP-1 Cells Through the mTOR Pathway in a Co-culture System.

    PubMed

    Wang, Fuli; Ni, Junjun; Wang, Xianghan; Xie, Bingjie; Feng, Chengcheng; Zhao, Sibo; Saeed, Yasmeem; Qing, Hong; Deng, Yulin

    2015-05-01

    Despite extensive efforts to study the inflammatory process in the central nervous system of Parkinson's disease (PD) patients, little is known about the role of peripheral blood mononuclear cells (PBMCs) in PD. In the present study, we used an in vitro co-culture system to study the role of the human monocyte cell line THP-1 in medium conditioned by the neuroblastoma cell line SH-SY5Y damaged with the endogenous neurotoxin 1-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (Salsolinol, Sal) in co-culture with the human glioma cell line U87. For this purpose, SH-SY5Y and U87 co-cultures were treated with Sal, and this conditioned medium containing mediators, including the potential effector CCL2, was isolated and applied to THP-1 cells. This treatment resulted in approximately 19 % cell proliferation as well as activation of mTOR and induction of phosphorylated 4E-BP1, S6K1, PI3K, and AKT proteins. Treatment with rapamycin, an mTOR inhibitor, attenuated the proliferation of THP-1 cells. U87 glial cells were essential for this as medium conditioned without them had no effect on THP-1 cells. These results suggest a positive effect of THP-1 cells on Sal-induced neurotoxicity in a cellular model of PD and this is likely mediated by the enhancement of cell proliferation through activation of the mTOR signaling pathway. Hence, PBMCs and their mTOR signaling pathway could be of therapeutic benefit in treating the endogenous neurotoxin-induced neuroinflammation in PD. PMID:25773262

  2. DREMECELS: A Curated Database for Base Excision and Mismatch Repair Mechanisms Associated Human Malignancies

    PubMed Central

    Shukla, Ankita; Singh, Tiratha Raj

    2016-01-01

    DNA repair mechanisms act as a warrior combating various damaging processes that ensue critical malignancies. DREMECELS was designed considering the malignancies with frequent alterations in DNA repair pathways, that is, colorectal and endometrial cancers, associated with Lynch syndrome (also known as HNPCC). Since lynch syndrome carries high risk (~40–60%) for both cancers, therefore we decided to cover all three diseases in this portal. Although a large population is presently affected by these malignancies, many resources are available for various cancer types but no database archives information on the genes specifically for only these cancers and disorders. The database contains 156 genes and two repair mechanisms, base excision repair (BER) and mismatch repair (MMR). Other parameters include some of the regulatory processes that have roles in these disease progressions due to incompetent repair mechanisms, specifically BER and MMR. However, our unique database mainly provides qualitative and quantitative information on these cancer types along with methylation, drug sensitivity, miRNAs, copy number variation (CNV) and somatic mutations data. This database would serve the scientific community by providing integrated information on these disease types, thus sustaining diagnostic and therapeutic processes. This repository would serve as an excellent accompaniment for researchers and biomedical professionals and facilitate in understanding such critical diseases. DREMECELS is publicly available at http://www.bioinfoindia.org/dremecels. PMID:27276067

  3. FT-IR Spectroscopic Analysis of Normal and Malignant Human Oral Tissues

    NASA Astrophysics Data System (ADS)

    Krishnakumar, N.; Madhavan, R. Nirmal; Sumesh, P.; Palaniappan, Pl. Rm.; Venkatachalam, P.; Ramachandran, C. R.

    2008-11-01

    FT-IR spectroscopy has been used to explore the changes in the vibrational bands of normal and oral squamous cell carcinoma (OSCC) tissues in the region 4000-400 cm-1. Significant changes in the spectral features were observed. The spectral changes were the results of characteristics structural alterations at the molecular level in the malignant tissues. These alterations include structural changes of proteins and possible increase of its content, an increase in the nucleic-to-cytoplasm ratio, an increase in the relative amount of DNA, an increase in the rate of phosphorylation process induced by carcinogenesis, a loss of hydrogen bonding of the C-OH groups in the amino acid residues of proteins, a decrease in the relative amount of lipids compared to normal epithelial oral tissues. The results of the present study demonstrate that the FT-IR technique has the feasibility of discriminating malignant from normal tissues and other pathological states in a short period of time and may detect malignant transformation earlier than the standard histological examination stage.

  4. Selection of optimal therapy for neuroblastoma: a study of the immunomodulatory effects of surgery and irradiation in the murine C1300 neuroblastoma model

    SciTech Connect

    Topalian, S.L.; Ziegler, M.M.

    1987-02-01

    Human neuroblastoma is an immunogenic tumor for which therapy directed in an immunologic context may offer some advantage over conventional treatment. This study examines the immunomodulatory effects of surgery and irradiation in the murine C1300 neuroblastoma model. In vivo studies of primary tumor growth characteristics after treatment demonstrated no superiority of either therapeutic modality in control of local tumor or prolongation of host survival. However, irradiated hosts showed an increased ability to reject a secondary tumor challenge, compared to their surgical counterparts. That this phenomenon may be immune-related is suggested by in vitro studies of T lymphocyte function utilizing mixed lymphocyte-tumor cell cultures and PHA lymphoblastogenesis.

  5. The Mechanism by Which MYCN Amplification Confers an Enhanced Sensitivity to a PCNA-Derived Cell Permeable Peptide in Neuroblastoma Cells

    PubMed Central

    Gu, Long; Chu, Peiguo; Lingeman, Robert; McDaniel, Heather; Kechichian, Steven; Hickey, Robert J.; Liu, Zheng; Yuan, Yate-Ching; Sandoval, John A.; Fields, Gregg B.; Malkas, Linda H.

    2015-01-01

    Dysregulated expression of MYC family genes is a hallmark of many malignancies. Unfortunately, these proteins are not amenable to blockade by small molecules or protein-based therapeutic agents. Therefore, we must find alternative approaches to target MYC-driven cancers. Amplification of MYCN, a MYC family member, predicts high-risk neuroblastoma (NB) disease. We have shown that R9-caPep blocks the interaction of PCNA with its binding partners and selectively kills human NB cells, especially those with MYCN amplification, and we now show the mechanism. We found elevated levels of DNA replication stress in MYCN-amplified NB cells. R9-caPep exacerbated DNA replication stress in MYCN-amplified NB cells and NB cells with an augmented level of MYC by interfering with DNA replication fork extension, leading to Chk1 dependence and susceptibility to Chk1 inhibition. We describe how these effects may be exploited for treating NB. PMID:26844271

  6. Phosphorylation of galectin-3 contributes to malignant transformation of human epithelial cells via modulation of unique sets of genes.

    PubMed

    Mazurek, Nachman; Sun, Yun Jie; Price, Janet E; Ramdas, Latha; Schober, Wendy; Nangia-Makker, Pratima; Byrd, James C; Raz, Avraham; Bresalier, Robert S

    2005-12-01

    Galectin-3 is a multifunctional beta-galactoside-binding protein implicated in apoptosis, malignant transformation, and tumor progression. The mechanisms by which galectin-3 contributes to malignant progression are not fully understood. In this study, we found that the introduction of wild-type galectin-3 into nontumorigenic, galectin-3-null BT549 human breast epithelial cells conferred tumorigenicity and metastatic potential in nude mice, and that galectin-3 expressed by the cells was phosphorylated. In contrast, BT549 cells expressing galectin-3 incapable of being phosphorylated (Ser6-->Glu Ser6-->Ala) were nontumorigenic. A microarray analysis of 10,000 human genes, comparing BT549 transfectants expressing wild-type and those expressing phosphomutant galectin-3, identified 188 genes that were differentially expressed (>2.5-fold). Genes affected by introduction of wild-type phosphorylated but not phosphomutant galectin-3 included those involved in oxidative stress, a novel noncaspase lysosomal apoptotic pathway, cell cycle regulation, transcriptional activation, cytoskeleton remodeling, cell adhesion, and tumor invasion. The reliability of the microarray data was validated by real-time reverse transcription-PCR (RT-PCR) and by Western blot analysis, and clinical relevance was evaluated by real-time RT-PCR screening of a panel of matched pairs of breast tumors. Differentially regulated genes in breast cancers that are also predicted to be associated with phospho-galectin-3 in transformed BT549 cells include C-type lectin 2, insulin-like growth factor-binding protein 5, cathepsins L2, and cyclin D1. These data show the functional diversity of galectin-3 and suggest that phosphorylation of the protein is necessary for regulation (directly or indirectly) of unique sets of genes that play a role in malignant transformation. PMID:16322222

  7. Activating FGFR3 mutations cause mild hyperplasia in human skin, but are insufficient to drive benign or malignant skin tumors

    PubMed Central

    Duperret, Elizabeth K; Oh, Seung Ja; McNeal, Andrew; Prouty, Stephen M; Ridky, Todd W

    2014-01-01

    Fibroblast growth factor receptor 3 (FGFR3) activating mutations are drivers of malignancy in several human tissues, including bladder, lung, cervix, and blood. However, in skin, these mutations are associated predominantly with benign, common epidermal growths called seborrheic keratoses (SKs). How epidermis resists FGFR3 mediated transformation is unclear, but previous studies have suggested that FGFR3 activation in skin keratinocytes may serve a tumor-suppressive role by driving differentiation and antagonizing Ras signaling. To define the role of FGFR3 in human normal and neoplastic epidermis, and to directly test the hypothesis that FGFR3 antagonizes Ras, we engineered human skin grafts in vivo with mutant active FGFR3 or shRNA FGFR3 knockdown. We show that FGFR3 active mutants drive mild hyperproliferation, but are insufficient to support benign or malignant tumorigenesis, either alone, or in combination with G1–S checkpoint release. This suggests that additional cell-intrinsic or stromal cues are required for formation of benign SKs with FGFR3 mutations. Further, FGFR3 activation does not alter the growth kinetics or differentiation status of engineered human epidermal SCCs driven by Ras, and FGFR3 protein itself is dispensable for Ras-driven SCC. To extend these findings to patients, we examined a uniquely informative human tumor in which SCC developed in continuity with a SK, raising the hypothesis that one of the tumors evolved from the other. However, mutational analysis from each tumor indicates that the overlapping SK and SCC evolved independently and supports our conclusion that FGFR3 activation is insufficient to drive SCC. PMID:24626198

  8. Inhibition of CXCR4 by LY2624587, a Fully Humanized Anti-CXCR4 Antibody Induces Apoptosis of Hematologic Malignancies

    PubMed Central

    Peng, Sheng-Bin; Zhang, Xiaoyi; Paul, Donald; Kays, Lisa M.; Ye, Ming; Vaillancourt, Peter; Dowless, Michele; Stancato, Louis F.; Stewart, Julie; Uhlik, Mark T.; Long, Haiyan; Chu, Shaoyou; Obungu, Victor H.

    2016-01-01

    SDF-1 and CXCR4 are a chemokine and chemokine receptor pair playing critical roles in tumorigenesis. Overexpression of CXCR4 is a hallmark of many hematological malignancies including acute myeloid leukemia, chronic lymphocytic leukemia and non-Hodgkin’s lymphoma, and generally correlates with a poor prognosis. In this study, we developed a humanized anti-CXCR4 monoclonal antibody, LY2624587 as a potent CXCR4 antagonist that was advanced into clinical study for cancer. LY2624587 blocked SDF-1 binding to CXCR4 with an IC50 of 0.26 nM, and inhibited SDF-1-induced GTP binding with a Kb of 0.66 nM. In human lymphoma U937 and leukemia CCRF-CEM cells expressing endogenous CXCR4, LY2624587 inhibited SDF-1-induced cell migration with IC50 values of 3.7 and 0.26 nM, respectively. This antibody also inhibited CXCR4 and SDF-1 mediated cell signaling including activation of MAPK and AKT in tumor cells expressing CXCR4. Bifocal microscopic and flow cytometry analyses revealed that LY2624587 mediated receptor internalization and caused CXCR4 down-regulation on the cell surface. In human hematologic cancer cells, LY2624587 caused dose dependent apoptosis in vitro and in vivo. In mouse xenograft models developed with human leukemia and lymphoma cells expressing high levels of CXCR4, LY2624587 exhibited dose-dependent tumor growth inhibition and provided significant survival benefit in a disseminated lymphoma model. Collectively, we have demonstrated that CXCR4 inhibition by LY2624587 has the potential for the treatment of human hematological malignancies. PMID:26954567

  9. Shortening velocity of skeletal muscle from humans with malignant hyperthermia susceptibility: effects of halothane.

    PubMed

    Etchrivi, T S; Haudecoeur, G; Stix, I; Reyford, H; Tavernier, B; Krivosic-Horber, R M; Adnet, P J

    2000-01-24

    The aim of this investigation was to assess the effect of halothane on the velocity of shortening and lengthening of muscle from normal subjects and from patients with malignant hyperthermia susceptibility. Strips were mounted horizontally at optimal length in normal Krebs-Ringer's solution and mechanical parameters were obtained before and after exposure to 3 vol.% halothane. The maximun shortening velocity at zero load (V(max)) was determined by using Hill's characteristic equation. The contraction and relaxation indices were measured under isotonic and isometric conditions: maximum shortening and lengthening velocities (maxV(c) and maxV(r), respectively); isometric peak twitch tension; peak of the positive (+dP/dt(max)) and negative (-dP/dt(max)) twitch tension derivative; ratio R1=maxV(c)/maxV(r) and ratio R2=(+dP/dt(max))/(-dP/dt(max)). In normal muscle, halothane markedly increased V(max), maxV(c) and peak twitch tension by 30+/-10%, 30+/-5% and 40+/-15%, respectively. The maxV(r) values increased concomitantly with the maxV(c) values, such that no change in the ratio R1 was observed. Both +dP/dt(max) and -dP/dt(max) increased such that the ratio R2 did not vary. In malignant hyperthermia susceptibility muscle, halothane induced a significant decrease in V(max) (-30+/-10%) and maxV(r) (-45+/-15%) without changing maxV(c). The decrease in maxV(r) was greater than that of maxV(c), such that the ratio R1 increased significantly. Peak twitch tension and +dP/dt(max) remained unchanged whereas -dP/dt(max) decreased significantly; the ratio R2 increased by 40+/-10%. These results suggest that halothane alters the contractile properties of malignant hyperthermia susceptibility muscle. PMID:10657553

  10. Proteomics of dedifferentiation of SK-N-BE2 neuroblastoma cells.

    PubMed

    Saini, Ravi Kanth Rao; Attarha, Sanaz; da Silva Santos, Claire; Kolakowska, Justyna; Funa, Keiko; Souchelnytskyi, Serhiy

    2014-11-01

    Neuroblastoma develops through processes which include cellular dedifferentiation. Ability of tumors to form spheroids is one of the manifestations of dedifferentiation and carcinogenic transformation. To study mechanisms of dedifferentiation of neuroblastoma cells, we generated spheroids and performed a proteomics study to compare the spheroids with parental SK-N-BE2 cells. We observed that dedifferentiation induced extensive changes in the proteome profiles of the cells, which affected more than 30% of detected cellular proteins. Using mass spectrometry, we identified 239 proteins affected by dedifferentiation into spheroids as compared to the parental cells. These proteins represented such regulatory processes as transcription, cell cycle regulation, apoptosis, cell adhesion, metabolism, intracellular transport, stress response, and angiogenesis. A number of potent regulators of stemness, differentiation and cancer were detected as subnetworks formed by the identified proteins. Our validation tissue microarray study of 30 neuroblastoma cases confirmed that two of the identified proteins, DISC1 and DNA-PKcs, had their expression increased in advanced malignancies. Thus, our report unveiled extensive changes of the cellular proteome upon dedifferentiation of neuroblastoma cells, indicated top subnetworks and clusters of molecular mechanisms involved in dedifferentiation, and provided candidate biomarkers for clinical studies. PMID:25450381

  11. A role for protein kinase C subtypes alpha and epsilon in phorbol-ester-enhanced K(+)- and carbachol-evoked noradrenaline release from the human neuroblastoma SH-SY5Y.

    PubMed Central

    Turner, N A; Rumsby, M G; Walker, J H; McMorris, F A; Ball, S G; Vaughan, P F

    1994-01-01

    Protein kinase C (PKC) consists of a family of closely related subtypes which differ in their localization and activation properties. Our previous studies have suggested a role for PKC in the regulation of noradrenaline (NA) release from the human neuroblastoma SH-SY5Y. Here we have used two approaches to characterize the PKC subtypes present in SH-SY5Y cells. Firstly, the PCR was used to show that SH-SY5Y cells contain mRNA encoding PKC subtypes alpha, beta, gamma, delta, epsilon and zeta. Secondly, immunoblotting showed that SH-SY5Y cells express PKC subtypes alpha, epsilon and zeta at the protein level. Prolonged (48 h) exposure of cells to the phorbol ester phorbol 12-myristate 13-acetate (PMA; 100 nM) resulted in a marked decrease in the amounts of PKC-alpha and PKC-epsilon, with no change in levels of PKC-zeta. Prolonged PMA treatment had no significant effect on K(+)-evoked NA release from SH-SY5Y cells, whereas carbachol-evoked release was increased 2.2-fold. However, prolonged exposure to PMA completely inhibited the ability of acute (12 min) PMA treatment to enhance both K(+)- and carbachol-evoked NA release. The specific PKC inhibitor RO 31-7459 (10 microM) was found to inhibit K(+)- and carbachol-evoked release by 27% and 68% respectively. RO 31-7549 also completely inhibited the ability of acute PMA treatment to enhance release. These data suggest that PKC-alpha and/or PKC-epsilon play an essential role in the regulation of PMA-enhanced K(+)- and carbachol-evoked NA release in SH-SY5Y cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8297348

  12. Impact of Inhomogeneous Static Magnetic Field (31.7–232.0 mT) Exposure on Human Neuroblastoma SH-SY5Y Cells during Cisplatin Administration

    PubMed Central

    Mobasheri, Hamid; Dini, Luciana

    2014-01-01

    Beneficial or adverse effects of Static Magnetic Fields (SMFs) are a large concern for the scientific community. In particular, the effect of SMF exposure during anticancer therapies still needs to be fully elucidated. Here, we evaluate the effects of SMF at induction levels that cisPt-treated cancer patients experience during the imaging process conducted in Low field (200–500 mT), Open field (300–700 mT) and/or inhomogeneous High field (1.5–3 T) Magnetic Resonance Imaging (MRI) machines. Human adrenergic neuroblastoma SH-SY5Y cells treated with 0.1 µM cisPt (i.e. the lowest concentration capable of inducing apoptosis) were exposed to SMF and their response was studied in vitro. Exposure of 0.1 µM cisPt-treated cells to SMF for 2 h decreased cell viability (30%) and caused overexpression of the apoptosis-related cleaved caspase-3 protein (46%). Furthermore, increase in ROS (Reactive Oxygen Species) production (23%) and reduction in the number of mitochondria vs controls were seen. The sole exposure of SMF for up to 24 h had no effect on cell viability but increased ROS production and modified cellular shape. On the other hand, the toxicity of cisPt was significantly prevented during 24 h exposure to SMF as shown by the levels of cell viability, cleaved caspase-3 and ROS production. In conclusion, due to the cytoprotective effect of 31.7–232.0 mT SMF on low-cisPt-concentration-treated SH-SY5Y cells, our data suggest that exposure to various sources of SMF in cancer patients under a cisPt regimen should be strictly controlled. PMID:25423171

  13. Muscarine enhances soluble amyloid precursor protein secretion in human neuroblastoma SH-SY5Y by a pathway dependent on protein kinase C(alpha), src-tyrosine kinase and extracellular signal-regulated kinase but not phospholipase C.

    PubMed

    Canet-Aviles, Rosa-Maria; Anderton, Mark; Hooper, Nigel M; Turner, Anthony J; Vaughan, Peter F T

    2002-06-15

    The signalling pathways by which muscarine and epidermal growth factor (EGF) regulate the secretion of the alpha-secretase cleavage product (sAPPalpha) of the amyloid precursor protein (APP) were examined in the human neuroblastoma SH-SY5Y. Using specific inhibitors it was found that over 80% of sAPPalpha secretion, enhanced by muscarine, occurred via the extracellular signal-regulated kinase (ERK1/2) member of the mitogen-activated protein kinase (MAPK) family and was dependent on protein kinase Calpha (PKCalpha) and a member of the Src family of non-receptor tyrosine kinases (Src-TK). In contrast the stimulation of sAPPalpha secretion by EGF was not affected by inhibitors of PKC nor Src-TK but was dependent on ERK1/2. In addition muscarine-enhanced sAPPalpha secretion and ERK1/2 activation were inhibited 60 and 80%, respectively, by micromolar concentrations of the phosphatidylinositol 3 kinase (PI-3K) inhibitor wortmannin. In comparison wortmannin decreased EGF stimulation of sAPPalpha secretion and ERK 1/2 activation by approximately 40%. Unexpectedly, U73122, an inhibitor of phosphoinositide-specific phospholipase C, did not inhibit muscarine enhancement of sAPPalpha secretion. These data are discussed in relation to a pathway for the enhancement of sAPPalpha secretion by muscarine which involves the activation of a Src-TK by G-protein beta/gamma-subunits leading to activation of PKCalpha, and ERK1/2 by a mechanism not involving phospholipase C. PMID:12191495

  14. Nucleolar protein PES1 is a marker of neuroblastoma outcome and is associated with neuroblastoma differentiation

    PubMed Central

    Nakaguro, Masato; Kiyonari, Shinichi; Kishida, Satoshi; Cao, Dongliang; Murakami-Tonami, Yuko; Ichikawa, Hitoshi; Takeuchi, Ichiro; Nakamura, Shigeo; Kadomatsu, Kenji

    2015-01-01

    Neuroblastoma (NB) is a childhood malignant tumor that arises from precursor cells of the sympathetic nervous system. Spontaneous regression is a phenomenon unique to NBs and is caused by differentiation of tumor cells. PES1 is a multifunctional protein with roles in both neural development and ribosome biogenesis. Various kinds of models have revealed the significance of PES1 in neurodevelopment. However, the roles of PES1 in NB tumorigenesis and differentiation have remained unknown. Here we show that NB cases with MYCN amplification and clinically unfavorable stage (INSS stage 4) express higher levels of PES1. High PES1 expression was associated with worse overall and relapse-free survival. In NB cell lines, PES1 knockdown suppressed tumor cell growth and induced apoptosis. This growth inhibition was associated with the expression of NB differentiation markers. However, when the differentiation of NB cell lines was induced by the use of all-trans retinoic acid, there was a corresponding decrease in PES1 expression. Pes1 expression of tumorspheres originated from MYCN transgenic mice also diminished after the induction of differentiation with growth factors. We also reanalyzed the distribution of PES1 in the nucleolus. PES1 was localized in the dense fibrillar component, but not in the granular component of nucleoli. After treatment with the DNA-damaging agent camptothecin, this distribution was dramatically changed to diffuse nucleoplasmic. These data suggest that PES1 is a marker of NB outcome, that it regulates NB cell proliferation, and is associated with NB differentiation. PMID:25557119

  15. GPER mediates estrogen-induced signaling and proliferation in human breast epithelial cells and normal and malignant breast.

    PubMed

    Scaling, Allison L; Prossnitz, Eric R; Hathaway, Helen J

    2014-06-01

    17β-Estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized nontumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane-bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant

  16. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17β-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant

  17. Capsaicin-Induced Death of Human Haematological Malignant Cell Lines Is Independent of TRPV1 Activation.

    PubMed

    Omari, Sofia A; Adams, Murray J; Kunde, Dale A; Geraghty, Dominic P

    2016-01-01

    The effect of the plant-derived vanilloid, capsaicin (CAP), on the metabolic activity of THP-1, U266B1 and U937 hematological malignancy cells was determined. CAP reduced metabolic activity in a concentration-dependent manner in the three cell lines. A biphasic effect was observed on THP-1 cells (EC50: IC50 (95% CI) 32.9 (19.9-54.3)/219 (144-246) µmol/l). U266B1 cells were more resistant to CAP than THP-1 and U937. Metabolic activity was significantly inhibited by CAP in U937 compared to U266B1 cells (IC50: 197 versus 431 µmol/l, respectively, p < 0.008). Transient receptor potential vanilloid-1 (TRPV1) and CB1 antagonists (SB452533 and AM251, respectively) suppressed the CAP-induced increase in THP-1 cell metabolic activity (p < 0.001). AM251 and SB452533 appeared to act as partial agonists and displayed a synergistic effect with CAP in U937 cells. CAP inhibits the metabolic activity of malignant hematological cells through non-TRPV1-dependent mechanisms. PMID:27160991

  18. Viral Carcinogenesis Beyond Malignant Transformation: EBV in the Progression of Human Cancers.

    PubMed

    Elgui de Oliveira, Deilson; Müller-Coan, Bárbara G; Pagano, Joseph S

    2016-08-01

    Cancer progression begins when malignant cells colonize adjacent sites, and it is characterized by increasing tumor heterogeneity, invasion and dissemination of cancer cells. Clinically, progression is the most relevant stage in the natural history of cancers. A given virus is usually regarded as oncogenic because of its ability to induce malignant transformation of cells. Nonetheless, oncogenic viruses may also be important for the progression of infection-associated cancers. Recently this hypothesis has been addressed because of studies on the contribution of the Epstein-Barr virus (EBV) to the aggressiveness of nasopharyngeal carcinoma (NPC). Several EBV products modulate cancer progression phenomena, such as the epithelial-mesenchymal transition, cell motility, invasiveness, angiogenesis, and metastasis. In this regard, there are compelling data about the effects of EBV latent membrane proteins (LMPs) and EBV nuclear antigens (EBNAs), as well as nontranslated viral RNAs, such as the EBV-encoded small nonpolyadenylated RNAs (EBERs) and viral microRNAs, notably EBV miR-BARTs. The available data on the mechanisms and players involved in the contribution of EBV infection to the aggressiveness of NPC are discussed in this review. Overall, this conceptual framework may be valuable for the understanding of the contribution of some infectious agents in the progression of cancers. PMID:27068530

  19. NANOG promoter methylation and expression correlation during normal and malignant human germ cell development

    PubMed Central

    Nettersheim, Daniel; Bierman, Katharina; Gillis, Ad JM; Steger, Klaus; Looijenga, Leendert HJ

    2011-01-01

    Testicular germ cell tumors are the most frequent malignant tumors in young Caucasian males, with increasing incidence. The actual model of tumorigenesis is based on the theory that a block in maturation of fetal germ cells lead to formation of the intratubular germ cell neoplasia unclassified. Early fetal germ cells and undifferentiated germ cell tumors express pluripotency markers such as the transcription factor NANOG. It has been demonstrated that epigenetic modifications, such as promoter DNA methylation, are able to silence gene expression in normal and cancer cells. Here we show that OCT3/4-SOX2 mediated expression of NANOG can be silenced by methylation of promoter CpG-sites. We found that global methylation of DNA decreased from fetal spermatogonia to mature sperm. In contrast, CpGs in the NANOG promoter were found hypomethylated in spermatogonia and hypermethylated in sperm. This selective repression might reflect the cells need to suppress pluripotency in order to prevent malignant transformation. Finally, methylation of CpGs in the NANOG promoter in germ cell tumors and derived cell lines correlated to differentiation state. PMID:20930529

  20. Henoch-Schönlein purpura associated with a neuroblastoma: Report of one case and a review of the literature

    PubMed Central

    Dong, Qiaoli; Cao, Shanshan; Zhang, Hongwen; Geng, Hui

    2012-01-01

    Summary Malignancies such as solid tumors and hematologic malignancies can often induce or be associated with Henoch-Schönlein purpura (HSP) in older males but not in children. Described here is the case of a 5-year-old boy who clinically presented with HSP. An imaging study of the abdomen revealed a right retroperitoneal neoplasm that histopathology postoperatively confirmed to be a neuroblastoma. Malignancies are sometimes associated with HSP mostly in older males, though children are affected, albeit rarely. Thus, all patients with HSP must be carefully examined to identify or exclude an underlying disease. PMID:25343092

  1. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    SciTech Connect

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-08-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives.

  2. Ectopic primary olfactory neuroblastoma of the maxillary sinus.

    PubMed

    Holmes, Margaret; Su, Shirley Y; Bell, Diana

    2016-06-01

    Olfactory neuroblastoma (ONB) is a rare malignant tumor. Although the vast majority of cases arise in the nasal cavity, ONB is rarely reported in ectopic locations. We report a case of ONB in the maxillary sinus. A 63-year-old woman presented with left-sided nasal obstruction and epistaxis. Magnetic resonance imaging showed a nonenhancing left maxillary sinus tumor. Histologic sections showed ONB, Hyams grade IV, invading bone, skeletal muscle, and adjacent fibroadipose tissue. It is essential to be accurate when diagnosing sinonasal tumors because the differential diagnosis is broad, and one must consider the possibility of ectopic ONB, although it is rare. The behavior of ONB and other neuroendocrine tumors of the sinonasal region is quite different, and there are varied approaches to treatment. Therefore, an accurate diagnosis as well as correct grade and stage must be assigned. PMID:27180059

  3. A Dimeric Mutant of Human Pancreatic Ribonuclease with Selective Cytotoxicity toward Malignant Cells

    NASA Astrophysics Data System (ADS)

    Piccoli, Renata; di Gaetano, Sonia; de Lorenzo, Claudia; Grauso, Michela; Monaco, Carmen; Spalletti-Cernia, Daniela; Laccetti, Paolo; Cinatl, Jaroslav; Matousek, Josef; D'Alessio, Giuseppe

    1999-07-01

    Monomeric human pancreatic RNase, devoid of any biological activity other than its RNA degrading ability, was engineered into a dimeric protein with a cytotoxic action on mouse and human tumor cells, but lacking any appreciable toxicity on mouse and human normal cells. This dimeric variant of human pancreas RNase selectively sensitizes to apoptotic death cells derived from a human thyroid tumor. Because of its selectivity for tumor cells, and because of its human origin, this protein represents a potentially very attractive, novel tool for anticancer therapy.

  4. Molecular changes in the expression of human colonic nutrient transporters during the transition from normality to malignancy.

    PubMed

    Lambert, D W; Wood, I S; Ellis, A; Shirazi-Beechey, S P

    2002-04-22

    Healthy colonocytes derive 60-70% of their energy supply from short-chain fatty acids, particularly butyrate. Butyrate has profound effects on differentiation, proliferation and apoptosis of colonic epithelial cells by regulating expression of various genes associated with these processes. We have previously shown that butyrate is transported across the luminal membrane of the colonic epithelium via a monocarboxylate transporter, MCT1. In this paper, using immunohistochemistry and in situ hybridisation histochemistry, we have determined the profile of MCT1 protein and mRNA expression along the crypt to surface axis of healthy human colonic tissue. There is a gradient of MCT1 protein expression in the apical membrane of the cells along the crypt-surface axis rising to a peak in the surface epithelial cells. MCT1 mRNA is expressed along the crypt-surface axis and is most abundant in cells lining the crypt. Analysis of healthy colonic tissues and carcinomas using immunohistochemistry and Western blotting revealed a significant decline in the expression of MCT1 protein during transition from normality to malignancy. This was reflected in a corresponding reduction in MCT1 mRNA expression, as measured by Northern analysis. Carcinoma samples displaying reduced levels of MCT1 were found to express the high affinity glucose transporter, GLUT1, suggesting that there is a switch from butyrate to glucose as an energy source in colonic epithelia during transition to malignancy. The expression levels of MCT1 in association with GLUT1 could potentially be used as determinants of the malignant state of colonic tissue. PMID:11953883

  5. Aryl Hydrocarbon Receptor Downregulates MYCN Expression and Promotes Cell Differentiation of Neuroblastoma

    PubMed Central

    Wu, Pei-Yi; Liao, Yung-Feng; Juan, Hsueh-Fen; Huang, Hsuan-Cheng; Wang, Bo-Jeng; Lu, Yen-Lin; Yu, I-Shing; Shih, Yu-Yin; Jeng, Yung-Ming; Hsu, Wen-Ming; Lee, Hsinyu

    2014-01-01

    Neuroblastoma (NB) is the most common malignant disease of infancy. MYCN amplification is a prognostic factor for NB and is a sign of highly malignant disease and poor patient prognosis. In this study, we aimed to investigate novel MYCN-related genes and assess how they affect NB cell behavior. The different gene expression found in 10 MYCN amplification NB tumors and 10 tumors with normal MYCN copy number were analyzed using tissue oligonucleotide microarrays. Ingenuity Pathway Analysis was subsequently performed to identify the potential genes involved in MYCN regulation pathways. Aryl hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, was found to be inversely correlated with MYCN expression in NB tissues. This correlation was confirmed in a further 14 human NB samples. Moreover, AHR expression in NB tumors was found to correlate highly with histological grade of differentiation. In vitro studies revealed that AHR overexpression in NB cells induced spontaneous cell differentiation. In addition, it was found that ectopic expression of AHR suppressed MYCN promoter activity resulting in downregulation of MYCN expression. The suppression effect of AHR on the transcription of MYCN was compensated for by E2F1 overexpression, indicating that E2F1 is involved in the AHR-regulating MYCN pathway. Furthermore, AHR shRNA promotes the expression of E2F1 and MYCN in NB cells. These findings suggest that AHR is one of the upstream regulators of MYCN. Through the modulation of E2F1, AHR regulates MYCN gene expression, which may in turn affect NB differentiation. PMID:24586395

  6. Construction of Ang2-siRNA chitosan magnetic nanoparticles and the effect on Ang2 gene expression in human malignant melanoma cells

    PubMed Central

    LIU, ZHAO-LIANG; YOU, CAI-LIAN; WANG, BIAO; LIN, JIAN-HONG; HU, XUE-FENG; SHAN, XIU-YING; WANG, MEI-SHUI; ZHENG, HOU-BING; ZHANG, YAN-DING

    2016-01-01

    The aim of the present study was to construct angiopoietin-2 (Ang2)-small interfering (si)RNA chitosan magnetic nanoparticles and to observe the interference effects of the nanoparticles on the expression of the Ang2 gene in human malignant melanoma cells. Ang2-siRNA chitosan magnetic nanoparticles were constructed and transfected into human malignant melanoma cells in vitro. Red fluorescent protein expression was observed, and the transfection efficiency was analyzed. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to assess the inhibition efficiency of Ang2 gene expression. Ang2-siRNA chitosan magnetic nanoparticles were successfully constructed, and at a mass ratio of plasmid to magnetic chitosan nanoparticles of 1:100, the transfection efficiency into human malignant melanoma cells was the highest of the ratios assessed, reaching 61.17%. RT-qPCR analysis showed that the magnetic chitosan nanoparticles effectively inhibited Ang2 gene expression in cells, and the inhibition efficiency reached 59.56% (P<0.05). Ang2-siRNA chitosan magnetic nanoparticles were successfully constructed. The in vitro studies showed that the nanoparticles inhibited Ang2 gene expression in human malignant melanoma tumor cells, which laid the foundation and provided experimental evidence for additional future in vivo studies of intervention targeting malignant melanoma tumor growth in nude mice. PMID:27313729

  7. A novel bispecific immunotoxin delivered by human bone marrow-derived mesenchymal stem cells to target blood vessels and vasculogenic mimicry of malignant gliomas

    PubMed Central

    Zhang, Yonghong; Sun, Xinlin; Huang, Min; Ke, Yiquan; Wang, Jihui; Liu, Xiao

    2015-01-01

    Background In previous years, immunotoxins have been shown to be a greatly promising therapeutic tool for brain malignancies, such as gliomas. Human mesenchymal stem cells (hMSCs) exhibit tropism to tumor tissue. However, the effect of bispecific immunotoxins in malignant gliomas is still unknown. The aim of this study was to investigate the function of bispecific immunotoxins in human malignant gliomas. Materials and methods In the present study, the bispecific immunotoxin VEGF165-ephrin A1-PE38KDEL was established using deoxyribonucleic acid shuffling and cloning techniques. The VEGF165-ephrin A1-PE38KDEL was delivered by hMSCs to mouse malignant gliomas. The effects of the bispecific immunotoxins on glioma-derived blood vessels and vasculogenic mimicry to elucidate the molecular mechanisms underlying the antitumorigenic effects of immunotoxins were examined in vivo. Results In vitro, transfected hMSCs significantly inhibited the cell viability of gliomas cell lines U87 and U251 in a dose-dependent manner compared with untransfected hMSCs (P<0.01). In vivo, the intratumoral injection of engineered hMSCs was effective at inhibiting tumor growth in a malignant glioma tumor model. Conclusion The bispecific immunotoxin secreted from hMSCs acts as a novel strategy for improving treatment options for malignant gliomas in the clinic. PMID:26089644

  8. Pediatric neuroblastomas: genetic and epigenetic 'danse macabre'.

    PubMed

    van Noesel, Max M; Versteeg, Rogier

    2004-01-21

    Neuroblastomas are the most frequently occurring solid tumors in children under 5 years. Spontaneous regression is more common in neuroblastomas than in any other tumor type, especially in young patients under 12 months. Unfortunately, the full clinical spectrum of neuroblastomas also includes very aggressive tumors, unresponsive to multi-modality treatment and accounting for most of the pediatric cancer mortalities under 5 years of age. It is generally emphasized that more than one biological entity of neuroblastoma exists. Structural genetic defects such as amplification of MYCN, gain of chromosome 17q and LOH of 1p and several other chromosomal regions have proven to be valuable as prognostic factors and will be discussed in relation to their clinical relevance. Recent research is starting to uncover important molecular pathways involved in the pathogenesis of neuroblastomas. The aim of this review is to discuss several important aspects of the biology of the neuroblast, such as the role of overexpressed oncogenes like MYCN and cyclin D1, the mechanisms leading to decreased apoptosis, like overexpression of BCL-2, survivin, NM23, epigenetic silencing of caspase 8 and the role of tumor suppressor genes, like p53, p73 and RASSF1A. In addition, the role of specific proteins overexpressed in neuroblastomas, such as the neurotrophin receptors TrkA, B and C in relation to spontaneous regression and anti-angiogenesis will be discussed. Finally, we will try to relate these pathways to the embryonal origin of neuroblastomas and discuss possible new avenues in the therapeutic approach of future neuroblastoma patients. PMID:14697505

  9. Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells.

    PubMed

    Pinz, K; Liu, H; Golightly, M; Jares, A; Lan, F; Zieve, G W; Hagag, N; Schuster, M; Firor, A E; Jiang, X; Ma, Y

    2016-03-01

    Peripheral T-cell lymphomas (PTCLs) are aggressive lymphomas with no effective upfront standard treatment and ineffective options in relapsed disease, resulting in poorer clinical outcomes as compared with B-cell lymphomas. The adoptive transfer of T cells engineered to express chimeric antigen receptors (CARs) is a promising new approach for treatment of hematological malignancies. However, preclinical reports of targeting T-cell lymphoma with CARs are almost non-existent. Here we have designed a CAR, CD4CAR, which redirects the antigen specificity of CD8+ cytotoxic T cells to CD4-expressing cells. CD4CAR T cells derived from human peripheral blood mononuclear cells and cord blood effectively redirected T-cell specificity against CD4+ cells in vitro. CD4CAR T cells efficiently eliminated a CD4+ leukemic cell line and primary CD4+ PTCL patient samples in co-culture assays. Notably, CD4CAR T cells maintained a central memory stem cell-like phenotype (CD8+CD45RO+CD62L+) under standard culture conditions. Furthermore, in aggressive orthotropic T-cell lymphoma models, CD4CAR T cells efficiently suppressed the growth of lymphoma cells while also significantly prolonging mouse survival. Combined, these studies demonstrate that CD4CAR-expressing CD8+ T cells are efficacious in ablating malignant CD4+ populations, with potential use as a bridge to transplant or stand-alone therapy for the treatment of PTCLs. PMID:26526988

  10. Inhibition of transient receptor potential canonical channels impairs cytokinesis in human malignant gliomas

    PubMed Central

    Bomben, V. C.; Sontheimer, H. W.

    2009-01-01

    Objectives Glial-derived primary brain tumours, gliomas, are among the fastest growing malignancies and present a huge clinical challenge. Research suggests an important, yet poorly understood, role of ion channels in growth control of normal and malignant cells. In this study, we sought to functionally characterize Transient Receptor Potential Canoncial (TRPC) channels in glioma cell proliferation. TRPC channels form non-selective cation channels that have been suggested to represent a Ca2+ influx pathway impacting cellular growth. Materials and Methods Employing a combination of molecular, biochemical and biophysical techniques, we characterized TRPC channels in glioma cells. Results We showed consistent expression of four channel family members (TRPC-1, -3, -5, -6) in glioma cell lines and acute patient-derived tissues. These channels gave rise to small, non-voltage-dependent cation currents that were blocked by the TRPC inhibitors GdCl3, 2-APB, or SKF96365. Importantly, TRPC channels contributed to the resting conductance of glioma cells and their acute pharmacological inhibition caused an ~10 mV hyperpolarization of the cells’ resting potential. Additionally, chronic application of the TRPC inhibitor SKF96365 caused near complete growth arrest. A detailed analysis, by fluorescence-activated cell sorting and time-lapse microscopy, showed that growth inhibition occurred at the G2 + M phase of the cell cycle with cytokinesis defects. Cells underwent incomplete cell divisions and became multinucleate, enlarged cells. Conclusions Nuclear atypia and enlarged cells are histopathological hallmarks for glioblastoma multiforme, the highest grade glioma, suggesting that a defect in TRPC channel function may contribute to cellular abnormalities in these tumours. PMID:18211288

  11. Photodynamic therapy of human malignant tumors: a comparative study between photohem and tetrasulfonated aluminum phthalocyanine

    NASA Astrophysics Data System (ADS)

    Stranadko, Eugeny P.; Skobelkin, Oleg K.; Litvin, Grigory D.; Astrakhankina, Tamara A.

    1996-01-01

    The analysis of the results of photodynamic therapy (PDT) for treating malignant neoplasms of the skin, mammary glands, tongue, oral mucous, lower lip, larynx, lungs,