These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Immunohistochemical Analysis of Collagen IV and Laminin Expression in Spontaneous Melanoma Regression in the Melanoma-Bearing Libechov Minipig  

PubMed Central

Spontaneous regression (SR) of human melanoma is a rare, well-documented phenomenon that is not still fully understood. Its detailed study cannot be performed in patients due to ethical reasons. Using the Melanoma-bearing Libechov Minipig (MeLiM) animals of various ages (from 3 weeks to 8 months) we implemented a long-term monitoring of melanoma growth and SR. We focused on immunohistochemical detection of two important extracellular matrix proteins, collagen IV and laminin, which are associated with cancer. We showed that SR of melanoma is a highly dynamic process. The expression of collagen IV and laminin correlated with changes in population of melanoma cells. Tumours of 3-week-old animals consisted primarily of melanoma cells with a granular expression of collagen IV and laminin around them. Thereafter, melanoma cells were gradually destroyed and tumour tissue was rebuilt into the connective tissue. Collagen IV expression slightly increased in tumours of 10-week-old pigs showing extracellular fibrous appearance. In tumours of older animals, areas lacking melanoma cells demonstrated a low expression and areas still containing melanoma cells a high expression of both proteins. We considered the age of 10 weeks as a turning point in the transition between tumour growth and SR of the MeLiM melanoma.

Planska, Daniela; Burocziova, Monika; Strnadel, Jan; Horak, Vratislav

2015-01-01

2

Mouse homologues of human hereditary disease.  

PubMed Central

Details are given of 214 loci known to be associated with human hereditary disease, which have been mapped on both human and mouse chromosomes. Forty two of these have pathological variants in both species; in general the mouse variants are similar in their effects to the corresponding human ones, but exceptions include the Dmd/DMD and Hprt/HPRT mutations which cause little, if any, harm in mice. Possible reasons for phenotypic differences are discussed. In most pathological variants the gene product seems to be absent or greatly reduced in both species. The extensive data on conserved segments between human and mouse chromosomes are used to predict locations in the mouse of over 50 loci of medical interest which are mapped so far only on human chromosomes. In about 80% of these a fairly confident prediction can be made. Some likely homologies between mapped mouse loci and unmapped human ones are also given. Sixty six human and mouse proto-oncogene and growth factor gene homologies are also listed; those of confirmed location are all in known conserved segments. A survey of 18 mapped human disease loci and chromosome regions in which the manifestation or severity of pathological effects is thought to be the result of genomic imprinting shows that most of the homologous regions in the mouse are also associated with imprinting, especially those with homologues on human chromosomes 11p and 15q. Useful methods of accelerating the production of mouse models of human hereditary disease include (1) use of a supermutagen, such as ethylnitrosourea (ENU), (2) targeted mutagenesis involving ES cells, and (3) use of gene transfer techniques, with production of 'knockout mutations'. PMID:8151633

Searle, A G; Edwards, J H; Hall, J G

1994-01-01

3

Comparative Gene Prediction in Human and Mouse  

Microsoft Academic Search

The completion of the sequencing of the mouse genome promises to help predict human genes with greater accuracy. While current ab initio gene prediction programs are remarkably sensitive (i.e., they predict at least a fragment of most genes), their specificity is often low, predicting a large number of false-positive genes in the human genome. Sequence conservation at the protein level

Genis Parra; Pankaj Agarwal; Josep F. Abril; Thomas Wiehe; James W. Fickett; Roderic Guigo

2003-01-01

4

Mouse models for human otitis media  

PubMed Central

Otitis media (OM) remains the most common childhood disease and its annual costs exceed $5 billion. Its potential for permanent hearing impairment also emphasizes the need to better understand and manage this disease. The pathogenesis of OM is multifactorial and includes infectious pathogens, anatomy, immunologic status, genetic predisposition, and environment. Recent progress in mouse model development is helping to elucidate the respective roles of these factors and to significantly contribute toward efforts of OM prevention and control. Genetic predisposition is recognized as an important factor in OM and increasing numbers of mouse models are helping to uncover the potential genetic bases for human OM. Furthermore, the completion of the mouse genome sequence has offered a powerful set of tools for investigating gene function and is generating a rich resource of mouse mutants for studying the genetic factors underlying OM. PMID:19272362

Trune, Dennis R.; Zheng, Qing Yin

2010-01-01

5

Transcriptional divergence and conservation of human and mouse erythropoiesis  

E-print Network

Mouse models have been used extensively for decades and have been instrumental in improving our understanding of mammalian erythropoiesis. Nonetheless, there are several examples of variation between human and mouse ...

Pishesha, Novalia

2014-01-01

6

Transcriptional divergence and conservation of human and mouse erythropoiesis  

E-print Network

Mouse models have been used extensively for decades and have been instrumental in improving our understanding of mammalian erythropoiesis. Nonetheless, there are several examples of variation between human and mouse ...

Pishesha, Novalia

7

Mouse models for understanding human developmental anomalies  

SciTech Connect

The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals.

Generoso, W.M.

1989-01-01

8

Comparative Recombination Rates in the Rat, Mouse, and Human Genomes  

E-print Network

Comparative Recombination Rates in the Rat, Mouse, and Human Genomes Michael I. Jensen-Seaman,1, Idaho State University, Pocatello, Idaho 83209, USA Levels of recombination vary among species, among of rat, mouse, and human to estimate local recombination rates across these genomes. Humans have greater

Seaman, Michael I.

9

Humanized Mouse Models of HIV Infection  

PubMed Central

Because of the limited tropism of HIV, in vivo modeling of this virus has been almost exclusively limited to other lentiviruses such as SIV that reproduce many important characteristics of HIV infection. However, there are significant genetic and biological differences among lentiviruses and some HIV-specific interventions are not effective against other lentiviruses in non-human hosts. For these reasons much emphasis has recently been placed on developing alternative animal models that support HIV replication and recapitulate key aspects of HIV infection and pathogenesis in humans. Humanized mice, CD34+ hematopoietic progenitor cell transplanted immunodeficient mice and in particular mice also implanted with human thymic/liver tissue (BLT mice) that develop a functional human immune system, have been the focus of a great deal of attention as possible models to study virtually all aspects of HIV biology and pathogenesis. Humanized mice are systemically reconstituted with human lymphoid cells offering rapid, reliable and reproducible experimental systems for HIV research. Peripheral blood of humanized mice can be readily sampled longitudinally to assess reconstitution with human cells and to monitor HIV replication permitting the evaluation of multiple parameters of HIV infection such as viral load levels, CD4+ T cell depletion, immune activation, as well as the effects of therapeutic interventions. Of high relevance to HIV transmission is the extensive characterization and validation of the reconstitution with human lymphoid cells of the female reproductive tract and of the gastrointestinal tract of humanized BLT mice that renders them susceptible to both vaginal and rectal HIV infection. Other important attributes of all types of humanized mice include: 1) their small size and cost that make them broadly accessible; 2) multiple cohorts of humanized mice can be made from multiple human donors and each cohort has identical human cells, permitting control of intragenetic variables; 3) continuous de novo production of human immune cells from the transplanted CD34+ cells within each humanized mouse facilitates long term experiments; 4) both primary and laboratory HIV isolates can be used for experiments; and 5) in addition to therapeutic interventions, rectal and vaginal HIV prevention approaches can be studied. In summary, humanized mice can have an important role in virtually all aspects of HIV research including the analysis of HIV replication, the evaluation of HIV restriction factors, the characterization of successful biomedical HIV prevention strategies, the evaluation of new treatment regimens and the evaluation of novel HIV eradication strategies. PMID:21799532

Denton, Paul W.; Garcia, J. Victor

2013-01-01

10

Generation of improved humanized mouse models for human infectious diseases.  

PubMed

The study of human-specific infectious agents has been hindered by the lack of optimal small animal models. More recently development of novel strains of immunodeficient mice has begun to provide the opportunity to utilize small animal models for the study of many human-specific infectious agents. The introduction of a targeted mutation in the IL2 receptor common gamma chain gene (IL2rg(null)) in mice already deficient in T and B cells led to a breakthrough in the ability to engraft hematopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in immunodeficient mice. These humanized mice are becoming increasingly important as pre-clinical models for the study of human immunodeficiency virus-1 (HIV-1) and other human-specific infectious agents. However, there remain a number of opportunities to further improve humanized mouse models for the study of human-specific infectious agents. This is being done by the implementation of innovative technologies, which collectively will accelerate the development of new models of genetically modified mice, including; i) modifications of the host to reduce innate immunity, which impedes human cell engraftment; ii) genetic modification to provide human-specific growth factors and cytokines required for optimal human cell growth and function; iii) and new cell and tissue engraftment protocols. The development of "next generation" humanized mouse models continues to provide exciting opportunities for the establishment of robust small animal models to study the pathogenesis of human-specific infectious agents, as well as for testing the efficacy of therapeutic agents and experimental vaccines. PMID:24607601

Brehm, Michael A; Wiles, Michael V; Greiner, Dale L; Shultz, Leonard D

2014-08-01

11

A Comparison of Senescence in Mouse and Human Cells  

Microsoft Academic Search

\\u000a Senescence is observed in both human and mouse cells, however, there are fundamental differences in how senescence is controlled\\u000a between the two species. Human fibroblasts undergo replicative senescence as a result of telomere shortening. In contrast,\\u000a mouse fibroblasts do not senesce when grown at a physiological oxygen concentration. In atmospheric oxygen, mouse cells enter\\u000a a state that resembles senescence, but

Vera Gorbunova; Andrei Seluanov

12

The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease  

PubMed Central

The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse–human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human–Mouse: Disease Connection, allows users to explore gene–phenotype–disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. PMID:25348401

Eppig, Janan T.; Blake, Judith A.; Bult, Carol J.; Kadin, James A.; Richardson, Joel E.

2015-01-01

13

The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.  

PubMed

The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. PMID:25348401

Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

2015-01-01

14

Insights from Human/Mouse genome comparisons  

SciTech Connect

Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

Pennacchio, Len A.

2003-03-30

15

Combining a peptide vaccine with oral ingestion of Lentinula edodes mycelia extract enhances anti-tumor activity in B16 melanoma-bearing mice.  

PubMed

New anticancer vaccines must overcome regulatory T cell (Treg)-mediated immunosuppression. We previously reported that oral ingestion of Lentinula edodes mycelia (L.E.M.) extract restores melanoma-reactive T cells in melanoma-bearing mice via a mitigation of Treg-mediated immunosuppression. In this study, we investigated the effect of oral ingestion of the extract on peptide vaccine-induced anti-tumor activity. The day after subcutaneous inoculation in the footpad with B16 melanoma, mice were freely fed the extract and were vaccinated with a tyrosinase-related protein 2(180-188) peptide. The peptide vaccine was repeated thrice weekly. Melanoma growth was significantly suppressed in mice treated with both the peptide vaccine and L.E.M. extract compared with mice treated with vaccine or extract alone, and the effect was CD8(+) T cell-dependent. The combination therapy increased H-2K(b)-restricted and B16 melanoma-reactive T cells in the draining lymph nodes and spleen. Flow cytometric and immunohistological analyses revealed that the combination therapy significantly decreased the percentage of Tregs in the draining lymph nodes and spleen of melanoma-bearing mice compared to treatment with vaccine or extract alone. Kinetic analyses of peptide-specific T cells and Tregs revealed that induction of peptide-specific T cells by the peptide vaccine alone was transient, but when combined with L.E.M. extract, it efficiently prolonged the duration of peptide-specific T cell induction without increasing the percentage of Tregs. These results indicate that combination therapy enhances peptide vaccine-induced anti-tumor activity due to attenuation of the increase in the percentage of Tregs in tumor-bearing hosts. PMID:22588648

Tanaka, Kousuke; Ishikawa, Satoru; Matsui, Yasunori; Kawanishi, Takashi; Tamesada, Makoto; Harashima, Nanae; Harada, Mamoru

2012-11-01

16

Genomic responses in mouse models poorly mimic human inflammatory diseases  

PubMed Central

A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases. PMID:23401516

Seok, Junhee; Warren, H. Shaw; Cuenca, Alex G.; Mindrinos, Michael N.; Baker, Henry V.; Xu, Weihong; Richards, Daniel R.; McDonald-Smith, Grace P.; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C.; López, Cecilia M.; Honari, Shari; Moore, Ernest E.; Minei, Joseph P.; Cuschieri, Joseph; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Jeschke, Marc G.; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Brownstein, Bernard H.; Miller-Graziano, Carol; Calvano, Steve E.; Mason, Philip H.; Cobb, J. Perren; Rahme, Laurence G.; Lowry, Stephen F.; Maier, Ronald V.; Moldawer, Lyle L.; Herndon, David N.; Davis, Ronald W.; Xiao, Wenzhong; Tompkins, Ronald G.; Abouhamze, Amer; Balis, Ulysses G. J.; Camp, David G.; De, Asit K.; Harbrecht, Brian G.; Hayden, Douglas L.; Kaushal, Amit; O’Keefe, Grant E.; Kotz, Kenneth T.; Qian, Weijun; Schoenfeld, David A.; Shapiro, Michael B.; Silver, Geoffrey M.; Smith, Richard D.; Storey, John D.; Tibshirani, Robert; Toner, Mehmet; Wilhelmy, Julie; Wispelwey, Bram; Wong, Wing H

2013-01-01

17

Characterisation of epithelial progenitor cells for human and mouse thymus   

E-print Network

will aid in the translation of mouse thmic research to human. the main findings of this thesis are i) that a bipotent thymic epithelial progenitor cell population that contribute to both medullary and cortical epithelial cell compartments exists in vivo...

Farley, Alison

2009-01-01

18

Structures of Mouse SOD1 and Human/Mouse SOD1 Chimeras†  

PubMed Central

Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of amyotrophic lateral sclerosis (ALS). Inclusions enriched in pathogenic SOD1 accumulate in the spinal cords of transgenic mice expressing these proteins, but endogenous mouse SOD1 is not found as a component of these aggregates. In the accompanying paper, Karch and colleagues analyze aggregation propensities of human/mouse SOD1 chimeras in cell culture and identify two sequence elements in the human enzyme that seem to enhance its aggregation relative to the mouse enzyme. Here, we report the first structure of mouse SOD1 along with those of SOD1 chimeras in which residues 1-80 come from human SOD1 and residues 81-153 come from mouse SOD1 and vice versa. Taken together, the structural and cell-based data suggest a model in which residues Q42 and Q123 in mouse SOD1 modulate nonnative SOD1-SOD1 intermolecular interactions at edge strands in the SOD1 Greek key ?-barrel. PMID:20727846

Seetharaman, Sai V.; Taylor, Alexander B.; Holloway, Stephen; Hart, P. John

2011-01-01

19

Cytoarchitecture of mouse and rat cingulate cortex with human homologies.  

PubMed

A gulf exists between cingulate area designations in human neurocytology and those used in rodent brain atlases with a major underpinning of the former being midcingulate cortex (MCC). The present study used images extracted from the Franklin and Paxinos mouse atlas and Paxinos and Watson rat atlas to demonstrate areas comprising MCC and modifications of anterior cingulate (ACC) and retrosplenial cortices. The laminar architecture not available in the atlases is also provided for each cingulate area. Both mouse and rat have a MCC with neurons in all layers that are larger than in ACC and layer Va has particularly prominent neurons and reduced neuron densities. An undifferentiated ACC area 33 lies along the rostral callosal sulcus in rat but not in mouse and area 32 has dorsal and ventral subdivisions with the former having particularly large pyramidal neurons in layer Vb. Both mouse and rat have anterior and posterior divisions of retrosplenial areas 29c and 30, although their cytology is different in rat and mouse. Maps of the rodent cingulate cortices provide for direct comparisons with each region in the human including MCC and it is significant that rodents do not have a posterior cingulate region composed of areas 23 and 31 like the human. It is concluded that rodents and primates, including humans, possess a MCC and this homology along with those in ACC and retrosplenial cortices permit scientists inspired by human considerations to test hypotheses on rodent models of human diseases. PMID:23229151

Vogt, Brent A; Paxinos, George

2014-01-01

20

Mouse Tumor Biology (MTB): a database of mouse models for human cancer  

PubMed Central

The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers. PMID:25332399

Bult, Carol J.; Krupke, Debra M.; Begley, Dale A.; Richardson, Joel E.; Neuhauser, Steven B.; Sundberg, John P.; Eppig, Janan T.

2015-01-01

21

Lentiviral gene transduction of mouse and human hematopoietic stem cells.  

PubMed

Lentiviral vectors can be used to genetically modify a broad range of cells. Hematopoietic stem cells (HSCs) are particularly suitable for lentiviral gene augmentation, because these cells can be enriched with relative ease from mouse bone marrow and human hematopoietic sources, and in principle require relatively limited cell numbers to completely reconstitute the hematopoietic system in vivo. Furthermore, lentiviral vectors are very efficient if pseudotyped with broad tropism envelope proteins. This chapter focuses on gene modification by the use of self-inactivating third-generation human immunodeficiency virus-derived lentiviral vectors for ex vivo HSC modification for both mouse and human application. PMID:25062638

van Til, Niek P; Wagemaker, Gerard

2014-01-01

22

End Sequencing and Finger Printing of Human & Mouse BAC Libraries  

SciTech Connect

This project provided for continued end sequencing of existing and new BAC libraries constructed to support human sequencing as well as to initiate BAC end sequencing from the mouse BAC libraries constructed to support mouse sequencing. The clones, the sequences, and the fingerprints are now an available resource for the community at large. Research and development of new metaodologies for BAC end sequencing have reduced costs and increase throughput.

Fraser, C.

2005-09-27

23

Estimation of genetic distances from human and mouse introns  

Microsoft Academic Search

BACKGROUND: Using genetic distances measured from exons, it has been observed that the mutation rate is not constant along mammalian chromosomes. Exons constitute only 1% of the human genome, however, and thus they cannot provide a complete picture of the mutational variation in the genome. RESULTS: I calculated genetic distances between 504 human introns and their orthologous mouse counterparts from

Jose Castresana

2002-01-01

24

Comparative epigenomics of human and mouse mammary tumors.  

PubMed

Gene silencing by aberrant epigenetic chromatin alteration is a well-recognized event contributing to tumorigenesis. Although genetically engineered tumor-prone mouse models have proven a powerful tool in understanding many aspects of carcinogenesis, to date few studies have focused on epigenetic alterations in mouse tumors. To uncover epigenetically silenced tumor suppressor genes (TSGs) in mouse mammary tumor cells, we conducted initial genome-wide screening by combining the treatment of cultured cells with the DNA demethylating drug 5-aza-2'-deoxycytidine (5-azadC) and the histone deacetylase inhibitor trichostatin A (TSA) with expression microarray. By conducting this initial screen on EMT6 cells and applying protein function and genomic structure criteria to genes identified as upregulated in response to 5-azadC/TSA, we were able to identify two characterized breast cancer TSGs (Timp3 and Rprm) and four putative TSGs (Atp1B2, Dusp2, FoxJ1 and Smpd3) silenced in this line. By testing a panel of 10 mouse mammary tumor lines, we determined that each of these genes is commonly hypermethylated, albeit with varying frequency. Furthermore, by examining a panel of human breast tumor lines and primary tumors we observed that the human orthologs of ATP1B2, FOXJ1 and SMPD3 are aberrantly hypermethylated in the human disease whereas DUSP2 was not hypermethylated in primary breast tumors. Finally, we examined hypermethylation of several genes targeted for epigenetic silencing in human breast tumors in our panel of 10 mouse mammary tumor lines. We observed that the orthologs of Cdh1, RarB, Gstp1, RassF1 genes were hypermethylated, whereas neither Dapk1 nor Wif1 were aberrantly methylated in this panel of mouse tumor lines. From this study, we conclude that there is significant, but not absolute, overlap in the epigenome of human and mouse mammary tumors. PMID:18836996

Demircan, Berna; Dyer, Lisa M; Gerace, Mallory; Lobenhofer, Edward K; Robertson, Keith D; Brown, Kevin D

2009-01-01

25

Generation of humanized liver mouse model by transplant of patient-derived fresh human hepatocytes.  

PubMed

Some research groups have produced immunodeficient mice with human liver tissue as a model system for the analysis of drug metabolism and liver regeneration. Mouse models are important for research and development of drugs and vaccines for viral infections. Recent progress in developing humanized mouse models permits studies of adaptive immune responses, innate host responses, and therapeutic approaches for several liver diseases of viral etiology. In this study, we generated a humanized liver mouse model by transplant with fresh patient-derived hepatocytes (1 × 10(6) cells/mouse, intrasplenic injection) into preconditioned (50 mg/kg ganciclovir, intraperitoneal injection) mice (herpes simplex virus type 1 thymidine kinase [TK] transgene expressed within the liver of a highly immunodeficient mouse strain [NOG]). Successful reconstitution of human hepatocytes in TK-NOG mouse liver tissues was observed with a strong proliferation of human cells in a time-dependent manner, using cytokeratin 8/18 stain. Similarly, we detected significantly increased human albumin levels in TK-NOG mouse liver tissue and blood sera on immune staining and enzyme-linked immunosorbent assay. Therefore, this humanized liver mouse model provides a biomedical tool for studying human liver physiology, drug metabolism, and liver pathogenesis of viral etiology or liver regeneration. PMID:24815156

Kim, M; Choi, B; Joo, S-Y; Lee, H; Lee, J-H; Lee, K W; Lee, S; Park, J B; Lee, S-K; Kim, S J

2014-05-01

26

Comparative Analysis of Mouse NotI Linking Clones with Mouse and Human Genomic Sequences and Transcripts  

Microsoft Academic Search

Notl cleavage sites are frequently associated with CpG islands that identify the 5' regulatory sites of functional genes in the genome. Therefore we analyzed a sample of 22 Notl linking clones prepared from mouse brain DNA, to determine whether these mouse Notl site associated clones could be used for comparative analysis of mouse and human genomes by cross-reaction with both

Christoph PLASS; Jun KAWAI; Iveta KALCHEVA; Leslie DAVIS; Sachihiko WATANABE; Yoshihide HAYASHIZAKI; Verne CHAPMAN

1995-01-01

27

A Comparison of Whole-Genome Shotgun-Derived Mouse Chromosome 16 and the Human Genome  

Microsoft Academic Search

The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure

Richard J. Mural; Mark D. Adams; Hamilton O. Smith; George L. Gabor Miklos; Ron Wides; Aaron Halpern; Peter W. Li; Granger G. Sutton; Joe Nadeau; Steven L. Salzberg; Robert A. Holt; Chinnappa D. Kodira; Fu Lu; Lin Chen; Zuoming Deng; Carlos C. Evangelista; Weiniu Gan; Thomas J. Heiman; Jiayin Li; Zhenya Li; Gennady V. Merkulov; Natalia V. Milshina; Ashwinikumar K. Naik; Rong Qi; Bixiong Chris Shue; Aihui Wang; Jian Wang; Xin Wang; Xianghe Yan; Jane Ye; Shibu Yooseph; Qi Zhao; Liansheng Zheng; Shiaoping C. Zhu; Kendra Biddick; Randall Bolanos; Arthur L. Delcher; Ian M. Dew; Daniel Fasulo; Michael J. Flanigan; Daniel H. Huson; Saul A. Kravitz; Jason R. Miller; Clark M. Mobarry; Knut Reinert; Karin A. Remington; Qing Zhang; Xiangqun H. Zheng; Deborah R. Nusskern; Zhongwu Lai; Yiding Lei; Wenyan Zhong; Alison Yao; Ping Guan; Rui-Ru Ji; Zhiping Gu; Zhen-Yuan Wang; Fei Zhong; Chunlin Xiao; Chia-Chien Chiang; Mark Yandell; Jennifer R. Wortman; Peter G. Amanatides; Suzanne L. Hladun; Eric C. Pratts; Jeffery E. Johnson; Kristina L. Dodson; Kerry J. Woodford; Cheryl A. Evans; Barry Gropman; Douglas B. Rusch; Eli Venter; Mei Wang; Thomas J. Smith; Jarrett T. Houck; Donald E. Tompkins; Charles Haynes; Debbie Jacob; Soo H. Chin; David R. Allen; Carl E. Dahlke; Robert Sanders; Kelvin Li; Xiangjun Liu; Alexander A. Levitsky; William H. Majoros; Quan Chen; Ashley C. Xia; John R. Lopez; Michael T. Donnelly; Matthew H. Newman; Anna Glodek; Cheryl L. Kraft; Marc Nodell; Feroze Ali; Hui-Jin An; Danita Baldwin-Pitts; Karen Y. Beeson; Shuang Cai; Mark Carnes; Amy Carver; Parris M. Caulk; Yen-Hui Chen; Ming-Lai Cheng; My D. Coyne; Michelle Crowder; Steven Danaher; Lionel B. Davenport; Raymond Desilets; Susanne M. Dietz; Lisa Doup; Patrick Dullaghan; Steven Ferriera; Carl R. Fosler; Harold C. Gire; Andres Gluecksmann; Jeannine D. Gocayne; Jonathan Gray; Brit Hart; Jason Haynes; Jeffery Hoover; Tim Howland; Chinyere Ibegwam; Mena Jalali; David Johns; Leslie Kline; Daniel S. Ma; Steven MacCawley; Anand Magoon; Felecia Mann; David May; Tina C. McIntosh; Somil Mehta; Linda Moy; Mee C. Moy; Brian J. Murphy; Sean D. Murphy; Keith A. Nelson; Zubeda Nuri; Kimberly A. Parker; Alexandre C. Prudhomme; Vinita N. Puri; Hina Qureshi; John C. Raley; Matthew S. Reardon; Megan A. Regier; Yu-Hui C. Rogers; Deanna L. Romblad; Jakob Schutz; John L. Scott; Richard Scott; Cynthia D. Sitter; Michella Smallwood; Arlan C. Sprague; Erin Stewart; Renee V. Strong; Ellen Suh; Karena Sylvester; Reginald Thomas; Ni Ni Tint; Christopher Tsonis; Gary Wang; George Wang; Monica S. Williams; Sherita M. Williams; Sandra M. Windsor; Keriellen Wolfe; Mitchell M. Wu; Jayshree Zaveri; Kabir Chaturvedi; Andrei E. Gabrielian; Zhaoxi Ke; Jingtao Sun; Gangadharan Subramanian; J. Craig Venter

2002-01-01

28

Genomic responses in mouse models greatly mimic human inflammatory diseases.  

PubMed

The use of mice as animal models has long been considered essential in modern biomedical research, but the role of mouse models in research was challenged by a recent report that genomic responses in mouse models poorly mimic human inflammatory diseases. Here we reevaluated the same gene expression datasets used in the previous study by focusing on genes whose expression levels were significantly changed in both humans and mice. Contrary to the previous findings, the gene expression levels in the mouse models showed extraordinarily significant correlations with those of the human conditions (Spearman's rank correlation coefficient: 0.43-0.68; genes changed in the same direction: 77-93%; P = 6.5 × 10(-11) to 1.2 × 10(-35)). Moreover, meta-analysis of those datasets revealed a number of pathways/biogroups commonly regulated by multiple conditions in humans and mice. These findings demonstrate that gene expression patterns in mouse models closely recapitulate those in human inflammatory conditions and strongly argue for the utility of mice as animal models of human disorders. PMID:25092317

Takao, Keizo; Miyakawa, Tsuyoshi

2015-01-27

29

Intraspinal transplantation of mouse and human neural precursor cells  

PubMed Central

This unit describes the preparation and transplantation of human neural precursor cells (hNPCs) and mouse neural precursor cells (mNPCs) into the thoracic region of the mouse spinal cord. The techniques in this unit also describe how to prepare the mouse for surgery by performing a laminectomy to expose the spinal cord for transplantation. Here we show NPCs genetically labeled with eGFP transplanted into the spinal cord of a mouse following viralmediated demyelination can efficiently be detected via eGFP expression. Transplantation of these cells into the spinal cord is an efficacious way to determine their effects in neurological disorders such as multiple sclerosis, Alzheimer's disease, and spinal cord injury. PMID:24510791

Weinger, Jason G.; Chen, Lu; Coleman, Ronald; Leang, Ronika; Plaisted, Warren C.; Loring, Jeanne F.; Lane, Thomas E.

2013-01-01

30

Transgenic Mouse Models and Human Psychiatric Disease  

Microsoft Academic Search

Genetic susceptibility to common psychiatric disease arises from the complex interactions between a multitude of genes and\\u000a an unknown number of relevant environments. However, a common method for investigating gene function involves the creation\\u000a of a mouse knockout of a candidate gene. Although this approach seems inappropriate to model such complexity, genetic effects\\u000a on behavior attributable to null mutants in

Jonathan Flint

31

Different telomere damage signaling pathways in human and mouse cells  

PubMed Central

Programmed telomere shortening in human somatic cells is thought to act as a tumor suppressor pathway, limiting the replicative potential of developing tumor cells. Critically short human telomeres induce senescence either by activating p53 or by inducing the p16/RB pathway, and suppression of both pathways is required to suppress senescence of aged human cells. Here we report that removal of TRF2 from human telomeres and the ensuing de-protection of chromosome ends induced immediate premature senescence. Although the telomeric tracts remained intact, the TRF2?B?M-induced premature senescence was indistinguishable from replicative senescence and could be mediated by either the p53 or the p16/RB pathway. Telomere de-protection also induced a growth arrest and senescent morphology in mouse cells. However, in this setting the loss of p53 function was sufficient to completely abrogate the arrest, indicating that the p16/RB response to telomere dysfunction is not active in mouse cells. These findings reveal a fundamental difference in telomere damage signaling in human and mouse cells that bears on the use of mouse models for the telomere tumor suppressor pathway. PMID:12169636

Smogorzewska, Agata; de Lange, Titia

2002-01-01

32

Probing Human Cardiovascular Congenital Disease Using Transgenic Mouse Models  

PubMed Central

Congenital heart defects (CHDs) impact in utero embryonic viability, children, and surviving adults. Since the first transfer of genes into mice, transgenic mouse models have enabled researchers to experimentally study and genetically test the roles of genes in development, physiology, and disease progression. Transgenic mice have become a bona fide human CHD pathology model and their use has dramatically increased within the past two decades. Now that the entire mouse and human genomes are known, it is possible to knock out, mutate, misexpress, and/or replace every gene. Not only have transgenic mouse models changed our understanding of normal development, CHD processes, and the complex interactions of genes and pathways required during heart development, but they are also being used to identify new avenues for medical therapy. PMID:21377625

Snider, Paige; Conway, Simon J.

2013-01-01

33

Human and mouse proteases: a comparative genomic approach  

Microsoft Academic Search

The availability of the human and mouse genome sequences has allowed the identification and comparison of their respective degradomes — the complete repertoire of proteases that are produced by these organisms. Because of the essential roles of proteolytic enzymes in the control of cell behaviour, survival and death, degradome analysis provides a useful framework for the global exploration of these

Xose S. Puente; Luis M. Sánchez; Christopher M. Overall; Carlos López-Otín

2003-01-01

34

Generation and characterization of a humanized PPAR mouse model  

E-print Network

of human PPAR in liver, macrophages, small intestine and heart, but not in soleus and quadriceps muscles) activation of PPAR. Gene expression profiling in liver, soleus muscle and macrophages showed similar gene to mouse PPAR in liver and isolated macrophages. Conclusions and implications: These data indicate

Paris-Sud XI, Université de

35

Scientists make mouse model of human cancer, demonstrate cure  

Cancer.gov

UT Southwestern Medical Center scientists report the first successful blocking--in a mouse model--of the development of malignant peripheral nerve sheath tumors (MPNSTs), a cancer currently considered incurable in humans. UT Southwestern is home to the Harold C. Simmons Cancer Center. The study included researchers from The University of Texas MD Anderson Cancer Center and Baylor College of Medicine.

36

Cell Stem Cell The Adult Mouse and Human Pancreas Contain  

E-print Network

Cell Stem Cell Article The Adult Mouse and Human Pancreas Contain Rare Multipotent Stem Cells.smukler@utoronto.ca DOI 10.1016/j.stem.2011.01.015 SUMMARY The search for putative precursor cells within the pancreas has been the focus of extensive research. Previously, we identified rare pancreas-derived mul- tipotent

37

Applications of the human p53 knock-in (Hupki) mouse model for human carcinogen testing  

PubMed Central

Tumor-driving mutations in the TP53 gene occur frequently in human cancers. These inactivating mutations arise predominantly from a single-point mutation in the DNA-binding domain of this tumor suppressor gene (i.e., exons 4–9). The human p53 knock-in (Hupki) mouse model was constructed using gene-targeting technology to create a mouse strain that harbors human wild-type TP53 DNA sequences in both copies of the mouse TP53 gene. Replacement of exons 4–9 of the endogenous mouse TP53 alleles in the Hupki mouse with the homologous normal human TP53 gene sequences has offered a humanized replica of the TP53 gene in a murine genetic environment. The Hupki mouse model system has proven to be an invaluable research tool for studying the underlying mechanisms of human TP53 mutagenesis. The utility of the Hupki mouse model system for exploring carcinogen-induced TP53 mutagenesis has been demonstrated in both in vivo animal experiments and in vitro cell culture experiments. Here, we highlight applications of the Hupki mouse model system for investigating mutagenesis induced by a variety of environmental carcinogens, including sunlight ultraviolet radiation, benzo[a]pyrene (a tobacco smoke-derived carcinogen), 3-nitrobenzanthrone (an urban air pollutant), aristolochic acid (a component of Chinese herbal medicine), and aflatoxin B1 (a food contaminant). We summarize the salient findings of the respective studies and discuss their relevance to human cancer etiology.—Besaratinia, A., Pfeifer, G. P. Applications of the human p53 knock-in (Hupki) mouse model for human carcinogen testing. PMID:20371617

Besaratinia, Ahmad; Pfeifer, Gerd P.

2010-01-01

38

Organismal complexity, cell differentiation and gene expression: human over mouse  

Microsoft Academic Search

We present a molecular and cellular phenomenon underlying the intriguing increase in phenotypic organizational complexity. For the same set of human-mouse orthologous genes (11 534 gene pairs) and homologous tissues (32 tissue pairs), human shows a greater fraction of tissue-specific genes and a greater ratio of the total expression of tissue-specific genes to housekeeping genes in each studied tissue, which

Alexander E. Vinogradov; Olga V. Anatskaya

2007-01-01

39

Humanized Mouse Model to Study Bacterial Infections Targeting the Microvasculature  

PubMed Central

Neisseria meningitidis causes a severe, frequently fatal sepsis when it enters the human blood stream. Infection leads to extensive damage of the blood vessels resulting in vascular leak, the development of purpuric rashes and eventual tissue necrosis. Studying the pathogenesis of this infection was previously limited by the human specificity of the bacteria, which makes in vivo models difficult. In this protocol, we describe a humanized model for this infection in which human skin, containing dermal microvessels, is grafted onto immunocompromised mice. These vessels anastomose with the mouse circulation while maintaining their human characteristics. Once introduced into this model, N. meningitidis adhere exclusively to the human vessels, resulting in extensive vascular damage, inflammation and in some cases the development of purpuric rash. This protocol describes the grafting, infection and evaluation steps of this model in the context of N. meningitidis infection. The technique may be applied to numerous human specific pathogens that infect the blood stream. PMID:24747976

Melican, Keira; Aubey, Flore; Duménil, Guillaume

2014-01-01

40

Development and function of human innate immune cells in a humanized mouse model  

PubMed Central

Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240

Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.

2014-01-01

41

How informative is the mouse for human gut microbiota research?  

PubMed Central

The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. PMID:25561744

Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

2015-01-01

42

Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis  

Microsoft Academic Search

Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments.However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional

William R. Swindell; Andrew Johnston; Steve Carbajal; Gangwen Han; Christian Wohn; Jun Lu; Xianying Xing; Rajan P. Nair; John J. Voorhees; James T. Elder; Xiao-Jing Wang; Shigetoshi Sano; Errol P. Prens; John Digiovanni; Mark R. Pittelkow; Nicole L. Ward; Johann E. Gudjonsson; Stefan Bereswill

2011-01-01

43

Determinants of Pluripotency in Mouse and Human Embryonic Stem Cells  

Microsoft Academic Search

\\u000a Embryonic stem cells, derived from the inner cell mass of blastocyst stage embryos prior to implantation, remain pluripotent\\u000a and self-renewing due to both their inherent properties and the culture conditions in which they are propagated. Recent study\\u000a of the genetic and epigenetic mechanisms that underlie pluripotency in embryonic stem cells has revealed that mouse and human\\u000a embryonic stem cells have

Leon M. Ptaszek; Chad A. Cowan

44

Dysfunction of epithelial sodium transport: From human to mouse  

Microsoft Academic Search

Dysfunction of epithelial sodium transport: From human to mouse. The highly amiloride-sensitive epithelial sodium channel (ENaC) is an apical membrane constituent of cells of many salt-absorbing epithelia. In the kidney, the functional relevance of ENaC expression has been well established. ENaC mediates the aldosterone-dependent sodium reabsorption in the distal nephron and is involved in the regulation of blood pressure. Mutations

Olivier Bonny; Edith Hummler

2000-01-01

45

TFCat: the curated catalog of mouse and human transcription factors  

PubMed Central

Unravelling regulatory programs governed by transcription factors (TFs) is fundamental to understanding biological systems. TFCat is a catalog of mouse and human TFs based on a reliable core collection of annotations obtained by expert review of the scientific literature. The collection, including proven and homology-based candidate TFs, is annotated within a function-based taxonomy and DNA-binding proteins are organized within a classification system. All data and user-feedback mechanisms are available at the TFCat portal . PMID:19284633

Fulton, Debra L; Sundararajan, Saravanan; Badis, Gwenael; Hughes, Timothy R; Wasserman, Wyeth W; Roach, Jared C; Sladek, Rob

2009-01-01

46

MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors.  

PubMed

Neurofibromatosis type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating the effects of hyperactive Ras in NF1 tumors are unknown. We performed cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs and identified global negative feedback of genes that regulate Ras/Raf/MEK/ERK signaling in both species. Nonetheless, ERK activation was sustained in mouse and human neurofibromas and MPNST. We used a highly selective pharmacological inhibitor of MEK, PD0325901, to test whether sustained Ras/Raf/MEK/ERK signaling contributes to neurofibroma growth in a neurofibromatosis mouse model (Nf1(fl/fl);Dhh-Cre) or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in more than 80% of mice tested. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide a strong rationale for testing MEK inhibitors in NF1 clinical trials. PMID:23221341

Jessen, Walter J; Miller, Shyra J; Jousma, Edwin; Wu, Jianqiang; Rizvi, Tilat A; Brundage, Meghan E; Eaves, David; Widemann, Brigitte; Kim, Mi-Ok; Dombi, Eva; Sabo, Jessica; Hardiman Dudley, Atira; Niwa-Kawakita, Michiko; Page, Grier P; Giovannini, Marco; Aronow, Bruce J; Cripe, Timothy P; Ratner, Nancy

2013-01-01

47

Mitochondrial viability in mouse and human postmortem brain  

PubMed Central

Neuronal function in the brain requires energy in the form of ATP, and mitochondria are canonically associated with ATP production in neurons. The electrochemical gradient, which underlies the mitochondrial transmembrane potential (??mem), is harnessed for ATP generation. Here we show that ??mem and ATP-production can be engaged in mitochondria isolated from human brains up to 8.5 h postmortem. Also, a time course of postmortem intervals from 0 to 24 h using mitochondria isolated from mouse cortex reveals that ??mem in mitochondria can be reconstituted beyond 10 h postmortem. It was found that complex I of the mitochondrial electron transport chain was affected adversely with increasing postmortem intervals. Mitochondria isolated from postmortem mouse brains maintain the ability to produce ATP, but rates of production decreased with longer postmortem intervals. Furthermore, we show that postmortem brain mitochondria retain their ??mem and ATP-production capacities following cryopreservation. Our finding that ??mem and ATP-generating capacity can be reinitiated in brain mitochondria hours after death indicates that human postmortem brains can be an abundant source of viable mitochondria to study metabolic processes in health and disease. It is also possible to archive these mitochondria for future studies.—Barksdale, K. A., Perez-Costas, E., Gandy, J. C., Melendez-Ferro, M., Roberts, R. C., Bijur, G. N. Mitochondrial viability in mouse and human postmortem brain. PMID:20466876

Barksdale, Keri A.; Perez-Costas, Emma; Gandy, Johanna C.; Melendez-Ferro, Miguel; Roberts, Rosalinda C.; Bijur, Gautam N.

2010-01-01

48

MOUSE SKIN TUMORS AND HUMAN LUNG CANCER: RELATIONSHIPS WITH COMPLEX ENVIRONMENTAL EMISSIONS  

EPA Science Inventory

Historically, mouse skin tumorigenesis has been used to evaluate the tumorigenic effects of complex mixtures including human respiratory carcinogens. his study examines the quantitative relationships between tumor induction in SENCAR mouse skin and the induction of respiratory ca...

49

CARI III inhibits tumor growth in a melanoma-bearing mouse model through induction of G0/G1 cell cycle arrest.  

PubMed

Mushroom-derived natural products have been used to prevent or treat cancer for millennia. In this study, we evaluated the anticancer effects of CARI (Cell Activation Research Institute) III, which consists of a blend of mushroom mycelia from Phellinus linteus grown on germinated brown rice, Inonotus obliquus grown on germinated brown rice, Antrodia camphorata grown on germinated brown rice and Ganoderma lucidum. Here, we showed that CARI III exerted anti-cancer activity, which is comparable to Dox against melanoma in vivo. B16F10 cells were intraperitoneally injected into C57BL6 mice to develop solid intra-abdominal tumors. Three hundred milligrams of the CARI III/kg/day p.o. regimen reduced tumor weight, comparable to the doxorubicin (Dox)-treated group. An increase in life span (ILS% = 50.88%) was observed in the CARI III-administered group, compared to the tumor control group. CARI III demonstrates anti-proliferative activity against B16F10 melanoma cells through inducing G0/G1 cell cycle arrest. CARI III inhibits the expression of cyclin D1, CDK4 and CDK2 and induces p21. Therefore, CARI III could be a potential chemopreventive supplement to melanoma patients. PMID:25221864

Park, Hye-Jin

2014-01-01

50

Further Improvements of the P. falciparum Humanized Mouse Model  

PubMed Central

Background It has been shown previously that it is possible to obtain growth of Plasmodium falciparum in human erythrocytes grafted in mice lacking adaptive immune responses by controlling, to a certain extent, innate defences with liposomes containing clodronate (clo-lip). However, the reproducibility of those models is limited, with only a proportion of animals supporting longstanding parasitemia, due to strong inflammation induced by P. falciparum. Optimisation of the model is much needed for the study of new anti-malarial drugs, drug combinations, and candidate vaccines. Materials/Methods We investigated the possibility of improving previous models by employing the intravenous route (IV) for delivery of both human erythrocytes (huRBC) and P. falciparum, instead of the intraperitoneal route (IP), by testing various immunosuppressive drugs that might help to control innate mouse defences, and by exploring the potential benefits of using immunodeficient mice with additional genetic defects, such as those with IL-2R? deficiency (NSG mice). Results We demonstrate here the role of aging, of inosine and of the IL-2 receptor ? mutation in controlling P. falciparum induced inflammation. IV delivery of huRBC and P. falciparum in clo-lip treated NSG mice led to successful infection in 100% of inoculated mice, rapid rise of parasitemia to high levels (up to 40%), long-lasting parasitemia, and consistent results from mouse-to-mouse. Characteristics were closer to human infection than in previous models, with evidence of synchronisation, partial sequestration, and receptivity to various P. falciparum strains without preliminary adaptation. However, results show that a major IL-12p70 inflammatory response remains prevalent. Conclusion The combination of the NSG mouse, clodronate loaded liposomes, and IV delivery of huRBC has produced a reliable and more relevant model that better meets the needs of Malaria research. PMID:21483851

Meija, Pedro; Swetman, Claire; Gleeson, James; Pérignon, Jean-Louis; Druilhe, Pierre

2011-01-01

51

Human More Complex than Mouse at Cellular Level  

PubMed Central

The family of transcription factors with the C2H2 zinc finger domain is expanding in the evolution of vertebrates, reaching its highest numbers in the mammals. The question arises: whether an increased amount of these transcription factors is related to embryogenesis, nervous system, pathology or more of them are expressed in individual cells? Among mammals, the primates have a more complex anatomical structure than the rodents (e.g., brain). In this work, I show that a greater number of C2H2-ZFgenes are expressed in the human cells than in the mouse cells. The effect is especially pronounced for C2H2-ZF genes accompanied with the KRAB domain. The relative difference between the numbers of C2H2-ZF(-KRAB) genes in the human and mouse cellular transcriptomes even exceeds their difference in the genomes (i.e. a greater subset of existing in the genome genes is expressed in the human cellular transcriptomes compared to the mouse transcriptomes). The evolutionary turnover of C2H2-ZF(-KRAB) genes acts in the direction of the revealed phenomenon, i.e. gene duplication and loss enhances the difference in the relative number of C2H2-ZF(-KRAB) genes between human and mouse cellular transcriptomes. A higher amount of these genes is expressed in the brain and embryonic cells (compared with other tissues), whereas a lower amount - in the cancer cells. It is specifically the C2H2-ZF transcription factors whose repertoire is poorer in the cancer and richer in the brain (other transcription factors taken together do not show this trend). These facts suggest that increase of anatomical complexity is accompanied by a more complex intracellular regulation involving these transcription factors. Malignization is associated with simplification of this regulation. These results agree with the known fact that human cells are more resistant to oncogenic transformation than mouse cells. The list of C2H2-ZF genes whose suppression might be involved in malignization is provided. PMID:22911852

Vinogradov, Alexander E.

2012-01-01

52

Mouse genetic and phenotypic resources for human genetics  

PubMed Central

The use of model organisms to provide information on gene function has proved to be a powerful approach to our understanding of both human disease and fundamental mammalian biology. Large-scale community projects using mice, based on forward and reverse genetics, and now the pan-genomic phenotyping efforts of the International Mouse Phenotyping Consortium (IMPC), are generating resources on an unprecedented scale which will be extremely valuable to human genetics and medicine. We discuss the nature and availability of data, mice and ES cells from these large-scale programmes, the use of these resources to help prioritise and validate candidate genes in human genetic association studies, and how they can improve our understanding of the underlying pathobiology of human disease. PMID:22422677

Schofield, Paul N.; Hoehndorf, Robert; Gkoutos, Georgios V.

2012-01-01

53

A Simple Methodology for Conversion of Mouse Monoclonal Antibody to Human-Mouse Chimeric Form  

PubMed Central

Passive immunotherapy has mainly been used as a therapy against cancer and inflammatory conditions. Recent studies have shown that monoclonal antibody-(mAb-) based passive immunotherapy is a promising approach to combat virus infection. Specific mouse mAbs can be routinely generated in large amounts with the use of hybridoma technology but these cannot be used for therapy in human beings due to their immunogenicity. Therefore, the development of chimeric and humanized mAbs is important for therapeutic purpose. This is facilitated by a variety of molecular techniques like recombinant DNA technology and the better understanding of the structure and function of antibody. The human-mouse chimeric forms allow detailed analysis of the mechanism of inhibition and the potential for therapeutic applications. Here, a step-by-step description of the conversion process will be described. The commercial availability of the reagents required in each step means that this experimentation can be easily set up in research laboratories. PMID:24078817

Dang, Vinh T.; Mandakhalikar, Kedar D.; Ng, Oi-Wing; Tan, Yee-Joo

2013-01-01

54

The truth about mouse, human, worms and yeast  

PubMed Central

Genome comparisons are behind the powerful new annotation methods being developed to find all human genes, as well as genes from other genomes. Genomes are now frequently being studied in pairs to provide cross-comparison datasets. This 'Noah's Ark' approach often reveals unsuspected genes and may support the deletion of false-positive predictions. Joining mouse and human as the cross-comparison dataset for the first two mammals are: two Drosophila species, D. melanogaster and D. pseudoobscura; two sea squirts, Ciona intestinalis and Ciona savignyi; four yeast (Saccharomyces) species; two nematodes, Caenorhabditis elegans and Caenorhabditis briggsae; and two pufferfish (Takefugu rubripes and Tetraodon nigroviridis). Even genomes like yeast and C. elegans, which have been known for more than five years, are now being significantly improved. Methods developed for yeast or nematodes will now be applied to mouse and human, and soon to additional mammals such as rat and dog, to identify all the mammalian protein-coding genes. Current large disparities between human Unigene predictions (127,835 genes) and gene-scanning methods (45,000 genes) still need to be resolved. This will be the challenge during the next few years. PMID:15601543

2004-01-01

55

CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines  

SciTech Connect

Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

Uno, Shigeyuki; Endo, Kaori [Department of Biochemistry, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo 173-8610 (Japan); Ishida, Yuji; Tateno, Chise [PhenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046 (Japan); Makishima, Makoto [Department of Biochemistry, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo 173-8610 (Japan); Yoshizato, Katsutoshi [PhenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046 (Japan); Nebert, Daniel W. [Department of Environmental Health and Center for Environmental Genetics (CEG) University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati OH 45267-0056 (United States)], E-mail: dan.nebert@uc.edu

2009-05-15

56

INTERSPECIES SENSITIVITY TO CHEMICAL CARCINOGENS: RELATIONSHIPS BETWEEN MOUSE SKIN TUMORS AND HUMAN LUNG CANCER  

EPA Science Inventory

This review focuses on the relationships between mouse skin tumors and human lung cancer and discusses these relationships from several perspectives. hese perspectives include: mouse skin as an experimental test system; metabolic comparisons of the response of mouse skin and huma...

57

IDENTIFICATION OF EPILEPSY GENES IN HUMAN AND MOUSE*  

PubMed Central

The development of molecular markers and genomic resources has facilitated the isolation of genes responsible for rare monogenic epilepsies in human and mouse. Many of the identified genes encode ion channels or other components of neuronal signaling. The electrophysiological properties of mutant alleles indicate that neuronal hyperexcitability is one cellular mechanism underlying seizures. Genetic heterogeneity and allelic variability are hallmarks of human epilepsy. For example, mutations in three different sodium channel genes can produce the same syndrome, GEFS+, while individuals with the same allele can experience different types of seizures. Haploinsufficiency for the sodium channel SCN1A has been demonstrated by the severe infantile epilepsy and cognitive deficits in heterozygotes for de novo null mutations. Large-scale patient screening is in progress to determine whether less severe alleles of the genes responsible for monogenic epilepsy may contribute to the common types of epilepsy in the human population. The development of pharmaceuticals directed towards specific epilepsy genotypes can be anticipated, and the introduction of patient mutations into the mouse genome will provide models for testing these targeted therapies. PMID:11700294

Meisler, Miriam H.; Kearney, Jennifer; Ottman, Ruth; Escayg, Andrew

2009-01-01

58

A mouse model for human osteogenesis imperfecta type VI  

PubMed Central

Osteogenesis imperfecta Type VI has recently be linked to a mutation in the SERPINF1 gene which encodes Pigment Epithelium-Derived Factor (PEDF), a ubiquitously expressed protein originally described for its neurotrophic and anti-angiogenic properties. In this study, we characterized the skeletal phenotype of a mouse with targeted disruption of Pedf. In normal mouse bone, Pedf was localized to osteoblasts and osteocytes. MicroCT and quantitative bone histomorphometry in femurs of mature Pedf null mutants revealed reduced trabecular bone volume and the accumulation of unmineralized bone matrix. Fourier transform infrared microscopy (FTIR) indicated an increased mineral:matrix ratio in mutant bones which were more brittle than controls. In vitro, osteoblasts from Pedf null mice exhibited enhanced mineral deposition as assessed by alizarin red staining and an increased mineral:matrix determined by FTIR analysis of calcified nodules. The findings in this mouse model mimic the principal structural and biochemical features of bone observed in humans with OI type VI and consequently provide a useful model with which to further investigate the role of PEDF in this bone disorder. PMID:23413146

Bogan, Rosalind; Riddle, Ryan C.; Li, Zhu; Kumar, Sarvesh; Nandal, Anjali; Faugere, Marie-Claude; Boskey, Adele; Crawford, Susan E.; Clemens, Thomas L.

2013-01-01

59

Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes  

PubMed Central

Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome–based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and ? light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice. PMID:24706858

Macdonald, Lynn E.; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T.; Yasenchak, Jason; Frendewey, David; Valenzuela, David M.; Giallourakis, Cosmas C.; Alt, Frederick W.; Yancopoulos, George D.; Murphy, Andrew J.

2014-01-01

60

Gene Expression and Functional Annotation of the Human and Mouse Choroid Plexus Epithelium  

PubMed Central

Background The choroid plexus epithelium (CPE) is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF), which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. Methods We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. Results Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural) developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. Conclusion Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE between mouse and man differ with respect to transport and metabolic functions. PMID:24391755

Janssen, Sarah F.; van der Spek, Sophie J. F.; ten Brink, Jacoline B.; Essing, Anke H. W.; Gorgels, Theo G. M. F.; van der Spek, Peter J.; Jansonius, Nomdo M.; Bergen, Arthur A. B.

2013-01-01

61

System parameters for erythropoiesis control model: Comparison of normal values in human and mouse model  

NASA Technical Reports Server (NTRS)

The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.

1979-01-01

62

Human-mouse comparative genomics: successes and failures to reveal functional regions of the human genome  

SciTech Connect

Deciphering the genetic code embedded within the human genome remains a significant challenge despite the human genome consortium's recent success at defining its linear sequence (Lander et al. 2001; Venter et al. 2001). While useful strategies exist to identify a large percentage of protein encoding regions, efforts to accurately define functional sequences in the remaining {approx}97 percent of the genome lag. Our primary interest has been to utilize the evolutionary relationship and the universal nature of genomic sequence information in vertebrates to reveal functional elements in the human genome. This has been achieved through the combined use of vertebrate comparative genomics to pinpoint highly conserved sequences as candidates for biological activity and transgenic mouse studies to address the functionality of defined human DNA fragments. Accordingly, we describe strategies and insights into functional sequences in the human genome through the use of comparative genomics coupled wit h functional studies in the mouse.

Pennacchio, Len A.; Baroukh, Nadine; Rubin, Edward M.

2003-05-15

63

HBV life cycle is restricted in mouse hepatocytes expressing human NTCP.  

PubMed

Recent studies have revealed that human sodium taurocholate cotransporting polypeptide (SLC10A1 or NTCP) is a functional cellular receptor for hepatitis B virus (HBV). However, whether human NTCP can support HBV infection in mouse hepatocyte cell lines has not been clarified. Because an HBV-permissible mouse model would be helpful for the study of HBV pathogenesis, it is necessary to investigate whether human NTCP supports the susceptibility of mouse hepatocyte cell lines to HBV. The results show that exogenous human NTCP expression can render non-susceptible HepG2 (human), Huh7 (human), Hepa1-6 (mouse), AML-12 (mouse) cell lines and primary mouse hepatocyte (PMH) cells susceptible to hepatitis D virus (HDV) which employs HBV envelope proteins. However, human NTCP could only introduce HBV susceptibility in human-derived HepG2 and Huh7 cells, but not in mouse-derived Hepa1-6, AML-12 or PMH cells. These data suggest that although human NTCP is a functional receptor that mediates HBV infection in human cells, it cannot support HBV infection in mouse hepatocytes. Our study indicated that the restriction of HBV in mouse hepatocytes likely occurs after viral entry but prior to viral transcription. We have excluded the role of mouse hepatocyte nuclear factors in the restriction of the HBV life cycle and showed that knockdown or inhibition of Sting, TBK1, IRF3 or IRF7, the components of the anti-viral signaling pathways, had no effect on HBV infection in mouse hepatocytes. Therefore, murine restriction factors that limit HBV infection need to be identified before a HBV-permissible mouse line can be created. PMID:24509445

Li, Hanjie; Zhuang, Qiuyu; Wang, Yuze; Zhang, Tianying; Zhao, Jinghua; Zhang, Yali; Zhang, Junfang; Lin, Yi; Yuan, Quan; Xia, Ningshao; Han, Jiahuai

2014-03-01

64

Principles Of Regulatory Information Conservation Between Mouse And Human  

PubMed Central

Summary To broaden our understanding of the evolution of gene regulation mechanisms, we generated occupancy profiles for 34 orthologous transcription factors (TFs) in human-mouse erythroid progenitor, lymphoblast, and embryonic stem cell lines. By combining the genome-wide TF occupancy repertoires, associated epigenetic signals, and TF co-association patterns, we deduced several evolutionary principles of gene regulatory features operating since the mouse and human lineages diverged. The genomic distribution profiles, primary binding motifs, chromatin states, and DNA methylation preferences are well conserved for TF occupied sequences (TF OSs). However, the extent to which orthologous DNA segments are bound by orthologous TFs varies both among TFs and with genomic location: binding at promoters is more highly conserved than binding at distal elements. Importantly, occupancy conserved TF OSs tend to be pleiotropic; they function in multiple tissues and also co-associate with multiple TFs. Single nucleotide variants (SNVs) at sites with potential regulatory functions are enriched in occupancy conserved TF OSs. PMID:25409826

Kim, Bong-Hyun; Wu, Weisheng; Cayting, Philip; Boyle, Alan P.; Sundaram, Vasavi; Xing, Xiaoyun; Dogan, Nergiz; Li, Jingjing; Euskirchen, Ghia; Lin, Shin; Lin, Yiing; Visel, Axel; Kawli, Trupti; Yang, Xinqiong; Patacsil, Dorrelyn; Keller, Cheryl A.; Giardine, Belinda; Kundaje, Anshul; Wang, Ting; Pennacchio, Len A.; Weng, Zhiping; Hardison, Ross C.; Snyder, Michael P.

2015-01-01

65

Human cancer growth and therapy in immunodeficient mouse models.  

PubMed

Since the discovery of the "nude" mouse more than 40 years ago, investigators have attempted to model human tumor growth in immunodeficient mice. Here, we summarize how the field has advanced over the ensuing years owing to improvements in the murine recipients of human tumors. These improvements include the discovery of the scid mutation and development of targeted mutations in the recombination-activating genes 1 and 2 (Rag1(null), Rag2(null)) that severely cripple the adaptive immune response of the murine host. More recently, mice deficient in adaptive immunity have been crossed with mice bearing targeted mutations designed to weaken the innate immune system, ultimately leading to the development of immunodeficient mice bearing a targeted mutation in the gene encoding the interleukin 2 (IL2) receptor common ? chain (IL2rg(null), also known in humans as cytokine receptor common subunit ?). The IL2rg(null) mutation has been used to develop several immunodeficient strains of mice, including the NOD-scid IL2rg(null) (NSG) strain. Using NSG mice as human xenograft recipients, it is now possible to grow almost all types of primary human tumors in vivo, including most solid tumors and hematological malignancies that maintain characteristics of the primary tumor in the patient. Programs to optimize patient-specific therapy using patient-derived xenograft tumor growth in NSG mice have been established at several institutions, including The Jackson Laboratory. Moreover, NSG mice can be engrafted with functional human immune systems, permitting for the first time the potential to study primary human tumors in vivo in the presence of a human immune system. PMID:24987146

Shultz, Leonard D; Goodwin, Neal; Ishikawa, Fumihiko; Hosur, Vishnu; Lyons, Bonnie L; Greiner, Dale L

2014-07-01

66

[The relationship between mouse fertilization antigen 1 gene and the human counterpart gene].  

PubMed

The cloning of human fertilization antigen 1 gene(FA1) ,the supposed counterpart gene of mouse fertilization antigen 1 gene (FA1),was performed using the PCR and PCR products cloned sequencing methods. The result shows that there might be two mistakes in the mouse FA1 gene open reading frame (ORF),and human OTK27 gene and mouse FA1 gene might be homogeneous genes in the two species. PMID:16135423

Li, Jian-ping; Zhang, Si-zhong; Xia, Qing-jie

2002-07-01

67

Patterning Mouse and Human Embryonic Stem Cells Using Micro-contact Printing  

E-print Network

Chapter 2 Patterning Mouse and Human Embryonic Stem Cells Using Micro-contact Printing Raheem, the protocols to micro- pattern mouse (mESC) and human ESCs (hESC) differ in some regards including cell culture consisting of soluble cytokines, extra-cellular matrix (ECM), and cell­cell contacts are determining factors

Zandstra, Peter W.

68

COMPARATIVE GENOTOXIC RESPONSES TO ARSENITE IN GUINEA PIG, MOUSE, RAT AND HUMAN LYMPHOCYTES  

EPA Science Inventory

Comparative genotoxic responses to arsenite in guinea pig, mouse, rat and human lymphocytes. Inorganic arsenic is a known human carcinogen causing skin, lung, and bladder cancer following chronic exposures. Yet, long-term laboratory animal carcinogenicity studies have ...

69

Independent specialization of the human and mouse X chromosomes for the male germ line  

E-print Network

We compared the human and mouse X chromosomes to systematically test Ohno's law, which states that the gene content of X chromosomes is conserved across placental mammals. First, we improved the accuracy of the human ...

Mueller, Jacob L

70

Human embryonic stem cells with biological and epigenetic to those of mouse ESCs  

E-print Network

Human and mouse embryonic stem cells (ESCs) are derived from blastocyst-stage embryos but have very different biological properties, and molecular analyses suggest that the pluripotent state of human ESCs isolated so far ...

Jaenisch, Rudolf

71

Altered glucose metabolism in mouse and humans conceived by IVF.  

PubMed

In vitro fertilization (IVF) may influence the metabolic health of children. However, in humans, it is difficult to separate out the relative contributions of genetics, environment, or the process of IVF, which includes ovarian stimulation (OS) and embryo culture. Therefore, we examined glucose metabolism in young adult humans and in adult male C57BL/6J mice conceived by IVF versus natural birth under energy-balanced and high-fat-overfeeding conditions. In humans, peripheral insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamp (80 mU/m(2)/min), was lower in IVF patients (n = 14) versus control subjects (n = 20) after 3 days of an energy-balanced diet (30% fat). In response to 3 days of overfeeding (+1,250 kcal/day, 45% fat), there was a greater increase in systolic blood pressure in IVF versus controls (P = 0.02). Mice conceived after either OS alone or IVF weighed significantly less at birth versus controls (P < 0.01). However, only mice conceived by IVF displayed increased fasting glucose levels, impaired glucose tolerance, and reduced insulin-stimulated Akt phosphorylation in the liver after 8 weeks of consuming either a chow or high-fat diet (60% fat). Thus, OS impaired fetal growth in the mouse, but only embryo culture resulted in changes in glucose metabolism that may increase the risk of the development of metabolic diseases later in life, in both mice and humans. PMID:24760136

Chen, Miaoxin; Wu, Linda; Zhao, Junli; Wu, Fang; Davies, Michael J; Wittert, Gary A; Norman, Robert J; Robker, Rebecca L; Heilbronn, Leonie K

2014-10-01

72

Tissue factor expression during human and mouse development.  

PubMed Central

In the adult organism the cellular distribution of tissue factor (TF) expression corresponds to biological boundary layers forming a hemostatic barrier ready to activate blood coagulation after tissue injury. Whether TF expression might also play a role in development is unknown. To determine the significance of TF in ontogenesis, we examined the pattern of TF expression in mouse development and compared it with the distribution of TF in human post-implantation embryos and fetuses of corresponding gestational age. At early embryonic periods of murine (6.5 and 7.5 pc) and human (stage 5) development, there was strong expression of TF in both ectodermal and entodermal cells. In situ hybridization and immunohistochemistry demonstrated that TF mRNA and protein were expressed widely in epithelial areas with high levels of morphogenic activity during organogenesis. Staining for TF was seen during ontogenetic development in tissues such as epidermis, myocardium, bronchial epithelium, and hepatocytes, which express TF in the adult organism. Surprisingly, during renal development and in adults, expression of TF differed between humans and mice. In humans, maturing stage glomeruli were stained for TF whereas in mice, TF was absent from glomeruli but was present in the epithelia of tubular segments. In neuroepithelial cells, there was a substantial expression of TF. Moreover, there was robust TF expression in tissues such as skeletal muscle and pancreas, which do not express it in the adult. In contrast, expression of the physiological ligand for TF, factor VII, was not detectable during early stages of human embryogenesis using immunohistochemistry. The temporal and spatial pattern of TF expression during murine and human development supports the contention that TF serves as an important morphogenic factor during embryogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8686734

Luther, T.; Flössel, C.; Mackman, N.; Bierhaus, A.; Kasper, M.; Albrecht, S.; Sage, E. H.; Iruela-Arispe, L.; Grossmann, H.; Ströhlein, A.; Zhang, Y.; Nawroth, P. P.; Carmeliet, P.; Loskutoff, D. J.; Müller, M.

1996-01-01

73

The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.  

PubMed

The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human. PMID:24497224

Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter

2014-06-01

74

Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment  

PubMed Central

Cytochrome P450s (P450s) are important enzymes involved in the metabolism of xenobiotics, particularly clinically used drugs, and are also responsible for metabolic activation of chemical carcinogens and toxins. Many xenobiotics can activate nuclear receptors that in turn induce the expression of genes encoding xenobiotic metabolizing enzymes and drug transporters. Marked species differences in the expression and regulation of cytochromes P450 and xenobiotic nuclear receptors exist. Thus obtaining reliable rodent models to accurately reflect human drug and carcinogen metabolism is severely limited. Humanized transgenic mice were developed in an effort to create more reliable in vivo systems to study and predict human responses to xenobiotics. Human P450s or human xenobiotic-activated nuclear receptors were introduced directly or replaced the corresponding mouse gene, thus creating “humanized” transgenic mice. Mice expressing human CYP1A1/CYP1A2, CYP2E1, CYP2D6, CYP3A4, CY3A7, PXR, PPAR? were generated and characterized. These humanized mouse models offers a broad utility in the evaluation and prediction of toxicological risk that may aid in the development of safer drugs. PMID:18682571

Cheung, Connie; Gonzalez, Frank J

2008-01-01

75

The utilization of humanized mouse models for the study of human retroviral infections  

PubMed Central

The development of novel techniques and systems to study human infectious diseases in both an in vitro and in vivo settings is always in high demand. Ideally, small animal models are the most efficient method of studying human afflictions. This is especially evident in the study of the human retroviruses, HIV-1 and HTLV-1, in that current simian animal models, though robust, are often expensive and difficult to maintain. Over the past two decades, the construction of humanized animal models through the transplantation and engraftment of human tissues or progenitor cells into immunocompromised mouse strains has allowed for the development of a reconstituted human tissue scaffold in a small animal system. The utilization of small animal models for retroviral studies required expansion of the early CB-17 scid/scid mouse resulting in animals demonstrating improved engraftment efficiency and infectivity. The implantation of uneducated human immune cells and associated tissue provided the basis for the SCID-hu Thy/Liv and hu-PBL-SCID models. Engraftment efficiency of these tissues was further improved through the integration of the non-obese diabetic (NOD) mutation leading to the creation of NODSCID, NOD/Shi-scid IL2r?-/-, and NOD/SCID ?2-microglobulinnull animals. Further efforts at minimizing the response of the innate murine immune system produced the Rag2-/-?c-/- model which marked an important advancement in the use of human CD34+ hematopoietic stem cells. Together, these animal models have revolutionized the investigation of retroviral infections in vivo. PMID:19674458

Van Duyne, Rachel; Pedati, Caitlin; Guendel, Irene; Carpio, Lawrence; Kehn-Hall, Kylene; Saifuddin, Mohammed; Kashanchi, Fatah

2009-01-01

76

Detailed comparative map of human chromosome 19q and related regions of the mouse genome  

SciTech Connect

One of the larger contiguous blocks of mouse-human genomic homology includes the proximal portion of mouse chromosome 7 and the long arm of human chromosome 19. Previous studies have demonstrated the close relationship between the two regions, but have also indicated significant rearrangements in the relative orders of homologous mouse and human genes. Here we present the genetic locations of the homologs of 42 human chromosome 19q markers in the mouse, with an emphasis on genes also included in the human chromosome 19 physical map. Our results demonstrate that despite an overall inversion of sequences relative to the centromere, apparent {open_quotes}transpositions{close_quotes} of three gene-rich segments, and a local inversion of markers mapping near the 19q telomere, gene content, order, and spacing are remarkably well conserved throughout the lengths of these related mouse and humans regions. Although most human 19q markers have remained genetically linked in mouse, one small human segment forms a separate region of homology between human chromosome 19q and mouse chromosome 17. Three of the four rearrangements of mouse versus human 19q sequences involve segments that are located directly adjacent to each other in 19q13.3-q13.4, suggesting either the coincident occurrence of these events or their common association with unstable DNA sequences. These data permit an unusually in-depth examination of this large region of mouse-human genomic homology and provide an important new tool to aid in the mapping of genes and associated phenotypes in both species. 66 refs., 3 figs., 1 tab.

Stubbs, L.; Shannon, M.E.; Kim, Joomyeong [Oak Ridge National Lab., TN (United States)] [and others] [Oak Ridge National Lab., TN (United States); and others

1996-08-01

77

Aup1, a novel gene on mouse Chromosome 6 and human Chromosome 2p13  

SciTech Connect

We have cloned a novel mouse cDNA, Aup1, encoding a predicted protein of 410 amino acid residues. The 1.5-kb Aup1 transcript is ubiquitously expressed in mouse tissues. An evolutionary relationship to the Caenorhabditis elegans predicted protein F44b9.5 is indicated by the 35% identity and 53% conservation of the amino acid sequences. Nineteen related human ESTs spanning 80% of the protein have also been identified, with a predicted amino acid sequence identity of 86% between the human and the mouse proteins. The gene has been mapped to a conserved linkage group on human chromosome 2p13 and mouse Chromosome 6. Aup1 was eliminated as a candidate gene for two closely linked disorders, human LGMD2B and mouse mnd2. 15 refs., 2 figs.

Jang, Wonhee; Weber, J.S.; Meisler, M.H. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others] [Univ. of Michigan, Ann Arbor, MI (United States); and others

1996-09-01

78

Investigating Different Duplication Pattern of Essential Genes in Mouse and Human  

PubMed Central

Gene duplication is one of the major driving forces shaping genome and organism evolution and thought to be itself regulated by some intrinsic properties of the gene. Comparing the essential genes among mouse and human, we observed that the essential genes avoid duplication in mouse while prefer to remain duplicated in humans. In this study, we wanted to explore the reasons behind such differences in gene essentiality by cross-species comparison of human and mouse. Moreover, we examined essential genes that are duplicated in humans are functionally more redundant than that in mouse. The proportion of paralog pseudogenization of essential genes is higher in mouse than that of humans. These duplicates of essential genes are under stringent dosage regulation in human than in mouse. We also observed slower evolutionary rate in the paralogs of human essential genes than the mouse counterpart. Together, these results clearly indicate that human essential genes are retained as duplicates to serve as backed up copies that may shield themselves from harmful mutations. PMID:25751152

Acharya, Debarun; Mukherjee, Dola; Podder, Soumita; Ghosh, Tapash C.

2015-01-01

79

MOUSE  

NSDL National Science Digital Library

Based in New York City, the MOUSE organization works to empower "underserved students to provide technology support and leadership in their schools, supporting their academic and career success." On their homepage, visitors can learn about their programs, learn about supporting the MOUSE organization, and read up on their resources. In the "Resources" area, visitors can learn about their outreach activities in New York City, Chicago, and California. Visitors working in educational outreach will appreciate the information offered here, including materials on how different groups can receive assistance from the MOUSE organization. Also, visitors can look over the "News" updates to learn about their new programs, their educational seminars, and their outreach activities.

80

Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology  

PubMed Central

Placental abnormalities are associated with two of the most common and serious complications of human pregnancy, maternal preeclampsia (PE) and fetal intrauterine growth restriction (IUGR), each disorder affecting ?5% of all pregnancies. An important question for the use of the mouse as a model for studying human disease is the degree of functional conservation of genetic control pathways from human to mouse. The human and mouse placenta show structural similarities, but there have been no systematic attempts to assess their molecular similarities or differences. We collected protein and mRNA expression data through shot-gun proteomics and microarray expression analysis of the highly vascular exchange region, microdissected from the human and mouse near-term placenta. Over 7000 ortholog genes were detected with 70% co-expressed in both species. Close to 90% agreement was found between our human proteomic results and 1649 genes assayed by immunohistochemistry for expression in the human placenta in the Human Protein Atlas. Interestingly, over 80% of genes known to cause placental phenotypes in mouse are co-expressed in human. Several of these phenotype-associated proteins form a tight protein–protein interaction network involving 15 known and 34 novel candidate proteins also likely important in placental structure and/or function. The entire data are available as a web-accessible database to guide the informed development of mouse models to study human disease. PMID:19536202

Cox, Brian; Kotlyar, Max; Evangelou, Andreas I; Ignatchenko, Vladimir; Ignatchenko, Alex; Whiteley, Kathie; Jurisica, Igor; Adamson, S Lee; Rossant, Janet; Kislinger, Thomas

2009-01-01

81

The mouse aortocaval fistula recapitulates human arteriovenous fistula maturation  

PubMed Central

Several models of arteriovenous fistula (AVF) have excellent patency and help in understanding the mechanisms of venous adaptation to the arterial environment. However, these models fail to exhibit either maturation failure or fail to develop stenoses, both of which are critical modes of AVF failure in human patients. We used high-resolution Doppler ultrasound to serially follow mice with AVFs created by direct 25-gauge needle puncture. By day 21, 75% of AVFs dilate, thicken, and increase flow, i.e., mature, and 25% fail due to immediate thrombosis or maturation failure. Mature AVF thicken due to increased amounts of smooth muscle cells. By day 42, 67% of mature AVFs remain patent, but 33% of AVFs fail due to perianastomotic thickening. These results show that the mouse aortocaval model has an easily detectable maturation phase in the first 21 days followed by a potential failure phase in the subsequent 21 days. This model is the first animal model of AVF to show a course that recapitulates aspects of human AVF maturation. PMID:24097429

Yamamoto, Kota; Protack, Clinton D.; Tsuneki, Masayuki; Hall, Michael R.; Wong, Daniel J.; Lu, Daniel Y.; Assi, Roland; Williams, Willis T.; Sadaghianloo, Nirvana; Bai, Hualong; Miyata, Tetsuro; Madri, Joseph A.

2013-01-01

82

All kinesin superfamily protein, KIF, genes in mouse and human  

PubMed Central

Intracellular transport is essential for morphogenesis and functioning of the cell. The kinesin superfamily proteins (KIFs) have been shown to transport membranous organelles and protein complexes in a microtubule- and ATP-dependent manner. More than 30 KIFs have been reported in mice. However, the nomenclature of KIFs has not been clearly established, resulting in various designations and redundant names for a single KIF. Here, we report the identification and classification of all KIFs in mouse and human genome transcripts. Previously unidentified murine KIFs were found by a PCR-based search. The identification of all KIFs was confirmed by a database search of the total human genome. As a result, there are a total of 45 KIFs. The nomenclature of all KIFs is presented. To understand the function of KIFs in intracellular transport in a single tissue, we focused on the brain. The expression of 38 KIFs was detected in brain tissue by Northern blotting or PCR using cDNA. The brain, mainly composed of highly differentiated and polarized cells such as neurons and glia, requires a highly complex intracellular transport system as indicated by the increased number of KIFs for their sophisticated functions. It is becoming increasingly clear that the cell uses a number of KIFs and tightly controls the direction, destination, and velocity of transportation of various important functional molecules, including mRNA. This report will set the foundation of KIF and intracellular transport research. PMID:11416179

Miki, Harukata; Setou, Mitsutoshi; Kaneshiro, Kiyofumi; Hirokawa, Nobutaka

2001-01-01

83

Genomic cloning of mouse MIF (macrophage inhibitory factor) and genetic mapping of the human and mouse expressed gene and nine mouse pseudogenes  

SciTech Connect

The single functional mouse gene for MIF (macrophage migration inhibitory factor) has been cloned from a P1 library, and its exon/intron structure determined and shown to resemble that of the human gene. The gene was mapped to chromosome 10 using two multilocus crosses between laboratory strains and either Mus musculus or Mus spretus. Nine additional loci containing related sequences, apparently all processed pseudogenes, were also mapped to chromosomes 1, 2, 3, 7, 8, 9, 12, 17, and 19. While most of these pseudogenes were also found in inbred mice and M. spretus, some are species specific. This suggests that there have been active phases of pseudogene formation in Mus both before and after the separation of musculus and spretus. The human gene contains no pseudogene; we assigned the human gene to chromosome 19, consistent with the location of mouse and human functional genes for MIF in a region of conserved linkage. 43 refs., 4 figs., 1 tab.

Kozak, C.A.; Adamson, M.C.; Buckler, C.E. [National Institute of Allergy and Infectious Diseases, Bethesda, MD (United States)] [and others] [National Institute of Allergy and Infectious Diseases, Bethesda, MD (United States); and others

1995-06-10

84

Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins  

PubMed Central

Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and “CES” (human) and “Ces” (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding “P” and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species. PMID:20931200

Holmes, Roger S.; Wright, Matthew W.; Laulederkind, Stanley J. F.; Cox, Laura A.; Hosokawa, Masakiyo; Imai, Teruko; Ishibashi, Shun; Lehner, Richard; Miyazaki, Masao; Perkins, Everett J.; Potter, Phillip M.; Redinbo, Matthew R.; Robert, Jacques; Satoh, Tetsuo; Yamashita, Tetsuro; Yan, Bingfan; Yokoi, Tsuyoshi; Zechner, Rudolf; Maltais, Lois J.

2011-01-01

85

Characterization of transgenic mouse strains using six human hepatic cytochrome P450 probe substrates.  

PubMed

1. Transgenic mice were evaluated with six human cytochrome P450 (CYP) selective probe substrates, as little is known about their metabolism in the mouse. Mouse strains characterized include C57BL/SJL, FVB/N, mdr 1a/1b (-/-), ob/ob and ACCA. 2. Human CYP probe substrates used for characterization of mouse CYP activities included bufuralol, testosterone, dextromethorphan, phenacetin, diclofenac and S-mephenytoin. Activities were compared with those obtained in human liver microsomes and in human recombinant enzyme preparations. All transgenic mouse strains showed similar apparent K(m) with bufuralol, testosterone and dextromethorphan which compared favourably with those observed in human liver microsomes. 3. K(m) for phenacetin O-deethylase and S-mephenytoin 4'-hydroxylation were more variable across strains and in some cases demonstrated biphasic kinetics. Phenacetin O-deethylase activity was low in all mouse strains except FVB/N and mdr 1a/1b (-/-). Diclofenac 4-hydroxylation did not occur to any significant extent in the five strains of mouse evaluated here. 4. The findings suggest the validity of using five of the probes for transgenic mouse hepatic CYP characterization and gross comparison with data generated with human CYP. PMID:11037108

Mankowski, D C; Lawton, M P; Ekins, S

2000-08-01

86

Comparative computational analysis of pluripotency in human and mouse stem cells.  

PubMed

Pluripotent cells can be subdivided into two distinct states, the naïve and the primed state, the latter being further advanced on the path of differentiation. There are substantial differences in the regulation of pluripotency between human and mouse, and in humans only stem cells that resemble the primed state in mouse are readily available. Reprogramming of human stem cells into a more naïve-like state is an important research focus. Here, we developed a pipeline to reanalyze transcriptomics data sets that describe both states, naïve and primed pluripotency, in human and mouse. The pipeline consists of identifying regulated start-ups/shut-downs in terms of molecular interactions, followed by functional annotation of the genes involved and aggregation of results across conditions, yielding sets of mechanisms that are consistently regulated in transitions towards similar states of pluripotency. Our results suggest that one published protocol for naïve human cells gave rise to human cells that indeed share putative mechanisms with the prototypical naïve mouse pluripotent cells, such as DNA damage response and histone acetylation. However, cellular response and differentiation-related mechanisms are similar between the naïve human state and the primed mouse state, so the naïve human state did not fully reflect the naïve mouse state. PMID:25604210

Ernst, Mathias; Abu Dawud, Raed; Kurtz, Andreas; Schotta, Gunnar; Taher, Leila; Fuellen, Georg

2015-01-01

87

Comparative computational analysis of pluripotency in human and mouse stem cells  

PubMed Central

Pluripotent cells can be subdivided into two distinct states, the naïve and the primed state, the latter being further advanced on the path of differentiation. There are substantial differences in the regulation of pluripotency between human and mouse, and in humans only stem cells that resemble the primed state in mouse are readily available. Reprogramming of human stem cells into a more naïve-like state is an important research focus. Here, we developed a pipeline to reanalyze transcriptomics data sets that describe both states, naïve and primed pluripotency, in human and mouse. The pipeline consists of identifying regulated start-ups/shut-downs in terms of molecular interactions, followed by functional annotation of the genes involved and aggregation of results across conditions, yielding sets of mechanisms that are consistently regulated in transitions towards similar states of pluripotency. Our results suggest that one published protocol for naïve human cells gave rise to human cells that indeed share putative mechanisms with the prototypical naïve mouse pluripotent cells, such as DNA damage response and histone acetylation. However, cellular response and differentiation-related mechanisms are similar between the naïve human state and the primed mouse state, so the naïve human state did not fully reflect the naïve mouse state. PMID:25604210

Ernst, Mathias; Dawud, Raed Abu; Kurtz, Andreas; Schotta, Gunnar; Taher, Leila; Fuellen, Georg

2015-01-01

88

The mouse and human excitatory amino acid transporter gene (EAAT1) maps to mouse chromosome 15 and a region of syntenic homology on human chromosome 5  

SciTech Connect

The gene for human excitatory amino acid transporter (EAAT1) was localized to the distal region of human chromosome 5p13 by in situ hybridization of metaphase chromosome spreads. Interspecific backcross analysis identified the mouse Eaat1 locus in a region of 5p13 homology on mouse chromosome 15. Markers that are linked with EAAT1 on both human and mouse chromosomes include the receptors for leukemia inhibitory factor, interleukin-7, and prolactin. The Eaat1 locus appears not be linked to the epilepsy mutant stg locus, which is also on chromosome 15. The EAAT1 locus is located in a region of 5p deletions that have been associated with mental retardation and microcephaly. 22 refs., 2 figs.

Kirschner, M.A.; Arriza, J.L.; Amara, S.G. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others] [Oregon Health Sciences Univ., Portland, OR (United States); and others

1994-08-01

89

Epidermal surface antigen (MS17S1) is highly conserved between mouse and human  

SciTech Connect

A mouse monoclonal antibody ECS-1 raised to human keratinocytes detects a 35-kDa epidermal surface antigen (ESA) and causes keratinocyte dissociation in vitro. ECS-1 stains skin of 16-day mouse embryo and 8- to 9-week human fetus. Mouse Esa cDNA encodes a 379-amino-acid protein that is 99.2% identical to the human, differing at only 3 amino acids. The gene (M17S1) was mapped to mouse chromosome 11, highlighting the conserved linkage synteny existing between human chromosome 17 and mouse chromosome 11. Although the nude locus has been mapped to the same region of chromosome 11, no abnormalities in protein, mRNA, or cDNA or genomic sequences were detected in nude mice. However, both nude and control mice were found to have a second Esa mRNA transcript that conserves amino acid sequence and molecular weight. The mouse and human 5{prime} and 3{prime} untranslated sequences are conserved. Similar RNA folding patterns of the 5{prime} untranslated region are predicted despite a 91-bp insertion in the mouse. These data suggest that both the function and the regulation of ESA protein are of importance and that Esa (M17S1) is not the nude locus gene. 42 refs., 7 figs., 3 tabs.

Cho, Y.J.; Chema, D.; Cho, M. [Univ. of Texas Medical School, Houston, TX (United States)] [and others] [Univ. of Texas Medical School, Houston, TX (United States); and others

1995-05-20

90

Comparison of mouse and human genomes followed by experimental verification yields an estimated 1,019 additional genes  

Microsoft Academic Search

A primary motivation for sequencing the mouse genome was to accelerate the discovery of mammalian genes by using sequence conservation between mouse and human to identify coding exons. Achieving this goal proved challenging because of the large proportion of the mouse and human genomes that is apparently conserved but apparently does not code for protein. We developed a two-stage procedure

Roderic Guigó; Emmanouil T. Dermitzakis; Pankaj Agarwal; Chris P. Ponting; Genís Parra; Alexandre Reymond; Josep F. Abril; Evan Keibler; Robert Lyle; Catherine Ucla; Stylianos E. Antonarakis; Michael R. Brent

2003-01-01

91

Migraine pathophysiology: lessons from mouse models and human genetics.  

PubMed

Migraine is a common, disabling, and undertreated episodic brain disorder that is more common in women than in men. Unbiased genome-wide association studies have identified 13 migraine-associated variants pointing at genes that cluster in pathways for glutamatergic neurotransmission, synaptic function, pain sensing, metalloproteinases, and the vasculature. The individual pathogenetic contribution of each gene variant is difficult to assess because of small effect sizes and complex interactions. Six genes with large effect sizes were identified in patients with rare monogenic migraine syndromes, in which hemiplegic migraine and non-hemiplegic migraine with or without aura are part of a wider clinical spectrum. Transgenic mouse models with human monogenic-migraine-syndrome gene mutations showed migraine-like features, increased glutamatergic neurotransmission, cerebral hyperexcitability, and enhanced susceptibility to cortical spreading depression, which is the electrophysiological correlate of aura and a putative trigger for migraine. Enhanced susceptibility to cortical spreading depression increased sensitivity to focal cerebral ischaemia, and blocking of cortical spreading depression improved stroke outcome in these mice. Changes in female hormone levels in these mice modulated cortical spreading depression susceptibility in much the same way that hormonal fluctuations affect migraine activity in patients. These findings confirm the multifactorial basis of migraine and might allow new prophylactic options to be developed, not only for migraine but potentially also for migraine-comorbid disorders such as epilepsy, depression, and stroke. PMID:25496898

Ferrari, Michel D; Klever, Roselin R; Terwindt, Gisela M; Ayata, Cenk; van den Maagdenberg, Arn M J M

2015-01-01

92

Update of human and mouse matrix metalloproteinase families  

PubMed Central

Matrix metalloproteinases (MMPs) are a family of zinc proteases that degrade most of the components of the extracellular matrix (ECM). MMPs also have a number of non-traditional roles in processing factors related to cell growth/proliferation, inflammation and more. There are 23 human MMPs and 23 mouse MMPs, most of which share orthology among most vertebrates; other examples have been found in invertebrates and plants. MMPs are named in order of discovery, but also have been grouped by domain structure or by phylogenetic analysis. MMPs are multi-domain proteins which generally contain a signal sequence; propeptide (which keeps the protein inactive until cleaved); catalytic domain; and a hemopexin-like domain (which provides substrate specificity). MMPs are thought to play a role in many disease states, including arthritis, vascular disease, lung injury, wound repair, cancer and various neurodegenerative disorders. Although there has been much clinical interest in MMP inhibitors (MMPIs), few trials have been successful -- often due to the broad nature of inhibition and the complex role of different MMPs in a given disease state. PMID:20368140

2010-01-01

93

Oxidative biotransformation of oxazepam to reactive and nonreactive products in rat, mouse and human microsomes  

Microsoft Academic Search

1 The oxidative metabolism of oxazepam by human, B6C3F1 mouse and F344 rat microsomes was examined. The major metabolite in all three species was 6-chloro-4- phenyl-2(1H)-quinazolinecarboxylic acid (CPQ-carboxylic acid). In addition, rat microsomes produced 4'-hydroxyox azepam and oxazepam-dihydrodiol in NADPH-containing incubations.2 Covalent protein adducts were increased by the addi tion of NADPH to rat and mouse microsomes but not human

RJ Griffin; LT Burka; KB Demby

1995-01-01

94

Assessing The Evolutionary Diversity Of Exon Skipping Events In Human, Mouse And Rat  

NASA Astrophysics Data System (ADS)

This study is to research on the cross-species comparative analysis of homologous genetic sequence among human, mouse and rat by bioinformatics method, hopefully assessing the evolutionary diversity through exon length, reading frame preservation and KA/KS ratio test of alternative splicing events. Alternative splicing (AS) is an important mechanism in eukaryotic organism. We choose the "exon skipping events" from AS events for research. In the data of "conserved exon skipping events", we get 668 human-mouse conserved events, 179 human-rat conserved events and 266 conserved mouse-rat events. There are some extra data such as "non-conserved exon skipping events" and "species-specific events". We found out that the length of AS exon is shorter in conserved exon skipping event, but the ratio of reading frame preservation is higher. Among them, the minor form is the most special. We even got the same result in non-conserved exon skipping events. We calculated the KA/KS value by KA/KS ratio test and found out that the human-mouse KA/KS ratio is 0.158, the human-rat is 0.182 and the mouse-rat is 0.190. This represents that the human-mouse conserved events have the highest purifying selection pressure. In the end, we adopt KA/KS ratio test to do a further analysis between conserved and non-conserved exon skipping events and evaluate the evolutionary diversity of cross-species comparation.

Hsu, Fang-Rong; Chen, Chao-Jung; Kuo, Min-Chieh; Chang, Hwan-You; Shia, Wei-Chung

2008-01-01

95

nature genetics volume 26 october 2000 225 Human-mouse genome comparisons to locate  

E-print Network

these results to the human genome: first, it has been unclear how many model organism genomes will be neededletter nature genetics · volume 26 · october 2000 225 Human-mouse genome comparisons to locate. Correspondence should be addressed to C.E.L. (e-mail: lawrence@wadsworth.org). Elucidating the human

Zhang, Nancy R.

96

Third-party Mesenchymal Stem Cells Improved Human Islet Transplantation in a Humanized Diabetic Mouse Model  

PubMed Central

Human islet transplantation can be a permanent treatment of type 1 diabetes if the immune rejection and primary nonfunction (PNF) of transplanted islet grafts were properly addressed. In this study, we determined whether cotransplantation of human bone marrow-derived mesenchymal stem cells (hBMSCs) could prevent immune rejection and improve human islet transplantation in a humanized NOD scid gamma (NSG) mouse model. Human immunity was rebuilt and maintained in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice up to 13 weeks after intraperitoneal injection of mature human peripheral blood mononuclear cells (PBMCs). The blood glucose control and the levels of serum insulin and c-peptide clearly indicated a better outcome of islet transplantation when islets were cotransplanted with hBMSCs. hBMSCs actively interacted with interleukin-10 (IL-10)-producing CD14+ monocytes to suppress the proliferation and activation of T cells in the PBMC/hBMSC coculture and prevent the T cell recruitment into the transplantation site. hBMSCs also increased the percentage of immunosuppressive regulatory T cells (Tregs) and prevented the cytokine-induced loss-of-function of human islets. Taken together, our studies demonstrated that transplantation of islets with hBMSCs is a promising strategy to improve the outcome of human islet transplantation. PMID:23765442

Wu, Hao; Wen, Di; Mahato, Ram I

2013-01-01

97

Third-party mesenchymal stem cells improved human islet transplantation in a humanized diabetic mouse model.  

PubMed

Human islet transplantation can be a permanent treatment of type 1 diabetes if the immune rejection and primary nonfunction (PNF) of transplanted islet grafts were properly addressed. In this study, we determined whether cotransplantation of human bone marrow-derived mesenchymal stem cells (hBMSCs) could prevent immune rejection and improve human islet transplantation in a humanized NOD scid gamma (NSG) mouse model. Human immunity was rebuilt and maintained in NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ (NSG) mice up to 13 weeks after intraperitoneal injection of mature human peripheral blood mononuclear cells (PBMCs). The blood glucose control and the levels of serum insulin and c-peptide clearly indicated a better outcome of islet transplantation when islets were cotransplanted with hBMSCs. hBMSCs actively interacted with interleukin-10 (IL-10)-producing CD14+ monocytes to suppress the proliferation and activation of T cells in the PBMC/hBMSC coculture and prevent the T cell recruitment into the transplantation site. hBMSCs also increased the percentage of immunosuppressive regulatory T cells (Tregs) and prevented the cytokine-induced loss-of-function of human islets. Taken together, our studies demonstrated that transplantation of islets with hBMSCs is a promising strategy to improve the outcome of human islet transplantation. PMID:23765442

Wu, Hao; Wen, Di; Mahato, Ram I

2013-09-01

98

Immunohistochemical Examination of Novel Rat Monoclonal Antibodies against Mouse and Human Podoplanin  

PubMed Central

This study aims to develop new monoclonal antibodies (mAbs) against mouse and human podoplanin. Rats were immunized with synthetic peptides, corresponding to amino acids 38–51 of mouse podoplanin or human podoplanin which is 100% homologous to the same site of monkey podoplanin; anti-mouse podoplanin mAb PMab-1 (IgG2a) and anti-human mAb NZ-1.2 (IgG2a) were established. In immunocytochemistry, the mouse melanoma B16-F10 and mouse podoplanin (mPDPN)-expressed CHO transfectant were stained by PMab-1; human lymphatic endothelial cells (LEC) and human podoplanin (hPDPN)-expressed squamous cell carcinoma HSC3 transfectant, were stained by NZ-1.2. Western-blot analysis detected an about 40-kDa protein in CHO-mPDPN and B16-F10 by PMab-1, and in HSC3-hPDPN and LEC by NZ-1.2. In frozen sections, PMab-1 reacted with mouse kidney, pulmonary alveoli, pulmonary pleura, and salivary gland myoepithelial cells while NZ-1.2 reacted to the human salivary gland myoepithelial cells. The immunostaining of paraffin-embedded sections also showed the reaction of PMab-1 or NZ-1.2 to the mouse or monkey kidney glomerulus, pulmonary alveoli, and lung lymphatic vessels. These results indicate that the two novel rat mAbs to the mouse and human/monkey podoplanin are useful for Western-blot and immunostaining of somatic tissues on paraffin-embedded sections as well as frozen sections. PMID:23012488

Kaji, Chiaki; Tsujimoto, Yuta; Kato Kaneko, Mika; Kato, Yukinari; Sawa, Yoshihiko

2012-01-01

99

Lentiviral labeling of mouse and human enteric nervous system stem cells for regenerative medicine studies  

PubMed Central

Background Reliable methods of labeling human enteric nervous system (ENS) stem cells for use in novel cell replacement therapies for enteric neuropathies are lacking. Here, we explore the possibility of using lentiviral vectors expressing fluorescent reporter genes to transduce, label, and trace mouse and human ENS stem cells following transplantation into mouse gut. Methods Enteric nervous system precursors, including ENS stem cells, were isolated from enzymatically dissociated mouse and human gut tissues. Lentivirus containing eGFP or mCherry fluorescent reporter genes was added to gut cell cultures at a multiplicity of infection of 2–5. After fluorescence activated cell sorting for eGFP and subsequent analysis with markers of proliferation and cell phenotype, transduced mouse and human cells were transplanted into the gut of C57BL/6 and immune deficient Rag2-/gamma chain-/C5 mice, respectively and analyzed up to 60 days later. Key Results Mouse and human transduced cells survived in vitro, maintained intense eGFP expression, proliferated as shown by BrdU incorporation, and formed characteristic neurospheres. When transplanted into mouse gut in vivo and analyzed up to 2 months later, transduced mouse and human cells survived, strongly expressed eGFP and integrated into endogenous ENS networks. Conclusions & Inferences Lentiviral vectors expressing fluorescent reporter genes enable efficient, stable, long-term labeling of ENS stem cells when transplanted into in vivo mouse gut. This lentiviral approach not only addresses the need for a reliable fluorescent marker of human ENS stem cells for preclinical studies, but also raises the possibility of using lentiviruses for other applications, such as gene therapy. PMID:25199909

Natarajan, D; Cooper, J; Choudhury, S; Delalande, J-M; McCann, C; Howe, S J; Thapar, N; Burns, A J

2014-01-01

100

High frequency of loss of human kappa light chain expression in mouse-human heterohybridomas.  

PubMed

The expression of human immunoglobulin (Ig) chains in human-mouse heterohybridomas was investigated on the days after cell fusion. Heterohybridomas were made by fusion of mediastinal lymphocytes from lung carcinoma patients and murine (BALB/c) myeloma P3U1. Most (more than 76%) of heterohybridomas easily lost the light chain rather than the heavy chain expression in the early stages after cell fusion. Frequency of loss of kappa-chain expression was predominant, whereas the expression of heavy chain and lambda-chain was rather stable in comparison with that of kappa-chain. These were also confirmed at the clonal level, demonstrating that only lambda-chain but not kappa-chain producers were successfully enriched. In fact some heterohybridomas producing human Ig of lambda-chain type established were found to be quite stable for more than 2 years without any recloning procedures. PMID:3125100

Uchiyama, K; Saito, H; Tokuhisa, T; Imai, K; Taniguchi, M

1987-12-01

101

Cloning the mouse homologue of the human lysosomal acid {alpha}-glucosidase gene  

SciTech Connect

Pompe disease (GSD II) is an autosomal recessive disorder caused by a deficiency of lysosomal acid {alpha}-glucosidase (GAA). In an attempt to create a mouse model for Pompe disease, we isolated and characterized the gene encoding the mouse homologue of the human GAA. Twenty clones that extend from exon 2 to the poly(A) tail were isolated from a mouse liver cDNA library, but the remainder of the mRNA proved difficult to obtain by conventional cDNA library screening. Sequences spanning exons 1-2 were cloned by RACE from mouse liver RNA. The full-length liver GAA cDNA contains 3365 nucleotides with a coding region of 2859 nucleotides and a 394 base pair 3{prime}-nontranslated region. The deduced amino acid sequence of the mouse GAA shows 84% identity to the human GAA. Southern blot analysis demonstrated that the mouse GAA was encoded by a single copy gene. Then six bacteriophages containing DNA from the GAA gene were isolated by screening 10{sup 6} phage plaques of a mouse 129 genomic library using a mouse GAA cDNA as a probe. From one of these bacteriophages, an 11-kilobase EcoRI fragment containing exons 3 to 15 was subcloned and sequenced. Work is in progress using this genomic clone to disrupt the GAA gene in murine embryonic stem cells in order to create GSD II mice.

Ding, J.H.; Yang, B.Z.; Liu, H.M. [Duke Univ. Medical Center, Durham, NC (United States)] [and others

1994-09-01

102

Electrophysiological properties of pluripotent human and mouse embryonic stem cells.  

PubMed

Pluripotent embryonic stem cells (ESCs) possess promising potential for cell-based therapies, but their electrophysiological properties have not been characterized. Here we describe the presence of ionic currents in mouse (m) and human (h) ESCs and their physiological function. In mESCs, tetraethylammonium (TEA)-sensitive depolarization-activated delayed rectifier K+ currents (IK(DR)) (8.6 +/- 0.9 pA/pF at +40 mV; IC50 = 1.2 +/- 0.3 mM), which contained components sensitive to 4-aminopyridine (4-AP) (IC50 = 0.5 +/- 0.1 mM) and 100 nM Ca2+-activated K+ current (IK(Ca)) blocker iberiotoxin (IBTX),were detected in 52.3% of undifferentiated cells.IK(DR) was similarly present in hESCs (approximately 100%) but with an approximately sixfold higher current density (47.5 +/- 7.9 pA/pF at +40 mV). When assayed by bromodeoxyurindine incorporation, application of TEA, 4-AP, or IBTX significantly reduced the proliferation of mESCs and hESCs in a dose-dependent manner (p < .05). A hyperpolarization-activated inward current (I(h)) (-2.2 +/- 0.4 pA/pF at -120 mV) was detected in 23% of mESCs but not hESCs. Neither Na(v) nor Ca(v) currents were detected in mESCs and hESCs. Microarray and reverse transcription-polymerase chain reaction analyses identified several candidate genes for the ionic currents discovered. Collectively, our results indicate that pluripotent ESCs functionally express several specialized ion channels and further highlight similarities and differences between the two species. Practical considerations for the therapeutic use of ESCs are discussed. PMID:16091557

Wang, Kai; Xue, Tian; Tsang, Suk-Ying; Van Huizen, Rika; Wong, Chun Wai; Lai, Kevin W; Ye, Zhaohui; Cheng, Linzhao; Au, Ka Wing; Zhang, Janet; Li, Gui-Rong; Lau, Chu-Pak; Tse, Hung-Fat; Li, Ronald A

2005-01-01

103

Human ?2-glycoprotein I attenuates mouse intestinal ischemia/reperfusion induced injury and inflammation  

PubMed Central

Intestinal ischemia-reperfusion (IR)-induced injury results from a complex cascade of inflammatory components. In the mouse model of intestinal IR, the serum protein, ?2-glycoprotein I (?2-GPI) binds to the cell surface early in the cascade. The bound ?2-GPI undergoes a conformational change which exposes a neoantigen recognized by naturally occurring antibodies and initiates the complement cascade. We hypothesized that providing additional antigen with exogenous ?2-GPI would alter IR-induced tissue injury. Administration of human but not mouse ?2-GPI attenuated IR-induced tissue damage and prostaglandin E2 production indicating a physiological difference between ?2-GPI isolated from the two species. To investigate whether structural features were responsible for this physiological difference, we compared the chemical, physical and biochemical properties of the two proteins. Despite possessing 76% amino acid identity and 86% sequence homology, we found that mouse ?2-GPI differs from the human protein in size, carbohydrate chain location, heterogeneity and secondary structural content. These data suggest that the structural differences result in mouse Ab recognition of soluble human but not mouse ?2-GPI and attenuated IR-induced injury. We conclude that caution should be exercised in interpreting results obtained by using human ?2-GPI in a mouse model. PMID:22750067

Tomasi, Maurizio; Hiromasa, Yasuaki; Pope, Michael R.; Gudlur, Sushanth; Tomich, John M.; Fleming, Sherry D.

2012-01-01

104

Human ?2-glycoprotein I attenuates mouse intestinal ischemia/reperfusion induced injury and inflammation.  

PubMed

Intestinal ischemia-reperfusion (IR)-induced injury results from a complex cascade of inflammatory components. In the mouse model of intestinal IR, the serum protein, ?2-glycoprotein I (?2-GPI) binds to the cell surface early in the cascade. The bound ?2-GPI undergoes a conformational change which exposes a neoantigen recognized by naturally occurring antibodies and initiates the complement cascade. We hypothesized that providing additional antigen with exogenous ?2-GPI would alter IR-induced tissue injury. Administration of human but not mouse ?2-GPI attenuated IR-induced tissue damage and prostaglandin E(2) production indicating a physiological difference between ?2-GPI isolated from the two species. To investigate whether structural features were responsible for this physiological difference, we compared the chemical, physical and biochemical properties of the two proteins. Despite possessing 76% amino acid identity and 86% sequence homology, we found that mouse ?2-GPI differs from the human protein in size, carbohydrate chain location, heterogeneity and secondary structural content. These data suggest that the structural differences result in mouse Ab recognition of soluble human but not mouse ?2-GPI and attenuated IR-induced injury. We conclude that caution should be exercised in interpreting results obtained by using human ?2-GPI in a mouse model. PMID:22750067

Tomasi, Maurizio; Hiromasa, Yasuaki; Pope, Michael R; Gudlur, Sushanth; Tomich, John M; Fleming, Sherry D

2012-10-01

105

Cyclooxygenases in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation  

NASA Technical Reports Server (NTRS)

Epidermal expression of the two isoforms of the prostaglandin H-generating cyclooxygenase (COX-1 and COX-2) was evaluated both by immunohistochemistry performed on human and mouse skin biopsy sections and by Western blotting of protein extracts from cultured human neonatal foreskin keratinocytes. In normal human skin, COX-1 immunostaining is observed throughout the epidermis whereas COX-2 immunostaining increases in the more differentiated, suprabasilar keratinocytes. Basal cell carcinomas express little if any COX-1 or COX-2 immunostaining whereas both isozymes are strongly expressed in squamous cell carcinomas deriving from a more differentiated layer of the epidermis. In human keratinocyte cultures, raising the extracellular calcium concentration, a recognized stimulus for keratinocyte differentiation, leads to an increased expression of both COX-2 protein and mRNA; expression of COX-1 protein, however, shows no significant alteration in response to calcium. Because of a recent report that failed to show COX-2 in normal mouse epidermis, we also looked for COX-1 and COX-2 immunostaining in sections of normal and acetone-treated mouse skin. In agreement with a previous report, some COX-1, but no COX-2, immunostaining is seen in normal murine epidermis. However, following acetone treatment, there is a marked increase in COX-1 expression as well as the appearance of significant COX-2 immunostaining in the basal layer. These data suggest that in human epidermis as well as in human keratinocyte cultures, the expression of COX-2 occurs as a part of normal keratinocyte differentiation whereas in murine epidermis, its constitutive expression is absent, but inducible as previously published.

Leong, J.; Hughes-Fulford, M.; Rakhlin, N.; Habib, A.; Maclouf, J.; Goldyne, M. E.

1996-01-01

106

Characterization, isolation, and culture of mouse and human spermatogonial stem cells.  

PubMed

Spermatogenesis is a special process by which spermatogonial stem cells (SSCs) divide and differentiate to male gametes called mature spermatozoa. SSCs are the unique cells because they are adult stem cells that transmit genetic information to subsequent generations. Accumulating evidence has demonstrated that SSCs can be reprogrammed to acquire pluripotency to become embryonic stem-like cells that differentiate into all cell lineages of the three germ layers, highlighting potential important applications of SSCs for regenerative medicine. Recent studies from peers and us have made great achievements on the characterization, isolation, and culture of mouse and human SSCs, which could lead to better understanding the biology of SSCs and the applications of SSCs in both reproductive and regenerative medicine. In this review, we first compared the cell identity and biochemical phenotypes between mouse SSCs and human SSCs. Notably, the cell types of mouse and human SSCs are distinct, and human SSCs share some but not all phenotypes with mouse SSCs. The approaches for isolating SSCs as well as short- and long-term culture of mouse SSCs and short-period culture of human SSCs were also discussed. We further addressed the new advances on the self-renewal of SSCs with an aim to establish the long-term culture of human SSCs which has not yet been achieved. PMID:24114612

Guo, Ying; Hai, Yanan; Gong, Yuehua; Li, Zheng; He, Zuping

2014-04-01

107

Humanized FcRn mouse models for evaluating pharmacokinetics of human IgG antibodies.  

PubMed

A key element for the successful development of novel therapeutic antibodies is to fully understand their pharmacokinetic and pharmacodynamic behavior before performing clinical trials. While many in vitro modeling approaches exist, these simply cannot substitute for data obtained from appropriate animal models. It was established quite early that the unusual long serum half-life of immunoglobulin G's (IgGs) and Fc domains are due to their rescue and recycling by the neonatal Fc receptor (FcRn). The diverse roles of FcRn became apparent after isolation and cloning. Interesting are the significant species differences between rodent and human FcRn reactivity, rendering wild type rodents an inadequate model for studying IgG serum half-life. With the advance of genetic engineering mouse models have been established expressing human FcRn, and lacking mouse FcRn protein. These models have become highly relevant tools for serum half-life analysis of Fc-containing compounds. PMID:23867339

Proetzel, Gabriele; Roopenian, Derry C

2014-01-01

108

Biology of Human Skin Transplanted to the Nude Mouse: I. Response to Agent which Modify Epidermal Proliferation  

Microsoft Academic Search

To accept human skin transplanted to the congenitally athymic (nude) mouse as a system to study human skin and its physiologic and pathologic states, it must be demonstrated that skin so maintained retains its function as a biologic unit. We have found that responses of grafted human skin and nude mouse skin to various agents differ. This difference in response

Gerald G. Krueger; J. Shelby

1981-01-01

109

Limitations of Hairless Mouse Skin as a Model for In Vitro Permeation Studies Through Human Skin: Hydration Damage  

Microsoft Academic Search

Hairless mouse skin currently provides a popular model membrane for studies in human percutaneous absorption. Although some similarities between the two skin types have been demonstrated, the effects of prolonged hydration on hairless mouse skin have not previously been rigorously examined. We have measured in vitro the effects of hydration at 31°C on the permeabilities of hairless mouse skin and

John Russell Bond; Brian William Barry

1988-01-01

110

Characterization of a mouse laminin receptor gene homologous to the human blood group Lutheran gene  

Microsoft Academic Search

The human Lutheran (Lu) blood group antigens are carried by two glycoproteins (gps) that belong to the immunoglobulin (Ig)\\u000a superfamily. These gps represent adhesion molecules that function as the unique erythroid receptors for laminin. We report\\u000a here the cloning and functional expression of the orthologous mouse Lu mRNA as well as the genomic organization of the mouse Lu gene. The

Cécile Rahuel; Yves Colin; Dominique Goossens; P. Gane; W. El Nemer; J. P. Cartron; C. Le Van Kim

1999-01-01

111

Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse  

Microsoft Academic Search

We mapped histone H3 lysine 4 di- and trimethylation and lysine 9\\/14 acetylation across the nonrepetitive portions of human chromosomes 21 and 22 and compared patterns of lysine 4 dimethylation for several orthologous human and mouse loci. Both chromosomes show punctate sites enriched for modified histones. Sites showing trimethylation correlate with transcription starts, while those showing mainly dimethylation occur elsewhere

Bradley E. Bernstein; Michael Kamal; Kerstin Lindblad-Toh; Stefan Bekiranov; Dione K. Bailey; Dana J. Huebert; Scott McMahon; Elinor K. Karlsson; Edward J. Kulbokas III; Thomas R. Gingeras; Stuart L. Schreiber; Eric S. Lander

2005-01-01

112

The NEURODGene Maps to Human Chromosome 2q32 and Mouse Chromosome 2  

Microsoft Academic Search

TheNeurodgene is a basic–helix–loop–helix gene that regulates neurogenesis and is identical to the hamsterbeta2gene that was cloned as a regulator of insulin transcription. Here we report the cloning of humanNEURODand mapping of the gene to human chromosome 2q32 and to mouse chromosome 2.

Rulla Tamimi; Eirikur Steingrimsson; Neal G. Copeland; Karen Dyer-Montgomery; Jacqueline E. Lee; Rachel Hernandez; Nancy A. Jenkins; Stephen J. Tapscott

1996-01-01

113

The NEUROD gene maps to human chromosome 2q32 and mouse chromosome 2  

SciTech Connect

The Neurod gene is a basic-helix-loop-helix gene that regulates neurogenesis and is identical to the hamster beta2 gene that was cloned as a regulator of insulin transcription. Here we report the cloning of human NEUROD and mapping of the gene to human chromosome 2q32 and to mouse chromosome 2. 12 refs., 1 fig.

Tamimi, R.; Dyer-Montgomery, K.; Hernandez, R.; Tapscott, S.J. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States)] [and others] [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); and others

1996-06-15

114

Comparative DNA Sequence Analysis of Mouse and Human Protocadherin Gene Clusters  

E-print Network

Comparative DNA Sequence Analysis of Mouse and Human Protocadherin Gene Clusters Qiang Wu,1 Theresa of variable region exons. Here we report the results of a comparative DNA sequence analysis of the orthologous and contains more genes than the human Pcdh gene cluster. We identified conserved DNA sequences upstream

115

Comparative studies of resistin expression and phylogenomics in human and mouse  

Microsoft Academic Search

Resistin is a newly identified adipocytokine that has been proposed to be a link between obesity and type 2 diabetes based on animal studies. However, the role of resistin in the pathogenesis of insulin resistance associated with obesity in humans remains unclear. We comparatively and quantitatively studied the tissue distributions of resistin mRNA between human and mouse. The expression level

Rong-Ze Yang; Qing Huang; Aihua Xu; John C. McLenithan; Jonathan A. Eison; Alan R. Shuldiner; Serhan Alkan; Da-Wei Gonga

2003-01-01

116

PhenoHM: human–mouse comparative phenome–genome server  

PubMed Central

PhenoHM is a human–mouse comparative phenome–genome server that facilitates cross-species identification of genes associated with orthologous phenotypes (http://phenome.cchmc.org; full open access, login not required). Combining and extrapolating the knowledge about the roles of individual gene functions in the determination of phenotype across multiple organisms improves our understanding of gene function in normal and perturbed states and offers the opportunity to complement biologically the rapidly expanding strategies in comparative genomics. The Mammalian Phenotype Ontology (MPO), a structured vocabulary of phenotype terms that leverages observations encompassing the consequences of mouse gene knockout studies, is a principal component of mouse phenotype knowledge source. On the other hand, the Unified Medical Language System (UMLS) is a composite collection of various human-centered biomedical terminologies. In the present study, we mapped terms reciprocally from the MPO to human disease concepts such as clinical findings from the UMLS and clinical phenotypes from the Online Mendelian Inheritance in Man knowledgebase. By cross-mapping mouse–human phenotype terms, extracting implicated genes and extrapolating phenotype-gene associations between species PhenoHM provides a resource that enables rapid identification of genes that trigger similar outcomes in human and mouse and facilitates identification of potentially novel disease causal genes. The PhenoHM server can be accessed freely at http://phenome.cchmc.org. PMID:20507906

Sardana, Divya; Vasa, Suresh; Vepachedu, Nishanth; Chen, Jing; Gudivada, Ranga Chandra; Aronow, Bruce J.; Jegga, Anil G.

2010-01-01

117

The role of the laboratory mouse in the human genome project  

SciTech Connect

The long-term goal of the human genome project is to identify and establish the function of each of the estimated 100,000 genes in the genome. The gene-discovery phase of the project is proceeding rapidly, via large-scale sequencing of genomic and cDNA clones. Establishing the functional roles for these genes is the challenge for the future. New methods have improved the power of the laboratory mouse to address questions of gene function and have attracted many investigators to the field. There has been dramatic progress in the efficiency of positional cloning of mutant mouse genes, induction of new mutants by chemical mutagenesis, targeted mutation of cloned genes by homologous recombination, strategies for analysis of polygenic traits, and comparative mapping of the human and mouse chromosomes. The contents of recent issues of the journals Human Molecular Genetics, Nature Genetics, and Genomics demonstrate the striking extent to which mouse genes and mouse mutants now occupy the attention of human geneticists. This paper provides a brief survey of recent developments with particular relevance to human genetics and the analysis of gene function. 56 refs., 2 figs., 4 tabs.

Meisler, M.H. [Univ. of Michigan School of Medicine, Ann Arbor, MI (United States)

1996-10-01

118

A comparative analysis of protein targets of withdrawn cardiovascular drugs in human and mouse  

PubMed Central

Background Mouse is widely used in animal testing of cardiovascular disease. However, a large number of cardiovascular drugs that have been experimentally proved to work well on mouse were withdrawn because they caused adverse side effects in human. Methods In this study, we investigate whether binding patterns of withdrawn cardiovascular drugs are conserved between mouse and human through computational dockings and molecular dynamic simulations. In addition, we also measured the level of conservation of gene expression patterns of the drug targets and their interacting partners by analyzing the microarray data. Results The results show that target proteins of withdrawn cardiovascular drugs are functionally conserved between human and mouse. However, all the binding patterns of withdrawn drugs we retrieved show striking difference due to sequence divergence in drug-binding pocket, mainly through loss or gain of hydrogen bond donors and distinct drug-binding pockets. The binding affinities of withdrawn drugs to their receptors tend to be reduced from mouse to human. In contrast, the FDA-approved and best-selling drugs are little affected. Conclusions Our analysis suggests that sequence divergence in drug-binding pocket may be a reasonable explanation for the discrepancy of drug effects between animal models and human. PMID:22548699

2012-01-01

119

Human natural regulatory T cell development, suppressive function and post-thymic maturation in a humanized mouse model  

PubMed Central

CD4+ regulatory T (Treg) cells control adaptive immune responses and promote self-tolerance. Various humanized mouse models have been developed in efforts to reproduce and study a human immune system. However, in models that require T cell differentiation in the recipient murine thymus, only low numbers of T cells populate the peripheral immune systems. T cells are positively selected by mouse MHC and therefore do not function well in an HLA-restricted manner. In contrast, cotransplantation of human fetal thymus/liver and i.v. injection of CD34+ cells from the same donor achieves multilineage human lymphohematopoietic reconstitution, including dendritic cells (DCs) and formation of secondary lymphoid organs, in NOD/SCID mice. Strong antigen-specific immune responses and homeostatic expansion of human T cells that is dependent on peripheral human APCs occurs. We now demonstrate that FoxP3+ Helios+ “natural” Tregs develop normally in human fetal thymic grafts and are present in peripheral blood, spleen and lymph nodes of these humanized mice. Humanized mice exhibit normal reversal of CD45 isoform expression in association with thymic egress, post-thymic “naïve” to “activated” phenotypic conversion, and suppressive function. These studies demonstrate the utility of this humanized mouse model for the study of human Treg ontogeny, immunobiology and therapy. PMID:21876039

Onoe, Takashi; Kalscheuer, Hannes; Danzl, Nichole; Chittenden, Meredith; Zhao, Guiling; Yang, Yong-Guang; Sykes, Megan

2011-01-01

120

Human monoclonal antibodies specific to hepatitis B virus generated in a human/mouse radiation chimera: the Trimera system.  

PubMed Central

An approach to develop fully human monoclonal antibodies in a human/mouse radiation chimera, the Trimera system, is described. In this system, functional human lymphocytes are engrafted in normal strains of mice which are rendered immuno-incompetent by lethal total body irradiation followed by radioprotection with severe combined immunodeficient (SCID) mouse bone marrow. Following transplantation, human lymphocytes colonize murine lymphatic organs and secrete human immunoglobulins. We have established this system as a tool to develop fully human monoclonal antibodies, and applied it for the generation of monoclonal antibodies specific for hepatitis B virus surface antigen. A strong memory response to hepatitis B surface antigen was elicited in Trimera engrafted with lymphocytes from human donors positive for antibodies to hepatitis B surface antigen. The human specific antibody fraction in the Trimera was 10(2)-10(3)-fold higher as compared with that found in the donors. Spleens were harvested from Trimera mice showing high specific-antibody titres and cells were fused to a human-mouse heteromyeloma fusion partner. Several stable hybridoma clones were isolated and characterized. These hybridomas produce high-affinity, IgG, anti-hepatitis B surface antigen antibodies demonstrating the potential of the Trimera system for generating fully human monoclonal antibodies. The biological function and the neutralizing activity of these antibodies are currently being tested. Images Figure 1 Figure 2 Figure 4 PMID:9616363

Eren, R; Lubin, I; Terkieltaub, D; Ben-Moshe, O; Zauberman, A; Uhlmann, R; Tzahor, T; Moss, S; Ilan, E; Shouval, D; Galun, E; Daudi, N; Marcus, H; Reisner, Y; Dagan, S

1998-01-01

121

The mouse and human genes encoding the recognition component of the N-end rule pathway  

PubMed Central

The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. The N-end rule pathway is one proteolytic pathway of the ubiquitin system. The recognition component of this pathway, called N-recognin or E3, binds to a destabilizing N-terminal residue of a substrate protein and participates in the formation of a substrate-linked multiubiquitin chain. We report the cloning of the mouse and human Ubr1 cDNAs and genes that encode a mammalian N-recognin called E3?. Mouse UBR1p (E3?) is a 1,757-residue (200-kDa) protein that contains regions of sequence similarity to the 225-kDa Ubr1p of the yeast Saccharomyces cerevisiae. Mouse and human UBR1p have apparent homologs in other eukaryotes as well, thus defining a distinct family of proteins, the UBR family. The residues essential for substrate recognition by the yeast Ubr1p are conserved in the mouse UBR1p. The regions of similarity among the UBR family members include a putative zinc finger and RING-H2 finger, another zinc-binding domain. Ubr1 is located in the middle of mouse chromosome 2 and in the syntenic 15q15-q21.1 region of human chromosome 15. Mouse Ubr1 spans ?120 kilobases of genomic DNA and contains ?50 exons. Ubr1 is ubiquitously expressed in adults, with skeletal muscle and heart being the sites of highest expression. In mouse embryos, the Ubr1 expression is highest in the branchial arches and in the tail and limb buds. The cloning of Ubr1 makes possible the construction of Ubr1-lacking mouse strains, a prerequisite for the functional understanding of the mammalian N-end rule pathway. PMID:9653112

Kwon, Yong Tae; Reiss, Yuval; Fried, Victor A.; Hershko, Avram; Yoon, Jeong Kyo; Gonda, David K.; Sangan, Pitchai; Copeland, Neal G.; Jenkins, Nancy A.; Varshavsky, Alexander

1998-01-01

122

The human and mouse receptors of hyaluronan-mediated motility, RHAMM, genes (HMMR) map to human chromosome 5q33.2-qter and mouse chromosome 11  

SciTech Connect

The gene for the receptor for hyaluronan-mediated motility, RHAAM (designated hyaluronan-mediated motility receptor, HMMR (human) and Hmmr (mouse), for mapping purposes), was localized to human chromosome 5q33.2-qter by somatic cell and radiation hybrid analyses. Investigation of two interspecific back-crosses localized the mouse RHAMM (Hmmr) locus 18 cM from the centromere of mouse chromosome 11 within a region of synteny homology with human chromosome 5q23-q35 genes. The map position of the human RHAMM gene places it in a region comparatively rich in disease-associated genes, including those for low-frequency hearing loss, dominant limb-girdle muscular dystrophy, diastrophic dysplasia, Treacher Collins syndrome, and myeloid disorders associated with the 5q-syndrome. The RHAMM gene location and its ability to transform cells when overexpressed implicate RHAMM as a possible candidate gene in the pathogenesis of the recently described t(5;14)(q33-q34;q11) acute lymphoblastic leukemias. 18 refs., 1 fig.

Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Roller, M.L.; Camper, S.A. [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

1995-11-01

123

Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human.  

PubMed

Genome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM genes appeared to be strongly conserved, with copy number variation in only four genes. Interestingly, we found NMR to have a higher copy number of CEBPG, a regulator of DNA repair, and TINF2, a protector of telomere integrity. NMR, as well as human, was also found to have a lower rate of germline nucleotide substitution than the mouse. Together, the data suggest that the long-lived NMR, as well as human, has more robust GM than mouse and identifies new targets for the analysis of the exceptional longevity of the NMR. PMID:25645816

MacRae, Sheila L; Zhang, Quanwei; Lemetre, Christophe; Seim, Inge; Calder, Robert B; Hoeijmakers, Jan; Suh, Yousin; Gladyshev, Vadim N; Seluanov, Andrei; Gorbunova, Vera; Vijg, Jan; Zhang, Zhengdong D

2015-04-01

124

Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human  

PubMed Central

Genome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM genes appeared to be strongly conserved, with copy number variation in only four genes. Interestingly, we found NMR to have a higher copy number of CEBPG, a regulator of DNA repair, and TINF2, a protector of telomere integrity. NMR, as well as human, was also found to have a lower rate of germline nucleotide substitution than the mouse. Together, the data suggest that the long-lived NMR, as well as human, has more robust GM than mouse and identifies new targets for the analysis of the exceptional longevity of the NMR. PMID:25645816

MacRae, Sheila L; Zhang, Quanwei; Lemetre, Christophe; Seim, Inge; Calder, Robert B; Hoeijmakers, Jan; Suh, Yousin; Gladyshev, Vadim N; Seluanov, Andrei; Gorbunova, Vera; Vijg, Jan; Zhang, Zhengdong D

2015-01-01

125

Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells  

PubMed Central

Although adipose tissue is an expandable and readily attainable source of proliferating, multipotent stem cells, its potential for use in regenerative medicine has not been extensively explored. Here we report that adult human and mouse adipose-derived stem cells can be reprogrammed to induced pluripotent stem (iPS) cells with substantially higher efficiencies than those reported for human and mouse fibroblasts. Unexpectedly, both human and mouse iPS cells can be obtained in feeder-free conditions. We discovered that adipose-derived stem cells intrinsically express high levels of pluripotency factors such as basic FGF, TGF?, fibronectin, and vitronectin and can serve as feeders for both autologous and heterologous pluripotent cells. These results demonstrate a great potential for adipose-derived cells in regenerative therapeutics and as a model for studying the molecular mechanisms of feeder-free iPS generation and maintenance. PMID:20133714

Sugii, Shigeki; Kida, Yasuyuki; Kawamura, Teruhisa; Suzuki, Jotaro; Vassena, Rita; Yin, Yun-Qiang; Lutz, Margaret K.; Berggren, W. Travis; Izpisúa Belmonte, Juan Carlos; Evans, Ronald M.

2010-01-01

126

Toxicity testing of human assisted reproduction devices using the mouse embryo assay.  

PubMed

Systems to assess the toxicity of materials used in human assisted reproduction currently lack efficiency and/or sufficient discriminatory power. The development of 1-cell CBA/B6 F1 hybrid mouse embryos to blastocysts, expressed as blastocyst rate (BR), is used to measure toxicity. The embryos were divided into control and test groups, and were exposed to either control medium or to a potentially toxic test medium. Inferences on toxicity were based on differences in BR between the two groups. The mouse embryo assay followed a stratified (mouse), randomized (embryo), and balanced (equal number of embryos per group and per mouse) design. The number of embryos needed was calculated using power analysis. The basal BR of the hybrid strain was determined in a historical population. Sixty-nine mouse embryos per group were required to detect toxic materials with sufficient sensitivity and to account for the considerable inter-mouse variation in blastocyst development. Fifty-two samples, divided over batches of seven different products were tested before use in the study IVF centre and five of these were found to be toxic. This test system, presented as the Nijmegen mouse embryo assay (NMEA), can be used to detect embryo-toxic materials in daily IVF practice, and this report may provide a starting point for standardization. PMID:19400995

Punt-van der Zalm, J P E M; Hendriks, J C M; Westphal, J R; Kremer, J A M; Teerenstra, S; Wetzels, A M M

2009-04-01

127

Automated whole-genome multiple alignment of rat, mouse, and human  

SciTech Connect

We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

2004-07-04

128

Activation of proto-oncogenes in human and mouse lung tumors  

SciTech Connect

Lung cancer is a leading cause of cancer-related deaths in several nations. Epidemiological studies have indicated that 85% of all lung cancer deaths and 30% of all cancer deaths in the US are associated with tobacco smoking. Various chemicals in tobacco smoke are thought to react with DNA and to ultimately yield heritable mutations. In an effort to understand the molecular mechanisms involved in lung tumorigenesis, the authors have analyzed proto-oncogene activation in a series of human lung tumors from smokers and spontaneously occurring and chemically induced lung tumors in mice. Approximately 86% of the human lung tumors and > 90% of the mouse lung tumors were found to contain activated oncogenes. ras Oncogenes activated by point mutations were detected in many of the human lung adenocarcinomas and virtually all of the mouse lung adenomas and adenocarcinomas. The mutation profiles of the activated K-ras genes detected in the chemically induced mouse lung tumors suggest that the observed mutations result from genotoxic effects of the chemicals. Comparison of the K-ras mutations observed in the human lung adenocarcinomas with mutation profiles observed in the mouse lung tumors suggest that bulky hydrophobic DNA adducts may be responsible for the majority of the mutations observed in the activated human K-ras genes. Other data indicate that approximately 20% of human lung tumors contain potentially novel transforming genes that may also be targets for mutagens in cigarette smoke.

Reynolds, S.H.; Anderson, M.W. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States))

1991-06-01

129

Comparative diversity analysis of gut microbiota in two different human flora-associated mouse strains.  

PubMed

The Kunming (KM) mouse is a closed colony mouse strain widely used in Chinese pharmacology, toxicology, and microbiology research laboratories. However, few studies have examined human flora-associated (HFA) microbial communities in KM mice. In this study, HFA models were built from germ-free KM and C57BL/6J mouse strains, and gut microbial diversity was analyzed by denaturing gradient gel electrophoresis (DGGE) and DNA sequencing. We found that the two strains of HFA mice were significantly different based on the UPGMA dendrogram and the Richness index, but dice similarity coefficients of mouse replicates were not significantly different between HFA-KM and HFA-C57BL/6J. Most of the dominant phyla of human gut microflora could be transferred into the guts of the two mouse strains. However, the predominant genus that formed in HFA-KM was Clostridium sp. and that in HFA-C57BL/6J was Blautia sp. These results imply that genotypes difference between the two mice strains is a critical factor in shaping the intestinal microflora. However, genetic differences of individuals within KM mouse populations failed to lead to individual difference in microflora. Successful generation of HFA-KM mice will facilitate studies examining how diet affects gut microbial structure, and will enable comparative studies for uncovering genetic factors that shape gut microbial communities. PMID:24807625

Zhang, Xiaojing; Zeng, Benhua; Liu, Zhiwei; Liao, Zhenlin; Li, Wenxai; Wei, Hong; Fang, Xiang

2014-09-01

130

Defining the molecular pathologies in cloaca malformation: similarities between mouse and human  

PubMed Central

Anorectal malformations are congenital anomalies that form a spectrum of disorders, from the most benign type with excellent functional prognosis, to very complex, such as cloaca malformation in females in which the rectum, vagina and urethra fail to develop separately and instead drain via a single common channel into the perineum. The severity of this phenotype suggests that the defect occurs in the early stages of embryonic development of the organs derived from the cloaca. Owing to the inability to directly investigate human embryonic cloaca development, current research has relied on the use of mouse models of anorectal malformations. However, even studies of mouse embryos lack analysis of the earliest stages of cloaca patterning and morphogenesis. Here we compared human and mouse cloaca development and retrospectively identified that early mis-patterning of the embryonic cloaca might underlie the most severe forms of anorectal malformation in humans. In mouse, we identified that defective sonic hedgehog (Shh) signaling results in early dorsal-ventral epithelial abnormalities prior to the reported defects in septation. This is manifested by the absence of Sox2 and aberrant expression of keratins in the embryonic cloaca of Shh knockout mice. Shh knockout embryos additionally develop a hypervascular stroma, which is defective in BMP signaling. These epithelial and stromal defects persist later, creating an indeterminate epithelium with molecular alterations in the common channel. We then used these animals to perform a broad comparison with patients with mild-to-severe forms of anorectal malformations including cloaca malformation. We found striking parallels with the Shh mouse model, including nearly identical defective molecular identity of the epithelium and surrounding stroma. Our work strongly suggests that early embryonic cloacal epithelial differentiation defects might be the underlying cause of severe forms of anorectal malformations in humans. Moreover, deranged Shh and BMP signaling is correlated with severe anorectal malformations in both mouse and humans. PMID:24524909

Runck, Laura A.; Method, Anna; Bischoff, Andrea; Levitt, Marc; Peña, Alberto; Collins, Margaret H.; Gupta, Anita; Shanmukhappa, Shiva; Wells, James M.; Guasch, Géraldine

2014-01-01

131

Pharmacokinetics in melanoma-bearing mice of 5-dihydroxyboryl-6-propyl-2-thiouracil (BPTU), a candidate compound for boron neutron capture therapy.  

PubMed Central

Blood pharmacokinetics and tissue distribution of 5-dihydroxyboryl-6-propyl-2-thiouracil (BPTU), a boron carrier with postulated melanin-seeking properties for boron neutron capture therapy, were determined in C57/BL mice with subcutaneous pigmented or non-pigmented B16 melanomas. Borocaptate sodium (BSH) was used as a boron compound without melanin-seeking properties in a comparative biodistribution study in the same animal tumour models. Administration of single doses showed that BPTU was retained better in the pigmented B16 tumour than in the non-pigmented variant. BPTU was found in large concentrations in kidney and liver. Brain boron was approximately 10-fold lower than tumour boron. On a molar basis, BPTU demonstrated higher affinity for B16 tumours than BSH. Owing to solubility limits, tumour boron concentrations in this mouse study were too low for effective application of BNCT. However, the high tumour-to-blood and tumour-to-normal tissues ratios indicate that, with appropriate formulation, BPTU could be a promising candidate for clinical BNCT. PMID:8142252

Verrijk, R.; Smolders, I. J.; Huiskamp, R.; Gavin, P. R.; Philipp, K. H.; Begg, A. C.

1994-01-01

132

Mouse models of food allergy: how well do they simulate the human disorder?  

PubMed

Food allergy is a growing health problem with serious concerns due to high potential for fatality. Rapid advances in the knowledge on causes and mechanisms as well as in developing effective prevention/therapeutic strategies are needed. To meet these goals, mouse models that simulate the human disorder are highly desirable. During the past decade, several mouse models of food allergies have been reported. Here, we briefly reviewed the human disorder and then critically evaluated these models seeking answers to the following important questions: To what extent do they simulate the human disorder? What are the strengths and limitations of these models? What are the challenges facing this scientific area? Our analysis suggest that: (i) the mouse models, with inherent strengths and limitations, are available for many major food allergies; there is scope for additional model development and validation; (ii) models mostly simulate the severe forms of human disorder with similar immune and clinical features; (iii) the approaches used to develop some of the mouse models may be questionable; and (iv) the specific mechanisms of sensitization as wells as oral elicitation of fatal reactions in both humans and mice remains incompletely understood and therefore warrants further research. PMID:24915373

Gonipeta, Babu; Kim, Eunjung; Gangur, Venu

2015-01-01

133

Gene order is conserved within the human chromosome 21 linkage group on mouse chromosome 10  

SciTech Connect

One hundred progeny from each of two intersubspecific mouse backcrosses were used to construct a comparative genetic map of a region of mouse chromosome 10 (MMU10) that is homologous to the distal tip of the long arm of human chromosome 21 (HSA21). The analysis included five genes and three simple sequence repeat markers, two of which flanked the HSA21-homologous cluster on either side. Analysis of 200 backcross progeny detected at least one crossover between each pair of adjacent genes and demonstrated that the proximal to distal orientation of the cluster was reversed between human and mouse. The order was determined to be Fyn-1-D10Mit20-S100b-Col6a1-Itgb2-Pfk1/D10Mit7-D10Mit11. Comparative mapping supports the order of corresponding markers on HSA21 determined using pulsed-field gel electrophoresis and radiation hybrid line data. However, sequence tagged site content mapping of human yeast artificial chromosomes (YACs) yielded conflicting data on the relative positions of human COL6A1 and S100B on HSA21. This discrepancy was resolved here by demonstrating that several key YACs used in the human contig analysis were mistyped for S100B. The murine map reported here provides a scaffold for construction of physical maps and yeast artificial chromosome contigs that will be useful in the development of mouse models for the study of Down syndrome. 28 refs., 4 figs., 2 tabs.

Irving, N.G.; Cabin, D.E.; Swanson, D.A.; Reeves, R.H. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

1994-05-01

134

Rapid spread of mouse mammary tumor virus in cultured human breast cells  

PubMed Central

Background The role of mouse mammary tumor virus (MMTV) as a causative agent in human breast carcinogenesis has recently been the subject of renewed interest. The proposed model is based on the detection of MMTV sequences in human breast cancer but not in healthy breast tissue. One of the main drawbacks to this model, however, was that until now human cells had not been demonstrated to sustain productive MMTV infection. Results Here, we show for the first time the rapid spread of mouse mammary tumor virus, MMTV(GR), in cultured human mammary cells (Hs578T), ultimately leading to the infection of every cell in culture. The replication of the virus was monitored by quantitative PCR, quantitative RT-PCR and immunofluorescence imaging. The infected human cells expressed, upon cultivation with dexamethasone, MMTV structural proteins and released spiked B-type virions, the infectivity of which could be neutralized by anti-MMTV antibody. Replication of the virus was efficiently blocked by an inhibitor of reverse transcription, 3'-azido-3'-deoxythymidine. The human origin of the infected cells was confirmed by determining a number of integration sites hosting the provirus, which were unequivocally identified as human sequences. Conclusion Taken together, our results show that human cells can support replication of mouse mammary tumor virus. PMID:17931409

Indik, Stanislav; Günzburg, Walter H; Kulich, Pavel; Salmons, Brian; Rouault, Francoise

2007-01-01

135

The Cinderella effect: searching for the best fit between mouse models and human diseases.  

PubMed

A recent publication questions the suitability of mice as a model for the human inflammatory response and has fueled the continuing debate about the suitability of mice as models for human disease. We discuss recent advances in disease modeling using mice, and the genetic factors that need to be considered when trying to recapitulate aspects of human disease. Failure to appreciate the important differences between human and mouse biology and genetics underlying attempts to generate faithful models frequently leads to poor outcomes. Closely coordinated human and model organism studies are essential to provide traction for translational research. PMID:23812235

Sundberg, John P; Roopenian, Derry C; Liu, Edison T; Schofield, Paul N

2013-11-01

136

Generation of mouse polyclonal and human monoclonal antibodies against Bacillus anthracis toxin.  

PubMed

High titer antisera against the protective antigen (PA) from Bacillus anthracis were generated immunizing Balb/c mice two times intraperitoneally with PA in combination with lipopeptide adjuvant P3CSK4. The sera were able to protect the mouse macrophage cell line J774A.1 from an anthrax toxin challenge. We also tested the blood of anthrax vaccine-immunized persons for PA- and lethal factor (LF)-specific antibodies. An increased titer was found after three immunizations, and the sera were also able to protect the mouse macrophage cell line from a toxin challenge. For the preparation of human monoclonal antibodies, we used peripheral blood lymphocytes. After in vitro stimulation using PA or synthetic peptides derived from PA, B lymphocytes were immortalized by PEG fusion with the human mouse heteromyeloma cell line CB-F7. We obtained several clones producing high amounts of PA-specific immunoglobulin (Ig). PMID:15929604

Huber, M; Vor Dem Esche, U; Grunow, R; Bessler, W G

2005-01-01

137

Differential Effects of Bisphenol A and Diethylstilbestrol on Human, Rat and Mouse Fetal Leydig Cell Function  

PubMed Central

Endocrine disruptors (ED) have been incriminated in the current increase of male reproductive alterations. Bisphenol A (BPA) is a widely used weak estrogenic environmental ED and it is debated whether BPA concentrations within the average internal exposure are toxic. In the present study we investigated the effects of 10?12 to 10?5 M BPA concentrations on fetal Leydig cell function, as fetal life is a critical period of sensitivity to ED effects on male reproductive function. To this aim, fetal testes from human at 6.5–10.5 gestational weeks (GW) or from rat and mouse at a comparable critical period of development (14.5 days post-coitum (dpc) for rat and 12.5 dpc for mouse) were explanted and cultured using our validated organotypic culture system in the presence or absence of BPA for 1–3 days. BPA concentrations as low as 10?8 M reduced testosterone secretion by human testes from day 1 of culture onwards, but not by mouse and rat testes where concentrations equal to 10?5 M BPA were required. Similarly, 10?8 M BPA reduced INSL3 mRNA levels only in human cultured testes. On the contrary, 10?5 and 10?6 M diethylstilbestrol (DES), a classical estrogenic compound, affected testosterone secretion only in rat and mouse testis cultures, but not in human testis cultures. Lastly, contrarily to the DES effect, the negative effect of BPA on testosterone produced by the mouse fetal testis was maintained after invalidation of estrogen receptor ? (ER?). In conclusion, these results evidenced i) a deleterious effect of BPA on fetal Leydig cells function in human for concentrations from 10?8 M upwards, ii) species-specific differences raising concerns about extrapolation of data from rodent studies to human risk assessment, iii) a specific signaling pathway for BPA which differs from the DES one and which does not involve ER?. PMID:23284716

N’Tumba-Byn, Thierry; Moison, Delphine; Lacroix, Marlène; Lecureuil, Charlotte; Lesage, Laëtitia; Prud’homme, Sophie M.; Pozzi-Gaudin, Stéphanie; Frydman, René; Benachi, Alexandra; Livera, Gabriel

2012-01-01

138

Genetic engineering of high affinity anti-human colorectal tumour mouse/human chimeric antibody.  

PubMed Central

Two amino acids, tyrosine at position 96 and histidine at position 99 in the variable heavy chain (VH) CDR3 region of a mouse/human chimeric anti-TAG72 antibody cB72.3-1-3 were substituted with phenylalanine and asparagine respectively by site-directed mutagenesis technique. The expression vector mpSV2neo-EP1-Vm1-3-C gamma 1 containing mutant VH region fragments (Vm1-3) as well as the immunoglobulin enhancer (E), promoter (P1) and human genomic C gamma 1 region fragments, was transfected into a heavy-chain loss mutant cell line B72.3Mut(k). Mutant chimeric cB72.3m1-3 antibodies were purified from the transfectant supernates and compared based upon their binding affinity for the TAG72 antigen relative to that of the original cB72.3-1-3 antibody. The data show that a single amino acid substitution of histidine with asparagine at position 99 in VH CDR3 region contributes to four times increase in binding affinity for the TAG72 antigen. This suggests that the residue at position 99 in VH CDR3 region may play some role in antibody/antigen (B72.3/TAG72) interaction. Images Figure 3 Figure 4 Figure 6 PMID:1551684

Xiang, J; Chen, Z

1992-01-01

139

Number of CpG Islands and Genes in Human and Mouse  

Microsoft Academic Search

Estimation of gene number in mammals is difficult due to the high proportion of noncoding DNA within the nucleus. In this study, we provide a direct measurement of the number of genes in human and mouse. We have taken advantage of the fact that many mammalian genes are associated with CpG islands whose distinctive properties allow their physical separation from

Francisco Antequera; Adrian Bird

1993-01-01

140

Mouse Models for Deafness: Lessons for the Human Inner Ear and Hearing Loss  

E-print Network

Mouse Models for Deafness: Lessons for the Human Inner Ear and Hearing Loss Karen B. Avraham high-resolution com- puted tomography (CT) scanning or invasive sur- gery, most studies on the ear interventions can be developed that can treat the diseased inner ear before permanent damage has occurred

Avraham, Karen

141

Microinjection and expression of a mouse metallothionein human growth hormone fusion gene in fertilized salmonid eggs  

Microsoft Academic Search

Using a microinjection method (Rokkones et al. 1985) deoxyribonucleic acid was introduced into fertilized salmonid eggs. The survival rate after a 28 day period was 91% for injected eggs in comparison to non-injected controls. A gene construct containing the mouse metallothionein promoter fused to the human growth hormone structural gene was microinjected either as a supercoiled plasmid or as a

E. Rokkones; P. Alestrøm; H. Skjervold; K. M. Gautvik

1989-01-01

142

Development of a Mouse Monoclonal Antibody Cocktail for Post-exposure Rabies Prophylaxis in Humans  

E-print Network

Development of a Mouse Monoclonal Antibody Cocktail for Post-exposure Rabies Prophylaxis in Humans , Alexander I. Wanderler5 , Marie Paule Kieny9 * 1 WHO Collaborating Centre for Rabies Surveillance for Reference and Research on Rabies, Wistar Institute, Philadelphia, Pennsylvania, United States of America, 4

Paris-Sud XI, Université de

143

Mouse mincle: characterization as a model for human mincle and evolutionary implications.  

PubMed

Mincle, the macrophage-inducible C-type lectin also known as CLEC-4E, binds to the mycobacterial glycolipid trehalose dimycolate and initiates a signaling cascade by serving as a receptor for Mycobacterium tuberculosis and other pathogenic mycobacterial species. Studies of the biological functions of human mincle often rely on mouse models, based on the assumption that the biological properties of the mouse receptor mimic those of the human protein. Experimental support for this assumption has been obtained by expression of the carbohydrate-recognition domain of mouse mincle and characterization of its interaction with small molecule analogs of trehalose dimycolate. The results confirm that the ligand-binding properties of mouse mincle closely parallel those of the human receptor. These findings are consistent with the conservation of key amino acid residues that have been shown to form the ligand-binding site in human and cow mincle. Sequence alignment reveals that these residues are conserved in a wide range of mammalian species, suggesting that mincle has a conserved function in binding ligands that may include endogenous mammalian glycans or pathogen glycans in addition to trehalose dimycolate. PMID:25884549

Rambaruth, Neela D S; Jégouzo, Sabine A F; Marlor, Hayley; Taylor, Maureen E; Drickamer, Kurt

2015-01-01

144

tion. Human or mouse intestinal epithelial cells that express the poly-Ig receptor were  

E-print Network

tion. Human or mouse intestinal epithelial cells that express the poly-Ig receptor were co-cultivated with hybridoma or myeloma cells that produce dimeric IgA antibodies. The monolayers were subsequently exposed could then be analyzed. To facilitate the genera- tion of monoclonal IgA antibodies, a novel strategy

Boyer, Edmond

145

Human and mouse tissue-engineered small intestine both demonstrate digestive and absorptive function.  

PubMed

Short bowel syndrome (SBS) is a devastating condition in which insufficient small intestinal surface area results in malnutrition and dependence on intravenous parenteral nutrition. There is an increasing incidence of SBS, particularly in premature babies and newborns with congenital intestinal anomalies. Tissue-engineered small intestine (TESI) offers a therapeutic alternative to the current standard treatment, intestinal transplantation, and has the potential to solve its biggest challenges, namely donor shortage and life-long immunosuppression. We have previously demonstrated that TESI can be generated from mouse and human small intestine and histologically replicates key components of native intestine. We hypothesized that TESI also recapitulates native small intestine function. Organoid units were generated from mouse or human donor intestine and implanted into genetically identical or immunodeficient host mice. After 4 wk, TESI was harvested and either fixed and paraffin embedded or immediately subjected to assays to illustrate function. We demonstrated that both mouse and human tissue-engineered small intestine grew into an appropriately polarized sphere of intact epithelium facing a lumen, contiguous with supporting mesenchyme, muscle, and stem/progenitor cells. The epithelium demonstrated major ultrastructural components, including tight junctions and microvilli, transporters, and functional brush-border and digestive enzymes. This study demonstrates that tissue-engineered small intestine possesses a well-differentiated epithelium with intact ion transporters/channels, functional brush-border enzymes, and similar ultrastructural components to native tissue, including progenitor cells, whether derived from mouse or human cells. PMID:25573173

Grant, Christa N; Mojica, Salvador Garcia; Sala, Frederic G; Hill, J Ryan; Levin, Daniel E; Speer, Allison L; Barthel, Erik R; Shimada, Hiroyuki; Zachos, Nicholas C; Grikscheit, Tracy C

2015-04-15

146

Positional cloning of the mouse obese gene and its human homologue  

Microsoft Academic Search

The mechanisms that balance food intake and energy expenditure determine who will be obese and who will be lean. One of the molecules that regulates energy balance in the mouse is the obese (ob) gene. Mutation ofobresults in profound obesity and type II diabetes as part of a syndrome that resembles morbid obesity in humans. The ob gene product may

Yiying Zhang; Ricardo Proenca; Margherita Maffei; Marisa Barone; Lori Leopold; Jeffrey M. Friedman

1994-01-01

147

Meta-Profiles of Gene Expression during Aging: Limited Similarities between Mouse and Human and an  

E-print Network

Meta-Profiles of Gene Expression during Aging: Limited Similarities between Mouse and Human and an Unexpectedly Decreased Inflammatory Signature William R. Swindell1 *, Andrew Johnston2 , Liou Sun3 , Xianying Background: Skin aging is associated with intrinsic processes that compromise the structure

Bulyk, Martha L.

148

Early B lymphocyte development: Similarities and differences in human and mouse  

PubMed Central

B lymphocytes differentiate from hematopoietic stem cells through a series of distinct stages. Early B cell development proceeds in bone marrow until immature B cells migrate out to secondary lymphoid tissues, such as a spleen and lymph nodes, after completion of immunoglobulin heavy and light chain rearrangement. Although the information about the regulation by numerous factors, including signaling molecules, transcription factors, epigenetic changes and the microenvironment, could provide the clinical application, our knowledge on human B lymphopoiesis is limited. However, with great methodological advances, significant progress for understanding B lymphopoiesis both in human and mouse has been made. In this review, we summarize the experimental models for studies about human adult B lymphopoiesis, and the role of microenvironment and signaling molecules, such as cytokines, transforming growth factor-? superfamily, Wnt family and Notch family, with point-by-point comparison between human and mouse. PMID:25258663

Ichii, Michiko; Oritani, Kenji; Kanakura, Yuzuru

2014-01-01

149

Mouse T-cells restrict replication of human immunodeficiency virus at the level of integration  

PubMed Central

Background The development of an immunocompetent, genetically modified mouse model to study HIV-1 pathogenesis and to test antiviral strategies has been hampered by the fact that cells from native mice do not or only inefficiently support several steps of the HIV-1 replication cycle. Upon HIV-1 infection, mouse T-cell lines fail to express viral proteins, but the underlying replication barrier has thus far not been unambiguously identified. Here, we performed a kinetic and quantitative assessment of consecutive steps in the early phase of the HIV-1 replication cycle in T-cells from mice and humans. Results Both T-cell lines and primary T-cells from mice harbor a severe post-entry defect that is independent of potential species-specTR transactivation. Reverse transcription occurred efficiently following VSV-G-mediated entry of virions into mouse T-cells, and abundant levels of 2-LTR circles indicated successful nuclear import of the pre-integration complex. To probe the next step in the retroviral replication cycle, i.e. the integration of HIV-1 into the host cell genome, we established and validated a nested real-time PCR to specifically quantify HIV-1 integrants exploiting highly repetitive mouse B1 elements. Importantly, we demonstrate that the frequency of integrant formation is diminished 18- to > 305-fold in mouse T-cell lines compared to a human counterpart, resulting in a largely abortive infection. Moreover, differences in transgene expression from residual vector integrants, the transcription off which is cyclin T1-independent, provided evidence for an additional, peri-integrational deficit in certain mouse T-cell lines. Conclusion In contrast to earlier reports, we find that mouse T-cells efficiently support early replication steps up to and including nuclear import, but restrict HIV-1 at the level of chromosomal integration. PMID:18611257

Tervo, Hanna-Mari; Goffinet, Christine; Keppler, Oliver T

2008-01-01

150

Efficient production of a functional mouse\\/human chimeric Fab? against human urokinase-type plasminogen activator by Bacillus brevis  

Microsoft Academic Search

Expression\\/secretion vectors for the production of Fab? and single-chain (sc) Fab? by Bacillus brevis have been constructed. For the production of Fab?, the cDNAs encoding the L chain and Fd? fragment (Fd with the hinge region)\\u000a of a mouse-human chimeric Fab? against human urokinase-type plasminogen activator were fused directly with the translation-start\\u000a and signal-peptide-encoding regions of the mwp gene, the

Y. Inoue; T. Ohta; H. Tada; S. Iwasa; S. Udaka; H. Yamagata

1997-01-01

151

Protective effects of HFE7A, mouse anti-human/mouse Fas monoclonal antibody against acute and lethal hepatic injury induced by Jo2  

PubMed Central

HFE7A is a mouse anti-human/mouse Fas monoclonal antibody which, protects mice from fulminant hepatitis induced by Jo2. Herein, we report on the mechanism of the protective effect of HFE7A against Jo2-induced acute and lethal hepatic injury. HFE7A reduced the serum aminotransferase level which was elevated after Jo2 injection. HFE7A also inhibited caspase activation and mitochondrial depolarization in hepatocytes derived from apoptosis induced by Jo2 injection. The protective effect of HFE7A against Jo2-induced apoptosis in mouse hepatocytes was reproducible in vitro. The cell death and caspase activation in isolated mouse hepatocytes were induced by incubating these cells with Jo2 in vitro, and HFE7A inhibited the cell death and caspase activation in mouse hepatocytes in a dose-dependent manner. The affinity of HFE7A to mouse Fas was lower than that of Jo2. The binding of Jo2 to neither recombinant mouse Fas nor mouse hepatocytes was inhibited by an excessive amount of HFE7A. Interestingly, HFE7A bound to hepatocytes isolated from Fas knockout mice. From these results, it is suggested that HFE7A may exert a protective effect against Jo2-induced hepatitis not by competitively inhibiting the binding of Jo2 to Fas on hepatocytes, and that a distinct molecule other than Fas may possibly be involved in the protective effect of HFE7A against Jo2-induced hepatic injury. PMID:20024619

Watanabe, Kenji; Takahashi, Shu; Ichikawa, Kimihisa

2009-01-01

152

The construction of transgenic and gene knockout\\/knockin mouse models of human disease  

Microsoft Academic Search

The genetic and physiological similarities between mice and humans have focused considerable attention on rodents as potential\\u000a models of human health and disease. Together with the wealth of resources, knowledge, and technologies surrounding the mouse\\u000a as a model system, these similarities have propelled this species to the forefront of biomedical research. The advent of genomic\\u000a manipulation has quickly led to

Alfred Doyle; Michael P. McGarry; Nancy A. Lee; James J. Lee

153

New cell lines from mouse epiblast share defining features with human embryonic stem cells  

Microsoft Academic Search

The application of human embryonic stem (ES) cells in medicine andbiologyhasaninherentrelianceonunderstandingthestarting cellpopulation.HumanEScellsdifferfrommouseEScellsandthe specific embryonic origin of both cell types is unclear. Previous work suggested that mouse ES cells could only be obtained from the embryo before implantation in the uterus1-5. Here we show that cell lines can be derived from the epiblast, a tissue of the post- implantation embryo that

Josh G. Chenoweth; Frances A. Brook; Timothy J. Davies; Edward P. Evans; David L. Mack; Richard L. Gardner; Paul J. Tesar; Ronald D. G. McKay

2007-01-01

154

Comparative Sequence Analysis of 634 kb of the Mouse Chromosome 16 Region of Conserved Synteny with the Human Velocardiofacial Syndrome Region on Chromosome 22q11.2  

Microsoft Academic Search

Mouse genomic DNA sequence extending 634 kb on proximal mouse chromosome 16 was compared to the corresponding human sequence from chromosome 22q11.2. Haploinsufficiency for this region results in velocardiofacial syndrome (VCFS) in humans. The mouse region is rearranged into three conserved blocks relative to human, but gene content and position are highly conserved within these blocks. Examination of the boundaries

James Lund; Feng Chen; Axin Hua; Bruce Roe; Marcia Budarf; Beverly S. Emanuel; Roger H. Reeves

2000-01-01

155

A TRANSGENIC MOUSE MODEL EXPRESSING EXCLUSIVELY HUMAN HEMOGLOBIN E: INDICATIONS OF A MILD OXIDATIVE STRESS  

PubMed Central

Hemoglobin (Hb) E (?26 Glu? Lys) is the most common abnormal hemoglobin (Hb) variant in the world. Homozygotes for HbE are mildly thalassemic as a result of the alternate splice mutation and present with a benign clinical picture (microcytic and mildly anemic) with rare clinical symptoms. Given that the human red blood cell (RBC) contains both HbE and excess ?-chains along with minor hemoglobins, the consequence of HbE alone on RBC pathophysiology has not been elucidated. This becomes critical for the highly morbid ?E-thalassemia disease. We have generated transgenic mice exclusively expressing human HbE (HbEKO) that exhibit the known aberrant splicing of ?E globin mRNA, but are essentially non-thalassemic as demonstrated by RBC ?/? (human) globin chain synthesis. These mice exhibit hematological characteristics similar to presentations in human EE individuals: microcytic RBC with low MCV and MCH but normal MCHC; target RBC; mild anemia with low Hb, HCT and mildly elevated reticulocyte levels and decreased osmotic fragility, indicating altered RBC surface area to volume ratio. These alterations are correlated with a mild RBC oxidative stress indicated by enhanced membrane lipid peroxidation, elevated zinc protoporphyrin levels, and by small but significant changes in cardiac function. The C57 (background) mouse and full KO mouse models expressing HbE with the presence of HbS or HbA are used as controls. In select cases, the HbA full KO mouse model is compared but found to be limited due to its RBC thalassemic characteristics. Since the HbEKO mouse RBC lacks an abundance of excess ?-chains that would approximate a mouse thalassemia (or a human thalassemia), the results indicate that the observed in vivo RBC mild oxidative stress arises, at least in part, from the molecular consequences of the HbE mutation. PMID:22260787

Chen, Qiuying; Fabry, Mary E.; Rybicki, Anne C.; Suzuka, Sandra M.; Balazs, Tatiana C.; Etzion, Zipora; de Jong, Kitty; Akoto, Edna K.; Canterino, Joseph E.; Kaul, Dhananjay K.; Kuypers, Frans A.; Lefer, David; Bouhassira, Eric E.; Hirsch, Rhoda Elison

2012-01-01

156

A transgenic mouse model expressing exclusively human hemoglobin E: indications of a mild oxidative stress.  

PubMed

Hemoglobin (Hb) E (?26 Glu?Lys) is the most common abnormal hemoglobin (Hb) variant in the world. Homozygotes for HbE are mildly thalassemic as a result of the alternate splice mutation and present with a benign clinical picture (microcytic and mildly anemic) with rare clinical symptoms. Given that the human red blood cell (RBC) contains both HbE and excess ?-chains along with minor hemoglobins, the consequence of HbE alone on RBC pathophysiology has not been elucidated. This becomes critical for the highly morbid ?(E)-thalassemia disease. We have generated transgenic mice exclusively expressing human HbE (HbEKO) that exhibit the known aberrant splicing of ?(E) globin mRNA, but are essentially non-thalassemic as demonstrated by RBC ?/? (human) globin chain synthesis. These mice exhibit hematological characteristics similar to presentations in human EE individuals: microcytic RBC with low MCV and MCH but normal MCHC; target RBC; mild anemia with low Hb, HCT and mildly elevated reticulocyte levels and decreased osmotic fragility, indicating altered RBC surface area to volume ratio. These alterations are correlated with a mild RBC oxidative stress indicated by enhanced membrane lipid peroxidation, elevated zinc protoporphyrin levels, and by small but significant changes in cardiac function. The C57 (background) mouse and full KO mouse models expressing HbE with the presence of HbS or HbA are used as controls. In select cases, the HbA full KO mouse model is compared but found to be limited due to its RBC thalassemic characteristics. Since the HbEKO mouse RBC lacks an abundance of excess ?-chains that would approximate a mouse thalassemia (or a human thalassemia), the results indicate that the observed in vivo RBC mild oxidative stress arises, at least in part, from the molecular consequences of the HbE mutation. PMID:22260787

Chen, Qiuying; Fabry, Mary E; Rybicki, Anne C; Suzuka, Sandra M; Balazs, Tatiana C; Etzion, Zipora; de Jong, Kitty; Akoto, Edna K; Canterino, Joseph E; Kaul, Dhananjay K; Kuypers, Frans A; Lefer, David; Bouhassira, Eric E; Hirsch, Rhoda Elison

2012-02-15

157

The mouse homologue of the tuberin gene (TSC2) maps to a conserved synteny group between mouse chromosome 17 and human 16p13.3  

SciTech Connect

The tuberous sclerosis gene (TSC2) on human chromosome 16p13.3 has recently been identified. Several markers from this region have previously been shown to be members of a conserved synteny group, in the mouse located on chromosome 17. The mouse region includes markers D17Lon1, D17Lon2, D17Lon3, and D17Lon4, which are linked to the {alpha}-globin pseudogene Hba-ps4 on chromosome 17, while the corresponding human markers, NK12, NK92, sazD, and KM17, are linked to the functional {alpha}-globin locus near the tip of chromosome 16p. Since the human TSC2 maps in close proximity to NK12, we wanted to investigate whether a mouse gene, homologous to TSC2, was present on mouse chromosome 17 and thus included in the conserved synteny group. During the characterization of transcripts from the human PKD1 region on human chromosome 16p13.3, we isolated three short clones encoding fragments of TSC2 from a human fetal brain cDNA library enriched for transcripts from the PKD1 region. These TSC2 clones were used as probes to screen a mouse teratocarcinoma (PCC4) cDNA library (Stratagene), at a final stringency of 0.3 x SSC, 0.1% SDS at 65{degrees}C. One of the positive clones isolated, mTS-1, had a 2.8-kb insert. Two hundred bases from each end of the insert were sequenced, showing 88 and 83.5% identity to the human tuberin nucleotide sequence, with the 5{prime} end of the clone starting at position 2351 and the 3{prime} end ending at position 5265. The high degree of homology to the human tuberin sequence suggests that clone mTS-1 is indeed derived from the mouse homologue of TSC2. 11 refs., 1 fig.

Olsson, P.G.; Sutherland, H.F.; Nowicka, U. [Lincoln`s Inn Fields, London (United Kingdom)] [and others] [Lincoln`s Inn Fields, London (United Kingdom); and others

1995-01-01

158

Confirmation of the synteny between human chromosome 22 and mouse chromosome 11  

SciTech Connect

Comparative mapping based on the existence of conserved synteny between human and mouse chromosomes is a useful strategy in determining the chromosomal location of a gene. Using recombinant inbred (RI) strains of mice derived from AKR/J and DBA/2J cross (AKXD), we confirmed the existence of a small area of synteny between the chromosome 22 segment carrying the gene for neurofibromatosis type 2 (NF2) and the most proximal region of mouse chromosome 11 containing its homologue (Nf2). By analyzing the allele distribution pattern of 24 AKXD RI mice using a novel polymorphic dinucleotide (CT){sub n} repeat (D11Mcg1) in the 3{prime} untranslated region of the mouse Nf2 gene and PCR-based simple sequence repeat markers (Research Genetics), we established the chromosomal position of Nf23 on mouse chromosome 11. Minimizing the number of double recombinants in the RI strains analyzed suggests tight linkage of Nf2 to D11Mit1 and D11Mit72 which map to a region containing the genes for leukemia inhibitory factor (Lif) and neurofilament heavy chain polypeptide (Nfh). This region is syntenic to the segment carrying the genes LIF, NF2 and NEFH on human chromosome 22q. We show that D11Mcg1 will be useful for mapping of genes and closely linked loci on the proximal region of mouse chromosome 11. Our data demonstrate the predictive value of comparative mapping and confirm that human chromosome 22q12 is syntenic to the most proximal region of mouse chromosome 11.

Claudio, J.O.; Rouleau, G.A.; Malo, D. [McGill Univ., Quebec (Canada)

1994-09-01

159

Formaldehyde Induces Micronuclei in Mouse Erythropoietic Cells and Suppresses the Expansion of Human Erythroid Progenitor Cells  

PubMed Central

Although formaldehyde (FA) has been classified as a human leukemogen, the mechanisms of leukemogenesis remain elusive. Previously, using colony-forming assays in semi-solid media, we showed that FA exposure in vivo and in vitro was toxic to human hematopoietic stem/progenitor cells. In the present study, we have applied new liquid in vitro erythroid expansion systems to further investigate the toxic effects of FA (0–150 µM) on cultured mouse and human hematopoietic stem/progenitor cells. We determined micronucleus (MN) levels in polychromatic erythrocytes (PCEs) differentiated from mouse bone marrow. We measured cell growth, cell cycle distribution, and chromosomal instability, in erythroid progenitor cells (EPCs) expanded from human peripheral blood mononuclear cells. FA significantly induced MN in mouse PCEs and suppressed human EPC expansion in a dose-dependent manner, compared with untreated controls. In the expanded human EPCs, FA slightly increased the proportion of cells in G2/M at 100 µM and aneuploidy frequency in chromosomes 7 and 8 at 50 µM. Our findings provide further evidence of the toxicity of FA to hematopoietic stem/progenitor cells and support the biological plausibility of FA-induced leukemogenesis. PMID:24188930

Ji, Zhiying; Li, Xiyi; Fromowitz, Michele; Mutter-Rottmayer, Elizabeth; Tung, Judy; Smith, Martyn T.; Zhang, Luoping

2013-01-01

160

Computational analysis of full-length mouse cDNAs compared with human genome sequences  

Microsoft Academic Search

.   Although the sequencing of the human genome is complete, identification of encoded genes and determination of their structures\\u000a remain a major challenge. In this report, we introduce a method that effectively uses full-length mouse cDNAs to complement\\u000a efforts in carrying out these difficult tasks. A total of 61,227 RIKEN mouse cDNAs (21,076 full-length and 40,151 EST sequences\\u000a containing certain

Shinji Kondo; Akira Shinagawa; Tetsuya Saito; Hidenori Kiyosawa; Itaru Yamanaka; Katsunori Aizawa; Shiro Fukuda; Ayako Hara; Masayoshi Itoh; Jun Kawai; Kazuhiro Shibata; Yoshihide Hayashizaki

2001-01-01

161

Human feeder cells can support the undifferentiated growth of human and mouse embryonic stem cells using their own basic fibroblast growth factors.  

PubMed

In the culture system using human feeder cells, the mechanism through which these cells support undifferentiated growth of embryonic stem cells (ESCs) has not been well investigated. Here, we explored the mechanisms of 3 kinds of human feeder cells, including human placental cells from the chorionic plate, human bone marrow stromal cells, and human foreskin fibroblasts. First, we determined that undifferentiated growth of 2 kinds each of human (H1 and HSF6) and mouse (D3 and CE3) ESCs was possible in all human feeder cell types tested (human placental cells, human bone marrow stromal cells, and human foreskin fibroblasts), without the need for exogenous cytokine supplementation including basic fibroblast growth factor (bFGF) and leukemia inhibitory factor. We then prepared their corresponding endogenous bFGF-knockout feeders using siRNA and tried to maintain human and mouse ESCs in their undifferentiated state; however, neither human nor mouse ESCs could be maintained in bFGF-knockout human feeder cells. The expressions of stemness markers such as Oct-4 and Nanog were significantly decreased in the bFGF-knockout group compared with those in the controls, and differentiation had already occurred, despite the undifferentiated morphologic appearance of the ESCs. In conclusion, human feeder cells are able to support the undifferentiated growth of human and mouse ESCs via bFGF synthesis. Further, a bFGF-dependent pathway might be crucial for maintaining the undifferentiated characteristics of mouse and human ESCs. PMID:21231869

Park, Yong; Kim, Ji Hea; Lee, Seung Jin; Choi, In Young; Park, Seh Jong; Lee, Se Ryeon; Sung, Hwa Jung; Yoo, Young Do; Geum, Dong Ho; Choi, Chul Won; Kim, Sun Haeng; Kim, Byung Soo

2011-11-01

162

Expression of human apolipoprotein E reduces amyloid-? deposition in a mouse model of Alzheimer's disease  

PubMed Central

The ?4 allele of apolipoprotein E (apo E) is associated with an increased risk for developing Alzheimer's disease (AD). This may be due to interactions between apo E and the amyloid-? protein (A?). To assess the effects of human apo E isoforms on A? deposition in vivo, we bred apo E3 and apo E4 hemizygous (+/–) transgenic mice expressing apo E by astrocytes to mice homozygous (+/+) for a mutant amyloid precursor protein (APPV717F) transgene that develop age-dependent AD neuropathology. All mice were on a mouse apo E null (–/–) background. By nine months of age, APPV717F+/–, apo E–/– mice had developed A? deposition, and, as reported previously, the quantity of A? deposits was significantly less than that seen in APPV717F+/– mice expressing mouse apo E. In contrast to effects of mouse apo E, similar levels of human apo E3 and apo E4 markedly suppressed early A? deposition at nine months of age in APPV717F+/– transgenic mice, even when compared with mice lacking apo E. These findings suggest that human apo E isoforms decrease A? aggregation or increase A? clearance relative to an environment in which mouse apo E or no apo E is present. The results may have important implications for understanding mechanisms underlying the link between apo E and AD. PMID:10079115

Holtzman, David M.; Bales, Kelly R.; Wu, Shan; Bhat, Priyanka; Parsadanian, Maia; Fagan, Anne M.; Chang, Louis K.; Sun, Yuling; Paul, Steven M.

1999-01-01

163

Significance of Mouse Models in Dissecting the Mechanism of Human Eosinophilic Gastrointestinal Diseases (EGID)  

PubMed Central

Evidence suggests that eosinophils play a significant role in promoting several gastrointestinal diseases, and animal models are the significant tools to understand the pathogenesis of eosinophil-associatd inflammatory disorders. The focus of this review is on the significance of mouse models that mimic the characteristics of human eosinophilic gastrointestinal diseases. Eosinophils are the important leukocytes with diverse functions in the gastrointestinal tract, such as excretion of intestinal parasites and promoting the pathogenesis of a numerous allergic gastrointestinal disorders like food allergy, parasitic infection, allergic gastroenteritis, allergic colitis, and eosinophilic esophagitis. Among these gastrointestinal diseases, the eosinophilic esophagitis is the most recently recognized disease and the mouse models are proven to be an effective tool to understand the pathophysiology of disease and to test novel treatment strategies. Based on patients allergic conditions and the gene overexpressed in human EGID, a number of gene overexpressed and allergen-challenged mouse models of gastrointestinal disorders were developed. These models were utilized to explore the mechanism(s) that promotes the eosinophil-mediated gastrointestinal diseases including the role of the eosinophil responsive cytokines and chemokines. Herein, we have provided a detailed overviews of the mouse models of gastrointestinal disorders that mimic the human eosinophilic gastrointestinal diseases and can be utilized as a tool for understanding the diseases pathogenesis and developing novel therapeutic targets.

Mishra, Anil

2015-01-01

164

Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information  

PubMed Central

Background The genetic contributions to human common disorders and mouse genetic models of disease are complex and often overlapping. In common human diseases, unlike classical Mendelian disorders, genetic factors generally have small effect sizes, are multifactorial, and are highly pleiotropic. Likewise, mouse genetic models of disease often have pleiotropic and overlapping phenotypes. Moreover, phenotypic descriptions in the literature in both human and mouse are often poorly characterized and difficult to compare directly. Methods In this report, human genetic association results from the literature are summarized with regard to replication, disease phenotype, and gene specific results; and organized in the context of a systematic disease ontology. Similarly summarized mouse genetic disease models are organized within the Mammalian Phenotype ontology. Human and mouse disease and phenotype based gene sets are identified. These disease gene sets are then compared individually and in large groups through dendrogram analysis and hierarchical clustering analysis. Results Human disease and mouse phenotype gene sets are shown to group into disease and phenotypically relevant groups at both a coarse and fine level based on gene sharing. Conclusion This analysis provides a systematic and global perspective on the genetics of common human disease as compared to itself and in the context of mouse genetic models of disease. PMID:20092628

2010-01-01

165

Sequence divergence and chromosomal rearrangements during the evolution of human pseudoautosomal genes and their mouse homologs  

SciTech Connect

The pseudoautosomal region (PAR) is an area of sequence identity between the X and Y chromosomes and is important for mediating X-Y pairing during male meiosis. Of the seven genes assigned to the human PAR, none of the mouse homologs have been isolated by a cross-hybridization strategy. Two of these homologs, Csfgmra and II3ra, have been isolated using a functional assay for the gene products. These genes are quite different in sequence from their human homologs, showing only 60-70% sequence similarity. The Csfgmra gene has been found to further differ from its human homolog in being isolated not on the sex chromosomes, but on a mouse autosome (chromosome 19). Using a mouse-hamster somatic cell hybrid mapping panel, we have mapped the II3ra gene to yet another mouse autosome, chromosome 14. Attempts to clone the mouse homolog of the ANT3 locus resulted in the isolation of two related genes, Ant1 and Ant2, but failed to yield the Ant3 gene. Southern blot analysis of the ANT/Ant genes showed the Ant1 and Ant2 sequences to be well-conserved among all of a dozen mammals tested. In contrast, the ANT3 gene only showed hybridization to non-rodent mammals, suggesting it is either greatly divergent or has been deleted in the rodent lineage. Similar experiments with other human pseudoautosomal probes likewise showed a lack of hybridization to rodent sequences. The results show a definite trend of extensive divergence of pseudoautosomal sequences in addition to chromosomal rearrangements involving X;autosome translocations and perhaps gene deletions. Such observations have interesting implications regarding the evolution of this important region of the sex chromosomes.

Ellison, J.; Li, X.; Francke, U. [USCS, San Francisco, CA (United States)] [and others

1994-09-01

166

Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model  

PubMed Central

Asbestos fibers cause chronic inflammation that may be critical to the development of malignant mesothelioma (MM). Two human MM cell lines (Hmeso, PPM Mill) were used in a SCID mouse xenograft model to assess time-dependent patterns of inflammation and tumor formation. After intraperitoneal (IP) injection of MM cells, mice were euthanized at 7, 14, and 30 days, and peritoneal lavage fluid (PLF) was examined for immune cell profiles and human and mouse cytokines. Increases in human MM-derived IL-6, IL-8, bFGF, and VEGF were observed in mice at 7 days postinjection of either MM line, and a striking neutrophilia was observed at all time points. Free-floating tumor spheroids developed in mice at 14 days, and both spheroids and adherent MM tumor masses occurred in all mice at 30 days. Results suggest that inflammation and cytokine production precede and may be critical to the development of MMs. PMID:20716277

Hillegass, Jedd M.; Shukla, Arti; Lathrop, Sherrill A.; MacPherson, Maximilian B.; Beuschel, Stacie L.; Butnor, Kelly J.; Testa, Joseph R.; Pass, Harvey I.; Carbone, Michele; Steele, Chad; Mossman, Brooke T.

2010-01-01

167

The Pathological Phenotypes of Human TDP-43 Transgenic Mouse Models Are Independent of Downregulation of Mouse Tdp-43  

PubMed Central

Tar DNA binding protein 43 (TDP-43) is the major component of pathological deposits in frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) and in amyotrophic lateral sclerosis (ALS). It has been reported that TDP-43 transgenic mouse models expressing human TDP-43 wild-type or ALS-associated mutations recapitulate certain ALS and FTLD pathological phenotypes. Of note, expression of human TDP-43 (hTDP-43) reduces the levels of mouse Tdp-43 (mTdp-43). However, it remained unclear whether the mechanisms through which TDP-43 induces ALS or FTLD-like pathologies resulted from a reduction in mTdp-43, an increase in hTDP-43, or a combination of both. In elucidating the role of mTdp-43 and hTDP-43 in hTDP-43 transgenic mice, we observed that reduction of mTdp-43 in non-transgenic mice by intraventricular brain injection of AAV1-shTardbp leads to a dramatic increase in the levels of splicing variants of mouse sortilin 1 and translin. However, the levels of these two abnormal splicing variants are not increased in hTDP-43 transgenic mice despite significant downregulation of mTdp-43 in these mice. Moreover, further downregulation of mTdp-43 in hTDP-43 hemizygous mice, which are asymptomatic, to the levels equivalent to that of mTdp-43 in hTDP-43 homozygous mice does not induce the pathological phenotypes observed in the homozygous mice. Lastly, the number of dendritic spines and the RNA levels of TDP-43 RNA targets critical for synapse formation and function are significantly decreased in symptomatic homozygous mice. Together, our findings indicate that mTdp-43 downregulation does not lead to a loss of function mechanism or account for the pathological phenotypes observed in hTDP-43 homozygous mice because hTDP-43 compensates for the reduction, and associated functions of mTdp-43. Rather, expression of hTDP-43 beyond a certain threshold leads to abnormal metabolism of TDP-43 RNA targets critical for neuronal structure and function, which might be responsible for the ALS or FTLD-like pathologies observed in homozygous hTDP-43 transgenic mice. PMID:23922830

Xu, Ya-Fei; Prudencio, Mercedes; Hubbard, Jaime M.; Tong, Jimei; Whitelaw, Ena C.; Jansen-West, Karen; Stetler, Caroline; Cao, Xiangkun; Song, John; Zhang, Yong-Jie

2013-01-01

168

Immunopathological characterization of selected mouse models of inflammatory bowel disease: Comparison to human disease.  

PubMed

Inflammatory bowel diseases (IBD) are chronic, relapsing conditions of multifactorial etiology. The two primary diseases of IBD are Crohn's disease (CD) and ulcerative colitis (UC). Both entities are hypothesized to occur in genetically susceptible individuals due to microbial alterations and environmental contributions. The exact etiopathogenesis, however, is not known for either disease. A variety of mouse models of CD and UC have been developed to investigate the pathogenesis of these diseases and evaluate treatment modalities. Broadly speaking, the mouse models can be divided into 4 categories: genetically engineered, immune manipulated, spontaneous and erosive/chemically induced. No one mouse model completely recapitulates the immunopathology of CD or UC, however each model possesses particular similarities to human IBD and offers advantageous for specific details of IBD pathogenesis. Here we discuss the more commonly used models in each category and critically evaluate how the immunopathology induced compares to CD or UC, as well as the advantages and disadvantages associated with each model. PMID:24935242

Jones-Hall, Yava L; Grisham, Matthew B

2014-11-01

169

Effective utilization and appropriate selection of GEMMs for translational integration of mouse and human trials  

PubMed Central

The landscape of cancer research and therapy has radically changed over the past decades in at least two major respects: our ability to model cancer in the mouse has risen to an unprecedented level of accuracy at the same time that novel cancer drugs have been developed in record numbers. This has led to an explosion in GEMM (Genetically Engineered Mouse Model) research, as GEMMs can potentially be used to test and optimize drugs in a variety of ways: pre-clinically (prior to testing in human patients), co-clinically (in parallel with human testing) and post-clinically (to optimize standard of care therapy). Thus the potential applications of faithful GEMMs of cancer have expanded from analysis of causal relationships between genetic aberrancies and tumorigenesis in preclinical efforts to a more comprehensive and systematic utilization of GEMMs for drug testing and clinical trial optimization. As GEMM research has grown, however, few standard protocols have been put in place regarding GEMM trials done in parallel with human trials (the “co-clinical” approach), or in situations in which the available cohort of human patients is too small for valid statistical analysis. The success of such efforts will require an increased attention to the rigor with which mouse and human clinical efforts are designed, executed and integrated. PMID:24173311

Abate-Shen, Cory; Pandolfi, Pier Paolo

2015-01-01

170

The Construction of Transgenic and Gene Knockout/Knockin Mouse Models of Human Disease  

PubMed Central

The genetic and physiological similarities between mice and humans have focused considerable attention on rodents as potential models of human health and disease. Together with the wealth of resources, knowledge, and technologies surrounding the mouse as a model system, these similarities have propelled this species to the forefront of biomedical research. The advent of genomic manipulation has quickly led to the creation and use of genetically engineered mice as powerful tools for cutting edge studies of human disease research, including the discovery, refinement, and utility of many currently available therapeutic regimes. In particular, the creation of genetically modified mice as models of human disease has remarkably changed our ability to understand the molecular mechanisms and cellular pathways underlying disease states. Moreover, the mouse models resulting from gene transfer technologies have been important components correlating an individual’s gene expression profile to the development of disease pathologies. The objective of this review is to provide physician-scientists with an expansive historical and logistical overview of the creation of mouse models of human disease through gene transfer technologies. Our expectation is that this will facilitate on-going disease research studies and may initiate new areas of translational research leading to enhanced patient care. PMID:21800101

Doyle, Alfred; McGarry, Michael P.; Lee, Nancy A.; Lee, James J.

2012-01-01

171

Conservation of exon scrambling in human and mouse  

E-print Network

Exon scrambling is a phenomenon in which the exons of an mRNA transcript are spliced in an order inconsistent with that of the genome. In this thesis, I present a computational analysis of scrambled exons in human and ...

Hamilton, Monica L. (Monica Lauren)

2012-01-01

172

In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers.  

PubMed

The circulating tumor cells (CTCs) appear to be a marker of metastasis development, especially, for highly aggressive and epidemically growing melanoma malignancy that is often metastatic at early stages. Recently, we introduced in vivo photoacoustic (PA) flow cytometry (PAFC) for label-free detection of mouse B16F10 CTCs in melanoma-bearing mice using melanin as an intrinsic marker. Here, we significantly improve the speed of PAFC by using a high-pulse repetition rate laser operating at 820 and 1064 nm wavelengths. This platform was used in preclinical studies for label-free PA detection of low-pigmented human CTCs. Demonstrated label-free PAFC detection, low level of background signals, and favorable safety standards for near-infrared irradiation suggest that a fiber laser operating at 1064 nm at pulse repetition rates up to 0.5 MHz could be a promising source for portable clinical PAFC devices. The possible applications can include early diagnosis of melanoma at the parallel progression of primary tumor and CTCs, detection of cancer recurrence, residual disease and real-time monitoring of therapy efficiency by counting CTCs before, during, and after therapeutic intervention. Herewith, we also address sensitivity of label-free detection of melanoma CTCs and introduce in vivo CTC targeting by magnetic nanoparticles conjugated with specific antibody and magnetic cells enrichment. PMID:21786417

Nedosekin, Dmitry A; Sarimollaoglu, Mustafa; Ye, Jian-Hui; Galanzha, Ekaterina I; Zharov, Vladimir P

2011-10-01

173

In Vivo Ultra-Fast Photoacoustic Flow Cytometry of Circulating Human Melanoma Cells Using Near-Ingrared High-Pulse Rate Lasers  

PubMed Central

The circulating tumor cells (CTCs) appear to be a marker of metastasis development, especially, for highly aggressive and epidemically growing melanoma malignancy that is often metastatic at early stages. Recently, we introduced in vivo photoacoustic (PA) flow cytometry (PAFC) for label-free detection of mouse B16F10 CTCs in melanoma-bearing mice using melanin as an intrinsic marker. Here, we significantly improve the speed of PAFC by using a high pulse repetition rate laser operating at 820 and 1064 nm wavelengths. This platform was used in preclinical studies for label-free PA detection of low pigmented human CTCs. Demonstrated label-free PAFC detection, low level of background signals, and favorable safety standards for near infrared irradiation suggest that a fiber laser operating at 1064 nm at pulse repetition rates up to 0.5 MHz could be a promising source for portable clinical PAFC devices. The possible applications can include early diagnosis of melanoma at the parallel progression of primary tumor and CTCs, detection of cancer recurrence, residual disease, and real-time monitoring of therapy efficiency by counting CTCs before, during and after therapeutic intervention. Herewith, we also address sensitivity of label-free PAFC melanoma CTCs detection and introduce in vivo CTCs targeting by magnetic nanoparticles conjugated with specific antibody and magnetic cells enrichment. PMID:21786417

Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Ye, John; Galanzha, Ekaterina I.; Zharov, Vladimir P.

2011-01-01

174

Neovascular Niche for Human Myeloma Cells in Immunodeficient Mouse Bone  

Microsoft Academic Search

The interaction with bone marrow (BM) plays a crucial role in pathophysiological features of multiple myeloma (MM), including cell proliferation, chemoresistance, and bone lesion progression. To characterize the MM-BM interactions, we utilized an in vivo experimental model for human MM in which a GFP-expressing human MM cell line is transplanted into NOG mice (the NOG-hMM model). Transplanted MM cells preferentially

Hirono Iriuchishima; Keiyo Takubo; Yoshitaka Miyakawa; Ayako Nakamura-Ishizu; Yoshiteru Miyauchi; Nobuyuki Fujita; Kana Miyamoto; Takeshi Miyamoto; Eiji Ikeda; Masahiro Kizaki; Yoshihisa Nojima; Toshio Suda

2012-01-01

175

Impact of cigarette smoke on the human and mouse lungs: a gene-expression comparison study.  

PubMed

Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences. Using human and mouse whole-genome gene expression arrays, changes in gene expression, signaling pathways and biological functions were assessed. We found that genes significantly modulated by cigarette smoke in humans were enriched for genes modulated by cigarette smoke in mice, suggesting a similar response of both species. Sixteen smoking-induced genes were in common between humans and mice including six newly reported to be modulated by cigarette smoke. In addition, we identified a new conserved pulmonary response to cigarette smoke in the induction of phospholipid metabolism/degradation pathways. Finally, the majority of biological functions modulated by cigarette smoke in humans were also affected in mice. Altogether, the present study provides information on similarities and differences in lung gene expression response to cigarette smoke that exist between human and mouse. Our results foster the idea that animal models should be used to study the involvement of pathways rather than single genes in human diseases. PMID:24663285

Morissette, Mathieu C; Lamontagne, Maxime; Bérubé, Jean-Christophe; Gaschler, Gordon; Williams, Andrew; Yauk, Carole; Couture, Christian; Laviolette, Michel; Hogg, James C; Timens, Wim; Halappanavar, Sabina; Stampfli, Martin R; Bossé, Yohan

2014-01-01

176

Impact of Cigarette Smoke on the Human and Mouse Lungs: A Gene-Expression Comparison Study  

PubMed Central

Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences. Using human and mouse whole-genome gene expression arrays, changes in gene expression, signaling pathways and biological functions were assessed. We found that genes significantly modulated by cigarette smoke in humans were enriched for genes modulated by cigarette smoke in mice, suggesting a similar response of both species. Sixteen smoking-induced genes were in common between humans and mice including six newly reported to be modulated by cigarette smoke. In addition, we identified a new conserved pulmonary response to cigarette smoke in the induction of phospholipid metabolism/degradation pathways. Finally, the majority of biological functions modulated by cigarette smoke in humans were also affected in mice. Altogether, the present study provides information on similarities and differences in lung gene expression response to cigarette smoke that exist between human and mouse. Our results foster the idea that animal models should be used to study the involvement of pathways rather than single genes in human diseases. PMID:24663285

Morissette, Mathieu C.; Lamontagne, Maxime; Bérubé, Jean-Christophe; Gaschler, Gordon; Williams, Andrew; Yauk, Carole; Couture, Christian; Laviolette, Michel; Hogg, James C.; Timens, Wim; Halappanavar, Sabina; Stampfli, Martin R.; Bossé, Yohan

2014-01-01

177

Development of a human antibody tolerant mouse model to assess the immunogenicity risk due to aggregated biotherapeutics.  

PubMed

We describe a novel human immunoglobulin G2 (IgG2 )-tolerant and immune-competent heterozygous mouse model (Xeno-het) developed by crossbreeding a human Ig-tolerized XenoMouse® with a C57BL/6J wild-type mouse. The Xeno-het mouse expresses both mouse and human immunoglobulin G (IgG) genes, resulting in B-cells expressing human and mouse IgG, and secretion of human and mouse Ig into serum. This model was utilized to evaluate the immunogenicity risk of aggregated and chemically modified human antibodies. The mice were tested for their ability to break tolerance to self-tolerant monomeric antibodies. Aggregates made by mechanical stirring elicited an anti-drug antibody (ADA) response, but did not induce a robust and long-term memory B and T-cell response. Chemically modified antibodies made by oxidation were only weak and transient inducers of an immune response, as measured by a lack of both an ADA response and a B-cell antigen-specific response. Aggregate size was an important characteristic, as specific-sized protein-coated beads were able to elicit an immune response. We propose the use of this model to identify risk factors such as aggregation during manufacturing at early development for an increased potential immunogenicity risk. PMID:23925953

Bi, Vivian; Jawa, Vibha; Joubert, Marisa K; Kaliyaperumal, Arunan; Eakin, Catherine; Richmond, Karen; Pan, Oscar; Sun, Jilin; Hokom, Martha; Goletz, Theresa J; Wypych, Jette; Zhou, Lei; Kerwin, Bruce A; Narhi, Linda O; Arora, Taruna

2013-10-01

178

Development of a Mouse Model of Helicobacter pylori Infection that Mimics Human Disease  

NASA Astrophysics Data System (ADS)

The human pathogen Helicobacter pylori is associated with gastritis, peptic ulcer disease, and gastric cancer. The pathogenesis of H. pylori infection in vivo was studied by adapting fresh clinical isolates of bacteria to colonize the stomachs of mice. A gastric pathology resembling human disease was observed in infections with cytotoxin-producing strains but not with noncytotoxic strains. Oral immunization with purified H. pylori antigens protected mice from bacterial infection. This mouse model will allow the development of therapeutic agents and vaccines against H. pylori infection in humans.

Marchetti, Marta; Arico, Beatrice; Burroni, Daniela; Figura, Natale; Rappuoli, Rino; Ghiara, Paolo

1995-03-01

179

Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging  

Microsoft Academic Search

We have recently identified a novel gene, klotho (kl), which may suppress several aging phenotypes. A defect of kl gene expression in the mouse results in a syndrome resembling human aging, such as arteriosclerosis, skin atrophy, osteoporosis, and pulmonary emphysema. To determine whether mouse homozygotes for the kl mutation (kl\\/ kl) show abnormal glucose metabolism, an oral glucose tolerance test

T. Utsugi; T. Ohno; Y. Ohyama; T. Uchiyama; Y. Saito; Y. Matsumura; H. Aizawa; H. Itoh; M. Kurabayashi; S. Kawazu; S. Tomono; Y. Oka; T. Suga; M. Kuro-o; Y. Nabeshima; R. Nagai

2000-01-01

180

Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A  

Microsoft Academic Search

Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular

Masataka Fujiwara; Peishi Yan; Tomomi G. Otsuji; Genta Narazaki; Hideki Uosaki; Hiroyuki Fukushima; Koichiro Kuwahara; Masaki Harada; Hiroyuki Matsuda; Satoshi Matsuoka; Keisuke Okita; Kazutoshi Takahashi; Masato Nakagawa; Tadashi Ikeda; Ryuzo Sakata; Christine L. Mummery; Norio Nakatsuji; Shinya Yamanaka; Kazuwa Nakao; Jun K. Yamashita; Felipe Prosper

2011-01-01

181

LRP1 Receptor Controls Adipogenesis and Is Up-Regulated In Human and Mouse Obese Adipose Tissue  

E-print Network

LRP1 Receptor Controls Adipogenesis and Is Up- Regulated In Human and Mouse Obese Adipose Tissue the first evidences that LRP1 is significantly up-regulated in obese C57BI6/J mouse adipocytes and obese be an important therapeutic target in obesity. Citation: Masson O, Chavey C, Dray C, Meulle A, Daviaud D, et al

Paris-Sud XI, Université de

182

Human and mouse mitochondrial orthologs of bacterial ClpX  

Microsoft Academic Search

.   We have determined the cDNA sequence and exon\\/intron structure of the human CLPX gene encoding a human ortholog of the E. coli ClpX chaperone and protease subunit. The CLPX gene comprises 14 exons and encodes a 633-amino acid-long precursor polypeptide.\\u000a The polypeptide contains an N-terminal putative mitochondrial transit peptide, and expression of a full-length ClpX cDNA tagged\\u000a at its

Thomas J. Corydon; Mette Wilsbech; Cathrine Jespersgaard; Brage S. Andresen; Anders D. Børglum; Søren Pedersen; Lars Bolund; Niels Gregersen; Peter Bross

2000-01-01

183

Cloning of the human keratin 18 gene and its expression in nonepithelial mouse cells.  

PubMed Central

Human keratin 18 (K18) and the homologous mouse protein, Endo B, are intermediate filament subunits of the type I keratin class. Both are expressed in many simple epithelial cell types including trophoblasts, the first differentiated cell type to appear during mouse embryogenesis. The K18 gene was identified and cloned from among the 15 to 20 similar sequences identified within the human genome. The identity of the cloned gene was confirmed by comparing the sequence of the first two exons to the K18 cDNA sequence and transfecting the gene into various murine cell lines and verifying the encoded protein as K18 by immunoprecipitation and partial peptide mapping. The transfected K18 gene was expressed in mouse HR9 parietal endodermal cells and mouse fibroblasts even though the fibroblasts fail to express endogenous Endo B. S1 nuclease protection analysis indicated that mRNA synthesized from the transfected K18 gene is initiated at the same position as authentic K18 mRNA found in both BeWo trophoblastoma cells and HeLa cells. Pulse-chase experiments indicated that the human K18 protein is stable in murine parietal endodermal cells (HR9) which express EndoA, a complementary mouse type II keratin. Surprisingly, however, K18 was degraded when synthesized in cells which lack a type II keratin. This turnover of K18 may be an important mechanism by which epithelial cells maintain equal molar amounts of both type I and II keratins. In addition, the levels of the endogenous type I Endo B in parietal endodermal cells were compensatingly down regulated in the presence of the K18 protein, while the levels of the endogenous type II Endo A were not affected in any of the transfected cell lines. Images PMID:2454392

Kulesh, D A; Oshima, R G

1988-01-01

184

Obesity genetics in mouse and human: back and forth, and back again.  

PubMed

Obesity is a major public health concern. This condition results from a constant and complex interplay between predisposing genes and environmental stimuli. Current attempts to manage obesity have been moderately effective and a better understanding of the etiology of obesity is required for the development of more successful and personalized prevention and treatment options. To that effect, mouse models have been an essential tool in expanding our understanding of obesity, due to the availability of their complete genome sequence, genetically identified and defined strains, various tools for genetic manipulation and the accessibility of target tissues for obesity that are not easily attainable from humans. Our knowledge of monogenic obesity in humans greatly benefited from the mouse obesity genetics field. Genes underlying highly penetrant forms of monogenic obesity are part of the leptin-melanocortin pathway in the hypothalamus. Recently, hypothesis-generating genome-wide association studies for polygenic obesity traits in humans have led to the identification of 119 common gene variants with modest effect, most of them having an unknown function. These discoveries have led to novel animal models and have illuminated new biologic pathways. Integrated mouse-human genetic approaches have firmly established new obesity candidate genes. Innovative strategies recently developed by scientists are described in this review to accelerate the identification of causal genes and deepen our understanding of obesity etiology. An exhaustive dissection of the molecular roots of obesity may ultimately help to tackle the growing obesity epidemic worldwide. PMID:25825681

Yazdi, Fereshteh T; Clee, Susanne M; Meyre, David

2015-01-01

185

Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies.  

PubMed

The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted. PMID:25396098

Martínez, Allyson K; Maroni, Luca; Marzioni, Marco; Ahmed, Syed T; Milad, Mena; Ray, Debolina; Alpini, Gianfranco; Glaser, Shannon S

2014-12-01

186

Automated Construction of High-Density Comparative Maps Between Rat, Human, and Mouse  

PubMed Central

Animal models have been used primarily as surrogates for humans, having similar disease-based phenotypes. Genomic organization also tends to be conserved between species, leading to the generation of comparative genome maps. The emergence of radiation hybrid (RH) maps, coupled with the large numbers of available Expressed Sequence Tags (ESTs), has revolutionized the way comparative maps can be built. We used publicly available rat, mouse, and human data to identify genes and ESTs with interspecies sequence identity (homology), identified their UniGene relationships, and incorporated their RH map positions to build integrated comparative maps with >2100 homologous UniGenes mapped in more than one species (?6% of all mammalian genes). The generation of these maps is iterative and labor intensive; therefore, we developed a series of computer tools (not described here) based on our algorithm that identifies anchors between species and produces printable and on-line clickable comparative maps that link to a wide variety of useful tools and databases. The maps were constructed using sequence-based comparisons, thus creating “hooks” for further sequence-based annotation of human, mouse, and rat sequences. Currently, this map enables investigators to link the physiology of the rat with the genetics of the mouse and the clinical significance of the human. PMID:11691858

Kwitek, Anne E.; Tonellato, Peter J.; Chen, Dan; Gullings-Handley, Jo; Cheng, Yongjian Samuel; Twigger, Simon; Scheetz, Todd E.; Casavant, Thomas L.; Stoll, Monika; Nobrega, Marcelo A.; Shiozawa, Masahide; Soares, M. Bento; Sheffield, Val C.; Jacob, Howard J.

2001-01-01

187

A search for functional histamine H4 receptors in the human, guinea pig and mouse brain.  

PubMed

Histamine H4 receptors are expressed in immune cells, but their potential role in the brain is less clear. Although H4 transcripts have been identified in human and rat brain, the presence of H4 receptors on the protein level has so far not been proven since appropriate antibodies fulfilling the strict criteria for G protein-coupled receptors are missing. Here, we searched for functional H4 receptors in human, guinea pig and mouse cortex. We studied whether H4 receptor activation is associated with increased GTP?S binding and reduced noradrenaline release. The latter two effects have been previously shown for H3 receptors, which, like the H4 receptors, are coupled to G i/o protein. G protein activation was studied using (35)S-GTP?S binding in cortical membranes. The electrically induced (3)H-noradrenaline release was determined in superfused cortical slices. The H4 agonist 4-methylhistamine failed to affect (35)S-GTP?S binding and/or noradrenaline release in human, guinea pig and mouse cortex although an H 3 receptor-mediated increase in (35)S-GTP?S binding and inhibition of noradrenaline release occurred in parallel experiments. In conclusion, functional H4 receptors increasing (35)S-GTP?S binding and/or decreasing noradrenaline release are not found in human, guinea pig and mouse cortex. PMID:25300787

Feliszek, Monika; Speckmann, Valerie; Schacht, Daniel; von Lehe, Marec; Stark, Holger; Schlicker, Eberhard

2015-01-01

188

Obesity genetics in mouse and human: back and forth, and back again  

PubMed Central

Obesity is a major public health concern. This condition results from a constant and complex interplay between predisposing genes and environmental stimuli. Current attempts to manage obesity have been moderately effective and a better understanding of the etiology of obesity is required for the development of more successful and personalized prevention and treatment options. To that effect, mouse models have been an essential tool in expanding our understanding of obesity, due to the availability of their complete genome sequence, genetically identified and defined strains, various tools for genetic manipulation and the accessibility of target tissues for obesity that are not easily attainable from humans. Our knowledge of monogenic obesity in humans greatly benefited from the mouse obesity genetics field. Genes underlying highly penetrant forms of monogenic obesity are part of the leptin-melanocortin pathway in the hypothalamus. Recently, hypothesis-generating genome-wide association studies for polygenic obesity traits in humans have led to the identification of 119 common gene variants with modest effect, most of them having an unknown function. These discoveries have led to novel animal models and have illuminated new biologic pathways. Integrated mouse-human genetic approaches have firmly established new obesity candidate genes. Innovative strategies recently developed by scientists are described in this review to accelerate the identification of causal genes and deepen our understanding of obesity etiology. An exhaustive dissection of the molecular roots of obesity may ultimately help to tackle the growing obesity epidemic worldwide.

Yazdi, Fereshteh T.; Clee, Susanne M.

2015-01-01

189

Expression Signature Developed from a Complex Series of Mouse Models Accurately Predicts Human Breast Cancer Survival  

PubMed Central

Purpose The capability of microarray platform to interrogate thousands of genes has led to the development of molecular diagnostic tools for cancer patients. While large-scale comparative studies of clinical samples are often limited by the access of human tissues, expression profiling databases of various human cancer types are publicly available for researchers. Given that mouse models have been instrumental to our current understanding of cancer progression, we aimed to test the hypothesis that novel gene signatures possessing predictability in clinical outcome can be derived by coupling genomic analyses in mouse models of cancer with publicly available human cancer datasets. Experimental Design We established a complex series of syngeneic metastatic animal models using a murine breast cancer cell line. Tumor RNA was hybridized on Affymetrix MouseGenome-430A2.0 GeneChips. With the use of Venn logic, gene signatures that represent metastatic competency were derived and tested against publicly available human breast and lung cancer datasets. Results Survival analyses showed that the spontaneous metastasis gene signature was significantly associated with metastasis-free and overall survival (p<0.0005). Consequently, the six-gene model was determined and demonstrated statistical predictability in predicting survival in breast cancer patients. In addition, the model was able to stratify poor from good prognosis for lung cancer patients in majority of the datasets analyzed. Conclusions Together, our data support that novel gene signature derived from mouse models of cancer can be utilized for predicting human cancer outcome. Our approaches set precedence that similar strategies may be used to decipher novel gene signatures for clinical utility. PMID:20028755

He, Mei; Mangiameli, David P.; Kachala, Stefan; Hunter, Kent; Gillespie, John; Bian, Xiaopeng; Shen, H.-C. Jennifer; Libutti, Steven K.

2009-01-01

190

Endothelial and lipoprotein lipases in human and mouse placenta  

Microsoft Academic Search

Placenta expresses various lipase activities. How- ever, a detailed characterization of the involved genes and proteins is lacking. In this study, we compared the expression of endothelial lipase (EL) and LPL in human term placenta. When placental protein extracts were separated by heparin- Sepharose affinity chromatography, the EL protein eluted as a single peak without detectable phospholipid or triglycer- ide

Marie L. S. Lindegaard; Gunilla Olivecrona; Christina Christoffersen; Dagmar Kratky; Jens Hannibal; Bodil L. Petersen; Rudolf Zechner; Peter Damm; Lars B. Nielsen

2005-01-01

191

Using the BLT Humanized Mouse as a Stem Cell based Gene Therapy Tumor Model  

PubMed Central

Small animal models such as mice have been extensively used to study human disease and to develop new therapeutic interventions. Despite the wealth of information gained from these studies, the unique characteristics of mouse immunity as well as the species specificity of viral diseases such as human immunodeficiency virus (HIV) infection led to the development of humanized mouse models. The earlier models involved the use of C. B 17 scid/scid mice and the transplantation of human fetal thymus and fetal liver termed thy/liv (SCID-hu) 1, 2 or the adoptive transfer of human peripheral blood leukocytes (SCID-huPBL) 3. Both models were mainly utilized for the study of HIV infection. One of the main limitations of both of these models was the lack of stable reconstitution of human immune cells in the periphery to make them a more physiologically relevant model to study HIV disease. To this end, the BLT humanized mouse model was developed. BLT stands for bone marrow/liver/thymus. In this model, 6 to 8 week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) immunocompromised mice receive the thy/liv implant as in the SCID-hu mouse model only to be followed by a second human hematopoietic stem cell transplant 4. The advantage of this system is the full reconstitution of the human immune system in the periphery. This model has been used to study HIV infection and latency 5-8. We have generated a modified version of this model in which we use genetically modified human hematopoietic stem cells (hHSC) to construct the thy/liv implant followed by injection of transduced autologous hHSC 7, 9. This approach results in the generation of genetically modified lineages. More importantly, we adapted this system to examine the potential of generating functional cytotoxic T cells (CTL) expressing a melanoma specific T cell receptor. Using this model we were able to assess the functionality of our transgenic CTL utilizing live positron emission tomography (PET) imaging to determine tumor regression (9). The goal of this protocol is to describe the process of generating these transgenic mice and assessing in vivo efficacy using live PET imaging. As a note, since we use human tissues and lentiviral vectors, our facilities conform to CDC NIH guidelines for Biosafety Level 2 (BSL2) with special precautions (BSL2+). In addition, the NSG mice are severely immunocompromised thus, their housing and maintenance must conform to the highest health standards (http://jaxmice.jax.org/research/immunology/005557-housing.html). PMID:23271478

Vatakis, Dimitrios N.; Bristol, Gregory C.; Kim, Sohn G.; Levin, Bernard; Liu, Wei; Radu, Caius G.; Kitchen, Scott G.; Zack, Jerome A.

2012-01-01

192

The human and mouse homologs of the yeat RAD52 gene: cDNA cloning, sequence analysis, assignment to human chromosome 12p12.2-p13, and mRNA expression in mouse tissues  

SciTech Connect

The yeast Saccharomyces cerevisiae RAD52 gene is involved in DNA double-strand break repair and mitotic/meiotic recombination. The N-terminal amino acid sequence of yeast S. cerevisiae, Schizosaccharomyces pombe, and Kluyveromyces lactis and chicken is highly conserved. Using the technology of mixed oligonucleotide primed amplification of cDNA (MOPAC), two mouse RAD52 homologous cDNA fragments were amplified and sequenced. Subsequently, we have cloned the cDNA of the human and mouse homologs of yeast RAD52 gene by screening cDNA libraries using the identified mouse cDNA fragments. Sequence analysis of cDNA derived amino acid revealed a highly conserved N-terminus among human, mouse, chicken, and yeast RAD52 genes. The human RAD52 gene was assigned to chromosome 12p12.2-p13 by fluorescence in situ hybridization, R-banding, and DNA analysis of somatic cell hybrids. Unlike chicken RAD52 and mouse RAD51, no significant difference in mouse RAD52 mRNA level was found among mouse heart, brain, spleen, lung, liver, skeletal muscle, kidney, and testis. In addition to an {approximately}1.9-kb RAD52 mRNA band that is present in all of the tested tissues, an extra mRNA species of {approximately}0.85 kb was detectable in mouse testis. 40 refs., 7 figs., 1 tab.

Shen, Z.; Chen, D.J.; Denison, K. [Los Alamos National Laboratory, NM (United States)] [and others] [Los Alamos National Laboratory, NM (United States); and others

1995-01-01

193

Organoid models of human and mouse ductal pancreatic cancer.  

PubMed

Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy. PMID:25557080

Boj, Sylvia F; Hwang, Chang-Il; Baker, Lindsey A; Chio, Iok In Christine; Engle, Dannielle D; Corbo, Vincenzo; Jager, Myrthe; Ponz-Sarvise, Mariano; Tiriac, Hervé; Spector, Mona S; Gracanin, Ana; Oni, Tobiloba; Yu, Kenneth H; van Boxtel, Ruben; Huch, Meritxell; Rivera, Keith D; Wilson, John P; Feigin, Michael E; Öhlund, Daniel; Handly-Santana, Abram; Ardito-Abraham, Christine M; Ludwig, Michael; Elyada, Ela; Alagesan, Brinda; Biffi, Giulia; Yordanov, Georgi N; Delcuze, Bethany; Creighton, Brianna; Wright, Kevin; Park, Youngkyu; Morsink, Folkert H M; Molenaar, I Quintus; Borel Rinkes, Inne H; Cuppen, Edwin; Hao, Yuan; Jin, Ying; Nijman, Isaac J; Iacobuzio-Donahue, Christine; Leach, Steven D; Pappin, Darryl J; Hammell, Molly; Klimstra, David S; Basturk, Olca; Hruban, Ralph H; Offerhaus, George Johan; Vries, Robert G J; Clevers, Hans; Tuveson, David A

2015-01-15

194

A 6000 kb segment of chromosome 1 is conserved in human and mouse.  

PubMed Central

A murine linkage map generated from analyses of 428 meiotic events in an interspecific cross and pulsed field gel electrophoresis allowed examination of the genomic organization of a 6000 kb segment of mouse and human chromosome 1. Analysis of five genes within this syntenic segment of both species revealed striking conservation of gene order, intergenic distance and, to a lesser extent, CpG dinucleotides. In the mouse, meiotic crossover events were not evenly distributed; a hot spot for meiotic recombination was coincident with a CpG-island. These studies provide a practical approach to aid physical mapping of the human genome and a model for determining the molecular principles that govern meiotic recombination. In addition, these findings demonstrate profound conservation of genomic organization over mammalian evolution. Images PMID:2591369

Kingsmore, S F; Watson, M L; Howard, T A; Seldin, M F

1989-01-01

195

Generation of L-cells in mouse and human small intestine organoids  

PubMed Central

Upon a nutrient challenge, L-cells produce glucagon-like peptide 1 (GLP-1), a powerful stimulant of insulin release. Strategies to augment endogenous GLP-1 production include promoting L-cell differentiation and increasing L-cell number. Here we present a novel in vitro platform to generate functional L-cells from 3D cultures of mouse and human intestinal crypts. We show that short-chain fatty acids (SCFAs) selectively increase the number of L-cells resulting in an elevation of GLP-1 release. This is accompanied by up-regulation of transcription factors, associated with the endocrine lineage of intestinal stem cell development. Thus, our platform allows us to study and modulate the development of L-cells in mouse and human crypts as a potential basis for novel therapeutic strategies in type 2 diabetes. PMID:24130334

Petersen, Natalia; Reimann, Frank; Bartfeld, Sina; Farin, Henner F.; Ringnalda, Femke C.; Vries, Robert G. J.; van den Brink, Stieneke; Clevers, Hans; Gribble, Fiona M.; de Koning, Eelco J. P.

2015-01-01

196

Genetic Regulation of Pituitary Gland Development in Human and Mouse  

PubMed Central

Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans. PMID:19837867

Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C. A. F.; Dattani, Mehul T.

2009-01-01

197

Regional mapping of human genes for hexosaminidase B and diphtheria toxin sensitivity on chromosome 5 using mouse × human hybrid cells  

Microsoft Academic Search

Mouse 3T3 (TK-) cells were fused to human leukocytes containing a balanced translocation [ins(3;5) (q27;q13q15)] in which part of the long arm of a chromosome 5 has been inserted into the long arm of a chromosome 3. Two independent, primary hybrid clones (XVI-10C; XVI-18A) retained the deleted chromosome 5 [del(5) (q13q15)] translocation product and were informative for regional mapping on

Donna L. George; Uta Francke

1977-01-01

198

Noise in a Laboratory Animal Facility from the Human and Mouse Perspectives  

PubMed Central

The current study was performed to understand the level of sound produced by ventilated racks, animal transfer stations, and construction equipment that mice in ventilated cages hear relative to what humans would hear in the same environment. Although the ventilated rack and animal transfer station both produced sound pressure levels above the ambient level within the human hearing range, the sound pressure levels within the mouse hearing range did not increase above ambient noise from either noise source. When various types of construction equipment were used 3 ft from the ventilated rack, the sound pressure level within the mouse hearing range was increased but to a lesser degree for each implement than were the sound pressure levels within the human hearing range. At more distant locations within the animal facility, sound pressure levels from the large jackhammer within the mouse hearing range decreased much more rapidly than did those in the human hearing range, indicating that less of the sound is perceived by mice than by humans. The relatively high proportion of low-frequency sound produced by the shot blaster, used without the metal shot that it normally uses to clean concrete, increased the sound pressure level above the ambient level for humans but did not increase sound pressure levels above ambient noise for mice at locations greater than 3 ft from inside of the cage, where sound was measured. This study demonstrates that sound clearly audible to humans in the animal facility may be perceived to a lesser degree or not at all by mice, because of the frequency content of the sound. PMID:20858361

Reynolds, Randall P; Kinard, Will L; Degraff, Jesse J; Leverage, Ned; Norton, John N

2010-01-01

199

Metabolism of the anti-tuberculosis drug ethionamide by mouse and human FMO1, FMO2 and FMO3 and mouse and human lung microsomes  

SciTech Connect

Tuberculosis (TB) results from infection with Mycobacterium tuberculosis and remains endemic throughout the world with one-third of the world's population infected. The prevalence of multi-drug resistant strains necessitates the use of more toxic second-line drugs such as ethionamide (ETA), a pro-drug requiring bioactivation to exert toxicity. M. tuberculosis possesses a flavin monooxygenase (EtaA) that oxygenates ETA first to the sulfoxide and then to 2-ethyl-4-amidopyridine, presumably through a second oxygenation involving sulfinic acid. ETA is also a substrate for mammalian flavin-containing monooxygenases (FMOs). We examined activity of expressed human and mouse FMOs toward ETA, as well as liver and lung microsomes. All FMOs converted ETA to the S-oxide (ETASO), the first step in bioactivation. Compared to M. tuberculosis, the second S-oxygenation to the sulfinic acid is slow. Mouse liver and lung microsomes, as well as human lung microsomes from an individual expressing active FMO, oxygenated ETA in the same manner as expressed FMOs, confirming this reaction functions in the major target organs for therapeutics (lung) and toxicity (liver). Inhibition by thiourea, and lack of inhibition by SKF-525A, confirm ETASO formation is primarily via FMO, particularly in lung. ETASO production was attenuated in a concentration-dependent manner by glutathione. FMO3 in human liver may contribute to the toxicity and/or affect efficacy of ETA administration. Additionally, there may be therapeutic implications of efficacy and toxicity in human lung based on the FMO2 genetic polymorphism, though further studies are needed to confirm that suggestion.

Henderson, Marilyn C.; Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331-7301 (United States); Morre, Jeffrey T. [Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331-7302 (United States); Krueger, Sharon K. [Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512 (United States); Williams, David E. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331-7301 (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331-7302 (United States); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512 (United States)], E-mail: david.williams@oregonstate.edu

2008-12-15

200

Differential Reactivities of Recombinant Glycosylated Ectodomains of Mouse and Human Thyrotropin Receptors with Patient Autoantibodies  

Microsoft Academic Search

We expressed the extracellular domain of the mouse TSH receptor (mET-gp) using the baculovirus expression system. The recombinant protein was identified as mET-gp by immunoblotting and N-terminal amino acid sequencing. Carbohydrate analysis of the recombinant protein showed that the protein is glycosylated. Experimental anti- bodies raised against the extracellular domain of the human TSHr (ETSHr) were assayed for reactivity against

SAI A. PATIBANDLA; GATTADAHALLI S. SEETHARAMAIAH; JOHN S. DALLAS; N. RAO THOTAKURA; ROBERT L. PEAKE; BELLUR S. PRABHAKAR

1997-01-01

201

CCI-779 plus Cisplatin Is Highly Effective against Human Melanoma in a SCID Mouse Xenotranplantation Model  

Microsoft Academic Search

Background: This study set out to investigate the antitumor effects of a treatment strategy combining the mTOR inhibitor CCI-779 with cisplatin in vitro and in a human melanoma SCID mouse model. Methods: In vitro 518A2, Mel-JUSO or 607B cell lines were incubated with CCI-779, cisplatin and CCI-779 plus cisplatin. Based on these results, a 4-group, parallel, controlled experimental study design

C. Thallinger; W. Poeppl; B. Pratscher; M. Mayerhofer; P. Valent; G. Tappeiner; C. Joukhadar

2007-01-01

202

Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation.  

PubMed

PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases through clinical genetics and gene disruption in mice. New selective PAD4 inhibitors binding a calcium-deficient form of the PAD4 enzyme have validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation for, to our knowledge, the first time. The therapeutic potential of PAD4 inhibitors can now be explored. PMID:25622091

Lewis, Huw D; Liddle, John; Coote, Jim E; Atkinson, Stephen J; Barker, Michael D; Bax, Benjamin D; Bicker, Kevin L; Bingham, Ryan P; Campbell, Matthew; Chen, Yu Hua; Chung, Chun-Wa; Craggs, Peter D; Davis, Rob P; Eberhard, Dirk; Joberty, Gerard; Lind, Kenneth E; Locke, Kelly; Maller, Claire; Martinod, Kimberly; Patten, Chris; Polyakova, Oxana; Rise, Cecil E; Rüdiger, Martin; Sheppard, Robert J; Slade, Daniel J; Thomas, Pamela; Thorpe, Jim; Yao, Gang; Drewes, Gerard; Wagner, Denisa D; Thompson, Paul R; Prinjha, Rab K; Wilson, David M

2015-03-01

203

A gene atlas of the mouse and human protein-encoding transcriptomes  

Microsoft Academic Search

The tissue-specific pattern of mRNA expression can indicate important clues about gene function. High-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale. Toward this end, we have designed custom arrays that interrogate the expression of the vast majority of protein-encoding human and mouse genes and have used them to profile a panel of

Andrew I. Su; Tim Wiltshire; Serge Batalov; Hilmar Lapp; Keith A. Ching; David Block; Jie Zhang; Richard Soden; Mimi Hayakawa; Gabriel Kreiman; Michael P. Cooke; John R. Walker; John B. Hogenesch

2004-01-01

204

Analysis of LGR4 Receptor Distribution in Human and Mouse Tissues  

PubMed Central

LGR4 is an R-spondin receptor with strong positive effect on Wnt signaling. It plays a critical role in development as its ablation in the mouse led to total embryonic/neonatal lethality with profound defects in multiple organs. Haplotype insufficiency of LGR4 in human was associated with several diseases, including increased risk of squamous cell carcinoma of the skin, reduced birth weights, electrolyte imbalance, and decreased levels of testosterone, which are similar to the phenotypes of LGR4-hypomorphic mice. Tissue distribution of LGR4 was extensively analyzed in the mouse using gene-trap reporter enzyme alleles. However, its expression pattern in human tissues remained largely unknown. We have developed LGR4-specific monoclonal antibodies and used them to examine the expression of LGR4 in selected adult human and mouse tissues by immunohistochemical analysis. Intense LGR4-like immunoreactivity was observed in the epidermis and hair follicle of the skin, pancreatic islet cells, and epithelial cells in both the male and female reproductive organs. Of particular interest is that LGR4 is highly expressed in germ cells and pancreatic islet cells, which have important implications given the role of R-spondin-LGR4 signaling in the survival of adult stem cells. In addition, the majority of colon tumors showed elevated levels of LGR4 receptor. Overall, the expression pattern of LGR4 in human tissues mapped by this IHC analysis is similar to that in the mouse as revealed from gene trap alleles. Importantly, the pattern lends strong support to the important role of LGR4 in the development and maintenance of skin, kidney, reproductive systems, and other organs. PMID:24205130

Yi, Jing; Xiong, Wei; Gong, Xing; Bellister, Seth; Ellis, Lee M.; Liu, Qingyun

2013-01-01

205

Evolutionís cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes  

Microsoft Academic Search

This study examines genomic duplications, deletions, and rear- rangements that have happened at scales ranging from a single base to complete chromosomes by comparing the mouse and human genomes. From whole-genome sequence alignments, 344 large (>100-kb) blocks of conserved synteny are evident, but these are further fragmented by smaller-scale evolutionary events. Ex- cluding transposon insertions, on average in each megabase

W. James Kent; Robert Baertsch; Angie Hinrichs; Webb Millerá; David Haussler

2003-01-01

206

Human-mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation  

Microsoft Academic Search

The formation of base-pairing between the branch-site (BS) sequence and the U2 snRNP is an important step in mRNA splicing. We developed a new algorithm to identify both the BS sequence and the polypyrimidine tract (PPT) and validated its predictions experimentally. To assess BS conservation between human and mouse, we assembled and analyzed 46 812 and 242 constitutively and alternatively

Guy Kol; Galit Lev-Maor; Gil Ast

2005-01-01

207

Genomic organization and comparative sequence analysis of the mouse and human FRS2, FRS3 genes  

Microsoft Academic Search

The signaling adapter proteins FRS2 and FRS3 are implicated in the transmission of extracellular signals from nerve growth factor (NGF) or fibroblast growth factor (FGF) receptors to the Ras\\/mitogen-activated protein kinase signaling cascade. This study presents the genomic sequence and exon-intron organization of the mouse FRS2 and FRS3 loci as well as their evolutionary conservation with their human counterparts. Both

Li Zhou; Kathryn McDougall; Christopher J. Kubu; Joseph M. Verdi; Susan O. Meakin

2003-01-01

208

Reprogramming of mouse and human somatic cells by high-performance engineered factors  

Microsoft Academic Search

Reprogramming somatic cells to become induced pluripotent stem cells (iPSCs) by using defined factors represents an important breakthrough in biology and medicine, yet remains inefficient and poorly understood. We therefore devised synthetic factors by fusing the VP16 transactivation domain to OCT4 (also known as Pou5f1), NANOG and SOX2, respectively. These synthetic factors could reprogramme both mouse and human fibroblasts with

Yang Wang; Jiekai Chen; Jia-Lei Hu; Xi-Xiao Wei; Dajiang Qin; Juan Gao; Lei Zhang; Jing Jiang; Jin-Song Li; Jing Liu; Ke-Yu Lai; Xia Kuang; Jian Zhang; Duanqing Pei; Guo-Liang Xu

2011-01-01

209

Recombinant human leukemia inhibitory factor enhances the development of preimplantation mouse embryo in vitro  

Microsoft Academic Search

Objective: To assess the effect of recombinant human leukemia inhibitory factor (rhLIF) on mouse embryos in vitro.Design: Controlled prospective study.Setting: Academic research environment.Animal(s): Female CB6F1 mice between 6 and 8 weeks old.Intervention(s): Mice were divided randomly into three groups, which included a control group in an in vivo study (group I) and two groups in an in vitro study (groups

Horng-Der Tsai; Chi-Chen Chang; Yao-Yuan Hsieh; Hui-Yu Lo; Li-Wei Hsu; Su-Chen Chang

1999-01-01

210

The Consensus Coding Sequence (Ccds) Project: Identifying a Common Protein-Coding Gene Set for the Human and Mouse Genomes  

E-print Network

Effective use of the human and mouse genomes requires reliable identification of genes and their products. Although multiple public resources provide annotation, different methods are used that can result in similar but ...

Kellis, Manolis

211

Surface-based atlases of cerebellar cortex in the human, macaque, and mouse  

NASA Technical Reports Server (NTRS)

This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).

Van Essen, David C.

2002-01-01

212

Number of CpG islands and genes in human and mouse  

SciTech Connect

Estimation of gene number in mammals is difficult due to the high proportion of noncoding DNA within the nucleus. In this study, the authors provide a direct measurement of the number of genes in human and mouse. They have taken advantage of the fact that many mammalian genes are associated with CpG islands whose distinctive properties allow their physical separation from bulk DNA. The results suggest that there are [approx]45,000 CpG islands per haploid genome in humans and 37,000 in the mouse. Sequence comparison confirms that about 20% of the human CpG islands are absent from the homologous mouse genes. Analysis of a selection of germ line followed by CpG loss through mutation. This process appears to be more rapid in rodents. Combining the number of CpG islands with the proportion of island-associated genes, the authors estimate that the total number of genes per haploid genome is [approx]80,000 in both organisms.

Antequera, F.; Bird, A. (Univ. of Edinburgh (United Kingdom))

1993-11-15

213

An epigenetic regulatory element of the Nodal gene in the mouse and human genomes.  

PubMed

Nodal signaling plays critical roles during embryonic development. The Nodal gene is not expressed in adult tissues but is frequently activated in cancer cells, contributing to progression toward malignancy. Although several regulatory elements of the Nodal gene have been identified, the epigenetic mechanisms by which Nodal expression is regulated over the long term remain unclear. We found a region exhibiting dynamic changes in DNA methylation at approximately -3.0?kb to -0.4?kb upstream from the transcriptional start site (TSS) that we termed the epigenetic regulatory element (ERE). The ERE was unmethylated in mouse embryonic stem cells (mESCs) but became increasingly methylated in differentiated cells and tissues, concomitant with the downregulation of Nodal mRNA expression. In vitro reporter assays identified an Oct3/4 binding motif within the ERE, indicating that the ERE is responsible for the activation of Nodal in mESCs. Furthermore, the ERE was a target of differentiation-associated Polycomb silencing, and the chromatin condensed when mESCs differentiated to embryoid bodies (EBs). Pharmacological inhibition of PRC2 led to the reactivation of Nodal expression in EBs and mouse embryonic fibroblasts (MEFs). The ERE was also targeted by PRC2 in normal human cells. In NODAL-expressing human cancer cells, accumulation of EZH2 and trimethylation of H3K27 at the ERE were diminished. In conclusion, Nodal is epigenetically controlled through the ERE in the mouse embryo and human cells. PMID:25528267

Arai, Daisuke; Hayakawa, Koji; Ohgane, Jun; Hirosawa, Mitsuko; Nakao, Yoichi; Tanaka, Satoshi; Shiota, Kunio

2015-05-01

214

Genomic organization and comparative sequence analysis of the mouse and human FRS2, FRS3 genes.  

PubMed

The signaling adapter proteins FRS2 and FRS3 are implicated in the transmission of extracellular signals from nerve growth factor (NGF) or fibroblast growth factor (FGF) receptors to the Ras/mitogen-activated protein kinase signaling cascade. This study presents the genomic sequence and exon-intron organization of the mouse FRS2 and FRS3 loci as well as their evolutionary conservation with their human counterparts. Both FRS2 and FRS3 contain 5 coding exons spanning over 7 kb of genomic sequence with similar exon sizes and organization. Comparative genomic sequence analyses show a highly conserved genomic organization between mouse and human in both FRS2 and FRS3 genes. Non-coding sequences, highly conserved between mouse and human, were identified in the FRS3 introns that may potentially function as regulatory elements. To assay potential differences in their patterns of expression, RT-PCR analysis was used to assay FRS2 and FRS3 expression in the developing embryo and neural tube (NT) during the time of neurogenesis. PMID:12688531

Zhou, Li; McDougall, Kathryn; Kubu, Christopher J; Verdi, Joseph M; Meakin, Susan O

2003-03-01

215

Development of a high sensitivity, nested Q-PCR assay for mouse and human aromatase.  

PubMed

Measurement of breast tissue estradiol levels could provide a powerful method to predict the risk of developing breast cancer but obtaining sufficient amounts of tissue from women is difficult from a practical standpoint. Assessment of aromatase in ductal lavage fluid or fine needle aspirates from breast might provide a surrogate marker for tissue estrogen levels but highly sensitive methods would be required. These considerations prompted us to develop an ultra-sensitive, "nested" PCR assay for aromatase which is up to one million fold more sensitive than standard PCR methods. We initially validated this assay using multiple tissues from the aromatase transgenic mouse and found that coefficients of variation for measurement of replicate samples averaged less than 5%. We demonstrated a 60-fold enhancement in aromatase message in the transgenic versus the wild type mouse breast but surprisingly, levels in the transgenic animals were highly variable, ranging from 0.4 to 27 relative units. The variability of aromatase expression in the transgenic breast did not correlate with the degree of breast development and did not appear to relate to hormonal manipulation of the MMTV promoter but probably related to lack of exhaustive inbreeding and mixed zygocity of transgenic animals. Extensive validation in mouse tissues provided confidence regarding the assay in human tissues, since nearly identical methods were used. The human assay was sufficiently sensitive to detect aromatase in a single human JAR (choriocarcinoma) cell, in all breast biopsies measured, and in 7/23 ductal lavage fluids. PMID:17975728

Liu, Gui-Jian; Liu, Giujian; Wu, Yu-Sheen; Brenin, David; Yue, Wei; Aiyar, Sarah; Gompel, Anne; Wang, Ji-Ping; Tekmal, Rajeshwar Rao; Santen, Richard J

2008-09-01

216

Expression and purification of active mouse and human NEIL3 proteins.  

PubMed

Endonuclease VIII-like 3 (Neil3) is one of the five DNA glycosylases found in mammals that recognize and remove oxidized bases, and initiate the base excision repair (BER) pathway. Previous attempts to express and purify the mouse and human orthologs of Neil3 in their active form have not been successful. Here we report the construction of bicistronic expression vectors for expressing in Escherichia coli the full-length mouse Neil3 (MmuNeil3), its glycosylase domain (MmuNeil3?324), as well as the glycosylase domain of human Neil3 (NEIL3?324). The purified Neil3 proteins are all active, and NEIL3?324 exhibits similar glycosylase/lyase activity as MmuNeil3?324 on both single-stranded and double-stranded substrates containing thymine glycol (Tg), spiroiminodihydantoin (Sp) or an abasic site (AP). We show that N-terminal initiator methionine processing is critical for the activity of both mouse and human Neil3 proteins. Co-expressing an E. coli methionine aminopeptidase (EcoMap) Y168A variant with MmuNeil3, MmuNeil3?324 and NEIL3?324 improves the N-terminal methionine processing and increases the percentage of active Neil3 proteins in the preparation. The purified Neil3 proteins are suitable for biochemical, structural and functional studies. PMID:22569481

Liu, Minmin; Bandaru, Viswanath; Holmes, Alicia; Averill, April M; Cannan, Wendy; Wallace, Susan S

2012-07-01

217

FAAH genetic variation enhances fronto-amygdala function in mouse and human.  

PubMed

Cross-species studies enable rapid translational discovery and produce the broadest impact when both mechanism and phenotype are consistent across organisms. We developed a knock-in mouse that biologically recapitulates a common human mutation in the gene for fatty acid amide hydrolase (FAAH) (C385A; rs324420), the primary catabolic enzyme for the endocannabinoid anandamide. This common polymorphism impacts the expression and activity of FAAH, thereby increasing anandamide levels. Here, we show that the genetic knock-in mouse and human variant allele carriers exhibit parallel alterations in biochemisty, neurocircuitry and behaviour. Specifically, there is reduced FAAH expression associated with the variant allele that selectively enhances fronto-amygdala connectivity and fear extinction learning, and decreases anxiety-like behaviours. These results suggest a gain of function in fear regulation and may indicate for whom and for what anxiety symptoms FAAH inhibitors or exposure-based therapies will be most efficacious, bridging an important translational gap between the mouse and human. PMID:25731744

Dincheva, Iva; Drysdale, Andrew T; Hartley, Catherine A; Johnson, David C; Jing, Deqiang; King, Elizabeth C; Ra, Stephen; Gray, J Megan; Yang, Ruirong; DeGruccio, Ann Marie; Huang, Chienchun; Cravatt, Benjamin F; Glatt, Charles E; Hill, Matthew N; Casey, B J; Lee, Francis S

2015-01-01

218

Genomic analysis of mouse tumorigenesis  

E-print Network

The availability of the human and mouse genome sequences has spurred a growing interest in analyzing mouse models of human cancer using genomic techniques. Comparative genomic studies on mouse and human tumors can be ...

Tam, Mandy Chi-Mun

2006-01-01

219

Comparison of the transcriptional landscapes between human and mouse tissues  

PubMed Central

Although the similarities between humans and mice are typically highlighted, morphologically and genetically, there are many differences. To better understand these two species on a molecular level, we performed a comparison of the expression profiles of 15 tissues by deep RNA sequencing and examined the similarities and differences in the transcriptome for both protein-coding and -noncoding transcripts. Although commonalities are evident in the expression of tissue-specific genes between the two species, the expression for many sets of genes was found to be more similar in different tissues within the same species than between species. These findings were further corroborated by associated epigenetic histone mark analyses. We also find that many noncoding transcripts are expressed at a low level and are not detectable at appreciable levels across individuals. Moreover, the majority lack obvious sequence homologs between species, even when we restrict our attention to those which are most highly reproducible across biological replicates. Overall, our results indicate that there is considerable RNA expression diversity between humans and mice, well beyond what was described previously, likely reflecting the fundamental physiological differences between these two organisms. PMID:25413365

Lin, Shin; Lin, Yiing; Nery, Joseph R.; Urich, Mark A.; Breschi, Alessandra; Davis, Carrie A.; Dobin, Alexander; Zaleski, Christopher; Beer, Michael A.; Chapman, William C.; Gingeras, Thomas R.; Ecker, Joseph R.; Snyder, Michael P.

2014-01-01

220

Functional Integration of Human Neural Precursor Cells in Mouse Cortex  

PubMed Central

This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs) in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV)-, calretinin (CR)-, somatostatin (SS)-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs). The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy. PMID:25763840

Zhou, Fu-Wen; Fortin, Jeff M.; Chen, Huan-Xin; Martinez-Diaz, Hildabelis; Chang, Lung-Ji; Reynolds, Brent A.; Roper, Steven N.

2015-01-01

221

Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells  

SciTech Connect

Mouse mammary tumor virus (MMTV) is a pH-dependent virus that uses mouse transferrin receptor 1 (TfR1) for entry into cells. Previous studies demonstrated that MMTV could induce pH 5-dependent fusion-from-with of mouse cells. Here we show that the MMTV envelope-mediated cell-cell fusion requires both the entry receptor and low pH (pH 5). Although expression of the MMTV envelope and TfR1 was sufficient to mediate low pH-dependent syncytia formation, virus infection required trafficking to a low pH compartment; infection was independent of cathepsin-mediated proteolysis. Human TfR1 did not support virus infection, although envelope-mediated syncytia formation occurred with human cells after pH 5 treatment and this fusion depended on TfR1 expression. However, although the MMTV envelope bound human TfR1, virus was only internalized and trafficked to a low pH compartment in cells expressing mouse TfR1. Thus, while human TfR1 supported cell-cell fusion, because it was not internalized when bound to MMTV, it did not function as an entry receptor. Our data suggest that MMTV uses TfR1 for all steps of entry: cell attachment, induction of the conformational changes in Env required for membrane fusion and internalization to an appropriate acidic compartment.

Wang Enxiu; Obeng-Adjei, Nyamekye; Ying Qihua [Department of Microbiology and Abramson Family Cancer Center, University of Pennsylvania, 313BRBII/III, 421 Curie Blvd., Philadelphia, PA 19104 (United States); Meertens, Laurent; Dragic, Tanya [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY (United States); Davey, Robert A. [Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX (United States); Ross, Susan R. [Department of Microbiology and Abramson Family Cancer Center, University of Pennsylvania, 313BRBII/III, 421 Curie Blvd., Philadelphia, PA 19104 (United States)], E-mail: rosss@mail.med.upenn.edu

2008-11-25

222

Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts  

PubMed Central

Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes. PMID:23325410

Gagnon, Kenneth B.

2013-01-01

223

A mouse model of human repetitive mild traumatic brain injury  

PubMed Central

A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 minutes. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel. PMID:21930157

Kane, Michael J.; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

2011-01-01

224

Regulatory T cells prevent liver fibrosis during HIV type 1 infection in a humanized mouse model.  

PubMed

Human immunodeficiency virus type 1 (HIV-1) disease is associated with aberrant immune activation, and coinfection with hepatitis C virus (HCV) exacerbates hepatic inflammation and fibrosis. However, the role of HIV-1 infection or host immune modulation in liver pathogenesis is not clearly defined. Here, we report that regulatory T (Treg) cells prevent liver immunopathogenesis during HIV-1 infection in a humanized mouse model. In the absence of Treg cells, HIV-1 infection induced liver fibrosis associated with hepatic stellate cell activation, hepatitis, and liver injury. Our findings provide new insight linking Treg cells and liver immunopathogenesis during HIV-1 infection. PMID:24133182

Nunoya, Jun-Ichi; Washburn, Michael L; Kovalev, Grigoriy I; Su, Lishan

2014-04-01

225

Synchrony in human, mouse and bacterial cell cultures--a comparison  

NASA Technical Reports Server (NTRS)

Growth characteristics of synchronous human MOLT-4, human U-937 and mouse L1210 cultures produced with a new minimally-disturbing technology were compared to each other and to synchronous Escherichia coli B/r. Based on measurements of cell concentrations during synchronous growth, synchrony persisted in similar fashion for all cells. Cell size and DNA distributions in the mammalian cultures also progressed synchronously and reproducibly for multiple cell cycles. The results demonstrate that unambiguous multi-cycle synchrony, critical for verifying the absence of significant growth imbalances induced by the synchronization procedure, is feasible with these cell lines, and possibly others.

Helmstetter, Charles E.; Thornton, Maureen; Romero, Ana; Eward, K. Leigh

2003-01-01

226

Increased LIS1 expression affects human and mouse brain development  

PubMed Central

Deletions of the PAFAH1B1 gene (encoding LIS1) in 17p13.3 result in isolated lissencephaly sequence, and extended deletions including the YWHAE gene (encoding 14-3-3?) cause Miller-Dieker syndrome. We identified seven unrelated individuals with submicroscopic duplication in 17p13.3 involving the PAFAH1B1 and/or YWHAE genes, and using a ‘reverse genomics’ approach, characterized the clinical consequences of these duplications. Increased PAFAH1B1 dosage causes mild brain structural abnormalities, moderate to severe developmental delay and failure to thrive. Duplication of YWHAE and surrounding genes increases the risk for macrosomia, mild developmental delay and pervasive developmental disorder, and results in shared facial dysmorphologies. Transgenic mice conditionally overexpressing LIS1 in the developing brain showed a decrease in brain size, an increase in apoptotic cells and a distorted cellular organization in the ventricular zone, including reduced cellular polarity but preserved cortical cell layer identity. Collectively, our results show that an increase in LIS1 expression in the developing brain results in brain abnormalities in mice and humans. PMID:19136950

Bi, Weimin; Sapir, Tamar; Shchelochkov, Oleg A; Zhang, Feng; Withers, Marjorie A; Hunter, Jill V; Levy, Talia; Shinder, Vera; Peiffer, Daniel A; Gunderson, Kevin L; Nezarati, Marjan M; Shotts, Vern Ann; Amato, Stephen S; Savage, Sarah K; Harris, David J; Day-Salvatore, Debra-Lynn; Horner, Michele; Lu, Xin-Yan; Sahoo, Trilochan; Yanagawa, Yuchio; Beaudet, Arthur L; Cheung, Sau Wai; Martinez, Salvador

2015-01-01

227

Immunostaining of oxidized DJ-1 in human and mouse brains.  

PubMed

DJ-1, the product of a causative gene of a familial form of Parkinson disease, undergoes preferential oxidation of Cys106 (cysteine residue at position 106) under oxidative stress. Using specific monoclonal antibodies against Cys106 oxidized DJ-1 (oxDJ-1), we examined oxDJ-1 immunoreactivity in brain sections from DJ-1 knockout and wild-type mice and in human brain sections from cases classified into different Lewy body stages of Parkinson disease and Parkinson disease with dementia. Oxidized DJ-1 immunoreactivity was prominently observed in neuromelanin-containing neurons and neuron processes of the substantia nigra; Lewy bodies also showed oxDJ-1 immunoreactivity. Oxidized DJ-1 was also detected in astrocytes in the striatum, in neurons and glia in the red nucleus, and in the inferior olivary nucleus, all of which are related to regulation of movement. These observations suggest the relevance of DJ-1 oxidation to homeostasis in multiple brain regions, including neuromelanin-containing neurons of the substantia nigra, and raise the possibility that oxDJ-1 levels might change during the progression of Lewy body-associated neurodegenerative diseases. PMID:24918637

Saito, Yoshiro; Miyasaka, Tomohiro; Hatsuta, Hiroyuki; Takahashi-Niki, Kazuko; Hayashi, Kojiro; Mita, Yuichiro; Kusano-Arai, Osamu; Iwanari, Hiroko; Ariga, Hiroyoshi; Hamakubo, Takao; Yoshida, Yasukazu; Niki, Etsuo; Murayama, Shigeo; Ihara, Yasuo; Noguchi, Noriko

2014-07-01

228

Immunostaining of Oxidized DJ-1 in Human and Mouse Brains  

PubMed Central

Abstract DJ-1, the product of a causative gene of a familial form of Parkinson disease, undergoes preferential oxidation of Cys106 (cysteine residue at position 106) under oxidative stress. Using specific monoclonal antibodies against Cys106 oxidized DJ-1 (oxDJ-1), we examined oxDJ-1 immunoreactivity in brain sections from DJ-1 knockout and wild-type mice and in human brain sections from cases classified into different Lewy body stages of Parkinson disease and Parkinson disease with dementia. Oxidized DJ-1 immunoreactivity was prominently observed in neuromelanin-containing neurons and neuron processes of the substantia nigra; Lewy bodies also showed oxDJ-1 immunoreactivity. Oxidized DJ-1 was also detected in astrocytes in the striatum, in neurons and glia in the red nucleus, and in the inferior olivary nucleus, all of which are related to regulation of movement. These observations suggest the relevance of DJ-1 oxidation to homeostasis in multiple brain regions, including neuromelanin-containing neurons of the substantia nigra, and raise the possibility that oxDJ-1 levels might change during the progression of Lewy body–associated neurodegenerative diseases. PMID:24918637

Saito, Yoshiro; Miyasaka, Tomohiro; Hatsuta, Hiroyuki; Takahashi-Niki, Kazuko; Hayashi, Kojiro; Mita, Yuichiro; Kusano-Arai, Osamu; Iwanari, Hiroko; Ariga, Hiroyoshi; Hamakubo, Takao; Yoshida, Yasukazu; Niki, Etsuo; Murayama, Shigeo; Ihara, Yasuo; Noguchi, Noriko

2014-01-01

229

The PanK2 Genes of Mouse and Human Specify Proteins with DistinctSubcellular Locations  

SciTech Connect

Coenzyme A (CoA) biosynthesis is initiated by pantothenatekinase (PanK) and CoA levels are controlled through differentialexpression and feedback regulation of PanK isoforms. PanK2 is amitochondrial protein in humans, but comparative genomics revealed thatacquisition of a mitochondrial targeting signal was limited to primates.Human and mouse PanK2 possessed similar biochemical properties, withinhibition by acetylCoA and activation by palmitoylcarnitine. Mouse PanK2localized in the cytosol, and the expression of PanK2 was higher in humanbrain compared to mouse brain. Differences in expression and subcellularlocalization should be considered in developing a mouse model for humanPanK2 deficiency. (c) 2007 Federation of European Biochemical Societies.Published by Elsevier B.V.

Leonardi, Roberta; Zhang, Yong-Mei; Lydikis, Athanasios; Stevens,Robert D.; Ilkayeva, Olga R.; Wenner, Brett R.; Bain, James R.; Newgard,Christopher B.; Rock, Charles O.; Jackowski, Suzanne

2007-05-01

230

Physical mapping of the retinoid X receptor B gene in mouse and human  

SciTech Connect

Retinoid X receptors (RXRs) are zinc finger-containing nuclear transcription factors. They belong to the nuclear receptor superfamily that contains retinoid receptors, vitamin D receptors, thyroid hormone receptors, and steroid hormone receptors as well as the so-called orphan receptors. We previously mapped all three RXR genes on mouse chromosomes, using a panel of Mus spretus-Mus musculus interspecific backcross mice: namely, the RXRA-gene (Rxra) on Chr 2 near the centromere, the RXRB gene (Rxrb) on Chr 17 in the H2 region, and the RXRG gene (Rxrg) on distal Chr 1. Using cosmid clones that cover the major histocompatibility complex (MHC) region, we determined the precise physical map positions of the gene encoding mouse and human RXRB, respectively. The mouse gene (Rxrb) maps between H2-Ke4 and H2-Ke5: namely, immediately telomeric to H2-Ke4 which encodes a histidine-rich transmembrane protein, and 12 kilobases centromeric to H2-Ke5 which is expressed in lymphoid tissues, Rxrb and H2-Ke4 are transcribed into opposite directions from a CpG-rich promoter of about 250 base pairs. This gene organization is well conserved also in the human genome at the HLA-DP subregion of Chr 6p, underscoring the strong conservation of the gene organization in the MHC region between the two mammals. 54 refs., 4 figs.

Nagata, T.; Kitagawa, K.; Taketo, M. [Banyu Tsukuba Research Institute, Tsukuba (Japan); Weiss, E.H. [Ludwig-Maximilians-Univ., Munich (Germany); Abe, K. [Kumamoto Univ. School of Medicine, Kumamoto (Japan); Ando, A.; Yara-Kikuti, Y.; Inoko, H. [Tokai Univ. School of Medicine, Isehara (Japan); Seldin, M.F. [Duke Univ. Medical Center, Durham, NC (United States); Ozato, K. [National Institutes of Health, Bethesda, MD (United States)

1995-01-11

231

Cryptic Translocation Identification in Human and Mouse using Several Telomeric Multiplex FISH (TM-FISH) Strategies  

SciTech Connect

Experimental data published in recent years showed that up to 10% of all cases with mild to severe idiopathic mental retardation may result from small rearrangements of the subtelomeric regions of human chromosomes. To detect such cryptic translocations, we developed a ''telomeric'' multiplex FISH assay, using a set of previously published and commercially available subtelomeric probes. This set of probes includes 41 cosmid/PAC/P1 clones located from less than 100kb to about 1 Mb from the end of the chromosomes. Similarly, a published mouse probe set, comprised of BACs hybridizing to the closest known marker toward the centromere and telomere of each mouse chromosome, was used to develop a mouse-specific ''telomeric'' M-FISH. Three different combinatorial labeling strategies were used to simultaneously detect all human sub-telomeric regions on one slide. The simplest approach uses only three fluors, and can be performed in laboratories lacking sophisticated imaging equipment or personnel highly trained in cytogenetics. A standard fluorescence microscope equipped with only three filters is sufficient. Fluor-dUTPs and labeled probes can be custom-made, thus dramatically reducing costs. Images can be prepared using generic imaging software (Adobe Photoshop), and analysis performed by simple visual inspection.

Henegariu, O; Artan, S; Greally, J M; Chen, X-N; Korenberg, J R; Vance, G H; Stubbs, L; Bray-Ward, P; Ward, D C

2003-08-19

232

Secretion of human protein C in mouse milk.  

PubMed

To determine the production of recombinant human protein C (rec-hPC) in milk, we created two homozygous mice lines for the goat ?-casein/hPC transgene. Females and males of both lines (#10 and #11) displayed normal growth, fertility, and lactated normally. The copy number of the transgene was about fivefold higher in #10 line as compared to #11 line. mRNA expression of the transgene was only detected in the mammary glands of both lines. Furthermore, mRNA expression was fourfold higher on day 7 than on day 1 during lactation. Northern blot analysis of mRNA expression in the #10 line of transgenic (Tg) mice indicated a strong expression of the transgene in the mammary glands after seven days of lactation. Comparison of rec-hPC protein level with that of mRNA in the mammary glands showed a very similar pattern. A 52-kDa band corresponding to the hPC protein was strongly detected in mammary glands of the #10 line during lactation. We also detected two bands of heavy chain and one weak band of light chain in the milk of the #10 and #11 lines. One single band at 52 kDa was detected from CHO cells transfected with hPC cDNA. hPC was mainly localized in the alveolar epithelial cell of the mammary glands. The protein is strongly expressed in the cytoplasm of the cultured mammary gland tissue. hPC protein produced in milk ranged from 2 to 28 ng/mL. These experiments indicated that rec-hPC can be produced at high levels in mice mammary glands. PMID:25749471

Park, Chae-Won; Kang, Myung-Hwa; Min, Kwan-Sik

2015-01-01

233

Comparative mapping of human Chromosome 14q11.2-q13 genes with mouse homologous gene regions.  

PubMed

An examination of the synteny blocks between mouse and human chromosomes aids in understanding the evolution of chromosome divergence between these two species. We comparatively mapped the human (HSA) Chromosome (Chr) 14q11.2-q13 cytogenetic region with the intervals of orthologous genes on mouse (MMU) chromosomes. A lack of conserved gene order was identified between the human cytogenetic region and the interval of orthologs on MMU 12. The evolutionary breakpoint junction was defined within 2.5 Mb, where the conserved synteny of genes on HSA 14 changes from MMU 12 to MMU 14. At the evolutionary breakpoint junction, a human EST (GI: 1114654) with identity to the human and mouse BCL2 interacting gene, BNIP3, was mapped to mouse Chr 3. New gene homologs of LAMB1, MEOX2, NRCAM, and NZTF1 were identified on HSA 7 and on the proximal cytogenetic region of HSA 14 by mapping mouse genes recently reported to be genetically linked within the relevant MMU 12 interval. This study contributes to the identification of homology relationships between the genes of HSA 14q11.2-q13 and mouse Chr 3, 12, and 14. PMID:11063256

Kamnasaran, D; O'Brien, P C; Ferguson-Smith, M A; Cox, D W

2000-11-01

234

Carbamoyl phosphate synthetase-1 is a rapid turnover biomarker in mouse and human acute liver injury.  

PubMed

Several serum markers are used to assess hepatocyte damage, but they have limitations related to etiology specificity and prognostication. Identification of novel hepatocyte-specific biomarkers could provide important prognostic information and better pathogenesis classification. We tested the hypothesis that hepatocyte-selective biomarkers are released after subjecting isolated mouse hepatocytes to Fas-ligand-mediated apoptosis. Proteomic analysis of hepatocyte culture medium identified the mitochondrial matrix protein carbamoyl phosphate synthetase-1 (CPS1) among the most readily detected proteins that are released by apoptotic hepatocytes. CPS1 was also detected in mouse serum upon acute challenge with Fas-ligand or acetaminophen and in hepatocytes upon hypoosmotic stress, independent of hepatocyte caspase activation. Furthermore, CPS1 was observed in sera of mice chronically fed the hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Mouse CPS1 detectability was similar in serum and plasma, and its half-life was 126 ± 9 min. Immune staining showed that CPS1 localized to mouse hepatocytes but not ductal cells. Analysis of a few serum samples from patients with acute liver failure (ALF) due to acetaminophen, Wilson disease, or ischemia showed readily detectable CPS1 that was not observed in several patients with chronic viral hepatitis or in control donors. Notably, CPS1 rapidly decreased to undetectable levels in sera of patients with acetaminophen-related ALF who ultimately recovered, while alanine aminotransferase levels remained elevated. Therefore, CPS1 becomes readily detectable upon hepatocyte apoptotic and necrotic death in culture or in vivo. Its abundance and short serum half-life, compared with alanine aminotransferase, suggest that it may be a useful prognostic biomarker in human and mouse liver injury. PMID:24924744

Weerasinghe, Sujith V W; Jang, You-Jin; Fontana, Robert J; Omary, M Bishr

2014-08-01

235

Human nerve xenografting in nude mouse: Experimental study of graft revascularization  

SciTech Connect

In the nude mouse, the congenital absence of T lymphocytes makes it possible to implant human nerve grafts without rejection or iatrogenic modifications (by immunosuppression) of human and murine tissues. Medial antebrachial cutaneous nerves were harvested from human cadavers 1-18 hours after death. These nerve grafts were implanted using different techniques in nude mice. All the grafts were macroscopically and microscopically revascularized 3 days after implantation. The modifications in time of this vascularization could be studied with precision through the use of repeated biopsies. The absence of human blood group antigens on the neovessel endothelium suggested a murine origin for angiogenesis. In situ DNA hybridizations with human and mouse DNA confirmed this origin. The topography of the revascularization (maximal in the perineurium and endoneurium) and the almost complete absence of human cells other than Schwann cells in the grafts at the peak of angiogenesis (26 days after grafting) suggested that Schwann cells had a determining role in graft vascularization. The irradiation of the nerve grafts with a dose of 30 grays before implantation did not modify significantly their histologic appearance compared to the control group, whereas an irradiation of 60 grays led to massive lesions. The neurotization of murine axons led to chimerical structures of normal histologic appearance, with vascularization similar to that observed in nonneurotized nerves. Through chimerism (human Schwann cells, murine vessels and axons) this model makes it possible to dissociate the respective role of the host and of the nerve graft in angiogenesis and suggests the existence of growth factors produced by the human Schwann cells.

Duprez, K.; Bour, C.; Merle, M.; Duprez, A. (Hopital Jeanne d'Arc, Dommartin-les-Toul (France))

1991-01-01

236

MTO1-Deficient Mouse Model Mirrors the Human Phenotype Showing Complex I Defect and Cardiomyopathy  

PubMed Central

Recently, mutations in the mitochondrial translation optimization factor 1 gene (MTO1) were identified as causative in children with hypertrophic cardiomyopathy, lactic acidosis and respiratory chain defect. Here, we describe an MTO1-deficient mouse model generated by gene trap mutagenesis that mirrors the human phenotype remarkably well. As in patients, the most prominent signs and symptoms were cardiovascular and included bradycardia and cardiomyopathy. In addition, the mutant mice showed a marked worsening of arrhythmias during induction and reversal of anaesthesia. The detailed morphological and biochemical workup of murine hearts indicated that the myocardial damage was due to complex I deficiency and mitochondrial dysfunction. In contrast, neurological examination was largely normal in Mto1-deficient mice. A translational consequence of this mouse model may be to caution against anaesthesia-related cardiac arrhythmias which may be fatal in patients. PMID:25506927

Becker, Lore; Kling, Eva; Schiller, Evelyn; Zeh, Ramona; Schrewe, Anja; Hölter, Sabine M.; Mossbrugger, Ilona; Calzada-Wack, Julia; Strecker, Valentina; Wittig, Ilka; Dumitru, Iulia; Wenz, Tina; Bender, Andreas; Aichler, Michaela; Janik, Dirk; Neff, Frauke; Walch, Axel; Quintanilla-Fend, Leticia; Floss, Thomas; Bekeredjian, Raffi; Gailus-Durner, Valérie; Fuchs, Helmut; Wurst, Wolfgang; Meitinger, Thomas; Prokisch, Holger; de Angelis, Martin Hrab?; Klopstock, Thomas

2014-01-01

237

Mapping TNNC1, the gene that encodes cardiac troponin I in the human and the mouse  

SciTech Connect

We have mapped the TNNC1 gene, whose protein product is the cardiac TnI protein. TnI is one of the proteins that makes up the troponin complex, which mediates the response of muscle to calcium ions. The human TNNC1 locus had been assigned to a large region of chromosome 19, and we have refined the mapping position to the distal end of the chromosome by amplification of DNAs from a chromosome 19 mapping panel. We have also mapped the mouse Tnnc1 locus, by following the segregation of an intron sequence through DNAs from the European Interspecific Backcross. Tnnc1 maps close to the centromere on mouse chromosome 7. 18 refs., 3 figs., 1 tab.

Bermingham, N.; Hernandez, D.; Fisher, E.M.C. [St. Mary`s Hospital Medical School, London (United Kingdom)] [and others] [St. Mary`s Hospital Medical School, London (United Kingdom); and others

1995-12-10

238

Role of LIN28A in Mouse and Human Trophoblast Cell Differentiation1  

PubMed Central

ABSTRACT Proper regulation of trophoblast proliferation, differentiation, and function are critical for placenta development and function. The RNA-binding protein, LIN28A, has been well characterized as a potent regulator of differentiation in embryonic stem cells; however, little is known about the function of LIN28A in the placenta. We assessed LIN28A in vitro using mouse trophoblast stem (mTS) cells and human trophoblast cells (ACH-3P). We observed that LIN28A decreased and let-7 miRNA increased when mTS cells were induced to differentiate into mouse trophoblast giant cells (mTGCs) upon the removal of FGF4, heparin and conditioned medium. Similarly, we observed that LIN28A decreased in ACH-3P cells induced to syncytialize with forskolin treatment. To assess LIN28A in vivo we examined Embryonic Day 11.5 mouse placenta and observed abundant LIN28A in the chorioallantoic interface and labyrinth layer, with little LIN28A staining in spongiotrophoblast or differentiated mTGCs. Additionally, shRNA-mediated LIN28A knockdown in ACH-3P cells resulted in increased spontaneous syncytialization, and increased levels of syncytiotrophoblast markers hCG, LGALS13, and ERVW-1 mRNA. Additionally, targeted degradation of LIN28A mRNA increased responsiveness to forskolin-induced differentiation. In contrast, targeted degradation of Lin28a mRNA in mTS cells did not alter cell phenotype when maintained under proliferative culture conditions. Together, these data establish that LIN28A has a functional role in regulating trophoblast differentiation and function, and that loss of LIN28A in human trophoblast is sufficient to induce differentiation, but does not induce differentiation in the mouse. PMID:24006280

Seabrook, Jill L.; Cantlon, Jeremy D.; Cooney, Austin J.; McWhorter, Erin E.; Fromme, Brittany A.; Bouma, Gerrit J.; Anthony, Russell V.; Winger, Quinton A.

2013-01-01

239

The mousetrap: what we can learn when the mouse model does not mimic the human disease.  

PubMed

In recent years, mouse models for human metabolic diseases have become commonplace because the information gained from in vivo study of biochemical pathways is invaluable, and many metabolic diseases are relatively easy to recreate in mice through gene knockout technology in embryonic stem cells. In certain cases, however, the knockout mice may reproduce only some of the human disease phenotype, may be more severely affected than human cases, or may have no clinical phenotype at all. Under these circumstances, the disease pathology can become more complex, causing the researcher to evaluate basic differences in mouse and human biology as well as questions of genetic background, alternate pathways, and possible gene interactions. This review is a brief analysis of gene knockout models for Lesch-Nyhan syndrome, Lowe syndrome, X-linked adrenoleukodystrophy, Fabry disease, galactosemia, glycogen storage disease type II, metachromatic leukodystrophy, and Tay-Sachs disease, which produce a biochemical model of disease but often do not reproduce clinical symptoms. These mice may be useful for studying the biochemical and physiological pathways in which certain metabolites function toward embryonic and fetal development, as well as specific functions in various organs, and they may provide an inexpensive and useful model system for development of new therapeutic techniques. PMID:11917158

Elsea, Sarah H; Lucas, Rebecca E

2002-01-01

240

Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes  

SciTech Connect

Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human {alpha}{sub 1}-antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the {alpha}{sub 1} antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes.

Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C. (Baylor College of Medicine, Houston, TX (USA))

1988-11-01

241

Comparative characterization of the human and mouse third ventricle germinal zones.  

PubMed

Recent evidence indicates differences in neural stem cell biology in different brain regions. For example, we demonstrated that neurofibromatosis 1 (NF1) tumor suppressor gene inactivation leads to increased neural stem cell proliferation and gliogenesis in the optic chiasm and brainstem but not in the cerebral cortex. The differential effect of Nf1 inactivation in the optic nerve and brainstem (in which gliomas commonly form in children with NF1) versus the cortex (in which gliomas rarely develop) suggests the existence of distinct ventricular zones for gliomagenesis in children and in adults. Here, we characterized the third ventricle subventricular zone (tv-SVZ) in young and adult mouse and human brains. In children, but not adult humans, the tv-SVZ contains nestin-positive, glial fibrillary acidic protein-positive, brain fatty acid binding protein-positive, and sox2-positive cells with radial processes and prominent cilia. In contrast, the tv-SVZ in young mice contains sox2-positive progenitor cells and ciliated ependymal lining cells but lacks glial fibrillary acidic protein-positive, nestin-positive radial glia. As in the lateral ventricle SVZ, proliferation in the human and murine tv-SVZ decreases with age. The tv-SVZ in adult mice lacks the hypocellular subventricular zone observed in adult human specimens. Collectively, these data indicate the existence of a subventricular zone relevant to our understanding of glioma formation in children and will assist interpretation of genetically engineered mouse glioma models. PMID:21666496

Dahiya, Sonika; Lee, Da Yong; Gutmann, David H

2011-07-01

242

Highly stable maintenance of a mouse artificial chromosome in human cells and mice.  

PubMed

Human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) display several advantages as gene delivery vectors, such as stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including the regulatory elements. Previously, we showed that a MAC vector developed from a natural mouse chromosome by chromosome engineering was more stably maintained in adult tissues and hematopoietic cells in mice than HAC vectors. In this study, to expand the utility for a gene delivery vector in human cells and mice, we investigated the long-term stability of the MACs in cultured human cells and transchromosomic mice. We also investigated the chromosomal copy number-dependent expression of genes on the MACs in mice. The MAC was stably maintained in human HT1080 cells in vitro during long-term culture. The MAC was stably maintained at least to the F8 and F4 generations in ICR and C57BL/6 backgrounds, respectively. The MAC was also stably maintained in hematopoietic cells and tissues derived from old mice. Transchromosomic mice containing two or four copies of the MAC were generated by breeding. The DNA contents were comparable to the copy number of the MACs in each tissue examined, and the expression of the EGFP gene on the MAC was dependent on the chromosomal copy number. Therefore, the MAC vector may be useful not only for gene delivery in mammalian cells but also for animal transgenesis. PMID:24216103

Kazuki, Kanako; Takehara, Shoko; Uno, Narumi; Imaoka, Natsuko; Abe, Satoshi; Takiguchi, Masato; Hiramatsu, Kei; Oshimura, Mitsuo; Kazuki, Yasuhiro

2013-12-01

243

Different Subtypes of GABA-A Receptors Are Expressed in Human, Mouse and Rat T Lymphocytes  

PubMed Central

?-aminobutyric acid (GABA) is the most prominent neuroinhibitory transmitter in the brain, where it activates neuronal GABA-A receptors (GABA-A channels) located at synapses and outside of synapses. The GABA-A receptors are primary targets of many clinically useful drugs. In recent years, GABA has been shown to act as an immunomodulatory molecule. We have examined in human, mouse and rat CD4+ and CD8+ T cells which subunit isoforms of the GABA-A channels are expressed. The channel physiology and drug specificity is dictated by the GABA-A receptor subtype, which in turn is determined by the subunit isoforms that make the channel. There were 5, 8 and 13 different GABA-A subunit isoforms identified in human, mouse and rat CD4+ and CD8+ T cells, respectively. Importantly, the ?2 subunit that imposes benzodiazepine sensitivity on the GABA-A receptors, was only detected in the mouse T cells. Immunoblots and immunocytochemistry showed abundant GABA-A channel proteins in the T cells from all three species. GABA-activated whole-cell transient and tonic currents were recorded. The currents were inhibited by picrotoxin, SR95531 and bicuculline, antagonists of GABA-A channels. Clearly, in both humans and rodents T cells, functional GABA-A channels are expressed but the subtypes vary. It is important to bear in mind the interspecies difference when selecting the appropriate animal models to study the physiological role and pharmacological properties of GABA-A channels in CD4+ and CD8+ T cells and when selecting drugs aimed at modulating the human T cells function. PMID:22927941

Jin, Zhe; Birnir, Bryndis

2012-01-01

244

The mouse rumpshaker mutation of the proteolipid protein in human X-linked recessive spastic paraplegia  

SciTech Connect

X-linked recessive spastic paraplegia is a rare neurodegenerative disorder characterized by slowly progressive weakness and spasticity of the lower extremities. We have recently genetically analyzed the original X-linked recessive spastic paraplegia family reported by Johnston and McKusick in 1962. We employed a fluorescent multiplex CA repeat strategy using a 22 locus, 10 cM framework map of the human X chromosome and localized the gene within a 36 cM region of Xq2l.3-q24 which includes the PLP locus. Saugier-Veber et al. recently reported a point mutation (His139Tyr) in exon 3B of the PLP gene in an X-linked recessive spastic paraplegia family (SPG2). This family shows no optic atrophy, in contrast to the family we have studied. This data showed that SPG2 and Pelizaeus-Merzbacher disease were allelic disorders. We investigated the PLP gene as a candidate gene for the original X-linked recessive spastic paraplegia family using SSCP and direct sequencing methods. We found a point mutation (T to C) in exon 4 of affected males which alters the amino-acid (Ile to Thr) at residue 186. This change was absent in the unaffected males of the family and in 40 unrelated control females (80 X chromosomes). Surprisingly, this mutation is identical to the mutation previously identified in the rumpshaker mouse model. The complete homology between both the mouse and human PLP sequence, and the mouse rumpshaker mutation and human spastic paraplegia mutation in our family, permit direct parallels to be drawn with regards to pathophysiology. Our data indicates that the well-documented and striking clinical differences between Pelizaeus-Merzbacher disease and X-linked recessive spastic paraplegia is due to the specific effect of different mutations of the human PLP gene on oligodendrocyte differentiation and development and on later myelin production and maintenance.

Kobayashi, H.; Hoffman, E.P.; Matise, T.C. [and others

1994-09-01

245

Mechanisms of activation of mouse and human enteroendocrine cells by nutrients  

PubMed Central

Objective Inhibition of food intake and glucose homeostasis are both promoted when nutrients stimulate enteroendocrine cells (EEC) to release gut hormones. Several specific nutrient receptors may be located on EEC that respond to dietary sugars, amino acids and fatty acids. Bypass surgery for obesity and type II diabetes works by shunting nutrients to the distal gut, where it increases activation of nutrient receptors and mediator release, but cellular mechanisms of activation are largely unknown. We determined which nutrient receptors are expressed in which gut regions and in which cells in mouse and human, how they are associated with different types of EEC, how they are activated leading to hormone and 5-HT release. Design and results mRNA expression of 17 nutrient receptors and EEC mediators was assessed by quantitative PCR and found throughout mouse and human gut epithelium. Many species similarities emerged, in particular the dense expression of several receptors in the distal gut. Immunolabelling showed specific colocalisation of receptors with EEC mediators PYY and GLP-1 (L-cells) or 5-HT (enterochromaffin cells). We exposed isolated proximal colonic mucosa to specific nutrients, which recruited signalling pathways within specific EEC extracellular receptor-regulated kinase (p-ERK) and calmodulin kinase II (pCAMKII), as shown by subsequent immunolabelling, and activated release of these mediators. Aromatic amino acids activated both pathways in mouse, but in humans they induced only pCAMKII, which was colocalised mainly with 5-HT expression. Activation was pertussis toxin-sensitive. Fatty acid (C12) potently activated p-ERK in human in all EEC types and evoked potent release of all three mediators. Conclusions Specific nutrient receptors associate with distinct activation pathways within EEC. These may provide discrete, complementary pharmacological targets for intervention in obesity and type II diabetes. PMID:25015642

Symonds, Erin L; Peiris, Madusha; Page, Amanda J; Chia, Bridgette; Dogra, Harween; Masding, Abigail; Galanakis, Vasileios; Atiba, Michael; Bulmer, David; Young, Richard L; Blackshaw, L Ashley

2015-01-01

246

Humanized Mouse Model of Thrombosis is Predictive of the Clinical Efficacy of Antiplatelet Agents  

PubMed Central

Background In vivo testing of novel antiplatelet agents requires informative biomarkers. By genetically modifying mouse von Willebrand Factor (VWFR1326H), we have developed a small animal model that supports human but not mouse platelet-mediated thrombosis. Here we evaluate the use of this biological platform as a pharmacodynamic (PD) biomarker for antithrombotic therapies. Methods and Results The antithrombotic effects of several ?IIb?3 inhibitors were determined in VWFR1326H mutant mice infused with human platelets. Administration of abciximab, eptifibatide, or tirofiban at doses recommended for percutaneous coronary intervention (per kg of body weight) significantly reduced human platelet-mediated thrombus formation in laser-injured arterioles by >75% (P<0.001). By contrast clot size in WT control animals remained essentially unchanged (P>0.05), results consistent with observed species differences in IC50 values obtained by aggregometry. To further demonstrate that our biological platform is unique from standard mouse models, we evaluated the thrombogenic potential of platelets from healthy volunteers before and after clopidogrel therapy. Consistent with the antithrombotic effect of this agent, platelets post-drug administration formed smaller thrombi than cells prior to instituting therapy and were less responsive to ADP-induced aggregation (P<0.001). Conclusions The ability of ?IIb?3 and P2Y12 inhibitors to limit human platelet clot formation at doses recommended by ACC/AHA suggests that VWFR1326H mutant mice can serve as both a PD and functional response biomarker, attributes essential for not only expediting drug development but also for designing clinical studies. PMID:21220740

Magallon, Jorge; Chen, Jianchun; Rabbani, Leroy; Dangas, George; Yang, Jing; Bussel, James; Diacovo, Thomas

2011-01-01

247

Humanized Mouse Models of Epstein-Barr Virus Infection and Associated Diseases  

PubMed Central

Epstein-Barr virus (EBV) is a ubiquitous herpesvirus infecting more than 90% of the adult population of the world. EBV is associated with a variety of diseases including infectious mononucleosis, lymphoproliferative diseases, malignancies such as Burkitt lymphoma and nasopharyngeal carcinoma, and autoimmune diseases including rheumatoid arthritis (RA). EBV in nature infects only humans, but in an experimental setting, a limited species of new-world monkeys can be infected with the virus. Small animal models, suitable for evaluation of novel therapeutics and vaccines, have not been available. Humanized mice, defined here as mice harboring functioning human immune system components, are easily infected with EBV that targets cells of the hematoimmune system. Furthermore, humanized mice can mount both cellular and humoral immune responses to EBV. Thus, many aspects of human EBV infection, including associated diseases (e.g., lymphoproliferative disease, hemophagocytic lymphohistiocytosis and erosive arthritis resembling RA), latent infection, and T-cell-mediated and humoral immune responses have been successfully reproduced in humanized mice. Here we summarize recent achievements in the field of humanized mouse models of EBV infection and show how they have been utilized to analyze EBV pathogenesis and normal and aberrant human immune responses to the virus. PMID:25436886

Fujiwara, Shigeyoshi; Matsuda, Go; Imadome, Ken-Ichi

2013-01-01

248

Chromosomal assignment of the genes for proprotein convertases PC4, PC5, and PACE 4 in mouse and human  

SciTech Connect

The genes for three subtilisin/kexin-like proprotein convertases, PC4, PC5, and PACE4, were mapped in the mouse by RFLP analysis of a DNA panel from a (C57BL/6JEi x SPRET/Ei) F{sub 1} x SPRET/Ei backcross. The chromosomal locations of the human homologs were determined by Southern blot analysis of a DNA panel from human-rodent somatic cell hybrids, most of which contained a single human chromosome each. The gene for PC4 (Pcsk4 locus) mapped to mouse chromosome 10, close to the Adn (adipsin, a serine protease) locus and near the Amh (anti-Mullerian hormone) locus; in a human, the gene was localized to chromosome 19. The gene for PC5 (Pcsk5 locus) mapped to mouse chromosome 19 close to the Lpc1 (lipoacortin-1) locus and, in human, was localized to chromosome 9. The gene for PACE4 (Pcsk6 locus) mapped to mouse chromosome 7, at a distance of 13 cM from the Pcsk3 locus, which specifies furin, another member of this family of enzymes previoulsy mapped to this chromosome. This is in concordance with the known close proximity of these two loci in the homologous region on human chromosome 15q25-qter. Pcsk3 and Pcsk6 mapped to a region of mouse chromosome 7 that has been associated cytogenetically with postnatal lethality in maternal disomy, suggesting that these genes might be candidates for imprinting. 43 refs., 3 figs., 2 tabs.

Mbikay, M.; Seidah, N.G.; Chretien, M. [Univ. of Montreal, Quebec (Canada)] [and others] [Univ. of Montreal, Quebec (Canada); and others

1995-03-01

249

Comparative Study of Human and Mouse Postsynaptic Proteomes Finds High Compositional Conservation and Abundance Differences for Key Synaptic Proteins  

PubMed Central

Direct comparison of protein components from human and mouse excitatory synapses is important for determining the suitability of mice as models of human brain disease and to understand the evolution of the mammalian brain. The postsynaptic density is a highly complex set of proteins organized into molecular networks that play a central role in behavior and disease. We report the first direct comparison of the proteome of triplicate isolates of mouse and human cortical postsynaptic densities. The mouse postsynaptic density comprised 1556 proteins and the human one 1461. A large compositional overlap was observed; more than 70% of human postsynaptic density proteins were also observed in the mouse postsynaptic density. Quantitative analysis of postsynaptic density components in both species indicates a broadly similar profile of abundance but also shows that there is higher abundance variation between species than within species. Well known components of this synaptic structure are generally more abundant in the mouse postsynaptic density. Significant inter-species abundance differences exist in some families of key postsynaptic density proteins including glutamatergic neurotransmitter receptors and adaptor proteins. Furthermore, we have identified a closely interacting set of molecules enriched in the human postsynaptic density that could be involved in dendrite and spine structural plasticity. Understanding synapse proteome diversity within and between species will be important to further our understanding of brain complexity and disease. PMID:23071613

Bayés, Àlex; Collins, Mark O.; Croning, Mike D. R.; van de Lagemaat, Louie N.; Choudhary, Jyoti S.; Grant, Seth G. N.

2012-01-01

250

Hemoglobin synthesis in somatic cell hybrids: globin gene expression in hybrids between mouse erythroleukemia and human marrow cells or fibroblasts.  

PubMed Central

Somatic cell hybrids were generated by fusion of mouse erythroleukemia cells either to mouse L cells (B82), human fibroblasts (W1-18 VA2), or human marrow fractions enriched in erythroblasts. The hybrid cells were examined for globin gene expression by benzidine staining to detect cytoplasmic hemoglobin, and by molecular hybridization of cellular RNA to globin complementary DNA (cDNA) to detect globin messenger RNA (MRNA). The fibroblast (human or mouse) times erythroleukemia cell hybrids grown in monolayer retained most of the chromosomes of each parent. Neither cytoplasmic hemoglobin nor globin mRNA was detected in dimethylsulfoxide-treated fibroblast times erythroleukemia hybrid cells, indicating extinction of hemoglobin synthesis prior to the formation of cytoplasmic mRNA. The human marrow times mouse erythroleukemia hybrid cells grown in suspension culture contained only a few human chromosomes and exhibited low levels of hemoglobin synthesis which were amplified by 2% dimethylsulfoxide. Mouse (but not human) globin mRNA was demonstrated in these hybrid cells. The results suggest that somatic cell hybrids may be useful in searching for genetic factors which regulate activity of the globin genes. Images PMID:1055369

Deisseroth, A; Burk, R; Picciano, D; Anderson, W F; Nienhuis, A; Minna, J

1975-01-01

251

Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes  

EPA Science Inventory

Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...

252

Differential effect of troglitazone on the human bile acid transporters, MRP2 and BSEP, in the PXB hepatic chimeric mouse.  

PubMed

The aims of this study were to assess the utility of the PXB mouse model of a chimeric human/mouse liver in studying human-specific effects of an important human hepatotoxic drug, the PPAR? agonist, troglitazone. When given orally by gavage for 7 days, at dose levels of 300 and 600 ppm, troglitazone induced specific changes in the human hepatocytes of the chimeric liver without an effect on the murine hepatic portions. The human hepatocytes, in the vehicle-treated PXB mouse, showed an accumulation of electron-dense lipid droplets that appeared as clear vacuoles under the light microscope in H&E-stained sections. Following dosing with troglitazone, there was a loss of the large lipid droplets in the human hepatocytes, a decrease in the amount of lipid as observed in frozen sections of liver stained by Oil-red-O, and a decrease in the expression of two bile acid transporters, BSEP and MRP2. None of these changes were observed in the murine remnants of the chimeric liver. No changes were observed in the expression of three CYPs, CYP 3A2, CYP 1A1, and CYP 2B1, in either the human or murine hepatocytes, even though the baseline expression of the enzymes differed significantly between the two hepatocyte species with the mouse hepatocytes consistently showing increased expression of the protein of all three enzymes. This study has shown that the human hepatocytes, in the PXB chimeric mouse liver, retain an essentially normal phenotype in the mouse liver and, the albeit limited CYP enzymes studied show a more human, rather than a murine, expression pattern. In line with this conclusion, the study has shown a differential response of the human versus the mouse hepatocytes, and the effects observed are highly suggestive of a differential handling of the compound by the two hepatocyte species although the exact reasons are not as yet clear. The PXB chimeric mouse system therefore holds the clear potential to explore human hepatic-specific features, such as metabolism, prior to dosing human subjects, and as such should have considerable utility in drug discovery and development. PMID:22673116

Foster, John R; Jacobsen, Matt; Kenna, Gerry; Schulz-Utermoehl, Timothy; Morikawa, Yoshio; Salmu, Juuso; Wilson, Ian D

2012-12-01

253

Preclinical evaluation of human secretoglobin 3A2 in mouse models of lung development and fibrosis  

PubMed Central

Secretoglobin (SCGB) 3A2 is a member of the SCGB gene superfamily of small secreted proteins, predominantly expressed in lung airways. We hypothesize that human SCGB3A2 may exhibit anti-inflammatory, growth factor, and antifibrotic activities and be of clinical utility. Recombinant human SCGB3A2 was expressed, purified, and biochemically characterized as a first step to its development as a therapeutic agent in clinical settings. Human SCGB3A2, as well as mouse SCGB3A2, readily formed a dimer in solution and exhibited novel phospholipase A2 inhibitory activity. This is the first demonstration of any quantitative biochemical measurement for the evaluation of SCGB3A2 protein. In the mouse as an experimental animal, human SCGB3A2 exhibited growth factor activity by promoting embryonic lung development in both ex vivo and in vivo systems and antifibrotic activity in the bleomycin-induced lung fibrosis model. The results suggested that human SCGB3A2 can function as a growth factor and an antifibrotic agent in humans. When SCGB3A2 was administered to pregnant female mice through the tail vein, the protein was detected in the dam's serum and lung, as well as the placenta, amniotic fluids, and embryonic lungs at 10 min postadministration, suggesting that SCGB3A2 readily crosses the placenta. The results warrant further development of recombinant SCGB3A2 as a therapeutic agent in treating patients suffering from lung diseases or preterm infants with respiratory distress. PMID:24213919

Cai, Yan; Winn, Melissa E.; Zehmer, John K.; Gillette, William K.; Lubkowski, Jacek T.; Pilon, Aprile L.

2013-01-01

254

The mouse mutation sarcosinemia (sar) maps to chromosome 2 in a region homologous to human 9q33-q34  

SciTech Connect

The autosomal recessive mouse mutation sarcosinemia (sar), which was discovered segregating in the progeny of a male whose premeiotic germ cells had been treated with the mutagen ethylnitrosourea, is characterized by a deficiency in sarcosine dehydrogenase activity. Using an intersubspecific cross, we mapped the sar locus to mouse chromosome 2, approximately 15-18 cM from the centromere. The genetic localization of this locus in the mouse allows the identification of a candidate region in human (9q33-q34) where the homologous disease should map. 15 refs., 2 figs.

Brunialti, A.L.B.; Guenet, J.L. [Institut Pasteur a Paris (France)] [Institut Pasteur a Paris (France); Harding, C.O.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)] [Univ. of Wisconsin, Madison, WI (United States)

1996-08-15

255

Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer  

PubMed Central

Background The expression of carcino-embryonic antigen by colorectal cancer is an example of oncogenic activation of embryonic gene expression. Hypothesizing that oncogenesis-recapitulating-ontogenesis may represent a broad programmatic commitment, we compared gene expression patterns of human colorectal cancers (CRCs) and mouse colon tumor models to those of mouse colon development embryonic days 13.5-18.5. Results We report here that 39 colon tumors from four independent mouse models and 100 human CRCs encompassing all clinical stages shared a striking recapitulation of embryonic colon gene expression. Compared to normal adult colon, all mouse and human tumors over-expressed a large cluster of genes highly enriched for functional association to the control of cell cycle progression, proliferation, and migration, including those encoding MYC, AKT2, PLK1 and SPARC. Mouse tumors positive for nuclear ?-catenin shifted the shared embryonic pattern to that of early development. Human and mouse tumors differed from normal embryonic colon by their loss of expression modules enriched for tumor suppressors (EDNRB, HSPE, KIT and LSP1). Human CRC adenocarcinomas lost an additional suppressor module (IGFBP4, MAP4K1, PDGFRA, STAB1 and WNT4). Many human tumor samples also gained expression of a coordinately regulated module associated with advanced malignancy (ABCC1, FOXO3A, LIF, PIK3R1, PRNP, TNC, TIMP3 and VEGF). Conclusion Cross-species, developmental, and multi-model gene expression patterning comparisons provide an integrated and versatile framework for definition of transcriptional programs associated with oncogenesis. This approach also provides a general method for identifying pattern-specific biomarkers and therapeutic targets. This delineation and categorization of developmental and non-developmental activator and suppressor gene modules can thus facilitate the formulation of sophisticated hypotheses to evaluate potential synergistic effects of targeting within- and between-modules for next-generation combinatorial therapeutics and improved mouse models. PMID:17615082

Kaiser, Sergio; Park, Young-Kyu; Franklin, Jeffrey L; Halberg, Richard B; Yu, Ming; Jessen, Walter J; Freudenberg, Johannes; Chen, Xiaodi; Haigis, Kevin; Jegga, Anil G; Kong, Sue; Sakthivel, Bhuvaneswari; Xu, Huan; Reichling, Timothy; Azhar, Mohammad; Boivin, Gregory P; Roberts, Reade B; Bissahoyo, Anika C; Gonzales, Fausto; Bloom, Greg C; Eschrich, Steven; Carter, Scott L; Aronow, Jeremy E; Kleimeyer, John; Kleimeyer, Michael; Ramaswamy, Vivek; Settle, Stephen H; Boone, Braden; Levy, Shawn; Graff, Jonathan M; Doetschman, Thomas; Groden, Joanna; Dove, William F; Threadgill, David W; Yeatman, Timothy J; Coffey, Robert J; Aronow, Bruce J

2007-01-01

256

Human hair melanins: what we have learned and have not learned from mouse coat color pigmentation.  

PubMed

Hair pigmentation is one of the most conspicuous phenotypes in humans. Melanocytes produce two distinct types of melanin pigment: brown to black, indolic eumelanin and yellow to reddish brown, sulfur-containing pheomelanin. Biochemically, the precursor tyrosine and the key enzyme tyrosinase and the tyrosinase-related proteins are involved in eumelanogenesis, while only the additional presence of cysteine is necessary for pheomelanogenesis. Other important proteins involved in melanogenesis include P protein, MATP protein, ?-MSH, agouti signaling protein (ASIP), MC1R (the receptor for MSH and ASIP), and SLC7A11, a cystine transporter. Many studies have examined the effects of loss-of-function mutations of those proteins on mouse coat color pigmentation. In contrast, much less is known regarding the effects of mutations of the corresponding proteins on human hair pigmentation except for MC1R polymorphisms that lead to pheomelanogenesis. This perspective will discuss what we have/have not learned from mouse coat color pigmentation, with special emphasis on the significant roles of pH and the level of cysteine in melanosomes in controlling melanogenesis. Based on these data, a hypothesis is proposed to explain the diversity of human hair pigmentation. PMID:20726950

Ito, Shosuke; Wakamatsu, Kazumasa

2011-02-01

257

Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter  

SciTech Connect

Exon trapping was used to identify portions of genes from cosmid DNA of a human chromosome 21-specific library LL21NC02-Q. More than 650 potential exons have been cloned and characterized to date. Among these, 3 trapped {open_quotes}exons{close_quotes} showed strong homology to different regions of the cDNA for the mouse pericentrin (Pcnt) gene, indicating that these 3 exons are portions of a human homolog of the mouse pericentrin gene. With PCR amplification, Southern blot analysis, and FISH, we have mapped this presumed human pericentrin gene (PCNT) to the long arm of chromosome 21 between marker PFKL and 21qter. Pericentrin is a conserved protein component of the filamentous matrix of the centrosome involved in the initial establishment of the organized microtubule array. No candidate hereditary disorder for pericentrin deficiency/abnormality has yet been mapped in the most distal region of 21q; in addition the role of triplication of the pericentrin gene in the pathophysiology or etiology of trisomy 21 is currently unknown. 16 refs., 3 figs.

Chen, Haiming [Univ. of Geneva Medical School (Switzerland)] [Univ. of Geneva Medical School (Switzerland); Gos, A.; Morris, M.A. [Cantonal Hospital, Geneva (Switzerland)] [and others] [Cantonal Hospital, Geneva (Switzerland); and others

1996-08-01

258

Genes on human chromosome 19 show extreme divergence from the mouse orthologs and a high GC content  

Microsoft Academic Search

Mutational rates are known to be variable along the mammalian genome but the extent of this non-random fluctuation and their causes are less well understood. Using 5509 human and mouse orthologous genes with known chromosome positions, it is shown here that there are extreme differences in synonymous evolutionary rates between different human chromo- somes when distances are measured using maximum-

Jose Castresana

2002-01-01

259

GENETIC ASSAY FOR ANEUPLOIDY: QUANTITATION OF CHROMOSOME LOSS USING A MOUSE/HUMAN MONOCHROMOSOMAL HYBRID CELL LINE (JOURNAL VERSION)  

EPA Science Inventory

A genetic assay is described in which a mouse/human hybrid cell line R3-5 containing a single human chromosome (a monochromosomal hybrid) is used to detect chemically induced aneuploidy. The hybrid cells are deficient in hypoxanthine guanine phosphoribosyltransferase (HGPRT) and ...

260

UCSF mouse and human studies indicate that cancer prognosis may be related to newly identified immune cell  

Cancer.gov

A newly discovered population of immune cells in tumors is associated with less severe cancer outcomes in humans, and may have therapeutic potential, according to a new UC San Francisco study of 3,600 human tumors of 12 types, as well as mouse experiments.

261

Ultrasound fails to induce proliferation of human brain and mouse endothelial cell lines  

NASA Astrophysics Data System (ADS)

Both in vitro and in vivo studies suggest that ultrasound (US) is capable of inducing angiogenesis. There is no information, however, on whether ultrasound can induce proliferation of brain endothelial cells. We therefore explored the angiogenic potential of ultrasound on a novel immortalised human brain endothelial cell line (hCMEC/D3) and on mouse brain microvascular endothelial cells (bEND3). Ultrasound failed to enhance cell proliferation in both cell lines at all acoustic pressures studied. Endothelial cell damage occurred at 0.24 MPa with significantly slower proliferation. Cells growing in Opticell{trade mark, serif} dishes did not show damage or reduced proliferation at these pressures.

Rodemer, Claus; Jenne, Jürgen; Fatar, Marc; Hennerici, Michael G.; Meairs, Stephen

2012-11-01

262

Differential effects of triclosan on the activation of mouse and human peroxisome proliferator-activated receptor alpha.  

PubMed

Triclosan is an anti-bacterial agent used in many personal care products, household items, medical devices, and clinical settings. Liver tumors occur in mice exposed to triclosan, a response attributed to peroxisome proliferator-activated receptor alpha (PPAR?) activation; however, the effects of triclosan on mouse and human PPAR? have not been fully evaluated. We compared the effects of triclosan on mouse and human PPAR? using PPAR? reporter assays and on downstream events of PPAR? activation using mouse hepatoma Hepa1c1c7 cells and human hepatoma HepG2 cells. PPAR? transcriptional activity was increased by triclosan in a mouse PPAR? reporter assay and decreased in a human PPAR? reporter assay. Concentrations of triclosan inhibiting 50% cell growth were similar in both human and mouse hepatoma cells. Western blotting analysis showed that triclosan increased acyl-coenzyme A oxidase (ACOX1), a PPAR? target, in Hepa1c1c7 cells but decreased the level in HepG2 cells. Treatment of Hepa1c1c7 cells with triclosan enhanced DNA synthesis and suppressed transforming growth factor beta-mediated apoptosis. This did not occur in HepG2 cells. These data demonstrate that triclosan had similar cytotoxicity in Hepa1c1c7 and HepG2 cells, but differential effects on the activation of PPAR?, the expression of ACOX1, and downstream events including DNA synthesis and apoptosis. PMID:25193434

Wu, Yuanfeng; Wu, Qiangen; Beland, Frederick A; Ge, Peter; Manjanatha, Mugimane G; Fang, Jia-Long

2014-11-18

263

Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A.  

PubMed

Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1(+) common progenitor cells, and identified highly cardiogenic progenitors as Flk1(+)/CXCR4(+)/VE-cadherin(-) (FCV) cells. We have also reported that cyclosporin-A (CSA) drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1(+) cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1(+) cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs. PMID:21364991

Fujiwara, Masataka; Yan, Peishi; Otsuji, Tomomi G; Narazaki, Genta; Uosaki, Hideki; Fukushima, Hiroyuki; Kuwahara, Koichiro; Harada, Masaki; Matsuda, Hiroyuki; Matsuoka, Satoshi; Okita, Keisuke; Takahashi, Kazutoshi; Nakagawa, Masato; Ikeda, Tadashi; Sakata, Ryuzo; Mummery, Christine L; Nakatsuji, Norio; Yamanaka, Shinya; Nakao, Kazuwa; Yamashita, Jun K

2011-01-01

264

Regional localization of the gene for thyroid peroxidase to human chromosome 2p25 and mouse chromosome 12C  

SciTech Connect

Thyroid peroxidase (TPO) plays a central role in thyroid gland function. The enzyme catalyzes two important reactions of thyroid hormone synthesis, i.e., the iodination of tyrosine residues in thyroglobulin and phenoxy-ester formation between pairs of iodinated tyrosines to generate the thyroid hormones, thyroxine and triiodothyronine. Previously, we isolated the cDNAs encoding human and mouse TPOs and assigned the human TPO gene to the short arm of chromosome 2 by somatic cell hybrid mapping. By a similar analysis of DNA from somatic cell hybrids, the human TPO gene was mapped to 2pter-p12. The mouse TPO gene was localized to chromosome 12 using a rat TPO cDNA as a probe to hybridize with mouse-hamster somatic cell hybrids. In this study, we used fluorescence in situ hybridization (FISH) to confirm the localization of human and mouse TPO genes to human chromosome 2 and mouse chromosome 12 and to assign them regionally to 2p25 and 12C, respectively. 7 refs., 1 fig.

Endo, Yuichi; Onogi, Satoshi; Fujita, Teizo [Fukushima Medical College (Japan)] [and others] [Fukushima Medical College (Japan); and others

1995-02-10

265

Posttranslational regulation of keratins: degradation of mouse and human keratins 18 and 8.  

PubMed Central

Human keratin 18 (K18) and keratin 8 (K8) and their mouse homologs, Endo B and Endo A, respectively, are expressed in adult mice primarily in a variety of simple epithelial cell types in which they are normally found in equal amounts within the intermediate filament cytoskeleton. Expression of K18 alone in mouse L cells or NIH 3T3 fibroblasts from either the gene or a cDNA expression vector results in K18 protein which is degraded relatively rapidly without the formation of filaments. A K8 cDNA containing all coding sequences was isolated and expressed in mouse fibroblasts either singly or in combination with K18. Immunoprecipitation of stably transfected L cells revealed that when K8 was expressed alone, it was degraded in a fashion similar to that seen previously for K18. However, expression of K8 in fibroblasts that also expressed K18 resulted in stabilization of both K18 and K8. Immunofluorescent staining revealed typical keratin filament organization in such cells. Thus, expression of a type I and a type II keratin was found to be both necessary and sufficient for formation of keratin filaments within fibroblasts. To determine whether a similar proteolytic system responsible for the degradation of K18 in fibroblasts also exists in simple epithelial cells which normally express a type I and a type II keratin, a mutant, truncated K18 protein missing the carboxy-terminal tail domain and a conserved region of the central, alpha-helical rod domain was expressed in mouse parietal endodermal cells. This resulted in destabilization of endogenous Endo A and Endo B and inhibition of the formation of typical keratin filament structures. Therefore, cells that normally express keratins contain a proteolytic system similar to that found in experimentally manipulated fibroblasts which degrades keratin proteins not found in their normal polymerized state. Images PMID:2471065

Kulesh, D A; Ceceña, G; Darmon, Y M; Vasseur, M; Oshima, R G

1989-01-01

266

Translation of BAFF Inhibition from Mouse to Non-human Primate and Human  

Microsoft Academic Search

\\u000a The identification of BAFF as a fundamental B cell survival factor in mouse and man, its over-expression in certain autoimmune\\u000a disease patient populations, and the discovery of three cognate receptors, stimulated interest in understanding the role of\\u000a BAFF in the pathogenesis of autoimmunity, and designing novel therapeutics to blunt B cell participation in disease pathogenesis\\u000a via blockade of this pathway.

Lachy McLean; Dhaya Seshasayee; Susan L. Kalled; Flavius Martin

267

Profound human/mouse differences in alpha-dystrobrevin isoforms: a novel syntrophin-binding site and promoter missing in mouse and rat  

PubMed Central

Background The dystrophin glycoprotein complex is disrupted in Duchenne muscular dystrophy and many other neuromuscular diseases. The principal heterodimeric partner of dystrophin at the heart of the dystrophin glycoprotein complex in the main clinically affected tissues (skeletal muscle, heart and brain) is its distant relative, ?-dystrobrevin. The ?-dystrobrevin gene is subject to complex transcriptional and post-transcriptional regulation, generating a substantial range of isoforms by alternative promoter use, alternative polyadenylation and alternative splicing. The choice of isoform is understood, amongst other things, to determine the stoichiometry of syntrophins (and their ligands) in the dystrophin glycoprotein complex. Results We show here that, contrary to the literature, most ?-dystrobrevin genes, including that of humans, encode three distinct syntrophin-binding sites, rather than two, resulting in a greatly enhanced isoform repertoire. We compare in detail the quantitative tissue-specific expression pattern of human and mouse ?-dystrobrevin isoforms, and show that two major gene features (the novel syntrophin-binding site-encoding exon and the internal promoter and first exon of brain-specific isoforms ?-dystrobrevin-4 and -5) are present in most mammals but specifically ablated in mouse and rat. Conclusion Lineage-specific mutations in the murids mean that the mouse brain has fewer than half of the ?-dystrobrevin isoforms found in the human brain. Our finding that there are likely to be fundamental functional differences between the ?-dystrobrevins (and therefore the dystrophin glycoprotein complexes) of mice and humans raises questions about the current use of the mouse as the principal model animal for studying Duchenne muscular dystrophy and other related disorders, especially the neurological aspects thereof. PMID:19961569

2009-01-01

268

Two human monoclonal antibodies reacting with the major gangliosides of human melanomas and comparison with corresponding mouse monoclonal antibodies.  

PubMed

The fine specificity analysis of two human monoclonal antibodies (AbFCM1 and AbHJM1) reacting with gangliosides is described and their specificities are compared with analogous mouse monoclonal antibodies (mAbs). These two antibodies were generated from lymphocytes of melanoma patients by Epstein-Barr virus transformation followed by fusion with mouse myeloma NS-1. Using a wide variety of gangliosides, including N-glycolylneuraminic acid (NeuGc)-containing compounds, the precise structures recognized by these two antibodies were elucidated by enzyme-linked immunosorbent assay and immunostaining of thin-layer chromatograms. AbFCM1 reacted with N-acetylneuraminic acid (NeuAc)-type GM3, GD1a, sialylparagloboside, and GT1b in decreasing order of intensity. This antibody also reacted with (NeuAc-NeuGc-)-GD3 and -disialylparagloboside, but did not react with NeuGc-type GM3, GM2, sialylparagloboside, (NeuGc)2-GD3 and -disialylparagloboside. The main epitope structures recognized by AbFCM1 are, therefore, NeuAc alpha 2----3Gal beta 1- and NeuAc alpha 2----8NeuGc alpha 2----Gal beta 1-. These results are similar to the specificity of mouse mAb M2590. AbHJM1 reacted with NeuAc-type GD3 and disialylparagloboside, GD2, GD1b, GM3, and GT1b, in decreasing order of intensity. Among NeuGc-type gangliosides, this antibody reacts with (NeuAc-NeuGc-)-GD3 and -disialylparagloboside, but did not react with gangliosides containing only NeuGc. Consequently the epitope structure recognized by AbHJM1 is probably (R)-(NeuAc alpha 2----8Sialic acid alpha 2----3)Gal beta 1-. Mouse anti-GD3 mAbR24, in contrast, showed strong reactivity only with GD3 and -disialylparagloboside among NeuAc-type gangliosides, but showed a similar pattern to AbHJM1 in its reactivity with NeuGc-containing gangliosides. Although these two human monoclonal antibodies are not highly restricted in their specificities, they reacted best with the major gangliosides, GM3 and GD3, present in the majority of human melanomas. PMID:2908845

Furukawa, K; Yamaguchi, H; Oettgen, H F; Old, L J; Lloyd, K O

1989-01-01

269

Human Cord Blood Stem Cells Generate Human Cytokeratin 18-Negative Hepatocyte-Like Cells in Injured Mouse Liver  

PubMed Central

Differentiation of adult bone marrow (BM) cells into nonhematopoietic cells is a rare phenomenon. Several reports, however, suggest that human umbilical cord blood (hUCB)-derived cells give rise to hepatocytes after transplantation into nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice. Therefore, we analyzed the hepatic differentiation potential of hUCB cells and compared the frequency of newly formed hepatocyte-like cells in the livers of recipient NOD-SCID mice after transplantation of hUCB versus murine BM cells. Mononuclear cell preparations of hUCB cells or murine BM from enhanced green fluorescent protein transgenic or wild-type mice were transplanted into sublethally irradiated NOD-SCID mice. Liver regeneration was induced by carbon tetrachloride injury with and without sub-sequent hepatocyte growth factor treatment. By immunohistochemistry and reverse transcriptasepolymerase chain reaction, we detected clusters of hepatocyte-like cells in the livers of hUCB-transplanted mice. These cells expressed human albumin and Hep Par 1 but mouse CK18, suggesting the formation of chimeric hepatocyte-like cells. Native fluorescence microscopy and double immunofluorescence failed to detect single hepatocytes derived from transplanted enhanced green fluorescent protein-transgenic mouse BM. Fluorescent in situ hybridization rarely revealed donor-derived hepatocyte-like cells after cross-gender mouse BM transplantation. Thus, hUCB cells have differentiation capabilities different from murine BM cells after transplantation into NOD-SCID mice, demonstrating the importance of further testing before hUCB cells can be used therapeutically. PMID:16049339

Sharma, Amar Deep; Cantz, Tobias; Richter, Rudolf; Eckert, Klaus; Henschler, Reinhard; Wilkens, Ludwig; Jochheim-Richter, Andrea; Arseniev, Lubomir; Ott, Michael

2005-01-01

270

Mouse GDF9 decreases KITL gene expression in human granulosa cells.  

PubMed

Kit ligand (KITL) is an important granulosa cell-derived growth factor in ovarian folliculogenesis, but its expression and function in human granulosa cells are currently poorly understood. Based on studies performed in animal models, it was hypothesised that KITL gene expression in human granulosa cells is regulated by androgens and/or growth differentiation factor 9 (GDF9). We utilised two models of human granulosa cells, the KGN granulosa tumour cell line and cumulus granulosa cells obtained from preovulatory follicles of women undergoing assisted reproduction. Cells were treated with combinations of 5?-dihydrotestosterone (DHT), recombinant mouse GDF9, and the ALK4/5/7 inhibitor SB431542. KITL mRNA levels were measured by quantitative real-time PCR. No change in KITL mRNA expression was observed after DHT treatment under any experimental conditions, but GDF9 treatment resulted in a significant decrease in KITL mRNA levels in both KGN and cumulus cells. The effect of GDF9 was abolished by the addition of SB431542. These results indicate that KITL is not directly regulated by androgen signalling in human granulosa cells. Moreover, this study provides the first evidence that GDF9 negatively regulates KITL gene expression in human granulosa cells providing new information on the regulation of these important growth factors in the human ovary. PMID:24985063

Tuck, Astrud R; Mottershead, David G; Fernandes, Herman A; Norman, Robert J; Tilley, Wayne D; Robker, Rebecca L; Hickey, Theresa E

2015-03-01

271

Signature patterns of gene expression in mouse atherosclerosis and their correlation to human coronary disease.  

PubMed

The propensity for developing atherosclerosis is dependent on underlying genetic risk and varies as a function of age and exposure to environmental risk factors. Employing three mouse models with different disease susceptibility, two diets, and a longitudinal experimental design, it was possible to manipulate each of these factors to focus analysis on genes most likely to have a specific disease-related function. To identify differences in longitudinal gene expression patterns of atherosclerosis, we have developed and employed a statistical algorithm that relies on generalized regression and permutation analysis. Comprehensive annotation of the array with ontology and pathway terms has allowed rigorous identification of molecular and biological processes that underlie disease pathophysiology. The repertoire of atherosclerosis-related immunomodulatory genes has been extended, and additional fundamental pathways have been identified. This highly disease-specific group of mouse genes was combined with an extensive human coronary artery data set to identify a shared group of genes differentially regulated among atherosclerotic tissues from different species and different vascular beds. A small core subset of these differentially regulated genes was sufficient to accurately classify various stages of the disease in mouse. The same gene subset was also found to accurately classify human coronary lesion severity. In addition, this classifier gene set was able to distinguish with high accuracy atherectomy specimens from native coronary artery disease vs. those collected from in-stent restenosis lesions, thus identifying molecular differences between these two processes. These studies significantly focus efforts aimed at identifying central gene regulatory pathways that mediate atherosclerotic disease, and the identification of classification gene sets offers unique insights into potential diagnostic and therapeutic strategies in atherosclerotic disease. PMID:15870398

Tabibiazar, Raymond; Wagner, Roger A; Ashley, Euan A; King, Jennifer Y; Ferrara, Rossella; Spin, Joshua M; Sanan, David A; Narasimhan, Balasubramanian; Tibshirani, Robert; Tsao, Philip S; Efron, Bradley; Quertermous, Thomas

2005-07-14

272

Novel genes in Human Asthma Based on a Mouse Model of Allergic Airway Inflammation and Human Investigations  

PubMed Central

Purpose Based on a previous gene expression study in a mouse model of asthma, we selected 60 candidate genes and investigated their possible roles in human asthma. Methods In these candidate genes, 90 SNPs were genotyped using MassARRAY technology from 311 asthmatic children and 360 healthy controls of the Hungarian (Caucasian) population. Moreover, gene expression levels were measured by RT PCR in the induced sputum of 13 asthmatics and 10 control individuals. t-tests, chi-square tests, and logistic regression were carried out in order to assess associations of SNP frequency and expression level with asthma. Permutation tests were performed to account for multiple hypothesis testing. Results The frequency of 4 SNPs in 2 genes differed significantly between asthmatic and control subjects: SNPs rs2240572, rs2240571, rs3735222 in gene SCIN, and rs32588 in gene PPARGC1B. Carriers of the minor alleles had reduced risk of asthma with an odds ratio of 0.64 (0.51-0.80; P=7×10-5) in SCIN and 0.56 (0.42-0.76; P=1.2×10-4) in PPARGC1B. The expression levels of SCIN, PPARGC1B and ITLN1 genes were significantly lower in the sputum of asthmatics. Conclusions Three potentially novel asthma-associated genes were identified based on mouse experiments and human studies. PMID:25374748

Temesi, Gergely; Virág, Viktor; Hadadi, Éva; Ungvári, Ildikó; Fodor, Lili E; Bikov, András; Nagy, Adrienne; Gálffy, Gabriella; Tamási, Lilla; Horváth, Ildikó; Kiss, András; Hullám, Gábor; Gézsi, András; Sárközy, Péter; Antal, Péter; Buzás, Edit

2014-01-01

273

Distinct Human and Mouse Membrane Trafficking Systems for Sweet Taste Receptors T1r2 and T1r3  

PubMed Central

The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system. PMID:25029362

Shimizu, Madoka; Goto, Masao; Kawai, Takayuki; Yamashita, Atsuko; Kusakabe, Yuko

2014-01-01

274

Predominant Development of Mature and Functional Human NK Cells in a Novel Human IL-2-Producing Transgenic NOG Mouse.  

PubMed

We generated a severe immunodeficient NOD/Shi-scid-IL-2R?(null) (NOG) mouse substrain expressing the transgenic human IL-2 gene (NOG-IL-2 Tg). Upon transfer of human cord blood-derived hematopoietic stem cells (HSCs), CD3(-)CD56(high)CD16(+/-) cells developed unexpectedly, predominantly in the NOG-IL-2 Tg (hu-HSC NOG-IL-2 Tg). These cells expressed various NK receptors, including NKp30, NKp44, NKp46, NKG2D, and CD94, as well as a diverse set of killer cell Ig-like receptor molecules at levels comparable to normal human NK cells from the peripheral blood, which is evidence of their maturity. They produced levels of granzyme A as high as in human peripheral blood-derived NK cells, and a considerable amount of perforin protein was detected in the plasma. Human NK cells in hu-HSC NOG-IL-2 Tg produced IFN-? upon stimulation, and IL-2, IL-15, or IL-12 treatment augmented the in vitro cytotoxicity. Inoculation of K562 leukemia cells into hu-HSC NOG-IL-2 Tg caused complete rejection of the tumor cells, whereas inoculation into hu-HSC NOG fully reconstituted with human B, T, and some NK cells did not. Moreover, when a CCR4(+) Hodgkin's lymphoma cell line was inoculated s.c. into hu-HSC NOG-IL-2 Tg, the tumor growth was significantly suppressed by treatment with a therapeutic humanized anti-CCR4 Ab (mogamulizumab), suggesting that the human NK cells in the mice exerted active Ab-dependent cellular cytotoxicity in vivo. Taken together, these data suggest that the new NOG-IL-2 Tg strain is a unique model that can be used to investigate the biological and pathological functions of human NK cells in vivo. PMID:25712215

Katano, Ikumi; Takahashi, Takeshi; Ito, Ryoji; Kamisako, Tsutomu; Mizusawa, Takuma; Ka, Yuyo; Ogura, Tomoyuki; Suemizu, Hiroshi; Kawakami, Yutaka; Ito, Mamoru

2015-04-01

275

SERCA2a superinhibition by human phospholamban triggers electrical and structural remodeling in mouse hearts.  

PubMed

Phospholamban (PLN), the reversible inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a), is a key regulator of myocyte Ca(2+) cycling with a significant role in heart failure. We previously showed that the single amino acid difference between human and mouse PLN results in increased inhibition of Ca(2+) cycling and cardiac remodeling and attenuated stress responses in transgenic mice expressing the human PLN (hPLN) in the null background. Here we dissect the molecular and electrophysiological processes triggered by the superinhibitory hPLN in the mouse. Using a multidisciplinary approach, we performed global gene expression analysis, electrophysiology, and mathematical simulations on hPLN mice. We identified significant changes in a series of Na(+) and K(+) homeostasis genes/proteins (including Kcnd2, Scn9a, Slc8a1) and ionic conductance (including L-type Ca(2+) current, Na(+)/Ca(2+) exchanger, transient outward K(+) current). Simulation analysis suggests that this electrical remodeling has a critical role in rescuing cardiac function by improving sarcoplasmic reticulum Ca(2+) load and overall Ca(2+) dynamics. Furthermore, multiple structural and transcription factor gene expression changes indicate an ongoing structural remodeling process, favoring hypertrophy and myogenesis while suppressing apoptosis and progression to heart failure. Our findings expand current understanding of the hPLN function and provide additional insights into the downstream implications of SERCA2a superinhibition in the mammalian heart. PMID:21266500

Wang, Hong-Sheng; Arvanitis, Demetrios A; Dong, Min; Niklewski, Paul J; Zhao, Wen; Lam, Chi Keung; Kranias, Evangelia G; Sanoudou, Despina

2011-04-12

276

Mouse, but Not Human, ApoB-100 Lipoprotein Cholesterol Is a Potent Innate Inhibitor of Streptococcus pneumoniae Pneumolysin  

PubMed Central

Streptococcus pneumoniae produces the pore-forming toxin pneumolysin (PLY), which is a member of the cholesterol-dependent cytolysin (CDC) family of toxins. The CDCs recognize and bind the 3?-hydroxyl group of cholesterol at the cell surface, which initiates membrane pore formation. The cholesterol transport lipoproteins, which carry cholesterol in their outer monolayer, are potential off-pathway binding targets for the CDCs and are present at significant levels in the serum and the interstitial spaces of cells. Herein we show that cholesterol carried specifically by the ApoB-100-containing lipoprotein particles (CH-ApoB-100) in the mouse, but not that carried by human or guinea pig particles, is a potent inhibitor of the PLY pore-forming mechanism. Cholesterol present in the outer monolayer of mouse ApoB-100 particles is recognized and bound by PLY, which stimulates premature assembly of the PLY oligomeric complex thereby inactivating PLY. These studies further suggest that the vast difference in the inhibitory capacity of mouse CH-ApoB-100 and that of the human and the guinea pig is due to differences in the presentation of cholesterol in the outer monolayer of their ApoB-100 particles. Therefore mouse CH-ApoB-100 represents a significant innate CDC inhibitor that is absent in humans, which may underestimate the contribution of CDCs to human disease when utilizing mouse models of disease. PMID:25188225

Wade, Kristin R.; Hotze, Eileen M.; Briles, David E.; Tweten, Rodney K.

2014-01-01

277

Deep-coverage rhesus red blood cell proteome: a first comparison with the human and mouse red blood cell  

PubMed Central

Background. Macaques are the closest evolutionary relatives of humans routinely used in basic and applied biomedical research. Their genetic, physiological, immunological and metabolic similarity to humans, second only to that of the great apes, makes them invaluable models of human disease. These similarities also mean that macaques are often the only experimental models available for evaluating increasingly specific drugs in development, and as a proof-of-concept bridge can help reduce the numbers of compounds that fail in clinical pharmaceutical research. In vertebrates, red blood cells (RBCs) diseases are frequently severe as their role as sole gas transporter makes them indispensable to survival; much research has therefore focused on an in-depth understanding of the functioning of the RBC. RBCs also host malaria, babesia and other parasites. Recently, we presented an in-depth proteome for the human RBC and a comparative human/mouse RBC proteome. Material and methods. Here, we present directly comparable data for the human, mouse and rhesus RBC proteomes. All proteins were identified, validated and categorized in terms of sub-cellular localization, protein family and function and, in comparison with the human and mouse RBC, were classified as orthologues, family-related or unique. Splice isoforms were identified and polypeptides migrating with anomalous apparent molecular weights were grouped into putatively ubiquitinylated or partially degraded complexes. Results and Discussion. Overall there was close concordance between mouse, human and rhesus proteomes, confirming the unexpected RBC complexity. Several novel findings in the human and mouse proteomes have been confirmed here. This comparison sheds light on several open issues in RBC biology and provides a departure point for more comprehensive understanding of RBC function. PMID:20606743

Pasini, Erica M.; Kirkegaard, Morten; Mortensen, Peter; Mann, Matthias; Thomas, Alan W.

2010-01-01

278

The efficacy of human placenta as a source of the universal feeder in human and mouse pluripotent stem cell culture.  

PubMed

The use of a mouse embryonic fibroblast (MEF) feeder for culture of embryonic stem cells (ESCs) is a widely accepted method, regardless of the ESCs' origin and type. In this study, we performed the undifferentiated propagation of human ES cell lines (hESCs, H1, and HSF6) and mouse ES cell lines (mESCs, D3, and CE3), which were previously maintained on an MEF feeder, using human placenta-derived fibroblast-like cell (HPC) feeders originated from chorionic villi of women who had undergone therapeutic abortion due to known maternal disease that is aggravated by pregnancy. Moreover, we tried to introduce the HPC feeder for the establishment of inducible pluripotent stem cells (iPSCs) from human placental mesenchymal stem cells (MSCs). On the HPC feeder we were able to propagate ESCs and iPSCs colonies as an undifferentiated state up to the 50th passage and 20th passage, respectively. Maintenance of undifferentiated ESCs was identified by the expression of ALP, SSEA-1, SSEA-4, TRA-81, TRA-60, Oct-4, Nanog, or Rex-1. Also, addition of leukemia inhibitory factor was not required for undifferentiated propagation of mESCs on the HPC feeder. The efficiency and expression of three germ layer markers of embryoid bodies (EBs) from ESCs were satisfactory in both the MEF and HPC group. EBs formed from iPSCs were scant, and differentiation to the three germ layers was identifiable by reverst transcription-polymerase chain reactio (RT-PCR) only in the HPC group. In conclusion, the HPC feeder can efficiently support the undifferentiated propagation of hESCs, mESCs, and iPSCs, suggesting that human placenta may be a useful source of universal feeder cells for hESC, mESC, and iPSC culture. PMID:20698773

Park, Yong; Lee, Seung Jin; Choi, In Young; Lee, Se Ryeon; Sung, Hwa Jung; Kim, Jong Hoon; Yoo, Young Do; Geum, Dong Ho; Kim, Sun Haeng; Kim, Byung Soo

2010-06-01

279

Exploiting human and mouse transcriptomic data: Identification of circadian genes and pathways influencing health.  

PubMed

The power of the application of bioinformatics across multiple publicly available transcriptomic data sets was explored. Using 19 human and mouse circadian transcriptomic data sets, we found that NR1D1 and NR1D2 which encode heme-responsive nuclear receptors are the most rhythmic transcripts across sleep conditions and tissues suggesting that they are at the core of circadian rhythm generation. Analyzes of human transcriptomic data show that a core set of transcripts related to processes including immune function, glucocorticoid signalling, and lipid metabolism is rhythmically expressed independently of the sleep-wake cycle. We also identify key transcripts associated with transcription and translation that are disrupted by sleep manipulations, and through network analysis identify putative mechanisms underlying the adverse health outcomes associated with sleep disruption, such as diabetes and cancer. Comparative bioinformatics applied to existing and future data sets will be a powerful tool for the identification of core circadian- and sleep-dependent molecules. PMID:25772847

Laing, Emma E; Johnston, Jonathan D; Möller-Levet, Carla S; Bucca, Giselda; Smith, Colin P; Dijk, Derk-Jan; Archer, Simon N

2015-05-01

280

TCRklass: a new K-string-based algorithm for human and mouse TCR repertoire characterization.  

PubMed

The next-generation sequencing technology has promoted the study on human TCR repertoire, which is essential for the adaptive immunity. To decipher the complexity of TCR repertoire, we developed an integrated pipeline, TCRklass, using K-string-based algorithm that has significantly improved the accuracy and performance over existing tools. We tested TCRklass using manually curated short read datasets in comparison with in silico datasets; it showed higher precision and recall rates on CDR3 identification. We applied TCRklass on large datasets of two human and three mouse TCR repertoires; it demonstrated higher reliability on CDR3 identification and much less biased V/J profiling, which are the two components contributing the diversity of the repertoire. Because of the sequencing cost, short paired-end reads generated by next-generation sequencing technology are and will remain the main source of data, and we believe that the TCRklass is a useful and reliable toolkit for TCR repertoire analysis. PMID:25404364

Yang, Xi; Liu, Di; Lv, Na; Zhao, Fangqing; Liu, Fei; Zou, Jing; Chen, Yan; Xiao, Xue; Wu, Jun; Liu, Peipei; Gao, Jing; Hu, Yongfei; Shi, Yi; Liu, Jun; Zhang, Ruifen; Chen, Chen; Ma, Juncai; Gao, George F; Zhu, Baoli

2015-01-01

281

Beige Adipocytes are a Distinct Type of Thermogenic Fat Cell in Mouse and Human  

PubMed Central

Summary Brown fat defends against hypothermia and obesity through thermogenesis mediated by mitochondrial UCP1. Recent data suggest that there are two distinct types of brown fat: classical brown fat derived from a myf-5 cellular lineage and UCP1-positive cells that emerge in white fat from a non-myf-5 lineage. Here we report the cloning of “beige” cells from murine white fat depots. Beige cells resemble white fat cells in having extremely low basal expression of UCP1, but like classical brown fat, they respond to cyclic AMP stimulation with high UCP1 expression and respiration rates. Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin. Finally, we show that deposits of brown fat previously observed in adult humans are composed of beige adipose cells. These data illustrate a new cell type with therapeutic potential in mouse and human. PMID:22796012

Wu, Jun; Boström, Pontus; Sparks, Lauren M.; Ye, Li; Choi, Jang Hyun; Giang, An-Hoa; Khandekar, Melin; Nuutila, Pirjo; Schaart, Gert; Huang, Kexin; Tu, Hua; van Marken Lichtenbelt, Wouter D.; Hoeks, Joris; Enerbäck, Sven; Schrauwen, Patrick; Spiegelman, Bruce M.

2012-01-01

282

Development of Functional Human NK Cells in an Immunodeficient Mouse Model with the Ability to Provide Protection against Tumor Challenge  

Microsoft Academic Search

Studies of human NK cells and their role in tumor suppression have largely been restricted to in vitro experiments which lack the complexity of whole organisms, or mouse models which differ significantly from humans. In this study we showed that, in contrast to C57BL\\/6 Rag2?\\/?\\/?c?\\/? and NOD\\/Scid mice, newborn BALB\\/c Rag2?\\/?\\/?c?\\/? mice can support the development of human NK cells

Amanda Kwant-Mitchell; Elishka A. Pek; Kenneth L. Rosenthal; Ali A. Ashkar; Johan K. Sandberg

2009-01-01

283

Genetic linkage studies in familial partial epilepsy: Exclusion of the human chromosome regions syntenic to the El-1 mouse locus  

SciTech Connect

Recently, six families with a familial form of partial epilepsy were described. All pedigrees showed autosomal dominant inheritance with incomplete penetrance. Affected individuals present with predominantly nocturnal seizures with frontal lobe semiology. In 1959, a genetic mouse model for partial epilepsy, the El mouse, was reported. In the El mouse, a major seizure susceptibility gene, El-1, segregates in an autosomal dominant fashion and has been localized to a region distal to the centromere of mouse chromosome 9. Comparative genetic maps between man and mouse have been used for prediction of localization of several human disease genes. Because the region of mouse chromosome 9 that is the most likely to contain the El-1 locus is syntenic to regions on human chromosomes 3q21-p22, 3q21-q23.3, 6q12 and 15q24, we adopted the candidate gene approach as an initial linkage strategy. Twenty-two polymorphic microsatellite markers covering these regions were used for genotyping individuals in the three larger families ascertained, two of which are Australian and one French-Canadian. Negative two-point lod scores were obtained separately for each family. The analysis of all three families combined significantly excludes the candidate regions on chromosomes 3, 6 and 15.

Lopes-Cendes, I. [Montreal General Hospital (Canada); Mulley, J.C. [Alelaide Children`s Hospital (Canada); Andermann, E. [Montreal Neurological Institute and Hospital, Quebec (Canada)] [and others

1994-09-01

284

Production of MPS VII mouse (Gustm(hE540A·mE536A)Sly) doubly tolerant to human and mouse ?-glucuronidase  

PubMed Central

Mucopolysaccharidosis VII (MPS VII, Sly syndrome) is an autosomal recessive lysosomal storage disease caused by ?-glucuronidase (GUS) deficiency. A naturally occurring mouse model of that disease has been very useful for studying experimental approaches to therapy. However, immune responses can complicate evaluation of the long-term benefits of enzyme replacement or gene therapy delivered to adult MPS VII mice. To make this model useful for studying the long-term effectiveness and side effects of experimental therapies delivered to adult mice, we developed a new MPS VII mouse model, which is tolerant to both human and murine GUS. To achieve this, we used homologous recombination to introduce simultaneously a human cDNA transgene expressing inactive human GUS into intron 9 of the murine Gus gene and a targeted active site mutation (E536A) into the adjacent exon 10. When the heterozygote products of germline transmission were bred to homozygosity, the homozygous mice expressed no GUS enzyme activity but expressed inactive human GUS protein highly and were tolerant to immune challenge with human enzyme. Expression of the mutant murine Gus gene was reduced to about 10% of normal levels, but the inactive murine GUS enzyme also conferred tolerance to murine GUS. This MPS VII mouse model should be useful to evaluate therapeutic responses in adult mice receiving repetitive doses of enzyme or mice receiving gene therapy as adults. Heterozygotes expressed only 9.5–26% of wild-type levels of murine GUS instead of the expected 50%, indicating a dominant-negative effect of the mutant enzyme monomers on the activity of GUS tetramers in different tissues. Corrective gene therapy in this model should provide high enough levels of expression of normal GUS monomers to overcome the dominant negative effect of mutant monomers on newly synthesized GUS tetramers in most tissues. PMID:12700165

Tomatsu, Shunji; Orii, Koji O.; Vogler, Carole; Grubb, Jeffrey H.; Snella, Elizabeth M.; Gutierrez, Monica; Dieter, Tatiana; Holden, Christopher C.; Sukegawa, Kazuko; Orii, Tadao; Kondo, Naomi; Sly, William S.

2006-01-01

285

A Novel Mouse Model for Stable Engraftment of a Human Immune System and Human Hepatocytes  

PubMed Central

Hepatic infections by hepatitis B virus (HBV), hepatitis C virus (HCV) and Plasmodium parasites leading to acute or chronic diseases constitute a global health challenge. The species tropism of these hepatotropic pathogens is restricted to chimpanzees and humans, thus model systems to study their pathological mechanisms are severely limited. Although these pathogens infect hepatocytes, disease pathology is intimately related to the degree and quality of the immune response. As a first step to decipher the immune response to infected hepatocytes, we developed an animal model harboring both a human immune system (HIS) and human hepatocytes (HUHEP) in BALB/c Rag2-/- IL-2R?c-/- NOD.sirpa uPAtg/tg mice. The extent and kinetics of human hepatocyte engraftment were similar between HUHEP and HIS-HUHEP mice. Transplanted human hepatocytes were polarized and mature in vivo, resulting in 20–50% liver chimerism in these models. Human myeloid and lymphoid cell lineages developed at similar frequencies in HIS and HIS-HUHEP mice, and splenic and hepatic compartments were humanized with mature B cells, NK cells and naïve T cells, as well as monocytes and dendritic cells. Taken together, these results demonstrate that HIS-HUHEP mice can be stably (> 5 months) and robustly engrafted with a humanized immune system and chimeric human liver. This novel HIS-HUHEP model provides a platform to investigate human immune responses against hepatotropic pathogens and to test novel drug strategies or vaccine candidates. PMID:25782010

Strick-Marchand, Helene; Dusséaux, Mathilde; Darche, Sylvie; Huntington, Nicholas D.; Legrand, Nicolas; Masse-Ranson, Guillemette; Corcuff, Erwan; Ahodantin, James; Weijer, Kees; Spits, Hergen; Kremsdorf, Dina; Di Santo, James P.

2015-01-01

286

Completely Humanizing Prolactin Rescues Infertility in Prolactin Knockout Mice and Leads to Human Prolactin Expression in Extrapituitary Mouse Tissues  

PubMed Central

A variety of fundamental differences have evolved in the physiology of the human and rodent prolactin (PRL) systems. The PRL gene in humans and other primates contains an alternative promoter, 5.8 kbp upstream of the pituitary transcription start site, which drives expression of PRL in “extrapituitary” tissues, where PRL is believed to exert local, or paracrine, actions. Several of these extrapituitary PRL tissues serve a reproductive function (eg, mammary gland, decidua, prostate, etc), consistent with the hypothesis that local PRL production may be involved in, and required for, normal reproductive physiology in primates. Rodent research models have generated significant findings regarding the role of PRL in reproduction. Specifically, disruption (knockout) of either the PRL gene or its receptor causes profound female reproductive defects at several levels (ovaries, preimplantation endometrium, mammary glands). However, the rodent PRL gene differs significantly from the human, most notably lacking the alternative promoter. Understanding of the physiological regulation and function of extrapituitary PRL has been limited by the absence of a readily accessible experimental model, because the rodent PRL gene does not contain the alternative promoter. To overcome these limitations, we have generated mice that have been “humanized” with regard to the structural gene and tissue expression of PRL. Here, we present the characterization of these animals, demonstrating that the human PRL transgene is responsive to known physiological regulators both in vitro and in vivo. More importantly, the expression of the human PRL transgene is able to rescue the reproductive defects observed in mouse PRL knockout (mPRL?) females, validating their usefulness in studying the function or regulation of this hormone in a manner that is relevant to human physiology. PMID:24029242

Christensen, Heather R.; Murawsky, Michael K.; Horseman, Nelson D.; Willson, Tara A.

2013-01-01

287

NEUROD2 and NEUROD3 genes map to human chromosomes 17q12 and 5q23-q31 and mouse chromosomes 11 and 13, respectively  

SciTech Connect

NEUROD2 and NEUROD3 are transcription factors involved in neurogenesis that are related to the basic helix-loop-helix protein NEUROD. NEUROD2 maps to human chromosome 17q12 and mouse chromosome 11. NEUROD3 maps to human chromosome 5q23-q31 and mouse chromosome 13. 16 refs., 2 figs.

Tamimi, R.M.; Montgomery-Dyer, K.; Tapscott, S.J. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States)] [and others] [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); and others

1997-03-01

288

A Human-SCID Mouse Model for Allergic Immune Responses: Bacterial Superantigen Enhances Skin Inflammation and Suppresses IgE Production  

Microsoft Academic Search

Chronic skin colonization with Staphylococcus aureus is a well-known feature in atopic dermatitis. The aim of this study was to develop a human-SCID mouse model to analyze the possible role of bacterial superantigens in human allergic immune responses under in vivo conditions. SCID mice were reconstituted with peripheral blood mononuclear cells (between 2 and 9 × 107 cells per mouse)

Udo Herz; Norbert Schnoy; Siegfried Borelli; Lorenz Weigl; Ulrich Käsbohrer; Angelika Daser; Ulrich Wahn; Eckart Köttgen; Harald Renz

1998-01-01

289

The contribution of Kv7 channels to pregnant mouse and human myometrial contractility  

PubMed Central

Abstract Premature birth accounts for approximately 75% of neonatal mortality and morbidity in the developed world. Despite this, methods for identifying and treating women at risk of preterm labour are limited and many women still present in preterm labour requiring tocolytic therapy to suppress uterine contractility. The aim of this study was to assess the utility of Kv7 channel activators as potential uterine smooth muscle (myometrium) relaxants in tissues from pregnant mice and women. Myometrium was obtained from early and late pregnant mice and from lipopolysaccharide (LPS)-injected mice (day 15 of gestation; model of infection in pregnancy). Human myometrium was obtained at the time of Caesarean section from women at term (38–41 weeks). RT-PCR/qRT-PCR detected KCNQ and KCNE expression in mouse and human myometrium. In mice, there was a global suppression of all KCNQ isoforms, except KCNQ3, in early pregnancy (n= 6, P < 0.001 versus late pregnant); expression subsequently increased in late pregnancy (n= 6). KCNE isoforms were also gestationally regulated (P < 0.05). KCNQ and KCNE isoform expression was slightly down-regulated in myometrium from LPS-treated-mice versus controls (P < 0.05, n= 3–4). XE991 (10 ?M, Kv7 inhibitor) significantly increased spontaneous myometrial contractions in vitro in both human and mouse myometrial tissues (P < 0.05) and retigabine/flupirtine (20 ?M, Kv7 channel activators) caused profound myometrial relaxation (P < 0.05). In summary, Kv7 activators suppressed myometrial contraction and KCNQ gene expression was sustained throughout gestation, particularly at term. Consequently, activation of the encoded channels represents a novel mechanism for treatment of preterm labour. PMID:20132415

McCallum, Laura A; Pierce, Stephanie L; England, Sarah K; Greenwood, Iain A; Tribe, Rachel M

2011-01-01

290

Establishment of a transgenic mouse model specifically expressing human serum amyloid A in adipose tissue.  

PubMed

Obesity and obesity co-morbidities are associated with a low grade inflammation and elevated serum levels of acute phase proteins, including serum amyloid A (SAA). In the non-acute phase in humans, adipocytes are major producers of SAA but the function of adipocyte-derived SAA is unknown. To clarify the role of adipocyte-derived SAA, a transgenic mouse model expressing human SAA1 (hSAA) in adipocytes was established. hSAA expression was analysed using real-time PCR analysis. Male animals were challenged with a high fat (HF) diet. Plasma samples were subjected to fast protein liquid chromatography (FPLC) separation. hSAA, cholesterol and triglyceride content were measured in plasma and in FPLC fractions. Real-time PCR analysis confirmed an adipose tissue-specific hSAA gene expression. Moreover, the hSAA gene expression was not influenced by HF diet. However, hSAA plasma levels in HF fed animals (37.7±4.0 µg/mL, n?=?7) were increased compared to those in normal chow fed animals (4.8±0.5 µg/mL, n?=?10; p<0.001), and plasma levels in the two groups were in the same ranges as in obese and lean human subjects, respectively. In FPLC separated plasma samples, the concentration of hSAA peaked in high-density lipoprotein (HDL) containing fractions. In addition, cholesterol distribution over the different lipoprotein subfractions as assessed by FPLC analysis was similar within the two experimental groups. The established transgenic mouse model demonstrates that adipose tissue produced hSAA enters the circulation, resulting in elevated plasma levels of hSAA. This new model will enable further studies of metabolic effects of adipose tissue-derived SAA. PMID:21611116

Olsson, Maja; Ahlin, Sofie; Olsson, Bob; Svensson, Per-Arne; Ståhlman, Marcus; Borén, Jan; Carlsson, Lena M S; Sjöholm, Kajsa

2011-01-01

291

Evaluation of Depigmenting Activity by 8-Hydroxydaidzein in Mouse B16 Melanoma Cells and Human Volunteers  

PubMed Central

In our previous study, 8-hydroxydaidzein (8-OHDe) was demonstrated to be a potent and unique suicide substrate of mushroom tyrosinase. In this study, the compound was evaluated for in vitro cellular tyrosinase and melanogenesis inhibitory activities in mouse B16 melanoma cells and for in vivo skin-whitening activity in human volunteers. Tyrosinase activity and melanogenesis in the cell culture incubated with 10 ?M of 8-OHDe were decreased to 20.1% and 51.8% of control, respectively, while no obvious cytotoxicity was observed in this concentration. In contrast, a standard tyrosinase inhibitor, kojic acid, showed 69.9% and 71.3% of control in cellular tyrosinase and melanogenesis activity, respectively, at a concentration as high as 100 ?M. Hence, 8-OHDe exhibited more than an inhibitory effects on melanin production in B16 cells 10-fold stronger than kojic acid. In addition, when a cream containing 4% 8-OHDe was applied to human skin in an in vivo study, significant increases in the dL*-values were observed after three weeks. Moreover, the increase in the dL*-values after 8-week treatment with 4% 8-OHDe (from ?0.57 to 1.94) is stronger than those of 2% 8-OHDe treatment (from 0.26 to 0.94) and 2% ascorbic acid-2-glucoside treatment (from 0.07 to 1.54). From the results of the study, it was concluded that 8-OHDe, the potent suicide substrate of mushroom tyrosinase, has depigmenting activities in both mouse melanoma cells and in human volunteers. Thus, the compound has significant potential for use in cosmetics as a skin-whitening ingredient. PMID:20057943

Tai, Sorgan Shou-Ku; Lin, Ching-Gong; Wu, Mon-Han; Chang, Te-Sheng

2009-01-01

292

Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.  

PubMed Central

The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the mouse Hx phenotype becomes apparent during limb development. This result suggests that Lmbr1 may underlie preaxial polydactyly in both mice and humans. We have used deletion chromosomes to demonstrate that the dominant mouse and human limb defects arise from gain-of-function mutations and not from haploinsufficiency. Furthermore, we created a loss-of-function mutation in the mouse Lmbr1 gene that causes digit number reduction (oligodactyly) on its own and in trans to a deletion chromosome. The loss of digits that we observed in mice with reduced Lmbr1 activity is in contrast to the gain of digits observed in Hx mice and human polydactyly patients. Our results suggest that the Lmbr1 gene is required for limb formation and that reciprocal changes in levels of Lmbr1 activity can lead to either increases or decreases in the number of digits in the vertebrate limb. PMID:11606546

Clark, R M; Marker, P C; Roessler, E; Dutra, A; Schimenti, J C; Muenke, M; Kingsley, D M

2001-01-01

293

Mechanisms of Recombination between Diverged Sequences in Wild-Type and BLM-Deficient Mouse and Human Cells ? †  

PubMed Central

Double-strand breaks (DSBs) are particularly deleterious DNA lesions for which cells have developed multiple mechanisms of repair. One major mechanism of DSB repair in mammalian cells is homologous recombination (HR), whereby a homologous donor sequence is used as a template for repair. For this reason, HR repair of DSBs is also being exploited for gene modification in possible therapeutic approaches. HR is sensitive to sequence divergence, such that the cell has developed ways to suppress recombination between diverged (“homeologous”) sequences. In this report, we have examined several aspects of HR between homeologous sequences in mouse and human cells. We found that gene conversion tracts are similar for mouse and human cells and are generally ?100 bp, even in Msh2?/? cells which fail to suppress homeologous recombination. Gene conversion tracts are mostly unidirectional, with no observed mutations. Additionally, no alterations were observed in the donor sequences. While both mouse and human cells suppress homeologous recombination, the suppression is substantially less in the transformed human cells, despite similarities in the gene conversion tracts. BLM-deficient mouse and human cells suppress homeologous recombination to a similar extent as wild-type cells, unlike Sgs1-deficient Saccharomyces cerevisiae. PMID:20154148

LaRocque, Jeannine R.; Jasin, Maria

2010-01-01

294

Comparative Sequence Analysis of the X-Inactivation Center Region in Mouse, Human, and Bovine  

PubMed Central

We have sequenced to high levels of accuracy 714-kb and 233-kb regions of the mouse and bovine X-inactivation centers (Xic), respectively, centered on the Xist gene. This has provided the basis for a fully annotated comparative analysis of the mouse Xic with the 2.3-Mb orthologous region in human and has allowed a three-way species comparison of the core central region, including the Xist gene. These comparisons have revealed conserved genes, both coding and noncoding, conserved CpG islands and, more surprisingly, conserved pseudogenes. The distribution of repeated elements, especially LINE repeats, in the mouse Xic region when compared to the rest of the genome does not support the hypothesis of a role for these repeat elements in the spreading of X inactivation. Interestingly, an asymmetric distribution of LINE elements on the two DNA strands was observed in the three species, not only within introns but also in intergenic regions. This feature is suggestive of important transcriptional activity within these intergenic regions. In silico prediction followed by experimental analysis has allowed four new genes, Cnbp2, Ftx, Jpx, and Ppnx, to be identified and novel, widespread, complex, and apparently noncoding transcriptional activity to be characterized in a region 5? of Xist that was recently shown to attract histone modification early after the onset of X inactivation. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AJ421478, AJ421479, AJ421480, and AJ421481. Online supplemental data are available at http://pbil.univ-lyon1.fr/datasets/Xic2002/data.html and www.genome.org.] PMID:12045143

Chureau, Corinne; Prissette, Marine; Bourdet, Agnès; Barbe, Valérie; Cattolico, Laurence; Jones, Louis; Eggen, André; Avner, Philip; Duret, Laurent

2002-01-01

295

Analysis of PRICKLE1 in human cleft palate and mouse development demonstrates rare and common variants involved in human malformations  

PubMed Central

Palate development is shaped by multiple molecular signaling pathways, including the Wnt pathway. In mice and humans, mutations in both the canonical and noncanonical arms of the Wnt pathway manifest as cleft palate, one of the most common human birth defects. Like the palate, numerous studies also link different Wnt signaling perturbations to varying degrees of limb malformation; for example, shortened limbs form in mutations of Ror2,Vangl2looptail and, in particular, Wnt5a. We recently showed the noncanonical Wnt/planar cell polarity (PCP) signaling molecule Prickle1 (Prickle like 1) also stunts limb growth in mice. We now expanded these studies to the palate and show that Prickle1 is also required for palate development, like Wnt5a and Ror2. Unlike in the limb, the Vangl2looptail mutation only aggravates palate defects caused by other mutations. We screened Filipino cleft palate patients and found PRICKLE1 variants, both common and rare, at an elevated frequency. Our results reveal that in mice and humans PRICKLE1 directs palate morphogenesis; our results also uncouple Prickle1 function from Vangl2 function. Together, these findings suggest mouse and human palate development is guided by PCP-Prickle1 signaling that is probably not downstream of Vangl2. PMID:24689077

Yang, Tian; Jia, Zhonglin; Bryant-Pike, Whitney; Chandrasekhar, Anand; Murray, Jeffrey C; Fritzsch, Bernd; Bassuk, Alexander G

2014-01-01

296

Different biodistribution of 99mTc-labelled chimeric mouse-human monoclonal antibody between athymic mice model and human.  

PubMed Central

Biodistribution of chimeric mouse/human monoclonal antibody against non-specific cross-reacting antigen (chNCA Ab) was studied in athymic mice and patients with metastatic bone disease. 99mTc-chNCA Ab showed a high labelling efficiency, stability and also a high binding ratio to human granulocytes. Since NCA showed cross-reactivity with carcinoembryonic antigen (CEA), animal experiments showed that 99mTc-chNCA Ab was accumulated in the xenografted tumour which expressed CEA, suggesting the preserved immunoreactivity of labelled materials. In the clinical study, injected 99mTc-chNCA Ab formed a high molecular weight complex immediately after intravenous administration and was trapped mainly in liver. The first-phase plasma half-life was 6.4 +/- 1.1 min. None of the patients showed adverse reaction or human antimurine or anti-chimeric antibody in their serum. 99mTc-chNCA Ab demonstrated remarkably different biodistribution between patients and the animal model and showed different pharmacokinetics from other murine and chimeric Abs reported previously. For safety HPLC analysis should be performed before clinical radioimmunodetection or radioimmunotherapy by incubating radiolabelled MAb with human serum under strict conditions. Images Figure 2 Figure 3 Figure 4 PMID:8664114

Oriuchi, N.; Watanabe, N.; Sugiyama, S.; Higuchi, T.; Imai, K.; Yamanaka, H.; Hashimoto, M.; Kanda, H.; Endo, K.

1996-01-01

297

Comparative analysis of genetically engineered immunodeficient mouse strains as recipients for human myoblast transplantation.  

PubMed

The development of an optimized animal model for the in vivo analysis of human muscle cells remains an important goal in the search of therapy for muscular dystrophy. Here we examined the efficiency of human myoblast xenografts in three distinct immunodeficient mouse models. We found that different conditioning regimes used to provoke host muscle regeneration (i.e., cardiotoxin versus cryodamage) had a marked impact on xenograft success. Tibialis anterior muscle of Rag2-, Rag-/gammac-, and Rag-/gammac-/C5- mice was treated by cardiotoxin or cryodamage, submitted to enzymatic digestion, and analyzed by cytofluorometry to quantitate inflammatory cells. Human myoblasts were injected into pretreated muscles from immunodeficient recipients and the cell engraftment evaluated by immunocytochemistry, 4-8 weeks after transplantation. Donor cell differentiation and dispersion within the host muscles was also investigated. Host regeneration in cardiotoxin-treated mice was accompanied by a higher inflammatory cell infiltration when compared to that induced by cryodamage. Accordingly, when compared to the cardiotoxin group, more human myogenic cells were found after cryodamage. When the distinct immunodeficient mice were compared, we found that the alymphoid strain lacking the complement component C5 (Rag-/gammac-/C5- mice) was the most efficient host for human muscle xenografts, when compared with C5(+)Rag-/gammac- mice or Rag- mice. Our results demonstrate that cryolesion-conditioned muscles of Rag-/gammac-/C5- mice provide the best environment for long-term in vivo human myoblast differentiation, opening the way for a novel approach to study the pathophysiology of human muscle disorders. PMID:16285254

Silva-Barbosa, Suse D; Butler-Browne, Gillian S; Di Santo, James P; Mouly, Vincent

2005-01-01

298

Inotropic action of the puberty hormone kisspeptin in rat, mouse and human: cardiovascular distribution and characteristics of the kisspeptin receptor.  

PubMed

Kisspeptins, the ligands of the kisspeptin receptor known for its roles in reproduction and cancer, are also vasoconstrictor peptides in atherosclerosis-prone human aorta and coronary artery. The aim of this study was to further investigate the cardiovascular localisation and function of the kisspeptins and their receptor in human compared to rat and mouse heart. Immunohistochemistry and radioligand binding techniques were employed to investigate kisspeptin receptor localisation, density and pharmacological characteristics in cardiac tissues from all three species. Radioimmunoassay was used to detect kisspeptin peptide levels in human normal heart and to identify any pathological changes in myocardium from patients transplanted for cardiomyopathy or ischaemic heart disease. The cardiac function of kisspeptin receptor was studied in isolated human, rat and mouse paced atria, with a role for the receptor confirmed using mice with targeted disruption of Kiss1r. The data demonstrated that kisspeptin receptor-like immunoreactivity localised to endothelial and smooth muscle cells of intramyocardial blood vessels and to myocytes in human and rodent tissue. [(125)I]KP-14 bound saturably, with subnanomolar affinity to human and rodent myocardium (K(D)?=?0.12 nM, human; K(D)?=?0.44 nM, rat). Positive inotropic effects of kisspeptin were observed in rat, human and mouse. No response was observed in mice with targeted disruption of Kiss1r. In human heart a decrease in cardiac kisspeptin level was detected in ischaemic heart disease. Kisspeptin and its receptor are expressed in the human, rat and mouse heart and kisspeptins possess potent positive inotropic activity. The cardiovascular actions of the kisspeptins may contribute to the role of these peptides in pregnancy but the consequences of receptor activation must be considered if kisspeptin receptor agonists are developed for use in the treatment of reproductive disorders or cancer. PMID:22132116

Maguire, Janet J; Kirby, Helen R; Mead, Emma J; Kuc, Rhoda E; d'Anglemont de Tassigny, Xavier; Colledge, William H; Davenport, Anthony P

2011-01-01

299

Restorative effect of hair follicular dermal cells on injured human hair follicles in a mouse model.  

PubMed

No model is available for examining whether in vivo-damaged human hair follicles (hu-HFs) are rescued by transplanting cultured hu-HF dermal cells (dermal papilla and dermal sheath cells). Such a model might be valuable for examining whether in vivo-damaged hu-HFs such as miniaturized hu-HFs in androgenic alopecia are improvable by auto-transplanting hu-HF dermal cells. In this study, we first developed mice with humanized skin composed of hu-keratinocytes and hu-dermal fibroblasts. Then, a 'humanized scalp model mouse' was generated by transplanting hu-scalp HFs into the humanized skin. To demonstrate the usability of the model, the lower halves of the hu-HFs in the model were amputated in situ, and cultured hu-HF dermal cells were injected around the amputated area. The results demonstrated that the transplanted cells contributed to the restoration of the damaged HFs. This model could be used to explore clinically effective technologies for hair restoration therapy by autologous cell transplantation. PMID:25557326

Yamao, Mikaru; Inamatsu, Mutsumi; Okada, Taro; Ogawa, Yuko; Ishida, Yuji; Tateno, Chise; Yoshizato, Katsutoshi

2015-03-01

300

Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells.  

PubMed

Cellular reprogramming consists of the conversion of differentiated cells into pluripotent cells; the so-called induced Pluripotent Stem Cells. iPSC are amenable to in vitro manipulation and, in theory, direct production of any differentiated cell type. Furthermore, iPSC can be obtained from sick individuals and subsequently used for disease modeling, drug discovery and regenerative treatments. iPSC production was first achieved by transducing, with the use of retroviral vectors, four specific transcription factors: Oct4, Klf4, Sox2 and c-Myc (OKSM), into primary cells in culture Takahashi and Yamanaka, (Cell 126(4):663-676, 2006). Many alternative protocols have since been proposed: repeated transfections of expression plasmids containing the four pluripotency-associated genes Okita et al. (Science 322(5903):949-953, 2008), lentiviral delivery of the four factors Sommer et al. (Stem Cells 27(3):543-549, 2009), Sendai virus delivery Fusaki et al. (Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 85(8):348-362, 2009), removal of the reprogramming vectors by 'piggyBac' transposition Woltjen et al. (Nature 458(7239):766-770, 2009); Kaji et al. (Nature 458(7239):771-775, 2009), Cre-recombinase excisable viruses Soldner et al. (Cell 136(5):964-977, 2009), episomal vectors Yu et al. (Science 324(5928):797-801, 2009), cell-penetrating reprogramming proteins Zhou et al. (Stem Cells 4(5):381-384, 2009), mammalian artificial chromosomes Hiratsuka et al. (PLoS One 6(10):e25961, 2011) synthetically modified mRNAs Warren et al. (Scientific Reports 2:657, 2012), miRNA Anokye-Danso et al. (Cell Stem Cell 8(4):376-388, 2009); however, although some of these methods are commercially available, in general they still need to attain the reproducibility and reprogramming efficiency required for routine applications Mochiduki and Okita (Biotechnol Journal 7(6):789-797, 2012). Herein we explain, in four detailed protocols, the isolation of mouse and human somatic cells and their reprogramming into iPSC. All-encompassing instructions, not previously published in a single document, are provided for mouse and human iPSC colony isolation and derivation. Although mouse and human iPSC share similarities in the cellular reprogramming process and culture, both cell types need to be handled differently. PMID:23104133

Lorenzo, I M; Fleischer, A; Bachiller, D

2013-08-01

301

In vitro drug metabolism of green tea catechins in human, monkey, dog, rat and mouse hepatocytes.  

PubMed

The metabolic fate of green tea catechins [(-)-epicatechin ((-)-EC), (-)-epicatechin-3-gallate (ECG) (-)- epigallocatechin (EGC) and (-)-epigallocatechin-3-gallate (EGCG)] in cryopreserved human, monkey, dog, rat and mouse hepatocytes was studied. Methylation, glucuronidation, sulfation and isomerization pathways of (-)-EC in all five species were found. Methylation, glucuronidation, sulfation, hydrolysis, isomerization and glucosidation pathways of ECG were found. Species differences in metabolism of (-)-EC or ECG were observed. Surprisingly, no metabolites of EGC or EGCG were detected, but chemical oxidation and polymerization were observed under these experimental conditions. It appeared that enzymatic reactions and chemical reactions were differentiated by an additional hydroxyl group on the B-ring between (-)-EC/ECG and EGC/EGCG. For (-)-EC, thirty-five metabolites including isomerized (M6. M10 and M25), glucuronidated (M3, M5 and M11), sulfated (M7, M15, M16, M18, M20, M23, M26), methylated (M2, M9, M12, M17, M19, M21, M27, M30, M32), glucuronated/methylated (M4, M8, M13, M14), sulfated/methylated (M22, M24, M28, M29, M31, M33, M34, M35) and diglucuronidate (M1), were detected and characterized. M11, M18, M19 and M23 were major metabolites in human hepatocytes; M11, M26 and M31 were major metabolites in monkey hepatocytes; M10, M20, M22, M26 and M31 were major metabolites in dog hepatocytes; M5, M6 and M10 were major metabolites in rat hepatocytes; and M5, M6 and M13 were major metabolites in mouse hepatocytes. For ECG, twelve metabolites including isomerized (M1), hydrolyzed (M3), glucosidated (M2), glucuronidated (M4 and M6), sulfated (M9, M11 and M12), methylated (M7), sulfated/glucuronidated/methylated (M8 and M10) and diglucuronidated (M5), were detected and characterized. M4, M11 and M12 were major metabolites in human hepatocytes; M11 and M12 were major metabolites in monkey hepatocytes; M3 and M11 were major metabolites in dog hepatocytes; M4, M6 and M11 were major metabolites in rat hepatocytes, and M3 was a major metabolite in mouse hepatocytes. The experimental results have demonstrated that fate of catechins in in vitro hepatocytes depends on metabolism and chemical stability. In certain experimental conditions, the chemical reaction may become a dominant pathway. PMID:22594564

Chen, Wendy W; Qin, Geng-Yao; Zhang, Ting; Feng, Wan-Yong

2012-06-01

302

Pathway-specific engineered mouse allograft models functionally recapitulate human serous epithelial ovarian cancer.  

PubMed

The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value. We previously generated genetically engineered mouse (GEM) models based on perturbation of Tp53 and Rb with or without Brca1 or Brca2 that develop serous epithelial ovarian cancer (SEOC) closely resembling the human disease on histologic and molecular levels. Here, we describe an adaptation of these GEM models to orthotopic allografts that uniformly develop tumors with short latency and are ideally suited for routine preclinical studies. Ovarian tumors deficient in Brca1 respond to treatment with cisplatin and olaparib, a PARP inhibitor, whereas Brca1-wild type tumors are non-responsive to treatment, recapitulating the relative sensitivities observed in patients. These mouse models provide the opportunity for evaluation of effective therapeutics, including prediction of differential responses in Brca1-wild type and Brca1-deficient tumors and development of relevant biomarkers. PMID:24748377

Szabova, Ludmila; Bupp, Sujata; Kamal, Muhaymin; Householder, Deborah B; Hernandez, Lidia; Schlomer, Jerome J; Baran, Maureen L; Yi, Ming; Stephens, Robert M; Annunziata, Christina M; Martin, Philip L; Van Dyke, Terry A; Weaver Ohler, Zoe; Difilippantonio, Simone

2014-01-01

303

Toxoplasma gondii Triggers Release of Human and Mouse Neutrophil Extracellular Traps  

PubMed Central

Neutrophils have recently been shown to release DNA-based extracellular traps that contribute to microbicidal killing and have also been implicated in autoimmunity. The role of neutrophil extracellular trap (NET) formation in the host response to nonbacterial pathogens has received much less attention. Here, we show that the protozoan pathogen Toxoplasma gondii elicits the production of NETs from human and mouse neutrophils. Tachyzoites of each of the three major parasite strain types were efficiently entrapped within NETs, resulting in decreased parasite viability. We also show that Toxoplasma activates a MEK-extracellular signal-regulated kinase (ERK) pathway in neutrophils and that the inhibition of this pathway leads to decreased NET formation. To determine if Toxoplasma induced NET formation in vivo, we employed a mouse intranasal infection model. We found that the administration of tachyzoites by this route induced a rapid tissue recruitment of neutrophils with evidence of extracellular DNA release. Taken together, these data indicate a role for NETs in the host innate response to protozoan infection. We propose that NET formation limits infection by direct microbicidal effects on Toxoplasma as well as by interfering with the ability of the parasite to invade target host cells. PMID:22104111

Abi Abdallah, Delbert S.; Lin, Changyou; Ball, Carissa J.; King, Michael R.; Duhamel, Gerald E.

2012-01-01

304

Expression of human uterine tissue-type plasminogen activator in mouse cells using BPV vectors.  

PubMed

Human tissue-type plasminogen activator (t-PA) cDNA was cloned from uterine tissue and engineered in expression vectors for production in mouse C127 cells. The vectors consisted of the bovine papilloma virus-1 (BPV-1) genome and t-PA transcriptional unit with a mouse metallothionein (MT-1) promoter at the 5' end and MT-1 genomic sequences or SV40 early introns and polyadenylation signals at the 3' end. Analysis of the expression vectors transfected into cells revealed that t-PA is expressed 100- to 200-fold more with an intronless vector utilizing the SV40 polyadenylation signal than with other, intron-containing vectors. RNA analysis of stable cell lines indicated that t-PA expression levels correlated with mRNA abundance. DNA copy number and transcriptional rate of the MT-1 promoter remained constant in cell lines transformed by different BPV expression vectors. Uterine t-PA produced by recombinant DNA means was enzymatically active and similar in properties to Bowes melanoma t-PA. PMID:2824147

Reddy, V B; Garramone, A J; Sasak, H; Wei, C M; Watkins, P; Galli, J; Hsiung, N

1987-10-01

305

Recombinant Human Epidermal Growth Factor Accelerates Recovery of Mouse Small Intestinal Mucosa After Radiation Damage  

SciTech Connect

Purpose: To determine whether systemically administered recombinant human epidermal growth factor (rhEGF) accelerates the recovery of mouse small intestinal mucosa after irradiation. Methods and Materials: A mouse mucosal damage model was established by administering radiation to male BALB/c mice with a single dose of 15 Gy applied to the abdomen. After irradiation, rhEGF was administered subcutaneously at various doses (0.04, 0.2, 1.0, and 5.0 mg/kg/day) eight times at 2- to 3-day intervals. The evaluation methods included histologic changes of small intestinal mucosa, change in body weight, frequency of diarrhea, and survival rate. Results: The recovery of small intestinal mucosa after irradiation was significantly improved in the mice treated with a high dose of rhEGF. In the mice that underwent irradiation without rhEGF treatment, intestinal mucosal ulceration, mucosal layer damage, and severe inflammation occurred. The regeneration of villi was noticeable in mice treated with more than 0.2 mg/kg rhEGF, and the villi recovered fully in mice given more than 1 mg/kg rhEGF. The frequency of diarrhea persisting for more than 3 days was significantly greater in the radiation control group than in the rhEGF-treated groups. Conclusions: Systemic administration of rhEGF accelerates recovery from mucosal damage induced by irradiation. We suggest that rhEGF treatment shows promise for the reduction of small intestinal damage after irradiation.

Lee, Kang Kyoo [Department of Radiation Oncology, University of Wonkwang School of Medicine, Iksan (Korea, Republic of); Jo, Hyang Jeong [Department of Pathology, University of Wonkwang School of Medicine, Iksan (Korea, Republic of); Hong, Joon Pio [Department of Plastic and Reconstructive Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Sang-wook [Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)], E-mail: lsw@amc.seoul.kr; Sohn, Jung Sook [Vestibulocochlear Research Center, University of Wonkwang School of Medicine, Iksan (Korea, Republic of); Moon, Soo Young [Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Yang, Sei Hoon; Shim, Hyeok [Department of Internal Medicine, University of Wonkwang School of Medicine, Iksan (Korea, Republic of); Lee, Sang Ho [Department of Radiology, Iksan General Hospital, Iksan (Korea, Republic of); Ryu, Seung-Hee [Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Moon, Sun Rock [Department of Radiation Oncology, University of Wonkwang School of Medicine, Iksan (Korea, Republic of)

2008-07-15

306

Pathway-Specific Engineered Mouse Allograft Models Functionally Recapitulate Human Serous Epithelial Ovarian Cancer  

PubMed Central

The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value. We previously generated genetically engineered mouse (GEM) models based on perturbation of Tp53 and Rb with or without Brca1 or Brca2 that develop serous epithelial ovarian cancer (SEOC) closely resembling the human disease on histologic and molecular levels. Here, we describe an adaptation of these GEM models to orthotopic allografts that uniformly develop tumors with short latency and are ideally suited for routine preclinical studies. Ovarian tumors deficient in Brca1 respond to treatment with cisplatin and olaparib, a PARP inhibitor, whereas Brca1-wild type tumors are non-responsive to treatment, recapitulating the relative sensitivities observed in patients. These mouse models provide the opportunity for evaluation of effective therapeutics, including prediction of differential responses in Brca1-wild type and Brca1–deficient tumors and development of relevant biomarkers. PMID:24748377

Szabova, Ludmila; Bupp, Sujata; Kamal, Muhaymin; Householder, Deborah B.; Hernandez, Lidia; Schlomer, Jerome J.; Baran, Maureen L.; Yi, Ming; Stephens, Robert M.; Annunziata, Christina M.; Martin, Philip L.; Van Dyke, Terry A.

2014-01-01

307

Biophysical properties of gammaC-crystallin in human and mouse eye lens: the role of molecular dipoles.  

PubMed

The eye lens is packed with soluble crystallin proteins, providing a lifetime of transparency and light refraction. gamma-Crystallins are major components of the dense, high refractive index central regions of the lens and generally have high solubility, high stability and high levels of cysteine residues. Human gammaC belongs to a group of gamma-crystallins with a pair of cysteine residues at positions 78 and 79. Unlike other gamma-crystallins it has relatively low solubility, whereas mouse gammaC, which has the exposed C79 replaced with arginine, and a novel mouse splice variant, gammaCins, are both highly soluble. Furthermore, human gammaC is extremely stable, while the mouse orthologs are less stable. Evolutionary pressure may have favoured stability over solubility for human gammaC and the reverse for the orthologs in the mouse. Mutation of C79 to R79, in human gammaC, greatly increased solubility, however, neither form produced crystals. Remarkably, when the human gammaD R36S crystallization cataract mutation was mimicked in human gammaC-crystallin, the solubility of gammaC was dramatically increased, although it still did not crystallize. The highly soluble mouse gammaC-crystallin did crystallize. Its X-ray structure was solved and used in homology modelling of human gammaC, and its mutants C79R and R36S. The human gammaD R36S mutant was also modelled from human gammaD coordinates. Molecular dynamics simulation of the six molecules in the solution state showed that the human gammaCs differed from gammaDs in domain pairing, behaviour that correlates with interface sequence changes. When the fluctuations of the calculated molecular dipoles, for the six structures, over time were analysed, characteristic patterns for soluble gammaC and gammaD proteins were observed. Individual sequence changes that increase or decrease solubility correlated well with changes in the magnitude and direction of these dipoles. It is suggested that changes in surface residues have allowed adaptation for the differing needs of human and mouse lenses. PMID:17659303

Purkiss, Andrew G; Bateman, Orval A; Wyatt, Keith; Wilmarth, Phillip A; David, Larry L; Wistow, Graeme J; Slingsby, Christine

2007-09-01

308

A comparative analysis of the structural, functional and biological differences between Mouse and Human Nerve Growth Factor.  

PubMed

NGF is the prototype member of the neurotrophin family of proteins that promote the survival and growth of selected neurons in the central and peripheral nervous systems. As for all neurotrophins, NGF is translated as a pre-pro-protein. Over the years, NGF and proNGF of either human or mouse origin, given their high degree of homology, have been exploited for numerous applications in biomedical sciences. The mouse NGF has been considered the golden-standard for bioactivity. Indeed, due to evolutionary relatedness to human NGF and to its ready availability and by assuming identical properties to its human counterpart, the mouse NGF, isolated and purified from sub-maxillary glands, has been tested not only in laboratory practice and in preclinical models, but it has also been evaluated in several human clinical trials. Aiming to validate this assumption, widely believed, we performed a comparative study of the biochemical and biophysical properties of the mouse and human counterparts of NGF and proNGF. The mature and the precursor proteins of either species strikingly differ in their biophysical profiles and, when tested for ligand binding to their receptors, in their in vitro biological activities. We provide a structural rationale that accounts for their different functional behaviors. Despite being highly conserved during evolution, NGF and proNGF of mouse and human origins show distinct properties and therefore special care must be taken in performing experiments with cross-species systems in the laboratory practice, in developing immunoassays, in clinical trials and in pharmacological treatments. PMID:25496838

Paoletti, Francesca; Malerba, Francesca; Bruni Ercole, Bruno; Lamba, Doriano; Cattaneo, Antonino

2015-03-01

309

Human versus mouse eosinophils: "that which we call an eosinophil, by any other name would stain as red".  

PubMed

The respective life histories of human subjects and mice are well defined and describe a unique story of evolutionary conservation extending from sequence identity within the genome to the underpinnings of biochemical, cellular, and physiologic pathways. As a consequence, the hematopoietic lineages of both species are invariantly maintained, each with identifiable eosinophils. This canonical presence nonetheless does not preclude disparities between human and mouse eosinophils, their effector functions, or both. Indeed, many books and reviews dogmatically highlight differences, providing a rationale to discount the use of mouse models of human eosinophilic diseases. We suggest that this perspective is parochial and ignores the wealth of available studies and the consensus of the literature that overwhelming similarities (and not differences) exist between human and mouse eosinophils. The goal of this review is to summarize this literature and in some cases provide experimental details comparing and contrasting eosinophils and eosinophil effector functions in human subjects versus mice. In particular, our review will provide a summation and an easy-to-use reference guide to important studies demonstrating that although differences exist, more often than not, their consequences are unknown and do not necessarily reflect inherent disparities in eosinophil function but instead species-specific variations. The conclusion from this overview is that despite nominal differences, the vast similarities between human and mouse eosinophils provide important insights as to their roles in health and disease and, in turn, demonstrate the unique utility of mouse-based studies with an expectation of valid extrapolation to the understanding and treatment of patients. PMID:22935586

Lee, James J; Jacobsen, Elizabeth A; Ochkur, Sergei I; McGarry, Michael P; Condjella, Rachel M; Doyle, Alfred D; Luo, Huijun; Zellner, Katie R; Protheroe, Cheryl A; Willetts, Lian; Lesuer, William E; Colbert, Dana C; Helmers, Richard A; Lacy, Paige; Moqbel, Redwan; Lee, Nancy A

2012-09-01

310

Minisatellite linkage maps in the mouse by cross-hybridization with human probes containing tandem repeats.  

PubMed Central

Tests of 29 human variable number of tandem repeat probes in inbred mouse lines showed that 80% (23/29) cross-hybridize, and 48% (14/29) produce multiple band, minisatellite polymorphisms (fingerprint patterns). Mini-satellite-type polymorphisms detected by 11 probes were characterized in eight different strains; on average, 240 polymorphic differences were detected between pairs of strains. Reproducible fingerprint patterns permit the study of the segregation of the minisatellite polymorphisms in experimentally designed crosses. As an example, we constructed primary minisatellite genetic linkage maps containing 346 polymorphic bands, distributed in 101 groups of closely linked systems, from genotypes on a recombinant inbred panel (C57BL/6J X DBA/2J); 38 of the groups were assigned by linkage to 15 autosomal chromosomes. The minisatellite genetic maps of C57BL/6J and DBA/2J can be applied in other linkage studies involving these strains. Images PMID:2352937

Julier, C; de Gouyon, B; Georges, M; Guénet, J L; Nakamura, Y; Avner, P; Lathrop, G M

1990-01-01

311

The therapeutic effects of human adipose-derived stem cells in Alzheimer's disease mouse models.  

PubMed

Alzheimer's disease (AD) is an irreversible neurodegenerative disease, still lacking proper clinical treatment. Therefore, many researchers have focused on the possibility of therapeutic use of stem cells for AD. Adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency and their ability to differentiate into multiple tissue types and have immune modulatory properties similar to those of MSCs from other origins. Because of their biological properties, ASCs can be considered for cell therapy and neuroregeneration. Our recent results clearly showed the therapeutic potential of these cells after transplantation into Tg2576 mice (an AD mouse model). Intravenously or intracerebrally transplanted human ASCs (hASCs) greatly improved the memory impairment and the neuropathology, suggesting that hASCs have a high therapeutic potential for AD. PMID:24157626

Chang, Keun-A; Kim, Hee Jin; Joo, Yuyoung; Ha, Sungji; Suh, Yoo-Hun

2014-01-01

312

Mouse model systems to study sex chromosome genes and behavior: relevance to humans.  

PubMed

Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones. PMID:24388960

Cox, Kimberly H; Bonthuis, Paul J; Rissman, Emilie F

2014-10-01

313

Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture  

PubMed Central

This protocol describes the isolation and characterization of mouse and human esophageal epithelial cells and the application of 3D organotypic culture (OTC), a form of tissue engineering. This model system permits the interrogation of mechanisms underlying epithelial-stromal interactions. We provide guidelines for isolating and cultivating several sources of epithelial cells and fibroblasts, as well as genetic manipulation of these cell types, as a prelude to their integration into OTC. The protocol includes a number of important applications, including histology, immunohistochemistry/immunofluorescence, genetic modification of epithelial cells and fibroblasts with retroviral and lentiviral vectors for overexpression of genes or RNA interference strategies, confocal imaging, laser capture microdissection, RNA microarrays of individual cellular compartments and protein-based assays. The OTC (3D) culture protocol takes 15 d to perform. PMID:22240585

Kalabis, Jiri; Wong, Gabrielle S; Vega, Maria E; Natsuizaka, Mitsuteru; Robertson, Erle S; Herlyn, Meenhard; Nakagawa, Hiroshi; Rustgi, Anil K

2012-01-01

314

Integration of Human and Mouse Genetics Reveals Pendrin Function in Hearing and Deafness  

PubMed Central

Genomic technology has completely changed the way in which we are able to diagnose human genetic mutations. Genomic techniques such as the polymerase chain reaction, linkage analysis, Sanger sequencing, and most recently, massively parallel sequencing, have allowed researchers and clinicians to identify mutations for patients with Pendred syndrome and DFNB4 non-syndromic hearing loss. While thus far most of the mutations have been in the SLC26A4 gene coding for the pendrin protein, other genetic mutations may contribute to these phenotypes as well. Furthermore, mouse models for deafness have been invaluable to help determine the mechanisms for SLC26A4-associated deafness. Further work in these areas of research will help define genotype-phenotype correlations and develop methods for therapy in the future. PMID:22116368

Dror, Amiel A.; Brownstein, Zippora; Avraham, Karen B.

2011-01-01

315

CYTOGENETIC COMPARISON OF THE RESPONSES OF MOUSE AND HUMAN PERIPHERAL BLOOD LYMPHOCYTES TO 60CO GAMMA RADIATION (JOURNAL VERSION)  

EPA Science Inventory

Experiments were conducted to compare the chromosome damaging effects of (60)Co gamma radiation on mouse and human peripheral blood lymphocytes (PBLs). Either whole blood or isolated and pelleted mononuclear leucocytes (MNLs) were irradiated with a (60)Co unit to yield exposures ...

316

Fibulin-2 (FBLN2): Human cDNA sequence, mRNA expression, and mapping of the gene on human and mouse chromosomes  

SciTech Connect

Fibulin-2 is a new extracellular matrix protein recently identified by characterizing mouse cDNA clones. Fibulin-2 mRNA is prominently expressed in mouse heart tissue and is present in low amounts in other tissues. In this study, the authors isolated and sequenced a 4.1-kb human fibulin-2 cDNA, which encoded a mature protein of 1157 amino acids preceded by a 27-residue signal sequence. The predicted polypeptide contains three consecutive anaphylatoxin-related segments (domain I) in its central region followed by 10 EGF-like repeats (domain II), 9 of which have a consensus sequence for calcium binding. The 408-residue N-terminal region consists of two separate subdomains, a cysteine-rich segment of 150 residues (Na subdomain) and a cysteine-free segment with a stretch of acidic amino acids (Nb subdomain). The 115-residue C-terminal segment (domain III) is similar to the C variant of fibulin-1. The amino acid sequences of the human and mouse fibulin-2 share {approximately}90% identity in domains Na, I, II, and III but only 62% identity in domain Nb. The human cDNA lacks an EGF-like repeat, which is alternatively spliced in the mouse cDNA clones, and a potential cell-binding Arg-Gly-Asp sequence found in the Nb domain of the mouse counterpart. Northern blot analysis of mRNA from various human tissues reveals an abundant 4.5-kb transcript in heart, placenta, and ovary tissue. The expression pattern differs from that of fibulin-1. The fibulin-2 gene was localized by in situ hybridization to the p24-p25 region of human chromosome 3 and to the band D-E of mouse chromosome 6. 27 refs., 5 figs.

Zhang, R.Z.; Pan, T.C.; Zhang, Z.Y. [Thomas Jefferson Univ., Philadelphia, PA (United States)] [and others] [Thomas Jefferson Univ., Philadelphia, PA (United States); and others

1994-07-15

317

Subepidermal Blistering Induced by Human Autoantibodies to BP180 Requires Innate Immune Players in a Humanized Bullous Pemphigoid Mouse Model  

PubMed Central

Bullous pemphigoid (BP) is a cutaneous autoimmune inflammatory disease associated with subepidermal blistering and autoantibodies against BP180, a transmembrane collagen and major component of the hemidesmosome. Numerous inflammatory cells infiltrate the upper dermis in BP. IgG autoantibodies in BP fix complement and target multiple BP180 epitopes that are highly clustered within a non-collagen linker domain, termed NC16A. Anti-BP180 antibodies induce BP in mice. In this study, we generated a humanized mouse strain, in which the murine BP180NC14A is replaced with the homologous human BP180NC16A epitope cluster region. We show that the humanized NC16A (NC16A+/+) mice injected with anti-BP180NC16A autoantibodies develop BP-like subepidermal blisters. The F(ab?)2 fragments of pathogenic IgG fail to activate complement cascade and are no longer pathogenic. The NC16A+/+ mice pretreated with mast cell activation blocker or depleting of complement or neutrophils become resistant to BP. These findings suggest that the humoral response in BP critically depends on innate immune system players. PMID:18922680

Liu, Zhi; Sui, Wen; Zhao, Minglang; Li, Zhuowei; Li, Ning; Thresher, Randy; Giudice, George J.; Fairley, Janet A.; Sitaru, Cassian; Zillikens, Detlef; Ning, Gang; Marinkovich, Peter; Diaz, Luis A.

2008-01-01

318

Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression  

PubMed Central

Introduction Altered expression of Septin 9 (SEPT9), a septin coding for multiple isoform variants, has been observed in several carcinomas, including colorectal, head and neck, ovarian and breast, compared to normal tissues. The mechanisms regulating its expression during tumor initiation and progression in vivo and the oncogenic function of its different isoforms remain elusive. Methods Using an integrative approach, we investigated SEPT9 at the genetic, epigenetic, mRNA and protein levels in breast cancer. We analyzed a panel of breast cancer cell lines, human primary tumors and corresponding tumor-free areas, normal breast tissues from reduction mammoplasty patients, as well as primary mammary gland adenocarcinomas derived from the polyoma virus middle T antigen, or PyMT, mouse model. MCF7 clones expressing individual GFP-tagged SEPT9 isoforms were used to determine their respective intracellular distributions and effects on cell migration. Results An overall increase in gene amplification and altered expression of SEPT9 were observed during breast tumorigenesis. We identified an intragenic alternative promoter at which methylation regulates SEPT9_v3 expression. Transfection of specific GFP-SEPT9 isoforms in MCF7 cells indicates that these isoforms exhibit differential localization and affect migration rates. Additionally, the loss of an uncharacterized SEPT9 nucleolar localization is observed during tumorigenesis. Conclusions In this study, we found conserved in vivo changes of SEPT9 gene amplification and overexpression during human and mouse breast tumorigenesis. We show that DNA methylation is a prominent mechanism responsible for regulating differential SEPT9 isoform expression and that breast tumor samples exhibit distinctive SEPT9 intracellular localization. Together, these findings support the significance of SEPT9 as a promising tool in breast cancer detection and further emphasize the importance of analyzing and targeting SEPT9 isoform-specific expression and function. PMID:21831286

2011-01-01

319

Human CRB1-Associated Retinal Degeneration: Comparison with the rd8 Crb1-Mutant Mouse Model  

PubMed Central

Purpose. To investigate the human disease due to CRB1 mutations and compare results with the Crb1-mutant rd8 mouse. Methods. Twenty-two patients with CRB1 mutations were studied. Function was assessed with perimetry and electroretinography (ERG) and retinal structure with optical coherence tomography (OCT). Cortical structure and function were quantified with magnetic resonance imaging (MRI). Rd8 mice underwent ERG, OCT, and retinal histopathology. Results. Visual acuities ranged from 20/25 to light perception. Rod ERGs were not detectable; small cone signals were recordable. By perimetry, small central visual islands were separated by midperipheral scotomas from far temporal peripheral islands. The central islands were cone mediated, whereas the peripheral islands retained some rod function. With OCT, there were small foveal islands of thinned outer nuclear layer (ONL) surrounded by thick delaminated retina with intraretinal hyperreflective lesions. MRI showed structurally normal optic nerves and only subtle changes to occipital lobe white and gray matter. Functional MRI indicated that whole-brain responses from patients were of reduced amplitude and spatial extent compared with those of normal controls. Rd8 mice had essentially normal ERGs; OCT and histopathology showed patchy retinal disorganization with pseudorosettes more pronounced in ventral than in dorsal retina. Photoreceptor degeneration was associated with dysplastic regions. Conclusions. CRB1 mutations lead to early-onset severe loss of vision with thickened, disorganized, nonseeing retina. Impaired peripheral vision can persist in late disease stages. Rd8 mice also have a disorganized retina, but there is sufficient photoreceptor integrity to produce largely normal retinal function. Differences between human and mouse diseases will complicate proof-of-concept studies intended to advance treatment initiatives. PMID:21757580

Aleman, Tomas S.; Cideciyan, Artur V.; Aguirre, Geoffrey K.; Huang, Wei Chieh; Mullins, Cristina L.; Roman, Alejandro J.; Sumaroka, Alexander; Olivares, Melani B.; Tsai, Frank F.; Schwartz, Sharon B.; Vandenberghe, Luk H.; Limberis, Maria P.; Stone, Edwin M.; Bell, Peter; Wilson, James M.

2011-01-01

320

Human kallistatin administration reduces organ injury and improves survival in a mouse model of polymicrobial sepsis.  

PubMed

Kallistatin, a plasma protein, has been shown to exert multi-factorial functions including inhibition of inflammation, oxidative stress and apoptosis in animal models and cultured cells. Kallistatin levels are reduced in patients with sepsis and in lipopolysaccharide (LPS)-induced septic mice. Moreover, transgenic mice expressing kallistatin are more resistant to LPS-induced mortality. Here, we investigated the effects of human kallistatin on organ injury and survival in a mouse model of polymicrobial sepsis. In this study, mice were injected intravenously with recombinant kallistatin (KS3, 3 mg/kg; or KS10, 10 mg/kg body weight) and then rendered septic by caecal ligation and puncture 30 min later. Kallistatin administration resulted in a > 10-fold reduction of peritoneal bacterial counts, and significantly decreased serum tumour necrosis factor-?, interleukin-6 and high mobility group box-1 (HMGB1) levels. Kallistatin also inhibited HMGB1 and toll-like receptor-4 gene expression in the lung and kidney. Administration of kallistatin attenuated renal damage and decreased blood urea nitrogen and serum creatinine levels, but increased endothelial nitric oxide synthase and nitric oxide levels in the kidney. In cultured endothelial cells, human kallistatin via its heparin-binding site inhibited HMGB1-induced nuclear factor-?B activation and inflammatory gene expression. Moreover, kallistatin significantly reduced apoptosis and caspase-3 activity in the spleen. Furthermore, kallistatin treatment markedly improved the survival of septic mice by 23% (KS3) and 41% (KS10). These results indicate that kallistatin is a unique protecting agent in sepsis-induced organ damage and mortality by inhibiting inflammation and apoptosis, as well as enhancing bacterial clearance in a mouse model of polymicrobial sepsis. PMID:24467264

Li, Pengfei; Bledsoe, Grant; Yang, Zhi-Rong; Fan, Hongkuan; Chao, Lee; Chao, Julie

2014-06-01

321

Somatic microindels: analysis in mouse soma and comparison with the human germline.  

PubMed

Microindels, defined as mutations that result in a colocalized microinsertion and microdeletion with a net gain or loss of between 1 and 50 nucleotides, may be an important contributor to cancer. We report the first comprehensive analysis of somatic microindels. Our large database of mutations in the lacI transgene of Big Blue((R)) mice contains 0.5% microindels, 2.8% pure microinsertions, and 11.5% pure microdeletions. There appears to be no age, gender, or tissue-type specificity in the frequency of microindels. Of the independent somatic mutations that result in a net in-frame insertion or deletion, microindels are responsible for 13% of protein expansions and 6% of protein contractions. These in-frame microindels may play a crucial role in oncogenesis and evolution via "protein tinkering" (i.e., modest expansion or contraction of proteins). Four characteristics suggest that microindels are caused by unique mechanisms, not just simple combinations of the same mechanisms that cause pure microinsertions and pure microdeletions. First, microinsertions and microdeletions commonly occur at hotspots, but none of the 30 microindels are recurrent. Second, the sizes of the deletions and insertions in microindels are larger and more varied than in pure microdeletions and pure microinsertions. Third, microinsertions overwhelmingly repeat the adjacent base (97%) while the insertions in microindels do so only infrequently (17%). Fourth, analysis of the sequence contexts of microindels is consistent with unique mechanisms including recruitment of translesion DNA synthesis polymerases. The mouse somatic microindels have characteristics similar to those of human germline microindels, consistent with similar causative mechanisms in mouse and human, and in soma and germline. PMID:16977595

Gonzalez, Kelly D; Hill, Kathleen A; Li, Kai; Li, Wenyan; Scaringe, William A; Wang, Ji-Cheng; Gu, Dongqing; Sommer, Steve S

2007-01-01

322

Inhibition of human and mouse plasma membrane bound NTPDases by P2 receptor antagonists.  

PubMed

The plasma membrane bound nucleoside triphosphate diphosphohydrolase (NTPDase)-1, 2, 3 and 8 are major ectonucleotidases that modulate P2 receptor signaling by controlling nucleotides' concentrations at the cell surface. In this report, we systematically evaluated the effect of the commonly used P2 receptor antagonists reactive blue 2, suramin, NF279, NF449 and MRS2179, on recombinant human and mouse NTPDase1, 2, 3 and 8. Enzymatic reactions were performed in a Tris/calcium buffer, commonly used to evaluate NTPDase activity, and in a more physiological Ringer modified buffer. Although there were some minor variations, there were no major changes either in the enzymatic activity or in the profile of NTPDase inhibition between the two buffers. Except for MRS2179, all other antagonists significantly inhibited these ecto-ATPases; NTPDase3 being the most sensitive to inhibition and NTPDase8 the most resistant. Estimated IC(50) showed that human NTPDases were generally more sensitive to the P2 receptor antagonists tested than the corresponding mouse isoforms. NF279 and reactive blue 2 were the most potent inhibitors of NTPDases which almost completely abrogated their activity at the concentration of 100 microM. In conclusion, reactive blue 2, suramin, NF279 and NF449, at the concentrations commonly used to antagonize P2 receptors, inhibit the four major ecto-ATPases. This information may reveal useful for the interpretation of some pharmacological studies of P2 receptors. In addition, NF279 is a most potent non-selective NTPDase inhibitor. Although P2 receptor antagonists do not display a strict selectivity toward NTPDases, their IC(50) values may help to discriminate some of these enzymes. PMID:17727821

Munkonda, Mercedes N; Kauffenstein, Gilles; Kukulski, Filip; Lévesque, Sébastien A; Legendre, Charlène; Pelletier, Julie; Lavoie, Elise G; Lecka, Joanna; Sévigny, Jean

2007-11-15

323

Bisected, complex N-glycans and galectins in mouse mammary tumor progression and human breast cancer  

PubMed Central

Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3?/?/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3?/?/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in ?20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer. PMID:24037315

Miwa, Hazuki E; Koba, Wade R; Fine, Eugene J; Giricz, Orsi; Kenny, Paraic A; Stanley, Pamela

2013-01-01

324

Development and Characterization of a Novel Mouse Line Humanized for the Intestinal Peptide Transporter PEPT1  

PubMed Central

The proton-coupled oligopeptide transporter PEPT1 (SLC15A1) is abundantly expressed in the small intestine, but not colon, of mammals and found to mediate the uptake of di/tripeptides and peptide-like drugs from the intestinal lumen. However, species differences have been observed in both the expression (and localization) of PEPT1 and its substrate affinity. With this in mind, the objectives of this study were to develop a humanized PEPT1 mouse model (huPEPT1) and to characterize hPEPT1 expression and functional activity in the intestines. Thus, after generating huPEPT1 mice in animals previously nulled for mouse Pept1, phenotypic, PCR, and immunoblot analyses were performed, along with in situ single-pass intestinal perfusion and in vivo oral pharmacokinetic studies with a model dipeptide, glycylsarcosine (GlySar). Overall, the huPEPT1 mice had normal survival rates, fertility, litter size, gender distribution, and body weight. There was no obvious behavioral or pathological phenotype. The mRNA and protein profiles indicated that huPEPT1 mice had substantial PEPT1 expression in all regions of the small intestine (i.e., duodenum, jejunum, and ileum) along with low but measurable expression in both proximal and distal segments of the colon. In agreement with PEPT1 expression, the in situ permeability of GlySar in huPEPT1 mice was similar to but lower than wildtype animals in small intestine, and greater than wildtype mice in colon. However, a species difference existed in the in situ transport kinetics of jejunal PEPT1, in which the maximal flux and Michaelis constant of GlySar were reduced 7-fold and 2- to 4-fold, respectively, in huPEPT1 compared to wildtype mice. Still, the in vivo function of intestinal PEPT1 appeared fully restored (compared to Pept1 knockout mice) as indicated by the nearly identical pharmacokinetics and plasma concentration–time profiles following a 5.0 nmol/g oral dose of GlySar to huPEPT1 and wildtype mice. This study reports, for the first time, the development and characterization of mice humanized for PEPT1. This novel transgenic huPEPT1 mouse model should prove useful in examining the role, relevance, and regulation of PEPT1 in diet and disease, and in the drug discovery process. PMID:25148225

Hu, Yongjun; Xie, Yehua; Wang, Yuqing; Chen, Xiaomei; Smith, David E.

2014-01-01

325

Recent Progress in Mouse Models for Tumor Suppressor Genes and its Implications in Human Cancer  

PubMed Central

Gain-of-function mutations in oncogenes and loss-of-function mutations in tumor suppressor genes (TSG) lead to cancer. In most human cancers, these mutations occur in somatic tissues. However, hereditary forms of cancer exist for which individuals are heterozygous for a germline mutation in a TSG locus at birth. The second allele is frequently inactivated by gene deletion, point mutation, or promoter methylation in classical TSGs that meet Knudson’s two-hit hypothesis. Conversely, the second allele remains as wild-type, even in tumors in which the gene is haplo-insufficient for tumor suppression. This article highlights the importance of PTEN, APC, and other tumor suppressors for counteracting aberrant PI3K, ?-catenin, and other oncogenic signaling pathways. We discuss the use of gene-engineered mouse models (GEMM) of human cancer focusing on Pten and Apc knockout mice that recapitulate key genetic events involved in initiation and progression of human neoplasia. Finally, the therapeutic potential of targeting these tumor suppressor and oncogene signaling networks is discussed. PMID:23843721

Inoue, Kazushi; Fry, Elizabeth A.; Taneja, Pankaj

2013-01-01

326

FOSL2 promotes leptin gene expression in human and mouse adipocytes  

PubMed Central

The adipocyte-derived hormone leptin is a critical regulator of many physiological functions, ranging from satiety to immunity. Surprisingly, very little is known about the transcriptional pathways that regulate adipocyte-specific expression of leptin. Here, we report studies in which we pursued a strategy integrating BAC transgenic reporter mice, reporter assays, and chromatin state mapping to locate an adipocyte-specific cis-element upstream of the leptin (LEP) gene in human fat cells. Quantitative proteomics with affinity enrichment of protein-DNA complexes identified the transcription factor FOS-like antigen 2 (FOSL2) as binding specifically to the identified region, a result that was confirmed by ChIP. Knockdown of FOSL2 in human adipocytes decreased LEP expression, and overexpression of Fosl2 increased Lep expression in mouse adipocytes. Moreover, the elevated LEP expression observed in obesity correlated well with increased FOSL2 levels in mice and humans, and adipocyte-specific genetic deletion of Fosl2 in mice reduced Lep expression. Taken together, these data identify FOSL2 as a critical regulator of leptin expression in adipocytes. PMID:22326952

Wrann, Christiane D.; Eguchi, Jun; Bozec, Aline; Xu, Zhao; Mikkelsen, Tarjei; Gimble, Jeffrey; Nave, Heike; Wagner, Erwin F.; Ong, Shao-En; Rosen, Evan D.

2012-01-01

327

Reducing social stress elicits emotional contagion of pain in mouse and human strangers.  

PubMed

Empathy for another's physical pain has been demonstrated in humans [1] and mice [2]; in both species, empathy is stronger between familiars. Stress levels in stranger dyads are higher than in cagemate dyads or isolated mice [2, 3], suggesting that stress might be responsible for the absence of empathy for the pain of strangers. We show here that blockade of glucocorticoid synthesis or receptors for adrenal stress hormones elicits the expression of emotional contagion (a form of empathy) in strangers of both species. Mice and undergraduates were tested for sensitivity to noxious stimulation alone and/or together (dyads). In familiar, but not stranger, pairs, dyadic testing was associated with increased pain behaviors or ratings compared to isolated testing. Pharmacological blockade of glucocorticoid synthesis or glucocorticoid and mineralocorticoid receptors enabled the expression of emotional contagion of pain in mouse and human stranger dyads, as did a shared gaming experience (the video game Rock Band) in human strangers. Our results demonstrate that emotional contagion is prevented, in an evolutionarily conserved manner, by the stress of a social interaction with an unfamiliar conspecific and can be evoked by blocking the endocrine stress response. PMID:25601547

Martin, Loren J; Hathaway, Georgia; Isbester, Kelsey; Mirali, Sara; Acland, Erinn L; Niederstrasser, Nils; Slepian, Peter M; Trost, Zina; Bartz, Jennifer A; Sapolsky, Robert M; Sternberg, Wendy F; Levitin, Daniel J; Mogil, Jeffrey S

2015-02-01

328

Isolation of high-purity myenteric plexus from adult human and mouse gastrointestinal tract.  

PubMed

The enteric nervous system (ENS) orchestrates a broad range of important gastrointestinal functions such as intestinal motility and gastric secretion. The ENS can be affected by environmental factors, diet and disease. Changes due to these alterations are often hard to evaluate in detail when whole gut samples are used. Analyses based on pure ENS tissue can more effectively reflect the ongoing changes during pathological processes. Here, we present an optimized approach for the isolation of pure myenteric plexus (MP) from adult mouse and human. To do so, muscle tissue was individually digested with a purified collagenase. After incubation and a gentle mechanical disruption step, MP networks could be collected with anatomical integrity. These tissues could be stored and used either for immediate genomic, proteomic or in vitro approaches, and enteric neurospheres could be generated and differentiated. In a pilot experiment, the influence of bacterial lipopolysaccharide on human MP was analyzed using 2-dimensional gel electrophoresis. The method also allows investigation of factors that are secreted by myenteric tissue in vitro. The isolation of pure MP in large amounts allows new analytical approaches that can provide a new perspective in evaluating changes of the ENS in experimental models, human disease and aging. PMID:25791532

Grundmann, David; Klotz, Markus; Rabe, Holger; Glanemann, Matthias; Schäfer, Karl-Herbert

2015-01-01

329

Isolation of high-purity myenteric plexus from adult human and mouse gastrointestinal tract  

PubMed Central

The enteric nervous system (ENS) orchestrates a broad range of important gastrointestinal functions such as intestinal motility and gastric secretion. The ENS can be affected by environmental factors, diet and disease. Changes due to these alterations are often hard to evaluate in detail when whole gut samples are used. Analyses based on pure ENS tissue can more effectively reflect the ongoing changes during pathological processes. Here, we present an optimized approach for the isolation of pure myenteric plexus (MP) from adult mouse and human. To do so, muscle tissue was individually digested with a purified collagenase. After incubation and a gentle mechanical disruption step, MP networks could be collected with anatomical integrity. These tissues could be stored and used either for immediate genomic, proteomic or in vitro approaches, and enteric neurospheres could be generated and differentiated. In a pilot experiment, the influence of bacterial lipopolysaccharide on human MP was analyzed using 2-dimensional gel electrophoresis. The method also allows investigation of factors that are secreted by myenteric tissue in vitro. The isolation of pure MP in large amounts allows new analytical approaches that can provide a new perspective in evaluating changes of the ENS in experimental models, human disease and aging. PMID:25791532

Grundmann, David; Klotz, Markus; Rabe, Holger; Glanemann, Matthias; Schäfer, Karl-Herbert

2015-01-01

330

Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling  

PubMed Central

Background Dendritic cells (DCs) are a complex group of cells that play a critical role in vertebrate immunity. Lymph-node resident DCs (LN-DCs) are subdivided into conventional DC (cDC) subsets (CD11b and CD8? in mouse; BDCA1 and BDCA3 in human) and plasmacytoid DCs (pDCs). It is currently unclear if these various DC populations belong to a unique hematopoietic lineage and if the subsets identified in the mouse and human systems are evolutionary homologs. To gain novel insights into these questions, we sought conserved genetic signatures for LN-DCs and in vitro derived granulocyte-macrophage colony stimulating factor (GM-CSF) DCs through the analysis of a compendium of genome-wide expression profiles of mouse or human leukocytes. Results We show through clustering analysis that all LN-DC subsets form a distinct branch within the leukocyte family tree, and reveal a transcriptomal signature evolutionarily conserved in all LN-DC subsets. Moreover, we identify a large gene expression program shared between mouse and human pDCs, and smaller conserved profiles shared between mouse and human LN-cDC subsets. Importantly, most of these genes have not been previously associated with DC function and many have unknown functions. Finally, we use compendium analysis to re-evaluate the classification of interferon-producing killer DCs, lin-CD16+HLA-DR+ cells and in vitro derived GM-CSF DCs, and show that these cells are more closely linked to natural killer and myeloid cells, respectively. Conclusion Our study provides a unique database resource for future investigation of the evolutionarily conserved molecular pathways governing the ontogeny and functions of leukocyte subsets, especially DCs. PMID:18218067

Robbins, Scott H; Walzer, Thierry; Dembélé, Doulaye; Thibault, Christelle; Defays, Axel; Bessou, Gilles; Xu, Huichun; Vivier, Eric; Sellars, MacLean; Pierre, Philippe; Sharp, Franck R; Chan, Susan; Kastner, Philippe; Dalod, Marc

2008-01-01

331

Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8?+ dendritic cells  

PubMed Central

In mouse, a subset of dendritic cells (DCs) known as CD8?+ DCs has emerged as an important player in the regulation of T cell responses and a promising target in vaccination strategies. However, translation into clinical protocols has been hampered by the failure to identify CD8?+ DCs in humans. Here, we characterize a population of human DCs that expresses DNGR-1 (CLEC9A) and high levels of BDCA3 and resembles mouse CD8?+ DCs in phenotype and function. We describe the presence of such cells in the spleens of humans and humanized mice and report on a protocol to generate them in vitro. Like mouse CD8?+ DCs, human DNGR-1+ BDCA3hi DCs express Necl2, CD207, BATF3, IRF8, and TLR3, but not CD11b, IRF4, TLR7, or (unlike CD8?+ DCs) TLR9. DNGR-1+ BDCA3hi DCs respond to poly I:C and agonists of TLR8, but not of TLR7, and produce interleukin (IL)-12 when given innate and T cell–derived signals. Notably, DNGR-1+ BDCA3+ DCs from in vitro cultures efficiently internalize material from dead cells and can cross-present exogenous antigens to CD8+ T cells upon treatment with poly I:C. The characterization of human DNGR-1+ BDCA3hi DCs and the ability to grow them in vitro opens the door for exploiting this subset in immunotherapy. PMID:20479117

Poulin, Lionel Franz; Salio, Mariolina; Griessinger, Emmanuel; Anjos-Afonso, Fernando; Craciun, Ligia; Chen, Ji-Li; Keller, Anna M.; Joffre, Olivier; Zelenay, Santiago; Nye, Emma; Le Moine, Alain; Faure, Florence; Donckier, Vincent; Sancho, David; Cerundolo, Vincenzo; Bonnet, Dominique

2010-01-01

332

Human and mouse enamel phenotypes resulting from mutation or altered expression of AMEL, ENAM, MMP20 and KLK4.  

PubMed

Amelogenesis imperfecta (AI) is caused by AMEL, ENAM, MMP20 and KLK4 gene mutations. Mice lacking expression of the AmelX, Enam and Mmp20 genes have been generated. These mouse models provide tools for understanding enamel formation and AI pathogenesis. This study describes the AI phenotypes and relates them to their mouse model counterparts. Human AI phenotypes were determined in a clinical population of AI families and published cases. Human and murine teeth were evaluated using light and electron microscopy. A total of 463 individuals from 54 families were evaluated and mutations in the AMEL, ENAM and KLK4 genes were identified. The majority of human mutations for genes coding enamel nonproteinase proteins (AMEL and ENAM) resulted in variable hypoplasia ranging from local pitting to a marked, generalized enamel thinning. Specific AMEL mutations were associated with abnormal mineralization and maturation defects. Amel and Enam null murine models displayed marked enamel hypoplasia and a complete loss of prism structure. Human mutations in genes coding for the enamel proteinases (MMP20 and KLK4) cause variable degrees of hypomineralization. The murine Mmp20 null mouse exhibits both hypoplastic and hypomineralized defects. The currently available Amel and Enam mouse models for AI exhibit enamel phenotypes (hypoplastic) that are generally similar to those seen in humans. Mmp20 null mice have a greater degree of hypoplasia than humans with MMP20 mutations. Mice lacking expression of the currently known genes associated with the human AI conditions provide useful models for understanding the pathogenesis of these conditions. PMID:18714142

Wright, J Timothy; Hart, Thomas C; Hart, P Suzanne; Simmons, Darrin; Suggs, Cynthia; Daley, Bill; Simmer, Jim; Hu, Jan; Bartlett, John D; Li, Yong; Yuan, Zhi-An; Seow, W Kim; Gibson, Carolyn W

2009-01-01

333

Potential Limitations of the NSG Humanized Mouse as a Model System to Optimize Engineered Human T cell Therapy for Cancer  

PubMed Central

Abstract The genetic modification of peripheral blood lymphocytes using retroviral vectors to redirect T cells against tumor cells has been recently used as a means to generate large numbers of antigen-specific T cells for adoptive cell therapy protocols. However, commonly used retroviral vector-based genetic modification requires T cells to be driven into cell division; this potent mitogenic stimulus is associated with the development of an effector phenotype that may adversely impact upon the long-term engraftment potential and subsequent antitumor effects of T cells. To investigate whether the cytokines used during culture impact upon the engraftment potential of gene-modified T cells, a humanized model employing T cells engrafted with a MART-1-specific T cell receptor adoptively transferred into NOD/Shi-scid IL-2r??/? (NSG) immune-deficient mice bearing established melanoma tumors was used to compare the effects of the common ? chain cytokines IL-2, IL-7, and IL-15 upon gene-modified T cell activity. MART-1-specific T cells cultured in IL-7 and IL-15 demonstrated greater relative in vitro proliferation and viability of T cells compared with the extensively used IL-2. Moreover, the IL-15 culture prolonged the survival of animals bearing melanoma tumors after adoptive transfer. However, the combination of IL-7 and IL-15 produced T cells with improved engraftment potential compared with IL-15 alone; however, a high rate of xenogeneic graft-versus-host disease prevented the identification of a clear improvement in antitumor effect of these T cells. These results clearly demonstrate modulation of gene-modified T cell engraftment in the NSG mouse, which supports the future testing of the combination of IL-7 and IL-15 in adoptive cell therapy protocols; however, this improved engraftment is also associated with the long-term maintenance of xenoreactive T cells, which limits the ultimate usefulness of the NSG mouse model in this situation. PMID:23931270

Alcantar-Orozco, Erik M.; Gornall, Hannah; Baldan, Vania; Hawkins, Robert E.

2013-01-01

334

Antitumor effects of TRAIL-expressing mesenchymal stromal cells in a mouse xenograft model of human mesothelioma.  

PubMed

Malignant mesothelioma (MM) remains a highly deadly malignancy with poor treatment option. The MM cells further promote a highly inflammatory microenvironment, which contributes to tumor initiation, development, severity and propagation. We reasoned that the anti-inflammatory actions of mesenchymal stromal cells (MSCs) and further antitumor effects of MSCs engineered to overexpress tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein (MSC-TRAIL) would effectively inhibit mesothelioma growth. Using a mouse xenograft model of intraperitoneal human mesothelioma, native mouse (mMSCs) or human (hMSC) MSCs were administered either systemically (intravenously or intraperitoneally) at various times following tumor inoculation. Both mMSCs and hMSCs localized at the sites of MM tumor growth in vivo and decreased local inflammation. Further, a trend towards decrease in tumor burden was observed. Parallel studies of in vitro exposure of nine primary human mesothelioma cell lines to mMSCs or hMSCs demonstrated reduced tumor cell migration. MSC-TRAIL exposure induced apoptosis of TRAIL-sensitive MM cells in vitro, and both mouse and human MSC-TRAIL significantly reduced the inflammatory tumor environment in vivo. Moreover, human MSC-TRAIL administration significantly reduced peritoneal tumor burden in vivo and increased tumor cell apoptosis. These proof-of-concept studies suggest that TRAIL-expressing MSCs may be useful against malignant mesothelioma. PMID:25525034

Lathrop, M J; Sage, E K; Macura, S L; Brooks, E M; Cruz, F; Bonenfant, N R; Sokocevic, D; MacPherson, M B; Beuschel, S L; Dunaway, C W; Shukla, A; Janes, S M; Steele, C; Mossman, B T; Weiss, D J

2015-01-01

335

PPAR? is involved in the hyperglycemia-induced inflammatory responses and collagen degradation in human chondrocytes and diabetic mouse cartilages.  

PubMed

Diabetic hyperglycemia has been suggested to play a role in osteoarthritis. Peroxisome proliferator-activated receptor-? (PPAR?) was implicated in several pathological conditions including diabetes and inflammation. The detailed effects and mechanisms of hyperglycemia on cartilage damage still need to be clarified. Here, we investigated the role of PPAR? in hyperglycemia-triggered chondrocyte/cartilage damages using a human chondrocyte culture model and a diabetic mouse model. Human chondrocytes were cultured and treated with high concentration of glucose (30?mM) to mimic hyperglycemia in the presence or absence of pioglitazone, a PPAR? agonist. Streptozotocin (STZ) was used to induce mouse diabetes. Our data showed that high glucose induced the protein expressions of cyclooxygenase-2 (COX-2) and production of prostaglandin-E2 (PGE2 ), interleukin-6 (IL-6), and metalloproteinase-13 (MMP-13), but decreased the protein expression of collagen II and PPAR? in human chondrocytes. These alterations in high glucose-treated human chondrocytes could be reversed by pioglitazone in a dose-dependent manner. Moreover, pioglitazone administration could also significantly reverse the hyperglycemia, formation of AGEs, productions of IL-6 and MMP-13, and cartilage damage in STZ-induced diabetic mice. Taken together, these findings suggest that hyperglycemia down-regulates PPAR? expression and induces inflammatory and catabolic responses in human chondrocytes and diabetic mouse cartilages. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:???-???, 2015. PMID:25410618

Chen, Ying-Ju; Chan, Ding-Cheng; Lan, Kuo-Cheng; Wang, Ching-Chia; Chen, Chang-Mu; Chao, Sung-Chuan; Tsai, Keh-Sung; Yang, Rong-Sen; Liu, Shing-Hwa

2015-03-01

336

IMMUNOCHEMICAL STUDIES ON MOUSE MYELOMA PROTEINS REACTIVE WITH DEXTRANS OR WITH FRUCTOSANS AND ON HUMAN ANTILEVANS  

PubMed Central

Four BALB/c IgA mouse myeloma proteins (W3129, W3434, QUPC 52, and UPC 102) reactive with dextran, four myeloma proteins reactive with fructosans, three IgA (W3082, UPC 61, and Y5476), and one IgG2a (UPC 10), and two human antilevans were studied immunochemically. Quantitative precipitin and inhibition assays showed that W3129, W3434, and QUPC 52 had specificities for isomaltose oligosaccharides similar to those previously found with ?(1 ? 6)-specific human antidextrans. W3129 and W3434 were most complementary to IM5 but W3129 reacted equally with IM4 and IM3 while W3434 had a greater affinity for IM4 than IM3. QUPC 52 had a larger combining region and was most complementary to IM6. Protein UPC 102 (IgA), like MOPC 104E (IgM) (27), was most complementary to the ?(1 ? 3)-linked trisaccharide, nigerotriose, and thus differed from J558 (29), which was inhibited best by nigeropentaose. UPC 102 was similar to J558 but they differed from MOPC 104E in their reactions with non-?(1 ? 3)-linked disaccharides. The fructosan-specific myeloma proteins fell into two groups with different specificities. The first group, W3082 (IgA), UPC 61 (IgA), and the previously studied J606 (IgG3) (28, 29), reacted with inulin and W3082 and UPC 61 appeared to have identical specificities for ?(2 ? 1)-linked fructofuranosyl residues with maximum complementarity for the tetrasaccharide ?Dfructofuranosyl (2 ? 1)?Dfructofuranosyl(2 ? 1)?Dfructofuranosyl(2 ? 6)Dglucose while protein J606 was inhibited best by the trisaccharide ?Dfructofuranosyl(2 ? 1)?Dfructofuranosyl(2 ? 6)Dglucose. W3082 and UPC 61 also differed from J606 in their behavior toward sucrose and ?Dfructofuranosyl(2 ? 6)Dglucose as compared with ?Dglucosyl(1 ? 3)Dfructose (turanose). The second group containing myeloma proteins UPC 10 (IgG2a) and Y5476 (IgA) behaved similarly to human antilevans in that neither reacted with inulin nor were they inhibited by the ?(2 ? 1)-linked fructose oligosaccharides. Unlike the ?(2 ? 1)-specific proteins, they reacted with perennial rye grass levan that contained over 90% ?(2 ? 6)links. The differences in specificity and site size among homogeneous mouse myeloma proteins reactive with the same antigenic determinant are completely consistent with the concept that they represent products of homogeneous clones selected from the known heterogeneous population of antibody-forming cells. PMID:4808707

Cisar, John; Kabat, Elvin A.; Liao, Jerry; Potter, Michael

1974-01-01

337

Mouse models of dominant ACTA1 disease recapitulate human disease and provide insight into therapies.  

PubMed

Mutations in the skeletal muscle ?-actin gene (ACTA1) cause a range of pathologically defined congenital myopathies. Most patients have dominant mutations and experience severe skeletal muscle weakness, dying within one year of birth. To determine mutant ACTA1 pathobiology, transgenic mice expressing ACTA1(D286G) were created. These Tg(ACTA1)(D286G) mice were less active than wild-type individuals. Their skeletal muscles were significantly weaker by in vitro analyses and showed various pathological lesions reminiscent of human patients, however they had a normal lifespan. Mass spectrometry revealed skeletal muscles from Tg(ACTA1)(D286G) mice contained ?25% ACTA1(D286G) protein. Tg(ACTA1)(D286G) mice were crossed with hemizygous Acta1(+/-) knock-out mice to generate Tg(ACTA1)(D286G)(+/+).Acta1(+/-) offspring that were homozygous for the transgene and hemizygous for the endogenous skeletal muscle ?-actin gene. Akin to most human patients, skeletal muscles from these offspring contained approximately equal proportions of ACTA1(D286G) and wild-type actin. Strikingly, the majority of these mice presented with severe immobility between postnatal Days 8 and 17, requiring euthanasia. Their skeletal muscles contained extensive structural abnormalities as identified in severely affected human patients, including nemaline bodies, actin accumulations and widespread sarcomeric disarray. Therefore we have created valuable mouse models, one of mild dominant ACTA1 disease [Tg(ACTA1)(D286G)], and the other of severe disease, with a dramatically shortened lifespan [Tg(ACTA1)(D286G)(+/+).Acta1(+/-)]. The correlation between mutant ACTA1 protein load and disease severity parallels effects in ACTA1 families and suggests altering this ratio in patient muscle may be a therapy for patients with dominant ACTA1 disease. Furthermore, ringbinden fibres were observed in these mouse models. The presence of such features suggests that perhaps patients with ringbinden of unknown genetic origin should be considered for ACTA1 mutation screening. This is the first experimental, as opposed to observational, evidence that mutant protein load determines the severity of ACTA1 disease. PMID:21303860

Ravenscroft, Gianina; Jackaman, Connie; Bringans, Scott; Papadimitriou, John M; Griffiths, Lisa M; McNamara, Elyshia; Bakker, Anthony J; Davies, Kay E; Laing, Nigel G; Nowak, Kristen J

2011-04-01

338

In Vivo Detection of Human Vascular Endothelial Growth Factor Promoter Activity in Transgenic Mouse Skin  

PubMed Central

We have generated transgenic mice expressing green fluorescent protein (GFP) driven by 2.453-kb (?2,362 to +91) of the 5?-upstream region of the human vascular endothelial growth factor (VEGF) promoter to monitor changes of VEGF gene transcription in situ. Neonatal transgenic mice exhibited GFP-derived fluorescence in tissues that have been previously reported to express VEGF mRNA expression, including lung, cartilage, and brain. In normal skin during postnatal development, moderate fluorescence was observed in the upper epidermis and, more prominently, in the outer root sheath keratinocytes of hair follicles. Strong up-regulation of GFP fluorescence was observed in the hyperplastic epidermis of the wound edge at 48 hours after wounding, whereas little GFP fluorescence was detected in the dermis. In situ hybridization confirmed an identical expression pattern of VEGF mRNA in these wounds. Topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA) induced strong VEGF-GFP expression in suprabasal epidermis. Little or no fibroblast-derived fluorescence was seen both in the wound model and after TPA application. By confocal laser microscopy, increased GFP fluorescence was detectable in the epidermis of intact mouse ear skin as early as 6 hours after topical TPA treatment. Importantly, GFP fluorescence was also measurable in the skin of living transgenic mice. These results resolve the present controversy regarding the ability of VEGF-GFP transgenic mouse models to correctly reflect established patterns of VEGF expression, and show the model to be a powerful tool for the in vivo monitoring of VEGF gene expression. PMID:10880381

Kishimoto, Jiro; Ehama, Ritsuko; Ge, Yimin; Kobayashi, Takashi; Nishiyama, Toshio; Detmar, Michael; Burgeson, Robert E.

2000-01-01

339

Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes.  

PubMed

Using a functional approach to investigate the epigenetics of type 2 diabetes (T2D), we combine three lines of evidence-diet-induced epigenetic dysregulation in mouse, epigenetic conservation in humans, and T2D clinical risk evidence-to identify genes implicated in T2D pathogenesis through epigenetic mechanisms related to obesity. Beginning with dietary manipulation of genetically homogeneous mice, we identify differentially DNA-methylated genomic regions. We then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-en-Y gastric bypass, identifying regions where both the location and direction of methylation change are conserved. These regions overlap with 27 genetic T2D risk loci, only one of which was deemed significant by GWAS alone. Functional analysis of genes associated with these regions revealed four genes with roles in insulin resistance, demonstrating the potential general utility of this approach for complementing conventional human genetic studies by integrating cross-species epigenomics and clinical genetic risk. PMID:25565211

Multhaup, Michael L; Seldin, Marcus M; Jaffe, Andrew E; Lei, Xia; Kirchner, Henriette; Mondal, Prosenjit; Li, Yuanyuan; Rodriguez, Varenka; Drong, Alexander; Hussain, Mehboob; Lindgren, Cecilia; McCarthy, Mark; Näslund, Erik; Zierath, Juleen R; Wong, G William; Feinberg, Andrew P

2015-01-01

340

mRNA Transfection of Mouse and Human Neural Stem Cell Cultures  

PubMed Central

The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages. PMID:24386231

McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J.; Chen, Fred K.

2013-01-01

341

Production of Glycosylated Physiologically ``Normal'' Human alpha 1-antitrypsin by Mouse Fibroblasts Modified by Insertion of a Human alpha 1-antitrypsin cDNA Using a Retroviral Vector  

Microsoft Academic Search

alpha 1-Antitrypsin (alpha 1AT) deficiency is a hereditary disorder characterized by reduced serum levels of alpha 1AT, resulting in destruction of the lower respiratory tract by neutrophil elastase. As an approach to augment alpha 1AT levels in this disorder with physiologically normal human alpha 1AT, we have integrated a full-length normal human alpha 1AT cDNA into the genome of mouse

Robert I. Garver; Anna Chytil; Stefan Karlsson; Gerald A. Fells; Mark L. Brantly; Michael Courtney; Philip W. Kantoff; Arthur W. Nienhuis; W. French Anderson; Ronald G. Crystal

1987-01-01

342

Antibody therapy to human L1CAM in a transgenic mouse model blocks local tumor growth but induces EMT.  

PubMed

L1 cell adhesion molecule (L1CAM) is overexpressed in many human cancers, confers bad prognosis and augments cell motility, invasion and metastasis. Results from xenograft mouse models suggested that L1CAM antibodies might be promising tools for cancer therapy. Here, we generated human L1CAM-transgenic mice to study therapeutic efficacy and putative side effects in a model system. We established three transgenic lines (M2, M3 and F4) expressing the human L1CAM transgene in brain, kidney and colon with decreasing intensity (M2, M3 > F4). The expression pattern was similar to that of L1CAM in humans. No interference of the transgene with the expression of endogenous L1CAM was observed. Immunohistochemical analysis revealed correct expression of the transgene in mouse cortex and collective duct of the kidney. Injection of (125)I-labeled L1CAM antibodies resulted in specific enrichment in the kidney but not in the brain. The injection of the therapeutic anti-human L1CAM mAb L1-9.3/2a into transgenic mice even at high doses did not cause behavioral changes or other side effects. Similar results were obtained using a mouse specific L1CAM mAb in normal mice. Tumor therapy experiments were performed using syngeneic mouse tumor cells (RET melanoma and Panc02 pancreatic adenocarcinoma) transduced with human L1CAM. MAb L1-9.3/2a efficiently and specifically attenuated local tumor growth in both model systems without apparent side effects. The therapeutic effect was dependent on immune effector mechanisms. Analysis of Panc02-huL1CAM tumors after therapy showed elevated levels of EGF and evidence of immune-induced epithelial-mesenchymal transition. The results suggest that our transgenic mice are valuable tools to study L1CAM-based antibody therapy. PMID:25230579

Doberstein, Kai; Harter, Patrick N; Haberkorn, Uwe; Bretz, Niko P; Arnold, Bernd; Carretero, Rafael; Moldenhauer, Gerhard; Mittelbronn, Michel; Altevogt, Peter

2015-03-01

343

Cloning and characterization of the mouse homolog (D12H14S564E) of a novel human cochlear gene (D14S564E)  

SciTech Connect

We have isolated mouse cDNA clones homologous to a novel human cochlear cDNA (D14S564E) identified by subtractive hybridization of a human fetal cochlear cDNA library with human fetal brain RNA. The human gene is preferentially expressed in cochlea, with low level expression in brain and eye, and has three transcripts of 2.0, 2.3, and 2.9 kb. To investigate the structure and function of the human cochlear gene and its role in the biology of hearing and deafness, we have cloned the mouse homolog (D12H14S564E). Mouse cDNAs, ranging from 2.0 to 3.5 kb, were identified with a mouse brain cDNA library screened by hybridization with the human cDNA. Analysis of mouse clones by DNA sequencing revealed significant homology with the human cochlear gene; in one region analyzed, the mouse clone possessed 88% homology over 525 bases with the human clone. In the area of homology, there is an open reading frame of approximately 125 amino acids. Comparison of the homologous sequence with those entered in GenBank identifies similarity with a von Willebrand factor type A-like domain in the area of sequence conservation, a feature consistent with the human clone. Known proteins containing the von Willebrand type A-like domain have diverse functions including extracellular matrix assembly, hemostasis, cellular adhesion and defense mechanisms. Further homology of mouse and human clones is supported by hybridization of the mouse clone to a Northern blot of human fetal cochlea and brain RNA; results show that the mouse clone hybridizes with the same three messages in the human cochlea RNA as does the novel human cochlear gene. D12H14S564E maps to mouse chromosome 12 in a region to which asp-1 (audiogenic seizure prone) is assigned. Further sequencing and expression studies are in progress to fully characterize the mouse gene and its homology with the novel human cochlear gene.

Kovatch, K.A.; Robertson, N.G.; Brody, T.H. [Harvard Medical School, Boston, MA (United States)] [and others

1994-09-01

344

Complete Genome Sequences of One Human Respiratory Syncytial Antigenic Group A Virus from China and Its Four Mouse-Adapted Isolates  

PubMed Central

In this study, one human respiratory syncytial antigenic group A virus (HRSV-A-GZ08-0) and its four BALB/c mouse-adapted isolates were sequenced and elucidated. Nineteen nucleotides were mutated between HRSV-A-GZ08-0 and the four mouse-adapted isolates. PMID:25744999

Zhang, Ke; He, Jie; Li, Cun; Bose, Michael E.; Henrickson, Kelly J.; Zhou, Jie

2015-01-01

345

Identification of transcription start sites and preferential expression of select CB2 transcripts in mouse and human B lymphocytes.  

PubMed

Marijuana cannabinoids, the endocannabinoids, and cannabinoid cell receptors have been shown to play important roles in immune regulation particularly as potent modulators of anti-inflammatory cytokines. The predominant cannabinoid receptor involved in this immune regulation is cannabinoid receptor 2 (CB(2)), which is predominantly expressed in B lymphocytes. However, the promoter region and mechanisms of CB(2) gene regulation are unknown in this immune cell type. Utilizing a combination of bioinformatics, 5' rapid amplification of cDNA ends (5' RACE), real-time reverse transcription-polymerase chain reaction, DNA sequencing, and luciferase reporter assays, we show that human B cells express one CB(2) transcript while mouse B cells express three CB(2) transcripts, with specific transcript selection occurring during B cell activation by lipopolysaccharide. Alignment of our sequenced RACE products to either the mouse or human genome, along with the GenBank submitted mRNA sequences, revealed that the transcripts we isolated contained previously unidentified transcriptional start sites (TSS). In addition, expression construct testing of the genomic region containing the TSSs of the mouse CB(2) exon 1 transcripts showed an eightfold increase of promoter activity over baseline. These data show for the first time that human B cells use only one TSS for CB(2) while mouse B cells use multiple TSSs and that the mouse TSSs are in a genomic area with promoter activity, thus suggesting the location of the gene promoter region. Defining these TSSs also provides clues to the various gene regulatory factors involved in the expression of CB(2) during B cell activation. PMID:19757078

Sherwood, Tracy A; Nong, Liang; Agudelo, Marisela; Newton, Cathy; Widen, Ray; Klein, Thomas W

2009-12-01

346

Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.  

PubMed

The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue. PMID:25481415

Kosi, Nina; Ali?, Ivan; Kola?evi?, Matea; Vrsaljko, Nina; Jovanov Miloševi?, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajovi?, Sre?ko; Pochet, Roland; Mitre?i?, Dinko

2015-02-01

347

Gene delivery of human apolipoprotein E alters brain A? burden in a mouse model of Alzheimer's disease  

PubMed Central

Apolipoprotein E (apoE) alleles are important genetic risk factors for Alzheimer's disease (AD), with the ?4 allele increasing and the ?2 allele decreasing risk for developing AD. ApoE has been shown to influence brain amyloid-? peptide (A?) and amyloid burden, both in humans and in transgenic mice. Here we show that direct intracerebral administration of lentiviral vectors expressing the three common human apoE isoforms differentially alters hippocampal A? and amyloid burden in the PDAPP mouse model of AD. Expression of apoE4 in the absence of mouse apoE increases hippocampal A?1–42 levels and amyloid burden. By contrast, expression of apoE2, even in the presence of mouse apoE, markedly reduces hippocampal A? burden. Our data demonstrate rapid apoE isoform-dependent effects on brain A? burden in a mouse model of AD. Gene delivery of apoE2 may prevent or reduce brain A? burden and the subsequent development of neuritic plaques. PMID:15657137

Dodart, Jean-Cosme; Marr, Robert A.; Koistinaho, Milla; Gregersen, Beth M.; Malkani, Seema; Verma, Inder M.; Paul, Steven M.

2005-01-01

348

Highly potent anti-CD20-RLI immunocytokine targeting established human B lymphoma in SCID mouse.  

PubMed

Rituximab (RTX), a chimeric IgG1 monoclonal antibody directed against the CD20 antigen, has revolutionized the treatment of B-cell malignancies. Nevertheless, the relapsed/refractory rates are still high. One strategy to increase the clinical effectiveness of RTX is based on antibody-cytokine fusion protein (immunocytokine; ICK) vectorizing together at the tumor site the antibody effector activities and the cytokine co-signal required for the generation of cytotoxic cellular immunity. Such ICKs linking various antibody formats to interleukin (IL)-2 are currently being investigated in clinical trials and have shown promising results in cancer therapies. IL-15, a structurally-related cytokine, is now considered as having a better potential than IL-2 in antitumor immunotherapeutic strategies. We have previously engineered the fusion protein RLI, linking a soluble form of human IL-15R?-sushi+ domain to human IL-15. Compared with IL-15, RLI displayed better biological activities in vitro and higher antitumor effects in vivo in murine and human cancer models. In this study, we investigated the advantages of fusing RLI to RTX. Anti-CD20-RLI kept its binding capacity to CD20, CD16 and IL-15 receptor and therefore fully retained both antibody effector functions (ADCC and CDC), and the cytokine potential of RLI. In a severe combined immunodeficiency (SCID) mouse model of disseminated residual lymphoma, anti-CD20-RLI was found to induce long-term survival of 90% of mice up to at least 120 days whereas RLI and RTX, alone or in combination, just delayed the disease onset (100% of death at 28, 40 and 51 days respectively). These findings suggest that such ICK could improve the clinical efficacy of RTX, particularly in patients with refractory B-cell lymphoma. PMID:25072059

Vincent, Marie; Teppaz, Géraldine; Lajoie, Laurie; Solé, Véronique; Bessard, Anne; Maillasson, Mike; Loisel, Séverine; Béchard, David; Clémenceau, Béatrice; Thibault, Gilles; Garrigue-Antar, Laure; Jacques, Yannick; Quéméner, Agnès

2014-01-01

349

Defined conditions for the isolation and expansion of Basal prostate progenitor cells of mouse and human origin.  

PubMed

Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs) have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin(-)SCA-1(+)CD49f(+)TROP2(high) phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin(-)CD49f(+)TROP2(high) PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin. PMID:25702639

Höfner, Thomas; Eisen, Christian; Klein, Corinna; Rigo-Watermeier, Teresa; Goeppinger, Stephan M; Jauch, Anna; Schoell, Brigitte; Vogel, Vanessa; Noll, Elisa; Weichert, Wilko; Baccelli, Irène; Schillert, Anja; Wagner, Steve; Pahernik, Sascha; Sprick, Martin R; Trumpp, Andreas

2015-03-10

350

The Application of SILAC Mouse in Human Body Fluid Proteomics Analysis Reveals Protein Patterns Associated with IgA Nephropathy  

PubMed Central

Body fluid proteome is the most informative proteome from a medical viewpoint. But the lack of accurate quantitation method for complicated body fluid limited its application in disease research and biomarker discovery. To address this problem, we introduced a novel strategy, in which SILAC-labeled mouse serum was used as internal standard for human serum and urine proteome analysis. The SILAC-labeled mouse serum was mixed with human serum and urine, and multidimensional separation coupled with tandem mass spectrometry (IEF-LC-MS/MS) analysis was performed. The shared peptides between two species were quantified by their SILAC pairs, and the human-only peptides were quantified by mouse peptides with coelution. The comparison for the results from two replicate experiments indicated the high repeatability of our strategy. Then the urine from Immunoglobulin A nephropathy patients treated and untreated was compared by this quantitation strategy. Fifty-three peptides were found to be significantly changed between two groups, including both known diagnostic markers for IgAN and novel candidates, such as Complement C3, Albumin, VDBP, ApoA,1 and IGFBP7. In conclusion, we have developed a practical and accurate quantitation strategy for comparison of complicated human body fluid proteome. The results from such strategy could provide potential disease-related biomarkers for evaluation of treatment. PMID:23762118

Li, Rongxia; Cai, Xiaofan; Chen, Wanjia; Li, Qingrun; Xing, Tao; Zhu, Wenjie; Chen, Y. Eugene; Zeng, Rong; Deng, Yueyi

2013-01-01

351

Cloning the human and mouse MMS19 genes and functional complementation of a yeast mms19 deletion mutant.  

PubMed

The MMS19 gene of the yeast Saccharomyces cerevisiae encodes a polypeptide of unknown function which is required for both nucleotide excision repair (NER) and RNA polymerase II (RNAP II) transcription. Here we report the molecular cloning of human and mouse orthologs of the yeast MMS19 gene. Both human and Drosophila MMS19 cDNAs correct thermosensitive growth and sensitivity to killing by UV radiation in a yeast mutant deleted for the MMS19 gene, indicating functional conservation between the yeast and mammalian gene products. Alignment of the translated sequences of MMS19 from multiple eukaryotes, including mouse and human, revealed the presence of several conserved regions, including a HEAT repeat domain near the C-terminus. The presence of HEAT repeats, coupled with functional complementation of yeast mutant phenotypes by the orthologous protein from higher eukaryotes, suggests a role of Mms19 protein in the assembly of a multiprotein complex(es) required for NER and RNAP II transcription. Both the mouse and human genes are ubiquitously expressed as multiple transcripts, some of which appear to derive from alternative splicing. The ratio of different transcripts varies in several different tissue types. PMID:11328871

Queimado, L; Rao, M; Schultz, R A; Koonin, E V; Aravind, L; Nardo, T; Stefanini, M; Friedberg, E C

2001-05-01

352

Cloning the human and mouse MMS19 genes and functional complementation of a yeast mms19 deletion mutant  

PubMed Central

The MMS19 gene of the yeast Saccharomyces cerevisiae encodes a polypeptide of unknown function which is required for both nucleotide excision repair (NER) and RNA polymerase II (RNAP II) transcription. Here we report the molecular cloning of human and mouse orthologs of the yeast MMS19 gene. Both human and Drosophila MMS19 cDNAs correct thermosensitive growth and sensitivity to killing by UV radiation in a yeast mutant deleted for the MMS19 gene, indicating functional conservation between the yeast and mammalian gene products. Alignment of the translated sequences of MMS19 from multiple eukaryotes, including mouse and human, revealed the presence of several conserved regions, including a HEAT repeat domain near the C-terminus. The presence of HEAT repeats, coupled with functional complementation of yeast mutant phenotypes by the orthologous protein from higher eukaryotes, suggests a role of Mms19 protein in the assembly of a multiprotein complex(es) required for NER and RNAP II transcription. Both the mouse and human genes are ubiquitously expressed as multiple transcripts, some of which appear to derive from alternative splicing. The ratio of different transcripts varies in several different tissue types. PMID:11328871

Queimado, Lurdes; Rao, Malini; Schultz, Roger A.; Koonin, Eugene V.; Aravind, L.; Nardo, Tiziana; Stefanini, Miria; Friedberg, Errol C.

2001-01-01

353

Defined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of Mouse and Human Origin  

PubMed Central

Summary Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs) have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin?SCA-1+CD49f+TROP2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin?CD49f+TROP2high PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin. PMID:25702639

Höfner, Thomas; Eisen, Christian; Klein, Corinna; Rigo-Watermeier, Teresa; Goeppinger, Stephan M.; Jauch, Anna; Schoell, Brigitte; Vogel, Vanessa; Noll, Elisa; Weichert, Wilko; Baccelli, Irène; Schillert, Anja; Wagner, Steve; Pahernik, Sascha; Sprick, Martin R.; Trumpp, Andreas

2015-01-01

354

Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: A {sup 13}C-NMR study  

SciTech Connect

As part of a study on uranium nephrotoxicity, we investigated the effect of uranyl nitrate in isolated human and mouse kidney cortex tubules metabolizing the physiological substrate lactate. In the millimolar range, uranyl nitrate reduced lactate removal and gluconeogenesis and the cellular ATP level in a dose-dependent fashion. After incubation in phosphate-free Krebs-Henseleit medium with 5 mM L-[1-{sup 13}C]-, or L-[2-{sup 13}C]-, or L-[3-{sup 13}C]lactate, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. In the presence of 3 mM uranyl nitrate, glucose production and the intracellular ATP content were significantly reduced in both human and mouse tubules. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism revealed an inhibition of fluxes through lactate dehydrogenase and the gluconeogenic enzymes in the presence of 3 mM uranyl nitrate; in human and mouse tubules, fluxes were lowered by 20% and 14% (lactate dehydrogenase), 27% and 32% (pyruvate carboxylase), 35% and 36% (phosphoenolpyruvate carboxykinase), and 39% and 45% (glucose-6-phosphatase), respectively. These results indicate that natural uranium is an inhibitor of renal lactate gluconeogenesis in both humans and mice.

Renault, Sophie; Faiz, Hassan; Gadet, Rudy; Ferrier, Bernard; Martin, Guy; Baverel, Gabriel [Metabolomique et Maladies Metaboliques, Institut National de la Sante et de la recherche Medicale, Unit 820, Faculte de Medecine R.T.H. Laennec, Universite de Lyon, 7-11 rue G. Paradin, 69372 Lyon Cedex 08 (France); Conjard-Duplany, Agnes, E-mail: agnes.duplany@recherche.univ-lyon1.f [Metabolomique et Maladies Metaboliques, Institut National de la Sante et de la recherche Medicale, Unit 820, Faculte de Medecine R.T.H. Laennec, Universite de Lyon, 7-11 rue G. Paradin, 69372 Lyon Cedex 08 (France)

2010-01-01

355

Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: a 13C-NMR study.  

PubMed

As part of a study on uranium nephrotoxicity, we investigated the effect of uranyl nitrate in isolated human and mouse kidney cortex tubules metabolizing the physiological substrate lactate. In the millimolar range, uranyl nitrate reduced lactate removal and gluconeogenesis and the cellular ATP level in a dose-dependent fashion. After incubation in phosphate-free Krebs-Henseleit medium with 5 mM L-[1-13C]-, or L-[2-13C]-, or L-[3-13C]lactate, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. In the presence of 3 mM uranyl nitrate, glucose production and the intracellular ATP content were significantly reduced in both human and mouse tubules. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism revealed an inhibition of fluxes through lactate dehydrogenase and the gluconeogenic enzymes in the presence of 3 mM uranyl nitrate; in human and mouse tubules, fluxes were lowered by 20% and 14% (lactate dehydrogenase), 27% and 32% (pyruvate carboxylase), 35% and 36% (phosphoenolpyruvate carboxykinase), and 39% and 45% (glucose-6-phosphatase), respectively. These results indicate that natural uranium is an inhibitor of renal lactate gluconeogenesis in both humans and mice. PMID:19747499

Renault, Sophie; Faiz, Hassan; Gadet, Rudy; Ferrier, Bernard; Martin, Guy; Baverel, Gabriel; Conjard-Duplany, Agnès

2010-01-01

356

The Regulation of Nitric Oxide Synthase Isoform Expression in Mouse and Human Fallopian Tubes: Potential Insights for Ectopic Pregnancy  

PubMed Central

Nitric oxide (NO) is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS), which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS). NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS). Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies. PMID:25546387

Hu, Junting; Ma, Shulan; Zou, Sien; Li, Xin; Cui, Peng; Weijdegård, Birgitta; Wu, Gencheng; Shao, Ruijin; Billig, Håkan; Feng, Yi

2014-01-01

357

Contrast-enhanced microCT (EPIC-µCT) ex vivo applied to the mouse and human jaw joint  

PubMed Central

Objectives: The temporomandibular joint (TMJ) is susceptive to the development of osteoarthritis (OA). More detailed knowledge of its development is essential to improve our insight into TMJ-OA. It is imperative to have a standardized reliable three-dimensional (3D) imaging method that allows for detailed assessment of both bone and cartilage in healthy and diseased joints. We aimed to determine the applicability of a contrast-enhanced microCT (µCT) technique for ex vivo research of mouse and human TMJs. Methods: Equilibrium partitioning of an ionic contrast agent via µCT (EPIC-µCT) was previously applied for cartilage assessment in the knee joint. The method was ex vivo, applied to the mouse TMJ and adapted for the human TMJ. Results: EPIC-µCT (30-min immersion time) was applied to mouse mandibular condyles, and 3D imaging revealed an average cartilage thickness of 110?±?16?µm. These measurements via EPIC-µCT were similar to the histomorphometric measures (113?±?19?µm). For human healthy OA-affected TMJ samples, the protocol was adjusted to an immersion time of 1?h. 3D imaging revealed a significant thicker cartilage layer in joints with early signs of OA compared with healthy joints (414.2?±?122.6 and 239.7?±?50.5?µm, respectively). A subsequent significant thinner layer was found in human joints with late signs of OA (197.4?±?159.7?µm). Conclusions: The EPIC-µCT technique is effective for the ex vivo assessment of 3D cartilage morphology in the mouse as well as human TMJ and allows bone–cartilage interaction research in TMJ-OA. PMID:24353248

Mulder, L; Lin, A S; Langenbach, G E J; Koolstra, J H; Guldberg, R E; Everts, V

2014-01-01

358

Osteoclastic differentiation of mouse and human monocytes in a plasma clot/biphasic calcium phosphate microparticles composite.  

PubMed

We recently demonstrated that blood clotted around biphasic calcium phosphate (BCP) microparticles constituted a composite biomaterial that could be used for bone defect filling. In addition, we showed that mononuclear cells, i.e. monocytes and lymphocytes, play a central role in the osteogenic effect of this biomaterial. Hypothesizing that osteoclast progenitors could participate to the pro-osteogenic effect of mononuclear cells we observed previously, we focus on this population through the study of mouse monocyte/macrophage cells (RAW264.7 cell line), as well as human pre-osteoclastic cells derived from mononuclear hematopoietic progenitor cells (monocytes-enriched fraction from peripheral blood). Using monocyte-derived osteoclast progenitors cultured within plasma clot/BCP microparticles composite, we aimed in the present report at the elucidation of transcriptional profiles of genes related to osteoclastogenesis and to bone remodelling. For both human and mouse monocytes, real-time PCR experiments demonstrated that plasma clot/BCP scaffold potentiated the expression of marker genes of the osteoclast differentiation such as Nfactc1, Jdp2, Fra2, Tracp and Ctsk. By contrast, Mmp9 was induced in mouse but not in human cells, and Ctr expression was down regulated for both species. In addition, for both mouse and human precursors, osteoclastic differentiation was associated with a strong stimulation of VegfC and Sdf1 genes expression. At last, using field-emission scanning electron microscopy analysis, we observed the interactions between human monocytes and BCP microparticles. As a whole, we demonstrated that plasma clot/BCP microparticles composite provided monocytes with a suitable microenvironment allowing their osteoclastic differentiation, together with the production of pro-angiogenic and chemoattractant factors. PMID:21154244

Mouline, Caroline C; Quincey, Danielle; Laugier, Jean-Pierre; Carle, Georges F; Bouler, Jean-Michel; Rochet, Nathalie; Scimeca, Jean-Claude

2010-01-01

359

Integration of Mouse and Human Genome-Wide Association Data Identifies KCNIP4 as an Asthma Gene  

PubMed Central

Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR). The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify asthma-related genes by integrating AHR associations in mouse with human genome-wide association study (GWAS) data. We used Efficient Mixed Model Association (EMMA) analysis to conduct a GWAS of baseline AHR measures from males and females of 31 mouse strains. Genes near or containing SNPs with EMMA p-values <0.001 were selected for further study in human GWAS. The results of the previously reported EVE consortium asthma GWAS meta-analysis consisting of 12,958 diverse North American subjects from 9 study centers were used to select a subset of homologous genes with evidence of association with asthma in humans. Following validation attempts in three human asthma GWAS (i.e., Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG) and two human AHR GWAS (i.e., SHARP, DAG), the Kv channel interacting protein 4 (KCNIP4) gene was identified as nominally associated with both asthma and AHR at a gene- and SNP-level. In EVE, the smallest KCNIP4 association was at rs6833065 (P-value 2.9e-04), while the strongest associations for Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG were 1.5e-03, 1.0e-03, 3.1e-03 at rs7664617, rs4697177, rs4696975, respectively. At a SNP level, the strongest association across all asthma GWAS was at rs4697177 (P-value 1.1e-04). The smallest P-values for association with AHR were 2.3e-03 at rs11947661 in SHARP and 2.1e-03 at rs402802 in DAG. Functional studies are required to validate the potential involvement of KCNIP4 in modulating asthma susceptibility and/or AHR. Our results suggest that a useful approach to identify genes associated with human asthma is to leverage mouse AHR association data. PMID:23457522

Himes, Blanca E.; Sheppard, Keith; Berndt, Annerose; Leme, Adriana S.; Myers, Rachel A.; Gignoux, Christopher R.; Levin, Albert M.; Gauderman, W. James; Yang, James J.; Mathias, Rasika A.; Romieu, Isabelle; Torgerson, Dara G.; Roth, Lindsey A.; Huntsman, Scott; Eng, Celeste; Klanderman, Barbara; Ziniti, John; Senter-Sylvia, Jody; Szefler, Stanley J.; Lemanske, Robert F.; Zeiger, Robert S.; Strunk, Robert C.; Martinez, Fernando D.; Boushey, Homer; Chinchilli, Vernon M.; Israel, Elliot; Mauger, David; Koppelman, Gerard H.; Postma, Dirkje S.; Nieuwenhuis, Maartje A. E.; Vonk, Judith M.; Lima, John J.; Irvin, Charles G.; Peters, Stephen P.; Kubo, Michiaki; Tamari, Mayumi; Nakamura, Yusuke; Litonjua, Augusto A.; Tantisira, Kelan G.; Raby, Benjamin A.; Bleecker, Eugene R.; Meyers, Deborah A.; London, Stephanie J.; Barnes, Kathleen C.; Gilliland, Frank D.; Williams, L. Keoki; Burchard, Esteban G.; Nicolae, Dan L.; Ober, Carole; DeMeo, Dawn L.; Silverman, Edwin K.; Paigen, Beverly; Churchill, Gary; Shapiro, Steve D.; Weiss, Scott T.

2013-01-01

360

Mouse Forward Genetics in the Study of the Peripheral Nervous System and Human Peripheral Neuropathy  

Microsoft Academic Search

Forward genetics, the phenotype-driven approach to investigating gene identity and function, has a long history in mouse genetics.\\u000a Random mutations in the mouse transcend bias about gene function and provide avenues towards unique discoveries. The study\\u000a of the peripheral nervous system is no exception; from historical strains such as the trembler mouse, which led to the identification of PMP22 as

Darlene S. Douglas; Brian Popko

2009-01-01

361

Genetic mapping in human and mouse of the locus encoding TRBP, a protein that binds the TAR region of the human immunodeficiency virus (HIV-1)  

SciTech Connect

Productive infection with HIV-1, the virus responsible for AIDS, requires the involvement of host cell factors for completion of the replicative cycle, but the identification of these factors and elucidation of their specific functions has been difficult. A human cDNA, TRBP, was recently cloned and characterized as a positive regulator of gene expression that binds to the TAR region of the HIV-1 genome. Here we demonstrate that this factor is encoded by a gene, TARBP2, that maps to human chromosome 12 and mouse chromosome 15, and we also identify and map one human pseudogene (TARBP2P) and two mouse TRBP-related sequences. The map location of the expressed gene identifies it as a candidate for the previously identified factor encoded on human chromosome 12 that has been shown to be important for expression of HIV-1 genes. Western blotting indicates that despite high sequence conservation in human and mouse, the TARBP2 protein differs in apparent size in primate and rodent cells. 41 refs., 5 figs., 1 tab.

Kozak, C.A.; Gatignol, A.; Graham, K. [National Inst. of Allergy and Infectious Diseases, Behesda, MD (United States)] [and others] [National Inst. of Allergy and Infectious Diseases, Behesda, MD (United States); and others

1995-01-01

362

Fetal Calcium Regulates Branching Morphogenesis in the Developing Human and Mouse Lung: Involvement of Voltage-Gated Calcium Channels  

PubMed Central

Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9–17 of human gestation, embryonic days (E)11.5–16.5 in mouse) in a hypercalcaemic environment (?1.7 in the fetus vs. ?1.1–1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca2+ channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match growth and distension within the developing lung. PMID:24282533

Brennan, Sarah C.; Finney, Brenda A.; Lazarou, Maria; Rosser, Anne E.; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J.; Riccardi, Daniela

2013-01-01

363

Cytochrome P450s in the synthesis of cholesterol and bile acids--from mouse models to human diseases.  

PubMed

The present review describes the transgenic mouse models that have been designed to evaluate the functions of the cytochrome P450s involved in cholesterol and bile acid synthesis, as well as their link with disease. The knockout of cholesterogenic Cyp51 is embrionally lethal, with symptoms of Antley-Bixler syndrome occurring in mice, whereas the evidence for this association is conflicting in humans. Disruption of Cyp7a1 from classic bile acid synthesis in mice leads to either increased postnatal death or a milder phenotype with elevated serum cholesterol. The latter is similar to the case in humans, where CYP7A1 mutations associate with high plasma low-density lipoprotein and hepatic cholesterol content, as well as deficient bile acid excretion. Disruption of Cyp8b1 from an alternative bile acid pathway results in the absence of cholic acid and a reduced absorption of dietary lipids; however, the human CYP8B1 polymorphism fails to explain differences in bile acid composition. Unexpectedly, apparently normal Cyp27a1(-/-) mice still synthesize bile acids that originate from the compensatory pathway. In humans, CYP27A1 mutations cause cerebrotendinous xanthomatosis, suggesting that only mice can compensate for the loss of alternative bile acid synthesis. In line with this, Cyp7b1 knockouts are also apparently normal, whereas human CYP7B1 mutations lead to a congenital bile acid synthesis defect in children or spastic paraplegia in adults. Mouse knockouts of the brain-specific Cyp46a1 have reduced brain cholesterol excretion, whereas, in humans, CYP46A1 polymorphisms associate with cognitive impairment. At present, cytochrome P450 family 39 is poorly characterized. Despite important physiological differences between humans and mice, mouse models prove to be an invaluable tool for understanding the multifactorial facets of cholesterol and bile acid-related disorders. PMID:22111624

Lorbek, Gregor; Lewinska, Monika; Rozman, Damjana

2012-05-01

364

Guiding the osteogenic fate of mouse and human mesenchymal stem cells through feedback system control.  

PubMed

Stem cell-based disease modeling presents unique opportunities for mechanistic elucidation and therapeutic targeting. The stable induction of fate-specific differentiation is an essential prerequisite for stem cell-based strategy. Bone morphogenetic protein 2 (BMP-2) initiates receptor-regulated Smad phosphorylation, leading to the osteogenic differentiation of mesenchymal stromal/stem cells (MSC) in vitro; however, it requires supra-physiological concentrations, presenting a bottleneck problem for large-scale drug screening. Here, we report the use of a double-objective feedback system control (FSC) with a differential evolution (DE) algorithm to identify osteogenic cocktails of extrinsic factors. Cocktails containing significantly reduced doses of BMP-2 in combination with physiologically relevant doses of dexamethasone, ascorbic acid, beta-glycerophosphate, heparin, retinoic acid and vitamin D achieved accelerated in vitro mineralization of mouse and human MSC. These results provide insight into constructive approaches of FSC to determine the applicable functional and physiological environment for MSC in disease modeling, drug screening and tissue engineering. PMID:24305548

Honda, Yoshitomo; Ding, Xianting; Mussano, Federico; Wiberg, Akira; Ho, Chih-Ming; Nishimura, Ichiro

2013-01-01

365

MUC1 Selectively Targets Human Pancreatic Cancer in Orthotopic Nude Mouse Models  

PubMed Central

The goal of this study was to determine whether MUC1 antibody conjugated with a fluorophore could be used to visualize pancreatic cancer. Anti-MUC1 (CT2) antibody was conjugated with 550 nm or 650 nm fluorophores. Nude mouse were used to make subcutaneous and orthotopic models of pancreatic cancer. Western blot and flow cytometric analysis confirmed the expression of MUC1 in human pancreatic cancer cell lines including BxPC-3 and Panc-1. Immunocytochemistry with fluorophore conjugated anti-MUC1 antibody demonstrated fluorescent areas on the membrane of Panc-1 cancer cells. After injecting the conjugated anti-MUC1 antibodies via the tail vein, subcutaneously transplanted Panc-1 and BxPC-3 tumors emitted strong fluorescent signals. In the subcutaneous tumor models, the fluorescent signal from the conjugated anti-MUC1 antibody was noted around the margin of the tumor and space between the cells. The conjugated anti-MUC1 antibody bound the tumor in orthotopically-transplanted Panc-1 and BxPC-3 models enabling the tumors to be imaged. This study showed that fluorophore conjugated anti-MUC1 antibodies could visualize pancreatic tumors in vitro and in vivo and may help to improve the diagnosis and treatment of pancreatic cancer. PMID:25815753

Park, Jeong Youp; Hiroshima, Yukihiko; Lee, Jin Young; Maawy, Ali A.; Hoffman, Robert M.; Bouvet, Michael

2015-01-01

366

Human balanced translocation and mouse gene inactivation implicate Basonuclin 2 in distal urethral development  

PubMed Central

We studied a man with distal hypospadias, partial anomalous pulmonary venous return, mild limb-length inequality and a balanced translocation involving chromosomes 9 and 13. To gain insight into the etiology of his birth defects, we mapped the translocation breakpoints by high-resolution comparative genomic hybridization (CGH), using chromosome 9- and 13-specific tiling arrays to analyze genetic material from a spontaneously aborted fetus with unbalanced segregation of the translocation. The chromosome 13 breakpoint was ?400?kb away from the nearest gene, but the chromosome 9 breakpoint fell within an intron of Basonuclin 2 (BNC2), a gene that encodes an evolutionarily conserved nuclear zinc-finger protein. The BNC2/Bnc2 gene is abundantly expressed in developing mouse and human periurethral tissues. In all, 6 of 48 unrelated subjects with distal hypospadias had nine novel nonsynonymous substitutions in BNC2, five of which were computationally predicted to be deleterious. In comparison, two of 23 controls with normal penile urethra morphology, each had a novel nonsynonymous substitution in BNC2, one of which was predicted to be deleterious. Bnc2?/? mice of both sexes displayed a high frequency of distal urethral defects; heterozygotes showed similar defects with reduced penetrance. The association of BNC2 disruption with distal urethral defects and the gene's expression pattern indicate that it functions in urethral development. PMID:21368915

Bhoj, Elizabeth J; Ramos, Purita; Baker, Linda A; Cost, Nicholas; Nordenskjöld, Agneta; Elder, Frederick F; Bleyl, Steven B; Bowles, Neil E; Arrington, Cammon B; Delhomme, Brigitte; Vanhoutteghem, Amandine; Djian, Philippe; Zinn, Andrew R

2011-01-01

367

Sensitivity of PCR assays for murine gammaretroviruses and mouse contamination in human blood samples.  

PubMed

Gammaretroviruses related to murine leukemia virus (MLV) have variously been reported to be present or absent in blood from chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) patients and healthy controls. Using subjects from New York State, we have investigated by PCR methods whether MLV-related sequences can be identified in nucleic acids isolated from whole blood or from peripheral blood mononuclear cells (PBMCs) or following PBMC culture. We have also passaged the prostate cancer cell line LNCaP following incubation with plasma from patients and controls and assayed nucleic acids for viral sequences. We have used 15 sets of primers that can effectively amplify conserved regions of murine endogenous and exogenous retrovirus sequences. We demonstrate that our PCR assays for MLV-related gag sequences and for mouse DNA contamination are extremely sensitive. While we have identified MLV-like gag sequences following PCR on human DNA preparations, we are unable to conclude that these sequences originated in the blood samples. PMID:22629404

Lee, Li Ling; Lin, Lin; Bell, David S; Levine, Susan; Hanson, Maureen R

2012-01-01

368

Mouse and human islets survive and function after coating by biosilicification.  

PubMed

Inorganic materials have properties that can be advantageous in bioencapsulation for cell transplantation. Our aim was to engineer a hybrid inorganic/soft tissue construct by inducing pancreatic islets to grow an inorganic shell. We created pancreatic islets surrounded by porous silica, which has potential application in the immunoprotection of islets in transplantation therapies for type 1 diabetes. The new method takes advantage of the islet capsule surface as a template for silica formation. Mouse and human islets were exposed to medium containing saturating silicic acid levels for 9-15 min. The resulting tissue constructs were then cultured for up to 4 wk under normal conditions. Scanning electron microscopy and energy dispersive X-ray spectroscopy was used to monitor the morphology and elemental composition of the material at the islet surface. A cytokine assay was used to assess biocompatibility with macrophages. Islet survival and function were assessed by confocal microscopy, glucose-stimulated insulin release assays, oxygen flux at the islet surface, expression of key genes by RT-PCR, and syngeneic transplant into diabetic mice. PMID:24002572

Jaroch, David B; Lu, Jing; Madangopal, Rajtarun; Stull, Natalie D; Stensberg, Matthew; Shi, Jin; Kahn, Jennifer L; Herrera-Perez, Ruth; Zeitchek, Michael; Sturgis, Jennifer; Robinson, J Paul; Yoder, Mervin C; Porterfield, D Marshall; Mirmira, Raghavendra G; Rickus, Jenna L

2013-11-15

369

Complexity and multifractality of neuronal noise in mouse and human hippocampal epileptiform dynamics  

NASA Astrophysics Data System (ADS)

Fractal methods offer an invaluable means of investigating turbulent nonlinearity in non-stationary biomedical recordings from the brain. Here, we investigate properties of complexity (i.e. the correlation dimension, maximum Lyapunov exponent, 1/f? noise and approximate entropy) and multifractality in background neuronal noise-like activity underlying epileptiform transitions recorded at the intracellular and local network scales from two in vitro models: the whole-intact mouse hippocampus and lesional human hippocampal slices. Our results show evidence for reduced dynamical complexity and multifractal signal features following transition to the ictal epileptiform state. These findings suggest that pathological breakdown in multifractal complexity coincides with loss of signal variability or heterogeneity, consistent with an unhealthy ictal state that is far from the equilibrium of turbulent yet healthy fractal dynamics in the brain. Thus, it appears that background noise-like activity successfully captures complex and multifractal signal features that may, at least in part, be used to classify and identify brain state transitions in the healthy and epileptic brain, offering potential promise for therapeutic neuromodulatory strategies for afflicted patients suffering from epilepsy and other related neurological disorders. This paper is based on chapter 5 of Serletis (2010 PhD Dissertation Department of Physiology, Institute of Biomaterials and Biomedical Engineering, University of Toronto).

Serletis, Demitre; Bardakjian, Berj L.; Valiante, Taufik A.; Carlen, Peter L.

2012-10-01

370

Missense mutation in mouse GALC mimics human gene defect and offers new insights into Krabbe disease  

PubMed Central

Krabbe disease is a devastating pediatric leukodystrophy caused by mutations in the galactocerebrosidase (GALC) gene. A significant subset of the infantile form of the disease is due to missense mutations that result in aberrant protein production. The currently used mouse model, twitcher, has a nonsense mutation not found in Krabbe patients, although it is similar to the human 30 kb deletion in abrogating GALC expression. Here, we identify a spontaneous mutation in GALC, GALCtwi-5J, that precisely matches the E130K missense mutation in patients with infantile Krabbe disease. GALCtwi-5J homozygotes show loss of enzymatic activity despite normal levels of precursor protein, and manifest a more severe phenotype than twitcher, with half the life span. Although neuropathological hallmarks such as gliosis, globoid cells and psychosine accumulation are present throughout the nervous system, the CNS does not manifest significant demyelination. In contrast, the PNS is severely hypomyelinated and lacks large diameter axons, suggesting primary dysmyelination, rather than a demyelinating process. Our data indicate that early demise is due to mechanisms other than myelin loss and support an important role for neuroinflammation in Krabbe disease progression. Furthermore, our results argue against a causative relationship between psychosine accumulation, white matter loss and gliosis. PMID:23620143

Potter, Gregory B.; Santos, Marta; Davisson, Muriel T.; Rowitch, David H.; Marks, Dan L.; Bongarzone, Ernesto R.; Petryniak, Magdalena A.

2013-01-01

371

Expression of the human apolipoprotein E gene suppresses steroidogenesis in mouse Y1 adrenal cells  

SciTech Connect

The lipid transport protein, apolipoprotein E (apoE), is expressed in many peripheral tissues in vivo including the adrenal gland and testes. To investigate the role of apoE in adrenal cholesterol homeostasis, the authors have expressed a human apoE genomic clone in the Y1 mouse adrenocortical cell line. Y1 cells do not express endogenous apoE mRNA or protein. Expression of apoE in Y1 cells resulted in a dramatic decrease in basal steroidogenesis; secretion of fluorogenic steroid was reduced 7- to {gt}100-fold relative to Y1 parent cells. Addition of 5-cholesten-3{beta},25-idol failed to overcome the suppression of steroidogenesis in these cells. Cholesterol esterification under basal conditions, as measured by the production of cholesteryl ({sup 14}C)oleate, was similar in the Y1 parent and the apoE-transfected cell lines. Upon incubation with adrenocorticotropin or dibutyryl cAMP, production of cholesteryl ({sup 14}C)oleate decreased 5-fold in the Y1 parent cells but was unchanged in the apoE-transfected cell lines. These results suggest that apoE may be an important modulator of cholesterol utilization and steroidogenesis in adrenal cells.

Reyland, M.E.; Forgez, P.; Prack, M.M.; Williams, D.L. (State Univ. of New York, Stony Brook (United States)); Gwynne, J.T. (Univ. of North Carolina, Chapel Hill (United States))

1991-03-15

372

Mouse and human islets survive and function after coating by biosilicification  

PubMed Central

Inorganic materials have properties that can be advantageous in bioencapsulation for cell transplantation. Our aim was to engineer a hybrid inorganic/soft tissue construct by inducing pancreatic islets to grow an inorganic shell. We created pancreatic islets surrounded by porous silica, which has potential application in the immunoprotection of islets in transplantation therapies for type 1 diabetes. The new method takes advantage of the islet capsule surface as a template for silica formation. Mouse and human islets were exposed to medium containing saturating silicic acid levels for 9–15 min. The resulting tissue constructs were then cultured for up to 4 wk under normal conditions. Scanning electron microscopy and energy dispersive X-ray spectroscopy was used to monitor the morphology and elemental composition of the material at the islet surface. A cytokine assay was used to assess biocompatibility with macrophages. Islet survival and function were assessed by confocal microscopy, glucose-stimulated insulin release assays, oxygen flux at the islet surface, expression of key genes by RT-PCR, and syngeneic transplant into diabetic mice. PMID:24002572

Jaroch, David B.; Lu, Jing; Madangopal, Rajtarun; Stull, Natalie D.; Stensberg, Matthew; Shi, Jin; Kahn, Jennifer L.; Herrera-Perez, Ruth; Zeitchek, Michael; Sturgis, Jennifer; Robinson, J. Paul; Yoder, Mervin C.; Porterfield, D. Marshall; Mirmira, Raghavendra G.

2013-01-01

373

Serological expression after sequential double transfection with purified HLA11 gene of mouse fibroblasts carrying human beta-2 microglobulin  

Microsoft Academic Search

A genomic cosmid library constructed from DNA from a genotyped individual (JF = HLA-A11, Cw-, B38\\/A26, Cw7, B51) was screened for clones containing class I histocompatibility genes. Among these clones, one was found to carry a 4.8 kb Hind III fragment which is highly correlated with HLA-A11. This clone was used to transfect LMTK+ cultured mouse fibroblast transformants expressing human

Pascale Paul; Virginia Lepage; Brigitte Sayagh; Jean-Jacques Metzger; Marika Pla; Laurence Boumsell; Corinne Douay; Daniel Cohen; Jacques Colombani; Jean Dausset; Laurent Degos

1985-01-01

374

Comparative in VitroSkin Absorption and Metabolism of Coumarin (1,2-Benzopyrone) in Human, Rat, and Mouse  

Microsoft Academic Search

Thein vitropercutaneous absorption and skin metabolism of coumarin (1,2-benzopyrone) was studied in metabolically viable human, rat (F344), and mouse (CD1 and DBA\\/2) skin. Following application of [14C]coumarin (3.7 ?g\\/cm2; 0.02% in ethanol) to unoccluded skin in flow-through diffusion cells of a skin absorption model (SAM), the absorption through the skin into the receptor fluid at 72 hr was rapid and

Senam A. J. Beckley-Kartey; Sharon A. M. Hotchkiss; Margred Capel

1997-01-01

375

Experience with the cryopreservation of human embryos using the mouse as a model to establish successful techniques  

Microsoft Academic Search

Mouse embryos at the one-, two-, and eight-cell stages have been used to optimize the conditions for cryopreservation of human oocytes and embryos. For storage in glass vials using 1.5 M dimethyl sulfoxide (DMSO) as a cryoprotectant and slow cooling (˜0.3°C\\/min), phosphate-buffered medium was superior to Hepes-buffered medium. Termination of slow cooling at -80°C before transfer to liquid nitrogen with

P. Quinn; J. F. P. Kerin

1986-01-01

376

Fenoterol functionally activates the ??-adrenoceptor in human urinary bladder, comparison with rat and mouse: implications for drug discovery.  

PubMed

Fenoterol has been reported to be a potent and selective ?(2)-adrenoceptor agonist and is currently used clinically to treat asthma. Electrical field stimulation (EFS) of isolated urinary bladder mimics the voiding contraction by stimulating parasympathetic nerves, resulting in neurogenic contractions. To determine if stimulation of ?(2)-adrenoceptors can inhibit this response, fenoterol was tested against EFS-induced contractions in human isolated urinary bladder and compared with mouse and rat. Bladder strips were mounted in organ baths and reproducible contractions induced by EFS. Fenoterol was added cumulatively in the presence of the ?(2)-adrenoceptor antagonist ICI118551 or the ?(3)-adrenoceptor antagonist L-748337. Fenoterol inhibited neurogenic contractions in all three species in a concentration-dependent manner with pEC(50) values of 6.66 ± 0.11, 6.86 ± 0.06 and 5.71 ± 0.1 in human, mouse and rat respectively. In human bladder strips ICI118551 (100 nM) did not affect responses to fenoterol, while L-748337 (0.3-3 ?M) produced rightward shifts of the concentration-response curves with a pA(2) value of 8.10. In mouse bladder strips ICI118551 (30 nM) blocked the inhibitory effect of fenoterol (pA(2)=8.80), while L-748337 (10 ?M) inhibited the response with a pA(2) of 5.79. In rat bladder ICI118551 (30 nM) was without effect, while L-748,337 (10 ?M) inhibited the response to fenoterol with a pA(2) of 5.40. From these results it is clear that fenoterol potently activates ?(3)-adrenoceptors in human isolated urinary bladder to inhibit EFS-induced contractions. Fenoterol also activates ?(3)-adrenoceptors in rat, but ?(2)-adrenoceptors in mouse bladder to inhibit EFS-induced contractions. PMID:22760074

Palea, Stefano; Rekik, Moèz; Rouget, Céline; Camparo, Philippe; Botto, Henri; Rischmann, Pascal; Lluel, Philippe; Westfall, Timothy D

2012-09-01

377

Human Neural Stem Cells Genetically Modified to Overexpress Akt1 Provide Neuroprotection and Functional Improvement in Mouse Stroke Model  

Microsoft Academic Search

In a previous study, we have shown that human neural stem cells (hNSCs) transplanted in brain of mouse intracerebral hemorrhage (ICH) stroke model selectively migrate to the ICH lesion and induce behavioral recovery. However, low survival rate of grafted hNSCs in the brain precludes long-term therapeutic effect. We hypothesized that hNSCs overexpressing Akt1 transplanted into the lesion site could provide

Hong J. Lee; Mi K. Kim; Hee J. Kim; Seung U. Kim; Rafael Linden

2009-01-01

378

Biostability of Batracylin: Incubation of batracylin in mouse and human plasma for as long as 48 h did not produce significant degradation  

Cancer.gov

Batracyclin Pharmacology Abstract Division of Cancer Treatment and Diagnosis National Cancer Institute Biostability of Batracylin: Incubation of batracylin in mouse and human plasma for as long as 48 h did not produce significant degradation.

379

LKB1 Knockout Mouse Develops Spontaneous Atrial Fibrillation and Provides Mechanistic Insights Into Human Disease Process  

PubMed Central

Background Atrial fibrillation (AF) is a complex disease process, and the molecular mechanisms underlying initiation and progression of the disease are unclear. Consequently, AF has been difficult to model. In this study, we have presented a novel transgenic mouse model of AF that mimics human disease and characterized the mechanisms of atrial electroanatomical remodeling in the genesis of AF. Methods and Results Cardiac?specific liver kinase B1 (LKB1) knockout (KO) mice were generated, and 47% aged 4 weeks and 95% aged 12 weeks developed spontaneous AF from sinus rhythm by demonstrating paroxysmal and persistent stages of the disease. Electrocardiographic characteristics of sinus rhythm were similar in KO and wild?type mice. Atrioventricular block and atrial flutter were common in KO mice. Heart rate was slower with persistent AF. In parallel with AF, KO mice developed progressive biatrial enlargement with inflammation, heterogeneous fibrosis, and loss of cardiomyocyte population with apoptosis and necrosis. Atrial tissue was infiltrated with inflammatory cells. C?reactive protein, interleukin 6, and tumor necrosis factor ? were significantly elevated in serum. KO atria demonstrated elevated reactive oxygen species and decreased AMP?activated protein kinase activity. Cardiomyocyte and myofibrillar ultrastructure were disrupted. Intercellular matrix and gap junction were interrupted. Connexins 40 and 43 were reduced. Persistent AF caused left ventricular dysfunction and heart failure. Survival and exercise capacity were worse in KO mice. Conclusions LKB1 KO mice develop spontaneous AF from sinus rhythm and progress into persistent AF by replicating the human AF disease process. Progressive inflammatory atrial cardiomyopathy is the genesis of AF, through mechanistic electrical and structural remodeling. PMID:25773299

Ozcan, Cevher; Battaglia, Emily; Young, Rebeccah; Suzuki, Gen

2015-01-01

380

Genotypes and Mouse Virulence of Toxoplasma gondii Isolates from Animals and Humans in China  

PubMed Central

Background Recent population structure studies of T. gondii revealed that a few major clonal lineages predominated in different geographical regions. T. gondii in South America is genetically and biologically divergent, whereas this parasite is remarkably clonal in North America and Europe with a few major lineages including Types I, II and III. Information on genotypes and mouse virulence of T. gondii isolates from China is scarce and insufficient to investigate its population structure, evolution, and transmission. Methodology/Principal Findings Genotyping of 23 T. gondii isolates from different hosts using 10 markers for PCR-restriction fragment length polymorphism analyses (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) revealed five genotypes; among them three genotypes were atypical and two were archetypal. Fifteen strains belong to the Chinese 1 lineage, which has been previously reported as a widespread lineage from swine, cats, and humans in China. Two human isolates fall into the type I and II lineages and the remaining isolates belong to two new atypical genotypes (ToxoDB#204 and #205) which has never been reported in China. Our results show that these genotypes of T. gondii isolates are intermediately or highly virulent in mice except for the strain TgCtwh6, which maintained parasitemia in mice for 35 days post infection although it possesses the uniform genotype of Chinese 1. Additionally, phylogenetic network analyses of all isolates of genotype Chinese 1 are identical, and there is no variation based on the sequence data generated for four introns (EF1, HP2, UPRT1 and UPRT7) and two dense granule proteins (GRA6 and GRA7). Conclusion/Significance A limited genetic diversity was found and genotype Chinese 1 (ToxoDB#9) is dominantly circulating in mainland China. The results will provide a useful profile for deep insight to the population structure, epidemiology and biological characteristics of T. gondii in China. PMID:23308233

Liu, Daohua; Huo, Xingxing; Gao, Jiangmei; Song, Xiaorong; Xu, Xiucai; Huang, Kaiquan; Liu, Wenqi; Wang, Yong; Lu, Fangli; Lun, Zhao-Rong; Luo, Qingli; Wang, Xuelong; Shen, Jilong

2013-01-01