Sample records for human melanoma-bearing mouse

  1. Therapeutic Efficacy of a {sup 188}Re-Labeled {alpha}-Melanocyte-Stimulating Hormone Peptide Analog in Murine and Human Melanoma-Bearing Mouse Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yubin; Owen, Nellie K.; Fisher, Darrell R.

    2005-01-01

    The purpose of this study was to examine the therapeutic efficacy of {sup 188}Re-(Arg{sup 11})CCMSH in the B16/F1 murine melanoma and TXM13 human melanoma bearing mouse models. Method: (Arg11)CCMSH was synthesized and labeled with {sup 188}Re to form {sup 188}Re-(Agr{sup 11})CCMSH. B16/F1 melanoma tumor bearing mice were administrated with 200 Ci, 600 Ci and 2x400 Ci of {sup 188}Re-(Arg{sup 11})CCMSH via the tail vein, respectively. TXM13 melanoma tumor hearing mice were separately injected with 600 Ci, 2x400 Ci and 1000 Ci of 100Re-(Arg{sup 11})CCMSH through the tail vein. Two groups of 10 mice bearing either B16/F1 or TXM13 tumors weremore » injected with saline as untreated controls. Results: In contrast to the untreated control group, {sup 188}Re(Arg11)CCMSH yielded rapid and lasting therapeutic effects in the treatment groups with either B16/F1 or TXM13 tumors. The tumor growth rate was reduced and the survival rate was prolonged in the treatment groups. Treatment with 2x400 Ci of {sup 188}Re-Arg{sup 11}CCMSH significantly extended the mean life of B16/F1 tumor mice (p<0.05), while the mean life of TXm13 tumor mice was significantly prolonged after treatment with 600 Ci and 1000 Ci doses of {sup 188}Re-(Arg{sup 11})CCMSH (p<0.05 High-dose {sup 188}Re-(Arg{sup 11}))CCMSH produced no observed normal-tissue toxicity. Conclusions: The therapy study results revealed that {sup 188}Re-Arg11 CCMSH yielded significant therapeutic effects in both B16/F1 murine melanoma and TXM13 human melanoma bearing mouse models. {sup 188}Re-(Arg{sup 11})CCMSH appears to be a promising radiolabeled peptide for targeted radionuclide therapy of melanoma.« less

  2. Differential biological effects of dehydroepiandrosterone (DHEA) between mouse (B16F10) and human melanoma (BLM) cell lines.

    PubMed

    Joshi, Kumud; Hassan, Sherif S; Ramaraj, Pandurangan

    2017-01-01

    Dehydroepiandrosterone (DHEA) is a weak androgen and had been shown to have anti-cancer, anti-adipogenic and anti-inflammatory effects on mouse and other rodent models, but not on humans, suggesting a systemic level difference between mouse and human. Our previous study on DHEA biological functions involving a variety of cell lines, suggested that the functional differences between mouse and human existed even at the cellular level. Hence, using mouse and human melanoma cell models, in-vitro effects of DHEA on cell growth, mechanism of cell death and mechanism of DHEA action were studied. Results indicated a differential biological effects of DHEA between mouse and human melanoma cell lines. These in-vitro studies also suggested that the differential biological effects observed between these two cell lines could be due to the difference in the way DHEA was processed or metabolized inside the cell.

  3. Serum sialyltransferase and liver catalase activity in cachectic nude mice bearing a human malignant melanoma.

    PubMed

    Kondo, Y; Sato, K; Ueyama, Y; Ohsawa, N

    1981-07-01

    Cachexia is rare in nude mice bearing human malignant tumors even when the transplanted tumors become as large as the body size of the host. In our series on heterotransplantation of a variety of human malignant tumors into nude mice, a malignant melanoma (SEKI) was found to induce severe body weight loss in the host at the early stage of transplantation. There was no electrolyte disturbance, hyper- or hypoadrenocorticism, hyperthyroidism, or destruction of cells of vital organs to account for the weight loss. Moreover, no evidence was obtained for concomitant infection with bacteria, Mycoplasma or fungi. These cachectic mice revealed remarkably increased levels of serum sialyltransferase and decreased liver catalase activity. The removal of tumor tissues from these mice resulted in prompt recovery of body weight, serum sialyltransferase, and liver catalase activity within 1 to 2 weeks. On the basis of the results obtained, the SEKI melanoma was thought to have produced a pathophysiological state in host nude mice which was very similar to that of cachexia in cancer patients. Nude mice bearing transplants of SEKI melanoma may provide a useful system for the study of cancer cachexia in humans.

  4. Current State of Animal (Mouse) Modeling in Melanoma Research.

    PubMed

    Kuzu, Omer F; Nguyen, Felix D; Noory, Mohammad A; Sharma, Arati

    2015-01-01

    Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future.

  5. Genetically engineered mouse models of melanoma.

    PubMed

    Pérez-Guijarro, Eva; Day, Chi-Ping; Merlino, Glenn; Zaidi, M Raza

    2017-06-01

    Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society. © 2017 American Cancer Society.

  6. [Imiquimod combined with dendritic cell vaccine decreases Treg proportion and enhances anti-tumor responses in mice bearing melanoma].

    PubMed

    Ren, Shurong; Wang, Qiubo; Zhang, Yanli; Lu, Cuixiu; Li, Ping; Li, Yumei

    2017-02-01

    Objective To investigate the therapeutic effect of Toll-like receptor 7 (TLR7) agonist imiquimod combined with dendritic cell (DC)-based tumor vaccine on melanoma in mice and the potential mechanism. Methods Melanoma-bearing mouse models were established by subcutanous injection of B16-OVA cells into C57BL/6 mice. DCs were isolated from mouse bone marrow and propagated in culture medium with recombinant mouse granulocyte-macrophage colony-stimulating factor (rmGM-CSF) and recombinant mouse interleukin-4 (rmIL-4). DC vaccine (OVA-DC) was prepared by overnight incubation of DCs added with chicken ovalbumin. C57BL/6 mice were separated into four groups which were treated with PBS, topical imiquimod application, OVA-DC intradermal injection and imiquimod plus OVA-DC, respectively. The tumor size was calculated by digital vernier caliper. Peripheral blood CD4 + FOXP3 + Tregs of the tumor-bearing mice was detected by flow cytometry. The cytotoxicity of splenic lymphocyte against B16-OVA was assessed in vitro by CCK-8 assay. Results Compared with the other three groups, B16-OVA-bearing mice treated with imiquimod plus DC vaccine had the smallest tumor volume. The percentage of CD4 + FOXP3 + Tregs decreased significantly in the combined treated mice. The combined treatment enhanced significantly cytotoxicity of splenic lymphocytes against B16-OVA cells. Conclusion Imiquimod combined with antigen-pulsed-DC vaccine could reduce CD4 + FOXP3 + Treg proportion and promote anti-tumor effect in mice with melanoma.

  7. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice

    PubMed Central

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-01-01

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy. PMID:26824989

  8. Reduced GNG2 expression levels in mouse malignant melanomas and human melanoma cell lines

    PubMed Central

    Yajima, Ichiro; Kumasaka, Mayuko Y; Naito, Yuji; Yoshikawa, Toshikazu; Takahashi, Hiro; Funasaka, Yoko; Suzuki, Tamio; Kato, Masashi

    2012-01-01

    Heterotrimeric G protein is composed of a Gα-subunit and a Gβγ-dimer. Previous studies have revealed that Gβγ-dimers including the Gγ2 subunit (Gng2/GNG2) are associated with cell proliferation, differentiation, invasion and angiogenesis. At present, however, there is no information on the expression level of Gng2/GNG2 alone in any kind of tumor. In this study, we performed DNA microarray analysis in a benign melanocytic tumor and a malignant melanoma from RET-transgenic mice (RET-mice). Gng2 transcript expression levels in a malignant melanoma were less than 1/10 of the level in a benign tumor. The difference in Gng2 transcript expression levels between benign tumors and malignant melanomas was greatest among all of the G protein γ subunits examined in this study. Moreover, protein expression levels of Gng2 were decreased in malignant melanomas compared with those in benign melanocytic tumors in RET-mice. Analysis of human malignant melanomas also showed reduced GNG2 protein expression levels in five human malignant melanoma cell lines compared with the expression levels in normal human epithelial melanocytes (NHEM). Thus, we demonstrated for the first time that Gng2/GNG2 expression levels are reduced in malignant melanoma, suggesting that GNG2 could be a novel biomarker for malignant melanoma. PMID:22679562

  9. Potent Antitumor Effects of Combination Therapy With IFNs and Monocytes in Mouse Models of Established Human Ovarian and Melanoma Tumors

    PubMed Central

    Nakashima, Hideyuki; Miyake, Kotaro; Clark, Christopher R; Bekisz, Joseph; Finbloom, Joel; Husain, Syed R.; Baron, Samuel; Puri, Raj K.; Zoon, Kathryn C.

    2012-01-01

    Interferon-activated monocytes are known to exert cytocidal activity against tumor cells in vitro. Here, we have examined whether a combination of IFN-α2a and IFN-γ and human monocytes mediate significant antitumor effects against human ovarian and melanoma tumor xenografts in mouse models. OVCAR-3 tumors were treated i.t. with monocytes alone, IFN-α2a and IFN-γ alone or combination of all three on day 0, 15 or 30 post-tumor implantation. Mice receiving combination therapy beginning day 15 showed significantly reduced tumor growth and prolonged survival including complete regression in 40% mice., Tumor volumes measured on day 80 in mice receiving combination therapy (206 mm3) were significantly smaller than those of mice receiving the IFNs alone (1041 mm3), monocytes alone (1111 mm3) or untreated controls (1728 mm3). Similarly, combination therapy with monocytes and IFNs of much larger tumor also inhibited OVCAR-3 tumor growth. Immunohistochemistry studies showed a large number of activated macrophages (CD31+/CD68+) infiltrating into OVCAR-3 tumors and higher densities of IL-12, IP10 and NOS2, markers of M1 (classical) macrophages in tumors treated with combination therapy compared to the controls. Interestingly, IFNs activated macrophages induced apoptosis of OVCAR-3 tumor cells as monocytes alone or IFNs alone did not mediate significant apoptosis. Similar antitumor activity was observed in the LOX melanoma mouse model, but not as profound as seen with the OVCAR-3 tumors. Administration of either mixture of monocytes and IFN-α2a or monocytes and IFN-γ did not inhibit Lox melanoma growth; however a significant inhibition was observed when tumors were treated with a mixture of monocytes, IFN-α2a and IFN-γ. These results indicate that monocytes and both IFN-α2a and IFN-γ may be required to mediate profound antitumor effect against human ovarian and melanoma tumors in mouse models. PMID:22159517

  10. AMPK activators inhibit the proliferation of human melanomas bearing the activated MAPK pathway.

    PubMed

    Petti, Carlotta; Vegetti, Claudia; Molla, Alessandra; Bersani, Ilaria; Cleris, Loredana; Mustard, Kirsty J; Formelli, Franca; Hardie, Grahame D; Sensi, Marialuisa; Anichini, Andrea

    2012-10-01

    Raf/MEK/ERK signaling can inhibit the liver kinase B1-AMP-activated protein kinase (LKB1-AMPK) pathway, thus rendering melanoma cells resistant to energy stress conditions. We evaluated whether pharmacological reactivation of the AMPK function could exert antitumor effects on melanoma cells bearing this pathway constitutively active because of a mutation in NRAS or BRAF genes. Nine melanoma cell lines were treated with the AMPK activators 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR) and phenformin. The activation of AMPK enzymatic activity, phosphorylation of AMPK and acetyl-CoA carboxylase kinase, in-vitro proliferation, cell cycle, and in-vivo growth of xenografts in nude mice were evaluated. AICAR and phenformin promoted phosphorylation and enzymatic activity of AMPK, as well as phosphorylation of the AMPK downstream target acetyl-CoA carboxylase. Drug treatment of either BRAF-mutant or NRAS-mutant melanomas, at doses not inducing cell death, was accompanied by a dose-dependent decrease in melanoma cell proliferation because of cell cycle arrest in either the G0/G1 or the S phase, associated with an increased expression of the p21 cell cycle inhibitor. Melanomas isolated from subcutaneously implanted mice, 25 days from treatment with AICAR, showed increased staining of the senescence-associated marker β-galactosidase, high p21 expression, and evidence of necrosis. Altogether, these results indicate that pharmacological activators of AMPK-dependent pathways inhibit the cell growth of melanoma cells with active Raf/MEK/ERK signaling and provide a rationale for further investigation on their use in combination therapies.

  11. [Preliminary study on molecular mechanism of curcumine anti-mouse melanoma].

    PubMed

    Gui, Fei; Ma, Wei-Feng; Cai, Shao-Hui; Li, Xiao-Kun; Tan, Yi; Zhou, Chun-Ling; Chen, Hong-Yuan

    2008-11-01

    To investigate the effects of curcumine on mouse B16 melanoma growth and possible mechanism of Bcl-2, P53 and glutathione in tumor cells. The inhibitory effect on growth of melanoma in vivo were examined by mice melanoma models transplanted B16 cells to C57BL/6J mice. MTT method was used to assay the contribution of curcumine to B16 cells in vitro. The apoptosis and expression of Bcl-2, P53 gene of B16 cells were analyzed by flow cytometry, and HPLC assay was used to detect the change of GSH in B16 melanom tissues of C57BL/6J mouse caused by curcumine. Curcumine had obvious inhibitory effect on the growth of mouse B16 melanoma in time and dose dependent manner and the gene expression of bcl-2 in B16 cells decreased after 24 hours supplied with curcumine, whereas P53 protein expression increased; Curcumine depressed the GSH quantity in melanoma tissues. The growth inhibitory effect of curcumine on mouse melanom is proved in vivo and in vitro respectively. Curcumine can induce some cells to apoptosis which may be relevant to downregulation of bcl-2 expression and upregulation of P53 expression as well as exhaustion of GSH in tumor organization.

  12. Identification of cells initiating human melanomas.

    PubMed

    Schatton, Tobias; Murphy, George F; Frank, Natasha Y; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M; Weishaupt, Carsten; Fuhlbrigge, Robert C; Kupper, Thomas S; Sayegh, Mohamed H; Frank, Markus H

    2008-01-17

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.

  13. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  14. The synthetic parasite-derived peptide GK1 increases survival in a preclinical mouse melanoma model.

    PubMed

    Pérez-Torres, Armando; Vera-Aguilera, Jesús; Hernaiz-Leonardo, Juan Carlos; Moreno-Aguilera, Eduardo; Monteverde-Suarez, Diego; Vera-Aguilera, Carlos; Estrada-Bárcenas, Daniel

    2013-11-01

    The therapeutic efficacy of a synthetic parasite-derived peptide GK1, an immune response booster, was evaluated in a mouse melanoma model. This melanoma model correlates with human stage IIb melanoma, which is treated with wide surgical excision; a parallel study employing a surgical treatment was carried out as an instructive goal. C57BL/6 mice were injected subcutaneously in the flank with 2×10(5) B16-F10 murine melanoma cells. When the tumors reached 20 mm3, mice were separated into two different groups; the GK1 group, treated weekly with peritumoral injections of GK1 (10 μg/100 μL of sterile saline solution) and the control group, treated weekly with an antiseptic peritumoral injection of 100 μL of sterile saline solution without further intervention. All mice were monitored daily for clinical appearance, tumor size, and survival. Surgical treatment was performed in parallel when the tumor size was 20 mm3 (group A), 500 mm3 (group B), and >500 mm3 (group C). The GK1 peptide effectively increased the mean survival time by 9.05 days, corresponding to an increase of 42.58%, and significantly delayed tumor growth from day 3 to 12 of treatment. In addition, tumor necrosis was significantly increased (p<0.05) in the treated mice. The overall survival rates obtained with surgical treatment at 6 months were 83.33% for group A, 40% for group B, and 0% for group C, with significant differences (p<0.05) among the groups. The GK1 peptide demonstrated therapeutic properties in a mouse melanoma model, as treatment resulted in a significant increase in the mean survival time of the treated animals (42.58%). The potential for GK1 to be used as a primary or adjuvant component of chemotherapeutic cocktails for the treatment of experimental and human cancers remains to be determined, and surgical removal remains a challenge for any new experimental treatment of melanoma in mouse models.

  15. Long-term efficiency of mesenchymal stromal cell-mediated CD-MSC/5FC therapy in human melanoma xenograft model.

    PubMed

    Kucerova, L; Skolekova, S; Demkova, L; Bohovic, R; Matuskova, M

    2014-10-01

    Mesenchymal stromal cells (MSC) can be exploited as cellular delivery vehicles for the enzymes converting non-toxic prodrugs to toxic substances. Because of their inherent chemoresistance, they exert potent bystander and antitumor effect. Here we show that the human adipose tissue-derived MSC expressing fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CD-MSC) in combination with 5-fluorocytosine (5FC) mediated a long-term tumor-free survival in the 83.3% of tumor-bearing animals. CD-MSC/5FC treatment induced cytotoxicity against model human melanoma cells EGFP-A375. Only 4% of the therapeutic CD-MSC cells eliminated >98.5% of the tumor cells in vitro. Long-term tumor-free survival was confirmed in 15 out of the 18 animals. However, repeatedly used CD-MSC/5FC therapeutic regimen generated more aggressive and metastatic variant of the melanoma cells EGFP-A375/Rel3. These cells derived from the refractory xenotransplants exhibited increased resistance to the CD-MSC/5FC treatment, altered cell adhesion, migration, tumorigenic and metastatic properties. However, long-term curative effect was achieved by the augmentation of the CD-MSC/5FC regimen along with the inhibition of c-Met/hepatocyte growth factor signaling axis in this aggressive melanoma derivative. In summary, the CD-MSC/5FC regimen can be regarded as a very effective antitumor approach to achieve long-term tumor-free survival as demonstrated on a mouse model of aggressive human melanoma xenografts.

  16. Radiation induces an antitumour immune response to mouse melanoma.

    PubMed

    Perez, Carmen A; Fu, Allie; Onishko, Halina; Hallahan, Dennis E; Geng, Ling

    2009-12-01

    Irradiation of cancer cells can cause immunogenic death. We used mouse models to determine whether irradiation of melanoma can enhance the host antitumour immune response and function as an effective vaccination strategy, and investigated the molecular mechanisms involved in this radiation-induced response. For in vivo studies, C57BL6/J mice and the B16F0 melanoma cell line were used in a lung metastasis model, intratumoural host immune activation assays, and tumour growth delay studies. In vitro studies included a dendritic cell (DC) phagocytosis assay, detection of cell surface exposure of the protein calreticulin (CRT), and small interfering RNA (siRNA)-mediated depletion of CRT cellular levels. Irradiation of cutaneous melanomas prior to their resection resulted in more than 20-fold reduction in lung metastases after systemic challenge with untreated melanoma cells. A syngeneic vaccine derived from irradiated melanoma cells also induced adaptive immune response markers in irradiated melanoma implants. Our data indicate a trend for radiation-induced increase in melanoma cell surface exposure of CRT, which is involved in the enhanced phagocytic activity of DC against irradiated melanoma cells (VIACUC). The present study suggests that neoadjuvant irradiation of cutaneous melanoma tumours prior to surgical resection can stimulate an endogenous anti-melanoma host immune response.

  17. Effective adoptive transfer of haploidentical tumor-specific T cells in B16-melanoma bearing mice.

    PubMed

    Cui, Nai-peng; Xie, Shao-jian; Han, Jin-sheng; Ma, Zhen-feng; Chen, Bao-ping; Cai, Jian-hui

    2012-03-01

    Adoptive transfer of allogeneic tumor-specific T cells often results in severe graft-versus-host disease (GVHD). Here, we sought to maximize graft-versus-tumor and minimize GVHD by using haploidentical T cells in pre-irradiated B16-melanoma bearing mice. C57BL/6 mice bearing B16-melanoma tumors were irradiated with 0, 5, or 7 Gy total body irradiation (TBI), or 7 Gy TBI plus bone marrow transplantation. Tumor areas were measured every 3 days to assess the influence of irradiation treatment on tumor regression. B16-melanoma bearing mice were irradiated with 7 Gy TBI; sera and spleens were harvested at days 1, 3, 5, 7, 9, 11, and 13 after irradiation. White blood cell levels were measured and transforming growth factor β1 (TGF-b1) and interleukin 10 (IL-10) levels in serum were detected using enzyme-linked immunosorbent assay (ELISA) kits. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry were performed to test TGF-b1, IL-10 and Foxp3 mRNA levels and the proportion of CD4+CD25+Foxp3+ T-regulatory cells (Tregs) in spleens. B16-melanoma bearing C57BL/6 mice were irradiated with 7 Gy TBI followed by syngeneic (Syn1/Syn2) or haploidentical (Hap1/Hap2), dendritic cell-induced cytotoxic T lymphocytes (DC-CTLs) treatment, tumor areas and system GVHD were observed every 3 days. Mice were killed 21 days after the DC-CTLs adoptive transfer; histologic analyses of eyes, skin, liver, lungs, and intestine were then performed. Irradiation with 7 Gy TBI on the B16-melanoma-bearing mice did not influence tumor regression compared to the control group; however, it down-regulated the proportion of Tregs in spleens and the TGF-b1 and IL-10 levels in sera and spleens, suggesting inhibition of autoimmunity and intervention of tumor microenvironment. Adoptive transfer of haploidentical DC-CTLs significantly inhibited B16-melanoma growth. GVHD assessment and histology analysis showed no significant difference among the groups. Adoptive transfer of

  18. Photoacoustic detection of induced melanoma in vitro using a mouse model

    NASA Astrophysics Data System (ADS)

    Gupta, Sagar; Bhattacharya, Kiran; Newton, Jessica R.; Quinn, Thomas P.; Viator, John A.

    2012-03-01

    Metastasis is a life threatening complex physiological phenomenon that involves the movement of cancer cells from one organ to another by means of blood and lymph. An understanding about metastasis is extremely important to device diagnostic systems to detect and monitor its spread within the body. For the first time we report rapid photoacoustic detection of the induced metastatic melanoma in mice in vitro using photoacoustic flowmetry. A new photoacoustic flow system is developed, that employs photoacoustic excitation coupled with an ultrasound transducer capable of determining the presence of individual, induced mouse melanoma cells (B16/F10) within the circulating system in vitro. Tumor was induced in mice by injecting mouse melanoma cells through tail vein into the C57BL/6 mice. A luciferase based in vivo bioluminescence imaging is performed to confirm the tumor load and multiple metastases in the tumor-induced mice. 1ml of blood obtained through cardiac puncture of the induced metastasized mice was treated to lyse the red blood cells (RBC) and enriched, leaving the induced melanoma in the peripheral blood mononuclear suspension (PBMC). A photoacoustic flowsystem coupled with an ultrasound transducer is used to detect the individual circulating metastatic melanoma cells from the enriched cell suspension.

  19. Aberrant Cx43 Expression and Mislocalization in Metastatic Human Melanomas.

    PubMed

    Alaga, Katanya C; Crawford, Melissa; Dagnino, Lina; Laird, Dale W

    2017-01-01

    At present, it is unclear if melanocytes contain Cx43 gap junctions and whether Cx43 expression is regulated in melanoma onset and progression. To this end, we cultured pure populations of mouse melanocytes and found that they had no detectable Cx43 and exhibited an inability for dye transfer indicating they were devoid of functional gap junctions. Given the evidence that melanomas acquire the expression of other connexin isoforms during tumor progression, we assessed if Cx43 was also expressed and assembled into gap junctions at any stage of human melanoma onset and progression to distant metastases. Nearly all primary melanomas within the epidermis lacked Cx43. In contrast, nodal metastases expressed low levels of Cx43 which was markedly higher in distant metastases that had invaded vital organs. Importantly, in all stages of melanoma progression, Cx43 could be detected in intracellular compartments but was rarely assembled into gap junctions indicative of functional gap junction channels. Overall, these studies suggest that melanocytes do not form Cx43 homocellular gap junctions and even though Cx43 levels increase during melanoma progression, this connexin rarely assembles into gap junction structures.

  20. Aberrant Cx43 Expression and Mislocalization in Metastatic Human Melanomas

    PubMed Central

    Alaga, Katanya C.; Crawford, Melissa; Dagnino, Lina; Laird, Dale W.

    2017-01-01

    At present, it is unclear if melanocytes contain Cx43 gap junctions and whether Cx43 expression is regulated in melanoma onset and progression. To this end, we cultured pure populations of mouse melanocytes and found that they had no detectable Cx43 and exhibited an inability for dye transfer indicating they were devoid of functional gap junctions. Given the evidence that melanomas acquire the expression of other connexin isoforms during tumor progression, we assessed if Cx43 was also expressed and assembled into gap junctions at any stage of human melanoma onset and progression to distant metastases. Nearly all primary melanomas within the epidermis lacked Cx43. In contrast, nodal metastases expressed low levels of Cx43 which was markedly higher in distant metastases that had invaded vital organs. Importantly, in all stages of melanoma progression, Cx43 could be detected in intracellular compartments but was rarely assembled into gap junctions indicative of functional gap junction channels. Overall, these studies suggest that melanocytes do not form Cx43 homocellular gap junctions and even though Cx43 levels increase during melanoma progression, this connexin rarely assembles into gap junction structures. PMID:28607585

  1. Inflammatory Cytokine Pattern Is Sex-Dependent in Mouse Cutaneous Melanoma Experimental Model

    PubMed Central

    Surcel, Mihaela

    2017-01-01

    We present the evaluation of inflammatory cytokines in mouse cutaneous melanoma experimental model, as markers of disease evolution. Moreover, to test our experimental model, we have used low doses of dacarbazine (DTIC). C57 BL/6J mouse of both sexes were subjected to experimental cutaneous melanoma and treated with low doses of DTIC. Clinical parameters and serum cytokines were followed during tumor evolution and during DTIC therapy. Cytokine/chemokine pattern was assessed using xMAP technology and the following molecules were quantified: interleukins (IL)-1-beta, IL-6, IL-10, IL-12 (p70), interferon (IFN)-gamma, granulocyte macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-alpha, macrophage inflammatory protein (MIP)-1alpha, monocyte chemoattractant protein (MCP-1), and keratinocyte-derived chemokine (KC). Significant differences were found between normal females and males mice, female mice having a statistically higher serum concentration of IL-1-beta compared to male mice, while males have a significantly higher concentration of MIP-1-alpha. During melanoma evolution in the female group, IL-1-beta, MIP-1-alpha, and KC circulatory levels were found 10-fold increased, while other cytokines doubled their values. In the male mice group, only circulatory KC increased 4 times, while IL-1-beta and TNF-alpha doubled their circulatory values. Various serum cytokines correlated with the disease evolution in cutaneous melanoma mouse model. PMID:29318162

  2. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model.

    PubMed

    Mirzaei, Hamed; Salehi, Hossein; Oskuee, Reza Kazemi; Mohammadpour, Ali; Mirzaei, Hamid Reza; Sharifi, Mohammad Reza; Salarinia, Reza; Darani, Hossein Yousofi; Mokhtari, Mojgan; Masoudifar, Aria; Sahebkar, Amirhossein; Salehi, Rasoul; Jaafari, Mahmoud Reza

    2018-04-10

    Interferon γ-induced protein 10 kDa (IP-10) is a potent chemoattractant and has been suggested to enhance antitumor activity and mediate tumor regression through multiple mechanisms of action. Multiple lines of evidence have indicated that genetically-modified adult stem cells represent a potential source for cell-based cancer therapy. In the current study, we assessed therapeutic potential of human adipose derived mesenchymal stem cells (hADSC) genetically-modified to express IP-10 for the treatment of lung metastasis in an immunocompetent mouse model of metastatic melanoma. A Piggybac vector encoding IP-10 was employed to transfect hADSC ex vivo. Expression and bioactivity of the transgenic protein from hADSCs expressing IP-10 were confirmed prior to in vivo studies. Our results indicated that hADSCs expressing IP-10 could inhibit the growth of B16F10 melanoma cells and significantly prolonged survival. Immunohistochemistry analysis, TUNEL assay and western blot analysis indicated that hADSCs expressing IP-10 inhibited tumor cell growth, hindered tumor infiltration of Tregs, restricted angiogenesis and significantly prolonged survival. In conclusion, our results demonstrated that targeting metastatic tumor sites by hADSC expressing IP-10 could reduce melanoma tumor growth and lung metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma

    PubMed Central

    Simpson, R Mark; Bastian, Boris C; Michael, Helen T; Webster, Joshua D; Prasad, Manju L; Conway, Catherine M; Prieto, Victor M; Gary, Joy M; Goldschmidt, Michael H; Esplin, D Glen; Smedley, Rebecca C; Piris, Adriano; Meuten, Donald J; Kiupel, Matti; Lee, Chyi-Chia R; Ward, Jerrold M; Dwyer, Jennifer E; Davis, Barbara J; Anver, Miriam R; Molinolo, Alfredo A; Hoover, Shelley B; Rodriguez-Canales, Jaime; Hewitt, Stephen M

    2014-01-01

    Melanoma represents a significant malignancy in humans and dogs. Different from genetically engineered models, sporadic canine melanocytic neoplasms share several characteristics with human disease that could make dogs a more relevant preclinical model. Canine melanomas rarely arise in sun-exposed sites. Most occur in the oral cavity, with a subset having intra-epithelial malignant melanocytes mimicking the in situ component of human mucosal melanoma. The spectrum of canine melanocytic neoplasia includes benign lesions with some analogy to nevi, as well as invasive primary melanoma, and widespread metastasis. Growing evidence of distinct subtypes in humans, differing in somatic and predisposing germ-line genetic alterations, cell of origin, epidemiology, relationship to ultraviolet radiation and progression from benign to malignant tumors, may also exist in dogs. Canine and human mucosal melanomas appear to harbor BRAF, NRAS, and c-kit mutations uncommonly, compared with human cutaneous melanomas, although both species share AKT and MAPK signaling activation. We conclude that there is significant overlap in the clinical and histopathological features of canine and human mucosal melanomas. This represents opportunity to explore canine oral cavity melanoma as a preclinical model. PMID:24128326

  4. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both humanmore » and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.« less

  5. Effectiveness of anticancer drugs determined in nude mice inoculated with (/sup 125/I)5-iodo-2'-deoxyuridine-prelabeled human melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockshin, A.; Giovanella, B.C.; Vardeman, D.M.

    1985-04-01

    Anticancer drugs were tested on NIH-2 nude mice inoculated ip with BRO human melanoma cells, which are rapidly lethal for these hosts. Criteria for drug activity were a) increased host survival and b) an increased rate of radioactivity loss from mice bearing BRO cells prelabeled with (/sup 125/I)5-iodo-2'-deoxyuridine. Diphtheria toxin, which is selectively toxic to human cells compared to mouse cells, prolonged host survival and accelerated /sup 125/I elimination in a dose-dependent manner. Drugs that increased the rate of /sup 125/I loss compared to the rate of untreated mice also prolonged the lives of treated mice. With one exception, drugsmore » that did not accelerate /sup 125/I elimination had little or no effect on the length of survival.« less

  6. Strengths and Weaknesses of Pre-Clinical Models for Human Melanoma Treatment: Dawn of Dogs’ Revolution for Immunotherapy

    PubMed Central

    Barutello, Giuseppina; Rolih, Valeria; Arigoni, Maddalena; Tarone, Lidia; Conti, Laura

    2018-01-01

    Despite several therapeutic advances, malignant melanoma still remains a fatal disease for which novel and long-term curative treatments are needed. The successful development of innovative therapies strongly depends on the availability of appropriate pre-clinical models. For this purpose, several mouse models holding the promise to provide insight into molecular biology and clinical behavior of melanoma have been generated. The most relevant ones and their contribution for the advancement of therapeutic approaches for the treatment of human melanoma patients will be here summarized. However, as models, mice do not recapitulate all the features of human melanoma, thus their strengths and weaknesses need to be carefully identified and considered for the translation of the results into the human clinics. In this panorama, the concept of comparative oncology acquires a priceless value. The revolutionary importance of spontaneous canine melanoma as a translational model for the pre-clinical investigation of melanoma progression and treatment will be here discussed, with a special consideration to the development of innovative immunotherapeutic approaches. PMID:29534457

  7. Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes

    PubMed Central

    Yoon, Jeong-Hwan; Jung, Su Myung; Park, Seok Hee; Kato, Mitsuyasu; Yamashita, Tadashi; Lee, In-Kyu; Sudo, Katsuko; Nakae, Susumu; Han, Jin Soo; Kim, Ok-Hee; Oh, Byung-Chul; Sumida, Takayuki; Kuroda, Masahiko; Ju, Ji-Hyeon; Jung, Kyeong Cheon; Park, Seong Hoe; Kim, Dae-Kee; Mamura, Mizuko

    2013-01-01

    Varieties of transforming growth factor-β (TGF-β) antagonists have been developed to intervene with excessive TGF-β signalling activity in cancer. Activin receptor-like kinase5 (ALK5) inhibitors antagonize TGF-β signalling by blocking TGF-β receptor-activated Smad (R-Smad) phosphorylation. Here we report the novel mechanisms how ALK5 inhibitors exert a therapeutic effect on a mouse B16 melanoma model. Oral treatment with a novel ALK5 inhibitor, EW-7197 (2.5 mg/kg daily) or a representative ALK5 inhibitor, LY-2157299 (75 mg/kg bid) suppressed the progression of melanoma with enhanced cytotoxic T-lymphocyte (CTL) responses. Notably, ALK5 inhibitors not only blocked R-Smad phosphorylation, but also induced ubiquitin-mediated degradation of the common Smad, Smad4 mainly in CD8+ T cells in melanoma-bearing mice. Accordingly, T-cell-specific deletion of Smad4 was sufficient to suppress the progression of melanoma. We further identified eomesodermin (Eomes), the T-box transcription factor regulating CTL functions, as a specific target repressed by TGF-β via Smad4 and Smad3 in CD8+ T cells. Thus, ALK5 inhibition enhances anti-melanoma CTL responses through ubiquitin-mediated degradation of Smad4 in addition to the direct inhibitory effect on R-Smad phosphorylation. PMID:24127404

  8. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells

    PubMed Central

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M.; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L.; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  9. A Subset of Host B-Lymphocytes Control Melanoma Metastasis Through a MCAM/MUC18-dependent Interaction: Evidence from Mice and Humans

    PubMed Central

    Staquicini, Fernanda I.; Tandle, Anita; Libutti, Steven K.; Sun, Jessica; Zigler, Maya; Bar-Eli, Menashe; Aliperti, Fabiana; Pérez, Elizabeth C.; Gershenwald, Jeffrey E.; Mariano, Mario; Pasqualini, Renata; Arap, Wadih; Lopes, José D.

    2008-01-01

    Host immunity affects tumor metastasis but the corresponding cellular and molecular mechanisms are not entirely clear. Here we show that a subset of B-lymphocytes (termed B-1 population) -- but not other lymphocytes -- have pro-metastatic effects on melanoma cells in vivo through a direct heterotypic cell-cell interaction. In the classic B16 mouse melanoma model, one mechanism underlying this phenomenon is a specific upregulation and subsequent homophilic interaction mediated by the cell surface glycoprotein MUC18 (also known as melanoma cell adhesion molecule; MCAM). Presence of B-1 lymphocytes in a panel of tumor samples from melanoma patients directly correlates with MUC18 expression in melanoma cells, indicating that the same protein interaction exists in humans. These results suggest a new but as yet unrecognized functional role for host B-1 lymphocytes in tumor metastasis and establish a biochemical basis for such observations. Our findings support the counterintuitive central hypothesis in which a primitive layer of the immune system actually contributes to tumor progression and metastasis in a mouse model and in melanoma patients. Given that monoclonal antibodies against MUC18 are in pre-clinical development but the reason for their anti-tumor activity is not well understood, these translational results are relevant in the setting of human melanoma, and perhaps of other cancers. PMID:18922915

  10. Naturally occurring melanomas in dogs as models for non-UV pathways of human melanomas.

    PubMed

    Gillard, Marc; Cadieu, Edouard; De Brito, Clotilde; Abadie, Jérôme; Vergier, Béatrice; Devauchelle, Patrick; Degorce, Frédérique; Dréano, Stephane; Primot, Aline; Dorso, Laetitia; Lagadic, Marie; Galibert, Francis; Hédan, Benoit; Galibert, Marie-Dominique; André, Catherine

    2014-01-01

    Spontaneously occurring melanomas are frequent in dogs. They appear at the same localizations as in humans, i.e. skin, mucosal sites, nail matrix and eyes. They display variable behaviors: tumors at oral localizations are more frequent and aggressive than at other anatomical sites. Interestingly, dog melanomas are associated with strong breed predispositions and overrepresentation of black-coated dogs. Epidemiological analysis of 2350 affected dogs showed that poodles are at high risk of developing oral melanoma, while schnauzers or Beauce shepherds mostly developped cutaneous melanoma. Clinical and histopathological analyses were performed on a cohort of 153 cases with a 4-yr follow-up. Histopathological characterization showed that most canine tumors are intradermal and homologous to human rare morphological melanomas types - 'nevocytoid type' and 'animal type'-. Tumor cDNA sequencing data, obtained from 95 dogs for six genes, relevant to human melanoma classification, detected somatic mutations in oral melanoma, in NRAS and PTEN genes, at human hotspot sites, but not in BRAF. Altogether, these findings support the relevance of the dog model for comparative oncology of melanomas, especially for the elucidation of non-UV induced pathways. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Anti-tumor effect of Coriolus versicolor methanol extract against mouse B16 melanoma cells: in vitro and in vivo study.

    PubMed

    Harhaji, Lj; Mijatović, S; Maksimović-Ivanić, D; Stojanović, I; Momcilović, M; Maksimović, V; Tufegdzić, S; Marjanović, Z; Mostarica-Stojković, M; Vucinić, Z; Stosić-Grujicić, S

    2008-05-01

    Numerous studies have shown immunostimulatory and anti-tumor effects of water and standardized aqueous ethanol extracts derived from the medicinal mushroom, Coriolus versicolor, but the biological activity of methanol extracts has not been examined so far. In the present study we investigated the anti-tumor effect of C. versicolor methanol extract (which contains terpenoids and polyphenols) on B16 mouse melanoma cells both in vitro and in vivo. In vitro treatment of the cells with the methanol extract (25-1600 microg/ml) reduced melanoma cell viability in a dose-dependent manner. Furthermore, in the presence of the methanol extract (200 microg/ml, concentration IC(50)) the proliferation of B16 cells was arrested in the G(0)/G(1) phase of the cell cycle, followed by both apoptotic and secondary necrotic cell death. In vivo methanol extract treatment (i.p. 50 mg/kg, for 14 days) inhibited tumor growth in C57BL/6 mice inoculated with syngeneic B16 tumor cells. Moreover, peritoneal macrophages collected 21 days after tumor implantation from methanol extract-treated animals exerted stronger tumoristatic activity ex vivo than macrophages from control melanoma-bearing mice. Taken together, our results demonstrate that C. versicolor methanol extract exerts pronounced anti-melanoma activity, both directly through antiproliferative and cytotoxic effects on tumor cells and indirectly through promotion of macrophage anti-tumor activity.

  12. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity.

    PubMed

    De Milito, Angelo; Canese, Rossella; Marino, Maria Lucia; Borghi, Martina; Iero, Manuela; Villa, Antonello; Venturi, Giulietta; Lozupone, Francesco; Iessi, Elisabetta; Logozzi, Mariantonia; Della Mina, Pamela; Santinami, Mario; Rodolfo, Monica; Podo, Franca; Rivoltini, Licia; Fais, Stefano

    2010-07-01

    Metastatic melanoma is associated with poor prognosis and still limited therapeutic options. An innovative treatment approach for this disease is represented by targeting acidosis, a feature characterizing tumor microenvironment and playing an important role in cancer malignancy. Proton pump inhibitors (PPI), such as esomeprazole (ESOM) are prodrugs functionally activated by acidic environment, fostering pH neutralization by inhibiting proton extrusion. We used human melanoma cell lines and xeno-transplated SCID mice to provide preclinical evidence of ESOM antineoplastic activity. Human melanoma cell lines, characterized by different mutation and signaling profiles, were treated with ESOM in different pH conditions and evaluated for proliferation, viability and cell death. SCID mice engrafted with human melanoma were used to study ESOM administration effects on tumor growth and tumor pH by magnetic resonance spectroscopy (MRS). ESOM inhibited proliferation of melanoma cells in vitro and induced a cytotoxicity strongly boosted by low pH culture conditions. ESOM-induced tumor cell death occurred via rapid intracellular acidification and activation of several caspases. Inhibition of caspases activity by pan-caspase inhibitor z-vad-fmk completely abrogated the ESOM-induced cell death. ESOM administration (2.5 mg kg(-1)) to SCID mice engrafted with human melanoma reduced tumor growth, consistent with decrease of proliferating cells and clear reduction of pH gradients in tumor tissue. Moreover, systemic ESOM administration dramatically increased survival of human melanoma-bearing animals, in absence of any relevant toxicity. These data show preclinical evidence supporting the use of PPI as novel therapeutic strategy for melanoma, providing the proof of concept that PPI target human melanoma modifying tumor pH gradients.

  13. Inhibition of melanoma development in the Nras((Q61K)) ::Ink4a(-/-) mouse model by the small molecule BI-69A11.

    PubMed

    Feng, Yongmei; Lau, Eric; Scortegagna, Marzia; Ruller, Chelsea; De, Surya K; Barile, Elisa; Krajewski, Stan; Aza-Blanc, Pedro; Williams, Roy; Pinkerton, Anthony B; Jackson, Michael; Chin, Lynda; Pellecchia, Maurizio; Bosenberg, Marcus; Ronai, Ze'ev A

    2013-01-01

    To date, there are no effective therapies for tumors bearing NRAS mutations, which are present in 15-20% of human melanomas. Here we extend our earlier studies where we demonstrated that the small molecule BI-69A11 inhibits the growth of melanoma cell lines. Gene expression analysis revealed the induction of interferon- and cell death-related genes that were associated with responsiveness of melanoma cell lines to BI-69A11. Strikingly, the administration of BI-69A11 inhibited melanoma development in genetically modified mice bearing an inducible form of activated Nras and a deletion of the Ink4a gene (Nras((Q61K)) ::Ink4a(-/-) ). Biweekly administration of BI-69A11 starting at 10 weeks or as late as 24 weeks after the induction of mutant Nras expression inhibited melanoma development (100 and 36%, respectively). BI-69A11 treatment did not inhibit the development of histiocytic sarcomas, which constitute about 50% of the tumors in this model. BI-69A11-resistant Nras((Q61K)) ::Ink4a(-/-) tumors exhibited increased CD45 expression, reflective of immune cell infiltration and upregulation of gene networks associated with the cytoskeleton, DNA damage response, and small molecule transport. The ability to attenuate the development of NRAS mutant melanomas supports further development of BI-69A11 for clinical assessment. © 2012 John Wiley & Sons A/S.

  14. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells

    PubMed Central

    Maeda, Toyonobu; Suzuki, Atsuko; Koga, Kaori; Miyamoto, Chihiro; Maehata, Yojiro; Ozawa, Shigeyuki; Hata, Ryu-Ichiro; Nagashima, Yoji; Nabeshima, Kazuki; Miyazaki, Kaoru; Kato, Yasumasa

    2017-01-01

    Extracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pHe) has been found to increase intracellular Ca2+ and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca2+-dependent monovalent cation channel, is associated with acidic pHe signaling and induction of MMP-9 expression in this mouse melanoma model. Treatment of B16 cells with Trpm5 siRNA reduced acidic pHe-induced MMP-9 expression. Enforced expression of Trpm5 increased the rate of acidic pHe-induced MMP-9 expression, as well as increasing experimental lung metastasis. This genetic manipulation did not alter the pHe critical for MMP-9 induction but simply amplified the percentage of inducible MMP-9 at each pHe. Treatment of tumor bearing mice with triphenylphosphine oxide (TPPO), an inhibitor of TRPM5, significantly reduced spontaneous lung metastasis. In silico analysis of clinical samples showed that high TRPM5 mRNA expression correlated with poor overall survival rate in patients with melanoma and gastric cancer but not in patients with cancers of the ovary, lung, breast, and rectum. These results showed that TRPM5 amplifies acidic pHe signaling and may be a promising target for preventing metastasis of some types of tumor. PMID:29108231

  15. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells.

    PubMed

    Maeda, Toyonobu; Suzuki, Atsuko; Koga, Kaori; Miyamoto, Chihiro; Maehata, Yojiro; Ozawa, Shigeyuki; Hata, Ryu-Ichiro; Nagashima, Yoji; Nabeshima, Kazuki; Miyazaki, Kaoru; Kato, Yasumasa

    2017-10-03

    Extracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pH e ) has been found to increase intracellular Ca 2+ and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca 2+ -dependent monovalent cation channel, is associated with acidic pH e signaling and induction of MMP-9 expression in this mouse melanoma model. Treatment of B16 cells with Trpm5 siRNA reduced acidic pH e -induced MMP-9 expression. Enforced expression of Trpm5 increased the rate of acidic pH e -induced MMP-9 expression, as well as increasing experimental lung metastasis. This genetic manipulation did not alter the pH e critical for MMP-9 induction but simply amplified the percentage of inducible MMP-9 at each pH e . Treatment of tumor bearing mice with triphenylphosphine oxide (TPPO), an inhibitor of TRPM5, significantly reduced spontaneous lung metastasis. In silico analysis of clinical samples showed that high TRPM5 mRNA expression correlated with poor overall survival rate in patients with melanoma and gastric cancer but not in patients with cancers of the ovary, lung, breast, and rectum. These results showed that TRPM5 amplifies acidic pH e signaling and may be a promising target for preventing metastasis of some types of tumor.

  16. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ungerer, Christopher; Doberstein, Kai; Buerger, Claudia

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far.more » In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.« less

  17. Single photon emission computed tomography/positron emission tomography imaging and targeted radionuclide therapy of melanoma: new multimodal fluorinated and iodinated radiotracers.

    PubMed

    Maisonial, Aurélie; Kuhnast, Bertrand; Papon, Janine; Boisgard, Raphaël; Bayle, Martine; Vidal, Aurélien; Auzeloux, Philippe; Rbah, Latifa; Bonnet-Duquennoy, Mathilde; Miot-Noirault, Elisabeth; Galmier, Marie-Josèphe; Borel, Michèle; Askienazy, Serge; Dollé, Frédéric; Tavitian, Bertrand; Madelmont, Jean-Claude; Moins, Nicole; Chezal, Jean-Michel

    2011-04-28

    This study reports a series of 14 new iodinated and fluorinated compounds offering both early imaging ((123)I, (124)I, (18)F) and systemic treatment ((131)I) of melanoma potentialities. The biodistribution of each (125)I-labeled tracer was evaluated in a model of melanoma B16F0-bearing mice, using in vivo serial γ scintigraphic imaging. Among this series, [(125)I]56 emerged as the most promising compound in terms of specific tumoral uptake and in vivo kinetic profile. To validate our multimodality concept, the radiosynthesis of [(18)F]56 was then optimized and this radiotracer has been successfully investigated for in vivo PET imaging of melanoma in B16F0- and B16F10-bearing mouse model. The therapeutic efficacy of [(131)I]56 was then evaluated in mice bearing subcutaneous B16F0 melanoma, and a significant slow down in tumoral growth was demonstrated. These data support further development of 56 for PET imaging ((18)F, (124)I) and targeted radionuclide therapy ((131)I) of melanoma using a single chemical structure.

  18. Synthesis and evaluation of ¹²³/¹³¹I-Iochlonicotinamide as a novel SPECT probe for malignant melanoma.

    PubMed

    Chang, Chih-Chao; Chang, Chih-Hsien; Shen, Chih-Chieh; Chen, Chuan-Lin; Liu, Ren-Shyan; Lin, Ming-Hsien; Wang, Hsin-Ell

    2015-05-01

    Malignant melanoma expresses a highly aggressive metastasis. Early diagnosis of malignant melanoma is important for patient survival. Radiolabeled benzamides and nicotinamides have been reported to be attractive candidates for malignant melanoma diagnosis as they bind to melanin, a characteristic substance that displays in malignant melanoma, and show high tumor accumulation and retention. Herein, we designed and synthesized a novel (123/131)I-labeled nicotinamide derivative that specifically binds to melanin. (123/131)I-Iochlonicotinamide was prepared with good radiochemical yield (50-70%, decay corrected) and high specific radioactivity (50-80 GBq/μmol). (131)I-Iochlonicotinamide exhibited good in vitro stability (radiochemical purity >95% after a 24-h incubation) in human serum. High uptake of (123/131)I-Iochlonicotinamide in B16F0 melanoma cells compared to that in A375 amelanotic cells demonstrated its selective binding to melanin. Intravenous administration of (123/131)I-Iochlonicotinamide in a melanoma-bearing mouse model revealed high uptake in melanotic melanoma and high tumor-to-muscle ratio. MicroSPECT scan of (123/131)I-Iochlonicotinamide injected mice also displayed high contrast tumor imaging as compared with normal organs. The radiation-absorbed dose projection for the administration of (131)I-Iochlonicotinamide to human was based on the results of biodistribution study. The effective dose appears to be approximately 0.44 mSv/MBq(-1). The specific binding of (123/131)I-Iochlonicotinamide to melanin along with a prolonged tumor retention and acceptable projected human dosimetry suggest that it may be a promising theranostic agent for treating malignant melanoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model.

    PubMed

    Wang, Jake; Perry, Curtis J; Meeth, Katrina; Thakral, Durga; Damsky, William; Micevic, Goran; Kaech, Susan; Blenman, Kim; Bosenberg, Marcus

    2017-07-01

    Human melanomas exhibit relatively high somatic mutation burden compared to other malignancies. These somatic mutations may produce neoantigens that are recognized by the immune system, leading to an antitumor response. By irradiating a parental mouse melanoma cell line carrying three driver mutations with UVB and expanding a single-cell clone, we generated a mutagenized model that exhibits high somatic mutation burden. When inoculated at low cell numbers in immunocompetent C57BL/6J mice, YUMMER1.7 (Yale University Mouse Melanoma Exposed to Radiation) regresses after a brief period of growth. This regression phenotype is dependent on T cells as YUMMER1.7 tumors grow significantly faster in immunodeficient Rag1 -/- mice and C57BL/6J mice depleted of CD4 and CD8 T cells. Interestingly, regression can be overcome by injecting higher cell numbers of YUMMER1.7, which results in tumors that grow without effective rejection. Mice that have previously rejected YUMMER1.7 tumors develop immunity against higher doses of YUMMER1.7 tumor challenge. In addition, escaping YUMMER1.7 tumors are sensitive to anti-CTLA-4 and anti-PD-1 therapy, establishing a new model for the evaluation of immune checkpoint inhibition and antitumor immune responses. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. In vitro and in vivo studies on the cytotoxicity of irradiated silk fibroin against mouse melanoma tumor cell

    NASA Astrophysics Data System (ADS)

    Byun, Eui-Baek; Sung, Nak-Yun; Kwon, Sun-Kyu; Song, Beom-Seok; Kim, Jae-Hun; Choi, Jong-il; Hwang, Han-Joon; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    The physicochemical properties of proteins can be altered by irradiation. But, it is rarely that the researches on the functional properties of irradiated proteins have been reported. Fibroin is a fibrous protein derived from silkworm Bombyx mori and has been suggested as a biomaterial for biomedical application. Therefore, fibroin was selected as a model protein and was examined with the irradiation effects on the cytotoxicity of fibroin on tumor cell. The cytotoxicity of fibroin against mouse melanoma cell (B16BL6) showed a significant increase dependent upon the increase of irradiation dose. And also, the splenocyte proliferation activities of fibroin were increased by gamma irradiation. In addition, the oral administration of irradiated fibroin significantly increased the inhibition rate of tumor growth in tumor-bearing mouse model. The reason might be due to the change of protein structure by gamma irradiation and is being studied. From these result, it could be concluded that the irradiated fibroin might be a potential candidate as a valuable product in food and medical industry.

  1. Orally administered rapamycin, dacarbazine or both for treatment of human melanoma evaluated in severe combined immunodeficiency mice.

    PubMed

    Thallinger, Christiane; Skorjanec, Sophie; Soleiman, Afschin; Tzaneva, Stanislava; Griss, Johannes; Rous, Wolfgang; Poeppl, Wolfgang; Weinlich, Georg; Karimian-Teherani, Daniela; Joukhadar, Christian

    2008-01-01

    In this experimental study, the antineoplastic potential of orally administered rapamycin in human melanoma was evaluated and compared with dacarbazine (DTIC) as well as with the antineoplastic effect of the combination of both drugs. The substances were tested using 2 human melanoma cell lines, 518A2, which is highly susceptible to DTIC, and 607B, which is moderately susceptible. A human melanoma severe combined immunodeficiency mouse xenotransplantation model was used. After development of palpable tumors, mice received oral rapamycin or saline over 18 days. Additionally, from treatment day 4 to 8, mice were randomly chosen to receive either DTIC or saline treatment. The oral rapamycin treatment (1.5, 7.5, 15 and 30 mg/kg body weight) had an antineoplastic effect, ranging from 35 to 78% tumor weight reduction compared with the saline group. In DTIC less sensitive 607B tumors, rapamycin treatment (15 and 30 mg/kg body weight) was superior to DTIC treatment (p < 0.05). DTIC monotreatment reduced tumor weight in 518A2 tumors by 85% on average, whereas in 607B xenografts, no significant tumor weight reduction was observed compared with the saline group (p > 0.05). The combination of rapamycin and DTIC was not superior to rapamycin monotreatment in any cell line. These data indicate that oral rapamycin exerts a relevant antineoplastic effect on human melanoma cells. This effect appeared to be more pronounced in DTIC less sensitive melanoma xenografts. Copyright 2008 S. Karger AG, Basel.

  2. Whole Body Microwave Irradiation for Improved Dacarbazine Therapeutical Action in Cutaneous Melanoma Mouse Model

    PubMed Central

    Albulescu, Lucian; Iacob, Nicusor; Ighigeanu, Daniel

    2013-01-01

    A cutaneous melanoma mouse model was used to test the efficacy of a new therapeutical approach that uses low doses of cytostatics in conjunction with mild whole body microwave exposure of 2.45 GHz in order to enhance cytostatics antitumoral effect. Materials and Methods. A microwave exposure system for C57BL/6 mouse whole body microwave irradiation was designed; groups of 40 mice (males and females) bearing experimental tumours were subjected to a combined therapy comprising low doses of dacarbazine in combination with mild whole body irradiation. Clinical parameters and serum cytokine testing using xMAP technology were performed. Results. The group that was subjected to combined therapy, microwave and cytostatic, had the best clinical evolution in terms of overall survival, tumour volume, and metastatic potential. At day 14 the untreated group had 100% mortality, while in the combined therapy group 40% of mice were surviving. Quantifying serum IL-1β, IL-6, IL-10, IL-12 (p70), IFN-γ, GM-CSF, TNF-α, MIP-1α, MCP-1, and KC during tumorigenesis and therapy found that the combined experimental therapy decreases all the inflammatory cytokines, except chemokine MCP-1 that was found increased, suggesting an increase of the anti-tumoral immune response triggered by the combined therapy. The overall metastatic process is decreased in the combined therapy group. PMID:24377047

  3. Whole body microwave irradiation for improved dacarbazine therapeutical action in cutaneous melanoma mouse model.

    PubMed

    Neagu, Monica; Constantin, Carolina; Martin, Diana; Albulescu, Lucian; Iacob, Nicusor; Ighigeanu, Daniel

    2013-01-01

    A cutaneous melanoma mouse model was used to test the efficacy of a new therapeutical approach that uses low doses of cytostatics in conjunction with mild whole body microwave exposure of 2.45 GHz in order to enhance cytostatics antitumoral effect. Materials and Methods. A microwave exposure system for C57BL/6 mouse whole body microwave irradiation was designed; groups of 40 mice (males and females) bearing experimental tumours were subjected to a combined therapy comprising low doses of dacarbazine in combination with mild whole body irradiation. Clinical parameters and serum cytokine testing using xMAP technology were performed. Results. The group that was subjected to combined therapy, microwave and cytostatic, had the best clinical evolution in terms of overall survival, tumour volume, and metastatic potential. At day 14 the untreated group had 100% mortality, while in the combined therapy group 40% of mice were surviving. Quantifying serum IL-1 β , IL-6, IL-10, IL-12 (p70), IFN- γ , GM-CSF, TNF- α , MIP-1 α , MCP-1, and KC during tumorigenesis and therapy found that the combined experimental therapy decreases all the inflammatory cytokines, except chemokine MCP-1 that was found increased, suggesting an increase of the anti-tumoral immune response triggered by the combined therapy. The overall metastatic process is decreased in the combined therapy group.

  4. In vivo identification of tumor suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma

    PubMed Central

    Karreth, Florian A.; Tay, Yvonne; Perna, Daniele; Ala, Ugo; Tan, Shen Mynn; Rust, Alistair G.; DeNicola, Gina; Webster, Kaitlyn A.; Weiss, Dror; Perez-Mancera, Pedro A.; Krauthammer, Michael; Halaban, Ruth; Provero, Paolo; Adams, David J.; Tuveson, David A.; Pandolfi, Pier Paolo

    2011-01-01

    Summary We recently proposed that competitive endogenous RNAs (ceRNAs) sequester microRNAs to regulate mRNA transcripts containing common microRNA recognition elements (MREs). However, the functional role of ceRNAs in cancer remains unknown. Loss of PTEN, a tumor suppressor regulated by ceRNA activity, frequently occurs in melanoma. Here, we report the discovery of significant enrichment of putative PTEN ceRNAs among genes whose loss accelerates tumorigenesis following Sleeping Beauty insertional mutagenesis in a mouse model of melanoma. We validated several putative PTEN ceRNAs and further characterized one, the ZEB2 transcript. We show that ZEB2 modulates PTEN protein levels in a microRNA-dependent, protein coding-independent manner. Attenuation of ZEB2 expression activates the PI3K/AKT pathway, enhances cell transformation, and commonly occurs in human melanomas and other cancers expressing low PTEN levels. Our study genetically identifies multiple putative microRNA decoys for PTEN, validates ZEB2 mRNA as a bona fide PTEN ceRNA, and demonstrates that abrogated ZEB2 expression cooperates with BRAFV600E to promote melanomagenesis. PMID:22000016

  5. gamma-Glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver.

    PubMed

    Obrador, Elena; Carretero, Julian; Ortega, Angel; Medina, Ignacio; Rodilla, Vicente; Pellicer, José A; Estrela, José M

    2002-01-01

    B16 melanoma (B16M) cells with high glutathione (GSH) content show rapid proliferation in vitro and high metastatic activity in the liver in vivo. gamma-Glutamyl transpeptidase (GGT)-mediated extracellular GSH cleavage and intracellular GSH synthesis were studied in vitro in B16M cells with high (F10) and low (F1) metastatic potential. GGT activity was modified by transfection with the human GGT gene (B16MF1/Tet-GGT cells) or by acivicin-induced inhibition. B16MF1/Tet-GGT and B16MF10 cells exhibited higher GSH content (35 +/- 6 and 40 +/- 5 nmol/10(6) cells, respectively) and GGT activity (89 +/- 9 and 37 +/- 7 mU/10(6) cells, respectively) as compared (P <.05) with B16MF1 cells (10 +/- 3 nmol GSH and 4 mU GGT/10(6) cells). Metastasis (number of foci/100 mm(3) of liver) increased in B16MF1 cells pretreated with GSH ester ( approximately 3-fold, P <.01), and decreased in B16MF1/Tet-GGT and B16MF10 cells pretreated with the GSH synthesis inhibitor L-buthionine (S,R)-sulphoximine ( approximately 5-fold and 2-fold, respectively, P <.01). Liver, kidney, brain, lung, and erythrocyte GSH content in B16MF1/Tet-GGT- or B16MF10-bearing mice decreased as compared with B16MF1- and non-tumor-bearing mice. Organic anion transporting polypeptide 1-independent sinusoidal GSH efflux from hepatocytes increased in B16MF1/Tet-GGT- or B16MF10-bearing mice ( approximately 2-fold, P <.01) as compared with non-tumor-bearing mice. Our results indicate that tumor GGT activity and an intertissue flow of GSH can regulate GSH content of melanoma cells and their metastatic growth in the liver.

  6. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  7. Chronic mild stress facilitates melanoma tumor growth in mouse lines selected for high and low stress-induced analgesia.

    PubMed

    Ragan, Agnieszka R; Lesniak, Anna; Bochynska-Czyz, Marta; Kosson, Anna; Szymanska, Hanna; Pysniak, Kazimiera; Gajewska, Marta; Lipkowski, Andrzej W; Sacharczuk, Mariusz

    2013-09-01

    Both chronic stress conditions and hyperergic reaction to environmental stress are known to enhance cancer susceptibility. We described two mouse lines that displayed high (HA) and low (LA) swim stress-induced analgesia (SSIA) to investigate the relationship between inherited differences in sensitivity to stress and proneness to an increased growth rate of subcutaneously inoculated melanoma. These lines display several genetic and physiological differences, among which distinct sensitivity to mutagens and susceptibility to cancer are especially noticeable. High analgesic mice display high proneness both to stress and a rapid local spread of B16F0 melanoma. However, stress-resistant LA mice do not develop melanoma tumors after inoculation, or if so, tumors regress spontaneously. We found that the chronic mild stress (CMS) procedure leads to enhanced interlinear differences in melanoma susceptibility. Tumors developed faster in stress conditions in both lines. However, LA mice still displayed a tendency for spontaneous regression, and 50% of LA mice did not develop a tumor, even under stressed conditions. Moreover, we showed that chronic stress, but not tumor progression, induces depressive behavior, which may be an important clue in cancer therapy. Our results clearly indicate how the interaction between genetic susceptibility to stress and environmental stress determine the risk and progression of melanoma. To our knowledge, HA/LA mouse lines are the first animal models of distinct melanoma progression mediated by inherited differences in stress reactivity.

  8. In vitro and in vivo cytotoxic activity of human lactoferricin derived antitumor peptide R-DIM-P-LF11-334 on human malignant melanoma

    PubMed Central

    Riedl, Sabrina; Rinner, Beate; Schaider, Helmut; Liegl-Atzwanger, Bernadette; Meditz, Katharina; Preishuber-Pflügl, Julia; Grissenberger, Sarah; Lohner, Karl; Zweytick, Dagmar

    2017-01-01

    Di-peptides derived from the human host defense peptide lactoferricin were previously described to specifically interact with the negatively charged lipid phosphatidylserine exposed by cancer cells. In this study one further derivative, namely R-DIM-P-LF11-334 is shown to exhibit even increased cancer toxicity in vitro and in vivo while non-neoplastic cells are not harmed. In liposomal model systems composed of phosphatidylserine mimicking cancerous and phosphatidylcholine mimicking non-cancerous membranes the specific interaction with the cancer marker PS was confirmed by specific induction of membrane perturbation and permeabilization in presence of the peptide. In vitro studies with cell lines of human malignant melanoma, such as A375, or primary cells of human melanoma metastases to the brain, as MUG Mel1, and non-neoplastic human dermal fibroblasts NHDF revealed high cytotoxic effect of R-DIM-P-LF11-334 on melanoma cells of A375 and MUG Mel1, whereas only minor effect on the dermal fibroblasts NHDF was observed, yielding an about 20-fold killing-specificity for A375 and MUG-Mel1. The LC50 values for melanoma A375 and MUG Mel1 were about 10 μM. Analysis of secondary structure of the peptide revealed an increase in the proportion of β-sheets exclusively in presence of the cancer mimic. Stability studies further indicated a potential adequate stability in blood or under stringent conditions. Importantly the cytotoxic effect on cancer cells was also proven in vivo in mouse xenografts of human melanoma, where peptide treatment induced strong tumor regression and in average a tumor area reduction of 85% compared to tumors of control mice without peptide treatment. PMID:29069749

  9. In vitro and in vivo cytotoxic activity of human lactoferricin derived antitumor peptide R-DIM-P-LF11-334 on human malignant melanoma.

    PubMed

    Riedl, Sabrina; Rinner, Beate; Schaider, Helmut; Liegl-Atzwanger, Bernadette; Meditz, Katharina; Preishuber-Pflügl, Julia; Grissenberger, Sarah; Lohner, Karl; Zweytick, Dagmar

    2017-09-22

    Di-peptides derived from the human host defense peptide lactoferricin were previously described to specifically interact with the negatively charged lipid phosphatidylserine exposed by cancer cells. In this study one further derivative, namely R-DIM-P-LF11-334 is shown to exhibit even increased cancer toxicity in vitro and in vivo while non-neoplastic cells are not harmed. In liposomal model systems composed of phosphatidylserine mimicking cancerous and phosphatidylcholine mimicking non-cancerous membranes the specific interaction with the cancer marker PS was confirmed by specific induction of membrane perturbation and permeabilization in presence of the peptide. In vitro studies with cell lines of human malignant melanoma, such as A375, or primary cells of human melanoma metastases to the brain, as MUG Mel1, and non-neoplastic human dermal fibroblasts NHDF revealed high cytotoxic effect of R-DIM-P-LF11-334 on melanoma cells of A375 and MUG Mel1, whereas only minor effect on the dermal fibroblasts NHDF was observed, yielding an about 20-fold killing-specificity for A375 and MUG-Mel1. The LC 50 values for melanoma A375 and MUG Mel1 were about 10 μM. Analysis of secondary structure of the peptide revealed an increase in the proportion of β-sheets exclusively in presence of the cancer mimic. Stability studies further indicated a potential adequate stability in blood or under stringent conditions. Importantly the cytotoxic effect on cancer cells was also proven in vivo in mouse xenografts of human melanoma, where peptide treatment induced strong tumor regression and in average a tumor area reduction of 85% compared to tumors of control mice without peptide treatment.

  10. Induction of Melanogenesis by Rapamycin in Human MNT-1 Melanoma Cells

    PubMed Central

    Hah, Young-Sool; Cho, Hee Young; Lim, Tae-Yeon; Park, Dong Hwa; Kim, Hwa Mi; Yoon, Jimi; Kim, Jin Gu; Kim, Chi Yeon

    2012-01-01

    Background Melanogenesis is one of the characteristic parameters of differentiation in melanocytes and melanoma cells. Specific inhibitors of phosphatidylinositol 3-kinase (PI3K), such as wortmannin and LY294002, stimulate melanin production in mouse and in human melanoma cells, suggesting that PI3K and mammalian target of rapamycin (mTOR) might be involved in the regulation of melanogenesis. Objective The involvement of the mTOR pathway in regulating melanogenesis was examined using human MNT-1 melanoma cells, and the effects of the potent inhibitor of mTOR, rapamycin, in the presence or absence of α-melanocyte-stimulating hormone (α-MSH) were evaluated. Methods In cells treated with rapamycin, cell viability, melanin content, and tyrosinase (TYR) activity were measured and compared with untreated controls. Protein levels of TYR, tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) were also analyzed by Western blot. Results In rapamycin-treated cells, the melanin content increased concomitantly with an elevation in TYR activity, which plays a major role in melanogenesis. There was also an up-regulation of TYR, TYRP-1, and MITF proteins. Combined treatment with rapamycin or wortmannin and α-MSH increased melanogenesis more strongly than α-MSH alone. Conclusion Rapamycin-induced melanin formation may be mediated through the up-regulation of TYR protein and activity. Furthermore, rapamycin and wortmannin, inhibitors of mTOR and PI3K, respectively, have co-stimulatory effects with α-MSH in enhancing melanogenesis in melanocyte cells. PMID:22577264

  11. Induction of melanogenesis by rapamycin in human MNT-1 melanoma cells.

    PubMed

    Hah, Young-Sool; Cho, Hee Young; Lim, Tae-Yeon; Park, Dong Hwa; Kim, Hwa Mi; Yoon, Jimi; Kim, Jin Gu; Kim, Chi Yeon; Yoon, Tae-Jin

    2012-05-01

    Melanogenesis is one of the characteristic parameters of differentiation in melanocytes and melanoma cells. Specific inhibitors of phosphatidylinositol 3-kinase (PI3K), such as wortmannin and LY294002, stimulate melanin production in mouse and in human melanoma cells, suggesting that PI3K and mammalian target of rapamycin (mTOR) might be involved in the regulation of melanogenesis. The involvement of the mTOR pathway in regulating melanogenesis was examined using human MNT-1 melanoma cells, and the effects of the potent inhibitor of mTOR, rapamycin, in the presence or absence of α-melanocyte-stimulating hormone (α-MSH) were evaluated. In cells treated with rapamycin, cell viability, melanin content, and tyrosinase (TYR) activity were measured and compared with untreated controls. Protein levels of TYR, tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) were also analyzed by Western blot. In rapamycin-treated cells, the melanin content increased concomitantly with an elevation in TYR activity, which plays a major role in melanogenesis. There was also an up-regulation of TYR, TYRP-1, and MITF proteins. Combined treatment with rapamycin or wortmannin and α-MSH increased melanogenesis more strongly than α-MSH alone. Rapamycin-induced melanin formation may be mediated through the up-regulation of TYR protein and activity. Furthermore, rapamycin and wortmannin, inhibitors of mTOR and PI3K, respectively, have co-stimulatory effects with α-MSH in enhancing melanogenesis in melanocyte cells.

  12. In vivo UVA irradiation of mouse is more efficient in promoting pulmonary melanoma metastasis than in vitro

    PubMed Central

    2011-01-01

    Background We have previously shown in vitro that UVA increases the adhesiveness of mouse B16-F1 melanoma cells to endothelium. We have also shown in vivo that UVA exposure of C57BL/6 mice, i.v. injected with B16-F1 cells, increases formation of pulmonary colonies of melanoma. The aim of the present animal study was to confirm the previously observed in vivo UVA effect and to determine whether in vitro UVA-exposure of melanoma cells, prior the i.v. injection, will have an enhancing effect on the pulmonary colonization capacity of melanoma cells. As a second aim, UVA-derived immunosuppression was determined. Methods Mice were i.v. injected with B16-F1 cells into the tail vein and then immediately exposed to UVA. Alternatively, to study the effect of UVA-induced adhesiveness on the colonization capacity of B16-F1 melanoma, cells were in vitro exposed prior to i.v. injection. Fourteen days after injection, lungs were collected and the number of pulmonary nodules was determined under dissecting microscope. The UVA-derived immunosuppression was measured by standard contact hypersensitivity assay. Results and Discussion Obtained results have confirmed that mice, i.v. injected with B16-F1 cells and thereafter exposed to UVA, developed 4-times more of melanoma colonies in lungs as compared with the UVA non-exposed group (p < 0.01). The in vitro exposure of melanoma cells prior to their injection into mice, led only to induction of 1.5-times more of pulmonary tumor nodules, being however a statistically non-significant change. The obtained results postulate that the UVA-induced changes in the adhesive properties of melanoma cells do not alone account for the 4-fold increase in the pulmonary tumor formation. Instead, it suggests that some systemic effect in a mouse might be responsible for the increased metastasis formation. Indeed, UVA was found to induce moderate systemic immunosuppression, which effect might contribute to the UVA-induced melanoma metastasis in mice lungs

  13. Human Papilloma Virus in Melanoma Biopsy Specimens and Its Relation to Melanoma Progression

    PubMed Central

    Dréau, Didier; Culberson, Cathy; Wyatt, Sharon; Holder, Walter D.

    2000-01-01

    Objectives To evaluate melanoma biopsy specimens for human papilloma virus (HPV) and determine the relation between the presence of HPV, in vitro growth, and clinical progression of melanoma in the patients from whom the biopsy specimens were derived. Summary Background Data Ultraviolet radiation from sun exposure appears to be the primary causal agent in the development of cutaneous melanoma. However, other agents, including HPV, as observed in different epithelial carcinomas, may also play a role in melanoma development and progression. Methods Twelve melanoma biopsy specimens obtained from 12 patients with AJCC stage III and IV melanoma were stained with antibodies against gp-100 (HMB-45) and S-100 protein to confirm melanoma diagnosis and with a polyclonal HPV antibody. After mechanical dissociation, the melanoma specimen cells’ ability to grow in vitro was assessed. Patients were evaluated for melanoma progression with physical examination, complete blood count, and liver function tests every 3 months and a chest radiograph every 6 months. Results All biopsy specimens were positive for S-100, and nine (75%) were positive for gp-100. Seven of 12 (58%) were positive for HPV by immunohistochemistry. In vitro, none of the HPV-negative tumor cells grew from the tumor biopsies, whereas five of seven (71%) of the HPV-positive melanoma tumor cells grew very well. All patients with HPV-positive tumor cells had recurrences and died of melanoma progression, whereas four of five (80%) patients with HPV-negative tumor cells remained alive and without melanoma recurrence. Conclusions The presence of HPV was found in 58% of the biopsy specimens obtained from patients with stage III and IV melanoma and correlated with rapid melanoma progression. HPV may serve as a cofactor in the development of melanoma and may modulate a more aggressive phenotype in HPV-containing melanoma cells. PMID:10767787

  14. Naturally Occurring Canine Melanoma as a Predictive Comparative Oncology Model for Human Mucosal and Other Triple Wild-Type Melanomas

    PubMed Central

    Hernandez, Belen; Wei, Bih-Rong; Michael, Helen T.; Merlino, Glenn; Simpson, R. Mark

    2018-01-01

    Melanoma remains mostly an untreatable fatal disease despite advances in decoding cancer genomics and developing new therapeutic modalities. Progress in patient care would benefit from additional predictive models germane for human disease mechanisms, tumor heterogeneity, and therapeutic responses. Toward this aim, this review documents comparative aspects of human and naturally occurring canine melanomas. Clinical presentation, pathology, therapies, and genetic alterations are highlighted in the context of current basic and translational research in comparative oncology. Somewhat distinct from sun exposure-related human cutaneous melanomas, there is growing evidence that a variety of gene copy number alterations and protein structure/function mutations play roles in canine melanomas, in circumstances more analogous to human mucosal melanomas and to some extent other melanomas with murine sarcoma viral oncogene homolog B (BRAF), Neuroblastoma RAS Viral (V-Ras) Oncogene Homolog (NRAS), and neurofibromin 1 tumor suppressor NF1 triple wild-type genotype. Gaps in canine genome annotation, as well as an insufficient number and depth of sequences covered, remain considerable barriers to progress and should be collectively addressed. Preclinical approaches can be designed to include canine clinical trials addressing immune modulation as well as combined-targeted inhibition of Rat Sarcoma Superfamily/Mitogen-activated protein kinase (RAS/MAPK) and/or Phosphatidylinositol-3-Kinase/Protein Kinase B/Mammalian target of rapamycin (PI3K/AKT/mTOR) signal transduction, pathways frequently activated in both human and canine melanomas. Future investment should be aimed towards improving understanding of canine melanoma as a predictive preclinical surrogate for human melanoma and for mutually benefiting these uniquely co-dependent species. PMID:29385676

  15. Pleiotropic function of ezrin in human metastatic melanomas.

    PubMed

    Federici, Cristina; Brambilla, Daria; Lozupone, Francesco; Matarrese, Paola; de Milito, Angelo; Lugini, Luana; Iessi, Elisabetta; Cecchetti, Serena; Marino, Marialucia; Perdicchio, Maurizio; Logozzi, Mariantonia; Spada, Massimo; Malorni, Walter; Fais, Stefano

    2009-06-15

    The membrane cytoskeleton cross-linker, ezrin, has recently been depicted as a key regulator in the progression and metastasis of several pediatric tumors. Less defined appears the role of ezrin in human adult tumors, especially melanoma. We therefore addressed ezrin involvement in the metastatic phenotype of human adult metastatic melanoma cells. Our results show that cells resected from melanoma metastatic lesions of patients, display marked metastatic spreading capacity in SCID mice organs. Stable transfection of human melanoma cells with an ezrin deletion mutant comprising only 146 N-terminal aminoacids led to the abolishment of metastatic dissemination. In vitro experiments revealed ezrin direct molecular interactions with molecules related to metastatic functions such as CD44, merlin and Lamp-1, consistent with its participation to the formation of phagocitic vacuoles, vesicular sorting and migration capacities of melanoma cells. Moreover, the ezrin fragment capable of binding to CD44 was shorter than that previously reported, and transfection with the ezrin deletion mutant abrogated plasma membrane Lamp-1 recruitment. This study highlights key involvement of ezrin in a complex machinery, which allows metastatic cancer cells to migrate, invade and survive in very unfavorable conditions. Our in vivo and in vitro data reveal that ezrin is the hub of the metastatic behavior also in human adult tumors. Copyright 2008 UICC.

  16. Selenium for the Prevention of Cutaneous Melanoma

    PubMed Central

    Cassidy, Pamela B.; Fain, Heidi D.; Cassidy, James P.; Tran, Sally M.; Moos, Philip J.; Boucher, Kenneth M.; Gerads, Russell; Florell, Scott R.; Grossman, Douglas; Leachman, Sancy A.

    2013-01-01

    The role of selenium (Se) supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence. PMID:23470450

  17. The efficacy of combination therapy with oncolytic herpes simplex virus HF10 and dacarbazine in a mouse melanoma model.

    PubMed

    Tanaka, Rui; Goshima, Fumi; Esaki, Shinichi; Sato, Yoshitaka; Murata, Takayuki; Nishiyama, Yukihiro; Watanabe, Daisuke; Kimura, Hiroshi

    2017-01-01

    Advanced melanoma has long been treated with chemotherapy using cytotoxic agents like dacarbazine (DTIC), but overall survival rates with these drugs have been generally low. Recently, immunoregulatory monoclonal antibodies and molecularly targeted therapy with a BRAF inhibitor and/or a MEK inhibitor, have been used to treat malignant melanoma and have improved the survival rate of patients with advanced melanoma. However, high prices of these drugs are problematic. In this study, we evaluated the oncolytic efficacy of HF10, an attenuated, replication-competent HSV, with DTIC in immunocompetent mice model of malignant melanoma. For in vitro studies, cytotoxicity assays were conducted in clone M3 mouse melanoma cells. For the in vivo studies, subcutaneous melanoma models were prepared in DBA/2 mice with clone M3 cells, and then HF10 was intratumorally inoculated with/without intraperitoneal DTIC injection. The efficacy of the therapies was evaluated by survival, growth of subcutaneous tumor, and histopathological and immunological analyses. Both HF10 infection and DTIC treatment showed cytotoxic effects in melanoma cells, but combination treatment with HF10 and DTIC showed a rapid and strong cytotoxic effect compared with monotherapy. In the subcutaneous melanoma model, intratumoral HF10 inoculation significantly inhibited tumor growth. HF10 also inhibited the growth of non-inoculated contralateral tumors when it was injected into the ipsilateral tumors of mice. In histologic and immunohistochemical analysis, tumor lysis and inflammatory cell infiltration were observed after intratumoral HF10 inoculation. When mice were treated with HF10 and DTIC, the combination therapy induced a robust systemic anti-tumor immune response and prolonged survival. IFN-γ secretion from splenocytes of the HF10-DTIC combination therapy group showed more IFN-γ secretion than did the other groups. These data showed the efficacy of HF10 and DTIC combination therapy in a mouse melanoma

  18. The efficacy of combination therapy with oncolytic herpes simplex virus HF10 and dacarbazine in a mouse melanoma model

    PubMed Central

    Tanaka, Rui; Goshima, Fumi; Esaki, Shinichi; Sato, Yoshitaka; Murata, Takayuki; Nishiyama, Yukihiro; Watanabe, Daisuke; Kimura, Hiroshi

    2017-01-01

    Advanced melanoma has long been treated with chemotherapy using cytotoxic agents like dacarbazine (DTIC), but overall survival rates with these drugs have been generally low. Recently, immunoregulatory monoclonal antibodies and molecularly targeted therapy with a BRAF inhibitor and/or a MEK inhibitor, have been used to treat malignant melanoma and have improved the survival rate of patients with advanced melanoma. However, high prices of these drugs are problematic. In this study, we evaluated the oncolytic efficacy of HF10, an attenuated, replication-competent HSV, with DTIC in immunocompetent mice model of malignant melanoma. For in vitro studies, cytotoxicity assays were conducted in clone M3 mouse melanoma cells. For the in vivo studies, subcutaneous melanoma models were prepared in DBA/2 mice with clone M3 cells, and then HF10 was intratumorally inoculated with/without intraperitoneal DTIC injection. The efficacy of the therapies was evaluated by survival, growth of subcutaneous tumor, and histopathological and immunological analyses. Both HF10 infection and DTIC treatment showed cytotoxic effects in melanoma cells, but combination treatment with HF10 and DTIC showed a rapid and strong cytotoxic effect compared with monotherapy. In the subcutaneous melanoma model, intratumoral HF10 inoculation significantly inhibited tumor growth. HF10 also inhibited the growth of non-inoculated contralateral tumors when it was injected into the ipsilateral tumors of mice. In histologic and immunohistochemical analysis, tumor lysis and inflammatory cell infiltration were observed after intratumoral HF10 inoculation. When mice were treated with HF10 and DTIC, the combination therapy induced a robust systemic anti-tumor immune response and prolonged survival. IFN-γ secretion from splenocytes of the HF10-DTIC combination therapy group showed more IFN-γ secretion than did the other groups. These data showed the efficacy of HF10 and DTIC combination therapy in a mouse melanoma

  19. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  20. MDM4 is a key therapeutic target in cutaneous melanoma

    PubMed Central

    Gembarska, Agnieszka; Luciani, Flavie; Fedele, Clare; Russell, Elisabeth A; Dewaele, Michael; Villar, Stéphanie; Zwolinska, Aleksandra; Haupt, Sue; de Lange, Job; Yip, Dana; Goydos, James; Haigh, Jody J; Haupt, Ygal; Larue, Lionel; Jochemsen, Aart; Shi, Hubing; Moriceau, Gatien; Lo, Roger S; Ghanem, Ghanem; Shackleton, Mark; Bernal, Federico; Marine, Jean-Christophe

    2013-01-01

    The inactivation of the p53 tumor suppressor pathway, which often occurs through mutations in TP53 (encoding tumor protein 53) is a common step in human cancer. However, in melanoma—a highly chemotherapy-resistant disease—TP53 mutations are rare, raising the possibility that this cancer uses alternative ways to overcome p53-mediated tumor suppression. Here we show that Mdm4 p53 binding protein homolog (MDM4), a negative regulator of p53, is upregulated in a substantial proportion (∼65%) of stage I–IV human melanomas and that melanocyte-specific Mdm4 overexpression enhanced tumorigenesis in a mouse model of melanoma induced by the oncogene Nras. MDM4 promotes the survival of human metastatic melanoma by antagonizing p53 proapoptotic function. Notably, inhibition of the MDM4-p53 interaction restored p53 function in melanoma cells, resulting in increased sensitivity to cytotoxic chemotherapy and to inhibitors of the BRAF (V600E) oncogene. Our results identify MDM4 as a key determinant of impaired p53 function in human melanoma and designate MDM4 as a promising target for antimelanoma combination therapy. PMID:22820643

  1. MiR-767 promoted cell proliferation in human melanoma by suppressing CYLD expression.

    PubMed

    Zhang, Kejin; Guo, Ling

    2018-01-30

    MicroRNAs (miRNAs) have emerged as critical regulators for cancer development and progression of human melanoma. However, the potential molecular mechanism of miR-767 in human melanoma has not been intensively investigated. In this present study, we confirmed that miR-767 was frequently up-regulated in human melanoma tissues and cell lines. Ectopic expression of miR-767 promoted cell proliferation in human melanoma cell lines A375 and WM35, whereas miR-767-in reversed the function. Bioinformatics analysis revealed that cylindromatosis (CYLD) was hypothesized to be a possible target gene of miR-767, and this was confirmed by luciferase activity assay. Knockdown of CYLD counteracted the proliferation arrest by miR-767-in in melanoma cells A375 and WM35. In conclusion, our study indicated that miR-767 acted as a role of tumor promoter by targeting CYLD in human melanoma, and might serve as a prognostic or therapeutic target for human melanoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cloning and Characterization of the Genes Encoding the Murine Homologues of the Human Melanoma Antigens MART1 and gp100

    PubMed Central

    Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.

    2008-01-01

    The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410

  3. Human fused NKG2D-IL-15 protein controls xenografted human gastric cancer through the recruitment and activation of NK cells.

    PubMed

    Chen, Yan; Chen, Bei; Yang, Ti; Xiao, Weiming; Qian, Li; Ding, Yanbing; Ji, Mingchun; Ge, Xiaoqun; Gong, Weijuan

    2017-03-01

    Interleukin (IL)-15 plays an important role in natural killer (NK) and CD8+ T-cell proliferation and function and is more effective than IL-2 for tumor immunotherapy. The trans-presentation of IL-15 by neighboring cells is more effective for NK cell activation than its soluble IL-15. In this study, the fusion protein dsNKG2D-IL-15, which consisted of two identical extracellular domains of human NKG2D coupled to human IL-15 via a linker, was engineered in Escherichia coli. DsNKG2D-IL-15 could efficiently bind to major histocompatibility complex class I chain-related protein A (MICA) of human tumor cells with the two NKG2D domains and trans-present IL-15 to NK or CD8+ T cells. We transplanted human gastric cancer (SGC-7901) cells into nude mice and mouse melanoma cells with ectopic expression of MICA (B16BL6-MICA) into C57BL/6 mice. Then, we studied the anti-tumor effects mediated by dsNKG2D-IL-15 in the two xenografted tumor models. Human dsNKG2D-IL-15 exhibited higher efficiency than IL-15 in suppressing gastric cancer growth. Exogenous human dsNKG2D-IL-15 was centrally distributed in the mouse tumor tissues based on in vivo live imaging. The frequencies of human CD56+ cells infiltrated into the tumor tissues following the injection of peripheral blood mononuclear cells into nude mice bearing human gastric cancer were significantly increased by human dsNKG2D-IL-15 treatment. Human dsNKG2D-IL-15 also delayed the growth of transplanted melanoma (B16BL6-MICA) by activating and recruiting mouse NK and CD8+ T cells. The anti-melanoma effect of human dsNKG2D-IL-15 in C57BL/6 mice was mostly decreased by the in vivo depletion of mouse NK cells. These data highlight the potential use of human dsNKG2D-IL-15 for tumor therapy.Cellular & Molecular Immunology advance online publication, 14 September 2015; doi:10.1038/cmi.2015.81.

  4. Alaskan brown bears, humans, and habituation

    USGS Publications Warehouse

    Smith, Thomas; Herrero, Stephen; DeBruyn, Terry D.

    2005-01-01

    We present a new paradigm for understanding habituation and the role it plays in brown bear (Ursus arctos) populations and interactions with humans in Alaska. We assert that 3 forms of habituation occur in Alaska: bear-to-bear, bear-to-human, and human-to-bear. We present data that supports our theory that bear density is an important factor influencing a bear’s overt reaction distance (ORD); that as bear density increases, overt reaction distance decreases, as does the likelihood of bear– human interactions. We maintain that the effects of bear-to-bear habituation are largely responsible for not only shaping bear aggregations but also for creating the relatively safe environment for bear viewing experienced at areas where there are high densities of brown bears. By promoting a better understanding of the forces that shape bear social interactions within populations and with humans that mingle with them, we can better manage human activities and minimize bear–human conflict.

  5. Human impacts on bear habitat use

    USGS Publications Warehouse

    Mattson, David J.

    1990-01-01

    : Human effects on bear habitat use are mediated through food biomass changes, bear tolerance of humans and their impacts, and human tolerance of bears. Large-scale changes in bear food biomass have been caused by conversion of wildlands and waterways to intensive human use, and by the introduction of exotic pathogens. Bears consume virtually all human foods that have been established in former wildlands, but bear use has been limited by access. Air pollution has also affected bear food biomass on a small scale and is likely to have major future impacts on bear habitat through climatic warming. Major changes in disturbance cycles and landscape mosaics wrought by humans have further altered temporal and spatial pulses of bear food production. These changes have brought short-term benefits in places, but have also added long-term stresses to most bear populations. Although bears tend to avoid humans, they will also use exotic and native foods in close proximity to humans. Subadult males and adult females are more often impelled to forage closer to humans because of their energetic predicament and because more secure sites are often preempted by adult males. Although male bears are typically responsible for most livestock predation, adult females and subadult males are more likely to be habituated to humans because they tend to forage closer to humans. Elimination of human-habituated bears predictably reduces effective carrying capacity and is more likely to be a factor in preserving bear populations where humans are present in moderate-to-high densities. If humans desire to preserve viable bear populations, they will either have to accept increased risk of injury associated with preserving habituated animals, or continue to crop habituated bears while at the same time preserving large tracts of wildlands free from significant human intrusion.

  6. Preparation and biologic evaluation of a novel radioiodinated benzylpiperazine, 123I-MEL037, for malignant melanoma.

    PubMed

    Pham, Tien Q; Berghofer, Paula; Liu, Xiang; Greguric, Ivan; Dikic, Branko; Ballantyne, Patrice; Mattner, Filomena; Nguyen, Vu; Loc'h, Christian; Katsifis, Andrew

    2007-08-01

    Radiopharmaceuticals that can target the random metastatic dissemination of melanoma tumors may present opportunities for imaging and staging the disease as well as potential radiotherapeutic applications. A novel molecule, 2-(2-(4-(4-(123)I-iodobenzyl)piperazin-1-yl)-2-oxoethyl)isoindoline-1,3-dione (MEL037), was synthesized, labeled with 123I, and evaluated for application in melanoma tumor scintigraphy and radiotherapy. The tumor imaging potential of 123I-MEL037 was studied in vivo in C57BL/6J female mice bearing the B16F0 murine melanoma tumor and in BALB/c nude mice bearing the A375 human amelanotic melanoma tumor by biodistribution, competition studies, and SPECT. 123I-MEL037 exhibited high and rapid uptake in the B16F0 melanoma tumor at 1 h (13 %ID/g [percentage injected dose per gram]), increasing with time to reach 25 %ID/g at 6 h. A significant uptake was also observed in the eyes (2 %ID, at 3-6 h after injection) of black mice. No uptake was observed in the tumor or in the eyes of nude mice bearing the A375 tumor. Because of high uptake and long retention in the tumor and rapid body clearance, the mean contrast ratios (MCR) of 123I-MEL037 were 30 and 60, at 24 and 48 h after injection, respectively. At 24 h after injection of mice bearing the B16 melanoma, SPECT indicated that the radioactivity was located predominately in the tumor followed by the eyes, whereas no specific localization of the radioactivity was noted in mice bearing the A375 human amelanotic tumor. In competition experiments, uptake of 123I-MEL037 in brain, lung, heart, and kidney--organs known to contain sigma-receptors--was not significantly different in haloperidol-treated animals compared with control animals. Therefore, reduction of uptake in tumor and eyes of the pigmented mice bearing the B16F0 tumor suggested that the mechanism of tumor uptake was likely due to an interaction with melanin. These findings suggested that 123I-MEL037, which displays a rapid and very high tumor

  7. Melanoma Therapy with Rhenium-Cyclized Alpha Melanocyte Stimulating Hormone Peptide Analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas P Quinn

    2005-11-22

    Malignant melanoma is the 6th most commonly diagnosed cancer with increasing incidence in the United States. It is estimated that 54,200 cases of malignant melanoma will be newly diagnosed and 7,600 cases of death will occur in the United States in the year 2003 (1). At the present time, more than 1.3% of Americans will develop malignant melanoma during their lifetime (2). The average survival for patients with metastatic melanoma is about 6-9 months (3). Moreover, metastatic melanoma deposits are resistant to conventional chemotherapy and external beam radiation therapy (3). Systematic chemotherapy is the primary therapeutic approach to treat patientsmore » with metastatic melanoma. Dacarbazine is the only single chemotherapy agent approved by FDA for metastatic melanoma treatment (5). However, the response rate to Dacarbazine is only approximately 20% (6). Therefore, there is a great need to develop novel treatment approaches for metastatic melanoma. The global goal of this research program is the rational design, characterization and validation of melanoma imaging and therapeutic radiopharmaceuticals. Significant progress has been made in the design and characterization of metal-cyclized radiolabeled alpha-melanocyte stimulating hormone peptides. Therapy studies with {sup 188}Re-CCMSH demonstrated the therapeutic efficacy of the receptor-targeted treatment in murine and human melanoma bearing mice (previous progress report). Dosimetry calculations, based on biodistribution data, indicated that a significant dose was delivered to the tumor. However, {sup 188}Re is a very energetic beta-particle emitter. The longer-range beta-particles theoretically would be better for larger tumors. In the treatment of melanoma, the larger primary tumor is usually surgically removed leaving metastatic disease as the focus of targeted radiotherapy. Isotopes with lower beta-energies and/or shorter particle lengths should be better suited for targeting metastases. The {sup 177}Lu

  8. Inhibitory effect of rose hip (Rosa canina L.) on melanogenesis in mouse melanoma cells and on pigmentation in brown guinea pigs.

    PubMed

    Fujii, Takashi; Ikeda, Katsumi; Saito, Morio

    2011-01-01

    The compounds present in rose hips exerting an inhibitory action against melanogenesis in B16 mouse melanoma cells were investigated by dividing an aqueous extract of rose hips (RE) into four fractions. The 50% ethanol eluate from a DIAION HP-20 column significantly reduced the production of melanin and was mainly composed of procyanidin glycosides. We also found that this 50% ethanol eluate reduced the intracellular tyrosinase activity and also had a direct inhibitory effect on tyrosinase obtained as a protein mixture from the melanoma cell lysate. We also investigated the effect of orally administering RE on skin pigmentation in brown guinea pigs, and found that the pigmentation was inhibited together with the tyrosinase activity in the skin. These data collectively suggest that proanthocyanidins from RE inhibited melanogenesis in mouse melanoma cells and guinea pig skin, and could be useful as a skin-whitening agent when taken orally.

  9. Isoliquiritigenin-Induced Differentiation in Mouse Melanoma B16F0 Cell Line

    PubMed Central

    Chen, Xiaoyu; Zhang, Bo; Yuan, Xuan; Yang, Fan; Liu, Jinglei; Zhao, Hong; Liu, Liangliang; Wang, Yanming; Wang, Zhenhua; Zheng, Qiusheng

    2012-01-01

    The chemotherapeutical treatment is very limited for malignant melanoma, a highly lethal disease occurs globally. Natural products derived from traditional Chinese medicine licorice are attractive in quest new treatments due to their anti-tumor activities. A new dietary flavonoid isoliquiritigenin (ISL) were thus investigated to indentify its anti-melanoma activities on mouse melanoma B16F0 cells in present study. Using biochemical and free radical biological experiments in vitro, we identified the pro-differentiated profiles of ISL and evaluated the role of reactive oxygen species (ROS) during B16F0 cell differentiation. The data showed a strong dose-response relationship between ISL exposure and the characteristics of B16F0 differentiation in terms of morphology changes and melanogenesis. The accumulated intercellular ROS during exposure are necessary to support ISL-induced differentiation, which was proven by additional redox modulators. It was confirmed further by the relative activities of enzymes and genes modulated melanogenesis in ISL-treatments with or without ROS modulators. The tumorigenicity of ISL-treated cells was limited significantly by using the colony formation assay in vitro and an animal model assay in vivo respectively. Our research demonstrated that isoliquiritigenin is a differentiation-inducing agent, and its mechanisms involve ROS accumulation facilitating melanogenesis. PMID:23304254

  10. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line.

    PubMed

    Chen, Xiaoyu; Zhang, Bo; Yuan, Xuan; Yang, Fan; Liu, Jinglei; Zhao, Hong; Liu, Liangliang; Wang, Yanming; Wang, Zhenhua; Zheng, Qiusheng

    2012-01-01

    The chemotherapeutical treatment is very limited for malignant melanoma, a highly lethal disease occurs globally. Natural products derived from traditional Chinese medicine licorice are attractive in quest new treatments due to their anti-tumor activities. A new dietary flavonoid isoliquiritigenin (ISL) were thus investigated to indentify its anti-melanoma activities on mouse melanoma B16F0 cells in present study. Using biochemical and free radical biological experiments in vitro, we identified the pro-differentiated profiles of ISL and evaluated the role of reactive oxygen species (ROS) during B16F0 cell differentiation. The data showed a strong dose-response relationship between ISL exposure and the characteristics of B16F0 differentiation in terms of morphology changes and melanogenesis. The accumulated intercellular ROS during exposure are necessary to support ISL-induced differentiation, which was proven by additional redox modulators. It was confirmed further by the relative activities of enzymes and genes modulated melanogenesis in ISL-treatments with or without ROS modulators. The tumorigenicity of ISL-treated cells was limited significantly by using the colony formation assay in vitro and an animal model assay in vivo respectively. Our research demonstrated that isoliquiritigenin is a differentiation-inducing agent, and its mechanisms involve ROS accumulation facilitating melanogenesis.

  11. Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation.

    PubMed

    Liu, Jing; Qu, Xinyu; Shao, Liwei; Hu, Yuan; Yu, Xin; Lan, Peixiang; Guo, Qie; Han, Qiuju; Zhang, Jian; Zhang, Cai

    2018-03-04

    Melanoma is the deadliest form of commonly encountered skin cancer, and has fast propagating and highly invasive characteristics. Pim-3, a highly expressed oncogene in melanoma, is a highly conserved serine/threonine kinase with various biological activities, such as proliferation-accelerating and anti-apoptosis effects on cancer progression. However, whether Pim-3 regulates melanoma metastasis has not been determined. Here, we constructed a Pim-3-silencing short hairpin RNA (sh-Pim-3), a TLR7-stimulating ssRNA and a dual-function vector containing a sh-Pim-3 and a ssRNA, and transfected them into the B16F10 melanoma cell line to investigate the effects of Pim-3 on migration and invasion in melanoma. We found that sh-Pim-3 inhibited B16F10 cell migration and invasion in vitro. In a tumor-bearing mouse model, sh-Pim-3 significantly downregulated pulmonary metastasis of B16F10 melanoma cell in vivo. Mechanistically, sh-Pim-3 inhibited metastasis by regulating the expression of genes related to epithelial-mesenchymal transition (EMT). Further study revealed that by promoting the phosphorylation of STAT3 (signal transducer and activator of transcription 3), Pim-3 induced the expression of Slug, Snail, and ZEB1, which enhanced EMT-related changes and induced melanoma migration and invasion. Our study suggests that Pim-3 is a potential effective target for melanoma therapy.

  12. A high molecular weight-melanoma associated antigen-specific chimeric antigen receptor redirects lymphocytes to target human melanomas

    PubMed Central

    Burns, William R.; Zhao, Yangbing; Frankel, Timothy L.; Hinrichs, Christian S.; Zheng, Zhili; Xu, Hui; Feldman, Steven A.; Ferrone, Soldano; Rosenberg, Steven A.; Morgan, Richard A.

    2011-01-01

    Immunotherapy, particularly the adoptive cell transfer (ACT) of tumor infiltrating lymphocytes (TIL), is a very promising therapy for metastatic melanoma. Some patients unable to receive TIL have been successfully treated with autologous peripheral blood lymphocytes (PBL), genetically modified to express HLA class I antigen restricted, melanoma antigen-reactive T-cell receptors; however, substantial numbers of patients remain ineligible due to the lack of expression of the restricting HLA class I allele. We sought to overcome this limitation by designing a non-MHC-restricted, chimeric antigen receptor (CAR) targeting the high molecular weight-melanoma associated antigen (HMW-MAA), which is highly expressed on over 90% of human melanomas but has a restricted distribution in normal tissues. HMW-MAA-specific CARs containing an antigen recognition domain based on variations of the HMW-MAA-specific monoclonal antibody (mAb) 225.28S and a T-cell activation domain based on combinations of CD28, 4-1BB, and CD3ζ activation motifs were constructed within a retroviral vector to allow stable gene transfer into cells and their progeny. Following optimization of the HMW-MAA-specific CAR for expression and function in human PBL, these gene-modified T cells secreted cytokines, were cytolytic, and proliferated in response to HMW-MAA expressing cell lines. Furthermore, the receptor functioned in both CD4+ and CD8+ cells, was non-MHC-restricted, and reacted against explanted human melanomas. To evaluate this HMW-MAA-specific CAR in patients with metastatic melanoma, we developed a clinical-grade retroviral packaging line. This may represent a novel means to treat the majority of patients with advanced melanoma, most notably those unable to receive current ACT therapies. PMID:20395199

  13. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells.

    PubMed

    Zalfa, Francesca; Panasiti, Vincenzo; Carotti, Simone; Zingariello, Maria; Perrone, Giuseppe; Sancillo, Laura; Pacini, Laura; Luciani, Flavie; Roberti, Vincenzo; D'Amico, Silvia; Coppola, Rosa; Abate, Simona Osella; Rana, Rosa Alba; De Luca, Anastasia; Fiers, Mark; Melocchi, Valentina; Bianchi, Fabrizio; Farace, Maria Giulia; Achsel, Tilmann; Marine, Jean-Christophe; Morini, Sergio; Bagni, Claudia

    2017-11-16

    The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets.

  14. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells

    PubMed Central

    Zalfa, Francesca; Panasiti, Vincenzo; Carotti, Simone; Zingariello, Maria; Perrone, Giuseppe; Sancillo, Laura; Pacini, Laura; Luciani, Flavie; Roberti, Vincenzo; D'Amico, Silvia; Coppola, Rosa; Abate, Simona Osella; Rana, Rosa Alba; De Luca, Anastasia; Fiers, Mark; Melocchi, Valentina; Bianchi, Fabrizio; Farace, Maria Giulia; Achsel, Tilmann; Marine, Jean-Christophe; Morini, Sergio; Bagni, Claudia

    2017-01-01

    The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets. PMID:29144507

  15. Morphology of the lumbar transversospinal muscles examined in a mouse bearing a muscle fiber-specific nuclear marker.

    PubMed

    Cornwall, Jon; Deries, Marianne; Duxson, Marilyn

    2010-12-01

    Although the morphology of human lumbar transversospinal (TSP) muscles has been studied, little is known about the structure of these muscles in the mouse (Mus musculus). Such information is relevant given mice are often used as a "normal" phenotype for studies modeling human development. This study describes the gross morphology, muscle fiber arrangement, and innervation pattern of the mouse lumbar TSP muscles. A unique feature of the study is the use of a transgenic mouse line bearing a muscle-specific nuclear marker that allows clear delineation of muscle fiber and connective tissue boundaries. The lumbar TSP muscles of five mice were examined bilaterally; at each spinal level muscles attached to the caudal edge of the spinous process and passed caudally as a single complex unit. Fibers progressively terminated over the four vertebral segments caudad, with multiple points of muscle fiber attachment on each vertebra. Motor endplates, defined with acetylcholinesterase histochemistry, were consistently located half way along each muscle fiber, regardless of length, with all muscle fibers arranged in-parallel rather than in-series. These results provide information relevant to interpretation of developmental and functional studies involving this muscle group in the mouse and show mouse lumbar TSP muscles are different in form to descriptions of equivalent muscles in humans and horses.

  16. Melanoma-targeted delivery system (part 2): Synthesis, radioiodination and biological evaluation in B16F0 bearing mice.

    PubMed

    El Aissi, Radhia; Miladi, Imen; Chezal, Jean-Michel; Chavignon, Olivier; Miot-Noirault, Elisabeth; Moreau, Emmanuel

    2016-09-14

    Here we report the synthesis and radiolabelling with iodine-125 of a melanoma-selective prodrug (17a*) and its parent drug IUdR. The in vivo and ex vivo biodistributions of [(125)I](17a*) and [(125)I]IUdR were evaluated in a model of melanoma B16F0-bearing mice. The pharmacokinetic profile of [(125)I](17a*) suggests rapid release of the active drug [(125)I]IUdR after i.v. administration of [(125)I](17a*). Preliminary metabolism studies in dedicated compartments (i.e. blood, urine and tumour) yielded results consistent with this hypothesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. SKI knockdown inhibits human melanoma tumor growth in vivo.

    PubMed

    Chen, Dahu; Lin, Qiushi; Box, Neil; Roop, Dennis; Ishii, Shunsuke; Matsuzaki, Koichi; Fan, Tao; Hornyak, Thomas J; Reed, Jon A; Stavnezer, Ed; Timchenko, Nikolai A; Medrano, Estela E

    2009-12-01

    The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors.

  18. CYR61 suppresses growth of human malignant melanoma.

    PubMed

    Chen, Jun; Liu, Yang; Sun, Qilin; Wang, Beiqing; Li, Ningli; Chen, Xiangdong

    2016-11-01

    Cysteine-rich protein 61 (CCN1/CYR61) is an important marker of proliferation and metastasis in malignant melanoma, making it a potential target for melanoma treatment. In this study, we compared the expression of CRY61 in Chinese patients with malignant melanoma with its expression in patients with other skin tumors or with no skin pathological conditions. We examined the effects of anti-human CYR61 monoclonal antibody on proliferation and evaluated the changes in CYR61 expression and cell proliferation in response to treatment with either epirubicin or interferon (IFN)-α. CYR61 was expressed at lower levels in patients with malignant melanoma than in patients with other skin tumors or with no pathology. Following the treatment of B16 cells with epirubicin and IFN-α, CYR61 levels increased, cell growth was inhibited, and proliferating cell nuclear antigen expression decreased. Thus, CYR61 could become a therapeutic target for malignant melanoma patients with high CYR61 expression.

  19. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.

    PubMed

    Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J

    2014-04-08

    Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.

  20. MR angiogenesis imaging with Robo4- vs. αVβ3-targeted nanoparticles in a B16/F10 mouse melanoma model

    PubMed Central

    Boles, Kent S.; Schmieder, Anne H.; Koch, Alexander W.; Carano, Richard A. D.; Wu, Yan; Caruthers, Shelton D.; Tong, Raymond K.; Stawicki, Scott; Hu, Grace; Scott, Michael J.; Zhang, Huiying; Reynolds, Benton A.; Wickline, Samuel A.; Lanza, Gregory M.

    2010-01-01

    The primary objective of this study was to utilize MR molecular imaging to compare the 3-dimensional spatial distribution of Robo4 and αVβ3-integrin as biosignatures of angiogenesis, in a rapidly growing, syngeneic tumor. B16-F10 melanoma-bearing mice were imaged with magnetic resonance (MR; 3.0 T) 11 d postimplantation before and after intravenous administration of either Robo4- or αVβ3-targeted paramagnetic nanoparticles. The percentage of MR signal-enhanced voxels throughout the tumor volume was low and increased in animals receiving αVβ3- and Robo4-targeted nanoparticles. Neovascular signal enhancement was predominantly associated with the tumor periphery (i.e., outer 50% of volume). Microscopic examination of tumors coexposed to the Robo4- and αVβ3-targeted nanoparticles corroborated the MR angiogenesis mapping results and further revealed that Robo4 expression generally colocalized with αVβ3-integrin. Robo4- and αVβ3-targeted nanoparticles were compared to irrelevant or nontargeted control groups in all modalities. These results suggest that αVβ3-integrin and Robo4 are useful biomarkers for noninvasive MR molecular imaging in syngeneic mouse tumors, but αVβ3-integrin expression was more detectable by MR at 3.0 T than Robo4. Noninvasive, neovascular assessments of the MR signal of Robo4, particularly combined with αVβ3-integrin expression, may help define tumor character prior to and following cancer therapy.—Boles, K. S., Schmieder, A. H., Koch, A. W., Carano, R. A. D., Wu, Y., Caruthers, S. D., Tong, R. K., Stawicki, S., Hu, G., Scott, M. J., Zhang, H., Reynolds, B. A., Wickline, S. A., and Lanza, G. M. MR angiogenesis imaging with Robo4- vs. αVβ3-targeted nanoparticles in a B16/F10 mouse melanoma model. PMID:20585027

  1. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  2. The role of tumor microenvironment in development and progression of malignant melanomas - a systematic review.

    PubMed

    Gurzu, Simona; Beleaua, Marius Alexandru; Jung, Ioan

    2018-01-01

    To reveal the particular aspects of the tumor microenvironment of malignant melanomas, a systematic review including 34 representative papers was performed. The review took into account the aspects related the Wnt/β-catenin pathway-related epithelial-mesenchymal transition (EMT) versus mesenchymal-epithelial transition (MET) of keratinocytes, fibroblasts and melanoma cells, as possible tools for understanding genesis and evolution of malignant melanoma. The possible reversible features of EMT and the role of tumor microenvironment in the metastatic process were also analyzed. A particular issue was related on the cancer stem cells that include melanocyte stem cells (McSCs) and multipotent mesenchymal stem/stromal cells (MSCs). As the McSCs embryological development in mouse is not similar to human development, the role of stem cells in genesis and development of human melanoma should be proved in human melanoma cells only. For further development of targeted therapy, a better understanding of melanomagenesis pathways and its microenvironment particularities is necessary.

  3. Lentivirus-mediated bifunctional cell labeling for in vivo melanoma study

    PubMed Central

    Day, Chi-Ping; Carter, John; Bonomi, Carrie; Esposito, Dominic; Crise, Bruce; Ortiz-Conde, Betty; Hollingshead, Melinda; Merlino, Glenn

    2009-01-01

    SUMMARY Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long-term culture and colony formation of several LV-labeled mouse melanoma cells showed that promoters derived from mammalian house-keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase-GFP fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP-labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP-positive cells can be isolated from the tumors by FACS. Pol2-Luc/GFP labeling, while lower in activity, was more sustainable than FerH-Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol-2-Luc/GFP labeling allows long-term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models. SIGNIFICANCE In this study we have developed and identified lentiviral vectors that allow labeled mouse melanoma cells to maintain long-term and consistent expression of a bifunctional luciferase-GFP marker gene, even in syngeneic mice with an intact immune function. This cell-labeling system can be used to build immunocompetent mouse melanoma models that permit both tumor monitoring and FACS-based tumor cell isolation from tissues, greatly facilitating the in vivo study of melanoma. PMID:19175523

  4. Periostin Is a Key Niche Component for Wound Metastasis of Melanoma

    PubMed Central

    Fukuda, Keitaro; Sugihara, Eiji; Ohta, Shoichiro; Izuhara, Kenji; Funakoshi, Takeru; Amagai, Masayuki; Saya, Hideyuki

    2015-01-01

    Tissue injury promotes metastasis of several human cancers, although factors associated with wound healing that attract circulating tumor cells have remained unknown. Here, we examined the primary and metastatic lesions that appeared 1 month after trauma in a patient with acral lentiginous melanoma. The levels of mRNA for periostin (POSTN), type 1 collagen, and fibronectin were significantly increased in the metastatic lesion relative to the primary lesion. The increase of these extracellular matrix proteins at the wound site was reproduced in a mouse model of wound healing, with the upregulation of Postn mRNA persisting the longest. POSTN was expressed in the region surrounding melanoma cell nests in metastatic lesions of both wounded mice and the patient. POSTN attenuated the cell adhesion and promoted the migration of melanoma cells without affecting their proliferation in vitro. In the mouse model, the wound site as well as subcutaneously injected osteoblasts that secrete large amounts of POSTN invited the metastasis of remotely-transplanted melanoma cells on the sites. Osteoblasts with suppression of POSTN by shRNA showed a greatly reduced ability to promote such metastasis. Our results suggest that POSTN is a key factor in promoting melanoma cell metastasis to wound sites by providing a premetastatic niche. PMID:26083413

  5. Periostin Is a Key Niche Component for Wound Metastasis of Melanoma.

    PubMed

    Fukuda, Keitaro; Sugihara, Eiji; Ohta, Shoichiro; Izuhara, Kenji; Funakoshi, Takeru; Amagai, Masayuki; Saya, Hideyuki

    2015-01-01

    Tissue injury promotes metastasis of several human cancers, although factors associated with wound healing that attract circulating tumor cells have remained unknown. Here, we examined the primary and metastatic lesions that appeared 1 month after trauma in a patient with acral lentiginous melanoma. The levels of mRNA for periostin (POSTN), type 1 collagen, and fibronectin were significantly increased in the metastatic lesion relative to the primary lesion. The increase of these extracellular matrix proteins at the wound site was reproduced in a mouse model of wound healing, with the upregulation of Postn mRNA persisting the longest. POSTN was expressed in the region surrounding melanoma cell nests in metastatic lesions of both wounded mice and the patient. POSTN attenuated the cell adhesion and promoted the migration of melanoma cells without affecting their proliferation in vitro. In the mouse model, the wound site as well as subcutaneously injected osteoblasts that secrete large amounts of POSTN invited the metastasis of remotely-transplanted melanoma cells on the sites. Osteoblasts with suppression of POSTN by shRNA showed a greatly reduced ability to promote such metastasis. Our results suggest that POSTN is a key factor in promoting melanoma cell metastasis to wound sites by providing a premetastatic niche.

  6. Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation.

    PubMed

    Nakamura, Kazuki; Yoshikawa, Noriko; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru

    2006-01-01

    An attempt was made to elucidate the molecular targetfor the antitumor effects of cordycepin (3'-deoxyadenosine) using non-selective and selective adenosine A1, A2a, A2b and A3 receptor agonists and antagonists. Although adenosine and 2'-deoxyadenosine (up to 100 microM) had no effect, cordycepin showed remarkable inhibitory effects on the growth curves of B16-BL6 mouse melanoma (IC50= 39 microM) and mouse Lewis lung carcinoma (IC50 = 48 microM) cell lines in vitro. Among the adenosine receptor agonists and antagonists used (up to 100 microM), only 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), a selective adenosine A3 receptor agonist, notably inhibited the growth of both mouse tumor cell lines (B16-BL6; IC50 = 5 microM, LLC; 14 microM). In addition, the tumor growth inhibitory effect of cordycepin was antagonized by 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191), a selective adenosine A3 receptor antagonist. These results suggest that cordycepin exerts inhibitory effects on the growth of mouse melanoma and lung carcinoma cells by stimulating adenosine A3 receptors on tumor cells.

  7. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells.

    PubMed

    Santini, R; Pietrobono, S; Pandolfi, S; Montagnani, V; D'Amico, M; Penachioni, J Y; Vinci, M C; Borgognoni, L; Stecca, B

    2014-09-18

    Melanoma is one of the most aggressive types of human cancer, characterized by enhanced heterogeneity and resistance to conventional therapy at advanced stages. We and others have previously shown that HEDGEHOG-GLI (HH-GLI) signaling is required for melanoma growth and for survival and expansion of melanoma-initiating cells (MICs). Recent reports indicate that HH-GLI signaling regulates a set of genes typically expressed in embryonic stem cells, including SOX2 (sex-determining region Y (SRY)-Box2). Here we address the function of SOX2 in human melanomas and MICs and its interaction with HH-GLI signaling. We find that SOX2 is highly expressed in melanoma stem cells. Knockdown of SOX2 sharply decreases self-renewal in melanoma spheres and in putative melanoma stem cells with high aldehyde dehydrogenase activity (ALDH(high)). Conversely, ectopic expression of SOX2 in melanoma cells enhances their self-renewal in vitro. SOX2 silencing also inhibits cell growth and induces apoptosis in melanoma cells. In addition, depletion of SOX2 progressively abrogates tumor growth and leads to a significant decrease in tumor-initiating capability of ALDH(high) MICs upon xenotransplantation, suggesting that SOX2 is required for tumor initiation and for continuous tumor growth. We show that SOX2 is regulated by HH signaling and that the transcription factors GLI1 and GLI2, the downstream effectors of HH-GLI signaling, bind to the proximal promoter region of SOX2 in primary melanoma cells. In functional studies, we find that SOX2 function is required for HH-induced melanoma cell growth and MIC self-renewal in vitro. Thus SOX2 is a critical factor for self-renewal and tumorigenicity of MICs and an important mediator of HH-GLI signaling in melanoma. These findings could provide the basis for novel therapeutic strategies based on the inhibition of SOX2 for the treatment of a subset of human melanomas.

  8. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate andmore » cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.« less

  9. Growth of melanoma brain tumors monitored by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Staley, Jacob; Grogan, Patrick; Samadi, Abbas K.; Cui, Huizhong; Cohen, Mark S.; Yang, Xinmai

    2010-07-01

    Melanoma is a primary malignancy that is known to metastasize to the brain and often causes death. The ability to image the growth of brain melanoma in vivo can provide new insights into its evolution and response to therapies. In our study, we use a reflection mode photoacoustic microscopy (PAM) system to detect the growth of melanoma brain tumor in a small animal model. The melanoma tumor cells are implanted in the brain of a mouse at the beginning of the test. Then, PAM is used to scan the region of implantation in the mouse brain, and the growth of the melanoma is monitored until the death of the animal. It is demonstrated that PAM is capable of detecting and monitoring the brain melanoma growth noninvasively in vivo.

  10. Regulation of miR-21 expression in human melanoma via UV-ray-induced melanin pigmentation.

    PubMed

    Lin, Kuan-Yu; Chen, Chien-Min; Lu, Cheng-You; Cheng, Chun-Yuan; Wu, Yu-Hsin

    2017-08-01

    Excessive environmental ultraviolet (UV) radiation produces genetic mutations that can lead to skin cancer. This study was designed to assess the potential inhibitory activity of microRNA-21 (miR-21) on the UV irradiation-stimulated melanogenesis signal pathway in melanoma cells. The molecular mechanism of miR-21-induced inhibitory activity on UV-ray-stimulated melanogenesis-regulating proteins was examined in A375.S2 human melanoma and B16F10 mouse melanoma cells. UV irradiation for 30 min induced melanogenesis signal pathway by increasing melanin production and the number of A375.S2 cells. Similarly, UV radiation increased the expression of α-melanocyte-stimulating hormone (α-MSH) protein and decreased the melanogenesis-regulating signal, such as EGFR and Akt phosphorylation. Notably, miR-21 overexpression in UV-ray-stimulated A375.S2 cells decreased α-MSH expression and increased EGFR and Akt phosphorylation levels. Furthermore, miR-21 on UV-ray- induced melanogenesis was down-regulated by the Akt inhibitor and the EGFR inhibitor (Gefitinib). Results suggest that the suppressive activity of miR-21 on UV-ray-stimulated melanogenesis may involve the down-regulation of α-MSH and the activation in both of EGFR and Akt. © 2017 Wiley Periodicals, Inc.

  11. A new O6-alkylguanine-DNA alkyltransferase inhibitor associated with a nitrosourea (cystemustine) validates a strategy of melanoma-targeted therapy in murine B16 and human-resistant M4Beu melanoma xenograft models.

    PubMed

    Rapp, Maryse; Maurizis, Jean C; Papon, Janine; Labarre, Pierre; Wu, Ting-Di; Croisy, Alain; Guerquin-Kern, Jean L; Madelmont, Jean C; Mounetou, Emmanuelle

    2008-07-01

    Chemoresistance to O(6)-alkylating agents is a major barrier to successful treatment of melanoma. It is mainly due to a DNA repair suicide protein, O(6)-alkylguanine-DNA alkyltransferase (AGT). Although AGT inactivation is a powerful clinical strategy for restoring tumor chemosensitivity, it was limited by increased toxicity to nontumoral cells resulting from a lack of tumor selectivity. Achieving enhanced chemosensitization via AGT inhibition preferably in the tumor should protect normal tissue. To this end, we have developed a strategy to target AGT inhibitors. In this study, we tested a new potential melanoma-directed AGT inhibitor [2-amino-6-(4-iodobenzyloxy)-9-[4-(diethylamino) ethylcarbamoylbenzyl] purine; IBgBZ] designed as a conjugate of O(6)-(4-iododbenzyl)guanine (IBg) as the AGT inactivator and a N,N-diethylaminoethylenebenzamido (BZ) moiety as the carrier to the malignant melanocytes. IBgBZ demonstrated AGT inactivation ability and potentiation of O(6)-alkylating agents (cystemustine, a chloroethylnitrosourea) in M4Beu highly chemoresistant human melanoma cells both in vitro and in tumor models. The biodisposition study on mice bearing B16 melanoma, the standard model for the evaluation of melanoma-directed agents, and the secondary ion mass spectrometry imaging confirmed the concentration of IBgBZ in the tumor and in particular in the intracytoplasmic melanosomes. These results validate the potential of IBgBZ as a new, more tumor-selective, AGT inhibitor in a strategy of melanoma-targeted therapy.

  12. Human melanoma metastasis in NSG mice correlates with clinical outcome in patients

    PubMed Central

    Quintana, Elsa; Piskounova, Elena; Shackleton, Mark; Weinberg, Daniel; Eskiocak, Ugur; Fullen, Douglas R.; Johnson, Timothy M.; Morrison, Sean J.

    2015-01-01

    Studies of human cancer metastasis have been limited by a lack of experimental assays in which cancer cells from patients metastasize in vivo in a way that correlates with clinical outcome. This makes it impossible to study intrinsic differences in the metastatic properties of cancers from different patients. We recently developed an assay in which human melanomas readily engraft in NOD/SCID IL2Rγnull (NSG) mice (1, 2). Here we show that melanomas from 25 patients exhibited reproducible differences in the rate of spontaneous metastasis after transplantation into NSG mice and that these differences correlated with clinical outcome in the patients. Stage IIIB/C melanomas that formed distant metastases within 22 months in patients also formed tumors that metastasized widely in NSG mice, while stage IIIB/C melanomas that did not form distant metastases within 22–50 months in patients metastasized more slowly in NSG mice. These differences in the efficiency of metastasis correlated with the frequency of circulating melanoma cells in the blood of NSG mice, suggesting that the rate of entry into the blood is one factor that limits the rate of metastasis. NSG mice can therefore be used to study the metastasis of human melanomas in vivo, revealing intrinsic differences among stage III melanomas in their ability to circulate/survive in the blood and metastasize. PMID:23136044

  13. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, M; Wang, Xiliang

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonalmore » Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.« less

  14. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    DOE PAGES

    Hu, M; Wang, Xiliang

    2014-12-05

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonalmore » Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.« less

  15. Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma

    PubMed Central

    Anna, Brozyna; Blazej, Zbytek; Jacqueline, Granese; Andrew, Carlson J.; Jeffrey, Ross; Andrzej, Slominski

    2008-01-01

    Summary Melanoma consists 4–5 % of all skin cancers, but it contributes to 71–80 % of skin cancers deaths. UV light affects cell and tissue homeostasis due to its damaging effects on DNA integrity and modification of expression of a plethora of genes. DNA repair systems protect cells from UV-induced lesions. Several animal models of melanoma have been developed (Xiphophorus, Opossum Monodelphis domestica, mouse models and human skin engrafts into other animals). This review discusses possible links between UV and genes significantly related to melanoma but does not discuss melanoma genetics. These include oncogenes, tumor suppressor genes, genes related to melanocyte-keratinocyte and melanocyte-matrix interaction, growth factors and their receptors, CRH, ACTH, α-MSH, glucocorticoids, ID1, NF-kappaB and vitamin D3. PMID:18846265

  16. [6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway

    PubMed Central

    Yao, Cheng; Oh, Jang-hee; Oh, Inn Gyung; Park, Chi-hyun; Chung, Jin Ho

    2013-01-01

    Aim: To investigate the effect of [6]-shogaol, an active ingredient in ginger, on melanogenesis and the underlying mechanisms. Methods: B16F10 mouse melanoma cells were tested. Cell viability was determined with the MTT assay. Melanin content and tyrosinase activity were analyzed with a spectrophotometer. The protein expression of tyrosinase and microphthalmia associated transcription factor (MITF), as well as phosphorylated or total ERK1/2 and Akt were measured using Western blot. Results: Treatment of the cells with [6]-shogaol (1, 5, 10 μmol/L) reduced the melanin content in a concentration-dependent manner. [6]-Shogaol (5 and 10 μmol/L) significantly decreased the intracellular tyrosinase activity, and markedly suppressed the expression levels of tyrosinase and MITF proteins in the cells. Furthermore, [6]-shogaol (10 μmol/L) activated ERK, which was known to negatively regulate melanin synthesis in these cells. Pretreatment with the specific ERK pathway inhibitor PD98059 (20 μmol/L) greatly attenuated the inhibition of melanin synthesis by [6]-shogaol (10 μmol/L). Conclusion: The results demonstrate that [6]-shogaol inhibits melanogenesis in B16F10 mouse melanoma cells via activating the ERK pathway. PMID:23123645

  17. [6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway.

    PubMed

    Yao, Cheng; Oh, Jang-hee; Oh, Inn Gyung; Park, Chi-hyun; Chung, Jin Ho

    2013-02-01

    To investigate the effect of [6]-shogaol, an active ingredient in ginger, on melanogenesis and the underlying mechanisms. B16F10 mouse melanoma cells were tested. Cell viability was determined with the MTT assay. Melanin content and tyrosinase activity were analyzed with a spectrophotometer. The protein expression of tyrosinase and microphthalmia associated transcription factor (MITF), as well as phosphorylated or total ERK1/2 and Akt were measured using Western blot. Treatment of the cells with [6]-shogaol (1, 5, 10 μmol/L) reduced the melanin content in a concentration-dependent manner. [6]-Shogaol (5 and 10 μmol/L) significantly decreased the intracellular tyrosinase activity, and markedly suppressed the expression levels of tyrosinase and MITF proteins in the cells. Furthermore, [6]-shogaol (10 μmol/L) activated ERK, which was known to negatively regulate melanin synthesis in these cells. Pretreatment with the specific ERK pathway inhibitor PD98059 (20 μmol/L) greatly attenuated the inhibition of melanin synthesis by [6]-shogaol (10 μmol/L). The results demonstrate that [6]-shogaol inhibits melanogenesis in B16F10 mouse melanoma cells via activating the ERK pathway.

  18. Imaging human melanoma using a novel Tc-99m-labeled lactam bridge-cyclized alpha-MSH peptide.

    PubMed

    Liu, Liqin; Xu, Jingli; Yang, Jianquan; Feng, Changjian; Miao, Yubin

    2016-10-01

    In this study, the human melanoma targeting property of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex {hydrazinonicotinamide-8-aminooctanoic acid-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} was determined in M21 human melanoma-xenografts to demonstrate its potential for human melanoma imaging. The IC50 value of HYNIC-AocNle-CycMSHhex was 0.48±0.01nM in M21 human melanoma cells (1281receptors/cell). The M21 human melanoma uptake of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex was 4.03±1.25, 3.26±1.23 and 3.36±1.48%ID/g at 0.5, 2 and 4h post-injection, respectively. Approximately 92% of injected dose cleared out the body via urinary system at 2h post-injection. (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex showed high tumor/blood, tumor/muscle and tumor/skin uptake ratios after 2h post-injection. The M21 human melanoma-xenografted tumor lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2h post-injection. Overall, (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited favorable human melanoma imaging property, highlighting its potential as an imaging probe for human metastatic melanoma detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. SOX2 and nestin expression in human melanoma: an immunohistochemical and experimental study

    PubMed Central

    Laga, Alvaro C.; Zhan, Qian; Weishaupt, Carsten; Ma, Jie; Frank, Markus H.; Murphy, George F.

    2012-01-01

    SOX2 is an embryonic neural crest stem-cell transcription factor recently shown to be expressed in human melanoma and to correlate with experimental tumor growth. SOX2 binds to an enhancer region of the gene that encodes for nestin, also a neural progenitor cell biomarker. To define further the potential relationship between SOX2 and nestin, we examined co-expression patterns in 135 melanomas and 37 melanocytic nevi. Immunohistochemical staining in 27 melanoma tissue sections showed an association between SOX2 positivity, spindle cell shape and a peripheral nestin distribution pattern. In contrast, SOX2-negative cells were predominantly epithelioid, and exhibited a cytoplasmic pattern for nestin. In tissue microarrays, co-expression correlated with tumor progression, with only 11% of nevi co-expressing SOX2 and nestin in contrast to 65% of metastatic melanomas, and preliminarily, with clinical outcome. Human melanoma lines that differentially expressed constitutive SOX2 revealed a positive correlation between SOX2 and nestin expression. Experimental melanomas grown from these respective cell lines in murine subcutis and dermis of xenografted human skin maintained the association between SOX2-positivity, spindle cell shape, and peripheral nestin distribution. Moreover, the cytoplasmic pattern of nestin distribution was observed in xenografts generated from SOX2-knockdown A2058 melanoma cells, in contrast to the periperhal nestin pattern seen in tumors grown from A2058 control cells transfected with non-target shRNA. In aggregate, these data further support a biologically significant linkage between SOX2 and nestin expression in human melanoma. PMID:21410764

  20. Preparation and characterization of a novel Al(18)F-NOTA-BZA conjugate for melanin-targeted imaging of malignant melanoma.

    PubMed

    Chang, Chih-Chao; Chang, Chih-Hsien; Lo, Yi-Hsuan; Lin, Ming-Hsien; Shen, Chih-Chieh; Liu, Ren-Shyan; Wang, Hsin-Ell; Chen, Chuan-Lin

    2016-08-15

    Melanin is an attractive target for the diagnosis and treatment of malignant melanoma. Previous studies have demonstrated the specific binding ability of benzamide moiety to melanin. In this study, we developed a novel (18)F-labeled NOTA-benzamide conjugate, Al(18)F-NOTA-BZA, which can be synthesized in 30min with a radiochemical yield of 20-35% and a radiochemical purity of >95%. Al(18)F-NOTA-BZA is highly hydrophilic (logP=-1.96) and shows good in vitro stability. Intravenous administration of Al(18)F-NOTA-BZA in two melanoma-bearing mouse models revealed highly specific uptake in B16F0 melanotic melanoma (6.67±0.91 and 1.50±0.26%ID/g at 15 and 120min p.i., respectively), but not in A375 amelanotic melanoma (0.87±0.21 and 0.24±0.09%ID/g at 15 and 120min p.i., respectively). The clearance from most normal tissues was fast. A microPET scan of Al(18)F-NOTA-BZA-injected mice also displayed high-contrast tumor images as compared with normal organs. Owing to the favorable in vivo distribution of Al(18)F-NOTA-BZA after intravenous administration, the estimated absorption dose was low in all normal organs and tissues. The melanin-specific binding ability, sustained tumor retention, fast normal tissues clearance and thelow projected human dosimetry supported that Al(18)F-NOTA-BZA is a very promising melanin-specific PET probe for melanin-positive melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Stable isotopes to detect food-conditioned bears and to evaluate human-bear management

    USGS Publications Warehouse

    Hopkins, John B.; Koch, Paul L.; Schwartz, Charles C.; Ferguson, Jake M.; Greenleaf, Schuyler S.; Kalinowski, Steven T.

    2012-01-01

    We used genetic and stable isotope analysis of hair from free-ranging black bears (Ursus americanus) in Yosemite National Park, California, USA to: 1) identify bears that consume human food, 2) estimate the diets of these bears, and 3) evaluate the Yosemite human–bear management program. Specifically, we analyzed the isotopic composition of hair from bears known a priori to be food-conditioned or non-food-conditioned and used these data to predict whether bears with an unknown management status were food-conditioned (FC) or non-food-conditioned (NFC). We used a stable isotope mixing model to estimate the proportional contribution of natural foods (plants and animals) versus human food in the diets of FC bears. We then used results from both analyses to evaluate proactive (population-level) and reactive (individual-level) human–bear management, and discussed new metrics to evaluate the overall human–bear management program in Yosemite. Our results indicated that 19 out of 145 (13%) unknown bears sampled from 2005 to 2007 were food-conditioned. The proportion of human food in the diets of known FC bears likely declined from 2001–2003 to 2005–2007, suggesting proactive management was successful in reducing the amount of human food available to bears. In contrast, reactive management was not successful in changing the management status of known FC bears to NFC bears, or in reducing the contribution of human food to the diets of FC bears. Nine known FC bears were recaptured on 14 occasions from 2001 to 2007; all bears were classified as FC during subsequent recaptures, and human–bear management did not reduce the amount of human food in the diets of FC bears. Based on our results, we suggest Yosemite continue implementing proactive human–bear management, reevaluate reactive management, and consider removing problem bears (those involved in repeated bear incidents) from the population.

  2. Enhancement by O6-benzyl-N2-acetylguanosine of N'-[2-chloroethyl]-N-[2-(methylsulphonyl)ethyl]-N'-nitrosourea therapeutic index on nude mice bearing resistant human melanoma.

    PubMed Central

    Debiton, E.; Cussac-Buchdhal, C.; Mounetou, E.; Rapp, M.; Dupuy, J. M.; Maurizis, J. C.; Veyre, A.; Madelmont, J. C.

    1997-01-01

    The exposure of cells to O6-benzyl-N2-acetylguanosine (BNAG) and several guanine derivatives is known to reduce the activity of O6-alkylguanine-DNA alkyltransferase (MGMT) and to enhance the sensitivity of Mer+ (methyl enzyme repair positive) tumour cells to chloroethylnitrosoureas (CENUs) in vitro and in vivo. High water solubility and the pharmacokinetic properties of BNAG make it a candidate for simultaneous administration with CENUs by the i.v. route in human clinical use. In vivo we have shown previously that BNAG significantly increases the efficiency of N'-[2-chloroethyl]-N-[2-(methylsulphonyl)ethyl]-N'-nitrosourea (cystemustine) against M4Beu melanoma cells (Mer+) through its cytostatic activity by the i.p. route, but also increases its toxicity. To investigate the toxicity of BNAG and cystemustine when administered simultaneously in mice, we compared the maximum tolerated dose and LD50 doses of cystemustine alone or in combination with 40 mg kg(-1) BNAG by the i.p. route. The toxicity of cystemustine was enhanced by a factor of almost 1.44 when combined with BNAG. To compare the therapeutic index of cystemustine alone and the cystemustine/BNAG combination, pharmacological tests were carried out in nude mice bearing Mer+ M4Beu human melanoma cells. Isotoxic doses were calculated using the 1.44 ratio. The treatments were administered three times by the i.v. route on days 1, 5 and 9 after s.c. inoculation of tumour cells. Although the toxicities of the treatments were equal, BNAG strongly enhanced tumour growth inhibition. These results demonstrate the increase of the therapeutic index of cystemustine by BNAG and justify the use of BNAG to enhance nitrosourea efficiency in vivo by i.v. co-injection. PMID:9365163

  3. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells.

    PubMed

    Santini, Roberta; Vinci, Maria C; Pandolfi, Silvia; Penachioni, Junia Y; Montagnani, Valentina; Olivito, Biagio; Gattai, Riccardo; Pimpinelli, Nicola; Gerlini, Gianni; Borgognoni, Lorenzo; Stecca, Barbara

    2012-09-01

    The question of whether cancer stem/tumor-initiating cells (CSC/TIC) exist in human melanomas has arisen in the last few years. Here, we have used nonadherent spheres and the aldehyde dehydrogenase (ALDH) enzymatic activity to enrich for CSC/TIC in a collection of human melanomas obtained from a broad spectrum of sites and stages. We find that melanomaspheres display extensive in vitro self-renewal ability and sustain tumor growth in vivo, generating human melanoma xenografts that recapitulate the phenotypic composition of the parental tumor. Melanomaspheres express high levels of Hedgehog (HH) pathway components and of embryonic pluripotent stem cell factors SOX2, NANOG, OCT4, and KLF4. We show that human melanomas contain a subset of cells expressing high ALDH activity (ALDH(high)), which is endowed with higher self-renewal and tumorigenic abilities than the ALDH(low) population. A good correlation between the number of ALDH(high) cells and sphere formation efficiency was observed. Notably, both pharmacological inhibition of HH signaling by the SMOOTHENED (SMO) antagonist cyclopamine and GLI antagonist GANT61 and stable expression of shRNA targeting either SMO or GLI1 result in a significant decrease in melanoma stem cell self-renewal in vitro and a reduction in the number of ALDH(high) melanoma stem cells. Finally, we show that interference with the HH-GLI pathway through lentiviral-mediated silencing of SMO and GLI1 drastically diminishes tumor initiation of ALDH(high) melanoma stem cells. In conclusion, our data indicate an essential role of the HH-GLI1 signaling in controlling self-renewal and tumor initiation of melanoma CSC/TIC. Targeting HH-GLI1 is thus predicted to reduce the melanoma stem cell compartment. Copyright © 2012 AlphaMed Press.

  4. Phenformin enhances the therapeutic benefit of BRAFV600E inhibition in melanoma

    PubMed Central

    Yuan, Ping; Ito, Koichi; Perez-Lorenzo, Rolando; Del Guzzo, Christina; Lee, Jung Hyun; Shen, Che-Hung; Bosenberg, Marcus W.; McMahon, Martin; Cantley, Lewis C.; Zheng, Bin

    2013-01-01

    Biguanides, such as the diabetes therapeutics metformin and phenformin, have demonstrated antitumor activity both in vitro and in vivo. The energy-sensing AMP-activated protein kinase (AMPK) is known to be a major cellular target of biguanides. Based on our discovery of cross-talk between the AMPK and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) signaling pathways, we investigated the antitumor effects of combining phenformin with a BRAF inhibitor PLX4720 on the proliferation of BRAF-mutated melanoma cells in vitro and on BRAF-driven tumor growth in vivo. Cotreatment of BRAF-mutated melanoma cell lines with phenformin and PLX4720 resulted in synergistic inhibition of cell viability, compared with the effects of the single agent alone. Moreover, treatment with phenformin significantly delayed the development of resistance to PLX4720 in cultured melanoma cells. Biochemical analyses showed that phenformin and PLX4720 exerted cooperative effects on inhibiting mTOR signaling and inducing apoptosis. Noticeably, phenformin selectively targeted subpopulations of cells expressing JARID1B, a marker for slow cycling melanoma cells, whereas PLX4720 selectively targeted JARID1B-negative cells. Finally, in contrast to their use as single agents, the combination of phenformin and PLX4720 induced tumor regression in both nude mice bearing melanoma xenografts and in a genetically engineered BRAFV600E/PTENnull-driven mouse model of melanoma. These results strongly suggest that significant therapeutic advantage may be achieved by combining AMPK activators such as phenformin with BRAF inhbitors for the treatment of melanoma. PMID:24145418

  5. Zebrafish Melanoma.

    PubMed

    Kaufman, Charles K

    2016-01-01

    Melanoma skin cancer is a potentially deadly disease in humans and has remained extremely difficult to treat once it has metastasized. In just the last 10 years, a number of models of melanoma have been developed in the zebrafish that are biologically faithful to the human disease and have already yielded important insights into the fundamental biology of melanoma and offered new potential avenues for treatment. With the diversity and breadth of the molecular genetic tools available in the zebrafish, these melanoma models will continue to be refined and expanded upon to keep pace with the rapidly evolving field of melanoma biology.

  6. Salvianolic acid B reverses multidrug resistance in nude mice bearing human colon cancer stem cells.

    PubMed

    Guo, Piaoting; Wang, Jianchao; Gao, Wencang; Liu, Xia; Wu, Shaofei; Wan, Boshun; Xu, Lei; Li, Yanhua

    2018-05-29

    Salvianolic acid B (SalB) is a water‑soluble phenolic compound, extractable from Salvia miltiorrhiza, and has previously been demonstrated to reverse tumor multidrug resistance (MDR) in colon cancer cells. Cancer stem cells (CSCs) are closely associated with drug resistance. Therefore, establishing a nude mouse model bearing human colon CSCs is important for the study of the mechanisms underlying colon cancer drug resistance as well as the reversal of drug resistance. The present study aimed to establish a nude mouse model bearing human colon CSCs and to investigate the effects of SalB on the drug resistance exhibited by the nude mouse model as well as determine its underlying mechanism. Cells from two colon cancer cell lines (LoVo and HCT‑116) were cultured in serum‑free medium to obtain CSCs‑enriched spheroid cells. Following this, nude mice were transplanted with LoVo and HCT‑116 colon CSCs to establish the CSC nude mouse model, which was subsequently demonstrated to exhibit MDR. The results of the present study revealed that following treatment with SalB, the chemotherapeutic drug resistance of xenografts was reversed to a certain extent. Western blot analysis was performed to investigate the expression levels of cluster of differentiation (CD)44, CD133, transcription factor sox‑2 (SOX2) and ATP‑binding cassette sub‑family G member 2 (ABCG2) proteins, and the results demonstrated that treatment with SalB downregulated the expression of CD44, SOX2 and ABCG2 proteins in both LoVo and HCT‑116 colon CSCs xenografts. In conclusion, the results of the present study revealed that a serum‑free suspension method can be performed to successfully isolate colon CSCs. In addition, a nude mice bearing colon CSCs animal model was successfully established, and associated tumors were confirmed to exhibit MDR. Furthermore, SalB was demonstrated to successfully reverse MDR in nude mice bearing LoVo and HCT‑116 colon CSCs, as well as suppress the expression

  7. Genetically engineered mesenchymal stromal cells producing TNFα have tumour suppressing effect on human melanoma xenograft.

    PubMed

    Tyciakova, Silvia; Matuskova, Miroslava; Bohovic, Roman; Polakova, Katarina; Toro, Lenka; Skolekova, Svetlana; Kucerova, Lucia

    2015-01-01

    Mesenchymal stromal cells (MSC) are a promising tool for targeted cancer therapy due to their tumour-homing ability. Intrinsic resistance enables the MSC to longer tolerate therapeutic factors, such as prodrug converting enzymes, cytokines and pro-apoptotic proteins. Tumour necrosis factor alpha (TNFα) is known to be cytotoxic to a variety of cancer cells and exert a tumour-destructive capacity. MSC were retrovirally transduced to stable express an exogenous gene encoding the desired therapeutic agent hTNFα. The effect of a TNFα-producing adipose tissue-derived MSC (AT-MSC/hTNFα) was tested on the tumour cell lines of different origins: melanoma (A375), breast carcinoma (SKBR3, MDA-MB-231), colon carcinoma (HT29), ovarian carcinoma (SKOV3) and glioblastoma (U87-MG) cells. The tumour suppressing effect of AT-MSC/hTNFα on A375 melanoma xenografts was monitored in an immunodeficient mouse model in vivo. Engineered AT-MSC are able to constitutively secrete human TNFα protein, induce apoptosis of tumour cell lines via caspase 3/7 activation and inhibit the tumour cell proliferation in vitro. Melanoma A375 and breast carcinoma SKBR3 cells were the most sensitive, and their proliferation in vitro was reduced by conditioned media produced by AT-MSC/hTNFα to 60% and 40%, respectively. The previously reported tumour supportive effect of AT-MSC on subcutaneous A375 melanoma xenograft growth was neutralised and suppressed by engineered AT-MSC stably producing hTNFα. When AT-MSC/hTNFα were coinjected with A375 melanoma cells, the tumour mass inhibition was up to 97.5%. The results of the present study demonstrate that tumour cells respond to hTNFα-based treatment mediated by genetically engineered AT-MSC/hTNFα both in vitro and in vivo. Copyright © 2015 John Wiley & Sons, Ltd.

  8. 177Lu-DOTA-Bevacizumab: Radioimmunotherapy Agent for Melanoma.

    PubMed

    Camacho, Ximena; Calzada, Victoria; Fernandez, Marcelo; Alonso, Omar; Chammas, Roger; Riva, Eloisa; Gambini, Juan Pablo; Cabral, Pablo

    2017-01-01

    Vascular endothelial growth factor (VEGF) is one of the classic factors to tumor-induced angiogenesis in several types, including melanoma. Bevacizumab is a humanized monoclonal antibody directed against VEGF. To radiolabel Bevacizumab with 177-Lutetium as a potential radioimmunotherapy agent for melanoma. Bevacizumab was derivatized with DOTA-NHS-ester at 4 ºC for 18 h. DOTABevacizumab was radiolabeled with 177LuCl3 (15 MBq/mg) at 37 ºC for 1 h. The studies were performed in healthy and B16F1 tumor-bearing C57BL/6J mice at 24 and 48 h (n = 5). Scinthigraphic imaging studies were performed at 24 h to determine the radiochemical stability, targeting specificity and pharmacokinetics of the 177Lutetium-labeled antibody. DOTA-Bevacizumab was efficiently labeled with 177LuCl3 at 37 °C. The in-vitro stability of labeled product was optimal over 72 h. In-vivo biodistribution studies showed a high liver and tumor uptake of 177Lu-DOTA-Bevacizumab, with tumor-to-muscle ratios of 11.58 and 6.37 at 24 and 48 h p.i. Scintigraphic imaging of melanoma tumor-bearing C57BL/6J mice showed liver and a high tumor selective uptake of 177Lu-DOTA-Bevacizumab at 24 h. Our results support the potential role of 177Lu-DOTA-Bevacizumab as a novel radioimmunotherapy agent for melanoma. We hope that these novel molecular imaging agents will open the path to new diagnostic and therapeutic strategies for Melanoma disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Dual Roles of RNF2 in Melanoma Progression | Office of Cancer Genomics

    Cancer.gov

    Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of complementary gain-of-function and loss-of-function studies in mouse and human systems, we establish that RNF2 is oncogenic and prometastatic.

  10. Genetically fluorescent melanoma bone and organ metastasis models.

    PubMed

    Yang, M; Jiang, P; An, Z; Baranov, E; Li, L; Hasegawa, S; Al-Tuwaijri, M; Chishima, T; Shimada, H; Moossa, A R; Hoffman, R M

    1999-11-01

    We report here the establishment and metastatic properties of bright, highly stable, green fluorescent protein (GFP) expression transductants of the B16 mouse malignant melanoma cell line and the LOX human melanoma line. The highly fluorescent malignant melanoma cell lines allowed the visualization of skeletal and multiorgan metastases after i.v. injection of B16 cells in C57BL/6 mice and intradermal injection of LOX cells in nude mice. The melanoma cell lines were transduced with the pLEIN expression retroviral vector containing the GFP and neomycin resistance genes. Stable B16F0 and LOX clones expressing high levels of GFP were selected stepwise in vitro in levels of G418 of up to 800 microg/ml. Extensive bone and bone marrow metastases of B16F0 were visualized by GFP expression when the animals were sacrificed 3 weeks after cell implantation. Metastases for both cell lines were visualized in many organs, including the brain, lung, pleural membrane, liver, kidney, adrenal gland, lymph nodes, skeleton, muscle, and skin by GFP fluorescence. This is the first observation of experimental skeletal metastases of melanoma, which was made possible by GFP expression. These models should facilitate future studies of the mechanism and therapy of bone and multiorgan metastasis of melanoma.

  11. Human-animal chimeras: ethical issues about farming chimeric animals bearing human organs.

    PubMed

    Bourret, Rodolphe; Martinez, Eric; Vialla, François; Giquel, Chloé; Thonnat-Marin, Aurélie; De Vos, John

    2016-06-29

    Recent advances in stem cells and gene engineering have paved the way for the generation of interspecies chimeras, such as animals bearing an organ from another species. The production of a rat pancreas by a mouse has demonstrated the feasibility of this approach. The next step will be the generation of larger chimeric animals, such as pigs bearing human organs. Because of the dramatic organ shortage for transplantation, the medical needs for such a transgressive practice are indisputable. However, there are serious technical barriers and complex ethical issues that must be discussed and solved before producing human organs in animals. The main ethical issues are the risks of consciousness and of human features in the chimeric animal due to a too high contribution of human cells to the brain, in the first case, or for instance to limbs, in the second. Another critical point concerns the production of human gametes by such chimeric animals. These worst-case scenarios are obviously unacceptable and must be strictly monitored by careful risk assessment, and, if necessary, technically prevented. The public must be associated with this ethical debate. Scientists and physicians have a critical role in explaining the medical needs, the advantages and limits of this potential medical procedure, and the ethical boundaries that must not be trespassed. If these prerequisites are met, acceptance of such a new, borderline medical procedure may prevail, as happened before for in-vitro fertilization or preimplantation genetic diagnosis.

  12. Pleckstrin homology domain-interacting protein (PHIP) as a marker and mediator of melanoma metastasis

    PubMed Central

    De Semir, David; Nosrati, Mehdi; Bezrookove, Vladimir; Dar, Altaf A.; Federman, Scot; Bienvenu, Geraldine; Venna, Suraj; Rangel, Javier; Climent, Joan; Meyer Tamgüney, Tanja M.; Thummala, Suresh; Tong, Schuyler; Leong, Stanley P. L.; Haqq, Chris; Billings, Paul; Miller, James R.; Sagebiel, Richard W.; Debs, Robert; Kashani-Sabet, Mohammed

    2012-01-01

    Although melanomas with mutant v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) can now be effectively targeted, there is no molecular target for most melanomas expressing wild-type BRAF. Here, we show that the activation of Pleckstrin homology domain-interacting protein (PHIP), promotes melanoma metastasis, can be used to classify a subset of primary melanomas, and is a prognostic biomarker for melanoma. Systemic, plasmid-based shRNA targeting of Phip inhibited the metastatic progression of melanoma, whereas stable suppression of Phip in melanoma cell lines suppressed metastatic potential and prolonged the survival of tumor-bearing mice. The human PHIP gene resides on 6q14.1, and although 6q loss has been observed in melanoma, the PHIP locus was preserved in melanoma cell lines and patient samples, and its overexpression was an independent adverse predictor of survival in melanoma patients. In addition, a high proportion of PHIP-overexpressing melanomas harbored increased PHIP copy number. PHIP-overexpressing melanomas include tumors with wild-type BRAF, neuroblastoma RAS viral (v-ras) oncogene homolog, and phosphatase and tensin homolog, demonstrating PHIP activation in triple-negative melanoma. These results describe previously unreported roles for PHIP in predicting and promoting melanoma metastasis, and in the molecular classification of melanoma. PMID:22511720

  13. Pilot Study of 64Cu(I) for PET Imaging of Melanoma

    DOE PAGES

    Jiang, Lei; Tu, Yingfeng; Hu, Xiang; ...

    2017-05-31

    Currently, 64Cu(II) labeled tracers including 64CuCl 2 have been widely applied in the research of molecular imaging and therapy. Human copper transporter 1 (hCTR1) is the major high affinity copper influx transporter in mammalian cells, and specially responsible for the transportation of Cu(I) not Cu(II). Thus, we investigated the feasible application of 64Cu(I) for PET imaging. 64Cu(II) was reduced to 64Cu(I) with the existence of sodium L-ascorbate, DL-Dithiothreitol or cysteine. Cell uptake and efflux assay was investigated using B16F10 and A375 cell lines, respectively. Small animal PET and biodistribution studies were performed in both B16F10 and A375 tumor-bearing mice. Comparedmore » with 64Cu(II), 64Cu(I) exhibited higher cellular uptake by melanoma, which testified CTR1 specially influx of Cu(I). But, due to oxidation reaction in vivo, no significant difference between 64Cu(I) and 64Cu(II) was observed through PET images and biodistribution. In addition, radiation absorbed doses for major tissues of human were calculated based on the mouse biodistribution. Radiodosimetry calculations for 64/67Cu(I) and 64/67Cu(II) were similar, which suggested that although melanoma were with high radiation absorbed doses, high radioactivity accumulation by liver and kidney should be noticed for the further application. Thus, 64Cu(I) should be further studied to evaluate it as a PET imaging radiotracer.« less

  14. Pilot Study of 64Cu(I) for PET Imaging of Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lei; Tu, Yingfeng; Hu, Xiang

    Currently, 64Cu(II) labeled tracers including 64CuCl 2 have been widely applied in the research of molecular imaging and therapy. Human copper transporter 1 (hCTR1) is the major high affinity copper influx transporter in mammalian cells, and specially responsible for the transportation of Cu(I) not Cu(II). Thus, we investigated the feasible application of 64Cu(I) for PET imaging. 64Cu(II) was reduced to 64Cu(I) with the existence of sodium L-ascorbate, DL-Dithiothreitol or cysteine. Cell uptake and efflux assay was investigated using B16F10 and A375 cell lines, respectively. Small animal PET and biodistribution studies were performed in both B16F10 and A375 tumor-bearing mice. Comparedmore » with 64Cu(II), 64Cu(I) exhibited higher cellular uptake by melanoma, which testified CTR1 specially influx of Cu(I). But, due to oxidation reaction in vivo, no significant difference between 64Cu(I) and 64Cu(II) was observed through PET images and biodistribution. In addition, radiation absorbed doses for major tissues of human were calculated based on the mouse biodistribution. Radiodosimetry calculations for 64/67Cu(I) and 64/67Cu(II) were similar, which suggested that although melanoma were with high radiation absorbed doses, high radioactivity accumulation by liver and kidney should be noticed for the further application. Thus, 64Cu(I) should be further studied to evaluate it as a PET imaging radiotracer.« less

  15. Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma.

    PubMed

    Yuan, Ping; Ito, Koichi; Perez-Lorenzo, Rolando; Del Guzzo, Christina; Lee, Jung Hyun; Shen, Che-Hung; Bosenberg, Marcus W; McMahon, Martin; Cantley, Lewis C; Zheng, Bin

    2013-11-05

    Biguanides, such as the diabetes therapeutics metformin and phenformin, have demonstrated antitumor activity both in vitro and in vivo. The energy-sensing AMP-activated protein kinase (AMPK) is known to be a major cellular target of biguanides. Based on our discovery of cross-talk between the AMPK and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) signaling pathways, we investigated the antitumor effects of combining phenformin with a BRAF inhibitor PLX4720 on the proliferation of BRAF-mutated melanoma cells in vitro and on BRAF-driven tumor growth in vivo. Cotreatment of BRAF-mutated melanoma cell lines with phenformin and PLX4720 resulted in synergistic inhibition of cell viability, compared with the effects of the single agent alone. Moreover, treatment with phenformin significantly delayed the development of resistance to PLX4720 in cultured melanoma cells. Biochemical analyses showed that phenformin and PLX4720 exerted cooperative effects on inhibiting mTOR signaling and inducing apoptosis. Noticeably, phenformin selectively targeted subpopulations of cells expressing JARID1B, a marker for slow cycling melanoma cells, whereas PLX4720 selectively targeted JARID1B-negative cells. Finally, in contrast to their use as single agents, the combination of phenformin and PLX4720 induced tumor regression in both nude mice bearing melanoma xenografts and in a genetically engineered BRAF(V600E)/PTEN(null)-driven mouse model of melanoma. These results strongly suggest that significant therapeutic advantage may be achieved by combining AMPK activators such as phenformin with BRAF inhbitors for the treatment of melanoma.

  16. Fatty acid receptor GPR120: a novel marker for human melanoma.

    PubMed

    Kleemann, Johannes; Hrgovic, Igor; Ter-Nedden, Jan; Kleimann, Pia; Steinhorst, Katja; Härle, Katja; Müller, Jutta; Kaufmann, Roland; Meissner, Markus; Kippenberger, Stefan

    2018-03-21

    The correlation between ultraviolet radiation of the skin and melanoma incidence in humans is well established. Interestingly, epidemiologic data suggest also a correlation to an increased BMI pointing to metabolic trigger factors in melanoma pathogenesis. To substantiate this connection, we studied the expression of G-protein-coupled receptor 120 (GPR120), a receptor sensitive to unsaturated long-chain free fatty acids in melanoma tissues. One-hundred fourteen tissue sections histologically confirmed as nevi (n=32), primary melanoma (n=39), and melanoma metastasis (n=43) were immunohistochemically stained against GPR120. The staining was evaluated by three trained dermatopathologists and independently scored. Compared with nevi, primary melanoma and melanoma metastasis showed significantly higher levels of GPR120 staining. Only three out of 32 nevi showed strong GPR120 expression [median immunoreactivity-scoring system (IRS) score: 1, range: 0-10], whereas in primary melanomas 14 out of 39 were highly GPR120-positive (median IRS score: 7, range: 0-12) and in melanoma metastasis 27 out of 43 were highly GPR120-positive (median IRS score: 9, range: 0-12). GPR120 expression and tumor thickness (mm) show a statistically significant correlation in primary melanoma (P=0.011). Moreover, GPR120-positive staining was found throughout the epidermis and in sebaceous and sweat glands, which is yet not described. This study identified GPR120 as a novel marker for melanoma, indicating that melanoma cells are sensitive to free fatty acids. It is tempting to speculate that pharmacologically interfering with GPR120 signaling might improve melanoma therapy.

  17. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18.

    PubMed

    Hu, Biliang; Ren, Jiangtao; Luo, Yanping; Keith, Brian; Young, Regina M; Scholler, John; Zhao, Yangbing; June, Carl H

    2017-09-26

    The effects of transgenically encoded human and mouse IL-18 on T cell proliferation and its application in boosting chimeric antigen receptor (CAR) T cells are presented. Robust enhancement of proliferation of IL-18-secreting human T cells occurred in a xenograft model, and this was dependent on TCR and IL-18R signaling. IL-18 augmented IFN-γ secretion and proliferation of T cells activated by the endogenous TCR. TCR-deficient, human IL-18-expressing CD19 CAR T cells exhibited enhanced proliferation and antitumor activity in the xenograft model. Antigen-propelled activation of cytokine helper ensemble (APACHE) CAR T cells displayed inducible expression of IL-18 and enhanced antitumor immunity. In an intact mouse tumor model, CD19-IL-18 CAR T cells induced deeper B cell aplasia, significantly enhanced CAR T cell proliferation, and effectively augmented antitumor effects in mice with B16F10 melanoma. These findings point to a strategy to develop universal CAR T cells for patients with solid tumors. Copyright © 2017. Published by Elsevier Inc.

  18. Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma.

    PubMed

    Azzarito, Tommaso; Venturi, Giulietta; Cesolini, Albino; Fais, Stefano

    2015-01-28

    Tumor acidity is now considered an important determinant of drug-resistance and tumor progression, and anti-acidic approaches, such as Proton Pump inhibitors (PPIs), have demonstrated promising antitumor and chemo-sensitizing efficacy. The main purpose of the present study was to evaluate the possible PPI-induced sensitization of human melanoma cells to Paclitaxel (PTX). Our results show that PTX and the PPI Lansoprazole (LAN) combination was extremely efficient against metastatic melanoma cells, as compared to the single treatments, both in vitro and in vivo. We also showed that acidity plays an important role on the anti-tumor activity of these drugs, being detrimental for PTX activity, while crucial for the synergistic effect of PTX following pretreatment with LAN, due to its nature of pro-drug needing protonation for a full activation. We obtained straightforward results in a human melanoma xenograft model combining well tolerated LAN doses with suboptimal and poorly toxic doses of PTX. With this study we provide a clear evidence that the PPI LAN may be included in new combined therapy of human melanoma together with low doses of PTX. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Intercellular crosstalk in human malignant melanoma.

    PubMed

    Dvořánková, Barbora; Szabo, Pavol; Kodet, Ondřej; Strnad, Hynek; Kolář, Michal; Lacina, Lukáš; Krejčí, Eliška; Naňka, Ondřej; Šedo, Aleksi; Smetana, Karel

    2017-05-01

    Incidence of malignant melanoma is increasing globally. While the initial stages of tumors can be easily treated by a simple surgery, the therapy of advanced stages is rather limited. Melanoma cells spread rapidly through the body of a patient to form multiple metastases. Consequently, the survival rate is poor. Therefore, emphasis in melanoma research is given on early diagnosis and development of novel and more potent therapeutic options. The malignant melanoma is arising from melanocytes, cells protecting mitotically active keratinocytes against damage caused by UV light irradiation. The melanocytes originate in the neural crest and consequently migrate to the epidermis. The relationship between the melanoma cells, the melanocytes, and neural crest stem cells manifests when the melanoma cells are implanted to an early embryo: they use similar migratory routes as the normal neural crest cells. Moreover, malignant potential of these melanoma cells is overdriven in this experimental model, probably due to microenvironmental reprogramming. This observation demonstrates the crucial role of the microenvironment in melanoma biology. Indeed, malignant tumors in general represent complex ecosystems, where multiple cell types influence the growth of genetically mutated cancer cells. This concept is directly applicable to the malignant melanoma. Our review article focuses on possible strategies to modify the intercellular crosstalk in melanoma that can be employed for therapeutic purposes.

  20. Integrin β1 activation induces an anti-melanoma host response

    PubMed Central

    Sole, Xavier; Salony; Chowdhury, Joeeta; Ross, Kenneth N.; Ramaswamy, Sridhar

    2017-01-01

    TGF-β is a cytokine thought to function as a tumor promoter in advanced malignancies. In this setting, TGF-β increases cancer cell proliferation, survival, and migration, and orchestrates complex, pro-tumorigenic changes in the tumor microenvironment. Here, we find that in melanoma, integrin β1-mediated TGF-β activation may also produce tumor suppression via an altered host response. In the A375 human melanoma cell nu/nu xenograft model, we demonstrate that cell surface integrin β1-activation increases TGF-β activity, resulting in stromal activation, neo-angiogenesis and, unexpectedly for this nude mouse model, increase in the number of intra-tumoral CD8+ T lymphocytes within the tumor microenvironment. This is associated with attenuation of tumor growth and long-term survival benefit. Correspondingly, in human melanomas, TGF-β1 correlates with integrin β1/TGF-β1 activation and the expression of markers for vasculature and stromal activation. Surprisingly, this integrin β1/TGF-β1 transcriptional footprint also correlates with the expression of markers for tumor-infiltrating lymphocytes, multiple immune checkpoints and regulatory pathways, and, importantly, better long-term survival of patients. These correlations are unique to melanoma, in that we do not observe similar associations between β1 integrin/TGF-β1 activation and better long-term survival in other human tumor types. These results suggest that activation of TGF-β1 in melanoma may be associated with the generation of an anti-tumor host response that warrants further study. PMID:28448494

  1. UVB induces atypical melanocytic lesions and melanoma in human skin.

    PubMed Central

    Atillasoy, E. S.; Seykora, J. T.; Soballe, P. W.; Elenitsas, R.; Nesbit, M.; Elder, D. E.; Montone, K. T.; Sauter, E.; Herlyn, M.

    1998-01-01

    A direct causal relationship between ultraviolet (UV) light in the B range and melanoma development has not been demonstrated in humans; this study aims to establish causality. A total of 158 RAG-1 mice, grafted with human newborn foreskin, were separated into four groups and observed for a median of 10 months: 1) no treatment, 2) a single treatment with 7,12-dimethyl(a)benzanthracene (DMBA), 3) UVB irradiation at 500 J/m2 alone, three times weekly, and 4) a combination of DMBA and UVB. Twenty-three percent of 40 normal human skin grafts treated with UVB only and 38% of 48 grafts treated with the combination of DMBA and UVB developed solar lentigines within 5 to 10 months of treatment. Melanocytic hyperplasia was found in 73% of all UVB-treated xenografts. Histological melanocytic changes resembling lentigo and lentigo maligna were seen in several skin grafts treated with both DMBA and UVB. In one graft of an animal treated with a combination of DMBA and UVB, a human malignant melanoma, nodular type, developed. This experimental system demonstrates that chronic UVB irradiation with or without an initiating carcinogen can induce human melanocytic lesions, including melanoma. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:9588887

  2. Using the direct-injection model of early uveal melanoma hepatic metastasis to identify TPS as a potentially useful serum biomarker.

    PubMed

    Barak, Vivian; Frenkel, Shahar; Valyi-Nagy, Klara; Leach, Lu; Apushkin, Marsha A; Lin, Amy Y; Kalickman, Inna; Baumann, Nikola A; Pe'er, Jacob; Maniotis, Andrew J; Folberg, Robert

    2007-10-01

    To develop a method to screen for serum biomarkers of early hepatic metastasis from uveal melanoma. Cytokeratin 18 (TPS) was identified from gene expression profiles as protein generated by highly invasive uveal melanoma cells. Sera were collected from two groups of 15 SCID mice 2 weeks after injection of either tissue culture medium or MUM2B human metastatic uveal melanoma cells into the mouse liver. Serum TPS levels were assayed in 53 healthy human controls, 64 uveal melanoma patients who were disease free for at least 10 years, and 37 patients with metastatic uveal melanoma. After 2 weeks, small hepatic nodules (0.1-2.8 mm; mean, 0.80 mm) developed in 11 of 15 mice injected with MUM2B cells. Serum TPS levels in media-injected mice (84.7 U/L) were substantially lower than levels in MUM2B-injected mice (601 mug/L). TPS levels were significantly higher (P < 0.0001) in patients with metastatic uveal melanoma (139.63 +/- 22.20) than in healthy controls (54.23 +/- 0.01) or in patients free of disease (69.29 +/- 9.76). Significant differences were found between TPS levels before and after the development of hepatic metastases (P < 0.01), and serum TPS levels became elevated in four patients at least 6 months before the detection of hepatic metastases by abdominal ultrasonography. The direct-injection model of uveal melanoma in the mouse liver may be used to screen for potential serum biomarkers of metastatic uveal melanoma.

  3. Comparison of a treatment strategy combining CCI-779 plus DTIC versus DTIC monotreatment in human melanoma in SCID mice.

    PubMed

    Thallinger, Christiane; Werzowa, Johannes; Poeppl, Wolfgang; Kovar, Florian M; Pratscher, Barbara; Valent, Peter; Quehenberger, Peter; Joukhadar, Christian

    2007-10-01

    This study compares the antineoplastic potential of a novel treatment strategy combining cell cycle inhibitor-779 (CCI-779) plus dacarbazine (DTIC) versus DTIC monotreatment, the current chemotherapeutic mainstay in combating metastatic melanoma. A controlled four-group parallel study design comprising 24-40 mice per tumor cell line was used in a severe combined immunodeficiency (SCID)-mouse xenotransplantation model. SCID mice were injected with 518A2, Mel-JUSO, or 607B human melanoma cells. After they developed tumors, mice received daily CCI-779 or solvent over 14 days. From treatment day 4-8 mice were additionally injected with DTIC or saline. Treatment with CCI-779 plus DTIC was superior to single agent DTIC in two out of three cell lines (P<0.05). The tumor weight reduction was 44+/-17 and 61+/-6% compared with DTIC monotreatment in Mel-JUSO and 607B melanomas, respectively (P<0.05). In contrast, in 518A2 xenotransplants, CCI-779 plus DTIC treatment was as effective as DTIC monotreatment. CCI-779 monotherapy exerted no statistically significant antitumor effect. Collectively, these data indicate that CCI-779 has the potential to increase the chemotherapeutic efficacy, as the combination of CCI-779 plus DTIC proved to be more efficacious compared to DTIC monotherapy in two out of three melanoma cell lines in vivo.

  4. Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells.

    PubMed

    Fisher, P B; Prignoli, D R; Hermo, H; Weinstein, I B; Pestka, S

    1985-01-01

    We have analyzed the effects of various human interferons produced in bacteria and the antileukemic compound mezerein (MEZ) on growth and melanogenesis in human melanoma cells. In four human melanoma cell lines, recombinant human fibroblast interferon (IFN-beta) was more active than recombinant human leukocyte interferons (IFN-alpha A, IFN-alpha D, or IFN-alpha A/D (Bgl] in inhibiting cellular proliferation. When monolayer cultures were exposed to 1000 IU/ml IFN-beta for four days the degree of growth inhibition in the different melanoma cell lines varied between 94 and 26%. Similarly, four days growth in medium containing 10 ng/ml MEZ resulted in either no inhibition of growth or as much as 53% inhibition of growth, depending on the specific melanoma cell line tested. MEZ induced dendrite-like processes, cytoplasmic projections morphologically similar to those normally found in neurons and melanocytes, in all four melanoma cell lines, whereas none of the interferons tested had this effect. The combination of interferon and MEZ resulted in a dramatic inhibition in cellular proliferation in all four melanoma cell lines. When cell extracts were assayed for melanin content, a marker of melanoma cell differentiation, the combination of IFN-beta and MEZ resulted in higher levels of melanin than with either agent alone. Dendrite-like formation was also prominent in the cultures treated with this combination. These results indicate that the antiproliferative effect of interferon toward human melanoma dells can be enhanced by treatment with MEZ and that this effect is associated with an enhancement of terminal differentiation.

  5. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma

    NASA Astrophysics Data System (ADS)

    Bald, Tobias; Quast, Thomas; Landsberg, Jennifer; Rogava, Meri; Glodde, Nicole; Lopez-Ramos, Dorys; Kohlmeyer, Judith; Riesenberg, Stefanie; van den Boorn-Konijnenberg, Debby; Hömig-Hölzel, Cornelia; Reuten, Raphael; Schadow, Benjamin; Weighardt, Heike; Wenzel, Daniela; Helfrich, Iris; Schadendorf, Dirk; Bloch, Wilhelm; Bianchi, Marco E.; Lugassy, Claire; Barnhill, Raymond L.; Koch, Manuel; Fleischmann, Bernd K.; Förster, Irmgard; Kastenmüller, Wolfgang; Kolanus, Waldemar; Hölzel, Michael; Gaffal, Evelyn; Tüting, Thomas

    2014-03-01

    Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere

  6. Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells.

    PubMed

    Federici, Cristina; Lugini, Luana; Marino, Maria Lucia; Carta, Fabrizio; Iessi, Elisabetta; Azzarito, Tommaso; Supuran, Claudiu T; Fais, Stefano

    2016-01-01

    Proton Pump Inhibitors (PPIs) reduce tumor acidity and therefore resistance of tumors to drugs. Carbonic Anhydrase IX (CA IX) inhibitors have proven to be effective against tumors, while tumor acidity might impair their full effectiveness. To analyze the effect of PPI/CA IX inhibitors combined treatment against human melanoma cells. The combination of Lansoprazole (LAN) and CA IX inhibitors (FC9-399A and S4) has been investigated in terms of cell proliferation inhibition and cell death in human melanoma cells. The combination of these inhibitors was more effective than the single treatments in both inhibiting cell proliferation and in inducing cell death in human melanoma cells. These results represent the first successful attempt in combining two different proton exchanger inhibitors. This is the first evidence on the effectiveness of a new approach against tumors based on the combination of PPI and CA IX inhibitors, thus providing an alternative strategy against tumors.

  7. Attenuation of Mouse Melanoma by A/C Magnetic Field after Delivery of Bi-Magnetic Nanoparticles by Neural Progenitor Cells

    PubMed Central

    Rachakatla, Raja Shekar; Balivada, Sivasai; Seo, Gwi-Moon; Myers, Carl B; Wang, Hongwang; Samarakoon, Thilani N.; Dani, Raj; Pyle, Marla; Kroh, Franklin O.; Walker, Brandon; Leaym, Xiaoxuan; Koper, Olga B.; Chikan, Viktor; Bossmann, Stefan H.; Tamura, Masaaki; Troyer, Deryl L.

    2010-01-01

    Localized magnetic hyperthermia as a treatment modality for cancer has generated renewed interest, particularly if it can be targeted to the tumor site. We examined whether tumor-tropic neural progenitor cells (NPCs) could be utilized as cell delivery vehicles for achieving preferential accumulation of core/shell iron/iron oxide magnetic nanoparticles (MNPs) within a mouse model of melanoma. We developed aminosiloxane-porphyrin functionalized MNPs, evaluated cell viability and loading efficiency, and transplanted neural progenitor cells loaded with this cargo into mice with melanoma. NPCs were efficiently loaded with core/shell Fe/Fe3O4 MNPs with minimal cytotoxicity; the MNPs accumulated as aggregates in the cytosol. The NPCs loaded with MNPs could travel to subcutaneous melanomas, and after A/C (alternating current) magnetic field (AMF) exposure, the targeted delivery of MNPs by the cells resulted in a measurable regression of the tumors. The tumor attenuation was significant (p<0.05) a short time (24 hours) after the last of three AMF exposures. PMID:21058696

  8. Obesity-related genetic variants, human pigmentation, and risk of melanoma

    PubMed Central

    Li, Xin; Liang, Liming; Zhang, Mingfeng; Song, Fengju; Nan, Hongmei; Wang, Li-E; Wei, Qingyi; Lee, Jeffrey E.; Amos, Christopher I.; Qureshi, Abrar A.; Han, Jiali

    2013-01-01

    Previous biological studies showed evidence of a genetic link between obesity and pigmentation in both animal models and humans. Our study investigated the individual and joint associations between obesity-related single nucleotide polymorphisms (SNPs) and both human pigmentation and risk of melanoma. Eight obesity-related SNPs in the FTO, MAP2K5, NEGR1, FLJ35779, ETV5, CADM2, and NUDT3 genes were nominally significantly associated with hair color among 5,876 individuals of European ancestry. The genetic score combining 35 independent obesity-risk loci was significantly associated with darker hair color (beta-coefficient per ten alleles=0.12, P-value=4 10−5). However, single SNPs or genetic scores showed non-significant association with tanning ability. We further examined the SNPs at the FTO locus for their associations with pigmentation and risk of melanoma. Among the 783 SNPs in the FTO gene with imputation R-square quality metric >0.8 using the 1000 genome data set, ten and three independent SNPs were significantly associated with hair color and tanning ability respectively. Moreover, five independent FTO SNPs showed nominally significant association with risk of melanoma in 1,804 cases and 1,026 controls. But none of them was associated with obesity or in linkage disequilibrium with obesity-related variants. FTO locus may confer variation in human pigmentation and risk of melanoma, which may be independent of its effect on obesity. PMID:23539184

  9. Fasting boosts sensitivity of human skin melanoma to cisplatin-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antunes, Fernanda; Corazzari, Marco; National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”

    Melanoma is one of leading cause of tumor death worldwide. Anti-cancer strategy includes combination of different chemo-therapeutic agents as well as radiation; however these treatments have limited efficacy and induce significant toxic effects on healthy cells. One of most promising novel therapeutic approach to cancer therapy is the combination of anti-cancer drugs with calorie restriction. Here we investigated the effect Cisplatin (CDDP), one of the most potent chemotherapeutic agent used to treat tumors, in association with fasting in wild type and mutated BRAF{sup V600E} melanoma cell lines. Here we show that nutrient deprivation can consistently enhance the sensitivity of tumormore » cells to cell death induction by CDDP, also of those malignancies particularly resistant to any treatment, such as oncogenic BRAF melanomas. Mechanistic studies revealed that the combined therapy induced cell death is characterized by ROS accumulation and ATF4 in the absence of ER-stress. In addition, we show that autophagy is not involved in the enhanced sensitivity of melanoma cells to combined CDDP/EBSS-induced apoptosis. While, the exposure to 2-DG further enhanced the apoptotic rate observed in SK Mel 28 cells upon treatment with both CDDP and EBSS. - Highlights: • Calorie restriction associated to chemo-therapeutic drugs enhance cell death induction in many resistant malignancies • Cisplatin in association with starvation significantly increases cell death also in those high resistant melanoma cells bearing BRAF mutations • Combined treatment also including 2-DG results in similar cell death levels in both wild type and mutated BRAF cells.« less

  10. Role of G protein-coupled receptor kinases in the homologous desensitization of the human and mouse melanocortin 1 receptors.

    PubMed

    Sánchez-Más, Jesús; Guillo, Lidia A; Zanna, Paola; Jiménez-Cervantes, Celia; García-Borrón, José C

    2005-04-01

    The melanocortin 1 receptor, a G protein-coupled receptor positively coupled to adenylyl cyclase, is a key regulator of epidermal melanocyte proliferation and differentiation and a determinant of human skin phototype and skin cancer risk. Despite its potential importance for regulation of pigmentation, no information is available on homologous desensitization of this receptor. We found that the human melanocortin 1 receptor (MC1R) and its mouse ortholog (Mc1r) undergo homologous desensitization in melanoma cells. Desensitization is not dependent on protein kinase A, protein kinase C, calcium mobilization, or MAPKs, but is agonist dose-dependent. Both melanoma cells and normal melanocytes express two members of the G protein-coupled receptor kinase (GRK) family, GRK2 and GRK6. Cotransfection of the receptor and GRK2 or GRK6 genes in heterologous cells demonstrated that GRK2 and GRK6 impair agonist-dependent signaling by MC1R or Mc1r. However, GRK6, but not GRK2, was able to inhibit MC1R agonist-independent constitutive signaling. Expression of a dominant negative GRK2 mutant in melanoma cells increased their cAMP response to agonists. Agonist-stimulated cAMP production decreased in melanoma cells enriched with GRK6 after stable transfection. Therefore, GRK2 and GRK6 seem to be key regulators of melanocortin 1 receptor signaling and may be important determinants of skin pigmentation.

  11. Intravital imaging of a spheroid-based orthotopic model of melanoma in the mouse ear skin

    PubMed Central

    Chan, Keefe T.; Jones, Stephen W.; Brighton, Hailey E.; Bo, Tao; Cochran, Shelly D.; Sharpless, Norman E.; Bear, James E.

    2017-01-01

    Multiphoton microscopy is a powerful tool that enables the visualization of fluorescently tagged tumor cells and their stromal interactions within tissues in vivo. We have developed an orthotopic model of implanting multicellular melanoma tumor spheroids into the dermis of the mouse ear skin without the requirement for invasive surgery. Here, we demonstrate the utility of this approach to observe the primary tumor, single cell actin dynamics, and tumor-associated vasculature. These methods can be broadly applied to investigate an array of biological questions regarding tumor cell behavior in vivo. PMID:28748125

  12. Licochalcone D induces apoptosis and inhibits migration and invasion in human melanoma A375 cells

    PubMed Central

    Si, Lingling; Yan, Xinyan; Hao, Wenjin; Ma, Xiaoyi; Ren, Huanhuan; Ren, Boxue; Li, Defang; Dong, Zhengping; Zheng, Qiusheng

    2018-01-01

    The aim of the present study was to determine the effects of Licochalcone D (LD) on the apoptosis and migration and invasion in human melanoma A375 cells. Cell proliferation was determined by sulforhodamine B assay. Apoptosis was assessed by Hoechst 33258 and Annexin V-FITC/PI staining and JC-1 assay. Total intracellular reactive oxygen species (ROS) was examined by DCFH-DA. Wound healing and Transwell assays were used to detect migration and invasion of the cells. The activities of matrix metalloproteinase (MMP-2 and MMP-9) were assessed via gelatin zymography. Tumor growth in vivo was evaluated in C57BL/6 mice. RT-PCR, qPCR, ELISA and western blot analysis were utilized to measure the mRNA and protein levels. Our results showed that LD inhibited the proliferation of A375 and SK-MEL-5 cells in a concentration-dependent manner. After treatment with LD, A375 cells displayed obvious apoptotic characteristics, and the number of apoptotic cells was significantly increased. Pro-apoptotic protein Bax, caspase-9 and caspase-3 were upregulated, while anti-apoptotic protein Bcl-2 was downregulated in the LD-treated cells. Meanwhile, LD induced the loss of mitochondrial membrane potential (ΔΨm) and increased the level of ROS. ROS production was inhibited by the co-treatment of LD and free radical scavenger N-acetyl-cysteine (NAC). Furthermore, LD also blocked A375 cell migration and invasion in vitro which was associated with the downregulation of MMP-9 and MMP-2. Finally, intragastric administration of LD suppressed tumor growth in the mouse xenograft model of murine melanoma B16F0 cells. These results suggest that LD may be a potential drug for human melanoma treatment by inhibiting proliferation, inducing apoptosis via the mitochondrial pathway and blocking cell migration and invasion. PMID:29565458

  13. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    PubMed

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  14. The anti-tumor activity of a neutralizing nanobody targeting leptin receptor in a mouse model of melanoma.

    PubMed

    McMurphy, Travis; Xiao, Run; Magee, Daniel; Slater, Andrew; Zabeau, Lennart; Tavernier, Jan; Cao, Lei

    2014-01-01

    Environmental and genetic activation of a brain-adipocyte axis inhibits cancer progression. Leptin is the primary peripheral mediator of this anticancer effect in a mouse model of melanoma. In this study we assessed the effect of a leptin receptor antagonist on melanoma progression. Local administration of a neutralizing nanobody targeting the leptin receptor at low dose adjacent to tumor decreased tumor mass with no effects on body weight or food intake. In contrast, systemic administration of the nanobody failed to suppress tumor growth. Daily intraperitoneal injection of high-dose nanobody led to weight gain, hyperphagia, increased adiposity, hyperleptinemia, and hyperinsulinemia, and central effects mimicking leptin deficiency. The blockade of central actions of leptin by systemic delivery of nanobody may compromise its anticancer effect, underscoring the need to develop peripherally acting leptin antagonists coupled with efficient cancer-targeting delivery.

  15. [Establishment of EL4 tumor-bearing mouse models and investigation on immunological mechanisms of anti-tumor effect of melphalan].

    PubMed

    Li, Mo-lin; Li, Chuan-gang; Shu, Xiao-hong; Jia, Yu-jie; Qin, Zhi-hai

    2006-03-01

    To establish mouse lymphoma EL4 tumor-bearing mouse models in wild type C57BL/6 mice and nude C57BL/6 mice respectively, and to further investigate the immunological mechanisms of anti-tumor effect of melphalan. Mouse lymphoma EL4 cells were inoculated subcutaneously into wild type C57BL/6 mice (immune-competent mice). Twelve days later, melphalan of different doses were administered intraperitoneally to treat these wild type C57BL/6 tuomr-bearing mice. Tumor sizes were observed and recorded subsequently to find out the minimal dose of melphalan that could cure the tuomr-bearing mice. Then the same amount of EL4 tumor cells were inoculated subcutaneously into wild type C57BL/6 mice and nude C57BL/6 mice (T cell-deficient mice) simultaneously, which had the same genetic background of C57BL/6. Twelve days later, melphalan of the minimal dose was given intraperitoneally to treat both the wild type and nude C57BL/6 tuomr-bearing mice. Tumor sizes were observed and recorded in these two different types of mice subsequently. A single dose of melphalan (7.5 mg/kg) could cure EL4 tumor-bearing wild type C57BL/6 mice, but could not induce tumor regression in EL4 tumor-bearing nude C57BL/6 mice. A single dose of melphalan has obvious anti-tumor effect on mouse lymphoma EL4 tumor-bearing wild type C57BL/6mice, which requires the involvement of T lymphocytes in the host probably related to their killing functions.

  16. A UV-independent pathway to melanoma carcinogenesis in the redhair-fairskin background

    PubMed Central

    Mitra, Devarati; Luo, Xi; Morgan, Ann; Wang, Jin; Hoang, Mai P.; Lo, Jennifer; Guerrero, Candace R.; Lennerz, Jochen K.; Mihm, Martin C.; Wargo, Jennifer A.; Robinson, Kathleen C.; Devi, Suprabha P.; Vanover, Jillian C.; D’Orazio, John A.; McMahon, Martin; Bosenberg, Marcus W.; Haigis, Kevin M.; Haber, Daniel A.; Wang, Yinsheng; Fisher, David E.

    2012-01-01

    People with pale skin, red hair, freckles, and an inability to tan—the “redhair/fairskin” phenotype— are at highest risk of developing melanoma, compared to all other pigmentation types1. Genetically, this phenotype is frequently the product of inactivating polymorphisms in the Melanocortin 1 receptor (MC1R) gene. MC1R encodes a cAMP stimulating G-protein coupled receptor that controls pigment production. Minimal receptor activity, as in redhair/fairskin polymorphisms, produces red/yellow pheomelanin pigment, while increasing MC1R activity stimulates production of black/brown eumelanin2. Pheomelanin has weak UV shielding capacity relative to eumelanin and has been shown to amplify UVA-induced reactive oxygen species (ROS) 3–5. Several observations, however, complicate the assumption that melanoma risk is completely UV dependent. For example, unlike non-melanoma skin cancers, melanoma is not restricted to sun-exposed skin and UV signature mutations are infrequently oncogenic drivers6. While linkage of melanoma risk to UV exposure is beyond doubt, UV-independent events are also likely to play a significant role1,7. Here, we introduced into mice carrying an inactivating mutation in the Mc1r gene (who exhibit a phenotype analogous to redhair/fairskin humans), a conditional, melanocyte-targeted allele of the most commonly mutated melanoma oncogene, BRafV600E. We observed a high incidence of invasive melanomas without providing additional gene aberrations or UV exposure. To investigate the mechanism of UV-independent carcinogenesis, we introduced an albino allele, which ablates all pigment production on the Mc1r e/e background. Selective absence of pheomelanin synthesis was protective against melanoma development. In addition, normal Mc1re/e mouse skin was found to have significantly greater oxidative DNA and lipid damage than albino-Mc1re/e mouse skin. These data suggest that the pheomelanin pigment pathway produces UV-independent carcinogenic contributions to

  17. Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue

    NASA Astrophysics Data System (ADS)

    He, Jinping; Wang, Nan; Tsurui, Hiromichi; Kato, Masashi; Iida, Machiko; Kobayashi, Takayoshi

    2016-07-01

    Skin cancer is one of the most common cancers. Melanoma accounts for less than 2% of skin cancer cases but causes a large majority of skin cancer deaths. Early detection of malignant melanoma remains the key factor in saving lives. However, the melanoma diagnosis is still clinically challenging. Here, we developed a confocal photothermal microscope for noninvasive, label-free, three-dimensional imaging of melanoma. The axial resolution of confocal photothermal microscope is ~3 times higher than that of commonly used photothermal microscope. Three-dimensional microscopic distribution of melanin in pigmented lesions of mouse skin is obtained directly with this setup. Classic morphometric and fractal analysis of sixteen 3D images (eight for benign melanoma and eight for malignant) showed a capability of pathology of melanoma: melanin density and size become larger during the melanoma growth, and the melanin distribution also becomes more chaotic and unregulated. The results suggested new options for monitoring the melanoma growth and also for the melanoma diagnosis.

  18. New imaging-based biomarkers for melanoma diagnosis using coherent Raman Scattering microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Hequn; Osseiran, Sam; Roider, Elisabeth; Fisher, David E.; Evans, Conor L.

    2016-02-01

    Recently, pheomelanin has been found to play a critical role in melanoma progression given its pro-oxidant chemical properties as well as its marked presence in pre-cancerous and malignant melanoma lesions, even in the absence of ultraviolet radiation. In addition, epidemiological evidence indicates a strong correlation between melanoma incidence and skin type, with the highest incidence occurring in individuals of the red-haired/fair-skinned phenotype. Interestingly, nevus count correlates well with melanoma incidence and skin type, except in the population most prone to developing melanoma, where nevus count strikingly drops. As such, a current hypothesis proposes that fair-skinned red-haired individuals, who are unable to stimulate production of eumelanin due to a mutation in MC1R in melanocytes, may actually harbor numerous "invisible", pheomelanin-rich nevi that evade clinical detection, supporting the high incidence of melanoma in that population. Here, we show for the very first time that melanocytes extracted from genetically modified MC1R-mutant, red-haired mice displayed bright perinuclear distributions of signal within the cells under coherent anti-Stokes Raman scattering (CARS) microscopy. Changes in pheomelanin production in siRNA knockdowns of cultured human melanoma cells were also sensed. We then successfully imaged pheomelanin distributions in both ex vivo and in vivo mouse ear skin. Finally, melanosomes within amelanotic melanoma patient tissue sections were found to show bright pheomelanin signals. This is the first time, to our knowledge, that pheomelanin has been found spatially localized in a human amelanotic melanoma sample. These pheomelanotic CARS features may be used as potential biomarkers for melanoma detection, especially for amelanotic melanomas.

  19. Effects of genistein, a soybean-derived isoflavone, on proliferation and differentiation of B16-BL6 mouse melanoma cells.

    PubMed

    Yan, C H; Chen, X G; Li, Y; Han, R

    1999-01-01

    Genistein, a soybean-derived isoflavone, may contribute to the lower cancer incidence in South Asian countries. In this study, the effects and molecular mechanisms of genistein on growth and differentiation of B16-BL6 mouse melanoma cells were investigated. Genistein suppressed the growth of these melanoma cells. The IC50 value is 15.5 microM. On the other hand, genistein induced the changes of cell shape and cytoskeletal network. The cytoskeletal filaments were induced to form a bundle along the direction of elongation of the cells. Moreover, tyrosine phosphorylation levels of cytoskeleton-associated proteins decreased after the cells were exposed to 20 or 30 microM of genistein for 3 days. All these morphological and molecular changes were accompanied by appearance of the differentiated phenotypes. Genistein induced the increase of cellular melanin content, enhancement of tyrosinase activity, and decrease of colonization potentials in soft agar in a time-dependent and dose-dependent manner. The effective concentration was no more than 10 microM after 3 days' exposure. The tumorigenic potentials of B16-BL6 cells in C57BL/6 mouse also decreased after exposure to 20 or 30 microM of genistein for 3 days. When expressions of tumor-related genes were investigated in the differentiation-induced cells, the content of P53 dramatically increased while that of c-Myc protein decreased. Therefore, due to its ability to induce cellular and molecular changes, genistein suppressed the growth and induced differentiated phenotypes in B16-BL6 melanoma cells.

  20. ANTIPROLIFERATIVE EFFECT OF INOSITOL HEXAPHOSPHATE ON HUMAN SKIN MELANOMA CELLS IN VITRO.

    PubMed

    Wawszczyk, Joanna; Kapral, Małgorzata; Lodowska, Jolanta; Jesse, Katarzyna; Hollek, Andrzej; Węglarz, Ludmiła

    2015-01-01

    Human malignant melanoma is a highly metastatic tumor with poor prognosis. The majority of metastatic melanomas are resistant to diverse chemotherapeutic agents. Consequently, the search for novel antimelanoma agents continues. In recent years, the interest in plants and their biologically active constituents as a source of novel potential drugs significantly increased. Inositol hexaphosphate (IP6) is a naturally occurring compound that has been shown to inhibit the growth of a wide variety of tumor cells in multiple experimental model systems. The aim of this study was to evaluate the antiproliferative and cytotoxic influence of IP6 on melanotic melanoma cells in vitro. The A2058 cells used as a model of human skin melanoma malignum were exposed to different concentrations of IP6 (0.1-5 mM) for a various period of time and their growth was determined by sulforhodamine B assay after 24, 48 and 72 h. The cytotoxicity of IP6 was measured at 24 and 72 h by XTT assay. IP6 has been found to cause dose-dependent growth suppression of A2058 melanoma cells. At low concentrations (0.1 and 0.5 mM) it did not exert any influence on the cell proliferation as compared to control cultures. Higher concentrations of IP6 (from 1 to 5 mM) had a statistically significant, suppressive effect on cell proliferation after 24 h incubation. When the experimental time period was increased up to 72 h, statistically significant inhibition of cell proliferation was monitored at all IP6 concentrations used. Data obtained from XTT assay indicated that IP6 had dose- and time-dependent cytotoxic effect on melanoma cells. The results demonstrate the antiproliferative and cytotoxic properties of IP6 in a wide range of concentrations on human A2058 melanoma cells. Hence, it can be suggested that IP6 could have a promising therapeutic significance in treating cancer.

  1. Comparison of the in vitro and in vivo effects of retinoids either alone or in combination with cisplatin and 5-fluorouracil on tumor development and metastasis of melanoma.

    PubMed

    Liu, Xin; Chan, Sui Yung; Ho, Paul Chi-Lui

    2008-12-01

    Retinoids have previously been reported to inhibit proliferation of melanoma cell lines in vitro. However, the relative antimetastatic efficacy of various retinoids on melanoma in vivo is unknown. Therefore, we investigated the effects of different retinoids on the invasion and metastasis of murine melanoma B16-F10 cells in vitro and in vivo. Based on the findings, the antitumor effects of a selected retinoid either alone or in combination with cisplatin were also investigated in a preclinical mouse melanoma model. Cell proliferation and invasion analyses of murine melanoma B16-F10 cells were assessed in the presence of different retinoids, either alone or in combination with cisplatin (CDDP) or 5-fluorouracil (5-FU). Experimental lung metastasis assay was performed in this study to investigate the antimetastatic efficacy of retinoids. Additionally, a mouse melanoma model was used to assess the antitumor efficacy of a selected retinoid in combination with cisplatin. Retinoids showed significant antiproliferation and anti-invasion effects on murine melanoma B16-F10 cells. Pretreatment with retinoids increased the sensitivity to CDDP but not to 5-FU in in-vitro. Moreover, the number of metastatic colonies formed in the lungs of mice injected intravenously with B16-F10 cells was significantly reduced by injecting the respective retinoid once a day for 10 days. Treatment with a combination of cisplatin and 13-cis-retinoic acid resulted in a significant reduction in primary tumor size and the number of lung metastatic nodules in melanoma-bearing mice. These results suggest that retinoids not only exhibit antimetastatic effect, but also enhance the antitumor activity of cisplatin in vivo.

  2. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET

    PubMed Central

    Peinado, Héctor; Alečković, Maša; Lavotshkin, Simon; Matei, Irina; Costa-Silva, Bruno; Moreno-Bueno, Gema; Hergueta-Redondo, Marta; Williams, Caitlin; García-Santos, Guillermo; Nitadori-Hoshino, Ayuko; Hoffman, Caitlin; Badal, Karen; Garcia, Benjamin A.; Callahan, Margaret K.; Yuan, Jianda; Martins, Vilma R.; Skog, Johan; Kaplan, Rosandra N.; Brady, Mary S.; Wolchok, Jedd D.; Chapman, Paul B.; Kang, Yibin; Bromberg, Jacqueline; Lyden, David

    2013-01-01

    Tumor-derived exosomes are emerging mediators of tumorigenesis with tissue-specific addresses and messages. We explored the function of melanoma-derived exosomes in the formation of primary tumor and metastases in mouse and human subjects. Exosomes from highly metastatic melanoma increased the metastatic behavior of primary tumors by permanently “educating” bone marrow (BM) progenitors via the MET receptor. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites, and reprogrammed BM progenitors towards a c-Kit+Tie2+Met+ pro-vasculogenic phenotype. Reducing Met expression in exosomes diminished the pro-metastatic behavior of BM cells. Importantly, MET expression was elevated in circulating CD45−C-KITlow/+TIE2+ BM progenitors from metastatic melanoma subjects. RAB1a, RAB5b, RAB7, and RAB27a were highly expressed in melanoma cells and Rab27a RNA interference decreased exosome production, preventing BM education, tumor growth and metastasis. Finally, we identified an exosome-specific “melanoma signature” with prognostic and therapeutic potential, comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. PMID:22635005

  3. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    PubMed

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  4. IRF-8 Controls Melanoma Progression by Regulating the Cross Talk between Cancer and Immune Cells within the Tumor Microenvironment12

    PubMed Central

    Mattei, Fabrizio; Schiavoni, Giovanna; Sestili, Paola; Spadaro, Francesca; Fragale, Alessandra; Sistigu, Antonella; Lucarini, Valeria; Spada, Massimo; Sanchez, Massimo; Scala, Stefania; Battistini, Angela; Belardelli, Filippo; Gabriele, Lucia

    2012-01-01

    The transcription factor interferon regulatory factor-8 (IRF-8) is crucial for myeloid cell development and immune response and also acts as a tumor suppressor gene. Here, we analyzed the role of IRF-8 in the cross talk between melanoma cells and tumor-infiltrating leukocytes. B16-F10 melanoma cells transplanted into IRF-8-deficient (IRF-8-/-) mice grow more rapidly, leading to higher numbers of lung metastasis, with respect to control animals. These events correlated with reduced dendritic cell and T cell infiltration, accumulation of myeloid-derived suppressor cells and a chemokine/chemokine receptor expression profile within the tumor microenvironment supporting tumor growth, angiogenesis, and metastasis. Noticeably, primary tumors developing in IRF-8-/- mice displayed a clear-cut inhibition of IRF-8 expression in melanoma cells. Injection of the demethylating agent 5-aza-2′-deoxycytidine into melanoma-bearing IRF-8-/- animals induced intratumoral IRF-8 expression and resulted in the re-establishment of a chemokine/ chemokine receptor pattern favoring leukocyte infiltration and melanoma growth arrest. Importantly, intrinsic IRF-8 expression was progressively down-modulated during melanoma growth in mice and in human metastatic melanoma cells with respect to primary tumors. Lastly, IRF-8 expression in melanoma cells was directly modulated by soluble factors, among which interleukin-27 (IL-27), released by immune cells from tumor-bearing mice. Collectively, these results underscore a key role of IRF-8 in the cross talk between melanoma and immune cells, thus revealing its critical function within the tumor microenvironment in regulating melanoma progression and invasiveness. PMID:23308054

  5. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  6. Review of human hair optical properties in possible relation to melanoma development.

    PubMed

    Huang, Xiyong; Protheroe, Michael D; Al-Jumaily, Ahmed M; Paul, Sharad P; Chalmers, Andrew N

    2018-05-01

    Immigration and epidemiological studies provide evidence indicating the correlation of high ultraviolet exposure during childhood and increased risks of melanoma in later life. While the explanation of this phenomenon has not been found in the skin, a class of hair has been hypothesized to be involved in this process by transmitting sufficient ultraviolet rays along the hair shaft to possibly cause damage to the stem cells in the hair follicle, ultimately resulting in melanoma in later life. First, the anatomy of hair and its possible contribution to melanoma development, and the tissue optical properties are briefly introduced to provide the necessary background. This paper emphasizes on the review of the experimental studies of the optical properties of human hair, which include the sample preparation, measurement techniques, results, and statistical analysis. The Monte Carlo photon simulation of human hair is next outlined. Finally, current knowledge of the optical studies of hair is discussed in the light of their possible contribution to melanoma development; the necessary future work needed to support this hypothesis is suggested. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Selective expression of inhibitory Fcgamma receptor by metastatic melanoma impairs tumor susceptibility to IgG-dependent cellular response.

    PubMed

    Cassard, Lydie; Cohen-Solal, Joel F G; Fournier, Emilie M; Camilleri-Broët, Sophie; Spatz, Alain; Chouaïb, Salem; Badoual, Cécile; Varin, Audrey; Fisson, Sylvain; Duvillard, Pierre; Boix, Charlotte; Loncar, Shannon M; Sastre-Garau, Xavier; Houghton, Alan N; Avril, Marie-Françoise; Gresser, Ion; Fridman, Wolf H; Sautès-Fridman, Catherine

    2008-12-15

    During melanoma progression, patients develop anti-tumor immunity including the production of anti-tumor antibodies. Although the strategies developed by malignant cells to escape anti-tumor cellular immunity have been extensively investigated, little is known about tumor resistance to humoral immunity. The main effect of IgG antibodies is to activate the immune response by binding to host Fc gamma receptors (FcgammaR) expressed by immune cells. We previously reported in a limited study that some human metastatic melanoma cells ectopically express the FcgammaRIIB1, an inhibitory isoform of FcgammaR. By analyzing a large panel of different types of human primary and metastatic solid tumors, we report herein that expression of FcgammaRIIB is restricted to melanoma and is acquired during tumor progression. We show that FcgammaRIIB expression prevents the lysis of human metastatic melanoma cells by NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) in vitro, independently of the intracytoplasmic region of FcgammaRIIB. Using experimental mouse models, we demonstrate that expression of FcgammaRIIB protects B16F0 melanoma tumors from the ADCC induced by monoclonal and polyclonal anti-tumor IgG in vivo. Thus, our results identify FcgammaRIIB as a marker of human metastatic melanoma that impairs the tumor susceptibility to FcgammaR-dependent innate effector responses. (c) 2008 Wiley-Liss, Inc.

  8. Humanized mouse models: Application to human diseases.

    PubMed

    Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru

    2018-05-01

    Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.

  9. The Efficacy of Dandelion Root Extract in Inducing Apoptosis in Drug-Resistant Human Melanoma Cells

    PubMed Central

    Chatterjee, S. J.; Ovadje, P.; Mousa, M.; Hamm, C.; Pandey, S.

    2011-01-01

    Notoriously chemoresistant melanoma has become the most prevalent form of cancer for the 25–29 North American age demographic. Standard treatment after early detection involves surgical excision (recurrence is possible), and metastatic melanoma is refractory to immuno-, radio-, and most harmful chemotherapies. Various natural compounds have shown efficacy in killing different cancers, albeit not always specifically. In this study, we show that dandelion root extract (DRE) specifically and effectively induces apoptosis in human melanoma cells without inducing toxicity in noncancerous cells. Characteristic apoptotic morphology of nuclear condensation and phosphatidylserine flipping to the outer leaflet of the plasma membrane of A375 human melanoma cells was observed within 48 hours. DRE-induced apoptosis activates caspase-8 in A375 cells early on, demonstrating employment of an extrinsic apoptotic pathway to kill A375 cells. Reactive Oxygen Species (ROS) generated from DRE-treated isolated mitochondria indicates that natural compounds in DRE can also directly target mitochondria. Interestingly, the relatively resistant G361 human melanoma cell line responded to DRE when combined with the metabolism interfering antitype II diabetic drug metformin. Therefore, treatment with this common, yet potent extract of natural compounds has proven novel in specifically inducing apoptosis in chemoresistant melanoma, without toxicity to healthy cells. PMID:21234313

  10. Licochalcone D induces apoptosis and inhibits migration and invasion in human melanoma A375 cells.

    PubMed

    Si, Lingling; Yan, Xinyan; Hao, Wenjin; Ma, Xiaoyi; Ren, Huanhuan; Ren, Boxue; Li, Defang; Dong, Zhengping; Zheng, Qiusheng

    2018-05-01

    The aim of the present study was to determine the effects of Licochalcone D (LD) on the apoptosis and migration and invasion in human melanoma A375 cells. Cell proliferation was determined by sulforhodamine B assay. Apoptosis was assessed by Hoechst 33258 and Annexin V‑FITC/PI staining and JC‑1 assay. Total intracellular reactive oxygen species (ROS) was examined by DCFH‑DA. Wound healing and Transwell assays were used to detect migration and invasion of the cells. The activities of matrix metalloproteinase (MMP‑2 and MMP‑9) were assessed via gelatin zymography. Tumor growth in vivo was evaluated in C57BL/6 mice. RT‑PCR, qPCR, ELISA and western blot analysis were utilized to measure the mRNA and protein levels. Our results showed that LD inhibited the proliferation of A375 and SK‑MEL‑5 cells in a concentration‑dependent manner. After treatment with LD, A375 cells displayed obvious apoptotic characteristics, and the number of apoptotic cells was significantly increased. Pro‑apoptotic protein Bax, caspase‑9 and caspase‑3 were upregulated, while anti‑apoptotic protein Bcl‑2 was downregulated in the LD‑treated cells. Meanwhile, LD induced the loss of mitochondrial membrane potential (ΔΨm) and increased the level of ROS. ROS production was inhibited by the co‑treatment of LD and free radical scavenger N‑acetyl‑cysteine (NAC). Furthermore, LD also blocked A375 cell migration and invasion in vitro which was associated with the downregulation of MMP‑9 and MMP‑2. Finally, intragastric administration of LD suppressed tumor growth in the mouse xenograft model of murine melanoma B16F0 cells. These results suggest that LD may be a potential drug for human melanoma treatment by inhibiting proliferation, inducing apoptosis via the mitochondrial pathway and blocking cell migration and invasion.

  11. The activation of the G protein-coupled estrogen receptor (GPER) inhibits the proliferation of mouse melanoma K1735-M2 cells.

    PubMed

    Ribeiro, Mariana P C; Santos, Armanda E; Custódio, José B A

    2017-11-01

    The activation of the G protein-coupled estrogen receptor (GPER) by its specific agonist G-1 inhibits prostate cancer and 17β-estradiol-stimulated breast cancer cell proliferation. Tamoxifen (TAM), which also activates the GPER, decreases melanoma cell proliferation, but its action mechanism remains controversial. Here we investigated the expression and the effects of GPER activation by G-1, TAM and its key metabolite endoxifen (EDX) on melanoma cells. Mouse melanoma K1735-M2 cells expressed GPER and G-1 reduced cell biomass, and the number of viable cells, without increasing cell death. Rather, G-1 decreased cell division by blocking cell cycle progression in G2. Likewise, TAM and EDX exhibited an antiproliferative activity in melanoma cells due to decreased cell division. Both G-1 and the antiestrogens showed a trend to decrease the levels of phosphorylated ERK 1/2 after 1 h treatment, although only EDX, the most potent antiproliferative antiestrogen, induced significant effects. Importantly, the targeting of GPER with siRNA abolished the cytostatic activity of both G-1 and antiestrogens, suggesting that the antitumor actions of antiestrogens in melanoma cells involve GPER activation. Our results unveil a new target for melanoma therapy and identify GPER as a key mediator of antiestrogen antiproliferative effects, which may contribute to select the patients that benefit from an antiestrogen-containing regimen. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Melanoma induced immunosuppression is mediated by hematopoietic dysregulation.

    PubMed

    Kamran, Neha; Li, Youping; Sierra, Maria; Alghamri, Mahmoud S; Kadiyala, Padma; Appelman, Henry D; Edwards, Marta; Lowenstein, Pedro R; Castro, Maria G

    2018-01-01

    Tumors are associated with expansion of immunosuppressive cells such as tumor associated macrophages (TAMs), regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs). These cells promote tumor growth, angiogenesis, metastasis and immune escape. Cancer patients frequently present symptoms such as anemia, leukocytosis and/or cytopenia; associated with poor prognosis. To uncover tumor-mediated hematopoietic abnormalities and identify novel targets that can be harnessed to improve tumor-specific immune responses, we investigated the hematopoietic stem and progenitor cell compartment in melanoma bearing mice. We show that melanoma growth results in expansion of myeloid lineages such as MDSCs, macrophages and DCs along with a reduction in mature RBCs and platelets. Mature B lymphocytes in the blood and BM of melanoma mice were also reduced. Mice bearing melanoma showed extramedullary hematopoiesis in the spleen. Increased expansion of myeloid lineages occurred directly at the level of stem and progenitor cells. The reduction in mature B lymphocytes resulted from a block at the Pro-B cell stage in the bone marrow. Addition of recombinant IL-3 to bone marrow cells resulted in the expansion of committed myeloid progenitors including common myeloid precursors, granulocyte-monocyte precursors and megakaryocyte-erythrocyte precursors. In vivo , IL-3 receptor stimulation in melanoma bearing mice using an IL-3 antibody also resulted in a robust expansion of committed myeloid progenitors and hematopoietic stem cells. Collectively our findings demonstrate that tumor growth plays a pivotal role in reprogramming the host immune system by impacting hematopoiesis directly at the level of stem cell compartment.

  13. Tumor initiation in human malignant melanoma and potential cancer therapies.

    PubMed

    Ma, Jie; Frank, Markus H

    2010-02-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment.

  14. Tumor Initiation in Human Malignant Melanoma and Potential Cancer Therapies

    PubMed Central

    Ma, Jie; Frank, Markus H.

    2010-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment. PMID:20184545

  15. The 14-3-3σ gene promoter is methylated in both human melanocytes and melanoma

    PubMed Central

    2009-01-01

    Background Recent evidence demonstrates that 14-3-3σ acts as a tumor suppressor gene inactivated by methylation of its 5' CpG islands in epithelial tumor cells, while remaining un-methylated in normal human epithelia. The methylation analysis of 14-3-3σ has been largely overlooked in melanoma. Methods The methylation status of 14-3-3σ CpG island in melanocytes and melanoma cells was analyzed by methylation-specific sequencing (MSS) and quantitative methylation-specific PCR (Q-MSP). 14-3-3σ mRNA and protein expression in cell lines was detected by real-time RT-PCR and western blot. Melanoma cells were also treated by 5-aza-2'-deoxycytidine (DAC), a demethylating agent, and/or histone deacetylase inhibitor, Trichostatin A (TSA), to evaluate their effects on 14-3-3σ gene expression. Results 14-3-3σ is hypermethylated in both human melanocytes and most melanoma cells in a lineage-specific manner, resulting in the silencing of 14-3-3σ gene expression and the active induction of 14-3-3σ mRNA and protein expression following treatment with DAC. We also observed a synergistic effect upon gene expression when DAC was combined with TSA. The promoter methylation status of 14-3-3σ was analyzed utilizing Q-MSP in 20 melanoma tissue samples and 10 cell lines derived from these samples, showing that the majority of melanoma samples maintain their hypermethylation status of the 14-3-3σ gene. Conclusion 14-3-3σ is hypermethylated in human melanoma in a cell-linage specific manner. Spontaneous demethylation and re-expression of 14-3-3σ is a rare event in melanoma, indicating 14-3-3σ might have a tentative role in the pathogenesis of melanoma. PMID:19473536

  16. Polar bear attacks on humans: Implications of a changing climate

    USGS Publications Warehouse

    Wilder, James; Vongraven, Dag; Atwood, Todd C.; Hansen, Bob; Jessen, Amalie; Kochnev, Anatoly A.; York, Geoff; Vallender, Rachel; Hedman, Daryll; Gibbons, Melissa

    2017-01-01

    Understanding causes of polar bear (Ursus maritimus) attacks on humans is critical to ensuring both human safety and polar bear conservation. Although considerable attention has been focused on understanding black (U. americanus) and grizzly (U. arctos) bear conflicts with humans, there have been few attempts to systematically collect, analyze, and interpret available information on human-polar bear conflicts across their range. To help fill this knowledge gap, a database was developed (Polar Bear-Human Information Management System [PBHIMS]) to facilitate the range-wide collection and analysis of human-polar bear conflict data. We populated the PBHIMS with data collected throughout the polar bear range, analyzed polar bear attacks on people, and found that reported attacks have been extremely rare. From 1870–2014, we documented 73 attacks by wild polar bears, distributed among the 5 polar bear Range States (Canada, Greenland, Norway, Russia, and United States), which resulted in 20 human fatalities and 63 human injuries. We found that nutritionally stressed adult male polar bears were the most likely to pose threats to human safety. Attacks by adult females were rare, and most were attributed to defense of cubs. We judged that bears acted as a predator in most attacks, and that nearly all attacks involved ≤2 people. Increased concern for both human and bear safety is warranted in light of predictions of increased numbers of nutritionally stressed bears spending longer amounts of time on land near people because of the loss of their sea ice habitat. Improved conflict investigation is needed to collect accurate and relevant data and communicate accurate bear safety messages and mitigation strategies to the public. With better information, people can take proactive measures in polar bear habitat to ensure their safety and prevent conflicts with polar bears. This work represents an important first step towards improving our understanding of factors influencing

  17. Generation and characterization of a human-mouse chimeric antibody against the extracellular domain of claudin-1 for cancer therapy using a mouse model.

    PubMed

    Hashimoto, Yosuke; Tada, Minoru; Iida, Manami; Nagase, Shotaro; Hata, Tomoyuki; Watari, Akihiro; Okada, Yoshiaki; Doi, Takefumi; Fukasawa, Masayoshi; Yagi, Kiyohito; Kondoh, Masuo

    2016-08-12

    Claudin-1 (CLDN-1), an integral transmembrane protein, is an attractive target for drug absorption, prevention of infection, and cancer therapy. Previously, we generated mouse anti-CLDN-1 monoclonal antibodies (mAbs) and found that they enhanced epidermal absorption of a drug and prevented hepatitis C virus infection in human hepatocytes. Here, we investigated anti-tumor activity of a human-mouse chimeric IgG1, xi-3A2, from one of the anti-CLDN-1 mAbs, clone 3A2. Xi-3A2 accumulated in the tumor tissues in mice bearing with human CLDN-1-expressing tumor cells. Xi-3A2 activated Fcγ receptor IIIa-expressing reporter cells in the presence of human CLDN-1-expressing cells, suggesting xi-3A2 has a potential to exhibit antibody-dependent cellular cytotoxicity against CLDN-1 expressing tumor cells. We also constructed a mutant xi-3A2 antibody with Gly, Ser, and Ile substituted with Ala, Asp, and Arg at positions 236, 239, and 332 of the Fc domain. This mutant antibody showed greater activation of Fcγ receptor IIIa and in vivo anti-tumor activity in mice bearing human CLDN-1-expressing tumors than xi-3A2 did. These findings indicate that the G236A/S239D/I332E mutant of xi-3A2 might be a promising lead for tumor therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Inhibition of melanoma cell motility by the snake venom disintegrin eristostatin

    PubMed Central

    Tian, Jing; Paquette-Straub, Carrie; Sage, E. Helene; Funk, Sarah E.; Patel, Vivek; Galileo, Deni; McLane, Mary Ann

    2007-01-01

    Eristostatin, an RGD-containing disintegrin isolated from the venom of Eristicophis macmahoni, inhibits lung or liver colonization of melanoma cells in a mouse model. In this study, transwell migration and in vitro wound closure assays were used to determine the effect of eristostatin on the migration of melanoma cells. Eristostatin significantly impaired the migration of 5 human melanoma cell lines. Furthermore, it specifically inhibited cell migration on fibronectin in a concentration-dependent manner, but not that on collagen IV or laminin. In contrast, eristostatin was found to have no effect on cell proliferation or angiogenesis. These results indicate that the interaction between eristostatin and melanoma cells may involve fibronectin-binding integrins that mediate cell migration. Mutations to alanine of seven residues within the RGD loop of eristostatin and four residues outside the RGD loop of eristostatin resulted in significantly less potency in both platelet aggregation and wound closure assays. For six of the mutations, however, decreased activity was found only in the latter assay. We conclude that a different mechanism and/or integrin is involved in these two cell activities. PMID:17316731

  19. Mouse homologues of human hereditary disease.

    PubMed Central

    Searle, A G; Edwards, J H; Hall, J G

    1994-01-01

    Details are given of 214 loci known to be associated with human hereditary disease, which have been mapped on both human and mouse chromosomes. Forty two of these have pathological variants in both species; in general the mouse variants are similar in their effects to the corresponding human ones, but exceptions include the Dmd/DMD and Hprt/HPRT mutations which cause little, if any, harm in mice. Possible reasons for phenotypic differences are discussed. In most pathological variants the gene product seems to be absent or greatly reduced in both species. The extensive data on conserved segments between human and mouse chromosomes are used to predict locations in the mouse of over 50 loci of medical interest which are mapped so far only on human chromosomes. In about 80% of these a fairly confident prediction can be made. Some likely homologies between mapped mouse loci and unmapped human ones are also given. Sixty six human and mouse proto-oncogene and growth factor gene homologies are also listed; those of confirmed location are all in known conserved segments. A survey of 18 mapped human disease loci and chromosome regions in which the manifestation or severity of pathological effects is thought to be the result of genomic imprinting shows that most of the homologous regions in the mouse are also associated with imprinting, especially those with homologues on human chromosomes 11p and 15q. Useful methods of accelerating the production of mouse models of human hereditary disease include (1) use of a supermutagen, such as ethylnitrosourea (ENU), (2) targeted mutagenesis involving ES cells, and (3) use of gene transfer techniques, with production of 'knockout mutations'. PMID:8151633

  20. microRNA-625 inhibits tumorigenicity by suppressing proliferation, migration and invasion in malignant melanoma.

    PubMed

    Fang, Wei; Fan, Yibin; Fa, Zhenzong; Xu, Jinhua; Yu, Hongyu; Li, Pu; Gu, Julin

    2017-02-21

    Dysregulated microRNA (miR)-625 expression has been observed in several kinds of cancer. MicroRNAs are important factors in the development and progression of malignant melanoma, though the clinical significance and function of miR-625 in human malignant melanoma remain unclear. Levels of miR-625 expression were therefore determined in 36 pairs of malignant melanoma and adjacent non-tumor tissue using qPCR. The effects of miR-625 dysregulation on malignant melanoma cell proliferation, wound healing, migration and invasion in vitro and tumorigenicity in vivo were investigated using CCK-8, transwell assays, and a nude mouse subcutaneous tumor model. Bioinformatics analysis and luciferase reporter system were used to predict and confirm the target gene of miR-625. miR-625 levels were frequently decreased in malignant melanoma. Ectopic expression of miR-625 suppressed proliferation, wound healing, migration, and tumorgenicity in malignant melanoma. Moreover, miR-625 acted, at least in part, by suppressing potential target SOX2. These results show that miR-625 is a tumor suppressor that inhibits the development and progression of malignant melanoma, which suggests miR-625 is potentially a new diagnostic marker and therapeutic target of malignant melanoma.

  1. Nestin is expressed in HMB-45 negative melanoma cells in dermal parts of nodular melanoma.

    PubMed

    Kanoh, Maho; Amoh, Yasuyuki; Tanabe, Kenichi; Maejima, Hideki; Takasu, Hiroshi; Katsuoka, Kensei

    2010-06-01

    Nestin, a marker of neural stem cells, is expressed in the stem cells of the mouse hair follicle. The nestin-expressing hair follicle stem cells can differentiate into neurons, glia, keratocytes, smooth muscle cells and melanocytes in vitro. These pluripotent nestin-expressing stem cells are keratin 15 (K15)-negative, suggesting that they are in a relatively undifferentiated state. Recent studies suggest that the epithelial stem cells are important in tumorigenesis, and nestin expression is thought to be important in tumorigenesis. In the present study, we examined the expression of the hair follicle and neural stem cell marker nestin, as well as S-100 and HMB-45, in melanoma. Nestin immunoreactivity was observed in the HMB-45-negative melanoma cells in all five cases of amelanotic nodular melanomas. Moreover, nestin immunoreactivity was observed in the dermal parts in seven of 10 cases of melanotic nodular melanomas. Especially, nestin immunoreactivity was observed in the HMB-45-negative melanoma cells in the dermal parts of all 10 cases of HMB-45-negative amelanotic and melanotic nodular melanomas. On the other hand, nestin expression was negative in 10 of 12 cases of superficial spreading melanoma. These results suggest that nestin is an important marker of HMB-45-negative melanoma cells in the dermal parts of patients with nodular melanoma.

  2. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves.

    PubMed

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-01-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW’s are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  3. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  4. Evaluation of antitumor effects of folate-conjugated methyl-β-cyclodextrin in melanoma.

    PubMed

    Motoyama, Keiichi; Onodera, Risako; Tanaka, Nao; Kameyama, Kazuhisa; Higashi, Taishi; Kariya, Ryusho; Okada, Seiji; Arima, Hidetoshi

    2015-01-01

    Melanoma is a life-threatening disorder and its incidence is increasing gradually. Despite the numerous treatment approaches, conventional systemic chemotherapy has not reduced the mortality rate among melanoma patients, probably due to the induction of toxicity to normal tissues. Recently, we have developed folate-conjugated methyl-β-cyclodextrin (FA-M-β-CyD) and clarified its potential as a new antitumor agent involved in autophagic cell death. However, it remains uncertain whether FA-M-β-CyD exerts anticancer effects against melanomas. Therefore, in this study, we investigated the effects of FA-M-β-CyD on the folate receptor-α (FR-α)-expressing melanoma cell-selective cytotoxic effect. FA-M-β-CyD showed cytotoxic effects in Ihara cells, a human melanoma cell line expressing FR-α. In sharp contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered Ihara cells [FR-α(+)] through FR-α-mediated endocytosis. Additionally, FA-M-β-CyD elicited the formation of autophagosomes in Ihara cells. Notably, FA-M-β-CyD suppressed melanoma growth in BALB/c nude recombinase-activating gene-2 (Rag-2)/Janus kinase 3 (Jak3) double deficient mice bearing Ihara cells. Therefore, these results suggest that FA-M-β-CyD could be utilized as a potent anticancer agent for melanoma chemotherapy by regulating autophagy.

  5. TGF-β-Induced Transcription Sustains Amoeboid Melanoma Migration and Dissemination

    PubMed Central

    Cantelli, Gaia; Orgaz, Jose L.; Rodriguez-Hernandez, Irene; Karagiannis, Panagiotis; Maiques, Oscar; Matias-Guiu, Xavier; Nestle, Frank O.; Marti, Rosa M.; Karagiannis, Sophia N.; Sanz-Moreno, Victoria

    2015-01-01

    Summary Cell migration underlies metastatic dissemination of cancer cells, and fast “amoeboid” migration in the invasive fronts of tumors is controlled by high levels of actomyosin contractility. How amoeboid migration is regulated by extracellular signals and sustained over time by transcriptional changes is not fully understood. Transforming growth factor β (TGF-β) is well known to promote epithelial-to-mesenchymal transition (EMT) and contribute to metastasis, but melanocytes are neural crest derivatives that have undergone EMT during embryonic development. Surprisingly, we find that in melanoma, TGF-β promotes amoeboid features such as cell rounding, membrane blebbing, high levels of contractility, and increased invasion. Using genome-wide transcriptomics, we find that amoeboid melanoma cells are enriched in a TGF-β-driven signature. We observe that downstream of TGF-β, SMAD2 and its adaptor CITED1 control amoeboid behavior by regulating the expression of key genes that activate contractile forces. Moreover, CITED1 is highly upregulated during melanoma progression, and its high expression is associated with poor prognosis. CITED1 is coupled to a contractile-rounded, amoeboid phenotype in a panel of 16 melanoma cell lines, in mouse melanoma xenografts, and in 47 human melanoma patients. Its expression is also enriched in the invasive fronts of lesions. Functionally, we show how the TGF-β-SMAD2-CITED1 axis promotes different steps associated with progression: melanoma detachment from keratinocytes, 2D and 3D migration, attachment to endothelial cells, and in vivo lung metastatic initial colonization and outgrowth. We propose a novel mechanism by which TGF-β-induced transcription sustains actomyosin force in melanoma cells and thereby promotes melanoma progression independently of EMT. PMID:26526369

  6. Zinc Oxide Nanoparticle-Poly I:C RNA Complexes: Implication as Therapeutics against Experimental Melanoma.

    PubMed

    Ramani, Meghana; Mudge, Miranda C; Morris, R Tyler; Zhang, Yuntao; Warcholek, Stanislaw A; Hurst, Miranda N; Riviere, Jim E; DeLong, Robert K

    2017-03-06

    There is current interest in harnessing the combined anticancer and immunological effect of nanoparticles (NPs) and RNA. Here, we evaluate the bioactivity of poly I:C (pIC) RNA, bound to anticancer zinc oxide NP (ZnO-NP) against melanoma. Direct RNA association to unfunctionalized ZnO-NP is shown by observing change in size, zeta potential, and absorption/fluorescence spectra upon complexation. RNA corona was visualized by transmission electron microscopy (TEM) for the first time. Binding constant (K b = 1.6-2.8 g -1 L) was determined by modified Stern-Volmer, absorption, and biological surface activity index analysis. The pIC-ZnO-NP complex increased cell death for both human (A375) and mouse (B16F10) cell lines and suppressed tumor cell growth in BALB/C-B16F10 mouse melanoma model. Ex vivo tumor analysis indicated significant molecular activity such as changes in the level of phosphoproteins JNK, Akt, and inflammation markers IL-6 and IFN-γ. High throughput proteomics analysis revealed zinc oxide and poly I:C-specific and combinational patterns that suggested possible utility as an anticancer and immunotherapeutic strategy against melanoma.

  7. A novel compound which sensitizes BRAF wild-type melanoma cells to vemurafenib in a TRIM16-dependent manner.

    PubMed

    Sutton, Selina K; Carter, Daniel R; Kim, Patrick; Tan, Owen; Arndt, Greg M; Zhang, Xu Dong; Baell, Jonathan; Noll, Benjamin D; Wang, Shudong; Kumar, Naresh; McArthur, Grant A; Cheung, Belamy B; Marshall, Glenn M

    2016-08-09

    There is an urgent need for better therapeutic options for advanced melanoma patients, particularly those without the BRAFV600E/K mutation. In melanoma cells, loss of TRIM16 expression is a marker of cell migration and metastasis, while the BRAF inhibitor, vemurafenib, induces melanoma cell growth arrest in a TRIM16-dependent manner. Here we identify a novel small molecule compound which sensitized BRAF wild-type melanoma cells to vemurafenib. High throughput, cell-based, chemical library screening identified a compound (C012) which significantly reduced melanoma cell viability, with limited toxicity for normal human fibroblasts. When combined with the BRAFV600E/K inhibitor, vemurafenib, C012 synergistically increased vemurafenib potency in 5 BRAFWT and 4 out of 5 BRAFV600E human melanoma cell lines (Combination Index: CI < 1), and, dramatically reduced colony forming ability. In addition, this drug combination was significantly anti-tumorigenic in vivo in a melanoma xenograft mouse model. The combination of vemurafenib and C012 markedly increased expression of TRIM16 protein, and knockdown of TRIM16 significantly reduced the growth inhibitory effects of the vemurafenib and C012 combination. These findings suggest that the combination of C012 and vemurafenib may have therapeutic potential for the treatment of melanoma, and, that reactivation of TRIM16 may be an effective strategy for patients with this disease.

  8. A novel compound which sensitizes BRAF wild-type melanoma cells to vemurafenib in a TRIM16-dependent manner

    PubMed Central

    Sutton, Selina K.; Carter, Daniel R.; Kim, Patrick; Tan, Owen; Arndt, Greg M.; Zhang, Xu Dong; Baell, Jonathan; Noll, Benjamin D.; Wang, Shudong; Kumar, Naresh; McArthur, Grant A.; Cheung, Belamy B.; Marshall, Glenn M.

    2016-01-01

    There is an urgent need for better therapeutic options for advanced melanoma patients, particularly those without the BRAFV600E/K mutation. In melanoma cells, loss of TRIM16 expression is a marker of cell migration and metastasis, while the BRAF inhibitor, vemurafenib, induces melanoma cell growth arrest in a TRIM16-dependent manner. Here we identify a novel small molecule compound which sensitized BRAF wild-type melanoma cells to vemurafenib. High throughput, cell-based, chemical library screening identified a compound (C012) which significantly reduced melanoma cell viability, with limited toxicity for normal human fibroblasts. When combined with the BRAFV600E/K inhibitor, vemurafenib, C012 synergistically increased vemurafenib potency in 5 BRAFWT and 4 out of 5 BRAFV600E human melanoma cell lines (Combination Index: CI < 1), and, dramatically reduced colony forming ability. In addition, this drug combination was significantly anti-tumorigenic in vivo in a melanoma xenograft mouse model. The combination of vemurafenib and C012 markedly increased expression of TRIM16 protein, and knockdown of TRIM16 significantly reduced the growth inhibitory effects of the vemurafenib and C012 combination. These findings suggest that the combination of C012 and vemurafenib may have therapeutic potential for the treatment of melanoma, and, that reactivation of TRIM16 may be an effective strategy for patients with this disease. PMID:27447557

  9. Axitinib increases the infiltration of immune cells and reduces the suppressive capacity of monocytic MDSCs in an intracranial mouse melanoma model

    PubMed Central

    Du Four, Stephanie; Maenhout, Sarah K.; De Pierre, Kari; Renmans, Dries; Niclou, Simone P; Thielemans, Kris; Neyns, Bart; Aerts, Joeri L

    2015-01-01

    Melanoma patients are at a high risk of developing brain metastases, which are strongly vascularized and therefore have a significant risk of spontaneous bleeding. VEGF not only plays a role in neo-angiogenesis but also in the antitumor immune response. VEGFR-targeted therapy might not only have an impact on the tumor vascularization but also on tumor-infiltrating immune cells. In this study, we investigated the effect of axitinib, a small molecule TKI of VEGFR-1, -2, and -3, on tumor growth and on the composition of tumor-infiltrating immune cells in subcutaneous and intracranial mouse melanoma models. In vivo treatment with axitinib induced a strong inhibition of tumor growth and significantly improved survival in both tumor models. Characterization of the immune cells within the spleen and tumor of tumor-bearing mice respectively showed a significant increase in the number of CD3+CD8+ T cells and CD11b+ cells of axitinib-treated mice. More specifically, we observed a significant increase of intratumoral monocytic myeloid-derived suppressor cells (moMDSCs; CD11b+Ly6ChighLy6G-). Interestingly, in vitro proliferation assays showed that moMDSCs isolated from spleen or tumor of axitinib-treated mice had a reduced suppressive capacity on a per cell basis as compared to those isolated from vehicle-treated mice. Moreover, MDSCs from axitinib-treated animals displayed the capacity to stimulate allogeneic T cells. Thus, treatment with axitinib induces differentiation of moMDSC toward an antigen-presenting phenotype. Based on these observations, we conclude that the impact of axitinib on tumor growth and survival is most likely not restricted to direct anti-angiogenic effects but also involves important effects on tumor immunity. PMID:26137411

  10. [Effect of Spatholobus suberctus on adhesion, invasion, migration and metastasis of melanoma cells].

    PubMed

    Xu, Jian-Ya; Gu, Qin; Xia, Wei-Jun

    2010-10-01

    To study the effect of Spatholobus suberctus, a kind of Chinese Traditional Medicine which can dissolve the stasis by activating the blood circulation, on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and its mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTP assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous motility melanoma model was used to study the effect of Spatholobus suberctus on metastasis in vivo. At the highest innoxious concentration, the extracts of Spatholobus suberctus inhibited the adhesion and invasion capacity of B16-BL6 metastatic cells significantly. In the mouse spontaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extracts of Spatholobus suberctu. The extracts of Spatholobus suberctu can inhibit the metastasis of of B16-BI6 metastatic mouse melanoma cells and its mechanism may be inhibiting the capability of B16-BL6 cells in adhering to the ECM and invading the basement membrane.

  11. RNA Sequencing Analysis Reveals Interactions between Breast Cancer or Melanoma Cells and the Tissue Microenvironment during Brain Metastasis

    PubMed Central

    Hosonaga, Mari; Koya, Ikuko

    2017-01-01

    Metastasis is the main cause of treatment failure and death in cancer patients. Metastasis of tumor cells to the brain occurs frequently in individuals with breast cancer, non–small cell lung cancer, or melanoma. Despite recent advances in our understanding of the causes and in the treatment of primary tumors, the biological and molecular mechanisms underlying the metastasis of cancer cells to the brain have remained unclear. Metastasizing cancer cells interact with their microenvironment in the brain to establish metastases. We have now developed mouse models of brain metastasis based on intracardiac injection of human breast cancer or melanoma cell lines, and we have performed RNA sequencing analysis to identify genes in mouse brain tissue and the human cancer cells whose expression is associated specifically with metastasis. We found that the expressions of the mouse genes Tph2, Sspo, Ptprq, and Pole as well as those of the human genes CXCR4, PLLP, TNFSF4, VCAM1, SLC8A2, and SLC7A11 were upregulated in brain tissue harboring metastases. Further characterization of such genes that contribute to the establishment of brain metastases may provide a basis for the development of new therapeutic strategies and consequent improvement in the prognosis of cancer patients. PMID:28210624

  12. Trichinella and polar bears: a limited risk for humans.

    PubMed

    Dupouy-Camet, J; Bourée, P; Yera, H

    2017-07-01

    In this review, we identified 63 cases reported since World War II of human trichinellosis linked to the consumption of parasitized polar bear (Ursus maritimus) meat. This low number contrasts to the numerous cases of human trichinellosis related to consumption of the meat of black (U. americanus) or brown bears (U. arctos). The prevalence of Trichinella infection is high in bears, but larval muscular burden is usually lower in polar bears compared to other bear species. Polar bears, therefore, seem to play a limited role in the transmission of trichinellosis to humans, as native residents living in the Arctic traditionally consume well-cooked bear meat, and travellers and foreign hunters have only limited access to this protected species due to the declining polar bear population.

  13. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sustarsic, Elahu G.; Department of Biological Sciences, Ohio University, Athens, OH; Junnila, Riia K.

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includesmore » 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation

  14. The in-vitro and in-vivo inhibitory activity of biflorin in melanoma.

    PubMed

    Vasconcellos, Marne C; Bezerra, Daniel P; Fonseca, Aluísio M; Araújo, Ana Jérsia; Pessoa, Cláudia; Lemos, Telma L G; Costa-Lotufo, Letícia V; de Moraes, Manoel Odorico; Montenegro, Raquel C

    2011-04-01

    Biflorin, an ortho-naphthoquinone, is an active compound found in the roots of Capraria biflora L. It has been reported that biflorin presents anticancer activity, inhibiting both tumor cell line growth in culture and tumor development in mice. The aim of this study was to examine the effectiveness of biflorin treatment using both in-vitro and in-vivo melanoma models. Biflorin displayed considerable cytotoxicity against all tested cell lines, with half maximal inhibitory concentration values ranging from 0.58 μg/ml in NCI H23 (human lung adenocarcinoma) to 14.61 μg/ml in MDA-MB-231 (human breast cancer) cell lines. In a second set of experiments using B16 melanoma cells as a model, biflorin reduced cell viability but did not cause significant increase in the number of nonviable cells. In addition, the DNA synthesis was significantly inhibited. Flow cytometry analysis showed that biflorin may lead to an apoptotic death in melanoma cells, inducing DNA fragmentation and mitochondria depolarization, without affecting membrane integrity. In B16 melanoma-bearing mice, administration of biflorin (25mg/day) for 10 days inhibited tumor growth, and also increased the mean survival rate from 33.3±0.9 days (control) to 44.5±3.4 days (treated). Our findings suggest that biflorin may be considered as a promising lead compound for designing new drugs to be used in the treatment of melanoma.

  15. Vaccines against advanced melanoma.

    PubMed

    Blanchard, Tatiana; Srivastava, Pramod K; Duan, Fei

    2013-01-01

    Research shows that cancers are recognized by the immune system but that the immune recognition of tumors does not uniformly result in tumor rejection or regression. Quantitating the success or failure of the immune system in tumor elimination is difficult because we do not really know the total numbers of encounters of the immune system with the tumors. Regardless of that important issue, recognition of the tumor by the immune system implicitly contains the idea of the tumor antigen, which is what is actually recognized. We review the molecular identity of all forms of tumor antigens (antigens with specific mutations, cancer-testis antigens, differentiation antigens, over-expressed antigens) and discuss the use of these multiple forms of antigens in experimental immunotherapy of mouse and human melanoma. These efforts have been uniformly unsuccessful; however, the approaches that have not worked or have somewhat worked have been the source of many new insights into melanoma immunology. From a critical review of the various approaches to vaccine therapy we conclude that individual cancer-specific mutations are truly the only sources of cancer-specific antigens, and therefore, the most attractive targets for immunotherapy. Published by Elsevier Inc.

  16. Characterization in vitro and in vivo of progressively adriamycin-resistant B16-BL6 mouse melanoma cells.

    PubMed

    Ganapathi, R; Grabowski, D; Schmidt, H; Bell, D; Melia, M

    1987-07-01

    Adriamycin (ADR)-resistant sublines of B16-BL6 mouse melanoma selected by exposure to increasing concentrations of ADR were characterized in vitro for growth properties and in vivo for tumorigenicity and pulmonary metastases. The progressively resistant sublines adapted to grow in the presence of 0.025, 0.05, 0.1, and 0.25 microgram/ml ADR in monolayer culture were found to be 5-, 10-, 20-, and 40-fold ADR-resistant, respectively, compared to the parental sensitive cells, using a soft-agar colony assay and continuous ADR treatment for 7 days. The doubling time in monolayer culture of the parent sensitive and progressively ADR-resistant sublines of B16-BL6 melanoma cells was approximately 16-18 h. Although the colony-forming efficiency in soft agar of parental sensitive cells was only 0.5-4%, the 5-, 10-, 20-, and 40-fold ADR-resistant sublines had colony-forming efficiencies of 15, 20, 30, and 77%, respectively. Tumorigenicity in C57BL/6 mice of progressively ADR-resistant sublines was similar to parental sensitive cells following s.c. and i.p. implantation of 10(5)-10(6) tumor cells. Experimental pulmonary metastases were significantly lower in ADR-resistant sublines with progressive resistance. Additionally, unlike the parental sensitive and 5-fold ADR-resistant B16-BL6 cells, the 10-, 20-, and 40-fold ADR-resistant sublines were spontaneously nonmetastatic. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunochemical detection of P-glycoprotein revealed the presence of a Mr 170,000 plasma membrane glycoprotein in the 40-fold ADR-resistant subline and its counterpart maintained for 1 year in ADR-free medium. Results from this study suggest that progressively ADR-resistant B16-BL6 mouse melanoma cells selected in vitro demonstrate a marked increase in colony formation in soft agar and a decrease in the ability to produce pulmonary metastases, without alterations in tumorigenicity.

  17. Peginterferon Beta-1a Shows Antitumor Activity as a Single Agent and Enhances Efficacy of Standard of Care Cancer Therapeutics in Human Melanoma, Breast, Renal, and Colon Xenograft Models.

    PubMed

    Boccia, Antonio; Virata, Cyrus; Lindner, Daniel; English, Nicki; Pathan, Nuzhat; Brickelmaier, Margot; Hu, Xiao; Gardner, Jennifer L; Peng, Liaomin; Wang, Xinzhong; Zhang, Xiamei; Yang, Lu; Perron, Keli; Yco, Grace; Kelly, Rebecca; Gamez, James; Scripps, Thomas; Bennett, Donald; Joseph, Ingrid B; Baker, Darren P

    2017-01-01

    Because of its tumor-suppressive effect, interferon-based therapy has been used for the treatment of melanoma. However, limited data are available regarding the antitumor effects of pegylated interferons, either alone or in combination with approved anticancer drugs. We report that treatment of human WM-266-4 melanoma cells with peginterferon beta-1a induced apoptotic markers. Additionally, peginterferon beta-1a significantly inhibited the growth of human SK-MEL-1, A-375, and WM-266-4 melanoma xenografts established in immunocompromised mice. Peginterferon beta-1a regressed large, established WM-266-4 xenografts in nude mice. Treatment of SK-MEL-1 tumor-bearing mice with a combination of peginterferon beta-1a and the MEK inhibitor PD325901 ((R)-N-(2,3-dihydroxypropoxy)-3,4-difluoro-2-(2-fluoro-4-iodophenylamino)benzamide) significantly improved tumor growth inhibition compared with either agent alone. Examination of the antitumor activity of peginterferon beta-1a in combination with approved anticancer drugs in breast and renal carcinomas revealed improved antitumor activity in these preclinical xenograft models, as did the combination of peginterferon beta-1a and bevacizumab in a colon carcinoma xenograft model.

  18. Alternol inhibits the proliferation and induces the differentiation of the mouse melanoma B16F0 cell line.

    PubMed

    Wang, Caixia; Xu, Wenjuan; Hao, Wenjin; Wang, Bingsheng; Zheng, Qiusheng

    2016-08-01

    High malignant potential and low susceptibility to treatment are characteristics of malignant melanoma. Alternol, a novel compound purified from microbial fermentation products obtained from the bark of the yew tree, exhibits a variety of antitumor activities. Based on these findings, the aim of the present study was to extend the knowledge on the antineoplastic effect of alternol in the mouse melanoma B16F0 cell line. Alternol significantly inhibited the proliferation and colony formation of B16F0 cells in a dose-dependent manner as detected by MTT and soft agar colony formation assays. NaOH alkaline lysis and oxidation of Dopa indicated that alternol enhanced the melanin content and tyrosinase activity of the B16F0 cells and results also showed a dose‑response relationship. Morphologic changes accompanied by extended dendrites were discovered in the B16F0 cells after treatment with alternol. Furthermore, the mRNA levels of tyrosinase, Trp1 and Trp2 were increased by alternol. Our results confirmed that alternol possesses marked antineoplastic properties against melanoma cells, indicating that this microbial fermentation product is a promising agent for the differentiation therapy of cancer. The inhibition of cell proliferation and colony formation by alternol was associated with both cytotoxicity and induction of differentiation.

  19. Basic and clinical aspects of malignant melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathanson, L.

    1987-01-01

    This book contains the following 10 chapters: The role of oncogenes in the pathogenesis of malignant melanoma; Laminin and fibronectin modulate the metastatic activity of melanoma cells; Structure, function and biosynthesis of ganglioside antigens associated with human tumors derived from the neuroectoderm; Epidemiology of ocular melanoma; Malignant melanoma: Prognostic factors; Endocrine influences on the natural history of human malignant melanoma; Psychosocial factors associated with prognostic indicators, progression, psychophysiology, and tumor-host response in cutaneous malignant melanoma; Central nervous system metastases in malignant melanoma; Interferon trials in the management of malignant melanoma and other neoplasms: an overview; and The treatment of malignantmore » melanoma by fast neutrons.« less

  20. A novel stilbene-like compound that inhibits melanoma growth by regulating melanocyte differentiation and proliferation.

    PubMed

    Stueven, Noah A; Schlaeger, Nicholas M; Monte, Aaron P; Hwang, Sheng-Ping L; Huang, Cheng-Chen

    2017-12-15

    Melanoma is the most aggressive form of skin cancer. Current challenges to melanoma therapy include the adverse effects from immunobiologics, resistance to drugs targeting the MAPK pathway, intricate interaction of many signal pathways, and cancer heterogeneity. Thus combinational therapy with drugs targeting multiple signaling pathways becomes a new promising therapy. Here, we report a family of stilbene-like compounds called A11 that can inhibit melanoma growth in both melanoma-forming zebrafish embryos and mouse melanoma cells. The growth inhibition by A11 is a result of mitosis reduction but not apoptosis enhancement. Meanwhile, A11 activates both MAPK and Akt signaling pathways. Many A11-treated mouse melanoma cells exhibit morphological changes and resemble normal melanocytes. Furthermore, we found that A11 causes down-regulation of melanocyte differentiation genes, including Pax3 and MITF. Together, our results suggest that A11 could be a new melanoma therapeutic agent by inhibiting melanocyte differentiation and proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Preclinical evaluation of radiation and systemic, RGD-targeted, adeno-associated virus phage-TNF gene therapy in a mouse model of spontaneously metastatic melanoma.

    PubMed

    Quinn, T J; Healy, N; Sara, A; Maggi, E; Claros, C S; Kabarriti, R; Scandiuzzi, L; Liu, L; Gorecka, J; Adem, A; Basu, I; Yuan, Z; Guha, C

    2017-01-01

    The incidence of melanoma in the United States continues to rise, with metastatic lesions notoriously recalcitrant to therapy. There are limited effective treatment options available and a great need for more effective therapies that can be rapidly integrated in the clinic. In this study, we demonstrate that the combination of RGD-targeted adeno-associated virus phage (RGD-AAVP-TNF) with hypofractionated radiation therapy results in synergistic inhibition of primary syngeneic B16 melanoma in a C57 mouse model. Furthermore, this combination appeared to modify the tumor microenvironment, resulting in decreased Tregs in the draining LN and increased tumor-associated macrophages within the primary tumor. Finally, there appeared to be a reduction in metastatic potential and a prolongation of overall survival in the combined treatment group. These results indicate the use of targeted TNF gene therapy vector with radiation treatment could be a valuable treatment option for patients with metastatic melanoma.

  2. Evaluation of Fluorine-18-Labeled α1(I)-N-Telopeptide Analogs as Substrate-Based Radiotracers for PET Imaging of Melanoma-Associated Lysyl Oxidase.

    PubMed

    Kuchar, Manuela; Neuber, Christin; Belter, Birgit; Bergmann, Ralf; Lenk, Jens; Wodtke, Robert; Kniess, Torsten; Steinbach, Jörg; Pietzsch, Jens; Löser, Reik

    2018-01-01

    Accumulating evidence suggests an unequivocal role of lysyl oxidases as key players of tumor progression and metastasis, which renders this enzyme family highly attractive for targeted non-invasive functional imaging of tumors. Considering their function in matrix remodeling, malignant melanoma appears as particularly interesting neoplasia in this respect. For the development of radiotracers that enable PET imaging of the melanoma-associated lysyl oxidase activity, substrates derived from the type I collagen α1 N-telopeptide were labeled with fluorine-18 using N -succinimidyl 4-[ 18 F]fluorobenzoate ([ 18 F]SFB) as prosthetic reagent. With regards to potential crosslinking to tumor-associated collagen in vivo , their interaction with triple-helical type I collagen was studied by SPR. A mouse model of human melanoma was established on the basis of the A375 cell line, for which the expression of the oncologically relevant lysyl oxidase isoforms LOX and LOXL2 was demonstrated in Western blot and immunohistochemical experiments. The radiopharmacological profiles of the peptidic radiotracers were evaluated in normal rats and A375 melanoma-bearing mice by ex vivo metabolite analysis, whole-body biodistribution studies and dynamic PET imaging. Out of three 18 F-labeled telopeptide analogs, the one with the most favorable substrate properties has shown favorable tumor uptake and tumor-to-muscle ratio. Lysyl oxidase-mediated tumor uptake was proven by pharmacological inhibition using β-aminopropionitrile and by employing negative-control analogs of impeded or abolished targeting capability. The latter were obtained by substituting the lysine residue by ornithine and norleucine, respectively. Comparing the tumor uptake of the lysine-containing peptide with that of the non-functional analogs indicate the feasibility of lysyl oxidase imaging in melanoma using substrate-based radiotracers.

  3. Evaluation of Fluorine-18-Labeled α1(I)-N-Telopeptide Analogs as Substrate-Based Radiotracers for PET Imaging of Melanoma-Associated Lysyl Oxidase

    PubMed Central

    Kuchar, Manuela; Neuber, Christin; Belter, Birgit; Bergmann, Ralf; Lenk, Jens; Wodtke, Robert; Kniess, Torsten; Steinbach, Jörg; Pietzsch, Jens; Löser, Reik

    2018-01-01

    Accumulating evidence suggests an unequivocal role of lysyl oxidases as key players of tumor progression and metastasis, which renders this enzyme family highly attractive for targeted non-invasive functional imaging of tumors. Considering their function in matrix remodeling, malignant melanoma appears as particularly interesting neoplasia in this respect. For the development of radiotracers that enable PET imaging of the melanoma-associated lysyl oxidase activity, substrates derived from the type I collagen α1 N-telopeptide were labeled with fluorine-18 using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) as prosthetic reagent. With regards to potential crosslinking to tumor-associated collagen in vivo, their interaction with triple-helical type I collagen was studied by SPR. A mouse model of human melanoma was established on the basis of the A375 cell line, for which the expression of the oncologically relevant lysyl oxidase isoforms LOX and LOXL2 was demonstrated in Western blot and immunohistochemical experiments. The radiopharmacological profiles of the peptidic radiotracers were evaluated in normal rats and A375 melanoma-bearing mice by ex vivo metabolite analysis, whole-body biodistribution studies and dynamic PET imaging. Out of three 18F-labeled telopeptide analogs, the one with the most favorable substrate properties has shown favorable tumor uptake and tumor-to-muscle ratio. Lysyl oxidase-mediated tumor uptake was proven by pharmacological inhibition using β-aminopropionitrile and by employing negative-control analogs of impeded or abolished targeting capability. The latter were obtained by substituting the lysine residue by ornithine and norleucine, respectively. Comparing the tumor uptake of the lysine-containing peptide with that of the non-functional analogs indicate the feasibility of lysyl oxidase imaging in melanoma using substrate-based radiotracers.

  4. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death.

    PubMed

    Armstrong, Jane L; Hill, David S; McKee, Christopher S; Hernandez-Tiedra, Sonia; Lorente, Mar; Lopez-Valero, Israel; Eleni Anagnostou, Maria; Babatunde, Fiyinfoluwa; Corazzari, Marco; Redfern, Christopher P F; Velasco, Guillermo; Lovat, Penny E

    2015-06-01

    Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain <10%. Novel treatment strategies are therefore urgently required, particularly for patients bearing BRAF/NRAS wild-type tumors. Targeting autophagy is a means to promote cancer cell death in chemotherapy-resistant tumors, and the aim of this study was to test the hypothesis that cannabinoids promote autophagy-dependent apoptosis in melanoma. Treatment with Δ(9)-Tetrahydrocannabinol (THC) resulted in the activation of autophagy, loss of cell viability, and activation of apoptosis, whereas cotreatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro. Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease.

  5. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice.

    PubMed

    Chang, Meng-Ya; Shiau, Ai-Li; Chen, Yu-Hung; Chang, Chih-Jui; Chen, Helen H-W; Wu, Chao-Liang

    2008-07-01

    High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P = 0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P < 0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P < 0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy.

  6. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    PubMed

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  7. Histological evaluation of intratumoral myxoma virus treatment in an immunocompetent mouse model of melanoma

    PubMed Central

    Doty, Rosalinda A; Liu, Jia; McFadden, Grant; Roy, Edward J; MacNeill, Amy L

    2013-01-01

    Two recombinant myxoma viruses (MYXV expressing a fluorescent protein [MYXV-Tred] and MYXV-Tred encoding murine interleukin-15 [MYXV-IL15]) were evaluated for therapeutic effects in an aggressive B16F10 melanoma model in immunocompetent mice. It was hypothesized that continuous expression of IL-15 within a tumor would recruit cytotoxic effector cells to induce an antitumor immune response and improve treatment efficacy. Weekly intratumoral injections were given to evaluate the effect of treatment on the median survival time of C57BL/6 mice bearing established B16F10 melanomas. Mice that received MYXV-Tred or MYXV-IL15 lived significantly longer than mice given treatment controls. Unexpectedly, the median survival time of MYXV-IL15-treated mice was similar to that of MYXV-treated mice. At 1, 2, and 4 days postinoculation, viral plaque assays detected replicating MYXV-Tred and MYXV-IL15 within treated tumors. At these time points in MYXV-IL15-treated tumors, IL-15 concentration, lymphocyte grades, and cluster of differentiation-3+ cell counts were significantly increased when compared to other treatment groups. However, viral titers, recombinant protein expression, and lymphocyte numbers within the tumors diminished rapidly at 7 days postinoculation. These data indicate that treatment with recombinant MYXV should be repeated at least every 4 days to maintain recombinant protein expression within a murine tumor. Additionally, neutrophilic inflammation was significantly increased in MYXV-Tred- and MYXV-IL15-treated tumors at early time points. It is speculated that neutrophilic inflammation induced by intratumoral replication of recombinant MXYV contributes to the antitumoral effect of MYXV treatment in this melanoma model. These findings support the inclusion of neutrophil chemotaxins in recombinant poxvirus oncolytic virotherapy. PMID:25866742

  8. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serafino, A.; Balestrieri, E.; Pierimarchi, P.

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derivedmore » non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.« less

  9. Quantifying spontaneous metastasis in a syngeneic mouse melanoma model using real time PCR.

    PubMed

    Deng, Wentao; McLaughlin, Sarah L; Klinke, David J

    2017-08-07

    Modeling metastasis in vivo with animals is a priority for both revealing mechanisms of tumor dissemination and developing therapeutic methods. While conventional intravenous injection of tumor cells provides an efficient and consistent system for studying tumor cell extravasation and colonization, studying spontaneous metastasis derived from orthotopic tumor sites has the advantage of modeling more aspects of the metastatic cascade, but is challenging as it is difficult to detect small numbers of metastatic cells. In this work, we developed an approach for quantifying spontaneous metastasis in the syngeneic mouse B16 system using real time PCR. We first transduced B16 cells with lentivirus expressing firefly luciferase Luc2 gene for bioluminescence imaging. Next, we developed a real time quantitative PCR (qPCR) method for the detection of luciferase-expressing, metastatic tumor cells in mouse lungs and other organs. To illustrate the approach, we quantified lung metastasis in both spontaneous and experimental scenarios using B16F0 and B16F10 cells in C57BL/6Ncrl and NOD-Scid Gamma (NSG) mice. We tracked B16 melanoma metastasis with both bioluminescence imaging and qPCR, which were found to be self-consistent. Using this assay, we can quantitatively detect one Luc2 positive tumor cell out of 10 4 tissue cells, which corresponds to a metastatic burden of 1.8 × 10 4 metastatic cells per whole mouse lung. More importantly, the qPCR method was at least a factor of 10 more sensitive in detecting metastatic cell dissemination and should be combined with bioluminescence imaging as a high-resolution, end-point method for final metastatic cell quantitation. Given the rapid growth of primary tumors in many mouse models, assays with improved sensitivity can provide better insight into biological mechanisms that underpin tumor metastasis.

  10. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells.

    PubMed

    Soni, Naina; Jyoti, Kiran; Jain, Upendra Kumar; Katyal, Anju; Chandra, Ramesh; Madan, Jitender

    2017-06-01

    Noscapine (Nos) and reduced brominated analogue of noscapine (Red-Br-Nos) prevent cellular proliferation and induce apoptosis in cancer cells either alone or in combination with other chemotherapeutic drugs. However, owing to poor physicochemical properties, Nos and Red-Br-Nos have demonstrated their anticancer activity at higher and multiple doses. Therefore, in present investigation, silver nanocrystals of noscapinoids (Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals) were customized to augment drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1 mouse melanoma cancer cells. Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals were prepared separately by precipitation method. The mean particle size of Nos-Ag 2+ nanocrystals was measured to be 25.33±3.52nm, insignificantly (P>0.05) different from 27.43±4.51nm of Red-Br-Nos-Ag 2+ nanocrystals. Furthermore, zeta-potential of Nos-Ag 2+ nanocrystals was determined to be -25.3±3.11mV significantly (P<0.05) different from -15.2±3.33mV of Red-Br-Nos-Ag 2+ nanocrystals. The shape of tailored nanocrystals was slightly spherical and or irregular in shape. The architecture of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals was crystalline in nature. FT-IR spectroscopy evinced the successful interaction of Ag 2+ nanocrystals with Nos and Red-Br-Nos, respectively. The superior therapeutic efficacy of tailored nanocrystals was measured in terms of enhanced cytotoxicity, apoptosis and cellular uptake. The Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals exhibited an IC 50 of 16.6μM and 6.5μM, significantly (P<0.05) lower than 38.5μM of Nos and 10.3μM of Red-Br-Nos, respectively. Finally, cellular morphological alterations in B16F1 cells upon internalization of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals provided the evidences for accumulation within membrane-bound cytoplasmic vacuoles and in enlarged lysosomes and thus triggered mitochondria mediated apoptosis via

  11. Ribonucleotide reductase in melanoma tissue. EPR detection in human amelanotic melanoma and quenching of the tyrosine radical by 4-hydroxyanisole.

    PubMed

    Lassmanm, G; Liermann, B; Arnold, W; Schwabe, K

    1991-01-01

    The characteristic EPR doublet of tyrosine radicals of the growth-regulating enzyme ribonucleotide reductase was detected in human melanoma tissue grown in nude mice. This was possible through the use of an amelanotic melanoma that does not exhibit disturbing EPR signals from melanin. The content of tyrosine radicals is higher in young tumor tissues than in older ones. The clinically applied antimelanotic drug, 4-hydroxyanisole, inhibits ribonucleotide reductase in Ehrlich ascites tumor cells as demonstrated by a pronounced quenching of tyrosine radicals (IC50 = 5 microM). In amelanotic melanoma tissue tyrosine radicals of the enzyme are also quenched by 4-hydroxyanisole in concentrations down to 50 microM. Thus, the inactivation of ribonucleotide reductase, which provides deoxyribonucleotides for DNA synthesis, may be a hitherto unexpected mechanism for the antitumor action of 4-hydroxyanisole.

  12. Genetically Engineered Cancer Models, But Not Xenografts, Faithfully Predict Anticancer Drug Exposure in Melanoma Tumors

    PubMed Central

    Combest, Austin J.; Roberts, Patrick J.; Dillon, Patrick M.; Sandison, Katie; Hanna, Suzan K.; Ross, Charlene; Habibi, Sohrab; Zamboni, Beth; Müller, Markus; Brunner, Martin; Sharpless, Norman E.

    2012-01-01

    Background. Rodent studies are a vital step in the development of novel anticancer therapeutics and are used in pharmacokinetic (PK), toxicology, and efficacy studies. Traditionally, anticancer drug development has relied on xenograft implantation of human cancer cell lines in immunocompromised mice for efficacy screening of a candidate compound. The usefulness of xenograft models for efficacy testing, however, has been questioned, whereas genetically engineered mouse models (GEMMs) and orthotopic syngeneic transplants (OSTs) may offer some advantages for efficacy assessment. A critical factor influencing the predictability of rodent tumor models is drug PKs, but a comprehensive comparison of plasma and tumor PK parameters among xenograft models, OSTs, GEMMs, and human patients has not been performed. Methods. In this work, we evaluated the plasma and tumor dispositions of an antimelanoma agent, carboplatin, in patients with cutaneous melanoma compared with four different murine melanoma models (one GEMM, one human cell line xenograft, and two OSTs). Results. Using microdialysis to sample carboplatin tumor disposition, we found that OSTs and xenografts were poor predictors of drug exposure in human tumors, whereas the GEMM model exhibited PK parameters similar to those seen in human tumors. Conclusions. The tumor PKs of carboplatin in a GEMM of melanoma more closely resembles the tumor disposition in patients with melanoma than transplanted tumor models. GEMMs show promise in becoming an improved prediction model for intratumoral PKs and response in patients with solid tumors. PMID:22993143

  13. Synthesis and evaluation of novel radioiodinated nicotinamides for malignant melanoma.

    PubMed

    Liu, Xiang; Pham, Tien Q; Berghofer, Paula; Chapman, Janette; Greguric, Ivan; Mitchell, Peter; Mattner, Filomena; Loc'h, Christian; Katsifis, Andrew

    2008-10-01

    A series of iodonicotinamides based on the melanin-binding iodobenzamide compound N-2-diethylaminoethyl-4-iodobenzamide was prepared and evaluated for the potential imaging and staging of disseminated metastatic melanoma. [(123)I]Iodonicotinamides were prepared by iododestannylation reactions using no-carrier-added iodine-123 and evaluated in vivo by biodistribution and competition studies and by single photon emission computed tomography (SPECT) imaging in black and albino nude mice bearing B16F0 murine melanotic and A375 human amelanotic melanoma tumours, respectively. The iodonicotinamides displayed low-affinity binding for sigma(1)-sigma(2) receptors (K(i)>300 nM). In biodistribution studies in mice, N-(2-(diethylamino)ethyl)-5-[(123)I]iodonicotinamide ([(123)I]1) exhibited the fastest and highest uptake of the nicotinamide series in the B16F0 tumour at 1 h ( approximately 8% ID/g), decreasing slowly over time. No uptake was observed in the A375 tumour. Clearance from the animals by urinary excretion was more rapid for N-alkyl-nicotinamides than for piperazinyl derivatives. At 1 h postinjection, the urinary excretion was 66% ID for [(123)I]1, while the gastrointestinal tract amounted to 17% ID. Haloperidol was unable to reduce the uptake of [(123)I]1 in pigmented mice, indicating that this uptake was likely due to an interaction with melanin. SPECT imaging of [(123)I]1 in black mice bearing the B16F0 melanoma indicated that the radioactivity was predominately located in the tumour and eyes. No specific localisation was observed in nude mice bearing A375 amelanotic tumours. These findings suggest that [(123)I]1, which displays high tumour uptake with rapid clearance from the body, could be a promising imaging agent for the detection of melanotic tumours.

  14. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis.

    PubMed

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-10-31

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells.

  15. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis

    PubMed Central

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-01-01

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells. PMID:27796318

  16. 203Pb-Labeled Alpha-Melanocyte-Stimulating Hormone Peptide as an Imaging Probe for Melanoma Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yubin, Miao; Figueroa, Said D.; Fisher, Darrell R.

    2008-05-01

    Abbreviations: a-MSH; alpha melanocyte stimulating hormone, DOTA; 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, Re(Arg11)CCMSH; DOTA-[Cys3,4,10, D-Phe7, Arg11]a-MSH3-13, NDP; [Nle4,d-Phe7] a-MSH3-13. Abstract Peptide-targeted alpha therapy with 200 mCi of 212Pb-DOTA-Re(Arg11)CCMSH cured 45% of B16/F1 murine melanoma-bearing C57 mice in a 120-day study, highlighting its melanoma treatment potential. However, there is a need to develop an imaging surrogate for patient specific dosimetry and to monitor the tumor response to 212Pb-DOTA-Re(Arg11)CCMSH therapy. The purpose of this study was to evaluate the potential of 203Pb-DOTA-Re(Arg11)CCMSH as a matched-pair SPECT imaging agent for 212Pb-DOTA-Re(Arg11)CCMSH. Method: DOTA-Re(Arg11)CCMSH was labeled with 203Pb in 0.5 M NH4OAc buffer at pH 5.4. Themore » internalization and efflux of 203Pb-DOTA-Re(Arg11)CCMSH were determined in B16/F1 melanoma cells. The pharmacokinetics of 203Pb-DOTA-Re(Arg11)CCMSH were examined in B16/F1 melanoma-bearing C57 mice. A micro-SPECT/CT imaging study was performed with 203Pb-DOTA-Re(Arg11)CCMSH in a B16/F1 melanoma-bearing C57 mouse at 2 h post-injection. Results: 203Pb-DOTA-Re(Arg11)CCMSH was easily prepared in NH4OAc buffer and completely separated from the excess non-radiolabeled peptide by RP-HPLC. 203Pb-DOTA-Re(Arg11)CCMSH displayed fast internalization and extended retention in B16/F1 cells. Approximately 73% of 203Pb-DOTA-Re(Arg11)CCMSH activity internalized after a 20-min incubation at 25C. After incubating the cells in culture media for 20 min, 78% of internalized activity remained in the cells. 203Pb-DOTA-Re(Arg11)CCMSH exhibited similar biodistribution pattern with 212Pb-DOTA-Re(Arg11)CCMSH in B16/F1 melanoma-bearing mice. 203Pb-DOTA-Re(Arg11)CCMSH exhibited the peak tumor uptake of 12.00 +/- 3.20 %ID/g at 1 h post-injection. The tumor uptake gradually decreased to 3.43 +/- 1.12 %ID/g at 48 h post-injection. 203Pb-DOTA-Re(Arg11)CCMSH exhibited the peak tumor to

  17. Hypoxia-activated prodrug enhances therapeutic effect of sunitinib in melanoma

    PubMed Central

    Liu, Shujing; Tetzlaff, Michael T.; Wang, Tao; Chen, Xiang; Yang, Ruifeng; Kumar, Suresh M.; Vultur, Adina; Li, Pengxiang; Martin, James S.; Herlyn, Meenhard; Amaravadi, Ravi

    2017-01-01

    Angiogenesis is a critical step during tumor progression. Anti-angiogenic therapy has only provided modest benefits in delaying tumor progression despite its early promise in cancer treatment. It has been postulated that anti-angiogenic therapy may promote the emergence of a more aggressive cancer cell phenotype by generating increased tumor hypoxia—a well-recognized promoter of tumor progression. TH-302 is a 2-nitroimidazole triggered hypoxia-activated prodrug (HAP) which has been shown to selectively target the hypoxic tumor compartment and reduce tumor volume. Here, we show that melanoma cells grown under hypoxic conditions exhibit increased resistance to a wide variety of therapeutic agents in vitro and generate larger and more aggressive tumors in vivo than melanoma cells grown under normoxic conditions. However, hypoxic melanoma cells exhibit a pronounced sensitivity to TH-302 which is further enhanced by the addition of sunitinib. Short term sunitinib treatment fails to prolong the survival of melanoma bearing genetically engineered mice (Tyr::CreER; BRafCA;Ptenlox/lox) but increases tumor hypoxia. Long term TH-302 alone modestly prolongs the overall survival of melanoma bearing mice. Combination therapy of TH-302 with sunitinib further increases the survival of treated mice. These studies provide a translational rationale for combining hypoxic tumor cell targeted therapies with anti-angiogenics for treatment of melanoma. PMID:29383148

  18. Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles

    PubMed Central

    Vannucci, Luca; Falvo, Elisabetta; Fornara, Manuela; Di Micco, Patrizio; Benada, Oldrich; Krizan, Jiri; Svoboda, Jan; Hulikova-Capkova, Katarina; Morea, Veronica; Boffi, Alberto; Ceci, Pierpaolo

    2012-01-01

    Background Nanoparticle-based systems are promising for the development of imaging and therapeutic agents. The main advantage of nanoparticles over traditional systems lies in the possibility of loading multiple functionalities onto a single molecule, which are useful for therapeutic and/or diagnostic purposes. These functionalities include targeting moieties which are able to recognize receptors overexpressed by specific cells and tissues. However, targeted delivery of nanoparticles requires an accurate system design. We present here a rationally designed, genetically engineered, and chemically modified protein-based nanoplatform for cell/tissue-specific targeting. Methods Our nanoparticle constructs were based on the heavy chain of the human protein ferritin (HFt), a highly symmetrical assembly of 24 subunits enclosing a hollow cavity. HFt-based nanoparticles were produced using both genetic engineering and chemical functionalization methods to impart several functionalities, ie, the α-melanocyte-stimulating hormone peptide as a melanoma-targeting moiety, stabilizing and HFt-masking polyethylene glycol molecules, rhodamine fluorophores, and magnetic resonance imaging agents. The constructs produced were extensively characterized by a number of physicochemical techniques, and assayed for selective melanoma-targeting in vitro and in vivo. Results Our HFt-based nanoparticle constructs functionalized with the α-melanocyte-stimulating hormone peptide moiety and polyethylene glycol molecules were specifically taken up by melanoma cells but not by other cancer cell types in vitro. Moreover, experiments in melanoma-bearing mice indicate that these constructs have an excellent tumor-targeting profile and a long circulation time in vivo. Conclusion By masking human HFt with polyethylene glycol and targeting it with an α-melanocyte-stimulating hormone peptide, we developed an HFt-based melanoma-targeting nanoplatform for application in melanoma diagnosis and treatment

  19. Effect of combination of taurine and azelaic acid on antimelanogenesis in murine melanoma cells

    PubMed Central

    2010-01-01

    Background Pigmentation in human skin is an important defense mechanism against sunlight or oxidative stress. Despite the protective role of melanin, abnormal hyperpigmentation such as freckles and chloasma sometimes can be serious aesthetic problems. Because of these effects of hyperpigmentation, people have considered the effect of depigmentation. Azelaic acid (AZ) is a saturated dicarboxylic acid found naturally in wheat, rye, and barley. Previously, we showed that AZ inhibited melanogenesis. In this study, we investigated the antimelanogenic activity of combination of AZ and taurine (Tau) in B16F10 mouse melanoma cells. Methods The mouse melanoma cell line B16F10 was used in the study. We measured melanin contents and tyrosinase activity. To gain the change of protein expression, we carried out western blotting. Results We investigated that AZ combined with taurine (Tau) show more inhibitory effects in melanocytes than the treatment of AZ alone. AZ combined with Tau inhibited the melanin production and tyrosinase activity of B16F10 melanoma cells without significant cytotoxicity. Also inhibitory effects after treatment with these combined chemical are stronger than AZ alone on melanogenesis. Conclusions These findings indicate that AZ with Tau might play an important role in the regulation of melanin formation and be useful as effective ingredients in antimelanogesis. PMID:20804622

  20. Effect of combination of taurine and azelaic acid on antimelanogenesis in murine melanoma cells.

    PubMed

    Yu, Ji Sun; Kim, An Keun

    2010-08-24

    Pigmentation in human skin is an important defense mechanism against sunlight or oxidative stress. Despite the protective role of melanin, abnormal hyperpigmentation such as freckles and chloasma sometimes can be serious aesthetic problems. Because of these effects of hyperpigmentation, people have considered the effect of depigmentation. Azelaic acid (AZ) is a saturated dicarboxylic acid found naturally in wheat, rye, and barley. Previously, we showed that AZ inhibited melanogenesis. In this study, we investigated the antimelanogenic activity of combination of AZ and taurine (Tau) in B16F10 mouse melanoma cells. The mouse melanoma cell line B16F10 was used in the study. We measured melanin contents and tyrosinase activity. To gain the change of protein expression, we carried out western blotting. We investigated that AZ combined with taurine (Tau) show more inhibitory effects in melanocytes than the treatment of AZ alone. AZ combined with Tau inhibited the melanin production and tyrosinase activity of B16F10 melanoma cells without significant cytotoxicity. Also inhibitory effects after treatment with these combined chemical are stronger than AZ alone on melanogenesis. These findings indicate that AZ with Tau might play an important role in the regulation of melanin formation and be useful as effective ingredients in antimelanogesis.

  1. Protective CD8 Memory T Cell Responses to Mouse Melanoma Are Generated in the Absence of CD4 T Cell Help

    PubMed Central

    Steinberg, Shannon M.; Zhang, Peisheng; Turk, Mary Jo

    2011-01-01

    Background We have previously demonstrated that temporary depletion of CD4 T cells in mice with progressive B16 melanoma, followed by surgical tumor excision, induces protective memory CD8 T cell responses to melanoma/melanocyte antigens. We also showed that persistence of these CD8 T cells is supported, in an antigen-dependent fashion, by concurrent autoimmune melanocyte destruction. Herein we explore the requirement of CD4 T cell help in priming and maintaining this protective CD8 T cell response to melanoma. Methodology and Principal Findings To induce melanoma/melanocyte antigen-specific CD8 T cells, B16 tumor bearing mice were depleted of regulatory T cells (Treg) by either temporary, or long-term continuous treatment with anti-CD4 (mAb clone GK1.5). Total depletion of CD4 T cells led to significant priming of IFN-γ-producing CD8 T cell responses to TRP-2 and gp100. Surprisingly, treatment with anti-CD25 (mAb clone PC61), to specifically deplete Treg cells while leaving help intact, was ineffective at priming CD8 T cells. Thirty to sixty days after primary tumors were surgically excised, mice completely lacking CD4 T cell help developed autoimmune vitiligo, and maintained antigen-specific memory CD8 T cell responses that were highly effective at producing cytokines (IFN-γ, TNF-α, and IL-2). Mice lacking total CD4 T cell help also mounted protection against re-challenge with B16 melanoma sixty days after primary tumor excision. Conclusions and Significance This work establishes that CD4 T cell help is dispensable for the generation of protective memory T cell responses to melanoma. Our findings support further use of CD4 T cell depletion therapy for inducing long-lived immunity to cancer. PMID:22046294

  2. Cystatin C takes part in melanoma-microglia cross-talk: possible implications for brain metastasis.

    PubMed

    Moshe, Adi; Izraely, Sivan; Sagi-Assif, Orit; Prakash, Roshini; Telerman, Alona; Meshel, Tsipi; Carmichael, Thomas; Witz, Isaac P

    2018-05-02

    The development of melanoma brain metastasis is largely dependent on mutual interactions between the melanoma cells and cells in the brain microenvironment. Here, we report that the extracellular cysteine protease inhibitor cystatin C (CysC) is involved in these interactions. Microglia-derived factors upregulated CysC secretion by melanoma. Similarly, melanoma-derived factors upregulated CysC secretion by microglia. Whereas CysC enhanced melanoma cell migration through a layer of brain endothelial cells, it inhibited the migration of microglia cells toward melanoma cells. CysC was also found to promote the formation of melanoma three-dimensional structures in matrigel. IHC analysis revealed increased expression levels of CysC in the brain of immune-deficient mice bearing xenografted human melanoma brain metastasis compared to the brain of control mice. Based on these in vitro and in vivo experiments we hypothesize that CysC promotes melanoma brain metastasis. Increased expression levels of CysC were detected in the regenerating brain of mice after stroke. Post-stroke brain with melanoma brain metastasis showed an even stronger expression of CysC. The in vitro induction of stroke-like conditions in brain microenvironmental cells increased the levels of CysC in the secretome of microglia cells, but not in the secretome of brain endothelial cells. The similarities between melanoma brain metastasis and stroke with respect to CysC expression by and secretion from microglia cells suggest that CysC may be involved in shared pathways between brain metastasis and post-stroke regeneration. This manifests the tendency of tumor cells to highjack physiological molecular pathways in their progression.

  3. Grizzly bear-human conflicts in the Yellowstone Ecosystem, 1992-2000

    USGS Publications Warehouse

    Gunther, K.A.; Haroldson, M.A.; Cain, S.L.; Copeland, J.; Frey, K.; Schwartz, C.C.

    2004-01-01

    For many years, the primary strategy for managing grizzly bears (Ursus arctos) that came into conflict with humans in the Greater Yellowstone Ecosystem (GYE) was to capture and translocate the offending bears away from conflict sites. Translocation usually only temporarily alleviated the problems and most often did not result in long-term solutions. Wildlife managers needed to be able to predict the causes, types, locations, and trends of conflicts to more efficiently allocate resources for pro-active rather than reactive management actions. To address this need, we recorded all grizzly bear-human conflicts reported in the GYE during 1992-2000. We analyzed trends in conflicts over time (increasing or decreasing), geographic location on macro- (inside or outside of the designated Yellowstone Grizzly Bear Recovery Zone [YGBRZ]) and micro- (geographic location) scales, land ownership (public or private), and relationship to the seasonal availability of bear foods. We recorded 995 grizzly bear-human conflicts in the GYE. Fifty-three percent of the conflicts occurred outside and 47% inside the YGBRZ boundary. Fifty-nine percent of the conflicts occurred on public and 41% on private land. Incidents of bears damaging property and obtaining anthropogenic foods were inversely correlated to the abundance of naturally occurring bear foods. Livestock depredations occurred independent of the availability of bear foods. To further aid in prioritizing management strategies to reduce conflicts, we also analyzed conflicts in relation to subsequent human-caused grizzly bear mortality. There were 74 human-caused grizzly bear mortalities during the study, primarily from killing bears in defense of life and property (43%) and management removal of bears involved in bear-human conflicts (28%). Other sources of human-caused mortality included illegal kills, electrocution by downed power-lines, mistaken identification by American black bear (Ursus americanus) hunters, and vehicle strikes

  4. Morphological changes in human melanoma cells following irradiation with thermal neutrons.

    PubMed

    Barkla, D H; Allen, B J; Brown, J K; Mountford, M; Mishima, Y; Ichihashi, M

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.

  5. Climacostol reduces tumour progression in a mouse model of melanoma via the p53-dependent intrinsic apoptotic programme

    PubMed Central

    Perrotta, Cristiana; Buonanno, Federico; Zecchini, Silvia; Giavazzi, Alessio; Proietti Serafini, Francesca; Catalani, Elisabetta; Guerra, Laura; Belardinelli, Maria Cristina; Picchietti, Simona; Fausto, Anna Maria; Giorgi, Simone; Marcantoni, Enrico; Clementi, Emilio; Ortenzi, Claudio; Cervia, Davide

    2016-01-01

    Climacostol, a compound produced by the ciliated protozoan Climacostomum virens, displayed cytotoxic properties in vitro. This study demonstrates that it has anti-tumour potential. Climacostol caused a reduction of viability/proliferation of B16-F10 mouse melanoma cells, a rapidly occurring DNA damage, and induced the intrinsic apoptotic pathway characterised by the dissipation of the mitochondrial membrane potential, the translocation of Bax to the mitochondria, the release of Cytochrome c from the mitochondria, and the activation of Caspase 9-dependent cleavage of Caspase 3. The apoptotic mechanism of climacostol was found to rely on the up-regulation of p53 and its targets Noxa and Puma. In vivo analysis of B16-F10 allografts revealed a persistent inhibition of tumour growth rate when melanomas were treated with intra-tumoural injections of climacostol. In addition, it significantly improved the survival of transplanted mice, decreased tumour weight, induced a remarkable reduction of viable cells inside the tumour, activated apoptosis and up-regulated the p53 signalling network. Importantly, climacostol toxicity was more selective against tumour than non-tumour cells. The anti-tumour properties of climacostol and the molecular events associated with its action indicate that it is a powerful agent that may be considered for the design of pro-apoptotic drugs for melanoma therapy. PMID:27271364

  6. Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma.

    PubMed

    Krishnamurthy, Janani; Rabinovich, Brian A; Mi, Tiejuan; Switzer, Kirsten C; Olivares, Simon; Maiti, Sourindra N; Plummer, Joshua B; Singh, Harjeet; Kumaresan, Pappanaicken R; Huls, Helen M; Wang-Johanning, Feng; Cooper, Laurence J N

    2015-07-15

    The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors. ©2015 American Association for Cancer Research.

  7. Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model.

    PubMed

    Gabellini, Chiara; Gómez-Abenza, Elena; Ibáñez-Molero, Sofia; Tupone, Maria Grazia; Pérez-Oliva, Ana B; de Oliveira, Sofia; Del Bufalo, Donatella; Mulero, Victoriano

    2018-02-01

    The protein bcl-xL is able to enhance the secretion of the proinflammatory chemokine interleukin 8 (CXCL8) in human melanoma lines. In this study, we investigate whether the bcl-xL/CXCL8 axis is important for promoting melanoma angiogenesis and aggressiveness in vivo, using angiogenesis and xenotransplantation assays in zebrafish embryos. When injected into wild-type embryos, bcl-xL-overexpressing melanoma cells showed enhanced dissemination and angiogenic activity compared with control cells. Human CXCL8 protein elicited a strong proangiogenic activity in zebrafish embryos and zebrafish Cxcr2 receptor was identified as the mediator of CXCL8 proangiogenic activity using a morpholino-mediated gene knockdown. However, human CXCL8 failed to induce neutrophil recruitment in contrast to its zebrafish homolog. Interestingly, the greater aggressiveness of bcl-xL-overexpressing melanoma cells was mediated by an autocrine effect of CXCL8 on its CXCR2 receptor, as confirmed by an shRNA approach. Finally, correlation studies of gene expression and survival analyses using microarray and RNA-seq public databases of human melanoma biopsies revealed that bcl-xL expression significantly correlated with the expression of CXCL8 and other markers of melanoma progression. More importantly, a high level of co-expression of bcl-xL and CXCL8 was associated with poor prognosis in melanoma patients. In conclusion, these data demonstrate the existence of an autocrine CXCL8/CXCR2 signaling pathway in the bcl-xL-induced melanoma aggressiveness, encouraging the development of novel therapeutic approaches for high bcl-xL-expressing melanoma. © 2017 UICC.

  8. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma

    PubMed Central

    Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-01-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up- regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16 days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMPK-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity. PMID:25016296

  9. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  10. Transcriptional Profiling of Human Endogenous Retrovirus Group HERV-K(HML-2) Loci in Melanoma

    PubMed Central

    Schmitt, Katja; Reichrath, Jörg; Roesch, Alexander; Meese, Eckart; Mayer, Jens

    2013-01-01

    Recent studies suggested a role for the human endogenous retrovirus (HERV) group HERV-K(HML-2) in melanoma because of upregulated transcription and expression of HERV-K(HML-2)-encoded proteins. Very little is known about which HML-2 loci are transcribed in melanoma. We assigned >1,400 HML-2 cDNA sequences generated from various melanoma and related samples to genomic HML-2 loci, identifying a total of 23 loci as transcribed. Transcription profiles of loci differed significantly between samples. One locus was found transcribed only in melanoma-derived samples but not in melanocytes and might represent a marker for melanoma. Several of the transcribed loci harbor ORFs for retroviral Gag and/or Env proteins. Env-encoding loci were transcribed only in melanoma. Specific investigation of rec and np9 transcripts indicated transcription of protein encoding loci in melanoma and melanocytes hinting at the relevance of Rec and Np9 in melanoma. UVB irradiation changed transcription profiles of loci and overall transcript levels decreased in melanoma and melanocytes. We further identified transcribed HML-2 loci formed by reverse transcription of spliced HML-2 transcripts by L1 machinery or in a retroviral fashion, with loci potentially encoding HML-2-like proteins. We reveal complex, sample-specific transcription of HML-2 loci in melanoma and related samples. Identified HML-2 loci and proteins encoded by those loci are particularly relevant for further studying the role of HML-2 in melanoma. Transcription of HERVs appears as a complex mechanism requiring specific studies to elucidate which HERV loci are transcribed and how transcribed HERVs may be involved in disease. PMID:23338945

  11. Synthesis and characterization of a novel radioiodinated phenylacetamide and its homolog as theranostic agents for malignant melanoma.

    PubMed

    Chang, Chih-Chao; Chang, Chih-Hsien; Shen, Chih-Chieh; Chen, Chuan-Lin; Liu, Ren-Shyan; Lin, Ming-Hsien; Wang, Hsin-Ell

    2016-01-01

    Melanin is an attractive target for the diagnosis and treatment of malignant melanoma. This study reports the preparation and biological characterizations of N-(2-(diethylamino)ethyl)-2-(3-(123/131)I-iodo-4- hydroxyphenyl)acetamide and N-(2-(diethylamino)ethyl)-3-(3-(123/131)I-iodo-4-hydroxyphenyl)propanamide (123/131)I-IHPA and 123/131I-IHPP) as novel melanin-specific theranostic agents. These two tracers were hydrophilic, exhibited good serum stability and high binding affinity to melanin. In vitro and in vivo studies revealed rapid, high and tenacious uptakes of both 131I-IHPA and 131I-IHPP in melanotic B16F0 cell line and in C57BL/6 mice bearing B16F0 melanoma, but not in amelanonic A375 cell line and tumors. Small-animal SPECT imaging also clearly delineate B16F0 melanoma since 1 h postinjection of 123I-IHPA and 123I-IHPP in tumor-bearing mice. Owing to the favorable biodistribution of 131I-IHPA and 131I-IHPP after intravenous administration, the estimated absorption dose was low in most normal organs and relatively high in melanotic tumor. The melanin-specific binding ability, sustained tumor retention, fast normal tissues clearance and acceptable projected human dosimetry supported that these two tracers are promising theranostic agents for melanin-positive melanoma.

  12. Gallium-67-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide for primary and metastatic melanoma imaging.

    PubMed

    Guo, Haixun; Yang, Jianquan; Shenoy, Nalini; Miao, Yubin

    2009-12-01

    The purpose of this study was to examine the melanoma imaging properties of a novel 67Ga-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone (alpha-MSH) peptide. A lactam bridge-cyclized alpha-MSH peptide, DOTA-GlyGlu-CycMSH {DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]}, was synthesized and radiolabeled with 67Ga. The melanoma targeting and pharmacokinetic properties of 67Ga-DOTA-GlyGlu-CycMSH were determined in B16/F1 flank primary melanoma-bearing and B16/F10 pulmonary metastatic melanoma-bearing C57 mice. Flank primary melanoma and pulmonary metastatic melanoma imaging were performed by small animal single photon emission computed tomography (SPECT)/CT using 67Ga-DOTA-GlyGlu-CycMSH as an imaging probe. 67Ga-DOTA-GlyGlu-CycMSH was readily prepared with greater than 95% radiolabeling yield. 67Ga-DOTA-GlyGlu-CycMSH exhibited substantial tumor uptake (12.93 +/- 1.63%ID/g at 2 h postinjection) and prolonged tumor retention (5.02 +/- 1.35%ID/g at 24 h postinjection) in B16/F1 melanoma-bearing C57 mice. The uptake values for nontarget organs were generally low (<0.30%ID/g) except for the kidneys at 2, 4, and 24 h postinjection. 67Ga-DOTA-GlyGlu-CycMSH exhibited significantly (p < 0.05) higher uptakes (1.44 +/- 0.75%ID/g at 2 h postinjection and 1.49 +/- 0.69%ID/g at 4 h postinjection) in metastatic melanoma-bearing lung than those in normal lung (0.15 +/- 0.10%ID/g and 0.17 +/- 0.11%ID/g at 2 and 4 h postinjection, respectively). Both flank primary B16/F1 melanoma and B16/F10 pulmonary melanoma metastases were clearly visualized by SPECT/CT using 67Ga-DOTA-GlyGlu-CycMSH as an imaging probe 2 h postinjection. 67Ga-DOTA-GlyGlu-CycMSH exhibited favorable melanoma targeting and imaging properties, highlighting its potential as an effective imaging probe for early detection of primary and metastatic melanoma.

  13. Interferon γ limits the effectiveness of melanoma peptide vaccines.

    PubMed

    Cho, Hyun-Il; Lee, Young-Ran; Celis, Esteban

    2011-01-06

    The development of effective therapeutic vaccines to generate tumor-reactive cytotoxic T lymphocytes (CTLs) continues to be a top research priority. However, in spite of some promising results, there are no clear examples of vaccines that eradicate established tumors. Most vaccines are ineffective because they generate low numbers of CTLs and because numerous immunosuppressive factors abound in tumor-bearing hosts. We designed a peptide vaccine that produces large numbers of tumor-reactive CTLs in a mouse model of melanoma. Surprisingly, CTL tumor recognition and antitumor effects decreased in the presence of interferon γ (IFNγ), a cytokine that can provide therapeutic benefit. Tumors exposed to IFNγ evade CTLs by inducing large amounts of noncognate major histocompatibility complex class I molecules, which limit T-cell activation and effector function. Our results demonstrate that peptide vaccines can eradicate large, established tumors in circumstances under which the inhibitory activities of IFNγ are curtailed.

  14. [The effect of Angelica sinensis on adhesion, invasion, migration and metastasis of melanoma cells].

    PubMed

    Gu, Qin; Xu, Jian-ya; Cheng, Luo-gen; Xia, Wei-jun

    2007-03-01

    To study the effect of Angelica sinensis on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and discuss its functional mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTT assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous melanoma model was used to study the effect of Angelica sinensis on metastasis in vivo. The extract of Angelica sinensis inhibited the proliferation of B16-BL6 metastatic cells and its migration capacity significantly. It regulated bidirectionally the adhesion of B16-BL6 metastatic cells to the basement component laminin while it had no effect on the invasion capacity. In the mouse spotaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extract of Angelica sinensis at the concentration of 3.67 mg/kg. The extract of Angelica sinensis can inhibit the metastasis of of B16-BL6 metastatic mouse melanoma cells and its mechanism is maybe that Angelica sinensis can inhibit the B16-BL6 cells adhering to the ECM and reduce the migration of B16-BL6 cells.

  15. ATG5 mediates a positive feedback loop between Wnt signaling and autophagy in melanoma

    PubMed Central

    Ndoye, Abibatou; Budina-Kolomets, Anna; Kugel, Curtis H.; Webster, Marie; Kaur, Amanpreet; Behera, Reeti; Rebecca, Vito; Li, Ling; Brafford, Patricia; Liu, Qin; Gopal, Y.N. Vashisht; Davies, Michael A.; Mills, Gordon B.; Xu, Xiaowei; Wu, Hong; Herlyn, Meenhard; Nicastri, Michael; Winkler, Jeffrey; Soengas, Maria S.; Amaravadi, Ravi; Murphy, Maureen; Weeraratna, Ashani T.

    2017-01-01

    Autophagy mediates resistance to various anticancer agents. In melanoma, resistance to targeted therapy has been linked to expression of Wnt5A, an intrinsic inhibitor of β-catenin, which also promotes invasion. In this study, we assessed the interplay between Wnt5A and autophagy by combining expression studies in human clinical biopsies with functional analyses in cell lines and mouse models. Melanoma cells with high Wnt5A and low β-catenin displayed increased basal autophagy. Genetic blockade of autophagy revealed an unexpected feedback loop whereby knocking down the autophagy factor ATG5 in Wnt5Ahigh cells decreased Wnt5A and increased β-catenin. To define the physiological relevance of this loop, melanoma cells with different Wnt status were treated in vitro and in vivo with the potent lysosomotropic compound Lys05. Wnt5Ahigh cells were less sensitive to Lys05 and could be reverted by inducing β-catenin activity. Our results suggest the efficacy of autophagy inhibitors might be improved by taking the Wnt signature of melanoma cells into account. PMID:28887323

  16. Activation status of the Pregnane X Receptor (PXR) influences Vemurafenib availability in humanized mouse models

    PubMed Central

    MacLeod, A. Kenneth; McLaughlin, Lesley A.; Henderson, Colin J.; Wolf, C. Roland

    2015-01-01

    Vemurafenib is a revolutionary treatment for melanoma, but the magnitude of therapeutic response is highly variable and the rapid acquisition of resistance is frequent. Here, we examined how vemurafenib disposition, particularly through cytochrome P450-mediated oxidation pathways, could potentially influence these outcomes using a panel of knockout and transgenic humanized mouse models. We identified CYP3A4 as the major enzyme involved in the metabolism of vemurafenib in in vitro assays with human liver microsomes. However, mice expressing human CYP3A4 did not process vemurafenib to a greater extent than CYP3A4 null animals, suggesting that other pregnane X receptor (PXR)-regulated pathways may contribute more significantly to vemurafenib metabolism in vivo. Activation of PXR, but not of the closely related constitutive androstane receptor (CAR), profoundly reduced circulating levels of vemurafenib in humanized mice. This effect was independent of CYP3A4 and was negated by co-treatment with the drug efflux transporter inhibitor, elacridar. Finally, vemurafenib strongly induced PXR activity in vitro, but only weakly induced PXR in vivo. Taken together, our findings demonstrate that vemurafenib is unlikely to exhibit a clinically significant interaction with CYP3A4, but that modulation of bioavailability through PXR-mediated regulation of drug transporters (for example by other drugs) has the potential to markedly influence systemic exposure and thereby therapeutic outcomes. Activation status of the Pregnane X Receptor (PXR) influences Vemurafenib availability in humanized mouse models. PMID:26363009

  17. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling

    PubMed Central

    Syed, Deeba N.; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K.; Adhami, Vaqar M.; Mukhtar, Hasan

    2014-01-01

    The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. PMID:24675012

  18. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling.

    PubMed

    Syed, Deeba N; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K; Adhami, Vaqar M; Mukhtar, Hasan

    2014-06-01

    The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. Published by Elsevier Inc.

  19. Silymarin Targets β-Catenin Signaling in Blocking Migration/Invasion of Human Melanoma Cells

    PubMed Central

    Vaid, Mudit; Prasad, Ram; Sun, Qian; Katiyar, Santosh K.

    2011-01-01

    Metastatic melanoma is a leading cause of death from skin diseases, and is often associated with activation of Wnt/β-catenin signaling pathway. We have examined the inhibitory effect of silymarin, a plant flavanoid from Silybum marianum, on cell migration of metastasis-specific human melanoma cell lines (A375 and Hs294t) and assessed whether Wnt/β-catenin signaling is the target of silymarin. Using an in vitro invasion assay, we found that treatment of human melanoma cell lines with silymarin resulted in concentration-dependent inhibition of cell migration, which was associated with accumulation of cytosolic β-catenin, while reducing the nuclear accumulation of β-catenin (i.e., β-catenin inactivation) and reducing the levels of matrix metalloproteinase (MMP) -2 and MMP-9 which are the down-stream targets of β-catenin. Silymarin enhanced: (i) the levels of casein kinase 1α, glycogen synthase kinase-3β and phosphorylated-β-catenin on critical residues Ser45, Ser33/37 and Thr41, and (ii) the binding of β-transducin repeat-containing proteins (β-TrCP) with phospho forms of β-catenin in melanoma cells. These events play important roles in degradation or inactivation of β-catenin. To verify whether β-catenin is a potent molecular target of silymarin, the effect of silymarin was determined on β-catenin-activated (Mel 1241) and β-catenin-inactivated (Mel 1011) melanoma cells. Treatment of Mel 1241 cells with silymarin or FH535, an inhibitor of Wnt/β-catenin pathway, significantly inhibited cell migration of Mel 1241 cells, which was associated with the elevated levels of casein kinase 1α and glycogen synthase kinase-3β, and decreased accumulation of nuclear β-catenin and inhibition of MMP-2 and MMP-9 levels. However, this effect of silymarin and FH535 was not found in Mel 1011 melanoma cells. These results indicate for the first time that silymarin inhibits melanoma cell migration by targeting β-catenin signaling pathway. PMID:21829575

  20. Mechanisms of Tanshinone II a inhibits malignant melanoma development through blocking autophagy signal transduction in A375 cell.

    PubMed

    Li, Xiaojing; Li, Zhifeng; Li, Xianping; Liu, Baoguo; Liu, Zhijun

    2017-05-22

    Malignant melanoma (MM) is one of the high degree of malignancy and early prone to blood and lymph node metastasis. There is not cured for MM. Tan II A has been reported to reduce cancer cell proliferation. But the mechanism by which Tan II A inhibited melanoma growth are not well characterized. We sought to explore the possible mechanism by which Tan II A regulated cell proliferation through autophagy signaling pathway in A375 cells. We tested the effects of Tan II A on melanoma A375, MV3, M14, and other human cell lines including Hacat and HUVEC cells in cell culture model. Cell proliferation was assessed by using methyl thiazol tetrazolium (MTT) assay. Cell migration ability melanoma A375 was monitored by using cell scratch assay. Transwell chamber experimental was performed to assess the effect of Tan II A on A375 melanoma cell invasion ability. The autophagy body was examined by using flow cytometry. The expression of autophagy-associated protein beclin-1 and microtubule-associated protein 1 light chain 3(LC3)-II, as well as phosphatidylinositol 3-kinase(PI3K)、protein kinase B (Akt)、mammalian target of rapamycin (mTOR)、p70S6K1 signaling pathways were detected by using Western blotting. The effects of Tan II A on tumor progression was also examined in melanoma A375 induced tumor in mouse model. We found that Tan IIA inhibited melanoma A375, MV3, and M14 cell proliferation in dose and time dependent manner. Tan II A reduced CXCL12-induced A375 cell invasive ability and migration in a dose dependent manner. Tan IIA promoted autophagic body production and increased autophagy-associated protein beclin-1 and LC3-II expression in A375 cells. However, Tan IIA reduced the phosphorylation of PI3K, P-AKT, P-mTOR, and P-p7036k1. We also confirmed that Tan II A reduced melanoma A375 induced tumor volume and weight in mouse model. We concluded that Tan II A reduced A375 cells proliferation by activation of autophagy production, blocked PI3K- Akt - mTOR - p70S6K1

  1. The DNA methylation landscape of human melanoma.

    PubMed

    Jin, Seung-Gi; Xiong, Wenying; Wu, Xiwei; Yang, Lu; Pfeifer, Gerd P

    2015-12-01

    Using MIRA-seq, we have characterized the DNA methylome of metastatic melanoma and normal melanocytes. Individual tumors contained several thousand hypermethylated regions. We discovered 179 tumor-specific methylation peaks present in all (27/27) melanomas that may be effective disease biomarkers, and 3113 methylation peaks were seen in >40% of the tumors. We found that 150 of the approximately 1200 tumor-associated methylation peaks near transcription start sites (TSSs) were marked by H3K27me3 in melanocytes. DNA methylation in melanoma was specific for distinct H3K27me3 peaks rather than for broadly covered regions. However, numerous H3K27me3 peak-associated TSS regions remained devoid of DNA methylation in tumors. There was no relationship between BRAF mutations and the number of methylation peaks. Gene expression analysis showed upregulated immune response genes in melanomas presumably as a result of lymphocyte infiltration. Down-regulated genes were enriched for melanocyte differentiation factors; e.g., KIT, PAX3 and SOX10 became methylated and downregulated in melanoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Amino Acid Signature in Human Melanoma Cell Lines from Different Disease Stages.

    PubMed

    Wasinger, Christine; Hofer, Alexandra; Spadiut, Oliver; Hohenegger, Martin

    2018-04-19

    Cancer cells rewire metabolism to sustain high proliferation rates. Beside glycolysis and glutaminolysis, amino acids substitute as energy source, feed fatty acid biosynthesis and represent part of the secretome of transformed cells, including melanoma. We have therefore investigated acetate, pyruvate and the amino acid composition of the secretome of human melanoma cells representing the early slow (WM35, WM278, WM793b and VM21) and metastatic fast (A375, 518a2, 6F and WM8) growth phase in order to identify possible signalling components within these profiles. Proliferation assays and a principle component analysis revealed a stringent difference between the fast and slow growing melanoma cells. Moreover, upon inhibition of the mevalonate pathway, glutamic acid and alanine were identified as the central difference in the conditional media. A supplementation of the media with glutamic acid and the combination with alanine significantly accelerated the proliferation, migration and invasion of early stage melanoma cells, but not metastatic cells. Finally, the inhibition of the mevalonate pathway abolished the growth advantage of the melanoma cells in a time dependent manner. Taken together, these data corroborate a stage specific response in growth and aggressiveness to extracellular glutamic acid and alanine, indicative for microenvironmental signalling of individual amino acids.

  3. p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation

    PubMed Central

    Terzian, Tamara; Torchia, Enrique C.; Dai, Daisy; Robinson, Steven E.; Murao, Kazutoshi; Stiegmann, Regan A.; Gonzalez, Victoria; Boyle, Glen M.; Powell, Marianne B.; Pollock, Pamela M.; Lozano, Guillermina; Robinson, William A.; Roop, Dennis R.; Box, Neil F.

    2011-01-01

    p53 is the central member of a critical tumor suppressor pathway in virtually all tumor types, where it is silenced mainly by missense mutations. In melanoma, p53 predominantly remains wild type, thus its role has been neglected. To study the effect of p53 on melanocyte function and melanomagenesis, we crossed the ‘high-p53’ Mdm4+/− mouse to the well-established TP-ras0/+ murine melanoma progression model. After treatment with the carcinogen dimethylbenzanthracene (DMBA), TP-ras0/+ mice on the Mdm4+/− background developed fewer tumors with a delay in the age of onset of melanomas compared to TP-ras0/+ mice. Furthermore, we observed a dramatic decrease in tumor growth, lack of metastasis with increased survival of TP-ras0/+: Mdm4+/− mice. Thus, p53 effectively prevented the conversion of small benign tumors to malignant and metastatic melanoma. p53 activation in cultured primary melanocyte and melanoma cell lines using Nutlin-3, a specific Mdm2 antagonist, supported these findings. Moreover, global gene expression and network analysis of Nutlin-3-treated primary human melanocytes indicated that cell cycle regulation through the p21WAF1/CIP1 signaling network may be the key anti-melanomagenic activity of p53. PMID:20849464

  4. (-)-Epigallocatechin gallate (EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat implanted human melanoma cell tumors in mice.

    PubMed

    Liao, Bingwu; Ying, Hao; Yu, Chenhuan; Fan, Zhaoyang; Zhang, Weihua; Shi, John; Ying, Huazhong; Ravichandran, Nagaiya; Xu, Yongquan; Yin, Junfeng; Jiang, Yongwen; Du, Qizhen

    2016-10-15

    (-)-Epigallocatechin-3-O-gallate (EGCG), a versatile natural product in fresh tea leaves and green tea, has been investigated as a preventative treatment for cancers and cardiovascular disease. The objective of this study was to develop EGCG-nanoethosomes for transdermal delivery and to evaluate them for treating subcutaneously implanted human melanoma cell tumors. EGCG-nanoethosomes, composed of 0.2% EGCG, 2% soybean phosphatidylcholine, 30% ethanol, 1% Tween-80 and 0.1% sugar esters, were prepared and characterized using laser transmission electron microscopy. These nanoethosomes were smoother and more compact than basic-nanoethosomes with the same components except for EGCG. The effectiveness of transdermal delivery by EGCG-nanoethosomes was demonstrated in an in vitro permeability assay system using mouse skin. The inhibitory effect of docetaxel (DT) loaded in EGCG-nanoethosomes (DT-EGCG-nanoethosomes) was analyzed by monitoring growth of a subcutaneously implanted tumor from A-375 human melanoma cells in mice. Mice treated with DT-EGCG-nanoethosomes exhibited a significant therapeutic effect, with tumors shrinking, on average, by 31.5% of initial volumes after 14 d treatment. This indicated a potential for treating skin cancer. In a pharmacokinetic study, transdermal delivery by DT-EGCG-nanoethosomes enabled sufficient DT exposure to the tumor. Together, these findings indicated that EGCG-nanoethosomes have great potential as drug carriers for transdermal delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. In vitro efficiency and mechanistic role of indocyanine green as photodynamic therapy agent for human melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamoon, A.M.; Miller, L.; Gamal-Eldeen, A. M.

    2009-05-02

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800 nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway. Human skin melanoma cells (Sk-Mel-28) were incubated with ICG and exposed to a low power Ti:Sapphire laser. Synchrotron-assisted Fourier transform infrared microspectroscopy and hierarchical cluster analysis were used to assess the cell damage andmore » changes in lipid, protein, and nucleic acids. The cell death pathway was determined by analysis of cell viability and apoptosis and necrosis markers. In the cell death pathway, {sup 1}O{sub 2} generation evoked rapid multiple consequences that trigger apoptosis after laser exposure for only 15min including the release of cytochrome c, the activation of total caspases, caspase-3, and caspase-9, the inhibition of NF-{Kappa}B P65, and the enhancement of DNA fragmentation, and histone acetylation. ICG/PDT can efficiently and rapidly induce apoptosis in human melanoma cells and it can be considered as a new therapeutic approach for topical treatment of melanoma.« less

  6. A severe combined immunodeficient-hu in vivo mouse model of human primary mantle cell lymphoma.

    PubMed

    Wang, Michael; Zhang, Liang; Han, Xiaohong; Yang, Jing; Qian, Jianfei; Hong, Sungyoul; Lin, Pei; Shi, Yuankai; Romaguera, Jorge; Kwak, Larry W; Yi, Qing

    2008-04-01

    To establish a severe combined immunodeficient (SCID)-hu in vivo mouse model of human primary mantle cell lymphoma (MCL) for the study of the biology and novel therapy of human MCL. Primary MCL cells were isolated from spleen, lymph node, bone marrow aspirates, or peripheral blood of six different patients and injected respectively into human bone chips, which had been s.c. implanted in SCID-hu. Circulating human beta(2)-microglobulin in mouse serum was used to monitor the engraftment and growth of patient's MCL cells. H&E staining and immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies were used to confirm the tumor growth and migration. Increasing levels of circulating human beta(2)-microglobulin in mouse serum indicated that the patient's MCL cells were engrafted successfully into human bone chip of SCID-hu mice. The engraftment and growth of patient's MCL cells were dependent on human bone marrow microenvironment. Immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies confirmed that patient's MCL cells were able to not only survive and propagate in the bone marrow microenvironment of the human fetal bone chips, but also similar to the human disease, migrate to lymph nodes, spleen, bone marrow, and gastrointestinal tract of host mice. Treatment of MCL-bearing SCID-hu mice with atiprimod, a novel antitumor compound against the protection of bone marrow stromal cells, induced tumor regression. This is the first human primary MCL animal model that should be useful for the biological and therapeutic research on MCL.

  7. Hypoxia-driven mechanism of vemurafenib resistance in melanoma

    PubMed Central

    Qin, Yong; Roszik, Jason; Chattopadhyay, Chandrani; Hashimoto, Yuuri; Liu, Chengwen; Cooper, Zachary A.; Wargo, Jennifer A.; Hwu, Patrick; Ekmekcioglu, Suhendan; Grimm, Elizabeth A.

    2016-01-01

    Melanoma is molecularly and structurally heterogeneous, with some tumor cells existing under hypoxic conditions. Our cell growth assays showed that under controlled hypoxic conditions, BRAF(V600E) melanoma cells rapidly became resistant to vemurafenib. By employing both a three-dimensional (3D) spheroid model and a two-dimensional (2D) hypoxic culture system to model hypoxia in vivo, we identified upregulation of HGF/MET signaling as a major mechanism associated with vemurafenib resistance as compared to 2D standard tissue culture in ambient air. We further confirmed that the upregulation of HGF/MET signaling was evident in drug-resistant melanoma patient tissues and mouse xenografts. Pharmacologic inhibition of the c-Met/Akt pathway restored the sensitivity of melanoma spheroids or 2D hypoxic cultures to vemurafenib. PMID:27458138

  8. RACK1, a clue to the diagnosis of cutaneous melanomas in horses.

    PubMed

    Campagne, Cécile; Julé, Sophia; Bernex, Florence; Estrada, Mercedes; Aubin-Houzelstein, Geneviève; Panthier, Jean-Jacques; Egidy, Giorgia

    2012-06-29

    Melanocytic proliferations are common in horses but the diagnosis of malignancy is not always straightforward. To improve diagnosis and prognosis, markers of malignancy are needed. Receptor for activated C kinase 1 (RACK1) protein may be such a marker. RACK1 was originally found to characterize malignant melanocytic lesions in the Melanoblastoma-bearing Libechov minipig (MeLiM) and, later, in human patients. Our purpose was to investigate the value of RACK1 in the classification of cutaneous melanocytic proliferations in horses. Using immunofluorescence, we report here that both MITF (Microphthalmia-associated transcription factor) and PAX3 (Paired box 3) allow the identification of melanocytic cells in horse skin samples. Importantly, RACK1 was detected in melanocytic lesions but not in healthy skin melanocytes. Finally, we found that RACK1 labeling can be used in horses to distinguish benign melanocytic tumors from melanomas. Indeed, RACK1 labeling appeared more informative to assess malignancy than individual histomorphological features. This study confirms that horses provide an interesting model for melanoma genesis studies. It establishes MITF and PAX3 as markers of horse melanocytic cells. RACK1 emerges as an important marker of malignancy which may contribute to progress in the diagnosis of melanomas in both human and veterinary medicine.

  9. RACK1, a clue to the diagnosis of cutaneous melanomas in horses

    PubMed Central

    2012-01-01

    Background Melanocytic proliferations are common in horses but the diagnosis of malignancy is not always straightforward. To improve diagnosis and prognosis, markers of malignancy are needed. Receptor for activated C kinase 1 (RACK1) protein may be such a marker. RACK1 was originally found to characterize malignant melanocytic lesions in the Melanoblastoma-bearing Libechov minipig (MeLiM) and, later, in human patients. Our purpose was to investigate the value of RACK1 in the classification of cutaneous melanocytic proliferations in horses. Results Using immunofluorescence, we report here that both MITF (Microphthalmia-associated transcription factor) and PAX3 (Paired box 3) allow the identification of melanocytic cells in horse skin samples. Importantly, RACK1 was detected in melanocytic lesions but not in healthy skin melanocytes. Finally, we found that RACK1 labeling can be used in horses to distinguish benign melanocytic tumors from melanomas. Indeed, RACK1 labeling appeared more informative to assess malignancy than individual histomorphological features. Conclusions This study confirms that horses provide an interesting model for melanoma genesis studies. It establishes MITF and PAX3 as markers of horse melanocytic cells. RACK1 emerges as an important marker of malignancy which may contribute to progress in the diagnosis of melanomas in both human and veterinary medicine. PMID:22747534

  10. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    PubMed

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Synthesis and preclinical characterization of [18F]FPBZA: a novel PET probe for melanoma.

    PubMed

    Wu, Shih-Yen; Huang, Shih-Pin; Lo, Yen-Chen; Liu, Ren-Shyan; Wang, Shyh-Jen; Lin, Wuu-Jyh; Shen, Chih-Chieh; Wang, Hsin-Ell

    2014-01-01

    Benzamide can specifically bind to melanoma cells. A 18F-labeled benzamide derivative, [18F]N-(2-diethylaminoethyl)-4-[2-(2-(2-fluoroethoxy) ethoxy)ethoxy]benzamide ([18F]FPBZA), was developed as a promising PET probe for primary and metastatic melanoma. [18F]FPBZA was synthesized via a one-step radiofluorination in this study. The specific uptake of [18F]FPBZA was studied in B16F0 melanoma cells, A375 amelanotic melanoma cells, and NB-DNJ-pretreated B16F0 melanoma cells. The biological characterization of [18F]FPBZA was performed on mice bearing B16F0 melanoma, A375 amelanotic melanoma, or inflammation lesion. [18F]FPBZA can be prepared efficiently with a yield of 40-50%. The uptake of [18F]FPBZA by B16F0 melanoma cells was significantly higher than those by A375 tumor cells and NB-DNJ-pretreated B16F0 melanoma cells. B16F0 melanoma displayed prominent uptake of [18F]FPBZA at 2 h (7.81±0.82%ID/g), compared with A375 tumor and inflammation lesion (3.00±0.71 and 1.67±0.56%ID/g, resp.). [18F]FPBZA microPET scan clearly delineated B16F0 melanoma but not A375 tumor and inflammation lesion. In mice bearing pulmonary metastases, the lung radioactivity reached 4.77±0.36%ID/g at 2 h (versus 1.16±0.23%ID/g in normal mice). Our results suggested that [18F]FPBZA PET would provide a promising and specific approach for the detection of primary and metastatic melanoma lesions.

  12. CD63 tetraspanin is a negative driver of epithelial-to-mesenchymal transition in human melanoma cells.

    PubMed

    Lupia, Antonella; Peppicelli, Silvia; Witort, Ewa; Bianchini, Francesca; Carloni, Vinicio; Pimpinelli, Nicola; Urso, Carmelo; Borgognoni, Lorenzo; Capaccioli, Sergio; Calorini, Lido; Lulli, Matteo

    2014-12-01

    The CD63 tetraspanin is highly expressed in the early stages of melanoma and decreases in advanced lesions, suggesting it as a possible suppressor of tumor progression. We employed loss- and gain-of-gene-function approaches to investigate the role of CD63 in melanoma progression and acquisition of the epithelial-to-mesenchymal transition (EMT) program. We used two human melanoma cell lines derived from primary tumors and one primary human melanoma cell line isolated from a cutaneous metastasis, differing by levels of CD63 expression. CD63-silenced melanoma cells showed enhanced motility and invasiveness with downregulation of E-cadherin and upregulation of N-cadherin and Snail. In parallel experiments, transient and stable ectopic expression of CD63 resulted in a robust reduction of cell motility, invasiveness, and protease activities, which was proportional to the increase in CD63 protein level. Transfected cells overexpressing the highest level of CD63 when transplanted into immunodeficient mice showed a reduced incidence and rate of tumor growth. Moreover, these cells showed a reduction of N-cadherin, Vimentin, Zeb1, and a-SMA, and a significant resistance to undergo an EMT program both in basal condition and in the following stimulation with TGFβ. Thus, our results establish a previously unreported mechanistic link between the tetraspanin CD63 and EMT abrogation in melanoma.

  13. Mutations in GNA11 in Uveal Melanoma

    PubMed Central

    Van Raamsdonk, Catherine D.; Griewank, Klaus G.; Crosby, Michelle B.; Garrido, Maria C.; Vemula, Swapna; Wiesner, Thomas; Obenauf, Anna C.; Wackernagel, Werner; Green, Gary; Bouvier, Nancy; Sozen, M. Mert; Baimukanova, Gail; Roy, Ritu; Heguy, Adriana; Dolgalev, Igor; Khanin, Raya; Busam, Klaus; Speicher, Michael R.; O’Brien, Joan; Bastian, Boris C.

    2011-01-01

    BACKGROUND Uveal melanoma is the most common intraocular cancer. There are no effective therapies for metastatic disease. Mutations in GNAQ, the gene encoding an alpha subunit of heterotrimeric G proteins, are found in 40% of uveal melanomas. METHODS We sequenced exon 5 of GNAQ and GNA11, a paralogue of GNAQ, in 713 melanocytic neoplasms of different types (186 uveal melanomas, 139 blue nevi, 106 other nevi, and 282 other melanomas). We sequenced exon 4 of GNAQ and GNA11 in 453 of these samples and in all coding exons of GNAQ and GNA11 in 97 uveal melanomas and 45 blue nevi. RESULTS We found somatic mutations in exon 5 (affecting Q209) and in exon 4 (affecting R183) in both GNA11 and GNAQ, in a mutually exclusive pattern. Mutations affecting Q209 in GNA11 were present in 7% of blue nevi, 32% of primary uveal melanomas, and 57% of uveal melanoma metastases. In contrast, we observed Q209 mutations in GNAQ in 55% of blue nevi, 45% of uveal melanomas, and 22% of uveal melanoma metastases. Mutations affecting R183 in either GNAQ or GNA11 were less prevalent (2% of blue nevi and 6% of uveal melanomas) than the Q209 mutations. Mutations in GNA11 induced spontaneously metastasizing tumors in a mouse model and activated the mitogen-activated protein kinase pathway. CONCLUSIONS Of the uveal melanomas we analyzed, 83% had somatic mutations in GNAQ or GNA11. Constitutive activation of the pathway involving these two genes appears to be a major contributor to the development of uveal melanoma. (Funded by the National Institutes of Health and others.) PMID:21083380

  14. U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo

    PubMed Central

    Goraczniak, Rafal; Wall, Brian A; Behlke, Mark A; Lennox, Kim A; Ho, Eric S; Zaphiros, Nikolas H; Jakubowski, Christopher; Patel, Neil R; Zhao, Steven; Magaway, Carlo; Subbie, Stacey A; Jenny Yu, Lumeng; LaCava, Stephanie; Reuhl, Kenneth R; Chen, Suzie; Gunderson, Samuel I

    2013-01-01

    U1 Adaptor is a recently discovered oligonucleotide-based gene-silencing technology with a unique mechanism of action that targets nuclear pre-mRNA processing. U1 Adaptors have two distinct functional domains, both of which must be present on the same oligonucleotide to exert their gene-silencing function. Here, we present the first in vivo use of U1 Adaptors by targeting two different human genes implicated in melanomagenesis, B-cell lymphoma 2 (BCL2) and metabotropic glutamate receptor 1 (GRM1), in a human melanoma cell xenograft mouse model system. Using a newly developed dendrimer delivery system, anti-BCL2 U1 Adaptors were very potent and suppressed tumor growth at doses as low as 34 µg/kg with twice weekly intravenous (iv) administration. Anti-GRM1 U1 Adaptors suppressed tumor xenograft growth with similar potency. Mechanism of action was demonstrated by showing target gene suppression in tumors and by observing that negative control U1 Adaptors with just one functional domain show no tumor suppression activity. The anti-BCL2 and anti-GRM1 treatments were equally effective against cell lines harboring either wild-type or a mutant V600E B-RAF allele, the most common mutation in melanoma. Treatment of normal immune-competent mice (C57BL6) indicated no organ toxicity or immune stimulation. These proof-of-concept studies represent an in-depth (over 800 mice in ~108 treatment groups) validation that U1 Adaptors are a highly potent gene-silencing therapeutic and open the way for their further development to treat other human diseases. PMID:23673539

  15. A Co-Receptor Independent Transgenic Human TCR Mediates Anti-Tumor and Anti-Self Immunity in Mice

    PubMed Central

    Mehrotra, Shikhar; Al-Khami, Amir A.; Klarquist, Jared; Husain, Shahid; Naga, Osama; Eby, Jonathan M.; Murali, Anuradha K.; Lyons, Gretchen E.; Li, Mingli; Spivey, Natali D.; Norell, Håkan; Martins da Palma, Telma; Onicescu, Georgiana; Diaz-Montero, C. Marcela; Garrett-Mayer, Elizabeth; Cole, David J.; Le Poole, I. Caroline; Nishimura, Michael I.

    2013-01-01

    Recent advancements in T cell immunotherapy suggest that T cells engineered with high affinity T cell receptors (TCR) can offer better tumor regression. However, whether a high affinity TCR alone is sufficient to control tumor growth, or the T cell subset bearing the TCR is also important remains unclear. Using the human tyrosinase epitope reactive, CD8 independent, high affinity TCR isolated from MHC class-I restricted CD4+ T cells obtained from tumor infiltrating lymphocytes of a metastatic melanoma patient, we developed a novel TCR transgenic mouse with a C57BL/6 background. This HLA-A2 restricted TCR was positively selected on both CD4+ and CD8+ single-positive (SP) cells. However, when the TCR transgenic mouse was developed with an HLA-A2 background, the transgenic TCR was primarily expressed by CD3+CD4-CD8- double-negative (DN) T cells. TIL 1383I TCR transgenic CD4+, CD8+ and CD4-CD8- T cells were functional and retained the ability to control tumor growth without the need for vaccination or cytokine support in vivo. Furthermore, the HLA-A2+/human tyrosinase TCR double transgenic mice developed spontaneous hair depigmentation and had visual defects that progressed with age. Our data show that the expression of the high affinity TIL 1383I TCR alone in CD3+ T cells is sufficient to control the growth of murine and human melanoma and the presence or absence of CD4 and CD8 co-receptors had little effect on its functional capacity. PMID:22798675

  16. The selective cytotoxicity of new triazene compounds to human melanoma cells.

    PubMed

    Sousa, Ana; Santos, Fábio; Gaspar, Maria Manuela; Calado, Susana; Pereira, João D; Mendes, Eduarda; Francisco, Ana Paula; Perry, Maria Jesus

    2017-08-01

    Metastatic melanoma still remains one the most difficult cancers to overcome. The aim of our research was the design of anti-tumour triazene compounds 3 for application to a melanoma-specific therapy. The strategy exploits the unique enzyme pathway of melanin biosynthesis for conversion of non-toxic prodrugs into toxic drugs in the melanoma cell. The compounds 3 were designed by coupling two active moieties, the alkylating triazenes and different tyrosinase substrates. All compounds 3 revealed to be chemically stable in isotonic phosphate buffer (PBS) at physiologic pH (t ½ ≥48h), and most of them showed to be slowly hydrolysed in human plasma (1.5≤t ½ (h)≤161). Compounds 3c-n revealed to be excellent tyrosinase substrates (0.74≤t ½ (min)≤6) with the best tyrosinase substrate 3l releasing MMT 45s after tyrosinase activation. Structure-activity relationship studies allowed the identification of the better structural features for enzyme affinity. Furthermore, the derivatives 3l and 3m showed cell selectivity with significant cytotoxic effects (IC 50 values of 46-65μM) against melanoma cell lines with tyrosinase overexpression MNT-1 and B16F10. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dissection of stromal and cancer cell-derived signals in melanoma xenografts before and after treatment with DMXAA

    PubMed Central

    Henare, K; Wang, L; Wang, L-Cs; Thomsen, L; Tijono, S; Chen, C-Jj; Winkler, S; Dunbar, P R; Print, C; Ching, L-M

    2012-01-01

    Background: The non-malignant cells of the tumour stroma have a critical role in tumour biology. Studies dissecting the interplay between cancer cells and stromal cells are required to further our understanding of tumour progression and methods of intervention. For proof-of-principle of a multi-modal approach to dissect the differential effects of treatment on cancer cells and stromal cells, we analysed the effects of the stromal-targeting agent 5,6-dimethylxanthenone-4-acetic acid on melanoma xenografts. Methods: Flow cytometry and multi-colour immunofluorescence staining was used to analyse leukocyte numbers in xenografts. Murine-specific and human-specific multiplex cytokine panels were used to quantitate cytokines produced by stromal and melanoma cells, respectively. Human and mouse Affymetrix microarrays were used to separately identify melanoma cell-specific and stromal cell-specific gene expression. Results: 5,6-Dimethylxanthenone-4-acetic acid activated pro-inflammatory signalling pathways and cytokine expression from both stromal and cancer cells, leading to neutrophil accumulation and haemorrhagic necrosis and a delay in tumour re-growth of 26 days in A375 melanoma xenografts. Conclusion: 5,6-Dimethylxanthenone-4-acetic acid and related analogues may potentially have utility in the treatment of melanoma. The experimental platform used allowed distinction between cancer cells and stromal cells and can be applied to investigate other tumour models and anti-cancer agents. PMID:22415295

  18. Yellowstone grizzly bear mortality, human habituation, and whitebark pine seed crops

    USGS Publications Warehouse

    Mattson, David J.; Blanchard, Bonnie M.; Knight, Richard R.

    1992-01-01

    The Yellowstone grizzly bear (Ursus arctos horribilis) population may be extirpated during the next 100-200 years unless mortality rates stabilize and remain at acceptable low levels. Consequently, we analyzed relationships between Yellowstone grizzly bear mortality and frequency of human habituation among bears and size of the whitebark pine (Pinus albicaulis) seed crop. During years of large seed crops, bears used areas within 5 km of roads and 8 km of developments half as intensively as during years of small seed crops because whitebark pine's high elevation distribution is typically remote from human facilities. On average, management trappings of bears were 6.2 times higher, mortality of adult females 2.3 times higher, and mortality of subadult males 3.3 times higher during years of small seed crops. We hypothesize that high mortality of adult females and subadult males during small seed crop years was a consequence of their tendency to range closest (of all sex-age cohorts) to human facilities; they also had a higher frequency of human habituation compared with adult males. We also hypothesize that low morality among subadult females during small seed crop years was a result of fewer energetic stressors compared with adult females and greater familiarity with their range compared with subadult males; mortality was low even though they ranged close to humans and exhibited a high frequency of human habituation. Human-habituated and food-conditioned bears were 2.9 times as likely to range within 4 km of developments and 3.1 times as often killed by humans compared with nonhabituated bears. We argue that destruction of habituated bears that use native foods near humans results in a decline in the overall ability of bears to use available habitat; and that the number and extent of human facilities in occupied grizzly bear habitat needs to be minimized unless habituated bears are preserved and successful ways to manage the associated risks to humans are developed.

  19. Whole Body Melanoma Transcriptome Response in Medaka

    PubMed Central

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K.; Postlethwait, John; Warren, Wesley C.

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID

  20. Whole Body Melanoma Transcriptome Response in Medaka.

    PubMed

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K; Postlethwait, John; Warren, Wesley C

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.

  1. Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib-resistant melanoma in vivo.

    PubMed

    Bonner, Michael Y; Karlsson, Isabella; Rodolfo, Monica; Arnold, Rebecca S; Vergani, Elisabetta; Arbiser, Jack L

    2016-03-15

    The majority of human melanomas bears BRAF mutations and thus is treated with inhibitors of BRAF, such as vemurafenib. While patients with BRAF mutations often demonstrate an initial dramatic response to vemurafenib, relapse is extremely common. Thus, novel agents are needed for the treatment of these aggressive melanomas. Honokiol is a small molecule compound derived from Magnolia grandiflora that has activity against solid tumors and hematopoietic neoplasms. In order to increase the lipophilicity of honokiol, we have synthesized honokiol DCA, the dichloroacetate ester of honokiol. In addition, we synthesized a novel fluorinated honokiol analog, bis-trifluoromethyl-bis-(4-hydroxy-3-allylphenyl) methane (hexafluoro). Both compounds exhibited activity against A375 melanoma in vivo, but honokiol DCA was more active. Gene arrays comparing treated with vehicle control tumors demonstrated induction of the respiratory enzyme succinate dehydrogenase B (SDHB) by treatment, suggesting that our honokiol analogs induce respiration in vivo. We then examined its effect against a pair of melanomas, LM36 and LM36R, in which LM36R differs from LM36 in that LM36R has acquired vemurafenib resistance. Honokiol DCA demonstrated in vivo activity against LM36R (vemurafenib resistant) but not against parental LM36. Honokiol DCA and hexafluoro inhibited the phosphorylation of DRP1, thus stimulating a phenotype suggestive of respiration through mitochondrial normalization. Honokiol DCA may act in vemurafenib resistant melanomas to increase both respiration and reactive oxygen generation, leading to activity against aggressive melanoma in vivo.

  2. Development of new PTK7-targeting aptamer-fluorescent and -radiolabelled probes for evaluation as molecular imaging agents: Lymphoma and melanoma in vivo proof of concept.

    PubMed

    Calzada, Victoria; Moreno, María; Newton, Jessica; González, Joel; Fernández, Marcelo; Gambini, Juan Pablo; Ibarra, Manuel; Chabalgoity, Alejandro; Deutscher, Susan; Quinn, Thomas; Cabral, Pablo; Cerecetto, Hugo

    2017-02-01

    Aptamers are single-stranded oligonucleotides that recognize molecular targets with high affinity and specificity. Aptamer that selectively bind to the protein tyrosine kinase-7 (PTK7) receptor, overexpressed on many cancers, has been labelled as probes for molecular imaging of cancer. Two new PTK7-targeting aptamer probes were developed by coupling frameworks from the fluorescent dye AlexaFluor647 or the 6-hydrazinonicotinamide (HYNIC) chelator-labelled to 99m Tc. The derivatizations via a 5'-aminohexyl terminal linker were done at room temperature and under mild buffer conditions. Physicochemical and biological controls for both imaging agents were performed verifying the integrity of the aptamer-conjugates by HPLC. Recognition of melanoma (B16F1) and lymphoma (A20) mouse cell lines by the aptamer was studied using cell binding, flow cytometry and confocal microscopy. Finally, in vivo imaging studies in tumour-bearing mice were performed. The new probes were able to bind to melanoma and lymphoma cell lines in vitro, the in vivo imaging in tumour-bearing mice showed different uptake behaviours showing for the fluorescent conjugate good uptake by B cell lymphoma while the radiolabelled conjugate did not display tumour uptake due to its high extravascular distribution, and both showed rapid clearance properties in tumour-bearing mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Melanocytic nevi and melanoma: unraveling a complex relationship

    PubMed Central

    Damsky, WE; Bosenberg, M

    2018-01-01

    Approximately 33% of melanomas are derived directly from benign, melanocytic nevi. Despite this, the vast majority of melanocytic nevi, which typically form as a result of BRAFV600E-activating mutations, will never progress to melanoma. Herein, we synthesize basic scientific insights and data from mouse models with common observations from clinical practice to comprehensively review melanocytic nevus biology. In particular, we focus on the mechanisms by which growth arrest is established after BRAFV600E mutation. Means by which growth arrest can be overcome and how melanocytic nevi relate to melanoma are also considered. Finally, we present a new conceptual paradigm for understanding the growth arrest of melanocytic nevi in vivo termed stable clonal expansion. This review builds upon the canonical hypothesis of oncogene-induced senescence in growth arrest and tumor suppression in melanocytic nevi and melanoma. PMID:28604751

  4. Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

    PubMed

    Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T

    2015-01-01

    The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Synthesis and Preclinical Characterization of [18F]FPBZA: A Novel PET Probe for Melanoma

    PubMed Central

    Huang, Shih-Pin; Lo, Yen-Chen; Liu, Ren-Shyan; Shen, Chih-Chieh

    2014-01-01

    Introduction. Benzamide can specifically bind to melanoma cells. A 18F-labeled benzamide derivative, [18F]N-(2-diethylaminoethyl)-4-[2-(2-(2-fluoroethoxy) ethoxy)ethoxy]benzamide ([18F]FPBZA), was developed as a promising PET probe for primary and metastatic melanoma. Methods. [18F]FPBZA was synthesized via a one-step radiofluorination in this study. The specific uptake of [18F]FPBZA was studied in B16F0 melanoma cells, A375 amelanotic melanoma cells, and NB-DNJ-pretreated B16F0 melanoma cells. The biological characterization of [18F]FPBZA was performed on mice bearing B16F0 melanoma, A375 amelanotic melanoma, or inflammation lesion. Results. [18F]FPBZA can be prepared efficiently with a yield of 40–50%. The uptake of [18F]FPBZA by B16F0 melanoma cells was significantly higher than those by A375 tumor cells and NB-DNJ-pretreated B16F0 melanoma cells. B16F0 melanoma displayed prominent uptake of [18F]FPBZA at 2 h (7.81 ± 0.82 %ID/g), compared with A375 tumor and inflammation lesion (3.00 ± 0.71 and 1.67 ± 0.56 %ID/g, resp.). [18F]FPBZA microPET scan clearly delineated B16F0 melanoma but not A375 tumor and inflammation lesion. In mice bearing pulmonary metastases, the lung radioactivity reached 4.77 ± 0.36 %ID/g at 2 h (versus 1.16 ± 0.23 %ID/g in normal mice). Conclusions. Our results suggested that [18F]FPBZA PET would provide a promising and specific approach for the detection of primary and metastatic melanoma lesions. PMID:25254219

  6. Interaction of dacarbazine and imexon, in vitro and in vivo, in human A375 melanoma cells.

    PubMed

    Samulitis, Betty K; Dorr, Robert T; Chow, H-H Sherry

    2011-09-01

    We evaluated mechanisms of interaction between the alkyating agent dacarbazine (DTIC) and the pro-oxidant, imexon, in the human A375 melanoma cell line. The effect of DTIC and imexon, alone and in combination, was evaluated for growth inhibition (MTT), radiolabeled drug uptake, cellular thiol content (HPLC), and DNA strand breaks (Comet assay). Pharmacokinetic and antitumor effects were evaluated in mice. Growth inhibition in vitro was additive with the two drugs. There was no effect on drug uptake or on the number of DNA strand breaks. There was a >75% reduction in cellular glutathione and cysteine with imexon but not DTIC. Co-administration of the two drugs in mice caused an increase in the area under the curve of both drugs, but the combination was not effective in reducing human A375 melanoma tumors in vivo. Imexon and dacarbazine show additive effects in vitro but not in vivo in human A375 melanoma cells.

  7. Fluorescence in situ detection of human cutaneous melanoma: study of diagnostic parameters of the method.

    PubMed

    Chwirot, B W; Chwirot, S; Sypniewska, N; Michniewicz, Z; Redzinski, J; Kurzawski, G; Ruka, W

    2001-12-01

    Multicenter study of the diagnostic parameters was conducted by three groups in Poland to determine if in situ fluorescence detection of human cutaneous melanoma based on digital imaging of spectrally resolved autofluorescence can be used as a tool for a preliminary selection of patients at increased risk of the disease. Fluorescence examinations were performed for 7228 pigmented lesions in 4079 subjects. Histopathologic examinations showed 56 cases of melanoma. A sensitivity of fluorescence detection of melanoma was 82.7% in agreement with 82.5% found in earlier work. Using as a reference only the results of histopathologic examinations obtained for 568 cases we found a specificity of 59.9% and a positive predictive value of 17.5% (melanomas versus all pigmented lesions) or 24% (melanomas versus common and dysplastic naevi). The specificity and positive predictive value found in this work are significantly lower than reported earlier but still comparable with those reported for typical screening programs. In conclusion, the fluorescence method of in situ detection of melanoma can be used in screening large populations of patients for a selection of patients who should be examined by specialists.

  8. Chemical-Genetic Screen Identifies Riluzole as an Enhancer of Wnt/β-catenin signaling in Melanoma

    PubMed Central

    Biechele, Travis L.; Camp, Nathan D.; Fass, Daniel M.; Kulikauskas, Rima M.; Robin, Nick C.; White, Bryan D.; Taraska, Corinne M.; Moore, Erin C.; Muster, Jeanot; Karmacharya, Rakesh; Haggarty, Stephen J.; Chien, Andy J.; Moon, Randall T.

    2010-01-01

    SUMMARY To identify new protein and pharmacological regulators of Wnt/β-catenin signaling we used a cell-based reporter assay to screen a collection of 1857 human-experienced compounds for their ability to enhance activation of the β-catenin reporter by a low concentration of WNT3A. This identified 44 unique compounds, including the FDA-approved drug riluzole, which is presently in clinical trials for treating melanoma. We found that treating melanoma cells with riluzole in vitro enhances the ability of WNT3A to regulate gene expression, to promote pigmentation, and to decrease cell proliferation. Furthermore riluzole, like WNT3A, decreases metastases in a mouse melanoma model. Interestingly, siRNAs targeting the metabotropic glutamate receptor, GRM1, a reported indirect target of riluzole, enhance β-catenin signaling. The unexpected regulation of β-catenin signaling by both riluzole and GRM1 has implications for the future uses of this drug. PMID:21095567

  9. Multifunctional particles for melanoma-targeted drug delivery.

    PubMed

    Wadajkar, Aniket S; Bhavsar, Zarna; Ko, Cheng-Yu; Koppolu, Bhanuprasanth; Cui, Weina; Tang, Liping; Nguyen, Kytai T

    2012-08-01

    New magnetic-based core-shell particles (MBCSPs) were developed to target skin cancer cells while delivering chemotherapeutic drugs in a controlled fashion. MBCSPs consist of a thermo-responsive shell of poly(N-isopropylacrylamide-acrylamide-allylamine) and a core of poly(lactic-co-glycolic acid) (PLGA) embedded with magnetite nanoparticles. To target melanoma cancer cells, MBCSPs were conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides that specifically bind to the α(5)β(3) receptors of melanoma cells. MBCSPs consist of unique multifunctional and controlled drug delivery characteristics. Specially, they can provide dual drug release mechanisms (a sustained release of drugs through degradation of PLGA core and a controlled release in response to changes in temperature via thermo-responsive polymer shell), and dual targeting mechanisms (magnetic localization and receptor-mediated targeting). Results from in vitro studies indicate that GRGDS-conjugated MBCSPs have an average diameter of 296 nm and exhibit no cytotoxicity towards human dermal fibroblasts up to 500 μg ml(-1). Further, a sustained release of curcumin from the core and a temperature-dependent release of doxorubicin from the shell of MBCSPs were observed. The particles also produced a dark contrast signal in magnetic resonance imaging. Finally, the particles were accumulated at the tumor site in a B16F10 melanoma orthotopic mouse model, especially in the presence of a magnet. Results indicate great potential of MBCSPs as a platform technology to target, treat and monitor melanoma for targeted drug delivery to reduce side effects of chemotherapeutic reagents. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Radiation-induced lung fibrosis in a tumor-bearing mouse model is associated with enhanced Type-2 immunity.

    PubMed

    Chen, Jing; Wang, Yacheng; Mei, Zijie; Zhang, Shimin; Yang, Jie; Li, Xin; Yao, Ye; Xie, Conghua

    2016-03-01

    Lung fibrosis may be associated with Type-2 polarized inflammation. Herein, we aim to investigate whether radiation can initiate a Type-2 immune response and contribute to the progression of pulmonary fibrosis in tumor-bearing animals. We developed a tumor-bearing mouse model with Lewis lung cancer to receive either radiation therapy alone or radiation combined with Th1 immunomodulator unmethylated cytosine-phosphorothioate-guanine containing oligodeoxynucleotide (CpG-ODN). The Type-2 immune phenotype in tumors and the histological grade of lung fibrosis were evaluated in mice sacrificed three weeks after irradiation. Mouse lung tissues were analyzed for hydroxyproline and the expression of Type-1/Type-2 key transcription factors (T-bet/GATA-3). The concentration of Type-1/Type-2 cytokines in serum was measured by cytometric bead array. Lung fibrosis was observed to be more serious in tumor-bearing mice than in normal mice post-irradiation. The fibrosis score in irradiated tumor-bearing mice on Day 21 was 4.33 ± 0.82, which was higher than that of normal mice (2.00 ± 0.63; P < 0.05). Hydroxyproline and GATA-3 expression were increased in the lung tissues of tumor-bearing mice following irradiation. CpG-ODN attenuated fibrosis by markedly decreasing GATA-3 expression. Serum IL-13 and IL-5 were elevated, whereas INF-γ and IL-12 expression were decreased in irradiated tumor-bearing mice. These changes were reversed after CpG-ODN treatment. Thus, Type-2 immunity in tumors appeared to affect the outcome of radiation damage and might be of interest for future studies on developing approaches in which Type-1-related immunotherapy and radiotherapy are used in combination. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  11. The mouse-human anatomy ontology mapping project.

    PubMed

    Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin

    2012-01-01

    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.

  12. The circadian clock regulates cisplatin-induced toxicity and tumor regression in melanoma mouse and human models

    PubMed Central

    Dakup, Panshak P.; Porter, Kenneth I.; Little, Alexander A.; Gajula, Rajendra P.; Zhang, Hui; Skornyakov, Elena; Kemp, Michael G.; Van Dongen, Hans P.A; Gaddameedhi, Shobhan

    2018-01-01

    Cisplatin is one of the most commonly used chemotherapeutic drugs; however, toxicity and tumor resistance limit its use. Studies using murine models and human subjects have shown that the time of day of cisplatin treatment influences renal and blood toxicities. We hypothesized that the mechanisms responsible for these outcomes are driven by the circadian clock. We conducted experiments using wild-type and circadian disrupted Per1/2−/− mice treated with cisplatin at selected morning (AM) and evening (PM) times. Wild-type mice treated in the evening showed an enhanced rate of removal of cisplatin-DNA adducts and less toxicity than the morning-treated mice. This temporal variation in toxicity was lost in the Per1/2−/− clock-disrupted mice, suggesting that the time-of-day effect is linked to the circadian clock. Observations in blood cells from humans subjected to simulated day and night shift schedules corroborated this view. Per1/2−/− mice also exhibited a more robust immune response and slower tumor growth rate, indicating that the circadian clock also influences the immune response to melanoma tumors. Our findings indicate that cisplatin chronopharmacology involves the circadian clock control of DNA repair as well as immune responses, and thus affects both cisplatin toxicity and tumor growth. This has important implications for chronochemotherapy in cancer patients, and also suggests that influencing the circadian clock (e.g., through bright light treatment) may be explored as a tool to improve patient outcomes. PMID:29581861

  13. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model.

    PubMed

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotaro; Ichimura, Eri; Enomoto, Aya; Suzuki, Yuri; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Matsuda, Hideaki; Satou, Takao; Nishida, Shozo

    2016-09-01

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. HemoHIM enhances the therapeutic efficacy of ionizing radiation treatment in tumor-bearing mice.

    PubMed

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho

    2010-02-01

    Although radiotherapy is commonly used for a variety of cancers, radiotherapy alone does not achieve a satisfactory therapeutic outcome. In this study, we examined the possibility that HemoHIM can enhance the anticancer effects of ionizing radiation (IR) in melanoma-bearing mice. The HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs-Angelica Radix, Cnidium Rhizoma, and Paeonia Radix. Anticancer effects of HemoHIM were evaluated in melanoma-bearing mice exposed to IR. IR treatment (5 Gy at 7 days after melanoma cell injection) reduced the weight of the solid tumors, and HemoHIM supplementation with IR enhanced the decreases in tumor weight (P < .03). In the melanoma-bearing mice treated with IR, HemoHIM administration also increased the activity of natural killer cells and cytotoxic T cells, although the proportions of these cells in spleen were not different. In addition, HemoHIM administration increased the interleukin-2 and tumor necrosis factor-alpha secretion from lymphocytes stimulated with concanavalin A, which seemed to contribute to the enhanced efficacy of HemoHIM in tumor-bearing mice treated with IR. In conclusion, HemoHIM may be a beneficial supplement during radiotherapy for enhancing the antitumor efficacy.

  15. Monitoring the Systemic Human Memory B Cell Compartment of Melanoma Patients for Anti-Tumor IgG Antibodies

    PubMed Central

    Gilbert, Amy E.; Karagiannis, Panagiotis; Dodev, Tihomir; Koers, Alexander; Lacy, Katie; Josephs, Debra H.; Takhar, Pooja; Geh, Jenny L. C.; Healy, Ciaran; Harries, Mark; Acland, Katharine M.; Rudman, Sarah M.; Beavil, Rebecca L.; Blower, Philip J.; Beavil, Andrew J.; Gould, Hannah J.; Spicer, James; Nestle, Frank O.; Karagiannis, Sophia N.

    2011-01-01

    Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (P<0.0001). Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (P<0.0001). Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer. PMID:21559411

  16. Combination of dacarbazine and dimethylfumarate efficiently reduces melanoma lymph node metastasis.

    PubMed

    Valero, Teresa; Steele, Silvia; Neumüller, Karin; Bracher, Andreas; Niederleithner, Heide; Pehamberger, Hubert; Petzelbauer, Peter; Loewe, Robert

    2010-04-01

    Dimethylfumarate (DMF) has been shown to reduce melanoma growth and metastasis in animal models. We addressed the question of whether DMF is as effective in its antitumor activity as the US Food and Drug Administration-approved alkylating agent dacarbazine (DTIC). We also tested the possibility of an improved antitumoral effect when both therapeutics were used together. Using our severe combined immunodeficiency (SCID) mouse model, in which xenografted human melanoma cells metastasize from primary skin sites to sentinel nodes, we show that these treatments, alone or in combination, reduce tumor growth at primary sites. Our main finding was that metastasis to sentinel nodes is significantly delayed only in mice treated with a combination of DTIC and DMF. Subsequent experiments were able to show that a combination of DTIC/DMF significantly reduced lymph vessel density in primary tumors as examined by real-time PCR and immunohistochemistry. In addition, DTIC/DMF treatment significantly impaired melanoma cell migration in vitro. In vivo, DTIC/DMF therapy significantly reduced mRNA expression and protein concentration of the promigratory chemokines CXCL2 and CXCL11. In addition, our data suggest that this xenotransplantation model is suitable for preclinical testing of various combinations of antimelanoma agents.

  17. Improved efficacy of therapeutic vaccination with viable human umbilical vein endothelial cells against murine melanoma by introduction of OK432 as adjuvant.

    PubMed

    Xu, Maolei; Xing, Yun; Zhou, Ling; Yang, Xue; Yao, Wenjun; Xiao, Wen; Ge, Chiyu; Ma, Yanjun; Yang, Jie; Wu, Jie; Cao, Rongyue; Li, Taiming; Liu, Jingjing

    2013-06-01

    Vaccination with xenogeneic or syngeneic endothelial cells targeting tumor angiogenesis is effective for inhibiting tumor growth. OK432, an effective adjuvant, was mixed with viable human umbilical vein endothelial cells (HUVECs) to prepare a novel HUVECs-OK432 vaccine, which could have an improved therapeutic efficacy. In this study, HUVECs-OK432 was administrated in mice by subcutaneous injection in a therapeutic procedure. The results showed that a stronger HUVEC-specific Abs and cytotoxic T lymphocyte immune response were elicited, which resulted in significant inhibition on the growth of B16F10 melanoma and remarkably prolonged survival of B16F10 melanoma-bearing mice compared with HUVECs. Besides, parallel results were obtained in vitro showing a stronger inhibition of HUVEC proliferation by immune sera of HUVECs-OK432 than that of HUVECs. Moreover, histochemistry and immunohistochemistry analysis showed that HUVECs-OK432 induced large areas of continuous necrosis within tumors and significantly reduced the vessel density, correlating well with the extent of tumor inhibition. Our present results suggest that OK432 could be employed as an effective adjuvant for HUVEC vaccines and therefore should be useful for adjuvant immunotherapy of cancer.

  18. microRNA-216b inhibits cell proliferation and migration in human melanoma by targeting FOXM1 in vitro and in vivo.

    PubMed

    Sun, Mengyao; Wang, Xiaopeng; Tu, Chen; Wang, Shuang; Qu, Jianqiang; Xiao, Shengxiang

    2017-12-01

    MicroRNAs (miRNAs) play an increasingly important role in cancer growth by coordinately suppressing genes that control cell migration, proliferation, and invasion. The above results can be achieved through the regulation of gene expression by miRNAs by suppressing translation or the direct sequence-specific degradation of the targeted mRNA. In the present study, we indicate that the expression of miR-216b could be effectively repressed both in human melanoma tissues through a comparison with primary melanoma and in human melanoma cell lines through a comparison with a normal human keratinocyte line. Moreover, miR-216b induced a clear decrease in melanoma cell proliferation and migration in vitro. Forkhead box M1 (FOXM1) was confirmed as a target gene of miR-216b, and the overexpression of miR-216b markedly repressed the luciferase activity of reporter plasmids containing the FOXM1 3'-UTR (untranslated region). Furthermore, miR-216b suppressed melanoma cell growth in nude mice in vivo, with the effects of miR-216b overexpression on melanoma cell growth and proliferation reversed by FOXM1 overexpression. The results demonstrated that miR-216b is a tumor suppressor in melanoma, identified the FOXM1 signaling pathway as a target of miR-216b action, and suggested a potential therapeutic role for miR-216b in melanoma. © 2017 International Federation for Cell Biology.

  19. Pigment Production Analysis in Human Melanoma Cells.

    PubMed

    Hopkin, Amelia Soto; Paterson, Elyse K; Ruiz, Rolando; Ganesan, Anand K

    2016-05-25

    The human epidermal melanocyte is a highly specialized pigmented cell that serves to protect the epidermis from ultraviolet (UV) damage through the production of melanin, or melanogenesis. Misregulation in melanogenesis leading to either hyper- or hypo-pigmentation is found in human diseases such as malasma and vitiligo. Current therapies for these diseases are largely unsuccessful and the need for new therapies is necessary. In order to identify genes and or compounds that can alter melanogenesis, methods are required that can detect changes in pigment production as well as expression of key melanogenesis transcription factors and enzymes. Here we describe methods to detect changes in melanogenesis in a human melanoma cell line, MNT-1, by (1) analyzing pigment production by measuring the absorbance of melanin present by spectrophotometry, (2) analyzing transcript expression of potent regulators of melanogenesis by qunatitative reverse-transcription (RT)PCR and (3) analyzing protein expression of potent regulators of melanogenesis by Western blot (WB).

  20. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence

    PubMed Central

    Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S.

    2018-01-01

    Species’ distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a) occurrence of grizzly bears and black bears relative to habitat variables (b) occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c) temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for motorised

  1. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence.

    PubMed

    Ladle, Andrew; Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S

    2018-01-01

    Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a) occurrence of grizzly bears and black bears relative to habitat variables (b) occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c) temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for motorised

  2. Development and function of human innate immune cells in a humanized mouse model.

    PubMed

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  3. Development and function of human innate immune cells in a humanized mouse model

    PubMed Central

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.

    2014-01-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240

  4. Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma.

    PubMed Central

    Altomonte, M.; Montagner, R.; Fonsatti, E.; Colizzi, F.; Cattarossi, I.; Brasoveanu, L. I.; Nicotra, M. R.; Cattelan, A.; Natali, P. G.; Maio, M.

    1996-01-01

    Human endoglin (CD105) is a member of the transforming growth factor beta (TGF-beta) receptor family that binds TGF-beta1 and -beta3, but not TGF-beta2, on human endothelial cells. Immunohistochemical analyses demonstrated that CD105 is expressed on normal and neoplastic cells of the melanocytic lineage. The anti-CD105 MAb, MAEND3, stained 50, 25 and 34% of intradermal naevi, primary and metastatic melanomas investigated, respectively, and nine out of 12 melanoma cell lines. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that CD105 expressed by melanoma cells consists of a homodimeric protein with an apparent molecular weight of 180 and 95 kDa under non-reducing and reducing conditions. Cross-linking of 125I-labelled TGF-beta1 to melanoma cells, Mel 97, by disuccinimidyl suberate (DSS) demonstrated that CD105 expressed on pigmented cells binds TGF-beta1; the pattern of binding of TGF-beta1 to melanoma cells was found to be similar to that of human umbilical vein endothelial cells. The addition of exogenous, bioactive TGF-beta1 significantly (P<0.05) inhibited the growth of CD105-positive melanoma cells, Mel 97, but did not affect that of CD105-negative melanoma cells, F0-1. These data, altogether, demonstrate that CD105 is expressed on pigmented cells and might play a functionally relevant role in the biology of human melanoma cells by regulating their sensitivity to TGF-betas. Images Figure 1 Figure 3 Figure 4 PMID:8932339

  5. UVA Irradiation Enhances Brusatol-Mediated Inhibition of Melanoma Growth by Downregulation of the Nrf2-Mediated Antioxidant Response

    PubMed Central

    Wang, Mei; Shi, Guangwei; Bian, Chunxiang; Nisar, Muhammad Farrukh; Guo, Yingying; Wu, Yan; Li, Wei; Huang, Xiao; Jiang, Xuemei; Bartsch, Jörg W.

    2018-01-01

    Brusatol (BR) is a potent inhibitor of Nrf2, a transcription factor that is highly expressed in cancer tissues and confers chemoresistance. UVA-generated reactive oxygen species (ROS) can damage both normal and cancer cells and may be of potential use in phototherapy. In order to provide an alternative method to treat the aggressive melanoma, we sought to investigate whether low-dose UVA with BR is more effective in eliminating melanoma cells than the respective single treatments. We found that BR combined with UVA led to inhibition of A375 melanoma cell proliferation by cell cycle arrest in the G1 phase and triggers cell apoptosis. Furthermore, inhibition of Nrf2 expression attenuated colony formation and tumor development from A375 cells in heterotopic mouse models. In addition, cotreatment of UVA and BR partially suppressed Nrf2 and its downstream target genes such as HO-1 along with the PI3K/AKT pathway. We propose that cotreatment increased ROS-induced cell cycle arrest and cellular apoptosis and inhibits melanoma growth by regulating the AKT-Nrf2 pathway in A375 cells which offers a possible therapeutic intervention strategy for the treatment of human melanoma. PMID:29670684

  6. Overexpression of the anti-apoptotic protein BAG3 in human choroidal melanoma: A case report.

    PubMed

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Kondo, Takashi; Ishii, Yoko; Hayashi, Atsushi

    2017-06-01

    Bcl-2-associated athanogene 3 (BAG3), a co-chaperone of heat shock protein 70 (HSP70), exerts anti-apoptotic effects in various malignant tumors. However, relationships between choroidal melanoma and BAG3 are poorly studied. This study investigated the expression of BAG3 in a case of human choroidal melanoma. Funduscopy, computed tomography, and single-photon emission computed tomography with the intravenous injection of N-isopropyl-p-[ 123 I] iodoamphetamine strongly indicated choroidal melanoma in a 68-year-old woman. Accordingly, we carried out an enucleation and pathological diagnosis. Proteins and total RNA were extracted from normal retinochoroidal and tumor tissues. Proteins were also extracted from ocular nevus tissues of other patients. We examined the expression of BAG3 protein and mRNA using Western blotting and the real-time quantitative polymerase chain reaction, respectively. Immunohistochemical stains were positive for melan-A, HMB-45, and S-100. Histopathology confirmed a choroidal melanoma. The expression of BAG3 protein and mRNA in the choroidal melanoma tissue was upregulated with respect to both normal retinochoroidal tissue and ocular nevus tissues from other patients. Because BAG3 may inhibit apoptosis of choroidal melanoma and facilitate its survival, overexpression of this gene product may be a prognostic marker and therapeutic target.

  7. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo

    NASA Astrophysics Data System (ADS)

    Yin, Di; Li, Yang; Lin, Hang; Guo, Baofeng; Du, Yanwei; Li, Xin; Jia, Huijie; Zhao, Xuejian; Tang, Jun; Zhang, Ling

    2013-03-01

    Graphene oxide (GO) has attracted intensive interest in the biomedical field in recent years. We investigate whether the use of functional graphene oxide as an efficient delivery system for delivering specific molecular antitumor therapeutics in vivo could achieve a more excellent antitumor effect. Constitutive activation of signal transducer and activator of transcription 3 (Stat3) promotes survival in a wide spectrum of human cancers. In this paper, we study the in vivo behavior of graphene oxide chemically functionalized with polyethylenimine and polyethylene glycol (GO-PEI-PEG) as a plasmid-based Stat3-specific small interfering RNA (siRNA) carrier in mouse malignant melanoma. The in vivo results indicate significant regression in tumor growth and tumor weight after plasmid-based Stat3 siRNA delivered by GO-PEI-PEG treatment. Moreover, there was no significant side effect from GO-PEI-PEG treatment according to histological examination and blood chemistry analysis in mice. Thus, our work is the first success of using GO-PEI-PEG as a promising carrier for plasmid Stat3 siRNA delivery and down-regulation of Stat3 by a polymer-mediated vehicle and suggests the great promise of graphene in biomedical applications such as cancer treatment.

  9. FOXP3 expression is modulated by TGF-β1/NOTCH1 pathway in human melanoma

    PubMed Central

    Skarmoutsou, Eva; Bevelacqua, Valentina; D'Amico, Fabio; Russo, Angela; Spandidos, Demetrios A.; Scalisi, Aurora

    2018-01-01

    Forkhead box protein 3 (FOXP3) transcription factor is expressed by immune cells and several human cancers and is associated with tumor aggressiveness and unfavorable clinical outcomes. NOTCH and transforming growth factor-β (TGF-β) protumorigenic effects are mediated by FOXP3 expression in several cancer models; however, their interaction and role in melanoma is unknown. We investigated TGF-β-induced FOXP3 gene expression during NOTCH1 signaling inactivation. Primary (WM35) and metastatic melanoma (A375 and A2058) cell lines and normal melanocytes (NHEM) were used. FOXP3 subcellular distribution was evaluated by immuno cytochemical analysis. Gene expression levels were assessed by reverse transcription-quantitative polymerase chain reaction. Protein levels were assessed by western blot analysis. The γ-secretase inhibitor (GSI) was used for NOTCH1 inhibition and recombinant human (rh)TGF-β was used for melanoma cell stimulation. Cell proliferation and viability were respectively assessed by MTT and Trypan blue dye assays. FOXP3 mRNA and protein levels were progressively higher in WM35, A375 and A2058 cell lines compared to NHEM and their levels were further increased after stimulation with rh-TGF-β. TGF-β-mediated FOXP3 expression was mediated by NOTCH1 signaling. Inhibition of NOTCH1 with concomitant rh-TGF-β stimulation determined the reduction in gene expression and protein level of FOXP3. Finally, melanoma cell line proliferation and viability were reduced by NOTCH1 inhibition. The results show that nn increase in FOXP3 expression in metastatic melanoma cell lines is a potential marker of tumor aggressiveness and metastasis. NOTCH1 is a central mediator of TGF-β-mediated FOXP3 expression and NOTCH1 inhibition produces a significant reduction of melanoma cell proliferation and viability. PMID:29620159

  10. Optimizing the Targeting of Mouse Parvovirus 1 to Murine Melanoma Selects for Recombinant Genomes and Novel Mutations in the Viral Capsid Gene

    PubMed Central

    Marr, Matthew; D’Abramo, Anthony; Agbandje-McKenna, Mavis; Cotmore, Susan; Tattersall, Peter

    2018-01-01

    Combining virus-enhanced immunogenicity with direct delivery of immunomodulatory molecules would represent a novel treatment modality for melanoma, and would require development of new viral vectors capable of targeting melanoma cells preferentially. Here we explore the use of rodent protoparvoviruses targeting cells of the murine melanoma model B16F10. An uncloned stock of mouse parvovirus 1 (MPV1) showed some efficacy, which was substantially enhanced following serial passage in the target cell. Molecular cloning of the genes of both starter and selected virus pools revealed considerable sequence diversity. Chimera analysis mapped the majority of the improved infectivity to the product of the major coat protein gene, VP2, in which linked blocks of amino acid changes and one or other of two apparently spontaneous mutations were selected. Intragenic chimeras showed that these represented separable components, both contributing to enhanced infection. Comparison of biochemical parameters of infection by clonal viruses indicated that the enhancement due to changes in VP2 operates after the virus has bound to the cell surface and penetrated into the cell. Construction of an in silico homology model for MPV1 allowed placement of these changes within the capsid shell, and revealed aspects of the capsid involved in infection initiation that had not been previously recognized. PMID:29385689

  11. [Endocrine factors influencing melanoma progression].

    PubMed

    Dobos, Judit

    2009-03-01

    According to recent findings that beside cancers traditionally considered as hormone-dependent, several other tumor types show different behavior in the two sexes, indicating the possible role of endocrine factors in the course of these diseases. The possibility that endocrine factors may influence the clinical course of human malignant melanoma is suggested by the higher survival rate in premenopausal vs. postmenopausal women or men of any ages. However, investigations on the sex hormone receptor status of human cutaneous melanomas and experiments attempting to support the epidemiological results yielded conflicting results. In our human melanoma cell lines we failed to detect steroid receptors at protein level, while quantitative PCR demonstrated that their mRNA expression level was orders of magnitude lower compared to the positive control cell lines. Sex hormones did not influence the in vitro features of the human melanoma cells considerably. On the other hand, glucocorticoid receptor was present both at mRNA and protein level, although dexamethasone was effective in vitro only at high doses. Our previous experiments showed that intrasplenic injection of human melanoma cells resulted in a significantly higher number of liver colonies in male than in female SCID mice. We now show that this difference evolves during the first day. After injection into the tail vein we did not observe gender-dependent difference in the efficiency of pulmonary colonization. Examining the pattern of metastasis formation after intracardiac injection, we have found differences between the two sexes in the incidence or number of colonies only in the case of the liver but not in other organs. We concluded that the observed phenomenon is specific to the liver; therefore we investigated the effects of 2-methoxyestradiol, an endogenous metabolite of estradiol produced mainly in the liver, with an estrogen receptor-independent antitumor activity. 2ME2 effectively inhibited melanoma cell

  12. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells.

    PubMed

    Zhao, Guangming; Han, Xiaodong; Cheng, Wei; Ni, Jing; Zhang, Yunfei; Lin, Jingrong; Song, Zhiqi

    2017-04-01

    Malignant melanoma is the most invasive and fatal form of cutaneous cancer. Moreover it is extremely resistant to conventional chemotherapy and radiotherapy. Apigenin, a non-mutagenic flavonoid, has been found to exhibit chemopreventive and/or anticancerogenic properties in many different types of human cancer cells. Therefore, apigenin may have particular relevance for development as a chemotherapeutic agent for cancer treatment. In the present study, we investigated the effects of apigenin on the viability, migration and invasion potential, dendrite morphology, cell cycle distribution, apoptosis, phosphorylation of the extracellular signal-regulated protein kinase (ERK) and the AKT/mTOR signaling pathway in human melanoma A375 and C8161 cell lines in vitro. Apigenin effectively suppressed the proliferation of melanoma cells in vitro. Moreover, it inhibited cell migration and invasion, lengthened the dendrites, and induced G2/M phase arrest and apoptosis. Furthermore, apigenin promoted the activation of cleaved caspase-3 and cleaved PARP proteins and decreased the expression of phosphorylated (p)‑ERK1/2 proteins, p-AKT and p-mTOR. Consequently, apigenin is a novel therapeutic candidate for melanoma.

  13. In vivo pump-probe microscopy of melanoma and pigmented lesions

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Degan, Simone; Mitropoulos, Tanya; Selim, M. Angelica; Zhang, Jennifer Y.; Warren, Warren S.

    2012-03-01

    A growing number of dermatologists and pathologists are concerned that the rapidly rising incidence of melanoma reflects not a true 'epidemic' but an increasing tendency to overdiagnose pigmented lesions. Addressing this problem requires both a better understanding of early-stage melanoma and new diagnostic criteria based on more than just cellular morphology and architecture. Here we present a method for in-vivo optical microscopy that utilizes pump-probe spectroscopy to image the distribution of the two forms of melanin in skin: eumelanin and pheomelanin. Images are acquired in a scanning microscope with a sensitive modulation transfer technique by analyzing back-scattered probe light with a lock-in amplifier. Early-stage melanoma is studied in a human skin xenografted mouse model. Individual melanocytes have been observed, in addition to pigmented keratinocytes. Combining the pump-probe images simultaneously with other noninvasive laser microscopy methods (confocal reflectance, multiphoton autofluorescence, and second harmonic generation) allows visualization of the skin architecture, framing the functional pump-probe image in the context of the surrounding tissue morphology. It is found that pump-probe images of melanin can be acquired with low peak intensities, enabling wide field-of-view pigmentation surveys. Finally, we investigate the diagnostic potential of the additional chemical information available from pump-probe microscopy.

  14. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown butmore » our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.« less

  15. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carryingmore » humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.« less

  16. Melanocytoma-like melanoma may be the missing link between benign and malignant uveal melanocytic lesions in humans and dogs: a comparative study.

    PubMed

    Zoroquiain, Pablo; Mayo-Goldberg, Erin; Alghamdi, Sarah; Alhumaid, Sulaiman; Perlmann, Eduardo; Barros, Paulo; Mayo, Nancy; Burnier, Miguel N

    2016-12-01

    The cutoff presented in the current classification of canine melanocytic lesions by Wilcock and Pfeiffer is based on the clinical outcome rather than morphological concepts. Classification of tumors based on morphology or molecular signatures is the key to identifying new therapies or prognostic factors. Therefore, the aim of this study was to analyze morphological findings in canine melanocytic lesions based on classic malignant morphologic principles of neoplasia and to compare these features with human uveal melanoma (HUM) samples. In total, 64 canine and 111 human morphologically malignant melanocytic lesions were classified into two groups (melanocytoma-like or classic melanoma) based on the presence or absence of M cells, respectively. Histopathological characteristics were compared between the two groups using the χ-test, t-test, and multivariate discriminant analysis. Among the 64 canine tumors, 28 (43.7%) were classic and 36 (56.3%) were melanocytoma-like melanomas. Smaller tumor size, a higher degree of pigmentation, and lower mitotic activity distinguished melanocytoma-like from classic tumors with an accuracy of 100% for melanocytoma-like lesions. From the human series, only one case showed melanocytoma-like features and had a low risk for metastasis characteristics. Canine uveal melanoma showed a morphological spectrum with features similar to the HUM counterpart (classic melanoma) and overlapped features between uveal melanoma and melanocytoma (melanocytoma-like melanoma). Recognition that the subgroup of melanocytoma-like melanoma may represent the missing link between benign and malignant lesions could help explain the progression of uveal melanoma in dogs; these findings can potentially be translated to HUM.

  17. Spectrophotometric Method for Differentiation of Human Skin Melanoma. I. Optical Diffuse Reflection Coefficient

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.

    2016-03-01

    We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.

  18. Effect of Modified Alkaline Supplementation on Syngenic Melanoma Growth in CB57/BL Mice.

    PubMed

    Azzarito, Tommaso; Lugini, Luana; Spugnini, Enrico Pierluigi; Canese, Rossella; Gugliotta, Alessio; Fidanza, Stefano; Fais, Stefano

    2016-01-01

    Tumor extracellular acidity is a hallmark of malignant cancers. Thus, in this study we evaluated the effects of the oral administration of a commercially available water alkalizer (Basenpulver®) (BP) on tumor growth in a syngenic melanoma mouse model. The alkalizer was administered daily by oral gavage starting one week after tumor implantation in CB57/BL mice. Tumors were calipered and their acidity measured by in vivo MRI guided 31P MRS. Furthermore, urine pH was monitored for potential metabolic alkalosis. BP administration significantly reduced melanoma growth in mice; the optimal dose in terms of tolerability and efficacy was 8 g/l (p< 0.05). The in vivo results were supported by in vitro experiments, wherein BP-treated human and murine melanoma cell cultures exhibited a dose-dependent inhibition of tumor cell growth. This investigation provides the first proof of concept that systemic buffering can improve tumor control by itself and that this approach may represent a new strategy in prevention and/or treatment of cancers.

  19. Effect of Modified Alkaline Supplementation on Syngenic Melanoma Growth in CB57/BL Mice

    PubMed Central

    Spugnini, Enrico Pierluigi; Canese, Rossella; Gugliotta, Alessio; Fidanza, Stefano; Fais, Stefano

    2016-01-01

    Tumor extracellular acidity is a hallmark of malignant cancers. Thus, in this study we evaluated the effects of the oral administration of a commercially available water alkalizer (Basenpulver®) (BP) on tumor growth in a syngenic melanoma mouse model. The alkalizer was administered daily by oral gavage starting one week after tumor implantation in CB57/BL mice. Tumors were calipered and their acidity measured by in vivo MRI guided 31P MRS. Furthermore, urine pH was monitored for potential metabolic alkalosis. BP administration significantly reduced melanoma growth in mice; the optimal dose in terms of tolerability and efficacy was 8 g/l (p< 0.05). The in vivo results were supported by in vitro experiments, wherein BP-treated human and murine melanoma cell cultures exhibited a dose-dependent inhibition of tumor cell growth. This investigation provides the first proof of concept that systemic buffering can improve tumor control by itself and that this approach may represent a new strategy in prevention and/or treatment of cancers. PMID:27447181

  20. Bear-human interactions at Glacier Bay National Park and Preserve: Conflict risk assessment

    USGS Publications Warehouse

    Smith, Tom S.; DeBruyn, Terry D.; Lewis, Tania; Yerxa, Rusty; Partridge, Steven T.

    2003-01-01

    Many bear-human conflicts have occurred in Alaska parks and refuges, resulting in area closures, property damage, human injury, and loss of life. Human activity in bear country has also had negative and substantial consequences for bears: disruption of their natural activity patterns, displacement from important habitats, injury, and death. It is unfortunate for both people and bears when conflicts occur. Fortunately, however, solutions exist for reducing, and in some instances eliminating, bear-human conflict. This article presents ongoing work at Glacier Bay National Park and Preserve by U.S. Geological Survey (USGS) and National Park Service scientists who are committed to finding solutions for the bear-human conflicts that periodically occurs there.

  1. In Vivo High-Frequency, Contrast-Enhanced Ultrasonography of Uveal Melanoma in Mice: Imaging Features and Histopathologic Correlations

    PubMed Central

    Zhang, Qing; Yang, Hua; Kang, Shin J.; Wang, Yanggan; Wang, Geoffrey D.; Coulthard, Tonya

    2011-01-01

    Purpose. To evaluate the usefulness of in vivo imaging of uveal melanoma in mice using high-frequency contrast-enhanced ultrasound (HF-CE-US) with 2D or 3D modes and to correlate the sonographic findings with histopathologic characteristics. Methods. Fourteen 12-week-old C57BL6 mice were inoculated into their right eyes with aliquots of 5 × 105/2.5 μL B16LS9 melanoma cells and were randomly assigned to either of two groups. At 7 days after inoculation, tumor-bearing eyes in group 1 (n = 8) were imaged using HF-CE-US to determine the 2D tumor size and relative blood volume; eyes in group 2 (n = 6) were imaged by 3D microbubble contrast-enhanced ultrasound, and the tumor volume was determined. Histologic tumor burden was quantified in enucleated eyes by image processing software, and microvascular density was determined by counting von Willebrand factor-positive vascular channels. Ultrasound images were evaluated and compared with histopathologic findings. Results. Using HF-CE-US, melanomas were visualized as relatively hyperechoic regions. The intraobserver variability of sonographic measurements was 9.65% ± 7.89%, and the coefficient of variation for multiple measurements was 7.33% ± 5.71%. The correlation coefficient of sonographic volume or size and histologic area was 0.71 (P = 0.11) and 0.79 (P = 0.32). The relative blood volume within the tumor demonstrated sonographically correlated significantly with histologic tumor vascularity (r = 0.83; P < 0.001). Conclusions. There was a positive linear correlation between sonographic tumor measurements and histologic tumor burden in the mouse ocular melanoma model. Contrast-enhanced intensity corresponded with microvascular density and blood volume. HF-CE-US is a real-time, noninvasive, reliable method for in vivo evaluation of experimental intraocular melanoma tumor area and relative blood volume. PMID:21245408

  2. [Knockdown of indoleamine 2, 3-dioxygenase 2 (IDO2)gene inhibits tumor growth and enhances immune function in mice bearing melanoma].

    PubMed

    Liu, Yanling; Liu, Huan; Xiang, Yingqing; Chen, Xiaoyan; Xu, Ping; Min, Weiping

    2017-12-01

    Objective To study the role of indoleamine 2, 3-dioxygenase 2 (IDO2) in anti-tumor therapy and its effect on the immune response when using IDO2 as therapeutic target. Methods B16-BL6 cells were used to construct mouse xenografted melanoma model. IDO2-shRNA that contained IDO2-siRNA or control shRNA (scrambled-shRNA) was injected hydrodynamically via the tail vein to treat melanoma. The tumor size was measured by vernier caliper. Flow cytometry was performed to analyze the percentage of regulatory T cells (Tregs), T cell apoptosis rate in draining lymph nodes and the expressions of co-stimulatory molecules on splenic dendritic cells (DCs) from different treatment groups. The lactate dehydrogenase (LDH) assay was used to determine the CD8 + cytotoxic T lymphocyte (CTL) activity. The serum levels of tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ) were detected by ELISA. Results In the IDO2-shRNA treated group, the tumor formation time was delayed, tumor grew slowly, and excised tumor mass was significantly reduced. IDO2-shRNA treatment also decreased the percentage of Tregs and T cell apoptosis in draining lymph nodes and increased the expressions of co-stimulatory molecules CD80 and CD86 on splenic DCs. The capacity of CD8 + T cells to kill B16-BL6 cells was enhanced and the serum levels of TNF-α and IFN-γ were upregulated. Conclusion Silencing IDO2 can effectively inhibit the growth of melanoma and improve the anti-tumor immune response in vivo.

  3. Phenformin Inhibits Myeloid-Derived Suppressor Cells and Enhances the Anti-Tumor Activity of PD-1 Blockade in Melanoma.

    PubMed

    Kim, Sun Hye; Li, Man; Trousil, Sebastian; Zhang, Yaqing; Pasca di Magliano, Marina; Swanson, Kenneth D; Zheng, Bin

    2017-08-01

    Biguanides, such as the diabetes therapeutics metformin and phenformin, have shown antitumor activity both in vitro and in vivo. However, their potential effects on the tumor microenvironment are largely unknown. Here we report that phenformin selectively inhibits granulocytic myeloid-derived suppressor cells in spleens of tumor-bearing mice and ex vivo. Phenformin induces production of reactive oxygen species in granulocytic myeloid-derived suppressor cells, whereas the antioxidant N-acetylcysteine attenuates the inhibitory effects of phenformin. Co-treatment of phenformin enhances the effect of anti-PD-1 antibody therapy on inhibiting tumor growth in the BRAF V600E/PTEN-null melanoma mouse model. Combination of phenformin and anti PD-1 cooperatively induces CD8 + T-cell infiltration and decreases levels of proteins that are critical for immune suppressive activities of myeloid-derived suppressor cells. Our findings show a selective, inhibitory effect of phenformin on granulocytic myeloid-derived suppressor cell-driven immune suppression and support that phenformin improves the anti-tumor activity of PD-1 blockade immunotherapy in melanoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines

    PubMed Central

    Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-01-01

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma. PMID:20422010

  5. c-RET molecule in malignant melanoma from oncogenic RET-carrying transgenic mice and human cell lines.

    PubMed

    Ohshima, Yuichiro; Yajima, Ichiro; Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-04-21

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma.

  6. Inducible nitric oxide synthase (iNOS) drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2

    PubMed Central

    Lopez-Rivera, Esther; Jayaraman, Padmini; Parikh, Falguni; Davies, Michael A.; Ekmekcioglu, Suhendan; Izadmehr, Sudeh; Milton, Denái R.; Chipuk, Jerry E.; Grimm, Elizabeth A.; Estrada, Yeriel; Aguirre-Ghiso, Julio; Sikora, Andrew G.

    2014-01-01

    Melanoma is one of the cancers of fastest-rising incidence in the world. iNOS is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K/AKT/mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p-P70S6K, p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of TSC2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Rheb, a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of mTOR pathway members. Exogenously-supplied NO was also sufficient to reverse mTOR pathway inhibition by the B-Raf inhibitor Vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers. PMID:24398473

  7. HBV life cycle is restricted in mouse hepatocytes expressing human NTCP.

    PubMed

    Li, Hanjie; Zhuang, Qiuyu; Wang, Yuze; Zhang, Tianying; Zhao, Jinghua; Zhang, Yali; Zhang, Junfang; Lin, Yi; Yuan, Quan; Xia, Ningshao; Han, Jiahuai

    2014-03-01

    Recent studies have revealed that human sodium taurocholate cotransporting polypeptide (SLC10A1 or NTCP) is a functional cellular receptor for hepatitis B virus (HBV). However, whether human NTCP can support HBV infection in mouse hepatocyte cell lines has not been clarified. Because an HBV-permissible mouse model would be helpful for the study of HBV pathogenesis, it is necessary to investigate whether human NTCP supports the susceptibility of mouse hepatocyte cell lines to HBV. The results show that exogenous human NTCP expression can render non-susceptible HepG2 (human), Huh7 (human), Hepa1-6 (mouse), AML-12 (mouse) cell lines and primary mouse hepatocyte (PMH) cells susceptible to hepatitis D virus (HDV) which employs HBV envelope proteins. However, human NTCP could only introduce HBV susceptibility in human-derived HepG2 and Huh7 cells, but not in mouse-derived Hepa1-6, AML-12 or PMH cells. These data suggest that although human NTCP is a functional receptor that mediates HBV infection in human cells, it cannot support HBV infection in mouse hepatocytes. Our study indicated that the restriction of HBV in mouse hepatocytes likely occurs after viral entry but prior to viral transcription. We have excluded the role of mouse hepatocyte nuclear factors in the restriction of the HBV life cycle and showed that knockdown or inhibition of Sting, TBK1, IRF3 or IRF7, the components of the anti-viral signaling pathways, had no effect on HBV infection in mouse hepatocytes. Therefore, murine restriction factors that limit HBV infection need to be identified before a HBV-permissible mouse line can be created.

  8. Finding mouse models of human lymphomas and leukemia's using the Jackson laboratory mouse tumor biology database.

    PubMed

    Begley, Dale A; Sundberg, John P; Krupke, Debra M; Neuhauser, Steven B; Bult, Carol J; Eppig, Janan T; Morse, Herbert C; Ward, Jerrold M

    2015-12-01

    Many mouse models have been created to study hematopoietic cancer types. There are over thirty hematopoietic tumor types and subtypes, both human and mouse, with various origins, characteristics and clinical prognoses. Determining the specific type of hematopoietic lesion produced in a mouse model and identifying mouse models that correspond to the human subtypes of these lesions has been a continuing challenge for the scientific community. The Mouse Tumor Biology Database (MTB; http://tumor.informatics.jax.org) is designed to facilitate use of mouse models of human cancer by providing detailed histopathologic and molecular information on lymphoma subtypes, including expertly annotated, on line, whole slide scans, and providing a repository for storing information on and querying these data for specific lymphoma models. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis

    PubMed Central

    von Scheidt, Moritz; Zhao, Yuqi; Kurt, Zeyneb; Pan, Calvin; Zeng, Lingyao; Yang, Xia; Schunkert, Heribert; Lusis, Aldons J.

    2017-01-01

    Most of the biological understanding of mechanisms underlying coronary artery disease (CAD) derives from studies of mouse models. The identification of multiple CAD loci and strong candidate genes in large human genome-wide association studies (GWAS) presented an opportunity to examine the relevance of mouse models for the human disease. We comprehensively reviewed the mouse literature, including 827 literature-derived genes, and compared it to human data. First, we observed striking concordance of risk factors for atherosclerosis in mice and humans. Second, there was highly significant overlap of mouse genes with human genes identified by GWAS. In particular, of the 46 genes with strong association signals in CAD-GWAS that were studied in mouse models all but one exhibited consistent effects on atherosclerosis-related phenotypes. Third, we compared 178 CAD-associated pathways derived from human GWAS with 263 from mouse studies and observed that over 50% were consistent between both species. PMID:27916529

  10. Etiology of melanoma.

    PubMed

    Koh, H K; Sinks, T H; Geller, A C; Miller, D R; Lew, R A

    1993-01-01

    Although the precise etiology of melanoma remains unknown, much data link sunlight to melanoma. The imperfect evidence associating sun exposure (particularly UVB radiation) with melanoma emerges from human data, obviating problems inherent in extrapolation from animal and other models. However, the mechanism by which sunlight might possibly initiate or promote melanoma remains obscure. Some clarification should emerge from the potential isolation of genes that carry susceptibility to melanoma in families prone to the disease; such work could serve as a basis to distinguish genetic and environmental influences in melanoma [167]. Continued studies of faulty DNA repair in XP patients may elucidate the steps in mutagenesis and carcinogenesis. Future case-control studies must address the limits on the accuracy of recall and the limits on statistical methods to separate the cluster of phenotypic risk needed in determining biologically effective dose. Animal and in vitro studies must contribute more insight. Further research in the South American opossum models appears promising [72]. Although ozone depletion has been documented, there has been little definitive evidence of subsequent increase of UVB at the Earth's surface. Nevertheless, the threat posed by ozone depletion deserves continued environmental action and public education. The role of precursor lesions, particularly dysplastic nevi/atypical moles, must be clarified with future research. The distribution of melanoma among various work forces suggests that occupational risk factors may play an important role in the etiology of this disease [168-170]. The consistent reports of excess melanoma among accountants, clerical workers, professional workers, and teachers deserve further study. Furthermore, evidence of excesses in printing and press, petrochemical, and the telecommunications industries require follow-up. Carefully planned studies that account for nonoccupational risk factors are recommended. Research over

  11. Expression signatures of early-stage and advanced medaka melanomas.

    PubMed

    Klotz, Barbara; Kneitz, Susanne; Regensburger, Martina; Hahn, Lena; Dannemann, Michael; Kelso, Janet; Nickel, Birgit; Lu, Yuan; Boswell, William; Postlethwait, John; Warren, Wesley; Kunz, Manfred; Walter, Ronald B; Schartl, Manfred

    2018-06-01

    Melanoma is one of the most aggressive tumors with a very low survival rate once metastasized. The incidence of newly detected cases increases every year suggesting the necessity of development and application of innovative treatment strategies. Human melanoma develops from melanocytes localized in the epidermis of the skin to malignant tumors because of deregulated effectors influencing several molecular pathways. Despite many advances in describing the molecular changes accompanying melanoma formation, many critical and clinically relevant molecular features of the transformed pigment cells and the underlying mechanisms are largely unknown. To contribute to a better understanding of the molecular processes of melanoma formation, we use a transgenic medaka melanoma model that is well suited for the investigation of melanoma tumor development because fish and human melanocytes are both localized in the epidermis. The purpose of our study was to gain insights into melanoma development from the first steps of tumor formation up to melanoma progression and to identify gene expression patterns that will be useful for monitoring treatment effects in drug screening approaches. Comparing transcriptomes from juvenile fish at the tumor initiating stage with nevi and advanced melanoma of adults, we identified stage specific expression signatures and pathways that are characteristic for the development of medaka melanoma, and are also found in human malignancies. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Tumor Cell Plasticity in Uveal Melanoma

    PubMed Central

    Folberg, Robert; Arbieva, Zarema; Moses, Jonas; Hayee, Amin; Sandal, Tone; Kadkol, ShriHari; Lin, Amy Y.; Valyi-Nagy, Klara; Setty, Suman; Leach, Lu; Chévez-Barrios, Patricia; Larsen, Peter; Majumdar, Dibyen; Pe’er, Jacob; Maniotis, Andrew J.

    2006-01-01

    The histological detection of laminin-rich vasculogenic mimicry patterns in human primary uveal melanomas is associated with death from metastases. We therefore hypothesized that highly invasive uveal melanoma cells forming vasculogenic mimicry patterns after exposure to a laminin-rich three-dimensional microenvironment would differentially express genes associated with invasive and metastatic behavior. However, we discovered that genes associated with differentiation (GDF15 and ATF3) and suppression of proliferation (CDKNa1/p21) were up-regulated in highly invasive uveal melanoma cells forming vasculogenic mimicry patterns, and genes associated with promotion of invasive and metastatic behavior such as CD44, CCNE2 (cyclin E2), THBS1 (thrombospondin 1), and CSPG2 (chondroitin sulfate proteoglycan; versican) were down-regulated. After forming vasculogenic mimicry patterns, uveal melanoma cells invaded only short distances, failed to replicate, and changed morphologically from the invasive epithelioid to the indolent spindle A phenotype. In human tissue samples, uveal melanoma cells within vasculogenic mimicry patterns assumed the spindle A morphology, and the expression of Ki67 was significantly reduced in adjacent melanoma cells. Thus, the generation of vasculogenic mimicry patterns is accompanied by dampening of the invasive and metastatic uveal melanoma genotype and phenotype and underscores the plasticity of these cells in response to cues from the microenvironment. PMID:17003493

  13. Epigenetic regulation in human melanoma: past and future.

    PubMed

    Sarkar, Debina; Leung, Euphemia Y; Baguley, Bruce C; Finlay, Graeme J; Askarian-Amiri, Marjan E

    2015-01-01

    The development and progression of melanoma have been attributed to independent or combined genetic and epigenetic events. There has been remarkable progress in understanding melanoma pathogenesis in terms of genetic alterations. However, recent studies have revealed a complex involvement of epigenetic mechanisms in the regulation of gene expression, including methylation, chromatin modification and remodeling, and the diverse activities of non-coding RNAs. The roles of gene methylation and miRNAs have been relatively well studied in melanoma, but other studies have shown that changes in chromatin status and in the differential expression of long non-coding RNAs can lead to altered regulation of key genes. Taken together, they affect the functioning of signaling pathways that influence each other, intersect, and form networks in which local perturbations disturb the activity of the whole system. Here, we focus on how epigenetic events intertwine with these pathways and contribute to the molecular pathogenesis of melanoma.

  14. Immunotherapy of metastatic melanoma by reversal of immune suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biggs, M.W.; Eiselein, J.E.

    1997-01-01

    Beginning with the observation that the human enteorvirus, Poliovirus Sabin 1, will lyse human melanoma cells in culture, clinical trials involving two patients with advance melanoma were performed. Parenteral injection of the viable Poliovirus into cutaneous melanoma metastases followed in 24 hours by oral administration of cyclophosphamide. The results of these two trials are described.

  15. Irreversible Electroporation of Human Primary Uveal Melanoma in Enucleated Eyes

    PubMed Central

    Mandel, Yossi; Laufer, Shlomi; Belkin, Michael; Rubinsky, Boris; Pe'er, Jacob; Frenkel, Shahar

    2013-01-01

    Uveal melanoma (UM) is the most common primary intraocular tumor in adults and is characterized by high rates of metastatic disease. Although brachytherapy is the most common globe-sparing treatment option for small- and medium-sized tumors, the treatment is associated with severe adverse reactions and does not lead to increased survival rates as compared to enucleation. The use of irreversible electroporation (IRE) for tumor ablation has potential advantages in the treatment of tumors in complex organs such as the eye. Following previous theoretical work, herein we evaluate the use of IRE for uveal tumor ablation in human ex vivo eye model. Enucleated eyes of patients with uveal melanoma were treated with short electric pulses (50–100 µs, 1000–2000 V/cm) using a customized electrode design. Tumor bioimpedance was measured before and after treatment and was followed by histopathological evaluation. We found that IRE caused tumor ablation characterized by cell membrane disruption while sparing the non-cellular sclera. Membrane disruption and loss of cellular capacitance were also associated with significant reduction in total tumor impedance and loss of impedance frequency dependence. The effect was more pronounced near the pulsing electrodes and was dependent on time from treatment to fixation. Future studies should further evaluate the potential of IRE as an alternative method of uveal melanoma treatment. PMID:24039721

  16. Antioxidant dieckol downregulates the Rac1/ROS signaling pathway and inhibits Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma cells.

    PubMed

    Park, Sun Joo; Kim, Yong Tae; Jeon, You Jin

    2012-04-01

    Reactive oxygen species (ROS) generation is linked to dynamic actin cytoskeleton reorganization, which is involved in tumor cell motility and metastasis. Thus, inhibition of ROS generation and actin polymerization in tumor cells may represent an effective anticancer strategy. However, the molecular basis of this signaling pathway is currently unknown. Here, we show that the Ecklonia cava-derived antioxidant dieckol downregulates the Rac1/ROS signaling pathway and inhibits Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma cells. Steady-state intracellular ROS levels were higher in malignant B16F10 cells than in parental, nonmetastatic B16F0 cells. Elevation of ROS by H(2)O(2) treatment increased migration and invasion ability of B16F0 cells to level similar to that of B16F10 cells, suggesting that intracellular ROS signaling mediates the prometastatic properties of B16 mouse melanoma cells. ROS levels and the cell migration and invasion ability of B16 melanoma cells correlated with Rac1 activation and WAVE2 expression. Overexpression of dominant negative Rac1 and depletion of WAVE2 by siRNA suppressed H(2)O(2)-induced cell invasion of B16F0 and B16F10 cells. Similarly, dieckol attenuates the ROS-mediated Rac1 activation and WAVE2 expression, resulting in decreased migration and invasion of B16 melanoma cells. In addition, we found that dieckol decreases association between WAVE2 and NADPH oxidase subunit p47(phox). Therefore, this finding suggests that WAVE2 acts to couple intracellular Rac1/ROS signaling to the invasive migration of B16 melanoma cells, which is inhibited by dieckol.

  17. Antioxidant Dieckol Downregulates the Rac1/ROS Signaling Pathway and Inhibits Wiskott-Aldrich Syndrome Protein (WASP)-Family Verprolin-Homologous Protein 2 (WAVE2)-Mediated Invasive Migration of B16 Mouse Melanoma Cells

    PubMed Central

    Park, Sun Joo; Kim, Yong Tae; Jeon, You Jin

    2012-01-01

    Reactive oxygen species (ROS) generation is linked to dynamic actin cytoskeleton reorganization, which is involved in tumor cell motility and metastasis. Thus, inhibition of ROS generation and actin polymerization in tumor cells may represent an effective anticancer strategy. However, the molecular basis of this signaling pathway is currently unknown. Here, we show that the Ecklonia cava-derived antioxidant dieckol downregulates the Rac1/ROS signaling pathway and inhibits Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma cells. Steady-state intracellular ROS levels were higher in malignant B16F10 cells than in parental, nonmetastatic B16F0 cells. Elevation of ROS by H2O2 treatment increased migration and invasion ability of B16F0 cells to level similar to that of B16F10 cells, suggesting that intracellular ROS signaling mediates the prometastatic properties of B16 mouse melanoma cells. ROS levels and the cell migration and invasion ability of B16 melanoma cells correlated with Rac1 activation and WAVE2 expression. Overexpression of dominant negative Rac1 and depletion of WAVE2 by siRNA suppressed H2O2-induced cell invasion of B16F0 and B16F10 cells. Similarly, dieckol attenuates the ROS-mediated Rac1 activation and WAVE2 expression, resulting in decreased migration and invasion of B16 melanoma cells. In addition, we found that dieckol decreases association between WAVE2 and NADPH oxidase subunit p47phox. Therefore, this finding suggests that WAVE2 acts to couple intracellular Rac1/ROS signaling to the invasive migration of B16 melanoma cells, which is inhibited by dieckol. PMID:22441674

  18. [Characterization of genetic alterations in primary human melanomas carrying BRAF or NRAS mutation].

    PubMed

    Lázár, Viktória

    2013-06-01

    Human malignant melanoma is one of the most aggressive forms of skin cancer with an exceptionally bad prognosis. Melanoma often displays constitutively activated MAPK pathway through BRAF or NRAS mutations. It is also known that these mutations are almost never simultaneously present and that they appear at early stages and preserved throughout tumor progression, although it is proved that these alterations alone are insufficient to cause tumor progression. Therefore the first aim of our study was to evaluate those distinct genetic alterations which can properly differentiate the three important molecular subtypes of primary melanomas with a) BRAF, b) NRAS mutation and c) WT (wild type for both loci). High-resolution array comparative genomic hybridization (array CGH) was used to assess genome-wide analysis of DNA copy number alterations. Primary melanomas with BRAF mutation more frequently exhibited losses on 10q23-10q26 and gains on chromosome 7 and 1q23-1q25 compared to melanomas with NRAS mutation. Loss on the 11q23-11q25 sequence was found mainly in conjunction with NRAS mutation. Based on these results, we proved the existence of marked differences in the genetic pattern of the BRAF and NRAS mutated melanoma subgroups, which might suggest that these mutations contribute to the development of malignant melanoma in conjunction with distinct cooperating oncogenic events. In general, it is an interesting phenomenon suggesting that these mutations provide probably the "guiding force" for these tumors and it also suggests that there are alternative genetic pathways to melanoma. These additional oncogenic events which are associated with BRAF or NRAS mutations can provide rational additional targets for a combination therapy with kinase inhibitors. In this study we also investigated the specific dynamic activities among different signalling pathways highlighting the frequent alterations of genes involved in the signalling interactions between the MAPK-JAK pathways

  19. Melanin content in melanoma metastases affects the outcome of radiotherapy.

    PubMed

    Brożyna, Anna A; Jóźwicki, Wojciech; Roszkowski, Krzysztof; Filipiak, Jan; Slominski, Andrzej T

    2016-04-05

    Melanin possess radioprotective and scavenging properties, and its presence can affect the behavior of melanoma cells, its surrounding environment and susceptibility to the therapy, as showed in vitro experiments. To determine whether melanin presence in melanoma affects the efficiency of radiotherapy (RTH) we evaluated the survival time after RTH treatment in metastatic melanoma patients (n = 57). In another cohort of melanoma patients (n = 84), the relationship between melanin level and pT and pN status was determined. A significantly longer survival time was found in patients with amelanotic metastatic melanomas in comparison to the melanotic ones, who were treated with either RTH or chemotherapy (CHTH) and RTH. These differences were more significant in a group of melanoma patients treated only with RTH. A detailed analysis of primary melanomas revealed that melanin levels were significantly higher in melanoma cells invading reticular dermis than the papillary dermis. A significant reduction of melanin pigmentation in pT3 and pT4 melanomas in comparison to pT1 and T2 tumors was observed. However, melanin levels measured in pT3-pT4 melanomas developing metastases (pN1-3, pM1) were higher than in pN0 and pM0 cases. The presence of melanin in metastatic melanoma cells decreases the outcome of radiotherapy, and melanin synthesis is related to higher disease advancement. Based on our previous cell-based and clinical research and present research we also suggest that inhibition of melanogenesis can improve radiotherapy modalities. The mechanism of relationship between melanogenesis and efficacy of RTH requires additional studies, including larger melanoma patients population and orthotopic, imageable mouse models of metastatic melanoma.

  20. Local and systemic effect of transfection-reagent formulated DNA vectors on equine melanoma.

    PubMed

    Mählmann, Kathrin; Feige, Karsten; Juhls, Christiane; Endmann, Anne; Schuberth, Hans-Joachim; Oswald, Detlef; Hellige, Mareu; Doherr, Marcus; Cavalleri, Jessika-M V

    2015-05-14

    Equine melanoma has a high incidence in grey horses. Xenogenic DNA vaccination may represent a promising therapeutic approach against equine melanoma as it successfully induced an immunological response in other species suffering from melanoma and in healthy horses. In a clinical study, twenty-seven, grey, melanoma-bearing, horses were assigned to three groups (n = 9) and vaccinated on days 1, 22, and 78 with DNA vectors encoding for equine (eq) IL-12 and IL-18 alone or in combination with either human glycoprotein (hgp) 100 or human tyrosinase (htyr). Horses were vaccinated intramuscularly, and one selected melanoma was locally treated by intradermal peritumoral injection. Prior to each injection and on day 120, the sizes of up to nine melanoma lesions per horse were measured by caliper and ultrasound. Specific serum antibodies against hgp100 and htyr were measured using cell based flow-cytometric assays. An Analysis of Variance (ANOVA) for repeated measurements was performed to identify statistically significant influences on the relative tumor volume. For post-hoc testing a Tukey-Kramer Multiple-Comparison Test was performed to compare the relative volumes on the different examination days. An ANOVA for repeated measurements was performed to analyse changes in body temperature over time. A one-way ANOVA was used to evaluate differences in body temperature between the groups. A p-value < 0.05 was considered significant for all statistical tests applied. In all groups, the relative tumor volume decreased significantly to 79.1 ± 26.91% by day 120 (p < 0.0001, Tukey-Kramer Multiple-Comparison Test). Affiliation to treatment group, local treatment and examination modality had no significant influence on the results (ANOVA for repeated measurements). Neither a cellular nor a humoral immune response directed against htyr or hgp100 was detected. Horses had an increased body temperature on the day after vaccination. This is the first clinical report on a systemic effect

  1. Local and systemic effect of transfection-reagent formulated DNA vectors on equine melanoma.

    PubMed

    Mählmann, Kathrin; Feige, Karsten; Juhls, Christiane; Endmann, Anne; Schuberth, Hans-Joachim; Oswald, Detlef; Hellige, Maren; Doherr, Marcus; Cavalleri, Jessika-M V

    2015-06-11

    Equine melanoma has a high incidence in grey horses. Xenogenic DNA vaccination may represent a promising therapeutic approach against equine melanoma as it successfully induced an immunological response in other species suffering from melanoma and in healthy horses. In a clinical study, twenty-seven, grey, melanoma-bearing, horses were assigned to three groups (n = 9) and vaccinated on days 1, 22, and 78 with DNA vectors encoding for equine (eq) IL-12 and IL-18 alone or in combination with either human glycoprotein (hgp) 100 or human tyrosinase (htyr). Horses were vaccinated intramuscularly, and one selected melanoma was locally treated by intradermal peritumoral injection. Prior to each injection and on day 120, the sizes of up to nine melanoma lesions per horse were measured by caliper and ultrasound. Specific serum antibodies against hgp100 and htyr were measured using cell based flow-cytometric assays. An Analysis of Variance (ANOVA) for repeated measurements was performed to identify statistically significant influences on the relative tumor volume. For post-hoc testing a Tukey-Kramer Multiple-Comparison Test was performed to compare the relative volumes on the different examination days. An ANOVA for repeated measurements was performed to analyse changes in body temperature over time. A one-way ANOVA was used to evaluate differences in body temperature between the groups. A p-value < 0.05 was considered significant for all statistical tests applied. In all groups, the relative tumor volume decreased significantly to 79.1 ± 26.91% by day 120 (p < 0.0001, Tukey-Kramer Multiple-Comparison Test). Affiliation to treatment group, local treatment and examination modality had no significant influence on the results (ANOVA for repeated measurements). Neither a cellular nor a humoral immune response directed against htyr or hgp100 was detected. Horses had an increased body temperature on the day after vaccination. This is the first clinical report on a

  2. SIRT1 deacetylase is overexpressed in human melanoma and its small molecule inhibition imparts anti-proliferative response via p53 activation.

    PubMed

    Wilking, Melissa J; Singh, Chandra; Nihal, Minakshi; Zhong, Weixiong; Ahmad, Nihal

    2014-12-01

    Melanoma causes more deaths than any other skin cancer, and its incidence in the US continues to rise. Current medical therapies are insufficient to control this deadly neoplasm, necessitating the development of new target-based approaches. The objective of this study was to determine the role and functional significance of the class III histone deacetylase SIRT1 in melanoma. We have found that SIRT1 is overexpressed in clinical human melanoma tissues and human melanoma cell lines (Sk-Mel-2, WM35, G361, A375, and Hs294T) compared to normal skin and normal melanocytes, respectively. In addition, treatment of melanoma cell lines A375, Hs294T, and G361 with Tenovin-1, a small molecule SIRT1 inhibitor, resulted in a significant decrease in cell growth and cell viability. Further, Tenovin-1 treatment also resulted in a marked decrease in the clonogenic survival of melanoma cells. Further experiments showed that the anti-proliferative response of Tenovin-1 was accompanied by an increase in the protein as well as activity of the tumor suppressor p53. This increase in p53 activity was substantiated by an increase in the protein level of its downstream target p21. Overall, these data suggest that small molecule inhibition of SIRT1 causes anti-proliferative effects in melanoma cells. SIRT1 appears to be acting through the activity of the tumor suppressor p53, which is not mutated in the majority of melanomas. However, future detailed studies are needed to further explore the role and mechanism of SIRT1 in melanoma development and progression and its usefulness in melanoma treatment.

  3. Monoclonal antibody (AFH1) immunoreactive on morphologically abnormal basal melanocytes within dysplastic nevi, nevocellular nevus nests, and melanoma.

    PubMed

    Aronson, P J; Ito, K; Fukaya, T; Hashimoto, K; Mehregan, A H

    1988-04-01

    The mouse monoclonal antibody AFH1 was produced using formalin-fixed, sham paraffin-embedded human melanoma cell culture line A375 as immunogen. Reactivity of this antibody was assessed by immunohistochemical techniques against formalin- or acid alcohol-fixed paraffin-embedded tissue as well as formalin- or acid alcohol-fixed unembedded lesions. Ninety-seven nevomelanocytic lesions, neurofibromas, epithelial lesions, and a plasmacellular infiltrate were evaluated. AFH1 was immunoreactive on 54 of 55 nevocytic lesions (98.2%), 15 of 16 primary melanomas (93.7%), a lentigo maligna, and nests in 21 of 21 dysplastic nevi (100%). Of 100 consecutive basal melanocytes of intraepidermal melanoma cells counted in each lesion, mean AFH1 immunoreactivity for nonnested basal melanocytes in nevocellular nevi was 3.8%; for dysplastic nevi, 13.8%; and for intraepidermal melanoma cells, 78.0%. When nonnested basal melanocytes were subdivided into cytologically normal and abnormal cell groups, AFH1 immunoreactivity was 9.4% and 72.6%, respectively. AFH1 recognition of the lentiginous portion of dysplastic nevi corresponds statistically to the appearance of abnormal melanocyte cytology, nest formation, or both. Using 50% immunoreactive nonnested melanocytes as the criterion, AFH1 seems to distinguish primary melanoma from dysplastic nevi with a sensitivity of 93.8% and a specificity of 95.8%.

  4. In Vitro Efficacy and Mechanistic Role of Indocyanine Green as a Photodynamic Therapy Agent for Human Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamoon, A.; Gamal-Eldeen, A; Ruppel, M

    2009-01-01

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway.

  5. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotar

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa Bmore » kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma. - Highlights: • Mangiferin prolongs survival in mice by inhibiting metastasis and tumor growth • Mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation • Mangiferin regulates the expression of MMPs, VLAs, and apoptosis regulatory proteins.« less

  6. Stochasticity in Natural Forage Production Affects Use of Urban Areas by Black Bears: Implications to Management of Human-Bear Conflicts

    PubMed Central

    Baruch-Mordo, Sharon; Wilson, Kenneth R.; Lewis, David L.; Broderick, John; Mao, Julie S.; Breck, Stewart W.

    2014-01-01

    The rapid expansion of global urban development is increasing opportunities for wildlife to forage and become dependent on anthropogenic resources. Wildlife using urban areas are often perceived dichotomously as urban or not, with some individuals removed in the belief that dependency on anthropogenic resources is irreversible and can lead to increased human-wildlife conflict. For American black bears (Ursus americanus), little is known about the degree of bear urbanization and its ecological mechanisms to guide the management of human-bear conflicts. Using 6 years of GPS location and activity data from bears in Aspen, Colorado, USA, we evaluated the degree of bear urbanization and the factors that best explained its variations. We estimated space use, activity patterns, survival, and reproduction and modeled their relationship with ecological covariates related to bear characteristics and natural food availability. Space use and activity patterns were dependent on natural food availability (good or poor food years), where bears used higher human density areas and became more nocturnal in poor food years. Patterns were reversible, i.e., individuals using urban areas in poor food years used wildland areas in subsequent good food years. While reproductive output was similar across years, survival was lower in poor food years when bears used urban areas to a greater extent. Our findings suggest that bear use of urban areas is reversible and fluctuates with the availability of natural food resources, and that removal of urban individuals in times of food failures has the potential to negatively affect bear populations. Given that under current predictions urbanization is expected to increase by 11% across American black bear range, and that natural food failure years are expected to increase in frequency with global climate change, alternative methods of reducing urban human-bear conflict are required if the goal is to prevent urban areas from becoming population sinks

  7. Stochasticity in natural forage production affects use of urban areas by black bears: implications to management of human-bear conflicts.

    PubMed

    Baruch-Mordo, Sharon; Wilson, Kenneth R; Lewis, David L; Broderick, John; Mao, Julie S; Breck, Stewart W

    2014-01-01

    The rapid expansion of global urban development is increasing opportunities for wildlife to forage and become dependent on anthropogenic resources. Wildlife using urban areas are often perceived dichotomously as urban or not, with some individuals removed in the belief that dependency on anthropogenic resources is irreversible and can lead to increased human-wildlife conflict. For American black bears (Ursus americanus), little is known about the degree of bear urbanization and its ecological mechanisms to guide the management of human-bear conflicts. Using 6 years of GPS location and activity data from bears in Aspen, Colorado, USA, we evaluated the degree of bear urbanization and the factors that best explained its variations. We estimated space use, activity patterns, survival, and reproduction and modeled their relationship with ecological covariates related to bear characteristics and natural food availability. Space use and activity patterns were dependent on natural food availability (good or poor food years), where bears used higher human density areas and became more nocturnal in poor food years. Patterns were reversible, i.e., individuals using urban areas in poor food years used wildland areas in subsequent good food years. While reproductive output was similar across years, survival was lower in poor food years when bears used urban areas to a greater extent. Our findings suggest that bear use of urban areas is reversible and fluctuates with the availability of natural food resources, and that removal of urban individuals in times of food failures has the potential to negatively affect bear populations. Given that under current predictions urbanization is expected to increase by 11% across American black bear range, and that natural food failure years are expected to increase in frequency with global climate change, alternative methods of reducing urban human-bear conflict are required if the goal is to prevent urban areas from becoming population sinks.

  8. [Study of the immunological mechanism of anti-tumor effects of 5-FU by establishing EL4 tumor-bearing mouse models].

    PubMed

    Li, Mo-Lin; Li, Chuan-Gang; Shu, Xiao-Hong; Li, Ming-Xia; Jia, Yu-Jie; Qin, Zhi-Hai

    2007-11-01

    To investigate the immunological mechanism of anti-tumor effect of 5-FU by establishing lymphoma EL4 tumor-bearing mouse models in wild type C57BL/6 mice and nude C57BL/6 mice, respectively. The mouse lymphoma EL4 cells were inoculated subcutaneously into wild type C57BL/6 mice (immune-competent mice). Twelve days later, 5-FU of different doses was administered intraperitoneally to treat these wild type C57BL/6 tumor-bearing mice. The size of tumors in the wild type C57BL/6 mice was observed and recorded to explore the minimal dose of 5-FU that could cure the tumor-bearing mice. Then the same amount of EL4 tumor cells was inoculated subcutaneously into wild type C57BL/6 mice and nude C57BL/6 mice (T cell-deficient mice) simultaneously, which had the same genetic background of C57BL/6. Twelve days later, 5-FU of the minimal dose was given intraperitoneally to treat both the wild type and nude C57BL/6 tumor-bearing mice. The size of tumors in the two different types of mice was observed and recorded. A single dose of 5-FU (75 mg/kg) cured both the EL4 tumor-bearing wild type C57BL/6 mice and the EL4 tumor-bearing nude C57BL/6 mice in the first week. Two weeks after 5-FU treatment, all of the nude mice died of tumor relapse while most of the wild type C57BL/6 mice were fully recovered. A single dose of 5-FU has marked anti-tumor effects on lymphoma EL4 tumor-bearing C57BL/6 mice with or without T lymphocytes. The relapse of tumors after 5-FU treatment might be related to the function of T lymphocytes.

  9. Simulated Sunlight-Mediated Photodynamic Therapy for Melanoma Skin Cancer by Titanium-Dioxide-Nanoparticle-Gold-Nanocluster-Graphene Heterogeneous Nanocomposites.

    PubMed

    Cheng, Yan; Chang, Yun; Feng, Yanlin; Liu, Ning; Sun, Xiujuan; Feng, Yuqing; Li, Xi; Zhang, Haiyuan

    2017-05-01

    Simulated sunlight has promise as a light source able to alleviate the severe pain associated with patients during photodynamic therapy (PDT); however, low sunlight utilization efficiency of traditional photosensitizers dramatically limits its application. Titanium-dioxide-nanoparticle-gold-nanocluster-graphene (TAG) heterogeneous nanocomposites are designed to efficiently utilize simulated sunlight for melanoma skin cancer PDT. The narrow band gap in gold nanoclusters (Au NCs), and staggered energy bands between Au NCs, titanium dioxide nanoparticles (TiO 2 NPs), and graphene can result in efficient utilization of simulated sunlight and separation of electron-hole pairs, facilitating the production of abundant hydroxyl and superoxide radicals. Under irradiation of simulated sunlight, TAG nanocomposites can trigger a series of toxicological responses in mouse B16F1 melanoma cells, such as intracellular reactive oxygen species production, glutathione depletion, heme oxygenase-1 expression, and mitochondrial dysfunctions, resulting in severe cell death. Furthermore, intravenous or intratumoral administration of biocompatible TAG nanocomposites in B16F1-tumor-xenograft-bearing mice can significantly inhibit tumor growth and cause severe pathological tumor tissue changes. All of these results demonstrate prominent simulated sunlight-mediated PDT effects. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Raspberry pulp polysaccharides inhibit tumor growth via immunopotentiation and enhance docetaxel chemotherapy against malignant melanoma in vivo.

    PubMed

    Yang, Yong-Jing; Xu, Han-Mei; Suo, You-Rui

    2015-09-01

    It has been reported previously that the systemic efficacy of chemotherapeutic agents is substantially restricted for some cancer types, including malignant melanoma. Therefore, the development of more effective treatment modalities remains a critical, albeit elusive, goal in anticancer therapy. The study presented here evaluates the antitumor activity of raspberry pulp polysaccharides (RPPs) against malignant melanoma using a murine tumor-bearing model. Furthermore, the underlying mechanism of this antitumor activity has also been investigated. The results show that while RPP exhibits no direct cytotoxic effect on HT-29, MGC-803, HeLa, Bel-7402, L02 and B16F10 cells in vitro, it does demonstrate a dose-dependent growth inhibition of melanoma in vivo with an inhibition ratio of 59.95% at a dose of 400 mg kg(-1). Besides this, the body weight and spleen index in tumor-bearing mice have also been improved in RPP-treated groups. RPP is also found to induce splenocyte proliferation and is able to upregulate the activity of immune-related enzymes, including acid phosphatase (ACP), alkaline phosphatase (AKP), lactate dehydrogenase (LDH) and superoxide dismutase (SOD) in the spleen of tumor-bearing mice. The levels of tumor necrosis factor α (TNF-α), interferon γ (IFN-γ) and interleukin 2 (IL-2) in the serum of tumor-bearing mice show to be effectively increased upon RPP treatment. Histopathological analyses show that RPP induces tumor tissue necrosis by increasing inflammatory cell infiltration and causes no lesions to liver and kidney tissues. Remarkably, RPP further enhances the antitumor effect of the chemotherapeutic drug docetaxel and alleviates docetaxel-induced liver and kidney lesions in tumor-bearing mice. These findings indicate that RPP exhibits antitumor activity in vivo against malignant melanoma, partly by enhancing the cellular immune response of the host organism. In summary, RPP features critical properties to potentially find use as an

  11. Photodynamic therapy for melanoma: efficacy and immunologic effects

    NASA Astrophysics Data System (ADS)

    Avci, Pinar; Gupta, Gaurav K.; Kawakubo, Masayoshi; Hamblin, Michael R.

    2014-02-01

    Malignant melanoma is one of the fastest growing cancers and if it cannot be completely surgically removed the prognosis is bleak. Melanomas are known to be particularly resistant to both chemotherapy and radiotherapy. Various types of immunotherapy have however been investigated with mixed reports of success. Photodynamic therapy (PDT) has also been tested against melanoma, again with mixed effects as the melanin pigment is thought to act as both an optical shield and as an antioxidant. We have been investigating PDT against malignant melanoma in mouse models. We have compared B16F10 melanoma syngenic to C57BL/6 mice and S91 Cloudman melanoma syngenic to DBA2 mice. We have tested the hypothesis that S91 will respond better than B16 because of higher expression of immunocritical molecules such as MHC-1, tyrosinase, tyrosinase related protein-2 gp100, and intercellular adhesion molecule-1. Some of these molecules can act as tumor rejection antigens that can be recognized by antigen-specific cytotoxic CD8 T cells that have been stimulated by PDT. Moreover it is possible that DBA2 mice are intrinsically better able to mount an anti-tumor immune response than C57BL/6 mice. We are also studying intratumoral injection of photosensitzers such as benzoporphyrin monoacid ring A and comparing this route with the more usual route of intravenous administration.

  12. Anticancer effects of morin-7-sulphate sodium, a flavonoid derivative, in mouse melanoma cells.

    PubMed

    Li, Hua-Wen; Zou, Tang-Bin; Jia, Qing; Xia, En-Qin; Cao, Wen-Jun; Liu, Wen; He, Tai-Ping; Wang, Qin

    2016-12-01

    Increasing evidence supports the anticancer effects of morin in vitro and in vivo. However, the role of morin-7-sulphate sodium (NaMoS), a water-soluble flavonoid derivative synthesized from morin remains unclear. The present study investigated the tumor suppression by NaMoS in mouse melanoma cells. We synthesized the flavonoid derivative morin-7-sulphate sodium according to the method described for quercetin-sulphate derivative, and further isolated, purified and identified the compound. Cell proliferation in vitro was assessed using a CCK-8 assay. The wound healing assay was performed to evaluate cell motility, and flow cytometry was used to detect cellular apoptosis. Protein levels of vimentin, matrix metalloproteinase 9 (MMP9), phosphorylation of Akt1/2/3 (p-Akt1/2/3), extracellular signal-regulated kinase 1/2 (p-ERK1/2) and Caspase3 in B16F10 cells were detected by immunohistochemistry and Western blot. The results suggest that cell proliferation was markedly decreased in NaMoS-treated groups (1, 10, 25, 50, 100, 500, 1000μM) in a dose-dependent manner compared with the Control group and the IC 50 was 221.67μM at 48h. NaMoS at 200μM concentration significantly inhibited the invasion and promoted apoptosis of B16F10 cells. Moreover, protein level of Caspase3 increased significantly in B16F10 cells treated by NaMoS. Immunohistochemistry and Western blot further confirmed that NaMoS decreased the expression of vimentin, MMP9, p-Akt1/2/3 and p-ERK1/2 in B16F10 cells. This study provides robust evidence that NaMoS, a water-soluble flavonoid, manifests anticancer properties and may act as a signal transduction inhibitor in melanoma cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Systemic Tolerance Mediated by Melanoma Brain Tumors is Reversible by Radiotherapy and Vaccination

    PubMed Central

    Jackson, Christopher M.; Kochel, Christina M.; Nirschl, Christopher J.; Durham, Nicholas M.; Ruzevick, Jacob; Alme, Angela; Francica, Brian J.; Elias, Jimmy; Daniels, Andrew; Dubensky, Thomas W.; Lauer, Peter; Brockstedt, Dirk G.; Baxi, Emily G.; Calabresi, Peter A.; Taube, Janis M.; Pardo, Carlos A.; Brem, Henry; Pardoll, Drew M.; Lim, Michael; Drake, Charles G.

    2016-01-01

    Purpose Immune responses to antigens originating in the CNS are generally attenuated, since collateral damage can have devastating consequences. The significance of this finding for the efficacy of tumor-targeted immunotherapies is largely unknown. Experimental Design The B16 murine melanoma model was used to compare cytotoxic responses against established tumors in the CNS and in the periphery. Cytokine analysis of tissues from brain tumor-bearing mice detected elevated TGF-β secretion from microglia and in the serum and TGF-β signaling blockade reversed tolerance of tumor antigen-directed CD8 T cells. Additionally, a treatment regimen using focal radiation therapy and recombinant Listeria monocytogenes was evaluated for immunologic activity and efficacy in this model. Results CNS melanomas were more tolerogenic than equivalently progressed tumors outside the CNS as antigen-specific CD8 T cells were deleted and exhibited impaired cytotoxicity. Tumor-bearing mice had elevated serum levels of TGF-β; however, blocking TGF-β signaling with a small molecule inhibitor or a monoclonal antibody did not improve survival. Conversely, tumor antigen-specific vaccination in combination with focal radiation therapy reversed tolerance and improved survival. This treatment regimen was associated with increased polyfunctionality of CD8 T cells, elevated T effector to T regulatory cell ratios and decreased TGF-β secretion from microglia. Conclusions These data suggest that CNS tumors may impair systemic antitumor immunity and consequently accelerate cancer progression locally as well as outside the CNS while antitumor immunity may be restored by combining vaccination with radiation therapy. These findings are hypothesis-generating and warrant further study in more contemporary melanoma models as well as human trials. PMID:26490306

  14. Physalin B from Physalis angulata triggers the NOXA-related apoptosis pathway of human melanoma A375 cells.

    PubMed

    Hsu, Chia-Chun; Wu, Yang-Chang; Farh, Lynn; Du, Ying-Chi; Tseng, Wei-Kung; Wu, Chau-Chung; Chang, Fang-Rong

    2012-03-01

    Melanoma is a lethal form of skin cancer that can metastasize rapidly. While surgery and radiation therapy provide palliative therapy for local tumor growth, systemic therapy is the mainstay of treatment for metastatic melanoma. However, limited chemotherapeutic agents are available for melanoma treatment. In this study, we investigated the anti-melanoma effect of physalin B, the major active compound from a widely used herb medicine, Physalis angulata L. This study demonstrated that physalin B exhibits cytotoxicity towards v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutated melanoma A375 and A2058 cells (the IC50 values are lower than 4.6 μg/ml). Cytotoxicity is likely resulted from apoptosis since the apoptotic marker phosphatidylserine are detected immediately under physalin B treatment and apoptotic cells formation. Further examination revealed that physalin B induces expression of the proapoptotic protein NOXA within 2 h and later triggers the expression of Bax and caspase-3 in A375 cells. These results indicate that physalin B can induce apoptosis of melanoma cancer cells via the NOXA, caspase-3, and mitochondria-mediated pathways, but not of human skin fibroblast cells and myoblastic cells. Thus, physalin B has the potential to be developed as an effective chemotherapeutic lead compound for the treatment of malignant melanoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Comparison of the Lonidamine Potentiated Effect of Nitrogen Mustard Alkylating Agents on the Systemic Treatment of DB-1 Human Melanoma Xenografts in Mice.

    PubMed

    Nath, Kavindra; Nelson, David S; Putt, Mary E; Leeper, Dennis B; Garman, Bradley; Nathanson, Katherine L; Glickson, Jerry D

    2016-01-01

    Previous NMR studies demonstrated that lonidamine (LND) selectively diminishes the intracellular pH (pHi) of DB-1 melanoma and mouse xenografts of a variety of other prevalent human cancers while decreasing their bioenergetic status (tumor βNTP/Pi ratio) and enhancing the activities of melphalan and doxorubicin in these cancer models. Since melphalan and doxorubicin are highly toxic agents, we have examined three other nitrogen (N)-mustards, chlorambucil, cyclophosphamide and bendamustine, to determine if they exhibit similar potentiation by LND. As single agents LND, melphalan and these N-mustards exhibited the following activities in DB-1 melanoma xenografts; LND: 100% tumor surviving fraction (SF); chlorambucil: 100% SF; cyclophosphamide: 100% SF; bendamustine: 79% SF; melphalan: 41% SF. When combined with LND administered 40 min prior to administration of the N-mustard (to maximize intracellular acidification) the following responses were obtained; chlorambucil: 62% SF; cyclophosphamide: 42% SF; bendamustine: 36% SF; melphalan: 10% SF. The effect of LND on the activities of these N-mustards is generally attributed to acid stabilization of the aziridinium active intermediate, acid inhibition of glutathione-S-transferase, which acts as a scavenger of aziridinium, and acid inhibition of DNA repair by O6-alkyltransferase. Depletion of ATP by LND may also decrease multidrug resistance and increase tumor response. At similar maximum tolerated doses, our data indicate that melphalan is the most effective N-mustard in combination with LND when treating DB-1 melanoma in mice, but the choice of N-mustard for coadministration with LND will also depend on the relative toxicities of these agents, and remains to be determined.

  16. MDA-9/Syntenin and IGFBP-2 Promote Angiogenesis in Human Melanoma

    PubMed Central

    Das, Swadesh K.; Bhutia, Sujit K.; Azab, Belal; Kegelman, Timothy P.; Peachy, Leyla; Santhekadur, Prasanna K.; Dasgupta, Santanu; Dash, Rupesh; Dent, Paul; Grant, Steven; Emdad, Luni; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B.

    2012-01-01

    Melanoma differentiation associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacological approaches were employed to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, CAM assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several pro-angiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the ECM activating Src and FAK resulting in activation by phosphorylation of Akt, which induces HIF-1α. The HIF-1α activates transcription of Insulin Growth Factor Binding Protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell non-autonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (non-autonomous). PMID:23233738

  17. Simvastatin rises reactive oxygen species levels and induces senescence in human melanoma cells by activation of p53/p21 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guterres, Fernanda Augusta de Lima Barbosa; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin

    2013-11-15

    Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 andmore » p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process. - Highlights: • Lower concentrations of simvastatin can induce senescent phenotype in melanoma cells. • Simvastatin induces senescence in human melanoma cells via p53/p21 pathway. • Senescent phenotype is related with increased intracellular ROS. • Partial detoxification of ROS by catalase/peroxiredoxin-1 could lead cells to senescence rather than apoptosis.« less

  18. Regulation of Cancer Stem Cell Self-Renewal by HOXB9 Antagonizes Endoplasmic Reticulum Stress-Induced Melanoma Cell Apoptosis via the miR-765-FOXA2 Axis.

    PubMed

    Lin, Jingrong; Zhang, Dongmei; Fan, Yongsheng; Chao, Yulin; Chang, Jinming; Li, Na; Han, Linlin; Han, Chuanchun

    2018-07-01

    Adaptation to endoplasmic reticulum (ER) stress has been indicated as a driver of malignancy and resistance to therapy in human melanoma. However, the relationship between cancer stem cells and adaptation to ER stress remains unclear. Here, we show that the ratio of cancer stem cells is increased in ER stress-resistant melanoma cells, which inhibit ER stress-induced apoptosis and promote tumorigenesis. Further mechanistic studies showed that HOXB9 triggered by ER stress favors cancer stem cell self-renewal and enhances ER stress resistance. HOXB9 directly binds to the promoter of microRNA-765 and facilitates its transcription, which in turn targets FOXA2, resulting in a FOXA2 decrease and cancer stem cell increase. Additionally, an increase in HOXB9 promotes melanoma growth and inhibits cell apoptosis in a mouse xenograft model. Elevated HOXB9 is found in human melanoma tissues, which is associated with microRNA-765 up-regulation and FOXA2 decreases. Thus, our data showed that the HOXB9-dependent, microRNA-765-mediated FOXA2 pathway contributes to the survival of melanoma under ER stress by maintaining the properties of cancer stem cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Antimetastatic effect of PSK, a protein-bound polysaccharide, against the B16-BL6 mouse melanoma.

    PubMed

    Matsunaga, K; Ohhara, M; Oguchi, Y; Iijima, H; Kobayashi, H

    1996-01-01

    We examined the effect of PSK, a protein-bound polysaccharide, upon in vivo metastasis and in vitro invasion of the B16-BL6 mouse melanoma cells. (1) PSK suppressed in vivo artificial and spontaneous lung metastases of B16-BL6 in C57BL/6 mice. (2) PSK in a dose-dependent fashion suppressed in vitro invasion and chemotaxis of the tumor cells using filters coated with a reconstituted basement membrane. (3) PSK had little effect on DNA synthesis in tumor cells in vitro, but suppressed tumor cell adhesion to, degradation of, and haptotaxis to components of the basement membrane. (4) PSK suppressed the binding of tumor cells to components of the basement membrane. These findings suggest that PSK may suppress metastasis through inhibition of tumor cell invasion and that this effect is the result of interactions between PSK and components of the basement membrane.

  20. c-FLIP and the NOXA/Mcl-1 axis participate in the synergistic effect of pemetrexed plus cisplatin in human choroidal melanoma cells.

    PubMed

    Zhao, Xiaofei; Kong, Feng; Wang, Lei; Zhang, Han

    2017-01-01

    Choroidal melanoma is the most common primary malignant intraocular tumor, and very few effective therapies are available to treat it. Our study aimed to understand whether pemetrexed plus cisplatin exerts a beneficial synergistic effect in human choroidal melanoma cells and to delineate the underlying molecular mechanism. To accomplish these aims, we treated choroidal melanoma cells with pemetrexed and cisplatin and assessed cell survival with SRB and MTT assays. Proteins were detected using western blotting analysis. NOXA and CHOP were knocked down with siRNA. We found that pemetrexed or cisplatin alone inhibited survival and induced apoptosis in human choroidal melanoma cells. Furthermore, the expression levels of c-FLIP, an anti-apoptotic protein in the extrinsic apoptosis pathway, and Mcl-1, an anti-apoptotic protein in the intrinsic apoptosis pathway, were decreased by pemetrexed or cisplatin respectively, while the expression of a pro-apoptotic protein in the intrinsic apoptosis pathway, NOXA, was up-regulated. Moreover, pemetrexed or cisplatin alone increased the protein expression of the endoplasmic reticulum stress markers IRE1α, Bip and CHOP. Silencing CHOP expression reduced NOXA expression. These findings suggest that the pemetrexed or cisplatin induced intrinsic apoptosis via activation of the ER stress response. Importantly, combining the two compounds more strongly induced apoptosis. Following the cotreatment, CHOP and NOXA expression increased, while c-FLIP and Mcl-1 expression decreased, and these effects were more pronounced than when using either compound alone. This result suggests that pemetrexed and cisplatin synergistically activate ER stress response-induced apoptosis in choroidal melanoma cells. To summarize, the c-FLIP and NOXA/Mcl-1 axis participated in the synergistic effect of pemetrexed plus cisplatin in human choroidal melanoma cells. Intrinsic apoptosis was induced via activation of the ER stress response. Our study provides

  1. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice.

    PubMed

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho; Yee, Sung-Tae

    2009-03-17

    Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. In melanoma-bearing mice, cisplatin (4 mg/kg B.W.) reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p < 0.1) and weight (p < 0.1). HemoHIM itself did not inhibit melanoma cell growth in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-gamma secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.

  2. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice

    PubMed Central

    2009-01-01

    Background Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. Methods HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. Results In melanoma-bearing mice, cisplatin (4 mg/kg B.W.) reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p < 0.1) and weight (p < 0.1). HemoHIM itself did not inhibit melanoma cell growth in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-γ secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. Conclusion HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin. PMID:19292900

  3. Human homolog of the mouse sperm receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlin, M.E.; Dean, J.

    1990-08-01

    The human zona pellucida, composed of three glycoproteins (ZP1, ZP2, and ZP3), forms an extracellular matrix that surrounds ovulated eggs and mediates species-specific fertilization. The genes that code for at least two of the zona proteins (ZP2 and ZP3) cross-hybridize with other mammalian DNA. The recently characterized mouse sperm receptor gene (Zp-3) was used to isolate its human homolog. The human homolog spans {approx}18.3 kilobase pairs (kbp) (compared to 8.6 kbp for the mouse gene) and contains eight exons, the sizes of which are strictly conserved between the two species. Four short (8-15 bp) sequences within the first 250 bpmore » of the 5{prime} flanking region in the human Zp-3 homolog are also present upstream of mouse Zp-3. These elements may modulate oocyte-specific gene expression. By using the polymerase chain reaction, a full-length cDNA of human ZP3 was isolated from human ovarian poly(A){sup +} RNA and used to deduce the structure of human ZP3 mRNA. Certain features of the human and mouse ZP3 transcripts are conserved. Both have unusually short 5{prime} and 3{prime} untranslated regions, both contain a single open reading frame that is 74% identical, and both code for 424 amino acid polypeptides that are 67% the same. The similarity between the two proteins may define domains that are important in maintaining the structural integrity of the zona pellucida, while the differences may play a role in mediating the species-specific events of mammalian fertilization.« less

  4. Comparative Aspects of Canine Melanoma

    PubMed Central

    Nishiya, Adriana Tomoko; Massoco, Cristina Oliveira; Felizzola, Claudia Ronca; Perlmann, Eduardo; Batschinski, Karen; Tedardi, Marcello Vannucci; Garcia, Jéssica Soares; Mendonça, Priscila Pedra; Teixeira, Tarso Felipe; Zaidan Dagli, Maria Lucia

    2016-01-01

    Melanomas are malignant neoplasms originating from melanocytes. They occur in most animal species, but the dog is considered the best animal model for the disease. Melanomas in dogs are most frequently found in the buccal cavity, but the skin, eyes, and digits are other common locations for these neoplasms. The aim of this review is to report etiological, epidemiological, pathological, and molecular aspects of melanomas in dogs. Furthermore, the particular biological behaviors of these tumors in the different body locations are shown. Insights into the therapeutic approaches are described. Surgery, chemotherapy, radiotherapy, immunotherapy, and the outcomes after these treatments are presented. New therapeutic perspectives are also depicted. All efforts are geared toward better characterization and control of malignant melanomas in dogs, for the benefit of these companion animals, and also in an attempt to benefit the treatment of human melanomas. PMID:29056717

  5. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma.

    PubMed

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Maatouk, Mouna; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The lack of an efficient agent that does not have the disadvantage of low activity (kojic acid), high cytotoxicity, and mutagenicity (hydroquinone), poor skin penetration (arbutin), or low stability in formulation (glabridin) led us to continue our research on new antipigmentation/skin-lightening agents. Therefore, research of natural products that can modulate the metabolism of pigmentation is of great interest. Otherwise, malignant melanoma is one of the most aggressive forms of skin cancer, with high metastatic potential, and currently, there is no effective chemotherapy against invasive melanoma. Therefore, it is necessary to develop new drugs with potent activity and weak side effects against melanoma. The in-vitro anticancer effect of hawthorn was analyzed against B16F10 melanoma cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of isolated compounds from hawthorn on melanogenesis in B16F10 melanoma cells was investigated by measuring the amounts of melanin and tyrosinase spectrophotometrically at 475 nm. Balb/c mice models inoculated with B16F10 mouse tumor cells were used to evaluate the in-vivo antitumoral potential of hawthorn by assessing its effect on the growth of transplanted tumors. The antioxidant potential of tested samples was evaluated in B16F10 and primary human keratinocyte cells using a cellular antioxidant activity assay. Hawthorn tested samples inhibited effectively the growth of melanoma cells in vitro. Furthermore, it appears that tested samples from hawthorn reduced melanogenesis by inhibiting the tyrosinase activity of B16F10 cells in a dose-dependent manner. In-vivo studies showed that hawthorn total oligomer flavonoids extract treatment at a dose of 150 mg/kg body weight for 21 days in implanted tumor mice resulted in significant inhibition of the tumor growth volume and weight. In addition, tested samples showed significant cellular antioxidant capacity against the reactive oxygen species

  6. Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress.

    PubMed

    Liao, Wang; Xiang, Wei; Wang, Fei-Fei; Wang, Rui; Ding, Yan

    2017-11-01

    Curcumin, a polyphenol compound, possesses potent pharmacological properties in preventing cancers, which make it as a potential anti-cancer mediator. However, it is still unknown that whether Curcumin induced melanoma A375 cell was associated with oxidative stress. Here, we firstly found a fascinating result that Curcumin could reduce the proliferation and induced apoptosis of human melanoma A375 cells. Meanwhile, IC 50 of Curcumin on A375 cells is 80μM at 48h. In addition, Curcumin caused oxidative stress through inducing further ROS burst, decreasing GSH, and wrecking mitochondria membrane potential (MMP), which were reversed by ROS inhibitor N-acetylcysteine (NAC). Moreover, MMP disruption led to the release of Cytochrome c from mitochondria and subsequently led to intracellular apoptosis. Furthermore, we found that ROS-dependent HIF-1α and its downstream proteins also play an important role on Curcumin induced apoptosis. In conclusion, our results shed new lights on the therapy of melanoma that Curcumin may be a promising candidate. Copyright © 2017. Published by Elsevier Masson SAS.

  7. Nitric oxide donor augments antineoplastic effects of arginine deprivation in human melanoma cells.

    PubMed

    Mayevska, Oksana; Chen, Oleh; Karatsai, Olena; Bobak, Yaroslav; Barska, Maryna; Lyniv, Liliana; Pavlyk, Iuliia; Rzhepetskyy, Yuriy; Igumentseva, Natalia; Redowicz, Maria Jolanta; Stasyk, Oleh

    2017-06-15

    Anticancer therapy based on recombinant arginine-degrading enzymes has been proposed for the treatment of several types of malignant cells deficient in arginine biosynthesis. One of the predicted side effects of such therapy is restricted bioavailability of nitric oxide as arginine catabolic product. Prolonged NO limitation may lead to unwanted disturbances in NO-dependent vasodilation, cardiovascular and immune systems. This problem can be overcome by co-supplementation with exogenous NO donor. However, NO may potentially counteract anticancer effects of therapy based on arginine deprivation. In this study, we evaluate for the first time the effects of an exogenous NO donor, sodium nitroprusside, on viability and metastatic properties of two human melanoma cell lines SK-MEL-28 and WM793 under arginine-deprived conditions. It was revealed that NO did not rescue melanoma cells from specific effects evoked by arginine deprivation, namely decreased viability and induction of apoptosis, dramatically reduced motility, invasiveness and clonogenic potential. Moreover, sodium nitroprusside co-treatment augmented several of these antineoplastic effects. We report that a combination of NO-donor and arginine deprivation strongly and specifically impaired metastatic behavior of melanoma cells. Thus, sodium nitroprusside can be considered as an adjuvant for the more efficient treatment of malignant melanoma and possibly other tumors with arginine-degrading enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The circadian clock controls sunburn apoptosis and erythema in mouse skin.

    PubMed

    Gaddameedhi, Shobhan; Selby, Christopher P; Kemp, Michael G; Ye, Rui; Sancar, Aziz

    2015-04-01

    Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early-morning exposure to UV and minimal following an afternoon exposure. Early-morning exposure to UV also produced maximal activation of ataxia telangiectasia mutated and Rad3-related (Atr)-mediated DNA damage checkpoint signaling, including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. These data provide early evidence that the circadian clock has an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, and thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation.

  9. The Circadian Clock Controls Sunburn Apoptosis and Erythema in Mouse Skin

    PubMed Central

    Gaddameedhi, Shobhan; Selby, Christopher P.; Kemp, Michael G.; Ye, Rui; Sancar, Aziz

    2014-01-01

    Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication, are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early morning exposure to UV and minimal following an afternoon exposure. Early morning exposure to UV also produced maximal activation of Atr-mediated DNA damage checkpoint signaling including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. To our knowledge these data provide the first evidence that the circadian clock plays an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation. PMID:25431853

  10. Development of a (99m)Tc-labeled lactam bridge-cyclized alpha-MSH derivative peptide as a possible single photon imaging agent for melanoma tumors.

    PubMed

    Shamshirian, Danial; Erfani, Mostafa; Beiki, Davood; Fallahi, Babak; Shafiei, Mohammad

    2015-10-01

    Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target which has been used for melanoma imaging and therapy. In this work, a new lactam bridge α-MSH analog was labeled with (99m)Tc via HYNIC and EDDA/tricine as coligands including gamma aminobutyric acid (GABA) as a three carbon chain spacer between HYNIC and the N-terminus of the cyclic peptide. Also, stability in human serum, receptor bound internalization, in vivo tumor uptake, and tissue biodistribution were thoroughly investigated. HYNIC-GABA-Nle-CycMSHhept was synthesized using a standard Fmoc strategy. Labeling was performed at 95 °C and analysis involved instant thin layer chromatography and high performance liquid chromatography methods. The receptor bound internalization rate was studied in MC1 receptor expressing B16/F10 cells. Biodistribution of radiopeptide was studied in nude mice bearing B16/F10 tumor. Labeling yield of >98 % (n = 3) was obtained corresponding to a specific activity of 81 MBq/nmol. Peptide conjugate showed efficient stability in the presence of human serum. The radioligand showed specific internalization into B16/F10 cells (12.45 ± 1.1 % at 4 h). In biodistribution studies, a receptor-specific uptake was observed in MC1 receptor-positive organs so that after 2 h the uptake in mouse tumor was 5.10 ± 0.08 % ID/g, while low accumulation in the kidney uptake was observed (4.58 ± 0.68 % ID/g at 2 h after injection). The obtained results show that the presented new designed labeled peptide conjugate may be a suitable candidate for diagnosis of malignant tumors.

  11. Different dose rate-dependent responses of human melanoma cells and fibroblasts to low dose fast neutrons.

    PubMed

    Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre

    2016-09-01

    To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.

  12. The role of nitric oxide in melanoma.

    PubMed

    Yarlagadda, Keerthi; Hassani, John; Foote, Isaac P; Markowitz, Joseph

    2017-12-01

    Nitric oxide (NO) is a small gaseous signaling molecule that mediates its effects in melanoma through free radical formation and enzymatic processes. Investigations have demonstrated multiple roles for NO in melanoma pathology via immune surveillance, apoptosis, angiogenesis, melanogenesis, and on the melanoma cell itself. In general, elevated levels of NO prognosticate a poor outcome for melanoma patients. However, there are processes where the relative concentration of NO in different environments may also serve to limit melanoma proliferation. This review serves to outline the roles of NO in melanoma development and proliferation. As demonstrated by multiple in vivo murine models and observations from human tissue, NO may promote melanoma formation and proliferation through its interaction via inhibitory immune cells, inhibition of apoptosis, stimulation of pro-tumorigenic cytokines, activation of tumor associated macrophages, alteration of angiogenic processes, and stimulation of melanoma formation itself. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of BRAF mutations and BRAF inhibition on immune responses to melanoma

    PubMed Central

    Ilieva, Kristina M.; Correa, Isabel; Josephs, Debra H.; Karagiannis, Panagiotis; Egbuniwe, Isioma U.; Cafferkey, Michiala J.; Spicer, James F.; Harries, Mark; Nestle, Frank O.; Lacy, Katie E.; Karagiannis, Sophia N.

    2014-01-01

    Malignant melanoma is associated with poor clinical prognosis; however, novel molecular and immune therapies are now improving patient outcomes. Almost 50% of melanomas harbor targetable activating mutations of BRAF which promote RAS-RAF-MEK-ERK pathway activation and melanoma proliferation. Recent evidence also indicates that melanomas bearing mutant BRAF may also have altered immune responses, suggesting additional avenues for treatment of this patient group. The small molecule inhibitors selective for mutant BRAF induce significant but short-lived clinical responses in a proportion of patients, but also lead to immune stimulatory bystander events, which then subside with the emergence of resistance to inhibition. Simultaneous BRAF and MEK inhibition, and especially combination of BRAF inhibitors with new immunotherapies such as checkpoint blockade antibodies, may further enhance immune activation, or counteract immunosuppressive signals. Pre-clinical evaluation and ongoing clinical trials should provide novel insights into the role of immunity in the therapy of BRAF-mutant melanoma. PMID:25385327

  14. Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, Hiroshi; Department of Pharmacy, Nara Hospital, Kinki University School of Medicine, 1248-1 Ikoma, Nara 630-0293; Tsubaki, Masanobu

    2009-07-15

    In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities ofmore » matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKC{alpha} and PKC{delta} phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.« less

  15. Activity of antioxidant enzymes and concentration of lipid peroxidation products in selected tissues of mice of different ages, both healthy and melanoma-bearing.

    PubMed

    Woźniak, A; Drewa, G; Woźniak, B; Schachtschabel, D O

    2004-06-01

    The activity of antioxidant enzymes and the concentration of the lipid peroxidation product malondialdehyde (MDA) as indicator of oxidative damage were determined in selected tissues of healthy mice and transplanted B16 melanoma-bearing mice with increasing age. A total of 60 male mice were divided into 6 groups. Groups 1, 2 and 3 consisted of tumor-free, healthy mice aged 1, 9 and 16 months, respectively (average life span: 2 years). Groups 4, 5 and 6 consisted of mice of the same age as the healthy mice, but given intraperitoneally 10(6) cells of B16 melanoma for 2 weeks. An increase in the concentration of MDA was found in all the studied tissues (brain, liver, lungs, erythrocytes) and blood plasma of 16-month old healthy mice compared with the younger ones. The activity of superoxide dismutase (SOD) and catalase (CAT) was elevated in the brain and the activity of CAT and glutathione peroxidase (GPx) in the liver of aged healthy mice. The transplantation of melanoma caused an increase of the concentration of MDA and of the activity of all studied enzymes in all tissues. This elevation was most pronounced in the youngest mice group 4 and was higher than in the oldest healthy group 3. Thus, these early changes of the "(anti-)oxidative status" in the investigated tissues caused by the tumor development have similarities with age-associated alterations of healthy mice, especially in regard to MDA in all tissues or SOD and CAT in brain.

  16. Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice.

    PubMed

    Dadachova, Ekaterina; Revskaya, E; Sesay, M A; Damania, H; Boucher, R; Sellers, R S; Howell, R C; Burns, L; Thornton, G B; Natarajan, A; Mirick, G R; DeNardo, S J; DeNardo, G L; Casadevall, A

    2008-07-01

    Currently there is no satisfactory treatment for metastatic melanoma. Radioimmunotherapy (RIT) uses the antigen-antibody interaction to deliver lethal radiation to target cells. Recently we established the feasibility of targeting melanin in tumors with 188-Rhenium ((188)Re)-labeled 6D2 mAb to melanin. Here we carried out pre-clinical development of (188)Re-6D2 to accrue information necessary for a Phase I trial in patients with metastatic melanoma. TCEP proved to be effective in generating a sufficient number of -SH groups on 6D2 to ensure high radiolabeling yields with (188)Re and preserved its structural integrity. (188)Re-6D2 was quickly cleared from the blood with the half-life of approximately 5 hrs and from the body--with the half-life of 10 hr. The doses of 0.5, 1.0 and 1.5 mCi significantly (p < 0.05) slowed down A2058 tumor growth in nude mice, also causing release of melanin into the extracellular space which could provide additional target for repeated treatments. Transient effects of RIT on WBC and platelet counts resolved by Day 14 post-treatment. Tris(2-Carboxyethyl) Phosphine Hydrochloride (TCEP) was evaluated as potential agent for generation of -SH groups on 6D2 mAb. TCEP-treated 6D2 mAb was radiolabeled with (188)Re and its radiochemical purity and stability was measured by ITLC and HPLC and its immunoreactivity--by melanin-binding ELISA. The pharmacokinetics, therapeutic efficacy and acute hematologic toxicity studies were performed in nude mice bearing lightly pigmented A2058 human metastatic melanoma tumors. We have developed radiolabeling and quality control procedures for melanin-binding (188)Re-6D2 mAb which made possible currently an on-going Phase I clinical trial in patients with metastatic melanoma.

  17. Anti-tumor angiogenesis effect of aminopeptidase inhibitor bestatin against B16-BL6 melanoma cells orthotopically implanted into syngeneic mice.

    PubMed

    Aozuka, Yasushi; Koizumi, Keiichi; Saitoh, Yurika; Ueda, Yasuji; Sakurai, Hiroaki; Saiki, Ikuo

    2004-12-08

    We investigated the effect of bestatin, an inhibitor of aminopeptidase N (APN)/CD13 and aminopeptidase B, on the angiogenesis induced by B16-BL6 melanoma cells. Oral administration of bestatin (100-200 mg/kg/day) was found to significantly inhibit the melanoma cell-induced angiogenesis in a mouse dorsal air sac assay. Additionally, anti-APN/CD13 mAb (WM15), which neutralizes the aminopeptidase activity in tumor cells, as well as bestatin inhibited the tube-like formation of human umbilical vein endothelial cells (HUVECs) in vitro. Furthermore, the intraperitoneal administration of bestatin (50-100 mg/kg/day) after the orthotopic implantation of B16-BL6 melanoma cells into mice reduced the number of vessels oriented towards the established primary tumor mass on the dorsal side of mice. These findings suggest that bestatin is an active anti-angiogenic agent that may inhibit tumor angiogenesis in vivo and tube-like formation of endothelial cells in vitro through its inhibition of APN/CD13 activity.

  18. Activation status of the pregnane X receptor influences vemurafenib availability in humanized mouse models.

    PubMed

    MacLeod, A Kenneth; McLaughlin, Lesley A; Henderson, Colin J; Wolf, C Roland

    2015-11-01

    Vemurafenib is a revolutionary treatment for melanoma, but the magnitude of therapeutic response is highly variable, and the rapid acquisition of resistance is frequent. Here, we examine how vemurafenib disposition, particularly through cytochrome P450-mediated oxidation pathways, could potentially influence these outcomes using a panel of knockout and transgenic humanized mouse models. We identified CYP3A4 as the major enzyme involved in the metabolism of vemurafenib in in vitro assays with human liver microsomes. However, mice expressing human CYP3A4 did not process vemurafenib to a greater extent than CYP3A4-null animals, suggesting that other pregnane X receptor (PXR)-regulated pathways may contribute more significantly to vemurafenib metabolism in vivo. Activation of PXR, but not of the closely related constitutive androstane receptor, profoundly reduced circulating levels of vemurafenib in humanized mice. This effect was independent of CYP3A4 and was negated by cotreatment with the drug efflux transporter inhibitor elacridar. Finally, vemurafenib strongly induced PXR activity in vitro, but only weakly induced PXR in vivo. Taken together, our findings demonstrate that vemurafenib is unlikely to exhibit a clinically significant interaction with CYP3A4, but that modulation of bioavailability through PXR-mediated regulation of drug transporters (e.g., by other drugs) has the potential to markedly influence systemic exposure and thereby therapeutic outcomes. ©2015 American Association for Cancer Research.

  19. Anti-tumor effects of differentiation-inducing factor-1 in malignant melanoma: GSK-3-mediated inhibition of cell proliferation and GSK-3-independent suppression of cell migration and invasion.

    PubMed

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Kubo, Momoko; Igawa, Kazunobu; Tomooka, Katsuhiko; Sasaguri, Toshiyuki

    2017-08-15

    Differentiation-inducing factor-1 (DIF-1) isolated from Dictyostelium discoideum strongly inhibits the proliferation of various mammalian cells through the activation of glycogen synthase kinase-3 (GSK-3). To evaluate DIF-1 as a novel anti-cancer agent for malignant melanoma, we examined whether DIF-1 has anti-proliferative, anti-migratory, and anti-invasive effects on melanoma cells using in vitro and in vivo systems. DIF-1 reduced the expression levels of cyclin D1 and c-Myc by facilitating their degradation via GSK-3 in mouse (B16BL6) and human (A2058) malignant melanoma cells, and thereby strongly inhibited their proliferation. DIF-1 suppressed the canonical Wnt signaling pathway by lowering the expression levels of transcription factor 7-like 2 and β-catenin, key transcription factors in this pathway. DIF-1 also inhibited cell migration and invasion, reducing the expression of matrix metalloproteinase-2; however, this effect was not dependent on GSK-3 activity. In a mouse lung tumor formation model, repeated oral administrations of DIF-1 markedly reduced melanoma colony formation in the lung. These results suggest that DIF-1 inhibits cell proliferation by a GSK-3-dependent mechanism and suppresses cell migration and invasion by a GSK-3-independent mechanism. Therefore, DIF-1 may have a potential as a novel anti-cancer agent for the treatment of malignant melanoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The human homologue of Dictyostelium discoideum phg1A is expressed by human metastatic melanoma cells.

    PubMed

    Lozupone, Francesco; Perdicchio, Maurizio; Brambilla, Daria; Borghi, Martina; Meschini, Stefania; Barca, Stefano; Marino, Maria Lucia; Logozzi, Mariantonia; Federici, Cristina; Iessi, Elisabetta; de Milito, Angelo; Fais, Stefano

    2009-12-01

    Tumour cannibalism is a characteristic of malignancy and metastatic behaviour. This atypical phagocytic activity is a crucial survival option for tumours in conditions of low nutrient supply, and has some similarities to the phagocytic activity of unicellular microorganisms. In fact, Dictyostelium discoideum has been used widely as a model to study phagocytosis. Recently, phg1A has been described as a protein that is primarily involved in the phagocytic process of this microorganism. The closest human homologue to phg1A is transmembrane 9 superfamily protein member 4 (TM9SF4). Here, we report that TM9SF4 is highly expressed in human malignant melanoma cells deriving from metastatic lesions, whereas it is undetectable in healthy human tissues and cells. TM9SF4 is predominantly expressed in acidic vesicles of melanoma cells, in which it co-localizes with the early endosome antigens Rab5 and early endosome antigen 1. TM9SF4 silencing induced marked inhibition of cannibal activity, which is consistent with a derangement of intracellular pH gradients, with alkalinization of acidic vesicles and acidification of the cell cytosol. We propose TM9SF4 as a new marker of malignancy, representing a potential new target for anti-tumour strategies with a specific role in tumour cannibalism and in the establishment of a metastatic phenotype.

  1. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    PubMed

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Hedgehog signaling in the murine melanoma microenvironment.

    PubMed

    Geng, Ling; Cuneo, Kyle C; Cooper, Michael K; Wang, Hong; Sekhar, Konjeti; Fu, Allie; Hallahan, Dennis E

    2007-01-01

    The Hedgehog intercellular signaling pathway regulates cell proliferation and differentiation. This pathway has been implicated to play a role in the pathogenesis of cancer and in embryonic blood vessel development. In the current study, Hedgehog signaling in tumor related vasculature and microenvironment was examined using human umbilical vein endothelial cells and B16F0 (murine melanoma) tumors models. Use of exogenous Sonic hedgehog (Shh) peptide significantly increased BrdU incorporation in endothelial cells in vitro by a factor of 2 (P < 0.001). The Hedgehog pathway antagonist cyclopamine effectively reduced Shh-induced proliferation to control levels. To study Hedgehog signaling in vivo a hind limb tumor model with the B16F0 cell line was used. Treatment with 25 mg/kg cyclopamine significantly attenuated BrdU incorporation in tumor cells threefold (P < 0.001), in tumor related endothelial cells threefold (P = 0.004), and delayed tumor growth by 4 days. Immunohistochemistry revealed that the Hedgehog receptor Patched was localized to the tumor stroma and that B16F0 cells expressed Shh peptide. Furthermore, mouse embryonic fibroblasts required the presence of B16F0 cells to express Patched in a co-culture assay system. These studies indicate that Shh peptide produced by melanoma cells induces Patched expression in fibroblasts. To study tumor related angiogenesis a vascular window model was used to monitor tumor vascularity. Treatment with cyclopamine significantly attenuated vascular formation by a factor of 2.5 (P < 0.001) and altered vascular morphology. Furthermore, cyclopamine reduced tumor blood vessel permeability to FITC labeled dextran while having no effect on normal blood vessels. These studies suggest that Hedgehog signaling regulates melanoma related vascular formation and function.

  3. Fisetin Inhibits Human Melanoma Cell Invasion through Promotion of Mesenchymal to Epithelial Transition and by Targeting MAPK and NFκB Signaling Pathways

    PubMed Central

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K.; Ballestas, Mary E.; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60–70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5–20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  4. MDA-9/syntenin and IGFBP-2 promote angiogenesis in human melanoma.

    PubMed

    Das, Swadesh K; Bhutia, Sujit K; Azab, Belal; Kegelman, Timothy P; Peachy, Leyla; Santhekadur, Prasanna K; Dasgupta, Santanu; Dash, Rupesh; Dent, Paul; Grant, Steven; Emdad, Luni; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B

    2013-01-15

    Melanoma differentiation-associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacologic approaches were used to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma, and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, chorioallantoic membrane (CAM) assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several proangiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the extracellular matrix (ECM), activating Src and FAK resulting in activation by phosphorylation of Akt, which induces hypoxia inducible factor 1-α (HIF-1α). The HIF-1α activates transcription of insulin growth factor-binding protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell nonautonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (nonautonomous).

  5. Food availability and foraging near human developments by black bears

    USGS Publications Warehouse

    Merkle, Jerod A.; Robinson, Hugh S.; Krausman, Paul R.; Alaback, Paul B.

    2013-01-01

    Understanding the relationship between foraging ecology and the presence of human-dominated landscapes is important, particularly for American black bears (Ursus americanus), which sometimes move between wildlands and urban areas to forage. The food-related factors influencing this movement have not been explored, but can be important for understanding the benefits and costs to black bear foraging behavior and the fundamental origins of bear conflicts. We tested whether the scarcity of wildland foods or the availability of urban foods can explain when black bears forage near houses, examined the extent to which male bears use urban areas in comparison to females, and identified the most important food items influencing bear movement into urban areas. We monitored 16 collared black bears in and around Missoula, Montana, during 2009 and 2010, while quantifying the rate of change in green vegetation and the availability of 5 native berry-producing species outside the urban area, the rate of change in green vegetation, and the availability of apples and garbage inside the urban area. We used parametric time-to-event models in which an event was a bear location collected within 100 m of a house. We also visited feeding sites located near houses and quantified food items bears had eaten. The probability of a bear being located near a house was 1.6 times higher for males, and increased during apple season and the urban green-up. Fruit trees accounted for most of the forage items at urban feeding sites (49%), whereas wildland foods composed <10%. Black bears foraged on human foods near houses even when wildland foods were available, suggesting that the absence of wildland foods may not influence the probability of bears foraging near houses. Additionally, other attractants, in this case fruit trees, appear to be more important than the availability of garbage in influencing when bears forage near houses.

  6. Photoacoustic imaging of single circulating melanoma cells in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Lidai; Yao, Junjie; Zhang, Ruiying; Xu, Song; Li, Guo; Zou, Jun; Wang, Lihong V.

    2015-03-01

    Melanoma, one of the most common types of skin cancer, has a high mortality rate, mainly due to a high propensity for tumor metastasis. The presence of circulating tumor cells (CTCs) is a potential predictor for metastasis. Label-free imaging of single circulating melanoma cells in vivo provides rich information on tumor progress. Here we present photoacoustic microscopy of single melanoma cells in living animals. We used a fast-scanning optical-resolution photoacoustic microscope to image the microvasculature in mouse ears. The imaging system has sub-cellular spatial resolution and works in reflection mode. A fast-scanning mirror allows the system to acquire fast volumetric images over a large field of view. A 500-kHz pulsed laser was used to image blood and CTCs. Single circulating melanoma cells were imaged in both capillaries and trunk vessels in living animals. These high-resolution images may be used in early detection of CTCs with potentially high sensitivity. In addition, this technique enables in vivo study of tumor cell extravasation from a primary tumor, which addresses an urgent pre-clinical need.

  7. Proteomic Analysis of Laser Microdissected Melanoma Cells from Skin Organ Cultures

    PubMed Central

    Hood, Brian L.; Grahovac, Jelena; Flint, Melanie S.; Sun, Mai; Charro, Nuno; Becker, Dorothea; Wells, Alan; Conrads, Thomas P

    2010-01-01

    Gaining insights into the molecular events that govern the progression from melanoma in situ to advanced melanoma, and understanding how the local microenvironment at the melanoma site influences this progression, are two clinically pivotal aspects that to date are largely unexplored. In an effort to identify key regulators of the crosstalk between melanoma cells and the melanoma-skin microenvironment, primary and metastatic human melanoma cells were seeded into skin organ cultures (SOCs), and grown for two weeks. Melanoma cells were recovered from SOCs by laser microdissection and whole-cell tryptic digests analyzed by nanoflow liquid chromatography-tandem mass spectrometry with an LTQ-Orbitrap. The differential protein abundances were calculated by spectral counting, the results of which provides evidence that cell-matrix and cell-adhesion molecules that are upregulated in the presence of these melanoma cells recapitulate proteomic data obtained from comparative analysis of human biopsies of invasive melanoma and a tissue sample of adjacent, non-involved skin. This concordance demonstrates the value of SOCs for conducting proteomic investigations of the melanoma microenvironment. PMID:20459140

  8. RAB7 counteracts PI3K-driven macropinocytosis activated at early stages of melanoma development

    PubMed Central

    Alonso-Curbelo, Direna; Osterloh, Lisa; Cañón, Estela; Calvo, Tonantzin G.; Martínez-Herranz, Raúl; Karras, Panagiotis; Martínez, Sonia; Riveiro-Falkenbach, Erica; Romero, Pablo-Ortiz; Rodríguez-Peralto, José Luis; Pastor, Joaquín; Soengas, María S.

    2015-01-01

    Derailed endolysosomal trafficking is emerging as a widespread feature of aggressive neoplasms. However, the oncogenic signals that alter membrane homeostasis and their specific contribution to cancer progression remain unclear. Understanding the upstream drivers and downstream regulators of aberrant vesicular trafficking is distinctly important in melanoma. This disease is notorious for its inter- and intra-tumoral heterogeneity. Nevertheless, melanomas uniformly overexpress a cluster of endolysosomal genes, being particularly addicted to the membrane traffic regulator RAB7. Still, the underlying mechanisms and temporal determinants of this dependency have yet to be defined. Here we addressed these questions by combining electron microscopy, real time imaging and mechanistic analyses of vesicular trafficking in normal and malignant human melanocytic cells. This strategy revealed Class I PI3K as the key trigger of a hyperactive influx of macropinosomes that melanoma cells counteract via RAB7-mediated lysosomal degradation. In addition, gain- and loss-of-function in vitro studies followed by histopathological validation in clinical biopsies and genetically-engineered mouse models, traced back the requirement of RAB7 to the suppression of premature cellular senescence traits elicited in melanocytes by PI3K-inducing oncogenes. Together, these results provide new insight into the regulators and modes of action of RAB7, broadening the impact of endosomal fitness on melanoma development. PMID:26008978

  9. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models.

    PubMed

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V

    2015-03-02

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6-fold in vivo . In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p < 0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care.

  10. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models

    PubMed Central

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V.

    2015-01-01

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6-fold in vivo. In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p < 0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care. PMID:25983370

  11. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models

    NASA Astrophysics Data System (ADS)

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V.

    2015-03-01

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6- fold in vivo. In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p <0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care.

  12. Biodistribution of modular nanotransporter carrying Auger electron emitter and targeted at melanoma cells in murine tumor model

    NASA Astrophysics Data System (ADS)

    Vorontsova, M. S.; Morozova, N. B.; Karmakova, T. A.; Rosenkranz, A. A.; Slastnikova, T. A.; Petriev, V. M.; Smoryzanova, O. A.; Tischenko, V. K.; Yakubovskaya, R. I.; Kaprin, A. D.; Sobolev, A. S.

    2017-09-01

    Recombinant modular nanotransporter containing α-melanocyte-stimulating hormone peptide sequence (MNT-MSH) as a ligand module was designed for nucleus-targeted delivery of cytotoxic agents into melanoma cells. MNT-MSH radiolabeled with Auger electron emitter (111In-NOTA-MNT-MSH) showed a high antitumor efficacy in mice bearing syngeneic melanoma after intratumoral (i.t.) injection. This study is aimed at evaluating the biodistribution of the radioconjugate in melanoma tumor model in vivo. 111In-NOTA-MNT-MSH was administered i.t. in C57Bl/6j mice bearing subcutaneously implanted B16-F1 murine melanoma cells, expressing high levels of MCR1. The tissue uptake of radioactivity was determined ex vivo by γ-counter measurements. The intravenous route of administration did not provide a desirable level of radioactivity accumulation in the tumor, possibly, due to a high uptake of the transporter in liver tissue. After i.t. administration 111In-NOTA-MNT-MSH provided a high local retention of radionuclide, ranged from 400 to 350 %ID/g within at least 48 hours post-injection. MNT containing Auger electron emitter and α-MSH peptide as vector ligand could be a promising basis for radiopharmaceutical preparations intended for melanoma treatment.

  13. Melanoma

    MedlinePlus

    Melanoma is the most serious type of skin cancer. Often the first sign of melanoma is a change in the size, shape, color, or feel of a mole. Most melanomas have a black or black-blue area. Melanoma ...

  14. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma.

    PubMed

    Byrum, Stephanie D; Larson, Signe K; Avaritt, Nathan L; Moreland, Linley E; Mackintosh, Samuel G; Cheung, Wang L; Tackett, Alan J

    2013-03-01

    Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.

  15. Integrative Genome Comparison of Primary and Metastatic Melanomas

    PubMed Central

    Feng, Bin; Nazarian, Rosalynn M.; Bosenberg, Marcus; Wu, Min; Scott, Kenneth L.; Kwong, Lawrence N.; Xiao, Yonghong; Cordon-Cardo, Carlos; Granter, Scott R.; Ramaswamy, Sridhar; Golub, Todd; Duncan, Lyn M.; Wagner, Stephan N.; Brennan, Cameron; Chin, Lynda

    2010-01-01

    A cardinal feature of malignant melanoma is its metastatic propensity. An incomplete view of the genetic events driving metastatic progression has been a major barrier to rational development of effective therapeutics and prognostic diagnostics for melanoma patients. In this study, we conducted global genomic characterization of primary and metastatic melanomas to examine the genomic landscape associated with metastatic progression. In addition to uncovering three genomic subclasses of metastastic melanomas, we delineated 39 focal and recurrent regions of amplification and deletions, many of which encompassed resident genes that have not been implicated in cancer or metastasis. To identify progression-associated metastasis gene candidates, we applied a statistical approach, Integrative Genome Comparison (IGC), to define 32 genomic regions of interest that were significantly altered in metastatic relative to primary melanomas, encompassing 30 resident genes with statistically significant expression deregulation. Functional assays on a subset of these candidates, including MET, ASPM, AKAP9, IMP3, PRKCA, RPA3, and SCAP2, validated their pro-invasion activities in human melanoma cells. Validity of the IGC approach was further reinforced by tissue microarray analysis of Survivin showing significant increased protein expression in thick versus thin primary cutaneous melanomas, and a progression correlation with lymph node metastases. Together, these functional validation results and correlative analysis of human tissues support the thesis that integrated genomic and pathological analyses of staged melanomas provide a productive entry point for discovery of melanoma metastases genes. PMID:20520718

  16. Detection of melanomas by digital imaging of spectrally resolved UV light-induced autofluorescence of human skin

    NASA Astrophysics Data System (ADS)

    Chwirot, B. W.; Chwirot, S.; Jedrzejczyk, W.; Redzinski, J.; Raczynska, A. M.; Telega, K.

    2001-07-01

    We studied spectral and spatial distributions of the intensity of the ultraviolet light-excited fluorescence of human skin. Our studied performed in situ in 162 patients with malignant and non-malignant skin lesions resulted in a new method of detecting melanomas in situ using digital imaging of the spectrally resolved fluorescence. With our diagnostic algorithm we could successfully detect 88.5% of the cases of melanoma in the group of patients subject to examinations with the fluorescence method. A patent application for the method has been submitted to the Patent Office in Warsaw.

  17. Differential response of human melanoma and Ehrlich ascites cells in vitro to the ribosome-inactivating protein luffin.

    PubMed

    Poma, A; Miranda, M; Spanò, L

    1998-10-01

    The cytotoxicity and inhibitory effect on proliferation of the type 1 ribosome-inactivating protein luffin purified from the seeds of Luffa aegyptiaca were investigated both in human metastatic melanoma cells and in murine Ehrlich ascites tumour cells. Results indicate that luffin from the seeds of Luffa aegyptiaca is cytotoxic to the cell lines tested, with approximately 10 times greater potency in Ehrlich cells. Luffin was found to induce an increase in cytosolic oligonucleosome-bound DNA in both melanoma and Ehrlich ascites tumour cells, the level of DNA fragmentation in the former cell line being higher than in the latter. Experiments with melanoma cells indicate that an increase in cytosolic nucleosomes could be supportive of apoptosis as the type of cell death induced by luffin.

  18. Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis

    PubMed Central

    Grassi, Elena; Damasco, Christian; Silengo, Lorenzo; Oti, Martin; Provero, Paolo; Di Cunto, Ferdinando

    2008-01-01

    Background Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. PMID:18369433

  19. Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells.

    PubMed

    Del Bello, Barbara; Toscano, Marzia; Moretti, Daniele; Maellaro, Emilia

    2013-01-01

    The interplay between a non-lethal autophagic response and apoptotic cell death is still a matter of debate in cancer cell biology. In the present study performed on human melanoma cells, we investigate the role of basal or stimulated autophagy in cisplatin-induced cytotoxicity, as well as the contribution of cisplatin-induced activation of caspases 3/7 and conventional calpains. The results show that, while down-regulating Beclin-1, Atg14 and LC3-II, cisplatin treatment inhibits the basal autophagic response, impairing a physiological pro-survival response. Consistently, exogenously stimulated autophagy, obtained with trehalose or calpains inhibitors (MDL-28170 and calpeptin), protects from cisplatin-induced apoptosis, and such a protection is reverted by inhibiting autophagy with 3-methyladenine or ATG5 silencing. In addition, during trehalose-stimulated autophagy, the cisplatin-induced activation of calpains is abrogated, suggesting the existence of a feedback loop between the autophagic process and calpains. On the whole, our results demonstrate that in human melanoma cells autophagy may function as a beneficial stress response, hindered by cisplatin-induced death mechanisms. In a therapeutic perspective, these findings suggest that the efficacy of cisplatin-based polychemotherapies for melanoma could be potentiated by inhibitors of autophagy.

  20. Therapeutic efficacy of interleukin-2 activated killer cells against adriamycin resistant mouse B16-BL6 melanoma.

    PubMed

    Gautam, S C; Chikkala, N F; Lewis, I; Grabowski, D R; Finke, J H; Ganapathi, R

    1992-01-01

    Development of multidrug-resistance (MDR) remains a major cause of failure in the treatment of cancer with chemotherapeutic agents. In our efforts to explore alternative treatment regimens for multidrug-resistant tumors we have examined the sensitivity of MDR tumor cell lines to lymphokine activated killer (LAK) cells. Adriamycin (ADM) resistant B16-BL6 melanoma, L1210 and P388 leukemic cell lines were tested for sensitivity to lysis by LAK cells in vitro. While ADM-resistant B16-BL6 and L1210 sublines were found to exhibit at least 2-fold greater susceptibility to lysis by LAK cells, sensitivity of ADM-resistant P388 cell was similar to that of parental cells. Since ADM-resistant B16-BL6 cells were efficiently lysed by LAK cells in vitro, the efficacy of therapy with LAK cells against the ADM-resistant B16-BL6 subline in vivo was evaluated. Compared to mice bearing parental B16-BL6 tumor cells, the adoptive transfer of LAK cells and rIL2 significantly reduced formation of experimental metastases (P less than 0.009) and extended median survival time (P less than 0.001) of mice bearing ADM-resistant B16-BL6 tumor cells. Results suggest that immunotherapy with LAK cells and rIL2 may be a useful modality in the treatment of cancers with the MDR phenotype.

  1. Behaviour of Solitary Adult Scandinavian Brown Bears (Ursus arctos) when Approached by Humans on Foot

    PubMed Central

    Moen, Gro Kvelprud; Støen, Ole-Gunnar; Sahlén, Veronica; Swenson, Jon E.

    2012-01-01

    Successful management has brought the Scandinavian brown bear (Ursus arctos L.) back from the brink of extinction, but as the population grows and expands the probability of bear-human encounters increases. More people express concerns about spending time in the forest, because of the possibility of encountering bears, and acceptance for the bear is decreasing. In this context, reliable information about the bear's normal behaviour during bear-human encounters is important. Here we describe the behaviour of brown bears when encountering humans on foot. During 2006–2009, we approached 30 adult (21 females, 9 males) GPS-collared bears 169 times during midday, using 1-minute positioning before, during and after the approach. Observer movements were registered with a handheld GPS. The approaches started 869±348 m from the bears, with the wind towards the bear when passing it at approximately 50 m. The bears were detected in 15% of the approaches, and none of the bears displayed any aggressive behaviour. Most bears (80%) left the initial site during the approach, going away from the observers, whereas some remained at the initial site after being approached (20%). Young bears left more often than older bears, possibly due to differences in experience, but the difference between ages decreased during the berry season compared to the pre-berry season. The flight initiation distance was longer for active bears (115±94 m) than passive bears (69±47 m), and was further affected by horizontal vegetation cover and the bear's age. Our findings show that bears try to avoid confrontations with humans on foot, and support the conclusions of earlier studies that the Scandinavian brown bear is normally not aggressive during encounters with humans. PMID:22363710

  2. Melanoma prevention by MC1R selective small peptide analogs of alpha MSH | Division of Cancer Prevention

    Cancer.gov

    This revised application will test the hypothesis that small peptide analogs of ¿-melanocortin (¿-MSH) that are selective agonists of the melanocortin 1 receptor (MC1R) will prevent melanoma tumor formation in transgenic mouse melanoma models by enhancing repair of ultraviolet radiation (UV)-induced DNA damage and stimulating melanogenesis. We have pioneered the research on

  3. Comparison of the Lonidamine Potentiated Effect of Nitrogen Mustard Alkylating Agents on the Systemic Treatment of DB-1 Human Melanoma Xenografts in Mice

    PubMed Central

    Nath, Kavindra; Nelson, David S.; Putt, Mary E.; Leeper, Dennis B.; Garman, Bradley; Nathanson, Katherine L.; Glickson, Jerry D.

    2016-01-01

    Previous NMR studies demonstrated that lonidamine (LND) selectively diminishes the intracellular pH (pHi) of DB-1 melanoma and mouse xenografts of a variety of other prevalent human cancers while decreasing their bioenergetic status (tumor βNTP/Pi ratio) and enhancing the activities of melphalan and doxorubicin in these cancer models. Since melphalan and doxorubicin are highly toxic agents, we have examined three other nitrogen (N)-mustards, chlorambucil, cyclophosphamide and bendamustine, to determine if they exhibit similar potentiation by LND. As single agents LND, melphalan and these N-mustards exhibited the following activities in DB-1 melanoma xenografts; LND: 100% tumor surviving fraction (SF); chlorambucil: 100% SF; cyclophosphamide: 100% SF; bendamustine: 79% SF; melphalan: 41% SF. When combined with LND administered 40 min prior to administration of the N-mustard (to maximize intracellular acidification) the following responses were obtained; chlorambucil: 62% SF; cyclophosphamide: 42% SF; bendamustine: 36% SF; melphalan: 10% SF. The effect of LND on the activities of these N-mustards is generally attributed to acid stabilization of the aziridinium active intermediate, acid inhibition of glutathione-S-transferase, which acts as a scavenger of aziridinium, and acid inhibition of DNA repair by O6-alkyltransferase. Depletion of ATP by LND may also decrease multidrug resistance and increase tumor response. At similar maximum tolerated doses, our data indicate that melphalan is the most effective N-mustard in combination with LND when treating DB-1 melanoma in mice, but the choice of N-mustard for coadministration with LND will also depend on the relative toxicities of these agents, and remains to be determined. PMID:27285585

  4. Novel alpha-MSH peptide analogs for melanoma targeting

    NASA Astrophysics Data System (ADS)

    Flook, Adam Michael

    Skin cancer is the one of the most diagnosed cancers in the United States with increasing incidence over the past two decades. There are three major forms of skin cancer but melanoma is the deadliest. It is estimated that 76,690 new diagnoses of melanoma and 9,480 deaths will occur in 2013. Melanoma accounts for approximately 1.6% of all cancer related deaths and is the 5 th leading diagnosed cancer in the United States. The mean survival rate of patients diagnosed with metastatic melanoma is six months, with five year survival rates of less than 5%. In this project, we describe the design and characterization of novel melanoma-targeting peptide analogs for use in diagnostic imaging of both primary and metastatic melanoma lesions. Novel alpha-MSH peptide conjugates were designed to target the melanocortin-1 receptor present and over-expressed on melanoma cells. These peptides were synthesized and their in-vitro melanocortin-1 receptor binding affinities were established in murine melanoma cells. Once binding affinities were determined, the peptides were radiolabeled with 99mTc utilizing a novel direct radiolabeling technique developed in our laboratory. The peptides were purified via reverse-phase high performance liquid chromatography and in-vivo melanoma targeting and pharmacokinetic properties were determined in B16/F1 melanoma-bearing female C57BL/6 mice. Biodistribution and SPECT/CT imaging studies were performed with the promising 99m Tc-labeled peptide conjugates. All alpha-MSH peptide conjugates tested showed low nanomolar binding affinity for the melanocortin-1 receptor. All peptides were readily radiolabeld with 99mTc with greater than 95% radiochemical purity. All 99mTc-labeled peptides displayed high specific in-vivo melanoma tumor uptake while maintaining low normal organ accumulation, and were excreted through the urinary system in a timely fashion. In addition, all tested 99mTc-labeld alpha-MSH peptides demonstrated clear visualization of in

  5. Cross-Priming of Naive Cd8 T Cells against Melanoma Antigens Using Dendritic Cells Loaded with Killed Allogeneic Melanoma Cells

    PubMed Central

    Berard, Frederic; Blanco, Patrick; Davoust, Jean; Neidhart-Berard, Eve-Marie; Nouri-Shirazi, Mahyar; Taquet, Nicolas; Rimoldi, Donata; Cerottini, Jean Charles; Banchereau, Jacques; Palucka, A. Karolina

    2000-01-01

    The goal of tumor immunotherapy is to elicit immune responses against autologous tumors. It would be highly desirable that such responses include multiple T cell clones against multiple tumor antigens. This could be obtained using the antigen presenting capacity of dendritic cells (DCs) and cross-priming. That is, one could load the DC with tumor lines of any human histocompatibility leukocyte antigen (HLA) type to elicit T cell responses against the autologous tumor. In this study, we show that human DCs derived from monocytes and loaded with killed melanoma cells prime naive CD45RA+CD27+CD8+ T cells against the four shared melanoma antigens: MAGE-3, gp100, tyrosinase, and MART-1. HLA-A201+ naive T cells primed by DCs loaded with HLA-A201− melanoma cells are able to kill several HLA-A201+ melanoma targets. Cytotoxic T lymphocyte priming towards melanoma antigens is also obtained with cells from metastatic melanoma patients. This demonstration of cross-priming against shared tumor antigens builds the basis for using allogeneic tumor cell lines to deliver tumor antigens to DCs for vaccination protocols. PMID:11104796

  6. A novel fully-humanised 3D skin equivalent to model early melanoma invasion

    PubMed Central

    Hill, David S; Robinson, Neil D P; Caley, Matthew P; Chen, Mei; O’Toole, Edel A; Armstrong, Jane L; Przyborski, Stefan; Lovat, Penny E

    2015-01-01

    Metastatic melanoma remains incurable, emphasising the acute need for improved research models to investigate the underlying biological mechanisms mediating tumour invasion and metastasis, and to develop more effective targeted therapies to improve clinical outcome. Available animal models of melanoma do not accurately reflect human disease and current in vitro human skin equivalent models incorporating melanoma cells are not fully representative of the human skin microenvironment. We have developed a robust and reproducible, fully-humanised 3D skin equivalent comprising a stratified, terminally differentiated epidermis and a dermal compartment consisting of fibroblast-generated extracellular matrix. Melanoma cells incorporated into the epidermis were able to invade through the basement membrane and into the dermis, mirroring early tumour invasion in vivo. Comparison of our novel 3D melanoma skin equivalent with melanoma in situ and metastatic melanoma indicates this model accurately recreates features of disease pathology, making it a physiologically representative model of early radial and vertical growth phase melanoma invasion. PMID:26330548

  7. Ionizing radiation modulates the surface expression of human leukocyte antigen-G in a human melanoma cell line.

    PubMed

    Michelin, Severino; Gallegos, Cristina E; Dubner, Diana; Favier, Benoit; Carosella, Edgardo D

    2009-12-01

    Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule involved in fetus protection from the maternal immune system, transplant tolerance, and viral and tumoral immune escape. Tumor-specific HLA-G expression has been described for a wide variety of malignancies, including melanomas. The aim of this study was to evaluate whether ionizing radiation (IR) could modulate the surface expression of HLA-G1 in a human melanoma cell line that expresses endogenously membrane-bound HLA-G1. For this purpose, cells were exposed to increasing doses of gamma-irradiation (0-20 Gy) and HLA-G1 levels at the plasma membrane were analyzed at different times postirradiation by flow cytometry. HLA-G total expression and the presence of the soluble form of HLA-G1 (sHLA-G1) in the culture medium of irradiated cells were also evaluated. IR was capable of downregulating cell surface and total HLA-G levels, with a concomitant increase of sHLA-G1 in the medium. These results could indicate that gamma-irradiation decreases HLA-G1 surface levels by enhancing the proteolytic cleavage of this molecule.

  8. Human but Not Mouse Hepatocytes Respond to Interferon-Lambda In Vivo

    PubMed Central

    Hermant, Pascale; Demarez, Céline; Mahlakõiv, Tanel; Staeheli, Peter; Meuleman, Philip; Michiels, Thomas

    2014-01-01

    The type III interferon (IFN) receptor is preferentially expressed by epithelial cells. It is made of two subunits: IFNLR1, which is specific to IFN-lambda (IFN-λ) and IL10RB, which is shared by other cytokine receptors. Human hepatocytes express IFNLR1 and respond to IFN-λ. In contrast, the IFN-λ response of the mouse liver is very weak and IFNLR1 expression is hardly detectable in this organ. Here we investigated the IFN-λ response at the cellular level in the mouse liver and we tested whether human and mouse hepatocytes truly differ in responsiveness to IFN-λ. When monitoring expression of the IFN-responsive Mx genes by immunohistofluorescence, we observed that the IFN-λ response in mouse livers was restricted to cholangiocytes, which form the bile ducts, and that mouse hepatocytes were indeed not responsive to IFN-λ. The lack of mouse hepatocyte response to IFN-λ was observed in different experimental settings, including the infection with a hepatotropic strain of influenza A virus which triggered a strong local production of IFN-λ. With the help of chimeric mice containing transplanted human hepatocytes, we show that hepatocytes of human origin readily responded to IFN-λ in a murine environment. Thus, our data suggest that human but not mouse hepatocytes are responsive to IFN-λ in vivo. The non-responsiveness is an intrinsic property of mouse hepatocytes and is not due to the mouse liver micro-environment. PMID:24498220

  9. Sensitization of recombinant human tumor necrosis factor-related apoptosis-inducing ligand-resistant malignant melanomas by quercetin.

    PubMed

    Turner, Katherine A; Manouchehri, Jasmine M; Kalafatis, Michael

    2018-03-28

    Malignant melanoma is the most commonly diagnosed skin cancer associated with a high rate of metastasis. Low-stage melanoma is easily treated, but metastatic malignant melanoma is an extremely treatment-resistant malignancy with low survival rates. The application of recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) for the treatment of metastatic malignant melanoma holds considerable promise because of its selective proapoptotic activity towards cancer cells and not nontransformed cells. Unfortunately, the clinical utilization of rhTRAIL has been terminated due to the resistance of many cancer cells to undergo apoptosis in response to rhTRAIL. However, rhTRAIL-resistance can be abrogated through the cotreatment with compounds derived from 'Mother Nature' such as quercetin that can modulate cellular components responsible for rhTRAIL-resistance. Here, we show that rhTRAIL-resistant malignant melanomas are sensitized by quercetin. Quercetin action is manifested by the upregulation of rhTRAIL-binding receptors DR4 and DR5 on the surface of cancer cells and by increased rate of the proteasome-mediated degradation of the antiapoptotic protein FLIP. Our data provide for a new efficient and nontoxic treatment of malignant melanoma.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.

  10. Humanized Mouse Models for the Study of Human Malaria Parasite Biology, Pathogenesis, and Immunity.

    PubMed

    Minkah, Nana K; Schafer, Carola; Kappe, Stefan H I

    2018-01-01

    Malaria parasite infection continues to inflict extensive morbidity and mortality in resource-poor countries. The insufficiently understood parasite biology, continuously evolving drug resistance and the lack of an effective vaccine necessitate intensive research on human malaria parasites that can inform the development of new intervention tools. Humanized mouse models have been greatly improved over the last decade and enable the direct study of human malaria parasites in vivo in the laboratory. Nevertheless, no small animal model developed so far is capable of maintaining the complete life cycle of Plasmodium parasites that infect humans. The ultimate goal is to develop humanized mouse systems in which a Plasmodium infection closely reproduces all stages of a parasite infection in humans, including pre-erythrocytic infection, blood stage infection and its associated pathology, transmission as well as the human immune response to infection. Here, we discuss current humanized mouse models and the future directions that should be taken to develop next-generation models for human malaria parasite research.

  11. Receptor-mediated cytotoxicity of alpha-MSH fragments containing melphalan in a human melanoma cell line.

    PubMed

    Morandini, R; Süli-Vargha, H; Libert, A; Loir, B; Botyánszki, J; Medzihradszky, K; Ghanem, G

    1994-01-02

    Four alpha-MSH drug conjugates have been synthesized, 2 C-terminal (Pep 3 and 4) and 2 central fragments (Pep 1 and 2), the latter being the 4-10 sequence known to be the main alpha-MSH-receptor-recognition site. Melphalan was introduced into each sequence at different locations. Their ability to recognize alpha-MSH receptors as well as their cytotoxic effects were compared in 3 cell lines: melanoma, carcinoma and fibroblast cells. Pep 1 and 2 were able to specifically bind to MSH receptors on melanoma cells by displacing labelled alpha-MSH from its binding sites at concentrations similar to the 4-10 heptapeptide sequence known to contain the main receptor-recognition site. They subsequently penetrate the cell, most probably by a receptor internalization mechanism, since about half of their effect could be inhibited by competition at the receptor level. Significant and selective cytotoxic effects to melanoma cells could be observed after only 2 hr exposure to the drug conjugates. Interestingly, these 2 conjugates, differing only in melphalan position, showed completely different cytotoxicity in terms of IC50 values, Pep 1 being 24 times more toxic to all cells; but the 2 were equally specific to melanoma cells. However, they both were less toxic to all cells than melphalan itself. Furthermore, Pep 1 and 2 were able to block the receptor and, unlike Pep 3 and 4, their cytotoxic effect could be significantly inhibited by an alpha-MSH agonist. Pep 3 and 4 were 5 to 10 times less toxic than melphalan to melanoma and carcinoma cells and 50 times less to fibroblast cells, and did not show any cell-type selectivity. They were less toxic than Pep 1 to melanoma and carcinoma cells by a factor of 2, but equally toxic to fibroblasts. In contrast, they were more toxic than Pep 2 to fibroblasts, melanoma and carcinoma by a factor of 3, 10 and 24 respectively. Our data strongly suggest a receptor-mediated cytotoxicity mechanism occurring with alpha-MSH central fragments in human

  12. [Development of the next generation humanized mouse for drug discovery].

    PubMed

    Ito, Ryoji

    A humanized mouse, which is efficiently engrafted human cells and tissues, is an important tool to mimic human physiology for biomedical researches. Since 2000s, severe combined immunodeficient mouse strains such as NOG, BRG, and NSG mice have been generated. They are great recipients to create humanized mouse models compared to previous other immunodeficient strains due to their multiple dysfunctions of innate and acquired immunity. Especially, the transfer of human hematopoietic stem cells into these immunodeficient mice has been enabled to reconstitute human immune systems, because the mice show high engraftment level of human leukocyte in peripheral blood (~50%), spleen and bone marrow (60~90%) and generate well-differentiated multilineage human immune cells including lymphoid and myeloid lineage cells. Using these mice, several human disease models such as cancer, allergy, graft-versus-host disease (GVHD), and etc. have been established to understand the pathogenic mechanisms of the diseases and to evaluate the efficacy and safety of novel drugs. In this review, I provide an overview of recent advances in the humanized mouse technology, including generation of novel platforms of genetically modified NOG (next generation NOG) mice and some applications of them to create human disease models for drug discovery in preclinical researches.

  13. Quantitative comparison of the spreading and invasion of radial growth phase and metastatic melanoma cells in a three-dimensional human skin equivalent model.

    PubMed

    Haridas, Parvathi; McGovern, Jacqui A; McElwain, Sean D L; Simpson, Matthew J

    2017-01-01

    Standard two-dimensional (2D) cell migration assays do not provide information about vertical invasion processes, which are critical for melanoma progression. We provide information about three-dimensional (3D) melanoma cell migration, proliferation and invasion in a 3D melanoma skin equivalent (MSE) model. In particular, we pay careful attention to compare the structure of the tissues in the MSE with similarly-prepared 3D human skin equivalent (HSE) models. The HSE model is identically prepared to the MSE model except that melanoma cells are omitted. Using the MSE model, we examine melanoma migration, proliferation and invasion from two different human melanoma cell lines. One cell line, WM35, is associated with the early phase of the disease where spreading is thought to be confined to the epidermis. The other cell line, SK-MEL-28, is associated with the later phase of the disease where spreading into the dermis is expected. 3D MSE and HSE models are constructed using human de-epidermised dermis (DED) prepared from skin tissue. Primary fibroblasts and primary keratinocytes are used in the MSE and HSE models to ensure the formation of a stratified epidermis, with a well-defined basement membrane. Radial spreading of cells across the surface of the HSE and MSE models is observed. Vertical invasion of melanoma cells downward through the skin is observed and measured using immunohistochemistry. All measurements of invasion are made at day 0, 9, 15 and 20, providing detailed time course data. Both HSE and MSE models are similar to native skin in vivo , with a well-defined stratification of the epidermis that is separated from the dermis by a basement membrane. In the HSE and MSE we find fibroblast cells confined to the dermis, and differentiated keratinocytes in the epidermis. In the MSE, melanoma cells form colonies in the epidermis during the early part of the experiment. In the later stage of the experiment, the melanoma cells in the MSE invade deeper into the

  14. Quantitative comparison of the spreading and invasion of radial growth phase and metastatic melanoma cells in a three-dimensional human skin equivalent model

    PubMed Central

    Haridas, Parvathi; McGovern, Jacqui A.; McElwain, Sean D.L.

    2017-01-01

    Background Standard two-dimensional (2D) cell migration assays do not provide information about vertical invasion processes, which are critical for melanoma progression. We provide information about three-dimensional (3D) melanoma cell migration, proliferation and invasion in a 3D melanoma skin equivalent (MSE) model. In particular, we pay careful attention to compare the structure of the tissues in the MSE with similarly-prepared 3D human skin equivalent (HSE) models. The HSE model is identically prepared to the MSE model except that melanoma cells are omitted. Using the MSE model, we examine melanoma migration, proliferation and invasion from two different human melanoma cell lines. One cell line, WM35, is associated with the early phase of the disease where spreading is thought to be confined to the epidermis. The other cell line, SK-MEL-28, is associated with the later phase of the disease where spreading into the dermis is expected. Methods 3D MSE and HSE models are constructed using human de-epidermised dermis (DED) prepared from skin tissue. Primary fibroblasts and primary keratinocytes are used in the MSE and HSE models to ensure the formation of a stratified epidermis, with a well-defined basement membrane. Radial spreading of cells across the surface of the HSE and MSE models is observed. Vertical invasion of melanoma cells downward through the skin is observed and measured using immunohistochemistry. All measurements of invasion are made at day 0, 9, 15 and 20, providing detailed time course data. Results Both HSE and MSE models are similar to native skin in vivo, with a well-defined stratification of the epidermis that is separated from the dermis by a basement membrane. In the HSE and MSE we find fibroblast cells confined to the dermis, and differentiated keratinocytes in the epidermis. In the MSE, melanoma cells form colonies in the epidermis during the early part of the experiment. In the later stage of the experiment, the melanoma cells in the MSE

  15. Single-chain antibody-delivered Livin siRNA inhibits human malignant melanoma growth in vitro and in vivo.

    PubMed

    Wang, Hao; Yang, Yifei; Wang, Wei; Guan, Bing; Xun, Meng; Zhang, Hai; Wang, Ziling; Zhao, Yong

    2017-05-01

    Although gene therapy has brought new insights into the treatment of malignant melanoma, targeting delivery of nucleic acid which targets critical oncogene/anti-oncogene in vivo is still a bottleneck in the therapeutic application. Our previous in vitro studies have found that the oncogene Livin could serve as a potential molecular target by small interfering RNA for gene therapy of malignant melanoma. However, how to transport Livin small interfering RNA into malignant melanoma cells specifically and efficiently in vivo needs further investigation. Cumulative evidence has suggested that single-chain antibody-mediated small interfering RNA targeted delivery is an effective way to silence specific genes in human cancer cells. Indeed, this study designed a protamine-single-chain antibody fusion protein, anti-MM scFv-tP, to deliver Livin small interfering RNA into LiBr cells. Further experiments confirmed the induction of cell apoptosis and suppression of cell proliferation by anti-MM scFv-tP in LiBr cells, along with efficient silence of Livin gene both in vitro and in vivo. Altogether, our findings provide a feasible approach to transport Livin small interfering RNA to malignant melanoma cells which would be a new therapeutic strategy for combating malignant melanoma.

  16. PP2B and ERK1/2 regulate hyaluronan synthesis of HT168 and WM35 human melanoma cell lines.

    PubMed

    Katona, Éva; Juhász, Tamás; Somogyi, Csilla Szűcs; Hajdú, Tibor; Szász, Csaba; Rácz, Kálmán; Kókai, Endre; Gergely, Pál; Zákány, Róza

    2016-03-01

    Hyaluronan (HA) is the major glycosaminoglycan component of the extracellular matrix in either normal or malignant tissues and it may affect proliferation, motility and differentiation of various cell types. Three isoforms of plasma membrane-bound hyaluronan synthases (HAS 1, 2 and 3) secrete and simultaneously bind pericellular HA. HAS enzymes are subjects of post-translational protein phosphorylation which is believed to regulate their enzymatic activity. In this study, we investigated the HA homeostasis of normal human epidermal melanocytes, HT168 and WM35 human melanoma cell lines and melanoma metastases. HAS2 and HAS3 were detected in all the samples, while the expression of HAS1 was not detectable in any case. Malignant tissue samples and melanoma cell lines contained extra- and intracellular HA abundantly but not normal melanocytes. Applying HA as a chemoattractant facilitated the migration of melanoma cells in Boyden chamber. The amount of HA was reduced upon the inhibition of calcineurin with cyclosporine A (CsA), while the inhibition of ERK1/2 with PD098059 elevated it in both cell lines. The signals of Ser/Thr phosphoproteins at 57 kD were stronger after CsA treatment, while a markedly weaker signal was detected upon inhibition of the MAPK pathway. Our results suggest opposing effects of the two investigated enzymes on the HA homeostasis of melanoma cells. We propose that the dephosphorylation of HAS enzymes targeted by PP2B augments HA production, while their phosphorylation by the activity of MAPK pathway reduces HA synthesis. As the expression of the HA receptor RHAMM was also significantly enhanced by PD098059, the MAPK pathway exerted a complex attenuating effect on HA signalling in the investigated melanoma cells. This observation suggests that the application of MAPK-ERK pathway inhibitors requires a careful therapeutic design in melanoma treatment.

  17. PP2B and ERK1/2 regulate hyaluronan synthesis of HT168 and WM35 human melanoma cell lines

    PubMed Central

    KATONA, ÉVA; JUHÁSZ, TAMÁS; SOMOGYI, CSILLA SZŰCS; HAJDÚ, TIBOR; SZÁSZ, CSABA; RÁCZ, KÁLMÁN; KÓKAI, ENDRE; GERGELY, PÁL; ZÁKÁNY, RÓZA

    2016-01-01

    Hyaluronan (HA) is the major glycosaminoglycan component of the extracellular matrix in either normal or malignant tissues and it may affect proliferation, motility and differentiation of various cell types. Three isoforms of plasma membrane-bound hyaluronan synthases (HAS 1, 2 and 3) secrete and simultaneously bind pericellular HA. HAS enzymes are subjects of post-translational protein phosphorylation which is believed to regulate their enzymatic activity. In this study, we investigated the HA homeostasis of normal human epidermal melanocytes, HT168 and WM35 human melanoma cell lines and melanoma metastases. HAS2 and HAS3 were detected in all the samples, while the expression of HAS1 was not detectable in any case. Malignant tissue samples and melanoma cell lines contained extra- and intracellular HA abundantly but not normal melanocytes. Applying HA as a chemoattractant facilitated the migration of melanoma cells in Boyden chamber. The amount of HA was reduced upon the inhibition of calcineurin with cyclosporine A (CsA), while the inhibition of ERK1/2 with PD098059 elevated it in both cell lines. The signals of Ser/Thr phosphoproteins at 57 kD were stronger after CsA treatment, while a markedly weaker signal was detected upon inhibition of the MAPK pathway. Our results suggest opposing effects of the two investigated enzymes on the HA homeostasis of melanoma cells. We propose that the dephosphorylation of HAS enzymes targeted by PP2B augments HA production, while their phosphorylation by the activity of MAPK pathway reduces HA synthesis. As the expression of the HA receptor RHAMM was also significantly enhanced by PD098059, the MAPK pathway exerted a complex attenuating effect on HA signalling in the investigated melanoma cells. This observation suggests that the application of MAPK-ERK pathway inhibitors requires a careful therapeutic design in melanoma treatment. PMID:26717964

  18. Thioredoxin induces Tregs to generate an immunotolerant tumor microenvironment in metastatic melanoma

    PubMed Central

    Wang, Xiaogang; Dong, Haisheng; Li, Qi; Li, Yingxian; Hong, An

    2015-01-01

    Metastatic melanoma is a highly aggressive cancer that is very difficult to treat. Additionally, the antitumor immune reaction of melanoma is still unclear. Here we demonstrate an association between the expression and secretion of the antioxidant protein thioredoxin (TRX) and increasing tumor stage and metastasis in melanoma. To elucidate the role of TRX in melanoma, we assessed the correlation of TRX expression with different disease parameters in melanoma. We also examined the in vitro and in vivo effects of modulating TRX levels in melanoma cells using various methods of TRX depletion and augmentation. We further explored the effects of TRX on the cytokine milieu and the ability of TRX to regulate the proportion and specific activities of T-cell populations. We demonstrate that TRX expression correlates with Treg representation in clinical samples and, that modulation of TRX influences the induction of Tregs and the generation of an immunotolerant cytokine profile in mouse serum. Using a murine metastatic melanoma model, we identified a tumor immunoevasion mechanism whereby melanoma cell-secreted TRX enhances Treg infiltration. TRX displays chemotactic effects in recruiting Tregs, stimulates the conversion of conventional T cells to Tregs, and confers survival advantage to Tregs in the tumor microenvironment. In turn, this increase of Tregs generates immunotolerance in tissues and therefore decreases antitumor immune reactions. These results elucidate a mechanism by which TRX promotes metastatic melanoma in part through Treg recruitment to inhibit T-cell antitumor effects and suggest that TRX antibody may be useful in the clinic as a therapy against melanoma. PMID:26405597

  19. Melanoma Stem Cells and Metastasis: Mimicking Hematopoietic Cell Trafficking?

    PubMed Central

    Lee, Nayoung; Barthel, Steven R.; Schatton, Tobias

    2014-01-01

    Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. Additionally, MMICs are enriched among circulating tumor cells (CTCs) in the peripheral blood of cancer patients, suggesting that MMICs may be a critical player in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells (CSCs) in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines, and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced

  20. Mining Gene Expression Signature for the Detection of Pre-Malignant Melanocytes and Early Melanomas with Risk for Metastasis

    PubMed Central

    de Souza, Camila Ferreira; Xander, Patrícia; Monteiro, Ana Carolina; Silva, Amanda Gonçalves dos Santos; da Silva, Débora Castanheira Pereira; Mai, Sabine; Bernardo, Viviane; Lopes, José Daniel; Jasiulionis, Miriam Galvonas

    2012-01-01

    Background Metastatic melanoma is a highly aggressive skin cancer and currently resistant to systemic therapy. Melanomas may involve genetic, epigenetic and metabolic abnormalities. Evidence is emerging that epigenetic changes might play a significant role in tumor cell plasticity and metastatic phenotype of melanoma cells. Principal findings In this study, we developed a systematic approach to identify genes implicated in melanoma progression. To do this, we used the Affymetrix GeneChip Arrays to screen 34,000 mouse transcripts in melan-a melanocytes, 4C pre-malignant melanocytes, 4C11− non-metastatic and 4C11+ metastatic melanoma cell lines. The genome-wide association studies revealed pathways commonly over-represented in the transition from immortalized to pre-malignant stage, and under-represented in the transition from non-metastatic to metastatic stage. Additionally, the treatment of cells with 10 µM 5-aza-2′-deoxycytidine (5AzaCdR) for 48 hours allowed us to identify genes differentially re-expressed at specific stages of melan-a malignant transformation. Treatment of human primary melanocytes with the demethylating agent 5AzaCdR in combination to the histone deacetylase inhibitor Trichostatin A (TSA) revealed changes on melanocyte morphology and gene expression which could be an indicator of epigenetic flexibility in normal melanocytes. Moreover, changes on gene expression recognized by affecting the melanocyte biology (NDRG2 and VDR), phenotype of metastatic melanoma cells (HSPB1 and SERPINE1) and response to cancer therapy (CTCF, NSD1 and SRC) were found when Mel-2 and/or Mel-3-derived patient metastases were exposed to 5AzaCdR plus TSA treatment. Hierarchical clustering and network analyses in a panel of five patient-derived metastatic melanoma cells showed gene interactions that have never been described in melanomas. Significance Despite the heterogeneity observed in melanomas, this study demonstrates the utility of our murine melanoma

  1. Anti-Tumor Effect of Adipose Tissue Derived-Mesenchymal Stem Cells Expressing Interferon-β and Treatment with Cisplatin in a Xenograft Mouse Model for Canine Melanoma

    PubMed Central

    Ahn, Jin ok; Lee, Hee woo; Seo, Kyoung won; Kang, Sung keun; Ra, Jeong chan; Youn, Hwa young

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are attractive cell-therapy vehicles for the delivery of anti-tumor molecules into the tumor microenvironment. The innate tropism of AT-MSCs for tumors has important implications for effective cellular delivery of anti-tumor molecules, including cytokines, interferon, and pro-drugs. The present study was designed to determine the possibility that the combination of stem cell-based gene therapy with low-dose cisplatin would improve therapeutic efficacy against canine melanoma. The IFN-β transduced canine AT-MSCs (cAT-MSC-IFN-β) inhibited the growth of LMeC canine melanoma cells in direct and indirect in vitro co-culture systems. In animal experiments using BALB/c nude mouse xenografts, which developed by injecting LMeC cells, the combination treatment of cAT-MSC-IFN-β and low-dose cisplatin significantly reduced tumor volume compared with the other treatment groups. Fluorescent microscopic analysis with a TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling) assay of tumor section provided evidence for homing of cAT-MSC-IFN-β to the tumor site and revealed that the combination treatment of cAT-MSC-IFN-β with low-dose cisplatin induced high levels of cell apoptosis. These findings may prove useful in further explorations of the application of these combined approaches to the treatment of malignant melanoma and other tumors. PMID:24040358

  2. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation

    PubMed Central

    Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J.

    2017-01-01

    A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse

  3. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation.

    PubMed

    Kim, So Young; Kang, Dongxu; Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J

    2017-02-28

    A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse

  4. BRAF and MEK inhibitor therapy eliminates nestin expressing melanoma cells in human tumors.

    PubMed

    Doxie, Deon B; Greenplate, Allison R; Gandelman, Jocelyn S; Diggins, Kirsten E; Roe, Caroline E; Dahlman, Kimberly B; Sosman, Jeffrey A; Kelley, Mark C; Irish, Jonathan M

    2018-05-19

    Little is known about the in vivo impacts of targeted therapy on melanoma cell abundance and protein expression. Here, 21 antibodies were added to an established melanoma mass cytometry panel to measure 32 cellular features, distinguish malignant cells, and characterize dabrafenib and trametinib responses in BRAF V 600mut melanoma. Tumor cells were biopsied before neoadjuvant therapy and compared to cells surgically resected from the same site after 4 weeks of therapy. Approximately 50,000 cells per tumor were characterized by mass cytometry and computational tools t-SNE/viSNE, FlowSOM, and MEM. The resulting single cell view of melanoma treatment response revealed initially heterogeneous melanoma tumors were consistently cleared of Nestin expressing melanoma cells. Melanoma cells subsets that persisted to week 4 were heterogeneous but expressed SOX2 or SOX10 proteins and specifically lacked surface expression of MHC I proteins by MEM analysis. Traditional histology imaging of tissue microarrays from the same tumors confirmed mass cytometry results, including persistence of NES- SOX10+ S100β+ melanoma cells. This quantitative single cell view of melanoma treatment response revealed protein features of malignant cells that are not eliminated by targeted therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. In Vivo High-Frequency Contrast-Enhanced Ultrasonography of Choroidal Melanoma in Rabbits: Imaging Features and Histopathologic Correlations

    PubMed Central

    Kang, Shin J.; Zhang, Qing; Patel, Samirkumar R.; Berezovsky, Damian; Yang, Hua; Wang, Yanggan; Grossniklaus, Hans E.

    2013-01-01

    Purpose To evaluate the utility of in vivo imaging of rabbit model of choroidal melanoma utilizing high-frequency contrast-enhanced ultrasound (HF-CE-US) with 2-or 3-dimensional modes, and to correlate the sonographic findings with histopathologic characteristics. Methods Five New Zealand white rabbits which were immunosuppressed with daily cyclosporin A were inoculated into their right eyes with aliquots of 1.5×106 / 50 µL of 92.1 human uveal melanoma cells cultured in RPMI. At week 4, the tumor-bearing eyes were imaged using high-frequency ultrasound with microbubble contrast agent to determine the 2-dimensional tumor size and relative blood volume and by 3-dimensional mode to determine tumor volume. Histologic tumor burden was quantified in enucleated eyes by ImageJ software, and microvascular density (MVD) was determined by counting vascular channels in PAS without hematoxylin sections. Results Utilizing HF-CE-US, melanomas were visualized as relatively hyperechoic regions in the images. The correlation coefficients of sonographic size or volume compared with histologic area were 0.72 and 0.70, respectively. The sonographic tumor relative blood volume correlated with the histologic tumor vascularity (R2=0.92, P=0.04) Conclusions There is a positive correlation between in vivo sonographic tumor volume/size and histologic tumor size in our rabbit choroidal melanoma model. HF-CE-US corresponds to microvascular density and blood volume. PMID:23645822

  6. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide

    PubMed Central

    Ramcharan, Roger; Aleksic, Tamara; Kamdoum, Wilfride Petnga; Gao, Shan; Pfister, Sophia X.; Tanner, Jordan; Bridges, Esther; Asher, Ruth; Watson, Amanda J.; Margison, Geoffrey P.; Woodcock, Mick; Repapi, Emmanouela; Li, Ji-Liang; Middleton, Mark R.; Macaulay, Valentine M.

    2015-01-01

    Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage. PMID

  7. Antiproliferative and apoptosis-inducing effects of lipophilic vitamins on human melanoma A375 cells in vitro.

    PubMed

    Ishibashi, Mai; Arai, Mariko; Tanaka, Sachiko; Onda, Kenji; Hirano, Toshihiko

    2012-01-01

    The effects of six lipophilic vitamins: tretinoin (ATRA), vitamin D(3) (VD(3)), VE, VK(1), VK(3), and VK(5) on cell proliferation and apoptosis in human A375 melanoma cells were investigated. VD(3), VK(3), and VK(5) were found to inhibit cell proliferation significantly at concentration ranges of 10-100 μmol/L (p<0.01), while the other vitamins did not show inhibitory effects at 100 μmol/L. VK(3) and VK(5) showed the strongest effects with IC(50) values of less than 10 μmol/L. Dacarbazine slightly inhibited the proliferation of A375 cells at a concentration range of 25-100 μmol/L, but the effects were not statistically significant. VK(3) and VK(5) increased annexin-V positive apoptotic cells, as well as activating caspase-3, in A375 cells. Our findings showed that VD(3), VK(3,) and VK(5) inhibited the growth of dacarbazine resistant human melanoma cells, while ATRA, VE, and VK(1) had little effect on the cell growth. The effects of VK(3) and VK(5) were observed at concentrations lower than 10 μmol/L, which are suggested to have resulted from apoptosis-induction in the melanoma cells.

  8. Brown bear-human interactions associated with deer hunting on Kodiak Island

    USGS Publications Warehouse

    Barnes, Victor G.

    1994-01-01

    I compared distribution and range of brown bears (Ursus arctos middendorffi) with temporal and spatial distribution of Sitka black-tailed deer (Odocoileus hemionus sitkensis) hunting activity on westside Kodiak Island, Alaska, to examine impacts of deer hunting on bears. Mean number of bears that annually ranged ≤5 km from the coast, >5 km inland from the coast, or in both areas was 10, 8, and 11, respectively. Bears that exclusively or seasonally occupied the coast zone were usually classed as having moderate or high potential to interact with hunters because most hunter access and effort (>95%) was via the coast. Bears that ranged exclusively inland were considered unlikely to encounter hunters. Animals that ranged in both zones often (39%) moved inland during fall (Oct-Dec) and most bears (70%) denned in the inland zone. Females that denned near the coast entered dens later (x̄ = 22 Nov) than females that denned inland (x̄ = 12 Nov). Two radio-collared bears were known to raid deer-hunting camps and 9 other marked bears were observed by hunters or were located <200 m from hunting camps. Deer-hunter surveys revealed that more than two-thirds of the deer harvest occurred during October-November. About half of the hunters observed at least 1 bear during their hunt. Seven to 21% of the respondents reported having a threatening encounter with a bear and 5-26% reported losing deer meat to bears. Human-induced mortality to radio-collared bears occurred more often near the coast (5) than inland (3); 7 bears were harvested by sport hunters and 1 was killed (nonsport) in a Native village. Deer hunters killed 2 unmarked females in defense of life or property situations in the study area. High bear densities and concentrated deer-hunting activity combine to make conflicts unavoidable. Adverse impacts to bears can be minimized by maintaining low levels of human activity in inland areas and improving hunter awareness of bear ecology and behavior.

  9. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma.

    PubMed

    Sun, Jingping; Law, Gabriela P; McKallip, Robert J

    2012-03-01

    In the current study, we examined the potential significance of CD44 expression on lymphokine-activated killer (LAK) cells in their interaction and killing of melanoma cells. Stimulation of splenocytes with IL-2 led to a significant increase in the expression of CD44 on T cells, NK cells, and NKT cells. Treatment of melanoma-bearing CD44 WT mice with IL-2 led to a significant reduction in the local tumor growth while treatment of melanoma-bearing CD44 KO mice with IL-2 was ineffective at controlling tumor growth. Furthermore, the ability of splenocytes from IL-2-treated CD44 KO mice to kill melanoma tumor targets was significantly reduced when compared to the anti-tumor activity of splenocytes from IL-2-treated CD44 WT mice. The importance of CD44 expression on the LAK cells was further confirmed by the observation that adoptively transferred CD44 WT LAK cells were significantly more effective than CD44 KO LAK cells at controlling tumor growth in vivo. Next, the significance of the increased expression of CD44 in tumor killing was examined and showed that following stimulation with IL-2, distinct populations of cells with low (CD44(lo)) or elevated (CD44(hi)) expression of CD44 are generated and that the CD44(hi) cells are responsible for killing of the melanoma cells. The reduced killing activity of the CD44 KO LAK cells did not result from reduced activation or expression of effector molecules but was due, at least in part, to a reduced ability to adhere to B16F10 tumor cells.

  10. Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma.

    PubMed

    Jayachandran, Aparna; Anaka, Matthew; Prithviraj, Prashanth; Hudson, Christopher; McKeown, Sonja J; Lo, Pu-Han; Vella, Laura J; Goding, Colin R; Cebon, Jonathan; Behren, Andreas

    2014-07-30

    Epithelial-to-mesenchymal transition (EMT), in which epithelial cells loose their polarity and become motile mesenchymal cells, is a determinant of melanoma metastasis. We compared gene expression signatures of mesenchymal-like melanoma cells with those of epithelial-like melanoma cells, and identified Thrombospondin 1 (THBS1) as highly up-regulated in the mesenchymal phenotype. This study investigated whether THBS1, a major physiological activator of transforming growth factor (TGF)-beta, is involved in melanoma EMT-like process. We sought to examine expression patterns in distinct melanoma phenotypes including invasive, de-differentiated, label-retaining and drug resistant populations that are putatively associated with an EMT-like process. Here we show that THBS1 expression and secretion was elevated in melanoma cells exhibiting invasive, drug resistant, label retaining and mesenchymal phenotypes and correlated with reduced expression of genes involved in pigmentation. Elevated THBS1 levels were detected in Vemurafenib resistant melanoma cells and inhibition of THBS1 led to significantly reduced chemoresistance in melanoma cells. Notably, siRNA-mediated silencing of THBS1 and neutralizing antibody to THBS1 reduced invasion in mesenchymal-like melanoma cells, while ectopic THBS1 expression in epithelial-like melanoma cells enhanced invasion. Furthermore, the loss of THBS1 inhibited in vivo motility of melanoma cells within the embryonic chicken neural tube. In addition, we found aberrant THBS1 protein expression in metastatic melanoma tumor biopsies. These results implicate a role for THBS1 in EMT, and hence THBS1 may serve as a novel target for strategies aimed at the treatment of melanoma invasion and drug resistance.

  11. Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma

    PubMed Central

    Jayachandran, Aparna; Anaka, Matthew; Prithviraj, Prashanth; Hudson, Christopher; McKeown, Sonja J; Lo, Pu-Han; Vella, Laura J; Goding, Colin R; Cebon, Jonathan; Behren, Andreas

    2014-01-01

    Epithelial-to-mesenchymal transition (EMT), in which epithelial cells loose their polarity and become motile mesenchymal cells, is a determinant of melanoma metastasis. We compared gene expression signatures of mesenchymal-like melanoma cells with those of epithelial-like melanoma cells, and identified Thrombospondin 1 (THBS1) as highly up-regulated in the mesenchymal phenotype. This study investigated whether THBS1, a major physiological activator of transforming growth factor (TGF)-beta, is involved in melanoma EMT-like process. We sought to examine expression patterns in distinct melanoma phenotypes including invasive, de-differentiated, label-retaining and drug resistant populations that are putatively associated with an EMT-like process. Here we show that THBS1 expression and secretion was elevated in melanoma cells exhibiting invasive, drug resistant, label retaining and mesenchymal phenotypes and correlated with reduced expression of genes involved in pigmentation. Elevated THBS1 levels were detected in Vemurafenib resistant melanoma cells and inhibition of THBS1 led to significantly reduced chemoresistance in melanoma cells. Notably, siRNA-mediated silencing of THBS1 and neutralizing antibody to THBS1 reduced invasion in mesenchymal-like melanoma cells, while ectopic THBS1 expression in epithelial-like melanoma cells enhanced invasion. Furthermore, the loss of THBS1 inhibited in vivo motility of melanoma cells within the embryonic chicken neural tube. In addition, we found aberrant THBS1 protein expression in metastatic melanoma tumor biopsies. These results implicate a role for THBS1 in EMT, and hence THBS1 may serve as a novel target for strategies aimed at the treatment of melanoma invasion and drug resistance. PMID:25051363

  12. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression

    PubMed Central

    Kim, Sun-Hee; Hashimoto, Yuuri; Cho, Sung-Nam; Roszik, Jason; Milton, Denái R.; Dal, Fulya; Kim, Sangwon F.; Menter, David G.; Yang, Peiying; Ekmekcioglu, Suhendan; Grimm, Elizabeth A.

    2016-01-01

    Summary COX-2 and its product PGE2 enhance carcinogenesis and tumor progression, which has been previously reported in melanoma. As most COX inhibitors cause much toxicity, the downstream microsomal PGE2 synthase-1 (mPGES1) is a consideration for targeting. Human melanoma TMAs were employed for testing mPGES1 protein staining intensity and percentage levels and both increased with clinical stage; employing a different Stage III TMA, mPGES1 intensity (not percentage) associated with reduced patient survival. Our results further show that iNOS was also highly expressed in melanoma tissues with high mPGES1 levels, and iNOS-mediated NO promoted mPGES1 expression and PGE2 production. An mPGES1specific inhibitor (CAY10526) as well as siRNA attenuated cell survival and increased apoptosis. CAY10526 significantly suppressed tumor growth and increased apoptosis in melanoma xenografts. Our findings support the value of a prognostic and predictive role for mPGES1, and suggest targeting this molecule in the PGE2 pathway as another avenue toward improving melanoma therapy. PMID:26801201

  13. Endogenous Noxa Determines the Strong Proapoptotic Synergism of the BH3-Mimetic ABT-737 with Chemotherapeutic Agents in Human Melanoma Cells12

    PubMed Central

    Weber, Arnim; Kirejczyk, Zofia; Potthoff, Stephanie; Ploner, Christian; Häcker, Georg

    2009-01-01

    Human melanoma cells are very resistant to treatment with chemotherapeutic agents, and melanoma shows poor response to chemotherapeutic therapy. We describe a strong synergistic proapoptotic effect of the Bcl-2 family inhibitor ABT-737 and the standard antimelanoma drugs, namely, dacarbazine and fotemustine, and the experimental agent, imiquimod. Experiments with human melanoma cells, keratinocytes, and embryonic fibroblasts showed that all three agents activated the mitochondrial apoptosis pathway. ABT-737 on its own was ineffective in melanoma cells unless Mcl-1 was experimentally downregulated. However, ABT-737 strongly enhanced the proapoptotic activity of the chemotherapeutic drugs. Whereas cell death induction by all three agents involved the activity of both BH3-only proteins, Bim and Noxa, the combination with ABT-737 overcame the requirement for Bim. However, the synergism between ABT-737 and imiquimod or dacarbazine required endogenous Noxa, as demonstrated by experiments with Noxa-specific RNAi. Surprisingly, although Bim was activated, it was unable to replace Noxa. Studies of mitochondrial cytochrome c release using BH3 peptides confirmed that a main effect of dacarbazine, fotemustine, and imiquimod was to neutralize Mcl-1, thereby sensitizing mitochondria to the inhibition of other Bcl-2 family members through ABT-737. ABT-737 is thus a promising agent for combination therapy for human melanoma. Importantly, the efficacy of this therapy depends on endogenous Noxa, and the ability of chemotherapeutic drugs to activate Noxa may be a valuable predictor of their synergism with Bcl-2-targeting drugs. PMID:19412422

  14. Safety of administering the canine melanoma DNA vaccine (Oncept) to cats with malignant melanoma - a retrospective study.

    PubMed

    Sarbu, Luminita; Kitchell, Barbara E; Bergman, Philip J

    2017-02-01

    Objectives A xenogeneic human tyrosinase DNA vaccine was developed for treatment of dogs with oral malignant melanoma (Oncept; Merial). No studies have evaluated the safety or efficacy of this vaccine in cats. The purpose of this study was to evaluate the safety of the canine melanoma vaccine in cats diagnosed with melanoma. Methods Medical records were reviewed from cats diagnosed with malignant melanoma and treated with the canine melanoma DNA vaccine (Oncept). Data regarding signalment, melanoma location, treatments received, vaccine adverse effects and cause of death were collected. Results A total of 114 melanoma vaccines were administered to 24 cats. Seven cats (11.4%) had clinical adverse effects from a total of 13 vaccines classified as grade 1 or 2 based on the Veterinary Cooperative Oncology Group's common terminology criteria for adverse events v1.1. These included pain on vaccine administration, brief muscle fasciculation, transient inappetence, depression, nausea and mild increase in pigmentation at the injection site. Nineteen cats were deceased at study close. The most common cause of death was melanoma (14 cats). Hematological and biochemical changes were observed in six cats, five of which had concurrent disease or treatments that likely caused or greatly contributed to the laboratory abnormalities found. Therefore, these adverse events were considered unlikely to be caused by the melanoma vaccine. One cat had transient grade 1 hypoalbuminemia, which was possibly caused by the vaccination but not thoroughly evaluated. Conclusions and relevance The canine melanoma DNA vaccine can be safely administered to cats, with minimal risk of adverse effects.

  15. Genetic and environmental melanoma models in fish

    PubMed Central

    Patton, E Elizabeth; Mitchell, David L; Nairn, Rodney S

    2010-01-01

    Experimental animal models are extremely valuable for the study of human diseases, especially those with underlying genetic components. The exploitation of various animal models, from fruitflies to mice, has led to major advances in our understanding of the etiologies of many diseases, including cancer. Cutaneous malignant melanoma is a form of cancer for which both environmental insult (i.e., UV) and hereditary predisposition are major causative factors. Fish melanoma models have been used in studies of both spontaneous and induced melanoma formation. Genetic hybrids between platyfish and swordtails, different species of the genus Xiphophorus, have been studied since the 1920s to identify genetic determinants of pigmentation and melanoma formation. Recently, transgenesis has been used to develop zebrafish and medaka models for melanoma research. This review will provide a historical perspective on the use of fish models in melanoma research, and an updated summary of current and prospective studies using these unique experimental systems. PMID:20230482

  16. Oral recombinant human or mouse lactoferrin reduces Mycobacterium tuberculosis TDM induced granulomatous lung pathology.

    PubMed

    Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K

    2017-02-01

    Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse -1 . At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL) -1 ·mouse -1 ) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.

  17. MGDB: a comprehensive database of genes involved in melanoma.

    PubMed

    Zhang, Di; Zhu, Rongrong; Zhang, Hanqian; Zheng, Chun-Hou; Xia, Junfeng

    2015-01-01

    The Melanoma Gene Database (MGDB) is a manually curated catalog of molecular genetic data relating to genes involved in melanoma. The main purpose of this database is to establish a network of melanoma related genes and to facilitate the mechanistic study of melanoma tumorigenesis. The entries describing the relationships between melanoma and genes in the current release were manually extracted from PubMed abstracts, which contains cumulative to date 527 human melanoma genes (422 protein-coding and 105 non-coding genes). Each melanoma gene was annotated in seven different aspects (General Information, Expression, Methylation, Mutation, Interaction, Pathway and Drug). In addition, manually curated literature references have also been provided to support the inclusion of the gene in MGDB and establish its association with melanoma. MGDB has a user-friendly web interface with multiple browse and search functions. We hoped MGDB will enrich our knowledge about melanoma genetics and serve as a useful complement to the existing public resources. Database URL: http://bioinfo.ahu.edu.cn:8080/Melanoma/index.jsp. © The Author(s) 2015. Published by Oxford University Press.

  18. Relative influences of climate change and human activity on the onshore distribution of polar bears

    USGS Publications Warehouse

    Wilson, Ryan R.; Regehr, Eric V.; St. Martin, Michelle; Atwood, Todd C.; Peacock, Elizabeth; Miller, Susanne; Divoky, George J.

    2017-01-01

    Climate change is altering habitat for many species, leading to shifts in distributions that can increase levels of human-wildlife conflict. To develop effective strategies for minimizing human-wildlife conflict, we must understand the relative influences that climate change and other factors have on wildlife distributions. Polar bears (Ursus maritimus) are increasingly using land during summer and autumn due to sea ice loss, leading to higher incidents of conflict and concerns for human safety. We sought to understand the relative influence of sea ice conditions, onshore habitat characteristics, and human-provisioned food attractants on the distribution and abundance of polar bears while on shore. We also wanted to determine how mitigation measures might reduce human-polar bear conflict associated with an anthropogenic food source. We built a Bayesian hierarchical model based on 14 years of aerial survey data to estimate the weekly number and distribution of polar bears on the coast of northern Alaska in autumn. We then used the model to predict how effective two management options for handling subsistence-harvested whale remains in the community of Kaktovik, Alaska might be. The distribution of bears on shore was most strongly influenced by the presence of whale carcasses and to a lesser extent sea ice and onshore habitat conditions. The numbers of bears on shore were related to sea ice conditions. The two management strategies for handling the whale carcasses reduced the estimated number of bears near Kaktovik by > 75%. By considering multiple factors associated with the onshore distribution and abundance of polar bears we discerned what role human activities played in where bears occur and how successful efforts to manage the whale carcasses might be for reducing human-polar bear conflict.

  19. Technical approaches for mouse models of human disease.

    PubMed

    Justice, Monica J; Siracusa, Linda D; Stewart, A Francis

    2011-05-01

    The mouse is the leading organism for disease research. A rich resource of genetic variation occurs naturally in inbred and special strains owing to spontaneous mutations. However, one can also obtain desired gene mutations by using the following processes: targeted mutations that eliminate function in the whole organism or in a specific tissue; forward genetic screens using chemicals or transposons; or the introduction of exogenous transgenes as DNAs, bacterial artificial chromosomes (BACs) or reporter constructs. The mouse is the only mammal that provides such a rich resource of genetic diversity coupled with the potential for extensive genome manipulation, and is therefore a powerful application for modeling human disease. This poster review outlines the major genome manipulations available in the mouse that are used to understand human disease: natural variation, reverse genetics, forward genetics, transgenics and transposons. Each of these applications will be essential for understanding the diversity that is being discovered within the human population.

  20. Gallium-67-labeled lactam bridge-cyclized alpha-MSH peptides with enhanced melanoma uptake and reduced renal uptake.

    PubMed

    Guo, Haixun; Gallazzi, Fabio; Miao, Yubin

    2012-06-20

    The purpose of this study was to examine the melanoma targeting and pharmacokinetic properties of (67)Ga-DOTA-GGNle-CycMSHhex {(67)Ga-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and (67)Ga-NOTA-GGNle-CycMSHhex {(67)Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and compare with (67)Ga-DOTA-GlyGlu-CycMSH {(67)Ga-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]} we previously reported. DOTA-GGNle-CycMSHhex and NOTA-GGNle-CycMSHhex were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSHhex was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSHhex. The melanoma targeting and pharmacokinetic properties of (67)Ga-NOTA-GGNle-CycMSHhex and (67)Ga-DOTA-GGNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex displayed comparable MC1 receptor binding affinities (1.6 vs 2.1 nM) in B16/F1 melanoma cells. Both (67)Ga-NOTA-GGNle-CycMSHhex and (67)Ga-DOTA-GGNle-CycMSHhex exhibited dramatically enhanced melanoma uptake and reduced renal uptake than (67)Ga-DOTA-GlyGlu-CycMSH in B16/F1 melanoma-bearing C57 mice. Furthermore, (67)Ga-NOTA-GGNle-CycMSHhex exhibited more favorable radiolabeling conditions (>85% radiolabeling yields started at 37 °C), as well as higher tumor/kidney uptake ratios than (67)Ga-DOTA-GGNle-CycMSHhex at 0.5, 2, and 24 h postinjection. High melanoma uptake coupled with low renal uptake highlighted the potential of (67)Ga-NOTA-GGNle-CycMSHhex for melanoma imaging and therapy.

  1. Gallium-67-Labeled Lactam Bridge-Cyclized Alpha-MSH Peptides with Enhanced Melanoma Uptake and Reduced Renal Uptake

    PubMed Central

    Guo, Haixun; Gallazzi, Fabio; Miao, Yubin

    2012-01-01

    The purpose of this study was to examine the melanoma targeting and pharmacokinetic properties of 67Ga-DOTA-GGNle-CycMSHhex {67Ga-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-Gly-Gly-Nle-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2} and 67Ga-NOTA-GGNle-CycMSHhex {67Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2} and compare with 67Ga-DOTA-GlyGlu-CycMSH {67Ga-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-dPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]} we previously reported. DOTA-GGNle-CycMSHhex and NOTA-GGNle-CycMSHhex were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSHhex was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSHhex. The melanoma targeting and pharmacokinetic properties of 67Ga-NOTA-GGNle-CycMSHhex and 67Ga-DOTA-GGNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex displayed comparable MC1 receptor binding affinities (1.6 vs. 2.1 nM) in B16/F1 melanoma cells. Both 67Ga-NOTA-GGNle-CycMSHhex and 67Ga-DOTA-GGNle-CycMSHhex exhibited dramatically enhanced melanoma uptake and reduced renal uptake than 67Ga-DOTA-GlyGlu-CycMSH in B16/F1 melanoma-bearing C57 mice. Furthermore, 67Ga-NOTA-GGNle-CycMSHhexexhibited more favorable radiolabeling conditions (> 85% radiolabeling yields started at 37°C), as well as higher tumor/kidney uptake ratios than 67Ga-DOTA-GGNle-CycMSHhex at 0.5, 2 and 24 h post-injection. High melanoma uptake coupled with low renal uptake highlighted the potential of 67Ga-NOTA-GGNle-CycMSHhexfor melanoma imaging and therapy. PMID:22621181

  2. Erythrocytosis and Pulmonary Hypertension in a Mouse Model of Human HIF2A Gain of Function Mutation*

    PubMed Central

    Tan, Qiulin; Kerestes, Heddy; Percy, Melanie J.; Pietrofesa, Ralph; Chen, Li; Khurana, Tejvir S.; Christofidou-Solomidou, Melpo; Lappin, Terence R. J.; Lee, Frank S.

    2013-01-01

    The central pathway for oxygen-dependent control of red cell mass is the prolyl hydroxylase domain protein (PHD):hypoxia inducible factor (HIF) pathway. PHD site specifically prolyl hydroxylates the transcription factor HIF-α, thereby targeting the latter for degradation. Under hypoxia, this modification is attenuated, allowing stabilized HIF-α to activate target genes, including that for erythropoietin (EPO). Studies employing genetically modified mice point to Hif-2α, one of two main Hif-α isoforms, as being the critical regulator of Epo in the adult mouse. More recently, erythrocytosis patients with heterozygous point mutations in the HIF2A gene have been identified; whether these mutations were polymorphisms unrelated to the phenotype could not be ruled out. In the present report, we characterize a mouse line bearing a G536W missense mutation in the Hif2a gene that corresponds to the first such human mutation identified (G537W). We obtained mice bearing both heterozygous and homozygous mutations at this locus. We find that these mice display, in a mutation dose-dependent manner, erythrocytosis and pulmonary hypertension with a high degree of penetrance. These findings firmly establish missense mutations in HIF-2α as a cause of erythrocytosis, highlight the importance of this HIF-α isoform in erythropoiesis, and point to physiologic consequences of HIF-2α dysregulation. PMID:23640890

  3. Evaluation of phototoxic potential of aerial components of the fig tree against human melanoma.

    PubMed

    Conforti, F; Menichini, G; Zanfini, L; Tundis, R; Statti, G A; Provenzano, E; Menichini, F; Somma, F; Alfano, C

    2012-06-01

    To date, Ficus carica L. cultivar Dottato (F. carica) has not been studied from a phototoxic point of view. In the present work, aerial components of F. carica from Italy, were examined to assess their antioxidant and phototoxic activity on human melanoma cells. A relationship between antioxidant, phototoxic activities and chemical composition has also been investigated. Coumarin and fatty acid content in F. carica leaves, bark and woody parts were examined and compared by capillary GC and GC/MS. Polyphenolic content was also determined. Linoleic acid peroxidation and DPPH test were used to assess antioxidant activities, and MTT assay was used to evaluate anti-proliferative activity, on C32 human melanoma cells, after irradiation with a UVA dose of 1.08 J/cm(2). Leaves demonstrated the best antioxidant and anti-proliferative activity in comparison to bark and wood. In particular, leaves were shown to possess the highest anti-radical activity and inhibition of peroxidation, with IC(50) values of 64 and 1.48 μg/ml respectively. The leaves had highest anti-proliferative activity with IC(50) value of 3.92 μg/ml. The phytochemical investigation revealed different composition between the coumarins, psoralen and bergapten, fatty acids, polyphenols and flavonoid content among plant parts. Data obtained indicate that this type of fig tree may constitute an excellent source of bioactive compounds, such as phenolics, coumarins and fatty acids. This study offers a new perspective in developing others formulations potentially useful in photodynamic therapy for treatment of non-melanoma skin cancers. © 2012 Blackwell Publishing Ltd.

  4. Tumor-line specific causes of intertumor heterogeneity in blood supply in human melanoma xenografts.

    PubMed

    Simonsen, Trude G; Gaustad, Jon-Vidar; Leinaas, Marit N; Rofstad, Einar K

    2013-01-01

    The efficacy of most cancer treatments is strongly influenced by the tumor blood supply. The results of experimental studies using xenografted tumors to evaluate novel cancer treatments may therefore vary considerably depending on the blood supply of the specific tumor model being used. Mechanisms underlying intertumor heterogeneity in the blood supply of xenografted tumors derived from same tumor line are poorly understood, and were investigated here by using intravital microscopy to assess tumor blood supply and vascular morphology in human melanomas growing in dorsal window chambers in BALB/c nu/nu mice. Two melanoma lines, A-07 and R-18, were included in the study. These lines differed substantially in angiogenic profiles. Thus, when the expression of 84 angiogenesis-related genes was investigated with a quantitative PCR array, 25% of these genes showed more than a 10-fold difference in expression. Furthermore, A-07 tumors showed higher vascular density, higher vessel tortuosity, higher vessel diameters, shorter vessel segments, and more chaotic vascular architecture than R-18 tumors. Both lines showed large intertumor heterogeneity in blood supply. In the A-07 line, tumors with low microvascular density, long vessel segment, and high vessel tortuosity showed poor blood supply, whereas in the R-18 line, poor tumor blood supply was associated with low tumor arteriolar diameters. Thus, tumor-line specific causes of intertumor heterogeneity in blood supply were identified in human melanoma xenografts, and these tumor-line specific mechanisms were possibly a result of tumor-line specific angiogenic profiles. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    PubMed

    Taghizadeh, Rouzbeh; Noh, Minsoo; Huh, Yang Hoon; Ciusani, Emilio; Sigalotti, Luca; Maio, Michele; Arosio, Beatrice; Nicotra, Maria R; Natali, PierGiorgio; Sherley, James L; La Porta, Caterina A M

    2010-12-22

    A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone. The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  6. A Mouse to Human Search for Plasma Proteome Changes Associated with Pancreatic Tumor Development

    PubMed Central

    Faca, Vitor M; Song, Kenneth S; Wang, Hong; Zhang, Qing; Krasnoselsky, Alexei L; Newcomb, Lisa F; Plentz, Ruben R; Gurumurthy, Sushma; Redston, Mark S; Pitteri, Sharon J; Pereira-Faca, Sandra R; Ireton, Renee C; Katayama, Hiroyuki; Glukhova, Veronika; Phanstiel, Douglas; Brenner, Dean E; Anderson, Michelle A; Misek, David; Scholler, Nathalie; Urban, Nicole D; Barnett, Matt J; Edelstein, Cim; Goodman, Gary E; Thornquist, Mark D; McIntosh, Martin W; DePinho, Ronald A; Bardeesy, Nabeel; Hanash, Samir M

    2008-01-01

    Background The complexity and heterogeneity of the human plasma proteome have presented significant challenges in the identification of protein changes associated with tumor development. Refined genetically engineered mouse (GEM) models of human cancer have been shown to faithfully recapitulate the molecular, biological, and clinical features of human disease. Here, we sought to exploit the merits of a well-characterized GEM model of pancreatic cancer to determine whether proteomics technologies allow identification of protein changes associated with tumor development and whether such changes are relevant to human pancreatic cancer. Methods and Findings Plasma was sampled from mice at early and advanced stages of tumor development and from matched controls. Using a proteomic approach based on extensive protein fractionation, we confidently identified 1,442 proteins that were distributed across seven orders of magnitude of abundance in plasma. Analysis of proteins chosen on the basis of increased levels in plasma from tumor-bearing mice and corroborating protein or RNA expression in tissue documented concordance in the blood from 30 newly diagnosed patients with pancreatic cancer relative to 30 control specimens. A panel of five proteins selected on the basis of their increased level at an early stage of tumor development in the mouse was tested in a blinded study in 26 humans from the CARET (Carotene and Retinol Efficacy Trial) cohort. The panel discriminated pancreatic cancer cases from matched controls in blood specimens obtained between 7 and 13 mo prior to the development of symptoms and clinical diagnosis of pancreatic cancer. Conclusions Our findings indicate that GEM models of cancer, in combination with in-depth proteomic analysis, provide a useful strategy to identify candidate markers applicable to human cancer with potential utility for early detection. PMID:18547137

  7. PIM kinases as therapeutic targets against advanced melanoma

    PubMed Central

    Shannan, Batool; Watters, Andrea; Chen, Quan; Mollin, Stefan; Dörr, Markus; Meggers, Eric; Xu, Xiaowei; Gimotty, Phyllis A.; Perego, Michela; Li, Ling; Benci, Joseph; Krepler, Clemens; Brafford, Patricia; Zhang, Jie; Wei, Zhi; Zhang, Gao; Liu, Qin; Yin, Xiangfan; Nathanson, Katherine L.; Herlyn, Meenhard; Vultur, Adina

    2016-01-01

    Therapeutic strategies for the treatment of metastatic melanoma show encouraging results in the clinic; however, not all patients respond equally and tumor resistance still poses a challenge. To identify novel therapeutic targets for melanoma, we screened a panel of structurally diverse organometallic inhibitors against human-derived normal and melanoma cells. We observed that a compound that targets PIM kinases (a family of Ser/Thr kinases) preferentially inhibited melanoma cell proliferation, invasion, and viability in adherent and three-dimensional (3D) melanoma models. Assessment of tumor tissue from melanoma patients showed that PIM kinases are expressed in pre- and post-treatment tumors, suggesting PIM kinases as promising targets in the clinic. Using knockdown studies, we showed that PIM1 contributes to melanoma cell proliferation and tumor growth in vivo; however, the presence of PIM2 and PIM3 could also influence the outcome. The inhibition of all PIM isoforms using SGI-1776 (a clinically-available PIM inhibitor) reduced melanoma proliferation and survival in preclinical models of melanoma. This was potentiated in the presence of the BRAF inhibitor PLX4720 and in the presence of PI3K inhibitors. Our findings suggest that PIM inhibitors provide promising additions to the targeted therapies available to melanoma patients. PMID:27448973

  8. Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: demonstration of phospholipid metabolism alterations.

    PubMed

    Morvan, Daniel; Demidem, Aicha; Papon, Janine; Madelmont, Jean Claude

    2003-02-01

    Recent NMR spectroscopy developments, such as high-resolution magic angle spinning (HRMAS) probes and correlation-enhanced 2D sequences, now allow improved investigations of phospholipid (Plp) metabolism. Using these modalities we previously demonstrated that a mouse-bearing melanoma tumor responded to chloroethyl nitrosourea (CENU) treatment in vivo by altering its Plp metabolism. The aims of the present study were to investigate whether HRMAS proton total correlation spectroscopy (TOCSY) could be used as a quantitative technique to probe Plp metabolism, and to determine the Plp metabolism response of cultured B16 melanoma cells to CENU treatment in vitro. The exploited TOCSY signals of Plp derivatives arose from scalar coupling among the protons of neighbor methylene groups within base headgroups (choline and ethanolamine). For strongly expressed Plp derivatives, TOCSY signals were compared to saturation recovery signals and demonstrated a linear relationship. HRMAS proton TOCSY was thus used to provide concentrations of Plp derivatives during long-term follow-up of CENU-treated cell cultures. Strong Plp metabolism alteration was observed in treated cultured cells in vitro involving a down-regulation of phosphocholine, and a dramatic and irreversible increase of phosphoethanolamine. These findings are discussed in relation to previous in vivo data, and to Plp metabolism enzymatic involvement. Copyright 2003 Wiley-Liss, Inc.

  9. Effect of vernolide-A, a sesquiterpene lactone from Vernonia cinerea L., on cell-mediated immune response in B16F-10 metastatic melanoma-bearing mice.

    PubMed

    Pratheeshkumar, P; Kuttan, Girija

    2011-09-01

    One of the major reasons for the rapid progression of cancers is the ability of tumor cells to escape from the immune surveillance mechanism of the body. Modulation of immune responses is highly relevant in tumor cell destruction. Effect of vernolide-A on the cell-mediated immune (CMI) response in metastatic condition was studied using C57BL/6 mice model. Administration of vernolide-A enhanced natural killer (NK) cell activity, antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent complement-mediated cytotoxicity (ACC) and the activity was observed in treated group much earlier compared with the metastatic tumor-bearing control. Administration of vernolide-A significantly enhanced the production of interleukin (IL)-2 and interferon-gamma (IFN-γ) in metastatic tumor-bearing animals. In addition, vernolide-A significantly down-regulated the serum levels of proinflammatory cytokines such as IL-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) during metastasis. All these results demonstrate that vernolide-A could enhance the immune response against metastatic progression of B16F-10 melanoma cells in mice.

  10. In vivo, label-free, and noninvasive detection of melanoma metastasis by photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Wang, Cheng; Hu, Cheng; Wang, Xueding; Wei, Xunbin

    2014-02-01

    Melanoma, a malignant tumor of melanocytes, is the most serious type of skin cancer in the world. It accounts for about 80% of deaths of all skin cancer. For cancer detection, circulating tumor cells (CTCs) serve as a marker for metastasis development, cancer recurrence, and therapeutic efficacy. Melanoma tumor cells have high content of melanin, which has high light absorption and can serve as endogenous biomarker for CTC detection without labeling. Here, we have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of melanoma cancer by counting CTCs of melanoma tumor bearing mice in vivo. To test in vivo PAFC's capability of detecting melanoma cancer, we have constructed a melanoma tumor model by subcutaneous inoculation of highly metastatic murine melanoma cancer cells, B16F10. In order to effectively distinguish the targeting PA signals from background noise, we have used the algorithm of Wavelet denoising method to reduce the background noise. The in vivo flow cytometry (IVFC) has shown a great potential for detecting circulating tumor cells quantitatively in the blood stream. Compared with fluorescence-based in vivo flow cytometry (IVFC), PAFC technique can be used for in vivo, label-free, and noninvasive detection of circulating tumor cells (CTCs).

  11. NRAS-mutant melanoma: current challenges and future prospect

    PubMed Central

    Muñoz-Couselo, Eva; Adelantado, Ester Zamora; Ortiz, Carolina; García, Jesús Soberino; Perez-Garcia, José

    2017-01-01

    Melanoma is one of the most common cutaneous cancers worldwide. Activating mutations in RAS oncogenes are found in a third of all human cancers and NRAS mutations are found in 15%–20% of melanomas. The NRAS-mutant subset of melanoma is more aggressive and associated with poorer outcomes, compared to non-NRAS-mutant melanoma. Although immune checkpoint inhibitors and targeted therapies for BRAF-mutant melanoma are transforming the treatment of metastatic melanoma, the ideal treatment for NRAS-mutant melanoma remains unknown. Despite promising preclinical data, current therapies for NRAS-mutant melanoma remain limited, showing a modest increase in progression-free survival but without any benefit in overall survival. Combining MEK inhibitors with agents inhibiting cell cycling and the PI3K–AKT pathway appears to provide additional benefit; in particular, a strategy of MEK inhibition and CDK4/6 inhibition is likely to be a viable treatment option in the future. Patients whose tumors had NRAS mutations had better response to immunotherapy and better outcomes than patients whose tumors had other genetic subtypes, suggesting that immune therapies – especially immune checkpoint inhibitors – may be particularly effective as treatment options for NRAS-mutant melanoma. Improved understanding of NRAS-mutant melanoma will be essential to develop new treatment strategies for this subset of patients with melanoma. PMID:28860801

  12. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice.

    PubMed

    Li, Kun; Wohlford-Lenane, Christine L; Channappanavar, Rudragouda; Park, Jung-Eun; Earnest, James T; Bair, Thomas B; Bates, Amber M; Brogden, Kim A; Flaherty, Heather A; Gallagher, Tom; Meyerholz, David K; Perlman, Stanley; McCray, Paul B

    2017-04-11

    The Middle East respiratory syndrome (MERS) emerged in Saudi Arabia in 2012, caused by a zoonotically transmitted coronavirus (CoV). Over 1,900 cases have been reported to date, with ∼36% fatality rate. Lack of autopsies from MERS cases has hindered understanding of MERS-CoV pathogenesis. A small animal model that develops progressive pulmonary manifestations when infected with MERS-CoV would advance the field. As mice are restricted to infection at the level of DPP4, the MERS-CoV receptor, we generated mice with humanized exons 10-12 of the mouse Dpp4 locus. Upon inoculation with MERS-CoV, human DPP4 knockin (KI) mice supported virus replication in the lungs, but developed no illness. After 30 serial passages through the lungs of KI mice, a mouse-adapted virus emerged (MERS MA ) that grew in lungs to over 100 times higher titers than the starting virus. A plaque-purified MERS MA clone caused weight loss and fatal infection. Virus antigen was observed in airway epithelia, pneumocytes, and macrophages. Pathologic findings included diffuse alveolar damage with pulmonary edema and hyaline membrane formation associated with accumulation of activated inflammatory monocyte-macrophages and neutrophils in the lungs. Relative to the parental MERS-CoV, MERS MA viruses contained 13-22 mutations, including several within the spike (S) glycoprotein gene. S-protein mutations sensitized viruses to entry-activating serine proteases and conferred more rapid entry kinetics. Recombinant MERS MA bearing mutant S proteins were more virulent than the parental virus in hDPP4 KI mice. The hDPP4 KI mouse and the MERS MA provide tools to investigate disease causes and develop new therapies.

  13. Development of a novel immunoPET tracer to image human PD-1 checkpoint expression on tumor infiltrating lymphocytes in a humanized mouse model

    PubMed Central

    Natarajan, Arutselvan; Mayer, Aaron T; Reeves, Robert E; Nagamine, Claude M; Gambhir, Sanjiv S.

    2017-01-01

    Purpose It is well known that cancers exploit immune checkpoints (programmed death 1 receptor (PD-1) and its ligand (PD-L1)) to evade anti-tumor immune responses. Although immune checkpoint (IC) blockade is a promising approach, not all patients respond. Hence, the purpose of this study is imaging of tumor infiltrating lymphocytes (TILs), as they are known to express PD-1 during activation and subsequent exhaustion in the tumor microenvironment and are thought to be potentially predictive of therapeutic responses to IC blockade. Procedures We developed immunoPET tracers to image hPD-1 status of human peripheral blood mononuclear cells (hPBMC) adoptively transferred to NOD-scid IL-2Rγnull (NSG) mice (hNSG) bearing A375 human skin melanoma tumors. The anti-PD-1 human antibody (IgG; keytruda) labeled with either [89Zr]- or [64Cu]- radiometals to image PD-1 expressing human TILs in vivo. Results [89Zr]keytruda (groups = 2; NSG-ctl [control] and hNSG-nblk [non-blocking], n=3-5, 3.2 ± 0.4 MBq/15-16 μg/200 μL, and [64Cu]keytruda (groups = 3; NSG-ctl, NSG-blk [blocking], and hNSG-nblk) n=4, 7.4 ± 0.4 MBq /20-25μg/200 μL) were administered in mice. PET-CT scans were performed over 1-144 h ([89Zr]keytruda) and 1-48 h ([64Cu]keytruda) on mice. hNSG mice exhibited a high tracer uptake in the spleen lymphoid organs and tumors. At 24h, human TILs homing into melanoma of hNSG-nblk mice exhibited high signal (mean %ID/g ± SD) of 3.8 ± 0.4 ([89Zr]keytruda), and 6.4 ± 0.7 ([64Cu]keytruda), which was 1.5- and 3-fold higher uptake compared to NSG-ctl mice (p = 0.01), respectively. Biodistribution measurements of hNSG-nblk mice performed at 144 h ([89Zr]keytruda), and 48 h ([64Cu]keytruda) p.i. revealed tumor to muscle ratios as high as 45 and 12-fold, respectively. Conclusion This study clearly demonstrates specific imaging of human PD-1 expressing TILs within the tumor and lymphoid tissues. This suggests anti-human-PD-1 tracer could be clinically translatable to monitor

  14. Grizzly bear

    USGS Publications Warehouse

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  15. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression.

    PubMed

    Kim, Sun-Hee; Hashimoto, Yuuri; Cho, Sung-Nam; Roszik, Jason; Milton, Denái R; Dal, Fulya; Kim, Sangwon F; Menter, David G; Yang, Peiying; Ekmekcioglu, Suhendan; Grimm, Elizabeth A

    2016-05-01

    COX-2 and its product PGE2 enhance carcinogenesis and tumor progression, which has been previously reported in melanoma. As most COX inhibitors cause much toxicity, the downstream microsomal PGE2 synthase-1 (mPGES1) is a consideration for targeting. Human melanoma TMAs were employed for testing mPGES1 protein staining intensity and percentage levels, and both increased with clinical stage; employing a different Stage III TMA, mPGES1 intensity (not percentage) associated with reduced patient survival. Our results further show that iNOS was also highly expressed in melanoma tissues with high mPGES1 levels, and iNOS-mediated NO promoted mPGES1 expression and PGE2 production. An mPGES1-specific inhibitor (CAY10526) as well as siRNA attenuated cell survival and increased apoptosis. CAY10526 significantly suppressed tumor growth and increased apoptosis in melanoma xenografts. Our findings support the value of a prognostic and predictive role for mPGES1, and suggest targeting this molecule in the PGE2 pathway as another avenue toward improving melanoma therapy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk

    PubMed Central

    Salerno, Elise P.; Bedognetti, Davide; Mauldin, Ileana S.; Deacon, Donna H.; Shea, Sofia M.; Obeid, Joseph M.; Coukos, George; Gajewski, Thomas F.; Marincola, Francesco M.; Slingluff, Craig L.

    2016-01-01

    ABSTRACT We have identified eight genes whose expression in human melanoma metastases and ovarian cancers is associated with a lack of Th1 immune signatures. They encode molecules with mechanical barrier function in the skin and other normal tissues and include filaggrin (FLG), tumor-associated calcium signal transducer 2 (TACSTD2), and six desmosomal proteins (DST, DSC3, DSP, PPL, PKP3, and JUP). This association has been validated in an independent series of 114 melanoma metastases. In these, DST expression alone is sufficient to identify melanomas without immune signatures, while FLG and the other six putative barrier molecules are overexpressed in a different subset of melanomas lacking immune signatures. Similar associations have been identified in a set of 186 ovarian cancers. RNA-seq data from 471 melanomas and 307 ovarian cancers in the TCGA database further support these findings and also reveal that overexpression of barrier molecules is strongly associated with early patient mortality for melanoma (p = 0.0002) and for ovarian cancer (p < 0.01). Interestingly, this association persists for FLG for melanoma (p = 0.012) and ovarian cancer (p = 0.006), whereas DST overexpression is negatively associated with CD8+ gene expression, but not with patient survival. Thus, overexpression of FLG or DST identifies two distinct patient populations with low immune cell infiltration in these cancers, but with different prognostic implications for each. These data raise the possibility that molecules with mechanical barrier function in skin and other tissues may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction. PMID:28123876

  17. Efficient TGF-β/SMAD signaling in human melanoma cells associated with high c-SKI/SnoN expression

    PubMed Central

    2011-01-01

    Background SKI and SnoN proteins have been shown to inhibit TGF-β signaling, acting both as transcriptional co-repressors in the cell nucleus, and as sequestrators of SMAD proteins in the cytoplasm. TGF-β, on the other hand, induces rapid, proteasome-mediated, degradation of both proteins. How elevated SKI and SnoN protein levels co-exist with active autocrine TGF-β signaling in cancer cells is yet to be understood. Results In this study, we found elevated SKI and SnoN protein levels in a panel of melanoma cell lines, as compared to normal melanocytes. There was no correlation between SKI protein content and the capacity of melanoma cells to invade Matrigel™, to form subcutaneous tumors, or to metastasize to bone after intracardiac inoculation into nude mice. Nor did we find a correlation between SKI expression and histopathological staging of human melanoma. TGF-β induced a rapid and dose-dependent degradation of SKI protein, associated with SMAD3/4 specific transcriptional response and induction of pro-metastatic target genes, partially prevented by pharmacologic blockade of proteasome activity. SKI knockdown in 1205Lu melanoma cells did not alter their invasive capacity or transcriptional responses to TGF-β, and did not allow p21 expression in response to TGF-β or reveal any growth inhibitory activity of TGF-β. Conclusions Despite high expression in melanoma cells, the role of SKI in melanoma remains elusive: SKI does not efficiently interfere with the pro-oncogenic activities of TGF-β, unless stabilized by proteasome blockade. Its highly labile nature makes it an unlikely target for therapeutic intervention. PMID:21211030

  18. Exposure-dependent incorporation of trifluridine into DNA of tumors and white blood cells in tumor-bearing mouse.

    PubMed

    Yamashita, Fumiaki; Komoto, Ikumi; Oka, Hiroaki; Kuwata, Keizo; Takeuchi, Mayuko; Nakagawa, Fumio; Yoshisue, Kunihiro; Chiba, Masato

    2015-08-01

    Trifluridine (TFT) is an antitumor component of a novel nucleoside antitumor agent, TAS-102, which consists of TFT and tipiracil hydrochloride (thymidine phosphorylase inhibitor). Incorporation of TFT into DNA is a probable mechanism of antitumor activity and hematological toxicity. The objective of this study was to examine the TFT incorporation into tumor- and white blood cell-DNA, and to elucidate the mechanism of TFT-related effect and toxicity. TFT effect on the colony formation of mouse bone marrow cells was also investigated. Pharmacokinetics of TFT was determined in nude mice after single oral administration of TAS-102, while the antitumor activity and body weight change were evaluated in the tumor-bearing nude mice after multiple oral administrations for 2 weeks. TFT concentrations in the blood- and tumor-DNA were determined by LC/MS/MS. The colony formation was evaluated by CFU-GM assay. TFT systemic exposure in plasma increased dose-dependently. The tumor growth rate and body weight gain decreased dose-dependently, but TFT concentrations in the DNA of tumor tissues and white blood cells increased dose-dependently. TFT inhibited colony formation of bone marrow cells in a concentration-dependent manner. A significant relationship between systemic exposure of TFT and pharmacological effects including the antitumor activity and body weight change was well explained by the TFT incorporation into DNA. TFT inhibited proliferations of mouse bone marrow cells and human colorectal carcinoma cells implanted to nude mice dose-dependently. The highest tolerable TFT exposure provides the highest antitumor activity, and the hematological toxicity may serve as a potential surrogate indicator of TAS-102 efficacy.

  19. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.

    PubMed

    Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa

    2018-05-01

    Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.

  20. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth

    PubMed Central

    Kleffel, Sonja; Posch, Christian; Barthel, Steven R.; Mueller, Hansgeorg; Schlapbach, Christoph; Guenova, Emmanuella; Elco, Christopher P.; Lee, Nayoung; Juneja, Vikram R.; Zhan, Qian; Lian, Christine G.; Thomi, Rahel; Hoetzenecker, Wolfram; Cozzio, Antonio; Dummer, Reinhard; Mihm, Martin C.; Flaherty, Keith T.; Frank, Markus H.; Murphy, George F.; Sharpe, Arlene H.; Kupper, Thomas S.; Schatton, Tobias

    2015-01-01

    SUMMARY Therapeutic antibodies targeting programmed cell death-1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNA interference, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy. PMID:26359984

  1. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon–independent apoptosis in human melanoma cells

    PubMed Central

    Besch, Robert; Poeck, Hendrik; Hohenauer, Tobias; Senft, Daniela; Häcker, Georg; Berking, Carola; Hornung, Veit; Endres, Stefan; Ruzicka, Thomas; Rothenfusser, Simon; Hartmann, Gunther

    2009-01-01

    The retinoic acid–inducible gene I (RIG-I) and melanoma differentiation–associated antigen 5 (MDA-5) helicases sense viral RNA in infected cells and initiate antiviral responses such as the production of type I IFNs. Here we have shown that RIG-I and MDA-5 also initiate a proapoptotic signaling pathway that is independent of type I IFNs. In human melanoma cells, this signaling pathway required the mitochondrial adapter Cardif (also known as IPS-1) and induced the proapoptotic BH3-only proteins Puma and Noxa. RIG-I– and MDA-5–initiated apoptosis required Noxa but was independent of the tumor suppressor p53. Triggering this pathway led to efficient activation of mitochondrial apoptosis, requiring caspase-9 and Apaf-1. Surprisingly, this proapoptotic signaling pathway was also active in nonmalignant cells, but these cells were much less sensitive to apoptosis than melanoma cells. Endogenous Bcl-xL rescued nonmalignant, but not melanoma, cells from RIG-I– and MDA-5–mediated apoptosis. In addition, we confirmed the results of the in vitro studies, demonstrating that RIG-I and MDA-5 ligands both reduced human tumor lung metastasis in immunodeficient NOD/SCID mice. These results identify an IFN-independent antiviral signaling pathway initiated by RIG-I and MDA-5 that activates proapoptotic signaling and, unless blocked by Bcl-xL, results in apoptosis. Due to their immunostimulatory and proapoptotic activity, RIG-I and MDA-5 ligands have therapeutic potential due to their ability to overcome the characteristic resistance of melanoma cells to apoptosis. PMID:19620789

  2. Generation of improved humanized mouse models for human infectious diseases

    PubMed Central

    Brehm, Michael A.; Wiles, Michael V.; Greiner, Dale L.; Shultz, Leonard D.

    2014-01-01

    The study of human-specific infectious agents has been hindered by the lack of optimal small animal models. More recently development of novel strains of immunodeficient mice has begun to provide the opportunity to utilize small animal models for the study of many human-specific infectious agents. The introduction of a targeted mutation in the IL2 receptor common gamma chain gene (IL2rgnull) in mice already deficient in T and B cells led to a breakthrough in the ability to engraft hematopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in immunodeficient mice. These humanized mice are becoming increasingly important as pre-clinical models for the study of human immunodeficiency virus-1 (HIV-1) and other human-specific infectious agents. However, there remain a number of opportunities to further improve humanized mouse models for the study of human-specific infectious agents. This is being done by the implementation of innovative technologies, which collectively will accelerate the development of new models of genetically modified mice, including; i) modifications of the host to reduce innate immunity, which impedes human cell engraftment; ii) genetic modification to provide human-specific growth factors and cytokines required for optimal human cell growth and function; iii) and new cell and tissue engraftment protocols. The development of “next generation” humanized mouse models continues to provide exciting opportunities for the establishment of robust small animal models to study the pathogenesis of human-specific infectious agents, as well as for testing the efficacy of therapeutic agents and experimental vaccines. PMID:24607601

  3. Machine learning-based diagnosis of melanoma using macro images.

    PubMed

    Gautam, Diwakar; Ahmed, Mushtaq; Meena, Yogesh Kumar; Ul Haq, Ahtesham

    2018-05-01

    Cancer bears a poisoning threat to human society. Melanoma, the skin cancer, originates from skin layers and penetrates deep into subcutaneous layers. There exists an extensive research in melanoma diagnosis using dermatoscopic images captured through a dermatoscope. While designing a diagnostic model for general handheld imaging systems is an emerging trend, this article proposes a computer-aided decision support system for macro images captured by a general-purpose camera. General imaging conditions are adversely affected by nonuniform illumination, which further affects the extraction of relevant information. To mitigate it, we process an image to define a smooth illumination surface using the multistage illumination compensation approach, and the infected region is extracted using the proposed multimode segmentation method. The lesion information is numerated as a feature set comprising geometry, photometry, border series, and texture measures. The redundancy in feature set is reduced using information theory methods, and a classification boundary is modeled to distinguish benign and malignant samples using support vector machine, random forest, neural network, and fast discriminative mixed-membership-based naive Bayesian classifiers. Moreover, the experimental outcome is supported by hypothesis testing and boxplot representation for classification losses. The simulation results prove the significance of the proposed model that shows an improved performance as compared with competing arts. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells

    PubMed Central

    Halder, Babli; Singh, Shruti; Thakur, Suman S.

    2015-01-01

    In Ayurveda, Withania somnifera is commonly known as Ashwagandha, its roots are specifically used in medicinal and clinical applications. It possesses numerous therapeutic actions which include anti-inflammatory, sedative, hypnotic and narcotic. Extracts from this plant have been reported for its anticancer properties. In this study we evaluated for the first time, the cytotoxic effect of Withania root extract on human malignant melanoma A375 cells. The crude extract of Withania was tested for cytotoxicity against A375 cells by MTT assay. Cell morphology of treated A375 cells was visualized through phase contrast as well as fluorescence microscopy. Agarose gel electrophoresis was used to check DNA fragmentation of the crude extract treated cells. Crude extract of Withania root has the potency to reduce viable cell count in dose as well as time dependent manner. Morphological change of the A375 cells was also observed in treated groups in comparison to untreated or vehicle treated control. Apoptotic body and nuclear blebbing were observed in DAPI stained treated cells under fluorescence microscope. A ladder of fragmented DNA was noticed in treated cells. Thus it might be said that the crude water extract of Withania somnifera has potent cytotoxic effect on human malignant melanoma A375 cells. PMID:26334881

  5. How Genetically Engineered Mouse Tumor Models Provide Insights Into Human Cancers

    PubMed Central

    Politi, Katerina; Pao, William

    2011-01-01

    Genetically engineered mouse models (GEMMs) of human cancer were first created nearly 30 years ago. These early transgenic models demonstrated that mouse cells could be transformed in vivo by expression of an oncogene. A new field emerged, dedicated to generating and using mouse models of human cancer to address a wide variety of questions in cancer biology. The aim of this review is to highlight the contributions of mouse models to the diagnosis and treatment of human cancers. Because of the breadth of the topic, we have selected representative examples of how GEMMs are clinically relevant rather than provided an exhaustive list of experiments. Today, as detailed here, sophisticated mouse models are being created to study many aspects of cancer biology, including but not limited to mechanisms of sensitivity and resistance to drug treatment, oncogene cooperation, early detection, and metastasis. Alternatives to GEMMs, such as chemically induced or spontaneous tumor models, are not discussed in this review. PMID:21263096

  6. Eradication of Human Hepatic and Pulmonary Melanoma Metastases in SCID Mice by Antibody--Interleukin 2 Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.

    1996-04-01

    Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

  7. Synergistic anti-tumor effect of 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 on human melanoma.

    PubMed

    Calero, R; Morchon, E; Martinez-Argudo, I; Serrano, R

    2017-10-10

    Drug resistance by MAPK signaling recovery or activation of alternative signaling pathways, such as PI3K/AKT/mTOR, is an important factor that limits the long-term efficacy of targeted therapies in melanoma patients. In the present study, we investigated the phospho-proteomic profile of RTKs and its correlation with downstream signaling pathways in human melanoma. We found that tyrosine kinase receptors expression correlated with the expression of pivotal downstream components of the RAS/RAF/MAPK and PI3K/AKT/mTOR pathways in melanoma cell lines and tumors. We also found high expression of HSP90 and the PI3K/AKT/mTOR pathway proteins, 4EBP1 and AKT compared with healthy tissue and this correlated with poor overall survival of melanoma patients. The combination of the HSP90 inhibitor 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 showed a synergistic activity decreasing melanoma cell growth, inducing apoptosis and targeting simultaneously the MAPK and PI3K/AKT/mTOR pathways. These results demonstrate that the combination of HSP90 and PI3K/mTOR inhibitors could be an effective therapeutic strategy that target the main survival pathways in melanoma and must be considered to overcome resistance to BRAF inhibitors in melanoma patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Proteolysis inhibition by hibernating bear serum leads to increased protein content in human muscle cells.

    PubMed

    Chanon, Stéphanie; Chazarin, Blandine; Toubhans, Benoit; Durand, Christine; Chery, Isabelle; Robert, Maud; Vieille-Marchiset, Aurélie; Swenson, Jon E; Zedrosser, Andreas; Evans, Alina L; Brunberg, Sven; Arnemo, Jon M; Gauquelin-Koch, Guillemette; Storey, Kenneth B; Simon, Chantal; Blanc, Stéphane; Bertile, Fabrice; Lefai, Etienne

    2018-04-03

    Muscle atrophy is one of the main characteristics of human ageing and physical inactivity, with resulting adverse health outcomes. To date, there are still no efficient therapeutic strategies for its prevention and/or treatment. However, during hibernation, bears exhibit a unique ability for preserving muscle in conditions where muscle atrophy would be expected in humans. Therefore, our objective was to determine whether there are components of bear serum which can control protein balance in human muscles. In this study, we exposed cultured human differentiated muscle cells to bear serum collected during winter and summer periods, and measured the impact on cell protein content and turnover. In addition, we explored the signalling pathways that control rates of protein synthesis and degradation. We show that the protein turnover of human myotubes is reduced when incubated with winter bear serum, with a dramatic inhibition of proteolysis involving both proteasomal and lysosomal systems, and resulting in an increase in muscle cell protein content. By modulating intracellular signalling pathways and inducing a protein sparing phenotype in human muscle cells, winter bear serum therefore holds potential for developing new tools to fight human muscle atrophy and related metabolic disorders.

  9. Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barunb, V. V.

    2016-05-01

    Experimental data on the spectral dependences of the optical diffuse reflection coefficient for skin from different people with melanoma or nevus are presented in the form of the probability density of the diffuse reflection coefficient for the corresponding pigmented lesions. We propose a noninvasive technique for differentiating between malignant and benign tumors, based on measuring the diffuse reflection coefficient for a specific patient and comparing the value obtained with a pre-set threshold. If the experimental result is below the threshold, then it is concluded that the person has melanoma; otherwise, no melanoma is present. As an example, we consider the wavelength 870 nm. We determine the risk of malignant transformation of a nevus (its transition to melanoma) for different measured diffuse reflection coefficients. We have studied the errors in the method, its operating characteristics and probability characteristics as the threshold diffuse reflection coefficient is varied. We find that the diagnostic confidence, sensitivity, specificity, and effectiveness (accuracy) parameters are maximum (>0.82) for a threshold of 0.45-0.47. The operating characteristics for the proposed technique exceed the corresponding parameters for other familiar optical approaches to melanoma diagnosis. Its distinguishing feature is operation at only one wavelength, and consequently implementation of the experimental technique is simplified and made less expensive.

  10. Lebein, a Snake Venom Disintegrin, Induces Apoptosis in Human Melanoma Cells

    PubMed Central

    Hammouda, Manel B.; Montenegro, María F.; Sánchez-del-Campo, Luis; Zakraoui, Ons; Aloui, Zohra; Riahi-Chebbi, Ichrak; Karoui, Habib; Rodríguez-López, José Neptuno; Essafi-Benkhadir, Khadija

    2016-01-01

    Melanoma, the most threatening form of skin cancer, has a very poor prognosis and is characterized by its very invasive and chemoresistant properties. Despite the recent promising news from the field of immunotherapy, there is an urgent need for new therapeutic approaches that are free of resistance mechanisms and side effects. Anti-neoplasic properties have been highlighted for different disintegrins from snake venom including Lebein; however, the exact effect of Lebein on melanoma has not yet been defined. In this study, we showed that Lebein blocks melanoma cell proliferation and induces a more differentiated phenotype with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and microphthalmia-associated transcription factor (MITF) overexpression. Melanoma cells became detached but were less invasive with upregulation of E-cadherin after Lebein exposure. Lebein induced a caspase-independent apoptotic program with apoptosis inducing factor (AIF), BCL-2-associated X protein (BAX) and Bim overexpression together with downregulation of B-cell lymphoma-2 (BCL-2). It generated a distinct response in reactive oxygen species (ROS) generation and p53 levels depending on the p53 cell line status (wild type or mutant). Therefore, we propose Lebein as a new candidate for development of potential therapies for melanoma. PMID:27399772

  11. 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide analogues for melanoma imaging.

    PubMed

    Miao, Yubin; Gallazzi, Fabio; Guo, Haixun; Quinn, Thomas P

    2008-02-01

    The purpose of this study was to examine the influence of the lactam bridge cyclization on melanoma targeting and biodistribution properties of the radiolabeled conjugates. Two novel lactam bridge-cyclized alpha-MSH peptide analogues, DOTA-CycMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]) and DOTA-GlyGlu-CycMSH (DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]), were synthesized and radiolabeled with (111)In. The internalization and efflux of (111)In-labeled CycMSH peptides were examined in B16/F1 melanoma cells. The melanoma targeting properties, pharmacokinetics, and SPECT/CT imaging of (111)In-labeled CycMSH peptides were determined in B16/F1 melanoma-bearing C57 mice. Both (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH exhibited fast internalization and extended retention in B16/F1 cells. The tumor uptake values of (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH were 9.53+/-1.41% injected dose/gram (% ID/g) and 10.40+/-1.40% ID/g at 2 h postinjection, respectively. Flank melanoma tumors were clearly visualized with (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH by SPECT/CT images at 2 h postinjection. Whole-body clearance of the peptides was fast, with greater than 90% of the radioactivities cleared through urinary system by 2 h postinjection. There was low radioactivity (<0.8% ID/g) accumulated in blood and normal organs except kidneys at all time points investigated. Introduction of a negatively charged linker (-Gly-Glu-) into the peptide sequence decreased the renal uptake by 44% without affecting the tumor uptake at 4 h postinjection. High receptor-mediated melanoma uptakes coupled with fast whole-body clearance in B16/F1 melanoma-bearing C57 mice demonstrated the feasibility of using (111)In-labeled lactam bridge-cyclized alpha-MSH peptide analogues as a novel class of imaging probes for receptor-targeting melanoma imaging.

  12. Lack of species-specific difference in pulmonary function when using mouse versus human plasma in a mouse model of hemorrhagic shock.

    PubMed

    Peng, Zhanglong; Pati, Shibani; Fontaine, Magali J; Hall, Kelly; Herrera, Anthony V; Kozar, Rosemary A

    2016-11-01

    Clinical studies have demonstrated that the early and empiric use of plasma improves survival after hemorrhagic shock. We have demonstrated in rodent models of hemorrhagic shock that resuscitation with plasma is protective to the lungs compared with lactated Ringer's solution. As our long-term objective is to determine the molecular mechanisms that modulate plasma's protective effects in injured bleeding patients, we have used human plasma in a mouse model of hemorrhagic shock. The goal of the current experiments is to determine if there are significant adverse effects on lung injury when using human versus mouse plasma in an established murine model of hemorrhagic shock and laparotomy. Mice underwent laparotomy and 90 minutes of hemorrhagic shock to a mean arterial pressure (MAP) of 35 ± 5 mm Hg followed by resuscitation at 1× shed blood using either mouse fresh frozen plasma (FFP), human FFP, or human lyophilized plasma. Mean arterial pressure was recorded during shock and for the first 30 minutes of resuscitation. After 3 hours, animals were killed, and lungs collected for analysis. There was a significant increase in early MAP when mouse FFP was used to resuscitate animals compared with human FFP or human lyophilized plasma. However, despite these differences, analysis of the mouse lungs revealed no significant differences in pulmonary histopathology, lung permeability, or lung edema between all three plasma groups. Analysis of neutrophil infiltration in the lungs revealed that mouse FFP decreased neutrophil influx as measured by neutrophil staining; however, myeloperoxidase immunostaining revealed no significant differences in between groups. The study of human plasma in a mouse model of hemorrhagic shock is feasible but does reveal some differences compared with mouse plasma-based resuscitation in physiologic measures such as MAP postresuscitation. Measures of end organ function such as lung injury appear to be comparable in this acute model of hemorrhagic

  13. Characterization of the EP receptor types that mediate longitudinal smooth muscle contraction of human colon, mouse colon and mouse ileum.

    PubMed

    Fairbrother, S E; Smith, J E; Borman, R A; Cox, H M

    2011-08-01

    Prostaglandin E(2) (PGE(2) ) is an inflammatory mediator implicated in several gastrointestinal pathologies that affect normal intestinal transit. The aim was to establish the contribution of the four EP receptor types (EP(1-4) ), in human colon, that mediate PGE(2) -induced longitudinal smooth muscle contraction. Changes in isometric muscle tension of human colon, mouse colon and mouse ileum were measured in organ baths in response to receptor-specific agonists and antagonists. In addition, lidocaine was used to block neurogenic activity to investigate whether EP receptors were pre- or post-junctional. PGE(2) contracted longitudinal muscle from human and mouse colon and mouse ileum. These contractions were inhibited by the EP(1) receptor antagonist, EP(1) A in human colon, whereas a combination of EP(1) A and the EP(3) antagonist, L798106 inhibited agonist responses in both mouse preparations. The EP(3) agonist, sulprostone also increased muscle tension in both mouse tissues, and these responses were inhibited by lidocaine in the colon but not in the ileum. Although PGE(2) consistently contracted all three muscle preparations, butaprost decreased tension by activating smooth muscle EP(2) receptors in both colonic tissues. Alternatively, in mouse ileum, butaprost responses were lidocaine-sensitive, suggesting that it was activating prejunctional EP(2) receptors on inhibitory motor neurons. Conversely, EP(4) receptors were not functional in all the intestinal muscle preparations tested. PGE(2) -induced contraction of longitudinal smooth muscle is mediated by EP(1) receptors in human colon and by a combination of EP(1) and EP(3) receptors in mouse intestine, whereas EP(2) receptors modulate relaxation in all three preparations. © 2011 Blackwell Publishing Ltd.

  14. Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells

    PubMed Central

    Besaratinia, Ahmad; Kim, Sang-in; Pfeifer, Gerd P.

    2009-01-01

    Despite the predominance of UVA relative to UVB in terrestrial sunlight, solar mutagenesis in humans and rodents is characterized by mutations specific for UVB. We have investigated the kinetics of repair of UVA- and UVB-induced DNA lesions in relation to mutagenicity in transgenic mouse fibroblasts irradiated with equilethal doses of UVA and UVB in comparison to SSL. We have also analyzed mutagenesis-derived carcinogenesis in sunlight-associated human skin cancers by compiling the published data on mutation types found in crucial genes in non-melanoma and melanoma skin cancers. Here, we demonstrate a resistance to repair of UVB-induced CPDs together with rapid removal of UVA-induced oxidized purines in the genome overall and in the cII transgene of SSL-irradiated cells. The spectra of mutation induced by both UVB- and SSL-irradiation in this experimental system are characterized by significant increases in relative frequency of C to T transitions at dipyrimidines, which are the established signature mutation of CPDs. This type of mutation is also the predominant mutation found in human non-melanoma and melanoma tumor samples in the TP53, CDKN2, PTCH, and protein kinase genes. The prevailing role of UVB over UVA in solar mutagenesis in our test system can be ascribed to different kinetics of repair for lesions induced by the respective UV-irradiation. PMID:18326785

  15. Molecular Genetic Analysis of the Melanoma Regulatory locus in Xiphophorus Interspecies Hybrids

    PubMed Central

    Lu, Yuan; Boswell, Mikki; Boswell, William; Kneitz, Susanne; Hausmann, Michael; Klotz, Barbara; Regneri, Janine; Savage, Markita; Amores, Angel; Postlethwait, John; Warren, Wesley; Schartl, Manfred; Walter, Ronald

    2018-01-01

    Development of spontaneous melanoma in Xiphophorus interspecies backcross hybrid progeny, (X. hellerii × [X. maculatus Jp 163 A × X. hellerii]) is due to Mendelian segregation of a oncogene (xmrk) and a molecularly uncharacterized locus, called R(Diff), on LG5. R(Diff) is thought to suppresses the activity of xmrk in healthy X. maculatus Jp 163 A parental species that rarely develop melanoma. To better understand the molecular genetics of R(Diff), we utilized RNA-Seq to study allele-specific gene expression of spontaneous melanoma tumors and corresponding normal skin samples derived from 15 first generation backcross (BC1) hybrids and 13 fifth generation (BC5) hybrids. Allele-specific expression was determined for all genes and assigned to parental allele inheritance for each backcross hybrid individual. Results showed that genes residing in a 5.81 Mbp region on LG5 were exclusively expressed from the X. hellerii alleles in tumor-bearing BC1 hybrids. This observation indicates this region is consistently homozygous for X. hellerii alleles in tumor bearing animals, and therefore defines this region to be the R(Diff) locus. The R(Diff) locus harbors 164 gene models and includes the previously characterized R(Diff) candidate, cdkn2x. Twenty one genes in the R(Diff) region show differential expression in the tumor samples compared to normal skin tissue. These results further characterize the R(Diff) locus and suggest tumor suppression may require a multigenic region rather than a single gene variant. Differences in gene expression between tumor and normal skin tissue in this region may indicate interactions among several genes are required for backcross hybrid melanoma development. PMID:28345808

  16. The CASC15 long intergenic non-coding RNA locus is involved in melanoma progression and phenotype-switching

    PubMed Central

    Lessard, Laurent; Liu, Michelle; Marzese, Diego M.; Wang, Hongwei; Chong, Kelly; Kawas, Neal; Donovan, Nicholas C; Kiyohara, Eiji; Hsu, Sandy; Nelson, Nellie; Izraely, Sivan; Sagi-Assif, Orit; Witz, Isaac P; Ma, Xiao-Jun; Luo, Yuling; Hoon, Dave SB

    2015-01-01

    In recent years, considerable advances have been made in the characterization of protein-coding alterations involved in the pathogenesis of melanoma. However, despite their growing implication in cancer, little is known about the role of long non-coding RNAs in melanoma progression. We hypothesized that copy number alterations of intergenic non-protein coding domains could help identify long intergenic non-coding RNAs (lincRNAs) associated with metastatic cutaneous melanoma. Among several candidates, our approach uncovered the chromosome 6p22.3 CASC15 lincRNA locus as a frequently gained genomic segment in metastatic melanoma tumors and cell lines. The locus was actively transcribed in metastatic melanoma cells, and up-regulation of CASC15 expression was associated with metastatic progression to brain metastasis in a mouse xenograft model. In clinical specimens, CASC15 levels increased during melanoma progression and were independent predictors of disease recurrence in a cohort of 141 patients with AJCC stage III lymph node metastasis. Moreover, siRNA knockdown experiments revealed that CASC15 regulates melanoma cell phenotype switching between proliferative and invasive states. Accordingly, CASC15 levels correlated with known gene signatures corresponding to melanoma proliferative and invasive phenotypes. These findings support a key role for CASC15 in metastatic melanoma. PMID:26016895

  17. Mouse mammary tumour virus (MMTV) and human breast cancer with neuroendocrine differentiation.

    PubMed

    Js, Lawson; Cc, Ngan; Wk, Glenn; Dd, Tran

    2017-01-01

    Mouse mammary tumour viruses (MMTVs) may have a role in a subset of human breast cancers. MMTV positive human breast cancers have similar histological characteristics to neuroendocrine breast cancers and to MMTV positive mouse mammary tumours. The purpose of this study was to investigate the expression of neuroendocrine biomarkers - synaptophysin and chromogranin, to determine if these histological characteristics and biomarker expression were due to the influences of MMTV. Immunohistochemistry analyses to identify synaptophysin and chromogranin were conducted on a series of human breast cancers in which (i) MMTV had been previously identified and had similar histological characteristics to MMTV positive mouse mammary tumours and (ii) MMTV positive mouse mammary tumours. The expression of synaptophysin and chromogranin in MMTV positive mouse mammary tumors were all positive (7 of 7 specimens - 100% positive). The expression of synaptophysin and chromogranin in MMTV positive human breast cancers was much less prevalent (3 of 22 - 14%). There was no expression of synaptophysin and chromogranin in the normal breast tissue control specimens. It is not possible to draw any firm conclusions from these observations. However, despite the small numbers of MMTV positive mouse mammary tumours in this study, the universal expression in these specimens of synaptophysin and chromogranin proteins is striking. This pattern of synaptophysin and chromogranin expression is very different from their expression in MMTV positive human breast cancers. The reason for these differences is not known. The high prevalence of positive expression of synaptophysin and chromogranin in MMTV positive mouse mammary tumours and low expression of synaptophysin and chromogranin in MMTV positive human breast cancers indicates that MMTV is not usually associated with neuroendocrine human breast cancers.

  18. Mouse models for human hair loss disorders

    PubMed Central

    Porter, Rebecca M

    2003-01-01

    The outer surface of the hand, limb and body is covered by the epidermis, which is elaborated into a number of specialized appendages, evolved not only to protect and reinforce the skin but also for social signalling. The most prominent of these appendages is the hair follicle. Hair follicles are remarkable because of their prolific growth characteristics and their complexity of differentiation. After initial embryonic morphogenesis, the hair follicle undergoes repeated cycles of regression and regeneration throughout the lifetime of the organism. Studies of mouse mutants with hair loss phenotypes have suggested that the mechanisms controlling the hair cycle probably involve many of the major signalling molecules used elsewhere in development, although the complete pathway of hair follicle growth control is not yet understood. Mouse studies have also led to the discovery of genes underlying several human disorders. Future studies of mouse hair-loss mutants are likely to benefit the understanding of human hair loss as well as increasing our knowledge of mechanisms controlling morphogenesis and tumorigenesis. PMID:12587927

  19. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells.

    PubMed

    Chen, Tianfeng; Wong, Yum-Shing; Zheng, Wenjie; Bai, Yan; Huang, Liang

    2008-11-15

    Selenium nanoparticle (Nano-Se) is a novel Se species with novel biological activities and low toxicity. In the present study, we demonstrated a simple method for synthesis of size-controlled Nano-Se by adding Undaria pinnatifida polysaccharides to the redox system of selenite and ascorbic acid. A panel of four human cancer cell lines was shown to be susceptible to Nano-Se, with IC(50) values ranging from 3.0 to 14.1 microM. Treatment of A375 human melanoma cells with the Nano-Se resulted in dose-dependent cell apoptosis as indicated by DNA fragmentation and phosphatidylserine translocation. Further investigation on intracellular mechanisms found that Nano-Se treatment triggered apoptotic cell death in A375 cells with the involvement of oxidative stress and mitochondrial dysfunction. Our results suggest that Nano-Se may be a candidate for further evaluation as a chemopreventive and chemotherapeutic agent for human cancers, especially melanoma cancer.

  20. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis.

    PubMed

    Medrano, Estela E

    2003-05-19

    Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.

  1. Communication about melanoma and risk reduction after melanoma diagnosis.

    PubMed

    Rodríguez, Vivian M; Berwick, Marianne; Hay, Jennifer L

    2017-12-01

    Melanoma patients are advised to perform regular risk-reduction practices, including sun protection as well as skin self-examinations (SSEs) and physician-led examinations. Melanoma-specific communication regarding family risk and screening may promote such behaviors. To this end, associations between patients' melanoma-specific communication and risk reduction were examined. Melanoma patients (N = 169) drawn from a population-based cancer registry reported their current risk-reduction practices, perceived risk of future melanoma, and communication with physicians and relatives about melanoma risk and screening. Patients were, on average, 56 years old and 6.7 years' post diagnosis; 51% were male, 93% reported "fair/very fair" skin color, 75% completed at least some college, and 22% reported a family history of melanoma. Patients reported varying levels of regular (always/nearly always) sun protection: sunscreen use (79%), shade seeking (60%), hat use (54%), and long-sleeve shirt use (30%). Only 28% performed thorough SSE regularly, whereas 92% reported undergoing physician-led skin examinations within the past year. Participants who were female, younger, and had a higher perceived risk of future melanoma were more likely to report past communication. In adjusted analyses, communication remained uniquely associated with increased sunscreen use and SSE. Encouraging melanoma patients to have a more active role in discussions concerning melanoma risk and screening with relatives and physicians alike may be a useful strategy to promote 2 key risk-reduction practices post melanoma diagnosis and treatment. Future research is needed to identify additional strategies to improve comprehensive risk reduction in long-term melanoma patients. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Intermittent hypoxia promotes melanoma lung metastasis via oxidative stress and inflammation responses in a mouse model of obstructive sleep apnea.

    PubMed

    Li, Lian; Ren, Fangyuan; Qi, Chao; Xu, Leiqian; Fang, Yinshan; Liang, Maoli; Feng, Jing; Chen, Baoyuan; Ning, Wen; Cao, Jie

    2018-02-12

    Recently, increased tumor incidence and cancer-related mortality have been reported among patients with obstructive sleep apnea (OSA). Intermittent hypoxia (IH), the hallmark feature of OSA, contributes to the metastasis of tumors. However, the molecular mechanisms by which tumor metastasis is accelerated by OSA-like IH remain to be elucidated. C57BL/6 J male mice were subjected to intravenous injection of B16F10 melanoma cells before receiving IH treatment. Then, the animals were randomly distributed into three groups (n = 8 each): normoxia (N) group, IH group, and antioxidant tempol group (IHT, exposed to IH after treatment with tempol). After the mice were sacrificed, the number and weight of lung metastatic colonies were assessed. The lung tissues with tumor metastasis were analyzed for markers of oxidative stress and inflammation and for HIF-1α using western blotting and real-time PCR (qRT-PCR). The level of reactive oxygen species (ROS) in B16F10 cell was also assessed after N, IH and IH with tempol treatments. Compared with normoxia, IH significantly increased the number and weight of mouse lung metastatic colonies. Treatment of B16F10 cells with IH significantly enhanced ROS generation. Lung tissues with tumor metastasis provided evidence of increased oxidative stress, as assessed by p22 phox and SOD mRNA levels and the NRF2 protein level, as well as increased inflammation, as assessed by TNF-α and IL-6 mRNA levels and the NF-κB P65 protein level. HIF-1α protein levels were increased in response to IH treatment. Tempol, an important antioxidant, ameliorated IH-induced melanoma lung metastasis in mice and reduced oxidative stress and inflammation responses. These results support the hypothesis that oxidative stress and inflammation responses play an important role in the pathogenesis of OSA-like IH-induced melanoma lung metastasis in mice. Antioxidant intervention provides a novel strategy for the prevention and treatment of cancer in OSA

  3. The melanoma research alliance: the power of patient advocacy to accelerate research and novel therapies.

    PubMed

    Black, Debra; Brockway-Lunardi, Laura

    2013-12-01

    Patient advocacy organizations play a major role in accelerating research and are particularly important in a disease like melanoma, for which there is an urgent need for new tools and treatments. Melanoma is a growing public health burden. In the United States alone, the incidence of melanoma has tripled over the past 30 years, and one American dies every hour from the disease. To accelerate the field, the Melanoma Research Alliance (MRA) was founded in 2007 and is now the largest private funder of melanoma research, having invested more than $48 million in innovative and translational research projects worldwide to date. This investment is bearing fruit in the recent transformation of the melanoma clinical landscape, which has brought new hope to patients and their families. Yet, even with new drugs on the market, much more needs to be done until melanoma is effectively addressed. MRA is part of a growing group of nonprofit disease research foundations collectively called "venture philanthropies" that are playing a powerful role in transforming the outlook for their disease by overcoming barriers that bog down progress, targeting key areas, and enhancing collaboration. MRA is leading an innovative agenda to accelerate efforts on behalf of patients. Our goal, while significant, is straightforward: to end suffering and death due to melanoma. ©2013 AACR.

  4. Casticin impairs cell migration and invasion of mouse melanoma B16F10 cells via PI3K/AKT and NF-κB signaling pathways.

    PubMed

    Shih, Yung-Luen; Chou, Hsiao-Min; Chou, Hsiu-Chen; Lu, Hsu-Feng; Chu, Yung-Lin; Shang, Hung-Sheng; Chung, Jing-Gung

    2017-09-01

    Casticin, a polymethoxyflavone, is one of the major active components obtained from Fructus viticis, which have been shown to have anticancer activities including induce cell apoptosis in human cancer cells. The aim of this study was to investigate the molecular mechanisms by which casticin inhibits cell migration and invasion of mouse melanoma B16F10 cells. Cell viability was examined by MTT assay and the results indicated that casticin decreased the total percentages of viable cells in dose-dependent manners. Casticin affected cell migration and invasion in B16F10 cells were examined by wound healing mobility assay and Boyden chamber migration and invasion assay and results indicated that casticin inhibited cell migration and invasion in dose-dependent manners. Western blotting was used to examine the protein expression of B16F10 cells after exposed to casticin and the results showed that casticin decreased the expressions of MMP-9, MMP-2, MMP-1, FAK, 14-3-3, GRB2, Akt, NF-κB p65, SOS-1, p-EGFR, p-JNK 1/2, uPA, and Rho A in B16F10 cells. Furthermore, cDNA microarray assay was used to show that casticin affected associated gene expression of cell migration and invasion and the results indicated that casticin affected some of the gene expression such as increased SCN1B (cell adhesion molecule 1) and TIMP2 (TIMP metallopeptidase inhibitor 2) and decreased NDUFS4 (NADH dehydrogenase (ubiquinone) Fe-S protein4), VEGFA (vascular endothelial growth factor A), and DDIT3 (DNA-damage-inducible transcript 3) which associated cell migration and invasion in B16F10 cells. Based on those observations, we suggest that casticin could be used as a novel anticancer metastasis of melanoma cancer in the future. © 2017 Wiley Periodicals, Inc.

  5. Pre-clinical assessment of A-674563 as an anti-melanoma agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ying; Fan, Guobiao; Wang, Xuemin, E-mail: wangxuemeidr@yeah.net

    The present study aims to investigate the anti-melanoma activity by an Akt1 specific inhibitor A-674563. We showed that A-674563 was anti-proliferative and cytotoxic when added to human melanoma cells (A375, WM-115 and SK-Mel-2 lines). A-674563 induced caspase-dependent apoptotic death of human melanoma cells, and its cytotoxicity was inhibited with pre-treatment of caspase inhibitors. Further, A-674563 treatment blocked Akt and its downstream S6 Kinase 1 (S6K1) activation in A375 melanoma cells. Significantly, restoring Akt-S6K1 activation via introduction of constitutively-active Akt1 (ca-Akt1) only partially attenuated A-674563's cytotoxicity against A375 cells. Further, A-674563 induced pro-apoptotic ceramide production in A375 cells. Significantly, sphingosine-1-phosphate (S1P) inhibited A-674563-inducedmore » ceramide production and subsequent A375 cell apoptosis. On the other hand, co-treatment with the glucosylceramide synthase (GCS) inhibitor PDMP or the cell permeable short-chain ceramide (C6) potentiated A-674563's cytotoxicity against A375 cells. In vivo, A-674563 oral gavage inhibited A375 xenograft growth in severe combined immunodeficiency (scid) mice. Akt inactivation, caspase-3 activation and ceramide production were also observed in A-674563-treated A375 xenografts. Together, these results suggest that A-674563 exerts potent anti-melanoma activity, involving Akt-dependent and Akt-independent mechanisms. - Highlights: • A-674563 inhibits human melanoma cell survival and proliferation. • A-674563 induces melanoma cell apoptotic death, inhibited by caspase inhibitors. • A-674563 inhibits melanoma cells via Akt-dependent and -independent mechanisms. • A-674563 induces ceramide production in melanoma cells, independent of Akt inhibition. • A-674563 oral administration potently inhibits A375 xenograft growth in mice.« less

  6. Bear mauling: a descriptive review.

    PubMed

    Dieter, R A; Dieter, D L; Dieter, R A; Forbes, B

    2001-11-01

    Provide a descriptive review of bear and human interactions in the United States. Descriptive review. The bear population in the United States includes the grizzly bear, the polar bear, and the black bear, including the glacier phase or blue bear. As the human population grew and remote or wilderness access improved, the bear population suffered both in total numbers and safe habitat. Conservation efforts, such as hunting restrictions and habitat enhancement, have helped to increase the total numbers of bears on the North American continent. The chance of a human encountering a bear increases as the remote bear territory diminishes. Bear incidents are widely publicized, though few serious incidents occur. The authors have direct knowledge of these bear-human encounters in Alaska. Serious human injuries from black bears, or maulings, including fatalities are uncommon. Grizzly bears when trapped or stimulated may be very dangerous. The polar bear sees everything that moves or has color, as potential food, and therefore, will attack seemingly unprovoked. The chance of a human encountering a bear increases as the remote bear territory diminishes. Bear incidents are widely publicized, though few serious incidents occur.

  7. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo

    PubMed Central

    Sheen, Joon-Ho; Zoncu, Roberto; Kim, Dohoon; Sabatini, David M.

    2011-01-01

    SUMMARY Autophagy is of increasing interest as a target for cancer therapy. We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy. Hyperactivation of the RAS-MEK pathway, which is common in melanoma, prevents leucine deprivation from inhibiting mTORC1, the main repressor of autophagy under nutrient-rich conditions. In an in vivo tumor xenograft model, the combination of a leucine-free diet and an autophagy inhibitor synergistically suppresses the growth of human melanoma tumors and triggers widespread apoptosis of the cancer cells. Together, our study represents proof of principle that anti-cancer effects can be obtained with a combination of autophagy inhibition and strategies to deprive tumors of leucine. PMID:21575862

  8. Targeting human apurinic/apyrimidinic endonuclease 1 (APE1) in phosphatase and tensin homolog (PTEN) deficient melanoma cells for personalized therapy.

    PubMed

    Abbotts, Rachel; Jewell, Rosalyn; Nsengimana, Jérémie; Maloney, David J; Simeonov, Anton; Seedhouse, Claire; Elliott, Faye; Laye, Jon; Walker, Christy; Jadhav, Ajit; Grabowska, Anna; Ball, Graham; Patel, Poulam M; Newton-Bishop, Julia; Wilson, David M; Madhusudan, Srinivasan

    2014-05-30

    Phosphatase and tensin homolog (PTEN) loss is associated with genomic instability. APE1 is a key player in DNA base excision repair (BER) and an emerging drug target in cancer. We have developed small molecule inhibitors against APE1 repair nuclease activity. In the current study we explored a synthetic lethal relationship between PTEN and APE1 in melanoma. Clinicopathological significance of PTEN mRNA and APE1 mRNA expression was investigated in 191 human melanomas. Preclinically, PTEN-deficient BRAF-mutated (UACC62, HT144, and SKMel28), PTEN-proficient BRAF-wildtype (MeWo), and doxycycline-inducible PTEN-knockout BRAF-wildtype MeWo melanoma cells were DNA repair expression profiled and investigated for synthetic lethality using a panel of four prototypical APE1 inhibitors. In human tumours, low PTEN mRNA and high APE1 mRNA was significantly associated with reduced relapse free and overall survival. Pre-clinically, compared to PTEN-proficient cells, PTEN-deficient cells displayed impaired expression of genes involved in DNA double strand break (DSB) repair. Synthetic lethality in PTEN-deficient cells was evidenced by increased sensitivity, accumulation of DSBs and induction of apoptosis following treatment with APE1 inhibitors. We conclude that PTEN deficiency is not only a promising biomarker in melanoma, but can also be targeted by a synthetic lethality strategy using inhibitors of BER, such as those targeting APE1.

  9. Human melanoma cells resistant to MAPK inhibitors can be effectively targeted by inhibition of the p90 ribosomal S6 kinase

    PubMed Central

    Kosnopfel, Corinna; Sinnberg, Tobias; Sauer, Birgit; Niessner, Heike; Schmitt, Anja; Makino, Elena; Forschner, Andrea; Hailfinger, Stephan; Garbe, Claus; Schittek, Birgit

    2017-01-01

    The clinical availability of small molecule inhibitors specifically targeting mutated BRAF marked a significant breakthrough in melanoma therapy. Despite a dramatic anti-tumour activity and improved patient survival, rapidly emerging resistance, however, greatly limits the clinical benefit. The majority of the already described resistance mechanisms involve a reactivation of the MAPK signalling pathway. The p90 ribosomal S6 kinase (RSK), a downstream effector of the MAPK signalling cascade, has been reported to enhance survival of melanoma cells in response to chemotherapy. Here, we can show that RSK activity is significantly increased in human melanoma cells with acquired resistance to the BRAFV600E/K inhibitor vemurafenib. Interestingly, inhibition of RSK signalling markedly impairs the viability of vemurafenib resistant melanoma cells and is effective both in two-dimensional and in three-dimensional culture systems, especially in a chronic, long-term application. The effect of RSK inhibition can be partly replicated by downregulation of the well-known RSK target, Y-box binding protein 1 (YB-1). Intriguingly, RSK inhibition also retains its efficacy in melanoma cells with combined resistance to vemurafenib and the MEK inhibitor trametinib. These data suggest that active RSK signalling might be an attractive novel therapeutic target in melanoma with acquired resistance to MAPK pathway inhibitors. PMID:28415756

  10. Apoptosis and injuries of heavy ion beam and x-ray radiation on malignant melanoma cell.

    PubMed

    Qin, Jin; Li, Sha; Zhang, Chao; Gao, Dong-Wei; Li, Qiang; Zhang, Hong; Jin, Xiao-Dong; Liu, Yang

    2017-05-01

    This study aims to investigate the influence of high linear energy transfer (LET) heavy ion ( 12 C 6+ ) and low LET X-ray radiation on apoptosis and related proteins of malignant melanoma on tumor-bearing mice under the same physical dosage. C57BL/6 J mice were burdened by tumors and randomized into three groups. These mice received heavy ion ( 12 C 6+ ) and X-ray radiation under the same physical dosage, respectively; their weight and tumor volumes were measured every three days post-radiation. After 30 days, these mice were sacrificed. Then, median survival time was calculated and tumors on mice were proliferated. In addition, immunohistochemistry was carried out for apoptosis-related proteins to reflect the expression level. After tumor-bearing mice were radiated to heavy ion, median survival time improved and tumor volume significantly decreased in conjunction with the upregulated expression of pro-apoptosis factors, Bax and cytochrome C, and the downregulated expression of apoptosis-profilin (Bcl-2, Survivin) and proliferation-related proteins (proliferating cell nuclear antigen). The results indicated that radiation can promote the apoptosis of malignant melanoma cells and inhibit their proliferation. This case was more suitable for heavy ion ( 12 C 6+ ). High LET heavy ion ( 12 C 6+ ) radiation could significantly improve the killing ability for malignant melanoma cells by inducing apoptosis in tumor cells and inhibiting their proliferation. These results demonstrated that heavy ion ( 12 C 6+ ) presented special advantages in terms of treating malignant melanoma. Impact statement Malignant melanoma is a malignant skin tumor derived from melanin cells, which has a high malignant degree and high fatality rate. In this study, proliferating cell nuclear antigen (PCNA) can induce the apoptosis of malignant melanoma cells and inhibit its proliferation, and its induction effect on apoptosis is significantly higher than low LET X-ray; hence, it is expected to

  11. Human-polar bear interactions in a changing Arctic: Existing and emerging concerns

    USGS Publications Warehouse

    Atwood, Todd C.; Simac, Kristin; Breck, Stewart; York, Geoff; Wilder, James

    2017-01-01

    The behavior and sociality of polar bears (Ursus maritimus) have been shaped by evolved preferences for sea ice habitat and preying on marine mammals. However, human behavior is causing changes to the Arctic marine ecosystem through the influence of greenhouse gas emissions that drive long-term change in ecosystem processes and via the presence of in situ stressors associated with increasing human activities. These changes are making it more difficult for polar bears to reliably use their traditional habitats and maintain fitness. Here, we provide an overview of how human activities in the Arctic are likely to change a polar bear’s behavior and to influence their resilience to environmental change. Developing a more thorough understanding of polar bear behavior and their capacity for flexibility in response to anthropogenic disturbances and subsequent mitigations may lead to successful near-term management interventions.

  12. A Humanized Mouse Model Generated Using Surplus Neonatal Tissue.

    PubMed

    Brown, Matthew E; Zhou, Ying; McIntosh, Brian E; Norman, Ian G; Lou, Hannah E; Biermann, Mitch; Sullivan, Jeremy A; Kamp, Timothy J; Thomson, James A; Anagnostopoulos, Petros V; Burlingham, William J

    2018-04-10

    Here, we describe the NeoThy humanized mouse model created using non-fetal human tissue sources, cryopreserved neonatal thymus and umbilical cord blood hematopoietic stem cells (HSCs). Conventional humanized mouse models are made by engrafting human fetal thymus and HSCs into immunocompromised mice. These mice harbor functional human T cells that have matured in the presence of human self-peptides and human leukocyte antigen molecules. Neonatal thymus tissue is more abundant and developmentally mature and allows for creation of up to ∼50-fold more mice per donor compared with fetal tissue models. The NeoThy has equivalent frequencies of engrafted human immune cells compared with fetal tissue humanized mice and exhibits T cell function in assays of ex vivo cell proliferation, interferon γ secretion, and in vivo graft infiltration. The NeoThy model may provide significant advantages for induced pluripotent stem cell immunogenicity studies, while bypassing the requirement for fetal tissue. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Chromosomal localization of the mouse Src-like adapter protein (Slap) gene and its putative human homolog SLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angrist, M.; Chakravarti, A.; Wells, D.E.

    1995-12-10

    Molecules containing Src-homology 2 (SH2) and Src-homology 3 (SH3) domains are critical components of signal transduction pathways that serve to relay signals originating from the cell surface to the interior of the cell. Src-like adapter protein (SLAP) is a recently described adapter protein that binds activated the Eck receptor protein-tyrosine kinase. Although SLAP bears a striking homology to the SH3 and SH2 domains of the Src family of nonreceptor tyrosine kinases, it does not contain a tyrosine kinase catalytic domain. In this report, the Slap gene was mapped by linkage analysis to mouse chromosome 15, while its putative human homologmore » (SLA) was identified and mapped to human 8q22.3-qter using a panel of somatic cell hybrids. 10 refs., 2 figs.« less

  14. Human and mouse homo-oligomeric meprin A metalloendopeptidase: substrate and inhibitor specificities.

    PubMed

    Bylander, John E; Bertenshaw, Greg P; Matters, Gail L; Hubbard, Simon J; Bond, Judith S

    2007-11-01

    Meprin metalloproteinases have been implicated in the susceptibility to and progression of diabetic nephropathy and inflammatory bowel diseases. Our studies with experimental models of these diseases in mice are congruent with the conclusion that meprins modulate the inflammatory responses and tissue damage. To determine whether the mouse and human enzymes differ, recombinant forms of meprin A from the two species were compared with respect to structure, substrates and inhibitors. Human homo-oligomeric meprin A formed oligomers ranging from 950,000 to 1,500,000 Da vs. 900,000 Da for mouse meprin A. Human and mouse meprin A exhibited similar activity against azocasein, fibronectin, collagen IV, and peptides such as parathyroid hormone, ghrelin, and gastrin-releasing peptide. The human enzyme had lower activity against gelatin, bradykinin, alpha-melanocyte-stimulating hormone and neurotensin, and higher activity against secretin and orcokinin. Human meprin A showed a preference for acidic residues in the P1' position of the substrate, unlike mouse meprin A. Several metalloproteinase inhibitors had IC(50) values in the nanomolar range, but potency ranged from similar values to a difference of several orders of magnitude for meprins from the two species. This work provides valuable data to improve predictability for human systems based on meprin functions in mouse models.

  15. [Low expression of activin A in mouse and human embryonic teratocarcinoma cells].

    PubMed

    Gordeeva, O F

    2014-01-01

    TGFP3 family factors play an important role in regulating the balance of self-renewal and differentiation of mouse and human pluripotent stem and embryonic teratocarcinoma cells. The expression patterns of TGFbeta family signaling ligands and functional roles of these signaling pathways differ significantly in mouse and human embryonic stem cells, but the activity and functional role of these factors in mouse and human embryonic teratocarcinoma cells were not sufficiently investigated. Comparative quantitative real-time PCR analysis of the expression of TGF@[beta] family factors in mouse embryonic stem, embryonic germ, and embryonic teratocarcinoma cells showed that embryonic teratocarcinoma cells express lower ActivinA than pluripotent stem cells but similar levels of factors Nodal, Lefty 1, TGFbeta1, BMP4, and GDF3. In human nullipotent embryonic teratocarcinoma PA-1 cells, most factors of the TGFbeta family (ACTIVINA, NODAL, LEFTY 1, BMP4, and GDF3) are expressed at lower levels than in human embryonic stem cells: Thus, in mouse and human nullipotent teratocarcinoma cells, theexpression of ActivinA is significantly reduced com- pared ivith embryonic stem cells. Presumably, these differences may be associated with changes in the functional activity of the respective signaling pathways and deregulation of proliferative and antiproliferative mechanisms in embryonic teratocarcinoma cells.

  16. A fully humanized transgenic mouse model of Huntington disease

    PubMed Central

    Southwell, Amber L.; Warby, Simon C.; Carroll, Jeffrey B.; Doty, Crystal N.; Skotte, Niels H.; Zhang, Weining; Villanueva, Erika B.; Kovalik, Vlad; Xie, Yuanyun; Pouladi, Mahmoud A.; Collins, Jennifer A.; Yang, X. William; Franciosi, Sonia; Hayden, Michael R.

    2013-01-01

    Silencing the mutant huntingtin gene (muHTT) is a direct and simple therapeutic strategy for the treatment of Huntington disease (HD) in principle. However, targeting the HD mutation presents challenges because it is an expansion of a common genetic element (a CAG tract) that is found throughout the genome. Moreover, the HTT protein is important for neuronal health throughout life, and silencing strategies that also reduce the wild-type HTT allele may not be well tolerated during the long-term treatment of HD. Several HTT silencing strategies are in development that target genetic sites in HTT that are outside of the CAG expansion, including HD mutation-linked single-nucleotide polymorphisms and the HTT promoter. Preclinical testing of these genetic therapies has required the development of a new mouse model of HD that carries these human-specific genetic targets. To generate a fully humanized mouse model of HD, we have cross-bred BACHD and YAC18 on the Hdh−/− background. The resulting line, Hu97/18, is the first murine model of HD that fully genetically recapitulates human HD having two human HTT genes, no mouse Hdh genes and heterozygosity of the HD mutation. We find that Hu97/18 mice display many of the behavioral changes associated with HD including motor, psychiatric and cognitive deficits, as well as canonical neuropathological abnormalities. This mouse line will be useful for gaining additional insights into the disease mechanisms of HD as well as for testing genetic therapies targeting human HTT. PMID:23001568

  17. A novel interaction between calcium-modulating cyclophilin ligand and Basigin regulates calcium signaling and matrix metalloproteinase activities in human melanoma cells.

    PubMed

    Long, Tingting; Su, Juan; Tang, Wen; Luo, Zhongling; Liu, Shuang; Liu, Zhaoqian; Zhou, Honghao; Qi, Min; Zeng, Weiqi; Zhang, Jianglin; Chen, Xiang

    2013-10-01

    Intracellular free calcium is a ubiquitous second messenger regulating a multitude of normal and pathogenic cellular responses, including the development of melanoma. Upstream signaling pathways regulating the intracellular free calcium concentration ([Ca2+]i) may therefore have a significant impact on melanoma growth and metastasis. In this study, we demonstrate that the endoplasmic reticulum (ER)-associated protein calcium-modulating cyclophilin ligand (CAML) is bound to Basigin, a widely expressed integral plasma membrane glycoprotein and extracellular matrix metalloproteinase inducer (EMMPRIN, or CD147) implicated in melanoma proliferation, invasiveness, and metastasis. This interaction between CAML and Basigin was first identified using yeast two-hybrid screening and further confirmed by co-immunoprecipitation. In human A375 melanoma cells, CAML and Basigin were co-localized to the ER. Knockdown of Basigin in melanoma cells by siRNA significantly decreased resting [Ca2+]i and the [Ca2+]i increase induced by the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin (TG), indicating that the interaction between CAML and Basigin regulates ER-dependent [Ca2+]i signaling. Meanwhile upregulating the [Ca2+]i either by TG or phorbol myristate acetate (PMA) could stimulate the production of MMP-9 in A375 cells with the expression of Basigin. Our study has revealed a previously uncharacterized [Ca2+]i signaling pathway that may control melanoma invasion, and metastasis. Disruption of this pathway may be a novel therapeutic strategy for melanoma treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Platelet-derived growth factor-receptor alpha strongly inhibits melanoma growth in vitro and in vivo.

    PubMed

    Faraone, Debora; Aguzzi, Maria Simona; Toietta, Gabriele; Facchiano, Angelo M; Facchiano, Francesco; Magenta, Alessandra; Martelli, Fabio; Truffa, Silvia; Cesareo, Eleonora; Ribatti, Domenico; Capogrossi, Maurizio C; Facchiano, Antonio

    2009-08-01

    Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs) is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Ralpha may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Ralpha respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Ralpha. Proliferation was rescued by PDGF-Ralpha inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Ralpha mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Ralpha was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Ralpha show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Balpha and a marked increase of p38gamma, mitogen-activated protein kinase kinase 3, and signal regulatory protein alpha1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Ralpha reached a significant 70% inhibition of primary melanoma growth (P < .001) and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Ralpha strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control.

  19. Effects of Malignant Melanoma Initiating Cells on T-Cell Activation

    PubMed Central

    Schatton, Tobias; Schütte, Ute; Frank, Markus H.

    2016-01-01

    Although human malignant melanoma is a highly immunogenic cancer, both the endogenous antitumor immune response and melanoma immunotherapy often fail to control neoplastic progression. Accordingly, characterizing melanoma cell subsets capable of evading antitumor immunity could unravel optimized treatment strategies that might reduce morbidity and mortality from melanoma. By virtue of their preferential capacity to modulate antitumor immune responses and drive inexorable tumor growth and progression, malignant melanoma-initiating cells (MMICs) warrant closer investigation to further elucidate the cellular and molecular mechanisms underlying melanoma immune evasion and immunotherapy resistance. Here we describe methodologies that enable the characterization of immunoregulatory effects of purified MMICs versus melanoma bulk populations in coculture with syngeneic or allogeneic lymphocytes, using [3H] thymidine incorporation, enzyme-linked immunosorbent spot (ELISPOT), or ELISA assays. These assays were traditionally developed to analyze alloimmune processes and we successfully adapted them for the study of tumor-mediated immunomodulatory functions. PMID:26786883

  20. CYP1A1 and CYP1A2 expression: Comparing ‘humanized’ mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    PubMed Central

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-01-01

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how “human-like” can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1_CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)_severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs. PMID:19285097

  1. The value of cyclooxygenase-2 expression in differentiating between early melanomas and histopathologically difficult types of benign human skin lesions.

    PubMed

    Kuźbicki, Łukasz; Lange, Dariusz; Strączyńska-Niemiec, Anita; Chwirot, Barbara W

    2012-02-01

    Early cutaneous melanomas may present a substantial diagnostic challenge. We have already reported that expression of cyclooxygenase-2 (COX-2) may be useful for differentiating between cutaneous melanomas and naevi. The purpose of this study was to examine the value of COX-2 in a challenging task of differential diagnosis of early melanomas and melanocytic naevi considered by histopathologists as morphologically difficult to unequivocally diagnose as benign lesions. The material for the study comprised formalin-fixed paraffin-embedded samples of 46 naevi (including 27 cases of dysplastic, Spitz and Reed naevi) and 30 early human cutaneous melanomas. The expression of COX-2 was detected immunohistochemically. Melanomas expressed COX-2 significantly more strongly compared with naevi. The test, on the basis of determination of the percentage fractions of COX-2-positive cells, allows for differentiation of early skin melanomas and naevi with high sensitivity and specificity. Receiver operating characteristic analysis of the test results yielded areas under receiver operating characteristics curves (AUC)=0.946±0.030 for central regions and AUC=0.941±0.031 for the peripheries of the lesions. The performance of the test in differentiating between melanomas and the naevi group comprising dysplastic, Spitz and Reed naevi was also good, with AUC=0.933±0.034 and 0.923±0.037 for the central and the border regions of the lesions, respectively. Using a more complex diagnostic algorithm also accounting for the staining intensity did not result in an improvement in the resolving power of the assay. A diagnostic algorithm using differences in the percentage fractions of cells expressing COX-2 may serve as a useful tool in aiding the differential diagnosis of 'histopathologically difficult' benign melanocytic skin lesions and early melanomas.

  2. Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma.

    PubMed

    Andreucci, Elena; Bianchini, Francesca; Biagioni, Alessio; Del Rosso, Mario; Papucci, Laura; Schiavone, Nicola; Magnelli, Lucia

    2017-01-01

    Fibroblast growth factor 2 (FGF2) is involved in many physiological and pathological processes. Fgf2 deregulation contributes to the acquisition of malignant features of melanoma and other cancers. FGF2 is an alternative translation product expressed as five isoforms, a low-molecular-weight (18 KDa) and four high-molecular-weight (22, 22.5, 24, 34 KDa) isoforms, with different subcellular distributions. An internal ribosomal entry site (IRES) in its mRNA controls the translation of all the isoforms with the exception for the cap-dependent 34 KDa. The 18-KDa isoform has been extensively studied, while very few is known about the roles of high molecular weight isoforms. FGF2 is known to promote melanoma development and progression. To disclose the differential contribution of FGF2 isoforms in melanoma, we forced the expression of IRES-dependent low-molecular-weight (LMW, 18 KDa) and high-molecular-weight (HMW, 22, 22.5, 24 KDa) isoforms in a human metastatic melanoma cell line. This comparative study highlights that, while LMW isoform confers stem-like features to melanoma cells and promotes angiogenesis, HMW isoforms induce higher migratory ability and contribute to tumor perfusion by promoting vasculogenic mimicry (VM) when endothelial cell-driven angiogenesis is lacking. To conclude, FGF2 isoforms mainly behave in specific, antithetical manners, but can cooperate in different steps of tumor progression, providing melanoma cells with major malignant features. FGF2 is an alternative translation product expressed as different isoforms termed LMW and HMW. FGF2 is involved in melanoma development and progression. HMW FGF2 isoforms enhance in vitro motility of melanoma cells. LMW FGF2 confers stem-like features and increases in vivo metastasization. LMW FGF2 promotes angiogenesis while HMW FGF2 induces vasculogenic mimicry.

  3. Cytokine-Enhanced Vaccine and Interferon-β plus Suicide Gene Therapy as Surgery Adjuvant Treatments for Spontaneous Canine Melanoma.

    PubMed

    Finocchiaro, Liliana M E; Fondello, Chiara; Gil-Cardeza, María L; Rossi, Úrsula A; Villaverde, Marcela S; Riveros, María D; Glikin, Gerardo C

    2015-06-01

    We present here a nonviral immunogene therapy trial for canine malignant melanoma, an aggressive disease displaying significant clinical and histopathological overlapping with human melanoma. As a surgery adjuvant approach, it comprised the co-injection of lipoplexes bearing herpes simplex virus thymidine kinase and canine interferon-β genes at the time of surgery, combined with the periodic administration of a subcutaneous genetic vaccine composed of tumor extracts and lipoplexes carrying the genes of human interleukin-2 and human granulocyte-macrophage colony-stimulating factor. Following complete surgery (CS), the combined treatment (CT) significantly raised the portion of local disease-free canine patients from 11% to 83% and distant metastases-free (M0) from 44% to 89%, as compared with surgery-only-treated controls (ST). Even after partial surgery (PS), CT better controlled the systemic disease (M0: 82%) than ST (M0: 48%). Moreover, compared with ST, CT caused a significant 7-fold (CS) and 4-fold (PS) rise of overall survival, and >17-fold (CS) and >13-fold (PS) rise of metastasis-free survival. The dramatic increase of PS metastasis-free survival (>1321 days) and CS recurrence- and metastasis-free survival (both >2251 days) demonstrated that CT was shifting a rapidly lethal disease into a chronic one. In conclusion, this surgery adjuvant CT was able of significantly delaying or preventing postsurgical recurrence and distant metastasis, increasing disease-free and overall survival, and maintaining the quality of life. The high number of canine patients involved in CT (301) and the extensive follow-up (>6 years) with minimal or absent toxicity warrant the long-term safety and efficacy of this treatment. This successful clinical outcome justifies attempting a similar scheme for human melanoma.

  4. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.

    PubMed

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter

    2014-06-01

    The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human.

  5. Human Stem Cells Can Differentiate in Post-implantation Mouse Embryos.

    PubMed

    Tam, Patrick P L

    2016-01-07

    The potency of human pluripotent stem cells (hPSCs) to differentiate into germ layer derivatives is conventionally assessed by teratoma induction and in vitro differentiation. In this issue of Cell Stem Cell, Mascetti and Pedersen (2016) demonstrate that the human-mouse post-implantation chimera offers an efficient avenue to test the germ layer differentiation potential of hPSCs in mouse embryos ex vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Growth inhibition of malignant melanoma by intermediate frequency alternating electric fields, and the underlying mechanisms.

    PubMed

    Chen, H; Liu, R; Liu, J; Tang, J

    2012-01-01

    This study investigated the antitumour effects of intermediate frequency alternating electric fields (IF-AEF) in a murine melanoma cell line (B16F10) and a mouse tumour model. IF-AEF was applied at 100 kHz. Proliferation of B16F10 cells in vitro was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. IF-AEF was applied in vivo to mice bearing B16F10 tumours. Terminal deoxy nucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay for apoptosis, and immunohistochemical detection of CD34 and vascular endothelial growth factor (VEGF), were performed. IF-AEF inhibited the proliferation of B16F10 cells in an electrical intensity and time-dependent manner. Treatment with IF-AEF for 7 days significantly inhibited the growth of tumours compared with untreated controls. IF-AEF induced apoptosis in vivo and reduced CD34-positive cell numbers; CD34 is a special marker of microvessel density. IF-AEF reduced microvessel density related to tumour growth and may serve as a therapeutic strategy for cancer treatment.

  7. The gallium complex KP46 exerts strong activity against primary explanted melanoma cells and induces apoptosis in melanoma cell lines

    PubMed Central

    Valiahdi, Seied Mojtaba; Heffeter, Petra; Jakupec, Michael A.; Marculescu, Rodrig; Berger, Walter; Rappersberger, Klemens; Keppler, Bernhard K.

    2012-01-01

    The antineoplastic properties of gallium are well documented. Owing to their robust accumulation of gallium, melanoma cells should be amenable to gallium-based anticancer drugs. With the aim of improving the disappointingly low activity of inorganic gallium salts, we have developed the orally bioavailable gallium complex KP46 [tris(8-quinolinolato)gallium(III)] that was already successfully studied in a phase I clinical trial. To assess its therapeutic potential in malignant melanoma, its antiproliferative effects were investigated in series of human cell lines and primary explanted melanoma samples by means of the MTT [3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay and the Human Tumor Cloning Assay, respectively. When compared with other cell lines, the majority of melanoma cells rank among the KP46-sensitive cell lines (50% inhibitory concentration values: 0.8–3.7 μmol/l). Clinically achievable concentrations of KP46 proved to be highly effective in melanoma cells from primary explants of cutaneous and lymph node metastases. Colony growth was inhibited in 10 of 10 specimens by 5 lmol/l KP46 (corresponding to the steady-state plasma concentration measured earlier in a study patient) and in four of 10 specimens by 0.5 μmol/l KP46. In-vitro potency of KP46 is higher than that of dacarbazine or fotemustine and comparable with that of cisplatin. The effects induced by KP46 in melanoma cell lines involve cell cycle perturbations (S-phase arrest) and apoptosis (activation of caspase-9, PARP [poly(ADP-ribose) polymerase] cleavage, formation of apoptotic bodies). No effects on DNA secondary structure could be observed in an electrophoretic mobility shift assay using double-stranded plasmid DNA. Thus, further studies on the therapeutic applicability of KP46 in malignant melanoma are warranted. PMID:19584767

  8. Induction of monocyte chemoattractant protein-1 and interleukin-10 by TGFbeta1 in melanoma enhances tumor infiltration and immunosuppression.

    PubMed

    Díaz-Valdés, Nancy; Basagoiti, María; Dotor, Javier; Aranda, Fernando; Monreal, Iñaki; Riezu-Boj, José Ignacio; Borrás-Cuesta, Francisco; Sarobe, Pablo; Feijoó, Esperanza

    2011-02-01

    Melanoma progression is associated with the expression of different growth factors, cytokines, and chemokines. Because TGFβ1 is a pleiotropic cytokine involved not only in physiologic processes but also in cancer development, we analyzed in A375 human melanoma cells, the effect of TGFβ1 on monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10) expression, two known factors responsible for melanoma progression. TGFβ1 increased the expression of MCP-1 and IL-10 in A375 cells, an effect mediated by the cross-talk between Smad, PI3K (phosphoinositide 3-kinase)/AKT, and BRAF-MAPK (mitogen activated protein kinase) signaling pathways. Supernatants from TGFβ1-treated A375 cells enhanced MCP-1-dependent migration of monocytes, which, in turn, expressed high levels of TGF,β1, bFGF, and VEGF mRNA. Moreover, these supernatants also inhibited functional properties of dendritic cells through IL-10-dependent mechanisms. When using in vitro, the TGFβ1-blocking peptide P144, TGFβ1-dependent Smad3 phosphorylation, and expression of MCP-1 and IL-10 were inhibited. In vivo, treatment of A375 tumor-bearing athymic mice with P144 significantly reduced tumor growth, associated with a lower macrophage infiltrate and decreased intratumor MCP-1 and VEGF levels, as well as angiogenesis. Finally, in C57BL/6 mice with B16-OVA melanoma tumors, when administered with immunotherapy, P144 decreased tumor growth and intratumor IL-10 levels, linked to enhanced activation of dendritic cells and natural killer cells, as well as anti-OVA T-cell responses. These results show new effects of TGFβ1 on melanoma cells, which promote tumor progression and immunosuppression, strongly reinforcing the relevance of this cytokine as a molecular target in melanoma.

  9. Shifting the Balance of Activating and Inhibitory Natural Killer Receptor Ligands on BRAFV600E Melanoma Lines with Vemurafenib.

    PubMed

    Frazao, Alexandra; Colombo, Marina; Fourmentraux-Neves, Emmanuelle; Messaoudene, Meriem; Rusakiewicz, Sylvie; Zitvogel, Laurence; Vivier, Eric; Vély, Frédéric; Faure, Florence; Dréno, Brigitte; Benlalam, Houssem; Bouquet, Fanny; Savina, Ariel; Pasmant, Eric; Toubert, Antoine; Avril, Marie-Françoise; Caignard, Anne

    2017-07-01

    Over 60% of human melanoma tumors bear a mutation in the BRAF gene. The most frequent mutation is a substitution at codon 600 (V600E), leading to a constitutively active BRAF and overactivation of the MAPK pathway. Patients harboring mutated BRAF respond to kinase inhibitors such as vemurafenib. However, these responses are transient, and relapses are frequent. Melanoma cells are efficiently lysed by activated natural killer (NK) cells. Melanoma cells express several stress-induced ligands that are recognized by activating NK-cell receptors. We have investigated the effect of vemurafenib on the immunogenicity of seven BRAF -mutated melanoma cells to NK cells and on their growth and sensitivity to NK-cell-mediated lysis. We showed that vemurafenib treatment modulated expression of ligands for two activating NK receptors, increasing expression of B7-H6, a ligand for NKp30, and decreasing expression of MICA and ULBP2, ligands for NKG2D. Vemurafenib also increased expression of HLA class I and HLA-E molecules, likely leading to higher engagement of inhibitory receptors (KIRs and NKG2A, respectively), and decreased lysis of vemurafenib-treated melanoma cell lines by cytokine-activated NK cells. Finally, we showed that whereas batimastat (a broad-spectrum matrix metalloprotease inhibitor) increased cell surface ULBP2 by reducing its shedding, vemurafenib lowered soluble ULBP2, indicating that BRAF signal inhibition diminished expression of both cell-surface and soluble forms of NKG2D ligands. Vemurafenib, inhibiting BRAF signaling, shifted the balance of activatory and inhibitory NK ligands on melanoma cells and displayed immunoregulatory effects on NK-cell functional activities. Cancer Immunol Res; 5(7); 582-93. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. In vivo antitumor potential of Ipomoea pes-caprae on melanoma cancer

    PubMed Central

    Manigauha, Ashish; Kharya, M. D.; Ganesh, N.

    2015-01-01

    Background: The incidence of skin cancers is rising gradually. The treatment of melanoma is also necessary to prevent the spread of cancer to other body organs. Scientific literatures have not documented any evidence of the antitumor potential of Ipomoea pes-caprae on melanoma. Aim of the Study: Explore in vivo antitumor potential of I. pes-caprae on melanoma cancer. Materials and Methods: Petroleum ether (60°C–80°C), methanolic and aqueous extracts, and swaras prepared from the whole herb of I. pes-caprae were assessed for their antitumor activity. The extracts and swaras at doses of 25 and 50 mg/kg b. wt. were administered intraperitoneal along with chemo and radiotherapy for 40 days for exploring antitumor activity against melanoma cancer (B16F10) in male C57BL mice. The results obtained from tumor volume, and histopathological studies were compared with the control and dacarbazine used as a standard. Results: Antitumor effect of I. pes-caprae extracts and swaras on melanoma cancer was found to be significant (P < 0.01) compared to normal control. The tumor volume inhibition against tumor-bearing mice, although differed from each other, was concentration dependent. Administration of plant extracts and swaras from the day 1 since tumor inducted. The induction of tumor was found delayed by 10–15 days and the tumor volume on the day 40 was similar to the Dacarbazine treatment used as a standard. Conclusion: The results obtained from the tumor volume and histopathological studies clearly revealed the antitumor potential of I. pes-caprae on melanoma cancer. PMID:25829785

  11. Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.

    PubMed

    Denas, Olgert; Sandstrom, Richard; Cheng, Yong; Beal, Kathryn; Herrero, Javier; Hardison, Ross C; Taylor, James

    2015-02-14

    Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, relationships among sequence, conservation, and function are still poorly understood. We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of repurposed TFos, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest exaptation of some functional regulatory sequences into new function. Despite TFos repurposing, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TFos - target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse using WGA. A comparative analysis of this correspondence unveiled the

  12. Integrated expression analysis identifies transcription networks in mouse and human gastric neoplasia.

    PubMed

    Chen, Zheng; Soutto, Mohammed; Rahman, Bushra; Fazili, Muhammad W; Peng, DunFa; Blanca Piazuelo, Maria; Chen, Heidi; Kay Washington, M; Shyr, Yu; El-Rifai, Wael

    2017-07-01

    Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. The Tff1 knockout (KO) mouse model develops gastric lesions that include low-grade dysplasia (LGD), high-grade dysplasia (HGD), and adenocarcinomas. In this study, we used Affymetrix microarrays gene expression platforms for analysis of molecular signatures in the mouse stomach [Tff1-KO (LGD) and Tff1 wild-type (normal)] and human gastric cancer tissues and their adjacent normal tissue samples. Combined integrated bioinformatics analysis of mouse and human datasets indicated that 172 genes were consistently deregulated in both human gastric cancer samples and Tff1-KO LGD lesions (P < .05). Using Ingenuity pathway analysis, these genes mapped to important transcription networks that include MYC, STAT3, β-catenin, RELA, NFATC2, HIF1A, and ETS1 in both human and mouse. Further analysis demonstrated activation of FOXM1 and inhibition of TP53 transcription networks in human gastric cancers but not in Tff1-KO LGD lesions. Using real-time RT-PCR, we validated the deregulated expression of several genes (VCAM1, BGN, CLDN2, COL1A1, COL1A2, COL3A1, EpCAM, IFITM1, MMP9, MMP12, MMP14, PDGFRB, PLAU, and TIMP1) that map to altered transcription networks in both mouse and human gastric neoplasia. Our study demonstrates significant similarities in deregulated transcription networks in human gastric cancer and gastric tumorigenesis in the Tff1-KO mouse model. The data also suggest that activation of MYC, STAT3, RELA, and β-catenin transcription networks could be an early molecular step in gastric carcinogenesis. © 2017 Wiley Periodicals, Inc.

  13. Molecular Imaging and Radionuclide Therapy of Melanoma Targeting the Melanocortin 1 Receptor

    PubMed Central

    Zhang, Chengcheng; Lin, Kuo-Shyan; Bénard, François

    2017-01-01

    Melanoma is a deadly disease at late metastatic stage, and early diagnosis and accurate staging remain the key aspects for managing melanoma. The melanocortin 1 receptor (MC1 R) is overexpressed in primary and metastatic melanomas, and its endogenous ligand, the α-melanocyte-stimulating hormone (αMSH), has been extensively studied for the development of MC1 R-targeted molecular imaging and therapy of melanoma. Natural αMSH is not well suited for this purpose due to low stability in vivo. Unnatural amino acid substitutions substantially stabilized the peptide, while cyclization via lactam bridge and metal coordination further improved binding affinity and stability. In this study, we summarized the development and the in vitro and in vivo characteristics of the radiolabeled αMSH analogues, including 99mTc-, 111In-, 67 Ga-, or 125I-labeled αMSH analogues for imaging with single-photon emission computed tomography; 68Ga-, 64Cu-, or 18F-labeled αMSH analogues for imaging with positron emission tomography; and 188Re-, 177Lu-, 90Y-, or 212Pb-labeled αMSH analogues for radionuclide therapy. These radiolabeled αMSH analogues showed promising results with high tumor uptake and rapid normal tissue activity clearance in the preclinical model of B16F1 and B16F10 mouse melanomas. These results highlight the potential of using radiolabeled αMSH analogues in clinical applications for molecular imaging and radionuclide therapy of melanoma. PMID:29182034

  14. Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells.

    PubMed

    Kim, Ji Sung; Kim, Yong Guk; Pyo, Minji; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2015-04-01

    Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity.

  15. Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells

    PubMed Central

    Kim, Ji Sung; Kim, Yong Guk; Pyo, Minji; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo

    2015-01-01

    Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity. PMID:25922594

  16. In-vivo visualization of melanoma tumor microvessels and blood flow velocity changes accompanying tumor growth

    NASA Astrophysics Data System (ADS)

    Ishida, Hiroki; Hachiga, Tadashi; Andoh, Tsugunobu; Akiguchi, Shunsuke

    2012-11-01

    We demonstrate that using micro multipoint laser Doppler velocimetry (μ-MLDV) for noninvasive in-vivo imaging of blood vessels is useful for diagnosing malignant melanomas by comparison with visual diagnosis by dermoscopy. The blood flow velocity in microvessels varied during growth of melanomas transplanted in mouse ears. Mouse ears were observed by μ-MLDV up to 16 days after transplantation. The blood flow velocity in the tumor increased with increasing time and reached maximum of 4.5 mm/s at 9 days, which is more than twice that prior to transplantation. After 12 days, when the lesion had grown to an area of 6.6 mm2, we observed the formation of new blood vessels in the tumor. Finally, when the lesion had an area of 18 mm2 after 16 days, the flow velocity in the tumor decreased to approximately 3.2 mm/s.

  17. Bearing Witness: Citizen Journalism and Human Rights Issues

    ERIC Educational Resources Information Center

    Allan, Stuart; Sonwalkar, Prasun; Carter, Cynthia

    2007-01-01

    This article assesses the potential of online news reporting to create discursive spaces for emphatic engagement--of bearing witness--at a distance, especially where human rights violations are concerned. Taking as its focus the emergent forms and practices of citizen journalism, it examines the spontaneous actions of ordinary people compelled to…

  18. Assessment of the presence of mucosal human papillomaviruses in malignant melanomas using combined fluorescent in situ hybridization and chemiluminescent immunohistochemistry.

    PubMed

    Ambretti, S; Venturoli, S; Mirasoli, M; La Placa, M; Bonvicini, F; Cricca, M; Zerbini, M; Roda, A; Musiani, M

    2007-01-01

    The vast majority of studies aimed at detecting human papillomavirus (HPV) DNA in skin cancer have used sensitive polymerase chain reaction (PCR) methods but the PCR technique, despite its high sensitivity, is not suitable to ascertain whether (i) the presence of HPV can be related only to few cells harbouring the virus, (ii) the presence of HPV is due to a tumour surface contamination and (iii) the presence of HPV is localized in cancer cells, rather than in normal keratinocytes present in the tumour biopsy. In a recent work we have found mucosal high-risk (HR) HPV genotypes in primary melanoma by PCR. To localize mucosal HR-HPV nucleic acids and tumoural melanocytic marker in the same sections of primary melanoma samples in order to understand the relationship between HPVs and melanoma cells. We have developed a very sensitive method that combines an enzyme-amplified fluorescent in situ hybridization (ISH) for the detection of HPV nucleic acids (types 16 and 18) with a chemiluminescent immunohistochemistry (IHC) method for the detection of the tumoural melanocytic marker HMB-45 sequentially in the same section. Digital images of fluorescent ISH and chemiluminescent IHC were separately recorded, assigned different colours and merged using specific software for image analysis. The combined fluorescent ISH and chemiluminescent IHC demonstrated a sharp colocalization (in the range 60-80%) of HPV nucleic acids and melanoma marker inside the same sections of melanoma biopsies, with a strong specificity and sensitivity. The strong colocalization of mucosal HR-HPV nucleic acids and HMB-45 melanocytic marker emphasized that viral nucleic acids were specifically present in melanoma cells and supported a possible active role of HPV in malignant melanoma.

  19. A comparison of some organizational characteristics of the mouse central retina and the human macula.

    PubMed

    Volland, Stefanie; Esteve-Rudd, Julian; Hoo, Juyea; Yee, Claudine; Williams, David S

    2015-01-01

    Mouse models have greatly assisted our understanding of retinal degenerations. However, the mouse retina does not have a macula, leading to the question of whether the mouse is a relevant model for macular degeneration. In the present study, a quantitative comparison between the organization of the central mouse retina and the human macula was made, focusing on some structural characteristics that have been suggested to be important in predisposing the macula to stresses leading to degeneration: photoreceptor density, phagocytic load on the RPE, and the relative thinness of Bruch's membrane. Light and electron microscopy measurements from retinas of two strains of mice, together with published data on human retinas, were used for calculations and subsequent comparisons. As in the human retina, the central region of the mouse retina possesses a higher photoreceptor cell density and a thinner Bruch's membrane than in the periphery; however, the magnitudes of these periphery to center gradients are larger in the human. Of potentially greater relevance is the actual photoreceptor cell density, which is much greater in the mouse central retina than in the human macula, underlying a higher phagocytic load for the mouse RPE. Moreover, at eccentricities that correspond to the peripheral half of the human macula, the rod to cone ratio is similar between mouse and human. Hence, with respect to photoreceptor density and phagocytic load of the RPE, the central mouse retina models at least the more peripheral part of the macula, where macular degeneration is often first evident.

  20. Hinokitiol, a tropolone derivative, inhibits mouse melanoma (B16-F10) cell migration and in vivo tumor formation.

    PubMed

    Huang, Chien-Hsun; Lu, Shing-Hwa; Chang, Chao-Chien; Thomas, Philip Aloysius; Jayakumar, Thanasekaran; Sheu, Joen-Rong

    2015-01-05

    Invasion and metastasis are the major causes of treatment failure in patients with cancer. Hinokitiol, a natural bioactive compound found in Chamacyparis taiwanensis, has been used in hair tonics, cosmetics, and food as an antimicrobial agent. In this study, we investigated the effects and possible mechanisms of action of hinokitiol on migration by the metastatic melanoma cell line, B16-F10, in which matrix metalloproteinase-1 (MMP-1) is found to be highly- expressed. Treatment with hinokitiol revealed a concentration-dependent inhibition of migration of B16-F10 melanoma cells. Hinokitiol appeared to achieve this effect by reducing the expression of MMP-1 and by suppressing the phosphorylation of mitogen- activated protein kinase (MAPK) signaling molecules such as extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK and c-Jun N-terminal kinases (JNK). On the other hand, hinokitiol treatment reversed IκB-α degradation and inhibited the phosphorylation of p65 nuclear factor kappa B (NF-κB) and cJun in B16-F10 cells. In addition, hinokitiol suppressed the translocation of p65 NF-κB from the cytosol to the nucleus, suggesting reduced NF-κB activation. Consistent with these in vitro findings, our in vivo study demonstrated that hinokitiol treatment significantly reduced the total number of mouse lung metastatic nodules and improved histological alterations in B16-F10 injected C57BL/6 mice. These findings suggest that treatment of B16-F10 cells with hinokitiol significantly inhibits metastasis, possibly by blocking MMP-1 activation, MAPK signaling pathways and inhibition of the transcription factors, NF-κB and c-Jun, involved in cancer cell migration. These results may accelerate the development of novel therapeutic agents for the treatment of malignant cancers. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins.

    PubMed

    Holmes, Roger S; Wright, Matthew W; Laulederkind, Stanley J F; Cox, Laura A; Hosokawa, Masakiyo; Imai, Teruko; Ishibashi, Shun; Lehner, Richard; Miyazaki, Masao; Perkins, Everett J; Potter, Phillip M; Redinbo, Matthew R; Robert, Jacques; Satoh, Tetsuo; Yamashita, Tetsuro; Yan, Bingfan; Yokoi, Tsuyoshi; Zechner, Rudolf; Maltais, Lois J

    2010-10-01

    Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding "P" and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.

  2. TRIM16 inhibits proliferation and migration through regulation of interferon beta 1 in melanoma cells

    PubMed Central

    Sutton, Selina K.; Koach, Jessica; Tan, Owen; Liu, Bing; Carter, Daniel R.; Wilmott, James S.; Yosufi, Benafsha; Haydu, Lauren E.; Mann, Graham J.; Thompson, John F.; Long, Georgina V.; Liu, Tao; McArthur, Grant; Zhang, Xu Dong; Scolyer, Richard A.; Cheung, Belamy B.; Marshall, Glenn M.

    2014-01-01

    High basal or induced expression of the tripartite motif protein, TRIM16, leads to reduce cell growth and migration of neuroblastoma and skin squamous cell carcinoma cells. However, the role of TRIM16 in melanoma is currently unknown. TRIM16 protein levels were markedly reduced in human melanoma cell lines, compared with normal human epidermal melanocytes due to both DNA methylation and reduced protein stability. TRIM16 knockdown strongly increased cell migration in normal human epidermal melanocytes, while TRIM16 overexpression reduced cell migration and proliferation of melanoma cells in an interferon beta 1 (IFNβ1)-dependent manner. Chromatin immunoprecipitation assays revealed TRIM16 directly bound the IFNβ1 gene promoter. Low level TRIM16 expression in 91 melanoma patient samples, strongly correlated with lymph node metastasis, and, predicted poor patient prognosis in a separate cohort of 170 melanoma patients with lymph node metastasis. The BRAF inhibitor, vemurafenib, increased TRIM16 protein levels in melanoma cells in vitro, and induced growth arrest in BRAF-mutant melanoma cells in a TRIM16-dependent manner. High levels of TRIM16 in melanoma tissues from patients treated with Vemurafenib correlated with clinical response. Our data, for the first time, demonstrates TRIM16 is a marker of cell migration and metastasis, and a novel treatment target in melanoma. PMID:25333256

  3. Retrotransposon expression and incorporation of cloned human and mouse retroelements in human spermatozoa.

    PubMed

    Lazaros, Leandros; Kitsou, Chrysoula; Kostoulas, Charilaos; Bellou, Sofia; Hatzi, Elissavet; Ladias, Paris; Stefos, Theodoros; Markoula, Sofia; Galani, Vasiliki; Vartholomatos, Georgios; Tzavaras, Theodore; Georgiou, Ioannis

    2017-03-01

    To investigate the expression of long interspersed element (LINE) 1, human endogenous retrovirus (HERV) K10, and short interspersed element-VNTR-Alu element (SVA) retrotransposons in ejaculated human spermatozoa by means of reverse-transcription (RT) polymerase chain reaction (PCR) analysis as well as the potential incorporation of cloned human and mouse active retroelements in human sperm cell genome. Laboratory study. University research laboratories and academic hospital. Normozoospermic and oligozoospermic white men. RT-PCR analysis was performed to confirm the retrotransposon expression in human spermatozoa. Exogenous retroelements were tagged with a plasmid containing a green fluorescence (EGFP) retrotransposition cassette, and the de novo retrotransposition events were tested with the use of PCR, fluorescence-activated cell sorting analysis, and confocal microscopy. Retroelement expression in human spermatozoa, incorporation of cloned human and mouse active retroelements in human sperm genome, and de novo retrotransposition events in human spermatozoa. RT-PCR products of expressed human LINE-1, HERV-K10, and SVA retrotransposons were observed in ejaculated human sperm samples. The incubation of human spermatozoa with either retrotransposition-active human LINE-1 and HERV-K10 or mouse reverse transcriptase-deficient VL30 retrotransposons tagged with an EGFP-based retrotransposition cassette led to EGFP-positive spermatozo; 16.67% of the samples were positive for retrotransposition. The respective retrotransposition frequencies for the LINE-1, HERV-K10, and VL30 retrotransposons in the positive samples were 0.34 ± 0.13%, 0.37 ± 0.17%, and 0.30 ± 0.14% per sample of 10,000 spermatozoa. Our results show that: 1) LINE-1, HERV-K10, and SVA retrotransposons are transcriptionally expressed in human spermatozoa; 2) cloned active retroelements of human and mammalian origin can be incorporated in human sperm genome; 3) active reverse transcriptases exist in human

  4. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma.

    PubMed

    Su, Juan; Gao, Tianyuan; Jiang, Minghao; Wu, Lisha; Zeng, Weiqi; Zhao, Shuang; Peng, Cong; Chen, Xiang

    2016-10-04

    Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma.

  5. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma

    PubMed Central

    Su, Juan; Gao, Tianyuan; Jiang, Minghao; Wu, Lisha; Zeng, Weiqi; Zhao, Shuang; Peng, Cong; Chen, Xiang

    2016-01-01

    Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma. PMID:27556188

  6. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets

    PubMed Central

    Litou, Zoi I.; Konstandi, Ourania A.; Giannopoulou, Aikaterini F.; Anastasiadou, Ema; Voutsinas, Gerassimos E.; Tsangaris, George Th.; Stravopodis, Dimitrios J.

    2017-01-01

    Cutaneous melanoma is a malignant tumor of skin melanocytes that are pigment-producing cells located in the basal layer (stratum basale) of epidermis. Accumulation of genetic mutations within their oncogenes or tumor-suppressor genes compels melanocytes to aberrant proliferation and spread to distant organs of the body, thereby resulting in severe and/or lethal malignancy. Metastatic melanoma’s heavy mutational load, molecular heterogeneity and resistance to therapy necessitate the development of novel biomarkers and drug-based protocols that target key proteins involved in perpetuation of the disease. To this direction, we have herein employed a nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) proteomics technology to profile the deep-proteome landscape of WM-266-4 human metastatic melanoma cells. Our advanced melanoma-specific catalogue proved to contain 6,681 unique proteins, which likely constitute the hitherto largest single cell-line-derived proteomic collection of the disease. Through engagement of UNIPROT, DAVID, KEGG, PANTHER, INTACT, CYTOSCAPE, dbEMT and GAD bioinformatics resources, WM-266-4 melanoma proteins were categorized according to their sub-cellular compartmentalization, function and tumorigenicity, and successfully reassembled in molecular networks and interactomes. The obtained data dictate the presence of plastically inter-converted sub-populations of non-cancer and cancer stem cells, and also indicate the oncoproteomic resemblance of melanoma to glioma and lung cancer. Intriguingly, WM-266-4 cells seem to be subjected to both epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) programs, with 1433G and ADT3 proteins being identified in the EMT/MET molecular interface. Oncogenic addiction of WM-266-4 cells to autocrine/paracrine signaling of IL17-, DLL3-, FGF(2/13)- and OSTP-dependent sub-routines suggests their critical contribution to the metastatic melanoma chemotherapeutic refractoriness. Interestingly, the

  7. In situ photoimmunotherapy for melanoma: preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Naylor, Mark F.; Nordquist, Robert E.; Teauge, T. Kent; Perry, Lisa A.; Chen, Wei R.

    2006-02-01

    Although melanoma accounts for only 4% of skin cancer cases, it causes 79% of all skin cancer deaths. Patients with metastatic melanoma have a poor prognosis, and long term survival is only about 5% [1, 2]. Conventional therapies such as surgery and radiation therapy usually do not cure stage III or stage IV melanoma, while traditional chemotherapy is primarily palliative. Over the last decade we have been developing new methods for treating solid tumors like melanoma, first in animal models and now in humans. We present here preliminary results from a new technique that utilizes a combination of laser stimulation and drug therapy to stimulate brisk immunological responses in cases of advanced melanoma with cutaneous metastases. A high-power, near-infrared diode laser (805 nm) is used to kill tumors in situ and a topical toll-like receptor agonist (imiquimod cream, 5%) is used to intensify the resulting immunological response. This is essentially an in situ, tumor vaccine approach to treating solid tumors.

  8. Nonstructural Protein L* Species Specificity Supports a Mouse Origin for Vilyuisk Human Encephalitis Virus.

    PubMed

    Drappier, Melissa; Opperdoes, Fred R; Michiels, Thomas

    2017-07-15

    Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV. IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L

  9. Simulated microgravity reduces mRNA levels of multidrug resistance genes 4 and 5 in non-metastatic human melanoma cells

    NASA Astrophysics Data System (ADS)

    Eiermann, Peter; Tsiockas, Wasiliki; Hauslage, Jens; Hemmersbach, Ruth; Gerzer, Rupert; Ivanova, Krassimira

    Multidrug resistance proteins (MRP) are members of the ATP-binding cassette transporter superfamily that are able to export a large variety of substances into the extracellular space in-cluding nucleoside and nucleotide base analogs used in antiviral and anticancer therapy. MRP4 and 5 (MRP4/5) particularly transport cyclic nucleotides, e.g. guanosine 3',5'-cyclic monophos-phate (cGMP). The second messenger cGMP, which is synthesized by the catalytic activity of the guanylyl cyclase (GC), plays an import role in vasodilatation, smooth muscle relaxation, and nitric oxide (NO)-induced perturbation of melanocyte-extracellular matrix interactions. In previous studies we have reported that different GC isoforms are responsible for cGMP synthe-sis in melanocytic cells. Normal human melanocytes and non-metastatic melanoma cell lines predominantly express the NO-sensitive soluble GC isoform (sGC), a heterodimeric protein consisting of α and β subunits. Metastatic melanoma cells lack the expression of the β sub-unit and show up-regulated activities of the particulate isoforms. We have further found that long-term exposure to hypergravity (5 g for 24 h) induced an increased cGMP export in normal human melanocytes, and non-metastatic, but not in metastatic human melanoma cells as a re-sult of up-regulated MRP4/5 expression. The aim of the present study is to investigate whether simulated microgravity may also alter the expression of MRP4/5 in non-metastatic melanoma cells. Experiments were performed using a fast-rotating clinostat (60 rpm) with one rotation axis. The non-metastatic 1F6 melanoma cells were exposed to simulated microgravity (up to 1.21x10-2 g) for 24 h. The mRNA analyses were performed by a relative calibrator-normalized and efficiency corrected quantitative polymerase chain reaction (Light Cycler R , Roche). Our data show a reduced expression of approximately 35% for MRP4 and of 50% for MRP5 in simulated microgravity in comparison to 1 g controls. Also, the

  10. Investigation of the phototoxic effect of ZnO nanorods on fibroblasts and melanoma human cells

    NASA Astrophysics Data System (ADS)

    Kishwar, S.; Siddique, M.; Israr-Qadir, M.; Nur, O.; Willander, M.; Öllinger, K.

    2014-11-01

    Photocytotoxic effects of as-grown and zinc oxide (ZnO) nanorods coated with 5-aminolevulinic acid (ALA) have been studied on human cells, i.e. melanoma and foreskin fibroblast, under dark and ultraviolet light exposures. Zinc oxide nanorods have been grown on the very sharp tip (diameter = 700 nm) of borosilicate glass pipettes and then were coated by the photosensitizer for targeted investigations inside human cells. The coated glass pipette’s tip with photosensitizer has been inserted inside the cells with the help of a micro-manipulator and irradiated through ultraviolet light (UVA), which reduces the membrane potential of the mitochondria leading to cell death. Cell viability loss has been detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay when exposed to the dissolved ZnO nanorods and the production of the reactive oxygen species (ROS) has been detected along with the enhanced cytotoxic effect under UVA irradiation. Additionally, the influence of the lipid soluble antioxidant vitamin E and water-soluble N-acetyl-cysteine toward the enhancement or reduction of the toxicity has been investigated. A comparative analysis of the toxic nature of ZnO nanorods has been drawn between normal human fibroblast and melanoma cells, which can be favorable for understanding the clinical setting for killing tumor cells.

  11. Zika viral infection and neutralizing human antibody response in a BLT humanized mouse model.

    PubMed

    Schmitt, Kimberly; Charlins, Paige; Veselinovic, Milena; Kinner-Bibeau, Lauren; Hu, Shuang; Curlin, James; Remling-Mulder, Leila; Olson, Ken E; Aboellail, Tawfik; Akkina, Ramesh

    2018-02-01

    Many murine and non-human primate animal models have been recently developed to understand Zika viral pathogenesis. However, a major limitation with these models is the inability to directly examine the human-specific immune response. Here, we utilized a BLT humanized mouse model endowed with a transplanted human immune system. Plasma viremia could be detected within 48h after viral challenge and viremia persisted for as long as 220 days in some mice. Neutralizing human antibody was detected in infected mice and mouse sera showed reactivity with the viral envelope and capsid proteins in a radio-immunoprecipitation assay. Human monocytes/macrophages, B cells and hematopoietic stem cells in the bone marrow were found to be virus infected. These data establish that BLT mice are permissive for Zika viral infection and are capable of generating viral-specific human immune responses thus providing a human surrogate model for future testing of vaccine and antiviral therapeutic candidates. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes

    PubMed Central

    2013-01-01

    Background Increased adipose thermogenesis is being considered as a strategy aimed at preventing or reversing obesity. Thus, regulation of the uncoupling protein 1 (UCP1) gene in human adipocytes is of significant interest. Retinoic acid (RA), the carboxylic acid form of vitamin A, displays agonist activity toward several nuclear hormone receptors, including RA receptors (RARs) and peroxisome proliferator-activated receptor δ (PPARδ). Moreover, RA is a potent positive regulator of UCP1 expression in mouse adipocytes. Results The effects of all-trans RA (ATRA) on UCP1 gene expression in models of mouse and human adipocyte differentiation were investigated. ATRA induced UCP1 expression in all mouse white and brown adipocytes, but inhibited or had no effect on UCP1 expression in human adipocyte cell lines and primary human white adipocytes. Experiments with various RAR agonists and a RAR antagonist in mouse cells demonstrated that the stimulatory effect of ATRA on UCP1 gene expression was indeed mediated by RARs. Consistently, a PPARδ agonist was without effect. Moreover, the ATRA-mediated induction of UCP1 expression in mouse adipocytes was independent of PPARγ coactivator-1α. Conclusions UCP1 expression is differently affected by ATRA in mouse and human adipocytes. ATRA induces UCP1 expression in mouse adipocytes through activation of RARs, whereas expression of UCP1 in human adipocytes is not increased by exposure to ATRA. PMID:24059847

  13. Unusual presentations of melanoma: melanoma of unknown primary site, melanoma arising in childhood, and melanoma arising in the eye and on mucosal surfaces.

    PubMed

    Sondak, Vernon K; Messina, Jane L

    2014-10-01

    Most melanomas present as primary tumors on the skin surface in adults; however, melanomas also arise in the eye and on the mucosal surfaces or present as apparently metastatic disease without any known history of a cutaneous primary. Melanoma is also being diagnosed during childhood more frequently than ever. Surgeons need to be aware of and understand these unusual presentations of melanoma to optimally manage their patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Cytotoxic activity against human neuroblastoma and melanoma cells mediated by IgM antibodies derived from peripheral blood of healthy donors.

    PubMed

    Devarapu, Satish Kumar; Mamidi, Srinivas; Plöger, Frank; Dill, Othmar; Blixt, Ola; Kirschfink, Michael; Schwartz-Albiez, Reinhard

    2016-06-15

    A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies. © 2016 UICC.

  15. MAGE-A1 promotes melanoma proliferation and migration through C-JUN activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong; The 309th Hospital of China People's Liberation Army, Beijing 100091; Wang, Junyun

    2016-05-13

    MAGE-A1 belongs to the chromosome X-clustered genes of cancer-testis antigen family and is normally expressed in the human germ line but is also overexpressed in various tumors. Previous studies of MAGE-A1 in melanoma mainly focused on methylation changes or its role in immunotherapy, however, its biological functions in melanoma have remained unknown. In order to determine the role of MAGE-A1 in melanoma growth and metastasis, we manipulated melanoma cell lines with overexpression and knockdown of MAGE-A1. Integration of cell proliferation assays, transwell migration and invasion assays, and RNA-Seq analysis revealed that up-regulation of MAGE-A1 dramatically promoted proliferation, migration, and invasionmore » of human melanoma cell lines in vitro, while down-regulation of MAGE-A1 inhibited those characteristics associated with tumor cells. Furthermore, transcriptome sequencing revealed that MAGE-A1 exerts its tumor promoting activity by activating p-C-JUN directly or through ERK-MAPK signaling pathways. Based on our findings, we propose that MAGE-A1 may be a potential therapeutic target for melanoma patients. - Highlights: • MAGE-A1 promotes proliferation and clone formation in melanoma cell lines. • MAGE-A1 enhances tumor cell migration and invasion in melanoma cell lines. • Network including C-JUN, IL8, and ARHGAP29 play critical role in malignant melanoma. • Oncogenic MAGE-A1 increases p-C-JUN levels, possibly via ERK-MAPK signaling pathway.« less

  16. Lentiviral gene transduction of mouse and human hematopoietic stem cells.

    PubMed

    van Til, Niek P; Wagemaker, Gerard

    2014-01-01

    Lentiviral vectors can be used to genetically modify a broad range of cells. Hematopoietic stem cells (HSCs) are particularly suitable for lentiviral gene augmentation, because these cells can be enriched with relative ease from mouse bone marrow and human hematopoietic sources, and in principle require relatively limited cell numbers to completely reconstitute the hematopoietic system in vivo. Furthermore, lentiviral vectors are very efficient if pseudotyped with broad tropism envelope proteins. This chapter focuses on gene modification by the use of self-inactivating third-generation human immunodeficiency virus-derived lentiviral vectors for ex vivo HSC modification for both mouse and human application.

  17. Intratumoral administration of carboplatin bearing poly (ε-caprolactone) nanoparticles amalgamated with in situ gel tendered augmented drug delivery, cytotoxicity, and apoptosis in melanoma tumor.

    PubMed

    Bragta, Pallvi; Sidhu, Rupinder Kaur; Jyoti, Kiran; Baldi, Ashish; Jain, Upendra Kumar; Chandra, Ramesh; Madan, Jitender

    2018-06-01

    In a phase II clinical trial, carboplatin (CBDCA) displayed the response rate of 19% equivalent to dacarbazine in the treatment of malignant melanoma. However, besides desirable therapeutic profile, intravenous (i.v) administration of CBDCA delivers a subtherapeutic concentration at the target site. This entails administration of CBDCA through an alternate route by using nanovectors to achieve therapeutic efficacy in the treatment of melanoma. Carboplatin loaded poly(ε-caprolactone) nanoparticles (CBDCA-PCL-NPs) were formulated and amalgamated with chitosan-β-glycerophosphate gel (CBDCA-PCL-NPs-Gel) for intratumoral (i.t) administration. The mean particle size and zeta-potential of CBDCA-PCL-NPs were determined to be 54.5 ± 6.3-nm and -8.1 ± 0.9-mV, in addition to spherical shape of the nanoformulation. FT-IR spectroscopy denied any issue of chemical incompatibility between drug and polymer. XRD pattern indicated the amorphous lattice of CBDCA-PCL-NPs. The drug loading capacity of CBDCA-PCL-NPs-Gel was estimated to be 152 mg/1 ml. CBDCA-PCL-NPs-Gel demonstrated prolonged drug release up to 48 h. Furthermore, CBDCA-PCL-NPs-Gel displayed the IC 50 of 80.3-μM significantly (P < 0.05) lower than 162.8-μM of CBDCA-PCL-NPs and 248.5-μM of CBDCA solution in B16F1, melanoma cancer cells. CBDCA-PCL-NPs-Gel verified 80.2% of apoptosis significantly (P < 0.01) higher than 57.6% of CBDCA-PCL-NPs and 43.4% of CBDCA solution. Continuation to this, CBDCA-PCL-NPs-Gel significantly (P < 0.01) suppressed the tumor volume to 95.5 ± 8.4-mm 3 as compared to 178.9 ± 10.2-mm 3 of CBDCA solution injected i.t. and 210.6 ± 17.1-mm 3 displayed by CBDCA solution injected i.v. vis-à-vis 815.4 ± 17.1-mm 3 tumor volume of B16F1 tumor bearing C57BL6J mice. The promising preclinical results of CBDCA-PCL-NPs-Gel warrant further investigations under a set of stringent parameters for the treatment of melanoma. Copyright © 2018 Elsevier B.V. All

  18. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells

    PubMed Central

    Zhong, Hai-Jing; Dong, Zhen-Zhen; Vellaisamy, Kasipandi; Lu, Jin-Jian; Chen, Xiu-Ping; Chiu, Pauline; Kwong, Daniel W. J.; Han, Quan-Bin; Ma, Dik-Lung

    2017-01-01

    The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been suggested as a potential molecular target for anti-melanoma therapeutics. However, few JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone analogues were evaluated for their activity against human malignant melanoma cells. The most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cellular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates. Moreover, compound 1 showed higher antiproliferative activity against human melanoma A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be investigated for use as an anti-melanoma agent. PMID:28570563

  19. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  20. Dehydroleucodine inhibits tumor growth in a preclinical melanoma model by inducing cell cycle arrest, senescence and apoptosis.

    PubMed

    Costantino, Valeria V; Lobos-Gonzalez, Lorena; Ibañez, Jorge; Fernandez, Dario; Cuello-Carrión, F Darío; Valenzuela, Manuel A; Barbieri, Manuel A; Semino, Silvana N; Jahn, Graciela A; Quest, Andrew F G; Lopez, Luis A

    2016-03-01

    Malignant melanoma represents the fastest growing public health risk of all cancer types worldwide. Several strategies and anti-cancer drugs have been used in an effort to improve treatments, but the development of resistance to anti-neoplastic drugs remains the major cause of chemotherapy failure in melanomas. Previously, we showed that the sesquiterpene lactone, dehydroleucodine (DhL), promotes the accumulation of DNA damage markers, such as H2AX and 53BP1, in human tumor cells. Also DhL was shown to trigger either cell senescence or apoptosis in a concentration-dependent manner in HeLa and MCF7 cells. Here, we evaluated the effects of DhL on B16F0 mouse melanoma cells in vitro and in a pre-clinical melanoma model. DhL inhibited the proliferation of B16F0 cells by inducing senescence or apoptosis in a concentration-dependent manner. Also, DhL reduced the expression of the cell cycle proteins cyclin D1 and B1 and the inhibitor of apoptosis protein, survivin. In melanomas generated by subcutaneous injection of B16F0 cells into C57/BL6 mice, the treatment with 20 mg DhL /Kg/day in preventive, simultaneous and therapeutic protocols reduced tumor volumes by 70%, 60% and 50%, respectively. DhL treatments reduced the number of proliferating, while increasing the number of senescent and apoptotic tumor cells. To estimate the long-term effects of DhL, a mathematical model was applied to fit experimental data. Extrapolation beyond experimental time points revealed that DhL administration following preventive and therapeutic protocols is predicted to be more effective than simultaneous treatments with DhL in restricting tumor growth. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.