Science.gov

Sample records for human mdm2 correlates

  1. Induction of MDM2-P2 Transcripts Correlates with Stabilized Wild-Type p53 in Betel- and Tobacco-Related Human Oral Cancer

    PubMed Central

    Ralhan, Ranju; Sandhya, Agarwal; Meera, Mathur; Bohdan, Wasylyk; Nootan, Shukla K.

    2000-01-01

    MDM2, a critical element of cellular homeostasis mechanisms, is involved in complex interactions with important cell-cycle and stress-response regulators including p53. The mdm2-P2 promoter is a transcriptional target of p53. The aim of this study was to determine the association between mdm2-P2 transcripts and the status of the p53 gene in betel- and tobacco-related oral squamous cell carcinomas (SCCs) to understand the mechanism of deregulation of MDM2 and p53 expression and their prognostic implications in oral tumorigenesis. Elevated levels of MDM2 proteins were observed in 11 of 25 (44%) oral hyperplastic lesions, nine of 15 (60%) dysplastic lesions, and 71 of 100 (71%) SCCs. The intriguing feature of the study was the identification and different subcellular localization of three isoforms of MDM2 (ie, 90 kd, 76 kd, and 57 kd) in oral SCCs and their correlation with p53 overexpression in each tumor. The hallmark of the study was the detection of mdm2-P2 transcripts in 12 of 20 oral SCCs overexpressing both MDM2 and p53 proteins while harboring wild-type p53 alleles. Furthermore, mdm2 amplification was an infrequent event in betel- and tobacco-associated oral tumorigenesis. The differential compartmentalization of the three isoforms of MDM2 suggests that each has a distinct function, potentially in the regulation of p53 and other gene products implicated in oral tumorigenesis. In conclusion, we report herein the first evidence suggesting that enhanced translation of mdm2-P2 transcripts (S-mdm2) may represent an important mechanism of overexpression and consequent stabilization and functional inactivation of wild-type p53 serving as an adverse prognosticator in betel- and tobacco-related oral cancer. The clinical significance of the functional inactivation of wild-type p53 by MDM2 is underscored by the significantly shorter median disease-free survival time (16 months) observed in p53/MDM2-positive cases as compared to those which did not show co-expression of

  2. Induction of MDM2-P2 transcripts correlates with stabilized wild-type p53 in betel- and tobacco-related human oral cancer.

    PubMed

    Ralhan, R; Sandhya, A; Meera, M; Bohdan, W; Nootan, S K

    2000-08-01

    MDM2, a critical element of cellular homeostasis mechanisms, is involved in complex interactions with important cell-cycle and stress-response regulators including p53. The mdm2-P2 promoter is a transcriptional target of p53. The aim of this study was to determine the association between mdm2-P2 transcripts and the status of the p53 gene in betel- and tobacco-related oral squamous cell carcinomas (SCCs) to understand the mechanism of deregulation of MDM2 and p53 expression and their prognostic implications in oral tumorigenesis. Elevated levels of MDM2 proteins were observed in 11 of 25 (44%) oral hyperplastic lesions, nine of 15 (60%) dysplastic lesions, and 71 of 100 (71%) SCCs. The intriguing feature of the study was the identification and different subcellular localization of three isoforms of MDM2 (ie, 90 kd, 76 kd, and 57 kd) in oral SCCs and their correlation with p53 overexpression in each tumor. The hallmark of the study was the detection of mdm2-P2 transcripts in 12 of 20 oral SCCs overexpressing both MDM2 and p53 proteins while harboring wild-type p53 alleles. Furthermore, mdm2 amplification was an infrequent event in betel- and tobacco-associated oral tumorigenesis. The differential compartmentalization of the three isoforms of MDM2 suggests that each has a distinct function, potentially in the regulation of p53 and other gene products implicated in oral tumorigenesis. In conclusion, we report herein the first evidence suggesting that enhanced translation of mdm2-P2 transcripts (S-mdm2) may represent an important mechanism of overexpression and consequent stabilization and functional inactivation of wild-type p53 serving as an adverse prognosticator in betel- and tobacco-related oral cancer. The clinical significance of the functional inactivation of wild-type p53 by MDM2 is underscored by the significantly shorter median disease-free survival time (16 months) observed in p53/MDM2-positive cases as compared to those which did not show co-expression of

  3. Endogenous Human MDM2-C Is Highly Expressed in Human Cancers and Functions as a p53-Independent Growth Activator

    PubMed Central

    Okoro, Danielle R.; Arva, Nicoleta; Gao, Chong; Polotskaia, Alla; Puente, Cindy; Rosso, Melissa; Bargonetti, Jill

    2013-01-01

    Human cancers over-expressing mdm2, through a T to G variation at a single nucleotide polymorphism at position 309 (mdm2 SNP309), have functionally inactivated p53 that is not effectively degraded. They also have high expression of the alternatively spliced transcript, mdm2-C. Alternatively spliced mdm2 transcripts are expressed in many forms of human cancer and when they are exogenously expressed they transform human cells. However no study to date has detected endogenous MDM2 protein isoforms. Studies with exogenous expression of splice variants have been carried out with mdm2-A and mdm2-B, but the mdm2-C isoform has remained virtually unexplored. We addressed the cellular influence of exogenously expressed MDM2-C, and asked if endogenous MDM2-C protein was present in human cancers. To detect endogenous MDM2-C protein, we created a human MDM2-C antibody to the splice junction epitope of exons four and ten (MDM2 C410) and validated the antibody with in vitro translated full length MDM2 compared to MDM2-C. Interestingly, we discovered that MDM2-C co-migrates with MDM2-FL at approximately 98 kDa. Using the validated C410 antibody, we detected high expression of endogenous MDM2-C in human cancer cell lines and human cancer tissues. In the estrogen receptor positive (ER+) mdm2 G/G SNP309 breast cancer cell line, T47D, we observed an increase in endogenous MDM2-C protein with estrogen treatment. MDM2-C localized to the nucleus and the cytoplasm. We examined the biological activity of MDM2-C by exogenously expressing the protein and observed that MDM2-C did not efficiently target p53 for degradation or reduce p53 transcriptional activity. Exogenous expression of MDM2-C in p53-null human cancer cells increased colony formation, indicating p53-independent tumorigenic properties. Our data indicate a role for MDM2-C that does not require the inhibition of p53 for increasing cancer cell proliferation and survival. PMID:24147044

  4. The regulation of MDM2 oncogene and its impact on human cancers

    PubMed Central

    Zhao, Yuhan; Yu, Haiyang; Hu, Wenwei

    2014-01-01

    Tumor suppressor p53 plays a central role in preventing tumor formation. The levels and activity of p53 is under tight regulation to ensure its proper function. Murine double minute 2 (MDM2), a p53 target gene, is an E3 ubiquitin ligase. MDM2 is a key negative regulator of p53 protein, and forms an auto-regulatory feedback loop with p53. MDM2 is an oncogene with both p53-dependent and p53-independent oncogenic activities, and often has increased expression levels in a variety of human cancers. MDM2 is highly regulated; the levels and function of MDM2 are regulated at the transcriptional, translational and post-translational levels. This review provides an overview of the regulation of MDM2. Dysregulation of MDM2 impacts significantly upon the p53 functions, and in turn the tumorigenesis. Considering the key role that MDM2 plays in human cancers, a better understanding of the regulation of MDM2 will help us to develop novel and more effective cancer therapeutic strategies to target MDM2 and activate p53 in cells. PMID:24389645

  5. The p53–Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans

    PubMed Central

    Coffill, Cynthia R.; Lee, Alison P.; Siau, Jia Wei; Chee, Sharon M.; Joseph, Thomas L.; Tan, Yaw Sing; Madhumalar, Arumugam; Tay, Boon-Hui; Brenner, Sydney; Verma, Chandra S.; Ghadessy, Farid J.; Venkatesh, Byrappa; Lane, David P.

    2016-01-01

    The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family—Tp53, Tp63, and Tp73—as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53–Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway. PMID:26798135

  6. The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans.

    PubMed

    Coffill, Cynthia R; Lee, Alison P; Siau, Jia Wei; Chee, Sharon M; Joseph, Thomas L; Tan, Yaw Sing; Madhumalar, Arumugam; Tay, Boon-Hui; Brenner, Sydney; Verma, Chandra S; Ghadessy, Farid J; Venkatesh, Byrappa; Lane, David P

    2016-02-01

    The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family--Tp53, Tp63, and Tp73--as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53-Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway. PMID:26798135

  7. EGFR, p53, IDH-1 and MDM2 immunohistochemical analysis in glioblastoma: therapeutic and prognostic correlation.

    PubMed

    Montgomery, Richard Murdoch; Queiroz, Luciano de Souza; Rogerio, Fabio

    2015-07-01

    We studied 36 glioblastoma cases at HC-UNICAMP from 2008 to 2012 and classified the immunohistochemical distribution of the wild-type epidermal growth factor receptor (EGFR), mutated forms of p53 protein and isocitrate dehydrogenase-1 (IDH-1) and murine double protein 2 (MDM2). Immunostaining findings were correlated with clinical data and response to treatment (surgery, chemotherapy and radiotherapy). About 97% of the tumors were primary, most of them localized in the frontal lobe. Mean time free of clinical or symptomatic disease and free time of radiological disease were 7.56 and 7.14 months, respectively. We observed a significant positive correlation between expressions of p53 and MDM2, EGFR and MDM2. Clinical, radiological and overall survivals also showed a significant positive correlation. p53 staining and clinical survival showed a significant negative correlation. The current series provides clinical and histopathological data that contribute to knowledge on glioblastoma in Brazilians. PMID:26200049

  8. Expression of p14ARF, MDM2, and MDM4 in human retinoblastoma.

    PubMed

    Guo, Ying; Pajovic, Sanja; Gallie, Brenda L

    2008-10-10

    It is still not clear whether the p53 pathway is altered in retinoblastoma development. We assessed the expression of the p53 pathway genes p14(ARF), mouse double minute 2 (MDM2), and mouse double minute 4 (MDM4) in human retinoblastoma compared to normal retina. Primary human retinoblastomas, retinoblastoma cell lines and normal retinas were assessed for p14(ARF) and MDM4 mRNA by quantitative RT-PCR. p14(ARF), MDM2, and MDM4 protein were measured by immunoblot and immunohistochemistry. Compared to retina, p14(ARF) mRNA expression was notably increased in retinoblastoma but p14(ARF) protein was undetectable. MDM2 and MDM4 proteins were expressed in 22/22 retinoblastomas. MDM2 was expressed in 3/10 retinas tested, and MDM4 in 10/10 retinas. The expression level of MDM2 protein in retinoblastomas and retina was comparable, while MDM4 protein was overexpressed in one retinoblastoma cell line Y79 and two primary retinoblastomas. We observe that overexpression of MDM2 and MDM4 is not a necessary step in retinoblastoma development. However, loss of detectable p14(ARF) protein and resultant lack of functional inactivation of these p53 inhibitors may contribute to retinoblastoma development by constitutive inhibition of p53. PMID:18644346

  9. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer

    PubMed Central

    Swetzig, Wendy M.; Wang, Jianmin; Das, Gokul M.

    2016-01-01

    MDM2 and MDM4 are heterodimeric, non-redundant oncoproteins that potently inhibit the p53 tumor suppressor protein. MDM2 and MDM4 also enhance the tumorigenicity of breast cancer cells in in vitro and in vivo models and are overexpressed in primary human breast cancers. Prior studies have characterized Estrogen Receptor Alpha (ERα/ESR1) as a regulator of MDM2 expression and an MDM2- and p53-interacting protein. However, similar crosstalk between ERα and MDM4 has not been investigated. Moreover, signaling pathways that mediate the overexpression of MDM4 in human breast cancer remain to be elucidated. Using the Cancer Genome Atlas (TCGA) breast invasive carcinoma patient cohort, we have analyzed correlations between ERα status and MDM4 and MDM2 expression in primary, treatment-naïve, invasive breast carcinoma samples. We report that the expression of MDM4 and MDM2 is elevated in primary human breast cancers of luminal A/B subtypes and associates with ERα-positive disease, independently of p53 mutation status. Furthermore, in cell culture models, ERα positively regulates MDM4 and MDM2 expression via p53-independent mechanisms, and these effects can be blocked by the clinically-relevant endocrine therapies fulvestrant and tamoxifen. Additionally, ERα also positively regulates p53 expression. Lastly, we report that endogenous MDM4 negatively regulates ERα expression and forms a protein complex with ERα in breast cancer cell lines and primary human breast tumor tissue. This suggests direct signaling crosstalk and negative feedback loops between ERα and MDM4 expression in breast cancer cells. Collectively, these novel findings implicate ERα as a central component of the p53-MDM2-MDM4 signaling axis in human breast cancer. PMID:26909605

  10. Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation.

    PubMed

    Yu, Zheng-Cheng; Huang, Yi-Fu; Shieh, Sheau-Yann

    2016-02-18

    Human Mps1 (hMps1) is a protein kinase essential for mitotic checkpoints and the DNA damage response. Here, we present new evidence that hMps1 also participates in the repair of oxidative DNA lesions and cell survival through the MDM2-H2B axis. In response to oxidative stress, hMps1 phosphorylates MDM2, which in turn promotes histone H2B ubiquitination and chromatin decompaction. These events facilitate oxidative DNA damage repair and ATR-CHK1, but not ATM-CHK2 signaling. Depletion of hMps1 or MDM2 compromised H2B ubiquitination, DNA repair and cell survival. The impairment could be rescued by re-expression of WT but not the phospho-deficient MDM2 mutant, supporting the involvement of hMps1-dependent MDM2 phosphorylation in the oxidative stress response. In line with these findings, localization of RPA and base excision repair proteins to damage foci also requires MDM2 and hMps1. Significantly, like MDM2, hMps1 is upregulated in human sarcoma, suggesting high hMps1 and MDM2 expression may be beneficial for tumors constantly challenged by an oxidative micro-environment. Our study therefore identified an hMps1-MDM2-H2B signaling axis that likely plays a relevant role in tumor progression. PMID:26531827

  11. Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation

    PubMed Central

    Yu, Zheng-Cheng; Huang, Yi-Fu; Shieh, Sheau-Yann

    2016-01-01

    Human Mps1 (hMps1) is a protein kinase essential for mitotic checkpoints and the DNA damage response. Here, we present new evidence that hMps1 also participates in the repair of oxidative DNA lesions and cell survival through the MDM2-H2B axis. In response to oxidative stress, hMps1 phosphorylates MDM2, which in turn promotes histone H2B ubiquitination and chromatin decompaction. These events facilitate oxidative DNA damage repair and ATR-CHK1, but not ATM-CHK2 signaling. Depletion of hMps1 or MDM2 compromised H2B ubiquitination, DNA repair and cell survival. The impairment could be rescued by re-expression of WT but not the phospho-deficient MDM2 mutant, supporting the involvement of hMps1-dependent MDM2 phosphorylation in the oxidative stress response. In line with these findings, localization of RPA and base excision repair proteins to damage foci also requires MDM2 and hMps1. Significantly, like MDM2, hMps1 is upregulated in human sarcoma, suggesting high hMps1 and MDM2 expression may be beneficial for tumors constantly challenged by an oxidative micro-environment. Our study therefore identified an hMps1-MDM2-H2B signaling axis that likely plays a relevant role in tumor progression. PMID:26531827

  12. Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation

    PubMed Central

    Zheng, Jiangge; Lang, Yue; Zhang, Qi; Cui, Di; Sun, Haili; Jiang, Lun; Chen, Zhenhang; Zhang, Rui; Gao, Yina; Tian, Wenli; Wu, Wei; Tang, Jun; Chen, Zhongzhou

    2015-01-01

    The central region of MDM2 is critical for p53 activation and tumor suppression. Upon ribosomal stress, this region is bound by ribosomal proteins, particularly ribosomal protein L11 (RPL11), leading to MDM2 inactivation and subsequent p53 activation. Here, we solved the complex structure of human MDM2–RPL11 at 2.4 Å. MDM2 extensively interacts with RPL11 through an acidic domain and two zinc fingers. Formation of the MDM2–RPL11 complex induces substantial conformational changes in both proteins. RPL11, unable to bind MDM2 mutants, fails to induce the activation of p53 in cells. MDM2 mimics 28S rRNA binding to RPL11. The C4 zinc finger determines RPL11 binding to MDM2 but not its homolog, MDMX. Our results highlight the essential role of the RPL11–MDM2 interaction in p53 activation and tumor suppression and provide a structural basis for potential new anti-tumor drug development. PMID:26220995

  13. Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2siRNA3 enhances the sensitivity to cisplatin

    SciTech Connect

    Yu Yan . E-mail: gyfyuyan@hotmail.com; Sun Ping . E-mail: sunny19750502@hotmail.com; Sun Lichun; Liu Guoyi; Chen Guohua . E-mail: olivebranch_82@hotmail.com; Shang Lihua . E-mail: leval1000@sina.com; Wu Hongbo . E-mail: whpwl@sina.com; Hu Jing; Li Yue; Mao Yinling; Sui Guangjie; Sun Xiwen

    2006-01-06

    To investigate the biological effect of mdm2 in human colorectal adenocarcinoma LoVo cells, three mdm2siRNA constructions were recombinated and transient transfected into human colorectal adenocarcinoma LoVo cells with low differentiation character in vitro. The results showed that mdm2siRNA3 reduced mRNA level of mdm2 and protein level of mdm2, leading to proliferation inhibition on LoVo cells, and reduced tumor growth in nude mice. It was found that depletion of MDM2 in this pattern promoted apoptosis of LoVo cells and Cisplatin (DDP) treated in the mdm2siRNA3 transfected cell population would result in a substantial decrease by MTT colorimetry. Decreasing the MDM2 protein level in LoVo cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, which indicated that mdm2 gene played a definite role in the development and aggressiveness of human colon carcinoma. It also could be a therapeutic target in colorectal carcinoma. The synergistic activation of RNAi and cell toxicity agents indicated that the combination of chemotherapy and gene therapy will be a promising approach in the future.

  14. Immunohistochemical expression of mdm2 and p21WAF1 in invasive cervical cancer: correlation with p53 protein and high risk HPV infection.

    PubMed Central

    Troncone, G; Martinez, J C; Palombini, L; De Rosa, G; Mugica, C; Rodriguez, J A; Zeppa, P; Di Vizio, D; Lucariello, A; Piris, M A

    1998-01-01

    AIM: To investigate the immunocytochemical staining pattern of mdm2 and p21WAF1 proteins in invasive cervical cancer and to determine its relation with the expression of p53 and with the high risk HPV infection. METHODS: Immunocytochemistry for p53, mdm2, and p21WAF1 was performed in 31 paraffin embedded sections of invasive cervical cancer. The results were assessed by image analysis, evaluating for each protein the optical density of the immunostained area, scored as percentage of the total nuclear area. The presence of high risk human papillomavirus (HPV) infection was detected by using the polymerase chain reaction. RESULTS: Immunostaining for both mdm2 and p21WAF1 was correlated with p53 expression; however, the correlation between p53 and mdm2 (R = 0.49; p < 0.01) was more significant than between p53 and p21WAF1 (R = 0.31; p < 0.05); the less stringent correlation between p53 and p21WAF1 might reflect the p53 independent mechanisms of p21WAF1 induction. Similar average levels of p53, mdm2, and p21WAF1 immunostaining were found in the presence or absence of high risk HPV-DNA, without significant differences between the two groups. CONCLUSIONS: These data suggest that mdm2 and p21WAF1 proteins are expressed in invasive cervical cancer and that their immunocytochemical staining pattern is not abrogated by the presence of high risk HPV genomic sequences. Images PMID:10023338

  15. Genome-scale functional analysis of the human genes modulating p53 activity by regulating MDM2 expression in a p53-independent manner.

    PubMed

    Kim, Dong Min; Choi, Seung-Hyun; Yeom, Young Il; Min, Sang-Hyun; Kim, Il-Chul

    2016-09-16

    MDM2, a critical negative regulator of p53, is often overexpressed in leukemia, but few p53 mutations are found, suggesting that p53-independent MDM2 expression occurs due to alterations in MDM2 upstream regulators. In this study, a high MDM2 transcription level was observed (41.17%) regardless of p53 expression in patient with acute myeloid leukemia (AML). Therefore, we performed genome-scale functional screening of the human genes modulating MDM2 expression in a p53-independent manner. We searched co-expression profiles of genes showing a positive or negative pattern with MDM2 expression in a DNA microarray database, selected1089 links, and composed a screening library of 368 genes. Using MDM2 P1 and P2 promoter-reporter systems, we screened clones regulating MDM2 transcriptions in a p53-independent manner by overexpression. Nine clones from the screening library showed enhanced MDM2 promoter activity and MDM2 expression in p53-deficient HCT116 cells. Among them, six clones, including NTRK2, GNA15, SFRS2, EIF5A, ELAVL1, and YWHAB mediated MAPK signaling for expressing MDM2. These results indicate that p53-independent upregulation of MDM2 by increasing selected clones may lead to oncogenesis in AML and that MDM2-modulating genes are novel potential targets for AML treatment. PMID:27524244

  16. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models.

    PubMed

    Tovar, Christian; Graves, Bradford; Packman, Kathryn; Filipovic, Zoran; Higgins, Brian; Xia, Mingxuan; Tardell, Christine; Garrido, Rosario; Lee, Edmund; Kolinsky, Kenneth; To, Kwong-Him; Linn, Michael; Podlaski, Frank; Wovkulich, Peter; Vu, Binh; Vassilev, Lyubomir T

    2013-04-15

    MDM2 negatively regulates p53 stability and many human tumors overproduce MDM2 as a mechanism to restrict p53 function. Thus, inhibitors of p53-MDM2 binding that can reactivate p53 in cancer cells may offer an effective approach for cancer therapy. RG7112 is a potent and selective member of the nutlin family of MDM2 antagonists currently in phase I clinical studies. RG7112 binds MDM2 with high affinity (K(D) ~ 11 nmol/L), blocking its interactions with p53 in vitro. A crystal structure of the RG7112-MDM2 complex revealed that the small molecule binds in the p53 pocket of MDM2, mimicking the interactions of critical p53 amino acid residues. Treatment of cancer cells expressing wild-type p53 with RG7112 activated the p53 pathway, leading to cell-cycle arrest and apoptosis. RG7112 showed potent antitumor activity against a panel of solid tumor cell lines. However, its apoptotic activity varied widely with the best response observed in osteosarcoma cells with MDM2 gene amplification. Interestingly, inhibition of caspase activity did not change the kinetics of p53-induced cell death. Oral administration of RG7112 to human xenograft-bearing mice at nontoxic concentrations caused dose-dependent changes in proliferation/apoptosis biomarkers as well as tumor inhibition and regression. Notably, RG7112 was highly synergistic with androgen deprivation in LNCaP xenograft tumors. Our findings offer a preclinical proof-of-concept that RG7112 is effective in treatment of solid tumors expressing wild-type p53. PMID:23400593

  17. Identification of lineariifolianoid A as a novel dual NFAT1 and MDM2 inhibitor for human cancer therapy

    PubMed Central

    Qin, Jiang-Jiang; Sarkar, Sushanta; Voruganti, Sukesh; Agarwal, Rajesh; Wang, Wei; Zhang, Ruiwen

    2016-01-01

    Abstract There is an increasing interest in development of novel anticancer agents that target oncogenes. We have recently discovered that nuclear factor of activated T cells 1 (NFAT1) is a novel regulator of the Mouse Double Minute 2 (MDM2) oncogene and the NFAT1-MDM2 pathway has been implicated in human cancer development and progression, justifying that targeting the NFAT1-MDM2 pathway could be a novel strategy for discovery and development of novel cancer therapeutics. The present study was designed to examine the anticancer activity and underlying mechanisms of action of lineariifolianoid A (LinA), a novel natural product inhibitor of the NFAT1-MDM2 pathway. The cytotoxicity of LinA was first tested in various human cancer cell lines in comparison with normal cell lines. The results showed that the breast cancer cells were highly sensitive to LinA treatment. We next demonstrated the effects of LinA on cell proliferation, colony formation, cell cycle progression, and apoptosis in breast cancer MCF7 and MDA-MB-231 cells, in dose-dependent and p53-independent manners. LinA also inhibited the migration and invasion of these cancer cells. Our mechanistic studies further indicated that its anticancer activities were attributed to its inhibitory effects on the NFAT1-MDM2 pathway and modulatory effects on the expression of key proteins involved in cell cycle progression, apoptosis, and DNA damage. In summary, LinA is a novel NFAT1-MDM2 inhibitor and may be developed as a preventive and therapeutic agent against human cancer. PMID:27533941

  18. Influence of zinc deficiency on AKT-MDM2-P53 signaling axes in normal and malignant human prostate cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With prostate being the highest zinc-accumulating tissue before the onset of cancer, the effects of physiologic levels of zinc on Akt-Mdm2-p53 and Akt-p21 signaling axes in human normal prostate epithelial cells (PrEC) and malignant prostate LNCaP cells were examined. Cells were cultured for 6 d in...

  19. P15, MDM2, NF-κB, and Bcl-2 expression in primary bone tumor and correlation with tumor formation and metastasis

    PubMed Central

    Qian, Guibin; Hao, Songnan; Yang, Dawei; Meng, Qinggang

    2015-01-01

    Primary bone tumor is one of the most common malignant tumors in skeletal system. It seriously affected bone movement and development with unclear pathogenesis. In this paper, rabbit VX-2 malignant bone tumor model was applied to explore apoptotic genes P15, MDM2, NF-κB and Bcl-2 correlation with primary bone tumor occurrence and metastasis. 0.3 ml rabbit VX-2 tumor cell suspension (1×106/ml) was injected to the marrow cavity of the right tibia condyle to establish the rabbit malignant bone tumor model, while equal amount of the saline was injected to the left tibia as control. Real-time PCR was applied to determine P15, MDM2, NF-κB and Bcl-2 expression level. Immunohistochemistry was performed to detect the abovementioned genes expression in lung, stomach, kidney and bladder. Compared with control, P15 expression level in the inoculation site surrounding tissues decreased obviously following the inoculate time elongation (P<0.05), while Bcl-2, MDM2 and NF-κB expression significantly increased (P<0.05). Bcl-2 showed significant correlation with MDM2 and NF-κB (P<0.05). At the 2, 4, 6 weeks, Bcl-2, MDM2 and NF-κB in lung, Bcl-2 in kidney, and Bcl-2 and MDM2 in bladder positively expressed (P<0.05), whereas P15 gene exhibited no significant positive expression in these tissues (P>0.05). P15, MDM2, NF-κB, and Bcl-2 genes expression levels can effectively reflect malignant bone tumor growth of rabbit tibia. MDM2, NF-κB and Bcl-2 genes involved in primary bone tumors metastasis directly. It has important clinical significance for early diagnosis and treatment of primary bone tumor. PMID:26823818

  20. Aciculatin Induces p53-Dependent Apoptosis via MDM2 Depletion in Human Cancer Cells In Vitro and In Vivo

    PubMed Central

    Lai, Chin-Yu; Tsai, An-Chi; Chen, Mei-Chuan; Chang, Li-Hsun; Sun, Hui-Lung; Chang, Ya-Ling; Chen, Chien-Chih

    2012-01-01

    Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (−/−) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity. PMID:22912688

  1. Investigating the effect of autoinduction in cynomolgus monkeys of a novel anticancer MDM2 antagonist, idasanutlin, and relevance to humans.

    PubMed

    Glenn, Kelli J; Yu, Li J; Reddy, Micaela B; Fretland, Adrian J; Parrott, Neil; Hussain, Sazzad; Palacios, Mary; Vazvaei, Faye; Zhi, Jianguo; Tuerck, Dietrich

    2016-08-01

    1. Idasanutlin (RG7388) is a potent p53-MDM2 antagonist currently in clinical development for treatment of cancer. The purpose of the present studies was to investigate the cause of marked decrease in plasma exposure after repeated oral administration of RG7388 in monkeys and whether the autoinduction observed in monkeys is relevant to humans. 2. In monkey liver and intestinal microsomes collected after repeated oral administration of RG7388 to monkeys, significantly increased activities of homologue CYP3A8 were observed (ex vivo). Investigation using a physiologically based pharmacokinetic (PBPK) model suggested that the loss of exposure was primarily due to induction of metabolism in the gut of monkeys. 3. Studies in monkey and human primary hepatocytes showed that CYP3A induction by RG7388 only occurred in monkey hepatocytes but not in human hepatocytes, which suggests the observed CYP3A induction is monkey specific. 4. The human PK data obtained from the first cohorts confirmed the lack of relevant induction as predicted by the human hepatocytes and the PBPK modelling based on no induction in humans. PMID:26586447

  2. Differential response between the p53 ubiquitin-protein ligases Pirh2 and MdM2 following DNA damage in human cancer cells

    SciTech Connect

    Duan Wenrui; Gao, Li; Wu Xin; Zhang Yang; Otterson, Gregory A.; Villalona-Calero, Miguel A. . E-mail: Miguel.villalona@osumc.edu

    2006-10-15

    Pirh2, a recently identified ubiquitin-protein ligase, has been reported to promote p53 degradation. Pirh2 physically interacts with p53 and promotes ubiquitination of p53 independently of MDM2. Like MDM2, Pirh2 is thought to participate in an autoregulatory feedback loop that controls p53 function. We have previously reported that Pirh2 was overexpressed in human and murine lung cancers as compared to uninvolved lung tissue. Pirh2 increase could potentially cause degradation of wildtype p53 and reduce its tumor suppression function in the lung tumor cells. Since Pirh2 has been reported to be transactivated by p53, however, the mechanisms by which a high level of Pirh2 expression is maintained in tumor cells despite low level of wildtype p53 protein are unclear. In order to evaluate p53 involvement in the transactivation of Pirh2, we evaluated Pirh2, MDM2, p53 and p21 expression with Western blot analysis and real time PCR after {gamma} irradiation or cisplatin DNA damage treatment using human cancer cell lines containing wildtype (A549, MCF-7), mutant (H719) and null (H1299) p53. Surprisingly, Pirh2 expression was not affected by the presence of wildtype p53 in the cancer cells. In contrast, MDM2 was upregulated by wildtype p53 in A549 and MCF-7 cells and was absent from the H1299 and the H719 cells. We conclude that Pirh2 operates in a distinct manner from MDM2 in response to DNA damage in cancer cells. Pirh2 elevation in p53 null cells indicates the existence of additional molecular mechanisms for Pirh2 upregulation and suggests that p53 is not the sole target of Pirh2 ubiquitin ligase activity.

  3. The E3 ubiquitin protein ligase MDM2 dictates all-trans retinoic acid-induced osteoblastic differentiation of osteosarcoma cells by modulating the degradation of RARα.

    PubMed

    Ying, M; Zhang, L; Zhou, Q; Shao, X; Cao, J; Zhang, N; Li, W; Zhu, H; Yang, B; He, Q

    2016-08-18

    Retinoic acid receptor alpha (RARα) has a critical role in the differentiation process of osteosarcoma cells induced by all-trans retinoic acid (ATRA). However, degradation of RARα through ubiquitin proteasome pathway weakens the differentiation efficiency of osteosarcoma cells. In this study, we discover that murine double minute-2 (MDM2) acts as an E3 ubiquitin ligase to target RARα for degradation. We observe that MDM2 is required for RARα polyubiquitination and proteasomal degradation because downregulation of MDM2 by short hairpin RNA results in the accumulation of RARα, and MDM2 overexpression promotes the degradation of RARα. We also demonstrate that the N-terminal domain of MDM2 (amino acids 1-109) is the major RARα-binding site. Importantly, endogenous MDM2 levels are not only upregulated in human primary osteosarcoma blasts but are also inversely correlated with the level of osteopontin, which is a marker of bone differentiation. Moreover, MDM2 impairs the ATRA-induced osteoblastic differentiation of osteosarcoma cells, whereas an inhibitor of the MDM2 ubiquitin ligase synergizes with ATRA to enhance the differentiation of osteosarcoma cells and primary osteosarcoma blasts. Therefore, our study indicates that MDM2 serves as an E3 ubiquitin ligase to regulate the degradation of RARα and suggests that MDM2 is a novel therapeutic target for ATRA-based differentiation therapeutic approaches in osteosarcoma. PMID:26776160

  4. Histological Classification and Immunohistochemical Evaluation of MDM2 and CDK4 Expression in Canine Liposarcoma.

    PubMed

    Avallone, G; Roccabianca, P; Crippa, L; Lepri, E; Brunetti, B; Bernardini, C; Forni, M; Olandese, A; Sarli, G

    2016-07-01

    Canine liposarcoma is an uncommon soft tissue sarcoma usually arising in the subcutis. While liposarcoma classification in dogs is based solely on histology, in humans it depends on the detection of genetic abnormalities that can lead to specific protein overexpression. This study is an immunohistochemical evaluation of MDM2 and CDK4 expression in canine liposarcoma designed to assess the correlation of these proteins with histologic type, grade, mitotic index and Ki67 labeling index and evaluate their utility in improving tumor classification. Fifty-three liposarcomas were retrospectively collected: 24 were well differentiated liposarcomas (WDL), 16 of which expressed MDM2 and 21 CDK4; 7 were myxoid liposarcomas (ML), 1 of which expressed MDM2 and 5 expressed CDK4; 18 were pleomorphic liposarcomas (PL), all were MDM2 negative and 12 expressed CDK4. Four tumors were morphologically consistent with dedifferentiated liposarcoma (DDL) a subtype described only in humans: 3 expressed MDM2 and 4 expressed CDK4. MDM2 expression correlated with histotype (highly expressed in WDL and DDL) and grade (highly expressed in grade 1 tumors). Histotype correlated with the Ki67 labeling index (lowest in WDL and highest in DDL). A revised classification, considering MDM2 expression, allowed 8 WDL to be reclassified as PL and correlated significantly with mitotic and Ki67 labeling index (both significantly lower in WDL and progressively higher in ML and DDL). These results partially parallel data reported for human liposarcomas, suggesting that WDL and DDL are distinct neoplastic entities characterized by MDM2 expression, which may represent a useful diagnostic and potentially prognostic marker for canine liposarcoma. PMID:26993784

  5. The MDM2 gene family.

    PubMed

    Mendoza, Michael; Mandani, Garni; Momand, Jamil

    2014-03-01

    MDM2 is an oncoprotein that blocks p53 tumor suppressor-mediated transcriptional transactivation, escorts p53 from the cell nucleus to the cytoplasm, and polyubiquitylates p53. Polyubiquitylated p53 is rapidly degraded in the cytoplasm by the 26S proteasome. MDM2 is abnormally upregulated in several types of cancers, especially those of mesenchymal origin. MDM4 is a homolog of MDM2 that also inhibits p53 by blocking p53-mediated transactivation. MDM4 is required for MDM2-mediated polyubiquitylated of p53 and is abnormally upregulated in several cancer types. MDM2 and MDM4 genes have been detected in all vertebrates to date and only a single gene homolog, named MDM, has been detected in some invertebrates. MDM2, MDM4, and MDM have similar gene structures, suggesting that MDM2 and MDM4 arose through a duplication event more than 440 million years ago. All members of this small MDM2 gene family contain a single really interesting new gene (RING) domain (with the possible exception of lancelet MDM) which places them in the RING-domain superfamily. Similar to MDM2, the vast majority of proteins with RING domains are E3 ubiquitin ligases. Other RING domain E3 ubiquitin ligases that target p53 are COP1, Pirh2, and MSL2. In this report, we present evidence that COP1, Pirh2, and MSL2 evolved independently of MDM2 and MDM4. We also show, through structure homology models of invertebrate MDM RING domains, that MDM2 is more evolutionarily conserved than MDM4. PMID:25372739

  6. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells

    PubMed Central

    Zappelli, Elisa; Marinelli, Luciana; Novellino, Ettore; Da Settimo, Federico; Taliani, Sabrina; Trincavelli, Maria L.; Martini, Claudia

    2016-01-01

    The development of multi-target drugs and irreversible modulators of deregulated signalling proteins is the major challenge for improving glioblastoma multiforme (GBM) treatment. Reversible single-target drugs are not sufficient to sustain a therapeutic effect over time and may favour the activation of alternative signalling pathways and the onset of resistance phenomena. Thus, a multi-target compound that has a long-lasting mechanism of action might have a greater and longer life span of anti-proliferative activity. Recently, a dual-target indol-3ylglyoxyldipeptide derivative, designed to bind to the Translocator Protein (TSPO) and reactivate p53 function via dissociation from its physiological inhibitor, murine double minute 2 (MDM2), has been developed as a potent GBM pro-apoptotic agent. In this study, this derivative was chemically modified to irreversibly bind MDM2 and TSPO. The new compound elicited a TSPO-mediated mitochondrial membrane dissipation and restored p53 activity, triggering a long-lasting apoptosis of GBM cells. These effects were sustained over time, involved a stable activation of extracellular signal regulated kinases and were specifically observed in cancer cells, in which these protein kinases are deregulated. Dual-targeting and irreversible binding properties combined in the same molecule may represent a useful strategy to overcome the time-limited effects elicited by classical chemotherapies. PMID:26761214

  7. Splicing factor SRSF1 negatively regulates alternative splicing of MDM2 under damage

    PubMed Central

    Comiskey, Daniel F.; Jacob, Aishwarya G.; Singh, Ravi K.; Tapia-Santos, Aixa S.; Chandler, Dawn S.

    2015-01-01

    Genotoxic stress induces alternative splicing of the oncogene MDM2 generating MDM2-ALT1, an isoform attributed with tumorigenic properties. However, the mechanisms underlying this event remain unclear. Here we explore MDM2 splicing regulation by utilizing a novel minigene that mimics endogenous MDM2 splicing in response to UV and cisplatinum-induced DNA damage. We report that exon 11 is necessary and sufficient for the damage-specific alternative splicing of the MDM2 minigene and that the splicing factor SRSF1 binds exon 11 at evolutionarily conserved sites. Interestingly, mutations disrupting this interaction proved sufficient to abolish the stress-induced alternative splicing of the MDM2 minigene. Furthermore, SRSF1 overexpression promoted exclusion of exon 11, while its siRNA-mediated knockdown prevented the stress-induced alternative splicing of endogenous MDM2. Additionally, we observed elevated SRSF1 levels under stress and in tumors correlating with the expression of MDM2-ALT1. Notably, we demonstrate that MDM2-ALT1 splicing can be blocked by targeting SRSF1 sites on exon 11 using antisense oligonucleotides. These results present conclusive evidence supporting a negative role for SRSF1 in MDM2 alternative splicing. Importantly, we define for the first time, a clear-cut mechanism for the regulation of damage-induced MDM2 splicing and present potential strategies for manipulating MDM2 expression via splicing modulation. PMID:25845590

  8. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation.

    PubMed

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay; Lambert, Ian Henry

    2016-06-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21(Waf1/Cip1), Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21(Waf1/Cip1) as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21(Waf1/Cip1) and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  9. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  10. MDM2-p53 Pathway in Hepatocellular Carcinoma

    PubMed Central

    Meng, Xuan; Franklin, Derek A; Dong, Jiahong; Zhang, Yanping

    2015-01-01

    Abnormalities in the TP53 gene and overexpression of MDM2, a transcriptional target and negative regulator of p53, are commonly observed in cancers. The MDM2-p53 feedback loop plays an important role in tumor progression and thus, increased understanding of the pathway has the potential to improve clinical outcomes for cancer patients. Hepatocellular carcinoma (HCC) has emerged as one of the most commonly diagnosed forms of human cancer; yet, the current treatment for HCC is less effective than those used against other cancers. We review the current studies of the MDM2-p53 pathway in cancer with a focus on HCC, and specifically discuss the impact of p53 mutations along with other alterations of the MDM2-p53 feedback loop in HCC. We also discuss the potential diagnostic and prognostic applications of p53 and MDM2 in malignant tumors as well as therapeutic avenues that are being developed to target the MDM2-p53 pathway. PMID:25477334

  11. The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization.

    PubMed

    Leslie, Patrick L; Ke, Hengming; Zhang, Yanping

    2015-05-15

    The oncoprotein murine double minute 2 (MDM2) is an E3 ligase that plays a prominent role in p53 suppression by promoting its polyubiquitination and proteasomal degradation. In its active form, MDM2 forms homodimers as well as heterodimers with the homologous protein murine double minute 4 (MDMX), both of which are thought to occur through their respective C-terminal RING (really interesting new gene) domains. In this study, using multiple MDM2 mutants, we show evidence suggesting that MDM2 homo- and heterodimerization occur through distinct mechanisms because MDM2 RING domain mutations that inhibit MDM2 interaction with MDMX do not affect MDM2 interaction with WT MDM2. Intriguingly, deletion of a portion of the MDM2 central acidic domain selectively inhibits interaction with MDM2 while leaving intact the ability of MDM2 to interact with MDMX and to ubiquitinate p53. Further analysis of an MDM2 C-terminal deletion mutant reveals that the C-terminal residues of MDM2 are required for both MDM2 and MDMX interaction. Collectively, our results suggest a model in which MDM2-MDMX heterodimerization requires the extreme C terminus and proper RING domain structure of MDM2, whereas MDM2 homodimerization requires the extreme C terminus and the central acidic domain of MDM2, suggesting that MDM2 homo- and heterodimers utilize distinct MDM2 domains. Our study is the first to report mutations capable of separating MDM2 homo- and heterodimerization. PMID:25809483

  12. P53 and MDM2 co-expression in tobacco and betel chewing-associated oral squamous cell carcinomas.

    PubMed

    Shwe, M; Chiguchi, G; Yamada, S; Nakajima, T; Maung, K K; Takagi, M; Amagasa, T; Tsuchida, N

    2001-12-01

    Oral cancers of tobacco and betel chewers represents a unique in-vivo model to understand the genotoxic effect of tobacco and betel carcinogens on oncogenes and tumor suppressor genes. Coordinated interactions of p53 and MDM2 play an important role in regulation of critical growth control gene following exposure to DNA damaging agents. The purpose of this study is to determine if the tumor suppressor function of p53 is inactivated by mutation or other alternative mechanisms in carcinogen-induced oral squamous cell carcinoma (SCC), and to investigate the clinicopathological significance of p53 and MDM2 expression. The p53 mutation in oral SCC of tobacco and betel chewers (n=40) was detected by polymerase chain reaction - single strand conformation polymorphism (PCR-SSCP) analysis and immunohistochemistry (IHC) was done to investigate p53 and MDM2 proteins overexpression. The incidence of p53 mutation was relatively low (17.5%), but there was a high prevalence of MDM2 overexpression (72.5%). In the total of 40 cases, IHC phenotype showed p53 positive immunostaining with MDM2 positive immunostaining (p53+/MDM2+) 62.5%, p53 negative immunostaining with MDM2 negative immunostaining (p53-/MDM2-) 15%, p53 positive immunostaining with MDM2 negative immunostaining (p53+/MDM2-) 12.5%, and p53 negative immunostaining with MDM2 positive immunostaining (p53-/MDM2+) 10%. A significant correlation was found between MDM2 and p53 overexpression (p=0.0289). Moreover, p53+/MDM2+ phenotype was significantly associated with poorly differentiated tumors (p= 0.0007). These results conclude that other factors than p53 mutation is likely to be the targets of tobacco/betel carcinogens and MDM2 may play an important role in tobacco/betel chewing-related oral SCCs. Overexpression of MDM2 protein may constitute an alternative mechanism for p53 inactivation. PMID:12160248

  13. Discovery of RG7112: A Small-Molecule MDM2 Inhibitor in Clinical Development

    PubMed Central

    2013-01-01

    The p53 tumor suppressor is a potent transcription factor that plays a key role in the regulation of cellular responses to stress. It is controlled by its negative regulator MDM2, which binds directly to p53 and inhibits its transcriptional activity. MDM2 also targets p53 for degradation by the proteasome. Many tumors produce high levels of MDM2, thereby impairing p53 function. Restoration of p53 activity by inhibiting the p53-MDM2 interaction may represent a novel approach to cancer treatment. RG7112 (2g) is the first clinical small-molecule MDM2 inhibitor designed to occupy the p53-binding pocket of MDM2. In cancer cells expressing wild-type p53, RG7112 stabilizes p53 and activates the p53 pathway, leading to cell cycle arrest, apoptosis, and inhibition or regression of human tumor xenografts. PMID:24900694

  14. Discovery of RG7112: A Small-Molecule MDM2 Inhibitor in Clinical Development.

    PubMed

    Vu, Binh; Wovkulich, Peter; Pizzolato, Giacomo; Lovey, Allen; Ding, Qingjie; Jiang, Nan; Liu, Jin-Jun; Zhao, Chunlin; Glenn, Kelli; Wen, Yang; Tovar, Christian; Packman, Kathryn; Vassilev, Lyubomir; Graves, Bradford

    2013-05-01

    The p53 tumor suppressor is a potent transcription factor that plays a key role in the regulation of cellular responses to stress. It is controlled by its negative regulator MDM2, which binds directly to p53 and inhibits its transcriptional activity. MDM2 also targets p53 for degradation by the proteasome. Many tumors produce high levels of MDM2, thereby impairing p53 function. Restoration of p53 activity by inhibiting the p53-MDM2 interaction may represent a novel approach to cancer treatment. RG7112 (2g) is the first clinical small-molecule MDM2 inhibitor designed to occupy the p53-binding pocket of MDM2. In cancer cells expressing wild-type p53, RG7112 stabilizes p53 and activates the p53 pathway, leading to cell cycle arrest, apoptosis, and inhibition or regression of human tumor xenografts. PMID:24900694

  15. p53 AND MDM2 PROTEIN EXPRESSION IN ACTINIC CHEILITIS

    PubMed Central

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia. PMID:19082401

  16. IMPORTANCE OF APOPTOSIS MARKERS (MDM2, BCL-2 AND Bax) IN CONVENTIONAL RENAL CELL CARCINOMA.

    PubMed

    Saker, Z; Tsintsadze, O; Jiqia, I; Managadze, L; Chkhotua, A

    2015-12-01

    The goal of the current study was to analyze the expression of Bcl-2, MDM2 and Bax in benign and malignant renal tissue samples and assess their possible association with different clinical parameters. Prognostic significance of the markers in recurrence-free and cancer-specific survivals has also been evaluated. Activity of MDM2, Bcl-2 and Bax was evaluated in: 24 normal human kidney tissues resected from the patients of different ages (range: 21-80 years), and in 52 conventional RCC samples. Intensity of the markers' expression was compared between the groups and correlation was analyzed with different clinical parameters. Activity of anti-apoptotic MDM2 and Bcl-2 was significantly elevated while activity of pro-apoptotic Bax was decreased in RCC as compared with normal kidney tissues. Bax expression was positively correlated with patient age. Significant association has been detected between the evaluated markers and cancer clinical parameters like: tumor stage, grade, lymph node and distant metastases. The markers' activity was associates with the tumor morphological features, in particular: presence of tumor necrosis and microvascular invasion. Disease recurrence and 5-year patient survival were associated with the markers' activity. Cox regression analyses have shown that tumor size, pathological stage and grade are the risk factors for disease recurrence and patient death. Expression of MDM2 and Bcl-2 is significantly up-regulated, while Bax is down-regulated in RCC as compared with normal kidney tissue. Intensity of the markers'activities is associated with the tumor pathological and clinical parameters (stage, grade, lymph node and distant metastases, tumor recurrence and patient survival). Further studies with more patients and longer follow-up will uncover the clinical importance of the evaluated markers in RCC. PMID:26719546

  17. MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation.

    PubMed

    Jin, Yetao; Lee, Hunjoo; Zeng, Shelya X; Dai, Mu-Shui; Lu, Hua

    2003-12-01

    The CDK inhibitor p21waf1/cip1 is degraded by a ubiquitin-independent proteolytic pathway. Here, we show that MDM2 mediates this degradation process. Overexpression of wild-type or ring finger-deleted, but not nuclear localization signal (NLS)-deleted, MDM2 decreased p21waf1/cip1 levels without ubiquitylating this protein and affecting its mRNA level in p53(-/-) cells. This decrease was reversed by the proteasome inhibitors MG132 and lactacystin, by p19(arf), and by small interfering RNA (siRNA) against MDM2. p21waf1/cip1 bound to MDM2 in vitro and in cells. The p21waf1/cip1-binding-defective mutant of MDM2 was unable to degrade p21waf1/cip1. MDM2 shortened the half-life of both exogenous and endogenous p21waf1/cip1 by 50% and led to the degradation of its lysine-free mutant. Consequently, MDM2 suppressed p21waf1/cip1-induced cell growth arrest of human p53(-/-) and p53(-/-)/Rb(-/-)cells. These results demonstrate that MDM2 directly inhibits p21waf1/cip1 function by reducing p21waf1/cip1 stability in a ubiquitin-independent fashion. PMID:14633995

  18. MDM2 induces hyperplasia and premalignant lesions when expressed in the basal layer of the epidermis

    PubMed Central

    Ganguli, Gitali; Abecassis, Joseph; Wasylyk, Bohdan

    2000-01-01

    The MDM2 oncogene is overexpressed in 5–10% of human tumours. Its major physiological role is to inhibit the tumour suppressor p53. However, MDM2 has p53-independent effects on differentiation and does not predispose to tumorigenesis when it is expressed in the granular layer of the epidermis. These unexpected properties of MDM2 could be tissue specific or could depend on the differentiation state of the cells. Strikingly, we found that MDM2 has p53-dependent effects on differentiation, proliferation and apoptosis when it is expressed in the less differentiated basal layer cells. MDM2 inhibits UV induction of p53, the cell cycle inhibitor p21WAF1/CIP1 and apoptosis (‘sunburn cells’). Importantly, MDM2 increases papilloma formation induced by chemical carcinogenesis and predisposes to the appearance of premalignant lesions and squamous cell carcinomas. p53 has a natural role in the protection against UV damage in the basal layer of the epidermis. Our results show that MDM2 predisposes to tumorigenesis when expressed at an early stage of differentiation, and provide a mouse model of MDM2 tumorigenesis relevant to p53’s tumour suppressor functions. PMID:11013216

  19. Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649).

    PubMed

    Knappskog, Stian; Gansmo, Liv B; Dibirova, Khadizha; Metspalu, Andres; Cybulski, Cezary; Peterlongo, Paolo; Aaltonen, Lauri; Vatten, Lars; Romundstad, Pål; Hveem, Kristian; Devilee, Peter; Evans, Gareth D; Lin, Dongxin; Van Camp, Guy; Manolopoulos, Vangelis G; Osorio, Ana; Milani, Lili; Ozcelik, Tayfun; Zalloua, Pierre; Mouzaya, Francis; Bliznetz, Elena; Balanovska, Elena; Pocheshkova, Elvira; Kučinskas, Vaidutis; Atramentova, Lubov; Nymadawa, Pagbajabyn; Titov, Konstantin; Lavryashina, Maria; Yusupov, Yuldash; Bogdanova, Natalia; Koshel, Sergey; Zamora, Jorge; Wedge, David C; Charlesworth, Deborah; Dörk, Thilo; Balanovsky, Oleg; Lønning, Per E

    2014-09-30

    The MDM2 promoter SNP285C is located on the SNP309G allele. While SNP309G enhances Sp1 transcription factor binding and MDM2 transcription, SNP285C antagonizes Sp1 binding and reduces the risk of breast-, ovary- and endometrial cancer. Assessing SNP285 and 309 genotypes across 25 different ethnic populations (>10.000 individuals), the incidence of SNP285C was 6-8% across European populations except for Finns (1.2%) and Saami (0.3%). The incidence decreased towards the Middle-East and Eastern Russia, and SNP285C was absent among Han Chinese, Mongolians and African Americans. Interhaplotype variation analyses estimated SNP285C to have originated about 14,700 years ago (95% CI: 8,300 - 33,300). Both this estimate and the geographical distribution suggest SNP285C to have arisen after the separation between Caucasians and modern day East Asians (17,000 - 40,000 years ago). We observed a strong inverse correlation (r = -0.805; p < 0.001) between the percentage of SNP309G alleles harboring SNP285C and the MAF for SNP309G itself across different populations suggesting selection and environmental adaptation with respect to MDM2 expression in recent human evolution. In conclusion, we found SNP285C to be a pan-Caucasian variant. Ethnic variation regarding distribution of SNP285C needs to be taken into account when assessing the impact of MDM2 SNPs on cancer risk. PMID:25327560

  20. Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649)

    PubMed Central

    Knappskog, Stian; Gansmo, Liv B.; Dibirova, Khadizha; Metspalu, Andres; Cybulski, Cezary; Peterlongo, Paolo; Aaltonen, Lauri; Vatten, Lars; Romundstad, Pål; Hveem, Kristian; Devilee, Peter; Evans, Gareth D.; Lin, Dongxin; Camp, Guy Van; Manolopoulos, Vangelis G.; Osorio, Ana; Milani, Lili; Ozcelik, Tayfun; Zalloua, Pierre; Mouzaya, Francis; Bliznetz, Elena; Balanovska, Elena; Pocheshkova, Elvira; Kučinskas, Vaidutis; Atramentova, Lubov; Nymadawa, Pagbajabyn; Titov, Konstantin; Lavryashina, Maria; Yusupov, Yuldash; Bogdanova, Natalia; Koshel, Sergey; Zamora, Jorge; Wedge, David C.; Charlesworth, Deborah; Dörk, Thilo; Balanovsky, Oleg; Lønning, Per E.

    2014-01-01

    The MDM2 promoter SNP285C is located on the SNP309G allele. While SNP309G enhances Sp1 transcription factor binding and MDM2 transcription, SNP285C antagonizes Sp1 binding and reduces the risk of breast-, ovary- and endometrial cancer. Assessing SNP285 and 309 genotypes across 25 different ethnic populations (>10.000 individuals), the incidence of SNP285C was 6-8% across European populations except for Finns (1.2%) and Saami (0.3%). The incidence decreased towards the Middle-East and Eastern Russia, and SNP285C was absent among Han Chinese, Mongolians and African Americans. Interhaplotype variation analyses estimated SNP285C to have originated about 14,700 years ago (95% CI: 8,300 – 33,300). Both this estimate and the geographical distribution suggest SNP285C to have arisen after the separation between Caucasians and modern day East Asians (17,000 - 40,000 years ago). We observed a strong inverse correlation (r = -0.805; p < 0.001) between the percentage of SNP309G alleles harboring SNP285C and the MAF for SNP309G itself across different populations suggesting selection and environmental adaptation with respect to MDM2 expression in recent human evolution. In conclusion, we found SNP285C to be a pan-Caucasian variant. Ethnic variation regarding distribution of SNP285C needs to be taken into account when assessing the impact of MDM2 SNPs on cancer risk. PMID:25327560

  1. Mdm2 inhibition induces apoptosis in p53 deficient human colon cancer cells by activating p73- and E2F1-mediated expression of PUMA and Siva-1.

    PubMed

    Ray, Ramesh M; Bhattacharya, Sujoy; Johnson, Leonard R

    2011-01-01

    Camptothecin (CPT) and Nutlin-3 caused apoptosis by increasing p53 protein and its activation in intestinal epithelial cells (IEC-6). We studied the effectiveness of these inducers on apoptosis in human colon cancer cells (Caco2) lacking p53 expression. CPT failed to activate caspase-3 and cause apoptosis in these cells. The absence of p53 expression, higher basal Bcl-xL and lower Bax proteins prevented CPT-induced apoptosis. However, the Mdm2 antagonist Nutlin-3 induced apoptosis in a dose dependent manner by activating caspases-9 and -3. Nutlin-3 prevented the activation of AKT via PTEN-mediated inhibition of the PI3K pathway. Nutlin-3 increased the phosphorylation of retinoblastoma protein causing E2F1 release leading to induction of Siva-1. Nutlin-3-mediated degradation of Mdm2 caused the accumulation of p73, which induced the expression of p53 up-regulated modulator of apoptosis (PUMA). E2F1 and p73 knockdown decreased the expression of Siva and PUMA, respectively and abolished Nutlin-3-induced caspase-3 activation. Cycloheximide (CHX) inhibited Nutlin-3-induced Siva, Noxa, and PUMA expression and inhibited apoptosis in IEC-6 and Caco2 cells. These results indicate that translation of mRNAs induced by Nutlin-3 is critical for apoptosis. In summary, apoptosis in Caco2 cells lacking functional p53 occurred following the disruption of Mdm2 binding with p73 and Rb leading to the expression of pro-apoptotic proteins, PUMA, Noxa, and Siva-1. PMID:20812030

  2. RNF12 promotes p53-dependent cell growth suppression and apoptosis by targeting MDM2 for destruction.

    PubMed

    Gao, Kun; Wang, Chenji; Jin, Xiaofeng; Xiao, Jiantao; Zhang, Enceng; Yang, Xianmei; Wang, Dejie; Huang, Haojie; Yu, Long; Zhang, Pingzhao

    2016-05-28

    The oncoprotein MDM2 is an E3 ubiquitin ligase that targets tumor suppressor p53 for ubiquitination and proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Dysregulation of MDM2-p53 axis was frequently observed in human cancers. Originally, it is proposed that MDM2 degradation was mainly achieved by destructive self-ubiquitination. However, recent study suggests that MDM2 may be targeted for degradation by an external E3 ubiquitin ligase(s) under physiological levels. Here, we identified E3 ubiquitin ligase RNF12 as an MDM2-interacting protein through yeast two hybrid methods. We demonstrated that RNF12 targets MDM2 for ubiquitination and proteasomal-dependent degradation, which is independent of MDM2's self-ubiquitination activity. Accordingly, RNF12 elevates p53 protein level by abrogating MDM2-mediated p53 degradation and ubiquitination. Finally, we showed that RNF12 regulates cell growth suppression and DNA damage-induced apoptosis in a p53-dependent manner. Taken together, we establish RNF12 as a novel positive regulator of p53 pathway and an external E3 ubiquitin ligase for MDM2 destruction. These data shed light on the potential roles of RNF12 in MDM2-p53 axis and tumor suppression. PMID:26926424

  3. Ethanol extract of paeonia suffruticosa Andrews (PSE) induced AGS human gastric cancer cell apoptosis via fas-dependent apoptosis and MDM2-p53 pathways

    PubMed Central

    2012-01-01

    Background The root bark of Paeonia suffruticosa Andrews (PSE), also known as Moutan Cortex, has been widely used in Asia to treat various diseases. The molecular mechanisms by which PSE exerts its anti-oxidant and anti-inflammatory activities are well known, but its anti-cancer activity is not yet well understood. Here, we present evidence demonstrating that PSE can be used as a potent anti-cancer agent to treat gastric cancer. Methods The effects of the ethanol extract of PSE on cell proliferation were determined using an MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan) assay. Cell cytotoxicity induced by the PSE extact is measured using an LDH leakage assay. Flow cytometry was used to analyze the cell cycle and to measure the subG0/G1 apoptotic cell fraction. Apoptosis induced by the PSE extact is also examined using a DNA fragmentation assay. Western blot analysis is used to measure the levels of apoptotic proteins such as Fas receptor, caspase-8, caspase-3, PARP, Bax, Bcl-2, MDM2, and p53. Results This study demonstrated that treating AGS cells with the PSE extact significantly inhibited cell proliferation and induced cytotoxicity in a dose- and time-dependent manner. The PSE extract also induced apoptosis in AGS cells, as measured by flow cytometry and a DNA fragmentation assay. We found that the PSE extract induced apoptosis via the extrinsic Fas-mediated apoptosis pathway, which was concurrent with the activation of caspases, including caspase-8 and caspase-3, and cleavage of PARP. The MDM2-p53 pathway also played a role in the apoptosis of AGS cells that was induced by the PSE extract. Conclusions These results clearly demonstrate that the PSE extact displays growth-suppressive activity and induces apoptosis in AGS cells. Our data suggest that the PSE extact might be a potential anti-cancer agent for gastric cancer. PMID:22963678

  4. NORE1A Regulates MDM2 Via β-TrCP

    PubMed Central

    Schmidt, M. Lee; Calvisi, Diego F.; Clark, Geoffrey J.

    2016-01-01

    Mouse Double Minute 2 Homolog (MDM2) is a key negative regulator of the master tumor suppressor p53. MDM2 regulates p53 on multiple levels, including acting as an ubiquitin ligase for the protein, thereby promoting its degradation by the proteasome. MDM2 is oncogenic and is frequently found to be over-expressed in human tumors, suggesting its dysregulation plays an important role in human cancers. We have recently found that the Ras effector and RASSF (Ras Association Domain Family) family member RASSF5/NORE1A enhances the levels of nuclear p53. We have also found that NORE1A (Novel Ras Effector 1A) binds the substrate recognition component of the SCF-ubiquitin ligase complex β-TrCP. Here, we now show that NORE1A regulates MDM2 protein levels by targeting it for ubiquitination by SCF-β-TrCP. We also show the suppression of NORE1A protein levels enhances MDM2 protein expression. Finally, we show that MDM2 can suppress the potent senescence phenotype induced by NORE1A over-expression. Thus, we identify a mechanism by which Ras/NORE1A can modulate p53 protein levels. As MDM2 has several important targets in addition to p53, this finding has broad implications for cancer biology in tumor cells that have lost expression of NORE1A due to promoter methylation. PMID:27023610

  5. Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2

    PubMed Central

    Bueren-Calabuig, Juan A.; Michel, Julien

    2015-01-01

    Numerous biomolecular interactions involve unstructured protein regions, but how to exploit such interactions to enhance the affinity of a lead molecule in the context of rational drug design remains uncertain. Here clarification was sought for cases where interactions of different ligands with the same disordered protein region yield qualitatively different results. Specifically, conformational ensembles for the disordered lid region of the N-terminal domain of the oncoprotein MDM2 in the presence of different ligands were computed by means of a novel combination of accelerated molecular dynamics, umbrella sampling, and variational free energy profile methodologies. The resulting conformational ensembles for MDM2, free and bound to p53 TAD (17-29) peptide identify lid states compatible with previous NMR measurements. Remarkably, the MDM2 lid region is shown to adopt distinct conformational states in the presence of different small-molecule ligands. Detailed analyses of small-molecule bound ensembles reveal that the ca. 25-fold affinity improvement of the piperidinone family of inhibitors for MDM2 constructs that include the full lid correlates with interactions between ligand hydrophobic groups and the C-terminal lid region that is already partially ordered in apo MDM2. By contrast, Nutlin or benzodiazepinedione inhibitors, that bind with similar affinity to full lid and lid-truncated MDM2 constructs, interact additionally through their solubilizing groups with N-terminal lid residues that are more disordered in apo MDM2. PMID:26046940

  6. The p53 inhibitor MDM2 facilitates Sonic Hedgehog-mediated tumorigenesis and influences cerebellar foliation.

    PubMed

    Malek, Reem; Matta, Jennifer; Taylor, Natalie; Perry, Mary Ellen; Mendrysa, Susan M

    2011-01-01

    Disruption of cerebellar granular neuronal precursor (GNP) maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh) pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2(puro)), which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1(+/-) mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis. PMID:21437245

  7. p38 MAPK-induced MDM2 degradation confers paclitaxel resistance through p53-mediated regulation of EGFR in human lung cancer cells

    PubMed Central

    Park, Shin-Hyung; Seong, Myeong-A; Lee, Ho-Young

    2016-01-01

    Paclitaxel (PTX) is a chemotherapeutic agent that is used to treat a variety of cancers, including non-small cell lung cancer (NSCLC). However, the emergence of drug resistance limits the utility of PTX. This study determined the signaling pathway that contributes to PTX resistance. We first established PTX resistant cell lines (H460/R and 226B/R) using a dose-escalating maintenance of PTX. We found that p38 MAPK and epidermal growth factor receptor (EGFR) were constitutively activated in these cell lines. The inhibition of p38 MAPK activity by SB203580 treatment or the transfection of dominant-negative p38 MAPK sensitized both cell lines to PTX treatment. Erlotinib, an EGFR inhibitor, also increased PTX-induced apoptosis in PTX resistant cells, which suggests a role for p38 MAPK and EGFR in the development of PTX resistance. We demonstrated that p38 MAPK enhanced EGFR expression via the induction of the rapid degradation of mouse double-minute 2 homolog (MDM2) and the consequent stabilization of p53, a transcription factor of EGFR. These results suggest for the first time that the p38 MAPK/p53/EGFR axis is crucial for the facilitation of PTX resistance in NSCLCs. We also propose a mechanism for the role of the tumor-suppressor p53 in drug resistance. These results provide a foundation for the future development of potential therapeutic strategies to regulate the p38 MAPK/p53/EGFR pathway for the treatment of lung cancer patients with PTX resistance. PMID:26799187

  8. Mutations in the TP53 gene and protein expression of p53, MDM 2 and p21/WAF-1 in primary cervical carcinomas with no or low human papillomavirus load.

    PubMed Central

    Helland, A.; Karlsen, F.; Due, E. U.; Holm, R.; Kristensen, G.; Børresen-Dale, A. l.

    1998-01-01

    Several studies have focused on the role of p53 inactivation in cervical cancer, either by inactivating mutations in the TP53 gene or by degradation of the p53 protein by human papillomavirus (HPV). In this study, primary cervical carcinomas from 365 patients were analysed for presence of HPV using both consensus primer-sets and type-specific primer-sets. Nineteen samples were determined to have no or low virus load, and were selected for further analyses: mutation screening of the TP53 gene using constant denaturant gel electrophoresis (CDGE) followed by sequencing, and protein expression of p53, MDM2 and p21 using immunohistochemistry (IHC). Mutations in the TP53 gene were found in eight samples (42%). Elevated p53 protein expression was significantly associated with presence of a mutation (P < 0.007). P21 protein expression was detected in 16 of the 19 carcinomas. No p21 expression was seen in normal cervical tissue. Two samples, both with wild-type p53, had elevated MDM2 expression. Compared with a previous study from our group, of mainly HPV-positive cervical carcinomas, in which only one sample was found to contain a TP53 mutation, a significantly higher mutation frequency (P < 0.001) was found among the carcinomas with no or low virus load. Although p53 inactivation pathways are not detected in every tumour, our study supports the hypothesis that p53 inactivation, either by binding to cellular or viral proteins or by mutation, is essential in the development of cervical carcinomas. Images Figure 1 PMID:9662253

  9. Synergistic roles of p53 and HIF1α in human renal cell carcinoma-cell apoptosis responding to the inhibition of mTOR and MDM2 signaling pathways

    PubMed Central

    Liu, Qing-jun; Shen, Hong-liang; Lin, Jun; Xu, Xiu-hong; Ji, Zheng-guo; Han, Xiao; Shang, Dong-hao; Yang, Pei-qian

    2016-01-01

    Introduction mTOR and MDM2 signaling pathways are frequently deregulated in cancer development, and inhibition of mTOR or MDM2 independently enhances carcinoma-cell apoptosis. However, responses to mTOR and MDM2 antagonists in renal cell carcinoma (RCC) remain unknown. Materials and methods A498 cells treated with MDM2 antagonist MI-319 and/or mTOR inhibitor rapamycin were employed in the present study. Cell apoptosis and Western blot analysis were performed. Results and conclusion We found that the MDM2 inhibitor MI-319 induced RCC cell apoptosis mainly dependent on p53 overexpression, while the mTOR antagonist rapamycin promoted RCC cell apoptosis primarily through upregulation of HIF1α expression. Importantly, strong synergistic effects of MI-319 and rapamycin combinations at relatively low concentrations on RCC cell apoptosis were observed. Depletion of p53 or HIF1α impaired both antagonist-elicited apoptoses to differential extents, corresponding to their expression changes responding to chemical treatments, and double knockdown of p53 and HIF1α remarkably hindered MI-319- or rapamycin-induced apoptosis, suggesting that both p53 and HIF1α are involved in MDM2 or mTOR antagonist-induced apoptosis. Collectively, we propose that concurrent activation of p53 and HIF1α may effectively result in cancer-cell apoptosis, and that combined MDM2 antagonists and mTOR inhibitors may be useful in RCC therapy. PMID:26937175

  10. Hydrophilic Residues Are Crucial for Ribosomal Protein L11 (RPL11) Interaction with Zinc Finger Domain of MDM2 and p53 Protein Activation*

    PubMed Central

    Zhang, Qi; Xiao, Hui; Chai, Sergio C.; Hoang, Quyen Q.; Lu, Hua

    2011-01-01

    Ribosomal protein L11 (RPL11) has been shown to activate p53 by binding to MDM2 and negating its p53 suppression activity in response to ribosomal stress. Although a mutation at Cys-305 within the zinc finger domain of MDM2 has been shown to drastically impair MDM2 interaction with RPL11 and thus escapes the inhibition by this ribosomal protein, it still remains elusive whether RPL11 inactivates MDM2 via direct action on this zinc finger domain and what is the chemical nature of this specific interaction. To define the roles of the MDM2 zinc finger in association with RPL11, we conducted hydrogen-deuterium exchange mass spectrometry, computational modeling, circular dichroism, and mutational analyses of the zinc finger domain of MDM2 and human RPL11. Our study reveals that RPL11 forms a stable complex with MDM2 in vitro through direct contact with its zinc finger. This binding is disrupted by single mutations of non-cysteine amino acids within the zinc finger domain of MDM2. Basic residues in RPL11 are crucial for the stable binding and RPL11 suppression of MDM2 activity toward p53. These results provide the first line of evidence for the specific interaction between RPL11 and the zinc finger of MDM2 via hydrophilic residues as well as a molecular foundation for better understanding RPL11 inhibition of MDM2 function. PMID:21903592

  11. The Many Faces of MDM2 Binding Partners

    PubMed Central

    Riley, Maurisa F.

    2012-01-01

    Mdm2 is an essential regulator of the p53 tumor suppressor. Mdm2 is modified at transcriptional, post-transcriptional, and post-translational levels to control p53 activity in normal versus stressed cells. Importantly, errors in these regulatory mechanisms can result in aberrant Mdm2 expression and failure to initiate programmed cell death in response to DNA damage. Such errors can have severe consequences as evidenced by tumor phenotypes resulting from amplification at the Mdm2 locus and changes in post-transcriptional and post-translational regulation of Mdm2. Although Mdm2 mediated inhibition of p53 is well characterized, Mdm2 interacts with many additional proteins and also targets many of these for proteosomal degradation. Mdm2 also has E3-ligase independent functions and p53-independent functions that have important implications for genome stability and cancer. PMID:23150756

  12. Altered expression of p53 and MDM2 proteins in hematological malignancies.

    PubMed

    Koníková, E; Kusenda, J

    2003-01-01

    In order to define the possible role of the MDM2 gene in the pathogenesis of human leukemia, the expression of MDM2 protein was examined in samples of fixed-permeabilized peripheral blood (PB) or bone marrow (BM) cells of leukemic patients by using flow cytometry. The present study showed, that normal PB and BM cells expressed low levels of MDM2. Overexpression of this protein was more frequently found in leukemic cells, namely in samples of patients with advanced, than those in incipient clinical stage of disease at examination. Of the 34 leukemias tested in our laboratory 24 (70%) showed abnormal expression of the MDM2 protein. This include 8/12 (66%) ALL, 10/13 (76%) B-CLL, and 6/9 (66%) AML. Since MDM2 and p53 are functionally related and overexpression of MDM2 can abrogate wild (wt)-p53 tumor suppressive function, we examined simultaneously with MDM2 protein expression also the expression of both wt-p53 and mutant (mt)-p53 with two MoAbs (Ab5 and Pab240). As measured by flow cytometry only a small part of the observed wt-p53 protein was in true wt-conformation (Ab5+), while most was in mt-conformation (Pab240+), which could mean, that most of the p53 protein in the cells was not functional, as in its usual role as a suppressor of the cell cycle. The MDM2 positive cases were negative for p53 (Pab240-) in hematopoietic cells of patients with B- and T-ALL at diagnosis and in relapsed disease. Samples of patients in remission with immunophenotype of normal cells were p53 and MDM2 negative. The expression of Ki67 antigen a nuclear protein associated with cell proliferation was used to verify the proliferative activity of the leukemic cells. Results of the two-color flow cytometric assay, which allows better definition of pathologic cell populations and nuclear fluorescence data for p53, MDM2 or Ki67 on a population of cells expressing only a given surface blast marker, confirmed their coexpression in the same cell. Our preliminary results supported the view that

  13. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification

    PubMed Central

    Kwon, Duk-Hwa; Eom, Gwang Hyeon; Ko, Jeong Hyeon; Shin, Sera; Joung, Hosouk; Choe, Nakwon; Nam, Yoon Seok; Min, Hyun-Ki; Kook, Taewon; Yoon, Somy; Kang, Wanseok; Kim, Yong Sook; Kim, Hyung Seok; Choi, Hyuck; Koh, Jeong-Tae; Kim, Nacksung; Ahn, Youngkeun; Cho, Hyun-Jai; Lee, In-Kyu; Park, Dong Ho; Suk, Kyoungho; Seo, Sang Beom; Wissing, Erin R.; Mendrysa, Susan M.; Nam, Kwang-Il; Kook, Hyun

    2016-01-01

    Vascular calcification (VC) is often associated with cardiovascular and metabolic diseases. However, the molecular mechanisms linking VC to these diseases have yet to be elucidated. Here we report that MDM2-induced ubiquitination of histone deacetylase 1 (HDAC1) mediates VC. Loss of HDAC1 activity via either chemical inhibitor or genetic ablation enhances VC. HDAC1 protein, but not mRNA, is reduced in cell and animal calcification models and in human calcified coronary artery. Under calcification-inducing conditions, proteasomal degradation of HDAC1 precedes VC and it is mediated by MDM2 E3 ubiquitin ligase that initiates HDAC1 K74 ubiquitination. Overexpression of MDM2 enhances VC, whereas loss of MDM2 blunts it. Decoy peptide spanning HDAC1 K74 and RG 7112, an MDM2 inhibitor, prevent VC in vivo and in vitro. These results uncover a previously unappreciated ubiquitination pathway and suggest MDM2-mediated HDAC1 ubiquitination as a new therapeutic target in VC. PMID:26832969

  14. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification.

    PubMed

    Kwon, Duk-Hwa; Eom, Gwang Hyeon; Ko, Jeong Hyeon; Shin, Sera; Joung, Hosouk; Choe, Nakwon; Nam, Yoon Seok; Min, Hyun-Ki; Kook, Taewon; Yoon, Somy; Kang, Wanseok; Kim, Yong Sook; Kim, Hyung Seok; Choi, Hyuck; Koh, Jeong-Tae; Kim, Nacksung; Ahn, Youngkeun; Cho, Hyun-Jai; Lee, In-Kyu; Park, Dong Ho; Suk, Kyoungho; Seo, Sang Beom; Wissing, Erin R; Mendrysa, Susan M; Nam, Kwang-Il; Kook, Hyun

    2016-01-01

    Vascular calcification (VC) is often associated with cardiovascular and metabolic diseases. However, the molecular mechanisms linking VC to these diseases have yet to be elucidated. Here we report that MDM2-induced ubiquitination of histone deacetylase 1 (HDAC1) mediates VC. Loss of HDAC1 activity via either chemical inhibitor or genetic ablation enhances VC. HDAC1 protein, but not mRNA, is reduced in cell and animal calcification models and in human calcified coronary artery. Under calcification-inducing conditions, proteasomal degradation of HDAC1 precedes VC and it is mediated by MDM2 E3 ubiquitin ligase that initiates HDAC1 K74 ubiquitination. Overexpression of MDM2 enhances VC, whereas loss of MDM2 blunts it. Decoy peptide spanning HDAC1 K74 and RG 7112, an MDM2 inhibitor, prevent VC in vivo and in vitro. These results uncover a previously unappreciated ubiquitination pathway and suggest MDM2-mediated HDAC1 ubiquitination as a new therapeutic target in VC. PMID:26832969

  15. The Clustered, Regularly Interspaced, Short Palindromic Repeats-associated Endonuclease 9 (CRISPR/Cas9)-created MDM2 T309G Mutation Enhances Vitreous-induced Expression of MDM2 and Proliferation and Survival of Cells.

    PubMed

    Duan, Yajian; Ma, Gaoen; Huang, Xionggao; D'Amore, Patricia A; Zhang, Feng; Lei, Hetian

    2016-07-29

    The G309 allele of SNPs in the mouse double minute (MDM2) promoter locus is associated with a higher risk of cancer and proliferative vitreoretinopathy (PVR), but whether SNP G309 contributes to the pathogenesis of PVR is to date unknown. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas) 9 from Streptococcus pyogenes (SpCas9) can be harnessed to manipulate a single or multiple nucleotides in mammalian cells. Here we delivered SpCas9 and guide RNAs using dual adeno-associated virus-derived vectors to target the MDM2 genomic locus together with a homologous repair template for creating the mutation of MDM2 T309G in human primary retinal pigment epithelial (hPRPE) cells whose genotype is MDM2 T309T. The next-generation sequencing results indicated that there was 42.51% MDM2 G309 in the edited hPRPE cells using adeno-associated viral CRISPR/Cas9. Our data showed that vitreous induced an increase in MDM2 and subsequent attenuation of p53 expression in MDM2 T309G hPRPE cells. Furthermore, our experimental results demonstrated that MDM2 T309G in hPRPE cells enhanced vitreous-induced cell proliferation and survival, suggesting that this SNP contributes to the pathogenesis of PVR. PMID:27246850

  16. MDM2-Mediated Degradation of p14ARF: A Novel Mechanism to Control ARF Levels in Cancer Cells

    PubMed Central

    Vivo, Maria; Matarese, Maria; Sepe, Maria; Di Martino, Rosaria; Festa, Luisa; Calabrò, Viola; Mantia, Girolama La; Pollice, Alessandra

    2015-01-01

    We here show a new relationship between the human p14ARF oncosuppressor and the MDM2 oncoprotein. MDM2 overexpression in various cancer cell lines causes p14ARF reduction inducing its degradation through the proteasome. The effect does not require the ubiquitin ligase activity of MDM2 and preferentially occurs in the cytoplasm. Interestingly, treatment with inhibitors of the PKC (Protein Kinase C) pathway and use of p14ARF phosphorylation mutants indicate that ARF phosphorylation could play a role in MDM2 mediated ARF degradation reinforcing our previous observations that ARF phosphorylation influences its stability and biological activity. Our study uncovers a new potentially important mechanism through which ARF and MDM2 can counterbalance each other during the tumorigenic process. PMID:25723571

  17. cIAP2 represses IKKα/β-mediated activation of MDM2 to prevent p53 degradation.

    PubMed

    Lau, Rosanna; Niu, Min Ying; Pratt, M A Christine

    2012-11-01

    Cellular inhibitor of apoptosis proteins (cIAP1 and cIAP2) function to prevent apoptosis and are often overexpressed in various cancers. However, mutations in cIAP1/2 can activate the alternative NFκB pathway through IκBα-kinase-α (IKKα) and are associated with hematopoetic malignancies. In the current study, we found that knockdown of cIAP2 in human mammary epithelial cells resulted in activation of MDM2 through increased SUMOylation and profound reduction of the pool of MDM2 not phosphorylated at Ser166. cIAP2 siRNA markedly decreased p53 levels, which were rescued by addition of the MDM2 inhibitor, Nutlin3a. An IAP antagonist, which induces cIAP degradation, transiently increased MDM2 mRNA. Simultaneous transfection of siRNA for cIAP2 and IKKα reduced MDM2 protein, while expression of a kinase-dead IKKβ strongly increased non-Ser166 P-MDM2. Inhibition of either IKKα or -β partially rescued p53 levels, while concomitant IKKα/β inhibition fully rescued p53 after cIAP2 knockdown. Surprisingly, IKKα knockdown alone increased SUMO-MDM2, suggesting that in the absence of activation, IKKα can prevent MDM2 SUMOylation. cIAP2 knockdown disrupted the interaction between the MDM2 SUMO ligase, PIAS1 and IKKα. Partial knockdown of cIAP2 cooperated with (V12) H-ras-transfected mammary epithelial cells to enhance colony formation. In summary, our data identify a novel role for cIAP2 in maintaining wild-type p53 levels by preventing both an NFκB-mediated increase and IKKα/-β-dependent transcriptional and post-translational modifications of MDM2. Thus, mutations or reductions in cIAP2 could contribute to cancer promotion, in part, through downregulation of p53. PMID:23032264

  18. Genistein, a dietary isoflavone, down-regulates the MDM2 oncogene at both transcriptional and posttranslational levels.

    PubMed

    Li, Mao; Zhang, Zhuo; Hill, Donald L; Chen, Xinbin; Wang, Hui; Zhang, Ruiwen

    2005-09-15

    Although genistein has chemopreventive effects in several human malignancies, including cancers of the breast, colon, and prostate, the mechanisms of action are not fully understood. Herein we report novel mechanisms whereby genistein down-regulates the MDM2 oncogene, perhaps explaining some of its anticancer activities. In a dose- and time-dependent manner, genistein reduced MDM2 protein and mRNA levels in human cell lines of breast, colon, and prostate cancer; primary fibroblasts; and breast epithelial cells. The inhibitory effects were found at both transcriptional and posttranslational levels and were independent of tyrosine kinase pathways. We found that the NFAT transcription site in the region between -132 and +33 in the MDM2 P2 promoter was responsive to genistein. At the posttranslational level, genistein induced ubiquitination of MDM2, which led to its degradation. Additionally, genistein induced apoptosis and G2 arrest and inhibited proliferation in a variety of human cancer cell lines, regardless of p53 status. We further showed that MDM2 overexpression abrogated genistein-induced apoptosis in vitro and that genistein inhibited MDM2 expression and tumor growth in PC3 xenografts. In conclusion, genistein directly down-regulates the MDM2 oncogene, representing a novel mechanism of its action that may have implications for its chemopreventive and chemotherapeutic effects. PMID:16166295

  19. A deficiency in Mdm2 binding protein (MTBP) inhibits Myc-induced B cell proliferation and lymphomagenesis

    PubMed Central

    Odvody, Jessica; Vincent, Tiffaney; Arrate, Maria Pia; Grieb, Brian; Wang, Shuo; Garriga, Judit; Lozano, Guillermina; Iwakuma, Tomoo; Haines, Dale S.; Eischen, Christine M.

    2010-01-01

    Mdm2 binding protein (MTBP) has been implicated in cell cycle arrest and the Mdm2-p53 tumor suppressor pathway through its interaction with Mdm2. To determine the function of MTBP in tumorigenesis and its potential role in the Mdm2-p53 pathway, we crossed Mtbp deficient mice to Eµ-myc transgenic mice, in which overexpression of the oncogene c-Myc induces B cell lymphomas primarily through inactivation of the Mdm2-p53 pathway. We report that Myc-induced B cell lymphoma development in Mtbp heterozygous mice was profoundly delayed. Surprisingly, reduced levels of Mtbp did not lead to an increase in B cell apoptosis or affect Mdm2. Instead, an Mtbp deficiency inhibited Myc-induced proliferation and the upregulation of Myc target genes necessary for cell growth. Consistent with a role in proliferation, Mtbp expression was induced by Myc and other factors that promote cell cycle progression and was elevated in lymphomas from humans and mice. Therefore, Mtbp functioned independent of Mdm2 and was a limiting factor for the proliferative and transforming functions of Myc. Thus, Mtbp is a previously unrecognized regulator of Myc-induced tumorigenesis. PMID:20305689

  20. MDM2/MDMX: Master negative regulators for p53 and RB.

    PubMed

    Hu, Linshan; Zhang, Haibo; Bergholz, Johann; Sun, Shengnan; Xiao, Zhi-Xiong Jim

    2016-03-01

    MDM2 (mouse double minute 2 homolog) and MDMX (double minute X human homolog, also known as MDM4) are critical negative regulators of tumor protein p53. Our recent work shows that MDMX binds to and promotes degradation of retinoblastoma protein (RB) in an MDM2-dependent manner. In a xenograft tumor growth mouse model, silencing of MDMX results in inhibition of p53-deficient tumor growth, which can be effectively reversed by concomitant RB silencing. Thus, MDMX exerts its oncogenic activity via suppression of RB. PMID:27308631

  1. MDM2 binds and inhibits vitamin D receptor

    PubMed Central

    Heyne, Kristina; Heil, Tessa-Carina; Bette, Birgit; Reichrath, Jörg; Roemer, Klaus

    2015-01-01

    The E3 ubiquitin ligase and transcriptional repressor MDM2 is a potent inhibitor of the p53 family of transcription factors and tumor suppressors. Herein, we report that vitamin D receptor (VDR), another transcriptional regulator and probably, tumor suppressor, is also bound and inhibited by MDM2. This interaction was not affected by vitamin D ligand. VDR was ubiquitylated in the cell and its steady-state level was controlled by the proteasome. Strikingly, overproduced MDM2 reduced the level of VDR whereas knockdown of endogenous MDM2 increased the level of VDR. In addition to ubiquitin-marking proteins for degradation, MDM2, once recruited to promoters by DNA-binding interaction partners, can inhibit the transactivation of genes. Transient transfections with a VDR-responsive luciferase reporter revealed that low levels of MDM2 potently suppress VDR-mediated transactivation. Conversely, knockdown of MDM2 resulted in a significant increase of transcript from the CYP24A1 and p21 genes, noted cellular targets of transactivation by liganded VDR. Our findings suggest that MDM2 negatively regulates VDR in some analogy to p53. PMID:25969952

  2. Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction.

    PubMed

    Lemos, Agostinho; Leão, Mariana; Soares, Joana; Palmeira, Andreia; Pinto, Madalena; Saraiva, Lucília; Sousa, Maria Emília

    2016-09-01

    The growth inhibitory activity of p53 tumor suppressor is tightly regulated by interaction with two negative regulatory proteins, murine double minute 2 (MDM2) and X (MDMX), which are overexpressed in about half of all human tumors. The elucidation of crystallographic structures of MDM2/MDMX complexes with p53 has been pivotal for the identification of several classes of inhibitors of the p53-MDM2/MDMX interaction. The present review provides in silico strategies and screening approaches used in drug discovery as well as an overview of the most relevant classes of small-molecule inhibitors of the p53-MDM2/MDMX interaction, their progress in pipeline, and highlights particularities of each class of inhibitors. Most of the progress made with high-throughput screening has led to the development of inhibitors belonging to the cis-imidazoline, piperidinone, and spiro-oxindole series. However, novel potent and selective classes of inhibitors of the p53-MDM2 interaction with promising antitumor activity are emerging. Even with the discovery of the 3D structure of complex p53-MDMX, only two small molecules were reported as selective p53-MDMX antagonists, WK298 and SJ-172550. Dual inhibition of the p53-MDM2/MDMX interaction has shown to be an alternative approach since it results in full activation of the p53-dependent pathway. The knowledge of structural requirements crucial to the development of small-molecule inhibitors of the p53-MDMs interactions has enabled the identification of novel antitumor agents with improved in vivo efficacy. PMID:27302609

  3. Identification of antipsychotic drug fluspirilene as a potential p53-MDM2 inhibitor: a combined computational and experimental study.

    PubMed

    Patil, Sachin P; Pacitti, Michael F; Gilroy, Kevin S; Ruggiero, John C; Griffin, Jonathan D; Butera, Joseph J; Notarfrancesco, Joseph M; Tran, Shawn; Stoddart, John W

    2015-02-01

    The inhibition of tumor suppressor p53 protein due to its direct interaction with oncogenic murine double minute 2 (MDM2) protein, plays a central role in almost 50 % of all human tumor cells. Therefore, pharmacological inhibition of the p53-binding pocket on MDM2, leading to p53 activation, presents an important therapeutic target against these cancers expressing wild-type p53. In this context, the present study utilized an integrated virtual and experimental screening approach to screen a database of approved drugs for potential p53-MDM2 interaction inhibitors. Specifically, using an ensemble rigid-receptor docking approach with four MDM2 protein crystal structures, six drug molecules were identified as possible p53-MDM2 inhibitors. These drug molecules were then subjected to further molecular modeling investigation through flexible-receptor docking followed by Prime/MM-GBSA binding energy analysis. These studies identified fluspirilene, an approved antipsychotic drug, as a top hit with MDM2 binding mode and energy similar to that of a native MDM2 crystal ligand. The molecular dynamics simulations suggested stable binding of fluspirilene to the p53-binding pocket on MDM2 protein. The experimental testing of fluspirilene showed significant growth inhibition of human colon tumor cells in a p53-dependent manner. Fluspirilene also inhibited growth of several other human tumor cell lines in the NCI60 cell line panel. Taken together, these computational and experimental data suggest a potentially novel role of fluspirilene in inhibiting the p53-MDM2 interaction. It is noteworthy here that fluspirilene has a long history of safe human use, thus presenting immediate clinical potential as a cancer therapeutic. Furthermore, fluspirilene could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against several types of cancer. Importantly, the combined computational and experimental screening protocol

  4. microRNA-1827 represses MDM2 to positively regulate tumor suppressor p53 and suppress tumorigenesis

    PubMed Central

    Zhang, Cen; Liu, Juan; Tan, Chunwen; Yue, Xuetian; Zhao, Yuhan; Peng, Jiaping; Wang, Xiaolong; Laddha, Saurabh V.; Chan, Chang S.; Zheng, Shu; Hu, Wenwei; Feng, Zhaohui

    2016-01-01

    The tumor suppressor p53 plays a central role in tumor prevention. The E3 ubiquitin ligase MDM2 is the most critical negative regulator of p53, which binds to p53 and degrades p53 through ubiquitation. MDM2 itself is a transcriptional target of p53, and therefore, MDM2 forms a negative feedback loop with p53 to tightly regulate p53 levels and function. microRNAs (miRNAs) play a key role in regulation of gene expression. miRNA dysregulation plays an important role in tumorigenesis. In this study, we found that miRNA miR-1827 is a novel miRNA that targets MDM2 through binding to the 3′-UTR of MDM2 mRNA. miR-1827 negatively regulates MDM2, which in turn increases p53 protein levels to increase transcriptional activity of p53 and enhance p53-mediated stress responses, including apoptosis and senescence. Overexpression of miR-1827 suppresses the growth of xenograft colorectal tumors, whereas the miR-1827 inhibitor promotes tumor growth in mice in a largely p53-dependent manner. miR-1827 is frequently down-regulated in human colorectal cancer. Decreased miR-1827 expression is associated with high MDM2 expression and poor prognosis in colorectal cancer. In summary, our results reveal that miR-1827 is a novel miRNA that regulates p53 through targeting MDM2, and highlight an important role and the underlying mechanism of miR-1827 in tumor suppression. PMID:26840028

  5. Polymorphism of P53-Ets/AP1 transactivation region of MDM2 oncogene and its immunohistochemical analysis in canine tumours.

    PubMed

    Rezaie, A; Tabandeh, M R; Noori, S M A

    2016-06-01

    Mouse Double Minute-2 (MDM2) is an ubiquitin ligase which is overexpressed or its promoter polymorphism has been reported in different tumours. The objective of this study was to examine the MDM2 protein expression and its promoter polymorphism in some canine tumours. Twenty specimens were collected from 20 dogs with 15 mammary gland carcinomas, 3 lymphomas, 1 transmissible venereal tumour and 1 trichoblastoma. Samples were analysed immunohistochemically using human antibody against MDM2 protein. PCR and DNA sequencing were carried out to identify MDM2 promoter polymorphism. MDM2 gene was expressed in 13 of 20 samples including 11 mammary carcinomas, 1 lymphoma and 1 trichoblastoma. We found 94% homology between canine and human sequences. Four mutations including G169C, A177G, G291T and A177G were identified in different types of breast carcinomas. An extra p53 response element was found in a mixed mammary carcinoma. PMID:24447820

  6. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption

    PubMed Central

    Banerjee, Arundhati; Ray, Sujay

    2016-01-01

    Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations. PMID:27213086

  7. Overexpression of SKI Oncoprotein Leads to p53 Degradation through Regulation of MDM2 Protein Sumoylation*

    PubMed Central

    Ding, Boxiao; Sun, Yin; Huang, Jiaoti

    2012-01-01

    Protooncogene Ski was identified based on its ability to transform avian fibroblasts in vitro. In support of its oncogenic activity, SKI was found to be overexpressed in a variety of human cancers, although the exact molecular mechanism(s) responsible for its oncogenic activity is not fully understood. We found that SKI can negatively regulate p53 by decreasing its level through up-regulation of MDM2 activity, which is mediated by the ability of SKI to enhance sumoylation of MDM2. This stimulation of MDM2 sumoylation is accomplished through a direct interaction of SKI with SUMO-conjugating enzyme E2, Ubc9, resulting in enhanced thioester bond formation and mono-sumoylation of Ubc9. A mutant SKI defective in transformation fails to increase p53 ubiquitination and is unable to increase MDM2 levels and to increase mono-sumoylation of Ubc9, suggesting that the ability of SKI to enhance Ubc9 activity is essential for its transforming function. These results established a detailed molecular mechanism that underlies the ability of SKI to cause cellular transformation while unraveling a novel connection between sumoylation and tumorigenesis, providing potential new therapeutic targets for cancer. PMID:22411991

  8. Potential Landscape and Flux of p53-Mdm2 Oscillator Mediated by Mdm2 Degradation Rate

    NASA Astrophysics Data System (ADS)

    Bi, Yuanhong; Yang, Zhuoqin

    The dynamics of the tumor suppressor p53 can play a crucial role in deciding cell fate after DNA damage. In this paper, we explore the dynamics and stability of p53 mediated by Mdm2 degradation rate in p53-Mdm2 oscillator through bifurcation, the potential landscape and flux. Based on the investigation of the bifurcation, we find that p53 can exhibit rich dynamics including monostability, bistability of two stable steady states and oscillation behaviors as well as bistability between a stable steady state and an oscillatory state. The stability of these states are further validated by the potential landscape. In addition, oscillatory behaviors of p53 are explored by means of the negative gradient of the potential landscape and the probability flux. It is shown that the negative gradient of the potential landscape can attract the system towards the oscillatory path and the flux can drive oscillation along the path. Moreover, the quicker the flux runs, the smaller the period is. Besides, stability and sensitivity of the system are explored by the barrier height and the entropy production rate in a single cell level, and we further compare the potential landscapes at single and population cell levels. Our results may be useful for understanding the regulation of p53 signaling pathways in response to DNA damage.

  9. Clinical Overview of MDM2/X-Targeted Therapies

    PubMed Central

    Burgess, Andrew; Chia, Kee Ming; Haupt, Sue; Thomas, David; Haupt, Ygal; Lim, Elgene

    2016-01-01

    MDM2 and MDMX are the primary negative regulators of p53, which under normal conditions maintain low intracellular levels of p53 by targeting it to the proteasome for rapid degradation and inhibiting its transcriptional activity. Both MDM2 and MDMX function as powerful oncogenes and are commonly over-expressed in some cancers, including sarcoma (~20%) and breast cancer (~15%). In contrast to tumors that are p53 mutant, whereby the current therapeutic strategy restores the normal active conformation of p53, MDM2 and MDMX represent logical therapeutic targets in cancer for increasing wild-type (WT) p53 expression and activities. Recent preclinical studies suggest that there may also be situations that MDM2/X inhibitors could be used in p53 mutant tumors. Since the discovery of nutlin-3a, the first in a class of small molecule MDM2 inhibitors that binds to the hydrophobic cleft in the N-terminus of MDM2, preventing its association with p53, there is now an extensive list of related compounds. In addition, a new class of stapled peptides that can target both MDM2 and MDMX have also been developed. Importantly, preclinical modeling, which has demonstrated effective in vitro and in vivo killing of WT p53 cancer cells, has now been translated into early clinical trials allowing better assessment of their biological effects and toxicities in patients. In this overview, we will review the current MDM2- and MDMX-targeted therapies in development, focusing particularly on compounds that have entered into early phase clinical trials. We will highlight the challenges pertaining to predictive biomarkers for and toxicities associated with these compounds, as well as identify potential combinatorial strategies to enhance its anti-cancer efficacy. PMID:26858935

  10. An Ultrahigh Affinity D-Peptide Antagonist Of MDM2

    PubMed Central

    Zhan, Changyou; Zhao, Le; Wei, Xiaoli; Wu, Xueji; Chen, Xishan; Yuan, Weirong; Lu, Wei-Yue; Pazgier, Marzena; Lu, Wuyuan

    2012-01-01

    The oncoprotein MDM2 negatively regulates the activity and stability of the p53 tumor suppressor, and is an important molecular target for anticancer therapy. Aided by mirror image phage display and native chemical ligation, we have previously discovered several proteolysis-resistant duodecimal D-peptide antagonists of MDM2, termed DPMI-α, β, γ. The prototypic D-peptide inhibitor DPMI-α binds (25-109)MDM2 at an affinity of 220 nM, and kills tumor cells in vitro and inhibits tumor growth in vivo by reactivating the p53 pathway. Herein, we report the design of a super-active D-peptide antagonist of MDM2, termed DPMI-δ, of which the binding affinity for (25-109)MDM2 has been improved over DPMI-α by three orders of magnitude (Kd = 220 pM). X-ray crystallographic studies validate DPMI-δ as an exceedingly potent inhibitor of the p53-MDM2 interaction, promising to be a highly attractive lead drug candidate for anticancer therapeutic development. PMID:22694121

  11. Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MDM2-p53 Interaction

    PubMed Central

    Thayer, Kelly M.; Beyer, George A.

    2016-01-01

    The ubiquitin ligase MDM2, a principle regulator of the tumor suppressor p53, plays an integral role in regulating cellular levels of p53 and thus a prominent role in current cancer research. Computational analysis used MUMBO to rotamerize the MDM2-p53 crystal structure 1YCR to obtain an exhaustive search of point mutations, resulting in the calculation of the ΔΔG comprehensive energy landscape for the p53-bound regulator. The results herein have revealed a set of residues R65-E69 on MDM2 proximal to the p53 hydrophobic binding pocket that exhibited an energetic profile deviating significantly from similar residues elsewhere in the protein. In light of the continued search for novel competitive inhibitors for MDM2, we discuss possible implications of our findings on the drug discovery field. PMID:26992014

  12. Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MDM2-p53 Interaction.

    PubMed

    Thayer, Kelly M; Beyer, George A

    2016-01-01

    The ubiquitin ligase MDM2, a principle regulator of the tumor suppressor p53, plays an integral role in regulating cellular levels of p53 and thus a prominent role in current cancer research. Computational analysis used MUMBO to rotamerize the MDM2-p53 crystal structure 1YCR to obtain an exhaustive search of point mutations, resulting in the calculation of the ΔΔG comprehensive energy landscape for the p53-bound regulator. The results herein have revealed a set of residues R65-E69 on MDM2 proximal to the p53 hydrophobic binding pocket that exhibited an energetic profile deviating significantly from similar residues elsewhere in the protein. In light of the continued search for novel competitive inhibitors for MDM2, we discuss possible implications of our findings on the drug discovery field. PMID:26992014

  13. Results of the Phase 1 Trial of RG7112, a Small-molecule MDM2 Antagonist in Leukemia

    PubMed Central

    Andreeff, Michael; Kelly, Kevin R.; Yee, Karen; Assouline, Sarit; Strair, Roger; Popplewell, Leslie; Bowen, David; Martinelli, Giovanni; Drummond, Mark W.; Vyas, Paresh; Kirschbaum, Mark; Iyer, Swaminathan Padmanabhan; Ruvolo, Vivian; Nogueras González, Graciela M.; Huang, Xuelin; Chen, Gong; Graves, Bradford; Blotner, Steven; Bridge, Peter; Jukofsky, Lori; Middleton, Steve; Reckner, Monica; Rueger, Ruediger; Zhi, Jianguo; Nichols, Gwen; Kojima, Kensuke

    2016-01-01

    Purpose RG7112 is a small-molecule MDM2 antagonist. MDM2 is a negative regulator of the tumor suppressor p53 and frequently overexpressed in leukemias. Thus, a Phase I study of RG7112 in patients with hematologic malignancies was conducted. Experimental Design Primary study objectives included determination of the dose and safety profile of RG7112. Secondary objectives included evaluation of pharmacokinetics, pharmacodynamics, such as TP53-mutation status and MDM2 expression, and preliminary clinical activity. Patients were divided into 2 cohorts: Stratum A (relapsed/refractory AML (except APL), ALL, and CML) and Stratum B (relapsed/refractory CLL/sCLL). Some Stratum A patients were treated at the MTD to assess clinical activity. Results RG7112 was administered to 116 patients (96 patients in Stratum A and 20 patients in Stratum B). All patients experienced at least 1 adverse event, and 3 DLTs were reported. PK analysis indicated that twice-daily dosing enhanced daily exposure. Anti-leukemia activity was observed in the 30 patients with AML assessed at the MTD included 5 patients who met IWG criteria for response. Exploratory analysis revealed TP53 mutations in 14% of Stratum A patients and in 40% of Stratum B patients. Two patients with TP53 mutations exhibited clinical activity. p53 target genes were induced only in TP53 wild-type leukemic cells. Baseline expression levels of MDM2 correlated positively with clinical response. Conclusions RG7112 demonstrated clinical activity against relapsed/refractory AML and CLL/sCLL. MDM2 inhibition resulted in p53 stabilization and transcriptional activation of p53-target genes. We provide proof-of-concept that MDM2 inhibition restores p53 function and generates clinical responses in hematologic malignancies. PMID:26459177

  14. Immunohistochemical detection of P53 and Mdm2 in vitiligo

    PubMed Central

    Bakry, Ola A.; Hammam, Mostafa A.; Wahed, Moshira M. Abdel

    2012-01-01

    Background: Vitiligo is a common depigmented skin disorder that is caused by selective destruction of melanocytes. It is generally accepted that the main function of melanin resides in the protection of skin cells against the deleterious effect of ultraviolet rays (UVRs). Association of vitiligo and skin cancer has been a subject of controversy. Occurrence of skin cancer in long-lasting vitiligo is rare despite multiple evidences of DNA damage in vitiliginous skin. Aim: To detect the expression of P53 and Mdm2 proteins in both depigmented and normally pigmented skin of vitiligo patients and to compare it to control subjects suffering from nonmelanoma skin cancer (NMSC). Materials and Methods: Thirty-four patients with vitiligo and 30 age and sex-matched patients with nodulo-ulcerative basal cell carcinoma (BCC) as a control group were selected. Both patients and control subjects had outdoor occupations. Skin biopsies were taken from each case and control subjects. Histopathological examination of Hematoxylin and eosin-stained sections was done. Expression of P53 and Mdm2 proteins were examined immunohistochemically. Results: Both P53 and Mdm2 were strongly expressed in depigmented as well as normally pigmented skin of vitiligo patients. This expression involved the epidermis, skin adnexa and blood vessels with significant differences between cases and controls. Conclusions: The overexpression of P53 and Mdm2 proteins in both normally pigmented and depigmented skin of patients with vitiligo could contribute to the decreased occurrence of actinic damage and NMSC in these patients. PMID:23189248

  15. Mdm2 is required for maintenance of the nephrogenic niche

    PubMed Central

    Hilliard, Sylvia A.; Yao, Xiao; El-Dahr, Samir S.

    2014-01-01

    The balance between nephron progenitor cell (NPC) renewal, survival and differentiation ultimately determines nephron endowment and thus susceptibility to chronic kidney disease and hypertension. Embryos lacking the p53-E3 ubiquitin ligase, Murine double minute 2 (Mdm2), die secondary to p53-mediated apoptosis and growth arrest, demonstrating the absolute requirement of Mdm2 in embryogenesis. Although Mdm2 is required in maintenance of hematopoietic stem cells, its role in renewal and differentiation of stem/progenitor cells during kidney organogenesis is not well defined. Here we examine the role of the Mdm2-p53 pathway in NPC renewal and fate in mice. The Six2-GFP::Cretg/+ mediated inactivation of Mdm2 in the NPC (NPCMdm2−/−) results in perinatal lethality. NPCMdm2−/− neonates have hypodysplastic kidneys, patchy depletion of the nephrogenic zone and pockets of superficially placed, ectopic, well-differentiated proximal tubules. NPCMdm2−/− metanephroi exhibit thinning of the progenitor GFP+/Six2+ population and a marked reduction or loss of progenitor markers Amphiphysin, Cited1, Sall1 and Pax2. This is accompanied by aberrant accumulation of phospho-γH2AX and p53, and elevated apoptosis together with reduced cell proliferation. E13.5–E15.5 NPCMdm2−/− kidneys show reduced expression of Eya1, Pax2 and Bmp7 while the few surviving nephron precursors maintain expression of Wnt4, Lhx1, Pax2, and Pax8. Lineage fate analysis and section immunofluorescence revealed that NPCMdm2−/− kidneys have severely reduced renal parenchyma embedded in an expanded stroma. Six2-GFP::Cretg/+;Mdm2f/f mice bred into a p53 null background ensures survival of the GFP-positive, self-renewing progenitor mesenchyme and therefore restores normal renal development and postnatal survival of mice. In conclusion, the Mdm2-p53 pathway is essential to the maintenance of the nephron progenitor niche. PMID:24440154

  16. Transcriptional repressor NIR interacts with the p53-inhibiting ubiquitin ligase MDM2

    PubMed Central

    Heyne, Kristina; Förster, Juliane; Schüle, Roland; Roemer, Klaus

    2014-01-01

    NIR (novel INHAT repressor) can bind to p53 at promoters and inhibit p53-mediated gene transactivation by blocking histone acetylation carried out by p300/CBP. Like NIR, the E3 ubiquitin ligase MDM2 can also bind and inhibit p53 at promoters. Here, we present data indicating that NIR, which shuttles between the nucleolus and nucleoplasm, not only binds to p53 but also directly to MDM2, in part via the central acidic and zinc finger domain of MDM2 that is also contacted by several other nucleolus-based MDM2/p53-regulating proteins. Like some of these, NIR was able to inhibit the ubiquitination of MDM2 and stabilize MDM2; however, unlike these nucleolus-based MDM2 regulators, NIR did not inhibit MDM2 to activate p53. Rather, NIR cooperated with MDM2 to repress p53-induced transactivation. This cooperative repression may at least in part involve p300/CBP. We show that NIR can block the acetylation of p53 and MDM2. Non-acetylated p53 has been documented previously to more readily associate with inhibitory MDM2. NIR may thus help to sustain the inhibitory p53:MDM2 complex, and we present evidence suggesting that all three proteins can indeed form a ternary complex. In sum, our findings suggest that NIR can support MDM2 to suppress p53 as a transcriptional activator. PMID:24413661

  17. Transcription factors that interact with p53 and Mdm2.

    PubMed

    Inoue, Kazushi; Fry, Elizabeth A; Frazier, Donna P

    2016-04-01

    The tumor suppressor p53 is activated upon cellular stresses such as DNA damage, oncogene activation, hypoxia, which transactivates sets of genes that induce DNA repair, cell cycle arrest, apoptosis, or autophagy, playing crucial roles in the prevention of tumor formation. The central regulator of the p53 pathway is Mdm2 which inhibits transcriptional activity, nuclear localization and protein stability. More than 30 cellular p53-binding proteins have been isolated and characterized including Mdm2, Mdm4, p300, BRCA1/2, ATM, ABL and 53BP-1/2. Most of them are nuclear proteins; however, not much is known about p53-binding transcription factors. In this review, we focus on transcription factors that directly interact with p53/Mdm2 through direct binding including Dmp1, E2F1, YB-1 and YY1. Dmp1 and YB-1 bind only to p53 while E2F1 and YY1 bind to both p53 and Mdm2. Dmp1 has been shown to bind to p53 and block all the known functions for Mdm2 on p53 inhibition, providing a secondary mechanism for tumor suppression in Arf-null cells. Although E2F1-p53 binding provides a checkpoint mechanism to silence hyperactive E2F1, YB-1 or YY1 interaction with p53 subverts the activity of p53, contributing to cell cycle progression and tumorigenesis. Thus, the modes and consequences for each protein-protein interaction vary from the viewpoint of tumor development and suppression. PMID:26132471

  18. Interrogation of MDM2 phosphorylation in p53 activation using native chemical ligation: the functional role of Ser17 phosphorylation in MDM2 reexamined

    PubMed Central

    Zhan, Changyou; Varney, Kristen; Yuan, Weirong; Zhao, Le; Lu, Wuyuan

    2012-01-01

    The E3 ubiquitin ligase MDM2 functions as a crucial negative regulator of the p53 tumor suppressor protein by antagonizing p53 transactivation activity and targeting p53 for degradation. Cellular stress activates p53 by alleviating MDM2-mediated functional inhibition, even though the molecular mechanisms of stress-induced p53 activation still remain poorly understood. Two opposing models have been proposed to describe the functional and structural role in p53 activation of Ser17 phosphorylation in the N-terminal “lid” (residues 1–24) of MDM2. Using the native chemical ligation technique, we synthesized the p53-binding domain (1–109)MDM2 and its Ser17-phosphorylated analog (1–109)MDM2 pS17 as well as (1–109)MDM2 S17D and (25–109)MDM2, and comparatively characterized their interactions with a panel of p53-derived peptide ligands using surface plasmon resonance, fluorescence polarization, and NMR and CD spectroscopic techniques. We found that the lid is partially structured in apo-MDM2 and occludes p53 peptide binding in a ligand size-dependent manner. Binding of (1–109)MDM2 by the (15–29)p53 peptide fully displaces the lid and renders it completely disordered in the peptide-protein complex. Importantly, neither Ser17 phosphorylation nor the phospho-mimetic mutation S17D has any functional impact on p53 peptide binding to MDM2. Although Ser17 phosphorylation or its mutation to Asp contributes marginally to the stability of the lid conformation in apo-MDM2, neither modification stabilizes apo-MDM2 globally or the displaced lid locally. Our findings demonstrate that Ser17 phosphorylation is functionally neutral with respect to p53 binding, suggesting that MDM2 phosphorylation at a single site is unlikely to play a dominant role in stress-induced p53 activation. PMID:22444248

  19. A Novel Interaction between TFII-I and Mdm2 with a Negative Effect on TFII-I Transcriptional Activity.

    PubMed

    Cetkovská, Kateřina; Šustová, Hana; Kosztyu, Pavlína; Uldrijan, Stjepan

    2015-01-01

    Williams-Beuren syndrome-associated transcription factor TFII-I plays a critical regulatory role in bone and neural tissue development and in immunity, in part by regulating cell proliferation in response to mitogens. Mdm2, a cellular oncogene responsible for the loss of p53 tumor suppressor activity in a significant proportion of human cancers, was identified in this study as a new binding partner for TFII-I and a negative regulator of TFII-I-mediated transcription. These findings suggest a new p53-independent mechanism by which increased Mdm2 levels found in human tumors could influence cancer cells. In addition to that, we present data indicating that TFII-I is an important cellular regulator of transcription from the immediate-early promoter of human cytomegalovirus, a promoter sequence frequently used in mammalian expression vectors, including vectors for gene therapy. Our observation that Mdm2 over-expression can decrease the ability of TFII-I to activate the CMV promoter might have implications for the efficiency of experimental gene therapy based on CMV promoter-derived vectors in cancers with Mdm2 gene amplification. PMID:26656605

  20. A Novel Interaction between TFII-I and Mdm2 with a Negative Effect on TFII-I Transcriptional Activity

    PubMed Central

    Cetkovská, Kateřina; Šustová, Hana; Kosztyu, Pavlína; Uldrijan, Stjepan

    2015-01-01

    Williams-Beuren syndrome-associated transcription factor TFII-I plays a critical regulatory role in bone and neural tissue development and in immunity, in part by regulating cell proliferation in response to mitogens. Mdm2, a cellular oncogene responsible for the loss of p53 tumor suppressor activity in a significant proportion of human cancers, was identified in this study as a new binding partner for TFII-I and a negative regulator of TFII-I-mediated transcription. These findings suggest a new p53-independent mechanism by which increased Mdm2 levels found in human tumors could influence cancer cells. In addition to that, we present data indicating that TFII-I is an important cellular regulator of transcription from the immediate-early promoter of human cytomegalovirus, a promoter sequence frequently used in mammalian expression vectors, including vectors for gene therapy. Our observation that Mdm2 over-expression can decrease the ability of TFII-I to activate the CMV promoter might have implications for the efficiency of experimental gene therapy based on CMV promoter–derived vectors in cancers with Mdm2 gene amplification. PMID:26656605

  1. Induction of apoptosis in non-small cell lung cancer by downregulation of MDM2 using pH-responsive PMPC-b-PDPA/siRNA complex nanoparticles.

    PubMed

    Yu, Haijun; Zou, Yonglong; Jiang, Lei; Yin, Qi; He, Xinyu; Chen, Lingli; Zhang, Zhiwen; Gu, Wangwen; Li, Yaping

    2013-04-01

    Non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer caused human death. In this work, we selected oncogene mouse double minute 2 (MDM2) as a therapeutic target for NSCLC treatment and proposed that sufficient MDM2 knockdown could inhibit tumor growth via induction of cell cycle arrest and cancer cell apoptosis. On this regard, a new pH-responsive diblock copolymer of poly(methacryloyloxy ethyl phosphorylcholine)-block-poly(diisopropanolamine ethyl methacrylate) (PMPC-b-PDPA)/siRNA-MDM2 complex nanoparticle with minimized surface charge and suitable particle size was designed and developed for siRNA-MDM2 delivery in vitro and in vivo. The experimental results showed that the nanoparticles were spherical with particle size around 50 nm. MDM2 knockdown in p53 mutant NSCLC H2009 cells induced significant cell cycle arrest, apoptosis and growth inhibition through upregulation of p21 and activation of caspase-3. Furthermore, the growth of H2009 xenograft tumor in nude mice was inhibited via repeated injection of PMPC-b-PDPA/siRNA-MDM2 complex nanoparticles. These results suggested that PMPC-b-PDPA/siRNA complex nanoparticles targeting a unique set of oncogenes could be developed into a new therapeutic approach for NSCLC treatment. PMID:23352573

  2. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2.

    PubMed

    Liu, Xiaofeng; Tan, Yuqin; Zhang, Chunfeng; Zhang, Ying; Zhang, Liangliang; Ren, Pengwei; Deng, Hongkui; Luo, Jianyuan; Ke, Yang; Du, Xiaojuan

    2016-03-01

    As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2-p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53-mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor. PMID:26882543

  3. Lack of association between MDM2 promoter SNP309 and clinical outcome in patients with neuroblastoma.

    PubMed

    Rihani, Ali; Van Maerken, Tom; De Wilde, Bram; Zeka, Fjoralba; Laureys, Geneviève; Norga, Koen; Tonini, Gian Paolo; Coco, Simona; Versteeg, Rogier; Noguera, Rosa; Schulte, Johannes H; Eggert, Angelika; Stallings, Raymond L; Speleman, Frank; Vandesompele, Jo

    2014-10-01

    While a polymorphism located within the promoter region of the MDM2 proto-oncogene, SNP309 (T > G), has previously been associated with increased risk and aggressiveness of neuroblastoma and other tumor entities, a protective effect has also been reported in certain other cancers. In this study, we evaluated the association of MDM2 SNP309 with outcome in 496 patients with neuroblastoma and its effect on MDM2 expression. No significant difference in overall or event-free survival was observed among patients with neuroblastoma with or without MDM2 SNP309. The presence of SNP309 does not affect MDM2 expression in neuroblastoma. PMID:24391119

  4. Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer.

    PubMed

    Inoue, Kazushi; Fry, Elizabeth A

    2016-07-01

    Alternative splicing (AS) of mRNA precursors is a ubiquitous mechanism for generating numerous transcripts with different activities from one genomic locus in mammalian cells. The gene products from a single locus can thus have similar, dominant-negative or even opposing functions. Aberrant AS has been found in cancer to express proteins that promote cell growth, local invasion and metastasis. This review will focus on the aberrant splicing of tumor suppressor/oncogenes that belong to the DMP1-ARF-MDM2-p53 pathway. Our recent study shows that the DMP1 locus generates both tumor-suppressive DMP1α (p53-dependent) and oncogenic DMP1β (p53-independent) splice variants, and the DMP1β/α ratio increases with neoplastic transformation of breast epithelial cells. This process is associated with high DMP1β protein expression and shorter survival of breast cancer (BC) patients. Accumulating pieces of evidence show that ARF is frequently inactivated by aberrant splicing in human cancers, demonstrating its involvement in human malignancies. Splice variants from the MDM2 locus promote cell growth in culture and accelerate tumorigenesis in vivo. Human cancers expressing these splice variants are associated with advanced stage/metastasis, and thus have negative clinical impacts. Although they lack most of the p53-binding domain, their activities are mostly dependent on p53 since they bind to wild-type MDM2. The p53 locus produces splice isoforms that have either favorable (β/γ at the C-terminus) or negative impact (Δ40, Δ133 at the N-terminus) on patients' survival. As the oncogenic AS products from these loci are expressed only in cancer cells, they may eventually become targets for molecular therapies. PMID:26802432

  5. Alterations in PTEN, MDM2, TP53 and AR protein and gene expression are associated with canine prostate carcinogenesis.

    PubMed

    Rivera-Calderón, Luis Gabriel; Fonseca-Alves, Carlos Eduardo; Kobayashi, Priscila Emiko; Carvalho, Marcio; Drigo, Sandra Aparecida; de Oliveira Vasconcelos, Rosemeri; Laufer-Amorim, Renée

    2016-06-01

    The PTEN, AR, MDM2 and p53 protein network plays a central role in the development of many human cancers, thus eliciting the development of targeted cancer therapeutics. Dogs spontaneously develop tumours, and they are considered a good model for comparative oncology initiatives. Due to the limited information on these proteins in canine tumours, this study aimed to investigate gene and protein alterations in PTEN, AR, MDM2 and p53 in canine prostate cancer (PC). Protein expression was evaluated by immunohistochemistry (15 normal, 22 proliferative inflammatory atrophy (PIA) and 19 PC samples) and Western blotting (2 normal prostate tissue, 2 BPH, 2 PIA samples and 2 PC samples) and gene expression by RT-qPCR (10 normal, 10 PIA and 15 PC samples) of formalin-fixed tissue. We identified nuclear and cytoplasmic expression of PTEN and p53 in all samples, with only nuclear staining found for MDM2 and AR. Our results revealed high expression of MDM2 in PC and PIA samples compared to normal samples, whereas PTEN, P53 and AR expression was down-regulated in PC compared to normal tissue. All tumour samples (n=19) showed loss of nuclear PTEN expression, and all cancer mimickers showed positive nuclear staining. Therefore, nuclear PTEN staining could be a good diagnostic marker for differentiating between malignant lesions and mimickers. Canine prostate carcinogenesis involves increased expression of MDM2 in association with decreased expression of PTEN, p53 and AR, such as occurs in hormone refractory PC in men. Thus, dogs may be an important model for studying advanced stage PC. PMID:27234536

  6. Synergistic cooperation of MDM2 and E2F1 contributes to TAp73 transcriptional activity

    SciTech Connect

    Kasim, Vivi; Huang, Can; Zhang, Jing; Jia, Huizhen; Wang, Yunxia; Yang, Li; Miyagishi, Makoto; Wu, Shourong

    2014-07-04

    Highlights: • MDM2 is a novel positive regulator of TAp73 transcriptional activity. • MDM2 colocalizes together and physically interacts with E2F1. • Synergistic cooperation of MDM2 and E2F1 is crucial for TAp73 transcription. • MDM2 regulates TAp73 transcriptional activity in a p53-independent manner. - Abstract: TAp73, a structural homologue of p53, plays an important role in tumorigenesis. E2F1 had been reported as a transcriptional regulator of TAp73, however, the detailed mechanism remains to be elucidated. Here we reported that MDM2-silencing reduced the activities of the TAp73 promoters and the endogenous TAp73 expression level significantly; while MDM2 overexpression upregulated them. We further revealed that the regulation of TAp73 transcriptional activity occurs as a synergistic effect of MDM2 and E2F1, most probably through their physical interaction in the nuclei. Furthermore, we also suggested that MDM2 might be involved in DNA damage-induced TAp73 transcriptional activity. Finally, we elucidated that MDM2-silencing reduced the proliferation rate of colon carcinoma cells regardless of the p53 status. Our data show a synergistic effect of MDM2 and E2F1 on TAp73 transcriptional activity, suggesting a novel regulation pathway of TAp73.

  7. A dynamic p53-mdm2 model with distributed delay

    NASA Astrophysics Data System (ADS)

    Horhat, Raluca; Horhat, Raul Florin

    2014-12-01

    Specific activator and repressor transcription factors which bind to specific regulator DNA sequences, play an important role in gene activity control. Interactions between genes coding such transcripion factors should explain the different stable or sometimes oscillatory gene activities characteristic for different tissues. In this paper, the dynamic P53-Mdm2 interaction model with distributed delays is investigated. Both weak and Dirac kernels are taken into consideration. For Dirac case, the Hopf bifurcation is investigated. Some numerical examples are finally given for justifying the theoretical results.

  8. Heterogeneous Hydration of p53/MDM2 Complex

    PubMed Central

    2015-01-01

    Water-mediated interactions play critical roles in biomolecular recognition processes. Explicit solvent molecular dynamics (MD) simulations and the variational implicit-solvent model (VISM) are used to study those hydration properties during binding for the biologically important p53/MDM2 complex. Unlike simple model solutes, in such a realistic and heterogeneous solute–solvent system with both geometrical and chemical complexity, the local water distribution sensitively depends on nearby amino acid properties and the geometric shape of the protein. We show that the VISM can accurately describe the locations of high and low density solvation shells identified by the MD simulations and can explain them by a local coupling balance of solvent–solute interaction potentials and curvature. In particular, capillary transitions between local dry and wet hydration states in the binding pocket are captured for interdomain distance between 4 to 6 Å, right at the onset of binding. The underlying physical connection between geometry and polarity is illustrated and quantified. Our study offers a microscopic and physical insight into the heterogeneous hydration behavior of the biologically highly relevant p53/MDM2 system and demonstrates the fundamental importance of hydrophobic effects for biological binding processes. We hope our study can help to establish new design rules for drugs and medical substances. PMID:24803860

  9. [Pronostic value of the MDM-2 protein expression in the larynx cancer].

    PubMed

    García Lozano, M C; Orradre Romero, J L; Martínez Alvarez, A; Sáez del Castillo, A I; Piris Pinilla, M A

    2004-01-01

    In this paper we carried out an immunohistochemical study of Mdm-2 (IF2) expression in a series of 195 patients with laryngeal carcinoma that were diagnosticated, treated and followed at the Department of Otolaryngology at Virgen de la Salud Hospital (Toledo, Spain). In the cases with lymph node metastasis we also studied Mdm-2 expression at this level. We also wanted to investigate the value of Mdm-2 expression as a prognostic factor (tumor recurrence, deads due to cancer and survival) and we have evaluated the relationship between Mdm-2 expression and other clinic and pathologic characteristics. PMID:15663089

  10. Design, Synthesis and Biological Evaluation of Sulfamide and Triazole Benzodiazepines as Novel p53-MDM2 Inhibitors

    PubMed Central

    Yu, Zhiliang; Zhuang, Chunlin; Wu, Yuelin; Guo, Zizhao; Li, Jin; Dong, Guoqiang; Yao, Jianzhong; Sheng, Chunquan; Miao, Zhenyuan; Zhang, Wannian

    2014-01-01

    A series of sulfamide and triazole benzodiazepines were obtained with the principle of bioisosterism. The p53-murine double minute 2 (MDM2) inhibitory activity and in vitro antitumor activity were evaluated. Most of the novel benzodiazepines exhibited moderate protein binding inhibitory activity. Particularly, triazole benzodiazepines showed good inhibitory activity and antitumor potency. Compound 16 had promising antitumor activity against the U-2 OS human osteosarcoma cell line with an IC50 value of 4.17 μM, which was much better than that of nutlin-3. The molecular docking model also successfully predicted that this class of compounds mimicked the three critical residues of p53 binding to MDM2. PMID:25198897

  11. Mice with a Mutation in the Mdm2 Gene That Interferes with MDM2/Ribosomal Protein Binding Develop a Defect in Erythropoiesis

    PubMed Central

    Kamio, Takuya; Gu, Bai-wei; Olson, Timothy S.; Zhang, Yanping; Mason, Philip J.; Bessler, Monica

    2016-01-01

    MDM2, an E3 ubiquitin ligase, is an important negative regulator of tumor suppressor p53. In turn the Mdm2 gene is a transcriptional target of p53, forming a negative feedback loop that is important in cell cycle control. It has recently become apparent that the ubiquitination of p53 by MDM2 can be inhibited when certain ribosomal proteins, including RPL5 and RPL11, bind to MDM2. This inhibition, and the resulting increase in p53 levels has been proposed to be responsible for the red cell aplasia seen in Diamond-Blackfan anemia (DBA) and in 5q- myelodysplastic syndrome (MDS). DBA and 5q- MDS are associated with inherited (DBA) or acquired (5q- MDS) haploinsufficiency of ribosomal proteins. A mutation in Mdm2 causing a C305F amino acid substitution blocks the binding of ribosomal proteins. Mice harboring this mutation (Mdm2C305F), retain a normal p53 response to DNA damage, but lack the p53 response to perturbations in ribosome biogenesis. While studying the interaction between RP haploinsufficiency and the Mdm2C305F mutation we noticed that Mdm2C305F homozygous mice had altered hematopoiesis. These mice developed a mild macrocytic anemia with reticulocytosis. In the bone marrow (BM), these mice showed a significant decrease in Ter119hi cells compared to wild type (WT) littermates, while no decrease in the number of mature erythroid cells (Ter119hiCD71low) was found in the spleen, which showed compensated bone marrow hematopoiesis. In methylcellulose cultures, BFU-E colonies from the mutant mice were slightly reduced in number and there was a significant reduction in CFU-E colony numbers in mutant mice compared with WT controls (p < 0.01). This erythropoietic defect was abrogated by concomitant p53 deficiency (Trp53ko/ko). Further investigation revealed that in Mdm2C305F animals, there was a decrease in Lin-Sca-1+c-Kit+ (LSK) cells, accompanied by significant decreases in multipotent progenitor (MPP) cells (p < 0.01). Competitive BM repopulation experiments showed

  12. Mice with a Mutation in the Mdm2 Gene That Interferes with MDM2/Ribosomal Protein Binding Develop a Defect in Erythropoiesis.

    PubMed

    Kamio, Takuya; Gu, Bai-Wei; Olson, Timothy S; Zhang, Yanping; Mason, Philip J; Bessler, Monica

    2016-01-01

    MDM2, an E3 ubiquitin ligase, is an important negative regulator of tumor suppressor p53. In turn the Mdm2 gene is a transcriptional target of p53, forming a negative feedback loop that is important in cell cycle control. It has recently become apparent that the ubiquitination of p53 by MDM2 can be inhibited when certain ribosomal proteins, including RPL5 and RPL11, bind to MDM2. This inhibition, and the resulting increase in p53 levels has been proposed to be responsible for the red cell aplasia seen in Diamond-Blackfan anemia (DBA) and in 5q- myelodysplastic syndrome (MDS). DBA and 5q- MDS are associated with inherited (DBA) or acquired (5q- MDS) haploinsufficiency of ribosomal proteins. A mutation in Mdm2 causing a C305F amino acid substitution blocks the binding of ribosomal proteins. Mice harboring this mutation (Mdm2C305F), retain a normal p53 response to DNA damage, but lack the p53 response to perturbations in ribosome biogenesis. While studying the interaction between RP haploinsufficiency and the Mdm2C305F mutation we noticed that Mdm2C305F homozygous mice had altered hematopoiesis. These mice developed a mild macrocytic anemia with reticulocytosis. In the bone marrow (BM), these mice showed a significant decrease in Ter119hi cells compared to wild type (WT) littermates, while no decrease in the number of mature erythroid cells (Ter119hiCD71low) was found in the spleen, which showed compensated bone marrow hematopoiesis. In methylcellulose cultures, BFU-E colonies from the mutant mice were slightly reduced in number and there was a significant reduction in CFU-E colony numbers in mutant mice compared with WT controls (p < 0.01). This erythropoietic defect was abrogated by concomitant p53 deficiency (Trp53ko/ko). Further investigation revealed that in Mdm2C305F animals, there was a decrease in Lin-Sca-1+c-Kit+ (LSK) cells, accompanied by significant decreases in multipotent progenitor (MPP) cells (p < 0.01). Competitive BM repopulation experiments showed

  13. TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes.

    PubMed

    McGraw, Kathy L; Cluzeau, Thomas; Sallman, David A; Basiorka, Ashley A; Irvine, Brittany A; Zhang, Ling; Epling-Burnette, P K; Rollison, Dana E; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F

    2015-10-27

    P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to -2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416

  14. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    PubMed Central

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  15. The C-terminus of p53 binds the N-terminal domain of MDM2

    PubMed Central

    Poyurovsky, Masha V.; Katz, Chen; Laptenko, Oleg; Beckerman, Rachel; Lokshin, Maria; Ahn, Jinwoo; Byeon, In-Ja L.; Gabizon, Ronen; Mattia, Melissa; Zupnick, Andrew; Brown, Lewis M.; Friedler, Assaf; Prives, Carol

    2010-01-01

    The p53 tumor suppressor interacts with its negative regulator Mdm2 via the former’s N-terminal region and core domain. Yet the extreme p53 C-terminal region contains lysine residues ubiquitinated by Mdm2 and can bear post-translational modifications that inhibit Mdm2–p53 association. We show that, the Mdm2–p53 interaction is decreased upon deletion, mutation or acetylation of the p53 C-terminus. Mdm2 decreases the association of full-length but not C-terminally deleted p53 with a DNA target sequence in vitro and in cells. Further, using multiple approaches we demonstrate that a peptide from p53 C-terminus directly binds Mdm2 N-terminus in vitro. We also show that p300-acetylated p53 binds inefficiently to Mdm2 in vitro, and Nutlin-3 treatment induces C-terminal modification(s) of p53 in cells, explaining the low efficiency of Nutlin-3 in dissociating p53-MDM2 in vitro. PMID:20639885

  16. Identification of a Sequence Element from p53 That Signals for Mdm2-Targeted Degradation

    PubMed Central

    Gu, Jijie; Chen, Dongli; Rosenblum, Jamie; Rubin, Rachel M.; Yuan, Zhi-Min

    2000-01-01

    The binding of Mdm2 to p53 is required for targeting p53 for degradation. p73, however, binds to Mdm2 but is refractory to Mdm2-mediated degradation, indicating that binding to Mdm2 is not sufficient for degradation. By utilizing the structural homology between p53 and p73, we generated p53-p73 chimeras to determine the sequence element unique to p53 essential for regulation of its stability. We found that replacing an element consisting of amino acids 92 to 112 of p53 with the corresponding region of p73 results in a protein that is not degradable by Mdm2. Removal of amino acids 92 to 112 of p53 by deletion also results in a non-Mdm2-degradable protein. Significantly, the finding that swapping this fragment converts p73 from refractory to sensitive to Mdm2-mediated degradation supports the conclusion that the amino acids 92 to 112 of p53 function as a degradation signal. We propose that the presence of an additional protein recognizes the degradation signal and coordinates with Mdm2 to target p53 for degradation. Our finding opens the possibility of searching for the additional protein, which most likely plays a critical role in the regulation of p53 stability and therefore function. PMID:10648610

  17. Association between MDM2 SNP309 T>G polymorphism and the risk of bladder cancer: new data in a Chinese population and an updated meta-analysis

    PubMed Central

    Xie, Linguo; Sun, Yan; Chen, Tao; Tian, Dawei; Li, Yujuan; Zhang, Yu; Ding, Na; Shen, Zhonghua; Xu, Hao; Nian, Xuewu; Sha, Nan; Han, Ruifa; Hu, Hailong; Wu, Changli

    2015-01-01

    Objective Human murine double minute 2 protein (MDM2) is mainly a negative regulator of p53 tumor suppressor pathway. We aimed to investigate the association between MDM2 SNP309 polymorphism and bladder cancer risk. Methods A total of 535 bladder cancer patients and 649 health controls were recruited for our study. MDM2 SNP309 T>G polymorphism was genotyped by polymerase chain reaction-ligase detection reaction method. Logistic regression was used to analyze the relationship between the genotype and susceptibility of bladder cancer. Kaplan–Meier estimates and log-rank test were obtained to analyze the association between the genotype and risk of recrudesce in nonmuscle-invasive bladder cancer patients. A multivariable Cox proportional hazards model was fitted to identify independent prognostic factors. To further investigate the association, we conducted a meta-analysis including six studies. Results The frequency of the MDM2 SNP309 T>G polymorphism showed no significant difference between cases and controls (all P>0.05). In the stratification analysis, the results showed that G allele carriers were prone to have a significant decrease in risk of low-grade bladder cancer (adjusted odds ratio: 0.613, 95% confidence interval: 0.427–0.881), and G variant was associated with a significantly reduced risk of recurrence in nonmuscle-invasive bladder cancer patients with or without chemotherapy (P<0.05). The results of the meta-analysis showed that G allele and GG genotype of MDM2 SNP309 polymorphism were significantly associated with increased risk of bladder cancer in Caucasians (both P<0.05), and no association was observed in total populations and Asians (P>0.05). Conclusion MDM2 SNP309 T>G polymorphism has no influence on bladder cancer risk in Asians, but this single nucleotide polymorphism may be associated with genetic susceptibility of bladder cancer among Caucasians. PMID:26672516

  18. An Effective Virtual Screening Protocol To Identify Promising p53-MDM2 Inhibitors.

    PubMed

    Tortorella, Paolo; Laghezza, Antonio; Durante, Milena; Gomez-Monterrey, Isabel; Bertamino, Alessia; Campiglia, Pietro; Loiodice, Fulvio; Daniele, Simona; Martini, Claudia; Agamennone, Mariangela

    2016-06-27

    The p53-MDM2 interaction is a well-known protein-protein contact, and its disruption is a key event for p53 activation and induction of its oncosuppressor response. The design of small molecules that can block the p53-MDM2 interaction and reactivate the p53 function is a promising strategy for cancer therapy. To date, several compounds have been identified as p53-MDM2 inhibitors, and X-ray structures of MDM2 complexed with several ligands are available in the Brookhaven Protein Data Bank. These data have been exploited to compile a hierarchical virtual screening protocol. The first steps were aimed at selecting a focused library, which was submitted in parallel to docking and pharmacophore model alignment. Selected compounds were subjected to inhibition assays of both cellular vitality (MTT) and p53-MDM2 interaction (ELISA and co-immunoprecipitation), disclosing four nanomolar inhibitors. PMID:27269808

  19. Accumulation of wild-type p53 protein in astrocytomas is not mediated by MDM2 gene amplification

    SciTech Connect

    Rubio, M.P.; Louis, D.N. Harvard Medical School, Boston, MA )

    1993-05-01

    The authors have previously described ten cases of astrocytoma (three WHO grade II, four grade III and four grade IV) with seemingly contradictory results on immunohistochemical analysis of the p53 protein and molecular genetic analysis of the p53 gene. Fixed, embedded tissues from these cases were immunohistochemically positive with the PAb 1801 antibody, which supposedly implies the presence of mutant protein. These ten cases, however, did not have mutations in exons 5 through 8 of the p53 gene, the conserved regions in which almost all human mutations have been described. The authors suggested that these cases might either represent overexpression of wild-type p53 protein (since the PAb 1801 antibody reacts with both wild-type and mutant p53 protein) or mutations in less conserved regions of the gene. To investigate these possibilities further, they performed single strand conformational polymorphism analysis and DNA sequencing on p53 exons 4, 9 and 10 in the nine cases with available DNA, since rare mutations have been noted at these loci. None of the cases showed alterations, making it highly unlikely that these tumors harbor mutations in exons of the p53 gene. They also performed immunohistochemistry on frozen sections from seven available tumors, using the mutant-specific antibody PAb 240 in addition to PAb 1801. All tumors continued to show positive staining with PAb 1801, but only one tumor reacted with PAb 240. The results support the hypothesis that the accumulated p53 protein in most cases is wild-type. Because the product of the MDM2 oncogene can bind to wild-type p53 protein, and because MDM2 amplification has recently been demonstrated in human tumors, the authors evaluated MDM2 amplification in the nine astrocytomas with available DNA. Using slot blot analysis with a 96-base pair, PCR-generated probe to the first exon of the MDM2 gene, they were unable to show MDM2 gene amplification in these tumors or in other assayed astrocytomas.

  20. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway.

    PubMed

    Li, Mao; Zhang, Zhuo; Hill, Donald L; Wang, Hui; Zhang, Ruiwen

    2007-03-01

    The oncoprotein MDM2, a major ubiquitin E3 ligase of tumor suppressor p53, has been suggested as a novel target for human cancer therapy based on its p53-dependent and p53-independent activities. We have identified curcumin, which has previously been shown to have anticancer activity, as an inhibitor of MDM2 expression. Curcumin down-regulates MDM2, independent of p53. In a human prostate cancer cell lines PC3 (p53(null)), curcumin reduced MDM2 protein and mRNA in a dose- and time-dependent manner, and enhanced the expression of the tumor suppressor p21(Waf1/CIP1). The inhibitory effects occur at the transcriptional level and seem to involve the phosphatidylinositol 3-kinase/mammalian target of rapamycin/erythroblastosis virus transcription factor 2 pathway. Curcumin induced apoptosis and inhibited proliferation of PC3 cells in culture, but both MDM2 overexpression and knockdown reduced these effects. Curcumin also inhibited the growth of these cells and enhanced the cytotoxic effects of gemcitabine. When it was administered to tumor-bearing nude mice, curcumin inhibited growth of PC3 xenografts and enhanced the antitumor effects of gemcitabine and radiation. In these tumors, curcumin reduced the expression of MDM2. Down-regulation of the MDM2 oncogene by curcumin is a novel mechanism of action that may be essential for its chemopreventive and chemotherapeutic effects. Our observations help to elucidate the process by which mitogens up-regulate MDM2, independent of p53, and identify a mechanism by which curcumin functions as an anticancer agent. PMID:17332326

  1. Ribosomal protein L4 is a novel regulator of the MDM2-p53 loop

    PubMed Central

    He, Xia; Li, Yuhuang; Dai, Mu-Shui; Sun, Xiao-Xin

    2016-01-01

    A number of ribosomal proteins (RPs) have been shown to play a critical role in coordinating ribosome biogenesis with cell growth and proliferation by suppressing MDM2 to induce p53 activation. While how the MDM2-p53 pathway is regulated by multiple RPs is unclear, it remains to be interesting to identify additional RPs that can regulate this pathway. Here we report that ribosomal protein L4 (RPL4) directly interacts with MDM2 at the central acidic domain and suppresses MDM2-mediated p53 ubiquitination and degradation, leading to p53 stabilization and activation. Interestingly, overexpression of RPL4 promotes the binding of MDM2 to RPL5 and RPL11 and forms a complex with RPL5, RPL11 and MDM2 in cells. Conversely, knockdown of RPL4 also induces p53 levels and p53-dependent cell cycle arrest. This p53-dependent effect requires both RPL5 and RPL11, suggesting that depletion of RPL4 triggers ribosomal stress. Together, our results reveal that balanced levels of RPL4 are critical for normal cell growth and proliferation via regulating the MDM2-p53 loop. PMID:26908445

  2. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination

    PubMed Central

    Ahmed, M. Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2011-01-01

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmuno-precipitation of endogenous proteins from brain tissue, and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both non-visual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology. PMID:21466165

  3. MDM2 Inhibits Axin-Induced p53 Activation Independently of its E3 Ligase Activity.

    PubMed

    He, Ying; Lian, Guili; Lin, Shuyong; Ye, Zhiyun; Li, Qinxi

    2013-01-01

    MDM2 plays a crucial role in negatively regulating the functions of tumor suppressor p53. Here we show that MDM2 can inhibit Axin-stimulated p53-dependent apoptosis by suppressing p53 phosphorylation at Ser 46 and apoptosis-related p53 transactivational activity. Interestingly, the ubiquitin E3 ligase activity of MDM2 is not required for this inhibitory effect. Mechanically, either wildtype MDM2 or its E3-dead mutant, disrupts the Axin-based HIPK2/p53 complex formation by blocking the binding of p53 and HIPK2 to Axin. MDM2Δp53, a deletion mutant that lacks p53 binding domain fails to exert the inhibitory effect, demonstrating that the interaction of MDM2 and p53, but not its E3 ligase activity toward p53 plays key role in suppressing Axin-stimulated p53 activation. Our results thus have revealed a novel aspect of the mechanism by which MDM2 regulates p53 activities. PMID:23826318

  4. Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling.

    PubMed

    Lengner, Christopher J; Steinman, Heather A; Gagnon, James; Smith, Thomas W; Henderson, Janet E; Kream, Barbara E; Stein, Gary S; Lian, Jane B; Jones, Stephen N

    2006-03-13

    Mdm2 is required to negatively regulate p53 activity at the peri-implantation stage of early mouse development. However, the absolute requirement for Mdm2 throughout embryogenesis and in organogenesis is unknown. To explore Mdm2-p53 signaling in osteogenesis, Mdm2-conditional mice were bred with Col3.6-Cre-transgenic mice that express Cre recombinase in osteoblast lineage cells. Mdm2-conditional Col3.6-Cre mice die at birth and display multiple skeletal defects. Osteoblast progenitor cells deleted for Mdm2 have elevated p53 activity, reduced proliferation, reduced levels of the master osteoblast transcriptional regulator Runx2, and reduced differentiation. In contrast, p53-null osteoprogenitor cells have increased proliferation, increased expression of Runx2, increased osteoblast maturation, and increased tumorigenic potential, as mice specifically deleted for p53 in osteoblasts develop osteosarcomas. These results demonstrate that p53 plays a critical role in bone organogenesis and homeostasis by negatively regulating bone development and growth and by suppressing bone neoplasia and that Mdm2-mediated inhibition of p53 function is a prerequisite for Runx2 activation, osteoblast differentiation, and proper skeletal formation. PMID:16533949

  5. microRNAs are differentially regulated between MDM2-positive and negative malignant pleural mesothelioma

    PubMed Central

    Walter, Robert Fred Henry; Vollbrecht, Claudia; Werner, Robert; Wohlschlaeger, Jeremias; Christoph, Daniel Christian; Schmid, Kurt Werner; Mairinger, Fabian Dominik

    2016-01-01

    Background Malignant pleural mesothelioma (MPM) is a highly aggressive tumour first-line treated with a combination of cisplatin and pemetrexed. MDM2 and P14/ARF (CDKN2A) are upstream regulators of TP53 and may contribute to its inactivation. In the present study, we now aimed to define the impact of miRNA expression on this mechanism. Material and Methods 24 formalin-fixed paraffin-embedded (FFPE) tumour specimens were used for miRNA expression analysis of the 800 most important miRNAs using the nCounter technique (NanoString). Significantly deregulated miRNAs were identified before a KEGG-pathway analysis was performed. Results 17 miRNAs regulating TP53, 18 miRNAs regulating MDM2, and 11 miRNAs directly regulating CDKN2A are significantly downregulated in MDM2-expressing mesotheliomas. TP53 is downregulated in MDM2-negative tumours through miRNAs with a miSVR prediction score of 11.67, RB1 with a prediction score of 8.02, MDM2 with a prediction score of 4.50 and CDKN2A with a prediction score of 1.27. Conclusion MDM2 expression seems to impact miRNA expression levels in MPM. Especially, miRNAs involved in TP53-signaling are strongly decreased in MDM2-positive mesotheliomas. A better understanding of its tumour biology may open the chance for new therapeutic approaches and thereby augment patients' outcome. PMID:26918730

  6. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development.

    PubMed

    Ding, Qingjie; Zhang, Zhuming; Liu, Jin-Jun; Jiang, Nan; Zhang, Jing; Ross, Tina M; Chu, Xin-Jie; Bartkovitz, David; Podlaski, Frank; Janson, Cheryl; Tovar, Christian; Filipovic, Zoran M; Higgins, Brian; Glenn, Kelli; Packman, Kathryn; Vassilev, Lyubomir T; Graves, Bradford

    2013-07-25

    Restoration of p53 activity by inhibition of the p53-MDM2 interaction has been considered an attractive approach for cancer treatment. However, the hydrophobic protein-protein interaction surface represents a significant challenge for the development of small-molecule inhibitors with desirable pharmacological profiles. RG7112 was the first small-molecule p53-MDM2 inhibitor in clinical development. Here, we report the discovery and characterization of a second generation clinical MDM2 inhibitor, RG7388, with superior potency and selectivity. PMID:23808545

  7. Inhibition of MDM2 by Nilotinib Contributes to Cytotoxicity in Both Philadelphia-Positive and Negative Acute Lymphoblastic Leukemia

    PubMed Central

    Liu, Tao; Chiang, Kuang-Yueh; Zhou, Muxiang

    2014-01-01

    Nilotinib is a selective BCR-ABL tyrosine kinase inhibitor related to imatinib that is more potent than imatinib. Nilotinib is widely used to treat chronic myelogenous leukemia (CML) and Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL). The present study identifies Mouse double minute 2 homolog (MDM2) as a target of nilotinib. In studying ALL cell lines, we found that the expression of MDM2 in both Philadelphia positive (Ph+) and Philadelphia negative (Ph-) ALL cells was remarkably inhibited by nilotinib, in a dose- and time-dependent manner. Further studies demonstrated that nilotinib inhibited MDM2 at the post-translational level by inducing MDM2 self-ubiquitination and degradation. Nilotinib-mediated MDM2 downregulation did not result in accumulation and activation of p53. Inhibition of MDM2 in nilotinib-treated ALL cells led to downregulation of the anti-apoptotic protein X-linked inhibitor of apoptosis protein (XIAP), a translational target of MDM2, resulting in activation of caspases. Inhibition of XIAP following nilotinib-mediated downregulation of MDM2 resulted in apoptosis of MDM2-expressing ALL; however, similar nilotinib treatment induced stronger apoptosis in Ph+/MDM2+ ALL than in Ph-/MDM2+ or Ph+/MDM2- ALL. The ALL cells that were Ph-/MDM2- were totally resistant to nilotinib. These results suggested that nilotinib can inhibit MDM2 and induce a p53-independent apoptosis pathway by downregulating XIAP; thus, nilotinib can treat not only Ph+, but also Ph- ALL patients whose cancer cells overexpress MDM2. PMID:24968304

  8. Mdm2 Phosphorylation Regulates Its Stability and Has Contrasting Effects on Oncogene and Radiation-Induced Tumorigenesis.

    PubMed

    Carr, Michael I; Roderick, Justine E; Gannon, Hugh S; Kelliher, Michelle A; Jones, Stephen N

    2016-09-01

    ATM phosphorylation of Mdm2-S394 is required for robust p53 stabilization and activation in DNA-damaged cells. We have now utilized Mdm2(S394A) knockin mice to determine that phosphorylation of Mdm2-S394 regulates p53 activity and the DNA damage response in lymphatic tissues in vivo by modulating Mdm2 stability. Mdm2-S394 phosphorylation delays lymphomagenesis in Eμ-myc transgenic mice, and preventing Mdm2-S394 phosphorylation obviates the need for p53 mutation in Myc-driven tumorigenesis. However, irradiated Mdm2(S394A) mice also have increased hematopoietic stem and progenitor cell functions, and we observed decreased lymphomagenesis in sub-lethally irradiated Mdm2(S394A) mice. These findings document contrasting effects of ATM-Mdm2 signaling on p53 tumor suppression and reveal that destabilizing Mdm2 by promoting its phosphorylation by ATM would be effective in treating oncogene-induced malignancies, while inhibiting Mdm2-S394 phosphorylation during radiation exposure or chemotherapy would ameliorate bone marrow failure and prevent the development of secondary hematological malignancies. PMID:27568562

  9. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    SciTech Connect

    Yang, Zhihong; Zhang, Yuxia; Wang, Li

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mdm2 enhances HNF4{alpha} activation of the ApoCIII promoter via interaction with HNF4{alpha}. Black-Right-Pointing-Pointer p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer Mdm2 alters the enrichment of HNF4{alpha}, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4{alpha}. A direct association of Mdm2 protein with the HNF4{alpha} protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4{alpha} activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4{alpha} to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  10. Phosphorylation by Casein Kinase I Promotes the Turnover of the Mdm2 Oncoprotein via the SCFβ-TRCP Ubiquitin Ligase

    PubMed Central

    Inuzuka, Hiroyuki; Tseng, Alan; Gao, Daming; Zhai, Bo; Zhang, Qing; Shaik, Shavali; Wan, Lixin; Ang, Xiaolu L.; Mock, Caroline; Yin, Haoqiang; Stommel, Jayne M.; Gygi, Steven; Lahav, Galit; Asara, John; Jim Xiao, Zhi-Xiong; Kaelin, William G.; Harper, J. Wade; Wei, Wenyi

    2010-01-01

    Summary Mdm2 is the major negative regulator of the p53 pathway. Here we report that Mdm2 is rapidly degraded after DNA damage and that phosphorylation of Mdm2 by Casein Kinase I (CKI) at multiple sites triggers its interaction with, and subsequent ubiquitination and destruction, by SCFβ-TRCP. Inactivation of either β-TRCP or CKI results in accumulation of Mdm2 and decreased p53 activity, and resistance to apoptosis induced by DNA damaging-agents. Moreover, SCFβ-TRCP-dependent Mdm2 turnover also contributes to the control of repeated p53 pulses in response to persistent DNA damage. Our results provide insight into the signaling pathways controlling Mdm2 destruction and further suggest that compromised regulation of Mdm2 results in attenuated p53 activity, thereby facilitating tumor progression. PMID:20708156

  11. A Functional Polymorphism (rs937283) in the MDM2 Promoter Region is Associated with Poor Prognosis of Retinoblastoma in Chinese Han Population

    PubMed Central

    Jiao, Yongfa; Jiang, Zhongming; Wu, Yuxia; Chen, Xiaochong; Xiao, Xing; Yu, Haiying

    2016-01-01

    The effect of single nucleotide polymorphisms (SNPs) at MDM2 has been investigated in several cancer types. Three MDM2 SNPs(rs937283, rs2270744 and rs769412) have previously been suggested to be positively correlated with cancer. In this study, we aimed to explore the association of rs937283, rs2270744 and rs769412 polymorphisms with retinoblastoma (RB) risk, clinicopathological characteristics, and prognosis. Compared with wild-type genotype AA at rs937283, individuals carrying AG and GG genotype had a significantly increased risk for developing RB (OR = 1.86, 95% CI 1.13–3.08; OR = 2.48, 95% CI 1.10–5.62, respectively). RB patients with allele G at rs937283 were more susceptible to invasion and high tumor aggression (OR = 2.42, 95% CI 1.43–4.11; OR = 2.15, 95% CI 1.27–3.64, respectively). Kaplan-Meier curves and log-rank results revealed that RB patients harboring genotype GG and G allele at rs937283 had worse survival (P < 0.02 and P < 0.01, respectively). In addition, the A to G substitution at rs937283 significantly enhanced the transcription activity of the MDM2 gene in vitro. In vivo, we found that MDM2 mRNA and protein were overexpressed in individuals who carried the G allele at rs937283. This study suggested that the MDM2 rs937283 polymorphism is a novel functional SNP both in vitro and in vivo as well as a biomarker for poor prognosis in RB. PMID:27506496

  12. A Functional Polymorphism (rs937283) in the MDM2 Promoter Region is Associated with Poor Prognosis of Retinoblastoma in Chinese Han Population.

    PubMed

    Jiao, Yongfa; Jiang, Zhongming; Wu, Yuxia; Chen, Xiaochong; Xiao, Xing; Yu, Haiying

    2016-01-01

    The effect of single nucleotide polymorphisms (SNPs) at MDM2 has been investigated in several cancer types. Three MDM2 SNPs(rs937283, rs2270744 and rs769412) have previously been suggested to be positively correlated with cancer. In this study, we aimed to explore the association of rs937283, rs2270744 and rs769412 polymorphisms with retinoblastoma (RB) risk, clinicopathological characteristics, and prognosis. Compared with wild-type genotype AA at rs937283, individuals carrying AG and GG genotype had a significantly increased risk for developing RB (OR = 1.86, 95% CI 1.13-3.08; OR = 2.48, 95% CI 1.10-5.62, respectively). RB patients with allele G at rs937283 were more susceptible to invasion and high tumor aggression (OR = 2.42, 95% CI 1.43-4.11; OR = 2.15, 95% CI 1.27-3.64, respectively). Kaplan-Meier curves and log-rank results revealed that RB patients harboring genotype GG and G allele at rs937283 had worse survival (P < 0.02 and P < 0.01, respectively). In addition, the A to G substitution at rs937283 significantly enhanced the transcription activity of the MDM2 gene in vitro. In vivo, we found that MDM2 mRNA and protein were overexpressed in individuals who carried the G allele at rs937283. This study suggested that the MDM2 rs937283 polymorphism is a novel functional SNP both in vitro and in vivo as well as a biomarker for poor prognosis in RB. PMID:27506496

  13. The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a

    PubMed Central

    Sparks, A; Dayal, S; Das, J; Robertson, P; Menendez, S; Saville, M K

    2014-01-01

    p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate. PMID:24121268

  14. Challenging dedifferentiated liposarcoma identified by MDM2-amplification, a report of two cases

    PubMed Central

    2014-01-01

    Background Liposarcoma is the most frequent soft tissue sarcoma. Well differentiated liposarcoma may progress into dedifferentiated liposarcoma with pleomorphic histology. A minority additionally features myogenic, osteo- or chondrosarcomatous heterologous differentiation. Genomic amplification of the Mouse double minute 2 homolog (MDM2) locus is characteristic for well differentiated and dedifferentiated liposarcomas. Detection of MDM2 amplification may supplement histopathology and aid to distinguish liposarcoma from other soft tissue neoplasia. Case presentation Here we present two cases of dedifferentiated liposarcoma with challenging presentation. Case 1 features a myogenic component. As the tumour infiltrated the abdominal muscles and showed immunohistochemical expression of myogenic proteins, rhabdomyosarcoma had to be ruled out. Case 2 has an osteosarcomatous component resembling extraosseous osteosarcoma. The MDM2 status was determined in both cases and helped making the correct diagnosis. Overexpression of MDM2 and co-overexpression of Cyclin-dependent kinase 4 is demonstrated by immunohistochemistry. The underlying MDM2 amplification is shown by fluorescence in situ hybridisation. Since low grade osteosarcoma may also harbour MDM2 amplification it is emphasised that the amplification has to be present in the lipomatous parts of the tumour to distinguish liposarcoma from extraosseous osteosarcoma. Conclusions The two cases exemplify challenges in the diagnoses of dedifferentiated liposarcoma. Liposarcoma often has pleomorphic histology and additionally may feature heterologous components that mimic other soft tissue neoplasms. Amplification of MDM2 is characteristic for well differentiated and dedifferentiated liposarcomas. Determination of the MDM2 status by in situ hybridisation may assist histopathology and help to rule out differential diagnoses. PMID:25126005

  15. Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2

    PubMed Central

    Vogel, Simon M.; Bauer, Matthias R.; Joerger, Andreas C.; Wilcken, Rainer; Brandt, Tobias; Veprintsev, Dmitry B.; Rutherford, Trevor J.; Fersht, Alan R.; Boeckler, Frank M.

    2012-01-01

    The proteins MDM2 and MDM4 are key negative regulators of the tumor suppressor protein p53, which are frequently upregulated in cancer cells. They inhibit the transactivation activity of p53 by binding separately or in concert to its transactivation domain. MDM2 is also a ubiquitin ligase that leads to the degradation of p53. Accordingly, MDM2 and MDM4 are important targets for drugs to inhibit their binding to p53. We found from in silico screening and confirmed by experiment that lithocholic acid (LCA) binds to the p53 binding sites of both MDM2 and MDM4 with a fivefold preference for MDM4. LCA is an endogenous steroidal bile acid, variously reported to have both carcinogenic and apoptotic activities. The comparison of LCA effects on apoptosis in HCT116 p53+/+ vs. p53-/- cells shows a predominantly p53-mediated induction of caspase-3/7. The dissociation constants are in the μM region, but only modest inhibition of binding of MDM2 and MDM4 is required to negate their upregulation because they have to compete with transcriptional coactivator p300 for binding to p53. Binding was weakened by structural changes in LCA, and so it may be a natural ligand of MDM2 and MDM4, raising the possibility that MDM proteins may be sensors for specific steroids. PMID:23035244

  16. MDM2-MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance.

    PubMed

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2016-01-01

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2-MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD ) in the micromolar range for the MDM2-MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2-MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2-MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. PMID:27621617

  17. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization.

    PubMed

    Graves, Bradford; Thompson, Thelma; Xia, Mingxuan; Janson, Cheryl; Lukacs, Christine; Deo, Dayanand; Di Lello, Paola; Fry, David; Garvie, Colin; Huang, Kuo-Sen; Gao, Lin; Tovar, Christian; Lovey, Allen; Wanner, Jutta; Vassilev, Lyubomir T

    2012-07-17

    Activation of p53 tumor suppressor by antagonizing its negative regulator murine double minute (MDM)2 has been considered an attractive strategy for cancer therapy and several classes of p53-MDM2 binding inhibitors have been developed. However, these compounds do not inhibit the p53-MDMX interaction, and their effectiveness can be compromised in tumors overexpressing MDMX. Here, we identify small molecules that potently block p53 binding with both MDM2 and MDMX by inhibitor-driven homo- and/or heterodimerization of MDM2 and MDMX proteins. Structural studies revealed that the inhibitors bind into and occlude the p53 pockets of MDM2 and MDMX by inducing the formation of dimeric protein complexes kept together by a dimeric small-molecule core. This mode of action effectively stabilized p53 and activated p53 signaling in cancer cells, leading to cell cycle arrest and apoptosis. Dual MDM2/MDMX antagonists restored p53 apoptotic activity in the presence of high levels of MDMX and may offer a more effective therapeutic modality for MDMX-overexpressing cancers. PMID:22745160

  18. Recognition Dynamics of p53 and MDM2: Implications for Peptide Design.

    PubMed

    ElSawy, Karim M; Lane, David P; Verma, Chandra S; Caves, Leo S D

    2016-01-21

    Peptides that inhibit MDM2 and attenuate MDM2-p53 interactions, thus activating p53, are currently being pursued as anticancer drug leads for tumors harboring wild type p53. The thermodynamic determinants of peptide-MDM2 interactions have been extensively studied. However, a detailed understanding of the dynamics that underlie these interactions is largely missing. In this study, we explore the kinetics of the binding of a set of peptides using Brownian dynamics simulations. We systematically investigate the effect of peptide C-terminal substitutions (Ser, Ala, Asn, Pro) of a Q16ETFSDLWKLLP27 p53-based peptide and a M1PRFMDYWEGLN12 12/1 phage-derived peptide on their interaction dynamics with MDM2. The substitutions modulate peptide residence times around the MDM2 protein. In particular, the highest affinity peptide, Q16ETFSDLWKLLS27, has the longest residence time (t ∼ 25 μs) around MDM2, suggesting its potentially important contribution to binding affinity. The binding of the p53-based peptides appears to be kinetically driven while that of the phage-derived series appears to be thermodynamically driven. The phage-derived peptides were found to adopt distinctly different modes of interaction with the MDM2 protein compared to their p53-based counterparts. The p53-based peptides approach the N-terminal region of the MDM2 protein with the peptide C-terminal end oriented toward the protein, while the M1PRFMDYWEGLN12-based peptides adopt the reverse orientation. To probe the determinants of this switch in orientation, a designed mutant of the phage-derived peptide, R3E (M1PEFMDYWEGLN12), was simulated and found to adopt the orientation adopted by the p53-based peptides and also to result in almost a 5-fold increase in the peptide residence time (∼120 μs) relative to the p53-based peptides. On this basis, we suggest that the R3E mutant phage-derived peptide has a higher affinity for MDM2 than the p53-based peptides and would therefore, competitively inhibit MDM2

  19. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action

    PubMed Central

    Sarkar, Sushanta; Nag, Subhasree; Walbi, Ismail A.; Wang, Shu; Zhao, Yuqing; Wang, Wei; Zhang, Ruiwen

    2015-01-01

    The Mouse Double Minute 2 (MDM2) oncogene plays a critical role in cancer development and progression through p53-dependent and p53-independent mechanisms. Both natural and synthetic MDM2 inhibitors have been shown anticancer activity against several human cancers. We have recently identified a novel ginsenoside, 25-OCH3-PPD (GS25), one of the most active anticancer ginsenosides discovered thus far, and have demonstrated its MDM2 inhibition and anticancer activity in various human cancer models, including prostate cancer. However, the oral bioavailability of GS25 is limited, which hampers its further development as an oral anticancer agent. The present study was designed to develop a novel nanoparticle formulation for oral delivery of GS25. After GS25 was successfully encapsulated into PEG-PLGA nanoparticles (GS25NP) and its physicochemical properties were characterized, the efficiency of MDM2 targeting, anticancer efficacy, pharmacokinetics, and safety were evaluated in in vitro and in vivo models of human prostate cancer. Our results indicated that, compared with the unencapsulated GS25, GS25NP demonstrated better MDM2 inhibition, improved oral bioavailability and enhanced in vitro and in vivo activities. In conclusion, the validated nano-formulation for GS25 oral delivery improves its molecular targeting, oral bioavailability and anticancer efficacy, providing a basis for further development of GS25 as a novel agent for cancer therapy and prevention. PMID:26041888

  20. MDM2 SNP309 promoter polymorphism confers risk for hereditary melanoma.

    PubMed

    Thunell, Lena K; Bivik, Cecilia; Wäster, Petra; Fredrikson, Mats; Stjernström, Annika; Synnerstad, Ingrid; Rosdahl, Inger; Enerbäck, Charlotta

    2014-06-01

    The p53 pathway regulates stress response, and variations in p53, MDM2, and MDM4 may predispose an individual to tumor development. The aim of this study was to study the impact of genetic variation on sporadic and hereditary melanoma. We have analyzed a combination of three functionally relevant variants of the p53 pathway in 258 individuals with sporadic malignant melanomas, 50 with hereditary malignant melanomas, and 799 healthy controls. Genotyping was performed by PCR-restriction fragment length polymorphism, pyrosequencing, and allelic discrimination. We found an increased risk for hereditary melanoma in MDM2 GG homozygotes, which was more pronounced among women (P=0.035). In the event of pairwise combinations of the single nucleotide polymorphisms, a risk elevation was shown for MDM2 GG homozygotes/p53 wild-type Arg in hereditary melanoma (P=0.01). Individuals with sporadic melanomas of the superficial spreading type, including melanoma in situ, showed a slightly higher frequency of the MDM2 GG genotype compared with those with nodular melanomas (P=0.04). The dysplastic nevus phenotype, present in the majority of our hereditary melanoma cases and also in some sporadic cases, further enhanced the effect of the MDM2 GG genotype on melanoma risk (P=0.005). In conclusion, the results show an association between MDM2 SNP309 and an increased risk for hereditary melanoma, especially among women. Analysis of sporadic melanoma also shows an association between MDM2 and the superficial spreading melanoma subtype, as well as an association with the presence of dysplastic nevi in sporadic melanoma. PMID:24625390

  1. Interplay between Mdm2 and HIPK2 in the DNA damage response.

    PubMed

    Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2014-07-01

    The tumour suppressor p53 is activated to induce cell-cycle arrest or apoptosis in the DNA damage response (DDR). p53 phosphorylation at Ser46 by HIPK2 (homeodomain-interacting protein kinase 2) is a critical event in apoptosis induction. Interestingly, HIPK2 is degraded by Mdm2 (a negative regulator of p53), whereas Mdm2 is downregulated by HIPK2 through several mechanisms. Here, we develop a four-module network model for the p53 pathway to clarify the role of interplay between Mdm2 and HIPK2 in the DDR evoked by ultraviolet radiation. By numerical simulations, we reveal that Mdm2-dependent HIPK2 degradation promotes cell survival after mild DNA damage and that inhibition of HIPK2 degradation is sufficient to trigger apoptosis. In response to severe damage, p53 phosphorylation at Ser46 is promoted by the accumulation of HIPK2 due to downregulation of nuclear Mdm2 in the later phase of the response. Meanwhile, the concentration of p53 switches from moderate to high levels, contributing to apoptosis induction. We show that the presence of three mechanisms for Mdm2 downregulation, i.e. repression of mdm2 expression, inhibition of its nuclear entry and HIPK2-induced degradation, guarantees the apoptosis of irreparably damaged cells. Our results agree well with multiple experimental observations, and testable predictions are also made. This work advances our understanding of the regulation of p53 activity in the DDR and suggests that HIPK2 should be a significant target for cancer therapy. PMID:24829283

  2. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome.

    PubMed

    Li, Yue; Stockton, Michael E; Bhuiyan, Ismat; Eisinger, Brian E; Gao, Yu; Miller, Jessica L; Bhattacharyya, Anita; Zhao, Xinyu

    2016-04-27

    Fragile X syndrome, the most common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein (FMRP). However, the mechanism remains unclear, and effective treatment is lacking. We show that loss of FMRP leads to activation of adult mouse neural stem cells (NSCs) and a subsequent reduction in the production of neurons. We identified the ubiquitin ligase mouse double minute 2 homolog (MDM2) as a target of FMRP. FMRP regulates Mdm2 mRNA stability, and loss of FMRP resulted in elevated MDM2 mRNA and protein. Further, we found that increased MDM2 expression led to reduced P53 expression in adult mouse NSCs, leading to alterations in NSC proliferation and differentiation. Treatment with Nutlin-3, a small molecule undergoing clinical trials for treating cancer, specifically inhibited the interaction of MDM2 with P53, and rescued neurogenic and cognitive deficits in FMRP-deficient mice. Our data reveal a potential regulatory role for FMRP in the balance between adult NSC activation and quiescence, and identify a potential new treatment for fragile X syndrome. PMID:27122614

  3. Impact of Ser17 Phosphorylation on the Conformational Dynamics of the Oncoprotein MDM2.

    PubMed

    Bueren-Calabuig, Juan A; Michel, Julien

    2016-05-01

    MDM2 is an important oncoprotein that downregulates the activity of the tumor suppressor protein p53 via binding of its N-terminal domain to the p53 transactivation domain. The first 24 residues of the MDM2 N-terminal domain form an intrinsically disordered "lid" region that interconverts on a millisecond time scale between "open" and "closed" states in unliganded MDM2. While the former conformational state is expected to facilitate p53 binding, the latter competes in a pseudo-substrate manner with p53 for its binding site. Phosphorylation of serine 17 in the MDM2 lid region is thought to modulate the equilibrium between "open" and "closed" lid states, but contradictory findings on the favored lid conformational state upon phosphorylation have been reported. Here, the nature of the conformational states of MDM2 pSer17 and Ser17Asp variants was addressed by means of enhanced sampling molecular dynamics simulations. Detailed analyses of the computed lid conformational ensembles indicate that both lid variants stabilize a "closed" state, with respect to wild type. Nevertheless, the nature of the closed-state conformational ensembles differs significantly between the pSer17 and Ser17Asp variants. Thus, care should be applied in the interpretation of biochemical experiments that use phosphomimetic variants to model the effects of phosphorylation on the structure and dynamics of this disordered protein region. PMID:27050388

  4. TRIM25 has a dual function in the p53/Mdm2 circuit.

    PubMed

    Zhang, P; Elabd, S; Hammer, S; Solozobova, V; Yan, H; Bartel, F; Inoue, S; Henrich, T; Wittbrodt, J; Loosli, F; Davidson, G; Blattner, C

    2015-11-12

    P53 is an important tumor suppressor that, upon activation, induces growth arrest and cell death. Control of p53 is thus of prime importance for proliferating cells, but also for cancer therapy, where p53 activity contributes to the eradication of tumors. Mdm2 functionally inhibits p53 and targets the tumor suppressor protein for degradation. In a genetic screen, we identified TRIM25 as a novel regulator of p53 and Mdm2. TRIM25 increased p53 and Mdm2 abundance by inhibiting their ubiquitination and degradation in 26 S proteasomes. TRIM25 co-precipitated with p53 and Mdm2 and interfered with the association of p300 and Mdm2, a critical step for p53 polyubiquitination. Despite the increase in p53 levels, p53 activity was inhibited in the presence of TRIM25. Downregulation of TRIM25 resulted in an increased acetylation of p53 and p53-dependent cell death in HCT116 cells. Upon genotoxic insults, TRIM25 dampened the p53-dependent DNA damage response. The downregulation of TRIM25 furthermore resulted in massive apoptosis during early embryogenesis of medaka, which was rescued by the concomitant downregulation of p53, demonstrating the functional relevance of the regulation of p53 by TRIM25 in an organismal context. PMID:25728675

  5. Lead Optimization of 2-Phenylindolylglyoxylyldipeptide Murine Double Minute (MDM)2/Translocator Protein (TSPO) Dual Inhibitors for the Treatment of Gliomas.

    PubMed

    Daniele, Simona; La Pietra, Valeria; Barresi, Elisabetta; Di Maro, Salvatore; Da Pozzo, Eleonora; Robello, Marco; La Motta, Concettina; Cosconati, Sandro; Taliani, Sabrina; Marinelli, Luciana; Novellino, Ettore; Martini, Claudia; Da Settimo, Federico

    2016-05-26

    In glioblastoma multiforme (GBM), translocator protein (TSPO) and murine double minute (MDM)2/p53 complex represent two druggable targets. We recently reported the first dual binder 3 possessing a higher anticancer effect in GBM cells than the standards PK11195 1 or Nutlin-3 2 singularly applied. Herein, through a structure-activity relationship study, we developed derivatives 4-10 with improved potencies toward both TSPO and MDM2. As a result, compound 9: (i) reactivated the p53 functionality; (ii) inhibited the viability of two human GBM cells; (iii) impaired the proliferation of glioma cancer stem cells (CSCs), more resistant to chemotherapeutics and responsible of GBM recurrence; (iv) sensitized GBM cells and CSCs to the activity of temozolomide; (v) directed its effects preferentially toward tumor cells with respect to healthy ones. Thus, 9 may represent a promising cytotoxic agent, which is worthy of being further developed for a therapeutic approach against GBM, where the downstream p53 signaling is intact and TSPO is overexpressed. PMID:27050782

  6. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction

    PubMed Central

    Pettersson, Mariell; Quant, Maria; Min, Jaeki; Iconaru, Luigi; Kriwacki, Richard W.; Waddell, M. Brett; Guy, R. Kiplin; Luthman, Kristina; Grøtli, Morten

    2015-01-01

    The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein—protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay. PMID:26427060

  7. A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation.

    PubMed

    Chen, Xishan; Tai, Lingyu; Gao, Jie; Qian, Jianchang; Zhang, Mingfei; Li, Beibei; Xie, Cao; Lu, Linwei; Lu, Wuyuan; Lu, Weiyue

    2015-11-28

    Antagonizing MDM2 and MDMX to activate the tumor suppressor protein p53 is an attractive therapeutic paradigm for the treatment of glioblastoma multiforme (GBM). However, challenges remain with respect to the poor ability of p53 activators to efficiently cross the blood-brain barrier and/or blood-brain tumor barrier and to specifically target tumor cells. To circumvent these problems, we developed a cyclic RGD peptide-conjugated poly(ethylene glycol)-co-poly(lactic acid) polymeric micelle (RGD-M) that carried a stapled peptide antagonist of both MDM2 and MDMX (sPMI). The peptide-carrying micelle RGD-M/sPMI was prepared via film-hydration method with high encapsulation efficiency and loading capacity as well as ideal size distribution. Micelle encapsulation dramatically increased the solubility of sPMI, thus alleviating its serum sequestration. In vitro studies showed that RGD-M/sPMI efficiently inhibited the proliferation of glioma cells in the presence of serum by activating the p53 signaling pathway. Further, RGD-M/sPMI exerted potent tumor growth inhibitory activity against human glioblastoma in nude mouse xenograft models. Importantly, the combination of RGD-M/sPMI and temozolomide--a standard chemotherapy drug for GBM increased antitumor efficacy against glioblastoma in experimental animals. Our results validate a combination therapy using p53 activators with temozolomide as a more effective treatment for GBM. PMID:26428461

  8. Mice Lacking Dystrophin or α Sarcoglycan Spontaneously Develop Embryonal Rhabdomyosarcoma with Cancer-Associated p53 Mutations and Alternatively Spliced or Mutant Mdm2 Transcripts

    PubMed Central

    Fernandez, Karen; Serinagaoglu, Yelda; Hammond, Sue; Martin, Laura T.; Martin, Paul T.

    2010-01-01

    Altered expression of proteins in the dystrophin-associated glycoprotein complex results in muscular dystrophy and has more recently been implicated in a number of forms of cancer. Here we show that loss of either of two members of this complex, dystrophin in mdx mice or α sarcoglycan in Sgca−/− mice, results in the spontaneous development of muscle-derived embryonal rhabdomyosarcoma (RMS) after 1 year of age. Many mdx and Sgca−/− tumors showed increased expression of insulin-like growth factor 2, retinoblastoma protein, and phosphorylated Akt and decreased expression of phosphatase and tensin homolog gene, much as is found in a human RMS. Further, all mdx and Sgca−/− RMS analyzed had increased expression of p53 and murine double minute (mdm)2 protein and contained missense p53 mutations previously identified in human cancers. The mdx RMS also contained missense mutations in Mdm2 or alternatively spliced Mdm2 transcripts that lacked an exon encoding a portion of the p53-binding domain. No Pax3:Fkhr or Pax7:Fkhr translocation mRNA products were evident in any tumor. Expression of natively glycosylated α dystroglycan and α sarcoglycan was reduced in mdx RMS, whereas dystrophin expression was absent in almost all human RMS, both for embryonal and alveolar RMS subtypes. These studies show that absence of members of the dystrophin-associated glycoprotein complex constitutes a permissive environment for spontaneous development of embryonal RMS associated with mutation of p53 and mutation or altered splicing of Mdm2. PMID:20019182

  9. A spatiotemporal characterization of the effect of p53 phosphorylation on its interaction with MDM2

    PubMed Central

    ElSawy, Karim M; Sim, Adelene; Lane, David P; Verma, Chandra S; Caves, Leo SD

    2015-01-01

    The interaction of p53 and MDM2 is modulated by the phosphorylation of p53. This mechanism is key to activating p53, yet its molecular determinants are not fully understood. To study the spatiotemporal characteristics of this molecular process we carried out Brownian dynamics simulations of the interactions of the MDM2 protein with a p53 peptide in its wild type state and when phosphorylated at Thr18 (pThr18) and Ser20 (pSer20). We found that p53 phosphorylation results in concerted changes in the topology of the interaction landscape in the diffusively bound encounter complex domain. These changes hinder phosphorylated p53 peptides from binding to MDM2 well before reaching the binding site. The underlying mechanism appears to involve shift of the peptide away from the vicinity of the MDM2 protein, peptide reorientation, and reduction in peptide residence time relative to wild-type p53 peptide. pThr18 and pSr20 p53 peptides experience reduction in residence times by factors of 13.6 and 37.5 respectively relative to the wild-type p53 peptide, indicating a greater role for Ser20 phosphorylation in abrogating p53 MDM2 interactions. These detailed insights into the effect of phosphorylation on molecular interactions are not available from conventional experimental and theoretical approaches and open up new avenues that incorporate molecular interaction dynamics, for stabilizing p53 against MDM2, which is a major focus of anticancer drug lead development. PMID:25584963

  10. Prognostic potential of the MDM2 309T>G polymorphism in stage I lung adenocarcinoma.

    PubMed

    Enokida, Yasuaki; Shimizu, Kimihiro; Atsumi, Jun; Kakegawa, Seiichi; Takase, Yoshiaki; Kaira, Kyoichi; Yashima, Hideaki; Araki, Takuya; Nakazawa, Seshiru; Ohtaki, Yoichi; Nagashima, Toshiteru; Alexander, Lezhava; Usui, Kengo; Ishikawa, Toshihisa; Hayashizaki, Yoshihide; Takeyoshi, Izumi

    2016-08-01

    The MDM2 protein plays an important role in the regulation of cell proliferation and apoptosis via ubiquitination and proteasome-mediated degradation of p53. The genetic polymorphism rs2279744 (c.309T>G) of the MDM2 gene is reportedly associated with susceptibility and/or prognosis in various cancers. In this study, we investigated the risk factors for worse survival in patients with lung adenocarcinoma (AC). We examined the association between c.309T>G and the prognosis of lung cancer by retrospectively reviewing 453 lung cancer patients. We studied both, clinicopathological and genetic characteristics, including the c.309T>G, p53 Arg72Pro, EGFR, KRAS, and p53 mutations. Associations between these factors and survival outcome were analyzed using Cox proportional hazards models. The frequencies of MDM2 polymorphisms were T/T, 20.8%; T/G, 48.6%, and G/G, 30.7%. The overall survival (OS) of AC patients with pathological stage I disease and the MDM2 T/T genotype was significantly shorter than that of those with the T/G or G/G genotypes (P = 0.02). Multivariate analysis revealed that the MDM2 T/T genotype was an independent, significant prognostic factor (hazard ratio [HR] = 2.23; 95% confidence interval [CI]: 1.07-4.65; P = 0.03). The MDM2 T/T genotype was predictive of poorer survival in a Japanese population. Genotyping for this polymorphism might predict the clinical outcomes of stage I AC patients. PMID:27228500

  11. Association of MDM2 SNP309, age of onset, and gender in cutaneous melanoma

    PubMed Central

    Firoz, Elnaz F.; Warycha, Melanie; Zakrzewski, Jan; Pollens, Danuta; Wang, Guimin; Shapiro, Richard; Berman, Russell; Pavlick, Anna; Manga, Prashiela; Ostrer, Harry; Celebi, Julide Tok; Kamino, Hideko; Darvishian, Farbod; Rolnitzky, Linda; Goldberg, Judith D.; Osman, Iman; Polsky, David

    2013-01-01

    Purpose In certain cancers, MDM2 SNP309 has been associated with early tumor onset in women. In melanoma, incidence rates are higher in women than in men among individuals less than age 40; however, among those older than age 50, melanoma is more frequent in men than in women. To investigate this difference, we examined the association between MDM2 SNP309, age at diagnosis, and gender among melanoma patients. Experimental Design Prospectively enrolled melanoma patients (N=227) were evaluated for MDM2 SNP309 and the related polymorphism, p53 Arg72Pro. DNA was isolated from patient blood samples and genotypes were analyzed by PCR-RFLP. Associations between MDM2 SNP309, p53 Arg72Pro, age at diagnosis, and clinicopathologic features of melanoma were analyzed. Results The median age at diagnosis was 13 years earlier among women with a SNP309 GG genotype (46 years) compared to women with TG+TT genotypes (59 years; p=0.19). Analyses using age dichotomized at each decade indicated that women with a GG genotype had significantly higher risks of being diagnosed with melanoma at ages less than 50 compared to women 50 and older, but not 60 and older. At ages less than 50, women with a GG genotype had a 3.89 times greater chance of being diagnosed compared to women with TG+TT genotypes (p=0.01). Similar observations were not seen among men. Conclusions Our data suggest that MDM2 may play an important role in the development of melanoma in women. The MDM2 SNP309 genotype may help identify women at risk for developing melanoma at a young age. PMID:19318491

  12. Controlled Access of p53 to the Nucleus Regulates its Proteasomal Degradation by MDM2

    PubMed Central

    Davis, James R.; Mossalam, Mohanad; Lim, Carol S.

    2013-01-01

    The tumor suppressor p53 can be sent to the proteasome for degradation by placing its nucleo-cytoplasmic shuttling under ligand control. Endogenous p53 is ubiquitinated by MDM2 in the nucleus, and controlling the access of p53 to the nuclear compartment regulates its ubiquitination and proteasomal degradation. This was accomplished by the use of a “protein switch” that places nuclear translocation under the control of externally applied dexamethasone. Fluorescence microscopy revealed that sending protein switch p53 (PS-p53) to the nucleus produces a distinct punctate distribution in both the cytoplasm and nucleus. The nuclear role in accessing the proteasome was investigated by inhibiting classical nuclear export with leptomycin B. Trapping PS-p53 in the nucleus only allows this punctate staining in that compartment, suggesting that PS-p53 must translocate first to the nuclear compartment for cytoplasmic punctate staining to occur. The role of MDM2 binding was explored by inhibiting MDM2/p53 binding with nutlin-3. Inhibition of this interaction blocked both nuclear export and cytoplasmic and nuclear punctate staining, providing evidence that any change in localization after nuclear translocation is due to MDM2 binding. Further, blocking the proteolytic activity of the proteasome maintained the nuclear localization of the construct. Truncations of p53 were made to determine smaller constructs still capable of interacting with MDM2, and their subcellular localization and degradation potential was observed. PS-p53 and a smaller construct, construct containing the two MDM2 binding regions of p53 (Box I+V) were indeed degraded by the proteasome as measured by loss of enhanced green fluorescent protein that was also fused to the construct. The influence of these constructs on p53 gene transactivation function was assessed, and revealed that PS-p53 decreased gene transactivation, while PS-p53(BoxI+V) did not significantly change baseline gene transactivation. PMID

  13. MYCN sensitizes neuroblastoma to the MDM2-p53 antagonists Nutlin-3 and MI-63

    PubMed Central

    Gamble, Laura D.; Kees, Ursula R.; Tweddle, Deborah A.; Lunec, John

    2011-01-01

    MYCN amplification is a major biomarker of poor prognosis, occurring in 25-30% of neuroblastomas. MYCN plays contradictory roles in promoting cell growth and sensitizing cells to apoptosis. We have recently shown that p53 is a direct transcriptional target of MYCN in neuroblastoma and that p53-mediated apoptosis may be an important mechanism of MYCN-induced apoptosis. Although p53 mutations are rare in neuroblastoma at diagnosis, the p53/MDM2/p14ARF pathway is often inactivated through MDM2 amplification or p14ARF inactivation. We hypothesised that reactivation of p53 by inhibition of its negative regulator MDM2, using the MDM2-p53 antagonists Nutlin-3 and MI-63, will result in p53-mediated growth arrest and apoptosis especially in MYCN amplified cells. Using the SHEP Tet21N MYCN regulatable system, MYCN(−) cells were more resistant to both Nutlin-3 and MI-63 mediated growth inhibition and apoptosis compared to MYCN(+) cells and siRNA mediated knockdown of MYCN in 4 MYCN amplified cell lines resulted in decreased p53 expression and activation, as well as decreased levels of apoptosis following treatment with MDM2-p53 antagonists. In a panel of 18 neuroblastoma cell lines treated with Nutlin-3 and MI-63, the sub-set amplified for MYCN had a significantly lower mean GI50 value and increased caspase 3/7 activity compared to the non MYCN amplified group of cell lines, but p53 mutant cell lines were resistant to the antagonists regardless of MYCN status. We conclude that amplification or overexpression of MYCN sensitizes neuroblastoma cell lines with wildtype p53 to MDM2-p53 antagonists and that these compounds may therefore be particularly effective in treating high risk MYCN amplified disease. PMID:21725357

  14. Discovery of potent and selective spiroindolinone MDM2 inhibitor, RO8994, for cancer therapy.

    PubMed

    Zhang, Zhuming; Ding, Qingjie; Liu, Jin-Jun; Zhang, Jing; Jiang, Nan; Chu, Xin-Jie; Bartkovitz, David; Luk, Kin-Chun; Janson, Cheryl; Tovar, Christian; Filipovic, Zoran M; Higgins, Brian; Glenn, Kelli; Packman, Kathryn; Vassilev, Lyubomir T; Graves, Bradford

    2014-08-01

    The field of small-molecule inhibitors of protein-protein interactions is rapidly advancing and the specific area of inhibitors of the p53/MDM2 interaction is a prime example. Several groups have published on this topic and multiple compounds are in various stages of clinical development. Building on the strength of the discovery of RG7112, a Nutlin imidazoline-based compound, and RG7388, a pyrrolidine-based compound, we have developed additional scaffolds that provide opportunities for future development. Here, we report the discovery and optimization of a highly potent and selective series of spiroindolinone small-molecule MDM2 inhibitors, culminating in RO8994. PMID:24997575

  15. Nandrolone, an anabolic steroid, stabilizes Numb protein through inhibition of mdm2 in C2C12 myoblasts.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Collier, Lauren; Bauman, William A; Cardozo, Christopher P

    2012-01-01

    Nandrolone, an anabolic steroid, slows denervation atrophy of rat muscle, prevents denervation-induced nuclear accumulation of intracellular domain of the Notch receptor, and elevates expression of Numb. Numb acts as an inhibitor of Notch signaling and promotes myogenic differentiation of satellite cells. Turnover of Numb is regulated by mdm2, an E3 ubiquitin ligase. With these considerations in mind, we investigated the effects of nandrolone on the expression of Numb and mdm2 proteins and determined the effect of mdm2 on nandrolone-induced alterations in Numb protein in C2C12 myoblasts. When C2C12 cells were cultured in a medium favoring differentiation (Dulbecco modified Eagle medium containing 2% horse serum), nandrolone up-regulated Numb protein levels in a time-dependent manner and prolonged Numb protein half-life from 10 to 18 hours. In contrast, nandrolone reduced the expression of mdm2 protein. To determine whether the decreased mdm2 expression induced by nandrolone was responsible for the increased levels and prolonged half-life of Numb protein in this cell line, mdm2-small interfering RNA (siRNA) was employed to inhibit mdm2 expression. Compared to cells transfected with scrambled siRNA (negative control), transfection with mdm2-siRNA increased basal Numb protein expression but abolished the further increase in Numb protein levels by nandrolone. In addition, transfection of mdm2-siRNA mimicked the effect of nandrolone to prolong the half-life of Numb protein. Moreover, when C2C12 cells were forced to overexpress mdm2, there was a significant decline in the expression of both basal and inducible Numb protein. Our data suggest that nandrolone, by a novel mechanism for this agent in a muscle cell type, increases Numb protein levels in C2C12 myoblasts by stabilizing Numb protein against degradation, at least in part, via suppression of mdm2 expression. PMID:22700758

  16. Stapled α−helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy

    PubMed Central

    Chang, Yong S.; Graves, Bradford; Guerlavais, Vincent; Tovar, Christian; Packman, Kathryn; To, Kwong-Him; Olson, Karen A.; Kesavan, Kamala; Gangurde, Pranoti; Mukherjee, Aditi; Baker, Theresa; Darlak, Krzysztof; Elkin, Carl; Filipovic, Zoran; Qureshi, Farooq Z.; Cai, Hongliang; Berry, Pamela; Feyfant, Eric; Shi, Xiangguo E.; Horstick, James; Annis, D. Allen; Manning, Anthony M.; Fotouhi, Nader; Nash, Huw; Vassilev, Lyubomir T.; Sawyer, Tomi K.

    2013-01-01

    Stapled α−helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein–protein interaction and may offer a viable modality for cancer therapy. PMID:23946421

  17. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy.

    PubMed

    Chang, Yong S; Graves, Bradford; Guerlavais, Vincent; Tovar, Christian; Packman, Kathryn; To, Kwong-Him; Olson, Karen A; Kesavan, Kamala; Gangurde, Pranoti; Mukherjee, Aditi; Baker, Theresa; Darlak, Krzysztof; Elkin, Carl; Filipovic, Zoran; Qureshi, Farooq Z; Cai, Hongliang; Berry, Pamela; Feyfant, Eric; Shi, Xiangguo E; Horstick, James; Annis, D Allen; Manning, Anthony M; Fotouhi, Nader; Nash, Huw; Vassilev, Lyubomir T; Sawyer, Tomi K

    2013-09-01

    Stapled α-helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein-protein interaction and may offer a viable modality for cancer therapy. PMID:23946421

  18. Influence of MDM2 SNP309 and SNP285 status on the risk of cancer in the breast, prostate, lung and colon.

    PubMed

    Gansmo, Liv B; Knappskog, Stian; Romundstad, Pål; Hveem, Kristian; Vatten, Lars; Lønning, Per E

    2015-07-01

    MDM2 is a key regulator of the p53 tumor suppressor protein and is overexpressed in many human cancers. Two single nucleotide polymorphisms (SNPs) located in the MDM2 intronic promoter (P2) have been found to exert biological function. The G-allele of SNP309T>G; rs2279744 increases MDM2 transcription and has been linked to increased cancer risk. In contrast, the less frequent SNP285G>C; rs117039649, which is in complete linkage disequilibrium with SNP309 (generating a SNP285C/309G variant haplotype), has been related to reduced MDM2 transcription and to reduced risk of breast, endometrial and ovarian cancer. In this large population-based case-control study, we genotyped SNP309 and SNP285 in 10,830 individuals, including cases with cancer of the breast (n=1,717), colon (n=1,532), lung (n=1,331) and prostate (n=2,501), as well as 3,749 non-cancer controls. We found a slightly reduced risk for lung cancer among individuals harboring the SNP309TG/GG genotypes compared to the SNP309TT genotype (OR= 0.86; CI = 0.67-0.98), but this association was restricted to women (OR = 0.77; CI = 0.63-0.95) and was not present among men (OR = 0.91; CI = 0.77-1.08). Consistent with previous findings, we found a reduced risk for breast cancer among individuals carrying the SNP285GC/309GG genotype versus the SNP285GG/309GG genotype (OR = 0.55; CI = 0.33-0.93). In conclusion, our data support the hypothesis that the effects of both SNP285 and SNP309 status are tissue dependent. PMID:25431177

  19. Reliability of differential PCR for the detection of EGFR and MDM2 gene amplification in DNA extracted from FFPE glioma tissue

    SciTech Connect

    Hunter, S.B.; Abbott, K.; Varma, V.A.

    1995-01-01

    A series of 43 human gliomas, consisting of 30 glioblastomas, 7 anaplastic astrocytomas, 3 low grade astrocytomas, 2 ependymomas, and 1 oligodendroglioma, was studied for amplification of the epidermal growth factor receptor (EGFR) and mouse double minute 2 (MDM2) genes. DNA extracted from formalin-fixed, paraffin-embedded tissue sections was analyzed by differential PCR and the results were compared with slot blot examination of DNA extracted from frozen tissue from the same neoplasms. Twelve glioblastomas (40%) showed amplification of the EGFR gene, and overexpression of EGFR was evident in each of these tumors as indicated by the immunoperoxidase technique. Two of the tumors with EGFR gene amplification also revealed amplification of the MDM2 gene, while one additional glioblastoma revealed MDM2 amplification only. A 100% concordance in the detection of amplification was observed between differential PCR and slot blot analysis; consequently these results indicate that differential PCR using DNA extracted front archival tissue sections is a reliable method of demonstrating gene amplifications in glial tumors. 29 refs., 2 figs., 3 tabs.

  20. p53 mRNA and p53 Protein Structures Have Evolved Independently to Interact with MDM2.

    PubMed

    Karakostis, Konstantinos; Ponnuswamy, Anand; Fusée, Leïla T S; Bailly, Xavier; Laguerre, Laurent; Worall, Erin; Vojtesek, Borek; Nylander, Karin; Fåhraeus, Robin

    2016-05-01

    The p53 tumor suppressor and its key regulator MDM2 play essential roles in development, ageing, cancer, and cellular stress responses in mammals. Following DNA damage, MDM2 interacts with p53 mRNA in an ATM kinase-dependent fashion and stimulates p53 synthesis, whereas under normal conditions, MDM2 targets the p53 protein for degradation. The peptide- and RNA motifs that interact with MDM2 are encoded by the same conserved BOX-I sequence, but how these interactions have evolved is unknown. Here, we show that a temperature-sensitive structure in the invertebrate Ciona intestinalis (Ci) p53 mRNA controls its interaction with MDM2. We also show that a nonconserved flanking region of Ci-BOX-I domain prevents the p53-MDM2 protein-protein interaction. These results indicate that the temperature-regulated p53 mRNA-MDM2 interaction evolved to become kinase regulated in the mammalian DNA damage response. The data also suggest that the negative regulation of p53 by MDM2 via protein-protein interaction evolved in vertebrates following changes in the BOX-I flanking sequence. PMID:26823446

  1. Targeting the MDM2/MDM4 interaction interface as a promising approach for p53 reactivation therapy.

    PubMed

    Pellegrino, Marsha; Mancini, Francesca; Lucà, Rossella; Coletti, Alice; Giacchè, Nicola; Manni, Isabella; Arisi, Ivan; Florenzano, Fulvio; Teveroni, Emanuela; Buttarelli, Marianna; Fici, Laura; Brandi, Rossella; Bruno, Tiziana; Fanciulli, Maurizio; D'Onofrio, Mara; Piaggio, Giulia; Pellicciari, Roberto; Pontecorvi, Alfredo; Marine, Jean Christophe; Macchiarulo, Antonio; Moretti, Fabiola

    2015-11-01

    Restoration of wild-type p53 tumor suppressor function has emerged as an attractive anticancer strategy. Therapeutics targeting the two p53-negative regulators, MDM2 and MDM4, have been developed, but most agents selectively target the ability of only one of these molecules to interact with p53, leaving the other free to operate. Therefore, we developed a method that targets the activity of MDM2 and MDM4 simultaneously based on recent studies indicating that formation of MDM2/MDM4 heterodimer complexes are required for efficient inactivation of p53 function. Using computational and mutagenesis analyses of the heterodimer binding interface, we identified a peptide that mimics the MDM4 C-terminus, competes with endogenous MDM4 for MDM2 binding, and activates p53 function. This peptide induces p53-dependent apoptosis in vitro and reduces tumor growth in vivo. Interestingly, interfering with the MDM2/MDM4 heterodimer specifically activates a p53-dependent oxidative stress response. Consistently, distinct subcellular pools of MDM2/MDM4 complexes were differentially sensitive to the peptide; nuclear MDM2/MDM4 complexes were particularly highly susceptible to the peptide-displacement activity. Taken together, these data identify the MDM2/MDM4 interaction interface as a valuable molecular target for therapeutic reactivation of p53 oncosuppressive function. PMID:26359458

  2. Antisense-MDM2 Sensitizes LNCaP Prostate Cancer Cells to Androgen Deprivation, Radiation, and the Combination In Vivo

    SciTech Connect

    Stoyanova, Radka; Hachem, Paul; Hensley, Harvey; Khor, L.-Y.; Mu Zhaomei; Hammond, M. Elizabeth H.; Agrawal, Sudhir; Pollack, Alan . E-mail: Alan.Pollack@fccc.edu

    2007-07-15

    Purpose: To test the effects of antisense (AS)-MDM2 alone and with androgen deprivation (AD), radiotherapy (RT), and AD + RT on wild-type LNCaP cells in an orthotopic in vivo model. Methods: Androgen-sensitive LNCaP cells were grown in the prostates of nude mice. Magnetic resonance imaging-based tumor volume and serum prostate-specific antigen (PSA) measurements were used to assess effects on tumor response. Tumor response was measured by biochemical and tumor volume failure definitions and doubling time estimates from fitted PSA and tumor volume growth curves. Expression of MDM2, p53, p21, and Ki-67 was quantified using immunohistochemical staining and image analysis of formalin-fixed tissue, analogous to methods used clinically. Results: Antisense-MDM2 significantly inhibited the growth of LNCaP tumors over the mismatch controls. The most significant increase in tumor growth delay and tumor doubling time was from AS-MDM2 + AD + RT, although the effect of AS-MDM2 + AD was substantial. Expression of MDM2 was significantly reduced by AS-MDM2 in the setting of RT. Conclusions: This is the first in vivo investigation of the effects of AS-MDM2 in an orthotopic model and the first to demonstrate incremental sensitization when added to AD and AD + RT. The results with AD underscore the potential to affect micrometastatic disease, which is probably responsible for treatment failure in 30-40% of men with high-risk disease.

  3. MDM2 T309G polymorphism and esophageal cancer risk: a meta-analysis.

    PubMed

    Lei, Caipeng; Zhang, Weiguo; Fan, Junli; Qiao, Bin; Chen, Qiang; Liu, Qin; Zhao, Chunling

    2015-01-01

    Murine double minute 2 (MDM2) has suggested to play an important role in esophageal cancer. The association between MDM2 T309G polymorphism and esophageal cancer risk was inconclusive. To clarify the possible association, we conducted a meta-analysis. We searched in the PubMed, Embase, and Wanfang databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. A total of 6 studies with 4909 cases and controls were included based on the search criteria. The MDM2 T309G polymorphism was associated with a significantly decreased risk of esophageal cancer (OR=0.88; 95% CI, 0.81-0.96; I(2)=22%). When stratified by type of race, a significantly decreased esophageal cancer risk were observed in Asians (OR=0.85; 95% CI, 0.78-0.93; I(2)=0%). In conclusion, this meta-analysis suggested that MDM2 T309G polymorphism was associated with a significantly decreased risk of esophageal cancer. PMID:26550276

  4. MDM2 T309G polymorphism and esophageal cancer risk: a meta-analysis

    PubMed Central

    Lei, Caipeng; Zhang, Weiguo; Fan, Junli; Qiao, Bin; Chen, Qiang; Liu, Qin; Zhao, Chunling

    2015-01-01

    Murine double minute 2 (MDM2) has suggested to play an important role in esophageal cancer. The association between MDM2 T309G polymorphism and esophageal cancer risk was inconclusive. To clarify the possible association, we conducted a meta-analysis. We searched in the PubMed, Embase, and Wanfang databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. A total of 6 studies with 4909 cases and controls were included based on the search criteria. The MDM2 T309G polymorphism was associated with a significantly decreased risk of esophageal cancer (OR=0.88; 95% CI, 0.81-0.96; I2=22%). When stratified by type of race, a significantly decreased esophageal cancer risk were observed in Asians (OR=0.85; 95% CI, 0.78-0.93; I2=0%). In conclusion, this meta-analysis suggested that MDM2 T309G polymorphism was associated with a significantly decreased risk of esophageal cancer. PMID:26550276

  5. KMT Set7/9 affects genotoxic stress response via the Mdm2 axis

    PubMed Central

    Fedorova, Olga; Malikova, Daria; Shuvalov, Oleg; Antonov, Alexey V.; Tentler, Dmitri; Garabadgiu, Alexander V.; Melino, Gerry; Barlev, Nikolai A.

    2015-01-01

    Genotoxic stress inflicted by anti-cancer drugs causes DNA breaks and genome instability. DNA double strand breaks induced by irradiation or pharmacological inhibition of Topoisomerase II activate ATM (ataxia-telangiectasia-mutated) kinase signalling pathway that in turn triggers cell cycle arrest and DNA repair. ATM-dependent gamma-phosphorylation of histone H2Ax and other histone modifications, including ubiquitnylation, promote exchange of histones and recruitment of DNA damage response (DDR) and repair proteins. Signal transduction pathways, besides DDR itself, also control expression of genes whose products cause cell cycle arrest and/or apoptosis thus ultimately affecting the sensitivity of cells to genotoxic stress. In this study, using a number of experimental approaches we provide evidence that lysine-specific methyltransferase (KMT) Set7/9 affects DDR and DNA repair, at least in part, by regulating the expression of an E3 ubiquitin ligase, Mdm2. Furthermore, we show that Set7/9 physically interacts with Mdm2. Several cancer cell lines with inverse expression of Set7/9 and Mdm2 displayed diminished survival in response to genotoxic stress. These findings are signified by our bioinformatics studies suggesting that the unleashed expression of Mdm2 in cancer patients with diminished expression of Set7/9 is associated with poor survival outcome. PMID:26317544

  6. Benzimidazole-2-one: A Novel Anchoring Principle For Antagonizing p53-Mdm2

    PubMed Central

    Wang, Wei; Cao, Haiping; Wolf, Siglinde; Camacho-Horvitz, Miguel S.; Holak, Tad A.; Dömling, Alexander

    2013-01-01

    Herein we propose the benzimidazole-2-one substructure as a suitable tryptophan mimic and thus a reasonable starting point for the design of p53 Mdm2 antagonists. We devise a short multicomponent reaction route to hitherto unknown 2-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)acetamides by reacting mono N-carbamate protected phenylenediamine in a Ugi-3CR followed by base induced cyclisation. Our preliminary synthesis and screening results are presented here. The finding of the benzimidazolone moiety as a tryptophan replacement in mdm2 is significant as it offers access to novel scaffolds with potentially higher selectivity and potency and improved biological activities. Observing low μM affinities to mdm2 by NMR and fluorescence polarization we conclude that the 2-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)acetamide scaffold might be a good starting point to further optimize the affinities to Mdm2. PMID:22789708

  7. Counteracting MDM2-induced HIPK2 downregulation restores HIPK2/p53 apoptotic signaling in cancer cells.

    PubMed

    Nardinocchi, Lavinia; Puca, Rosa; Givol, David; D'Orazi, Gabriella

    2010-10-01

    Homeodomain-interacting protein kinase-2 (HIPK2) is a crucial regulator of p53 apoptotic function by phosphorylating serine 46 (Ser46) in response to DNA damage. In tumors with wild-type p53, its tumor suppressor function is often impaired by MDM2 overexpression that targets p53 for proteasomal degradation. Likewise, MDM2 targets HIPK2 for protein degradation impairing p53-apoptotic function. Here we report that zinc antagonised MDM2-induced HIPK2 degradation as well as p53 ubiquitination. The zinc inhibitory effect on MDM2 activity leads to HIPK2-induced p53Ser46 phosphorylation and p53 pro-apoptotic transcriptional activity. These results suggest that zinc derivatives are potential molecules to target the MDM2-induced HIPK2/p53 inhibition. PMID:20849851

  8. MAGE-A Cancer/Testis Antigens Inhibit MDM2 Ubiquitylation Function and Promote Increased Levels of MDM4

    PubMed Central

    Marcar, Lynnette; Ihrig, Bianca; Hourihan, John; Bray, Susan E.; Quinlan, Philip R.; Jordan, Lee B.; Thompson, Alastair M.; Hupp, Ted R.; Meek, David W.

    2015-01-01

    Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically. PMID:26001071

  9. RNA interference against MDM2 suppresses tumor growth and metastasis in pancreatic carcinoma SW1990HM cells.

    PubMed

    Shi, Weidong; Meng, Zhiqiang; Chen, Zhen; Hua, Yongqiang; Gao, Huifeng; Wang, Peng; Lin, Junhua; Zhou, Zhenhua; Luo, Jianmin; Liu, Luming

    2014-02-01

    In our previous study, the mouse double minute 2 (MDM2) was identified as one of the leading genes that promote the metastasis of pancreatic cancer (PC). However, the mechanism by which MDM2 promotes metastasis of PC is not understood. In this study, we show that down-regulation of MDM2 through lentivirus-mediated RNA interference could also suppress in vitro proliferation and in vivo tumor growth, and led to an obvious inhibition of both in vitro invasion and in vivo live metastases of SW1990HM cells which had an over-expression of MDM2 and a higher metastatic potential. Moreover, we also show that the down-regulation of MDM2 induced a significant decrease in MMP9, Ki-67 and increase in P53, E-Cadherin expression, and results in an altered expression of genes involved in metastasis, apoptosis, and cell proliferation. Our results suggest that MDM2 plays an important role in metastasis as well as tumor growth of PC. MDM2 could be a hopeful target for the control of PC. PMID:22200978

  10. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mdm2 is an E3 ubiquitin ligase that targets p53 for degradation. p53(515C) (encoding p53R172P) is a hypomorphic allele of p53 that rescues the embryonic lethality of Mdm2(-/-) mice. Mdm2(-/-) p53(515C/515C) mice, however, die by postnatal day 13 resulting from hematopoietic failure. Hematopoietic st...

  11. High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma

    PubMed Central

    Carr-Wilkinson, Jane; O' Toole, Kieran; Wood, Katrina M.; Challen, Christine C.; Baker, Angela G.; Board, Julian R.; Evans, Laura; Cole, Michael; Cheung, Nai-Kong V.; Boos, Joachim; Köhler, Gabriele; Leuschner, Ivo; Pearson, Andrew D.J.; Lunec, John; Tweddle, Deborah A.

    2010-01-01

    Purpose: Most neuroblastomas initially respond to therapy but many relapse with chemoresistant disease. p53 mutations are rare in diagnostic neuroblastomas, but we have previously reported inactivation of the p53/MDM2/p14ARF pathway in 9/17 (53%) neuroblastoma cell lines established at relapse. Hypothesis: Inactivation of the p53/MDM2/p14ARF pathway develops during treatment and contributes to neuroblastoma relapse. Methods: Eighty-four neuroblastomas were studied from 41 patients with relapsed neuroblastoma including 38 paired neuroblastomas at different stages of therapy. p53 mutations were detected by automated sequencing, p14ARF methylation and deletion by methylation-specific PCR and duplex PCR respectively, and MDM2 amplification by fluorescent in-situ hybridisation. Results: Abnormalities in the p53 pathway were identified in 20/41(49%) cases. Downstream defects due to inactivating missense p53 mutations were identified in 6/41 (15%) cases, 5 following chemotherapy and/or at relapse and 1 at diagnosis, post chemotherapy and relapse. The presence of a p53 mutation was independently prognostic for overall survival (hazard ratio 3.4, 95% confidence interval 1.2, 9.9; p = 0.02). Upstream defects were present in 35% cases: MDM2 amplification in 3 cases, all at diagnosis & relapse and p14ARF inactivation in 12/41 (29%) cases: 3 had p14ARF methylation, 2 after chemotherapy, and 9 had homozygous deletions, 8 at diagnosis and relapse. Conclusions: These results show that a high proportion of neuroblastomas which relapse have an abnormality in the p53 pathway. The majority have upstream defects suggesting that agents which reactivate wild-type p53 would be beneficial, in contrast to those with downstream defects where p53 independent therapies are indicated. PMID:20145180

  12. A Theoretical Exploration of Birhythmicity in the p53-Mdm2 Network

    PubMed Central

    Abou-Jaoudé, Wassim; Chaves, Madalena; Gouzé, Jean-Luc

    2011-01-01

    Experimental observations performed in the p53-Mdm2 network, one of the key protein modules involved in the control of proliferation of abnormal cells in mammals, revealed the existence of two frequencies of oscillations of p53 and Mdm2 in irradiated cells depending on the irradiation dose. These observations raised the question of the existence of birhythmicity, i.e. the coexistence of two oscillatory regimes for the same external conditions, in the p53-Mdm2 network which would be at the origin of these two distinct frequencies. A theoretical answer has been recently suggested by Ouattara, Abou-Jaoudé and Kaufman who proposed a 3-dimensional differential model showing birhythmicity to reproduce the two frequencies experimentally observed. The aim of this work is to analyze the mechanisms at the origin of the birhythmic behavior through a theoretical analysis of this differential model. To do so, we reduced this model, in a first step, into a 3-dimensional piecewise linear differential model where the Hill functions have been approximated by step functions, and, in a second step, into a 2-dimensional piecewise linear differential model by setting one autonomous variable as a constant in each domain of the phase space. We find that two features related to the phase space structure of the system are at the origin of the birhythmic behavior: the existence of two embedded cycles in the transition graph of the reduced models; the presence of a bypass in the orbit of the large amplitude oscillatory regime of low frequency. Based on this analysis, an experimental strategy is proposed to test the existence of birhythmicity in the p53-Mdm2 network. From a methodological point of view, this approach greatly facilitates the computational analysis of complex oscillatory behavior and could represent a valuable tool to explore mathematical models of biological rhythms showing sufficiently steep nonlinearities. PMID:21340030

  13. The T309G MDM2 Gene Polymorphism Is a Novel Risk Factor for Proliferative Vitreoretinopathy

    PubMed Central

    Pastor-Idoate, Salvador; Rodríguez-Hernández, Irene; Rojas, Jimena; Fernández, Itziar; García-Gutiérrez, María T.; Ruiz-Moreno, José M.; Rocha-Sousa, Amandio; Ramkissoon, Yashin; Harsum, Steven; MacLaren, Robert E.; Charteris, David; VanMeurs, Jan C.; González-Sarmiento, Rogelio; Pastor, José C.

    2013-01-01

    Proliferative vitreoretinopathy (PVR) is still the major cause of failure in retinal detachment (RD) surgery. It is believed that down-regulation in the p53 pathway could be an important key in PVR pathogenesis. The purpose was to evaluate the impact of T309G MDM2 polymorphism (rs2279744) in PVR. Distribution of T309G MDM2 genotypes among European subjects undergoing RD surgery was evaluated. Proportions of genotypes between subsamples from different countries were analyzed. Also, a genetic interaction between rs2279744 in MDM2 and rs1042522 in p53 gene was analyzed. Significant differences were observed comparing MDM2 genotype frequencies at position 309 of intron 1 between cases (GG: 21.6%, TG: 54.5%, TT: 23.8%) and controls (GG: 7.3%, TG: 43.9%, TT: 48.7%). The proportions of genotypes between sub-samples from different countries showed a significant difference. Distribution of GG genotype revealed differences in Spain (35.1–53.0)/(22.6–32.9), Portugal (39.0–74.4)/(21.4–38.9), Netherlands (40.6–66.3)/(25.3–38.8) and UK (37.5–62.4)/(23.3–34.2). The OR of G carriers in the global sample was 5.9 (95% CI: 3.2 to 11.2). The OR of G carriers from Spain and Portugal was 5.4 (95% CI: 2.2–12.7), whereas in the UK and the Netherlands was 7.3 (95% CI: 2.8–19.1). Results indicate that the G allele of rs2279744 is associated with a higher risk of developing PVR in patients undergoing a RD surgery. Further studies are necessary to understand the role of this SNP in the development of PVR. PMID:24349246

  14. Depletion of guanine nucleotides leads to the Mdm2-dependent proteasomal degradation of nucleostemin.

    PubMed

    Huang, Min; Itahana, Koji; Zhang, Yanping; Mitchell, Beverly S

    2009-04-01

    Nucleostemin is a positive regulator of cell proliferation and is highly expressed in a variety of stem cells, tumors, and tumor cell lines. The protein shuttles between the nucleolus and the nucleus in a GTP-dependent fashion. Selective depletion of intracellular guanine nucleotides by AVN-944, an inhibitor of the de novo purine synthetic enzyme, IMP dehydrogenase, leads to the rapid disappearance of nucleostemin protein in tumor cell lines, an effect that does not occur with two other nucleolar proteins, nucleophosmin or nucleolin. Endogenous nucleostemin protein is completely stabilized by MG132, an inhibitor of the 26S proteasome, as are the levels of expressed enhanced green fluorescent protein-tagged nucleostemin, both wild-type protein and protein containing mutations at the G(1) GTP binding site. Nutlin-3a, a small molecule that disrupts the binding of the E3 ubiquitin ligase, Mdm2, to p53, stabilizes nucleostemin protein in the face of guanine nucleotide depletion, as does siRNA-mediated knockdown of Mdm2 expression and overexpression of a dominant-negative form of Mdm2. Neither Doxorubicin nor Actinomycin D, which cause the release of nucleostemin from the nucleolus, results in nucleostemin degradation. We conclude that nucleostemin is a target for Mdm2-mediated ubiquitination and degradation when not bound to GTP. Because this effect does not occur with other chemotherapeutic agents, the induction of nucleostemin protein degradation in tumor cells by IMP dehydrogenase inhibition or by other small molecules that disrupt GTP binding may offer a new approach to the treatment of certain neoplastic diseases. PMID:19318567

  15. Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells.

    PubMed

    Borcherds, Wade; Theillet, François-Xavier; Katzer, Andrea; Finzel, Ana; Mishall, Katie M; Powell, Anne T; Wu, Hongwei; Manieri, Wanda; Dieterich, Christoph; Selenko, Philipp; Loewer, Alexander; Daughdrill, Gary W

    2014-12-01

    Levels of residual structure in disordered interaction domains determine in vitro binding affinities, but whether they exert similar roles in cells is not known. Here, we show that increasing residual p53 helicity results in stronger Mdm2 binding, altered p53 dynamics, impaired target gene expression and failure to induce cell cycle arrest upon DNA damage. These results establish that residual structure is an important determinant of signaling fidelity in cells. PMID:25362358

  16. The p53 Tumor Suppressor Protein Does Not Regulate Expression of Its Own Inhibitor, MDM2, Except under Conditions of Stress

    PubMed Central

    Mendrysa, Susan M.; Perry, Mary Ellen

    2000-01-01

    MDM2 is an important regulator of the p53 tumor suppressor protein. MDM2 inhibits p53 by binding to it, physically blocking its ability to transactivate gene expression, and stimulating its degradation. In cultured cells, mdm2 expression can be regulated by p53. Hence, mdm2 and p53 can interact to form an autoregulatory loop in which p53 activates expression of its own inhibitor. The p53/MDM2 autoregulatory loop has been elucidated within cultured cells; however, regulation of mdm2 expression by p53 has not been demonstrated within intact tissues. Here, we examine the role of p53 in regulating mdm2 expression in vivo in order to test the hypothesis that the p53/MDM2 autoregulatory loop is the mechanism by which low levels of p53 are maintained. We demonstrate that basal expression of mdm2 in murine tissues is p53 independent, even in tissues that express functional p53. Transcription of mdm2 is induced in a p53-dependent manner following gamma irradiation, indicating that p53 regulates mdm2 expression in vivo following a stimulus. The requirement for a stimulus to activate p53-dependent regulation of mdm2 expression in vivo appeared to differ from the situation in early-passage mouse embryo fibroblasts, where mdm2 expression is enhanced by the presence of p53. Analysis of mdm2 expression in intact and dispersed embryos revealed that establishment of mouse embryo fibroblasts in culture induces p53-dependent mdm2 expression, suggesting that an unknown stimulus activates p53 function in cultured cells. Together, these results indicate that p53 does not regulate expression of its own inhibitor, except in response to stimuli. PMID:10688649

  17. 8-Triazolylpurines: Towards Fluorescent Inhibitors of the MDM2/p53 Interaction

    PubMed Central

    Jacobsson, Jimmy; Nilsson, Jesper R.; Min, Jaeki; Iconaru, Luigi; Guy, R. Kiplin; Kriwacki, Richard W.; Andréasson, Joakim; Grøtli, Morten

    2015-01-01

    Small molecule nonpeptidic mimics of α-helices are widely recognised as protein-protein interaction (PPIs) inhibitors. Protein-protein interactions mediate virtually all important regulatory pathways in a cell, and the ability to control and modulate PPIs is therefore of great significance to basic biology, where controlled disruption of protein networks is key to understanding network connectivity and function. We have designed and synthesised two series of 2,6,9-substituted 8-triazolylpurines as α-helix mimetics. The first series was designed based on low energy conformations but did not display any biological activity in a biochemical fluorescence polarisation assay targeting MDM2/p53. Although solution NMR conformation studies demonstrated that such molecules could mimic the topography of an α-helix, docking studies indicated that the same compounds were not optimal as inhibitors for the MDM2/p53 interaction. A new series of 8-triazolylpurines was designed based on a combination of docking studies and analysis of recently published inhibitors. The best compound displayed low micromolar inhibitory activity towards MDM2/p53 in a biochemical fluorescence polarisation assay. In order to evaluate the applicability of these compounds as biologically active and intrinsically fluorescent probes, their absorption/emission properties were measured. The compounds display fluorescent properties with quantum yields up to 50%. PMID:25942498

  18. KAP1 dictates p53 response induced by chemotherapeutic agents via Mdm2 interaction

    SciTech Connect

    Okamoto, Koji . E-mail: kojokamo@gan2.res.ncc.go.jp; Kitabayashi, Issay; Taya, Yoichi . E-mail: ytaya@gan2.res.ncc.go.jp

    2006-12-08

    KAP1 recruits many proteins involved in gene silencing and functions as an integral part of co-repressor complex. KAP1 was identified as Mdm2-binding protein and shown to form a complex with Mdm2 and p53 in vivo. We examined the role of KAP1 in p53 activation after the treatment of cells with different types of external stresses. KAP1 reduction markedly enhanced the induction of p21, a product of the p53 target gene, after treatment with actinomycin D or {gamma}-irradiation, but not with camptothecin. Treatment with actinomycin D, but not with camptothecin, augmented the interaction of p53 with Mdm2 and KAP1. Further, KAP1 reduction in actinomycin D-treated cells facilitated cell cycle arrest and negatively affected clonal cell growth. Thus, the reduction of KAP1 levels promotes p53-dependent p21 induction and inhibits cell proliferation in actinomycin D-treated cells. KAP1 may serve as a therapeutic target against cancer in combination with actinomycin D.

  19. MDM2 Amplification and PI3KCA Mutation in a Case of Sclerosing Rhabdomyosarcoma.

    PubMed

    Kikuchi, Ken; Wettach, George R; Ryan, Christopher W; Hung, Arthur; Hooper, Jody E; Beadling, Carol; Warrick, Andrea; Corless, Christopher L; Olson, Susan B; Keller, Charles; Mansoor, Atiya

    2013-01-01

    A rare sclerosing variant of rhabdomyosarcoma characterized by prominent hyalinization and pseudovascular pattern has recently been described as a subtype biologically distinct from embryonal, alveolar, and pleomorphic forms. We present cytogenetic and molecular findings as well as experimental studies of an unusual case of sclerosing rhabdomyosarcoma. The primary lesion arose within the plantar subcutaneous tissue of the left foot of an otherwise healthy 23-year-old male who eventually developed pulmonary nodules despite systemic chemotherapy. Two genetic abnormalities identified in surgical and/or autopsy samples of the tumor were introduced into 10T1/2 murine fibroblasts to determine whether these genetic changes cooperatively facilitated transformation and growth. Cytogenetic analysis revealed a complex abnormal hyperdiploid clone, and MDM2 gene amplification was confirmed by fluorescence in situ hybridization. Cancer gene mutation screening using a combination of multiplexed PCR and mass spectroscopy revealed a PIK3CA exon 20 H1047R mutation in the primary tumor, lung metastasis, and liver metastasis. However, this mutation was not cooperative with MDM2 overexpression in experimental assays for transformation or growth. Nevertheless, MDM2 and PIK3CA are genes worthy of further investigation in patients with sclerosing rhabdomyosarcoma and might be considered in the enrollment of these patients into clinical trials of targeted therapeutics. PMID:23766666

  20. MDM2 Amplification and PI3KCA Mutation in a Case of Sclerosing Rhabdomyosarcoma

    PubMed Central

    Wettach, George R.; Ryan, Christopher W.; Hung, Arthur; Hooper, Jody E.; Corless, Christopher L.; Olson, Susan B.

    2013-01-01

    A rare sclerosing variant of rhabdomyosarcoma characterized by prominent hyalinization and pseudovascular pattern has recently been described as a subtype biologically distinct from embryonal, alveolar, and pleomorphic forms. We present cytogenetic and molecular findings as well as experimental studies of an unusual case of sclerosing rhabdomyosarcoma. The primary lesion arose within the plantar subcutaneous tissue of the left foot of an otherwise healthy 23-year-old male who eventually developed pulmonary nodules despite systemic chemotherapy. Two genetic abnormalities identified in surgical and/or autopsy samples of the tumor were introduced into 10T1/2 murine fibroblasts to determine whether these genetic changes cooperatively facilitated transformation and growth. Cytogenetic analysis revealed a complex abnormal hyperdiploid clone, and MDM2 gene amplification was confirmed by fluorescence in situ hybridization. Cancer gene mutation screening using a combination of multiplexed PCR and mass spectroscopy revealed a PIK3CA exon 20 H1047R mutation in the primary tumor, lung metastasis, and liver metastasis. However, this mutation was not cooperative with MDM2 overexpression in experimental assays for transformation or growth. Nevertheless, MDM2 and PIK3CA are genes worthy of further investigation in patients with sclerosing rhabdomyosarcoma and might be considered in the enrollment of these patients into clinical trials of targeted therapeutics. PMID:23766666

  1. Translational approach utilizing COX-2, p53, and MDM2 expressions in malignant transformation of oral submucous fibrosis.

    PubMed

    Patel, Pratik N; Thennavan, Aatish; Sen, Subhalakshmi; Chandrashekar, Chetana; Radhakrishnan, Raghu

    2015-09-01

    About 20% of the world's population uses some form of betel nut, which suggests that the incidence of oral submucous fibrosis (OSF) is higher than current estimates. OSF has the potential to undergo malignant transformation; thus, there is a need to identify relevant markers to assess its aggressiveness. We evaluated changes in COX-2, p53, and MDM2 expressions in progressive OSF. Expressions of COX-2, p53, and MDM2 increased with OSF progression. There was a strong association between COX-2 overexpression and recurrence of oral squamous cell carcinoma (P < 0.001) and a positive relation between increased MDM2 expression and failure of radiotherapy (P = 0.007). These findings suggest that COX-2 is an important marker of disease progression and that MDM2 expression is useful for treatment planning. PMID:26369479

  2. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. PMID:19824037

  3. Discovery of Mdm2-MdmX E3 Ligase Inhibitors Using a Cell-Based Ubiquitination Assay

    PubMed Central

    Herman, Ariel G.; Hayano, Miki; Poyurovsky, Masha V.; Shimada, Kenichi; Skouta, Rachid; Prives, Carol; Stockwell, Brent R.

    2011-01-01

    E3 ubiquitin ligases are of interest as drug targets for their ability to regulate protein stability and function. The oncogene Mdm2 is an attractive E3 ligase to target, as it is the key negative regulator of the tumor suppressor p53, which controls the transcription of genes involved in cell fate. Overexpression of Mdm2 facilitates tumorigenesis by inactivating p53, and through p53-independent oncogenic effects. We developed a high-throughput cellular Mdm2 auto-ubiquitination assay, which we used to discover a class of small molecule Mdm2 ligase activity inhibitors. These compounds inhibit Mdm2 and p53 ubiquitination in cells, reduce viability of cells with wild-type p53, and synergize with DNA-damaging agents to cause cell death. We determined that these compounds effectively inhibit the E3 ligase activity of the Mdm2-MdmX hetero-complex. This mechanism may be exploitable to create a new class of anti-tumor agents. PMID:22586610

  4. Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells

    PubMed Central

    Slabáková, Eva; Kharaishvili, Gvantsa; Smějová, Monika; Pernicová, Zuzana; Suchánková, Tereza; Remšík, Ján; Lerch, Stanislav; Straková, Nicol; Bouchal, Jan; Král, Milan; Culig, Zoran; Kozubík, Alois; Souček, Karel

    2015-01-01

    Plasticity of cancer cells, manifested by transitions between epithelial and mesenchymal phenotypes, represents a challenging issue in the treatment of neoplasias. Both epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are implicated in the processes of metastasis formation and acquisition of stem cell-like properties. Mouse double minute (MDM) 2 and MDMX are important players in cancer progression, as they act as regulators of p53, but their function in EMT and metastasis may be contradictory. Here, we show that the EMT phenotype in multiple cellular models and in clinical prostate and breast cancer samples is associated with a decrease in MDM2 and increase in MDMX expression. Modulation of EMT-accompanying changes in MDM2 expression in benign and transformed prostate epithelial cells influences their migration capacity and sensitivity to docetaxel. Analysis of putative mechanisms of MDM2 expression control demonstrates that in the context of defective p53 function, MDM2 expression is regulated by EMT-inducing transcription factors Slug and Twist. These results provide an alternative context-specific role of MDM2 in EMT, cell migration, metastasis, and therapy resistance. PMID:26416355

  5. HAUSP-nucleolin interaction is regulated by p53-Mdm2 complex in response to DNA damage response

    PubMed Central

    Lim, Key-Hwan; Park, Jang-Joon; Gu, Bon-Hee; Kim, Jin-Ock; Park, Sang Gyu; Baek, Kwang-Hyun

    2015-01-01

    HAUSP (herpes virus-associated ubiquitin specific protease, known as ubiquitin specific protease 7), one of DUBs, regulates the dynamics of the p53 and Mdm2 network in response to DNA damage by deubiquitinating both p53 and its E3 ubiquitin ligase, Mdm2. Its concerted action increases the level of functional p53 by preventing proteasome-dependent degradation of p53. However, the protein substrates that are targeted by HAUSP to mediate DNA damage responses in the context of the HAUSP-p53-Mdm2 complex are not fully identified. Here, we identified nucleolin as a new substrate for HAUSP by proteomic analysis. Nucleolin has two HAUSP binding sites in its N- and C-terminal regions, and the mutation of HAUSP interacting peptides on nucleolin disrupts their interaction and it leads to the increased level of nucleolin ubiquitination. In addition, HAUSP regulates the stability of nucleolin by removing ubiquitin from nucleolin. Nucleolin exists as a component of the HAUSP-p53-Mdm2 complex, and both Mdm2 and p53 are required for the interaction between HAUSP and nucleolin. Importantly, the irradiation increases the HAUSP-nucleolin interaction, leading to nucleolin stabilization significantly. Taken together, this study reveals a new component of the HAUSP-p53-Mdm2 complex that governs dynamic cellular responses to DNA damage. PMID:26238070

  6. Computational analysis of spiro-oxindole inhibitors of the MDM2-p53 interaction: insights and selection of novel inhibitors.

    PubMed

    Huang, Wei; Cai, Lulu; Chen, Can; Xie, Xin; Zhao, Qiong; Zhao, Xing; Zhou, Hong-yun; Han, Bo; Peng, Cheng

    2016-01-01

    Since MDM2 is an inhibitor of the p53 tumor suppressor, disrupting the MDM2-p53 interaction is a promising approach for cancer therapy. Here, we used molecular dynamics simulations followed by free energy decomposition analysis to study conformational changes in MDM2 induced by three known spiro-oxindole inhibitors. Analysis of individual energy terms suggests that van der Waals and electrostatic interactions explain much of the binding affinities of these inhibitors. Binding free energies calculated for the three inhibitors using the molecular mechanics-generalized Born surface area model were consistent with experimental data, suggesting the validity of this approach. Based on this structure-function analysis, several novel spiro-oxindole derivatives were selected and evaluated for their ability to block the MDM2-p53 interaction in vitro. These results suggest that combining in silico and experimental techniques can provide insights into the structure-function relationships of MDM2 inhibitors and guide the rational design of anticancer drugs targeting the MDM2-p53 interaction. PMID:25808617

  7. NFBD1/MDC1 stabilizes oncogenic MDM2 to contribute to cell fate determination in response to DNA damage

    SciTech Connect

    Inoue, Ken-ichi; Nakanjishi, Mitsuru; Kikuchi, Hironobu; Yamamoto, Hideki; Todo, Satoru; Nakagawara, Akira Ozaki, Toshinori

    2008-07-11

    In response to DNA damage, NFBD1/MDC1 induces the accumulation of DNA repair machinery such as MRN complex at the sites of damaged DNA to form nuclear foci. In this study, we found that NFBD1 directly interacts with MDM2 and increases its stability. During adriamycin (ADR)-mediated apoptosis, expression levels of NFBD1 reduced in association with the down-regulation of MDM2. Enforced expression of NFBD1 resulted in a significant stabilization of MDM2. Consistent with these observations, siRNA-mediated knockdown of the endogenous NFBD1 decreased the amounts of the endogenous MDM2. Immunoprecipitation and in vitro pull-down assays demonstrated that NFBD1 interacts with MDM2 through its COOH-terminal BRCT domains. In accordance with our recent results, enforced expression of NFBD1 rendered cells resistant to DNA damage. Similar results were also obtained in cells expressing exogenous MDM2. Taken together, our present findings suggest that NFBD1-mediated stabilization contributes to cell survival in response to DNA damage.

  8. HAUSP-nucleolin interaction is regulated by p53-Mdm2 complex in response to DNA damage response.

    PubMed

    Lim, Key-Hwan; Park, Jang-Joon; Gu, Bon-Hee; Kim, Jin-Ock; Park, Sang Gyu; Baek, Kwang-Hyun

    2015-01-01

    HAUSP (herpes virus-associated ubiquitin specific protease, known as ubiquitin specific protease 7), one of DUBs, regulates the dynamics of the p53 and Mdm2 network in response to DNA damage by deubiquitinating both p53 and its E3 ubiquitin ligase, Mdm2. Its concerted action increases the level of functional p53 by preventing proteasome-dependent degradation of p53. However, the protein substrates that are targeted by HAUSP to mediate DNA damage responses in the context of the HAUSP-p53-Mdm2 complex are not fully identified. Here, we identified nucleolin as a new substrate for HAUSP by proteomic analysis. Nucleolin has two HAUSP binding sites in its N- and C-terminal regions, and the mutation of HAUSP interacting peptides on nucleolin disrupts their interaction and it leads to the increased level of nucleolin ubiquitination. In addition, HAUSP regulates the stability of nucleolin by removing ubiquitin from nucleolin. Nucleolin exists as a component of the HAUSP-p53-Mdm2 complex, and both Mdm2 and p53 are required for the interaction between HAUSP and nucleolin. Importantly, the irradiation increases the HAUSP-nucleolin interaction, leading to nucleolin stabilization significantly. Taken together, this study reveals a new component of the HAUSP-p53-Mdm2 complex that governs dynamic cellular responses to DNA damage. PMID:26238070

  9. MDM2–MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance

    PubMed Central

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2016-01-01

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2–MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2–MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD) in the micromolar range for the MDM2–MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2–MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2–MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. PMID:27621617

  10. The importance of ribosome production, and the 5S RNP–MDM2 pathway, in health and disease

    PubMed Central

    Pelava, Andria; Schneider, Claudia; Watkins, Nicholas J.

    2016-01-01

    Ribosomes are abundant, large RNA–protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease. PMID:27528756

  11. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease.

    PubMed

    Pelava, Andria; Schneider, Claudia; Watkins, Nicholas J

    2016-08-15

    Ribosomes are abundant, large RNA-protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease. PMID:27528756

  12. Is MDM2 SNP309 Variation a Risk Factor for Head and Neck Carcinoma?

    PubMed Central

    Zhuo, Xianlu; Ye, Huiping; Li, Qi; Xiang, Zhaolan; Zhang, Xueyuan

    2016-01-01

    Abstract Murine double minute-2 (MDM2) is a negative regulator of P53, and its T309G polymorphism has been suggested as a risk factor for a variety of cancers. Increasing evidence has shown the association of MDM2 T309G polymorphism with head and neck carcinoma (HNC) risk. However, the results are inconsistent. Thus, we performed a meta-analysis to elucidate the association. The meta-analysis retrieved studies published up to August 2015, and essential information was extracted for analysis. Separate analyses on ethnicity, source of controls, sample size, detection method, and cancer types were also conducted. Odds ratios (ORs) and their 95% confidence intervals (CIs) were used to estimate the association. Pooled data from 16 case–control studies including 4625 cases and 6927 controls failed to indicate a significant association. However, in the subgroup analysis of sample sizes, an increased risk was observed in the largest sample size group (>1000) under a recessive model (OR = 1.52; 95% CI = 1.08–2.13). Increased risks were also found in the nasopharyngeal cancer in the subgroup analysis of cancer types (GG vs TT: OR = 2.07; 95% CI = 1.38–3.12; dominant model: OR = 1.48; 95% CI = 1.13–1.93; recessive model: OR = 1.76; 95% CI = 1.17–2.65). The results suggest that homozygote GG alleles of MDM2 SNP309 may be a low-penetrant risk factor for HNC, and G allele may confer nasopharyngeal cancer susceptibility. PMID:26945408

  13. MDM2 antagonists boost antitumor effect of androgen withdrawal: implications for therapy of prostate cancer

    PubMed Central

    2011-01-01

    Background Hormone therapy is the standard of care for newly diagnosed or recurrent prostate cancers. It uses anti-androgen agents, castration, or both to eliminate cancer promoting effect of testicular androgen. The p53 tumor suppressor controls a major pathway that can block cell proliferation or induce apoptosis in response to diverse forms of oncogenic stress. Activation of the p53 pathway in cancer cells expressing wild-type p53 has been proposed as a novel therapeutic strategy and recently developed MDM2 antagonists, the nutlins, have validated this in preclinical models of cancer. The crosstalk between p53 and androgen receptor (AR) signaling suggest that p53 activation could augment antitumor outcome of androgen ablation in prostate cancer. Here, we test this hypothesis in vitro and in vivo using the MDM2 antagonist, nutlin-3 and the p53 wild-type prostate cancer cell line, LNCaP. Results Using charcoal-stripped serum as a cellular model of androgen deprivation, we show an increased apoptotic effect of p53 activation by nutlin-3a in the androgen-dependent LNCaP cells and to a lesser extent in androgen-independent but responsive 22Rv1 cell line. This effect is due, at least in part, to an enhanced downregulation of AR expression by activated p53. In vivo, androgen deprivation followed by two weeks of nutlin administration in LNCaP-bearing nude mice led to a greater tumor regression and dramatically increased survival. Conclusions Since majority of prostate tumors express wild-type p53, its activation by MDM2 antagonists in combination with androgen depletion may offer an efficacious new approach to prostate cancer therapy. PMID:21539745

  14. Reactivation of p53 by Novel MDM2 Inhibitors: Implications for Pancreatic Cancer Therapy

    PubMed Central

    Azmi, A.S.; Philip, P.A.; Wang, Z.; Banerjee, S.; Zafar, S.F.; Goustin, A.-S.; Almhanna, K.; Yang, D.; Wang, S.; Sarkar, F.H.; Mohammad, R.M.

    2013-01-01

    The present study is the first to show in pancreatic cancer (PC) the growth inhibition and apoptosis by novel MDM2 inhibitors (MI-319 & 219) through reactivation of p53 pathway. Our results highlight two new secondary targets of MDM2 inhibitor ‘SIRT1’ and Ku70. SIRT1 has a role in ageing and cancer and is known to regulate p53 signaling through acetylation. Ku70 is a key component of non-homologous end joining machinery in the DNA damage pathway and is known to regulate apoptosis by blocking Bax entry into mitochondria. Given the growth inhibition and apoptosis by MI-219, MI-319 was accompanied by increase in levels of p53 along with p21WAF1 and the proapoptotic Puma. SiRNA against p21WAF1 abrogated the growth inhibition of PC cells confirming p21WAF1 as a key player downstream of activated p53. Immunoprecipitation-western blot analysis revealed reduced association of MDM2-p53 interaction in drug exposed PC cells. In combination studies, the inhibitors synergistically augmented anti-tumor effects of therapeutic drug gemcitabine both in terms of cell growth inhibition as well as apoptosis. Surface plasmon resonance studies confirmed strong binding between MI-319 and Ku70 (KD 170 nM). Western blot revealed suppression of SIRT1 and Ku70 with simultaneous upregulation of acetyl-p53 (Lys379) and Bax. Co-Immunoprecipitation studies confirmed that MI-319 could disrupt Ku70-Bax and SIRT1-Bax interaction. Further, using wt-p53 xenograft of Capan-2, we found that oral administration of MI-319 at 300 mg/kg for 14 days resulted in significant tumor growth inhibition without any observed toxicity to the animals. No tumor inhibition was found in mut-p53 BxPC-3 xenografts. In light of our results, the inhibitors of MDM2 warrant clinical investigation as new agents for PC treatment. PMID:20370686

  15. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression

    PubMed Central

    Wang, Shaomeng; Sun, Wei; Zhao, Yujun; McEachern, Donna; Meaux, Isabelle; Barrière, Cédric; Stuckey, Jeanne; Meagher, Jennifer; Bai, Longchuan; Liu, Liu; Hoffman-Luca, Cassandra Gianna; Lu, Jianfeng; Shangary, Sanjeev; Yu, Shanghai; Bernard, Denzil; Aguilar, Angelo; Dos-Santos, Odette; Besret, Laurent; Guerif, Stéphane; Pannier, Pascal; Gorge-Bernat, Dimitri; Debussche, Laurent

    2014-01-01

    Blocking the MDM2-p53 protein-protein interaction has long been considered to offer a broad cancer therapeutic strategy, despite the potential risks of selecting tumors harboring p53 mutations that escape MDM2 control. In this study, we report a novel small molecule inhibitor of the MDM2-p53 interaction, SAR405838 (MI-77301) that has been advanced into Phase I clinical trials. SAR405838 binds to MDM2 with Ki = 0.88 nM and has high specificity over other proteins. A co-crystal structure of the SAR405838:MDM2 complex shows that in addition to mimicking three key p53 amino acid residues, the inhibitor captures additional interactions not observed in the p53-MDM2 complex and induces refolding of the short, unstructured MDM2 N-terminal region to achieve its high affinity. SAR405838 effectively activates wild-type p53 in vitro and in xenograft tumor tissue of leukemia and solid tumors, leading to p53-dependent cell cycle arrest and/or apoptosis. At well-tolerated dose schedules, SAR405838 achieves either durable tumor regression or complete tumor growth inhibition in mouse xenograft models of SJSA-1 osteosarcoma, RS4;11 acute leukemia, LNCaP prostate cancer and HCT-116 colon cancer. Remarkably, a single oral dose of SAR405838 is sufficient to achieve complete tumor regression in the SJSA-1 model. Mechanistically, robust transcriptional up-regulation of PUMA induced by SAR405838 results in strong apoptosis in tumor tissue, leading to complete tumor regression. Our findings provide a preclinical basis upon which to evaluate SAR405838 as a therapeutic agent in patients whose tumors retain wild-type p53. PMID:25145672

  16. MDM2 Inhibition Sensitizes Prostate Cancer Cells to Androgen Ablation and Radiotherapy in a p53-Dependent Manner12

    PubMed Central

    Feng, Felix Y.; Zhang, Yu; Kothari, Vishal; Evans, Joseph R.; Jackson, William C.; Chen, Wei; Johnson, Skyler B.; Luczak, Connor; Wang, Shaomeng; Hamstra, Daniel A.

    2016-01-01

    PURPOSE: Increased murine double minute 2 (MDM2) expression, independent of p53 status, is associated with increased cancer-specific mortality for men with prostate cancer treated with radiotherapy. We assessed MI-219, a small molecule inhibitor of MDM2 with improved pharmacokinetics over nutlin-3, for sensitization of prostate cancer cells to radiotherapy and androgen deprivation therapy, a standard treatment option for men with high-risk prostate cancer. EXPERIMENTAL DESIGN: The effect of MDM2 inhibition by MI-219 was assessed in vitro and in vivo with mouse xenograft models across multiple prostate cancer cell lines containing varying p53 functional status. RESULTS: MDM2 inhibition by MI-219 resulted in dose- and time-dependent p53 activation and decreased clonogenic cell survival after radiation in a p53-dependent manner. Mechanistically, radiosensitization following inhibition of MDM2 was largely the result of p53-dependent increases in apoptosis and DNA damage as evidenced by Annexin V flow cytometry and γ-H2AX foci immunofluorescence. Similarly, treatment with MI-219 enhanced response to antiandrogen therapy via a p53-dependent increase in apoptotic cell death. Lastly, triple therapy with radiation, androgen deprivation therapy, and MI-219 decreased xenograft tumor growth compared with any single- or double-agent treatment. CONCLUSION: MDM2 inhibition with MI-219 results in p53-dependent sensitization of prostate cancer cells to radiation, antiandrogen therapy, and the combination. These findings support MDM2 small molecule inhibitor therapy as a therapy intensification strategy to improve clinical outcomes in high-risk localized prostate cancer. TRANSLATIONAL RELEVANCE: The combination of radiotherapy and androgen deprivation therapy is a standard treatment option for men with high-risk prostate cancer. Despite improvements in outcomes when androgen deprivation therapy is added to radiation, men with high-risk prostate cancer have significant risk for

  17. PTCH-1 and MDM2 expression in ameloblastoma from a West African sub-population: implication for chemotherapeutics

    PubMed Central

    Udeabor, Samuel Ebele; Adisa, Akinyele Olumuyiwa; Lawal, Ahmed Oluwatoyin; Barbeck, Mike; Booms, Patrick; Sader, Robert Alexander; Ghanaati, Shahram

    2015-01-01

    Introduction Ameloblastoma is a slow growing, painless odontogenic swelling which can attain sizes that result in severe deformities of the craniofacial complex. It is the most commonly encountered odontogenic tumor in Nigeria. Surgical intervention is currently the method of treatment; however identification of altered molecular pathways may inform chemotherapeutic potential. The Protein Patched homolog 1 (PTCH-1) is overexpressed in ameloblastoma. Also, mutation in the MDM2 gene can reduce the tumor suppressor function of p53 and promote ameloblastoma growth. No study however has characterized the molecular profile of African cases of ameloblastoma with a view to developing chemotherapeutic alternatives. The objective was to characterize the PTCH-1 genetic profile of Ameloblastoma in Nigerian patients as a first step in investigating its potential for chemotherapeutic intervention. Methods Twenty-eight FFPE blocks of ameloblastoma cases from Nigerian patients were prepared for antibody processing to PTCH-1 (Polyclonal Anti-PTCH antibody ab39266) and MDM2 (Monoclonal Anti-MDM2 antibody (2A10) ab16895). Cytoplasmic brown staining was considered as positive for PTCH while nuclear staining was positive for MDM2. Results Moderate and strong expressions for PTCH in ameloblast and stellate reticulum were 78.6% and 60.7% respectively. Only 3 (10.7%) cases expressed MDM2. Conclusion The importance of our study is that it supports, in theory, anti-PTCH/SHH chemotherapeutics for Nigerian ameloblastoma cases and also infers the possible additional use of anti-p53 agents. PMID:27386018

  18. Characterizing the Free-Energy Landscape of MDM2 Protein-Ligand Interactions by Steered Molecular Dynamics Simulations.

    PubMed

    Hu, Guodong; Xu, Shicai; Wang, Jihua

    2015-12-01

    Inhibition of p53-MDM2 interaction by small molecules is considered to be a promising approach to re-activate wild-type p53 for tumor suppression. Several inhibitors of the MDM2-p53 interaction were designed and studied by the experimental methods and the molecular dynamics simulation. However, the unbinding mechanism was still unclear. The steered molecular dynamics simulations combined with Brownian dynamics fluctuation-dissipation theorem were employed to obtain the free-energy landscape of unbinding between MDM2 and their four ligands. It was shown that compounds 4 and 8 dissociate faster than compounds 5 and 7. The absolute binding free energies for these four ligands are in close agreement with experimental results. The open movement of helix II and helix IV in the MDM2 protein-binding pocket upon unbinding is also consistent with experimental MDM2-unbound conformation. We further found that different binding mechanisms among different ligands are associated with H-bond with Lys51 and Glu25. These mechanistic results may be useful for improving ligand design. PMID:26032728

  19. TSLP induces mast cell development and aggravates allergic reactions through the activation of MDM2 and STAT6.

    PubMed

    Han, Na-Ra; Oh, Hyun-A; Nam, Sun-Young; Moon, Phil-Dong; Kim, Do-Won; Kim, Hyung-Min; Jeong, Hyun-Ja

    2014-10-01

    Thymic stromal lymphopoietin (TSLP) is known to promote T helper type 2 cell-associated inflammation. Mast cells are major effector cells in allergic inflammatory responses. We noted that the population and maturation of mast cells were reduced in TSLP-deficient mice (TSLP-/-). Thus, we hypothesized that TSLP might affect mast cell development. We found that TSLP induced the proliferation and differentiation of mast cells from bone marrow progenitors. TSLP-induced mast cell proliferation was abolished by depletion of mouse double minute 2 (MDM2) and signal transducers and activators of transcription 6 (STAT6), as an upstream activator of MDM2. TSLP-/-, in particular, had a considerable deficit in the expression of MDM2 and STAT6. Also, the TSLP deficiency attenuated mast cell-mediated allergic reactions through the downregulation of STAT6 and MDM2. In an antibody microarray chip analysis, MDM2 expression was increased in atopic dermatitis patients. These observations indicate that TSLP is a factor for mast cell development, and that it aggravates mast cell-mediated immune responses. PMID:24751726

  20. Relationship Between Murine Double Minute 2 (MDM2) T309G Polymorphism and Endometrial Cancer Risk: A Meta-Analysis.

    PubMed

    Xue, Zhuowei; Zhu, Xiaolu; Teng, Yincheng

    2016-01-01

    BACKGROUND Endometrial cancer is one of the most common cancers in female patients. Many studies have investigated the association between the MDM2 T309G genotype and endometrial cancer incidence, but the results have been inconclusive. MATERIAL AND METHODS We performed a systematic search in PubMed and Web of Science databases (update until October 21, 2015) for all English-language publications. The associations are indicated as pooled odds ratio (OR) and 95% confidence intervals (CI). RESULTS We identified 8 relevant publications (9 case-control studies), including 2188 cases and 4654 controls, that assessed the relationship between MDM2 T309G polymorphism and endometrial cancer risk. There was a significant association between MDM2 T309G polymorphism and endometrial cancer risk in the overall population in the recessive model (OR=1.61; 95% CI: 1.19-2.19; P=0.002). In the subgroup of different ethnic populations, the subgroup analysis showed MDM2 T309G polymorphism was significantly associated with increased endometrial cancer risk in Caucasians (OR=1.75; 95% CI: 1.16-2.63; P=0.007). No similar result was found in Asians. CONCLUSIONS Our meta-analysis provides evidence that MDM2 T309G polymorphism is associated with endometrial cancer, especially in Caucasians. PMID:27604213

  1. EGFR/MDM2 signaling promotes NF-κB activation via PPARγ degradation.

    PubMed

    Xu, Ying; Jin, Jianhua; Zhang, Wenbo; Zhang, Zhi; Gao, Jiaming; Liu, Qian; Zhou, Chenglin; Xu, Qinggang; Shi, Haifeng; Hou, Yongzhong; Shi, Juanjuan

    2016-02-01

    Dysregulated expression of epidermal growth factor receptor (EGFR) has been implicated in many cancer events, while peroxisome proliferator-activated receptor γ (PPARγ) negatively regulates cancer progression. The molecular mechanism of EGFR interaction with PPARγ is still unclear. Here, we found that nuclear EGFR induced phosphorylation of PPARγ at Tyr-74 leading to PPARγ ubiquitination and degradation by mouse double minute 2 (MDM2) ubiquitin ligase. PPARγ degradation by EGFR/MDM2 signaling resulted in accumulation of nuclear factor-kappaB (NF-κB)/p65 protein levels and increasing NF-κB activation. In contrast, PPARγ-Y74A mutant reversed this event. Moreover, PPARγ-Y74A mutant suppressed cell proliferation and increased chemotherapeutic agent-induced cancer cell sensitivity. Importantly, the clinical findings show that the nuclear phosphorylation of PPARγ-Y74 and EGFR expression in colonic cancer tissues was higher than that in control normal tissues. Thus, our study revealed a novel molecular mechanism that nuclear EGFR/NF-κB signaling promoted cell proliferation by destructing PPARγ function, which provides a novel strategy for cancer treatment. PMID:26718225

  2. MUC1 oncoprotein suppresses activation of the ARF-MDM2-p53 pathway.

    PubMed

    Raina, Deepak; Ahmad, Rehan; Chen, Dongshu; Kumar, Shailendra; Kharbanda, Surender; Kufe, Donald

    2008-12-01

    The MUC1 oncoprotein interacts with the c-Abl tyrosine kinase and blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. Mutation of the MUC1 cytoplasmic domain at Tyr-60 disrupts the MUC1-c-Abl interaction. The present results demonstrate that the MUC1(Y60F) mutant is a potent inducer of the ARF tumor suppressor. MUC1(Y60F) induces transcription of the ARF locus by a c-Abl-dependent mechanism that promotes CUL-4A-mediated nuclear export of the replication protein Cdc6. The functional significance of these findings is that MUC1(Y60F)-induced ARF expression and thereby inhibition of MDM2 results in the upregulation of p53 and the homeodomain interacting protein kinase 2 (HIPK2) serine/threonine kinase. HIPK2-mediated phosphorylation of p53 on Ser-46 was further associated with a shift from expression of the cell cycle arrest-related p21 gene to the apoptosis-related PUMA gene. We also show that the MUC1(Y60F) mutant functions as dominant negative inhibitor of tumorigenicity. These findings indicate that the oncogenic function of MUC1 is conferred by suppressing activation of the ARF-MDM2-p53 pathway. PMID:18981727

  3. Chemical Inhibition of Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) by GSK2830371 Potentiates the Sensitivity to MDM2 Inhibitors in a p53-Dependent Manner.

    PubMed

    Esfandiari, Arman; Hawthorne, Thomas A; Nakjang, Sirintra; Lunec, John

    2016-03-01

    Sensitivity to MDM2 inhibitors is widely different among responsive TP53 wild-type cell lines and tumors. Understanding the determinants of MDM2 inhibitor sensitivity is pertinent for their optimal clinical application. Wild-type p53-inducible phosphatase-1 (WIP1) encoded by PPM1D, is activated, gained/amplified in a range of TP53 wild-type malignancies, and is involved in p53 stress response homeostasis. We investigated cellular growth/proliferation of TP53 wild-type and matched mutant/null cell line pairs, differing in PPM1D genetic status, in response to Nutlin-3/RG7388 ± a highly selective WIP1 inhibitor, GSK2830371. We also assessed the effects of GSK2830371 on MDM2 inhibitor-induced p53(Ser15) phosphorylation, p53-mediated global transcriptional activity, and apoptosis. The investigated cell line pairs were relatively insensitive to single-agent GSK2830371. However, a non-growth-inhibitory dose of GSK2830371 markedly potentiated the response to MDM2 inhibitors in TP53 wild-type cell lines, most notably in those harboring PPM1D-activating mutations or copy number gain (up to 5.8-fold decrease in GI50). Potentiation also correlated with significant increase in MDM2 inhibitor-induced cell death endpoints that were preceded by a marked increase in a WIP1 negatively regulated substrate, phosphorylated p53(Ser15), known to increase p53 transcriptional activity. Microarray-based gene expression analysis showed that the combination treatment increases the subset of early RG7388-induced p53 transcriptional target genes. These findings demonstrate that potent and selective WIP1 inhibition potentiates the response to MDM2 inhibitors in TP53 wild-type cells, particularly those with PPM1D activation or gain, while highlighting the mechanistic importance of p53(Ser15) and its potential use as a biomarker for response to this combination regimen. Mol Cancer Ther; 15(3); 379-91. ©2016 AACR. PMID:26832796

  4. Inhibiting NFAT1 for breast cancer therapy: New insights into the mechanism of action of MDM2 inhibitor JapA

    PubMed Central

    Voruganti, Sukesh; Wang, Hui; Zhang, Wei-Dong; Zhang, Ruiwen

    2015-01-01

    Transcription factor NFAT1 has been recently identified as a new regulator of the MDM2 oncogene. Targeting the NFAT1-MDM2 pathway represents a novel approach to cancer therapy. We have recently identified a natural product MDM2 inhibitor, termed JapA. As a specific and potent MDM2 inhibitor, JapA inhibits MDM2 at transcriptional and post-translational levels. However, the molecular mechanism remains to be fully elucidated for its inhibitory effects on MDM2 transcription. Herein, we reported that JapA inhibited NFAT1 and NFAT1-mediated MDM2 transcription, which contributed to the anticancer activity of JapA. Its effects on the expression and activity of NFAT1 were examined in various breast cancer cell lines in vitro and in MCF-7 and MDA-MB-231 xenograft tumors in vivo. The specificity of JapA in targeting NFAT1 and NFAT1-MDM2 pathway and the importance of NFAT1 inhibition in JapA's anticancer activity were demonstrated using NFAT1 overexpression and knockdown cell lines and the pharmacological activators and inhibitors of NFAT1 signaling. Our results indicated that JapA inhibited NFAT1 signaling in breast cancer cells in vitro and in vivo, which plays a pivotal role in its anticancer activity. JapA inhibited the nuclear localization of NFAT1, disrupted the NFAT1-MDM2 P2 promoter complex, and induced NFAT1 proteasomal degradation, resulting in the repression of MDM2 transcription. In conclusion, JapA is a novel NFAT1 inhibitor and the NFAT1 inhibition is responsible for the JapA-induced repression of MDM2 transcription, contributing to its anticancer activity. The results may pave an avenue for validating the NFAT1-MDM2 pathway as a novel molecular target for cancer therapy. PMID:26461225

  5. LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers.

    PubMed

    Yu, Haiyang; Yue, Xuetian; Zhao, Yuhan; Li, Xiaoyan; Wu, Lihua; Zhang, Cen; Liu, Zhen; Lin, Kevin; Xu-Monette, Zijun Y; Young, Ken H; Liu, Juan; Shen, Zhiyuan; Feng, Zhaohui; Hu, Wenwei

    2014-01-01

    Leukaemia inhibitory factor (LIF) has been recently identified as a p53 target gene, which mediates the role of p53 in maternal implantation under normal physiological conditions. Here we report that LIF is a negative regulator of p53; LIF downregulates p53 protein levels and function in human colorectal cancer (CRC) cells. The downregulation of p53 by LIF is mediated by the activation of Stat3, which transcriptionally induces inhibitor of DNA-binding 1 (ID1). ID1 upregulates MDM2, a key negative regulator of p53, and promotes p53 protein degradation. LIF is overexpressed in a large percentage of CRCs. LIF overexpression promotes cellular resistance towards chemotherapeutic agents in cultured CRC cells and colorectal xenograft tumours in a largely p53-dependent manner. Overexpression of LIF is associated with a poor prognosis in CRC patients. Taken together, LIF is a novel negative regulator of p53, overexpression of LIF is an important mechanism for the attenuation of p53, which promotes chemoresistance in CRCs. PMID:25323535

  6. Functional analysis of the p53 pathway in neuroblastoma cells using the small-molecule MDM2 antagonist nutlin-3.

    PubMed

    Van Maerken, Tom; Rihani, Ali; Dreidax, Daniel; De Clercq, Sarah; Yigit, Nurten; Marine, Jean-Christophe; Westermann, Frank; De Paepe, Anne; Vandesompele, Jo; Speleman, Frank

    2011-06-01

    Suppression of p53 activity is essential for proliferation and survival of tumor cells. A direct p53-activating compound, nutlin-3, was used in this study, together with p53 mutation analysis, to characterize p53 pathway defects in a set of 34 human neuroblastoma cell lines. We identified 9 cell lines (26%) with a p53 loss-of-function mutation, including 6 missense mutations, 1 nonsense mutation, 1 in-frame deletion, and 1 homozygous deletion of the 3' end of the p53 gene. Sensitivity to nutlin-3 was highly predictive of absence of p53 mutation. Signaling pathways downstream of p53 were functionally intact in 23 of 25 cell lines with wild-type p53. Knockdown and overexpression experiments revealed a potentiating effect of p14(ARF) expression on the response of neuroblastoma cells to nutlin-3. Our findings shed light on the spectrum of p53 pathway lesions in neuroblastoma cells, indicate that defects in effector molecules downstream of p53 are remarkably rare in neuroblastoma, and identify p14(ARF) as a determinant of the outcome of the response to MDM2 inhibition. These insights may prove useful for the clinical translation of evolving strategies aimed at p53 reactivation and for the development of new therapeutic approaches. PMID:21460101

  7. MicroRNA-610 is downregulated in glioma cells, and inhibits proliferation and motility by directly targeting MDM2.

    PubMed

    Yan, Yu; Peng, Yong; Ou, Yangzhu; Jiang, Yugang

    2016-09-01

    The expression of microRNA (miR)-610 has previously been reported to be downregulated in gastric cancer and hepatocellular carcinoma. However, miR-610 has yet to be investigated in human glioma. In the present study, miR-610 expression was analyzed by reverse transcription-quantitative polymerase chain reaction. Post‑transfection with miR‑610 mimics and inhibitors, MTT assay, cell migration and invasion assays, western blot analysis and a luciferase assay were performed in glioma cell lines. The results demonstrated that miR‑610 was downregulated in glioma tissues compared with their normal adjacent tissues and normal brain tissues (P<0.05). The reduced expression levels of miR‑610 were associated with World Health Organization grade and the Karnofsky performance status of patients with glioma. Furthermore, the present study revealed that miR‑610 inhibited cell growth, migration and invasion in glioma cells. To the best of our knowledge, the present study is the first to provide evidence suggesting that miR‑610 directly targets MDM2 proto-oncogene E3 ubiquitin protein ligase to function as a tumor suppressor in glioma. These results indicate that miR‑610 may be investigated as a target for therapeutic drugs designed to treat glioma. PMID:27485527

  8. Discovery of Potent and Orally Active p53-MDM2 Inhibitors RO5353 and RO2468 for Potential Clinical Development

    PubMed Central

    2013-01-01

    The development of small-molecule MDM2 inhibitors to restore dysfunctional p53 activities represents a novel approach for cancer treatment. In a previous communication, the efforts leading to the identification of a non-imidazoline MDM2 inhibitor, RG7388, was disclosed and revealed the desirable in vitro and in vivo pharmacological properties that this class of pyrrolidine-based inhibitors possesses. Given this richness and the critical need for a wide variety of chemical structures to ensure success in the clinic, research was expanded to evaluate additional derivatives. Here we report two new potent, selective, and orally active p53-MDM2 antagonists, RO5353 and RO2468, as follow-ups with promising potential for clinical development. PMID:24900784

  9. Discovery of Potent and Orally Active p53-MDM2 Inhibitors RO5353 and RO2468 for Potential Clinical Development.

    PubMed

    Zhang, Zhuming; Chu, Xin-Jie; Liu, Jin-Jun; Ding, Qingjie; Zhang, Jing; Bartkovitz, David; Jiang, Nan; Karnachi, Prabha; So, Sung-Sau; Tovar, Christian; Filipovic, Zoran M; Higgins, Brian; Glenn, Kelli; Packman, Kathryn; Vassilev, Lyubomir; Graves, Bradford

    2014-02-13

    The development of small-molecule MDM2 inhibitors to restore dysfunctional p53 activities represents a novel approach for cancer treatment. In a previous communication, the efforts leading to the identification of a non-imidazoline MDM2 inhibitor, RG7388, was disclosed and revealed the desirable in vitro and in vivo pharmacological properties that this class of pyrrolidine-based inhibitors possesses. Given this richness and the critical need for a wide variety of chemical structures to ensure success in the clinic, research was expanded to evaluate additional derivatives. Here we report two new potent, selective, and orally active p53-MDM2 antagonists, RO5353 and RO2468, as follow-ups with promising potential for clinical development. PMID:24900784

  10. The nucleolar SUMO-specific protease SMT3IP1/SENP3 attenuates Mdm2-mediated p53 ubiquitination and degradation

    SciTech Connect

    Nishida, Tamotsu; Yamada, Yoshiji

    2011-03-11

    Research highlights: {yields} SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. {yields} SMT3IP1 competes with p53 for binding to the central acidic domain of Mdm2. {yields} SMT3IP1 binding to Mdm2 inhibits Mdm2-mediated p53 ubiquitination and degradation. {yields} We postulate that SMT3IP1 acts as a new regulator of the p53-Mdm2 pathway. -- Abstract: SUMO (small ubiquitin-like modifier) modification plays multiple roles in several cellular processes. Sumoylation is reversibly regulated by SUMO-specific proteases. SUMO-specific proteases have recently been implicated in cell proliferation and early embryogenesis, but the underlying mechanisms remain unknown. Here, we show that a nucleolar SUMO-specific protease, SMT3IP1/SENP3, controls the p53-Mdm2 pathway. We found that SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. Overexpression of SMT3IP1 in cells resulted in the accumulation of Mdm2 in the nucleolus and increased stability of the p53 protein. In addition, SMT3IP1 bound to the acidic domain of Mdm2, which also mediates the p53 interaction, and competed with p53 for binding. Increasing expression of SMT3IP1 suppressed Mdm2-mediated p53 ubiquitination and subsequent proteasomal degradation. Interestingly, the desumoylation activity of SMT3IP1 was not necessary for p53 stabilization. These results suggest that SMT3IP1 is a new regulator of the p53-Mdm2 pathway.

  11. Phosphorylation of murine double minute clone 2 (MDM2) protein at serine-267 by protein kinase CK2 in vitro and in cultured cells.

    PubMed

    Hjerrild, M; Milne, D; Dumaz, N; Hay, T; Issinger, O G; Meek, D

    2001-04-15

    Murine double minute clone 2 oncoprotein (MDM2) is a key component in the regulation of the tumour suppressor p53. MDM2 mediates the ubiqutination of p53 in the capacity of an E3 ligase and targets p53 for rapid degradation by the proteasome. Stress signals which impinge on p53, leading to its activation, promote disruption of the p53-MDM2 complex, as in the case of ionizing radiation, or block MDM2 synthesis and thereby reduce cellular MDM2 levels, as in the case of UV radiation. It is therefore likely that MDM2, which is known to be modified by ubiquitination, SUMOylation and multi-site phosphorylation, may itself be a target for stress signalling (SUMO is small ubiquitin-related modifier-1). In the present study we show that, like p53, the MDM2 protein is a substrate for phosphorylation by the protein kinase CK2 (CK2) in vitro. CK2 phosphorylates a single major site, Ser(267), which lies within the central acidic domain of MDM2. Fractionation of cellular extracts revealed the presence of a single Ser(267) protein kinase which co-purified with CK2 on ion-exchange chromatography and, like CK2, was subject to inhibition by micromolar concentrations of the CK2-specific inhibitor 5,6-dichlororibofuranosylbenzimidazole. Radiolabelling of cells expressing tagged recombinant wild-type MDM2 or a S267A (Ser(267)-->Ala) mutant, followed by phosphopeptide analysis, confirmed that Ser(267) is a cellular target for phosphorylation. Ser(267) mutants are still able to direct the degradation of p53, but in a slightly reduced capacity. These data highlight a potential route by which one of several physiological modifications occurring within the central acidic domain of the MDM2 protein can occur. PMID:11284721

  12. Loss of oocytes due to conditional ablation of Murine double minute 2 (Mdm2) gene is p53-dependent and results in female sterility.

    PubMed

    Livera, Gabriel; Uzbekov, Rustem; Jarrier, Peggy; Fouchécourt, Sophie; Duquenne, Clotilde; Parent, Anne-Simone; Marine, Jean-Christophe; Monget, Philippe

    2016-08-01

    Murine double minute 2 and 4 (Mdm2, Mdm4) are major p53-negative regulators, preventing thus uncontrolled apoptosis induction in numerous cell types, although their function in the female germ line has received little attention. In the present work, we have generated mice with specific invalidation of Mdm2 and Mdm4 genes in the mouse oocyte (Mdm2(Ocko) and Mdm4(Ocko) mice), to test their implication in survival of these germ cells. Most of the Mdm2(Ocko) but not Mdm4(Ocko) mice were sterile, with a dramatic reduction of the weight of ovaries and genital tract, a strong increase in follicle-stimulating hormone and luteinizing hormone serum levels, and a reduction of anti-mullerian hormone serum levels. Histological analyses revealed an obvious decrease of the number of growing follicles beyond the primary stage in Mdm2(Ocko) ovaries in comparison to controls, with a pronounced increase in the apparition of primary atretic follicles, most being devoid of oocyte. Similar phenotypes were observed with Mdm2(Ocko) Mdm4(Ocko) ovaries, with no worsening of the phenotype. However, we failed to detect any increase in p53 level in mutant oocytes, nor any other apoptotic marker, introgression of this targeted invalidation in p53-/- mice restored the fertility of females. This study is the first to show that Mdm2, but not Mdm4, has a critical role in oocyte survival and would be involved in premature ovarian insufficiency phenotype. PMID:27364741

  13. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia.

    PubMed

    Jaako, P; Debnath, S; Olsson, K; Zhang, Y; Flygare, J; Lindström, M S; Bryder, D; Karlsson, S

    2015-11-01

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by haploinsufficiency of genes encoding ribosomal proteins (RPs). Perturbed ribosome biogenesis in DBA has been shown to induce a p53-mediated ribosomal stress response. However, the mechanisms of p53 activation and its relevance for the erythroid defect remain elusive. Previous studies have indicated that activation of p53 is caused by the inhibition of mouse double minute 2 (Mdm2), the main negative regulator of p53, by the 5S ribonucleoprotein particle (RNP). Meanwhile, it is not clear whether this mechanism solely mediates the p53-dependent component found in DBA. To approach this question, we crossed our mouse model for RPS19-deficient DBA with Mdm2(C305F) knock-in mice that have a disrupted 5S RNP-Mdm2 interaction. Upon induction of the Rps19 deficiency, Mdm2(C305F) reversed the p53 response and improved expansion of hematopoietic progenitors in vitro, and ameliorated the anemia in vivo. Unexpectedly, disruption of the 5S RNP-Mdm2 interaction also led to selective defect in erythropoiesis. Our findings highlight the sensitivity of erythroid progenitor cells to aberrations in p53 homeostasis mediated by the 5S RNP-Mdm2 interaction. Finally, we provide evidence indicating that physiological activation of the 5S RNP-Mdm2-p53 pathway may contribute to functional decline of the hematopoietic system in a cell-autonomous manner over time. PMID:25987256

  14. Ribosomal protein–Mdm2–p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation

    PubMed Central

    Liu, Yong; He, Yizhou; Jin, Aiwen; Tikunov, Andrey P.; Zhou, Lishi; Tollini, Laura A.; Leslie, Patrick; Kim, Tae-Hyung; Li, Lei O.; Coleman, Rosalind A.; Gu, Zhennan; Chen, Yong Q.; Macdonald, Jeffrey M.; Graves, Lee M.; Zhang, Yanping

    2014-01-01

    The tumor suppressor p53 has recently been shown to regulate energy metabolism through multiple mechanisms. However, the in vivo signaling pathways related to p53-mediated metabolic regulation remain largely uncharacterized. By using mice bearing a single amino acid substitution at cysteine residue 305 of mouse double minute 2 (Mdm2C305F), which renders Mdm2 deficient in binding ribosomal proteins (RPs) RPL11 and RPL5, we show that the RP–Mdm2–p53 signaling pathway is critical for sensing nutrient deprivation and maintaining liver lipid homeostasis. Although the Mdm2C305F mutation does not significantly affect growth and development in mice, this mutation promotes fat accumulation under normal feeding conditions and hepatosteatosis under acute fasting conditions. We show that nutrient deprivation inhibits rRNA biosynthesis, increases RP–Mdm2 interaction, and induces p53-mediated transactivation of malonyl-CoA decarboxylase (MCD), which catalyzes the degradation of malonyl-CoA to acetyl-CoA, thus modulating lipid partitioning. Fasted Mdm2C305F mice demonstrate attenuated MCD induction and enhanced malonyl-CoA accumulation in addition to decreased oxidative respiration and increased fatty acid accumulation in the liver. Thus, the RP–Mdm2–p53 pathway appears to function as an endogenous sensor responsible for stimulating fatty acid oxidation in response to nutrient depletion. PMID:24872453

  15. Targeting the p53-MDM2 interaction by the small-molecule MDM2 antagonist Nutlin-3a: a new challenged target therapy in adult Philadelphia positive acute lymphoblastic leukemia patients

    PubMed Central

    Trino, Stefania; Iacobucci, Ilaria; Erriquez, Daniela; Laurenzana, Ilaria; De Luca, Luciana; Ferrari, Anna; Luserna Di Rorà, Andrea Ghelli; Papayannidis, Cristina; Derenzini, Enrico; Simonetti, Giorgia; Lonetti, Annalisa; Venturi, Claudia; Cattina, Federica; Ottaviani, Emanuela; Abbenante, Maria Chiara; Russo, Domenico; Perini, Giovanni; Musto, Pellegrino; Martinelli, Giovanni

    2016-01-01

    MDM2 is an important negative regulator of p53 tumor suppressor. In this study, we sought to investigate the preclinical activity of the MDM2 antagonist, Nutlin-3a, in Philadelphia positive (Ph+) and negative (Ph−) leukemic cell line models, and primary B-acute lymphoblastic leukemia (ALL) patient samples. We demonstrated that Nutlin-3a treatment reduced viability and induced p53-mediated apoptosis in ALL cells with wild-type p53 protein, in a time and dose-dependent manner, resulting in the increased expression of pro-apoptotic proteins and key regulators of cell cycle arrest. The dose-dependent reduction in cell viability was confirmed in primary blast cells from B-ALL patients, including Ph+ ALL resistant patients carrying the T315I BCR-ABL1 mutation. Our findings provide a strong rational for further clinical investigation of Nutlin-3a in Ph+ and Ph− ALL. PMID:26887044

  16. Targeting the p53-MDM2 interaction by the small-molecule MDM2 antagonist Nutlin-3a: a new challenged target therapy in adult Philadelphia positive acute lymphoblastic leukemia patients.

    PubMed

    Trino, Stefania; Iacobucci, Ilaria; Erriquez, Daniela; Laurenzana, Ilaria; De Luca, Luciana; Ferrari, Anna; Di Rorà, Andrea Ghelli Luserna; Papayannidis, Cristina; Derenzini, Enrico; Simonetti, Giorgia; Lonetti, Annalisa; Venturi, Claudia; Cattina, Federica; Ottaviani, Emanuela; Abbenante, Maria Chiara; Russo, Domenico; Perini, Giovanni; Musto, Pellegrino; Martinelli, Giovanni

    2016-03-15

    MDM2 is an important negative regulator of p53 tumor suppressor. In this study, we sought to investigate the preclinical activity of the MDM2 antagonist, Nutlin-3a, in Philadelphia positive (Ph+) and negative (Ph-) leukemic cell line models, and primary B-acute lymphoblastic leukemia (ALL) patient samples. We demonstrated that Nutlin-3a treatment reduced viability and induced p53-mediated apoptosis in ALL cells with wild-type p53 protein, in a time and dose-dependent manner, resulting in the increased expression of pro-apoptotic proteins and key regulators of cell cycle arrest. The dose-dependent reduction in cell viability was confirmed in primary blast cells from B-ALL patients, including Ph+ ALL resistant patients carrying the T315I BCR-ABL1 mutation. Our findings provide a strong rational for further clinical investigation of Nutlin-3a in Ph+ and Ph- ALL. PMID:26887044

  17. A small-molecule inhibitor, 5'-O-tritylthymidine, targets FAK and Mdm-2 interaction, and blocks breast and colon tumorigenesis in vivo.

    PubMed

    Golubovskaya, Vita M; Palma, Nadia L; Zheng, Min; Ho, Baotran; Magis, Andrew; Ostrov, David; Cance, William G

    2013-05-01

    Focal Adhesion Kinase (FAK) is overexpressed in many types of tumors and plays an important role in survival. We developed a novel approach, targeting FAK-protein interactions by computer modeling and screening of NCI small molecule drug database. In this report we targeted FAK and Mdm-2 protein interaction to decrease tumor growth. By macromolecular modeling we found a model of FAK and Mdm-2 interaction and performed screening of > 200,000 small molecule compounds from NCI database with drug-like characteristics, targeting the FAK-Mdm-2 interaction. We identified 5';-O-Tritylthymidine, called M13 compound that significantly decreased viability in different cancer cells. M13 was docked into the pocket of FAK and Mdm-2 interaction and was directly bound to the FAK-N terminal domain by ForteBio Octet assay. In addition, M13 compound affected FAK and Mdm-2 levels and decreased complex of FAK and Mdm-2 proteins in breast and colon cancer cells. M13 re-activated p53 activity inhibited by FAK with Mdm-2 promoter. M13 decreased viability, clonogenicity, increased detachment and apoptosis in a dose-dependent manner in BT474 breast and in HCT116 colon cancer cells in vitro. M13 decreased FAK, activated p53 and caspase-8 in both cell lines. In addition, M13 decreased breast and colon tumor growth in vivo. M13 activated p53 and decreased FAK in tumor samples consistent with decreased tumor growth. The data demonstrate a novel approach for targeting FAK and Mdm-2 protein interaction, provide a model of FAK and Mdm-2 interaction, identify M13 compound targeting this interaction and decreasing tumor growth that is critical for future targeted therapeutics. PMID:22292771

  18. Regulation of the p14ARF-Mdm2-p53 pathway: an overview in breast cancer.

    PubMed

    Agrawal, Anshu; Yang, Jianhui; Murphy, Richard F; Agrawal, Devendra K

    2006-10-01

    Knowledge of the roles of proteins that are abnormally suppressed or activated due to mutation in the DNA sequences of the common tumor suppressor genes, p14ARF and p53, is critical to the understanding the pathogenesis of breast cancer. Mdm2 is a mediator for the function of both p14ARF and p53. In this review article factors including Pokemon, Geminin, Twist, and Apigenin, which control the action of individual proteins in the p14ARF-Mdm2-p53 pathway in breast cancer as well the consequences of mutation 7 of p53 are discussed. The complexity of interaction of components of the pathway and the underlying development of cancer is emphasized. Opportunities for future therapeutic innovations are indicated. PMID:16919268

  19. The pharmacodynamics of the p53-Mdm2 targeting drug Nutlin: the role of gene-switching noise.

    PubMed

    Puszynski, Krzysztof; Gandolfi, Alberto; d'Onofrio, Alberto

    2014-12-01

    In this work we investigate, by means of a computational stochastic model, how tumor cells with wild-type p53 gene respond to the drug Nutlin, an agent that interferes with the Mdm2-mediated p53 regulation. In particular, we show how the stochastic gene-switching controlled by p53 can explain experimental dose-response curves, i.e., the observed inter-cell variability of the cell viability under Nutlin action. The proposed model describes in some detail the regulation network of p53, including the negative feedback loop mediated by Mdm2 and the positive loop mediated by PTEN, as well as the reversible inhibition of Mdm2 caused by Nutlin binding. The fate of the individual cell is assumed to be decided by the rising of nuclear-phosphorylated p53 over a certain threshold. We also performed in silico experiments to evaluate the dose-response curve after a single drug dose delivered in mice, or after its fractionated administration. Our results suggest that dose-splitting may be ineffective at low doses and effective at high doses. This complex behavior can be due to the interplay among the existence of a threshold on the p53 level for its cell activity, the nonlinearity of the relationship between the bolus dose and the peak of active p53, and the relatively fast elimination of the drug. PMID:25504419

  20. Mdm2 and Aurora A inhibitors synergize to block melanoma growth by driving apoptosis and immune clearance of tumor cells

    PubMed Central

    Vilgelm, Anna E.; Pawlikowski, Jeff S.; Liu, Yan; Hawkins, Oriana E.; Davis, Tyler A.; Smith, Jessica; Weller, Kevin P.; Horton, Linda W.; McClain, Colt M.; Ayers, Gregory D.; Turner, David C.; Essaka, David C.; Stewart, Clinton F.; Sosman, Jeffrey A.; Kelley, Mark C.; Ecsedy, Jeffrey A.; Johnston, Jeffrey N.; Richmond, Ann

    2014-01-01

    Therapeutics that induce cancer cell senescence can block cell proliferation and promote immune rejection. However, the risk of tumor relapse due to senescence escape may remain high due to the long lifespan of senescent cells that are not cleared. Here we show how combining a senescence-inducing inhibitor of the mitotic kinase Aurora A (AURKA) with an MDM2 antagonist activates p53 in senescent tumors harboring wildtype 53. In the model studied, this effect is accompanied proliferation arrest, mitochondrial depolarization, apoptosis and immune clearance of cancer cells by antitumor leukocytes in a manner reliant upon CCL5, CCL1 and CXCL9. The AURKA/MDM2 combination therapy shows adequate bioavailability and low toxicity to the host. Moreover, the prominent response of patient-derived melanoma tumors to co-administered MDM2 and AURKA inhibitors offers a sound rationale for clinical evaluation. Taken together, our work provides a preclinical proof-of-concept for a combination treatment which leverages both senescence and immune surveillance to therapeutic ends. PMID:25398437

  1. SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway

    PubMed Central

    Liu, Yonghua; Chen, Ying; Lu, Xiang; Wang, Youhua; Duan, Yinong; Cheng, Chun; Shen, Aiguo

    2012-01-01

    SCY1-like 1–binding protein 1 (SCYL1BP1) is a newly identified transcriptional activator domain containing a protein with many unknown biological functions. Recently emerging evidence has revealed that it is a novel regulator of the p53 pathway, which is required for neurite outgrowth and regeneration. Here we present evidence that SCYL1BP1 inhibits nerve growth factor–mediated neurite outgrowth in PC12 cells and affects morphogenesis of primary cortical neurons by strongly decreasing the p53 protein level in vitro, all of which depends on SCYL1BP1's transcriptional activator domain. Exogenous p53 rescues neurite outgrowth and neuronal morphogenesis defects caused by SCYL1BP1. Furthermore, SCYL1BP1 can directly induce Mdm2 transcription, whereas inhibiting the function of Mdm2 by specific small interfering RNAs results in partial rescue of neurite outgrowth and neuronal morphogenesis defects induced by SCYL1BP1. In vivo experiments show that SCYL1BP1 can also depress axonal regeneration, whereas inhibiting the function of SCYL1BP1 by specific short hairpin RNA enhances it. Taken together, these data strongly suggested that SCYL1BP1 is a novel transcriptional activator in neurite outgrowth by directly modulating the Mdm2/p53-dependent pathway, which might play an important role in CNS development and axonal regeneration after injury. PMID:23051735

  2. Effective screening strategy using ensembled pharmacophore models combined with cascade docking: application to p53-MDM2 interaction inhibitors.

    PubMed

    Xue, Xin; Wei, Jin-Lian; Xu, Li-Li; Xi, Mei-Yang; Xu, Xiao-Li; Liu, Fang; Guo, Xiao-Ke; Wang, Lei; Zhang, Xiao-Jin; Zhang, Ming-Ye; Lu, Meng-Chen; Sun, Hao-Peng; You, Qi-Dong

    2013-10-28

    Protein-protein interactions (PPIs) play a crucial role in cellular function and form the backbone of almost all biochemical processes. In recent years, protein-protein interaction inhibitors (PPIIs) have represented a treasure trove of potential new drug targets. Unfortunately, there are few successful drugs of PPIIs on the market. Structure-based pharmacophore (SBP) combined with docking has been demonstrated as a useful Virtual Screening (VS) strategy in drug development projects. However, the combination of target complexity and poor binding affinity prediction has thwarted the application of this strategy in the discovery of PPIIs. Here we report an effective VS strategy on p53-MDM2 PPI. First, we built a SBP model based on p53-MDM2 complex cocrystal structures. The model was then simplified by using a Receptor-Ligand complex-based pharmacophore model considering the critical binding features between MDM2 and its small molecular inhibitors. Cascade docking was subsequently applied to improve the hit rate. Based on this strategy, we performed VS on NCI and SPECS databases and successfully discovered 6 novel compounds from 15 hits with the best, compound 1 (NSC 5359), K(i) = 180 ± 50 nM. These compounds can serve as lead compounds for further optimization. PMID:24050442

  3. The polymorphisms of P53 codon 72 and MDM2 SNP309 and renal cell carcinoma risk in a low arsenic exposure area

    SciTech Connect

    Huang, Chao-Yuan; Su, Chien-Tien; Chu, Jan-Show; Huang, Shu-Pin; Pu, Yeong-Shiau; Yang, Hsiu-Yuan; Chung, Chi-Jung; Wu, Chia-Chang; Hsueh, Yu-Mei

    2011-12-15

    Our recent study demonstrated the increased risk of renal cell carcinoma (RCC) associated with high urinary total arsenic levels among people living in a low arsenic exposure area. Genomic instability is important in arsenic carcinogenesis. This study evaluated the relationship between the polymorphisms of p53, p21, and MDM2, which plays a role in gene stability, and the arsenic-related RCC risk. Here, we found that p53 Pro/Pro genotype and MDM2 SNP309 GG genotype significantly increased RCC risk compared to the p53 Arg/Arg genotype and MDM2 SNP309 TT genotype. RCC patients with the p53Arg/Arg genotype had a signicantly low percentage of inorganic arsenic, a low percentage of monomethylarsonic acid (MMA), and a high percentage of dimethylarsinic acid (DMA), which indicates efcient arsenic methylation capacity. Subjects with the p53 Arg/Pro + Pro/Pro genotype or MDM2 SNP309 TG + GG genotype, in conjunction with high urinary total arsenic ({>=} 14.02 {mu}g/L), had a signicantly higher RCC risk than those with the p53 Arg/Arg or MDM2 SNP309 TT genotypes and low urinary total arsenic. Taken together, this is the first study to show that a variant genotype of p53 Arg{sup 72}Pro or MDM2 SNP309 may modify the arsenic-related RCC risk even in a non-obvious arsenic exposure area. -- Highlights: Black-Right-Pointing-Pointer Subjects with p53 Pro/Pro or MDM2 GG genotype significantly increased RCC risk. Black-Right-Pointing-Pointer A significant multiplicative joint effect of p53 and p21 on RCC risk. Black-Right-Pointing-Pointer RCC patients with p53 Arg/Arg genotype had efficient arsenic methylation capacity. Black-Right-Pointing-Pointer Joint effect of p53 or MDM2 genotype and high urinary total arsenic on RCC risk.

  4. Stabilization of p53 in Influenza A Virus-infected Cells Is Associated with Compromised MDM2-mediated Ubiquitination of p53*

    PubMed Central

    Wang, Xiaodu; Deng, Xufang; Yan, Wenjun; Zhu, Zixiang; Shen, Yang; Qiu, Yafeng; Shi, Zixue; Shao, Donghua; Wei, Jianchao; Xia, Xianzhu; Ma, Zhiyong

    2012-01-01

    Influenza A virus (IAV) induces apoptosis of infected cells. In response to IAV infection, p53, a tumor suppressor involved in regulating apoptosis and host antiviral defense, accumulates and becomes activated. This study was undertaken to examine the mechanism of p53 accumulation in IAV-infected cells. Here we show that p53 accumulation in IAV-infected cells results from protein stabilization, which was associated with compromised Mdm2-mediated ubiquitination of p53. In IAV-infected cells, p53 was stabilized and its half-life was remarkably extended. The ladders of polyubiquitinated p53 were not detectable in the presence of the proteasome inhibitor MG132 and were less sensitive to proteasome-mediated degradation. IAV infection did not affect the abundance of Mdm2, a major ubiquitin E3 ligase responsible for regulating p53 ubiquitination and degradation, but weakened the interaction between p53 and Mdm2. Viral nucleoprotein (NP) was able to increase the transcriptional activity and stability of p53. Furthermore, NP was found to associate with p53 and to impair the p53-Mdm2 interaction and Mdm2-mediated p53 ubiquitination, demonstrating its role in inhibiting Mdm2-mediated p53 ubiquitination and degradation. PMID:22474335

  5. Mdm2 inhibition confers protection of p53-proficient cells from the cytotoxic effects of Wee1 inhibitors

    PubMed Central

    Dobbelstein, Matthias

    2015-01-01

    Pharmacological inhibition of the cell cycle regulatory kinase Wee1 represents a promising strategy to eliminate cancer cells. Wee1 inhibitors cooperate with chemotherapeutics, e. g. nucleoside analogues, pushing malignant cells from S phase towards premature mitosis and death. However, considerable toxicities are observed in preclinical and clinical trials. A high proportion of tumor cells can be distinguished from all other cells of a patient's body by inactivating mutations in the tumor suppressor p53. Here we set out to develop an approach for the selective protection of p53-proficient cells against the cytotoxic effects of Wee1 inhibitors. We pretreated such cells with Nutlin-3a, a prototype inhibitor of the p53-antagonist Mdm2. The resulting transient cell cycle arrest effectively increased the survival of cells that were subsequently treated with combinations of the Wee1 inhibitor MK-1775 and/or the nucleoside analogue gemcitabine. In this constellation, Nutlin-3a reduced caspase activation and diminished the phosphorylation of Histone 2AX, an indicator of the DNA damage response. Both effects were strictly dependent on the presence of p53. Moreover, Nutlin pre-treatment reduced the fraction of cells that were undergoing premature mitosis in response to Wee1 inhibition. We conclude that the pre-activation of p53 through Mdm2 antagonists serves as a viable option to selectively protect p53-proficient cells against the cytotoxic effects of Wee1 inhibitors, especially when combined with a nucleoside analogue. Thus, Mdm2 antagonists might prove useful to avoid unwanted side effects of Wee1 inhibitors. On the other hand, when a tumor contains wild type p53, care should be taken not to induce its activity before applying Wee1 inhibitors. PMID:26431163

  6. Structure- and Ligand-Based Virtual Screening Identifies New Scaffolds for Inhibitors of the Oncoprotein MDM2

    PubMed Central

    Houston, Douglas R.; Yen, Li-Hsuan; Pettit, Simon; Walkinshaw, Malcolm D.

    2015-01-01

    A major challenge in the field of ligand discovery is to identify chemically useful fragments that can be developed into inhibitors of specific protein-protein interactions. Low molecular weight fragments (with molecular weight less than 250 Da) are likely to bind weakly to a protein’s surface. Here we use a new virtual screening procedure which uses a combination of similarity searching and docking to identify chemically tractable scaffolds that bind to the p53-interaction site of MDM2. The binding has been verified using capillary electrophoresis which has proven to be an excellent screening method for such small, weakly binding ligands. PMID:25884407

  7. Ribosomal protein S7 regulates arsenite-induced GADD45α expression by attenuating MDM2-mediated GADD45α ubiquitination and degradation

    PubMed Central

    Gao, Ming; Li, Xiaoguang; Dong, Wen; Jin, Rui; Ma, Hanghang; Yang, Pingxun; Hu, Meiru; Li, Yi; Hao, Yi; Yuan, Shengtao; Huang, Junjian; Song, Lun

    2013-01-01

    The stress-responding protein, GADD45α, plays important roles in cell cycle checkpoint, DNA repair and apoptosis. In our recent study, we demonstrate that GADD45α undergoes a dynamic ubiquitination and degradation in vivo, which process can be blocked by the cytotoxic reagent, arsenite, resulting in GADD45α accumulation to activate JNKs cell death pathway, thereby revealing a novel mechanism for the cellular GADD45α functional regulation. But the factors involved in GADD45α stability modulations are unidentified. Here, we demonstrated that MDM2 was an E3 ubiquitin ligase for GADD45α. One of MDM2-binding partner, ribosomal protein S7, interacted with and stabilized GADD45α through preventing the ubiquitination and degradation of GADD45α mediated by MDM2. This novel function of S7 is unrelated to p53 but seems to depend on S7/MDM2 interaction, for the S7 mutant lacking MDM2-binding ability lost its function to stabilize GADD45α. Further investigations indicated that arsenite treatment enhanced S7–MDM2 interaction, resulting in attenuation of MDM2-dependent GADD45α ubiquitination and degradation, thereby leading to GADD45α-dependent cell death pathway activation. Silencing S7 expression suppressed GADD45α-dependent cytotoxicity induced by arsenite. Our findings thus identify a novel function of S7 in control of GADD45α stabilization under both basal and stress conditions and its significance in mediating arsenite-induced cellular stress. PMID:23563151

  8. Significant Differences in the Development of Acquired Resistance to the MDM2 Inhibitor SAR405838 between In Vitro and In Vivo Drug Treatment

    PubMed Central

    Hoffman-Luca, C. Gianna; Yang, Chao-Yie; Lu, Jianfeng; Ziazadeh, Daniel; McEachern, Donna; Debussche, Laurent; Wang, Shaomeng

    2015-01-01

    SAR405838 is a potent and specific MDM2 inhibitor currently being evaluated in Phase I clinical trials for the treatment of human cancer. Using the SJSA-1 osteosarcoma cell line which harbors an amplified MDM2 gene and wild-type p53, we have investigated the acquired resistance mechanisms both in vitro and in vivo to SAR405838. Treatment of SJSA-1 cells with SAR405838 in vitro leads to dose-dependent cell growth inhibition, cell cycle arrest and robust apoptosis. However, prolonged treatment of SJSA-1 cells in vitro with SAR405838 results in profound acquired resistance to the drug. Analysis of in vitro-derived resistant cell lines showed that p53 is mutated in the DNA binding domain and can no longer be activated by SAR405838. Treatment of the parental SJSA-1 xenograft tumors with SAR405838 in mice yields rapid tumor regression but the tumors eventually regrow. Culturing the regrown tumors established a number of sublines, which showed only modest (3–5 times) loss of sensitivity to SAR405838 in vitro. Sequencing of the p53 showed that it retains its wild-type status in these in vivo sublines, with the exception of one subline, which harbors a single heterozygous C176F p53 mutation. Using xenograft models of two in vivo derived sublines, which has either wild-type p53 or p53 containing a single heterozygous C176F mutation, we showed that while SAR405838 effectively achieves partial tumor regression in these models, it no longer induces complete tumor regression and tumors resume growth once the treatment is stopped. Harvesting and culturing tumors obtained from a prolonged treatment with SAR405838 in mice established additional in vivo sublines, which all contain a single heterozygous C176F mutation with no additional p53 mutation detected. Interestingly, SAR405838 can still effectively activate p53 in all sublines containing a single heterozygous C176F mutation, with a moderately reduced potency as compared to that in the parental cell line. Consistently, SAR

  9. Targeting RING domains of Mdm2–MdmX E3 complex activates apoptotic arm of the p53 pathway in leukemia/lymphoma cells

    PubMed Central

    Wu, W; Xu, C; Ling, X; Fan, C; Buckley, B P; Chernov, M V; Ellis, L; Li, F; Muñoz, I G; Wang, X

    2015-01-01

    Reactivation of tumor-suppressor p53 for targeted cancer therapy is an attractive strategy for cancers bearing wild-type (WT) p53. Targeting the Mdm2–p53 interface or MdmX ((MDM4), mouse double minute 4)–p53 interface or both has been a focus in the field. However, targeting the E3 ligase activity of Mdm2–MdmX really interesting new gene (RING)–RING interaction as a novel anticancer strategy has never been explored. In this report, we describe the identification and characterization of small molecule inhibitors targeting Mdm2–MdmX RING–RING interaction as a new class of E3 ligase inhibitors. With a fluorescence resonance energy transfer-based E3 activity assay in high-throughput screening of a chemical library, we identified inhibitors (designated as MMRis (Mdm2–MdmX RING domain inhibitors)) that specifically inhibit Mdm2–MdmX E3 ligase activity toward Mdm2 and p53 substrates. MMRi6 and its analog MMRi64 are capable of disrupting Mdm2–MdmX interactions in vitro and activating p53 in cells. In leukemia cells, MMRi64 potently induces downregulation of Mdm2 and MdmX. In contrast to Nutlin3a, MMRi64 only induces the expression of pro-apoptotic gene PUMA (p53 upregulated modulator of apoptosis) with minimal induction of growth-arresting gene p21. Consequently, MMRi64 selectively induces the apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Owing to the distinct mechanisms of action of MMRi64 and Nutlin3a, their combination synergistically induces p53 and apoptosis. Taken together, this study reveals that Mdm2–MdmX has a critical role in apoptotic response of the p53 pathway and MMRi64 may serve as a new pharmacological tool for p53 studies and a platform for cancer drug development. PMID:26720344

  10. Histone deacetylase inhibitor sodium butyrate suppresses proliferation and promotes apoptosis in osteosarcoma cells by regulation of the MDM2–p53 signaling

    PubMed Central

    Xie, Chuhai; Wu, Boyi; Chen, Binwei; Shi, Qunwei; Guo, Jianhong; Fan, Ziwen; Huang, Yan

    2016-01-01

    Histone deacetylase inhibitors have been reported to induce tumor cell growth arrest, differentiation, and apoptosis. This study aimed to investigate the effects of one histone deacetylase inhibitor – sodium butyrate (SB) – on osteosarcoma (OS) cell proliferation and apoptosis and also the molecular mechanisms by which SB exerts regulatory effects on OS cells. U2OS and MG63 cells were treated with SB at various concentrations. Then, cell proliferation and apoptosis were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and flow cytometry assays, respectively; the expression of Ki67, Bax, Bcl-2, MDM2, and p53 proteins was determined by using Western blot assay. The results showed that SB suppressed proliferation in a concentration-dependent manner and promoted apoptosis of OS cells. In addition, SB enhanced p53 expression and decreased MDM2 expression, indicating that SB can regulate MDM2–p53 feedback loop. p53 inhibited proliferation and promoted apoptosis, whereas MDM2 promoted proliferation and suppressed apoptosis, which indicated that functional effect of SB on OS cell lines at least in part depended on the MDM2–p53 signaling. We also explored the effect of SB on OS cells in vivo and found that SB suppressed the growth of OS cells with no noticeable effect on activity and body weight of mice in vivo. These findings will offer new clues for OS development and progression and offer SB as a potent targeted agent for OS treatment. PMID:27445491

  11. Probing Origin of Binding Difference of inhibitors to MDM2 and MDMX by Polarizable Molecular Dynamics Simulation and QM/MM-GBSA Calculation

    NASA Astrophysics Data System (ADS)

    Chen, Jianzhong; Wang, Jinan; Zhang, Qinggang; Chen, Kaixian; Zhu, Weiliang

    2015-11-01

    Binding abilities of current inhibitors to MDMX are weaker than to MDM2. Polarizable molecular dynamics simulations (MD) followed by Quantum mechanics/molecular mechanics generalized Born surface area (QM//MM-GBSA) calculations were performed to investigate the binding difference of inhibitors to MDM2 and MDMX. The predicted binding free energies not only agree well with the experimental results, but also show that the decrease in van der Walls interactions of inhibitors with MDMX relative to MDM2 is a main factor of weaker bindings of inhibitors to MDMX. The analyses of dihedral angles based on MD trajectories suggest that the closed conformation formed by the residues M53 and Y99 in MDMX leads to a potential steric clash with inhibitors and prevents inhibitors from arriving in the deep of MDMX binding cleft, which reduces the van der Waals contacts of inhibitors with M53, V92, P95 and L98. The calculated results using the residue-based free energy decomposition method further prove that the interaction strength of inhibitors with M53, V92, P95 and L98 from MDMX are obviously reduced compared to MDM2. We expect that this study can provide significant theoretical guidance for designs of potent dual inhibitors to block the p53-MDM2/MDMX interactions.

  12. Histone deacetylase inhibitor sodium butyrate suppresses proliferation and promotes apoptosis in osteosarcoma cells by regulation of the MDM2-p53 signaling.

    PubMed

    Xie, Chuhai; Wu, Boyi; Chen, Binwei; Shi, Qunwei; Guo, Jianhong; Fan, Ziwen; Huang, Yan

    2016-01-01

    Histone deacetylase inhibitors have been reported to induce tumor cell growth arrest, differentiation, and apoptosis. This study aimed to investigate the effects of one histone deacetylase inhibitor - sodium butyrate (SB) - on osteosarcoma (OS) cell proliferation and apoptosis and also the molecular mechanisms by which SB exerts regulatory effects on OS cells. U2OS and MG63 cells were treated with SB at various concentrations. Then, cell proliferation and apoptosis were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and flow cytometry assays, respectively; the expression of Ki67, Bax, Bcl-2, MDM2, and p53 proteins was determined by using Western blot assay. The results showed that SB suppressed proliferation in a concentration-dependent manner and promoted apoptosis of OS cells. In addition, SB enhanced p53 expression and decreased MDM2 expression, indicating that SB can regulate MDM2-p53 feedback loop. p53 inhibited proliferation and promoted apoptosis, whereas MDM2 promoted proliferation and suppressed apoptosis, which indicated that functional effect of SB on OS cell lines at least in part depended on the MDM2-p53 signaling. We also explored the effect of SB on OS cells in vivo and found that SB suppressed the growth of OS cells with no noticeable effect on activity and body weight of mice in vivo. These findings will offer new clues for OS development and progression and offer SB as a potent targeted agent for OS treatment. PMID:27445491

  13. Probing Origin of Binding Difference of inhibitors to MDM2 and MDMX by Polarizable Molecular Dynamics Simulation and QM/MM-GBSA Calculation

    PubMed Central

    Chen, Jianzhong; Wang, Jinan; Zhang, Qinggang; Chen, Kaixian; Zhu, Weiliang

    2015-01-01

    Binding abilities of current inhibitors to MDMX are weaker than to MDM2. Polarizable molecular dynamics simulations (MD) followed by Quantum mechanics/molecular mechanics generalized Born surface area (QM//MM-GBSA) calculations were performed to investigate the binding difference of inhibitors to MDM2 and MDMX. The predicted binding free energies not only agree well with the experimental results, but also show that the decrease in van der Walls interactions of inhibitors with MDMX relative to MDM2 is a main factor of weaker bindings of inhibitors to MDMX. The analyses of dihedral angles based on MD trajectories suggest that the closed conformation formed by the residues M53 and Y99 in MDMX leads to a potential steric clash with inhibitors and prevents inhibitors from arriving in the deep of MDMX binding cleft, which reduces the van der Waals contacts of inhibitors with M53, V92, P95 and L98. The calculated results using the residue-based free energy decomposition method further prove that the interaction strength of inhibitors with M53, V92, P95 and L98 from MDMX are obviously reduced compared to MDM2. We expect that this study can provide significant theoretical guidance for designs of potent dual inhibitors to block the p53-MDM2/MDMX interactions. PMID:26616018

  14. MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis.

    PubMed

    Rinaldo, Cinzia; Prodosmo, Andrea; Mancini, Francesca; Iacovelli, Stefano; Sacchi, Ada; Moretti, Fabiola; Soddu, Silvia

    2007-03-01

    In response to DNA damage, p53 induces either cell-cycle arrest or apoptosis by differential transcription of several target genes and through transcription-independent apoptotic functions. p53 phosphorylation at Ser46 by HIPK2 is one determinant of the outcome because it takes place only upon severe, nonrepairable DNA damage that irreversibly drives cells to apoptosis. Here, we show that p53 represses its proapoptotic activator HIPK2 via MDM2-mediated degradation, whereas a degradation-resistant HIPK2 mutant has increased apoptotic activity. Upon cytostatic, nonsevere DNA damage, inhibition of HIPK2 degradation is sufficient to induce p53Ser46 phosphorylation and apoptosis, converting growth-arresting stimuli to apoptotic ones. These findings establish HIPK2 as an MDM2 target and support a model in which, upon nonsevere DNA damage, p53 represses its own phosphorylation at Ser46 due to HIPK2 degradation, supporting the notion that the cell-cycle-arresting functions of p53 include active inhibition of the apoptotic ones. PMID:17349959

  15. PP2A mediates diosmin p53 activation to block HA22T cell proliferation and tumor growth in xenografted nude mice through PI3K-Akt-MDM2 signaling suppression.

    PubMed

    Dung, Tran Duc; Day, Cecilia Hsuan; Binh, Truong Viet; Lin, Chih-Hsueh; Hsu, Hsi-Hsien; Su, Cheng-Chuan; Lin, Yueh-Min; Tsai, Fuu-Jen; Kuo, Wei-Wen; Chen, Li-Mien; Huang, Chih-Yang

    2012-05-01

    Hepatocellular carcinoma is a common type of cancer with poor prognosis. This study examines the in vitro and in vivo mechanisms of diosmin on human hepato-cellular carcinoma HA22T cell proliferation inhibition. HA22T cells were treated with different diosmin concentrations and analyzed with Western blot analysis, MTT assay, wound healing, flow cytometry, siRNA transfection assays and co-immuno-precipitation assay. The HA22T-implanted xeno-graft nude mice model was applied to confirm the cellular effects. Diosmin showed strong HA22T cell viability inhibition in a dose dependent manner and significantly reduced the cell proliferative proteins as well as inducing cell cycle arrest in the G2/M phase through p53 activation and PI3K-Akt-MDM2 signaling pathway inhibition. However, protein phosphatase 2A (PP2A) siRNA or PP2A inhibitor totally reversed the diosmin effects. The HA22T-implanted nude mice model further confirmed that diosmin inhibited HA22T tumor cell growth and down regulated the PI3K-Akt-MDM2 signaling and cell cycle regulating proteins, as well as activating PP2A and p53 proteins. Our findings indicate that HA22T cell proliferation inhibition and tumor growth suppression by diosmin are mediated through PP2A activation. PMID:22289577

  16. Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols as Revealed by Molecular Dynamics Simulations and MM/PBSA Free Energy Calculations

    PubMed Central

    Verma, Sharad; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Grover, Abhinav

    2016-01-01

    p53, a tumor suppressor protein, has been proven to regulate the cell cycle, apoptosis, and DNA repair to prevent malignant transformation. MDM2 regulates activity of p53 and inhibits its binding to DNA. In the present study, we elucidated the MDM2 inhibition potential of polyphenols (Apigenin, Fisetin, Galangin and Luteolin) by MD simulation and MM/PBSA free energy calculations. All polyphenols bind to hydrophobic groove of MDM2 and the binding was found to be stable throughout MD simulation. Luteolin showed the highest negative binding free energy value of -173.80 kJ/mol followed by Fisetin with value of -172.25 kJ/mol. It was found by free energy calculations, that hydrophobic interactions (vdW energy) have major contribution in binding free energy. PMID:26863418

  17. Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols as Revealed by Molecular Dynamics Simulations and MM/PBSA Free Energy Calculations.

    PubMed

    Verma, Sharad; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Grover, Abhinav

    2016-01-01

    p53, a tumor suppressor protein, has been proven to regulate the cell cycle, apoptosis, and DNA repair to prevent malignant transformation. MDM2 regulates activity of p53 and inhibits its binding to DNA. In the present study, we elucidated the MDM2 inhibition potential of polyphenols (Apigenin, Fisetin, Galangin and Luteolin) by MD simulation and MM/PBSA free energy calculations. All polyphenols bind to hydrophobic groove of MDM2 and the binding was found to be stable throughout MD simulation. Luteolin showed the highest negative binding free energy value of -173.80 kJ/mol followed by Fisetin with value of -172.25 kJ/mol. It was found by free energy calculations, that hydrophobic interactions (vdW energy) have major contribution in binding free energy. PMID:26863418

  18. MDM2 promoter SNP55 (rs2870820) affects risk of colon cancer but not breast-, lung-, or prostate cancer.

    PubMed

    Helwa, Reham; Gansmo, Liv B; Romundstad, Pål; Hveem, Kristian; Vatten, Lars; Ryan, Bríd M; Harris, Curtis C; Lønning, Per E; Knappskog, Stian

    2016-01-01

    Two functional SNPs (SNP285G > C; rs117039649 and SNP309T > G; rs2279744) have previously been reported to modulate Sp1 transcription factor binding to the promoter of the proto-oncogene MDM2, and to influence cancer risk. Recently, a third SNP (SNP55C > T; rs2870820) was also reported to affect Sp1 binding and MDM2 transcription. In this large population based case-control study, we genotyped MDM2 SNP55 in 10,779 Caucasian individuals, previously genotyped for SNP309 and SNP285, including cases of colon (n = 1,524), lung (n = 1,323), breast (n = 1,709) and prostate cancer (n = 2,488) and 3,735 non-cancer controls, as well as 299 healthy African-Americans. Applying the dominant model, we found an elevated risk of colon cancer among individuals harbouring SNP55TT/CT genotypes compared to the SNP55CC genotype (OR = 1.15; 95% CI = 1.01-1.30). The risk was found to be highest for left-sided colon cancer (OR = 1.21; 95% CI = 1.00-1.45) and among females (OR = 1.32; 95% CI = 1.01-1.74). Assessing combined genotypes, we found the highest risk of colon cancer among individuals harbouring the SNP55TT or CT together with the SNP309TG genotype (OR = 1.21; 95% CI = 1.00-1.46). Supporting the conclusions from the risk estimates, we found colon cancer cases carrying the SNP55TT/CT genotypes to be diagnosed at younger age as compared to SNP55CC (p = 0.053), in particular among patients carrying the SNP309TG/TT genotypes (p = 0.009). PMID:27624283

  19. AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis.

    PubMed

    Chou, Chih-Chien; Lee, Kuen-Haur; Lai, I-Lu; Wang, Dasheng; Mo, Xiaokui; Kulp, Samuel K; Shapiro, Charles L; Chen, Ching-Shih

    2014-09-01

    In cancer cells, the epithelial-mesenchymal transition (EMT) confers the ability to invade basement membranes and metastasize to distant sites, establishing it as an appealing target for therapeutic intervention. Here, we report a novel function of the master metabolic kinase AMPK in suppressing EMT by modulating the Akt-MDM2-Foxo3 signaling axis. This mechanistic link was supported by the effects of siRNA-mediated knockdown and pharmacologic activation of AMPK on epithelial and mesenchymal markers in established breast and prostate cancer cells. Exposure of cells to OSU-53, a novel allosteric AMPK activator, as well as metformin and AICAR, was sufficient to reverse their mesenchymal phenotype. These effects were abrogated by AMPK silencing. Phenotypic changes were mediated by Foxo3a activation, insofar as silencing or overexpressing Foxo3a mimicked the effects of AMPK silencing or OSU-53 treatment on EMT, respectively. Mechanistically, Foxo3a activation led to the transactivation of the E-cadherin gene and repression of genes encoding EMT-inducing transcription factors. OSU-53 activated Foxo3a through two Akt-dependent pathways, one at the level of nuclear localization by blocking Akt- and IKKβ-mediated phosphorylation, and a second at the level of protein stabilization via cytoplasmic sequestration of MDM2, an E3 ligase responsible for Foxo3a degradation. The suppressive effects of OSU-53 on EMT had therapeutic implications illustrated by its ability to block invasive phenotypes in vitro and metastatic properties in vivo. Overall, our work illuminates a mechanism of EMT regulation in cancer cells mediated by AMPK, along with preclinical evidence supporting a tractable therapeutic strategy to reverse mesenchymal phenotypes associated with invasion and metastasis. PMID:24994714

  20. The MDM2-p53-pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic β-cells.

    PubMed

    Li, Xiaomu; Cheng, Kenneth K Y; Liu, Zhuohao; Yang, Jin-Kui; Wang, Baile; Jiang, Xue; Zhou, Yawen; Hallenborg, Philip; Hoo, Ruby L C; Lam, Karen S L; Ikeda, Yasuhiro; Gao, Xin; Xu, Aimin

    2016-01-01

    Mitochondrial metabolism is pivotal for glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells. However, little is known about the molecular machinery that controls the homeostasis of intermediary metabolites in mitochondria. Here we show that the activation of p53 in β-cells, by genetic deletion or pharmacological inhibition of its negative regulator MDM2, impairs GSIS, leading to glucose intolerance in mice. Mechanistically, p53 activation represses the expression of the mitochondrial enzyme pyruvate carboxylase (PC), resulting in diminished production of the TCA cycle intermediates oxaloacetate and NADPH, and impaired oxygen consumption. The defective GSIS and mitochondrial metabolism in MDM2-null islets can be rescued by restoring PC expression. Under diabetogenic conditions, MDM2 and p53 are upregulated, whereas PC is reduced in mouse β-cells. Pharmacological inhibition of p53 alleviates defective GSIS in diabetic islets by restoring PC expression. Thus, the MDM2-p53-PC signalling axis links mitochondrial metabolism to insulin secretion and glucose homeostasis, and could represent a therapeutic target in diabetes. PMID:27265727

  1. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    PubMed

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered. PMID:27187988

  2. The MDM2–p53–pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic β-cells

    PubMed Central

    Li, Xiaomu; Cheng, Kenneth K. Y.; Liu, Zhuohao; Yang, Jin-Kui; Wang, Baile; Jiang, Xue; Zhou, Yawen; Hallenborg, Philip; Hoo, Ruby L. C.; Lam, Karen S. L.; Ikeda, Yasuhiro; Gao, Xin; Xu, Aimin

    2016-01-01

    Mitochondrial metabolism is pivotal for glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells. However, little is known about the molecular machinery that controls the homeostasis of intermediary metabolites in mitochondria. Here we show that the activation of p53 in β-cells, by genetic deletion or pharmacological inhibition of its negative regulator MDM2, impairs GSIS, leading to glucose intolerance in mice. Mechanistically, p53 activation represses the expression of the mitochondrial enzyme pyruvate carboxylase (PC), resulting in diminished production of the TCA cycle intermediates oxaloacetate and NADPH, and impaired oxygen consumption. The defective GSIS and mitochondrial metabolism in MDM2-null islets can be rescued by restoring PC expression. Under diabetogenic conditions, MDM2 and p53 are upregulated, whereas PC is reduced in mouse β-cells. Pharmacological inhibition of p53 alleviates defective GSIS in diabetic islets by restoring PC expression. Thus, the MDM2–p53–PC signalling axis links mitochondrial metabolism to insulin secretion and glucose homeostasis, and could represent a therapeutic target in diabetes. PMID:27265727

  3. Long non-coding RNA LOC572558 inhibits bladder cancer cell proliferation and tumor growth by regulating the AKT-MDM2-p53 signaling axis.

    PubMed

    Zhu, Yiping; Dai, Bo; Zhang, Hailiang; Shi, Guohai; Shen, Yijun; Ye, Dingwei

    2016-10-01

    Long non-coding RNAs (lncRNAs) have been suggested to play important roles in the progression of many cancers such as bladder cancer. However, the detailed mechanism has not been fully understood. We have previously identified a collection of aberrantly expressed lncRNAs in bladder cancer using microarray gene profiling assay. In the current study, we aim to further explore the expression profile and the function of LOC572558, one of the most deregulated lncRNAs in bladder cancer. A large cohort of human bladder cancer tissue samples with benign controls, as well as established human bladder cancer cell lines, has been examined for the expression of LOC572558. The biological functions of LOC572558 were examined by CCK-8 assay, flow cytometry analysis, and wound healing and transwell assays. Using a high-throughput phospho-proteome array, we identified proteins that were ectopic phosphorylated in bladder cancer cells where LOC572558 expression was upregulated. We demonstrated that LOC572558 expression was markedly decreased in bladder cancer tissues and bladder cancer cell lines. Moreover, ectopic expression of LOC572558 inhibited cell proliferation and motility, induced S phase arrest of the cell cycle and promoted cell apoptosis in T24 and 5637 bladder cancer cell lines. We further verified that overexpression of LOC572558 was associated with dephosphorylation of AKT, MDM2 and phosphorylation of p53 protein. Our data clearly demonstrated that LOC572558 is a tumor suppressor and regulates the p53 signaling pathway in bladder cancer. Thus, it may serve as a promising new diagnostic marker and therapeutic target in bladder cancer. PMID:27130667

  4. Association of MDM2 promoter T309G polymorphism with oral cancer risk: A meta-analysis of 3,536 subjects

    PubMed Central

    YANG, XI; ZHU, YUN; YE, DONGXIA; LIU, YANG; SUN, HONGYING; RUAN, MIN; LIU, WEI

    2016-01-01

    The mouse double minute 2 (MDM2) gene is an important regulator of the p53 suppressor gene. To date, evidence concerning the association of the MDM2 single nucleotide polymorphism (SNP) 309T>G (rs2279744) with the risk of developing oral squamous cell carcinoma (OSCC) remains controversial. Therefore, a meta-analysis of all the eligible studies was performed, in order to derive a more precise estimation of this association. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the degree of association in 5 previous studies, including a total of 1,369 OSCC cases and 2,167 controls. The overall analysis revealed a significant association between MDM2 SNP309 and OSCC risk in the heterozygote (TG vs. TT: OR=0.81; 95% CI: 0.68–0.96; P=0.02) and dominant models (TG+GG vs. TT: OR=0.82; 95% CI: 0.69–0.97; P=0.02). The subgroup analysis based on the source of the controls revealed a significant association between population-based controls and the heterozygote model (TG vs. TT: OR=0.75; 95% CI: 0.62–0.91; P=0.004), dominant model (TG+GG vs. TT: OR=0.76; 95% CI: 0.63–0.91; P=0.003) and allele comparison (G vs. T: OR=0.89; 95% CI: 0.79–0.99; P=0.04). Importantly, no evidence of publication bias or obvious heterogeneity were observed in the meta-analysis. The results of the present study demonstrated a decreased risk of developing OSCC for the MDM2 SNP309 group, suggesting MDM2 SNP309 may be a protection-associated genetic variation for OSCC. Additional well-designed studies, with larger sample sizes, are required to further elucidate this association. PMID:27330794

  5. Epithelial cell-derived periostin functions as a tumor suppressor in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14ARF/Mdm2 signaling pathway.

    PubMed

    Lv, Hongjun; Liu, Rui; Fu, Jiao; Yang, Qi; Shi, Jing; Chen, Pu; Ji, Meiju; Shi, Bingyin; Hou, Peng

    2014-01-01

    Periostin is usually considered as an oncogene in diverse human cancers, including breast, prostate, colon, esophagus, and pancreas cancers, whereas it acts as a tumor suppressor in bladder cancer. In gastric cancer, it has been demonstrated that periglandular periostin expression is decreased whereas stromal periostin expression is significantly increased as compared with normal gastric tissues. Moreover, periostin produced by stromal myofibroblasts markedly promotes gastric cancer cell growth. These observations suggest that periostin derived from different types of cells may play distinct biological roles in gastric tumorigenesis. The aim of this study was to explore the biological functions and related molecular mechanisms of epithelial cell-derived periostin in gastric cancer. Our data showed that periglandular periostin was significantly down-regulated in gastric cancer tissues as compared with matched normal gastric mucosa. In addition, its expression in metastatic lymph nodes was significantly lower than that in their primary cancer tissues. Our data also demonstrated that periglandular periostin expression was negatively associated with tumor stage. More importantly, restoration of periostin expression in gastric cancer cells dramatically suppressed cell growth and invasiveness. Elucidation of the mechanisms involved revealed that periostin restoration enhanced Rb phosphorylation and sequentially activated the transcription of E2F1 target gene p14(ARF), leading to Mdm2 inactivation and the stabilization of p53 and E-cadherin proteins. Strikingly, these effects of periostin were abolished upon Rb deletion. Collectively, we have for the first time demonstrated that epithelial cell-derived periostin exerts tumor-suppressor activities in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14(ARF)/Mdm2 signaling pathway. PMID:25486483

  6. An EBV recombinant deleted for residues 130-159 in EBNA3C can deregulate p53/Mdm2 and Cyclin D1/CDK6 which results in apoptosis and reduced cell proliferation

    PubMed Central

    El-Naccache, Darine W.; Robertson, Erle S.

    2016-01-01

    Epstein-Barr virus (EBV), a gamma herpes virus is associated with B-cell malignancies. EBNA-3C is critical for in vitro primary B-cell transformation. Interestingly, the N terminal domain of EBNA3C which contains residues 130–159, interacts with various cellular proteins, such as p53, Mdm2, CyclinD1/Cdk6 complex, and E2F1. In the current reverse genetics study, we deleted the residues 130-159 aa within EBNA3C open reading frame (ORF) by BACmid recombinant engineering methodology. Our experiments demonstrated that deletion of the 130-159 aa showed a reduction in cell proliferation. Also, this recombinant virus showed with higher infectivity of human peripheral blood mononuclear cells (PBMCs) compared to wild type EBV. PBMCs- infected with recombinant EBV deleted for 130-159 residues have differential expression patterns for the p53/Mdm2, CyclinD1/Cdk6 and pRb/E2F1 pathways compared to wild type EBV-infected PBMCs. PBMCs infected with recombinant virus showed increased apoptotic cell death which further resulted in activation of polymerase 1 (PARP1), an important contributor to apoptotic signaling. Interestingly, cells infected with this recombinant virus showed a dramatic decrease in chromosomal instability, indicated by the presence of increased multinucleation and micronucleation. In addition infection with recombinant virus have increased cells in G0/G1 phase and decreased cells in S-G2M phase when compared to wild type infected cells. Thus, these differences in signaling activities due to 29 amino acid residues of EBNA3C is of particular significance in deregulation of cell proliferation in EBV-infected cells. PMID:26908453

  7. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3

    PubMed Central

    Benada, Jan; Kleiblova, Petra; Jenikova, Gabriela; Macurek, Libor

    2016-01-01

    PP2C family serine/threonine phosphatase WIP1 acts as a negative regulator of the tumor suppressor p53 and is implicated in silencing of cellular responses to genotoxic stress. Chromosomal locus 17q23 carrying the PPM1D (coding for WIP1) is commonly amplified in breast carcinomas and WIP1 was proposed as potential pharmacological target. Here we employed a cellular model with knocked out PPM1D to validate the specificity and efficiency of GSK2830371, novel small molecule inhibitor of WIP1. We have found that GSK2830371 increased activation of the DNA damage response pathway to a comparable level as the loss of PPM1D. In addition, GSK2830371 did not affect proliferation of cells lacking PPM1D but significantly supressed proliferation of breast cancer cells with amplified PPM1D. Over time cells treated with GSK2830371 accumulated in G1 and G2 phases of the cell cycle in a p21-dependent manner and were prone to induction of senescence by a low dose of MDM2 antagonist nutlin-3. In addition, combined treatment with GSK2830371 and doxorubicin or nutlin-3 potentiated cell death through a strong induction of p53 pathway and activation of caspase 9. We conclude that efficient inhibition of WIP1 by GSK2830371 sensitizes breast cancer cells with amplified PPM1D and wild type p53 to chemotherapy. PMID:26883108

  8. Amelioration of Radiation Esophagitis by Orally Administered p53/Mdm2/Mdm4 Inhibitor (BEB55) or GS-Nitroxide

    PubMed Central

    KIM, HYUN; BERNARD, MARK E.; EPPERLY, MICHAEL W.; SHEN, HONGMEI; AMOSCATO, ANDREW; DIXON, TRACY M.; DOEMLING, ALEXANDER S.; LI, SONG; GAO, XIANG; WIPF, PETER; WANG, HONG; ZHANG, XICHEN; KAGAN, VALERIAN E.; GREENBERGER, JOEL S.

    2012-01-01

    Background/Aim Esophagitis is a significant toxicity of radiation therapy for lung cancer. In this study, reduction of irradiation esophagitis in mice, by orally administered p53/Mdm2/Mdm4 inhibitor, BEB55, or the GS-nitroxide, JP4-039, was evaluated. Materials and Methods BEB55 or JP4-039 in F15 (liposomal) formulation was administered intraesophageally to C57BL/6 mice prior to thoracic irradiation of 29 Gy × 1 or 11.5 Gy × 4 thoracic irradiation. Progenitor cells were sorted from excised esophagus, and nitroxide was quantified, by electron paramagnetic resonance (EPR). Mice with Lewis lung carcinoma (3LL) orthotopic lung tumors were treated with BEB55 or JP4-039 prior to 20 Gy to determine if the drugs would protect the tumor cells from radiation. Results Intraesophageal BEB55 and JP4-039 compared to formulation alone increased survival after single fraction (p=0.0209 and 0.0384, respectively) and four fraction thoracic irradiation (p=0.0241 and 0.0388, respectively). JP4-039 was detected in esophagus, liver, bone marrow, and orthotopic Lewis lung carcinoma (3LL) tumor. There was no significant radiation protection of lung tumors by BEB55 or JP4-039 compared to formulation only as assessed by survival (p=0.3021 and 0.3693, respectively). Thus, BEB55 and JP4-039 safely ameliorate radiation esophagitis in mice. PMID:22021675

  9. The conformationally flexible S9-S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo.

    PubMed

    Shimizu, Harumi; Burch, Lindsay R; Smith, Amanda J; Dornan, David; Wallace, Maura; Ball, Kathryn L; Hupp, Ted R

    2002-08-01

    Although the N-terminal BOX-I domain of the tumor suppressor protein p53 contains the primary docking site for MDM2, previous studies demonstrated that RNA stabilizes the MDM2.p53 complex using a p53 mutant lacking the BOX-I motif. In vitro assays measuring the specific activity of MDM2 in the ligand-free and RNA-bound state identified a novel MDM2 interaction site in the core domain of p53. As defined using phage-peptide display, the RNA.MDM2 isoform exhibited a notable switch in peptide binding specificity, with enhanced affinity for novel peptide sequences in either p53 or small nuclear ribonucleoprotein-U (snRNP-U) and substantially reduced affinity for the primary p53 binding site in the BOX-I domain. The consensus binding site for the RNA.MDM2 complex within p53 is SGXLLGESXF, which links the S9-S10 beta-sheets flanking the BOX-IV and BOX-V motifs in the core domain and which is a site of reversible conformational flexibility in p53. Mutation of conserved amino acids in the linker at Ser(261) and Leu(264), which bridges the S9-S10 beta-sheets, stimulated p53 activity from reporter templates and increased MDM2-dependent ubiquitination of p53. Furthermore, mutation of the conserved Phe(270) within the S10 beta-sheet resulted in a mutant p53, which binds more stably to RNA.MDM2 complexes in vitro and which is strikingly hyper-ubiquitinated in vivo. Introducing an Ala(19) mutation into the p53(F270A) protein abolished both RNA.MDM2 complex binding and hyper-ubiquitination in vivo, thus indicating that p53(F270A) protein hyper-ubiquitination depends upon MDM2 binding to its primary site in the BOX-I domain. Together, these data identify a novel MDM2 binding interface within the S9-S10 beta-sheet region of p53 that plays a regulatory role in modulating the rate of MDM2-dependent ubiquitination of p53 in cells. PMID:11925449

  10. Correlations and Scaling Laws in Human Mobility

    PubMed Central

    Wang, Xiang-Wen; Han, Xiao-Pu; Wang, Bing-Hong

    2014-01-01

    Background In recent years, several path-breaking findings on human mobility patterns point out a novel issue which is of important theoretical significance and great application prospects. The empirical analysis of the data which can reflect the real-world human mobility provides the basic cognition and verification of the theoretical models and predictive results on human mobility. One of the most noticeable findings in previous studies on human mobility is the wide-spread scaling anomalies, e.g. the power-law-like displacement distributions. Understanding the origin of these scaling anomalies is of central importance to this issue and therefore is the focus of our discussion. Methodology/Principal Findings In this paper, we empirically analyze the real-world human movements which are based on GPS records, and observe rich scaling properties in the temporal-spatial patterns as well as an abnormal transition in the speed-displacement patterns together with an evidence to the real-world traffic jams. In addition, we notice that the displacements at the population level show a significant positive correlation, indicating a cascading-like nature in human movements. Furthermore, our analysis at the individual level finds that the displacement distributions of users with stronger correlations usually are closer to the power law, suggesting a correlation between the positive correlation of the displacement series and the form of an individual's displacement distribution. Conclusions/Significance These empirical findings make connections between the two basic properties of human mobility, the scaling anomalies on displacement distributions and the positive correlations on displacement series, implying the cascading-like dynamics which is exhibited by the positive correlations would cause the emergence of scaling properties on human mobility patterns. Our findings would inspire further researches on mechanisms and predictions of human mobility. PMID:24454769

  11. Meeting Organocatalysis with Drug Discovery: Asymmetric Synthesis of 3,3'-Spirooxindoles Fused with Tetrahydrothiopyrans as Novel p53-MDM2 Inhibitors.

    PubMed

    Wang, Shengzheng; Jiang, Yan; Wu, Shanchao; Dong, Guoqiang; Miao, Zhenyuan; Zhang, Wannian; Sheng, Chunquan

    2016-03-01

    An organocatalytic enantioselective Michael-Michael cascade reaction is developed for the synthesis of chiral spirotetrahydrothiopyrans. This highly functionalized scaffold was assembled in moderate to good yield (55-74%) and excellent diastereo- and enantioselectivities (>30:1 dr, ≥ 99% ee) with the creation of four consecutive stereogenic centers. The novel spiro-oxindole scaffold is validated as a new class of p53-MDM2 protein-protein interaction inhibitors with good antitumor activity. PMID:26883465

  12. Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking.

    PubMed

    Mukherjee, Sudipto; Pantelopulos, George A; Voelz, Vincent A

    2016-01-01

    MDM2 is a negative regulator of p53 activity and an important target for cancer therapeutics. The N-terminal lid region of MDM2 modulates interactions with p53 via competition for its binding cleft, exchanging slowly between docked and undocked conformations in the absence of p53. To better understand these dynamics, we constructed Markov State Models (MSMs) from large collections of unbiased simulation trajectories of apo-MDM2, and find strong evidence for diffuse, yet two-state folding and binding of the N-terminal region to the p53 receptor site. The MSM also identifies holo-like receptor conformations highly suitable for computational docking, despite initiating trajectories from closed-cleft receptor structures unsuitable for docking. Fixed-anchor docking studies using a test set of high-affinity small molecules and peptides show simulated receptor ensembles achieve docking successes comparable to cross-docking studies using crystal structures of receptors bound by alternative ligands. For p53, the best-scoring receptor structures have the N-terminal region lid region bound in a helical conformation mimicking the bound structure of p53, suggesting lid region association induces receptor conformations suitable for binding. These results suggest that MD + MSM approaches can sample binding-competent receptor conformations suitable for computational peptidomimetic design, and that inclusion of disordered regions may be essential to capturing the correct receptor dynamics. PMID:27538695

  13. Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking

    PubMed Central

    Mukherjee, Sudipto; Pantelopulos, George A.; Voelz, Vincent A.

    2016-01-01

    MDM2 is a negative regulator of p53 activity and an important target for cancer therapeutics. The N-terminal lid region of MDM2 modulates interactions with p53 via competition for its binding cleft, exchanging slowly between docked and undocked conformations in the absence of p53. To better understand these dynamics, we constructed Markov State Models (MSMs) from large collections of unbiased simulation trajectories of apo-MDM2, and find strong evidence for diffuse, yet two-state folding and binding of the N-terminal region to the p53 receptor site. The MSM also identifies holo-like receptor conformations highly suitable for computational docking, despite initiating trajectories from closed-cleft receptor structures unsuitable for docking. Fixed-anchor docking studies using a test set of high-affinity small molecules and peptides show simulated receptor ensembles achieve docking successes comparable to cross-docking studies using crystal structures of receptors bound by alternative ligands. For p53, the best-scoring receptor structures have the N-terminal region lid region bound in a helical conformation mimicking the bound structure of p53, suggesting lid region association induces receptor conformations suitable for binding. These results suggest that MD + MSM approaches can sample binding-competent receptor conformations suitable for computational peptidomimetic design, and that inclusion of disordered regions may be essential to capturing the correct receptor dynamics. PMID:27538695

  14. PAK1IP1, a ribosomal stress-induced nucleolar protein, regulates cell proliferation via the p53–MDM2 loop

    PubMed Central

    Yu, Weishi; Qiu, Zhongwei; Gao, Na; Wang, Liren; Cui, Hengxiang; Qian, Yu; Jiang, Li; Luo, Jian; Yi, Zhengfang; Lu, Hua; Li, Dali; Liu, Mingyao

    2011-01-01

    Cell growth and proliferation are tightly controlled via the regulation of the p53–MDM2 feedback loop in response to various cellular stresses. In this study, we identified a nucleolar protein called PAK1IP1 as another regulator of this loop. PAK1IP1 was induced when cells were treated with chemicals that disturb ribosome biogenesis. Overexpression of PAK1IP1 inhibited cell proliferation by inducing p53-dependent G1 cell-cycle arrest. PAK1IP1 bound to MDM2 and inhibited its ability to ubiquitinate and to degrade p53, consequently leading to the accumulation of p53 levels. Interestingly, knockdown of PAK1IP1 in cells also inhibited cell proliferation and induced p53-dependent G1 arrest. Deficiency of PAK1IP1 increased free ribosomal protein L5 and L11 which were required for PAK1IP1 depletion-induced p53 activation. Taken together, our results reveal that PAK1IP1 is a new nucleolar protein that is crucial for rRNA processing and plays a regulatory role in cell proliferation via the p53–MDM2 loop. PMID:21097889

  15. Design of Chemically Stable, Potent, and Efficacious MDM2 Inhibitors That Exploit the Retro-Mannich Ring-Opening-Cyclization Reaction Mechanism in Spiro-oxindoles

    PubMed Central

    2015-01-01

    Inhibition of the MDM2–p53 protein–protein interaction is being actively pursued as a new anticancer therapeutic strategy, and spiro-oxindoles have been designed as a class of potent and efficacious small-molecule inhibitors of this interaction (MDM2 inhibitors). Our previous study showed that some of our first-generation spiro-oxindoles undergo a reversible ring-opening-cyclization reaction that, from a single compound in protic solution, results in an equilibrium mixture of four diastereoisomers. By exploiting the ring-opening-cyclization reaction mechanism, we have designed and synthesized a series of second-generation spiro-oxindoles with symmetrical pyrrolidine C2 substitution. These compounds undergo a rapid and irreversible conversion to a single, stable diastereoisomer. Our study has yielded compound 31 (MI-1061), which binds to MDM2 with Ki = 0.16 nM, shows excellent chemical stability, and achieves tumor regression in the SJSA-1 xenograft tumor model in mice. PMID:25496041

  16. UVB-Induced Cell Death Signaling Is Associated with G1-S Progression and Transcription Inhibition in Primary Human Fibroblasts

    PubMed Central

    Ortolan, Tatiana Grohmann; Menck, Carlos Frederico M.

    2013-01-01

    DNA damage induced by ultraviolet (UV) radiation can be removed by nucleotide excision repair through two sub-pathways, one general (GGR) and the other specific for transcribed DNA (TCR), and the processing of unrepaired lesions trigger signals that may lead to cell death. These signals involve the tumor suppressor p53 protein, a central regulator of cell responses to DNA damage, and the E3 ubiquitin ligase Mdm2, that forms a feedback regulatory loop with p53. The involvement of cell cycle and transcription on the signaling to apoptosis was investigated in UVB-irradiated synchronized, DNA repair proficient, CS-B (TCR-deficient) and XP-C (GGR-deficient) primary human fibroblasts. Cells were irradiated in the G1 phase of the cell cycle, with two doses with equivalent levels of apoptosis (low and high), defined for each cell line. In the three cell lines, the low doses of UVB caused only a transient delay in progression to the S phase, whereas the high doses induced permanent cell cycle arrest. However, while accumulation of Mdm2 correlated well with the recovery from transcription inhibition at the low doses for normal and CS-B fibroblasts, for XP-C cells this protein was shown to be accumulated even at UVB doses that induced high levels of apoptosis. Thus, UVB-induced accumulation of Mdm2 is critical for counteracting p53 activation and apoptosis avoidance, but its effect is limited due to transcription inhibition. However, in the case of XP-C cells, an excess of unrepaired DNA damage would be sufficient to block S phase progression, which would signal to apoptosis, independent of Mdm2 accumulation. The data clearly discriminate DNA damage signals that lead to cell death, depending on the presence of UVB-induced DNA damage in replicating or transcribing regions. PMID:24155908

  17. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    PubMed

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC. PMID:25367850

  18. The MDM2 small-molecule inhibitor RG7388 leads to potent tumor inhibition in p53 wild-type neuroblastoma

    PubMed Central

    Lakoma, A; Barbieri, E; Agarwal, S; Jackson, J; Chen, Z; Kim, Y; McVay, M; Shohet, JM; Kim, ES

    2016-01-01

    Neuroblastoma is an aggressive pediatric malignancy which is >98% p53 wild-type at diagnosis. As a primary repressor of p53 activity and part of a p53-activated negative feedback loop, targeting of mouse double minute 2 homolog (MDM2) is an attractive therapeutic approach to reactivation of p53. Since development of the first selective MDM2 inhibitor, Nutlin-3a, newer compounds have been developed for increased potency and improved bioavailability. Herein, we sought to determine the efficacy and specificity of a second-generation MDM2 inhibitor, RG7388, in neuroblastoma cell lines and xenografts and examine its effect on the p53-independent pathway of hypoxia-inducible factor-1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF). Cell viability and apoptosis studies were performed on the neuroblastoma cell lines, NGP, SH-SY5Y, LAN-5, LAN-5 si-p53 (p53 silenced), and SK-N-AS (p53 null). RG7388 potently decreased cell proliferation and activated p53-dependent apoptosis. Tumor-bearing mice treated with RG7388 demonstrated significant tumor inhibition by 59% in NGP (P = 0.003), 67% in SH-SY5Y (P = 0.006), and 75% in LAN-5 (P = 0.0019) p53 wild-type xenograft tumors, but no inhibitory effect on LAN-5 si-p53 or SK-N-AS p53-silenced/null xenograft tumors. Moreover, RG7388 was found to inhibit the p53-independent pathway of HIF-1α/VEGF with decreased gene expression and alteration of angiogenesis. Our study supports the further evaluation of RG7388 as a novel treatment option in p53 wild-type neuroblastoma at diagnosis and relapse. PMID:26998348

  19. Follicular dendritic cell sarcoma: clinicopathologic study of 15 cases with emphasis on novel expression of MDM2, somatostatin receptor 2A, and PD-L1.

    PubMed

    Agaimy, Abbas; Michal, Michael; Hadravsky, Ladislav; Michal, Michal

    2016-08-01

    Follicular dendritic cell sarcoma (FDCS) is a rare low-grade neoplasm with the phenotype of FDC cells. This rare sarcoma has been well known for being mistaken for a variety of neoplasms (mainly meningioma), particularly at extranodal sites. Diagnosis of FDCS mainly relies on characteristic histologic appearance supplemented by immunohistochemistry and electron microscopy. In this study, we reviewed 15 FDCSs retrieved from our consultation files and stained them for newly reported or novel markers (PD-L1, Rb1, MDM2, and somatostatin receptor 2A [SSTR2A]) in addition to conventional FDC markers. Patients were 7 men and 7 women (1 unspecified) with a mean age of 47 years (20-75 years). The tumor site was lymph nodes (6) or spleen (2), both (1) and extranodal sites of head and neck (4) or abdominal cavity (2). Treatment was variable combinations of surgery and aggressive chemotherapy/radiotherapy. Four of 8 patients with follow-up died of disease within 1 to 10 years. All tumors expressed at least 1 FDC marker: CD21 (8/13), CD23 (2/13), CD35 (8/12), CNA.42 (13/14), Clusterin (8/13), Fascin (15/15) and D2-40/podoplanin (7/14). Epstein-Barr virus (EBER-1/2 in situ hybridization) was performed successfully in 10 conventional variants; all were negative. Five of 14 cases (36%) stained strongly for SSTR2A with a distinctive membranous pattern. Residual lymphoid follicles surrounding some of the tumors stained similarly for SSTR2A. Seven (54%) of 13 assessable cases showed moderate to strong membranous staining for PD-L1 in greater than 5% of the neoplastic cells. The Rb1 antigen was lost in 4 (28%) of 14 cases. MDM2 stained less than 5% to 20% of the tumor cells in 5 (36%) of 14 cases; 2 of them showed amplification by fluorescence in situ hybridization (FISH). CDK4 was negative except for weak staining in 1 of 14 cases. This study adds to the existing few clinicopathologic series on FDCS and represents the first study to show MDM2 amplification in this entity. Our results

  20. Genetic Variants in the p14ARF/MDM2/TP53 Pathway Are Associated with the Prognosis of Esophageal Squamous Cell Carcinoma Patients Treated with Radical Resection

    PubMed Central

    Li, Jing; Tang, Yang; Huang, Liu; Yu, Qianqian; Hu, Guangyuan; Yuan, Xianglin

    2016-01-01

    The p14ARF/MDM2/ TP53 pathway is known to play an important role in tumor progression by cell cycle control, although the association between this pathway and the prognosis of esophageal squamous cell carcinoma (ESCC) is unclear. In this study, we explored the association between genetic variants in the p14ARF/MDM2/TP53 pathway and prognosis in ESCC patients with radical resection. 124 ESCC patients with radical resection were included in this retrospective study and genotyped using the MassArray method. According to multivariate Cox hazard analysis and multiple testing, the TC/CC genotype of p14ARF rs3814960 was shown to be strongly related to a decreased overall survival (OS) (HR = 2.77, 95% CI: 1.33–5.75, P = 0.006, Pc = 0.030) and disease-free survival (DFS) (HR = 2.45, 95% CI: 1.30–4.61, P = 0.005, Pc = 0.025). Moreover, patients with the DEL/A +AA genotype of MDM2 rs34886328 had a notably increased OS (HR = 0.27, 95% CI: 0.13–0.56, P = 4.7×10−4, Pc = 0.003) and DFS (HR = 0.22, 95% CI: 0.11–0.43, P = 1.1×10−5, Pc = 6.6×10−5). We also found that these two SNPs had a cumulative effect on the prognosis of ESCC, with the OS (P < 0.001) and DFS (P < 0.001) being shortest for patients carrying both of these unfavorable genotypes. In conclusion, genetic variants of the p14ARF/MDM2/TP53 pathway are significantly related to OS and DFS, and may be predictors of the prognosis of ESCC after surgery. We speculate the individuals with the TC/CC genotype of p14ARF rs3814960 and/or the DEL/DEL genotype of MDMD2 rs34886328 should have more aggressive treatment and may greatly benefit from early prediction and prevention of an unfavorable prognosis by genotyping before the initiation of therapy. These findings should be further validated in a larger population. PMID:27414035

  1. Gait correlation analysis based human identification.

    PubMed

    Chen, Jinyan

    2014-01-01

    Human gait identification aims to identify people by a sequence of walking images. Comparing with fingerprint or iris based identification, the most important advantage of gait identification is that it can be done at a distance. In this paper, silhouette correlation analysis based human identification approach is proposed. By background subtracting algorithm, the moving silhouette figure can be extracted from the walking images sequence. Every pixel in the silhouette has three dimensions: horizontal axis (x), vertical axis (y), and temporal axis (t). By moving every pixel in the silhouette image along these three dimensions, we can get a new silhouette. The correlation result between the original silhouette and the new one can be used as the raw feature of human gait. Discrete Fourier transform is used to extract features from this correlation result. Then, these features are normalized to minimize the affection of noise. Primary component analysis method is used to reduce the features' dimensions. Experiment based on CASIA database shows that this method has an encouraging recognition performance. PMID:24592144

  2. Oral delivery of anti-MDM2 inhibitor SP141-loaded FcRn-targeted nanoparticles to treat breast cancer and metastasis.

    PubMed

    Qin, Jiang-Jiang; Wang, Wei; Sarkar, Sushanta; Zhang, Ruiwen

    2016-09-10

    We have recently discovered a specific Murine Double Minute 2 (MDM2) oncogene inhibitor, called SP141, which exerts potent anticancer activity in various breast cancer models. However, its low oral bioavailability is the major hurdle for moving this drug to clinical trial. The present study was designed to discover and validate a novel nano-oral delivery system for this promising anticancer agent. Herein, we report the preparation, characterization, and evaluation of the efficacy and safety of the SP141-loaded IgG Fc-conjugated maleimidyl-poly(ethylene glycol)-co-poly(ε-caprolactone) (Mal-PEG-PCL) nanoparticles (SP141FcNP) as an orally cancer therapeutic agent. Our results indicated that SP141FcNP showed a biphasic release pattern and increased transepithelial transport in vitro and in vivo with the involvement of FcRn-mediated transcytosis. SP141FcNP also exhibited increased intestinal epithelial permeability, cellular uptake, and oral bioavailability, with extended blood circulation time, increased tumor accumulation, enhanced MDM2 inhibition, and stronger responses in anti-tumor growth and metastasis effects in vitro and in vivo, without apparent host toxicity. Collectively, this newly developed nanoparticle oral delivery system provides a basis for evaluation of SP141 as a potential clinical candidate for cancer therapy. PMID:27394681

  3. The silence of p66Shc in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway

    PubMed Central

    Zhang, Ling; Zhu, Shengtao; Shi, Xuesen; Sha, Weihong

    2015-01-01

    Colon cancer is the second most common cause of cancer-related death, indicating that some of its cancer cells are not eradicated by current therapies. The previous studies demonstrated that p66Shc protein, a member of Shc family, is highly expressed in colon cancer cells, but the role of p66Shc in the progress of colon cancer still unknown. In this study, we found that p66Shc highly expressed in colon cancer tissue and colon cancer cell line SW620 cells, HCT8 cells, HCT116 cells and CaCO2 cells. The silence of p66Shc in HCT8 cells reduced the proliferation and accelerated the apoptosis, in addition, the expression of pro-apoptotic proteins caspase-3, caspase-9, Bax was enhanced and the expression of anti-apoptotic protein Bcl-2 was declined. Moreover, the cell cycle arrest in G0/G1 phase after HCT8 cells treated with p66Shc siRNA. Furthermore, after HCT8 cells treated with p66Shc siRNA, the phosphorylation of PI3K and AKT was significantly suppressed, and the expression of Mdm-2, a downstream of AKT, was obviously prohibited, while the expression of p53 was enhanced. These results indicate that the silence of p66Shc in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway, it may provide a promising approach to prevent the progress of colon cancer cell. PMID:26464652

  4. Macrophage migration inhibitory factor induces phosphorylation of Mdm2 mediated by phosphatidylinositol 3-kinase/Akt kinase: Role of this pathway in decidual cell survival.

    PubMed

    Costa, Adriana Fraga; Gomes, Sara Zago; Lorenzon-Ojea, Aline R; Martucci, Mariane; Faria, Miriam Rubio; Pinto, Décio Dos Santos; Oliveira, Sergio F; Ietta, Francesca; Paulesu, Luana; Bevilacqua, Estela

    2016-05-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway has an anti-apoptotic effect through several downstream targets, which includes activation of the transformed mouse 3T3 cell double-minute 2 (Mdm2) protein, its translocation to the nucleus and degradation of the tumor suppressor p53. We show that Mif, the Macrophage Migration Inhibitory Factor, an important cytokine at the maternal fetal interface in several species, triggers phosphorylation of Mdm2 protein in a PI3K/Akt-dependent manner, thereby preventing apoptosis in cultured mouse decidual cells. Inhibition of Akt and PI3K suppresses the pathway. Mif treatment also changes the nuclear translocation of p53 and interferes with the apoptotic fate of these cells when challenged with reactive oxygen species. In conclusion, an important mechanism has been found underlying decidual cell survival through Akt signaling pathway activated by Mif, suggesting a role for this cytokine in decidual homeostasis and in the integrity of the maternal-fetal barrier that is essential for successful gestation. PMID:27208405

  5. Luteolin Prevents H2O2-Induced Apoptosis in H9C2 Cells through Modulating Akt-P53/Mdm2 Signaling Pathway.

    PubMed

    Chang, Hong; Li, Chun; Huo, Kuiyuan; Wang, Qiyan; Lu, Linghui; Zhang, Qian; Wang, Yong; Wang, Wei

    2016-01-01

    Introduction. Luteolin, a falconoid compound in many Chinese herbs and formula, plays important roles in cardiovascular diseases. The underlying mechanism of luteolin remains to be further elaborated. Methods. A model of hydrogen peroxide- (H2O2-) induced H9C2 cells apoptosis was established. Cell viabilities were examined with an MTT assay. 2',7'-Dichlorofluorescin diacetate (DCFH-DA) and flow cytometry were used to detect ROS level and apoptosis rate, respectively. The expressions of signaling proteins related to apoptosis were analyzed by western blot and mRNA levels were detected by real-time polymerase chain reaction (PCR). Quercetin was applied as positive drug. Results. Incubation with various concentrations of H2O2 (0, 50, 100, and 200 μM) for 1 h caused dose-dependent loss of cell viability and 100 μM H2O2 reduced the cell viability to approximately 50%. Treatments with luteolin and quercetin protected cells from H2O2-induced cytotoxicity and reduced cellular ROS level and apoptosis rate. Moreover, luteolin could downregulate the expressions of Bax, caspase-8, cleaved-caspase-3, and p53 in apoptotic signaling pathway. Further study showed that the expressions of Akt, Bcl-2, and Mdm2 were upregulated by luteolin. Conclusion. Luteolin protects H9C2 cells from H2O2-induced apoptosis. The protective and antiapoptotic effects of luteolin could be mediated by regulating the Akt-P53/Mdm2 apoptotic pathway. PMID:27525270

  6. Pre-clinical evaluation of the MDM2-p53 antagonist RG7388 alone and in combination with chemotherapy in neuroblastoma

    PubMed Central

    Chen, Lindi; Rousseau, Raphaël F.; Middleton, Steven A.; Nichols, Gwen L.; Newell, David R.; Lunec, John; Tweddle, Deborah A.

    2015-01-01

    Neuroblastoma is a predominantly p53 wild-type (wt) tumour and MDM2-p53 antagonists offer a novel therapeutic strategy for neuroblastoma patients. RG7388 (Roche) is currently undergoing early phase clinical evaluation in adults. This study assessed the efficacy of RG7388 as a single-agent and in combination with chemotherapies currently used to treat neuroblastoma in a panel of neuroblastoma cell lines. RG7388 GI50 concentrations were determined in 21 p53-wt and mutant neuroblastoma cell lines of varying MYCN, MDM2 and p14ARF status, together with MYCN-regulatable Tet21N cells. The primary determinant of response was the presence of wt p53, and overall there was a >200-fold difference in RG7388 GI50 concentrations for p53-wt versus mutant cell lines. Tet21N MYCN+ cells were significantly more sensitive to RG7388 compared with MYCN− cells. Using median-effect analysis in 5 p53-wt neuroblastoma cell lines, selected combinations of RG7388 with cisplatin, doxorubicin, topotecan, temozolomide and busulfan were synergistic. Furthermore, combination treatments led to increased apoptosis, as evident by higher caspase-3/7 activity compared to either agent alone. These data show that RG7388 is highly potent against p53-wt neuroblastoma cells, and strongly supports its further evaluation as a novel therapy for patients with high-risk neuroblastoma and wt p53 to potentially improve survival and/or reduce toxicity. PMID:25844600

  7. The TP53 Arg72Pro and MDM2 309G>T polymorphisms are not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers

    PubMed Central

    Sinilnikova, O M; Antoniou, A C; Simard, J; Healey, S; Léoné, M; Sinnett, D; Spurdle, A B; Beesley, J; Chen, X; Greene, M H; Loud, J T; Lejbkowicz, F; Rennert, G; Dishon, S; Andrulis, I L; Domchek, S M; Nathanson, K L; Manoukian, S; Radice, P; Konstantopoulou, I; Blanco, I; Laborde, A L; Durán, M; Osorio, A; Benitez, J; Hamann, U; Hogervorst, F B L; van Os, T A M; Gille, H J P; Peock, S; Cook, M; Luccarini, C; Evans, D G; Lalloo, F; Eeles, R; Pichert, G; Davidson, R; Cole, T; Cook, J; Paterson, J; Brewer, C; Hughes, D J; Coupier, I; Giraud, S; Coulet, F; Colas, C; Soubrier, F; Rouleau, E; Bièche, I; Lidereau, R; Demange, L; Nogues, C; Lynch, H T; Schmutzler, R K; Versmold, B; Engel, C; Meindl, A; Arnold, N; Sutter, C; Deissler, H; Schaefer, D; Froster, U G; Aittomäki, K; Nevanlinna, H; McGuffog, L; Easton, D F; Chenevix-Trench, G; Stoppa-Lyonnet, D

    2009-01-01

    Background: The TP53 pathway, in which TP53 and its negative regulator MDM2 are the central elements, has an important role in carcinogenesis, particularly in BRCA1- and BRCA2-mediated carcinogenesis. A single nucleotide polymorphism (SNP) in the promoter region of MDM2 (309T>G, rs2279744) and a coding SNP of TP53 (Arg72Pro, rs1042522) have been shown to be of functional significance. Methods: To investigate whether these SNPs modify breast cancer risk for BRCA1 and BRCA2 mutation carriers, we pooled genotype data on the TP53 Arg72Pro SNP in 7011 mutation carriers and on the MDM2 309T>G SNP in 2222 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analysed using a Cox proportional hazards model within a retrospective likelihood framework. Results: No association was found between these SNPs and breast cancer risk for BRCA1 (TP53: per-allele hazard ratio (HR)=1.01, 95% confidence interval (CI): 0.93–1.10, Ptrend=0.77; MDM2: HR=0.96, 95%CI: 0.84–1.09, Ptrend=0.54) or for BRCA2 mutation carriers (TP53: HR=0.99, 95%CI: 0.87–1.12, Ptrend=0.83; MDM2: HR=0.98, 95%CI: 0.80–1.21, Ptrend=0.88). We also evaluated the potential combined effects of both SNPs on breast cancer risk, however, none of their combined genotypes showed any evidence of association. Conclusion: There was no evidence that TP53 Arg72Pro or MDM2 309T>G, either singly or in combination, influence breast cancer risk in BRCA1 or BRCA2 mutation carriers. PMID:19707196

  8. Platycodin D, a metabolite of Platycodin grandiflorum, inhibits highly metastatic MDA-MB-231 breast cancer growth in vitro and in vivo by targeting the MDM2 oncogene.

    PubMed

    Kong, Ya; Lu, Zong-Liang; Wang, Jia-Jia; Zhou, Rui; Guo, Jing; Liu, Jie; Sun, Hai-Lan; Wang, He; Song, Wei; Yang, Jian; Xu, Hong-Xia

    2016-09-01

    The objective of the present study was to explore the in vitro and in vivo anticancer effects of Platycodin D (PD), derived from Platycodin grandiflorum, on highly metastatic MDA-MB-231 breast cancer cells. Using the MTT assay, we found that PD inhibited MDA-MB-231 cell growth in a concentration-dependent manner, with an IC50 value of 7.77±1.86 µM. Further studies showed that PD had anti-proliferative effects and induced cell cycle arrest in the G0/G1 phase. To explore the detailed mechanism(s) by which PD suppressed MDA-MB-231 cell growth, western blot analyses were used to detect the expression levels of proteins related to cell proliferation and survival. The data showed that PD decreased the expression of proteins related to the G0/G1 phases, downregulated the protein expression of MDM2, MDMX, and mutant p53, and increased the expression levels of p21 and p27 in vitro. We verified the effects of PD on the expression of MDM2, MDMX, mutant p53, p21 and p27 using a pcDNA3-Flag-MDM2 plasmid and MDM2 siRNA transfection, and found that PD inhibited MDA-MB-231 cell viability by targeting MDM2 and mutant p53. Compared with the corresponding parental cells, the cells with siRNA-MDM2 transfection had a greater decrease in cell viability and proliferation, while those with pcDNA3-MDM2 plasmid transfection did not show any increase in the effects of PD. We also established a MDA-MB-231 xenograft model in BALB/c nude mice, and found that PD significantly inhibited the growth of MDA-MB-231 xenograft tumors in these mice. The expression levels of various proteins in the tumor tissue exhibited changes similar to those observed in vitro. These findings indicate that PD exerted in vitro and in vivo anticancer effects against MDA-MB-231 breast cancer cells, that PD is a potential MDM2/MDMX inhibitor, and that the anticancer effects of PD were likely associated with its inhibition of these proteins. Our observations help to identify a mechanism by which PD functions as

  9. Hemodynamic Correlates of Cognition in Human Infants

    PubMed Central

    Aslin, Richard N.; Shukla, Mohinish; Emberson, Lauren L.

    2015-01-01

    Over the past 20 years, the field of cognitive neuroscience has relied heavily on hemodynamic measures of blood oxygenation in local regions of the brain to make inferences about underlying cognitive processes. These same functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) techniques have recently been adapted for use with human infants. We review the advantages and disadvantages of these two neuroimaging methods for studies of infant cognition, with a particular emphasis on their technical limitations and the linking hypotheses that are used to draw conclusions from correlational data. In addition to summarizing key findings in several domains of infant cognition, we highlight the prospects of improving the quality of fNIRS data from infants to address in a more sophisticated way how cognitive development is mediated by changes in underlying neural mechanisms. PMID:25251480

  10. Structural brain correlates of human sleep oscillations.

    PubMed

    Saletin, Jared M; van der Helm, Els; Walker, Matthew P

    2013-12-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Gray matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, gray matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, gray matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. PMID:23770411

  11. Structural Brain Correlates of Human Sleep Oscillations

    PubMed Central

    Saletin, Jared M.; van der Helm, Els; Walker, Matthew P.

    2014-01-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Grey matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, grey matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, grey matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. PMID:23770411

  12. TBMS1 exerts its cytotoxicity in NCI-H460 lung cancer cells through nucleolar stress-induced p53/MDM2-dependent mechanism, a quantitative proteomics study.

    PubMed

    Lin, Yingying; Xie, Guobin; Xia, Ji; Su, Dan; Liu, Jie; Jiang, Fuquan; Xu, Yang

    2016-02-01

    Tubeimoside-1 (TBMS1) exerts its anticancer effects by inducing G2/M arrest and apoptosis of cancer cells. However, the precise molecular mechanism of its anti-tumor effects has not been fully elucidated, especially the signaling pathways involved in the early stage of TBMS1 stimulation. In this study, we employed stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics approach and identified 439 proteins that exhibit significant differential expressions in NCI-H460 lung cancer cells upon exposure to TBMS1. Gene ontology and network analysis using DAVID and STRING on-line tools revealed that several nucleolar stress (ribosomal biogenesis) response proteins were differentially regulated by TBMS1. Functional validation demonstrated that TBMS1-induced NCI-H460 cell cytotoxicity involved nucleolar stress-induced p53/murine double minute clone 2 (MDM2), mTOR, and NF-κB signaling pathways. PMID:26549658

  13. Escape from p53-mediated tumor surveillance in neuroblastoma: switching off the p14(ARF)-MDM2-p53 axis.

    PubMed

    Van Maerken, T; Vandesompele, J; Rihani, A; De Paepe, A; Speleman, F

    2009-12-01

    A primary failsafe program against unrestrained proliferation and oncogenesis is provided by the p53 tumor suppressor protein, inactivation of which is considered as a hallmark of cancer. Intriguingly, mutations of the TP53 gene are rarely encountered in neuroblastoma tumors, suggesting that alternative p53-inactivating lesions account for escape from p53 control in this childhood malignancy. Several recent studies have shed light on the mechanisms by which neuroblastoma cells circumvent the p53-driven antitumor barrier. We review here these mechanisms for evasion of p53-mediated growth control and conclude that deregulation of the p14(ARF)-MDM2-p53 axis seems to be the principal mode of p53 inactivation in neuroblastoma, opening new perspectives for targeted therapeutic intervention. PMID:19779493

  14. Expression of Bcl-2, p53, and MDM2 in Localized Prostate Cancer With Respect to the Outcome of Radical Radiotherapy Dose Escalation

    SciTech Connect

    Vergis, Roy; Corbishley, Catherine M.; Thomas, Karen

    2010-09-01

    Purpose: Established prognostic factors in localized prostate cancer explain only a moderate proportion of variation in outcome. We analyzed tumor expression of apoptotic markers with respect to outcome in men with localized prostate cancer in two randomized controlled trials of radiotherapy dose escalation. Methods and Materials: Between 1995 and 2001, 308 patients with localized prostate cancer received neoadjuvant androgen deprivation and radical radiotherapy at our institution in one of two dose-escalation trials. The biopsy specimens in 201 cases were used to make a biopsy tissue microarray. We evaluated tumor expression of Bcl-2, p53, and MDM2 by immunohistochemistry with respect to outcome. Results: Median follow-up was 7 years, and 5-year freedom from biochemical failure (FFBF) was 70.4% (95% CI, 63.5-76.3%). On univariate analysis, expression of Bcl-2 (p < 0.001) and p53 (p = 0.017), but not MDM2 (p = 0.224), was significantly associated with FFBF. Expression of Bcl-2 remained significantly associated with FFBF (p = 0.001) on multivariate analysis, independently of T stage, Gleason score, initial prostate-specific antigen level, and radiotherapy dose. Seven-year biochemical control was 61% vs. 41% (p = 0.0122) for 74 Gy vs. 64 Gy, respectively, among patients with Bcl-2-positive tumors and 87% vs. 81% (p = 0.423) for 74 Gy vs. 64 Gy, respectively, among patients with Bcl-2-negative tumors. There was no statistically significant interaction between dose and Bcl-2 expression. Conclusions: Bcl-2 expression was a significant, independent determinant of biochemical control after neoadjuvant androgen deprivation and radical radiotherapy for prostate cancer. These data generate the hypothesis that Bcl-2 expression could be used to inform the choice of radiotherapy dose in individual patients.

  15. HBP1-mediated Regulation of p21 Protein through the Mdm2/p53 and TCF4/EZH2 Pathways and Its Impact on Cell Senescence and Tumorigenesis*

    PubMed Central

    Chen, Yifan; Pan, Kewu; Wang, Pingzhang; Cao, Zhengyi; Wang, Weibin; Wang, Shuya; Hu, Ningguang; Xue, Junhui; Li, Hui; Jiang, Wei; Li, Gang; Zhang, Xiaowei

    2016-01-01

    The activity of the CDK inhibitor p21 is associated with diverse biological activities, including cell proliferation, senescence, and tumorigenesis. However, the mechanisms governing transcription of p21 need to be extensively studied. In this study, we demonstrate that the high-mobility group box-containing protein 1 (HBP1) transcription factor is a novel activator of p21 that works as part of a complex mechanism during senescence and tumorigenesis. We found that HBP1 activates the p21 gene through enhancing p53 stability by inhibiting Mdm2-mediated ubiquitination of p53, a well known positive regulator of p21. HBP1 was also found to enhance p21 transcription by inhibiting Wnt/β-catenin signaling. We identified histone methyltransferase EZH2, the catalytic subunit of polycomb repressive complex 2, as a target of Wnt/β-catenin signaling. HBP1-mediated repression of EZH2 through Wnt/β-catenin signaling decreased the level of trimethylation of histone H3 at lysine 27 of overall and specific histone on the p21 promoter, resulting in p21 transactivation. Although intricate, the reciprocal partnership of HBP1 and p21 has exceptional importance. HBP1-mediated elevation of p21 through the Mdm2/p53 and TCF4/EZH2 pathways contributes to both cellular senescence and tumor inhibition. Together, our results suggest that the HBP1 transcription factor orchestrates a complex regulation of key genes during cellular senescence and tumorigenesis with an impact on protein ubiquitination and overall histone methylation state. PMID:27129219

  16. Ling Zhi-8 reduces lung cancer mobility and metastasis through disruption of focal adhesion and induction of MDM2-mediated Slug degradation.

    PubMed

    Lin, Tung-Yi; Hsu, Hsien-Yeh

    2016-06-01

    We recently reported that recombinant Ling Zhi-8 (rLZ-8), a medicinal mushroom Ganoderma lucidum recombinant protein, effectively prevents lung cancer cells proliferation in vivo mice model. In our current study, we demonstrated that rLZ-8 suppressed tumor metastasis and increased the survival rate in Lewis lung carcinoma cell-bearing mice. The epithelial to mesenchymal transition (EMT) process is regarded as the critical event in tumor metastasis. Herein, we showed that rLZ-8 effectively induced changes in EMT by interfering with cell adhesion and focal adhesion kinase (FAK) functions in lung cancer cells. Slug, a transcription factor, represses E-cadherin transcription and is regarded as a critical event in EMT and tumor metastasis. Functional studies revealed that downregulation of Slug as a result of rLZ-8-induced FAK inactivation enhanced E-cadherin expression and repressed cancer cell mobility. Moreover, we found that rLZ-8 enhanced the ubiquitination proteasome pathway (UPP)-mediated degradation of Slug in CL1-5 cells. Mechanistically, we demonstrated that rLZ-8 promoted the interaction between MDM2 and Slug, resulting in Slug degradation; however, MDM2-shRNA abolished rLZ-8-enhanced Slug degradation. This study is the first to determine anti-metastatic activity of rLZ-8 and its potential mechanism, with how the regulation of EMT and cell mobility is via the negative modulation of FAK, and thereby leading to the ubiquitination and degradation of Slug. Our findings suggest that the targets of FAK play a key role in metastasis. Moreover, rLZ-8 may be useful as a chemotherapeutic agent for treating lung cancer. PMID:26992741

  17. Luteolin Prevents H2O2-Induced Apoptosis in H9C2 Cells through Modulating Akt-P53/Mdm2 Signaling Pathway

    PubMed Central

    Li, Chun; Wang, Qiyan; Lu, Linghui; Zhang, Qian

    2016-01-01

    Introduction. Luteolin, a falconoid compound in many Chinese herbs and formula, plays important roles in cardiovascular diseases. The underlying mechanism of luteolin remains to be further elaborated. Methods. A model of hydrogen peroxide- (H2O2-) induced H9C2 cells apoptosis was established. Cell viabilities were examined with an MTT assay. 2′,7′-Dichlorofluorescin diacetate (DCFH-DA) and flow cytometry were used to detect ROS level and apoptosis rate, respectively. The expressions of signaling proteins related to apoptosis were analyzed by western blot and mRNA levels were detected by real-time polymerase chain reaction (PCR). Quercetin was applied as positive drug. Results. Incubation with various concentrations of H2O2 (0, 50, 100, and 200 μM) for 1 h caused dose-dependent loss of cell viability and 100 μM H2O2 reduced the cell viability to approximately 50%. Treatments with luteolin and quercetin protected cells from H2O2-induced cytotoxicity and reduced cellular ROS level and apoptosis rate. Moreover, luteolin could downregulate the expressions of Bax, caspase-8, cleaved-caspase-3, and p53 in apoptotic signaling pathway. Further study showed that the expressions of Akt, Bcl-2, and Mdm2 were upregulated by luteolin. Conclusion. Luteolin protects H9C2 cells from H2O2-induced apoptosis. The protective and antiapoptotic effects of luteolin could be mediated by regulating the Akt-P53/Mdm2 apoptotic pathway. PMID:27525270

  18. Protective Roles of Gadd45 and MDM2 in Blueberry Anthocyanins Mediated DNA Repair of Fragmented and Non-Fragmented DNA Damage in UV-Irradiated HepG2 Cells

    PubMed Central

    Liu, Wei; Lu, Xiangyi; He, Guangyang; Gao, Xiang; Xu, Maonian; Zhang, Jingkai; Li, Meiling; Wang, Lifeng; Li, Zhenjing; Wang, Likui; Luo, Cheng

    2013-01-01

    Growth Arrest and DNA Damage-inducible 45 (Gadd45) and MDM2 proteins, together with p21 and p53, play important roles in cell cycle checkpoints, DNA repair, and genome integrity maintenance. Gadd45 and MDM2 were activated and transcribed instantly by UV irradiation, whereas blueberry anthocyanins (BA) decreased the gene and protein expression levels in HepG2 cells for up to 24 h, and gradually restored the UV-induced fragmented and non-fragmented DNA damage of the nucleus at a time point of 12 h. Nevertheless, UV-irradiated HepG2 cell arrests occurred mainly in the G1 phase, which indicated G1 as a checkpoint. The proteins, p21 and p53, retain cellular integrity, suppressing the oncogenic transformation by interruption of the G1 phase of the cellular cycle, giving time for repairing the damage to DNA, or apoptosis induction if the damage is too severe to be repaired, while MDM2 and Gadd45 concomitantly ensure the presence of p53 and p21. Thus, we conclude that repair, together with Gadd45 and MDM2 genes, were involved in light and dark reaction mechanisms, however, BA could interfere and assist the repair through restoration, although further studies of the complex of the gene cascades triggered and responded to in BA-assisted DNA repair are needed. PMID:24177565

  19. Transcriptional correlates of human substance use

    PubMed Central

    Lehrmann, Elin; Freed, William J.

    2008-01-01

    Drugs-of-abuse produce both acute and chronic changes in brain function, each of which is reflected in altered gene expression patterns. A number of large-scale gene expression studies have employed microarray analysis of human postmortem brain to identify transcriptional correlates of ante-mortem substance use. These studies have identified changes in transcripts encoding proteins functionally involved in neuronal function and synaptic plasticity, oligodendrocyte function and myelination, lipid and energy metabolism, mitochondrial function, oxidative phoshorylation, and cytoskeleton-related signal transduction. Overall, different types of substance use appear to share some of these effects, but there are more differences than similarities in gene expression for different types of substance use. Moreover, data suggest that transcriptional subtypes within a diagnostic classification of substance use may occur. These transcriptional subtypes, or “endophenotypes”, may reflect complex patterns of substance use and comorbid neuropsychiatric disorders or other disease, which may interact with substance use to differentially impact gene expression. A broader understanding of the manner in which substance abuse causes long-term changes in brain function may be obtained from studies replicating and expanding the present gene expression data. In particular, cross-referencing comprehensive transcriptional data on regional and/or substance use-specific changes with genetic and proteomic data may further aid in identifying candidate biomarkers of altered brain function in substance use disorders. PMID:18991846

  20. Altered expression of the cell cycle regulatory molecules pRb, p53 and MDM2 exert a synergetic effect on tumor growth and chromosomal instability in non-small cell lung carcinomas (NSCLCs).

    PubMed Central

    Gorgoulis, V. G.; Zacharatos, P.; Kotsinas, A.; Mariatos, G.; Liloglou, T.; Vogiatzi, T.; Foukas, P.; Rassidakis, G.; Garinis, G.; Ioannides, T.; Zoumpourlis, V.; Bramis, J.; Michail, P. O.; Asimacopoulos, P. J.; Field, J. K.; Kittas, C.

    2000-01-01

    BACKGROUND: Recent in vitro studies provide evidence that the cell cycle molecules pRb, p53 and MDM2 form a tightly regulated protein network. In this study, we examined the relationship of this protein network in a series of non-small cell lung carcinomas (NSCLCs), with the kinetic parameters, including proliferative activity or proliferation index (PI) and apoptotic index (AI), and ploidy status of the tumors. MATERIAL AND METHODS: A total of 87 NSCLCs were examined using immunohistochemical and molecular methods in order to estimate the status of the pRb-p53-MDM2 network. The kinetic parameters and the ploidy status of the tumors were assessed by in situ assays. The possible associations between alterations of the network, kinetic parameters and ploidy status of the carcinomas were assessed with a series of statistical methods. RESULTS: Aberrant expression of pRb (Ab) and overexpression of p53 (P) and MDM2 (P) proteins were observed in 39%, 57%, and 68% of the carcinomas, respectively. The comprehensive analysis revealed that concurrent alterations in all three cell cycle regulatory molecules were the most frequent pattern, pRb(Ab)/p53(P)/MDM2(P); this "full abnormal" phenotype represented approximately 27% of the cases. This immunoprofile obtained the highest PI/AI value; whereas, the "normal" phenotype was the lowest one (p = 0.004). Furthermore, the pattern pRb(Ab)/p53(P)/MDM2(P) acquired the highest PI (p < 0.001) and lowest AI (p < 0.001) scores. Interestingly, the groups of carcinomas with impaired expression of one or two molecules attained PI/AI ratio values clustered in a narrow range placed in the middle of the scores exhibited by the "normal" and "full abnormal" phenotypes. These tumors had significantly lower AI, but similar PI values, compared with those noticed in the normal pattern. In addition, it was observed that the pRb(Ab)/p53(P)/MDM2(P) phenotype was also significantly associated with aneuploidy (p = 0.002) and a tendency was observed when

  1. Correlation dimension estimates of human postural sway.

    PubMed

    Gurses, Senih; Celik, Huseyin

    2013-02-01

    Human postural sway during quiet standing demonstrates a complex structured dynamics, which has been studied by applying numerous methods, such as linear system identification methods, stochastic analysis, and nonlinear system dynamics tools. Although each of the methods applied revealed some particular features of the sway data none of them have succeeded to present a global picture of the quiet stance dynamics, which probably has both stochastic and deterministic properties. In this study we have started applying ergodic theory of dynamical systems to explore statistical characteristic of the sway dynamics observed in successive trials of a subject, different subjects in an age group, and finally different age groups constituted by children, adults, and elderly subjects. Five successive 180-s long trials were performed by each of 28 subjects in four age groups at quiet stance with eyes open. Stationary and ergodic signal characteristics of five successive center of pressure time series collected from a subject in antero-posterior direction (CoPx) were examined. 97% of the trials were found to be stationary by applying Run Test while children and elderly groups demonstrated significant nonstationary behavior. On the other hand 13 out of 24 subjects were found to be nonergodic. We expected to observe differences in complexity of CoPx dynamics due to aging (Farmer, Ott, & Yorke, 1983). However linear metrics such as standard deviation and Fourier spectra of CoPx signals did not show differences due to the age groups. Correlation dimension (Dk) estimates of stationary CoPx signals being an invariant measure of nonlinear system dynamics were computed by using the average displacement method (Eckmann & Ruelle, 1985). Postural dynamics was expanded in m-dimensional space through CoPx signal by introducing optimum time delays, τcritical. 112 out of 136 stationary CoPx signals for 24 stationary subjects converged to Dk estimates. Average of Dk estimates for children and

  2. Automated Essay Scoring versus Human Scoring: A Correlational Study

    ERIC Educational Resources Information Center

    Wang, Jinhao; Brown, Michelle Stallone

    2008-01-01

    The purpose of the current study was to analyze the relationship between automated essay scoring (AES) and human scoring in order to determine the validity and usefulness of AES for large-scale placement tests. Specifically, a correlational research design was used to examine the correlations between AES performance and human raters' performance.…

  3. Efficacy and Mechanism of Action of Low Dose Emetine against Human Cytomegalovirus

    PubMed Central

    Mukhopadhyay, Rupkatha; Roy, Sujayita; Venkatadri, Rajkumar; Su, Yu-Pin; Ye, Wenjuan; Barnaeva, Elena; Mathews Griner, Lesley; Southall, Noel; Hu, Xin; Wang, Amy Q.; Xu, Xin; Dulcey, Andrés E.; Marugan, Juan J.; Ferrer, Marc; Arav-Boger, Ravit

    2016-01-01

    Infection with human cytomegalovirus (HCMV) is a threat for pregnant women and immunocompromised hosts. Although limited drugs are available, development of new agents against HCMV is desired. Through screening of the LOPAC library, we identified emetine as HCMV inhibitor. Additional studies confirmed its anti-HCMV activities in human foreskin fibroblasts: EC50−40±1.72 nM, CC50−8±0.56 μM, and selectivity index of 200. HCMV inhibition occurred after virus entry, but before DNA replication, and resulted in decreased expression of viral proteins. Synergistic virus inhibition was achieved when emetine was combined with ganciclovir. In a mouse CMV (MCMV) model, emetine was well-tolerated, displayed long half-life, preferential distribution to tissues over plasma, and effectively suppressed MCMV. Since the in vitro anti-HCMV activity of emetine decreased significantly in low-density cells, a mechanism involving cell cycle regulation was suspected. HCMV inhibition by emetine depended on ribosomal processing S14 (RPS14) binding to MDM2, leading to disruption of HCMV-induced MDM2-p53 and MDM2-IE2 interactions. Irrespective of cell density, emetine induced RPS14 translocation into the nucleus during infection. In infected high-density cells, MDM2 was available for interaction with RPS14, resulting in disruption of MDM2-p53 interaction. However, in low-density cells the pre-existing interaction of MDM2-p53 could not be disrupted, and RPS14 could not interact with MDM2. In high-density cells the interaction of MDM2-RPS14 resulted in ubiquitination and degradation of RPS14, which was not observed in low-density cells. In infected-only or in non-infected emetine-treated cells, RPS14 failed to translocate into the nucleus, hence could not interact with MDM2, and was not ubiquitinated. HCMV replicated similarly in RPS14 knockdown or control cells, but emetine did not inhibit virus replication in the former cell line. The interaction of MDM2-p53 was maintained in infected

  4. Efficacy and Mechanism of Action of Low Dose Emetine against Human Cytomegalovirus.

    PubMed

    Mukhopadhyay, Rupkatha; Roy, Sujayita; Venkatadri, Rajkumar; Su, Yu-Pin; Ye, Wenjuan; Barnaeva, Elena; Mathews Griner, Lesley; Southall, Noel; Hu, Xin; Wang, Amy Q; Xu, Xin; Dulcey, Andrés E; Marugan, Juan J; Ferrer, Marc; Arav-Boger, Ravit

    2016-06-01

    Infection with human cytomegalovirus (HCMV) is a threat for pregnant women and immunocompromised hosts. Although limited drugs are available, development of new agents against HCMV is desired. Through screening of the LOPAC library, we identified emetine as HCMV inhibitor. Additional studies confirmed its anti-HCMV activities in human foreskin fibroblasts: EC50-40±1.72 nM, CC50-8±0.56 μM, and selectivity index of 200. HCMV inhibition occurred after virus entry, but before DNA replication, and resulted in decreased expression of viral proteins. Synergistic virus inhibition was achieved when emetine was combined with ganciclovir. In a mouse CMV (MCMV) model, emetine was well-tolerated, displayed long half-life, preferential distribution to tissues over plasma, and effectively suppressed MCMV. Since the in vitro anti-HCMV activity of emetine decreased significantly in low-density cells, a mechanism involving cell cycle regulation was suspected. HCMV inhibition by emetine depended on ribosomal processing S14 (RPS14) binding to MDM2, leading to disruption of HCMV-induced MDM2-p53 and MDM2-IE2 interactions. Irrespective of cell density, emetine induced RPS14 translocation into the nucleus during infection. In infected high-density cells, MDM2 was available for interaction with RPS14, resulting in disruption of MDM2-p53 interaction. However, in low-density cells the pre-existing interaction of MDM2-p53 could not be disrupted, and RPS14 could not interact with MDM2. In high-density cells the interaction of MDM2-RPS14 resulted in ubiquitination and degradation of RPS14, which was not observed in low-density cells. In infected-only or in non-infected emetine-treated cells, RPS14 failed to translocate into the nucleus, hence could not interact with MDM2, and was not ubiquitinated. HCMV replicated similarly in RPS14 knockdown or control cells, but emetine did not inhibit virus replication in the former cell line. The interaction of MDM2-p53 was maintained in infected RPS14

  5. Combined inhibition of AKT/mTOR and MDM2 enhances Glioblastoma Multiforme cell apoptosis and differentiation of cancer stem cells

    PubMed Central

    Daniele, Simona; Costa, Barbara; Zappelli, Elisa; Da Pozzo, Eleonora; Sestito, Simona; Nesi, Giulia; Campiglia, Pietro; Marinelli, Luciana; Novellino, Ettore; Rapposelli, Simona; Martini, Claudia

    2015-01-01

    The poor prognosis of Glioblastoma Multiforme (GBM) is due to a high resistance to conventional treatments and to the presence of a subpopulation of glioma stem cells (GSCs). Combination therapies targeting survival/self-renewal signals of GBM and GSCs are emerging as useful tools to improve GBM treatment. In this context, the hyperactivated AKT/mammalian target of the rapamycin (AKT/mTOR) and the inhibited wild-type p53 appear to be good candidates. Herein, the interaction between these pathways was investigated, using the novel AKT/mTOR inhibitor FC85 and ISA27, which re-activates p53 functionality by blocking its endogenous inhibitor murine double minute 2 homologue (MDM2). In GBM cells, FC85 efficiently inhibited AKT/mTOR signalling and reactivated p53 functionality, triggering cellular apoptosis. The combined therapy with ISA27 produced a synergic effect on the inhibition of cell viability and on the reactivation of p53 pathway. Most importantly, FC85 and ISA27 blocked proliferation and promoted the differentiation of GSCs. The simultaneous use of these compounds significantly enhanced GSC differentiation/apoptosis. These findings suggest that FC85 actively enhances the downstream p53 signalling and that a combination strategy aimed at inhibiting the AKT/mTOR pathway and re-activating p53 signalling is potentially effective in GBM and in GSCs. PMID:25898313

  6. Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53

    PubMed Central

    Arya, A K; El-Fert, A; Devling, T; Eccles, R M; Aslam, M A; Rubbi, C P; Vlatković, N; Fenwick, J; Lloyd, B H; Sibson, D R; Jones, T M; Boyd, M T

    2010-01-01

    Background: Primary radiotherapy (RT) is a mainstay of treatment for laryngeal squamous cell carcinoma (LSCC). Although the cure rates for early (T1) vocal cord tumours are high, RT proves ineffective in up to a third of T3 carcinomas. Moreover, RT is associated with debilitating early- and late-treatment-related toxicity, thus finding means to de-escalate therapy, while retaining/augmenting therapeutic effectiveness, is highly desirable. p53 is a key mediator of radiation responses; we therefore investigated whether Nutlin-3, a small-molecule inhibitor of MDM2 (mouse double minute 2; an essential negative regulator of p53), might radiosensitise LSCC cells. Methods: We performed clonogenic assays to measure radiosensitivity in a panel of LSCC cell lines (for which we determined p53 mutational status) in the presence and absence of Nutlin-3. Results: LSCC cells harbouring wild-type p53 were significantly radiosensitised by Nutlin-3 (P<0.0001; log-rank scale), and displayed increased cell cycle arrest and significantly increased senescence (P<0.001) in the absence of increased apoptosis; thus, our data suggest that senescence may mediate this increased radiosensitivity. Conclusion: This is the first study showing Nutlin-3 as an effective radiosensitiser in LSCC cells that retain wild-type p53. The clinical application of Nutlin-3 might improve local recurrence rates or allow treatment de-escalation in these patients. PMID:20588277

  7. Genomic correlates of atherosclerosis in ancient humans.

    PubMed

    Zink, Albert; Wann, L Samuel; Thompson, Randall C; Keller, Andreas; Maixner, Frank; Allam, Adel H; Finch, Caleb E; Frohlich, Bruno; Kaplan, Hillard; Lombardi, Guido P; Sutherland, M Linda; Sutherland, James D; Watson, Lucia; Cox, Samantha L; Miyamoto, Michael I; Narula, Jagat; Stewart, Alexandre F R; Thomas, Gregory S; Krause, Johannes

    2014-06-01

    Paleogenetics offers a unique opportunity to study human evolution, population dynamics, and disease evolution in situ. Although histologic and computed x-ray tomographic investigations of ancient mummies have clearly shown that atherosclerosis has been present in humans for more than 5,000 years, limited data are available on the presence of genetic predisposition for cardiovascular disease in ancient human populations. In a previous whole-genome study of the Tyrolean Iceman, a 5,300-year-old glacier mummy from the Alps, an increased risk for coronary heart disease was detected. The Iceman's genome revealed several single nucleotide polymorphisms that are linked with cardiovascular disease in genome-wide association studies. Future genetic studies of ancient humans from various geographic origins and time periods have the potential to provide more insights into the presence and possible changes of genetic risk factors in our ancestors. The study of ancient humans and a better understanding of the interaction between environmental and genetic influences on the development of heart diseases may lead to a more effective prevention and treatment of the most common cause of death in the modern world. PMID:25667090

  8. The fluorescent two-hybrid assay to screen for protein-protein interaction inhibitors in live cells: targeting the interaction of p53 with Mdm2 and Mdm4.

    PubMed

    Yurlova, Larisa; Derks, Maarten; Buchfellner, Andrea; Hickson, Ian; Janssen, Marc; Morrison, Denise; Stansfield, Ian; Brown, Christopher J; Ghadessy, Farid J; Lane, David P; Rothbauer, Ulrich; Zolghadr, Kourosh; Krausz, Eberhard

    2014-04-01

    Protein-protein interactions (PPIs) are attractive but challenging targets for drug discovery. To overcome numerous limitations of the currently available cell-based PPI assays, we have recently established a fully reversible microscopy-assisted fluorescent two-hybrid (F2H) assay. The F2H assay offers a fast and straightforward readout: an interaction-dependent co-localization of two distinguishable fluorescent signals at a defined spot in the nucleus of mammalian cells. We developed two reversible F2H assays for the interactions between the tumor suppressor p53 and its negative regulators, Mdm2 and Mdm4. We then performed a pilot F2H screen with a subset of compounds, including small molecules (such as Nutlin-3) and stapled peptides. We identified five cell-penetrating compounds as potent p53-Mdm2 inhibitors. However, none exhibited intracellular activity on p53-Mdm4. Live cell data generated by the F2H assays enable the characterization of stapled peptides based on their ability to penetrate cells and disrupt p53-Mdm2 interaction as well as p53-Mdm4 interaction. Here, we show that the F2H assays enable side-by-side analysis of substances' dual Mdm2-Mdm4 activity. In addition, they are suitable for testing various types of compounds (e.g., small molecules and peptidic inhibitors) and concurrently provide initial data on cellular toxicity. Furthermore, F2H assays readily allow real-time visualization of PPI dynamics in living cells. PMID:24476585

  9. Association of genetic polymorphisms in GADD45A, MDM2, and p14{sup ARF} with the risk of chronic benzene poisoning in a Chinese occupational population

    SciTech Connect

    Sun Pin; Zhang Zhongbin; Wan Junxiang; Zhao Naiqing; Jin Xipeng; Xia Zhaolin

    2009-10-01

    Benzene reactive metabolites can lead to DNA damage and trigger the p53-dependent defense responses to maintain genomic stability. We hypothesized that the p53-dependent genes may play a role in the development of chronic benzene poisoning (CBP). In a case-control study of 303 patients with benzene poisoning and 295 workers occupationally exposed to benzene in south China, we investigated associations between the risk of CBP and polymorphisms in three p53-dependent genes. Potential interactions of these polymorphisms with lifestyle factors were also explored. We found p14{sup ARF} rs3731245 polymorphism was associated with risk of CBP (P = 0.014). Compared with those carrying the GG genotype, individuals carrying p14{sup ARF} rs3731245 GA+AA genotypes had a reduced risk of CBP ([adjusted odds ratio (OR{sub adj}) = 0.57, 95%CI = 0.36-0.89]. Further analysis showed p14{sup ARF} TGA/TAG diplotype was associated with an increased risk of CBP (P = 0.0006), whereas p14{sup ARF} TGG/TAA diplotype was associated with a decreased risk of CBP (P = 0.0000001). In addition, we found individuals carrying both MDM2 Del1518 WW genotype and p14{sup ARF} rs3731245 GA+AA genotypes had a lower risk of CBP (OR{sub adj} = 0.25; 95%CI = 0.10-0.62; P = 0.003). Although these results require confirmation and extension, our findings suggest that genetic polymorphisms in p14{sup ARF} may have an impact on the risk of CBP in the study population.

  10. Repeat Sequences and Base Correlations in Human Y Chromosome Palindromes

    NASA Astrophysics Data System (ADS)

    Jin, Neng-zhi; Liu, Zi-xian; Qi, Yan-jiao; Qiu, Wen-yuan

    2009-06-01

    On the basis of information theory and statistical methods, we use mutual information, n-tuple entropy and conditional entropy, combined with biological characteristics, to analyze the long range correlation and short range correlation in human Y chromosome palindromes. The magnitude distribution of the long range correlation which can be reflected by the mutual information is P5>P5a>P5b (P5a and P5b are the sequences that replace solely Alu repeats and all interspersed repeats with random uncorrelated sequences in human Y chromosome palindrome 5, respectively); and the magnitude distribution of the short range correlation which can be reflected by the n-tuple entropy and the conditional entropy is P5>P5a>P5b>random uncorrelated sequence. In other words, when the Alu repeats and all interspersed repeats replace with random uncorrelated sequence, the long range and short range correlation decrease gradually. However, the random uncorrelated sequence has no correlation. This research indicates that more repeat sequences result in stronger correlation between bases in human Y chromosome. The analyses may be helpful to understand the special structures of human Y chromosome palindromes profoundly.

  11. Animal versus human oral drug bioavailability: Do they correlate?

    PubMed Central

    Musther, Helen; Olivares-Morales, Andrés; Hatley, Oliver J.D.; Liu, Bo; Rostami Hodjegan, Amin

    2014-01-01

    Oral bioavailability is a key consideration in development of drug products, and the use of preclinical species in predicting bioavailability in human has long been debated. In order to clarify whether any correlation between human and animal bioavailability exist, an extensive analysis of the published literature data was conducted. Due to the complex nature of bioavailability calculations inclusion criteria were applied to ensure integrity of the data. A database of 184 compounds was assembled. Linear regression for the reported compounds indicated no strong or predictive correlations to human data for all species, individually and combined. The lack of correlation in this extended dataset highlights that animal bioavailability is not quantitatively predictive of bioavailability in human. Although qualitative (high/low bioavailability) indications might be possible, models taking into account species-specific factors that may affect bioavailability are recommended for developing quantitative prediction. PMID:23988844

  12. Correlation between three color coordinates of human teeth

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Keun

    2014-11-01

    The objective was to determine whether there were significant correlations in the three color coordinates within each of two color coordinate systems, such as the Commission Internationale de l'Eclairage (CIE) L*a*b* system, and the lightness, chroma, and hue angle system, of human vital teeth. The color of six maxillary and six mandibular anterior teeth was measured by the Shade Vision System. Pearson correlations between each pair of the color coordinates were determined (α=0.01). The influence of two color coordinates on the other color coordinate was determined with a multiple regression analysis (α=0.01). Based on correlation analyses, all the color coordinate pairs showed significant correlations except for the chroma and hue angle pair. The CIE L* was negatively correlated with the CIE a*, b*, and chroma, but positively correlated with the hue angle. The CIE a* was positively correlated with the CIE b* and chroma. Tooth color coordinates were correlated each other. Lighter teeth were less chromatic both in the CIE a* and b* coordinates. Therefore, it was postulated that the three color coordinates of human teeth were harmonized within certain color attribute ranges, and a lack of correlations in these coordinates might indicate external/internal discolorations and/or anomalies of teeth.

  13. Neural correlate of human reciprocity in social interactions

    PubMed Central

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions

  14. Correlation between upstream human activities and riverine antibiotic resistance genes.

    PubMed

    Pruden, Amy; Arabi, Mazdak; Storteboom, Heather N

    2012-11-01

    Antimicrobial resistance remains a serious and growing human health challenge. The water environment may represent a key dissemination pathway of resistance elements to and from humans. However, quantitative relationships between landscape features and antibiotic resistance genes (ARGs) have not previously been identified. The objective of this study was to examine correlations between ARGs and putative upstream anthropogenic sources in the watershed. sul1 (sulfonamide) and tet(W) (tetracycline) were measured using quantitative polymerase chain reaction in bed and suspended sediment within the South Platte River Basin, which originates from a pristine region in the Rocky Mountains and runs through a gradient of human activities. A geospatial database was constructed to delineate surface water pathways from animal feeding operations, wastewater treatment plants, and fish hatchery and rearing units to river monitoring points. General linear regression models were compared. Riverine sul1 correlated with upstream capacities of animal feeding operations (R(2) = 0.35, p < 0.001) and wastewater treatment plants (R(2) = 0.34, p < 0.001). Weighting for the inverse distances from animal feeding operations along transport pathways strengthened the observed correlations (R(2) = 0.60-0.64, p < 0.001), suggesting the importance of these pathways in ARG dissemination. Correlations were upheld across the four sampling events during the year, and averaging sul1 measurements in bed and suspended sediments over all events yielded the strongest correlation (R(2) = 0.92, p < 0.001). Conversely, a significant relationship with landscape features was not evident for tet(W), which, in contrast to sul1, is broadly distributed in the pristine region and also relatively more prevalent in animal feeding operation lagoons. The findings highlight the need to focus attention on quantifying the contribution of water pathways to the antibiotic resistance disease burden in humans and offer insight

  15. Modeling network correlations in cortical tissue from juvenile human epileptics

    NASA Astrophysics Data System (ADS)

    Hobbs, Jonathan Paul

    Models of neural tissue can make predictions about a real neural network, but these predictions rely on the data to determine parameters. Hence, the model is only as good as the data. I collected in vitro data removed from juvenile humans with refractory epilepsy, and found human-specific spatial and temporal dynamics that are not found in rats. I will first describe the general characteristics of the human data in comparison with rat data, and my attempts to model these differences with three popular models of neural networks: branching, pair-wise maximum entropy, and a forest fire model. I will describe three key discoveries from this exploration: first, spatial dynamics are more easily satisfied than temporal in both the rat and human tissue, second temporal correlations are not captured by the branching or the maximum entropy model, and thirdly, strong temporal correlations can be accounted for with the addition of a parameter in the forest fire model. Finally I will suggest new questions that this research has revealed about human tissue, and models of neural networks.

  16. Flow distributions and spatial correlations in human brain capillary networks

    NASA Astrophysics Data System (ADS)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  17. Correlation of physical and genetic maps of human chromosome 16

    SciTech Connect

    Sutherland, G.R.

    1991-01-01

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentially 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.

  18. Correlation of nasal geometry with aerosol deposition in human volunteers

    SciTech Connect

    Cheng, Yung-Seng; Simpson, S.Q.; Cheng, Kuo-His; Swift, D.L.; Yeh, Hsu-Chi; Guilmette, R.A.

    1994-11-01

    The nasal airways act as the first filter in the respiratory tract to remove very large or small particles, that would otherwise penetrate to the lower airways. Aerosol deposition data obtained with human volunteers vary considerably under comparable experimental conditions. Reasons for the intersubject variations have been frequently attributed to the geometry of the nasal passages. Because there is no direct proof of this hypothesis, nasal deposition of ultrafine particles in human volunteers has been studied in our laboratory. Preliminary results obtained with four adult volunteers also vary considerably between subjects. The purpose of this part of the study was to establish a theoretical equation relating diffusional deposition in nasal airways to the geometrical dimensions of the individual nasal airways. This relationship was then applied to the experimental deposition data and measurement of airway morphometry for correlation.

  19. Activation of the p53 pathway by the MDM2 inhibitor nutlin-3a overcomes BCL2 overexpression in a preclinical model of diffuse large B-cell lymphoma associated with t(14;18)(q32;q21)

    PubMed Central

    Drakos, E; Singh, R R; Rassidakis, G Z; Schlette, E; Li, J; Claret, F X; Ford, R J; Vega, F; Medeiros, L J

    2011-01-01

    p53 is frequently wild type (wt) in diffuse large B-cell lymphoma (DLBCL) associated with t(14;18)(q32;q21) that overexpresses BCL2. Nutlin-3a is a small molecule that activates the p53 pathway by disrupting p53–MDM2 interaction. We show that nutlin-3a activates p53 in DLBCL cells associated with t(14;18)(q32;q21), BCL2 overexpression and wt p53, resulting in cell cycle arrest and apoptosis. Nutlin-3a treatment had similar effects on DLBCL cells of activated B-cell phenotype with wt p53. Cell cycle arrest was associated with upregulation of p21. Nutlin-3a-induced apoptosis was accompanied by BAX and PUMA upregulation, BCL-XL downregulation, serine-70 dephosphorylation of BCL2, direct binding of BCL2 by p53, caspase-9 upregulation and caspase-3 cleavage. Cell death was reduced when p53-dependent transactivation activity was inhibited by pifithrin-α (PFT-α), or PFT-μ inhibited direct p53 targeting of mitochondria. Nutlin-3a sensitized activation of the intrinsic apoptotic pathway by BCL2 inhibitors in t(14;18)-positive DLBCL cells with wt p53, and enhanced doxorubicin cytotoxicity against t(14;18)-positive DLBCL cells with wt or mutant p53, the latter in part via p73 upregulation. Nutlin-3a treatment in a xenograft animal lymphoma model inhibited growth of t(14;18)-positive DLBCL tumors, associated with increased apoptosis and decreased proliferation. These data suggest that disruption of the p53–MDM2 interaction by nutlin-3a offers a novel therapeutic approach for DLBCL associated with t(14;18)(q32;q21). PMID:21394100

  20. Cytology and Functionally Correlated Circuits of Human Posterior Cingulate Areas

    PubMed Central

    Vogt, Brent A.; Vogt, Leslie; Laureys, Steven

    2008-01-01

    Human posterior cingulate cortex (PCC) and retrosplenial cortex (RSC) form the posterior cingulate gyrus, however, monkey connection and human imaging studies suggest that PCC area 23 is not uniform and atlases mislocate RSC. We histologically assessed these regions in 6 postmortem cases, plotted a flat map, and characterized differences in dorsal (d) and ventral (v) area 23. Subsequently, functional connectivity of histologically guided regions of interest (ROI) were assessed in 163 [18F]fluorodeoxyglucose human cases with PET. Compared to area d23, area v23 had a higher density and larger pyramids in layers II, IIIc, and Vb and more intermediate neurofilament-expressing neurons in layer Va. Coregisrtration of each case to standard coordinates showed that the ventral branch of the splenial sulci coincided with the border between d/v PCC at −5.4±0.17 cm from the vertical plane and +1.97±0.08 cm from the bi-commissural line. Correlation analysis of glucose metabolism using histologically guided ROIs suggested important circuit differences including dorsal and ventral visual stream inputs, interactions between the vPCC and subgenual cingulate cortex, and preferential relations between dPCC and the cingulate motor region. The RSC, in contrast, had restricted correlated activity with pericallosal cortex and thalamus. Visual information may be processed with an orbitofrontal link for synthesis of signals to drive premotor activity through dPCC. Review of the literature in terms of a PCC duality suggests that interactions of dPCC, including area 23d, orients the body in space via the cingulate motor areas, while vPCC interacts with subgenual cortex to process self-relevant emotional and non-emotional information and objects and self reflection. PMID:16140550

  1. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin “wrapping”, i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  2. Projecting Human Development and CO2 emissions employing correlations

    NASA Astrophysics Data System (ADS)

    Rybski, D.; Costa, L.; Kropp, J. P.

    2012-04-01

    We find positive and time dependent correlation between the Human Development Index (HDI) and per capita CO2 emissions from fossil fuel combustion. Based on this empirical relation, extrapolated HDI, and three population scenarios extracted from the Millennium Ecosystem Assessment report, we estimate future cumulative CO2 emissions. If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8) as defined in the United Nations Human Development Report 2009. In particular, we estimate that at least 300Gt of cumulative CO2 emissions between 2000 and 2050 are necessary for the development of developing countries in the year 2000. This value represents 30% of a previously calculated CO2 budget yielding a 75% probability of limiting global warming to 2°C. Since human development has been proved to be time and country dependent, we plead for future climate negotiations to consider a differentiated CO2 emissions reduction scheme for developing countries based on the achievement of concrete development goals.

  3. Correlation between Gene Expression and Osteoarthritis Progression in Human.

    PubMed

    Zhong, Leilei; Huang, Xiaobin; Karperien, Marcel; Post, Janine N

    2016-01-01

    Osteoarthritis (OA) is a multifactorial disease characterized by gradual degradation of joint cartilage. This study aimed to quantify major pathogenetic factors during OA progression in human cartilage. Cartilage specimens were isolated from OA patients and scored 0-5 according to the Osteoarthritis Research Society International (OARSI) guidelines. Protein and gene expressions were measured by immunohistochemistry and qPCR, respectively. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used to detect apoptotic cells. Cartilage degeneration in OA is a gradual progress accompanied with gradual loss of collagen type II and a gradual decrease in mRNA expression of SOX9, ACAN and COL2A1. Expression of WNT antagonists DKK1 and FRZB was lost, while hypertrophic markers (RUNX2, COL10A1 and IHH) increased during OA progression. Moreover, DKK1 and FRZB negatively correlated with OA grading, while RUNX2 and IHH showed a significantly positive correlation with OA grading. The number of apoptotic cells was increased with the severity of OA. Taken together, our results suggested that genetic profiling of the gene expression could be used as markers for staging OA at the molecular level. This helps to understand the molecular pathology of OA and may lead to the development of therapies based on OA stage. PMID:27428952

  4. Correlates of human papillomavirus vaccine completion among adolescent girl initiators

    PubMed Central

    Rahman, Mahbubur; Laz, Tabassum H.; McGrath, Christine J.; Berenson, Abbey B.

    2016-01-01

    OBJECTIVE To examine correlates of vaccine series completion among young adolescent US girls who initiated the human papillomavirus (HPV) vaccine. METHODS We analyzed National Immunization Survey-Teens 2012 provider-verified data to examine correlates of HPV vaccine completion among 13-17 year old girls who initiated HPV vaccine in 2012 (N=4,548). RESULTS The weighted vaccine series completion rate among 13-17 year old girl initiators was 66.7% (95% confidence interval (CI), 64.0-69.3). Adolescent girls who were older, residents of the Northeast (adjusted prevalence ratio (aPR) 1.36, 95% CI 1.07-1.73), and had provider-verified seasonal influenza vaccination in the past year (aPR 1.67, 95% CI 1.32-2.11) and provider recommendation (aPR 1.40, 95% CI 1.10-1.77) were more likely to complete the 3-dose vaccine series. CONCLUSIONS Parents of younger adolescent girls need to be educated about the importance of completing the 3-dose HPV vaccine series. Provider recommendation for the vaccine would also facilitate series completion. PMID:25848128

  5. Correlation between Gene Expression and Osteoarthritis Progression in Human

    PubMed Central

    Zhong, Leilei; Huang, Xiaobin; Karperien, Marcel; Post, Janine N.

    2016-01-01

    Osteoarthritis (OA) is a multifactorial disease characterized by gradual degradation of joint cartilage. This study aimed to quantify major pathogenetic factors during OA progression in human cartilage. Cartilage specimens were isolated from OA patients and scored 0–5 according to the Osteoarthritis Research Society International (OARSI) guidelines. Protein and gene expressions were measured by immunohistochemistry and qPCR, respectively. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used to detect apoptotic cells. Cartilage degeneration in OA is a gradual progress accompanied with gradual loss of collagen type II and a gradual decrease in mRNA expression of SOX9, ACAN and COL2A1. Expression of WNT antagonists DKK1 and FRZB was lost, while hypertrophic markers (RUNX2, COL10A1 and IHH) increased during OA progression. Moreover, DKK1 and FRZB negatively correlated with OA grading, while RUNX2 and IHH showed a significantly positive correlation with OA grading. The number of apoptotic cells was increased with the severity of OA. Taken together, our results suggested that genetic profiling of the gene expression could be used as markers for staging OA at the molecular level. This helps to understand the molecular pathology of OA and may lead to the development of therapies based on OA stage. PMID:27428952

  6. The clock gene PER1 suppresses expression of tumor-related genes in human oral squamous cell carcinoma

    PubMed Central

    Li, Han-Xue; Fu, Xiao-Juan; Yang, Kai; Chen, Dan; Tang, Hong; Zhao, Qin

    2016-01-01

    Abnormal expression of the clock gene PER1 is highly correlated with carcinogenesis and the development of malignant tumors. Here, we designed short hairpin RNAs (shRNAs) to effectively knock down PER1 in SCC15 human oral squamous cell carcinoma cells. shRNA-mediated PER1 knockdown promoted SCC15 cell growth, proliferation, apoptosis resistance, migration and invasion in vitro. PER1 knockdown also increased the cells' expression of KI-67, MDM2, BCL-2, MMP2 and MMP9 mRNA, and decreased expression of C-MYC, p53, BAX and TIMP-2. In BALB/c nu/nu nude mice subcutaneously injected with SCC15 cells, PER1 knockdown in the cells enhanced tumor development, leading to increased tumor weights and volumes. These results suggest that PER1 is an important tumor suppressor gene and may be a useful molecular target for the treatment of cancer. PMID:26943040

  7. Correlations between isochores and chromosomal bands in the human genome

    SciTech Connect

    Saccone, S.; Della Valle, G. ); De Sario, A.; Bernardi, G. ); Wiegant, J.; Raap, A.K. )

    1993-11-15

    The human genome is made up of long DNA segments, the isochores, which are compositionally homogeneous and can be subdivided into a small number of families characterized by different G+C levels. Chromosome in situ suppression hybridization (in which excess unlabeled human DNA is added to suppress hybridization of repeated sequences present in the probe, enabling enhanced observation of single-copy sequences) of DNA fractions characterized by an increasing G+C level was carried out to determine the distribution of [open quotes]single-copy[close quotes] sequences corresponding to isochore families L1 + L2, H1, H2, and H3 on metaphase chromosomes. This produced a banding pattern progressing from a relatively diffuse staining to an R-banding, to a T-banding. More specifically, the results showed that (i) T-bands are formed by the G+C-richest isochores of the H3 family and by part of the G+C-rich isochores of the H1 and H2 families (with a predominance of the latter); (ii) R[prime]-bands (namely, R-bands exclusive of T-bands) are formed to almost equal extents by G+C-rich isochores of the H1 families (with a minor contribution of the H2 and H3 families) and by G+C-poor isochores of the L1 + L2 families; (iii) G-bands essentially consist of G+C-poor isochores from the L1 + L2 families, with a minor contribution of isochores from the H1 family. These results not only clarify the correlations between DNA base composition and chromosomal bands but also provide information on the distribution of genes in chromosomes, gene concentration increasing with the G+C levels of isochores.

  8. Articulated and Generalized Gaussian Kernel Correlation for Human Pose Estimation.

    PubMed

    Ding, Meng; Fan, Guoliang

    2016-02-01

    In this paper, we propose an articulated and generalized Gaussian kernel correlation (GKC)-based framework for human pose estimation. We first derive a unified GKC representation that generalizes the previous sum of Gaussians (SoG)-based methods for the similarity measure between a template and an observation both of which are represented by various SoG variants. Then, we develop an articulated GKC (AGKC) by integrating a kinematic skeleton in a multivariate SoG template that supports subject-specific shape modeling and articulated pose estimation for both the full body and the hands. We further propose a sequential (body/hand) pose tracking algorithm by incorporating three regularization terms in the AGKC function, including visibility, intersection penalty, and pose continuity. Our tracking algorithm is simple yet effective and computationally efficient. We evaluate our algorithm on two benchmark depth data sets. The experimental results are promising and competitive when compared with the state-of-the-art algorithms. PMID:26672042

  9. Theaflavin-3, 3'-digallate induces apoptosis and G2 cell cycle arrest through the Akt/MDM2/p53 pathway in cisplatin-resistant ovarian cancer A2780/CP70 cells.

    PubMed

    Tu, Youying; Kim, Eunhye; Gao, Ying; Rankin, Gary O; Li, Bo; Chen, Yi Charlie

    2016-06-01

    Ovarian cancer is the most lethal gynecological cancer among women worldwide. Adverse side effects and acquired resistance to conventional platinum based chemotherapy are major impediments in ovarian cancer treatment, and drive the development of more selective anticancer drugs that target cancer-specific defects. In this study, theaflavin-3, 3'-digallate (TF3), the major theaflavin monomer in black tea, exhibited a potent growth inhibitory effect on the cisplatin-resistant ovarian cancer A2780/CP70 cells (IC50, 23.81 µM), and was less cytotoxic to a normal ovarian IOSE‑364 cells (IC50, 59.58 µM) than to the cancer cells. Flow cytometry analysis indicated that TF3 induced preferential apoptosis and G2 cell cycle arrest in A2780/CP70 cells with respect to IOSE‑364 cells. TF3 induced apoptosis through both the intrinsic and extrinsic apoptotic pathways, and caused G2 cell cycle arrest via cyclin B1 in A2780/CP70 cells. The p53 protein played an important role in TF3-induced apoptosis and G2 cell cycle arrest. TF3 might upregulate the p53 expression via the Akt/MDM2 pathway. Our findings help elucidate the mechanisms by which TF3 may contribute to the prevention and treatment of platinum-resistant ovarian cancer. PMID:27082635

  10. Theaflavin-3, 3′-digallate induces apoptosis and G2 cell cycle arrest through the Akt/MDM2/p53 pathway in cisplatin-resistant ovarian cancer A2780/CP70 cells

    PubMed Central

    TU, YOUYING; KIM, EUNHYE; GAO, YING; RANKIN, GARY O.; LI, BO; CHEN, YI CHARLIE

    2016-01-01

    Ovarian cancer is the most lethal gynecological cancer among women worldwide. Adverse side effects and acquired resistance to conventional platinum based chemotherapy are major impediments in ovarian cancer treatment, and drive the development of more selective anticancer drugs that target cancer-specific defects. In this study, theaflavin-3, 3′-digallate (TF3), the major theaflavin monomer in black tea, exhibited a potent growth inhibitory effect on the cisplatin-resistant ovarian cancer A2780/CP70 cells (IC50, 23.81 μM), and was less cytotoxic to a normal ovarian IOSE-364 cells (IC50, 59.58 μM) than to the cancer cells. Flow cytometry analysis indicated that TF3 induced preferential apoptosis and G2 cell cycle arrest in A2780/CP70 cells with respect to IOSE-364 cells. TF3 induced apoptosis through both the intrinsic and extrinsic apoptotic pathways, and caused G2 cell cycle arrest via cyclin B1 in A2780/CP70 cells. The p53 protein played an important role in TF3-induced apoptosis and G2 cell cycle arrest. TF3 might upregulate the p53 expression via the Akt/MDM2 pathway. Our findings help elucidate the mechanisms by which TF3 may contribute to the prevention and treatment of platinum-resistant ovarian cancer. PMID:27082635

  11. Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-α 2a specifically targets JAK2V617F-positive polycythemia vera cells

    PubMed Central

    Lu, Min; Wang, Xiaoli; Li, Yan; Tripodi, Joseph; Mosoyan, Goar; Mascarenhas, John; Kremyanskaya, Marina; Najfeld, Vesna

    2012-01-01

    Interferon (IFN-α) is effective therapy for polycythemia vera (PV) patients, but it is frequently interrupted because of adverse events. To permit the long-term use of IFN, we propose combining low doses of IFN with Nutlin-3, an antagonist of MDM2, which is also capable of promoting PV CD34+ cell apoptosis. Combination treatment with subtherapeutic doses of Peg IFN-α 2a and Nutlin-3 inhibited PV CD34+ cell proliferation by 50% while inhibiting normal CD34+ cells by 30%. Combination treatment with Nutlin-3 and Peg IFN-α 2a inhibited PV colony formation by 55%-90% while inhibiting normal colony formation by 22%-30%. The combination of these agents also decreased the proportion of JAK2V617F-positive hematopoietic progenitor cells in 6 PV patients studied. Treatment with low doses of Peg IFN-α 2a combined with Nutlin-3 increased phospho-p53 and p21 protein levels in PV CD34+ cells and increased the degree of apoptosis. These 2 reagents affect the tumor suppressor p53 through different pathways with Peg IFN-α 2a activating p38 MAP kinase and STAT1, leading to increased p53 transcription, whereas Nutlin-3 prevents the degradation of p53. These data suggest that treatment with low doses of both Nutlin-3 combined with Peg IFN-α 2a can target PV hematopoietic progenitor cells, eliminating the numbers of malignant hematopoietic progenitor cells. PMID:22872685

  12. An atlas of genetic correlations across human diseases and traits.

    PubMed

    Bulik-Sullivan, Brendan; Finucane, Hilary K; Anttila, Verneri; Gusev, Alexander; Day, Felix R; Loh, Po-Ru; Duncan, Laramie; Perry, John R B; Patterson, Nick; Robinson, Elise B; Daly, Mark J; Price, Alkes L; Neale, Benjamin M

    2015-11-01

    Identifying genetic correlations between complex traits and diseases can provide useful etiological insights and help prioritize likely causal relationships. The major challenges preventing estimation of genetic correlation from genome-wide association study (GWAS) data with current methods are the lack of availability of individual-level genotype data and widespread sample overlap among meta-analyses. We circumvent these difficulties by introducing a technique-cross-trait LD Score regression-for estimating genetic correlation that requires only GWAS summary statistics and is not biased by sample overlap. We use this method to estimate 276 genetic correlations among 24 traits. The results include genetic correlations between anorexia nervosa and schizophrenia, anorexia and obesity, and educational attainment and several diseases. These results highlight the power of genome-wide analyses, as there currently are no significantly associated SNPs for anorexia nervosa and only three for educational attainment. PMID:26414676

  13. An Atlas of Genetic Correlations across Human Diseases and Traits

    PubMed Central

    Bulik-Sullivan, Brendan; Finucane, Hilary K; Anttila, Verneri; Gusev, Alexander; Day, Felix R.; Loh, Po-Ru; Duncan, Laramie; Perry, John R.B.; Patterson, Nick; Robinson, Elise B.; Daly, Mark J.; Price, Alkes L.; Neale, Benjamin M.

    2015-01-01

    Identifying genetic correlations between complex traits and diseases can provide useful etiological insights and help prioritize likely causal relationships. The major challenges preventing estimation of genetic correlation from genome-wide association study (GWAS) data with current methods are the lack of availability of individual genotype data and widespread sample overlap among meta-analyses. We circumvent these difficulties by introducing a technique – cross-trait LD Score regression – for estimating genetic correlation that requires only GWAS summary statistics and is not biased by sample overlap. We use this method to estimate 276 genetic correlations among 24 traits. The results include genetic correlations between anorexia nervosa and schizophrenia, anorexia and obesity and associations between educational attainment and several diseases. These results highlight the power of genome-wide analyses, since there currently are no significantly associated SNPs for anorexia nervosa and only three for educational attainment. PMID:26414676

  14. Electrophysiological Correlates of Morphological Neuroplasticity in Human Callosal Dysgenesis

    PubMed Central

    Lazarev, Vladimir V.; de Carvalho Monteiro, Myriam; Vianna-Barbosa, Rodrigo; deAzevedo, Leonardo C.; Lent, Roberto; Tovar-Moll, Fernanda

    2016-01-01

    In search for the functional counterpart of the alternative Probst and sigmoid bundles, considered as morphological evidence of neuroplasticity in callosal dysgenesis, electroencephalographic (EEG) coherence analysis was combined with high resolution and diffusion tensor magnetic resonance imaging. Data of two patients with callosal agenesis, plus two with typical partial dysgenesis with a remnant genu, and one atypical patient with a substantially reduced genu were compared to those of fifteen neurotypic controls. The interhemispheric EEG coherence between homologous nontemporal brain regions corresponded to absence or partial presence of callosal connections. A generalized coherence reduction was observed in complete acallosal patients, as well as coherence preservation in the anterior areas of the two patients with a remnant genu. jThe sigmoid bundles found in three patients with partial dysgenesis correlated with augmented EEG coherence between anterior regions of one hemisphere and posterior regions of the other. These heterologous (crossed) interhemispheric connections were asymmetric in both imaging and EEG patterns, with predominance of the right-anterior-to-left-posterior connections over the mirror ones. The Probst bundles correlated with higher intrahemispheric long-distance coherence in all patients. The significant correlations observed for the delta, theta and alpha bands indicate that these alternative pathways are functional, although the neuropsychological nature of this function is still unknown. PMID:27055255

  15. Correlating human color similarity judgments and colorimetric representations

    NASA Astrophysics Data System (ADS)

    Vertan, Constantin C.; Ciuc, Mihai; Stoica, A.; Zamfir, Marta; Buzuloiu, Vasile V.; Fernandez-Maloigne, Christine

    2003-10-01

    A color similarity test was conducted on the 24 color patches of a Gretag Macbeth color checker. Color similarities were measured either by distances between standard colorimetric representations (such as RGB, Lab or spectral reflectance curves) or by human observer judgments. In each case, the dissimilarity matrix was processed by a classical, metric, multidimensional scaling algorithm, in order to produce a visually-interpretable two-dimensional plot of color dissimilarity. The analysis of the plots produces some interesting conclusions. First, the plots produced by the Lab, RGB and spectral representations exhibit very evident variation axes according to the luminance and basic chromatic differences (red-green, blue-yellow). This behavior (trivial for the Lab representation) suggests that the color similarity measurement by chromatic differences is implicitly embedded in the RGB and spectral representations. The color dissimilarity plots associated to the human judgments (for any individual, as well as for an "average" observer) exhibit a different organization, which mixes hue, saturation and luminance (HSV). According to these plots, the human similarity judgment is not entirely HSV-based. We prove that it is possible to obtain the same color dissimilarity plots if a fuzzy color model is assumed. The fuzzy color model provides similarity coefficients (similarity degrees) between pairs of colors, based on their inter-distance, according to an imposed "color confusion" control parameter, which seems to be relevant for the human vision.

  16. Human identification using correlation metrics of iris images

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet; Brown, Michael; Luo, Yi; Kaufman, Jason; Ma, Limin; Zhou, Qiang

    2005-01-01

    This paper presents work done based on second order statistical features including cross- and auto-correlations as well as co-occurrence matrices of iris images in an attempt to extract a simple, yet powerful, set of features of an iris as a biometric. Prior to our work, the most prevalent methods for iris identification include the frontier work based on the use of quadrature 2-D Gabor wavelets with the Hamming Distance-based classification [1,2], circular Gabor filters with a nearest feature line (NFL) classifier [3], dyadic wavelet transform with the zero-cross detectors [4], texture analysis [9] and transient signal [11], and independent component analysis (ICA) [7], and boundary localization [10]. Our method differs significantly from the earlier approaches to iris recognition in that it relies on the wide-sense stationary approximation to the texture and gray-level characteristics of irises, and aims to lend itself for a single-chip hardware implementation. Our preliminary results show that cross- and auto-correlators along with co-occurrence matrix features are highly likely to be prominent iris discriminators.

  17. Human identification using correlation metrics of iris images

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet; Brown, Michael; Luo, Yi; Kaufman, Jason; Ma, Limin; Zhou, Qiang

    2004-12-01

    This paper presents work done based on second order statistical features including cross- and auto-correlations as well as co-occurrence matrices of iris images in an attempt to extract a simple, yet powerful, set of features of an iris as a biometric. Prior to our work, the most prevalent methods for iris identification include the frontier work based on the use of quadrature 2-D Gabor wavelets with the Hamming Distance-based classification [1,2], circular Gabor filters with a nearest feature line (NFL) classifier [3], dyadic wavelet transform with the zero-cross detectors [4], texture analysis [9] and transient signal [11], and independent component analysis (ICA) [7], and boundary localization [10]. Our method differs significantly from the earlier approaches to iris recognition in that it relies on the wide-sense stationary approximation to the texture and gray-level characteristics of irises, and aims to lend itself for a single-chip hardware implementation. Our preliminary results show that cross- and auto-correlators along with co-occurrence matrix features are highly likely to be prominent iris discriminators.

  18. Biocompatibility correlation of polymeric materials using human osteosarcoma cells

    NASA Astrophysics Data System (ADS)

    Geckeler, K. E.; Wacker, Roland; Aicher, Wilhelm K.

    Metal implants are the preferred materials to generate articular prostheses, plates, or bone pegs in orthopedic surgery. Although titanium and titanium alloys show a relatively good biocompatibility, clinical experience revealed that coating of the metallic implant surface may increase the biocompatibility. In a search for optimum bone implant surfaces, we determined polarity and contact angle parameters of a variety of polymers and substances and correlated the findings in a biocompatibility assay using an in vitro bone cell model. We report that an optimum adherence of SAOS-2 cells to such surfaces and a good vitality for polymers are characterized by water-based contact angles of 80° and 20° for advancing and receding probes, respectively.

  19. An anthraquinone derivative from Luffa acutangula induces apoptosis in human lung cancer cell line NCI-H460 through p53-dependent pathway.

    PubMed

    Vanajothi, Ramar; Srinivasan, Pappu

    2016-06-01

    The current study was designed to evaluate the in vitro antiproliferative activity of 1,8-dihydroxy-4-methylanthracene-9,10-dione (DHMA) isolated from the Luffa acutangula against human non-small cell lung cancer cell line (NCI-H460). Induction of apoptosis and reactive oxygen species (ROS) generation was determined through fluorescence microscopic technique. Quantitative real-time PCR and western blotting analysis was carried out to detect the expression of pro-apoptotic (p53, p21, caspase-3, Bax, GADD45A, and ATM) and anti-apoptotic (NF-κB) proteins in NCI-H460 cell line. In silico studies also performed to predict the binding mechanism of DHMA with MDM2-p53 protein. The DHMA inhibited the cell viability of NCI-H460 cells in a dose-dependent manner with an IC50 of about 50 µg/ml. It significantly reduced cell viability correlated with induction of apoptosis, which was associated with ROS generation. The apoptotic cell death was further confirmed through dual staining and DNA fragmentation assay. DHMA significantly increased the expression of anti-apoptotic protein such as p53, p21, Bax, and caspase-3 but downregulated the expression of NF-κB in NCI-H460 cell line. In silico studies demonstrate that DHMA formed hydrogen bond interaction with key residues Trp26, Phe55 and Lys24 by which it disrupt the binding of p53 with MDM2 receptor. These findings suggested that DHMA induces apoptosis in NCI-H460 via a p53-dependent pathway. This the first study on cytotoxic and apoptosis inducing activity of DHMA from L. acutangula against NCI-H460 cell line. Therefore, DHMA has therapeutic potential for lung cancer treatment. PMID:26585176

  20. Physiological correlates and emotional specificity of human piloerection.

    PubMed

    Benedek, Mathias; Kaernbach, Christian

    2011-03-01

    Piloerection is known as an indicator of strong emotional experiences. However, little is known about the physiological and emotional specificity of this psychophysiological response. In the presented study, piloerection was elicited by audio stimuli taken from music and film episodes. The physiological response accompanying the incidence of piloerection was recorded with respect to electrodermal, cardiovascular and respiratory measures and compared to a matched control condition. The employment of an optical recording system allowed for a direct and objective assessment of visible piloerection. The occurrence of piloerection was primarily accompanied by an increase of phasic electrodermal activity and increased respiration depth as compared to a matched control condition. This physiological response pattern is discussed in the context of dominant theories of human piloerection. Consideration of all available evidence suggests that emotional piloerection represents a valuable indicator of the state of being moved or touched. PMID:21276827

  1. Neural correlates of the contents of visual awareness in humans.

    PubMed

    Rees, Geraint

    2007-05-29

    The immediacy and directness of our subjective visual experience belies the complexity of the neural mechanisms involved, which remain incompletely understood. This review focuses on how the subjective contents of human visual awareness are encoded in neural activity. Empirical evidence to date suggests that no single brain area is both necessary and sufficient for consciousness. Instead, necessary and sufficient conditions appear to involve both activation of a distributed representation of the visual scene in primary visual cortex and ventral visual areas, plus parietal and frontal activity. The key empirical focus is now on characterizing qualitative differences in the type of neural activity in these areas underlying conscious and unconscious processing. To this end, recent progress in developing novel approaches to accurately decoding the contents of consciousness from brief samples of neural activity show great promise. PMID:17395576

  2. Physiological correlates and emotional specificity of human piloerection

    PubMed Central

    Benedek, Mathias; Kaernbach, Christian

    2011-01-01

    Piloerection is known as an indicator of strong emotional experiences. However, little is known about the physiological and emotional specificity of this psychophysiological response. In the presented study, piloerection was elicited by audio stimuli taken from music and film episodes. The physiological response accompanying the incidence of piloerection was recorded with respect to electrodermal, cardiovascular and respiratory measures and compared to a matched control condition. The employment of an optical recording system allowed for a direct and objective assessment of visible piloerection. The occurrence of piloerection was primarily accompanied by an increase of phasic electrodermal activity and increased respiration depth as compared to a matched control condition. This physiological response pattern is discussed in the context of dominant theories of human piloerection. Consideration of all available evidence suggests that emotional piloerection represents a valuable indicator of the state of being moved or touched. PMID:21276827

  3. Human Hemorrhagic Pulmonary Leptospirosis: Pathological Findings and Pathophysiological Correlations

    PubMed Central

    De Brito, Thales; Aiello, Vera Demarchi; da Silva, Luis Fernando Ferraz; Gonçalves da Silva, Ana Maria; Ferreira da Silva, Wellington Luiz; Castelli, Jussara Bianchi; Seguro, Antonio Carlos

    2013-01-01

    Background Leptospirosis is a re-emerging zoonosis with protean clinical manifestations. Recently, the importance of pulmonary hemorrhage as a lethal complication of this disease has been recognized. In the present study, five human necropsies of leptospirosis (Weil‘s syndrome) with extensive pulmonary manifestations were analysed, and the antibodies expressed in blood vessels and cells involved in ion and water transport were used, seeking to better understand the pathophysiology of the lung injury associated with this disease. Principal Findings Prominent vascular damage was present in the lung microcirculation, with decreased CD34 and preserved aquaporin 1 expression. At the periphery and even inside the extensive areas of edema and intraalveolar hemorrhage, enlarged, apparently hypertrophic type I pneumocytes (PI) were detected and interpreted as a non-specific attempt of clearence of the intraalveolar fluid, in which ionic transport, particularly of sodium, plays a predominant role, as suggested by the apparently increased ENaC and aquaporin 5 expression. Connexin 43 was present in most pneumocytes, and in the cytoplasm of the more preserved endothelial cells. The number of type II pneumocytes (PII) was slightly decreased when compared to normal lungs and those of patients with septicemia from other causes, a fact that may contribute to the progressively low PI count, resulting in deficient restoration after damage to the alveolar epithelial integrity and, consequently, a poor outcome of the pulmonary edema and hemorrhage. Conclusions Pathogenesis of lung injury in human leptospirosis was discussed, and the possibility of primary non-inflammatory vascular damage was considered, so far of undefinite etiopathogenesis, as the initial pathological manifestation of the disease. PMID:23951234

  4. Neurophysiological correlates of face gender processing in humans.

    PubMed

    Mouchetant-Rostaing, Y; Giard, M H; Bentin, S; Aguera, P E; Pernier, J

    2000-01-01

    Event-related potentials (ERPs) were recorded while subjects were involved in three gender-processing tasks based on human faces and on human hands. In one condition all stimuli were only of one gender, preventing any gender discrimination. In a second condition, faces (or hands) of men and women were intermixed but the gender was irrelevant for the subject's task; hence gender discrimination was assumed to be incidental. In the third condition, the task required explicit gender discrimination; gender processing was therefore assumed to be intentional. Gender processing had no effect on the occipito-temporal negative potential at approximately 170 ms after stimulation (N170 component of the ERP), suggesting that the neural mechanisms involved in the structural encoding of faces are different from those involved in the extraction of gender-related facial features. In contrast, incidental and intentional processing of face (but not hand) gender affected the ERPs between 145 and 185 ms from stimulus onset at more anterior scalp locations. This effect was interpreted as evidence for the direct visual processing of faces as described in Bruce and Young's model [Bruce, V. & Young, A. (1986) Br. J. Psychol., 77, 305-327]. Additional gender discrimination effects were observed for both faces and hands at mid-parietal sites around 45-85 ms latency, in the incidental task only. This difference was tentatively assumed to reflect an early mechanism of coarse visual categorization. Finally, intentional (but not incidental) gender processing affected the ERPs during a later epoch starting from approximately 200 ms and ending at approximately 250 ms for faces, and approximately 350 ms for hands. This later effect might be related to attention-based gender categorization or to a more general categorization activity. PMID:10651885

  5. False memory susceptibility is correlated with categorisation ability in humans

    PubMed Central

    Hunt, Kathryn; Chittka, Lars

    2014-01-01

    Our memory is often surprisingly inaccurate, with errors ranging from misremembering minor details of events to generating illusory memories of entire episodes. The pervasiveness of such false memories generates a puzzle: in the face of selection pressure for accuracy of memory, how could such systematic failures have persisted over evolutionary time? It is possible that memory errors are an inevitable by-product of our adaptive memories and that semantic false memories are specifically connected to our ability to learn rules and concepts and to classify objects by category memberships. Here we test this possibility using a standard experimental false memory paradigm and inter-individual variation in verbal categorisation ability. Indeed it turns out that the error scores are significantly negatively correlated, with those individuals scoring fewer errors on the categorisation test being more susceptible to false memory intrusions in a free recall test. A similar trend, though not significant, was observed between individual categorisation ability and false memory susceptibility in a word recognition task. Our results therefore indicate that false memories, to some extent, might be a by-product of our ability to learn rules, categories and concepts. PMID:25254105

  6. Neural Correlates of Decision Thresholds in the Human Subthalamic Nucleus.

    PubMed

    Herz, Damian M; Zavala, Baltazar A; Bogacz, Rafal; Brown, Peter

    2016-04-01

    If humans are faced with difficult choices when making decisions, the ability to slow down responses becomes critical in order to avoid suboptimal choices. Current models of decision making assume that the subthalamic nucleus (STN) mediates this function by elevating decision thresholds, thereby requiring more evidence to be accumulated before responding [1-9]. However, direct electrophysiological evidence for the exact role of STN during adjustment of decision thresholds is lacking. Here, we show that trial-by-trial variations in STN low-frequency oscillatory activity predict adjustments of decision thresholds before subjects make a response. The relationship between STN activity and decision thresholds critically depends on the subjects' level of cautiousness. While increased oscillatory activity of the STN predicts elevated decision thresholds during high levels of cautiousness, it predicts decreased decision thresholds during low levels of cautiousness. This context-dependent relationship may be mediated by increased influence of the medial prefrontal cortex (mPFC)-STN pathway on decision thresholds during high cautiousness. Subjects who exhibit a stronger increase in phase alignment of low-frequency oscillatory activity in mPFC and STN before making a response have higher decision thresholds and commit fewer erroneous responses. Together, our results demonstrate that STN low-frequency oscillatory activity and corresponding mPFC-STN coupling are involved in determining how much evidence subjects accumulate before making a decision. This finding might explain why deep-brain stimulation of the STN can impair subjects' ability to slow down responses and can induce impulsive suboptimal decisions. PMID:26996501

  7. Neural Correlates of Decision Thresholds in the Human Subthalamic Nucleus

    PubMed Central

    Herz, Damian M.; Zavala, Baltazar A.; Bogacz, Rafal; Brown, Peter

    2016-01-01

    Summary If humans are faced with difficult choices when making decisions, the ability to slow down responses becomes critical in order to avoid suboptimal choices. Current models of decision making assume that the subthalamic nucleus (STN) mediates this function by elevating decision thresholds, thereby requiring more evidence to be accumulated before responding [1, 2, 3, 4, 5, 6, 7, 8, 9]. However, direct electrophysiological evidence for the exact role of STN during adjustment of decision thresholds is lacking. Here, we show that trial-by-trial variations in STN low-frequency oscillatory activity predict adjustments of decision thresholds before subjects make a response. The relationship between STN activity and decision thresholds critically depends on the subjects’ level of cautiousness. While increased oscillatory activity of the STN predicts elevated decision thresholds during high levels of cautiousness, it predicts decreased decision thresholds during low levels of cautiousness. This context-dependent relationship may be mediated by increased influence of the medial prefrontal cortex (mPFC)-STN pathway on decision thresholds during high cautiousness. Subjects who exhibit a stronger increase in phase alignment of low-frequency oscillatory activity in mPFC and STN before making a response have higher decision thresholds and commit fewer erroneous responses. Together, our results demonstrate that STN low-frequency oscillatory activity and corresponding mPFC-STN coupling are involved in determining how much evidence subjects accumulate before making a decision. This finding might explain why deep-brain stimulation of the STN can impair subjects’ ability to slow down responses and can induce impulsive suboptimal decisions. PMID:26996501

  8. Hedging Your Bets by Learning Reward Correlations in the Human Brain

    PubMed Central

    Wunderlich, Klaus; Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.

    2011-01-01

    Summary Human subjects are proficient at tracking the mean and variance of rewards and updating these via prediction errors. Here, we addressed whether humans can also learn about higher-order relationships between distinct environmental outcomes, a defining ecological feature of contexts where multiple sources of rewards are available. By manipulating the degree to which distinct outcomes are correlated, we show that subjects implemented an explicit model-based strategy to learn the associated outcome correlations and were adept in using that information to dynamically adjust their choices in a task that required a minimization of outcome variance. Importantly, the experimentally generated outcome correlations were explicitly represented neuronally in right midinsula with a learning prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show that the human brain represents higher-order correlation structures between rewards, a core adaptive ability whose immediate benefit is optimized sampling. PMID:21943609

  9. IL-4/Stat6 activities correlate with apoptosis and metastasis in colon cancer cells

    SciTech Connect

    Li Benhui; Yang Xianzi; Li Pindong; Yuan Qin; Liu Xiaohong; Yuan Jia; Zhang Wenjie

    2008-05-02

    IL-4-induced Stat6 signaling is active in a variety of cell types and plays a role in cell proliferation/growth and resistance to apoptosis. Using EMSA, we identified differential IL-4/Stat6 activities in colorectal cancer cell lines, HT-29 being active Stat6{sup high} phenotype and Caco-2 being defective Stat6{sup null} phenotype, respectively. Active Stat6{sup high} HT-29 cells exhibited resistance to apoptosis by flowcytometry and aggressive metastasis by Transwell assay compared with defective Stat6{sup null} Caco-2 cells. Comparing one another using RT-PCR, Stat6{sup high} HT-29 cells expressed more mRNA of anti-apoptotic and pro-metastatic genes Survivin, MDM2, and TMPRSS4, while Stat6{sup null} Caco-2 cells expressed more mRNA of pro-apoptotic and anti-metastatic genes BAX, CAV1, and P53, respectively. This is the first study describing correlations of IL-4/Stat6 activities with apoptosis and metastasis in colon cancer. These findings, together with the observation of constitutive Stat6 activation in many human malignancies, suggest that Stat6 activities could be a biomarker for cancer cell's invasive/metastatic capability.

  10. Connectedness to Nature and to Humanity: their association and personality correlates.

    PubMed

    Lee, Kibeom; Ashton, Michael C; Choi, Julie; Zachariassen, Kayla

    2015-01-01

    People differ in the extent to which they identify with humans beyond their ingroup and with non-human living things. We refer to the former as the Connectedness to Humanity (CH) and to the latter as the Connectedness to Nature (CN). In a sample of 324 undergraduate students, CH and CN were operationalized using the Identification with All Humanity Scale (McFarland et al., 2012) and the CN Scale (Mayer and Frantz, 2004), respectively. These variables correlated moderately with each other (r = 0.44) and shared Openness to Experience and Honesty-Humility as their primary personality correlates. CN was found to play an important role in mediating the relationships between the two personality variables and some specific pro-environmental/pro-animal attitudes and ecological behaviors. PMID:26257669

  11. Connectedness to Nature and to Humanity: their association and personality correlates

    PubMed Central

    Lee, Kibeom; Ashton, Michael C.; Choi, Julie; Zachariassen, Kayla

    2015-01-01

    People differ in the extent to which they identify with humans beyond their ingroup and with non-human living things. We refer to the former as the Connectedness to Humanity (CH) and to the latter as the Connectedness to Nature (CN). In a sample of 324 undergraduate students, CH and CN were operationalized using the Identification with All Humanity Scale (McFarland et al., 2012) and the CN Scale (Mayer and Frantz, 2004), respectively. These variables correlated moderately with each other (r = 0.44) and shared Openness to Experience and Honesty–Humility as their primary personality correlates. CN was found to play an important role in mediating the relationships between the two personality variables and some specific pro-environmental/pro-animal attitudes and ecological behaviors. PMID:26257669

  12. HUMAN AND ECOLOIGCAL RISK: CORRELATIONS AMONG HUMAN HEALTH, ECOLOGICAL AND ENVIORNMENTAL MONITORING DATA

    EPA Science Inventory

    While all life is affected by the quality of the environment, environmental risk factors for human and wildlife health are typically assessed using independent processes that are dissimilar in scale and scope. However, the integrated analysis of human, ecological, and environmen...

  13. HUMAN AND ECOLOGICAL RISK: CORRELATIONS AMONG HUMAN HEALTH, ECOLOGICAL AND ENVIRONMENTAL MONITORING DATA

    EPA Science Inventory

    While all life is affected by the quality of the environment, environmental risk factors for human and wildlife health are typically assessed using independent processes that are dissimilar in scale and scope. However, the integrated analysis of human, ecological, and environmen...

  14. Human colorectal mucosal microbiota correlates with its host niche physiology revealed by endomicroscopy

    PubMed Central

    Wang, Ai-Hua; Li, Ming; Li, Chang-Qing; Kou, Guan-Jun; Zuo, Xiu-Li; Li, Yan-Qing

    2016-01-01

    The human gut microbiota plays a pivotal role in the maintenance of health, but how the microbiota interacts with the host at the colorectal mucosa is poorly understood. We proposed that confocal laser endomicroscopy (CLE) might help to untangle this relationship by providing in vivo physiological information of the mucosa. We used CLE to evaluate the in vivo physiology of human colorectal mucosa, and the mucosal microbiota was quantified using 16 s rDNA pyrosequencing. The human mucosal microbiota agglomerated to three major clusters dominated by Prevotella, Bacteroides and Lactococcus. The mucosal microbiota clusters did not significantly correlate with the disease status or biopsy sites but closely correlated with the mucosal niche physiology, which was non-invasively revealed by CLE. Inflammation tilted two subnetworks within the mucosal microbiota. Infiltration of inflammatory cells significantly correlated with multiple components in the predicted metagenome, such as the VirD2 component of the type IV secretory pathway. Our data suggest that a close correlation exists between the mucosal microbiota and the colorectal mucosal physiology, and CLE is a clinically available tool that can be used to facilitate the study of the in vivo correlation between colorectal mucosal physiology and the mucosal microbiota. PMID:26916597

  15. Integrating Functional Neuroimaging and Human Operant Research: Brain Activation Correlated with Presentation of Discriminative Stimuli

    ERIC Educational Resources Information Center

    Schlund, Michael W.; Cataldo, Michael F.

    2005-01-01

    Results of numerous human imaging studies and nonhuman neurophysiological studies on "reward" highlight a role for frontal, striatal, and thalamic regions in operant learning. By integrating operant and functional neuroimaging methodologies, the present investigation examined brain activation to two types of discriminative stimuli correlated with…

  16. Glutathione-related factors are not correlated with sensitivity of human tumour cells to actinomycin D.

    PubMed

    Zhang, K; Yang, E B; Zhao, Y N; Wong, K P; Mack, P

    2000-02-28

    Glutathione (GSH) contents and activities of glutathione S-transferases (GST), glutathione reductase (GSH-RD), glutathione peroxidase (GSHpx) and glutathione conjugate export pump (GS-X pump) were determined in eight human tumour cell lines with different sensitivities to melphalan, a substrate of glutathione conjugation, and actinomycin D which has not been shown to be detoxified by glutathione-related mechanisms. Chang liver cells with highest GSH content and highest activities of GST, GSH-RD, GSHpx and GS-X pump were found to be most resistant to melphalan. Statistical analysis showed significant correlations between sensitivities of the human tumour cells to melphalan and the glutathione-related factors (r = 0.72-0.79; except for GST, r = 0.65, P = 0.08), while there were no significant correlations observed between sensitivities of the human tumour cells to actinomycin D and all the glutathione-related factors tested (r = -0.25-0.14). Significant correlations of the glutathione-related factors to resistance of human tumour cells to melphalan, a substrate of glutathione conjugation, but not to resistance of the human tumour cells to actinomycin D which has not been shown to be detoxified by glutathione-related mechanisms suggested that glutathione-related mechanisms contribute to drug resistance by increased detoxification of the drugs involved. PMID:10737727

  17. The human and animal baby schema effect: correlates of individual differences.

    PubMed

    Lehmann, Vicky; Huis in't Veld, Elisabeth M J; Vingerhoets, Ad J J M

    2013-03-01

    We investigated the animal and human baby schema effect (BSE) in relation to gender, parental status, and individual features. In three, independent online surveys, conducted during three consecutive years, (Ntotal=1389), ratings of photographs of human and animal infants as well as of adults, sociodemographic variables (age, gender, parental status) and personality attributes (empathy, attachment, interpersonal closeness, narcissism, and need to belong) were assessed. We demonstrated that humans are sensitive to the baby schemata of both humans and animals and that both are weakly positively correlated. BSE is positively associated with female gender and (affective) empathy. Higher interpersonal closeness and need to belong were additionally connected specifically to the human BSE. In contrast, narcissism and insecure attachment were not related to the BSE, suggesting a robustness of this phenomenon to possible negative influences of these two personality attributes. PMID:23353724

  18. Correlation between human observer performance and model observer performance in differential phase contrast CT

    SciTech Connect

    Li, Ke; Garrett, John; Chen, Guang-Hong

    2013-11-15

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objects (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD

  19. Magnetic Resonance Microscopy at 14 Tesla and Correlative Histopathology of Human Brain Tumor Tissue

    PubMed Central

    Gonzalez-Segura, Ana; Morales, Jose Manuel; Gonzalez-Darder, Jose Manuel; Cardona-Marsal, Ramon; Lopez-Gines, Concepcion; Cerda-Nicolas, Miguel; Monleon, Daniel

    2011-01-01

    Magnetic Resonance Microscopy (MRM) can provide high microstructural detail in excised human lesions. Previous MRM images on some experimental models and a few human samples suggest the large potential of the technique. The aim of this study was the characterization of specific morphological features of human brain tumor samples by MRM and correlative histopathology. We performed MRM imaging and correlative histopathology in 19 meningioma and 11 glioma human brain tumor samples obtained at surgery. To our knowledge, this is the first MRM direct structural characterization of human brain tumor samples. MRM of brain tumor tissue provided images with 35 to 40 µm spatial resolution. The use of MRM to study human brain tumor samples provides new microstructural information on brain tumors for better classification and characterization. The correlation between MRM and histopathology images allowed the determination of image parameters for critical microstructures of the tumor, like collagen patterns, necrotic foci, calcifications and/or psammoma bodies, vascular distribution and hemorrhage among others. Therefore, MRM may help in interpreting the Clinical Magnetic Resonance images in terms of cell biology processes and tissue patterns. Finally, and most importantly for clinical diagnosis purposes, it provides three-dimensional information in intact samples which may help in selecting a preferential orientation for the histopathology slicing which contains most of the informative elements of the biopsy. Overall, the findings reported here provide a new and unique microstructural view of intact human brain tumor tissue. At this point, our approach and results allow the identification of specific tissue types and pathological features in unprocessed tumor samples. PMID:22110653

  20. WESBES: A Wireless Embedded Sensor for Improving Human Comfort Metrics using Temporospatially Correlated Data

    SciTech Connect

    Joel Hewlett; Milos Manic; Craig Rieger

    2012-08-01

    When utilized properly, energy management systems (EMS) can offer significant energy savings by optimizing the efficiency of heating, ventilation, and air-conditioning (HVAC) systems. However, difficulty often arises due to the constraints imposed by the need to maintain an acceptable level of comfort for a building’s occupants. This challenge is compounded by the fact that human comfort is difficult to define in a measurable way. One way to address this problem is to provide a building manager with direct feedback from the building’s users. Still, this data is relative in nature, making it difficult to determine the actions that need to be taken, and while some useful comfort correlations have been devised, such as ASHRAE’s Predicted Mean Vote index, they are rules of thumb that do not connect individual feedback with direct, diverse feedback sensing. As they are a correlation, quantifying effects of climate, age of buildings and associated defects such as draftiness, are outside the realm of this correlation. Therefore, the contribution of this paper is the Wireless Embedded Smart Block for Environment Sensing (WESBES); an affordable wireless sensor platform that allows subjective human comfort data to be directly paired with temporospatially correlated objective sensor measurements for use in EMS. The described device offers a flexible research platform for analyzing the relationship between objective and subjective occupant feedback in order to formulate more meaningful measures of human comfort. It could also offer an affordable and expandable option for real world deployment in existing EMS.

  1. A Single Mechanism Can Account for Human Perception of Depth in Mixed Correlation Random Dot Stereograms.

    PubMed

    Henriksen, Sid; Cumming, Bruce G; Read, Jenny C A

    2016-05-01

    In order to extract retinal disparity from a visual scene, the brain must match corresponding points in the left and right retinae. This computationally demanding task is known as the stereo correspondence problem. The initial stage of the solution to the correspondence problem is generally thought to consist of a correlation-based computation. However, recent work by Doi et al suggests that human observers can see depth in a class of stimuli where the mean binocular correlation is 0 (half-matched random dot stereograms). Half-matched random dot stereograms are made up of an equal number of correlated and anticorrelated dots, and the binocular energy model-a well-known model of V1 binocular complex cells-fails to signal disparity here. This has led to the proposition that a second, match-based computation must be extracting disparity in these stimuli. Here we show that a straightforward modification to the binocular energy model-adding a point output nonlinearity-is by itself sufficient to produce cells that are disparity-tuned to half-matched random dot stereograms. We then show that a simple decision model using this single mechanism can reproduce psychometric functions generated by human observers, including reduced performance to large disparities and rapidly updating dot patterns. The model makes predictions about how performance should change with dot size in half-matched stereograms and temporal alternation in correlation, which we test in human observers. We conclude that a single correlation-based computation, based directly on already-known properties of V1 neurons, can account for the literature on mixed correlation random dot stereograms. PMID:27196696

  2. A Single Mechanism Can Account for Human Perception of Depth in Mixed Correlation Random Dot Stereograms

    PubMed Central

    Cumming, Bruce G.

    2016-01-01

    In order to extract retinal disparity from a visual scene, the brain must match corresponding points in the left and right retinae. This computationally demanding task is known as the stereo correspondence problem. The initial stage of the solution to the correspondence problem is generally thought to consist of a correlation-based computation. However, recent work by Doi et al suggests that human observers can see depth in a class of stimuli where the mean binocular correlation is 0 (half-matched random dot stereograms). Half-matched random dot stereograms are made up of an equal number of correlated and anticorrelated dots, and the binocular energy model—a well-known model of V1 binocular complex cells—fails to signal disparity here. This has led to the proposition that a second, match-based computation must be extracting disparity in these stimuli. Here we show that a straightforward modification to the binocular energy model—adding a point output nonlinearity—is by itself sufficient to produce cells that are disparity-tuned to half-matched random dot stereograms. We then show that a simple decision model using this single mechanism can reproduce psychometric functions generated by human observers, including reduced performance to large disparities and rapidly updating dot patterns. The model makes predictions about how performance should change with dot size in half-matched stereograms and temporal alternation in correlation, which we test in human observers. We conclude that a single correlation-based computation, based directly on already-known properties of V1 neurons, can account for the literature on mixed correlation random dot stereograms. PMID:27196696

  3. Correlating 3D morphology with molecular pathology: fibrotic remodelling in human lung biopsies.

    PubMed

    Kellner, Manuela; Wehling, Judith; Warnecke, Gregor; Heidrich, Marko; Izykowski, Nicole; Vogel-Claussen, Jens; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios; Janciauskiene, Sabina; Grothausmann, Roman; Knudsen, Lars; Ripken, Tammo; Meyer, Heiko; Kreipe, Hans; Ochs, Matthias; Jonigk, Danny; Kühnel, Mark Philipp

    2015-12-01

    Assessing alterations of the parenchymal architecture is essential in understanding fibrosing interstitial lung diseases. Here, we present a novel method to visualise fibrotic remodelling in human lungs and correlate morphological three-dimensional (3D) data with gene and protein expression in the very same sample. The key to our approach is a novel embedding resin that clears samples to full optical transparency and simultaneously allows 3D laser tomography and preparation of sections for histology, immunohistochemistry and RNA isolation. Correlating 3D laser tomography with molecular diagnostic techniques enables new insights into lung diseases. This approach has great potential to become an essential tool in pulmonary research. PMID:26108569

  4. Preliminary report on the correlations among pineal concretions, prostatic calculi and age in human adult males.

    PubMed

    Mori, Ryoichi; Kodaka, Tetsuo; Sano, Tsuneyoshi

    2003-09-01

    By using quantitative image analysis of soft X-ray photographs on the bulk of extracted pineal glands and prostates, we made a preliminary investigation into the correlations among pineal concretions (% by mass), prostatic calculi (% by mass) and age (years) in 40 human adult males, ranging in age from 31 to 95 years (mean (+/-SD) 69.9 +/- 15.2 years), who died and underwent the routine dissection course. The mass concentrations of pineal concretions and prostatic calculi were 17.68 +/- 13.56% (range 0-51.34%) and 0.93 +/- 1.31% (range 0-5.82%), respectively. There was no correlation between the mass concentration of pineal concretions and aging (r = 0.03; P < 1.0). There was no correlation between mass concentration of prostatic calculi and aging (r = 0.28; P < 0.5). No pineal concretions and no prostatic calculi were observed in seven and 10 cases, respectively; in addition, in one case, neither-concretions nor calculi were seen. From such data and from the previously reported suggestion on the counteracting functions between the pineal gland and prostate, a negative correlation between the mass concentrations of pineal concretions and prostatic calculi was expected. This was certainly obtained, but the correlation was low (r = -0.39; P < 0.05). Such a low correlation and no correlations between the concentrations of pineal concretions and aging or between prostatic calculi and aging may have been caused by the examination of relatively older humans. Therefore, further investigations using a number of pair samples collected from males including younger age generations will be necessary. PMID:14527133

  5. Seasonal variations of DNA damage in human lymphocytes: correlation with different environmental variables.

    PubMed

    Giovannelli, Lisa; Pitozzi, Vanessa; Moretti, Silvia; Boddi, Vieri; Dolara, Piero

    2006-01-29

    Several types of DNA damage, including DNA breaks and DNA base oxidation, display a seasonal trend. In the present work, a sample of 79 healthy subjects living in the city of Florence, Italy, was used to analyse this effect. Three possible causative agents were taken into consideration: solar radiation, air temperature and air ozone level. DNA damage was measured in isolated human lymphocytes at different times during the year and the observed damage was correlated with the levels of these three agents in the days preceding blood sampling. Three time windows were chosen: 3, 7 and 30 days before blood sampling. DNA strand breaks and the oxidized purinic bases cleaved by the formamidopyrimidine glycosylase (FPG sites) were measured by means of the comet assay. The results of multivariate regression analysis showed a positive correlation between lymphocyte DNA damage and air temperature, and a less strong correlation with global solar radiation and air ozone levels. PMID:16095632

  6. Flavonoid C-glucosides Derived from Flax Straw Extracts Reduce Human Breast Cancer Cell Growth In vitro and Induce Apoptosis

    PubMed Central

    Czemplik, Magdalena; Mierziak, Justyna; Szopa, Jan; Kulma, Anna

    2016-01-01

    Flax straw of flax varieties that are grown for oil production is a by product which represents a considerable biomass source. Therefore, its potential application for human use is of high interest. Our research has revealed that flax straw is rich in flavonoid C-glucosides, including vitexin, orientin, and isoorientin. The objective of this study was to evaluate the cytotoxicity and possible proapoptotic effect of flax straw derived C-glucosides of flavonoids in the human breast adenocarcinoma cell line (MCF-7). The effects of flax straw derived flavonoid C-glucosides on cell proliferation of MCF-7 cells were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) and sulforhodamine B assays. The expression of apoptosis-related genes was assessed by real-time PCR. Our data revealed that flax C-glucosides as well as pure compounds are cytotoxic toward MCF-7 cells and inhibit their proliferation. Moreover, the induction of apoptosis was correlated with the changes in the mRNA level of pro-apoptotic genes. Increased expression of bax and caspase-7, -8, and -9 and decreased mRNA expression of bcl-2 was observed, whereas the mRNA levels of p53 and mdm2 were not altered. These results clearly demonstrated that flax straw metabolites effectively induced growth inhibition and apoptosis in human breast adenocarcinoma cells.

  7. Serum Autotaxin/ENPP2 Correlates with Insulin Resistance in Older Humans with Obesity

    PubMed Central

    Reeves, Valerie L.; Trybula, Joy S.; Wills, Rachel C.; Goodpaster, Bret H.; Dubé, John J.; Kienesberger, Petra C.; Kershaw, Erin E.

    2015-01-01

    Objective Autotaxin (ATX) is an adipocyte-derived lysophospholipase D that generates the lipid signaling molecule lysophosphatidic acid (LPA). The ATX/LPA pathway in adipose tissue has recently been implicated in obesity and insulin resistance in animal models, but the role of circulating ATX in humans remains unclear. The aim of the present study was to determine the relationship between serum ATX and insulin resistance. Methods In this retrospective study, older (60–75 years), non-diabetic human participants with overweight or obesity (BMI 25–37 kg/m2), were characterized for metabolic phenotype including measures of energy, glucose, and lipid homeostasis. The relationship between serum ATX and metabolic parameters was then determined using correlative and predictive statistics. Results Serum ATX was higher in females than in males. After controlling for sex, serum ATX correlated with multiple measures of adiposity and glucose homeostasis/insulin action. Serum ATX and BMI also independently predicted glucose infusion rate during a hyperinsulinemic euglycemic clamp and homeostatic model assessment of insulin resistance after controlling for sex and medication use. Conclusion Serum ATX correlates with and predicts measures of glucose homeostasis and insulin sensitivity in older humans, suggesting that it may be a potential pathogenic factor and/or diagnostic/therapeutic target for insulin resistance in this population. PMID:26727116

  8. Correlation of Apical Fluid-Regulating Channel Proteins with Lung Function in Human COPD Lungs

    PubMed Central

    Zhao, Meimi; Liu, Shan-Lu; Huang, Yao; Idell, Steven; Li, Xiumin; Ji, Hong-Long

    2014-01-01

    Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD) are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporin 5 (AQP5) proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of α and β ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI) and II (ATII)-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3) was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD. PMID:25329998

  9. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory.

    PubMed

    Michels, Lars; Lüchinger, Rafael; Koenig, Thomas; Martin, Ernst; Brandeis, Daniel

    2012-01-01

    In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that

  10. PCA-Correlated SNPs for Structure Identification in Worldwide Human Populations

    PubMed Central

    Paschou, Peristera; Ziv, Elad; Burchard, Esteban G; Choudhry, Shweta; Rodriguez-Cintron, William; Mahoney, Michael W; Drineas, Petros

    2007-01-01

    Existing methods to ascertain small sets of markers for the identification of human population structure require prior knowledge of individual ancestry. Based on Principal Components Analysis (PCA), and recent results in theoretical computer science, we present a novel algorithm that, applied on genomewide data, selects small subsets of SNPs (PCA-correlated SNPs) to reproduce the structure found by PCA on the complete dataset, without use of ancestry information. Evaluating our method on a previously described dataset (10,805 SNPs, 11 populations), we demonstrate that a very small set of PCA-correlated SNPs can be effectively employed to assign individuals to particular continents or populations, using a simple clustering algorithm. We validate our methods on the HapMap populations and achieve perfect intercontinental differentiation with 14 PCA-correlated SNPs. The Chinese and Japanese populations can be easily differentiated using less than 100 PCA-correlated SNPs ascertained after evaluating 1.7 million SNPs from HapMap. We show that, in general, structure informative SNPs are not portable across geographic regions. However, we manage to identify a general set of 50 PCA-correlated SNPs that effectively assigns individuals to one of nine different populations. Compared to analysis with the measure of informativeness, our methods, although unsupervised, achieved similar results. We proceed to demonstrate that our algorithm can be effectively used for the analysis of admixed populations without having to trace the origin of individuals. Analyzing a Puerto Rican dataset (192 individuals, 7,257 SNPs), we show that PCA-correlated SNPs can be used to successfully predict structure and ancestry proportions. We subsequently validate these SNPs for structure identification in an independent Puerto Rican dataset. The algorithm that we introduce runs in seconds and can be easily applied on large genome-wide datasets, facilitating the identification of population

  11. Correlations of trace elements in breast human tissues: Evaluation of spatial distribution using μ-XRF

    NASA Astrophysics Data System (ADS)

    Silva, Marina Piacenti da; Silva, Deisy Mara da; Ribeiro-Silva, Alfredo; Poletti, Martin Eduardo

    2012-05-01

    The aim of this work is to investigate microscopic correlations between trace elements in breast human tissues. A synchrotron X-ray fluorescence microprobe system (μ-XRF) was used to obtain two-dimensional distribution of trace element Ca, Fe, Cu and Zn in normal (6 samples) and malignant (14 samples) breast tissues. The experiment was performed in X-ray Fluorescence beam line at Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, Brazil. The white microbeam was generated with a fine conical capillary with a 20 μm output diameter. The samples were supported on a XYZ table. An optical microscope with motorized zoom was used for sample positioning and choice the area to be scanned. Automatic two-dimensional scans were programmed and performed with steps of 30 μm in each direction (x, y) on the selected area. The fluorescence signals were recorded using a Si(Li) detector, positioned at 90 degrees with respect to the incident beam, with a collection time of 10 s per point. The elemental maps obtained from each sample were overlap to observe correlation between trace elements. Qualitative results showed that the pairs of elements Ca-Zn and Fe-Cu could to be correlated in malignant breast tissues. Quantitative results, achieved by Spearman correlation tests, indicate that there is a spatial correlation between these pairs of elements (p < 0.001) suggesting the importance of these elements in metabolic processes associated with the development of the tumor.

  12. Correlations of trace elements in breast human tissues: Evaluation of spatial distribution using {mu}-XRF

    SciTech Connect

    Piacenti da Silva, Marina; Silva, Deisy Mara da; Ribeiro-Silva, Alfredo; Poletti, Martin Eduardo

    2012-05-17

    The aim of this work is to investigate microscopic correlations between trace elements in breast human tissues. A synchrotron X-ray fluorescence microprobe system ({mu}-XRF) was used to obtain two-dimensional distribution of trace element Ca, Fe, Cu and Zn in normal (6 samples) and malignant (14 samples) breast tissues. The experiment was performed in X-ray Fluorescence beam line at Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, Brazil. The white microbeam was generated with a fine conical capillary with a 20 {mu}m output diameter. The samples were supported on a XYZ table. An optical microscope with motorized zoom was used for sample positioning and choice the area to be scanned. Automatic two-dimensional scans were programmed and performed with steps of 30 {mu}m in each direction (x, y) on the selected area. The fluorescence signals were recorded using a Si(Li) detector, positioned at 90 degrees with respect to the incident beam, with a collection time of 10 s per point. The elemental maps obtained from each sample were overlap to observe correlation between trace elements. Qualitative results showed that the pairs of elements Ca-Zn and Fe-Cu could to be correlated in malignant breast tissues. Quantitative results, achieved by Spearman correlation tests, indicate that there is a spatial correlation between these pairs of elements (p < 0.001) suggesting the importance of these elements in metabolic processes associated with the development of the tumor.

  13. Post-event human decision errors: operator action tree/time reliability correlation

    SciTech Connect

    Hall, R E; Fragola, J; Wreathall, J

    1982-11-01

    This report documents an interim framework for the quantification of the probability of errors of decision on the part of nuclear power plant operators after the initiation of an accident. The framework can easily be incorporated into an event tree/fault tree analysis. The method presented consists of a structure called the operator action tree and a time reliability correlation which assumes the time available for making a decision to be the dominating factor in situations requiring cognitive human response. This limited approach decreases the magnitude and complexity of the decision modeling task. Specifically, in the past, some human performance models have attempted prediction by trying to emulate sequences of human actions, or by identifying and modeling the information processing approach applicable to the task. The model developed here is directed at describing the statistical performance of a representative group of hypothetical individuals responding to generalized situations.

  14. Scaling and correlation of human movements in cyberspace and physical space.

    PubMed

    Zhao, Zhi-Dan; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2014-11-01

    Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit 〈f〉 and its fluctuation σ:σ∼〈f〉^{β} with β≈1.2. The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other. PMID:25493727

  15. Scaling and correlation of human movements in cyberspace and physical space

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-Dan; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2014-11-01

    Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit and its fluctuation σ :σ ˜β with β ≈1.2 . The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other.

  16. Correlation of Wissler Human Thermal Model Blood Flow and Shiver Algorithms

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2010-01-01

    The Wissler Human Thermal Model (WHTM) is a thermal math model of the human body that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. The model has been shown to predict core temperature and skin temperatures higher and lower, respectively, than in tests of subjects in crew escape suit working in a controlled hot environments. Conversely the model predicts core temperature and skin temperatures lower and higher, respectively, than in tests of lightly clad subjects immersed in cold water conditions. The blood flow algorithms of the model has been investigated to allow for more and less flow, respectively, for the cold and hot case. These changes in the model have yielded better correlation of skin and core temperatures in the cold and hot cases. The algorithm for onset of shiver did not need to be modified to achieve good agreement in cold immersion simulations

  17. Correlation of respirator fit measured on human subjects and a static advanced headform.

    PubMed

    Bergman, Michael S; He, Xinjian; Joseph, Michael E; Zhuang, Ziqing; Heimbuch, Brian K; Shaffer, Ronald E; Choe, Melanie; Wander, Joseph D

    2015-01-01

    This study assessed the correlation of N95 filtering facepiece respirator (FFR) fit between a Static Advanced Headform (StAH) and 10 human test subjects. Quantitative fit evaluations were performed on test subjects who made three visits to the laboratory. On each visit, one fit evaluation was performed on eight different FFRs of various model/size variations. Additionally, subject breathing patterns were recorded. Each fit evaluation comprised three two-minute exercises: "Normal Breathing," "Deep Breathing," and again "Normal Breathing." The overall test fit factors (FF) for human tests were recorded. The same respirator samples were later mounted on the StAH and the overall test manikin fit factors (MFF) were assessed utilizing the recorded human breathing patterns. Linear regression was performed on the mean log10-transformed FF and MFF values to assess the relationship between the values obtained from humans and the StAH. This is the first study to report a positive correlation of respirator fit between a headform and test subjects. The linear regression by respirator resulted in R(2) = 0.95, indicating a strong linear correlation between FF and MFF. For all respirators the geometric mean (GM) FF values were consistently higher than those of the GM MFF. For 50% of respirators, GM FF and GM MFF values were significantly different between humans and the StAH. For data grouped by subject/respirator combinations, the linear regression resulted in R(2) = 0.49. A weaker correlation (R(2) = 0.11) was found using only data paired by subject/respirator combination where both the test subject and StAH had passed a real-time leak check before performing the fit evaluation. For six respirators, the difference in passing rates between the StAH and humans was < 20%, while two respirators showed a difference of 29% and 43%. For data by test subject, GM FF and GM MFF values were significantly different for 40% of the subjects. Overall, the advanced headform system has potential

  18. Correlation of Respirator Fit Measured on Human Subjects and a Static Advanced Headform

    PubMed Central

    Bergman, Michael S.; He, Xinjian; Joseph, Michael E.; Zhuang, Ziqing; Heimbuch, Brian K.; Shaffer, Ronald E.; Choe, Melanie; Wander, Joseph D.

    2015-01-01

    This study assessed the correlation of N95 filtering face-piece respirator (FFR) fit between a Static Advanced Headform (StAH) and 10 human test subjects. Quantitative fit evaluations were performed on test subjects who made three visits to the laboratory. On each visit, one fit evaluation was performed on eight different FFRs of various model/size variations. Additionally, subject breathing patterns were recorded. Each fit evaluation comprised three two-minute exercises: “Normal Breathing,” “Deep Breathing,” and again “Normal Breathing.” The overall test fit factors (FF) for human tests were recorded. The same respirator samples were later mounted on the StAH and the overall test manikin fit factors (MFF) were assessed utilizing the recorded human breathing patterns. Linear regression was performed on the mean log10-transformed FF and MFF values to assess the relationship between the values obtained from humans and the StAH. This is the first study to report a positive correlation of respirator fit between a headform and test subjects. The linear regression by respirator resulted in R2 = 0.95, indicating a strong linear correlation between FF and MFF. For all respirators the geometric mean (GM) FF values were consistently higher than those of the GM MFF. For 50% of respirators, GM FF and GM MFF values were significantly different between humans and the StAH. For data grouped by subject/respirator combinations, the linear regression resulted in R2 = 0.49. A weaker correlation (R2 = 0.11) was found using only data paired by subject/respirator combination where both the test subject and StAH had passed a real-time leak check before performing the fit evaluation. For six respirators, the difference in passing rates between the StAH and humans was < 20%, while two respirators showed a difference of 29% and 43%. For data by test subject, GM FF and GM MFF values were significantly different for 40% of the subjects. Overall, the advanced headform system has

  19. Elevated expression of chloride intracellular channel 1 is correlated with poor prognosis in human gliomas

    PubMed Central

    2012-01-01

    Background Chloride intracellular channel 1 (CLIC1) is expressed ubiquitously in human tissues and is involved in the regulation of cell cycle, cell proliferation and differentiation. Recent studies have shown that CLIC1 is highly expressed in several human malignant tumors. However, its roles in human gliomas are still unclear. The aim of this study was to investigate the clinicopathological significance and prognostic value of CLIC1 expression in human gliomas. Methods CLIC1 expression in human gliomas and nonneoplastic brain tissues was measured by real-time quantitative RT-PCR assay and immunohistochemistry. Its association with clinicopathological factors or prognosis in patients with gliomas was statistically analyzed. Results The expression of CLIC1 at both mRNA and protein levels was significantly increased in high-grade (Grade III~IV) glioma tissues compared with that in low-grade (Grade I~II) and nonneoplastic brain tissues, and was up-regulated with ascending tumor World Health Organization (WHO) grades. The elevated expression of CLIC1 protein was also significantly correlated with low Karnofsky performance score (KPS) (P=0.008). Moreover, both univariate and multivariate analysis shown that high CLIC1 expression was significantly associated with poor prognosis in patients with gliomas (P<0.001 and P=0.01, respectively). In particular, the elevated CLIC1 expression also correlated with shorter overall survival in different glioma subgroups stratified according to the WHO grading. Conclusions Our data provide the first evidence that CLIC1 expression might play an important role in the regulation of aggressiveness in human gliomas. The elevated expression of CLIC1 might represent a valuable prognostic marker for this disease. PMID:22578365

  20. Slow Human Immunodeficiency Virus (HIV) Infectivity Correlated with Low HIV Coreceptor Levels

    PubMed Central

    Bristow, Cynthia L.

    2001-01-01

    The absolute number of CD4+ lymphocytes in blood is prognostic for disease progression, yet the cell surface density of CD4 receptors or chemokine receptors on a single cell has not previously been found to be predictive of human immunodeficiency virus (HIV) infectivity outcome. It has recently been shown that human leukocyte elastase (HLE) and its ligand α1 proteinase inhibitor (α1PI; α1 antitrypsin) act as HIV fusion cofactors. The present study shows that decreased HIV infectivity is significantly correlated with decreased cell surface density of HLE but not with decreased CD4 nor chemokine receptors. In vitro HIV infectivity outcome in this study was predicted by the surface density of HLE on mononuclear phagocytes but not on lymphocytes. The set point HLE surface density was in part determined by α1PI. Decreased circulating α1PI was correlated with increased cell surface HLE and with increased HIV infectivity. The correlation of HIV infectivity outcome with surface HLE and circulating α1PI supports the utility of these HIV cofactors in diagnostic analysis and therapeutic intervention. PMID:11527806

  1. Midtarsal break variation in modern humans: Functional causes, skeletal correlates, and paleontological implications.

    PubMed

    DeSilva, J M; Bonne-Annee, R; Swanson, Z; Gill, C M; Sobel, M; Uy, J; Gill, S V

    2015-04-01

    The midtarsal break was once treated as a dichotomous, non-overlapping trait present in the foot of non-human primates and absent in humans. Recent work indicates that there is considerable variation in human midfoot dorsiflexion, with some overlap with the ape foot. These findings have called into question the uniqueness of the human lateral midfoot, and the use of osteological features in fossil hominins to characterize the midfoot of our extinct ancestors. Here, we present data on plantar pressure and pedal mechanics in a large sample of adults and children (n = 671) to test functional hypotheses concerning variation in midfoot flexibility. Lateral midfoot peak plantar pressure correlates with both sagittal plane flexion at the lateral tarsometatarsal joint, and dorsiflexion at the hallucal metatarsophalangeal joint. The latter finding suggests that midfoot laxity may compromise hallucal propulsion. Multiple regression statistics indicate that a low arch and pronation of the foot explain 40% of variation in midfoot peak plantar pressure, independent of age and BMI. MRI scans on a small subset of study participants (n = 19) reveals that curvature of the base of the 4th metatarsal correlates with lateral midfoot plantar pressure and that specific anatomies of foot bones do indeed reflect relative midfoot flexibility. However, while the shape of the base of the 4th metatarsal may reliably reflect midfoot mobility in individual hominins, given the wide range of overlapping variation in midfoot flexibility in both apes and humans, we caution against generalizing foot function in extinct hominin species until larger fossils samples are available. PMID:25594359

  2. Extracting the internal representation of faces from human brain activity: an analogue to reverse correlation.

    PubMed

    Hansen, Bruce C; Thompson, Benjamin; Hess, Robert F; Ellemberg, Dave

    2010-05-15

    Much of the debate surrounding the precise functional role of brain mechanisms implicated in the processing of human faces can be explained when considering that studies into early-stage neural representations of the spatial arrangement of facial features are potentially contaminated by "higher-level" cognitive attributes associated with human faces. One way to bypass such attributes would be to employ ambiguous stimuli that are not biased toward any particular object class and analyze neural activity in response to those stimuli in a manner similar to traditional reverse correlation for mapping visual receptive fields. Accordingly, we sought to derive whole face representations directly from neural activity in the human brain using electroencephalography (EEG). We presented ambiguous fractal noise stimuli to human participants and asked them to rate each stimulus along a "face not present" to "face present" continuum while simultaneously recording EEGs. All EEGs were subjected to a time-frequency analysis near 170 ms (negative amplitudes near 170 ms post-stimulus onset have been linked to early face processing) for five different frequency bands (delta, theta, alpha, beta, and gamma) on a trial-by-trial basis, independent of the behavioral responses. Images containing apparent face-like structure were obtained for theta through gamma frequency bands for strong negative amplitudes near 170 ms post-stimulus onset. The presence of the face-like structure in the spatial images derived from brain signals was objectively verified using both Fourier methods and trained neural networks. The results support the use of a modified reverse correlation technique with EEG as a non-biased assessment of brain processes involved in the complex integration of spatial information into objects such as human faces. PMID:20156567

  3. Correlation between Conjugated Bisphenol A Concentrations and Efflux Transporter Expression in Human Fetal Livers.

    PubMed

    Moscovitz, Jamie E; Nahar, Muna S; Shalat, Stuart L; Slitt, Angela L; Dolinoy, Dana C; Aleksunes, Lauren M

    2016-07-01

    Because of its widespread use in the manufacturing of consumer products over several decades, human exposure to bisphenol A (BPA) has been pervasive. Fetuses are particularly sensitive to BPA exposure, with a number of negative developmental and reproductive outcomes observed in rodent perinatal models. Xenobiotic transporters are one mechanism to extrude conjugated and unconjugated BPA from the liver. In this study, the mRNA expression of xenobiotic transporters and relationships with total, conjugated, and free BPA levels were explored utilizing human fetal liver samples. The mRNA expression of breast cancer resistance protein (BCRP) and multidrug resistance-associated transporter (MRP)4, as well as BCRP and multidrug resistance transporter 1 exhibited the highest degree of correlation, with r(2) values of 0.941 and 0.816 (P < 0.001 for both), respectively. Increasing concentrations of conjugated BPA significantly correlated with high expression of MRP1 (P < 0.001), MRP2 (P < 0.05), and MRP3 (P < 0.05) transporters, in addition to the NF-E2-related factor 2 transcription factor (P < 0.001) and its prototypical target gene, NAD(P)H quinone oxidoreductase 1 (P < 0.001). These data demonstrate that xenobiotic transporters may be coordinately expressed in the human fetal liver. This is also the first report of a relationship between environmentally relevant fetal BPA levels and differences in the expression of transporters that can excrete the parent compound and its metabolites. PMID:26851240

  4. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    PubMed

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission. PMID:24398941

  5. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    NASA Astrophysics Data System (ADS)

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-12-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.

  6. Information measure for long-range correlated sequences: the case of the 24 human chromosomes.

    PubMed

    Carbone, A

    2013-01-01

    A new approach to estimate the Shannon entropy of a long-range correlated sequence is proposed. The entropy is written as the sum of two terms corresponding respectively to power-law (ordered) and exponentially (disordered) distributed blocks (clusters). The approach is illustrated on the 24 human chromosome sequences by taking the nucleotide composition as the relevant information to be encoded/decoded. Interestingly, the nucleotide composition of the ordered clusters is found, on the average, comparable to the one of the whole analyzed sequence, while that of the disordered clusters fluctuates. From the information theory standpoint, this means that the power-law correlated clusters carry the same information of the whole analysed sequence. Furthermore, the fluctuations of the nucleotide composition of the disordered clusters are linked to relevant biological properties, such as segmental duplications and gene density. PMID:24056670

  7. Correlated analysis of cellular DNA, membrane antigens and light scatter of human lymphoid cells

    SciTech Connect

    Braylan, R.C.; Benson, N.A.; Nourse, V.; Kruth, H.S.

    1982-03-01

    Flow cytometric correlated analysis of membrane antigens, DNA, and light scatter was performed on human lymphoid cells using fluorescein (FITC)-conjugated antibodies to label B- and T-cell antigens and propidium iodide (PI) to stain DNA after ethanol fixation and RNase treatment. A FACS II flow cytometer was modified to obtain digitized measurements of two color fluorescence and light scatter emissions, simultaneously. Software was written to allow single parameter analysis or correlated analysis of any two of the three parameters acquired. Ethanol fixation preserved FITC surface labeling for at least 15 weeks, but produced marked changes in light scatter. No changes in FITC distributions were observed after RNase treatment and PI staining, and the presence of FITC labeling did not affect DNA distributions. Within heterogeneous cell populations, the DNA distribution of cell subpopulations identified by a membrane antigen was clearly demonstrated.

  8. Nogo-B receptor promotes the chemoresistance of human hepatocellular carcinoma via the ubiquitination of p53 protein

    PubMed Central

    Long, Fei; Liu, Ying; Liu, Zhenzhen; Li, Song; Yang, Xuejun; Sun, Deguang; Wang, Haibo; Liu, Qinlong; Liang, Rui; Li, Yan; Gao, Zhenming; Shao, Shujuan; Miao, Qing Robert; Wang, Liming

    2016-01-01

    Nogo-B receptor (NgBR), a type I single transmembrane domain receptor is the specific receptor for Nogo-B. Our previous work demonstrated that NgBR is highly expressed in breast cancer cells, where it promotes epithelial mesenchymal transition (EMT), an important step in metastasis. Here, we show that both in vitro and in vivo increased expression of NgBR contributes to the increased chemoresistance of Bel7402/5FU cells, a stable 5-FU (5-Fluorouracil) resistant cell line related Bel7402 cells. NgBR knockdown abrogates S-phase arrest in Bel7402/5FU cells, which correlates with a reduction in G1/S phase checkpoint proteins p53 and p21. In addition, NgBR suppresses p53 protein levels through activation of the PI3K/Akt/MDM2 pathway, which promotes p53 degradation via the ubiquitin proteasome pathway and thus increases the resistance of human hepatocellular cancer cells to 5-FU. Furthermore, we found that NgBR expression is associated with a poor prognosis of human hepatocellular carcinoma (HCC) patients. These results suggest that targeting NgBR in combination with chemotherapeutic drugs, such as 5-FU, could improve the efficacy of current anticancer treatments. PMID:26840457

  9. Biplane correlation imaging for lung nodule detection: initial human subject results

    NASA Astrophysics Data System (ADS)

    Majdi Nasab, Nariman; Samei, Ehsan; Dobbins, James T., III

    2006-03-01

    In this paper, we present performance of biplane correlation imaging (BCI) on set of chest x-ray projections of human data. BCI significantly minimizes the number of false positives (FPs) when used in conjunction with computer aided detection (CAD) by eliminating non-correlated nodule candidates. Sixty-one low exposure posterior projections were acquired from more than 20 human subjects with small angular separations (0.32 degree) over a range of 20 degrees along the vertical axis. All patients were previously diagnosed for the presence of lung nodules based on computed tomography (CT) examination. Images were processed following two steps. First, all images were analyzed using our CAD routine for chest radiography. This process proceeded with a BCI processing in which the results of CAD on each single projection were examined in terms of their geometrical correlation with those found in the other 60 projections based on the predetermined shift of possible nodule locations in each projection. The suspect entities with a geometrical correlation that coincided with the known location of the lesions were selected as nodules; otherwise they were ignored. An expert radiologist with reference to the associated CT dataset determined the truth regarding nodule location and sizes, which were then used to determine if the found nodules are true positive or false positive. The preliminary results indicated that the best performance was obtained when the angular separation of the projection pair was greater than about 6.7 degrees. Within the range of optimum angular separation, the number of FPs per image was 0-1 without impacting the number of true positives (TPs), averaged around 92%.

  10. Coral reef degradation is not correlated with local human population density

    PubMed Central

    Bruno, John F.; Valdivia, Abel

    2016-01-01

    The global decline of reef-building corals is understood to be due to a combination of local and global stressors. However, many reef scientists assume that local factors predominate and that isolated reefs, far from human activities, are generally healthier and more resilient. Here we show that coral reef degradation is not correlated with human population density. This suggests that local factors such as fishing and pollution are having minimal effects or that their impacts are masked by global drivers such as ocean warming. Our results also suggest that the effects of local and global stressors are antagonistic, rather than synergistic as widely assumed. These findings indicate that local management alone cannot restore coral populations or increase the resilience of reefs to large-scale impacts. They also highlight the truly global reach of anthropogenic warming and the immediate need for drastic and sustained cuts in carbon emissions. PMID:27435659

  11. Does correlated color temperature affect the ability of humans to identify veins?

    PubMed

    Argyraki, Aikaterini; Clemmensen, Line Katrine Harder; Petersen, Paul Michael

    2016-01-01

    In the present study we provide empirical evidence and demonstrate statistically that white illumination settings can affect the human ability to identify veins in the inner hand vasculature. A special light-emitting diode lamp with high color rendering index (CRI 84-95) was developed and the effect of correlated color temperature was evaluated, in the range between 2600 and 5700 K at an illuminance of 40±9  lx on the ability of adult humans to identify veins. It is shown that the ability to identify veins can, on average, be increased up to 24% when white illumination settings that do not resemble incandescent light are applied. The illuminance reported together with the effect of white illumination settings on direct visual perception of biosamples are relevant for clinical investigations during the night. PMID:26831595

  12. Coral reef degradation is not correlated with local human population density.

    PubMed

    Bruno, John F; Valdivia, Abel

    2016-01-01

    The global decline of reef-building corals is understood to be due to a combination of local and global stressors. However, many reef scientists assume that local factors predominate and that isolated reefs, far from human activities, are generally healthier and more resilient. Here we show that coral reef degradation is not correlated with human population density. This suggests that local factors such as fishing and pollution are having minimal effects or that their impacts are masked by global drivers such as ocean warming. Our results also suggest that the effects of local and global stressors are antagonistic, rather than synergistic as widely assumed. These findings indicate that local management alone cannot restore coral populations or increase the resilience of reefs to large-scale impacts. They also highlight the truly global reach of anthropogenic warming and the immediate need for drastic and sustained cuts in carbon emissions. PMID:27435659

  13. Human Breast Cancer Invasion and Aggression Correlates with ECM Stiffening and Immune Cell Infiltration

    PubMed Central

    Acerbi, I; Cassereau, L; Dean, I; Shi, Q; Au, A; Park, C; Chen, YY; Liphardt, J; Hwang, ES; Weaver, VM

    2015-01-01

    Tumors are stiff and data suggest that the extracellular matrix stiffening that correlates with experimental mammary malignancy drives tumor invasion and metastasis. Nevertheless, the relationship between tissue and extracellular matrix stiffness and human breast cancer progression and aggression remains unclear. We undertook a biophysical and biochemical assessment of stromal-epithelial interactions in noninvasive, invasive and normal adjacent human breast tissue and in breast cancers of increasingly aggressive subtype. Our analysis revealed that human breast cancer transformation is accompanied by an incremental increase in collagen deposition and a progressive linearization and thickening of interstitial collagen. The linearization of collagen was visualized as an overall increase in tissue birefringence and was most striking at the invasive front of the tumor where the stiffness of the stroma and cellular mechanosignaling were the highest. Amongst breast cancer subtypes we found that the stroma at the invasive region of the more aggressive Basal-like and Her2 tumor subtypes was the most heterogeneous and the stiffest when compared to the less aggressive Luminal A and B subtypes. Intriguingly, we quantified the greatest number of infiltrating macrophages and the highest level of TGF beta signaling within the cells at the invasive front. We also established that stroma stiffness and the level of cellular TGF beta signaling positively correlated with each other and with the number of infiltrating tumor-activated, macrophages, which was highest in the more aggressive tumor subtypes. These findings indicate that human breast cancer progression and aggression, collagen linearization and stromal stiffening are linked and implicate tissue inflammation and TGF beta. PMID:25959051

  14. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration.

    PubMed

    Acerbi, I; Cassereau, L; Dean, I; Shi, Q; Au, A; Park, C; Chen, Y Y; Liphardt, J; Hwang, E S; Weaver, V M

    2015-10-01

    Tumors are stiff and data suggest that the extracellular matrix stiffening that correlates with experimental mammary malignancy drives tumor invasion and metastasis. Nevertheless, the relationship between tissue and extracellular matrix stiffness and human breast cancer progression and aggression remains unclear. We undertook a biophysical and biochemical assessment of stromal-epithelial interactions in noninvasive, invasive and normal adjacent human breast tissue and in breast cancers of increasingly aggressive subtype. Our analysis revealed that human breast cancer transformation is accompanied by an incremental increase in collagen deposition and a progressive linearization and thickening of interstitial collagen. The linearization of collagen was visualized as an overall increase in tissue birefringence and was most striking at the invasive front of the tumor where the stiffness of the stroma and cellular mechanosignaling were the highest. Amongst breast cancer subtypes we found that the stroma at the invasive region of the more aggressive Basal-like and Her2 tumor subtypes was the most heterogeneous and the stiffest when compared to the less aggressive luminal A and B subtypes. Intriguingly, we quantified the greatest number of infiltrating macrophages and the highest level of TGF beta signaling within the cells at the invasive front. We also established that stroma stiffness and the level of cellular TGF beta signaling positively correlated with each other and with the number of infiltrating tumor-activated macrophages, which was highest in the more aggressive tumor subtypes. These findings indicate that human breast cancer progression and aggression, collagen linearization and stromal stiffening are linked and implicate tissue inflammation and TGF beta. PMID:25959051

  15. Expression of interleukin-8 correlates with vascularity in human gastric carcinomas.

    PubMed Central

    Kitadai, Y.; Haruma, K.; Sumii, K.; Yamamoto, S.; Ue, T.; Yokozaki, H.; Yasui, W.; Ohmoto, Y.; Kajiyama, G.; Fidler, I. J.; Tahara, E.

    1998-01-01

    Interleukin (IL)-8 is a multifunctional cytokine that can stimulate the division of endothelial cells. We examined the expression of IL-8 mRNA using Northern blot analysis and in situ mRNA hybridization (ISH) and protein production using enzyme-linked immunosorbent assay and immunohistochemistry in 8 human gastric carcinoma cell lines and 39 gastric carcinomas and corresponding normal mucosa (34 surgical specimens and 5 biopsy specimens). Of the 8 human gastric carcinoma cell lines, 6 expressed 1.8-kb IL-8 mRNA and secreted various levels of IL-8 protein. The expression of IL-8 by TMK-1 cells was induced by exposure to IL-1 alpha, epidermal growth factor, and transforming growth factor-alpha, shown previously to be autocrine growth stimulators for human gastric carcinoma cells. In tumor tissues, most of the tumors (28 of 34 surgical specimens and 4 of 5 biopsy specimens) expressed IL-8 at higher levels than the corresponding normal mucosa. ISH and immunohistochemical analyses revealed that IL-8 mRNA and protein were localized in the cytoplasm of tumor cells. The number of blood vessels in the gastric carcinomas was determined by using antibodies against CD34. The level of IL-8 mRNA in the neoplasms strongly correlated with vascularization (Spearman correlation, r = 0.812; P = 0.001). The data suggest that IL-8 produced by tumor cells may regulate neovascularization and, hence, the growth and spread of human gastric carcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9422527

  16. Correlated Variability in the Breathing Pattern and End-Expiratory Lung Volumes in Conscious Humans

    PubMed Central

    Dellaca, Raffaele L.; Aliverti, Andrea; Lo Mauro, Antonella; Lutchen, Kenneth R.; Pedotti, Antonio; Suki, Bela

    2015-01-01

    In order to characterize the variability and correlation properties of spontaneous breathing in humans, the breathing pattern of 16 seated healthy subjects was studied during 40 min of quiet breathing using opto-electronic plethysmography, a contactless technology that measures total and compartmental chest wall volumes without interfering with the subjects breathing. From these signals, tidal volume (VT), respiratory time (TTOT) and the other breathing pattern parameters were computed breath-by-breath together with the end-expiratory total and compartmental (pulmonary rib cage and abdomen) chest wall volume changes. The correlation properties of these variables were quantified by detrended fluctuation analysis, computing the scaling exponentα. VT, TTOT and the other breathing pattern variables showed α values between 0.60 (for minute ventilation) to 0.71 (for respiratory rate), all significantly lower than the ones obtained for end-expiratory volumes, that ranged between 1.05 (for rib cage) and 1.13 (for abdomen) with no significant differences between compartments. The much stronger long-range correlations of the end expiratory volumes were interpreted by a neuromechanical network model consisting of five neuron groups in the brain respiratory center coupled with the mechanical properties of the respiratory system modeled as a simple Kelvin body. The model-based α for VT is 0.57, similar to the experimental data. While the α for TTOT was slightly lower than the experimental values, the model correctly predicted α for end-expiratory lung volumes (1.045). In conclusion, we propose that the correlations in the timing and amplitude of the physiological variables originate from the brain with the exception of end-expiratory lung volume, which shows the strongest correlations largely due to the contribution of the viscoelastic properties of the tissues. This cycle-by-cycle variability may have a significant impact on the functioning of adherent cells in the

  17. Computational assessment of mammography accreditation phantom images and correlation with human observer analysis

    NASA Astrophysics Data System (ADS)

    Barufaldi, Bruno; Lau, Kristen C.; Schiabel, Homero; Maidment, D. A.

    2015-03-01

    Routine performance of basic test procedures and dose measurements are essential for assuring high quality of mammograms. International guidelines recommend that breast care providers ascertain that mammography systems produce a constant high quality image, using as low a radiation dose as is reasonably achievable. The main purpose of this research is to develop a framework to monitor radiation dose and image quality in a mixed breast screening and diagnostic imaging environment using an automated tracking system. This study presents a module of this framework, consisting of a computerized system to measure the image quality of the American College of Radiology mammography accreditation phantom. The methods developed combine correlation approaches, matched filters, and data mining techniques. These methods have been used to analyze radiological images of the accreditation phantom. The classification of structures of interest is based upon reports produced by four trained readers. As previously reported, human observers demonstrate great variation in their analysis due to the subjectivity of human visual inspection. The software tool was trained with three sets of 60 phantom images in order to generate decision trees using the software WEKA (Waikato Environment for Knowledge Analysis). When tested with 240 images during the classification step, the tool correctly classified 88%, 99%, and 98%, of fibers, speck groups and masses, respectively. The variation between the computer classification and human reading was comparable to the variation between human readers. This computerized system not only automates the quality control procedure in mammography, but also decreases the subjectivity in the expert evaluation of the phantom images.

  18. Correlations between Human Development and CO2 emissions: projections and implications

    NASA Astrophysics Data System (ADS)

    Rybski, D.; Costa, L.; Kropp, J.

    2011-12-01

    Although developing countries are called to participate on the efforts of reducing CO2 emissions in order to avoid dangerous climate change, the implications of CO2 reduction targets in human development standards of developing countries remain a matter of debate. We find positive and time dependent correlation between the Human Development Index (HDI) and per capita CO2 emissions from fossil fuel combustion. Based on this empirical relation, extrapolated HDI, and three population scenarios extracted from the Millennium Ecosystem Assessment report, we estimate future cumulative CO2 emissions. If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8) as defined in the United Nations Human Development Report 2009. In particular, we estimate that at least 300Gt of cumulative CO2 emissions between 2000 and 2050 are necessary for the development of developing countries in the year 2000. This value represents 30% of a previously calculated CO2 budget yielding a 75% probability of limiting global warming to 2°C. Since human development has been proved to be time and country dependent, we plead for future climate negotiations to consider a differentiated CO2 emissions reduction scheme for developing countries based on the achievement of concrete development goals.

  19. Bridging non-human primate correlates of protection to reassess the Anthrax Vaccine Adsorbed booster schedule in humans.

    PubMed

    Schiffer, Jarad M; Chen, Ligong; Dalton, Shannon; Niemuth, Nancy A; Sabourin, Carol L; Quinn, Conrad P

    2015-07-17

    Anthrax Vaccine Adsorbed (AVA, BioThrax) is approved for use in humans as a priming series of 3 intramuscular (i.m.) injections (0, 1, 6 months; 3-IM) with boosters at 12 and 18 months, and annually thereafter for those at continued risk of infection. A reduction in AVA booster frequency would lessen the burden of vaccination, reduce the cumulative frequency of vaccine associated adverse events and potentially expand vaccine coverage by requiring fewer doses per schedule. Because human inhalation anthrax studies are neither feasible nor ethical, AVA efficacy estimates are determined using cross-species bridging of immune correlates of protection (COP) identified in animal models. We have previously reported that the AVA 3-IM priming series provided high levels of protection in non-human primates (NHP) against inhalation anthrax for up to 4 years after the first vaccination. Penalized logistic regressions of those NHP immunological data identified that anti-protective antigen (anti-PA) IgG concentration measured just prior to infectious challenge was the most accurate single COP. In the present analysis, cross-species logistic regression models of this COP were used to predict probability of survival during a 43 month study in humans receiving the current 3-dose priming and 4 boosters (12, 18, 30 and 42 months; 7-IM) and reduced schedules with boosters at months 18 and 42 only (5-IM), or at month 42 only (4-IM). All models predicted high survival probabilities for the reduced schedules from 7 to 43 months. The predicted survival probabilities for the reduced schedules were 86.8% (4-IM) and 95.8% (5-IM) at month 42 when antibody levels were lowest. The data indicated that 4-IM and 5-IM are both viable alternatives to the current AVA pre-exposure prophylaxis schedule. PMID:26072016

  20. Neural correlates of spatial and nonspatial attention determined using intracranial electroencephalographic signals in humans.

    PubMed

    Park, Ga Young; Kim, Taekyung; Park, Jinsick; Lee, Eun Mi; Ryu, Han Uk; Kim, Sun I; Kim, In Young; Kang, Joong Koo; Jang, Dong Pyo; Husain, Masud

    2016-08-01

    Few studies have directly compared the neural correlates of spatial attention (i.e., attention to a particular location) and nonspatial attention (i.e., attention to a feature in the visual scene) using well-controlled tasks. Here, we investigated the neural correlates of spatial and nonspatial attention in humans using intracranial electroencephalography. The topography and number of electrodes showing significant event-related desynchronization (ERD) or event-related synchronization (ERS) in different frequency bands were studied in 13 epileptic patients. Performance was not significantly different between the two conditions. In both conditions, ERD in the low-frequency bands and ERS in the high-frequency bands were present bilaterally in the parietal cortex (prominently on the right hemisphere) and frontal regions. In addition to these common changes, spatial attention involved right-lateralized activity that was maximal in the right superior parietal lobule (SPL), whereas nonspatial attention involved wider brain networks including the bilateral parietal, frontal, and temporal regions, but still had maximal activity in the right parietal lobe. Within the parietal lobe, spatial attention involved ERD or ERS in the right SPL, whereas nonspatial attention involved ERD or ERS in the right inferior parietal lobule. These findings reveal that common as well as different brain networks are engaged in spatial and nonspatial attention. Hum Brain Mapp 37:3041-3054, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27125904

  1. Lability of DNA polymerase alpha correlated with decreased DNA synthesis and increased age in human cells

    SciTech Connect

    Busbee, D.; Sylvia, V.; Stec, J.; Cernosek, Z.; Norman, J.

    1987-12-01

    DNA excision repair and mitogen-initiated blastogenesis in human cells declined in efficiency as an apparent function of decreased DNA polymerase alpha specific activity with increased age of the cell donor. DNA polymerase alpha isolated from fetal cells contained a single, high-specific-activity enzyme form that could not be further activated and that was stable with regard to enzyme activity and affinity for DNA template-primer. DNA polymerase alpha isolated from adult-derived cells contained both low-specific-activity and high-specific-activity forms. The low-activity enzyme form, which showed low affinity of binding to DNA template-primer, was activated by treatment with phosphatidylinositol, /sup 32/P-ATP, and phosphatidylinositol kinase, resulting in a /sup 32/P-labeled enzyme that exhibited high affinity of binding to DNA template-primer. The activated enzyme was unstable, exhibiting a loss of /sup 32/P-label correlated with the loss of both specific activity and high affinity of binding to DNA template-primer. The data suggest that DNA polymerase alpha isolated from adult-derived human cells has low-activity and high-activity forms. Decreased specific activity of DNA polymerase alpha correlated with increased age of the donor appears to be a function of loss of an enzyme activator molecule resulting in diminished ability of the enzyme to bind DNA template-primer.

  2. Erythrocyte Sialic Acid Content during Aging in Humans: Correlation with Markers of Oxidative Stress

    PubMed Central

    Mehdi, Mohammad Murtaza; Singh, Prabhakar; Rizvi, Syed Ibrahim

    2012-01-01

    Sialic acids are substituted neuraminic acid derivatives which are typically found at the outermost end of glycan chains on the membrane in all cell types. The role of erythrocyte membrane sialic acids during aging has been established however the relationship between sialic acid and oxidative stress is not fully understood. The present work was undertaken to analyze the relationship between erythrocyte membrane sialic acid with its plasma level, membrane and plasma lipid hydroperoxide levels and plasma total antioxidant capacity. Results show that sialic acid content decreases significantly (P < 0.001) in RBC membrane (r = −0.901) and increases in plasma (r = 0.860) as a function of age in humans. Lipid peroxidation measured in the form of hydroperoxides increases significantly (P < 0.001) in plasma (r = 0.830) and RBC membranes (r = 0.875) with age in humans. The Trolox Equivalent Total Antioxidant Capacity (TETAC) of plasma was found to be significantly decreased (P < 0.001, r = −0.844). We observe significant correlations between decrease of erythrocyte membrane sialic acid and plasma lipid hydroperoxide and TETAC. Based on the observed correlations, we hypothesize that increase in oxidative stress during aging may influence the sialic acid decomposition from membrane thereby altering the membrane configuration affecting many enzymatic and transporter activities. Considering the importance of plasma sialic acid as a diagnostic parameter, it is important to establish age-dependent reference. PMID:22377734

  3. Telomere shortening correlates with increasing aneuploidy of chromosome 8 in human hepatocellular carcinoma.

    PubMed

    Plentz, Ruben R; Schlegelberger, Brigitte; Flemming, Peer; Gebel, Michael; Kreipe, Hans; Manns, Michael P; Rudolph, K Lenhard; Wilkens, Ludwig

    2005-09-01

    Chromosomal instability (CIN) leads to an increase in aneuploidy and chromosomal aberrations in human hepatocellular carcinoma (HCC). Telomere shortening appears as one mechanism fostering the development of CIN. Whether telomere shortening correlates to specific genetic changes that characterize a certain type of cancer has yet to be established. In our recent study, we combined on a cellular level the analysis of hepatocellular telomere fluorescent intensity (TFI) and copy number of chromosome 8-one of the hallmark chromosomal alterations in hepatocellular carcinoma (HCC). We investigated 15 cytological fine-needle biopsies of aneuploid HCC and 5 touch prints of cadaver livers without cancer. Hepatocyte-specific TFI and the measurement of centromere-specific probe for chromosome 8 were both performed by quantitative fluorescence in situ hybridization (qFISH) or FISH. Combined analysis of both methods (coFISH) allowed measurement of telomere length and chromosome 8 copy number on a single cell level. We observed that telomere shortening correlates significantly with increasing copy number of chromosome 8 in HCC on the cellular level. Above the level of 5 copies of chromosome 8 per nucleus, no further shortening of telomeres was found, indicating that telomeres had reached a critically short length at this stage of aneuploidy. In conclusion, our study gives direct evidence that telomere shortening is linked to a specific genetic alteration characteristic for human HCC. PMID:16116624

  4. BDNF promoter I methylation correlates between post-mortem human peripheral and brain tissues.

    PubMed

    Stenz, Ludwig; Zewdie, Seblewongel; Laforge-Escarra, Térèse; Prados, Julien; La Harpe, Romano; Dayer, Alexandre; Paoloni-Giacobino, Ariane; Perroud, Nader; Aubry, Jean-Michel

    2015-02-01

    Several psychiatric disorders have been associated with CpG methylation changes in CG rich promoters of the brain-derived neurotrophic factor (BDNF) mainly by extracting DNA from peripheral blood cells. Whether changes in peripheral DNA methylation can be used as a proxy for brain-specific alterations remains an open question. In this study we aimed to compare DNA methylation levels in BDNF promoter regions in human blood cells, muscle and brain regions using bisulfite-pyrosequencing. We found a significant correlation between the levels of BDNF promoter I methylation measured in quadriceps and vPFC tissues extracted from the same individuals (n = 98, Pearson, r = 0.48, p = 4.5 × 10(-7)). In the hippocampus, BDNF promoter I and IV methylation levels were strongly correlated (Pearson, n = 37, r = 0.74, p = 1.4 × 10(-7)). We found evidence for sex-dependent effect on BDNF promoter methylation levels in the various tissues and blood samples. Taken together, these data indicate a strong intra-individual correlation between peripheral and brain tissue. They also suggest that sex determines methylation patterns in BDNF promoter region across different types of tissue, including muscle, brain, and blood. PMID:25450314

  5. A correlative review of acetylcholine synthesis in relation to histopathology of the human syncytiotrophoblast.

    PubMed

    Satyanarayana, M

    1986-01-01

    Acetylcholine (ACh) is localized in the syncytiotrophoblast layer of the human placental villous tissue. An attempt was made to correlate the ACh synthesis in different pathological placentas with the histopathology of the syncytiotrophoblast available in the literature. The ACh synthesis was estimated by 'in vitro' incubation of the placental tissue. Full-term (36-38 weeks) vaginally delivered pathological placentas and hydatid moles (28 weeks) were compared with normal placentas of the same age. The results suggested that: ACh synthesis is normal in states with normal syncytiotrophoblast (e.g., healthy greater than 42 week placenta, placenta praevia, twins, and hydramnios); high ACh synthesis is correlated with hormonal and immunological changes (e.g., diabetes mellitus and Rh-incompatibility); low levels of ACh synthesis occur in states with moderate syncytial degeneration (e.g., nephrotic syndrome and essential hypertension); very poor ACh synthesis occurs when syncytial degeneration is advanced (e.g., preeclampsia, eclampsia, intra-uterine death of fetus, vesicles of hydatid mole and placental tissue infarcts); and ACh synthesis is nil in material that is completely devoid of syncytiotrophoblast (e.g., placental tissue-like material, which rarely appears in between the vesicles of hydatid moles). In essence, the degree of reduction in ACh synthesis seems to correlate with the state of the syncytiotrophoblast in various pathological conditions; and ACh synthesis is greatly reduced during syncytial degeneration. It is concluded that the capacity of the placenta to synthesize ACh reflects the state of the syncytiotrophoblast. PMID:3799152

  6. Multiparametric MRI Assessment of Human Articular Cartilage Degeneration: Correlation with Quantitative Histology and Mechanical Properties

    PubMed Central

    Rautiainen, Jari; Nissi, Mikko J.; Salo, Elli-Noora; Tiitu, Virpi; Finnilä, Mikko A.J.; Aho, Olli-Matti; Saarakkala, Simo; Lehenkari, Petri; Ellermann, Jutta; Nieminen, Miika T.

    2014-01-01

    Purpose To evaluate the sensitivity of quantitative MRI techniques (T1, T1,Gd, T2, continous wave (CW) T1ρ dispersion, adiabatic T1ρ, adiabatic T2ρ, RAFF and inversion-prepared magnetization transfer (MT)) for assessment of human articular cartilage with varying degrees of natural degeneration. Methods Osteochondral samples (n = 14) were obtained from the tibial plateaus of patients undergoing total knee replacement. MRI of the specimens was performed at 9.4 T and the relaxation time maps were evaluated in the cartilage zones. For reference, quantitative histology, OARSI grading and biomechanical measurements were performed and correlated with MRI findings. Results All MRI parameters, except T1,Gd, showed statistically significant differences in tangential and full-thickness ROIs between early and advanced osteoarthritis (OA) groups, as classified by OARSI grading. CW-T1ρ showed significant dispersion in all ROIs and featured classical laminar structure of cartilage with spin-lock powers below 1000 Hz. Adiabatic T1ρ, T2ρ, CW-T1ρ, MT and RAFF correlated strongly with OARSI grade and biomechanical parameters. Conclusion MRI parameters were able to differentiate between early and advanced OA. Furthermore, rotating frame methods, namely adiabatic T1ρ, adiabatic T2ρ, CW-T1ρ and RAFF, as well as MT experiment correlated strongly with biomechanical parameters and OARSI grade, suggesting high sensitivity of the parameters for cartilage degeneration. PMID:25104181

  7. Correlates of cortisol in human hair: implications for epidemiologic studies on health effects of chronic stress.

    PubMed

    Wosu, Adaeze C; Valdimarsdóttir, Unnur; Shields, Alexandra E; Williams, David R; Williams, Michelle A

    2013-12-01

    Assessment of cortisol concentrations in hair is one of the latest innovations for measuring long-term cortisol exposure. We performed a systematic review of correlates of cortisol in human hair to inform the design, analysis, and interpretation of future epidemiologic studies. Relevant publications were identified through electronic searches on PubMed, WorldCat, and Web of Science using keywords, "cortisol," "hair," "confounders," "chronic," "stress," and "correlates." Thirty-nine studies were included in this review. Notwithstanding scarce data and some inconsistencies, investigators have found hair cortisol concentrations to be associated with stress-related psychiatric symptoms and disorders (e.g., post-traumatic stress disorder), medical conditions indicating chronic activation of the hypothalamic-pituitary-adrenal axis (e.g., Cushing's syndrome), and other life situations associated with elevated risk of chronic stress (e.g., shiftwork). Results from some studies suggest that physical activity, adiposity, and substance abuse may be correlates of hair cortisol concentrations. In contrast to measures of short-term cortisol release (saliva, blood, and urine), cigarette smoking and use of oral contraceptives appear not to be associated with hair cortisol concentrations. Studies of pregnant women indicate increased hair cortisol concentrations across successive trimesters. The study of hair cortisol presents a unique opportunity to assess chronic alterations in cortisol concentrations in epidemiologic studies. PMID:24184029

  8. Correlates of Cortisol in Human Hair: Implications for Epidemiologic Studies on Health Effects of Chronic Stress

    PubMed Central

    Wosu, Adaeze C.; Valdimarsdóttir, Unnur; Shields, Alexandra E.; Williams, David R.; Williams, Michelle A.

    2013-01-01

    Assessment of cortisol concentrations in hair is one of the latest innovations for measuring long-term cortisol exposure. We performed a systematic review of correlates of cortisol in human hair to inform the design, analysis and interpretation of future epidemiologic studies. Relevant publications were identified through electronic searches on PubMed, WorldCat, and Web of Science using keywords, “cortisol” “hair” “confounders” “chronic” “stress” and “correlates.” Thirty-nine studies were included in this review. Notwithstanding scarce data and some inconsistencies, investigators have found hair cortisol concentrations to be associated with stress-related psychiatric symptoms and disorders (e.g., PTSD), medical conditions indicating chronic activation of the hypothalamic-pituitary-adrenal axis (e.g., Cushing´s syndrome) and other life situations associated with elevated risk of chronic stress (e.g., shiftwork). Results from some studies suggest that physical activity, adiposity, and substance abuse may be correlates of hair cortisol concentrations. In contrast to measures of short-term cortisol release (saliva, blood, and urine), cigarette smoking and use of oral contraceptives appear to not be associated with hair cortisol concentrations. Studies of pregnant women indicate increased hair cortisol concentrations across successive trimesters. The study of hair cortisol presents a unique opportunity to assess chronic alterations in cortisol concentrations in epidemiologic studies. PMID:24184029

  9. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties.

    PubMed

    Bae, Won C; Chen, Peter C; Chung, Christine B; Masuda, Koichi; D'Lima, Darryl; Du, Jiang

    2012-04-01

    In this study we describe the use of ultrashort echo time (UTE) magnetic resonance imaging (MRI) to evaluate short and long T2* components as well as the water content of cortical bone. Fourteen human cadaveric distal femur and proximal tibia were sectioned to produce 44 rectangular slabs of cortical bone for quantitative UTE MR imaging, microcomputed tomography (µCT), and biomechanical testing. A two-dimensional (2D) UTE pulse sequence with a minimal nominal TE of 8 µseconds was used together with bicomponent analysis to quantify the bound and free water in cortical bone using a clinical 3T scanner. Total water concentration was measured using a 3D UTE sequence together with a reference water phantom. UTE MR measures of water content (total, free, and bound), T2* (short and long), and short and long T2* fractions were compared with porosity assessed with µCT, as well as elastic (modulus, yield stress, and strain) and failure (ultimate stress, failure strain, and energy) properties, using Pearson correlation. Porosity significantly correlated positively with total (R(2)  = 0.23; p < 0.01) and free (R(2)  = 0.31; p < 0.001) water content as well as long T2* fraction (R(2)  = 0.25; p < 0.001), and negatively with short T2* fraction and short T2* (R(2)  = 0.24; p < 0.01). Failure strain significantly correlated positively with short T2* (R(2)  = 0.29; p < 0.001), ultimate stress significantly correlated negatively with total (R(2)  = 0.25; p < 0.001) and bound (R(2)  = 0.22; p < 0.01) water content, and failure energy significantly correlated positively with both short (R(2)  = 0 30; p < 0.001) and long (R(2)  = 0.17; p < 0.01) T2* values. These results suggest that UTE MR measures are sensitive to the structure and failure properties of human cortical bone, and may provide a novel way of evaluating cortical bone quality. PMID:22190232

  10. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors

    NASA Astrophysics Data System (ADS)

    LIU, Y.; Li, S.

    2015-12-01

    Abstract: Changes in vegetation activity are driven by multiple natural and anthropogenic factors, which can be reflected by Normalized Difference Vegetation Index (NDVI) derived from satellite. In this paper, NDVI trends from 1982 to 2012 are first estimated by the Theil-Sen median slope method to explore their spatial and temporal patterns. Then the impact of climate variables and human activity on the observed NDVI trends is analyzed. Our results show on average NDVI increased by 0.46×10-3 per year from 1982 to 2012 globally with decadal variations. For most regions of the world, a greening (increasing) - browning(decreasing) - greening (G-B-G) trend is observed over the periods 1982-2004, 1995-2004, and 2005-2012, respectively. A positive partial correlation of NDVI and temperature is observed in the first period but it decreases and occasionally becomes negative in the following periods, especially in the Humid Temperate and Dry Domain Regions. This suggests a weakened effect of temperature on vegetation growth. Precipitation, on the other hand, is found to have a positive impact on the NDVI trend. This effect becomes stronger in the third period of 1995-2004, especially in the Dry Domain Region. Anthropogenic effects and human activities, derived here from the Human Footprint Dataset and the associated Human Influence Index (HII), have varied impacts on the magnitude (absolute value) of the NDVI trends across continents. Significant positive effects are found in Asia, Africa, and Europe, suggesting that intensive human activity could accelerate the change in NDVI and vegetation. A more accurate attribution of vegetation change to specific climatic and anthropogenic factors is instrumental to understand vegetation dynamics and requires further research.

  11. Diffusion MRI properties of the human uncinate fasciculus correlate with the ability to learn visual associations.

    PubMed

    Thomas, Cibu; Avram, Alexandru; Pierpaoli, Carlo; Baker, Chris

    2015-11-01

    The uncinate fasciculus (UF) is a cortico-cortico white matter pathway that links the anterior temporal and the orbitofrontal cortex (OFC). In the monkey, transection of the UF causes significant impairments in learning conditional visual-visual associations, while object discrimination remains intact, suggesting an important role for the UF in mediating the learning of complex visual associations. Whether this functional role extends to the human UF has not been tested directly. Here, we used diffusion tensor magnetic resonance imaging (dMRI) and behavioral experiments to examine the relation between learning visual associations and the structural properties of the human UF. In a group of healthy adults, we segmented the UF and the inferior longitudinal fasciculus (ILF) and derived dMRI measures of the structural properties of the two pathways. We also used a behavioral experiment adapted from the monkey studies to characterize the ability of these individuals to learn to associate a person's face with a group of specific scenes (conditional visual-visual association). We then tested whether the variability in the dMRI measures of the two pathways correlated with variability in the ability to rapidly learn the face-place associations. Our study suggests that in the human, the left UF may be important for mediating the rapid learning of conditional visual-visual associations whereas the right UF may play an important role in the immediate retrieval of visual-visual associations. These results provide preliminary evidence suggesting similarities and differences in the functional role of the UF in monkeys compared to humans. The findings presented here contribute to our understanding of the functional role of the UF in humans and the functional neuroanatomy of the brain networks involved in visual cognition. PMID:25742710

  12. Alterations of p53 in tumorigenic human bronchial epithelial cells correlate with metastatic potential

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    1999-01-01

    The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.

  13. Alpha1-antichymotrypsin activity correlates with and may modulate matrix metalloproteinase-9 in human acute wounds.

    PubMed

    Reiss, Matthew J; Han, Yuan-Ping; Garner, Warren L

    2009-01-01

    Matrix metalloproteinase-9 (MMP-9) plays a central role in many physiologic processes including acute and the chronic wounds. MMP-9 is not routinely expressed in healthy tissues but is promptly expressed as a proenzyme and converted into active enzyme after tissue injury. The mechanisms involved, including the activators and inhibitors for this enzyme in human tissue remain largely obscure. We recently identified alpha1-antichymotrypsin (alpha1-ACT), an acute phase factor, as a potent inhibitor controlling activation of pro-MMP-9 by human skin. The aim of this study is to establish the clinical relevance of the inhibitor in cutaneous wound healing. Fluids from acute burn blisters and conditioned media from skin explants of burn patients were analyzed. We observed that the presence pro-MMP-9 and its activation correlated with the proximity to and degree of injury. Early after trauma, massive levels of wound alpha1-ACT were associated with an absence of pro-MMP-9 activation. Conversely, the active MMP-9 occurs simultaneously with inactivation of alpha1-ACT. Our results suggest a role for alpha1-ACT as a physiologic inhibitor of MMP-9 activation in human wound healing. PMID:19660051

  14. Correlations between Synaptic Initiation and Meiotic Recombination: A Study of Humans and Mice

    PubMed Central

    Gruhn, Jennifer R.; Al-Asmar, Nasser; Fasnacht, Rachael; Maylor-Hagen, Heather; Peinado, Vanessa; Rubio, Carmen; Broman, Karl W.; Hunt, Patricia A.; Hassold, Terry

    2016-01-01

    Meiotic recombination is initiated by programmed double strand breaks (DSBs), only a small subset of which are resolved into crossovers (COs). The mechanism determining the location of these COs is not well understood. Studies in plants, fungi, and insects indicate that the same genomic regions are involved in synaptic initiation and COs, suggesting that early homolog alignment is correlated with the eventual resolution of DSBs as COs. It is generally assumed that this relationship extends to mammals, but little effort has been made to test this idea. Accordingly, we conducted an analysis of synaptic initiation sites (SISs) and COs in human and mouse spermatocytes and oocytes. In contrast to our expectation, we observed remarkable sex- and species-specific differences, including pronounced differences between human males and females in both the number and chromosomal location of SISs. Further, the combined data from our studies in mice and humans suggest that the relationship between SISs and COs in mammals is a complex one that is not dictated by the sites of synaptic initiation as reported in other organisms, although it is clearly influenced by them. PMID:26749305

  15. An Empirical Research on the Correlation between Human Capital and Career Success of Knowledge Workers in Enterprise

    NASA Astrophysics Data System (ADS)

    Guo, Wenchen; Xiao, Hongjun; Yang, Xi

    Human capital plays an important part in employability of knowledge workers, also it is the important intangible assets of company. This paper explores the correlation between human capital and career success of knowledge workers. Based on literature retrieval, we identified measuring tool of career success and modified further; measuring human capital with self-developed scale of high reliability and validity. After exploratory factor analysis, we suggest that human capital contents four dimensions, including education, work experience, learning ability and training; career success contents three dimensions, including perceived internal competitiveness of organization, perceived external competitiveness of organization and career satisfaction. The result of empirical analysis indicates that there is a positive correlation between human capital and career success, and human capital is an excellent predictor of career success beyond demographics variables.

  16. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype.

    PubMed

    Kohn, Kurt W; Zeeberg, Barry M; Reinhold, William C; Pommier, Yves

    2014-01-01

    Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute's CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1); interactions at adherens junctions (CDH1, ADAP1, CAMSAP3); interactions at desmosomes (PPL, PKP3, JUP); transcription regulation of cell-cell junction complexes (GRHL1 and 2); epithelial RNA splicing regulators (ESRP1 and 2); epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B); epithelial Ca(+2) signaling (ATP2C2, S100A14, BSPRY); terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2); maintenance of apico-basal polarity (RAB25, LLGL2, EPN3). The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets. PMID:24940735

  17. Loss of pluripotency in human embryonic stem cells directly correlates with an increase in nuclear zinc.

    SciTech Connect

    Finney, L.; Vogt, S.; Wolford, J. L.; Chishti, Y.; Jin, Q.; Ward, J.; Chen, L.

    2010-01-01

    The pluripotency of human embryonic stem cells (hESCs) is important to investigations of early development and to cell replacement therapy, but the mechanism behind pluripotency is incompletely understood. Zinc has been shown to play a key role in differentiation of non-pluripotent cell types, but here its role in hESCs is directly examined. By mapping the distribution of metals in hESCs at high resolution by x-ray fluorescence microprobe (XFM) and by analyzing subcellular metal content, we have found evidence that loss of pluripotency is directly correlated with an increase in nuclear zinc. Zinc elevation not only redefines our understanding of the mechanisms that support pluripotency, but also may act as a biomarker and an intervention point for stem cell differentiation.

  18. Correlation of mast cells in different stages of human periodontal diseases: Pilot study

    PubMed Central

    Agrawal, Raina; Gupta, Jagriti; Gupta, Krishna Kumar; Kumar, Vinod

    2016-01-01

    Aims and Objectives: The aim of this study was to evaluate and correlate the relationship between mast cells counts and different stages of human periodontal diseases. Materials and Methods: The study sample comprised 50 patients, which were divided into three groups, consisting of 10 cases of clinically healthy gingival tissues (control group) 20 cases of dental plaque-induced gingivitis with no attachment loss and 20 cases of localized chronic periodontitis (LCP) characterized by the loss of periodontal support. The samples for control group were obtained during tooth extractions for orthodontic reasons. The specimens were immediately fixed in 10% neutral buffered formalin. Conclusion: In this study, LCP cases had higher mast cell counts compared to gingivitis sites or healthy tissues. Increased mast cell counts in the progressing sites of periodontal diseases may indicate the importance of these cells in the progression of chronic periodontitis. PMID:27194868

  19. DNA fragmentation induced by fe ions in human cells: shielding influence on spatially correlated damage

    SciTech Connect

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M.A.

    2003-11-19

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used small gamma, Greek-rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by small gamma, Greek-rays in the size range 123 kbp; (3) a non-random DNA DSB induction by Fe ions.

  20. Correlation of external ear auricle formation with staging of human embryos.

    PubMed

    Ozeki-Sato, Maimi; Yamada, Shigehito; Uwabe, Chigako; Ishizu, Koichi; Takakuwa, Tetsuya

    2016-03-01

    The formation of auricles in human embryos was evaluated between Carnegie stage (CS)19 and CS23, and the findings were correlated across the stages. The auricle was categorized into 11 steps according to Streeter's criteria with modifications. Mesenchyme cell condensation was observed at Step 7, and two layers of cartilage consisting of the auricle were recognized at Step11. The representative steps at each CS shifted from Step 3 to Step11 during CS16 and CS23, although several steps overlapped between adjacent CSs. These results indicate that observations of the auricle between CS19 and CS23 may be utilized for determining embryo staging as convincing supportive evidence of external features reflecting the internal histological structure, although other findings should also be taken into account. PMID:26508543

  1. Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations.

    PubMed Central

    Delaney, S J; Alton, E W; Smith, S N; Lunn, D P; Farley, R; Lovelock, P K; Thomson, S A; Hume, D A; Lamb, D; Porteous, D J; Dorin, J R; Wainwright, B J

    1996-01-01

    We have generated a mouse carrying the human G551D mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR) by a one-step gene targeting procedure. These mutant mice show cystic fibrosis pathology but have a reduced risk of fatal intestinal blockage compared with 'null' mutants, in keeping with the reduced incidence of meconium ileus in G551D patients. The G551D mutant mice show greatly reduced CFTR-related chloride transport, displaying activity intermediate between that of cftr(mlUNC) replacement ('null') and cftr(mlHGU) insertional (residual activity) mutants and equivalent to approximately 4% of wild-type CFTR activity. The long-term survival of these animals should provide an excellent model with which to study cystic fibrosis, and they illustrate the value of mouse models carrying relevant mutations for examining genotype-phenotype correlations. Images PMID:8605891

  2. DNA fragmentation induced by Fe ions in human cells: shielding influence on spatially correlated damage

    NASA Technical Reports Server (NTRS)

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M. A.

    2004-01-01

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  3. Perfect genetic correlation between number of offspring and grandoffspring in an industrialized human population

    PubMed Central

    Zietsch, Brendan P.; Kuja-Halkola, Ralf; Walum, Hasse; Verweij, Karin J. H.

    2014-01-01

    Reproductive success is widely used as a measure of fitness. However, offspring quantity may not reflect the genetic contribution to subsequent generations if there is nonrandom variation in offspring quality. Offspring quality is likely to be an important component of human fitness, and tradeoffs between offspring quantity and quality have been reported. As such, studies using offspring quantity as a proxy for fitness may yield erroneous projections of evolutionary change, for example if there is little or no genetic variance in number of grandoffspring or if its genetic variance is to some extent independent of the genetic variance in number of offspring. To address this, we performed a quantitative genetic analysis on the reproductive history of 16,268 Swedish twins born between 1915 and 1929 and their offspring. There was significant sex limitation in the sources of familial variation, but the magnitudes of the genetic and environmental effects were the same in males and females. We found significant genetic variation in number of offspring and grandoffspring (heritability = 24% and 16%, respectively), and genetic variation in the two variables completely overlapped—i.e., there was a perfect genetic correlation between number of offspring and grandoffspring. Shared environment played a smaller but significant role in number of offspring and grandoffspring; again, there was a perfect shared environmental correlation between the two variables. These findings support the use of lifetime reproductive success as a proxy for fitness in populations like the one used here, but we caution against generalizing this conclusion to other kinds of human societies. PMID:24395780

  4. Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory

    PubMed Central

    Milad, Mohammed R.; Quinn, Brian T.; Pitman, Roger K.; Orr, Scott P.; Fischl, Bruce; Rauch, Scott L.

    2005-01-01

    The ventromedial prefrontal cortex (vmPFC) has been implicated in fear extinction [Phelps, E. A., Delgado, M. R., Nearing, K. I. & Ledoux, J. E. (2004) Neuron 43, 897-905; Herry, C. & Garcia, R. (2003) Behav. Brain Res. 146, 89-96]. Here, we test the hypothesis that the cortical thickness of vmPFC regions is associated with how well healthy humans retain their extinction memory a day after having been conditioned and then extinguished. Fourteen participants underwent a 2-day fear conditioning and extinction protocol. The conditioned stimuli (CSs) were pictures of virtual lights, and the unconditioned stimulus (US) was an electric shock. On day 1, participants received 5 CS+US pairings (conditioning), followed by 10 CS trials with no US (extinction). On day 2, the CS was presented alone to test for extinction memory. Skin conductance response (SCR) was the behavioral index of conditioning and extinction. Participants underwent MRI scans to obtain structural images, from which cortical thickness was measured. We performed a vertex-based analysis across the entire cortical surface and a region-of-interest analysis of a priori hypothesized territories to measure cortical thickness and map correlations between this measure and SCR. We found significant, direct correlation between thickness of the vmPFC, specifically medial orbitofrontal cortex, and extinction retention. That is, thicker medial orbitofrontal cortex was associated with lower SCR to the conditioned stimulus during extinction recall (i.e., greater extinction memory). These results suggest that the size of the vmPFC might explain individual differences in the ability to modulate fear among humans. PMID:16024728

  5. Enthalpic Forces Correlate with the Selectivity of Transthyretin-Stabilizing Ligands in Human Plasma.

    PubMed

    Iakovleva, Irina; Brännström, Kristoffer; Nilsson, Lina; Gharibyan, Anna L; Begum, Afshan; Anan, Intissar; Walfridsson, Malin; Sauer-Eriksson, A Elisabeth; Olofsson, Anders

    2015-08-27

    The plasma protein transthyretin (TTR) is linked to human amyloidosis. Dissociation of its native tetrameric assembly is a rate-limiting step in the conversion from a native structure into a pathological amyloidogenic fold. Binding of small molecule ligands within the thyroxine binding site of TTR can stabilize the tetrameric integrity and is a potential therapeutic approach. However, through the characterization of nine different tetramer-stabilizing ligands we found that unspecific binding to plasma components might significantly compromise ligand efficacy. Surprisingly the binding strength between a particular ligand and TTR does not correlate well with its selectivity in plasma. However, through analysis of the thermodynamic signature using isothermal titration calorimetry we discovered a better correlation between selectivity and the enthalpic component of the interaction. This is of specific interest in the quest for more efficient TTR stabilizers, but a high selectivity is an almost universally desired feature within drug design and the finding might have wide-ranging implications for drug design. PMID:26214366

  6. The correlation between the frequency of sister-chromatid exchange and human reproductive hormones.

    PubMed

    Joseph-Lerner, N; Fejgin, M; Ben-Nun, I; Legum, C; Amiel, A

    1993-08-01

    Different frequencies of sister-chromatid exchanges (SCEs) during various stages of the menstrual cycle have previously been observed. We tested the hypothesis that sex hormones, particularly steroids, influence the frequency of SCEs in women undergoing ovulation induction for in vitro fertilization treatment. These women undergo extreme hormonal changes and therefore serve as a good model for testing the rate of genetic damage due to these changes. As controls, we tested fertile women with regular menstrual cycles who received no hormonal treatment. Peripheral lymphocytes were obtained during different stages of the normal and treated cycles. We examined SCE frequency as related to the different hormones of the reproductive cycle at each of the stages. In general, an increased SCE frequency was observed around ovulation time in the controls, and around the time of human chorionic gonadotropin administration in the group undergoing ovulation induction. However, in the latter group, SCE frequency was significantly higher. SCE frequency was positively correlated with the level of testosterone and FSH in the ovulation induction group, and positively correlated with the estradiol level in both groups. PMID:7687025

  7. Nicotinic acetylcholine receptor expression in human airway correlates with lung function.

    PubMed

    Lam, David Chi-Leung; Luo, Susan Yang; Fu, Kin-Hang; Lui, Macy Mei-Sze; Chan, Koon-Ho; Wistuba, Ignacio Ivans; Gao, Boning; Tsao, Sai-Wah; Ip, Mary Sau-Man; Minna, John Dorrance

    2016-02-01

    Nicotine and its derivatives, by binding to nicotinic acetylcholine receptors (nAChRs) on bronchial epithelial cells, can regulate cellular signaling and inflammatory processes. Delineation of nAChR subtypes and their responses to nicotine stimulation in bronchial epithelium may provide information for therapeutic targeting in smoking-related inflammation in the airway. Expression of nAChR subunit genes in 60 bronchial epithelial biopsies and immunohistochemical staining for the subcellular locations of nAChR subunit expression were evaluated. Seven human bronchial epithelial cell lines (HBECs) were exposed to nicotine in vitro for their response in nAChR subunit gene expression to nicotine exposure and removal. The relative normalized amount of expression of nAChR α4, α5, and α7 and immunohistochemical staining intensity of nAChR α4, α5, and β3 expression showed significant correlation with lung function parameters. Nicotine stimulation in HBECs resulted in transient increase in the levels of nAChR α5 and α6 but more sustained increase in nAChR α7 expression. nAChR expression in bronchial epithelium was found to correlate with lung function. Nicotine exposure in HBECs resulted in both short and longer term responses in nAChR subunit gene expression. These results gave insight into the potential of targeting nAChRs for therapy in smoking-related inflammation in the airway. PMID:26608528

  8. Transient activity in monkey area MT represents speed changes and is correlated with human behavioral performance.

    PubMed

    Traschütz, Andreas; Kreiter, Andreas K; Wegener, Detlef

    2015-02-01

    Neurons in the middle temporal area (MT) respond to motion onsets and speed changes with a transient-sustained firing pattern. The latency of the transient response has recently been shown to correlate with reaction time in a speed change detection task, but it is not known how the sign, the amplitude, and the latency of this response depend on the sign and the magnitude of a speed change, and whether these transients can be decoded to explain speed change detection behavior. To investigate this issue, we measured the neuronal representation of a wide range of positive and negative speed changes in area MT of fixating macaques and obtained three major findings. First, speed change transients not only reflect a neuron's absolute speed tuning but are shaped by an additional gain that scales the tuned response according to the magnitude of a relative speed change. Second, by means of a threshold model positive and negative population transients of a moderate number of MT neurons explain detection of both positive and negative speed changes, respectively, at a level comparable to human detection rates under identical visual stimulation. Third, like reaction times in a psychophysical model of velocity detection, speed change response latencies follow a power-law function of the absolute difference of a speed change. Both this neuronal representation and its close correlation with behavioral measures of speed change detection suggest that neuronal transients in area MT facilitate the detection of rapid changes in visual input. PMID:25392161

  9. Behavioral and genetic correlates of the neural response to infant crying among human fathers.

    PubMed

    Mascaro, Jennifer S; Hackett, Patrick D; Gouzoules, Harold; Lori, Adriana; Rilling, James K

    2014-11-01

    Although evolution has shaped human infant crying and the corresponding response from caregivers, there is marked variation in paternal involvement and caretaking behavior, highlighting the importance of understanding the neurobiology supporting optimal paternal responses to cries. We explored the neural response to infant cries in fathers of children aged 1-2, and its relationship with hormone levels, variation in the androgen receptor (AR) gene, parental attitudes and parental behavior. Although number of AR CAG trinucleotide repeats was positively correlated with neural activity in brain regions important for empathy (anterior insula and inferior frontal gyrus), restrictive attitudes were inversely correlated with neural activity in these regions and with regions involved with emotion regulation (orbitofrontal cortex). Anterior insula activity had a non-linear relationship with paternal caregiving, such that fathers with intermediate activation were most involved. These results suggest that restrictive attitudes may be associated with decreased empathy and emotion regulation in response to a child in distress, and that moderate anterior insula activity reflects an optimal level of arousal that supports engaged fathering. PMID:24336349

  10. Correlates of human papillomavirus vaccine series completion among young adult female initiators

    PubMed Central

    Rahman, Mahbubur; Laz, Tabassum H; McGrath, Christine; Berenson, Abbey B

    2014-01-01

    Incomplete human papillomavirus (HPV) vaccination is a public health concern. The objective of this study was to examine the correlates of vaccine series completion among 18–26 year old US women using the Behavioral Risk Factor Surveillance System (BRFSS) data. Using BRFSS data collected during 2008–2010, we conducted multivariable logistic regression analysis to examine the correlates of HPV vaccine completion among HPV vaccine initiators. Among 656 women (18–26 years old) who initiated the HPV vaccine, the overall weighted vaccine series completion rate was 60.7%. It was 32.9%, 65.3%, and 69.9% in 2008, 2009, and 2010, respectively. Black and Hispanic women were less likely to complete the series compared with white women. Higher income, having a college degree and completion of the study in a more recent year were associated with higher completion rates. Thus, the reasons for HPV series non-completion may be multifactorial. Interventions targeting 18–26 year old female vaccine initiators with low income and education, and minority backgrounds may improve HPV vaccine series completion. PMID:25424919

  11. p53 mutations and human papillomavirus DNA in oral squamous cell carcinoma: correlation with apoptosis.

    PubMed Central

    Koh, J. Y.; Cho, N. P.; Kong, G.; Lee, J. D.; Yoon, K.

    1998-01-01

    Forty-two oral squamous cell carcinomas (SCCs) were analysed for p53 mutations and human papillomavirus (HPV) infection to examine the prevalency of these factors and correlation with apoptotic index (AI; number of apoptotic cells per 100 tumour cells) of the tumour tissue. In polymerase chain reaction (PCR)-Southern blot analysis, HPV DNAs were detected from 22 out of 42 SCCs (52%) with predominance of HPV-16 (68%). p53 mutations in exons 5-8, screened by nested PCR-single-strand conformation polymorphism (PCR-SSCP) analysis, were observed in 16 of 42 tumours (38%). The state of the p53 gene did not show any correlation with HPV infection. The terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labelling (TUNEL) method was used for detection of apoptotic cells. The mean AI was 2.35, ranging from 0.31 to 6.63. SCCs associated with p53 mutation had significantly lower AI than those without p53 mutation (P < 0.01), whereas no difference in AI was found between SCCs with and without HPV infection. The results of this study confirmed that HPV infection and/or p53 mutations are implicated, but are not mutually exclusive events, in carcinogenesis of oral SCC and also showed that decrease in apoptosis is more closely related to p53 mutation than HPV infection. Images Figure 1 Figure 2 Figure 3 PMID:9703282

  12. Remembering forward: Neural correlates of memory and prediction in human motor adaptation

    PubMed Central

    Scheidt, Robert A; Zimbelman, Janice L; Salowitz, Nicole M G; Suminski, Aaron J; Mosier, Kristine M; Houk, James; Simo, Lucia

    2011-01-01

    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions - including prefrontal, parietal and hippocampal cortices - exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancellation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures. PMID:21840405

  13. Human Papillomavirus Load Measured by Linear Array Correlates with Quantitative PCR in Cervical Cytology Specimens

    PubMed Central

    Gravitt, Patti E.; Long, Rodney; Schiffman, Mark; Dunn, S. Terence; Carreon, J. Daniel; Allen, Richard A.; Gunja, Munira; Zuna, Rosemary E.; Sherman, Mark E.; Gold, Michael A.; Walker, Joan L.; Wang, Sophia S.

    2012-01-01

    Carcinogenic human papillomavirus (HPV) infections are necessary causes of most anogenital cancers. Viral load has been proposed as a marker for progression to cancer precursors but has been confirmed only for HPV16. Challenges in studying viral load are related to the lack of validated assays for a large number of genotypes. We compared viral load measured by Linear Array (LA) HPV genotyping with the gold standard, quantitative PCR (Q-PCR). LA genotyping and Q-PCR were performed in 143 cytology specimens from women referred to colposcopy. LA signal strength was measured by densitometry. Correlation coefficients and receiver operating characteristic (ROC) analyses were used to evaluate analytical and clinical performance. We observed a moderate to strong correlation between the two quantitative viral load measurements, ranging from an R value of 0.61 for HPV31 to an R value of 0.86 for HPV52. We also observed agreement between visual LA signal strength evaluation and Q-PCR. Both quantifications agreed on the disease stages with highest viral load, which varied by type (cervical intraepithelial neoplasia grade 2 [CIN2] for HPV52, CIN3 for HPV16 and HPV33, and cancer for HPV18 and HPV31). The area under the curve (AUC) for HPV16 Q-PCR at the CIN3 cutoff was 0.72 (P = 0.004), and the AUC for HPV18 LA at the CIN2 cutoff was 0.78 (P = 0.04). Quantification of LA signals correlates with the current gold standard for viral load, Q-PCR. Analyses of viral load need to address multiple infections and type attribution to evaluate whether viral load has clinical value beyond the established HPV16 finding. Our findings support conducting comprehensive studies of viral load and cervical cancer precursors using quantitative LA genotyping data. PMID:22337992

  14. Molecular patterns in human ulcerative colitis and correlation with response to infliximab

    PubMed Central

    Halloran, Brendan; Chang, Jessica; Shih, David Q.; McGovern, Dermot; Famulski, Konrad; Evaschesen, Chad; Fedorak, Richard N; Thiesen, Aducio; Targan, Stephan; Halloran, Philip F.

    2016-01-01

    Objective As a T cell-mediated disease of the colonic epithelium, ulcerative colitis (UC) is likely to share pathogenic elements with other T cell-mediated inflammatory diseases. Recently microarray analysis revealed large scale molecular changes in T cell-mediated rejection (TCMR) of kidney and heart transplants. We hypothesized that similar disturbances might be operating in UC and could provide insights into responsiveness to therapy. Methods We studied 56 colon biopsies from patients with colitis characterizing the clinical and histological features and using microarrays to defined the mRNA phenotype. We expressed the microarray results using previously defined pathogenesis-based transcript sets (PBTs). We also studied 48 published microarray files from human colon biopsies downloaded from the Gene Expression Omnibus (GEO) database, classified by response to infliximab therapy, to examine if the molecular measurements derived from our studies correlated with non-responsiveness to treatment. Results UC biopsies manifested coordinate transcript changes resembling rejecting transplants, with effector T cell, IFNG-induced, macrophage, and injury transcripts increasing while parenchymal transcripts decreased. The disturbance in gene expression, summarized as principal component 1 (PC1), correlated with conventional clinical and histologic assessments. When assessed in microarray results from published studies, the disturbance (PC1) predicted response to infliximab: patients with intense disturbance did not achieve clinical response, although quantitative improvement was seen even in many clinical non-responders. Similar changes were seen in Crohn's colitis. Conclusions The molecular phenotype of UC manifests a large scale coordinate disturbance reflecting changes in inflammatory cells and parenchymal elements that correlates with conventional features and predicts response to infliximab. PMID:25397893

  15. High expression of Sox10 correlates with tumor aggressiveness and poor prognosis in human nasopharyngeal carcinoma

    PubMed Central

    Zhao, Yu; Liu, Zhi-gang; Tang, Jiao; Zou, Ren-fang; Chen, Xiao-yan; Jiang, Guan-min; Qiu, Yan-fang; Wang, Hui

    2016-01-01

    Purpose The aim of the study was to detect the expression of Sox10 in human nasopharyngeal carcinoma (NPC) and investigate the relationship between its expression and the clinicopathological characteristics of NPC patients. Patients and methods Tumor specimens (n=105) were retrospectively collected from patients with NPC diagnosed between 2004 and 2005 who presented at Hunan Cancer Hospital. Immunohistochemistry analyses were performed to characterize the expression of Sox10 in NPC. Kaplan–Meier survival and Cox regression analyses were employed to evaluate the prognosis of 105 NPC patients. Results The results showed that Sox10 was markedly overexpressed in human NPC tissues. Analysis of clinicopathological parameters showed that high Sox10 expression was significantly correlated with the clinical stage (P=0.032), T classification (P=0.034), and lymph node metastasis (P=0.03). Cox regression analyses further showed that Sox10 expression was an independent prognostic factor for overall survival (P=0.005). This is the first time Sox10 has shown its importance in predicting NPC progressiveness and survival outcomes. Conclusion Sox10 serves as a potential biomarker for NPC patients. It may hopefully become a novel therapeutic target for NPC patients. PMID:27051302

  16. Angiogenic gene signature in human pancreatic cancer correlates with TGF-beta and inflammatory transcriptomes.

    PubMed

    Craven, Kelly E; Gore, Jesse; Wilson, Julie L; Korc, Murray

    2016-01-01

    Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, but overexpress pro-angiogenic factors and exhibit regions of microvasculature. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we previously reported that ~12% of PDACs have an angiogenesis gene signature with increased expression of multiple pro-angiogenic genes. By analyzing the recently expanded TCGA dataset, we now report that this signature is present in ~35% of PDACs but that it is mostly distinct from an angiogenesis signature present in pancreatic neuroendocrine tumors (PNETs). These PDACs exhibit a transcriptome that reflects active TGF-β signaling, and up-regulation of several pro-inflammatory genes, and many members of JAK signaling pathways. Moreover, expression of SMAD4 and HDAC9 correlates with endothelial cell abundance in PDAC tissues. Concomitantly targeting the TGF-β type I receptor (TβRI) kinase with SB505124 and JAK1-2 with ruxolitinib suppresses JAK1 phosphorylation and blocks proliferative cross-talk between human pancreatic cancer cells (PCCs) and human endothelial cells (ECs), and these anti-proliferative effects were mimicked by JAK1 silencing in ECs. By contrast, either inhibitor alone does not suppress their enhanced proliferation in 3D co-cultures. These findings suggest that targeting both TGF-β and JAK1 signaling could be explored therapeutically in the 35% of PDAC patients whose cancers exhibit an angiogenesis gene signature. PMID:26586478

  17. Auditory perceptual restoration and illusory continuity correlates in the human brainstem.

    PubMed

    Bidelman, Gavin M; Patro, Chhayakanta

    2016-09-01

    When noise obstructs portions of target sounds the auditory system fills in missing information, a phenomenon known as auditory restoration or induction. Previous work in animal models demonstrates that neurons in primary auditory cortex (A1) are capable of restoring occluded target signals suggesting that early auditory cortex is capable of inducing continuity in discontinuous signals (i.e., endogenous restoration). Current consensus is that the neural correlates of auditory induction and perceptual restoration emerge no earlier than A1. Moreover, the neural mechanisms supporting induction in humans are poorly understood. Here, we show that in human listeners, auditory brainstem nuclei support illusory auditory continuity well before engagement of cerebral cortex. We recorded brainstem responses to modulated target tones that did or did not promote illusory auditory percepts. Auditory continuity was manipulated by introducing masking noise or brief temporal interruptions in otherwise continuous tones. We found that auditory brainstem responses paralleled illusory continuity by tagging target sounds even when they were occluded by the auditory scene. Our results reveal (i) a pre-attentive, subcortical origin to a presumed cortical function and (ii) that brainstem signal processing helps partially cancel the negative effects of masking by restoring missing portions of auditory objects that are fragmented in the soundscape. PMID:27241211

  18. Testicular volume is inversely correlated with nurturing-related brain activity in human fathers.

    PubMed

    Mascaro, Jennifer S; Hackett, Patrick D; Rilling, James K

    2013-09-24

    Despite the well-documented benefits afforded the children of invested fathers in modern Western societies, some fathers choose not to invest in their children. Why do some men make this choice? Life History Theory offers an explanation for variation in parental investment by positing a trade-off between mating and parenting effort, which may explain some of the observed variance in human fathers' parenting behavior. We tested this hypothesis by measuring aspects of reproductive biology related to mating effort, as well as paternal nurturing behavior and the brain activity related to it. Both plasma testosterone levels and testes volume were independently inversely correlated with paternal caregiving. In response to viewing pictures of one's own child, activity in the ventral tegmental area--a key component of the mesolimbic dopamine reward and motivation system--predicted paternal caregiving and was negatively related to testes volume. Our results suggest that the biology of human males reflects a trade-off between mating effort and parenting effort, as indexed by testicular size and nurturing-related brain function, respectively. PMID:24019499

  19. Angiogenic gene signature in human pancreatic cancer correlates with TGF-beta and inflammatory transcriptomes

    PubMed Central

    Wilson, Julie L.; Korc, Murray

    2016-01-01

    Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, but overexpress pro-angiogenic factors and exhibit regions of microvasculature. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we previously reported that ∼12% of PDACs have an angiogenesis gene signature with increased expression of multiple pro-angiogenic genes. By analyzing the recently expanded TCGA dataset, we now report that this signature is present in ∼35% of PDACs but that it is mostly distinct from an angiogenesis signature present in pancreatic neuroendocrine tumors (PNETs). These PDACs exhibit a transcriptome that reflects active TGF-β signaling, and up-regulation of several pro-inflammatory genes, and many members of JAK signaling pathways. Moreover, expression of SMAD4 and HDAC9 correlates with endothelial cell abundance in PDAC tissues. Concomitantly targeting the TGF-β type I receptor (TβRI) kinase with SB505124 and JAK1-2 with ruxolitinib suppresses JAK1 phosphorylation and blocks proliferative cross-talk between human pancreatic cancer cells (PCCs) and human endothelial cells (ECs), and these anti-proliferative effects were mimicked by JAK1 silencing in ECs. By contrast, either inhibitor alone does not suppress their enhanced proliferation in 3D co-cultures. These findings suggest that targeting both TGF-β and JAK1 signaling could be explored therapeutically in the 35% of PDAC patients whose cancers exhibit an angiogenesis gene signature. PMID:26586478

  20. Spontaneous fast gamma activity in the septal hippocampal region correlates with spatial learning in humans.

    PubMed

    Cornwell, B R; Overstreet, C; Grillon, C

    2014-03-15

    Hippocampal neuronal populations exhibit multiple kinds of activity patterns, from the dominant theta rhythm during active exploration to high-frequency ripple-like activity during periods of relative inactivity. In animals, evidence is rapidly accruing that these high-frequency ripple activity patterns subserve retention of spatial learning performance. In a translational effort to address the possible function of offline hippocampal processes in humans, we measured spontaneous gamma activity during an awake rest period within a virtual spatial learning context. Whole-head magnetoencephalographic (MEG) recordings were taken while healthy participants (N=24) quietly rested (eyes open) between encoding and retrieval phases of a hippocampal-dependent virtual Morris water maze task. Results are that fast gamma activity (80-140 Hz) in the septal or posterior region of the hippocampus (bilaterally) was positively correlated across participants with subsequent within-session spatial learning rate. Fast gamma did not predict initial retrieval performance following rest, failing to provide evidence of a direct link between spontaneous high-frequency activity patterns during awake rest and consolidation of previous spatial memories. The findings nevertheless are consistent with a prospective role for offline human hippocampal processes in spatial learning and indicate that higher spontaneous gamma activity in the septal hippocampal region is related to faster updating of spatial knowledge in familiar virtual surroundings. PMID:24388977

  1. Correlating optical coherence elastography based strain measurements with collagen content of the human ovarian tissue

    PubMed Central

    Nandy, Sreyankar; Salehi, Hassan S.; Wang, Tianheng; Wang, Xiaohong; Sanders, Melinda; Kueck, Angela; Brewer, Molly; Zhu, Quing

    2015-01-01

    In this manuscript, the initial feasibility of a catheter based phase stabilized swept source optical coherence tomography (OCT) system was studied for characterization of the strain inside different human ovarian tissue groups. The ovarian tissue samples were periodically compressed with 500 Hz square wave signal along the axial direction between the surface of an unfocused transducer and a glass cover slide. The displacement and corresponding strain were calculated during loading from different locations for each tissue sample. A total of 27 ex vivo ovaries from 16 patients were investigated. Statistically significant difference (p < 0.001) was observed between the average displacement and strain of the normal and malignant tissue groups. A sensitivity of 93.2% and a specificity of 83% were achieved using 25 microstrain (με) as the threshold. The collagen content of the tissues was quantified from the Sirius Red stained histological sections. The average collagen area fraction (CAF) obtained from the tissue groups were found to have a strong negative correlation (R = −0.75, p < 0.0001) with the amount of strain inside the tissue. This indicates much softer and degenerated tissue structure for the malignant ovaries as compared to the dense, collagen rich structure of the normal ovarian tissue. The initial results indicate that the swept source OCT system can be useful for estimating the elasticity of the human ovarian tissue. PMID:26504631

  2. Correlating optical coherence elastography based strain measurements with collagen content of the human ovarian tissue.

    PubMed

    Nandy, Sreyankar; Salehi, Hassan S; Wang, Tianheng; Wang, Xiaohong; Sanders, Melinda; Kueck, Angela; Brewer, Molly; Zhu, Quing

    2015-10-01

    In this manuscript, the initial feasibility of a catheter based phase stabilized swept source optical coherence tomography (OCT) system was studied for characterization of the strain inside different human ovarian tissue groups. The ovarian tissue samples were periodically compressed with 500 Hz square wave signal along the axial direction between the surface of an unfocused transducer and a glass cover slide. The displacement and corresponding strain were calculated during loading from different locations for each tissue sample. A total of 27 ex vivo ovaries from 16 patients were investigated. Statistically significant difference (p < 0.001) was observed between the average displacement and strain of the normal and malignant tissue groups. A sensitivity of 93.2% and a specificity of 83% were achieved using 25 microstrain (με) as the threshold. The collagen content of the tissues was quantified from the Sirius Red stained histological sections. The average collagen area fraction (CAF) obtained from the tissue groups were found to have a strong negative correlation (R = -0.75, p < 0.0001) with the amount of strain inside the tissue. This indicates much softer and degenerated tissue structure for the malignant ovaries as compared to the dense, collagen rich structure of the normal ovarian tissue. The initial results indicate that the swept source OCT system can be useful for estimating the elasticity of the human ovarian tissue. PMID:26504631

  3. Hepatocellular telomere shortening correlates with chromosomal instability and the development of human hepatoma.

    PubMed

    Plentz, Ruben R; Caselitz, Martin; Bleck, Joerg S; Gebel, Michael; Flemming, Peer; Kubicka, Stefan; Manns, Michael P; Rudolph, K Lenhard

    2004-07-01

    The telomere hypothesis of cancer initiation indicates that telomere shortening initiates cancer by induction of chromosomal instability. To test whether this hypothesis applies to human hepatocellular carcinoma (HCC), we analyzed the telomere length of hepatocytes in cytological smears of fine-needle biopsies of liver tumors from patients with cirrhosis (n = 39). The tumors consisted of 24 HCC and 15 regenerative nodules as diagnosed by combined histological and cytological diagnostics. In addition, we analyzed the telomere length of hepatocytes in HCC and surrounding noncancerous liver tissue within individual patients in another cohort of 10 patients with cirrhosis. Telomere length analysis of hepatocytes was correlated with tumor pathology and ploidy grade of the tumors, which was analyzed by cytophotometry. Telomeres were significantly shortened in hepatocytes of HCC compared to hepatocytes in regenerative nodules or surrounding noncancerous liver tissue. Hepatocyte telomere shortening in HCC was independent of the patient's age. There was no overlap in mean telomere lengths of individual samples when comparing HCC with regenerative nodules or noncancerous surrounding liver. Within the HCC group, telomeres were significantly shorter in hepatocytes of aneuploid tumors compared to diploid tumors. In conclusion, our data suggest that the telomere hypothesis of cancer initiation applies to human HCC and that cell type-specific telomere length analysis might indicate the risk of HCC development. PMID:15239089

  4. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Zeitzer, J. M.; Czeisler, C. A.; Dijk, D. J.

    2000-01-01

    Light can elicit both circadian and acute physiological responses in humans. In a dose response protocol men and women were exposed to illuminances ranging from 3 to 9100 lux for 6.5 h during the early biological night after they had been exposed to <3 lux for several hours. Light exerted an acute alerting response as assessed by a reduction in the incidence of slow-eye movements, a reduction of EEG activity in the theta-alpha frequencies (power density in the 5-9 Hz range) as well as a reduction in self-reported sleepiness. This alerting response was positively correlated with the degree of melatonin suppression by light. In accordance with the dose response function for circadian resetting and melatonin suppression, the responses of all three indices of alertness to variations in illuminance were consistent with a logistic dose response curve. Half of the maximum alerting response to bright light of 9100 lux was obtained with room light of approximately 100 lux. This sensitivity to light indicates that variations in illuminance within the range of typical, ambient, room light (90-180 lux) can have a significant impact on subjective alertness and its electrophysiologic concomitants in humans during the early biological night.

  5. Neural Correlates of Vocal Production and Motor Control in Human Heschl's Gyrus

    PubMed Central

    Oya, Hiroyuki; Nourski, Kirill V.; Kawasaki, Hiroto; Larson, Charles R.; Brugge, John F.; Howard, Matthew A.; Greenlee, Jeremy D.W.

    2016-01-01

    The present study investigated how pitch frequency, a perceptually relevant aspect of periodicity in natural human vocalizations, is encoded in Heschl's gyrus (HG), and how this information may be used to influence vocal pitch motor control. We recorded local field potentials from multicontact depth electrodes implanted in HG of 14 neurosurgical epilepsy patients as they vocalized vowel sounds and received brief (200 ms) pitch perturbations at 100 Cents in their auditory feedback. Event-related band power responses to vocalizations showed sustained frequency following responses that tracked voice fundamental frequency (F0) and were significantly enhanced in posteromedial HG during speaking compared with when subjects listened to the playback of their own voice. In addition to frequency following responses, a transient response component within the high gamma frequency band (75–150 Hz) was identified. When this response followed the onset of vocalization, the magnitude of the response was the same for the speaking and playback conditions. In contrast, when this response followed a pitch shift, its magnitude was significantly enhanced during speaking compared with playback. We also observed that, in anterolateral HG, the power of high gamma responses to pitch shifts correlated with the magnitude of compensatory vocal responses. These findings demonstrate a functional parcellation of HG with neural activity that encodes pitch in natural human voice, distinguishes between self-generated and passively heard vocalizations, detects discrepancies between the intended and heard vocalization, and contains information about the resulting behavioral vocal compensations in response to auditory feedback pitch perturbations. SIGNIFICANCE STATEMENT The present study is a significant contribution to our understanding of sensor-motor mechanisms of vocal production and motor control. The findings demonstrate distinct functional parcellation of core and noncore areas within human

  6. Natural human antibodies to synthetic peptide autoantigens: correlations with age and autoimmune disease.

    PubMed

    Marchalonis, J J; Schluter, S F; Wilson, L; Yocum, D E; Boyer, J T; Kay, M M

    1993-01-01

    Clinically healthy humans as well as patients suffering from various autoimmune diseases produce natural antibodies against a variety of self-components. Such antibodies have been proposed to carry out a physiologic role in maintaining the integrity of self, as well as potentially destructive roles in the generation of autoimmune diseases. Because human autoantigens, particularly membrane proteins, are usually present in extremely small amounts, it is generally impossible to obtain enough to carry out a detailed characterization of the antibodies or the antigenic determinants recognized. To circumvent this difficulty, we developed synthetic autoantigens predicted from the gene sequence of two functionally critical membrane proteins; the band 3 anion transport protein which is found on all cells, and the T-cell receptor (beta chain) which is the antigen-specific receptor on thymus-derived lymphocytes. We have investigated the natural human IgM and IgG antibody responses to peptides selected on the basis of predicted molecular surface exposure and previously known antigenicity, and correlate levels of binding with changes in age and by comparison with autoimmune diseases. We report that the IgM response to synthetic autoantigens tends to be higher than that of IgG molecules, but significant IgG binding occurs to some peptides. This situation is particularly noticeable in comparison of rheumatoid arthritis patients with normal individuals. Distinct peptide portions of individual molecules are recognized differently by the autochthonous immune system as manifested by age dependence of the response and differential levels of IgM and IgG activity. The synthetic autoantigens that tend to generate the highest amounts of natural antibody are those that are either exposed on the surface of the cell (band 3 peptides) or are exposed in the predicted 3-dimensional folding of the molecule (T-cell receptor beta peptides). Rheumatoid arthritis patients tend to give higher Ig

  7. The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans

    PubMed Central

    Alsalman, Ola; Ost, Jan; Vanspauwen, Robby; Blaivie, Catherine; De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Vestibular signals are of significant importance for variable functions including gaze stabilization, spatial perception, navigation, cognition, and bodily self-consciousness. The vestibular network governs functions that might be impaired in patients affected with vestibular dysfunction. It is currently unclear how different brain regions/networks process vestibular information and integrate the information into a unified spatial percept related to somatosensory awareness and whether people with recurrent balance complaints have a neural signature as a trait affecting their development of chronic symptoms of vertigo. Pivotal evidence points to a vestibular-related brain network in humans that is widely distributed in nature. By using resting state source localized electroencephalography in non-vertiginous state, electrophysiological changes in activity and functional connectivity of 23 patients with balance complaints where chronic symptoms of vertigo and dizziness are among the most common reported complaints are analyzed and compared to healthy subjects. The analyses showed increased alpha2 activity within the posterior cingulate cortex and the precuneues/cuneus and reduced beta3 and gamma activity within the pregenual and subgenual anterior cingulate cortex for the subjects with balance complaints. These electrophysiological variations were correlated with reported chronic symptoms of vertigo intensity. A region of interest analysis found reduced functional connectivity for gamma activity within the vestibular cortex, precuneus, frontal eye field, intra-parietal sulcus, orbitofrontal cortex, and the dorsal anterior cingulate cortex. In addition, there was a positive correlation between chronic symptoms of vertigo intensity and increased alpha-gamma nesting in the left frontal eye field. When compared to healthy subjects, there is evidence of electrophysiological changes in the brain of patients with balance complaints even outside chronic symptoms of vertigo

  8. Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity

    PubMed Central

    Barrowman, Jemima; Wiley, Patricia A.; Hudon-Miller, Sarah E.; Hrycyna, Christine A.; Michaelis, Susan

    2012-01-01

    The zinc metalloprotease ZMPSTE24 plays a critical role in nuclear lamin biology by cleaving the prenylated and carboxylmethylated 15-amino acid tail from the C-terminus of prelamin A to yield mature lamin A. A defect in this proteolytic event, caused by a mutation in the lamin A gene (LMNA) that eliminates the ZMPSTE24 cleavage site, underlies the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS). Likewise, mutations in the ZMPSTE24 gene that result in decreased enzyme function cause a spectrum of diseases that share certain features of premature aging. Twenty human ZMPSTE24 alleles have been identified that are associated with three disease categories of increasing severity: mandibuloacral dysplasia type B (MAD-B), severe progeria (atypical ‘HGPS’) and restrictive dermopathy (RD). To determine whether a correlation exists between decreasing ZMPSTE24 protease activity and increasing disease severity, we expressed mutant alleles of ZMPSTE24 in yeast and optimized in vivo yeast mating assays to directly compare the activity of alleles associated with each disease category. We also measured the activity of yeast crude membranes containing the ZMPSTE24 mutant proteins in vitro. We determined that, in general, the residual activity of ZMPSTE24 patient alleles correlates with disease severity. Complete loss-of-function alleles are associated with RD, whereas retention of partial, measureable activity results in MAD-B or severe progeria. Importantly, our assays can discriminate small differences in activity among the mutants, confirming that the methods presented here will be useful for characterizing any new ZMPSTE24 mutations that are discovered. PMID:22718200

  9. Paclitaxel and beta-lapachone synergistically induce apoptosis in human retinoblastoma Y79 cells by downregulating the levels of phospho-Akt.

    PubMed

    D'Anneo, Antonella; Augello, Giuseppa; Santulli, Andrea; Giuliano, Michela; di Fiore, Riccardo; Messina, Concetta; Tesoriere, Giovanni; Vento, Renza

    2010-02-01

    Paclitaxel (PTX) and beta-lapachone (LPC) are naturally occurring compounds that have shown a large spectrum of anticancer activity. In this article we show for the first time that PTX/LPC combination induces potent synergistic apoptotic effects in human retinoblastoma Y79 cells. Combination of suboptimal doses of PTX (0.3 nM) and LPC (1.5 microM) caused biochemical and morphological signs of apoptosis at 48 h of treatment. These effects were accompanied by potent lowering in inhibitor of apoptosis proteins and by activation of Bid and caspases 3 and 6 with lamin B and PARP breakdown. PTX/LPC combination acted by favoring p53 stabilization through a lowering in p-Akt levels and in ps166-MDM2, the phosphorylated-MDM2 form that enters the nucleus and induces p53 export and degradation. Treatment with wortmannin or transfection with a dominant negative form of Akt anticipated at 24 h the effects induced by PTX/LPC, suggesting a protective role against apoptosis played by Akt in Y79 cells. In line with these results, we demonstrated that Y79 cells contain constitutively active Akt, which forms a cytosolic complex with p53 and MDM2 driving p53 degradation. PTX/LPC treatment induced a weakness of Akt-MDM2-p53 complex and increased nuclear p53 levels. Our results suggest that phospho-Akt lowering is at the root of the apoptotic action exerted by PTX/LPC combination and provide strong validation for a treatment approach that targets survival signals represented by phospho-Akt and inhibitor of apoptosis proteins. PMID:19918798

  10. In human retinoblastoma Y79 cells okadaic acid-parthenolide co-treatment induces synergistic apoptotic effects, with PTEN as a key player.

    PubMed

    Di Fiore, Riccardo; Drago-Ferrante, Rosa; D'Anneo, Antonella; Augello, Giuseppa; Carlisi, Daniela; De Blasio, Anna; Giuliano, Michela; Tesoriere, Giovanni; Vento, Renza

    2013-10-01

    Retinoblastoma is the most common intraocular malignancy of childhood. In developing countries, treatment is limited, long-term survival rates are low and current chemotherapy causes significant morbidity to pediatric patients and significantly limits dosing. Therefore there is an urgent need to identify new therapeutic strategies to improve the clinical outcome of patients with retinoblastoma. Here, we investigated the effects of two natural compounds okadaic acid (OKA) and parthenolide (PN) on human retinoblastoma Y79 cells. For the first time we showed that OKA/PN combination at subtoxic doses induces potent synergistic apoptotic effects accompanied by lowering in p-Akt levels, increasing in the stabilized forms of p53 and potent decrease in pS166-Mdm2. We also showed the key involvement of PTEN which, after OKA/PN treatment, potently increased before p53, thus suggesting that p53 activation was under PTEN action. Moreover, after PTEN-knockdown p-Akt/ pS166Mdm2 increased over basal levels and p53 significantly lowered, while OKA/PN treatment failed both to lower p-Akt and pS166-Mdm2 and to increase p53 below/over their basal levels respectively. OKA/PN treatment potently increased ROS levels whereas decreased those of GSH. Reducing cellular GSH by l-butathionine-[S,R]-sulfoximine treatment significantly anticipated the cytotoxic effect exerted by OKA/PN. Furthermore, the effects of OKA/PN treatment on both GSH content and cell viability were less pronounced in PTEN silenced cells than in control cells. The results provide strong suggestion for combining a treatment approach that targets the PTEN/Akt/Mdm2/p53 pathway. PMID:23938948

  11. Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy.

    PubMed

    Everall, I; Vaida, F; Khanlou, N; Lazzaretto, D; Achim, C; Letendre, S; Moore, D; Ellis, R; Cherner, M; Gelman, B; Morgello, S; Singer, E; Grant, I; Masliah, E

    2009-09-01

    The objective of this study was to examine the spectrum of human immunodeficiency virus (HIV) brain pathology and its clinical correlates in the antiretroviral era. We carried out a cross-sectional survey, analyzing prospective clinical and neuropathological data collected by the National NeuroAIDS Tissue Consortium (NNTC), comprising 589 brain samples from individuals with advanced HIV disease collected from 1999 onwards. We assessed gender, ethnicity/race, mode of transmission, age, year of death, nadir CD4, plasma viral load, last antiretroviral regimen, presence of parenchymal HIV brain pathology, HIV-associated neurocognitive disorder, and major depressive disorder. We compared cohort demographic variables with Centers for Disease Control and Prevention US HIV/AIDS statistics and examined associations of parenchymal HIV brain pathology with demographic, clinical, and HIV disease factors. With regard to Centers for Disease Control and Prevention US data, the NNTC was similar in age distribution, but had fewer females and African Americans and more Hispanics and men who have sex with men. Only 22% of the brains examined were neuropathologically normal. Opportunistic infections occurred in 1% to 5% of the cohort. Parenchymal HIV brain pathology was observed in 17.5% of the cohort and was associated with nadir CD4 and plasma viral load. Brains without parenchymal HIV brain pathology often had other noninfectious findings or minimal nondiagnostic abnormalities that were associated with HIV-associated neurocognitive disorder. Clinically, 60% of the cohort reported a lifetime episode of major depressive disorder and 88% had a HIV-associated neurocognitive disorder. No pathological finding correlated with major depressive disorder. Both antiretroviral treatment regimen and elevated plasma HIV viral load were associated with presence of parenchymal HIV brain pathology; however, multivariate analyses suggest a stronger association with plasma viral load. The frequency

  12. Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells123

    PubMed Central

    Lipchock, Sarah V; Mennella, Julie A; Spielman, Andrew I; Reed, Danielle R

    2013-01-01

    Background: Alleles of the receptor gene TAS2R38 are responsible in part for the variation in bitter taste perception of 6-n-propylthiouracil (PROP) and structurally similar compounds (eg, glucosinolates in cruciferous vegetables). At low concentrations, people with the PAV (“taster” amino acid sequence) form of TAS2R38 perceive these bitter compounds, whereas most with the AVI (“nontaster” amino acid sequence) form do not; heterozygotes (PAV/AVI) show the widest range of bitter perception. Objectives: The objectives were to examine individual differences in expression of PAV-TAS2R38 messenger RNA (mRNA) among heterozygotes, to test the hypotheses that the abundance of allele-specific gene expression accounts for the variation in human bitter taste perception, and to relate to dietary intake of bitter-tasting beverages and foods. Design: Heterozygous individuals (n = 22) provided psychophysical evaluation of the bitterness of PROP, glucosinolate-containing broccoli juice, non–glucosinolate-containing carrot juice, and several bitter non-TAS2R38 ligands as well as dietary recalls. Fungiform taste papillae were examined for allele-specific TAS2R38 expression by using quantitative polymerase chain reaction. Results: PAV-TAS2R38 mRNA expression was measured in 18 of 22 heterozygous subjects. Relative expression varied widely and positively correlated with ratings of bitterness intensity of PROP (P = 0.007) and broccoli juice (P = 0.004) but not of the control solutions carrot juice (P = 0.26), NaCl (P = 0.68), caffeine (P = 0.24), or urea (P = 0.47). Expression amounts were related to self-reported recent and habitual caffeine intake (P = 0.060, P = 0.005); vegetable intake was too low to analyze. Conclusions: We provide evidence that PAV-TAS2R38 expression amount correlates with individual differences in bitter sensory perception and diet. The nature of this correlation calls for additional research on the molecular mechanisms associated with some individual

  13. Bitter tastant responses in the amoeba Dictyostelium correlate with rat and human taste assays.

    PubMed

    Cocorocchio, Marco; Ives, Robert; Clapham, David; Andrews, Paul L R; Williams, Robin S B

    2016-01-01

    Treatment compliance is reduced when pharmaceutical compounds have a bitter taste and this is particularly marked for paediatric medications. Identification of bitter taste liability during drug discovery utilises the rat in vivo brief access taste aversion (BATA) test which apart from animal use is time consuming with limited throughput. We investigated the suitability of using a simple, non-animal model, the amoeba Dictyostelium discoideum to investigate taste-related responses and particularly identification of compounds with a bitter taste liability. The effect of taste-related compounds on Dictyostelium behaviour following acute exposure (15 minutes) was monitored. Dictyostelium did not respond to salty, sour, umami or sweet tasting compounds, however, cells rapidly responded to bitter tastants. Using time-lapse photography and computer-generated quantification to monitor changes in cell membrane movement, we developed an assay to assess the response of Dictyostelium to a wide range of structurally diverse known bitter compounds and blinded compounds. Dictyostelium showed varying responses to the bitter tastants, with IC50 values providing a rank order of potency. Comparison of Dictyostelium IC50 values to those observed in response to a similar range of compounds in the rat in vivo brief access taste aversion test showed a significant (p = 0.0172) positive correlation between the two models, and additionally a similar response to that provided by a human sensory panel assessment test. These experiments demonstrate that Dictyostelium may provide a suitable model for early prediction of bitterness for novel tastants and drugs. Interestingly, a response to bitter tastants appears conserved from single-celled amoebae to humans. PMID:26708104

  14. DDX3X Biomarker Correlates with Poor Survival in Human Gliomas

    PubMed Central

    Hueng, Dueng-Yuan; Tsai, Wen-Chiuan; Chiou, Hsin-Ying Clair; Feng, Shao-Wei; Lin, Chin; Li, Yao-Feng; Huang, Li-Chun; Lin, Ming-Hong

    2015-01-01

    Primary high-grade gliomas possess invasive growth and lead to unfavorable survival outcome. The investigation of biomarkers for prediction of survival outcome in patients with gliomas is important for clinical assessment. The DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked (DDX3X) controls tumor migration, proliferation, and progression. However, the role of DDX3X in defining the pathological grading and survival outcome in patients with human gliomas is not yet clarified. We analyzed the DDX3X gene expression, WHO pathological grading, and overall survival from de-linked data. Further validation was done using quantitative RT-PCR of cDNA from normal brain and glioma, and immunohistochemical (IHC) staining of tissue microarray. Statistical analysis of GEO datasets showed that DDX3X mRNA expression demonstrated statistically higher in WHO grade IV (n = 81) than in non-tumor controls (n = 23, p = 1.13 × 10−10). Moreover, DDX3X level was also higher in WHO grade III (n = 19) than in non-tumor controls (p = 2.43 × 10−5). Kaplan–Meier survival analysis showed poor survival in patients with high DDX3X mRNA levels (n = 24) than in those with low DDX3X expression (n = 53) (median survival, 115 vs. 58 weeks, p = 0.0009, by log-rank test, hazard ratio: 0.3507, 95% CI: 0.1893–0.6496). Furthermore, DDX3X mRNA expression and protein production significantly increased in glioma cells compared with normal brain tissue examined by quantitative RT-PCR, and Western blot. IHC staining showed highly staining of high-grade glioma in comparison with normal brain tissue. Taken together, DDX3X expression level positively correlates with WHO pathologic grading and poor survival outcome, indicating that DDX3X is a valuable biomarker in human gliomas. PMID:26184164

  15. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts.

    PubMed

    Singh, Atul Kumar; Gajiwala, Astrid Lobo; Rai, Ratan Kumar; Khan, Mohd Parvez; Singh, Chandan; Barbhuyan, Tarun; Vijayalakshmi, S; Chattopadhyay, Naibedya; Sinha, Neeraj; Kumar, Ashutosh; Bellare, Jayesh R

    2016-05-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  16. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects – a correlation study

    PubMed Central

    Somarajan, S; Muszynski, ND; Obioha, C; Richards, WO; Bradshaw, LA

    2012-01-01

    We measured gastric slow wave activity simultaneously with a Superconducting Quantum Interference Device (SQUID) magnetometer, mucosal electrodes, and cutaneous electrodes in 18 normal human subjects (11 women and 7 men). We processed signals with Fourier spectral analysis and SOBI blind-source separation techniques. We observed a high waveform correlation between mucosal electromyogram (EMG) and multichannel SQUID magnetogastrogram (MGG). There was a lower waveform correlation between mucosal EMG and cutaneous electrogastrogram (EGG), but the correlation improved with application of SOBI. There was also a high correlation between the frequency of the electrical activity recorded in MGG and in mucosal electrodes (r =0.97). We concluded that SQUID magnetometers noninvasively record gastric slow wave activity that is highly correlated with the activity recorded by invasive mucosal electrodes. PMID:22735166

  17. Correlation between radiation dose and p53 protein expression levels in human lymphocytes.

    PubMed

    Cavalcanti, Mariana B; Fernandes, Thiago S; Silva, Edvane B; Amaral, Ademir

    2015-09-01

    The aim of this research was to evaluate the relationship between p53 protein levels and absorbed doses from in vitro irradiated human lymphocytes. For this, samples of blood from 23 donors were irradiated with 0.5; 1; 2; and 4 Gy from a Cobalt-60 source, and the percentages of lymphocytes expressing p53 were scored using Flow Cytometry. The subjects were divided into 3 groups, in accordance with the p53 levels expressed per radiation dose: low (Group I), high (Group II), and excessive levels (Group III). For all groups, the analyses showed that the p53 expression levels increase with the absorbed dose. Particularly for groups I and II, the correlation between this protein expression and the dose follows the linear-quadratic model, such as for radioinduced chromosomal aberrations. In conclusion, our findings indicate possible applications of this approach in evaluating individual radiosensitivity prior to radiotherapeutical procedures as well as in medical surveillance of occupationally exposed workers. Furthermore, due to the rapidity of flow-cytometric analyses, the methodology here employed would play an important role in emergency responses to a large-scale radiation incident where many people may have been exposed. PMID:26312422

  18. Correlation of active site metal content in human diamine oxidase with trihydroxyphenylalanine quinone cofactor biogenesis .

    PubMed

    McGrath, Aaron P; Caradoc-Davies, Tom; Collyer, Charles A; Guss, J Mitchell

    2010-09-28

    Copper-containing amine oxidases (CAOs) require a protein-derived topaquinone cofactor (TPQ) for activity. TPQ biogenesis is a self-processing reaction requiring the presence of copper and molecular oxygen. Recombinant human diamine oxidase (hDAO) was heterologously expressed in Drosophila S2 cells, and analysis indicates that the purified hDAO contains substoichiometric amounts of copper and TPQ. The crystal structure of a complex of an inhibitor, aminoguanidine, and hDAO at 2.05 Å resolution shows that the aminoguanidine forms a covalent adduct with the TPQ and that the site is ∼75% occupied. Aminoguanidine is a potent inhibitor of hDAO with an IC(50) of 153 ± 9 nM. The structure indicates that the catalytic metal site, normally occupied by copper, is fully occupied. X-ray diffraction data recorded below the copper edge, between the copper and zinc edges, and above the zinc edge have been used to show that the metal site is occupied approximately 75% by copper and 25% by zinc and the formation of the TPQ cofactor is correlated with copper occupancy. PMID:20722416

  19. Exon organization of the human FKBP-12 gene: Correlation with structural and functional protein domains

    SciTech Connect

    DiLella, A.G.; Craig, R.J. )

    1991-09-03

    FKBP-12, the major T-cell binding protein for the immunosuppressive agents FK506 and rapamycin, catalyzes the interconversion of the cis and trans rotamers of the peptidyl-prolyl amide bond of peptide and protein substrates. The function of rotamase activity in cells and the role of FKBP-12 in immunoregulation is uncertain. In this paper the authors report the cloning and characterization of the human chromosomal FKBP-12 gene and four processed FKBP-12 pseudogenes. The FKBP-12 gene is 24 kilobases in length and contains five exons. The protein-coding region of the gene is divided into four exon modules that correlate with the structural and functional domains of the protein. The novel structure of FKBP-12 resulting form the topology of the antiparallel {beta}-sheet is the topological crossing of two loops that are encoded by separate exons. Separate exons also encode the antiparallel {beta}-sheet and {alpha}-helical region that define the drug-binding pocket and enzyme activity site of FKBP-12. The exon organization of the FKBP-12 gene structure will enable inactivation of this gene by homologous recombination in cells to provide a model to study the role of FKBP-12 in immunoregulation and normal cellular processes.

  20. Arginyltransferase suppresses cell tumorigenic potential and inversely correlates with metastases in human cancers.

    PubMed

    Rai, R; Zhang, F; Colavita, K; Leu, N A; Kurosaka, S; Kumar, A; Birnbaum, M D; Győrffy, B; Dong, D W; Shtutman, M; Kashina, A

    2016-08-01

    Arginylation is an emerging post-translational modification mediated by arginyltransferase (ATE1) that is essential for mammalian embryogenesis and regulation of the cytoskeleton. Here, we discovered that Ate1-knockout (KO) embryonic fibroblasts exhibit tumorigenic properties, including abnormally rapid contact-independent growth, reduced ability to form cell-cell contacts and chromosomal aberrations. Ate1-KO fibroblasts can form large colonies in Matrigel and exhibit invasive behavior, unlike wild-type fibroblasts. Furthermore, Ate1-KO cells form tumors in subcutaneous xenograft assays in immunocompromised mice. Abnormal growth in these cells can be partially rescued by reintroduction of stably expressed specific Ate1 isoforms, which also reduce the ability of these cells to form tumors. Tumor array studies and bioinformatics analysis show that Ate1 is downregulated in several types of human cancer samples at the protein level, and that its transcription level inversely correlates with metastatic progression and patient survival. We conclude that Ate1-KO results in carcinogenic transformation of cultured fibroblasts, suggesting that in addition to its previously known activities Ate1 gene is essential for tumor suppression and also likely participates in suppression of metastatic growth. PMID:26686093

  1. Dynamic compressive behavior of human meniscus correlates with its extra-cellular matrix composition.

    PubMed

    Bursac, P; Arnoczky, S; York, A

    2009-01-01

    The menisci of the knee play a significant role in the complex biomechanics of the joint and are critically important in maintaining articular cartilage health. While a general form-function relationship has been identified for the structural orientation of the extra-cellular matrix of the meniscus, the role of individual biochemical components has yet to be fully explored. To determine if correlations exist between the dynamic and static compressive modulus of human menisci and their major extra-cellular matrix constituents (collagen, glycosoaminoglycan and water content), 12 lateral and 11 medial menisci from 13 adult donors were examined. The results showed that in dynamic compression at high loading frequencies (0.1-1 Hz) the menisci behave as a rubber-like elastic material while at lower frequencies (0.01-0.03 Hz) significant viscous dissipation occurs. While regional variations in compressive moduli and extra-cellular matrix composition were observed, the magnitude of both dynamic and static compressive moduli were found to be insensitive to collagen content (p>0.4). However, this magnitude was found to significantly increase with increasing glycosaminoglycan content (p<0.001) and significantly decrease with increasing water content (p<0.001). The results of this study identify significant relationships between the viscoelastic behavior of the meniscus and its extra-cellular matrix composition. PMID:19581729

  2. Enhanced expression of human immunodeficiency virus type 1 correlates with development of AIDS.

    PubMed

    Gupta, P; Kingsley, L; Armstrong, J; Ding, M; Cottrill, M; Rinaldo, C

    1993-10-01

    The progression to AIDS may be significantly related to the level of human immunodeficiency virus type 1 (HIV-1) replication. We have used quantitative cell culture and quantitative DNA and RNA PCR to measure viral load and expression in peripheral blood mononuclear cells obtained cross-sectionally and longitudinally from HIV-1-seropositive homosexual men enrolled in the Multicenter AIDS Cohort Study. Our results indicate that the number of circulating CD4+ T-lymphocytes producing HIV-1 increased as the total number of CD4+ T-cells declined. However, there was no correlation between the number of HIV-1-producing CD4+ cells and the duration of infection. Furthermore, the level of HIV-1 gag RNA increased as the disease progressed and CD4+ cell numbers declined. Subjects who remained asymptomatic with stable CD4+ cell counts, however, maintained a very low level of HIV-1 RNA expression during the entire period of follow-up (38-71 months). In contrast to viral RNA expression, the level of proviral DNA did not change significantly as the disease progressed. However, the level of proviral DNA was significantly higher in AIDS patients than in men who remained asymptomatic. Such increased levels of HIV-1 DNA were detected 34-68 months before the development of AIDS. These results support the role of HIV-1 RNA expression in the development of AIDS. PMID:8103948

  3. Prevalence, distribution and correlates of endocervical human papillomavirus types in Brazilian women

    PubMed Central

    Lippman, S A; Sucupira, M C A; Jones, H E; Luppi, C G; Palefsky, J; van de Wijgert, J H H M; Oliveira, R L S; Diaz, R S

    2010-01-01

    Summary We determined the prevalence, distribution and correlates of human papillomavirus (HPV) types in 386 mixed-income, sexually active women in São Paulo, Brazil. Endocervical samples were tested for HPV DNA with L1 primers MY09 and MY11; negative and indeterminate samples were retested using GP 5+/6+ consensus primers. HPV was detected in 35% of all women; high-risk/probable high-risk types in 20%; low-risk types in 7%; and an indeterminate type in 10%. Twenty-five HPV types were found overall: 17 (probable) high-risk types and eight low-risk types. Approximately one-third (29%) of women with HPV infection were positive for type 16 or 18 and 36% were positive for types 6, 11, 16 or 18. The presence of (probable) high-risk HPV was associated with younger age, more lifetime sex partners and abnormal vaginal flora. Additional studies mapping the distribution of HPV types worldwide are necessary to prepare for vaccination programmes and direct future vaccine development. PMID:20089995

  4. Arginyltransferase ATE1 suppresses cell tumorigenic potential and inversely correlates with metastases in human cancers

    PubMed Central

    Rai, Reena; Zhang, Fangliang; Colavita, Kristen; Leu, Nicolae Adrian; Kurosaka, Satoshi; Kumar, Akhilesh; Birnbaum, Michael D.; Győrffy, Balázs; Dong, Dawei W.; Shtutman, Michael; Kashina, Anna

    2015-01-01

    Arginylation is an emerging posttranslational modification mediated by arginyltransferase (ATE1) that is essential for mammalian embryogenesis and regulation of the cytoskeleton. Here, we discovered that Ate1 knockout embryonic fibroblasts exhibit tumorigenic properties, including abnormally rapid contact-independent growth, reduced ability to form cell-cell contacts, and chromosomal aberrations. Ate1 knockout fibroblasts can form large colonies in Matrigel and exhibit invasive behavior, unlike wild type fibroblasts. Furthermore, Ate1 knockout cells form tumors in subcutaneous xenograft assays in immunocompromised mice. Abnormal growth in these cells can be partially rescued by reintroduction of stably expressed specific Ate1 isoforms, which also reduce the ability of these cells to form tumors. Tumor array studies and bioinformatics analysis show that Ate1 is down-regulated in several types of human cancer samples at the protein level, and that its transcription level inversely correlates with metastatic progression and patient survival. We conclude that Ate1 knockout results in carcinogenic transformation of cultured fibroblasts, suggesting that in addition to its previously known activities Ate1 gene is essential for tumor suppression and also likely participates in suppression of metastatic growth. PMID:26686093

  5. Circulating tumour necrosis factor is highly correlated with brainstem serotonin transporter availability in humans.

    PubMed

    Krishnadas, Rajeev; Nicol, Alice; Sassarini, Jen; Puri, Navesh; Burden, A David; Leman, Joyce; Combet, Emilie; Pimlott, Sally; Hadley, Donald; McInnes, Iain B; Cavanagh, Jonathan

    2016-01-01

    Preclinical studies demonstrate that pro-inflammatory cytokines increase serotonin transporter availability and function, leading to depressive symptoms in rodent models. Herein we investigate associations between circulating inflammatory markers and brainstem serotonin transporter (5-HTT) availability in humans. We hypothesised that higher circulating inflammatory cytokine concentrations, particularly of tumour necrosis factor (TNF-α), would be associated with greater 5-HTT availability, and that TNF-α inhibition with etanercept (sTNFR:Fc) would in turn reduce 5-HTT availability. In 13 neurologically healthy adult women, plasma TNF-α correlated significantly with 5-HTT availability (rho=0.6; p=0.03) determined by [(123)I]-beta-CIT SPECT scanning. This association was replicated in an independent sample of 12 patients with psoriasis/psoriatic arthritis (rho=0.76; p=0.003). Indirect effects analysis, showed that there was a significant overlap in the variance explained by 5-HTT availability and TNF-α concentrations on BDI scores. Treatment with etanercept for 6-8weeks was associated with a significant reduction in 5-HTT availability (Z=2.09; p=0.03; r=0.6) consistent with a functional link. Our findings confirm an association between TNF-α and 5-HTT in both the basal physiological and pathological condition. Modulation of both TNF-α and 5-HTT by etanercept indicate the presence of a mechanistic pathway whereby circulating inflammatory cytokines are related to central nervous system substrates underlying major depression. PMID:26255693

  6. Correlation of GOLPH3 Gene with Wnt Signaling Pathway in Human Colon Cancer Cells

    PubMed Central

    Qiu, Cheng-Zhi; Wang, Ming-Zhen; Yu, Wai-Shi; Guo, Yan-Ta; Wang, Chun-Xiao; Yang, Xiao-Feng

    2016-01-01

    Objective: Overexpression of GOLPH3 in colorectal cancer tissue may promote cell proliferation and activate the Wnt signaling pathway. We investigated the correlation between GOLPH3 gene expression and the Wnt signaling pathway to explore the mechanism of the overexpression of GOLPH3 gene which promotes proliferation in human colon cancer cells. Methods: We measured expression of GOLPH3 mRNA in the human colon cancer cell lines HCT116, HT29, SW480 and SW620 by RT-PCR, and the cells with the highest expression were selected and divided into four groups: negative control, GOLPH3 siRNA transfection (siRNA-GOLPH3), Akt inhibitor (Tricinbine), and glycogen synthase kinase (GSK)-3β inhibitor (TWS119). After human colon cancer cells were transfected with siRNA-GOLPH3, we used RT-PCR to investigate the silencing effect of GOLPH3 gene. We assessed the activity of the Wnt signaling pathway in all groups using the Topflash method. Proliferation and apoptosis of colon cancer SW620 cells were detected by MTT assay, colony formation assay and flow cytometry. Expression of Golgi phosphoprotein (GOLPH)3, β-catenin, GSK-3β and pS9-GSK-3β in cancer cells was determined by Western blotting. Results: SW620 cells expressed the highest level of GOLPH3 mRNA, and the silence effect was good after they were transfected with siRNA-GOLPH3. The relative luminescence units (RLU) values in the experimental groups were significantly lower than in the negative control group (P<0.001). There was no significant difference in the RLU values among the experimental groups (P> 0.05). The growth inhibition ratio and apoptosis rate of cancer cells in each experimental group were significantly higher than those in the control group, and the cell colony count in the experimental group was significantly lower than in the control group (P<0.05). In addition, the RLU value, proliferation and apoptosis rate of cancer cells did not differ significantly between each two experimental groups. Western blotting

  7. Correlates to Human Papillomavirus Vaccination Status and Willingness to Vaccinate in Low-Income Philadelphia High School Students

    ERIC Educational Resources Information Center

    Bass, Sarah B.; Leader, Amy; Shwarz, Michelle; Greener, Judith; Patterson, Freda

    2015-01-01

    Background: Little is known about the correlates of human papillomavirus (HPV) vaccination or willingness to be vaccinated in urban, minority adolescents. Methods: Using responses to the 2013 Youth Risk Behavior Survey in Philadelphia, a random sample of high schools provided weighted data representing 20,941 9th to 12th graders. Stratified by…

  8. Matrix metalloproteinase-2 of human carotid atherosclerotic plaques promotes platelet activation. Correlation with ischaemic events.

    PubMed

    Lenti, Massimo; Falcinelli, Emanuela; Pompili, Marcella; de Rango, Paola; Conti, Valentina; Guglielmini, Giuseppe; Momi, Stefania; Corazzi, Teresa; Giordano, Giuseppe; Gresele, Paolo

    2014-06-01

    Purified active matrix metalloproteinase-2 (MMP-2) is able to promote platelet aggregation. We aimed to assess the role of MMP-2 expressed in atherosclerotic plaques in the platelet-activating potential of human carotid plaques and its correlation with ischaemic events. Carotid plaques from 81 patients undergoing endarterectomy were tested for pro-MMP-2 and TIMP-2 content by zymography and ELISA. Plaque extracts were incubated with gel-filtered platelets from healthy volunteers for 2 minutes before the addition of a subthreshold concentration of thrombin receptor activating peptide-6 (TRAP-6) and aggregation was assessed. Moreover, platelet deposition on plaque extracts immobilised on plastic coverslips under high shear-rate flow conditions was measured. Forty-three plaque extracts (53%) potentiated platelet aggregation (+233 ± 26.8%), an effect prevented by three different specific MMP-2 inhibitors (inhibitor II, TIMP-2, moAb anti-MMP-2). The pro-MMP-2/TIMP-2 ratio of plaques potentiating platelet aggregation was significantly higher than that of plaques not potentiating it (3.67 ± 1.21 vs 1.01 ± 0.43, p<0.05). Moreover, the platelet aggregation-potentiating effect, the active-MMP-2 content and the active MMP-2/pro-MMP-2 ratio of plaque extracts were significantly higher in plaques from patients who developed a subsequent major cardiovascular event. In conclusion, atherosclerotic plaques exert a prothrombotic effect by potentiating platelet activation due to their content of MMP-2; an elevated MMP-2 activity in plaques is associated with a higher rate of subsequent ischaemic cerebrovascular events. PMID:24499865

  9. Sequential-digital image correlation for mapping human posterior sclera and optic nerve head deformation.

    PubMed

    Pyne, Jeffrey D; Genovese, Katia; Casaletto, Luciana; Vande Geest, Jonathan P

    2014-02-01

    Optic nerve head (ONH) deformations may be involved in the onset or further development of glaucoma, including in patients with relatively normal intraocular pressures (IOPs). Characterizing posterior scleral deformations over physiological pressures may provide a better understanding of how changes in IOP lead to changes in the mechanical environment of the ONH and possibly retinal ganglion cell death. Pressure inflation measurement test protocols are commonly used to measure deformation of the peripapillary sclera with full-field noncontact optical methods. The purpose of this work was to develop and validate a new sequential 3D digital image correlation (S-DIC) approach for quantification of posterior scleral pressure induced deformation that improves z (in-depth) resolution of the DIC measurement without losing in-plane sensitivity, while also being able to contour and map deformations of the complex-shaped ONH. Our approach combines two orthogonal axes of parallax with standard 3D DIC methods using a single high-resolution camera. The enhanced capabilities of S-DIC with respect to standard 3D DIC has been demonstrated by carrying out a complete benchmark for shape, deformation, and strain measurement on an object of known complex geometry. Our S-DIC method provided a reconstruction accuracy of 0.17% and an uncertainty in z-position measurement of 8 μm. The developed methodology has also been applied to a human posterior scleral shell, including the full peripapillary sclera and optic nerve. The relatively inexpensive S-DIC approach may provide new information on the biomechanical deformations of the optic nerve head and, thus, the death of retinal ganglion cells in primary open angle glaucoma. PMID:24337344

  10. Productive human immunodeficiency virus infection levels correlate with AIDS-related manifestations in the patient

    SciTech Connect

    Mathez, D.; Paul, D.; de Belilovsky, C.; Sultan, Y.; Deleuze, J.; Gorin, I.; Saurin, W.; Decker, R.; Leibowitch, J. )

    1990-10-01

    Mononuclear cells were obtained from 71 human immunodeficiency virus type 1 (HIV-1) seropositive subjects presenting and first visit either as asymptomatic or with minor symptoms and with CD4 lymphocytes greater than 550 per mm3 (group A, 35 patients) or as patients with AIDS, AIDS-related illnesses, or CD4 lymphocytes less than 400 per mm3 (group B, 36 patients). After 1-5 years of follow-up, 13 patients of group A had essentially retained their initial status (asymptomatics); the 22 others had suffered clinical or immunological deterioration (progressors). Frozen cells were thawed and submitted to lethal gamma-irradiation in vitro (4500 rads; 1 rad = 0.01 Gy) before they were cultured with normal phytohemagglutinin-stimulated lymphocytes to determine radiation-resistant HIV expression ex vivo (R-HEV). HIV antigenemia correlated with R-HEV values in 142 samples (r = 0.92, P less than 0.001) but was a less sensitive predictor of disease than R-HEV. R-HEV was detected in all specimens from patients with major AIDS-related illnesses or HIV-associated CD4 lymphopenia. In 77% of the progressors from group A, R-HEV detection preceded the onset of AIDS-associated disease or CD4 lymphopenia by 1 year (average). Conversely, R-HEV was low or was not detected in 36 sequential specimens from the 13 patients who remained asymptomatic over the following 2-5 years. Thus, persistently low HIV expression in vivo predicted a nondiseased state, whereas higher HIV expression levels seemed necessary for disease to occur. These data indicate that R-HEV is related to productive HIV infection in vivo, the latter acting as a determinant of AIDS-related illnesses. In view of this, measurement of HIV expression levels in the patient should be useful in antiviral efficacy trials.

  11. Correlates of human papillomavirus (HPV) vaccine coverage: A state-level analysis

    PubMed Central

    Moss, Jennifer L.; Reiter, Paul L.; Brewer, Noel T.

    2014-01-01

    Background We tested the hypothesis that states with higher rates of cancers associated with human papillomavirus (HPV) would have lower HPV vaccine coverage. Methods We gathered state-level data on HPV-related cancer rates and HPV vaccine initiation coverage for girls and boys, separately, and HPV vaccine follow-through (i.e., receipt of 3 doses among those initiating the series) for girls only. In addition, we gathered state-level data on demographic composition and contact with the healthcare system. We calculated Pearson correlations for these ecological relationships. Results HPV vaccine initiation among girls was lower in states with higher levels of cervical cancer incidence and mortality (r=−.29 and −.46, respectively). In addition, vaccine follow-through among girls was lower in states with higher levels of cervical cancer mortality (r=−.30). Other cancer rates were associated with HPV vaccine initiation and follow-through among girls, but not among boys. HPV vaccine initiation among girls was lower in states with higher proportions of non-Hispanic black residents and lower proportions of higher income residents. HPV vaccine follow-through was higher in states with greater levels of adolescents' contact with the healthcare system. Conclusions HPV vaccine coverage for girls was lower in states with higher HPV-related cancer rates. Public health efforts should concentrate on geographic areas with higher cancer rates. Strengthening adolescent preventive healthcare use may be particularly important to increase vaccine follow-through. Cost-effectiveness analyses may overestimate the benefits of current vaccination coverage and underestimate the benefits of increasing coverage. PMID:25585064

  12. HPLC analysis of vitamin E isoforms in human epidermis: correlation with minimal erythema dose and free radical scavenging activity.

    PubMed

    Fuchs, Jürgen; Weber, Stefan; Podda, Maurizio; Groth, Norbert; Herrling, Thomas; Packer, Lester; Kaufmann, Roland

    2003-02-01

    The content and composition of different vitamin E isoforms was analyzed in normal human skin. Interestingly the epidermis contained 1% alpha-tocotrienol, 3% gamma-tocotrienol, 87% alpha-tocopherol, and 9% gamma-tocopherol. Although the levels of tocotrienol in human epidermis appear to be considerably lower than reported in the hairless mouse, the presence of significant amounts of tocotrienol levels leads to speculation about the physiological function of tocotrienols in skin. Besides antioxidant activity and photoprotection, tocotrienols may have skin barrier and growth-modulating properties. A good correlation was found for epidermal alpha-tocopherol (r = 0.7909, p <.0003), gamma-tocopherol (r = 0.556, p <.025), and the total vitamin E content (r = 0.831, p <.0001) with the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging in epidermis, as assessed by electron paramagnetic resonance (EPR) spectroscopy. In human epidermis, alpha-tocopherol is quantitatively the most important vitamin E isoform present and comprises the bulk of first line free radical defense in the lipid compartment. Epidermal tocotrienol levels were not correlated with DPPH scavenging activity. The minimal erythema dose (MED), an individual measure for sun sensitivity and a crude indicator for skin cancer susceptibility, did not correlate with the epidermal content of the vitamin E isoforms. Hence it is concluded that vitamin E alone is not a determinant of individual photosensitivity in humans. PMID:12543248

  13. Long-Range Correlations in the Sequence of Human Heartbeats and Other Biological Signals

    NASA Astrophysics Data System (ADS)

    Teich, Malvin C.

    1998-03-01

    The sequence of heartbeat occurrence times provides information about the state of health of the heart. We used a variety of measures, including multiresolution wavelet analysis, to identify the form of the point process that describes the human heartbeat. These measures, which are based on both interbeat (R-R) intervals and counts (heart rate), have been applied to records for both normal and heart-failure patients drawn from a standard database, and various surrogate versions thereof. Several of these measures reveal scaling behavior (1/f-type fluctuations; long-range power-law correlations).(R. G. Turcott and M. C. Teich, Proc. SPIE) 2036 (Chaos in Biology and Medicine), 22--39 (1993). Essentially all of the R-R and count-based measures we investigated, including those that exhibit scaling, differ in statistically significant ways for the normal and heart-failure patients. The wavelet measures, however, reveal a heretofore unknown scale window, between 16 and 32 heartbeats, over which the magnitudes of the wavelet-coefficient variances fall into disjoint sets for the normal and heart-failure patients.(R. G. Turcott and M. C. Teich, Ann. Biomed. Eng.) 24, 269--293 (1996).^,(S. Thurner, M. C. Feurstein, and M. C. Teich, Phys. Rev. Lett.) (in press). This enables us to correctly classify every patient in the standard data set as either belonging to the heart-failure or normal group with 100% accuracy, thereby providing a clinically significant measure of the presence of heart-failure. Previous approaches have provided only statistically significant measures. The tradeoff between sensitivity and

  14. Stereomicroscopic study of the human tooth caries: clinical and morphological correlations

    NASA Astrophysics Data System (ADS)

    Oancea, Roxana; Vasile, Liliana; Marchese, Cristian; Sava-Rosianu, Ruxandra

    2012-06-01

    loss that is very useful in grading the progression of the carious lesion. Conclusions: The stereomicroscopic study correlated with clinical and morphological data allowed to appreciate the extent of tissue involved in the carious process, but also the understanding of the enamel, dentine and cement matrix demineralization process, in proximity with the morpho-embryological markings of the human tooth structure.

  15. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain

    PubMed Central

    Lieblein-Boff, Jacqueline C.; Johnson, Elizabeth J.; Kennedy, Adam D.; Lai, Chron-Si; Kuchan, Matthew J.

    2015-01-01

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development. PMID:26317757

  16. Schistosome-induced cholangiocyte proliferation and osteopontin secretion correlate with fibrosis and portal hypertension in human and murine schistosomiasis mansoni

    PubMed Central

    Pereira, Thiago A.; Syn, Wing-Kin; Machado, Mari