Sample records for human melanomas sensitive

  1. Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma.

    PubMed

    Azzarito, Tommaso; Venturi, Giulietta; Cesolini, Albino; Fais, Stefano

    2015-01-28

    Tumor acidity is now considered an important determinant of drug-resistance and tumor progression, and anti-acidic approaches, such as Proton Pump inhibitors (PPIs), have demonstrated promising antitumor and chemo-sensitizing efficacy. The main purpose of the present study was to evaluate the possible PPI-induced sensitization of human melanoma cells to Paclitaxel (PTX). Our results show that PTX and the PPI Lansoprazole (LAN) combination was extremely efficient against metastatic melanoma cells, as compared to the single treatments, both in vitro and in vivo. We also showed that acidity plays an important role on the anti-tumor activity of these drugs, being detrimental for PTX activity, while crucial for the synergistic effect of PTX following pretreatment with LAN, due to its nature of pro-drug needing protonation for a full activation. We obtained straightforward results in a human melanoma xenograft model combining well tolerated LAN doses with suboptimal and poorly toxic doses of PTX. With this study we provide a clear evidence that the PPI LAN may be included in new combined therapy of human melanoma together with low doses of PTX. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Targeting protein-trafficking pathways alters melanoma treatment sensitivity

    PubMed Central

    Huang, Zhi-ming; Chinen, Milka; Chang, Philip J.; Xie, Tong; Zhong, Lily; Demetriou, Stephanie; Patel, Mira P.; Scherzer, Rebecca; Sviderskaya, Elena V.; Bennett, Dorothy C.; Millhauser, Glenn L.; Oh, Dennis H.; Cleaver, James E.; Wei, Maria L.

    2012-01-01

    Protein-trafficking pathways are targeted here in human melanoma cells using methods independent of oncogene mutational status, and the ability to up-regulate and down-regulate tumor treatment sensitivity is demonstrated. Sensitivity of melanoma cells to cis-diaminedichloroplatinum II (cDDP, cis-platin), carboplatin, dacarbazine, or temozolomide together with velaparib, an inhibitor of poly (ADP ribose) polymerase 1, is increased by up to 10-fold by targeting genes that regulate both protein trafficking and the formation of melanosomes, intracellular organelles unique to melanocytes and melanoma cells. Melanoma cells depleted of either of the protein-trafficking regulators vacuolar protein sorting 33A protein (VPS33A) or cappuccino protein (CNO) have increased nuclear localization of cDDP, increased nuclear DNA damage by platination, and increased apoptosis, resulting in increased treatment sensitivity. Depleted cells also exhibit a decreased proportion of intracellular, mature melanosomes compared with undepleted cells. Modulation of protein trafficking via cell-surface signaling by binding the melanocortin 1 receptor with the antagonist agouti-signaling protein decreased the proportion of mature melanosomes formed and increased cDDP sensitivity, whereas receptor binding with the agonist melanocyte-stimulating hormone resulted in an increased proportion of mature melanosomes formed and in decreased sensitivity (i.e., increased resistance) to cDDP. Mutation of the protein-trafficking gene Hps6, known to impair the formation of mature melanosomes, also increased cDDP sensitivity. Together, these results indicate that targeting protein-trafficking molecules markedly increases melanoma treatment sensitivity and influences the degree of melanosomes available for sequestration of therapeutic agents. PMID:22203954

  3. Fasting boosts sensitivity of human skin melanoma to cisplatin-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antunes, Fernanda; Corazzari, Marco; National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”

    Melanoma is one of leading cause of tumor death worldwide. Anti-cancer strategy includes combination of different chemo-therapeutic agents as well as radiation; however these treatments have limited efficacy and induce significant toxic effects on healthy cells. One of most promising novel therapeutic approach to cancer therapy is the combination of anti-cancer drugs with calorie restriction. Here we investigated the effect Cisplatin (CDDP), one of the most potent chemotherapeutic agent used to treat tumors, in association with fasting in wild type and mutated BRAF{sup V600E} melanoma cell lines. Here we show that nutrient deprivation can consistently enhance the sensitivity of tumormore » cells to cell death induction by CDDP, also of those malignancies particularly resistant to any treatment, such as oncogenic BRAF melanomas. Mechanistic studies revealed that the combined therapy induced cell death is characterized by ROS accumulation and ATF4 in the absence of ER-stress. In addition, we show that autophagy is not involved in the enhanced sensitivity of melanoma cells to combined CDDP/EBSS-induced apoptosis. While, the exposure to 2-DG further enhanced the apoptotic rate observed in SK Mel 28 cells upon treatment with both CDDP and EBSS. - Highlights: • Calorie restriction associated to chemo-therapeutic drugs enhance cell death induction in many resistant malignancies • Cisplatin in association with starvation significantly increases cell death also in those high resistant melanoma cells bearing BRAF mutations • Combined treatment also including 2-DG results in similar cell death levels in both wild type and mutated BRAF cells.« less

  4. Sensitization of recombinant human tumor necrosis factor-related apoptosis-inducing ligand-resistant malignant melanomas by quercetin.

    PubMed

    Turner, Katherine A; Manouchehri, Jasmine M; Kalafatis, Michael

    2018-03-28

    Malignant melanoma is the most commonly diagnosed skin cancer associated with a high rate of metastasis. Low-stage melanoma is easily treated, but metastatic malignant melanoma is an extremely treatment-resistant malignancy with low survival rates. The application of recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) for the treatment of metastatic malignant melanoma holds considerable promise because of its selective proapoptotic activity towards cancer cells and not nontransformed cells. Unfortunately, the clinical utilization of rhTRAIL has been terminated due to the resistance of many cancer cells to undergo apoptosis in response to rhTRAIL. However, rhTRAIL-resistance can be abrogated through the cotreatment with compounds derived from 'Mother Nature' such as quercetin that can modulate cellular components responsible for rhTRAIL-resistance. Here, we show that rhTRAIL-resistant malignant melanomas are sensitized by quercetin. Quercetin action is manifested by the upregulation of rhTRAIL-binding receptors DR4 and DR5 on the surface of cancer cells and by increased rate of the proteasome-mediated degradation of the antiapoptotic protein FLIP. Our data provide for a new efficient and nontoxic treatment of malignant melanoma.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.

  5. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma

    PubMed Central

    Simpson, R Mark; Bastian, Boris C; Michael, Helen T; Webster, Joshua D; Prasad, Manju L; Conway, Catherine M; Prieto, Victor M; Gary, Joy M; Goldschmidt, Michael H; Esplin, D Glen; Smedley, Rebecca C; Piris, Adriano; Meuten, Donald J; Kiupel, Matti; Lee, Chyi-Chia R; Ward, Jerrold M; Dwyer, Jennifer E; Davis, Barbara J; Anver, Miriam R; Molinolo, Alfredo A; Hoover, Shelley B; Rodriguez-Canales, Jaime; Hewitt, Stephen M

    2014-01-01

    Melanoma represents a significant malignancy in humans and dogs. Different from genetically engineered models, sporadic canine melanocytic neoplasms share several characteristics with human disease that could make dogs a more relevant preclinical model. Canine melanomas rarely arise in sun-exposed sites. Most occur in the oral cavity, with a subset having intra-epithelial malignant melanocytes mimicking the in situ component of human mucosal melanoma. The spectrum of canine melanocytic neoplasia includes benign lesions with some analogy to nevi, as well as invasive primary melanoma, and widespread metastasis. Growing evidence of distinct subtypes in humans, differing in somatic and predisposing germ-line genetic alterations, cell of origin, epidemiology, relationship to ultraviolet radiation and progression from benign to malignant tumors, may also exist in dogs. Canine and human mucosal melanomas appear to harbor BRAF, NRAS, and c-kit mutations uncommonly, compared with human cutaneous melanomas, although both species share AKT and MAPK signaling activation. We conclude that there is significant overlap in the clinical and histopathological features of canine and human mucosal melanomas. This represents opportunity to explore canine oral cavity melanoma as a preclinical model. PMID:24128326

  6. Fatty acid receptor GPR120: a novel marker for human melanoma.

    PubMed

    Kleemann, Johannes; Hrgovic, Igor; Ter-Nedden, Jan; Kleimann, Pia; Steinhorst, Katja; Härle, Katja; Müller, Jutta; Kaufmann, Roland; Meissner, Markus; Kippenberger, Stefan

    2018-03-21

    The correlation between ultraviolet radiation of the skin and melanoma incidence in humans is well established. Interestingly, epidemiologic data suggest also a correlation to an increased BMI pointing to metabolic trigger factors in melanoma pathogenesis. To substantiate this connection, we studied the expression of G-protein-coupled receptor 120 (GPR120), a receptor sensitive to unsaturated long-chain free fatty acids in melanoma tissues. One-hundred fourteen tissue sections histologically confirmed as nevi (n=32), primary melanoma (n=39), and melanoma metastasis (n=43) were immunohistochemically stained against GPR120. The staining was evaluated by three trained dermatopathologists and independently scored. Compared with nevi, primary melanoma and melanoma metastasis showed significantly higher levels of GPR120 staining. Only three out of 32 nevi showed strong GPR120 expression [median immunoreactivity-scoring system (IRS) score: 1, range: 0-10], whereas in primary melanomas 14 out of 39 were highly GPR120-positive (median IRS score: 7, range: 0-12) and in melanoma metastasis 27 out of 43 were highly GPR120-positive (median IRS score: 9, range: 0-12). GPR120 expression and tumor thickness (mm) show a statistically significant correlation in primary melanoma (P=0.011). Moreover, GPR120-positive staining was found throughout the epidermis and in sebaceous and sweat glands, which is yet not described. This study identified GPR120 as a novel marker for melanoma, indicating that melanoma cells are sensitive to free fatty acids. It is tempting to speculate that pharmacologically interfering with GPR120 signaling might improve melanoma therapy.

  7. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide

    PubMed Central

    Ramcharan, Roger; Aleksic, Tamara; Kamdoum, Wilfride Petnga; Gao, Shan; Pfister, Sophia X.; Tanner, Jordan; Bridges, Esther; Asher, Ruth; Watson, Amanda J.; Margison, Geoffrey P.; Woodcock, Mick; Repapi, Emmanouela; Li, Ji-Liang; Middleton, Mark R.; Macaulay, Valentine M.

    2015-01-01

    Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage. PMID

  8. Naturally occurring melanomas in dogs as models for non-UV pathways of human melanomas.

    PubMed

    Gillard, Marc; Cadieu, Edouard; De Brito, Clotilde; Abadie, Jérôme; Vergier, Béatrice; Devauchelle, Patrick; Degorce, Frédérique; Dréano, Stephane; Primot, Aline; Dorso, Laetitia; Lagadic, Marie; Galibert, Francis; Hédan, Benoit; Galibert, Marie-Dominique; André, Catherine

    2014-01-01

    Spontaneously occurring melanomas are frequent in dogs. They appear at the same localizations as in humans, i.e. skin, mucosal sites, nail matrix and eyes. They display variable behaviors: tumors at oral localizations are more frequent and aggressive than at other anatomical sites. Interestingly, dog melanomas are associated with strong breed predispositions and overrepresentation of black-coated dogs. Epidemiological analysis of 2350 affected dogs showed that poodles are at high risk of developing oral melanoma, while schnauzers or Beauce shepherds mostly developped cutaneous melanoma. Clinical and histopathological analyses were performed on a cohort of 153 cases with a 4-yr follow-up. Histopathological characterization showed that most canine tumors are intradermal and homologous to human rare morphological melanomas types - 'nevocytoid type' and 'animal type'-. Tumor cDNA sequencing data, obtained from 95 dogs for six genes, relevant to human melanoma classification, detected somatic mutations in oral melanoma, in NRAS and PTEN genes, at human hotspot sites, but not in BRAF. Altogether, these findings support the relevance of the dog model for comparative oncology of melanomas, especially for the elucidation of non-UV induced pathways. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    PubMed

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J., E-mail: bnickol@lumc.edu

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cellmore » killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.« less

  11. Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells

    PubMed Central

    Faião-Flores, F; Alves-Fernandes, D K; Pennacchi, P C; Sandri, S; Vicente, A L S A; Scapulatempo-Neto, C; Vazquez, V L; Reis, R M; Chauhan, J; Goding, C R; Smalley, K S; Maria-Engler, S S

    2017-01-01

    BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naïve cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGFβ/SMAD (transforming growth factor-β/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naïve cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib

  12. Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells.

    PubMed

    Faião-Flores, F; Alves-Fernandes, D K; Pennacchi, P C; Sandri, S; Vicente, A L S A; Scapulatempo-Neto, C; Vazquez, V L; Reis, R M; Chauhan, J; Goding, C R; Smalley, K S; Maria-Engler, S S

    2017-03-30

    BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naïve cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGFβ/SMAD (transforming growth factor-β/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naïve cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib

  13. Reduced GNG2 expression levels in mouse malignant melanomas and human melanoma cell lines

    PubMed Central

    Yajima, Ichiro; Kumasaka, Mayuko Y; Naito, Yuji; Yoshikawa, Toshikazu; Takahashi, Hiro; Funasaka, Yoko; Suzuki, Tamio; Kato, Masashi

    2012-01-01

    Heterotrimeric G protein is composed of a Gα-subunit and a Gβγ-dimer. Previous studies have revealed that Gβγ-dimers including the Gγ2 subunit (Gng2/GNG2) are associated with cell proliferation, differentiation, invasion and angiogenesis. At present, however, there is no information on the expression level of Gng2/GNG2 alone in any kind of tumor. In this study, we performed DNA microarray analysis in a benign melanocytic tumor and a malignant melanoma from RET-transgenic mice (RET-mice). Gng2 transcript expression levels in a malignant melanoma were less than 1/10 of the level in a benign tumor. The difference in Gng2 transcript expression levels between benign tumors and malignant melanomas was greatest among all of the G protein γ subunits examined in this study. Moreover, protein expression levels of Gng2 were decreased in malignant melanomas compared with those in benign melanocytic tumors in RET-mice. Analysis of human malignant melanomas also showed reduced GNG2 protein expression levels in five human malignant melanoma cell lines compared with the expression levels in normal human epithelial melanocytes (NHEM). Thus, we demonstrated for the first time that Gng2/GNG2 expression levels are reduced in malignant melanoma, suggesting that GNG2 could be a novel biomarker for malignant melanoma. PMID:22679562

  14. A novel compound which sensitizes BRAF wild-type melanoma cells to vemurafenib in a TRIM16-dependent manner.

    PubMed

    Sutton, Selina K; Carter, Daniel R; Kim, Patrick; Tan, Owen; Arndt, Greg M; Zhang, Xu Dong; Baell, Jonathan; Noll, Benjamin D; Wang, Shudong; Kumar, Naresh; McArthur, Grant A; Cheung, Belamy B; Marshall, Glenn M

    2016-08-09

    There is an urgent need for better therapeutic options for advanced melanoma patients, particularly those without the BRAFV600E/K mutation. In melanoma cells, loss of TRIM16 expression is a marker of cell migration and metastasis, while the BRAF inhibitor, vemurafenib, induces melanoma cell growth arrest in a TRIM16-dependent manner. Here we identify a novel small molecule compound which sensitized BRAF wild-type melanoma cells to vemurafenib. High throughput, cell-based, chemical library screening identified a compound (C012) which significantly reduced melanoma cell viability, with limited toxicity for normal human fibroblasts. When combined with the BRAFV600E/K inhibitor, vemurafenib, C012 synergistically increased vemurafenib potency in 5 BRAFWT and 4 out of 5 BRAFV600E human melanoma cell lines (Combination Index: CI < 1), and, dramatically reduced colony forming ability. In addition, this drug combination was significantly anti-tumorigenic in vivo in a melanoma xenograft mouse model. The combination of vemurafenib and C012 markedly increased expression of TRIM16 protein, and knockdown of TRIM16 significantly reduced the growth inhibitory effects of the vemurafenib and C012 combination. These findings suggest that the combination of C012 and vemurafenib may have therapeutic potential for the treatment of melanoma, and, that reactivation of TRIM16 may be an effective strategy for patients with this disease.

  15. A novel compound which sensitizes BRAF wild-type melanoma cells to vemurafenib in a TRIM16-dependent manner

    PubMed Central

    Sutton, Selina K.; Carter, Daniel R.; Kim, Patrick; Tan, Owen; Arndt, Greg M.; Zhang, Xu Dong; Baell, Jonathan; Noll, Benjamin D.; Wang, Shudong; Kumar, Naresh; McArthur, Grant A.; Cheung, Belamy B.; Marshall, Glenn M.

    2016-01-01

    There is an urgent need for better therapeutic options for advanced melanoma patients, particularly those without the BRAFV600E/K mutation. In melanoma cells, loss of TRIM16 expression is a marker of cell migration and metastasis, while the BRAF inhibitor, vemurafenib, induces melanoma cell growth arrest in a TRIM16-dependent manner. Here we identify a novel small molecule compound which sensitized BRAF wild-type melanoma cells to vemurafenib. High throughput, cell-based, chemical library screening identified a compound (C012) which significantly reduced melanoma cell viability, with limited toxicity for normal human fibroblasts. When combined with the BRAFV600E/K inhibitor, vemurafenib, C012 synergistically increased vemurafenib potency in 5 BRAFWT and 4 out of 5 BRAFV600E human melanoma cell lines (Combination Index: CI < 1), and, dramatically reduced colony forming ability. In addition, this drug combination was significantly anti-tumorigenic in vivo in a melanoma xenograft mouse model. The combination of vemurafenib and C012 markedly increased expression of TRIM16 protein, and knockdown of TRIM16 significantly reduced the growth inhibitory effects of the vemurafenib and C012 combination. These findings suggest that the combination of C012 and vemurafenib may have therapeutic potential for the treatment of melanoma, and, that reactivation of TRIM16 may be an effective strategy for patients with this disease. PMID:27447557

  16. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves.

    PubMed

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-01-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW’s are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  17. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  18. Orally administered rapamycin, dacarbazine or both for treatment of human melanoma evaluated in severe combined immunodeficiency mice.

    PubMed

    Thallinger, Christiane; Skorjanec, Sophie; Soleiman, Afschin; Tzaneva, Stanislava; Griss, Johannes; Rous, Wolfgang; Poeppl, Wolfgang; Weinlich, Georg; Karimian-Teherani, Daniela; Joukhadar, Christian

    2008-01-01

    In this experimental study, the antineoplastic potential of orally administered rapamycin in human melanoma was evaluated and compared with dacarbazine (DTIC) as well as with the antineoplastic effect of the combination of both drugs. The substances were tested using 2 human melanoma cell lines, 518A2, which is highly susceptible to DTIC, and 607B, which is moderately susceptible. A human melanoma severe combined immunodeficiency mouse xenotransplantation model was used. After development of palpable tumors, mice received oral rapamycin or saline over 18 days. Additionally, from treatment day 4 to 8, mice were randomly chosen to receive either DTIC or saline treatment. The oral rapamycin treatment (1.5, 7.5, 15 and 30 mg/kg body weight) had an antineoplastic effect, ranging from 35 to 78% tumor weight reduction compared with the saline group. In DTIC less sensitive 607B tumors, rapamycin treatment (15 and 30 mg/kg body weight) was superior to DTIC treatment (p < 0.05). DTIC monotreatment reduced tumor weight in 518A2 tumors by 85% on average, whereas in 607B xenografts, no significant tumor weight reduction was observed compared with the saline group (p > 0.05). The combination of rapamycin and DTIC was not superior to rapamycin monotreatment in any cell line. These data indicate that oral rapamycin exerts a relevant antineoplastic effect on human melanoma cells. This effect appeared to be more pronounced in DTIC less sensitive melanoma xenografts. Copyright 2008 S. Karger AG, Basel.

  19. Laypersons' sensitivity for melanoma identification is higher with dermoscopy images than clinical photographs.

    PubMed

    Luttrell, M J; McClenahan, P; Hofmann-Wellenhof, R; Fink-Puches, R; Soyer, H P

    2012-11-01

    Most melanomas are first recognized by patients themselves or by their friends and family. To assess the ability of laypersons to identify melanomas using dermoscopy images. This is an image-based study using laptop computers in the community. Seventeen laypersons were given a one-page educational brochure on the AC Rule for melanoma (asymmetry, colour variation). These laypersons and three expert dermoscopists completed two image sets, each containing a series of 100 pigmented skin lesions. Set 1 contained five melanomas, while set 2 contained 20 melanomas. Participants viewed a clinical image followed by a dermoscopy image for each lesion. For each image a score of 0-10 was assigned for asymmetry and colour, and then an overall assessment was made for suspicion of melanoma. Mean estimates have been calculated for sensitivity and specificity. Laypersons achieved a clinical sensitivity of 91·2% and a significantly higher dermoscopy sensitivity of 94·0%, P = 0·013. This improvement was not associated with a significant change in overall specificity, which for the clinical image was 64·2% and with dermoscopy was 62·0%, P = 0·97. These results indicate that laypersons may be able to use dermoscopy to identify more melanomas than naked eye examination alone. Further study into the practice of dermoscopy by laypersons is warranted. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  20. Human Papilloma Virus in Melanoma Biopsy Specimens and Its Relation to Melanoma Progression

    PubMed Central

    Dréau, Didier; Culberson, Cathy; Wyatt, Sharon; Holder, Walter D.

    2000-01-01

    Objectives To evaluate melanoma biopsy specimens for human papilloma virus (HPV) and determine the relation between the presence of HPV, in vitro growth, and clinical progression of melanoma in the patients from whom the biopsy specimens were derived. Summary Background Data Ultraviolet radiation from sun exposure appears to be the primary causal agent in the development of cutaneous melanoma. However, other agents, including HPV, as observed in different epithelial carcinomas, may also play a role in melanoma development and progression. Methods Twelve melanoma biopsy specimens obtained from 12 patients with AJCC stage III and IV melanoma were stained with antibodies against gp-100 (HMB-45) and S-100 protein to confirm melanoma diagnosis and with a polyclonal HPV antibody. After mechanical dissociation, the melanoma specimen cells’ ability to grow in vitro was assessed. Patients were evaluated for melanoma progression with physical examination, complete blood count, and liver function tests every 3 months and a chest radiograph every 6 months. Results All biopsy specimens were positive for S-100, and nine (75%) were positive for gp-100. Seven of 12 (58%) were positive for HPV by immunohistochemistry. In vitro, none of the HPV-negative tumor cells grew from the tumor biopsies, whereas five of seven (71%) of the HPV-positive melanoma tumor cells grew very well. All patients with HPV-positive tumor cells had recurrences and died of melanoma progression, whereas four of five (80%) patients with HPV-negative tumor cells remained alive and without melanoma recurrence. Conclusions The presence of HPV was found in 58% of the biopsy specimens obtained from patients with stage III and IV melanoma and correlated with rapid melanoma progression. HPV may serve as a cofactor in the development of melanoma and may modulate a more aggressive phenotype in HPV-containing melanoma cells. PMID:10767787

  1. Naturally Occurring Canine Melanoma as a Predictive Comparative Oncology Model for Human Mucosal and Other Triple Wild-Type Melanomas

    PubMed Central

    Hernandez, Belen; Wei, Bih-Rong; Michael, Helen T.; Merlino, Glenn; Simpson, R. Mark

    2018-01-01

    Melanoma remains mostly an untreatable fatal disease despite advances in decoding cancer genomics and developing new therapeutic modalities. Progress in patient care would benefit from additional predictive models germane for human disease mechanisms, tumor heterogeneity, and therapeutic responses. Toward this aim, this review documents comparative aspects of human and naturally occurring canine melanomas. Clinical presentation, pathology, therapies, and genetic alterations are highlighted in the context of current basic and translational research in comparative oncology. Somewhat distinct from sun exposure-related human cutaneous melanomas, there is growing evidence that a variety of gene copy number alterations and protein structure/function mutations play roles in canine melanomas, in circumstances more analogous to human mucosal melanomas and to some extent other melanomas with murine sarcoma viral oncogene homolog B (BRAF), Neuroblastoma RAS Viral (V-Ras) Oncogene Homolog (NRAS), and neurofibromin 1 tumor suppressor NF1 triple wild-type genotype. Gaps in canine genome annotation, as well as an insufficient number and depth of sequences covered, remain considerable barriers to progress and should be collectively addressed. Preclinical approaches can be designed to include canine clinical trials addressing immune modulation as well as combined-targeted inhibition of Rat Sarcoma Superfamily/Mitogen-activated protein kinase (RAS/MAPK) and/or Phosphatidylinositol-3-Kinase/Protein Kinase B/Mammalian target of rapamycin (PI3K/AKT/mTOR) signal transduction, pathways frequently activated in both human and canine melanomas. Future investment should be aimed towards improving understanding of canine melanoma as a predictive preclinical surrogate for human melanoma and for mutually benefiting these uniquely co-dependent species. PMID:29385676

  2. Pleiotropic function of ezrin in human metastatic melanomas.

    PubMed

    Federici, Cristina; Brambilla, Daria; Lozupone, Francesco; Matarrese, Paola; de Milito, Angelo; Lugini, Luana; Iessi, Elisabetta; Cecchetti, Serena; Marino, Marialucia; Perdicchio, Maurizio; Logozzi, Mariantonia; Spada, Massimo; Malorni, Walter; Fais, Stefano

    2009-06-15

    The membrane cytoskeleton cross-linker, ezrin, has recently been depicted as a key regulator in the progression and metastasis of several pediatric tumors. Less defined appears the role of ezrin in human adult tumors, especially melanoma. We therefore addressed ezrin involvement in the metastatic phenotype of human adult metastatic melanoma cells. Our results show that cells resected from melanoma metastatic lesions of patients, display marked metastatic spreading capacity in SCID mice organs. Stable transfection of human melanoma cells with an ezrin deletion mutant comprising only 146 N-terminal aminoacids led to the abolishment of metastatic dissemination. In vitro experiments revealed ezrin direct molecular interactions with molecules related to metastatic functions such as CD44, merlin and Lamp-1, consistent with its participation to the formation of phagocitic vacuoles, vesicular sorting and migration capacities of melanoma cells. Moreover, the ezrin fragment capable of binding to CD44 was shorter than that previously reported, and transfection with the ezrin deletion mutant abrogated plasma membrane Lamp-1 recruitment. This study highlights key involvement of ezrin in a complex machinery, which allows metastatic cancer cells to migrate, invade and survive in very unfavorable conditions. Our in vivo and in vitro data reveal that ezrin is the hub of the metastatic behavior also in human adult tumors. Copyright 2008 UICC.

  3. Identification of cells initiating human melanomas.

    PubMed

    Schatton, Tobias; Murphy, George F; Frank, Natasha Y; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M; Weishaupt, Carsten; Fuhlbrigge, Robert C; Kupper, Thomas S; Sayegh, Mohamed H; Frank, Markus H

    2008-01-17

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.

  4. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  5. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  6. MiR-767 promoted cell proliferation in human melanoma by suppressing CYLD expression.

    PubMed

    Zhang, Kejin; Guo, Ling

    2018-01-30

    MicroRNAs (miRNAs) have emerged as critical regulators for cancer development and progression of human melanoma. However, the potential molecular mechanism of miR-767 in human melanoma has not been intensively investigated. In this present study, we confirmed that miR-767 was frequently up-regulated in human melanoma tissues and cell lines. Ectopic expression of miR-767 promoted cell proliferation in human melanoma cell lines A375 and WM35, whereas miR-767-in reversed the function. Bioinformatics analysis revealed that cylindromatosis (CYLD) was hypothesized to be a possible target gene of miR-767, and this was confirmed by luciferase activity assay. Knockdown of CYLD counteracted the proliferation arrest by miR-767-in in melanoma cells A375 and WM35. In conclusion, our study indicated that miR-767 acted as a role of tumor promoter by targeting CYLD in human melanoma, and might serve as a prognostic or therapeutic target for human melanoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice

    PubMed Central

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-01-01

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy. PMID:26824989

  8. Fluorescence in situ detection of human cutaneous melanoma: study of diagnostic parameters of the method.

    PubMed

    Chwirot, B W; Chwirot, S; Sypniewska, N; Michniewicz, Z; Redzinski, J; Kurzawski, G; Ruka, W

    2001-12-01

    Multicenter study of the diagnostic parameters was conducted by three groups in Poland to determine if in situ fluorescence detection of human cutaneous melanoma based on digital imaging of spectrally resolved autofluorescence can be used as a tool for a preliminary selection of patients at increased risk of the disease. Fluorescence examinations were performed for 7228 pigmented lesions in 4079 subjects. Histopathologic examinations showed 56 cases of melanoma. A sensitivity of fluorescence detection of melanoma was 82.7% in agreement with 82.5% found in earlier work. Using as a reference only the results of histopathologic examinations obtained for 568 cases we found a specificity of 59.9% and a positive predictive value of 17.5% (melanomas versus all pigmented lesions) or 24% (melanomas versus common and dysplastic naevi). The specificity and positive predictive value found in this work are significantly lower than reported earlier but still comparable with those reported for typical screening programs. In conclusion, the fluorescence method of in situ detection of melanoma can be used in screening large populations of patients for a selection of patients who should be examined by specialists.

  9. A high molecular weight-melanoma associated antigen-specific chimeric antigen receptor redirects lymphocytes to target human melanomas

    PubMed Central

    Burns, William R.; Zhao, Yangbing; Frankel, Timothy L.; Hinrichs, Christian S.; Zheng, Zhili; Xu, Hui; Feldman, Steven A.; Ferrone, Soldano; Rosenberg, Steven A.; Morgan, Richard A.

    2011-01-01

    Immunotherapy, particularly the adoptive cell transfer (ACT) of tumor infiltrating lymphocytes (TIL), is a very promising therapy for metastatic melanoma. Some patients unable to receive TIL have been successfully treated with autologous peripheral blood lymphocytes (PBL), genetically modified to express HLA class I antigen restricted, melanoma antigen-reactive T-cell receptors; however, substantial numbers of patients remain ineligible due to the lack of expression of the restricting HLA class I allele. We sought to overcome this limitation by designing a non-MHC-restricted, chimeric antigen receptor (CAR) targeting the high molecular weight-melanoma associated antigen (HMW-MAA), which is highly expressed on over 90% of human melanomas but has a restricted distribution in normal tissues. HMW-MAA-specific CARs containing an antigen recognition domain based on variations of the HMW-MAA-specific monoclonal antibody (mAb) 225.28S and a T-cell activation domain based on combinations of CD28, 4-1BB, and CD3ζ activation motifs were constructed within a retroviral vector to allow stable gene transfer into cells and their progeny. Following optimization of the HMW-MAA-specific CAR for expression and function in human PBL, these gene-modified T cells secreted cytokines, were cytolytic, and proliferated in response to HMW-MAA expressing cell lines. Furthermore, the receptor functioned in both CD4+ and CD8+ cells, was non-MHC-restricted, and reacted against explanted human melanomas. To evaluate this HMW-MAA-specific CAR in patients with metastatic melanoma, we developed a clinical-grade retroviral packaging line. This may represent a novel means to treat the majority of patients with advanced melanoma, most notably those unable to receive current ACT therapies. PMID:20395199

  10. SKI knockdown inhibits human melanoma tumor growth in vivo.

    PubMed

    Chen, Dahu; Lin, Qiushi; Box, Neil; Roop, Dennis; Ishii, Shunsuke; Matsuzaki, Koichi; Fan, Tao; Hornyak, Thomas J; Reed, Jon A; Stavnezer, Ed; Timchenko, Nikolai A; Medrano, Estela E

    2009-12-01

    The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors.

  11. Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine.

    PubMed

    Bedia, Carmen; Casas, Josefina; Andrieu-Abadie, Nathalie; Fabriàs, Gemma; Levade, Thierry

    2011-08-12

    Dacarbazine (DTIC) is the treatment of choice for metastatic melanoma, but its response in patients remains very poor. Ceramide has been shown to be a death effector and to play an important role in regulating cancer cell growth upon chemotherapy. Among ceramidases, the enzymes that catabolize ceramide, acid ceramidase (aCDase) has been implicated in cancer progression. Here we show that DTIC elicits a time- and dose-dependent decrease of aCDase activity and an increase of intracellular ceramide levels in human A375 melanoma cells. The loss of enzyme activity occurred as a consequence of reactive oxygen species-dependent activation of cathepsin B-mediated degradation of aCDase. These events preceded autophagic features and loss of cell viability. Down-regulation of acid but not neutral or alkaline ceramidase 2 resulted in elevated levels of ceramide and sensitization to the toxic effects of DTIC. Conversely, inducible overexpression of acid but not neutral ceramidase reduced ceramide levels and conferred resistance to DTIC. In conclusion, we report that increased levels of ceramide, due to enhanced degradation of aCDase, are in part responsible for the cell death effects of DTIC. These results suggest that down-regulation of aCDase alone or in combination with DTIC may represent a useful tool in the treatment of metastatic melanoma.

  12. Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma

    PubMed Central

    Vardabasso, Chiara; Gaspar-Maia, Alexandre; Hasson, Dan; Pünzeler, Sebastian; Valle-Garcia, David; Straub, Tobias; Keilhauer, Eva C.; Strub, Thomas; Dong, Joanna; Panda, Taniya; Chung, Chi-Yeh; Yao, Jonathan L.; Singh, Rajendra; Segura, Miguel F.; Fontanals-Cirera, Barbara; Verma, Amit; Mann, Matthias; Hernando, Eva; Hake, Sandra B.; Bernstein, Emily

    2015-01-01

    SUMMARY Histone variants are emerging as key regulatory molecules in cancer. Here we report a novel role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. H2A.Z.2 is highly expressed in metastatic melanoma, correlates with decreased patient survival, and is required for cellular proliferation. Our integrated genomic analyses reveal that H2A.Z.2 controls the transcriptional output of E2F target genes in melanoma cells. These genes are highly expressed and display a distinct signature of H2A.Z occupancy. We identify BRD2 as an H2A.Z interacting protein, whose levels are also elevated in melanoma. We further demonstrate that H2A.Z.2 regulated genes are bound by BRD2 and E2F1 in a H2A.Z.2-dependent manner. Importantly, H2A.Z.2 deficiency sensitizes melanoma cells to chemotherapy and targeted therapies. Collectively, our findings implicate H2A.Z.2 as a mediator of cell proliferation and drug sensitivity in malignant melanoma, holding translational potential for novel therapeutic strategies. PMID:26051178

  13. Sub-apoptotic dosages of pro-oxidant vitamin cocktails sensitize human melanoma cells to NK cell lysis.

    PubMed

    Tremante, Elisa; Santarelli, Lory; Lo Monaco, Elisa; Sampaoli, Camilla; Ingegnere, Tiziano; Guerrieri, Roberto; Tomasetti, Marco; Giacomini, Patrizio

    2015-10-13

    Alpha-tocopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 μM αTOS/20 μM AA/0.2 μM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention.

  14. Sub-apoptotic dosages of pro-oxidant vitamin cocktails sensitize human melanoma cells to NK cell lysis

    PubMed Central

    Tremante, Elisa; Santarelli, Lory; Monaco, Elisa Lo; Sampaoli, Camilla; Ingegnere, Tiziano; Guerrieri, Roberto

    2015-01-01

    Alpha-tochopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 μM αTOS/20 μM AA/0.2 μM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention. PMID:26427039

  15. O(6)-methylguanine DNA-methyltransferase (MGMT) overexpression in melanoma cells induces resistance to nitrosoureas and temozolomide but sensitizes to mitomycin C.

    PubMed

    Passagne, Isabelle; Evrard, Alexandre; Depeille, Philippe; Cuq, Pierre; Cupissol, Didier; Vian, Laurence

    2006-03-01

    Alkylating agents play an important role in the chemotherapy of malignant melanomas. The activity of alkylating agents depends on their capacity to form alkyl adducts with DNA, in some cases causing cross-linking of DNA strands. However, the use of these agents is limited by cellular resistance induced by the DNA repair enzyme O(6)-methylguanine DNA-methyltransferase (MGMT) which removes alkyl groups from alkylated DNA strands. To determine to what extent the expression of MGMT in melanoma cells induces resistance to alkylating agents, the human cell line CAL77 Mer- (i.e., MGMT deficient) were transfected with pcMGMT vector containing human MGMT cDNA. Several clones expressing MGMT at a high level were selected to determine their sensitivity to chemotherapeutic drugs. Melanoma-transfected cells were found to be significantly less sensitive to nitrosoureas (carmustine, fotemustine, streptozotocin) and temozolomide with an increase of IC(50) values between 3 and 14 when compared to parent cells. No difference in cell survival rates between MGMT-proficient and -deficient cells was observed for melphalan, chlorambucil, busulphan, thiotepa and cisplatin which preferentially induce N(7) guanine lesions. Surprisingly, MGMT overexpression increased the sensitivity of CAL77 cells to mitomycin C by approximately 10-fold. Treatment of clonal cell lines with buthionine-[S,R]-sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase which depletes cellular glutathione, completely reversed this unexpected increase in sensitivity to mitomycin C. This observation suggests that glutathione is involved in the sensitivity of MGMT-transfected cells to mitomycin C and may act synergistically with MGMT via an unknown mechanism.

  16. Harnessing BET Inhibitor Sensitivity Reveals AMIGO2 as a Melanoma Survival Gene.

    PubMed

    Fontanals-Cirera, Barbara; Hasson, Dan; Vardabasso, Chiara; Di Micco, Raffaella; Agrawal, Praveen; Chowdhury, Asif; Gantz, Madeleine; de Pablos-Aragoneses, Ana; Morgenstern, Ari; Wu, Pamela; Filipescu, Dan; Valle-Garcia, David; Darvishian, Farbod; Roe, Jae-Seok; Davies, Michael A; Vakoc, Christopher R; Hernando, Eva; Bernstein, Emily

    2017-11-16

    Bromodomain and extraterminal domain inhibitors (BETi) represent promising therapeutic agents for metastatic melanoma, yet their mechanism of action remains unclear. Here we interrogated the transcriptional effects of BETi and identified AMIGO2, a transmembrane molecule, as a BET target gene essential for melanoma cell survival. AMIGO2 is upregulated in melanoma cells and tissues compared to human melanocytes and nevi, and AMIGO2 silencing in melanoma cells induces G1/S arrest followed by apoptosis. We identified the pseudokinase PTK7 as an AMIGO2 interactor whose function is regulated by AMIGO2. Epigenomic profiling and genome editing revealed that AMIGO2 is regulated by a melanoma-specific BRD2/4-bound promoter and super-enhancer configuration. Upon BETi treatment, BETs are evicted from these regulatory elements, resulting in AMIGO2 silencing and changes in PTK7 proteolytic processing. Collectively, this study uncovers mechanisms underlying the therapeutic effects of BETi in melanoma and reveals the AMIGO2-PTK7 axis as a targetable pathway for metastatic melanoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Assessment of the presence of mucosal human papillomaviruses in malignant melanomas using combined fluorescent in situ hybridization and chemiluminescent immunohistochemistry.

    PubMed

    Ambretti, S; Venturoli, S; Mirasoli, M; La Placa, M; Bonvicini, F; Cricca, M; Zerbini, M; Roda, A; Musiani, M

    2007-01-01

    The vast majority of studies aimed at detecting human papillomavirus (HPV) DNA in skin cancer have used sensitive polymerase chain reaction (PCR) methods but the PCR technique, despite its high sensitivity, is not suitable to ascertain whether (i) the presence of HPV can be related only to few cells harbouring the virus, (ii) the presence of HPV is due to a tumour surface contamination and (iii) the presence of HPV is localized in cancer cells, rather than in normal keratinocytes present in the tumour biopsy. In a recent work we have found mucosal high-risk (HR) HPV genotypes in primary melanoma by PCR. To localize mucosal HR-HPV nucleic acids and tumoural melanocytic marker in the same sections of primary melanoma samples in order to understand the relationship between HPVs and melanoma cells. We have developed a very sensitive method that combines an enzyme-amplified fluorescent in situ hybridization (ISH) for the detection of HPV nucleic acids (types 16 and 18) with a chemiluminescent immunohistochemistry (IHC) method for the detection of the tumoural melanocytic marker HMB-45 sequentially in the same section. Digital images of fluorescent ISH and chemiluminescent IHC were separately recorded, assigned different colours and merged using specific software for image analysis. The combined fluorescent ISH and chemiluminescent IHC demonstrated a sharp colocalization (in the range 60-80%) of HPV nucleic acids and melanoma marker inside the same sections of melanoma biopsies, with a strong specificity and sensitivity. The strong colocalization of mucosal HR-HPV nucleic acids and HMB-45 melanocytic marker emphasized that viral nucleic acids were specifically present in melanoma cells and supported a possible active role of HPV in malignant melanoma.

  18. CYR61 suppresses growth of human malignant melanoma.

    PubMed

    Chen, Jun; Liu, Yang; Sun, Qilin; Wang, Beiqing; Li, Ningli; Chen, Xiangdong

    2016-11-01

    Cysteine-rich protein 61 (CCN1/CYR61) is an important marker of proliferation and metastasis in malignant melanoma, making it a potential target for melanoma treatment. In this study, we compared the expression of CRY61 in Chinese patients with malignant melanoma with its expression in patients with other skin tumors or with no skin pathological conditions. We examined the effects of anti-human CYR61 monoclonal antibody on proliferation and evaluated the changes in CYR61 expression and cell proliferation in response to treatment with either epirubicin or interferon (IFN)-α. CYR61 was expressed at lower levels in patients with malignant melanoma than in patients with other skin tumors or with no pathology. Following the treatment of B16 cells with epirubicin and IFN-α, CYR61 levels increased, cell growth was inhibited, and proliferating cell nuclear antigen expression decreased. Thus, CYR61 could become a therapeutic target for malignant melanoma patients with high CYR61 expression.

  19. Tyrosinase overexpression promotes ATM-dependent p53 phosphorylation by quercetin and sensitizes melanoma cells to dacarbazine.

    PubMed

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Limesand, Kirsten H; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr(+) cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 microM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 microM). Both pcDNA3 and Tyr(+) DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr(+) cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr(+) cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase.

  20. Tyrosinase Overexpression Promotes ATM-Dependent p53 Phosphorylation by Quercetin and Sensitizes Melanoma Cells to Dacarbazine

    PubMed Central

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; H. Limesand, Kirsten; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 μM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 μM). Both pcDNA3 and Tyr DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase. PMID:18791269

  1. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells.

    PubMed

    Santini, R; Pietrobono, S; Pandolfi, S; Montagnani, V; D'Amico, M; Penachioni, J Y; Vinci, M C; Borgognoni, L; Stecca, B

    2014-09-18

    Melanoma is one of the most aggressive types of human cancer, characterized by enhanced heterogeneity and resistance to conventional therapy at advanced stages. We and others have previously shown that HEDGEHOG-GLI (HH-GLI) signaling is required for melanoma growth and for survival and expansion of melanoma-initiating cells (MICs). Recent reports indicate that HH-GLI signaling regulates a set of genes typically expressed in embryonic stem cells, including SOX2 (sex-determining region Y (SRY)-Box2). Here we address the function of SOX2 in human melanomas and MICs and its interaction with HH-GLI signaling. We find that SOX2 is highly expressed in melanoma stem cells. Knockdown of SOX2 sharply decreases self-renewal in melanoma spheres and in putative melanoma stem cells with high aldehyde dehydrogenase activity (ALDH(high)). Conversely, ectopic expression of SOX2 in melanoma cells enhances their self-renewal in vitro. SOX2 silencing also inhibits cell growth and induces apoptosis in melanoma cells. In addition, depletion of SOX2 progressively abrogates tumor growth and leads to a significant decrease in tumor-initiating capability of ALDH(high) MICs upon xenotransplantation, suggesting that SOX2 is required for tumor initiation and for continuous tumor growth. We show that SOX2 is regulated by HH signaling and that the transcription factors GLI1 and GLI2, the downstream effectors of HH-GLI signaling, bind to the proximal promoter region of SOX2 in primary melanoma cells. In functional studies, we find that SOX2 function is required for HH-induced melanoma cell growth and MIC self-renewal in vitro. Thus SOX2 is a critical factor for self-renewal and tumorigenicity of MICs and an important mediator of HH-GLI signaling in melanoma. These findings could provide the basis for novel therapeutic strategies based on the inhibition of SOX2 for the treatment of a subset of human melanomas.

  2. Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma.

    PubMed Central

    Altomonte, M.; Montagner, R.; Fonsatti, E.; Colizzi, F.; Cattarossi, I.; Brasoveanu, L. I.; Nicotra, M. R.; Cattelan, A.; Natali, P. G.; Maio, M.

    1996-01-01

    Human endoglin (CD105) is a member of the transforming growth factor beta (TGF-beta) receptor family that binds TGF-beta1 and -beta3, but not TGF-beta2, on human endothelial cells. Immunohistochemical analyses demonstrated that CD105 is expressed on normal and neoplastic cells of the melanocytic lineage. The anti-CD105 MAb, MAEND3, stained 50, 25 and 34% of intradermal naevi, primary and metastatic melanomas investigated, respectively, and nine out of 12 melanoma cell lines. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that CD105 expressed by melanoma cells consists of a homodimeric protein with an apparent molecular weight of 180 and 95 kDa under non-reducing and reducing conditions. Cross-linking of 125I-labelled TGF-beta1 to melanoma cells, Mel 97, by disuccinimidyl suberate (DSS) demonstrated that CD105 expressed on pigmented cells binds TGF-beta1; the pattern of binding of TGF-beta1 to melanoma cells was found to be similar to that of human umbilical vein endothelial cells. The addition of exogenous, bioactive TGF-beta1 significantly (P<0.05) inhibited the growth of CD105-positive melanoma cells, Mel 97, but did not affect that of CD105-negative melanoma cells, F0-1. These data, altogether, demonstrate that CD105 is expressed on pigmented cells and might play a functionally relevant role in the biology of human melanoma cells by regulating their sensitivity to TGF-betas. Images Figure 1 Figure 3 Figure 4 PMID:8932339

  3. Acid Ceramidase Expression Modulates the Sensitivity of A375 Melanoma Cells to Dacarbazine*

    PubMed Central

    Bedia, Carmen; Casas, Josefina; Andrieu-Abadie, Nathalie; Fabriàs, Gemma; Levade, Thierry

    2011-01-01

    Dacarbazine (DTIC) is the treatment of choice for metastatic melanoma, but its response in patients remains very poor. Ceramide has been shown to be a death effector and to play an important role in regulating cancer cell growth upon chemotherapy. Among ceramidases, the enzymes that catabolize ceramide, acid ceramidase (aCDase) has been implicated in cancer progression. Here we show that DTIC elicits a time- and dose-dependent decrease of aCDase activity and an increase of intracellular ceramide levels in human A375 melanoma cells. The loss of enzyme activity occurred as a consequence of reactive oxygen species-dependent activation of cathepsin B-mediated degradation of aCDase. These events preceded autophagic features and loss of cell viability. Down-regulation of acid but not neutral or alkaline ceramidase 2 resulted in elevated levels of ceramide and sensitization to the toxic effects of DTIC. Conversely, inducible overexpression of acid but not neutral ceramidase reduced ceramide levels and conferred resistance to DTIC. In conclusion, we report that increased levels of ceramide, due to enhanced degradation of aCDase, are in part responsible for the cell death effects of DTIC. These results suggest that down-regulation of aCDase alone or in combination with DTIC may represent a useful tool in the treatment of metastatic melanoma. PMID:21700700

  4. Human melanoma metastasis in NSG mice correlates with clinical outcome in patients

    PubMed Central

    Quintana, Elsa; Piskounova, Elena; Shackleton, Mark; Weinberg, Daniel; Eskiocak, Ugur; Fullen, Douglas R.; Johnson, Timothy M.; Morrison, Sean J.

    2015-01-01

    Studies of human cancer metastasis have been limited by a lack of experimental assays in which cancer cells from patients metastasize in vivo in a way that correlates with clinical outcome. This makes it impossible to study intrinsic differences in the metastatic properties of cancers from different patients. We recently developed an assay in which human melanomas readily engraft in NOD/SCID IL2Rγnull (NSG) mice (1, 2). Here we show that melanomas from 25 patients exhibited reproducible differences in the rate of spontaneous metastasis after transplantation into NSG mice and that these differences correlated with clinical outcome in the patients. Stage IIIB/C melanomas that formed distant metastases within 22 months in patients also formed tumors that metastasized widely in NSG mice, while stage IIIB/C melanomas that did not form distant metastases within 22–50 months in patients metastasized more slowly in NSG mice. These differences in the efficiency of metastasis correlated with the frequency of circulating melanoma cells in the blood of NSG mice, suggesting that the rate of entry into the blood is one factor that limits the rate of metastasis. NSG mice can therefore be used to study the metastasis of human melanomas in vivo, revealing intrinsic differences among stage III melanomas in their ability to circulate/survive in the blood and metastasize. PMID:23136044

  5. Influence of Melanosome Dynamics on Melanoma Drug Sensitivity

    PubMed Central

    Chen, Kevin G.; Leapman, Richard D.; Zhang, Guofeng; Lai, Barry; Valencia, Julio C.; Cardarelli, Carol O.; Vieira, Wilfred D.; Hearing, Vincent J.

    2009-01-01

    Background Malignant melanomas are intrinsically resistant to many conventional treatments, such as radiation and chemotherapy, for reasons that are poorly understood. Here we propose and test a model that explains drug resistance or sensitivity in terms of melanosome dynamics. Methods The growth and sensitivity to cisplatin of MNT-1 cells, which are melanotic and enriched with mature stage III and IV melanosomes, and SK-MEL-28 cells, which have only immature stage I and II melanosomes, were compared using clonogenic assays. Differences in pigmentation, melanosome stages, melanosome number, and cellular structures in different cell lines in response to various treatments were examined by electron microscopy. The relative numbers of melanosomes of different stages were compared after treatment with 1-phenyl-2-thiourea. The relationship between drug transporter function and endogenous melanogenic toxicity was assessed by treating cells with the cyclosporin analog PSC-833 and by assessing vacuole formation and cell growth inhibition. All statistical tests were two-sided. Results Endogenous melanogenic cytotoxicity, produced by damaged melanosomes, resulted in pronounced cell growth inhibition in MNT-1 cells compared with amelanotic SK-MEL-28 cells. The sensitivity to CDDP of MNT-1 cells was 3.8-fold higher than that of SK-MEL-28 cells (mean IC50 for SK-MEL-28 and MNT-1 = 2.13 μM and 0.56 μM, respectively; difference = 1.57 μM, 95% confidence interval = 1.45 to 1.69; P = .0017). After treatment with 6.7 μM CDDP for 72 hours, the number of stage II-III melanosomes in surviving MNT-1 cells was 6.8-fold that of untreated cells. Modulation of MNT-1 cells to earlier-stage (II, II-III, III) melanosomes by treatment with the tyrosinase inhibitor 1-phenyl-2-thiourea dramatically increased CDDP resistance. Furthermore, PSC-833 principally suppressed MNT-1 melanotic cell growth via an elevation of autophagosome-like vacuolar structures, possibly by inhibiting melanosome

  6. Influence of melanosome dynamics on melanoma drug sensitivity.

    PubMed

    Chen, Kevin G; Leapman, Richard D; Zhang, Guofeng; Lai, Barry; Valencia, Julio C; Cardarelli, Carol O; Vieira, Wilfred D; Hearing, Vincent J; Gottesman, Michael M

    2009-09-16

    Malignant melanomas are intrinsically resistant to many conventional treatments, such as radiation and chemotherapy, for reasons that are poorly understood. Here we propose and test a model that explains drug resistance or sensitivity in terms of melanosome dynamics. The growth and sensitivity to cisplatin of MNT-1 cells, which are melanotic and enriched with mature stage III and IV melanosomes, and SK-MEL-28 cells, which have only immature stage I and II melanosomes, were compared using clonogenic assays. Differences in pigmentation, melanosome stages, melanosome number, and cellular structures in different cell lines in response to various treatments were examined by electron microscopy. The relative numbers of melanosomes of different stages were compared after treatment with 1-phenyl-2-thiourea. The relationship between drug transporter function and endogenous melanogenic toxicity was assessed by treating cells with the cyclosporin analog PSC-833 and by assessing vacuole formation and cell growth inhibition. All statistical tests were two-sided. Endogenous melanogenic cytotoxicity, produced by damaged melanosomes, resulted in pronounced cell growth inhibition in MNT-1 cells compared with amelanotic SK-MEL-28 cells. The sensitivity to CDDP of MNT-1 cells was 3.8-fold higher than that of SK-MEL-28 cells (mean IC(50) for SK-MEL-28 and MNT-1 = 2.13 microM and 0.56 microM, respectively; difference = 1.57 microM, 95% confidence interval = 1.45 to 1.69; P = .0017). After treatment with 6.7 microM CDDP for 72 hours, the number of stage II-III melanosomes in surviving MNT-1 cells was 6.8-fold that of untreated cells. Modulation of MNT-1 cells to earlier-stage (II, II-III, III) melanosomes by treatment with the tyrosinase inhibitor 1-phenyl-2-thiourea dramatically increased CDDP resistance. Furthermore, PSC-833 principally suppressed MNT-1 melanotic cell growth via an elevation of autophagosome-like vacuolar structures, possibly by inhibiting melanosome membrane

  7. Imaging human melanoma using a novel Tc-99m-labeled lactam bridge-cyclized alpha-MSH peptide.

    PubMed

    Liu, Liqin; Xu, Jingli; Yang, Jianquan; Feng, Changjian; Miao, Yubin

    2016-10-01

    In this study, the human melanoma targeting property of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex {hydrazinonicotinamide-8-aminooctanoic acid-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} was determined in M21 human melanoma-xenografts to demonstrate its potential for human melanoma imaging. The IC50 value of HYNIC-AocNle-CycMSHhex was 0.48±0.01nM in M21 human melanoma cells (1281receptors/cell). The M21 human melanoma uptake of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex was 4.03±1.25, 3.26±1.23 and 3.36±1.48%ID/g at 0.5, 2 and 4h post-injection, respectively. Approximately 92% of injected dose cleared out the body via urinary system at 2h post-injection. (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex showed high tumor/blood, tumor/muscle and tumor/skin uptake ratios after 2h post-injection. The M21 human melanoma-xenografted tumor lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2h post-injection. Overall, (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited favorable human melanoma imaging property, highlighting its potential as an imaging probe for human metastatic melanoma detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. SOX2 and nestin expression in human melanoma: an immunohistochemical and experimental study

    PubMed Central

    Laga, Alvaro C.; Zhan, Qian; Weishaupt, Carsten; Ma, Jie; Frank, Markus H.; Murphy, George F.

    2012-01-01

    SOX2 is an embryonic neural crest stem-cell transcription factor recently shown to be expressed in human melanoma and to correlate with experimental tumor growth. SOX2 binds to an enhancer region of the gene that encodes for nestin, also a neural progenitor cell biomarker. To define further the potential relationship between SOX2 and nestin, we examined co-expression patterns in 135 melanomas and 37 melanocytic nevi. Immunohistochemical staining in 27 melanoma tissue sections showed an association between SOX2 positivity, spindle cell shape and a peripheral nestin distribution pattern. In contrast, SOX2-negative cells were predominantly epithelioid, and exhibited a cytoplasmic pattern for nestin. In tissue microarrays, co-expression correlated with tumor progression, with only 11% of nevi co-expressing SOX2 and nestin in contrast to 65% of metastatic melanomas, and preliminarily, with clinical outcome. Human melanoma lines that differentially expressed constitutive SOX2 revealed a positive correlation between SOX2 and nestin expression. Experimental melanomas grown from these respective cell lines in murine subcutis and dermis of xenografted human skin maintained the association between SOX2-positivity, spindle cell shape, and peripheral nestin distribution. Moreover, the cytoplasmic pattern of nestin distribution was observed in xenografts generated from SOX2-knockdown A2058 melanoma cells, in contrast to the periperhal nestin pattern seen in tumors grown from A2058 control cells transfected with non-target shRNA. In aggregate, these data further support a biologically significant linkage between SOX2 and nestin expression in human melanoma. PMID:21410764

  9. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells.

    PubMed

    Santini, Roberta; Vinci, Maria C; Pandolfi, Silvia; Penachioni, Junia Y; Montagnani, Valentina; Olivito, Biagio; Gattai, Riccardo; Pimpinelli, Nicola; Gerlini, Gianni; Borgognoni, Lorenzo; Stecca, Barbara

    2012-09-01

    The question of whether cancer stem/tumor-initiating cells (CSC/TIC) exist in human melanomas has arisen in the last few years. Here, we have used nonadherent spheres and the aldehyde dehydrogenase (ALDH) enzymatic activity to enrich for CSC/TIC in a collection of human melanomas obtained from a broad spectrum of sites and stages. We find that melanomaspheres display extensive in vitro self-renewal ability and sustain tumor growth in vivo, generating human melanoma xenografts that recapitulate the phenotypic composition of the parental tumor. Melanomaspheres express high levels of Hedgehog (HH) pathway components and of embryonic pluripotent stem cell factors SOX2, NANOG, OCT4, and KLF4. We show that human melanomas contain a subset of cells expressing high ALDH activity (ALDH(high)), which is endowed with higher self-renewal and tumorigenic abilities than the ALDH(low) population. A good correlation between the number of ALDH(high) cells and sphere formation efficiency was observed. Notably, both pharmacological inhibition of HH signaling by the SMOOTHENED (SMO) antagonist cyclopamine and GLI antagonist GANT61 and stable expression of shRNA targeting either SMO or GLI1 result in a significant decrease in melanoma stem cell self-renewal in vitro and a reduction in the number of ALDH(high) melanoma stem cells. Finally, we show that interference with the HH-GLI pathway through lentiviral-mediated silencing of SMO and GLI1 drastically diminishes tumor initiation of ALDH(high) melanoma stem cells. In conclusion, our data indicate an essential role of the HH-GLI1 signaling in controlling self-renewal and tumor initiation of melanoma CSC/TIC. Targeting HH-GLI1 is thus predicted to reduce the melanoma stem cell compartment. Copyright © 2012 AlphaMed Press.

  10. Zebrafish Melanoma.

    PubMed

    Kaufman, Charles K

    2016-01-01

    Melanoma skin cancer is a potentially deadly disease in humans and has remained extremely difficult to treat once it has metastasized. In just the last 10 years, a number of models of melanoma have been developed in the zebrafish that are biologically faithful to the human disease and have already yielded important insights into the fundamental biology of melanoma and offered new potential avenues for treatment. With the diversity and breadth of the molecular genetic tools available in the zebrafish, these melanoma models will continue to be refined and expanded upon to keep pace with the rapidly evolving field of melanoma biology.

  11. Azelaic acid was sensitizing effect in the chemotherapeutic treatment of several melanoma cell lines.

    PubMed

    Rodriguez-Vicente, J; Vicente-Ortega, V; Canteras-Jordana

    1996-12-01

    Chemotherapy for melanoma results in low response and must be reinforced with sensitizer compounds. We believed that azelaic acid (AZA) could modulate melanomas' resistance to antineoplastics. Therefore we tried to compare in vitro treatment with antineoplastics alone versus AZA treatment followed by antineoplastics. We carried out MTT assays to evaluate the cytotoxicity of melphalan, lomustine (CCNU), fotemustine, and 4-Hydroxyanisole (4-HA) on three melanoma lines (B16F10, SK-MEL-28, and SK-MEL-1), and the modulating effect of pretreatment with AZA (1 mM). AZA showed a dose-dependent antineoplastic activity on the three lines. Melphalan was the most active drug followed by CCNU, fotemustine, and 4-HA. The most sensitive line was B16F10 and the least sensitive was SK-meL-1. Previous treatment with AZA of B16F10 reinforced the effect of melphalan (2.5 times), CCNU (10 times), and fotemustine (14 times); whereas for SK-MEL-28 and SK-MEL-1, only the cytotoxicity of CCNU and fotemustine increased. An antagonist effect was produced by 4-HA on all three lines. We concluded that AZA enhances in vitro cytotoxicity of CCNU and fotemustine.

  12. Intercellular crosstalk in human malignant melanoma.

    PubMed

    Dvořánková, Barbora; Szabo, Pavol; Kodet, Ondřej; Strnad, Hynek; Kolář, Michal; Lacina, Lukáš; Krejčí, Eliška; Naňka, Ondřej; Šedo, Aleksi; Smetana, Karel

    2017-05-01

    Incidence of malignant melanoma is increasing globally. While the initial stages of tumors can be easily treated by a simple surgery, the therapy of advanced stages is rather limited. Melanoma cells spread rapidly through the body of a patient to form multiple metastases. Consequently, the survival rate is poor. Therefore, emphasis in melanoma research is given on early diagnosis and development of novel and more potent therapeutic options. The malignant melanoma is arising from melanocytes, cells protecting mitotically active keratinocytes against damage caused by UV light irradiation. The melanocytes originate in the neural crest and consequently migrate to the epidermis. The relationship between the melanoma cells, the melanocytes, and neural crest stem cells manifests when the melanoma cells are implanted to an early embryo: they use similar migratory routes as the normal neural crest cells. Moreover, malignant potential of these melanoma cells is overdriven in this experimental model, probably due to microenvironmental reprogramming. This observation demonstrates the crucial role of the microenvironment in melanoma biology. Indeed, malignant tumors in general represent complex ecosystems, where multiple cell types influence the growth of genetically mutated cancer cells. This concept is directly applicable to the malignant melanoma. Our review article focuses on possible strategies to modify the intercellular crosstalk in melanoma that can be employed for therapeutic purposes.

  13. Proteasome inhibition blocks NF-κB and ERK1/2 pathways, restores antigen expression and sensitizes resistant human melanoma to TCR-engineered CTLs

    PubMed Central

    Jazirehi, Ali R.; Economou, James S.

    2012-01-01

    Adoptive cell transfer (ACT) of ex vivo engineered autologous lymphocytes encoding high-affinity MART-1/HLA-A*0201-specific T-cell receptor (TCR) α/β chains (F5 CTL), densely infiltrate into sites of metastatic disease, mediating dramatic but partial clinical responses in melanoma patients. We hypothesized that MART-1 down-modulation in addition to aberrant apoptotic/survival signaling could confer resistance to death signals delivered by transgenic CTLs. To explore this hypothesis, we established an in vitro model of resistant (R) lines from MART-1+/HLA-A*0201+ F5 CTL-sensitive parental (P) lines under serial F5 CTL-selective pressure. We have recently reported that several melanoma R lines, while retaining MART-1 expression, exhibited constitutive NF-κB activation and over-expression of NF-κB-dependent resistance factors. Another established melanoma cell line M244, otherwise sensitive to F5 CTL, yielded R lines after serial F5 CTL selective pressure which had both reduced MART-1 expression levels, thus, could not be recognized, and were resistant to CTL-delivered apoptotic death signals. The proteasome inhibitor bortezomib blocked NF-κB activity, decreased phopspho-ERK1/2, increased phospho-JNK levels, reduced expression of resistance-factors, restored MART-1 expression to sufficient levels, which in combination allowed M244R lines be sensitized to F5 CTL-killing. These findings suggest that proteasome inhibition in immune resistant tumors can restore proapoptotic signaling and improve tumor antigen expression. PMID:22532603

  14. Inhibition of the RhoA GTPase Activity Increases Sensitivity of Melanoma Cells to UV Radiation Effects

    PubMed Central

    Espinha, Gisele; Osaki, Juliana Harumi; Costa, Erico Tosoni; Forti, Fabio Luis

    2016-01-01

    Ultraviolet radiation is the main cause of DNA damage to melanocytes and development of melanoma, one of the most lethal human cancers, which leads to metastasis due to uncontrolled cell proliferation and migration. These phenotypes are mediated by RhoA, a GTPase overexpressed or overactivated in highly aggressive metastatic tumors that plays regulatory roles in cell cycle progression and cytoskeleton remodeling. This work explores whether the effects of UV on DNA damage, motility, proliferation, and survival of human metastatic melanoma cells are mediated by the RhoA pathway. Mutant cells expressing dominant-negative (MeWo-RhoA-N19) or constitutively active RhoA (MeWo-RhoA-V14) were generated and subjected to UV radiation. A slight reduction in migration and invasion was observed in MeWo and MeWo-RhoA-V14 cells but not in MeWo-RhoA-N19 cells, which presented inefficient motility and invasiveness associated with stress fibers fragmentation. Proliferation and survival of RhoA-deficient cells were drastically reduced by UV compared to cells displaying normal or high RhoA activity, suggesting increased sensitivity to UV. Loss of RhoA activity also caused less efficient DNA repair, with elevated levels of DNA lesions such as strand breaks and cyclobutane pyrimidine dimers (CPDs). Thus, RhoA mediates genomic stability and represents a potential target for sensitizing metastatic tumors to genotoxic agents. PMID:26823948

  15. UVB induces atypical melanocytic lesions and melanoma in human skin.

    PubMed Central

    Atillasoy, E. S.; Seykora, J. T.; Soballe, P. W.; Elenitsas, R.; Nesbit, M.; Elder, D. E.; Montone, K. T.; Sauter, E.; Herlyn, M.

    1998-01-01

    A direct causal relationship between ultraviolet (UV) light in the B range and melanoma development has not been demonstrated in humans; this study aims to establish causality. A total of 158 RAG-1 mice, grafted with human newborn foreskin, were separated into four groups and observed for a median of 10 months: 1) no treatment, 2) a single treatment with 7,12-dimethyl(a)benzanthracene (DMBA), 3) UVB irradiation at 500 J/m2 alone, three times weekly, and 4) a combination of DMBA and UVB. Twenty-three percent of 40 normal human skin grafts treated with UVB only and 38% of 48 grafts treated with the combination of DMBA and UVB developed solar lentigines within 5 to 10 months of treatment. Melanocytic hyperplasia was found in 73% of all UVB-treated xenografts. Histological melanocytic changes resembling lentigo and lentigo maligna were seen in several skin grafts treated with both DMBA and UVB. In one graft of an animal treated with a combination of DMBA and UVB, a human malignant melanoma, nodular type, developed. This experimental system demonstrates that chronic UVB irradiation with or without an initiating carcinogen can induce human melanocytic lesions, including melanoma. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:9588887

  16. Melanoma of the Skin in the Danish Cancer Registry and the Danish Melanoma Database: A Validation Study.

    PubMed

    Pedersen, Sidsel Arnspang; Schmidt, Sigrun Alba Johannesdottir; Klausen, Siri; Pottegård, Anton; Friis, Søren; Hölmich, Lisbet Rosenkrantz; Gaist, David

    2018-05-01

    The nationwide Danish Cancer Registry and the Danish Melanoma Database both record data on melanoma for purposes of monitoring, quality assurance, and research. However, the data quality of the Cancer Registry and the Melanoma Database has not been formally evaluated. We estimated the positive predictive value (PPV) of melanoma diagnosis for random samples of 200 patients from the Cancer Registry (n = 200) and the Melanoma Database (n = 200) during 2004-2014, using the Danish Pathology Registry as "gold standard" reference. We further validated tumor characteristics in the Cancer Registry and the Melanoma Database. Additionally, we estimated the PPV of in situ melanoma diagnoses in the Melanoma Database, and the sensitivity of melanoma diagnoses in 2004-2014. The PPVs of melanoma in the Cancer Registry and the Melanoma Database were 97% (95% CI = 94, 99) and 100%. The sensitivity was 90% in the Cancer Registry and 77% in the Melanoma Database. The PPV of in situ melanomas in the Melanoma Database was 97% and the sensitivity was 56%. In the Melanoma Database, we observed PPVs of ulceration of 75% and Breslow thickness of 96%. The PPV of histologic subtypes varied between 87% and 100% in the Cancer Registry and 93% and 100% in the Melanoma Database. The PPVs for anatomical localization were 83%-95% in the Cancer Registry and 93%-100% in the Melanoma Database. The data quality in both the Cancer Registry and the Melanoma Database is high, supporting their use in epidemiologic studies.

  17. Aberrant Cx43 Expression and Mislocalization in Metastatic Human Melanomas.

    PubMed

    Alaga, Katanya C; Crawford, Melissa; Dagnino, Lina; Laird, Dale W

    2017-01-01

    At present, it is unclear if melanocytes contain Cx43 gap junctions and whether Cx43 expression is regulated in melanoma onset and progression. To this end, we cultured pure populations of mouse melanocytes and found that they had no detectable Cx43 and exhibited an inability for dye transfer indicating they were devoid of functional gap junctions. Given the evidence that melanomas acquire the expression of other connexin isoforms during tumor progression, we assessed if Cx43 was also expressed and assembled into gap junctions at any stage of human melanoma onset and progression to distant metastases. Nearly all primary melanomas within the epidermis lacked Cx43. In contrast, nodal metastases expressed low levels of Cx43 which was markedly higher in distant metastases that had invaded vital organs. Importantly, in all stages of melanoma progression, Cx43 could be detected in intracellular compartments but was rarely assembled into gap junctions indicative of functional gap junction channels. Overall, these studies suggest that melanocytes do not form Cx43 homocellular gap junctions and even though Cx43 levels increase during melanoma progression, this connexin rarely assembles into gap junction structures.

  18. Aberrant Cx43 Expression and Mislocalization in Metastatic Human Melanomas

    PubMed Central

    Alaga, Katanya C.; Crawford, Melissa; Dagnino, Lina; Laird, Dale W.

    2017-01-01

    At present, it is unclear if melanocytes contain Cx43 gap junctions and whether Cx43 expression is regulated in melanoma onset and progression. To this end, we cultured pure populations of mouse melanocytes and found that they had no detectable Cx43 and exhibited an inability for dye transfer indicating they were devoid of functional gap junctions. Given the evidence that melanomas acquire the expression of other connexin isoforms during tumor progression, we assessed if Cx43 was also expressed and assembled into gap junctions at any stage of human melanoma onset and progression to distant metastases. Nearly all primary melanomas within the epidermis lacked Cx43. In contrast, nodal metastases expressed low levels of Cx43 which was markedly higher in distant metastases that had invaded vital organs. Importantly, in all stages of melanoma progression, Cx43 could be detected in intracellular compartments but was rarely assembled into gap junctions indicative of functional gap junction channels. Overall, these studies suggest that melanocytes do not form Cx43 homocellular gap junctions and even though Cx43 levels increase during melanoma progression, this connexin rarely assembles into gap junction structures. PMID:28607585

  19. Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells.

    PubMed

    Fisher, P B; Prignoli, D R; Hermo, H; Weinstein, I B; Pestka, S

    1985-01-01

    We have analyzed the effects of various human interferons produced in bacteria and the antileukemic compound mezerein (MEZ) on growth and melanogenesis in human melanoma cells. In four human melanoma cell lines, recombinant human fibroblast interferon (IFN-beta) was more active than recombinant human leukocyte interferons (IFN-alpha A, IFN-alpha D, or IFN-alpha A/D (Bgl] in inhibiting cellular proliferation. When monolayer cultures were exposed to 1000 IU/ml IFN-beta for four days the degree of growth inhibition in the different melanoma cell lines varied between 94 and 26%. Similarly, four days growth in medium containing 10 ng/ml MEZ resulted in either no inhibition of growth or as much as 53% inhibition of growth, depending on the specific melanoma cell line tested. MEZ induced dendrite-like processes, cytoplasmic projections morphologically similar to those normally found in neurons and melanocytes, in all four melanoma cell lines, whereas none of the interferons tested had this effect. The combination of interferon and MEZ resulted in a dramatic inhibition in cellular proliferation in all four melanoma cell lines. When cell extracts were assayed for melanin content, a marker of melanoma cell differentiation, the combination of IFN-beta and MEZ resulted in higher levels of melanin than with either agent alone. Dendrite-like formation was also prominent in the cultures treated with this combination. These results indicate that the antiproliferative effect of interferon toward human melanoma dells can be enhanced by treatment with MEZ and that this effect is associated with an enhancement of terminal differentiation.

  20. MDM4 is a key therapeutic target in cutaneous melanoma

    PubMed Central

    Gembarska, Agnieszka; Luciani, Flavie; Fedele, Clare; Russell, Elisabeth A; Dewaele, Michael; Villar, Stéphanie; Zwolinska, Aleksandra; Haupt, Sue; de Lange, Job; Yip, Dana; Goydos, James; Haigh, Jody J; Haupt, Ygal; Larue, Lionel; Jochemsen, Aart; Shi, Hubing; Moriceau, Gatien; Lo, Roger S; Ghanem, Ghanem; Shackleton, Mark; Bernal, Federico; Marine, Jean-Christophe

    2013-01-01

    The inactivation of the p53 tumor suppressor pathway, which often occurs through mutations in TP53 (encoding tumor protein 53) is a common step in human cancer. However, in melanoma—a highly chemotherapy-resistant disease—TP53 mutations are rare, raising the possibility that this cancer uses alternative ways to overcome p53-mediated tumor suppression. Here we show that Mdm4 p53 binding protein homolog (MDM4), a negative regulator of p53, is upregulated in a substantial proportion (∼65%) of stage I–IV human melanomas and that melanocyte-specific Mdm4 overexpression enhanced tumorigenesis in a mouse model of melanoma induced by the oncogene Nras. MDM4 promotes the survival of human metastatic melanoma by antagonizing p53 proapoptotic function. Notably, inhibition of the MDM4-p53 interaction restored p53 function in melanoma cells, resulting in increased sensitivity to cytotoxic chemotherapy and to inhibitors of the BRAF (V600E) oncogene. Our results identify MDM4 as a key determinant of impaired p53 function in human melanoma and designate MDM4 as a promising target for antimelanoma combination therapy. PMID:22820643

  1. Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells.

    PubMed

    Federici, Cristina; Lugini, Luana; Marino, Maria Lucia; Carta, Fabrizio; Iessi, Elisabetta; Azzarito, Tommaso; Supuran, Claudiu T; Fais, Stefano

    2016-01-01

    Proton Pump Inhibitors (PPIs) reduce tumor acidity and therefore resistance of tumors to drugs. Carbonic Anhydrase IX (CA IX) inhibitors have proven to be effective against tumors, while tumor acidity might impair their full effectiveness. To analyze the effect of PPI/CA IX inhibitors combined treatment against human melanoma cells. The combination of Lansoprazole (LAN) and CA IX inhibitors (FC9-399A and S4) has been investigated in terms of cell proliferation inhibition and cell death in human melanoma cells. The combination of these inhibitors was more effective than the single treatments in both inhibiting cell proliferation and in inducing cell death in human melanoma cells. These results represent the first successful attempt in combining two different proton exchanger inhibitors. This is the first evidence on the effectiveness of a new approach against tumors based on the combination of PPI and CA IX inhibitors, thus providing an alternative strategy against tumors.

  2. Obesity-related genetic variants, human pigmentation, and risk of melanoma

    PubMed Central

    Li, Xin; Liang, Liming; Zhang, Mingfeng; Song, Fengju; Nan, Hongmei; Wang, Li-E; Wei, Qingyi; Lee, Jeffrey E.; Amos, Christopher I.; Qureshi, Abrar A.; Han, Jiali

    2013-01-01

    Previous biological studies showed evidence of a genetic link between obesity and pigmentation in both animal models and humans. Our study investigated the individual and joint associations between obesity-related single nucleotide polymorphisms (SNPs) and both human pigmentation and risk of melanoma. Eight obesity-related SNPs in the FTO, MAP2K5, NEGR1, FLJ35779, ETV5, CADM2, and NUDT3 genes were nominally significantly associated with hair color among 5,876 individuals of European ancestry. The genetic score combining 35 independent obesity-risk loci was significantly associated with darker hair color (beta-coefficient per ten alleles=0.12, P-value=4 10−5). However, single SNPs or genetic scores showed non-significant association with tanning ability. We further examined the SNPs at the FTO locus for their associations with pigmentation and risk of melanoma. Among the 783 SNPs in the FTO gene with imputation R-square quality metric >0.8 using the 1000 genome data set, ten and three independent SNPs were significantly associated with hair color and tanning ability respectively. Moreover, five independent FTO SNPs showed nominally significant association with risk of melanoma in 1,804 cases and 1,026 controls. But none of them was associated with obesity or in linkage disequilibrium with obesity-related variants. FTO locus may confer variation in human pigmentation and risk of melanoma, which may be independent of its effect on obesity. PMID:23539184

  3. Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032

    PubMed Central

    2010-01-01

    Blocking oncogenic signaling induced by the BRAFV600E mutation is a promising approach for melanoma treatment. We tested the anti-tumor effects of a specific inhibitor of Raf protein kinases, PLX4032/RG7204, in melanoma cell lines. PLX4032 decreased signaling through the MAPK pathway only in cell lines with the BRAFV600E mutation. Seven out of 10 BRAFV600E mutant cell lines displayed sensitivity based on cell viability assays and three were resistant at concentrations up to 10 μM. Among the sensitive cell lines, four were highly sensitive with IC50 values below 1 μM, and three were moderately sensitive with IC50 values between 1 and 10 μM. There was evidence of MAPK pathway inhibition and cell cycle arrest in both sensitive and resistant cell lines. Genomic analysis by sequencing, genotyping of close to 400 oncogeninc mutations by mass spectrometry, and SNP arrays demonstrated no major differences in BRAF locus amplification or in other oncogenic events between sensitive and resistant cell lines. However, metabolic tracer uptake studies demonstrated that sensitive cell lines had a more profound inhibition of FDG uptake upon exposure to PLX4032 than resistant cell lines. In conclusion, BRAFV600E mutant melanoma cell lines displayed a range of sensitivities to PLX4032 and metabolic imaging using PET probes can be used to assess sensitivity. PMID:20406486

  4. High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients

    PubMed Central

    Logozzi, Mariantonia; De Milito, Angelo; Lugini, Luana; Borghi, Martina; Calabrò, Luana; Spada, Massimo; Perdicchio, Maurizio; Marino, Maria Lucia; Federici, Cristina; Iessi, Elisabetta; Brambilla, Daria; Venturi, Giulietta; Lozupone, Francesco; Santinami, Mario; Huber, Veronica; Maio, Michele; Rivoltini, Licia; Fais, Stefano

    2009-01-01

    Background Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. Methodology/Principal Findings We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504±315) or caveolin-1 (619±310) were significantly increased in melanoma patients as compared to healthy donors (223±125 and 228±102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. Conclusions/Significance We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients. PMID:19381331

  5. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients.

    PubMed

    Logozzi, Mariantonia; De Milito, Angelo; Lugini, Luana; Borghi, Martina; Calabrò, Luana; Spada, Massimo; Perdicchio, Maurizio; Marino, Maria Lucia; Federici, Cristina; Iessi, Elisabetta; Brambilla, Daria; Venturi, Giulietta; Lozupone, Francesco; Santinami, Mario; Huber, Veronica; Maio, Michele; Rivoltini, Licia; Fais, Stefano

    2009-01-01

    Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504+/-315) or caveolin-1 (619+/-310) were significantly increased in melanoma patients as compared to healthy donors (223+/-125 and 228+/-102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.

  6. Fisetin Inhibits Human Melanoma Cell Invasion through Promotion of Mesenchymal to Epithelial Transition and by Targeting MAPK and NFκB Signaling Pathways

    PubMed Central

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K.; Ballestas, Mary E.; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60–70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5–20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  7. Endogenous Noxa Determines the Strong Proapoptotic Synergism of the BH3-Mimetic ABT-737 with Chemotherapeutic Agents in Human Melanoma Cells12

    PubMed Central

    Weber, Arnim; Kirejczyk, Zofia; Potthoff, Stephanie; Ploner, Christian; Häcker, Georg

    2009-01-01

    Human melanoma cells are very resistant to treatment with chemotherapeutic agents, and melanoma shows poor response to chemotherapeutic therapy. We describe a strong synergistic proapoptotic effect of the Bcl-2 family inhibitor ABT-737 and the standard antimelanoma drugs, namely, dacarbazine and fotemustine, and the experimental agent, imiquimod. Experiments with human melanoma cells, keratinocytes, and embryonic fibroblasts showed that all three agents activated the mitochondrial apoptosis pathway. ABT-737 on its own was ineffective in melanoma cells unless Mcl-1 was experimentally downregulated. However, ABT-737 strongly enhanced the proapoptotic activity of the chemotherapeutic drugs. Whereas cell death induction by all three agents involved the activity of both BH3-only proteins, Bim and Noxa, the combination with ABT-737 overcame the requirement for Bim. However, the synergism between ABT-737 and imiquimod or dacarbazine required endogenous Noxa, as demonstrated by experiments with Noxa-specific RNAi. Surprisingly, although Bim was activated, it was unable to replace Noxa. Studies of mitochondrial cytochrome c release using BH3 peptides confirmed that a main effect of dacarbazine, fotemustine, and imiquimod was to neutralize Mcl-1, thereby sensitizing mitochondria to the inhibition of other Bcl-2 family members through ABT-737. ABT-737 is thus a promising agent for combination therapy for human melanoma. Importantly, the efficacy of this therapy depends on endogenous Noxa, and the ability of chemotherapeutic drugs to activate Noxa may be a valuable predictor of their synergism with Bcl-2-targeting drugs. PMID:19412422

  8. Photothermal sensitization of amelanotic melanoma cells by Ni(II)-octabutoxy-naphthalocyanine.

    PubMed

    Busetti, A; Soncin, M; Reddi, E; Rodgers, M A; Kenney, M E; Jori, G

    1999-01-01

    Incubation of B78H1 amelanotic melanoma cells with a potential photothermal sensitizer, namely, liposome-incorporated Ni(II)-octabutoxy-naphthalocyanine (NiNc), induces an appreciable cellular accumulation of the naphthalocyanine, which is dependent on both the NiNc concentration and the incubation time. No detectable decrease in cell survival occurs upon red-light irradiation (corresponding to the longest-wavelength absorption bands of NiNc) in a continuous-wave (c.w.) regime of the naphthalocyanine-loaded cells. On the other hand, 850 nm irradiation with a Q-switched Ti:sapphire laser operating in a pulsed mode (30 ns pulses, 10 Hz, 200 mJ/pulse) induces an efficient cell death. Thus, ca. 98% decrease in cell survival is obtained upon 5 min irradiation of cells that have been incubated for 48 h with 5.1 microM NiNc. The efficiency of the photoprocess is strongly influenced by the NiNc cell incubation time prior to irradiation. Photothermal sensitization with NiNc appears to open new perspectives for therapeutic applications, as suggested by preliminary in vivo studies with C57/BL6 mice bearing a subcutaneously implanted amelanotic melanoma.

  9. ANTIPROLIFERATIVE EFFECT OF INOSITOL HEXAPHOSPHATE ON HUMAN SKIN MELANOMA CELLS IN VITRO.

    PubMed

    Wawszczyk, Joanna; Kapral, Małgorzata; Lodowska, Jolanta; Jesse, Katarzyna; Hollek, Andrzej; Węglarz, Ludmiła

    2015-01-01

    Human malignant melanoma is a highly metastatic tumor with poor prognosis. The majority of metastatic melanomas are resistant to diverse chemotherapeutic agents. Consequently, the search for novel antimelanoma agents continues. In recent years, the interest in plants and their biologically active constituents as a source of novel potential drugs significantly increased. Inositol hexaphosphate (IP6) is a naturally occurring compound that has been shown to inhibit the growth of a wide variety of tumor cells in multiple experimental model systems. The aim of this study was to evaluate the antiproliferative and cytotoxic influence of IP6 on melanotic melanoma cells in vitro. The A2058 cells used as a model of human skin melanoma malignum were exposed to different concentrations of IP6 (0.1-5 mM) for a various period of time and their growth was determined by sulforhodamine B assay after 24, 48 and 72 h. The cytotoxicity of IP6 was measured at 24 and 72 h by XTT assay. IP6 has been found to cause dose-dependent growth suppression of A2058 melanoma cells. At low concentrations (0.1 and 0.5 mM) it did not exert any influence on the cell proliferation as compared to control cultures. Higher concentrations of IP6 (from 1 to 5 mM) had a statistically significant, suppressive effect on cell proliferation after 24 h incubation. When the experimental time period was increased up to 72 h, statistically significant inhibition of cell proliferation was monitored at all IP6 concentrations used. Data obtained from XTT assay indicated that IP6 had dose- and time-dependent cytotoxic effect on melanoma cells. The results demonstrate the antiproliferative and cytotoxic properties of IP6 in a wide range of concentrations on human A2058 melanoma cells. Hence, it can be suggested that IP6 could have a promising therapeutic significance in treating cancer.

  10. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  11. Review of human hair optical properties in possible relation to melanoma development.

    PubMed

    Huang, Xiyong; Protheroe, Michael D; Al-Jumaily, Ahmed M; Paul, Sharad P; Chalmers, Andrew N

    2018-05-01

    Immigration and epidemiological studies provide evidence indicating the correlation of high ultraviolet exposure during childhood and increased risks of melanoma in later life. While the explanation of this phenomenon has not been found in the skin, a class of hair has been hypothesized to be involved in this process by transmitting sufficient ultraviolet rays along the hair shaft to possibly cause damage to the stem cells in the hair follicle, ultimately resulting in melanoma in later life. First, the anatomy of hair and its possible contribution to melanoma development, and the tissue optical properties are briefly introduced to provide the necessary background. This paper emphasizes on the review of the experimental studies of the optical properties of human hair, which include the sample preparation, measurement techniques, results, and statistical analysis. The Monte Carlo photon simulation of human hair is next outlined. Finally, current knowledge of the optical studies of hair is discussed in the light of their possible contribution to melanoma development; the necessary future work needed to support this hypothesis is suggested. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. The Efficacy of Dandelion Root Extract in Inducing Apoptosis in Drug-Resistant Human Melanoma Cells

    PubMed Central

    Chatterjee, S. J.; Ovadje, P.; Mousa, M.; Hamm, C.; Pandey, S.

    2011-01-01

    Notoriously chemoresistant melanoma has become the most prevalent form of cancer for the 25–29 North American age demographic. Standard treatment after early detection involves surgical excision (recurrence is possible), and metastatic melanoma is refractory to immuno-, radio-, and most harmful chemotherapies. Various natural compounds have shown efficacy in killing different cancers, albeit not always specifically. In this study, we show that dandelion root extract (DRE) specifically and effectively induces apoptosis in human melanoma cells without inducing toxicity in noncancerous cells. Characteristic apoptotic morphology of nuclear condensation and phosphatidylserine flipping to the outer leaflet of the plasma membrane of A375 human melanoma cells was observed within 48 hours. DRE-induced apoptosis activates caspase-8 in A375 cells early on, demonstrating employment of an extrinsic apoptotic pathway to kill A375 cells. Reactive Oxygen Species (ROS) generated from DRE-treated isolated mitochondria indicates that natural compounds in DRE can also directly target mitochondria. Interestingly, the relatively resistant G361 human melanoma cell line responded to DRE when combined with the metabolism interfering antitype II diabetic drug metformin. Therefore, treatment with this common, yet potent extract of natural compounds has proven novel in specifically inducing apoptosis in chemoresistant melanoma, without toxicity to healthy cells. PMID:21234313

  13. Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barunb, V. V.

    2016-05-01

    Experimental data on the spectral dependences of the optical diffuse reflection coefficient for skin from different people with melanoma or nevus are presented in the form of the probability density of the diffuse reflection coefficient for the corresponding pigmented lesions. We propose a noninvasive technique for differentiating between malignant and benign tumors, based on measuring the diffuse reflection coefficient for a specific patient and comparing the value obtained with a pre-set threshold. If the experimental result is below the threshold, then it is concluded that the person has melanoma; otherwise, no melanoma is present. As an example, we consider the wavelength 870 nm. We determine the risk of malignant transformation of a nevus (its transition to melanoma) for different measured diffuse reflection coefficients. We have studied the errors in the method, its operating characteristics and probability characteristics as the threshold diffuse reflection coefficient is varied. We find that the diagnostic confidence, sensitivity, specificity, and effectiveness (accuracy) parameters are maximum (>0.82) for a threshold of 0.45-0.47. The operating characteristics for the proposed technique exceed the corresponding parameters for other familiar optical approaches to melanoma diagnosis. Its distinguishing feature is operation at only one wavelength, and consequently implementation of the experimental technique is simplified and made less expensive.

  14. Tumor initiation in human malignant melanoma and potential cancer therapies.

    PubMed

    Ma, Jie; Frank, Markus H

    2010-02-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment.

  15. Tumor Initiation in Human Malignant Melanoma and Potential Cancer Therapies

    PubMed Central

    Ma, Jie; Frank, Markus H.

    2010-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment. PMID:20184545

  16. The 14-3-3σ gene promoter is methylated in both human melanocytes and melanoma

    PubMed Central

    2009-01-01

    Background Recent evidence demonstrates that 14-3-3σ acts as a tumor suppressor gene inactivated by methylation of its 5' CpG islands in epithelial tumor cells, while remaining un-methylated in normal human epithelia. The methylation analysis of 14-3-3σ has been largely overlooked in melanoma. Methods The methylation status of 14-3-3σ CpG island in melanocytes and melanoma cells was analyzed by methylation-specific sequencing (MSS) and quantitative methylation-specific PCR (Q-MSP). 14-3-3σ mRNA and protein expression in cell lines was detected by real-time RT-PCR and western blot. Melanoma cells were also treated by 5-aza-2'-deoxycytidine (DAC), a demethylating agent, and/or histone deacetylase inhibitor, Trichostatin A (TSA), to evaluate their effects on 14-3-3σ gene expression. Results 14-3-3σ is hypermethylated in both human melanocytes and most melanoma cells in a lineage-specific manner, resulting in the silencing of 14-3-3σ gene expression and the active induction of 14-3-3σ mRNA and protein expression following treatment with DAC. We also observed a synergistic effect upon gene expression when DAC was combined with TSA. The promoter methylation status of 14-3-3σ was analyzed utilizing Q-MSP in 20 melanoma tissue samples and 10 cell lines derived from these samples, showing that the majority of melanoma samples maintain their hypermethylation status of the 14-3-3σ gene. Conclusion 14-3-3σ is hypermethylated in human melanoma in a cell-linage specific manner. Spontaneous demethylation and re-expression of 14-3-3σ is a rare event in melanoma, indicating 14-3-3σ might have a tentative role in the pathogenesis of melanoma. PMID:19473536

  17. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells

    PubMed Central

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M.; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L.; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  18. Strengths and Weaknesses of Pre-Clinical Models for Human Melanoma Treatment: Dawn of Dogs’ Revolution for Immunotherapy

    PubMed Central

    Barutello, Giuseppina; Rolih, Valeria; Arigoni, Maddalena; Tarone, Lidia; Conti, Laura

    2018-01-01

    Despite several therapeutic advances, malignant melanoma still remains a fatal disease for which novel and long-term curative treatments are needed. The successful development of innovative therapies strongly depends on the availability of appropriate pre-clinical models. For this purpose, several mouse models holding the promise to provide insight into molecular biology and clinical behavior of melanoma have been generated. The most relevant ones and their contribution for the advancement of therapeutic approaches for the treatment of human melanoma patients will be here summarized. However, as models, mice do not recapitulate all the features of human melanoma, thus their strengths and weaknesses need to be carefully identified and considered for the translation of the results into the human clinics. In this panorama, the concept of comparative oncology acquires a priceless value. The revolutionary importance of spontaneous canine melanoma as a translational model for the pre-clinical investigation of melanoma progression and treatment will be here discussed, with a special consideration to the development of innovative immunotherapeutic approaches. PMID:29534457

  19. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity.

    PubMed

    De Milito, Angelo; Canese, Rossella; Marino, Maria Lucia; Borghi, Martina; Iero, Manuela; Villa, Antonello; Venturi, Giulietta; Lozupone, Francesco; Iessi, Elisabetta; Logozzi, Mariantonia; Della Mina, Pamela; Santinami, Mario; Rodolfo, Monica; Podo, Franca; Rivoltini, Licia; Fais, Stefano

    2010-07-01

    Metastatic melanoma is associated with poor prognosis and still limited therapeutic options. An innovative treatment approach for this disease is represented by targeting acidosis, a feature characterizing tumor microenvironment and playing an important role in cancer malignancy. Proton pump inhibitors (PPI), such as esomeprazole (ESOM) are prodrugs functionally activated by acidic environment, fostering pH neutralization by inhibiting proton extrusion. We used human melanoma cell lines and xeno-transplated SCID mice to provide preclinical evidence of ESOM antineoplastic activity. Human melanoma cell lines, characterized by different mutation and signaling profiles, were treated with ESOM in different pH conditions and evaluated for proliferation, viability and cell death. SCID mice engrafted with human melanoma were used to study ESOM administration effects on tumor growth and tumor pH by magnetic resonance spectroscopy (MRS). ESOM inhibited proliferation of melanoma cells in vitro and induced a cytotoxicity strongly boosted by low pH culture conditions. ESOM-induced tumor cell death occurred via rapid intracellular acidification and activation of several caspases. Inhibition of caspases activity by pan-caspase inhibitor z-vad-fmk completely abrogated the ESOM-induced cell death. ESOM administration (2.5 mg kg(-1)) to SCID mice engrafted with human melanoma reduced tumor growth, consistent with decrease of proliferating cells and clear reduction of pH gradients in tumor tissue. Moreover, systemic ESOM administration dramatically increased survival of human melanoma-bearing animals, in absence of any relevant toxicity. These data show preclinical evidence supporting the use of PPI as novel therapeutic strategy for melanoma, providing the proof of concept that PPI target human melanoma modifying tumor pH gradients.

  20. Targeting human apurinic/apyrimidinic endonuclease 1 (APE1) in phosphatase and tensin homolog (PTEN) deficient melanoma cells for personalized therapy.

    PubMed

    Abbotts, Rachel; Jewell, Rosalyn; Nsengimana, Jérémie; Maloney, David J; Simeonov, Anton; Seedhouse, Claire; Elliott, Faye; Laye, Jon; Walker, Christy; Jadhav, Ajit; Grabowska, Anna; Ball, Graham; Patel, Poulam M; Newton-Bishop, Julia; Wilson, David M; Madhusudan, Srinivasan

    2014-05-30

    Phosphatase and tensin homolog (PTEN) loss is associated with genomic instability. APE1 is a key player in DNA base excision repair (BER) and an emerging drug target in cancer. We have developed small molecule inhibitors against APE1 repair nuclease activity. In the current study we explored a synthetic lethal relationship between PTEN and APE1 in melanoma. Clinicopathological significance of PTEN mRNA and APE1 mRNA expression was investigated in 191 human melanomas. Preclinically, PTEN-deficient BRAF-mutated (UACC62, HT144, and SKMel28), PTEN-proficient BRAF-wildtype (MeWo), and doxycycline-inducible PTEN-knockout BRAF-wildtype MeWo melanoma cells were DNA repair expression profiled and investigated for synthetic lethality using a panel of four prototypical APE1 inhibitors. In human tumours, low PTEN mRNA and high APE1 mRNA was significantly associated with reduced relapse free and overall survival. Pre-clinically, compared to PTEN-proficient cells, PTEN-deficient cells displayed impaired expression of genes involved in DNA double strand break (DSB) repair. Synthetic lethality in PTEN-deficient cells was evidenced by increased sensitivity, accumulation of DSBs and induction of apoptosis following treatment with APE1 inhibitors. We conclude that PTEN deficiency is not only a promising biomarker in melanoma, but can also be targeted by a synthetic lethality strategy using inhibitors of BER, such as those targeting APE1.

  1. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon–independent apoptosis in human melanoma cells

    PubMed Central

    Besch, Robert; Poeck, Hendrik; Hohenauer, Tobias; Senft, Daniela; Häcker, Georg; Berking, Carola; Hornung, Veit; Endres, Stefan; Ruzicka, Thomas; Rothenfusser, Simon; Hartmann, Gunther

    2009-01-01

    The retinoic acid–inducible gene I (RIG-I) and melanoma differentiation–associated antigen 5 (MDA-5) helicases sense viral RNA in infected cells and initiate antiviral responses such as the production of type I IFNs. Here we have shown that RIG-I and MDA-5 also initiate a proapoptotic signaling pathway that is independent of type I IFNs. In human melanoma cells, this signaling pathway required the mitochondrial adapter Cardif (also known as IPS-1) and induced the proapoptotic BH3-only proteins Puma and Noxa. RIG-I– and MDA-5–initiated apoptosis required Noxa but was independent of the tumor suppressor p53. Triggering this pathway led to efficient activation of mitochondrial apoptosis, requiring caspase-9 and Apaf-1. Surprisingly, this proapoptotic signaling pathway was also active in nonmalignant cells, but these cells were much less sensitive to apoptosis than melanoma cells. Endogenous Bcl-xL rescued nonmalignant, but not melanoma, cells from RIG-I– and MDA-5–mediated apoptosis. In addition, we confirmed the results of the in vitro studies, demonstrating that RIG-I and MDA-5 ligands both reduced human tumor lung metastasis in immunodeficient NOD/SCID mice. These results identify an IFN-independent antiviral signaling pathway initiated by RIG-I and MDA-5 that activates proapoptotic signaling and, unless blocked by Bcl-xL, results in apoptosis. Due to their immunostimulatory and proapoptotic activity, RIG-I and MDA-5 ligands have therapeutic potential due to their ability to overcome the characteristic resistance of melanoma cells to apoptosis. PMID:19620789

  2. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sustarsic, Elahu G.; Department of Biological Sciences, Ohio University, Athens, OH; Junnila, Riia K.

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includesmore » 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation

  3. Molecular Mechanism of MART-1+/A*0201+ Human Melanoma Resistance to Specific CTL-Killing Despite Functional Tumor-CTL Interaction

    PubMed Central

    Jazirehi, Ali R.; Baritaki, Stavroula; Koya, Richard C.; Bonavida, Benjamin; Economou, James S.

    2014-01-01

    Durable responses in metastatic melanoma patients remain generally difficult to achieve. Adoptive cell therapy with ex vivo engineered lymphocytes expressing high affinity T cell receptors TCRα/β for the melanoma antigen MART-127-35/HLA A*0201 (recognized by F5 cytotoxic T lymphocytes [F5 CTLs]) has been found to benefit certain patients. However, many other patients are inherently unresponsive and/or relapse for unknown reasons. To analyze the basis for the acquired-resistance and strategies to reverse it, we established F5 CTLresistant (R) human melanoma clones from relatively sensitive parental lines under selective F5 CTL pressure. Surface MART-127-35/HLA-A*0201 in these clones was unaltered and F5 CTLs recognized and interacted with them similarly to the parental lines. Nevertheless, the R clones were resistant to F5 CTL killing, exhibited hyperactivation of the NF-κB survival pathway, and overexpression of the anti-apoptotic genes Bcl-2, Bcl-xL and Mcl-1. Sensitivity to F5 CTL-killing could be increased by pharmacological inhibition of the NF-κB pathway, Bcl-2 family members, or the proteasome, the latter of which reduced NF-κB activity and diminished anti-apoptotic gene expression. Specific gene-silencing (by siRNA) confirmed the protective role of anti-apoptotic factors by reversing R clone resistance. Together, our findings suggest that long-term immunotherapy may impose a selection for the development of resistant cells that are unresponsive to highly avid and specific melanoma-reactive CTLs, despite maintaining expression of functional peptide:MHC complexes, due to activation of anti-apoptotic signaling pathways. Though unresponsive to CTL, our results argue that resistant cells can be re-sensitized to immunotherapy with co-administration of targeted inhibitors to anti-apoptotic survival pathways. PMID:21159666

  4. Basic and clinical aspects of malignant melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathanson, L.

    1987-01-01

    This book contains the following 10 chapters: The role of oncogenes in the pathogenesis of malignant melanoma; Laminin and fibronectin modulate the metastatic activity of melanoma cells; Structure, function and biosynthesis of ganglioside antigens associated with human tumors derived from the neuroectoderm; Epidemiology of ocular melanoma; Malignant melanoma: Prognostic factors; Endocrine influences on the natural history of human malignant melanoma; Psychosocial factors associated with prognostic indicators, progression, psychophysiology, and tumor-host response in cutaneous malignant melanoma; Central nervous system metastases in malignant melanoma; Interferon trials in the management of malignant melanoma and other neoplasms: an overview; and The treatment of malignantmore » melanoma by fast neutrons.« less

  5. Genetically engineered mesenchymal stromal cells producing TNFα have tumour suppressing effect on human melanoma xenograft.

    PubMed

    Tyciakova, Silvia; Matuskova, Miroslava; Bohovic, Roman; Polakova, Katarina; Toro, Lenka; Skolekova, Svetlana; Kucerova, Lucia

    2015-01-01

    Mesenchymal stromal cells (MSC) are a promising tool for targeted cancer therapy due to their tumour-homing ability. Intrinsic resistance enables the MSC to longer tolerate therapeutic factors, such as prodrug converting enzymes, cytokines and pro-apoptotic proteins. Tumour necrosis factor alpha (TNFα) is known to be cytotoxic to a variety of cancer cells and exert a tumour-destructive capacity. MSC were retrovirally transduced to stable express an exogenous gene encoding the desired therapeutic agent hTNFα. The effect of a TNFα-producing adipose tissue-derived MSC (AT-MSC/hTNFα) was tested on the tumour cell lines of different origins: melanoma (A375), breast carcinoma (SKBR3, MDA-MB-231), colon carcinoma (HT29), ovarian carcinoma (SKOV3) and glioblastoma (U87-MG) cells. The tumour suppressing effect of AT-MSC/hTNFα on A375 melanoma xenografts was monitored in an immunodeficient mouse model in vivo. Engineered AT-MSC are able to constitutively secrete human TNFα protein, induce apoptosis of tumour cell lines via caspase 3/7 activation and inhibit the tumour cell proliferation in vitro. Melanoma A375 and breast carcinoma SKBR3 cells were the most sensitive, and their proliferation in vitro was reduced by conditioned media produced by AT-MSC/hTNFα to 60% and 40%, respectively. The previously reported tumour supportive effect of AT-MSC on subcutaneous A375 melanoma xenograft growth was neutralised and suppressed by engineered AT-MSC stably producing hTNFα. When AT-MSC/hTNFα were coinjected with A375 melanoma cells, the tumour mass inhibition was up to 97.5%. The results of the present study demonstrate that tumour cells respond to hTNFα-based treatment mediated by genetically engineered AT-MSC/hTNFα both in vitro and in vivo. Copyright © 2015 John Wiley & Sons, Ltd.

  6. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serafino, A.; Balestrieri, E.; Pierimarchi, P.

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derivedmore » non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.« less

  7. Ribonucleotide reductase in melanoma tissue. EPR detection in human amelanotic melanoma and quenching of the tyrosine radical by 4-hydroxyanisole.

    PubMed

    Lassmanm, G; Liermann, B; Arnold, W; Schwabe, K

    1991-01-01

    The characteristic EPR doublet of tyrosine radicals of the growth-regulating enzyme ribonucleotide reductase was detected in human melanoma tissue grown in nude mice. This was possible through the use of an amelanotic melanoma that does not exhibit disturbing EPR signals from melanin. The content of tyrosine radicals is higher in young tumor tissues than in older ones. The clinically applied antimelanotic drug, 4-hydroxyanisole, inhibits ribonucleotide reductase in Ehrlich ascites tumor cells as demonstrated by a pronounced quenching of tyrosine radicals (IC50 = 5 microM). In amelanotic melanoma tissue tyrosine radicals of the enzyme are also quenched by 4-hydroxyanisole in concentrations down to 50 microM. Thus, the inactivation of ribonucleotide reductase, which provides deoxyribonucleotides for DNA synthesis, may be a hitherto unexpected mechanism for the antitumor action of 4-hydroxyanisole.

  8. Inhibition of activated receptor tyrosine kinases by Sunitinib induces growth arrest and sensitizes melanoma cells to Bortezomib by blocking Akt pathway.

    PubMed

    Yeramian, Andree; Sorolla, Anabel; Velasco, Ana; Santacana, Maria; Dolcet, Xavier; Valls, Joan; Abal, Leandre; Moreno, Sara; Egido, Ramón; Casanova, Josep M; Puig, Susana; Vilella, Ramón; Llombart-Cussac, Antonio; Matias-Guiu, Xavier; Martí, Rosa M

    2012-02-15

    Despite the use of multiple therapeutic strategies, metastatic melanoma remains a challenge for oncologists. Thus, new approaches using combinational treatment may be used to try to improve the prognosis of this disease. In this report, we have analyzed the expression of receptor tyrosine kinases (RTKs) in melanoma specimens and in four metastatic melanoma cell lines. Both melanoma specimens and cell lines expressed RTKs, suggesting that they may represent eventual targets for multitargeted tyrosine kinase inhibitor, Suntinib. Sunitinib reduced the proliferation of two melanoma cell lines (M16 and M17) and increased apoptosis in one of them (M16). Moreover, the two metastatic melanoma cell lines harbored an activated receptor (PDGFRα and VEGFR, respectively), and Sunitinib suppressed the phosphorylation of the RTKs and their downstream targets Akt and ribosomal protein S6, in these two cell lines. Similar results were obtained when either PDGFRα or VEGFR2 expression was silenced by lentiviral-mediated short-hairpin RNA delivery in M16 and M17, respectively. To evaluate the interaction between Sunitinib and Bortezomib, median dose effect analysis using MTT assay was performed, and combination index was calculated. Bortezomib synergistically enhanced the Sunitinib-induced growth arrest in Sunitinib-sensitive cells (combination index < 1). Moreover, LY294002, a PI3K inhibitor, sensitized melanoma cells to Bortezomib treatment, suggesting that downregulation of phospho-Akt by Sunitinib mediates the synergy obtained by Bortezomib + Sunitinib cotreatment. Altogether, our results suggest that melanoma cells harboring an activated RTK may be clinically responsive to pharmacologic RTK inhibition by Sunitinib, and a strategy combining Sunitinib and Bortezomib, may provide therapeutic benefit. Copyright © 2011 UICC.

  9. The value of cyclooxygenase-2 expression in differentiating between early melanomas and histopathologically difficult types of benign human skin lesions.

    PubMed

    Kuźbicki, Łukasz; Lange, Dariusz; Strączyńska-Niemiec, Anita; Chwirot, Barbara W

    2012-02-01

    Early cutaneous melanomas may present a substantial diagnostic challenge. We have already reported that expression of cyclooxygenase-2 (COX-2) may be useful for differentiating between cutaneous melanomas and naevi. The purpose of this study was to examine the value of COX-2 in a challenging task of differential diagnosis of early melanomas and melanocytic naevi considered by histopathologists as morphologically difficult to unequivocally diagnose as benign lesions. The material for the study comprised formalin-fixed paraffin-embedded samples of 46 naevi (including 27 cases of dysplastic, Spitz and Reed naevi) and 30 early human cutaneous melanomas. The expression of COX-2 was detected immunohistochemically. Melanomas expressed COX-2 significantly more strongly compared with naevi. The test, on the basis of determination of the percentage fractions of COX-2-positive cells, allows for differentiation of early skin melanomas and naevi with high sensitivity and specificity. Receiver operating characteristic analysis of the test results yielded areas under receiver operating characteristics curves (AUC)=0.946±0.030 for central regions and AUC=0.941±0.031 for the peripheries of the lesions. The performance of the test in differentiating between melanomas and the naevi group comprising dysplastic, Spitz and Reed naevi was also good, with AUC=0.933±0.034 and 0.923±0.037 for the central and the border regions of the lesions, respectively. Using a more complex diagnostic algorithm also accounting for the staining intensity did not result in an improvement in the resolving power of the assay. A diagnostic algorithm using differences in the percentage fractions of cells expressing COX-2 may serve as a useful tool in aiding the differential diagnosis of 'histopathologically difficult' benign melanocytic skin lesions and early melanomas.

  10. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ungerer, Christopher; Doberstein, Kai; Buerger, Claudia

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far.more » In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.« less

  11. Overexpression of connexin 43 reduces melanoma proliferative and metastatic capacity

    PubMed Central

    Tittarelli, A; Guerrero, I; Tempio, F; Gleisner, M A; Avalos, I; Sabanegh, S; Ortíz, C; Michea, L; López, M N; Mendoza-Naranjo, A; Salazar-Onfray, F

    2015-01-01

    Background: Alterations in connexin 43 (Cx43) expression and/or gap junction (GJ)-mediated intercellular communication are implicated in cancer pathogenesis. Herein, we have investigated the role of Cx43 in melanoma cell proliferation and apoptosis sensitivity in vitro, as well as metastatic capability and tumour growth in vivo. Methods: Connexin 43 expression levels, GJ coupling and proliferation rates were analysed in four different human melanoma cell lines. Furthermore, tumour growth and lung metastasis of high compared with low Cx43-expressing FMS cells were evaluated in vivo using a melanoma xenograft model. Results: Specific inhibition of Cx43 channel activity accelerated melanoma cell proliferation, whereas overexpression of Cx43 increased GJ coupling and reduced cell growth. Moreover, Cx43 overexpression in FMS cells increased basal and tumour necrosis factor-α-induced apoptosis and resulted in decreased melanoma tumour growth and lower number and size of metastatic foci in vivo. Conclusions: Our findings reveal an important role for Cx43 in intrinsically controlling melanoma growth, death and metastasis, and emphasise the potential use of compounds that selectively enhance Cx43 expression on melanoma in the future chemotherapy and/or immunotherapy protocols. PMID:26135897

  12. Synergistic targeted inhibition of MEK and dual PI3K/mTOR diminishes viability and inhibits tumor growth of canine melanoma underscoring its utility as a preclinical model for human mucosal melanoma.

    PubMed

    Wei, Bih-Rong; Michael, Helen T; Halsey, Charles H C; Peer, Cody J; Adhikari, Amit; Dwyer, Jennifer E; Hoover, Shelley B; El Meskini, Rajaa; Kozlov, Serguei; Weaver Ohler, Zoe; Figg, William D; Merlino, Glenn; Simpson, R Mark

    2016-11-01

    Human mucosal melanoma (MM), an uncommon, aggressive and diverse subtype, shares characteristics with spontaneous MM in dogs. Although BRAF and N-RAS mutations are uncommon in MM in both species, the majority of human and canine MM evaluated exhibited RAS/ERK and/or PI3K/mTOR signaling pathway activation. Canine MM cell lines, with varying ERK and AKT/mTOR activation levels reflective of naturally occurring differences in dogs, were sensitive to the MEK inhibitor GSK1120212 and dual PI3K/mTOR inhibitor NVP-BEZ235. The two-drug combination synergistically decreased cell survival in association with caspase 3/7 activation, as well as altered expression of cell cycle regulatory proteins and Bcl-2 family proteins. In combination, the two drugs targeted their respective signaling pathways, potentiating reduction of pathway mediators p-ERK, p-AKT, p-S6, and 4E-BP1 in vitro, and in association with significantly inhibited solid tumor growth in MM xenografts in mice. These findings provide evidence of synergistic therapeutic efficacy when simultaneously targeting multiple mediators in melanoma with Ras/ERK and PI3K/mTOR pathway activation. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Pigment Cell & Melanoma Research published by John Wiley & Sons Ltd.

  13. The gallium complex KP46 exerts strong activity against primary explanted melanoma cells and induces apoptosis in melanoma cell lines

    PubMed Central

    Valiahdi, Seied Mojtaba; Heffeter, Petra; Jakupec, Michael A.; Marculescu, Rodrig; Berger, Walter; Rappersberger, Klemens; Keppler, Bernhard K.

    2012-01-01

    The antineoplastic properties of gallium are well documented. Owing to their robust accumulation of gallium, melanoma cells should be amenable to gallium-based anticancer drugs. With the aim of improving the disappointingly low activity of inorganic gallium salts, we have developed the orally bioavailable gallium complex KP46 [tris(8-quinolinolato)gallium(III)] that was already successfully studied in a phase I clinical trial. To assess its therapeutic potential in malignant melanoma, its antiproliferative effects were investigated in series of human cell lines and primary explanted melanoma samples by means of the MTT [3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay and the Human Tumor Cloning Assay, respectively. When compared with other cell lines, the majority of melanoma cells rank among the KP46-sensitive cell lines (50% inhibitory concentration values: 0.8–3.7 μmol/l). Clinically achievable concentrations of KP46 proved to be highly effective in melanoma cells from primary explants of cutaneous and lymph node metastases. Colony growth was inhibited in 10 of 10 specimens by 5 lmol/l KP46 (corresponding to the steady-state plasma concentration measured earlier in a study patient) and in four of 10 specimens by 0.5 μmol/l KP46. In-vitro potency of KP46 is higher than that of dacarbazine or fotemustine and comparable with that of cisplatin. The effects induced by KP46 in melanoma cell lines involve cell cycle perturbations (S-phase arrest) and apoptosis (activation of caspase-9, PARP [poly(ADP-ribose) polymerase] cleavage, formation of apoptotic bodies). No effects on DNA secondary structure could be observed in an electrophoretic mobility shift assay using double-stranded plasmid DNA. Thus, further studies on the therapeutic applicability of KP46 in malignant melanoma are warranted. PMID:19584767

  14. Morphological changes in human melanoma cells following irradiation with thermal neutrons.

    PubMed

    Barkla, D H; Allen, B J; Brown, J K; Mountford, M; Mishima, Y; Ichihashi, M

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.

  15. Melanoma Diagnosis

    NASA Astrophysics Data System (ADS)

    Horsch, Alexander

    The chapter deals with the diagnosis of the malignant melanoma of the skin. This aggressive type of cancer with steadily growing incidence in white populations can hundred percent be cured if it is detected in an early stage. Imaging techniques, in particular dermoscopy, have contributed significantly to improvement of diagnostic accuracy in clinical settings, achieving sensitivities for melanoma experts of beyond 95% at specificities of 90% and more. Automatic computer analysis of dermoscopy images has, in preliminary studies, achieved classification rates comparable to those of experts. However, the diagnosis of melanoma requires a lot of training and experience, and at the time being, average numbers of lesions excised per histology-proven melanoma are around 30, a number which clearly is too high. Further improvements in computer dermoscopy systems and their competent use in clinical settings certainly have the potential to support efforts of improving this situation. In the chapter, medical basics, current state of melanoma diagnosis, image analysis methods, commercial dermoscopy systems, evaluation of systems, and methods and future directions are presented.

  16. Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model.

    PubMed

    Gabellini, Chiara; Gómez-Abenza, Elena; Ibáñez-Molero, Sofia; Tupone, Maria Grazia; Pérez-Oliva, Ana B; de Oliveira, Sofia; Del Bufalo, Donatella; Mulero, Victoriano

    2018-02-01

    The protein bcl-xL is able to enhance the secretion of the proinflammatory chemokine interleukin 8 (CXCL8) in human melanoma lines. In this study, we investigate whether the bcl-xL/CXCL8 axis is important for promoting melanoma angiogenesis and aggressiveness in vivo, using angiogenesis and xenotransplantation assays in zebrafish embryos. When injected into wild-type embryos, bcl-xL-overexpressing melanoma cells showed enhanced dissemination and angiogenic activity compared with control cells. Human CXCL8 protein elicited a strong proangiogenic activity in zebrafish embryos and zebrafish Cxcr2 receptor was identified as the mediator of CXCL8 proangiogenic activity using a morpholino-mediated gene knockdown. However, human CXCL8 failed to induce neutrophil recruitment in contrast to its zebrafish homolog. Interestingly, the greater aggressiveness of bcl-xL-overexpressing melanoma cells was mediated by an autocrine effect of CXCL8 on its CXCR2 receptor, as confirmed by an shRNA approach. Finally, correlation studies of gene expression and survival analyses using microarray and RNA-seq public databases of human melanoma biopsies revealed that bcl-xL expression significantly correlated with the expression of CXCL8 and other markers of melanoma progression. More importantly, a high level of co-expression of bcl-xL and CXCL8 was associated with poor prognosis in melanoma patients. In conclusion, these data demonstrate the existence of an autocrine CXCL8/CXCR2 signaling pathway in the bcl-xL-induced melanoma aggressiveness, encouraging the development of novel therapeutic approaches for high bcl-xL-expressing melanoma. © 2017 UICC.

  17. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma

    PubMed Central

    Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-01-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up- regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16 days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMPK-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity. PMID:25016296

  18. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  19. Transcriptional Profiling of Human Endogenous Retrovirus Group HERV-K(HML-2) Loci in Melanoma

    PubMed Central

    Schmitt, Katja; Reichrath, Jörg; Roesch, Alexander; Meese, Eckart; Mayer, Jens

    2013-01-01

    Recent studies suggested a role for the human endogenous retrovirus (HERV) group HERV-K(HML-2) in melanoma because of upregulated transcription and expression of HERV-K(HML-2)-encoded proteins. Very little is known about which HML-2 loci are transcribed in melanoma. We assigned >1,400 HML-2 cDNA sequences generated from various melanoma and related samples to genomic HML-2 loci, identifying a total of 23 loci as transcribed. Transcription profiles of loci differed significantly between samples. One locus was found transcribed only in melanoma-derived samples but not in melanocytes and might represent a marker for melanoma. Several of the transcribed loci harbor ORFs for retroviral Gag and/or Env proteins. Env-encoding loci were transcribed only in melanoma. Specific investigation of rec and np9 transcripts indicated transcription of protein encoding loci in melanoma and melanocytes hinting at the relevance of Rec and Np9 in melanoma. UVB irradiation changed transcription profiles of loci and overall transcript levels decreased in melanoma and melanocytes. We further identified transcribed HML-2 loci formed by reverse transcription of spliced HML-2 transcripts by L1 machinery or in a retroviral fashion, with loci potentially encoding HML-2-like proteins. We reveal complex, sample-specific transcription of HML-2 loci in melanoma and related samples. Identified HML-2 loci and proteins encoded by those loci are particularly relevant for further studying the role of HML-2 in melanoma. Transcription of HERVs appears as a complex mechanism requiring specific studies to elucidate which HERV loci are transcribed and how transcribed HERVs may be involved in disease. PMID:23338945

  20. MITF suppression improves the sensitivity of melanoma cells to a BRAF inhibitor.

    PubMed

    Aida, Satoshi; Sonobe, Yukiko; Tanimura, Hiromi; Oikawa, Nobuhiro; Yuhki, Munehiro; Sakamoto, Hiroshi; Mizuno, Takakazu

    2017-11-28

    Microphthalmia-associated transcription factor (MITF) is expressed in melanomas and has a critical role in melanocyte development and transformation. Because inhibition of MITF inhibits cell growth in melanoma, MITF is a potential therapeutic target molecule. Here, we report the identification of CH6868398, which has a novel chemical structure and suppresses MITF expression at the protein level in melanoma cells. CH6868398 showed cell growth inhibition activity against MITF-dependent melanoma cells both with and without BRAF mutation and also exhibited anti-tumor efficacy in a melanoma xenograft model. Because selective BRAF inhibitors are standard therapeutics for BRAF-mutated melanoma, we investigated the effect of CH6868398 with a BRAF inhibitor, PLX4720, on cell growth inhibition. The addition of CH6868398 enhanced the cell growth inhibition activity of PLX4720 in melanoma cell lines. Furthermore, combination of CH6868398 and PLX4720 efficiently suppressed MITF protein and enhanced cleavage of Caspase3 and poly (ADP-ribose) polymerase (PARP) in melanoma cell lines. These data support the therapeutic potential of CH6868398 as an anti-melanoma agent that reduces MITF protein levels in combination with BRAF inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Silymarin Targets β-Catenin Signaling in Blocking Migration/Invasion of Human Melanoma Cells

    PubMed Central

    Vaid, Mudit; Prasad, Ram; Sun, Qian; Katiyar, Santosh K.

    2011-01-01

    Metastatic melanoma is a leading cause of death from skin diseases, and is often associated with activation of Wnt/β-catenin signaling pathway. We have examined the inhibitory effect of silymarin, a plant flavanoid from Silybum marianum, on cell migration of metastasis-specific human melanoma cell lines (A375 and Hs294t) and assessed whether Wnt/β-catenin signaling is the target of silymarin. Using an in vitro invasion assay, we found that treatment of human melanoma cell lines with silymarin resulted in concentration-dependent inhibition of cell migration, which was associated with accumulation of cytosolic β-catenin, while reducing the nuclear accumulation of β-catenin (i.e., β-catenin inactivation) and reducing the levels of matrix metalloproteinase (MMP) -2 and MMP-9 which are the down-stream targets of β-catenin. Silymarin enhanced: (i) the levels of casein kinase 1α, glycogen synthase kinase-3β and phosphorylated-β-catenin on critical residues Ser45, Ser33/37 and Thr41, and (ii) the binding of β-transducin repeat-containing proteins (β-TrCP) with phospho forms of β-catenin in melanoma cells. These events play important roles in degradation or inactivation of β-catenin. To verify whether β-catenin is a potent molecular target of silymarin, the effect of silymarin was determined on β-catenin-activated (Mel 1241) and β-catenin-inactivated (Mel 1011) melanoma cells. Treatment of Mel 1241 cells with silymarin or FH535, an inhibitor of Wnt/β-catenin pathway, significantly inhibited cell migration of Mel 1241 cells, which was associated with the elevated levels of casein kinase 1α and glycogen synthase kinase-3β, and decreased accumulation of nuclear β-catenin and inhibition of MMP-2 and MMP-9 levels. However, this effect of silymarin and FH535 was not found in Mel 1011 melanoma cells. These results indicate for the first time that silymarin inhibits melanoma cell migration by targeting β-catenin signaling pathway. PMID:21829575

  2. The role of thioredoxin reductase 1 in melanoma metabolism and metastasis.

    PubMed

    Cassidy, Pamela B; Honeggar, Matthew; Poerschke, Robyn L; White, Karen; Florell, Scott R; Andtbacka, Robert H I; Tross, Joycelyn; Anderson, Madeleine; Leachman, Sancy A; Moos, Philip J

    2015-11-01

    Although significant progress has been made in targeted and immunologic therapeutics for melanoma, many tumors fail to respond, and most eventually progress when treated with the most efficacious targeted combination therapies thus far identified. Therefore, alternative approaches that exploit distinct melanoma phenotypes are necessary to develop new approaches for therapeutic intervention. Tissue microarrays containing human nevi and melanomas were used to evaluate levels of the antioxidant protein thioredoxin reductase 1 (TR1), which was found to increase as a function of disease progression. Melanoma cell lines revealed metabolic differences that correlated with TR1 levels. We used this new insight to design a model treatment strategy that creates a synthetic lethal interaction wherein targeting TR1 sensitizes melanoma to inhibition of glycolytic metabolism, resulting in a decrease in metastases in vivo. This approach holds the promise of a new clinical therapeutic strategy, distinct from oncoprotein inhibition. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The DNA methylation landscape of human melanoma.

    PubMed

    Jin, Seung-Gi; Xiong, Wenying; Wu, Xiwei; Yang, Lu; Pfeifer, Gerd P

    2015-12-01

    Using MIRA-seq, we have characterized the DNA methylome of metastatic melanoma and normal melanocytes. Individual tumors contained several thousand hypermethylated regions. We discovered 179 tumor-specific methylation peaks present in all (27/27) melanomas that may be effective disease biomarkers, and 3113 methylation peaks were seen in >40% of the tumors. We found that 150 of the approximately 1200 tumor-associated methylation peaks near transcription start sites (TSSs) were marked by H3K27me3 in melanocytes. DNA methylation in melanoma was specific for distinct H3K27me3 peaks rather than for broadly covered regions. However, numerous H3K27me3 peak-associated TSS regions remained devoid of DNA methylation in tumors. There was no relationship between BRAF mutations and the number of methylation peaks. Gene expression analysis showed upregulated immune response genes in melanomas presumably as a result of lymphocyte infiltration. Down-regulated genes were enriched for melanocyte differentiation factors; e.g., KIT, PAX3 and SOX10 became methylated and downregulated in melanoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Amino Acid Signature in Human Melanoma Cell Lines from Different Disease Stages.

    PubMed

    Wasinger, Christine; Hofer, Alexandra; Spadiut, Oliver; Hohenegger, Martin

    2018-04-19

    Cancer cells rewire metabolism to sustain high proliferation rates. Beside glycolysis and glutaminolysis, amino acids substitute as energy source, feed fatty acid biosynthesis and represent part of the secretome of transformed cells, including melanoma. We have therefore investigated acetate, pyruvate and the amino acid composition of the secretome of human melanoma cells representing the early slow (WM35, WM278, WM793b and VM21) and metastatic fast (A375, 518a2, 6F and WM8) growth phase in order to identify possible signalling components within these profiles. Proliferation assays and a principle component analysis revealed a stringent difference between the fast and slow growing melanoma cells. Moreover, upon inhibition of the mevalonate pathway, glutamic acid and alanine were identified as the central difference in the conditional media. A supplementation of the media with glutamic acid and the combination with alanine significantly accelerated the proliferation, migration and invasion of early stage melanoma cells, but not metastatic cells. Finally, the inhibition of the mevalonate pathway abolished the growth advantage of the melanoma cells in a time dependent manner. Taken together, these data corroborate a stage specific response in growth and aggressiveness to extracellular glutamic acid and alanine, indicative for microenvironmental signalling of individual amino acids.

  5. In vitro efficiency and mechanistic role of indocyanine green as photodynamic therapy agent for human melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamoon, A.M.; Miller, L.; Gamal-Eldeen, A. M.

    2009-05-02

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800 nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway. Human skin melanoma cells (Sk-Mel-28) were incubated with ICG and exposed to a low power Ti:Sapphire laser. Synchrotron-assisted Fourier transform infrared microspectroscopy and hierarchical cluster analysis were used to assess the cell damage andmore » changes in lipid, protein, and nucleic acids. The cell death pathway was determined by analysis of cell viability and apoptosis and necrosis markers. In the cell death pathway, {sup 1}O{sub 2} generation evoked rapid multiple consequences that trigger apoptosis after laser exposure for only 15min including the release of cytochrome c, the activation of total caspases, caspase-3, and caspase-9, the inhibition of NF-{Kappa}B P65, and the enhancement of DNA fragmentation, and histone acetylation. ICG/PDT can efficiently and rapidly induce apoptosis in human melanoma cells and it can be considered as a new therapeutic approach for topical treatment of melanoma.« less

  6. Nevus count associations with pigmentary phenotype, histopathological melanoma characteristics and survival from melanoma

    PubMed Central

    Taylor, Nicholas J.; Thomas, Nancy E.; Anton-Culver, Hoda; Armstrong, Bruce K.; Begg, Colin B.; Busam, Klaus J.; Cust, Anne E.; Dwyer, Terence; From, Lynn; Gallagher, Richard P.; Gruber, Stephen B.; Nishri, Diane E.; Orlow, Irene; Rosso, Stefano; Venn, Alison J.; Zanetti, Roberto; Berwick, Marianne; Kanetsky, Peter A.

    2016-01-01

    Although nevus count is an established risk factor for melanoma, relationships between nevus number and patient and tumor characteristics have not been well studied and the influence of nevus count on melanoma-specific survival is equivocal. Using data from the Genes, Environment, and Melanoma (GEM) study, a large population-based study of primary cutaneous melanoma, we evaluated associations between number of nevi and patient features, including sun-sensitivity summarized in a phenotypic index, and tumor characteristics, and we assessed the association of nevus count with melanoma-specific survival. Higher nevus counts were independently and positively associated with male gender and younger age at diagnosis and inversely associated with lentigo maligna histology. We observed a borderline significant trend of poorer melanoma-specific survival with increasing quartile of nevus count, but little or no association between number of nevi and pigmentary phenotypic characteristics or prognostic tumor features. PMID:27101944

  7. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    PubMed

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. CD63 tetraspanin is a negative driver of epithelial-to-mesenchymal transition in human melanoma cells.

    PubMed

    Lupia, Antonella; Peppicelli, Silvia; Witort, Ewa; Bianchini, Francesca; Carloni, Vinicio; Pimpinelli, Nicola; Urso, Carmelo; Borgognoni, Lorenzo; Capaccioli, Sergio; Calorini, Lido; Lulli, Matteo

    2014-12-01

    The CD63 tetraspanin is highly expressed in the early stages of melanoma and decreases in advanced lesions, suggesting it as a possible suppressor of tumor progression. We employed loss- and gain-of-gene-function approaches to investigate the role of CD63 in melanoma progression and acquisition of the epithelial-to-mesenchymal transition (EMT) program. We used two human melanoma cell lines derived from primary tumors and one primary human melanoma cell line isolated from a cutaneous metastasis, differing by levels of CD63 expression. CD63-silenced melanoma cells showed enhanced motility and invasiveness with downregulation of E-cadherin and upregulation of N-cadherin and Snail. In parallel experiments, transient and stable ectopic expression of CD63 resulted in a robust reduction of cell motility, invasiveness, and protease activities, which was proportional to the increase in CD63 protein level. Transfected cells overexpressing the highest level of CD63 when transplanted into immunodeficient mice showed a reduced incidence and rate of tumor growth. Moreover, these cells showed a reduction of N-cadherin, Vimentin, Zeb1, and a-SMA, and a significant resistance to undergo an EMT program both in basal condition and in the following stimulation with TGFβ. Thus, our results establish a previously unreported mechanistic link between the tetraspanin CD63 and EMT abrogation in melanoma.

  9. The selective cytotoxicity of new triazene compounds to human melanoma cells.

    PubMed

    Sousa, Ana; Santos, Fábio; Gaspar, Maria Manuela; Calado, Susana; Pereira, João D; Mendes, Eduarda; Francisco, Ana Paula; Perry, Maria Jesus

    2017-08-01

    Metastatic melanoma still remains one the most difficult cancers to overcome. The aim of our research was the design of anti-tumour triazene compounds 3 for application to a melanoma-specific therapy. The strategy exploits the unique enzyme pathway of melanin biosynthesis for conversion of non-toxic prodrugs into toxic drugs in the melanoma cell. The compounds 3 were designed by coupling two active moieties, the alkylating triazenes and different tyrosinase substrates. All compounds 3 revealed to be chemically stable in isotonic phosphate buffer (PBS) at physiologic pH (t ½ ≥48h), and most of them showed to be slowly hydrolysed in human plasma (1.5≤t ½ (h)≤161). Compounds 3c-n revealed to be excellent tyrosinase substrates (0.74≤t ½ (min)≤6) with the best tyrosinase substrate 3l releasing MMT 45s after tyrosinase activation. Structure-activity relationship studies allowed the identification of the better structural features for enzyme affinity. Furthermore, the derivatives 3l and 3m showed cell selectivity with significant cytotoxic effects (IC 50 values of 46-65μM) against melanoma cell lines with tyrosinase overexpression MNT-1 and B16F10. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Whole Body Melanoma Transcriptome Response in Medaka

    PubMed Central

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K.; Postlethwait, John; Warren, Wesley C.

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID

  11. Whole Body Melanoma Transcriptome Response in Medaka.

    PubMed

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K; Postlethwait, John; Warren, Wesley C

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.

  12. In vitro and in vivo cytotoxic activity of human lactoferricin derived antitumor peptide R-DIM-P-LF11-334 on human malignant melanoma

    PubMed Central

    Riedl, Sabrina; Rinner, Beate; Schaider, Helmut; Liegl-Atzwanger, Bernadette; Meditz, Katharina; Preishuber-Pflügl, Julia; Grissenberger, Sarah; Lohner, Karl; Zweytick, Dagmar

    2017-01-01

    Di-peptides derived from the human host defense peptide lactoferricin were previously described to specifically interact with the negatively charged lipid phosphatidylserine exposed by cancer cells. In this study one further derivative, namely R-DIM-P-LF11-334 is shown to exhibit even increased cancer toxicity in vitro and in vivo while non-neoplastic cells are not harmed. In liposomal model systems composed of phosphatidylserine mimicking cancerous and phosphatidylcholine mimicking non-cancerous membranes the specific interaction with the cancer marker PS was confirmed by specific induction of membrane perturbation and permeabilization in presence of the peptide. In vitro studies with cell lines of human malignant melanoma, such as A375, or primary cells of human melanoma metastases to the brain, as MUG Mel1, and non-neoplastic human dermal fibroblasts NHDF revealed high cytotoxic effect of R-DIM-P-LF11-334 on melanoma cells of A375 and MUG Mel1, whereas only minor effect on the dermal fibroblasts NHDF was observed, yielding an about 20-fold killing-specificity for A375 and MUG-Mel1. The LC50 values for melanoma A375 and MUG Mel1 were about 10 μM. Analysis of secondary structure of the peptide revealed an increase in the proportion of β-sheets exclusively in presence of the cancer mimic. Stability studies further indicated a potential adequate stability in blood or under stringent conditions. Importantly the cytotoxic effect on cancer cells was also proven in vivo in mouse xenografts of human melanoma, where peptide treatment induced strong tumor regression and in average a tumor area reduction of 85% compared to tumors of control mice without peptide treatment. PMID:29069749

  13. In vitro and in vivo cytotoxic activity of human lactoferricin derived antitumor peptide R-DIM-P-LF11-334 on human malignant melanoma.

    PubMed

    Riedl, Sabrina; Rinner, Beate; Schaider, Helmut; Liegl-Atzwanger, Bernadette; Meditz, Katharina; Preishuber-Pflügl, Julia; Grissenberger, Sarah; Lohner, Karl; Zweytick, Dagmar

    2017-09-22

    Di-peptides derived from the human host defense peptide lactoferricin were previously described to specifically interact with the negatively charged lipid phosphatidylserine exposed by cancer cells. In this study one further derivative, namely R-DIM-P-LF11-334 is shown to exhibit even increased cancer toxicity in vitro and in vivo while non-neoplastic cells are not harmed. In liposomal model systems composed of phosphatidylserine mimicking cancerous and phosphatidylcholine mimicking non-cancerous membranes the specific interaction with the cancer marker PS was confirmed by specific induction of membrane perturbation and permeabilization in presence of the peptide. In vitro studies with cell lines of human malignant melanoma, such as A375, or primary cells of human melanoma metastases to the brain, as MUG Mel1, and non-neoplastic human dermal fibroblasts NHDF revealed high cytotoxic effect of R-DIM-P-LF11-334 on melanoma cells of A375 and MUG Mel1, whereas only minor effect on the dermal fibroblasts NHDF was observed, yielding an about 20-fold killing-specificity for A375 and MUG-Mel1. The LC 50 values for melanoma A375 and MUG Mel1 were about 10 μM. Analysis of secondary structure of the peptide revealed an increase in the proportion of β-sheets exclusively in presence of the cancer mimic. Stability studies further indicated a potential adequate stability in blood or under stringent conditions. Importantly the cytotoxic effect on cancer cells was also proven in vivo in mouse xenografts of human melanoma, where peptide treatment induced strong tumor regression and in average a tumor area reduction of 85% compared to tumors of control mice without peptide treatment.

  14. Immunoregulatory protein B7-H3 promotes growth and decreases sensitivity to therapy in metastatic melanoma cells.

    PubMed

    Flem-Karlsen, Karine; Tekle, Christina; Andersson, Yvonne; Flatmark, Kjersti; Fodstad, Øystein; Nunes-Xavier, Caroline E

    2017-09-01

    B7-H3 (CD276) belongs to the B7 family of immunoregulatory proteins and has been implicated in cancer progression and metastasis. In this study, we found that metastatic melanoma cells with knockdown expression of B7-H3 showed modest decrease in proliferation and glycolytic capacity and were more sensitive to dacarbazine (DTIC) chemotherapy and small-molecule inhibitors targeting MAP kinase (MAPK) and AKT/mTOR pathways: vemurafenib (PLX4032; BRAF inhibitor), binimetinib (MEK-162; MEK inhibitor), everolimus (RAD001; mTOR inhibitor), and triciribidine (API-2; AKT inhibitor). Similar effects were observed in melanoma cells in the presence of an inhibitory B7-H3 monoclonal antibody, while the opposite was seen in B7-H3-overexpressing cells. Further, combining B7-H3 inhibition with small-molecule inhibitors resulted in significantly increased antiproliferative effect in melanoma cells, as well as in BRAF V 600E mutated cell lines derived from patient biopsies. Our findings indicate that targeting B7-H3 may be a novel alternative to improve current therapy of metastatic melanoma. © 2017 The Authors Pigment Cell & Melonoma Research Published by John Wiley & Sons Ltd.

  15. Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro.

    PubMed

    Sanna, K; Rofstad, E K

    1994-07-15

    Rodent cell lines can develop resistance to doxorubicin and methotrexate during hypoxic stress. This has so far not been observed in human tumor cell lines. The purpose of our communication is to show that doxorubicin and methotrexate resistance can also develop in human melanoma cells during exposure to hypoxia. Four cell lines (BEX-c, COX-c, SAX-c, WIX-c) have been studied. Cells were exposed to hypoxia (O2 concentration < 10 ppm) for 24 hr prior to reoxygenation. Doxorubicin and methotrexate cell survival curves were determined immediately after as well as 18 and 42 hr after reoxygenation. The 4 cell lines were relatively sensitive to doxorubicin without hypoxia pre-treatment, and all developed resistance during exposure to hypoxia. Hypoxic stress also induced methotrexate resistance in BEX-c and SAX-c but not in COX-c and WIX-c. BEX-c and SAX-c were sensitive to methotrexate without hypoxia pre-treatment, whereas COX-c and WIX-c were resistant initially. Hypoxia-induced drug resistance was present immediately after reoxygenation and tended to decrease with time but remained statistically significant even 42 hr after reoxygenation.

  16. Computer-aided dermoscopy for diagnosis of melanoma

    PubMed Central

    Barzegari, Masoomeh; Ghaninezhad, Haiedeh; Mansoori, Parisa; Taheri, Arash; Naraghi, Zahra S; Asgari, Masood

    2005-01-01

    Background Computer-aided dermoscopy using artificial neural networks has been reported to be an accurate tool for the evaluation of pigmented skin lesions. We set out to determine the sensitivity and specificity of a computer-aided dermoscopy system for diagnosis of melanoma in Iranian patients. Methods We studied 122 pigmented skin lesions which were referred for diagnostic evaluation or cosmetic reasons. Each lesion was examined by two clinicians with naked eyes and all of their clinical diagnostic considerations were recorded. The lesions were analyzed using a microDERM® dermoscopy unit. The output value of the software for each lesion was a score between 0 and 10. All of the lesions were excised and examined histologically. Results Histopathological examination revealed melanoma in six lesions. Considering only the most likely clinical diagnosis, sensitivity and specificity of clinical examination for diagnosis of melanoma were 83% and 96%, respectively. Considering all clinical diagnostic considerations, the sensitivity and specificity were 100% and 89%. Choosing a cut-off point of 7.88 for dermoscopy score, the sensitivity and specificity of the score for diagnosis of melanoma were 83% and 96%, respectively. Setting the cut-off point at 7.34, the sensitivity and specificity were 100% and 90%. Conclusion The diagnostic accuracy of the dermoscopy system was at the level of clinical examination by dermatologists with naked eyes. This system may represent a useful tool for screening of melanoma, particularly at centers not experienced in the field of pigmented skin lesions. PMID:16000171

  17. Interaction of dacarbazine and imexon, in vitro and in vivo, in human A375 melanoma cells.

    PubMed

    Samulitis, Betty K; Dorr, Robert T; Chow, H-H Sherry

    2011-09-01

    We evaluated mechanisms of interaction between the alkyating agent dacarbazine (DTIC) and the pro-oxidant, imexon, in the human A375 melanoma cell line. The effect of DTIC and imexon, alone and in combination, was evaluated for growth inhibition (MTT), radiolabeled drug uptake, cellular thiol content (HPLC), and DNA strand breaks (Comet assay). Pharmacokinetic and antitumor effects were evaluated in mice. Growth inhibition in vitro was additive with the two drugs. There was no effect on drug uptake or on the number of DNA strand breaks. There was a >75% reduction in cellular glutathione and cysteine with imexon but not DTIC. Co-administration of the two drugs in mice caused an increase in the area under the curve of both drugs, but the combination was not effective in reducing human A375 melanoma tumors in vivo. Imexon and dacarbazine show additive effects in vitro but not in vivo in human A375 melanoma cells.

  18. Simulated microgravity reduces mRNA levels of multidrug resistance genes 4 and 5 in non-metastatic human melanoma cells

    NASA Astrophysics Data System (ADS)

    Eiermann, Peter; Tsiockas, Wasiliki; Hauslage, Jens; Hemmersbach, Ruth; Gerzer, Rupert; Ivanova, Krassimira

    Multidrug resistance proteins (MRP) are members of the ATP-binding cassette transporter superfamily that are able to export a large variety of substances into the extracellular space in-cluding nucleoside and nucleotide base analogs used in antiviral and anticancer therapy. MRP4 and 5 (MRP4/5) particularly transport cyclic nucleotides, e.g. guanosine 3',5'-cyclic monophos-phate (cGMP). The second messenger cGMP, which is synthesized by the catalytic activity of the guanylyl cyclase (GC), plays an import role in vasodilatation, smooth muscle relaxation, and nitric oxide (NO)-induced perturbation of melanocyte-extracellular matrix interactions. In previous studies we have reported that different GC isoforms are responsible for cGMP synthe-sis in melanocytic cells. Normal human melanocytes and non-metastatic melanoma cell lines predominantly express the NO-sensitive soluble GC isoform (sGC), a heterodimeric protein consisting of α and β subunits. Metastatic melanoma cells lack the expression of the β sub-unit and show up-regulated activities of the particulate isoforms. We have further found that long-term exposure to hypergravity (5 g for 24 h) induced an increased cGMP export in normal human melanocytes, and non-metastatic, but not in metastatic human melanoma cells as a re-sult of up-regulated MRP4/5 expression. The aim of the present study is to investigate whether simulated microgravity may also alter the expression of MRP4/5 in non-metastatic melanoma cells. Experiments were performed using a fast-rotating clinostat (60 rpm) with one rotation axis. The non-metastatic 1F6 melanoma cells were exposed to simulated microgravity (up to 1.21x10-2 g) for 24 h. The mRNA analyses were performed by a relative calibrator-normalized and efficiency corrected quantitative polymerase chain reaction (Light Cycler R , Roche). Our data show a reduced expression of approximately 35% for MRP4 and of 50% for MRP5 in simulated microgravity in comparison to 1 g controls. Also, the

  19. Monitoring the Systemic Human Memory B Cell Compartment of Melanoma Patients for Anti-Tumor IgG Antibodies

    PubMed Central

    Gilbert, Amy E.; Karagiannis, Panagiotis; Dodev, Tihomir; Koers, Alexander; Lacy, Katie; Josephs, Debra H.; Takhar, Pooja; Geh, Jenny L. C.; Healy, Ciaran; Harries, Mark; Acland, Katharine M.; Rudman, Sarah M.; Beavil, Rebecca L.; Blower, Philip J.; Beavil, Andrew J.; Gould, Hannah J.; Spicer, James; Nestle, Frank O.; Karagiannis, Sophia N.

    2011-01-01

    Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (P<0.0001). Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (P<0.0001). Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer. PMID:21559411

  20. microRNA-216b inhibits cell proliferation and migration in human melanoma by targeting FOXM1 in vitro and in vivo.

    PubMed

    Sun, Mengyao; Wang, Xiaopeng; Tu, Chen; Wang, Shuang; Qu, Jianqiang; Xiao, Shengxiang

    2017-12-01

    MicroRNAs (miRNAs) play an increasingly important role in cancer growth by coordinately suppressing genes that control cell migration, proliferation, and invasion. The above results can be achieved through the regulation of gene expression by miRNAs by suppressing translation or the direct sequence-specific degradation of the targeted mRNA. In the present study, we indicate that the expression of miR-216b could be effectively repressed both in human melanoma tissues through a comparison with primary melanoma and in human melanoma cell lines through a comparison with a normal human keratinocyte line. Moreover, miR-216b induced a clear decrease in melanoma cell proliferation and migration in vitro. Forkhead box M1 (FOXM1) was confirmed as a target gene of miR-216b, and the overexpression of miR-216b markedly repressed the luciferase activity of reporter plasmids containing the FOXM1 3'-UTR (untranslated region). Furthermore, miR-216b suppressed melanoma cell growth in nude mice in vivo, with the effects of miR-216b overexpression on melanoma cell growth and proliferation reversed by FOXM1 overexpression. The results demonstrated that miR-216b is a tumor suppressor in melanoma, identified the FOXM1 signaling pathway as a target of miR-216b action, and suggested a potential therapeutic role for miR-216b in melanoma. © 2017 International Federation for Cell Biology.

  1. Pigment Production Analysis in Human Melanoma Cells.

    PubMed

    Hopkin, Amelia Soto; Paterson, Elyse K; Ruiz, Rolando; Ganesan, Anand K

    2016-05-25

    The human epidermal melanocyte is a highly specialized pigmented cell that serves to protect the epidermis from ultraviolet (UV) damage through the production of melanin, or melanogenesis. Misregulation in melanogenesis leading to either hyper- or hypo-pigmentation is found in human diseases such as malasma and vitiligo. Current therapies for these diseases are largely unsuccessful and the need for new therapies is necessary. In order to identify genes and or compounds that can alter melanogenesis, methods are required that can detect changes in pigment production as well as expression of key melanogenesis transcription factors and enzymes. Here we describe methods to detect changes in melanogenesis in a human melanoma cell line, MNT-1, by (1) analyzing pigment production by measuring the absorbance of melanin present by spectrophotometry, (2) analyzing transcript expression of potent regulators of melanogenesis by qunatitative reverse-transcription (RT)PCR and (3) analyzing protein expression of potent regulators of melanogenesis by Western blot (WB).

  2. Costimulation through the CD137/4-1BB pathway protects human melanoma tumor-infiltrating lymphocytes from activation-induced cell death and enhances antitumor effector function.

    PubMed

    Hernandez-Chacon, Jessica Ann; Li, Yufeng; Wu, Richard C; Bernatchez, Chantale; Wang, Yijun; Weber, Jeffrey S; Hwu, Patrick; Radvanyi, Laszlo G

    2011-04-01

    Adoptive T-cell therapy (ACT) using expanded tumor-infiltrating lymphocytes (TIL) with high-dose interleukin-2 is a promising form of immunotherapy for stage IV melanoma having clinical response rates of 50% or more. One of the major problems preventing further success of this therapy is that the current protocols used to highly expand TIL for infusion drive CD8(+) T cells to differentiate into effector cells losing key costimulatory molecules such as CD28 and CD27. This has been associated with a lack of persistence in vivo for reasons not entirely clear. In this study, we demonstrate that while human melanoma CD8(+) TIL lost CD27 and CD28 expression during the rapid expansion for ACT, they gained expression of the alternative costimulatory molecule CD137/4-1BB, and to a lesser extent CD134/OX40. Postrapid expansion protocol (REP) TIL were found to be highly sensitive to activation-induced cell death when reactivated through the T-cell receptor with low levels of OKT3 antibody. However, coligation of 4-1BB using 2 different agonistic anti-4-1BB antibodies potently prevented activation-induced cell death of post-REP CD8(+) TIL, including those specific for melanoma antigen recognized by T cells, and facilitated even further cell expansion. This was correlated with increased levels of bcl-2 and bcl-xL together with decreased bim expression. 4-1BB costimulated post-REP TIL also expressed increased levels of the cytolytic granule proteins and exhibited enhanced cytotoxic T-cell activity against melanoma cells. Lastly, post-REP CD8(+) TIL were protected from cell death by anti-4-1BB ligation when exposed to human leukocyte antigen-matched melanoma cells. Our results indicate that 4-1BB costimulation may significantly improve TIL survival during melanoma ACT and boost antitumor cytolytic activity.

  3. Induction of Melanogenesis by Rapamycin in Human MNT-1 Melanoma Cells

    PubMed Central

    Hah, Young-Sool; Cho, Hee Young; Lim, Tae-Yeon; Park, Dong Hwa; Kim, Hwa Mi; Yoon, Jimi; Kim, Jin Gu; Kim, Chi Yeon

    2012-01-01

    Background Melanogenesis is one of the characteristic parameters of differentiation in melanocytes and melanoma cells. Specific inhibitors of phosphatidylinositol 3-kinase (PI3K), such as wortmannin and LY294002, stimulate melanin production in mouse and in human melanoma cells, suggesting that PI3K and mammalian target of rapamycin (mTOR) might be involved in the regulation of melanogenesis. Objective The involvement of the mTOR pathway in regulating melanogenesis was examined using human MNT-1 melanoma cells, and the effects of the potent inhibitor of mTOR, rapamycin, in the presence or absence of α-melanocyte-stimulating hormone (α-MSH) were evaluated. Methods In cells treated with rapamycin, cell viability, melanin content, and tyrosinase (TYR) activity were measured and compared with untreated controls. Protein levels of TYR, tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) were also analyzed by Western blot. Results In rapamycin-treated cells, the melanin content increased concomitantly with an elevation in TYR activity, which plays a major role in melanogenesis. There was also an up-regulation of TYR, TYRP-1, and MITF proteins. Combined treatment with rapamycin or wortmannin and α-MSH increased melanogenesis more strongly than α-MSH alone. Conclusion Rapamycin-induced melanin formation may be mediated through the up-regulation of TYR protein and activity. Furthermore, rapamycin and wortmannin, inhibitors of mTOR and PI3K, respectively, have co-stimulatory effects with α-MSH in enhancing melanogenesis in melanocyte cells. PMID:22577264

  4. Induction of melanogenesis by rapamycin in human MNT-1 melanoma cells.

    PubMed

    Hah, Young-Sool; Cho, Hee Young; Lim, Tae-Yeon; Park, Dong Hwa; Kim, Hwa Mi; Yoon, Jimi; Kim, Jin Gu; Kim, Chi Yeon; Yoon, Tae-Jin

    2012-05-01

    Melanogenesis is one of the characteristic parameters of differentiation in melanocytes and melanoma cells. Specific inhibitors of phosphatidylinositol 3-kinase (PI3K), such as wortmannin and LY294002, stimulate melanin production in mouse and in human melanoma cells, suggesting that PI3K and mammalian target of rapamycin (mTOR) might be involved in the regulation of melanogenesis. The involvement of the mTOR pathway in regulating melanogenesis was examined using human MNT-1 melanoma cells, and the effects of the potent inhibitor of mTOR, rapamycin, in the presence or absence of α-melanocyte-stimulating hormone (α-MSH) were evaluated. In cells treated with rapamycin, cell viability, melanin content, and tyrosinase (TYR) activity were measured and compared with untreated controls. Protein levels of TYR, tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) were also analyzed by Western blot. In rapamycin-treated cells, the melanin content increased concomitantly with an elevation in TYR activity, which plays a major role in melanogenesis. There was also an up-regulation of TYR, TYRP-1, and MITF proteins. Combined treatment with rapamycin or wortmannin and α-MSH increased melanogenesis more strongly than α-MSH alone. Rapamycin-induced melanin formation may be mediated through the up-regulation of TYR protein and activity. Furthermore, rapamycin and wortmannin, inhibitors of mTOR and PI3K, respectively, have co-stimulatory effects with α-MSH in enhancing melanogenesis in melanocyte cells.

  5. Differential Regulation of cGMP Signaling in Human Melanoma Cells at Altered Gravity: Simulated Microgravity Down-Regulates Cancer-Related Gene Expression and Motility

    NASA Astrophysics Data System (ADS)

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hemmersbach, Ruth; Gerzer, Rupert

    2018-03-01

    Altered gravity is known to affect cellular function by changes in gene expression and cellular signaling. The intracellular signaling molecule cyclic guanosine-3',5'-monophosphate (cGMP), a product of guanylyl cyclases (GC), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) or natriuretic peptide-activated GC (GC-A/GC-B), is involved in melanocyte response to environmental stress. NO-sGC-cGMP signaling is operational in human melanocytes and non-metastatic melanoma cells, whereas up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are found in metastatic melanoma cells, the deadliest skin cancer. Here, we investigated the effects of altered gravity on the mRNA expression of NOS isoforms, sGC, GC-A/GC-B and multidrug resistance-associated proteins 4/5 (MRP4/MRP5) as selective cGMP exporters in human melanoma cells with different metastatic potential and pigmentation. A specific centrifuge (DLR, Cologne Germany) was used to generate hypergravity (5 g for 24 h) and a fast-rotating 2-D clinostat (60 rpm) to simulate microgravity values ≤ 0.012 g for 24 h. The results demonstrate that hypergravity up-regulates the endothelial NOS-sGC-MRP4/MRP5 pathway in non-metastatic melanoma cells, but down-regulates it in simulated microgravity when compared to 1 g. Additionally, the suppression of sGC expression and activity has been suggested to correlate inversely to tumor aggressiveness. Finally, hypergravity is ineffective in highly metastatic melanoma cells, whereas simulated microgravity down-regulates predominantly the expression of the cancer-related genes iNOS and GC-A/GC-B (shown additionally on protein levels) as well as motility in comparison to 1 g. The results suggest that future studies in real microgravity can benefit from considering GC-cGMP signaling as possible factor for melanocyte transformation.

  6. Overexpression of the anti-apoptotic protein BAG3 in human choroidal melanoma: A case report.

    PubMed

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Kondo, Takashi; Ishii, Yoko; Hayashi, Atsushi

    2017-06-01

    Bcl-2-associated athanogene 3 (BAG3), a co-chaperone of heat shock protein 70 (HSP70), exerts anti-apoptotic effects in various malignant tumors. However, relationships between choroidal melanoma and BAG3 are poorly studied. This study investigated the expression of BAG3 in a case of human choroidal melanoma. Funduscopy, computed tomography, and single-photon emission computed tomography with the intravenous injection of N-isopropyl-p-[ 123 I] iodoamphetamine strongly indicated choroidal melanoma in a 68-year-old woman. Accordingly, we carried out an enucleation and pathological diagnosis. Proteins and total RNA were extracted from normal retinochoroidal and tumor tissues. Proteins were also extracted from ocular nevus tissues of other patients. We examined the expression of BAG3 protein and mRNA using Western blotting and the real-time quantitative polymerase chain reaction, respectively. Immunohistochemical stains were positive for melan-A, HMB-45, and S-100. Histopathology confirmed a choroidal melanoma. The expression of BAG3 protein and mRNA in the choroidal melanoma tissue was upregulated with respect to both normal retinochoroidal tissue and ocular nevus tissues from other patients. Because BAG3 may inhibit apoptosis of choroidal melanoma and facilitate its survival, overexpression of this gene product may be a prognostic marker and therapeutic target.

  7. Serum sialyltransferase and liver catalase activity in cachectic nude mice bearing a human malignant melanoma.

    PubMed

    Kondo, Y; Sato, K; Ueyama, Y; Ohsawa, N

    1981-07-01

    Cachexia is rare in nude mice bearing human malignant tumors even when the transplanted tumors become as large as the body size of the host. In our series on heterotransplantation of a variety of human malignant tumors into nude mice, a malignant melanoma (SEKI) was found to induce severe body weight loss in the host at the early stage of transplantation. There was no electrolyte disturbance, hyper- or hypoadrenocorticism, hyperthyroidism, or destruction of cells of vital organs to account for the weight loss. Moreover, no evidence was obtained for concomitant infection with bacteria, Mycoplasma or fungi. These cachectic mice revealed remarkably increased levels of serum sialyltransferase and decreased liver catalase activity. The removal of tumor tissues from these mice resulted in prompt recovery of body weight, serum sialyltransferase, and liver catalase activity within 1 to 2 weeks. On the basis of the results obtained, the SEKI melanoma was thought to have produced a pathophysiological state in host nude mice which was very similar to that of cachexia in cancer patients. Nude mice bearing transplants of SEKI melanoma may provide a useful system for the study of cancer cachexia in humans.

  8. FOXP3 expression is modulated by TGF-β1/NOTCH1 pathway in human melanoma

    PubMed Central

    Skarmoutsou, Eva; Bevelacqua, Valentina; D'Amico, Fabio; Russo, Angela; Spandidos, Demetrios A.; Scalisi, Aurora

    2018-01-01

    Forkhead box protein 3 (FOXP3) transcription factor is expressed by immune cells and several human cancers and is associated with tumor aggressiveness and unfavorable clinical outcomes. NOTCH and transforming growth factor-β (TGF-β) protumorigenic effects are mediated by FOXP3 expression in several cancer models; however, their interaction and role in melanoma is unknown. We investigated TGF-β-induced FOXP3 gene expression during NOTCH1 signaling inactivation. Primary (WM35) and metastatic melanoma (A375 and A2058) cell lines and normal melanocytes (NHEM) were used. FOXP3 subcellular distribution was evaluated by immuno cytochemical analysis. Gene expression levels were assessed by reverse transcription-quantitative polymerase chain reaction. Protein levels were assessed by western blot analysis. The γ-secretase inhibitor (GSI) was used for NOTCH1 inhibition and recombinant human (rh)TGF-β was used for melanoma cell stimulation. Cell proliferation and viability were respectively assessed by MTT and Trypan blue dye assays. FOXP3 mRNA and protein levels were progressively higher in WM35, A375 and A2058 cell lines compared to NHEM and their levels were further increased after stimulation with rh-TGF-β. TGF-β-mediated FOXP3 expression was mediated by NOTCH1 signaling. Inhibition of NOTCH1 with concomitant rh-TGF-β stimulation determined the reduction in gene expression and protein level of FOXP3. Finally, melanoma cell line proliferation and viability were reduced by NOTCH1 inhibition. The results show that nn increase in FOXP3 expression in metastatic melanoma cell lines is a potential marker of tumor aggressiveness and metastasis. NOTCH1 is a central mediator of TGF-β-mediated FOXP3 expression and NOTCH1 inhibition produces a significant reduction of melanoma cell proliferation and viability. PMID:29620159

  9. [Endocrine factors influencing melanoma progression].

    PubMed

    Dobos, Judit

    2009-03-01

    According to recent findings that beside cancers traditionally considered as hormone-dependent, several other tumor types show different behavior in the two sexes, indicating the possible role of endocrine factors in the course of these diseases. The possibility that endocrine factors may influence the clinical course of human malignant melanoma is suggested by the higher survival rate in premenopausal vs. postmenopausal women or men of any ages. However, investigations on the sex hormone receptor status of human cutaneous melanomas and experiments attempting to support the epidemiological results yielded conflicting results. In our human melanoma cell lines we failed to detect steroid receptors at protein level, while quantitative PCR demonstrated that their mRNA expression level was orders of magnitude lower compared to the positive control cell lines. Sex hormones did not influence the in vitro features of the human melanoma cells considerably. On the other hand, glucocorticoid receptor was present both at mRNA and protein level, although dexamethasone was effective in vitro only at high doses. Our previous experiments showed that intrasplenic injection of human melanoma cells resulted in a significantly higher number of liver colonies in male than in female SCID mice. We now show that this difference evolves during the first day. After injection into the tail vein we did not observe gender-dependent difference in the efficiency of pulmonary colonization. Examining the pattern of metastasis formation after intracardiac injection, we have found differences between the two sexes in the incidence or number of colonies only in the case of the liver but not in other organs. We concluded that the observed phenomenon is specific to the liver; therefore we investigated the effects of 2-methoxyestradiol, an endogenous metabolite of estradiol produced mainly in the liver, with an estrogen receptor-independent antitumor activity. 2ME2 effectively inhibited melanoma cell

  10. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells.

    PubMed

    Zhao, Guangming; Han, Xiaodong; Cheng, Wei; Ni, Jing; Zhang, Yunfei; Lin, Jingrong; Song, Zhiqi

    2017-04-01

    Malignant melanoma is the most invasive and fatal form of cutaneous cancer. Moreover it is extremely resistant to conventional chemotherapy and radiotherapy. Apigenin, a non-mutagenic flavonoid, has been found to exhibit chemopreventive and/or anticancerogenic properties in many different types of human cancer cells. Therefore, apigenin may have particular relevance for development as a chemotherapeutic agent for cancer treatment. In the present study, we investigated the effects of apigenin on the viability, migration and invasion potential, dendrite morphology, cell cycle distribution, apoptosis, phosphorylation of the extracellular signal-regulated protein kinase (ERK) and the AKT/mTOR signaling pathway in human melanoma A375 and C8161 cell lines in vitro. Apigenin effectively suppressed the proliferation of melanoma cells in vitro. Moreover, it inhibited cell migration and invasion, lengthened the dendrites, and induced G2/M phase arrest and apoptosis. Furthermore, apigenin promoted the activation of cleaved caspase-3 and cleaved PARP proteins and decreased the expression of phosphorylated (p)‑ERK1/2 proteins, p-AKT and p-mTOR. Consequently, apigenin is a novel therapeutic candidate for melanoma.

  11. Tumor-suppressive effects of natural-type interferon-β through CXCL10 in melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Hikaru; Nobeyama, Yoshimasa, E-mail: nobederm@jikei.ac.jp; Nakagawa, Hidemi

    2015-08-21

    Introduction: Type 1 interferon is in widespread use as adjuvant therapy to inhibit melanoma progression. Considering the tumor-suppressive effects of local administration of interferon-β (IFN-β) on lymphatic metastasis, the present study was conducted to identify melanoma-suppressive molecules that are up-regulated by IFN-β treatment of lymphatic endothelial cells. Materials and methods: Lymphatic endothelial cells, fibroblasts, and melanoma cells were treated with natural-type IFN-β, and melanoma cells were treated with CXCL10. Genome-wide oligonucleotide microarray analysis was performed using lymphatic endothelial cells with or without IFN-β treatment. Quantitative real-time reverse transcription-PCR and an enzyme-linked immunosorbent assay were performed to examine CXCL10 expression. Amore » proliferation assay was performed to examine the effects of IFN-β and CXCL10 in melanoma cells. Results: Genome-wide microarray analyses detected CXCL10 as a gene encoding a secretory protein that was up-regulated by IFN-β in lymphatic endothelial cells. IFN-β treatment significantly induced CXCL10 in dermal lymphatic endothelial cells and melanoma cells that are highly sensitive to IFN-β. CXCL10 reduced melanoma cell proliferation in IFN-β-sensitive cells as well as resistant cells. Melanoma cells in which CXCL10 was knocked down were sensitive to IFN-β. CXCR3-B, which encodes the CXCL10 receptor, was up-regulated in melanoma cells with high sensitivity to IFN-β and down-regulated in melanoma cells with medium to low sensitivity. Conclusions: Our data suggest that IFN-β suppresses proliferation and metastasis from the local lymphatic system and melanoma cells via CXCL10. Down-regulation of CXCR3-B by IFN-β may be associated with resistance to IFN-β. - Highlights: • We search melanoma-suppressive molecules induced by IFN-β. • IFN-β induces a high amount of CXCL10 from lymphatic endothelial cells. • CXCL10 induction level in melanoma cells is

  12. Melanocytoma-like melanoma may be the missing link between benign and malignant uveal melanocytic lesions in humans and dogs: a comparative study.

    PubMed

    Zoroquiain, Pablo; Mayo-Goldberg, Erin; Alghamdi, Sarah; Alhumaid, Sulaiman; Perlmann, Eduardo; Barros, Paulo; Mayo, Nancy; Burnier, Miguel N

    2016-12-01

    The cutoff presented in the current classification of canine melanocytic lesions by Wilcock and Pfeiffer is based on the clinical outcome rather than morphological concepts. Classification of tumors based on morphology or molecular signatures is the key to identifying new therapies or prognostic factors. Therefore, the aim of this study was to analyze morphological findings in canine melanocytic lesions based on classic malignant morphologic principles of neoplasia and to compare these features with human uveal melanoma (HUM) samples. In total, 64 canine and 111 human morphologically malignant melanocytic lesions were classified into two groups (melanocytoma-like or classic melanoma) based on the presence or absence of M cells, respectively. Histopathological characteristics were compared between the two groups using the χ-test, t-test, and multivariate discriminant analysis. Among the 64 canine tumors, 28 (43.7%) were classic and 36 (56.3%) were melanocytoma-like melanomas. Smaller tumor size, a higher degree of pigmentation, and lower mitotic activity distinguished melanocytoma-like from classic tumors with an accuracy of 100% for melanocytoma-like lesions. From the human series, only one case showed melanocytoma-like features and had a low risk for metastasis characteristics. Canine uveal melanoma showed a morphological spectrum with features similar to the HUM counterpart (classic melanoma) and overlapped features between uveal melanoma and melanocytoma (melanocytoma-like melanoma). Recognition that the subgroup of melanocytoma-like melanoma may represent the missing link between benign and malignant lesions could help explain the progression of uveal melanoma in dogs; these findings can potentially be translated to HUM.

  13. Spectrophotometric Method for Differentiation of Human Skin Melanoma. I. Optical Diffuse Reflection Coefficient

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.

    2016-03-01

    We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.

  14. Vulvar and vaginal melanoma: A unique subclass of mucosal melanoma based on a comprehensive molecular analysis of 51 cases compared with 2253 cases of nongynecologic melanoma.

    PubMed

    Hou, June Y; Baptiste, Caitlin; Hombalegowda, Radhika Bangalore; Tergas, Ana I; Feldman, Rebecca; Jones, Nathaniel L; Chatterjee-Paer, Sudeshna; Bus-Kwolfski, Ama; Wright, Jason D; Burke, William M

    2017-04-15

    Optimal treatments for vulvar and vaginal melanomas (VVMs) have not been identified. Herein, the authors compare molecular profiles between VVM and nongynecologic melanoma (NGM) subtypes with the objective of identifying novel, targetable biomarkers. In total, 2304 samples of malignant melanoma that were submitted to Caris Life Sciences between 2009 and 2015 were reviewed. In situ hybridization and immunohistochemistry were used to assess copy numbers and protein expression of selected genes. Sequenced variants were analyzed using a proprietary cancer panel. In total, 51 VVMs (14 vaginal and 37 vulvar melanomas) were compared with 2253 malignant NGMs, including 2127 cutaneous, 105 mucosal, and 21 acral melanomas. In VVMs, B-Raf proto-oncogene serine/threonine kinase (BRAF) was the most frequently mutated gene (26%) compared with 8.3% of mucosal NGMs (P = .008). In BRAF-mutated tumors, fewer VVMs (50%), compared with NGMs (82.1%), had a variant within the valine codon 600 (V600) domain. The KIT mutation rate was highest in VVMs (22%) compared with 3% in cutaneous (P < .001) and 8.8% in mucosal (P = .05) melanoma subtypes. NRAS mutations were rare in VVMs compared with cutaneous (25.9%; P = .009) and acral (40.6%; P = .002) melanoma subtypes. PD-L1 (56%) and PD-1 (75%) were frequently expressed in VVM, whereas PI3KCA pathway mutations and estrogen receptor/progesterone receptor expression were rare. Compared with VVMs that had KIT mutations, wild-type KIT VVMs were more likely to express molecular markers suggestive of platinum resistance (ERCC1), alkylating sensitivity (MGMT), and anthracycline sensitivity (TOP2A). The unique molecular features of VVM render this disease a distinct subtype of melanoma. Gene-based molecular therapy and immunotherapies may be promising and should be evaluated in clinical trials. Cancer 2017;123:1333-1344. © 2016 American Cancer Society. © 2016 American Cancer Society.

  15. PARP1 inhibitor olaparib (Lynparza) exerts synthetic lethal effect against ligase 4-deficient melanomas

    PubMed Central

    Czyż, Małgorzata; Toma, Monika; Gajos-Michniewicz, Anna; Majchrzak, Kinga; Hoser, Grazyna; Szemraj, Janusz; Nieborowska-Skorska, Margaret; Cheng, Phil; Gritsyuk, Daniel; Levesque, Mitchell; Dummer, Reinhard; Sliwinski, Tomasz; Skorski, Tomasz

    2016-01-01

    Cancer including melanoma may be “addicted” to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes. We observed that PARP1 inhibitor olaparib sensitized melanomas with reduced expression of DNA ligase 4 (LIG4) to an alkylatimg agent dacarbazine (DTIC) treatment in vitro, while normal melanocytes remained intact. PARP1 inhibition caused accumulation of DSBs, which was associated with apoptosis in LIG4 deficient melanoma cells. Our hypothesis that olaparib is synthetic lethal with LIG4 deficiency in melanoma cells was supported by selective anti-tumor effects of olaparib used either alone or in combination with dacarbazine (DTIC) in LIG4 deficient, but not LIG4 proficient cells. In addition, olaparib combined with DTIC inhibited the growth of LIG4 deficient human melanoma xenografts. This work for the first time demonstrates the effectiveness of a combination of PARP1 inhibitor olaparib and alkylating agent DTIC for treating LIG4 deficient melanomas. In addition, analysis of the TCGA and transcriptome microarray databases revealed numerous individual melanoma samples potentially displaying specific defects in DSB repair pathways, which may predispose them to synthetic lethality triggered by PARP1 inhibitor combined with a cytotoxic drug. PMID:27705909

  16. Effect of SMURF2 Targeting on Susceptibility to MEK Inhibitors in Melanoma

    PubMed Central

    2013-01-01

    Background The mitogen-activated protein–kinase pathway consisting of the kinases RAF, MEK, and ERK is central to cell proliferation and survival and is deregulated in more than 90% of melanomas. MEK inhibitors are currently trialled in the clinic, but despite efficient target inhibition, cytostatic rather than cytotoxic activity limits their efficacy. Methods We assessed the cytotoxicity to MEK inhibitors (PD184352 and selumetinib) in melanoma cells by toluidine-blue staining, caspase 3 cleavage, and melanoma-sphere growth. Western blotting and quantitative real-time polymerase chain reaction were applied to determine SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2), PAX3, and MITF expression. Human melanoma samples (n = 77) from various stages were analyzed for SMURF2 and PAX3 expression. RNA interference was performed to target SMURF2 during MEK inhibition in vivo in melanoma xenografts in mice and zebrafish. All statistical tests were two-sided. Results Activation of transforming growth factor β (TGF-β) signalling sensitized melanoma cells to the cytotoxic effects of MEK inhibition. Melanoma cells resistant to the cytotoxic effects of MEK inhibitors counteracted TGF-β signalling through overexpression of the E3 ubiquitin ligase SMURF2, which resulted in increased expression of the transcription factors PAX3 and MITF. High MITF expression protected melanoma cells against MEK inhibitor cytotoxicity. Depleting SMURF2 reduced MITF expression and substantially lowered the threshold for MEK inhibitor–induced apoptosis. Moreover, SMURF2 depletion sensitized melanoma cells to the cytotoxic effects of selumetinib, leading to cell death at concentrations approximately 100-fold lower than the concentration required to induce cell death in SMURF2-expressing cells. Mice treated with selumetinib alone at a dosage of 10mg/kg body weight once daily produced no response, but in combination with SMURF2 depletion, selumetinib suppressed tumor growth by 97.9% (95

  17. Cloning and Characterization of the Genes Encoding the Murine Homologues of the Human Melanoma Antigens MART1 and gp100

    PubMed Central

    Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.

    2008-01-01

    The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410

  18. c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines

    PubMed Central

    Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-01-01

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma. PMID:20422010

  19. c-RET molecule in malignant melanoma from oncogenic RET-carrying transgenic mice and human cell lines.

    PubMed

    Ohshima, Yuichiro; Yajima, Ichiro; Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-04-21

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma.

  20. Inducible nitric oxide synthase (iNOS) drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2

    PubMed Central

    Lopez-Rivera, Esther; Jayaraman, Padmini; Parikh, Falguni; Davies, Michael A.; Ekmekcioglu, Suhendan; Izadmehr, Sudeh; Milton, Denái R.; Chipuk, Jerry E.; Grimm, Elizabeth A.; Estrada, Yeriel; Aguirre-Ghiso, Julio; Sikora, Andrew G.

    2014-01-01

    Melanoma is one of the cancers of fastest-rising incidence in the world. iNOS is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K/AKT/mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p-P70S6K, p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of TSC2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Rheb, a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of mTOR pathway members. Exogenously-supplied NO was also sufficient to reverse mTOR pathway inhibition by the B-Raf inhibitor Vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers. PMID:24398473

  1. Hyperspectral imaging for melanoma screening

    NASA Astrophysics Data System (ADS)

    Martin, Justin; Krueger, James; Gareau, Daniel

    2014-03-01

    The 5-year survival rate for patients diagnosed with Melanoma, a deadly form of skin cancer, in its latest stages is about 15%, compared to over 90% for early detection and treatment. We present an imaging system and algorithm that can be used to automatically generate a melanoma risk score to aid clinicians in the early identification of this form of skin cancer. Our system images the patient's skin at a series of different wavelengths and then analyzes several key dermoscopic features to generate this risk score. We have found that shorter wavelengths of light are sensitive to information in the superficial areas of the skin while longer wavelengths can be used to gather information at greater depths. This accompanying diagnostic computer algorithm has demonstrated much higher sensitivity and specificity than the currently commercialized system in preliminary trials and has the potential to improve the early detection of melanoma.

  2. Etiology of melanoma.

    PubMed

    Koh, H K; Sinks, T H; Geller, A C; Miller, D R; Lew, R A

    1993-01-01

    Although the precise etiology of melanoma remains unknown, much data link sunlight to melanoma. The imperfect evidence associating sun exposure (particularly UVB radiation) with melanoma emerges from human data, obviating problems inherent in extrapolation from animal and other models. However, the mechanism by which sunlight might possibly initiate or promote melanoma remains obscure. Some clarification should emerge from the potential isolation of genes that carry susceptibility to melanoma in families prone to the disease; such work could serve as a basis to distinguish genetic and environmental influences in melanoma [167]. Continued studies of faulty DNA repair in XP patients may elucidate the steps in mutagenesis and carcinogenesis. Future case-control studies must address the limits on the accuracy of recall and the limits on statistical methods to separate the cluster of phenotypic risk needed in determining biologically effective dose. Animal and in vitro studies must contribute more insight. Further research in the South American opossum models appears promising [72]. Although ozone depletion has been documented, there has been little definitive evidence of subsequent increase of UVB at the Earth's surface. Nevertheless, the threat posed by ozone depletion deserves continued environmental action and public education. The role of precursor lesions, particularly dysplastic nevi/atypical moles, must be clarified with future research. The distribution of melanoma among various work forces suggests that occupational risk factors may play an important role in the etiology of this disease [168-170]. The consistent reports of excess melanoma among accountants, clerical workers, professional workers, and teachers deserve further study. Furthermore, evidence of excesses in printing and press, petrochemical, and the telecommunications industries require follow-up. Carefully planned studies that account for nonoccupational risk factors are recommended. Research over

  3. BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance

    PubMed Central

    Ferretti, Roberta; Bhutkar, Arjun; McNamara, Molly C.; Lees, Jacqueline A.

    2016-01-01

    Melanoma can switch between proliferative and invasive states, which have identifying gene expression signatures that correlate with good and poor prognosis, respectively. However, the mechanisms controlling these signatures are poorly understood. In this study, we identify BMI1 as a key determinant of melanoma metastasis by which its overexpression enhanced and its deletion impaired dissemination. Remarkably, in this tumor type, BMI1 had no effect on proliferation or primary tumor growth but enhanced every step of the metastatic cascade. Consistent with the broad spectrum of effects, BMI1 activated widespread gene expression changes, which are characteristic of melanoma progression and also chemoresistance. Accordingly, we showed that up-regulation or down-regulation of BMI1 induced resistance or sensitivity to BRAF inhibitor treatment and that induction of noncanonical Wnt by BMI1 is required for this resistance. Finally, we showed that our BMI1-induced gene signature encompasses all of the hallmarks of the previously described melanoma invasive signature. Moreover, our signature is predictive of poor prognosis in human melanoma and is able to identify primary tumors that are likely to become metastatic. These data yield key insights into melanoma biology and establish BMI1 as a compelling drug target whose inhibition would suppress both metastasis and chemoresistance of melanoma. PMID:26679841

  4. Expression signatures of early-stage and advanced medaka melanomas.

    PubMed

    Klotz, Barbara; Kneitz, Susanne; Regensburger, Martina; Hahn, Lena; Dannemann, Michael; Kelso, Janet; Nickel, Birgit; Lu, Yuan; Boswell, William; Postlethwait, John; Warren, Wesley; Kunz, Manfred; Walter, Ronald B; Schartl, Manfred

    2018-06-01

    Melanoma is one of the most aggressive tumors with a very low survival rate once metastasized. The incidence of newly detected cases increases every year suggesting the necessity of development and application of innovative treatment strategies. Human melanoma develops from melanocytes localized in the epidermis of the skin to malignant tumors because of deregulated effectors influencing several molecular pathways. Despite many advances in describing the molecular changes accompanying melanoma formation, many critical and clinically relevant molecular features of the transformed pigment cells and the underlying mechanisms are largely unknown. To contribute to a better understanding of the molecular processes of melanoma formation, we use a transgenic medaka melanoma model that is well suited for the investigation of melanoma tumor development because fish and human melanocytes are both localized in the epidermis. The purpose of our study was to gain insights into melanoma development from the first steps of tumor formation up to melanoma progression and to identify gene expression patterns that will be useful for monitoring treatment effects in drug screening approaches. Comparing transcriptomes from juvenile fish at the tumor initiating stage with nevi and advanced melanoma of adults, we identified stage specific expression signatures and pathways that are characteristic for the development of medaka melanoma, and are also found in human malignancies. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Tumor Cell Plasticity in Uveal Melanoma

    PubMed Central

    Folberg, Robert; Arbieva, Zarema; Moses, Jonas; Hayee, Amin; Sandal, Tone; Kadkol, ShriHari; Lin, Amy Y.; Valyi-Nagy, Klara; Setty, Suman; Leach, Lu; Chévez-Barrios, Patricia; Larsen, Peter; Majumdar, Dibyen; Pe’er, Jacob; Maniotis, Andrew J.

    2006-01-01

    The histological detection of laminin-rich vasculogenic mimicry patterns in human primary uveal melanomas is associated with death from metastases. We therefore hypothesized that highly invasive uveal melanoma cells forming vasculogenic mimicry patterns after exposure to a laminin-rich three-dimensional microenvironment would differentially express genes associated with invasive and metastatic behavior. However, we discovered that genes associated with differentiation (GDF15 and ATF3) and suppression of proliferation (CDKNa1/p21) were up-regulated in highly invasive uveal melanoma cells forming vasculogenic mimicry patterns, and genes associated with promotion of invasive and metastatic behavior such as CD44, CCNE2 (cyclin E2), THBS1 (thrombospondin 1), and CSPG2 (chondroitin sulfate proteoglycan; versican) were down-regulated. After forming vasculogenic mimicry patterns, uveal melanoma cells invaded only short distances, failed to replicate, and changed morphologically from the invasive epithelioid to the indolent spindle A phenotype. In human tissue samples, uveal melanoma cells within vasculogenic mimicry patterns assumed the spindle A morphology, and the expression of Ki67 was significantly reduced in adjacent melanoma cells. Thus, the generation of vasculogenic mimicry patterns is accompanied by dampening of the invasive and metastatic uveal melanoma genotype and phenotype and underscores the plasticity of these cells in response to cues from the microenvironment. PMID:17003493

  6. Epigenetic regulation in human melanoma: past and future.

    PubMed

    Sarkar, Debina; Leung, Euphemia Y; Baguley, Bruce C; Finlay, Graeme J; Askarian-Amiri, Marjan E

    2015-01-01

    The development and progression of melanoma have been attributed to independent or combined genetic and epigenetic events. There has been remarkable progress in understanding melanoma pathogenesis in terms of genetic alterations. However, recent studies have revealed a complex involvement of epigenetic mechanisms in the regulation of gene expression, including methylation, chromatin modification and remodeling, and the diverse activities of non-coding RNAs. The roles of gene methylation and miRNAs have been relatively well studied in melanoma, but other studies have shown that changes in chromatin status and in the differential expression of long non-coding RNAs can lead to altered regulation of key genes. Taken together, they affect the functioning of signaling pathways that influence each other, intersect, and form networks in which local perturbations disturb the activity of the whole system. Here, we focus on how epigenetic events intertwine with these pathways and contribute to the molecular pathogenesis of melanoma.

  7. Immunotherapy of metastatic melanoma by reversal of immune suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biggs, M.W.; Eiselein, J.E.

    1997-01-01

    Beginning with the observation that the human enteorvirus, Poliovirus Sabin 1, will lyse human melanoma cells in culture, clinical trials involving two patients with advance melanoma were performed. Parenteral injection of the viable Poliovirus into cutaneous melanoma metastases followed in 24 hours by oral administration of cyclophosphamide. The results of these two trials are described.

  8. Irreversible Electroporation of Human Primary Uveal Melanoma in Enucleated Eyes

    PubMed Central

    Mandel, Yossi; Laufer, Shlomi; Belkin, Michael; Rubinsky, Boris; Pe'er, Jacob; Frenkel, Shahar

    2013-01-01

    Uveal melanoma (UM) is the most common primary intraocular tumor in adults and is characterized by high rates of metastatic disease. Although brachytherapy is the most common globe-sparing treatment option for small- and medium-sized tumors, the treatment is associated with severe adverse reactions and does not lead to increased survival rates as compared to enucleation. The use of irreversible electroporation (IRE) for tumor ablation has potential advantages in the treatment of tumors in complex organs such as the eye. Following previous theoretical work, herein we evaluate the use of IRE for uveal tumor ablation in human ex vivo eye model. Enucleated eyes of patients with uveal melanoma were treated with short electric pulses (50–100 µs, 1000–2000 V/cm) using a customized electrode design. Tumor bioimpedance was measured before and after treatment and was followed by histopathological evaluation. We found that IRE caused tumor ablation characterized by cell membrane disruption while sparing the non-cellular sclera. Membrane disruption and loss of cellular capacitance were also associated with significant reduction in total tumor impedance and loss of impedance frequency dependence. The effect was more pronounced near the pulsing electrodes and was dependent on time from treatment to fixation. Future studies should further evaluate the potential of IRE as an alternative method of uveal melanoma treatment. PMID:24039721

  9. [Characterization of genetic alterations in primary human melanomas carrying BRAF or NRAS mutation].

    PubMed

    Lázár, Viktória

    2013-06-01

    Human malignant melanoma is one of the most aggressive forms of skin cancer with an exceptionally bad prognosis. Melanoma often displays constitutively activated MAPK pathway through BRAF or NRAS mutations. It is also known that these mutations are almost never simultaneously present and that they appear at early stages and preserved throughout tumor progression, although it is proved that these alterations alone are insufficient to cause tumor progression. Therefore the first aim of our study was to evaluate those distinct genetic alterations which can properly differentiate the three important molecular subtypes of primary melanomas with a) BRAF, b) NRAS mutation and c) WT (wild type for both loci). High-resolution array comparative genomic hybridization (array CGH) was used to assess genome-wide analysis of DNA copy number alterations. Primary melanomas with BRAF mutation more frequently exhibited losses on 10q23-10q26 and gains on chromosome 7 and 1q23-1q25 compared to melanomas with NRAS mutation. Loss on the 11q23-11q25 sequence was found mainly in conjunction with NRAS mutation. Based on these results, we proved the existence of marked differences in the genetic pattern of the BRAF and NRAS mutated melanoma subgroups, which might suggest that these mutations contribute to the development of malignant melanoma in conjunction with distinct cooperating oncogenic events. In general, it is an interesting phenomenon suggesting that these mutations provide probably the "guiding force" for these tumors and it also suggests that there are alternative genetic pathways to melanoma. These additional oncogenic events which are associated with BRAF or NRAS mutations can provide rational additional targets for a combination therapy with kinase inhibitors. In this study we also investigated the specific dynamic activities among different signalling pathways highlighting the frequent alterations of genes involved in the signalling interactions between the MAPK-JAK pathways

  10. Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition.

    PubMed

    Hasnat, Md Abul; Pervin, Mehnaz; Lim, Ji Hong; Lim, Beong Ou

    2015-11-27

    Apigenin, a nonmutagenic flavonoid, has been found to have antitumor properties and is therefore particularly relevant for the development of chemotherapeutic agents for cancers. In this study, time- and dose-dependent cell viability and cytotoxicity were assessed to determine the effects of apigenin on A2058 and A375 melanoma cells. Melanoma cells were pretreated with different concentrations of apigenin and analyzed for morphological changes, anoikis induction, cell migration, and levels of proteins associated with apoptosis. Apigenin reduced integrin protein levels and inhibited the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2), which induce anoikis in human cutaneous melanoma cells. Apigenin exhibited dose-dependent inhibition of melanoma cell migration, unlike untreated controls. Furthermore, apigenin treatment increased apoptotic factors such as caspase-3 and cleaved poly(ADP-ribose) polymerase in a dose-dependent manner, demonstrating the metastasis of melanoma cells. Our results provide a new insight into the mechanisms by which apigenin prevents melanoma metastasis by sensitizing anoikis induced by the loss of integrin proteins in the FAK/ERK1/2 signaling pathway. These findings elucidate the related mechanisms and suggest the potential of apigenin in developing clinical treatment strategies against malignant melanoma.

  11. SIRT1 deacetylase is overexpressed in human melanoma and its small molecule inhibition imparts anti-proliferative response via p53 activation.

    PubMed

    Wilking, Melissa J; Singh, Chandra; Nihal, Minakshi; Zhong, Weixiong; Ahmad, Nihal

    2014-12-01

    Melanoma causes more deaths than any other skin cancer, and its incidence in the US continues to rise. Current medical therapies are insufficient to control this deadly neoplasm, necessitating the development of new target-based approaches. The objective of this study was to determine the role and functional significance of the class III histone deacetylase SIRT1 in melanoma. We have found that SIRT1 is overexpressed in clinical human melanoma tissues and human melanoma cell lines (Sk-Mel-2, WM35, G361, A375, and Hs294T) compared to normal skin and normal melanocytes, respectively. In addition, treatment of melanoma cell lines A375, Hs294T, and G361 with Tenovin-1, a small molecule SIRT1 inhibitor, resulted in a significant decrease in cell growth and cell viability. Further, Tenovin-1 treatment also resulted in a marked decrease in the clonogenic survival of melanoma cells. Further experiments showed that the anti-proliferative response of Tenovin-1 was accompanied by an increase in the protein as well as activity of the tumor suppressor p53. This increase in p53 activity was substantiated by an increase in the protein level of its downstream target p21. Overall, these data suggest that small molecule inhibition of SIRT1 causes anti-proliferative effects in melanoma cells. SIRT1 appears to be acting through the activity of the tumor suppressor p53, which is not mutated in the majority of melanomas. However, future detailed studies are needed to further explore the role and mechanism of SIRT1 in melanoma development and progression and its usefulness in melanoma treatment.

  12. In Vitro Efficacy and Mechanistic Role of Indocyanine Green as a Photodynamic Therapy Agent for Human Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamoon, A.; Gamal-Eldeen, A; Ruppel, M

    2009-01-01

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway.

  13. Physalin B from Physalis angulata triggers the NOXA-related apoptosis pathway of human melanoma A375 cells.

    PubMed

    Hsu, Chia-Chun; Wu, Yang-Chang; Farh, Lynn; Du, Ying-Chi; Tseng, Wei-Kung; Wu, Chau-Chung; Chang, Fang-Rong

    2012-03-01

    Melanoma is a lethal form of skin cancer that can metastasize rapidly. While surgery and radiation therapy provide palliative therapy for local tumor growth, systemic therapy is the mainstay of treatment for metastatic melanoma. However, limited chemotherapeutic agents are available for melanoma treatment. In this study, we investigated the anti-melanoma effect of physalin B, the major active compound from a widely used herb medicine, Physalis angulata L. This study demonstrated that physalin B exhibits cytotoxicity towards v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutated melanoma A375 and A2058 cells (the IC50 values are lower than 4.6 μg/ml). Cytotoxicity is likely resulted from apoptosis since the apoptotic marker phosphatidylserine are detected immediately under physalin B treatment and apoptotic cells formation. Further examination revealed that physalin B induces expression of the proapoptotic protein NOXA within 2 h and later triggers the expression of Bax and caspase-3 in A375 cells. These results indicate that physalin B can induce apoptosis of melanoma cancer cells via the NOXA, caspase-3, and mitochondria-mediated pathways, but not of human skin fibroblast cells and myoblastic cells. Thus, physalin B has the potential to be developed as an effective chemotherapeutic lead compound for the treatment of malignant melanoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A Subset of Host B-Lymphocytes Control Melanoma Metastasis Through a MCAM/MUC18-dependent Interaction: Evidence from Mice and Humans

    PubMed Central

    Staquicini, Fernanda I.; Tandle, Anita; Libutti, Steven K.; Sun, Jessica; Zigler, Maya; Bar-Eli, Menashe; Aliperti, Fabiana; Pérez, Elizabeth C.; Gershenwald, Jeffrey E.; Mariano, Mario; Pasqualini, Renata; Arap, Wadih; Lopes, José D.

    2008-01-01

    Host immunity affects tumor metastasis but the corresponding cellular and molecular mechanisms are not entirely clear. Here we show that a subset of B-lymphocytes (termed B-1 population) -- but not other lymphocytes -- have pro-metastatic effects on melanoma cells in vivo through a direct heterotypic cell-cell interaction. In the classic B16 mouse melanoma model, one mechanism underlying this phenomenon is a specific upregulation and subsequent homophilic interaction mediated by the cell surface glycoprotein MUC18 (also known as melanoma cell adhesion molecule; MCAM). Presence of B-1 lymphocytes in a panel of tumor samples from melanoma patients directly correlates with MUC18 expression in melanoma cells, indicating that the same protein interaction exists in humans. These results suggest a new but as yet unrecognized functional role for host B-1 lymphocytes in tumor metastasis and establish a biochemical basis for such observations. Our findings support the counterintuitive central hypothesis in which a primitive layer of the immune system actually contributes to tumor progression and metastasis in a mouse model and in melanoma patients. Given that monoclonal antibodies against MUC18 are in pre-clinical development but the reason for their anti-tumor activity is not well understood, these translational results are relevant in the setting of human melanoma, and perhaps of other cancers. PMID:18922915

  15. MDA-9/Syntenin and IGFBP-2 Promote Angiogenesis in Human Melanoma

    PubMed Central

    Das, Swadesh K.; Bhutia, Sujit K.; Azab, Belal; Kegelman, Timothy P.; Peachy, Leyla; Santhekadur, Prasanna K.; Dasgupta, Santanu; Dash, Rupesh; Dent, Paul; Grant, Steven; Emdad, Luni; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B.

    2012-01-01

    Melanoma differentiation associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacological approaches were employed to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, CAM assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several pro-angiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the ECM activating Src and FAK resulting in activation by phosphorylation of Akt, which induces HIF-1α. The HIF-1α activates transcription of Insulin Growth Factor Binding Protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell non-autonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (non-autonomous). PMID:23233738

  16. Simvastatin rises reactive oxygen species levels and induces senescence in human melanoma cells by activation of p53/p21 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guterres, Fernanda Augusta de Lima Barbosa; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin

    2013-11-15

    Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 andmore » p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process. - Highlights: • Lower concentrations of simvastatin can induce senescent phenotype in melanoma cells. • Simvastatin induces senescence in human melanoma cells via p53/p21 pathway. • Senescent phenotype is related with increased intracellular ROS. • Partial detoxification of ROS by catalase/peroxiredoxin-1 could lead cells to senescence rather than apoptosis.« less

  17. c-FLIP and the NOXA/Mcl-1 axis participate in the synergistic effect of pemetrexed plus cisplatin in human choroidal melanoma cells.

    PubMed

    Zhao, Xiaofei; Kong, Feng; Wang, Lei; Zhang, Han

    2017-01-01

    Choroidal melanoma is the most common primary malignant intraocular tumor, and very few effective therapies are available to treat it. Our study aimed to understand whether pemetrexed plus cisplatin exerts a beneficial synergistic effect in human choroidal melanoma cells and to delineate the underlying molecular mechanism. To accomplish these aims, we treated choroidal melanoma cells with pemetrexed and cisplatin and assessed cell survival with SRB and MTT assays. Proteins were detected using western blotting analysis. NOXA and CHOP were knocked down with siRNA. We found that pemetrexed or cisplatin alone inhibited survival and induced apoptosis in human choroidal melanoma cells. Furthermore, the expression levels of c-FLIP, an anti-apoptotic protein in the extrinsic apoptosis pathway, and Mcl-1, an anti-apoptotic protein in the intrinsic apoptosis pathway, were decreased by pemetrexed or cisplatin respectively, while the expression of a pro-apoptotic protein in the intrinsic apoptosis pathway, NOXA, was up-regulated. Moreover, pemetrexed or cisplatin alone increased the protein expression of the endoplasmic reticulum stress markers IRE1α, Bip and CHOP. Silencing CHOP expression reduced NOXA expression. These findings suggest that the pemetrexed or cisplatin induced intrinsic apoptosis via activation of the ER stress response. Importantly, combining the two compounds more strongly induced apoptosis. Following the cotreatment, CHOP and NOXA expression increased, while c-FLIP and Mcl-1 expression decreased, and these effects were more pronounced than when using either compound alone. This result suggests that pemetrexed and cisplatin synergistically activate ER stress response-induced apoptosis in choroidal melanoma cells. To summarize, the c-FLIP and NOXA/Mcl-1 axis participated in the synergistic effect of pemetrexed plus cisplatin in human choroidal melanoma cells. Intrinsic apoptosis was induced via activation of the ER stress response. Our study provides

  18. Diagnostic inaccuracy of smartphone applications for melanoma detection.

    PubMed

    Wolf, Joel A; Moreau, Jacqueline F; Akilov, Oleg; Patton, Timothy; English, Joseph C; Ho, Jonhan; Ferris, Laura K

    2013-04-01

    To measure the performance of smartphone applications that evaluate photographs of skin lesions and provide the user with feedback about the likelihood of malignancy. Case-control diagnostic accuracy study. Academic dermatology department. PARTICIPANTS AND MATERIALS: Digital clinical images of pigmented cutaneous lesions (60 melanoma and 128 benign control lesions) with a histologic diagnosis rendered by a board-certified dermatopathologist, obtained before biopsy from patients undergoing lesion removal as a part of routine care. Sensitivity, specificity, and positive and negative predictive values of 4 smartphone applications designed to aid nonclinician users in determining whether their skin lesion is benign or malignant. Sensitivity of the 4 tested applications ranged from 6.8% to 98.1%; specificity, 30.4% to 93.7%; positive predictive value, 33.3% to 42.1%; and negative predictive value, 65.4% to 97.0%. The highest sensitivity for melanoma diagnosis was observed for an application that sends the image directly to a board-certified dermatologist for analysis; the lowest, for applications that use automated algorithms to analyze images. The performance of smartphone applications in assessing melanoma risk is highly variable, and 3 of 4 smartphone applications incorrectly classified 30% or more of melanomas as unconcerning. Reliance on these applications, which are not subject to regulatory oversight, in lieu of medical consultation can delay the diagnosis of melanoma and harm users.

  19. Comparative Aspects of Canine Melanoma

    PubMed Central

    Nishiya, Adriana Tomoko; Massoco, Cristina Oliveira; Felizzola, Claudia Ronca; Perlmann, Eduardo; Batschinski, Karen; Tedardi, Marcello Vannucci; Garcia, Jéssica Soares; Mendonça, Priscila Pedra; Teixeira, Tarso Felipe; Zaidan Dagli, Maria Lucia

    2016-01-01

    Melanomas are malignant neoplasms originating from melanocytes. They occur in most animal species, but the dog is considered the best animal model for the disease. Melanomas in dogs are most frequently found in the buccal cavity, but the skin, eyes, and digits are other common locations for these neoplasms. The aim of this review is to report etiological, epidemiological, pathological, and molecular aspects of melanomas in dogs. Furthermore, the particular biological behaviors of these tumors in the different body locations are shown. Insights into the therapeutic approaches are described. Surgery, chemotherapy, radiotherapy, immunotherapy, and the outcomes after these treatments are presented. New therapeutic perspectives are also depicted. All efforts are geared toward better characterization and control of malignant melanomas in dogs, for the benefit of these companion animals, and also in an attempt to benefit the treatment of human melanomas. PMID:29056717

  20. Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress.

    PubMed

    Liao, Wang; Xiang, Wei; Wang, Fei-Fei; Wang, Rui; Ding, Yan

    2017-11-01

    Curcumin, a polyphenol compound, possesses potent pharmacological properties in preventing cancers, which make it as a potential anti-cancer mediator. However, it is still unknown that whether Curcumin induced melanoma A375 cell was associated with oxidative stress. Here, we firstly found a fascinating result that Curcumin could reduce the proliferation and induced apoptosis of human melanoma A375 cells. Meanwhile, IC 50 of Curcumin on A375 cells is 80μM at 48h. In addition, Curcumin caused oxidative stress through inducing further ROS burst, decreasing GSH, and wrecking mitochondria membrane potential (MMP), which were reversed by ROS inhibitor N-acetylcysteine (NAC). Moreover, MMP disruption led to the release of Cytochrome c from mitochondria and subsequently led to intracellular apoptosis. Furthermore, we found that ROS-dependent HIF-1α and its downstream proteins also play an important role on Curcumin induced apoptosis. In conclusion, our results shed new lights on the therapy of melanoma that Curcumin may be a promising candidate. Copyright © 2017. Published by Elsevier Masson SAS.

  1. Nitric oxide donor augments antineoplastic effects of arginine deprivation in human melanoma cells.

    PubMed

    Mayevska, Oksana; Chen, Oleh; Karatsai, Olena; Bobak, Yaroslav; Barska, Maryna; Lyniv, Liliana; Pavlyk, Iuliia; Rzhepetskyy, Yuriy; Igumentseva, Natalia; Redowicz, Maria Jolanta; Stasyk, Oleh

    2017-06-15

    Anticancer therapy based on recombinant arginine-degrading enzymes has been proposed for the treatment of several types of malignant cells deficient in arginine biosynthesis. One of the predicted side effects of such therapy is restricted bioavailability of nitric oxide as arginine catabolic product. Prolonged NO limitation may lead to unwanted disturbances in NO-dependent vasodilation, cardiovascular and immune systems. This problem can be overcome by co-supplementation with exogenous NO donor. However, NO may potentially counteract anticancer effects of therapy based on arginine deprivation. In this study, we evaluate for the first time the effects of an exogenous NO donor, sodium nitroprusside, on viability and metastatic properties of two human melanoma cell lines SK-MEL-28 and WM793 under arginine-deprived conditions. It was revealed that NO did not rescue melanoma cells from specific effects evoked by arginine deprivation, namely decreased viability and induction of apoptosis, dramatically reduced motility, invasiveness and clonogenic potential. Moreover, sodium nitroprusside co-treatment augmented several of these antineoplastic effects. We report that a combination of NO-donor and arginine deprivation strongly and specifically impaired metastatic behavior of melanoma cells. Thus, sodium nitroprusside can be considered as an adjuvant for the more efficient treatment of malignant melanoma and possibly other tumors with arginine-degrading enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Different dose rate-dependent responses of human melanoma cells and fibroblasts to low dose fast neutrons.

    PubMed

    Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre

    2016-09-01

    To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.

  3. The role of nitric oxide in melanoma.

    PubMed

    Yarlagadda, Keerthi; Hassani, John; Foote, Isaac P; Markowitz, Joseph

    2017-12-01

    Nitric oxide (NO) is a small gaseous signaling molecule that mediates its effects in melanoma through free radical formation and enzymatic processes. Investigations have demonstrated multiple roles for NO in melanoma pathology via immune surveillance, apoptosis, angiogenesis, melanogenesis, and on the melanoma cell itself. In general, elevated levels of NO prognosticate a poor outcome for melanoma patients. However, there are processes where the relative concentration of NO in different environments may also serve to limit melanoma proliferation. This review serves to outline the roles of NO in melanoma development and proliferation. As demonstrated by multiple in vivo murine models and observations from human tissue, NO may promote melanoma formation and proliferation through its interaction via inhibitory immune cells, inhibition of apoptosis, stimulation of pro-tumorigenic cytokines, activation of tumor associated macrophages, alteration of angiogenic processes, and stimulation of melanoma formation itself. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Genetic progression of malignant melanoma.

    PubMed

    Tímár, J; Vizkeleti, L; Doma, V; Barbai, T; Rásó, E

    2016-03-01

    Malignant melanoma of the skin is the most aggressive human cancer given that a primary tumor a few millimeters in diameter frequently has full metastatic competence. In view of that, revealing the genetic background of this potential may also help to better understand tumor dissemination in general. Genomic analyses have established the molecular classification of melanoma based on the most frequent driver oncogenic mutations (BRAF, NRAS, KIT) and have also revealed a long list of rare events, including mutations and amplifications as well as genetic microheterogeneity. At the moment, it is unclear whether any of these rare events have role in the metastasis initiation process since the major drivers do not have such a role. During lymphatic and hematogenous dissemination, the clonal selection process is evidently reflected by differences in oncogenic drivers in the metastases versus the primary tumor. Clonal selection is also evident during lymphatic progression, though the genetic background of this immunoselection is less clear. Genomic analyses of metastases identified further genetic alterations, some of which may correspond to metastasis maintenance genes. The natural genetic progression of melanoma can be modified by targeted (BRAF or MEK inhibitor) or immunotherapies. Some of the rare events in primary tumors may result in primary resistance, while further new genetic lesions develop during the acquired resistance to both targeted and immunotherapies. Only a few genetic lesions of the primary tumor are constant during natural or therapy-modulated progression. EGFR4 and NMDAR2 mutations, MITF and MET amplifications and PTEN loss can be considered as metastasis drivers. Furthermore, BRAF and MITF amplifications as well as PTEN loss are also responsible for resistance to targeted therapies, whereas NRAS mutation is the only founder genetic lesion showing any association with sensitivity to immunotherapies. Unfortunately, there are hardly any data on the

  5. The human homologue of Dictyostelium discoideum phg1A is expressed by human metastatic melanoma cells.

    PubMed

    Lozupone, Francesco; Perdicchio, Maurizio; Brambilla, Daria; Borghi, Martina; Meschini, Stefania; Barca, Stefano; Marino, Maria Lucia; Logozzi, Mariantonia; Federici, Cristina; Iessi, Elisabetta; de Milito, Angelo; Fais, Stefano

    2009-12-01

    Tumour cannibalism is a characteristic of malignancy and metastatic behaviour. This atypical phagocytic activity is a crucial survival option for tumours in conditions of low nutrient supply, and has some similarities to the phagocytic activity of unicellular microorganisms. In fact, Dictyostelium discoideum has been used widely as a model to study phagocytosis. Recently, phg1A has been described as a protein that is primarily involved in the phagocytic process of this microorganism. The closest human homologue to phg1A is transmembrane 9 superfamily protein member 4 (TM9SF4). Here, we report that TM9SF4 is highly expressed in human malignant melanoma cells deriving from metastatic lesions, whereas it is undetectable in healthy human tissues and cells. TM9SF4 is predominantly expressed in acidic vesicles of melanoma cells, in which it co-localizes with the early endosome antigens Rab5 and early endosome antigen 1. TM9SF4 silencing induced marked inhibition of cannibal activity, which is consistent with a derangement of intracellular pH gradients, with alkalinization of acidic vesicles and acidification of the cell cytosol. We propose TM9SF4 as a new marker of malignancy, representing a potential new target for anti-tumour strategies with a specific role in tumour cannibalism and in the establishment of a metastatic phenotype.

  6. Sensitization of melanoma cells to alkylating agent-induced DNA damage and cell death via orchestrating oxidative stress and IKKβ inhibition.

    PubMed

    Tse, Anfernee Kai-Wing; Chen, Ying-Jie; Fu, Xiu-Qiong; Su, Tao; Li, Ting; Guo, Hui; Zhu, Pei-Li; Kwan, Hiu-Yee; Cheng, Brian Chi-Yan; Cao, Hui-Hui; Lee, Sally Kin-Wah; Fong, Wang-Fun; Yu, Zhi-Ling

    2017-04-01

    Nitrosourea represents one of the most active classes of chemotherapeutic alkylating agents for metastatic melanoma. Treatment with nitrosoureas caused severe systemic side effects which hamper its clinical use. Here, we provide pharmacological evidence that reactive oxygen species (ROS) induction and IKKβ inhibition cooperatively enhance nitrosourea-induced cytotoxicity in melanoma cells. We identified SC-514 as a ROS-inducing IKKβ inhibitor which enhanced the function of nitrosoureas. Elevated ROS level results in increased DNA crosslink efficiency triggered by nitrosoureas and IKKβ inhibition enhances DNA damage signals and sensitizes nitrosourea-induced cell death. Using xenograft mouse model, we confirm that ROS-inducing IKKβ inhibitor cooperates with nitrosourea to reduce tumor size and malignancy in vivo. Taken together, our results illustrate a new direction in nitrosourea treatment, and reveal that the combination of ROS-inducing IKKβ inhibitors with nitrosoureas can be potentially exploited for melanoma therapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. The diagnostic performance of expert dermoscopists vs a computer-vision system on small-diameter melanomas.

    PubMed

    Friedman, Robert J; Gutkowicz-Krusin, Dina; Farber, Michele J; Warycha, Melanie; Schneider-Kels, Lori; Papastathis, Nicole; Mihm, Martin C; Googe, Paul; King, Roy; Prieto, Victor G; Kopf, Alfred W; Polsky, David; Rabinovitz, Harold; Oliviero, Margaret; Cognetta, Armand; Rigel, Darrell S; Marghoob, Ashfaq; Rivers, Jason; Johr, Robert; Grant-Kels, Jane M; Tsao, Hensin

    2008-04-01

    To evaluate the performance of dermoscopists in diagnosing small pigmented skin lesions (diameter melanomas from 49 patients were included in this study. Fifty randomly selected nonmelanomas from 46 patients served as a control. Ten dermoscopists independently examined dermoscopic images of 99 pigmented skin lesions and decided whether they identified the lesions as melanoma and whether they would recommend biopsy to rule out melanoma. Diagnostic and biopsy sensitivity and specificity were computed and then compared with the results of the computer-vision system. Dermoscopists were able to correctly identify small melanomas with an average diagnostic sensitivity of 39% and a specificity of 82% and recommended small melanomas for biopsy with a sensitivity of 71% and specificity of 49%, with only fair interobserver agreement (kappa = 0.31 for diagnosis and 0.34 for biopsy). In comparison, in recommending biopsy to rule out melanoma, the computer-vision system achieved 98% sensitivity and 44% specificity. Differentiation of small melanomas from small benign pigmented lesions challenges even expert physicians. Computer-vision systems can facilitate early detection of small melanomas and may limit the number of biopsies to rule out melanoma performed on benign lesions.

  8. MDA-9/syntenin and IGFBP-2 promote angiogenesis in human melanoma.

    PubMed

    Das, Swadesh K; Bhutia, Sujit K; Azab, Belal; Kegelman, Timothy P; Peachy, Leyla; Santhekadur, Prasanna K; Dasgupta, Santanu; Dash, Rupesh; Dent, Paul; Grant, Steven; Emdad, Luni; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B

    2013-01-15

    Melanoma differentiation-associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacologic approaches were used to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma, and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, chorioallantoic membrane (CAM) assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several proangiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the extracellular matrix (ECM), activating Src and FAK resulting in activation by phosphorylation of Akt, which induces hypoxia inducible factor 1-α (HIF-1α). The HIF-1α activates transcription of insulin growth factor-binding protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell nonautonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (nonautonomous).

  9. KBA62 and PNL2: 2 new melanoma markers-immunohistochemical analysis of 1563 tumors including metastatic, desmoplastic, and mucosal melanomas and their mimics.

    PubMed

    Aung, Phyu Phyu; Sarlomo-Rikala, Maarit; Lasota, Jerzy; Lai, Jin-Ping; Wang, Zeng-Feng; Miettinen, Markku

    2012-02-01

    Identification of metastatic melanoma can be difficult because of its considerable morphologic variation and mimicry of a wide variety of other tumors. The more melanoma-specific melanoma markers, MelanA/MART-1, HMB45, and tyrosinase, used in addition to S100 protein, all have limitations in sensitivity and specificity. In this study, we evaluated 2 new melanoma markers, monoclonal antibodies KBA62 and PNL2 to yet unidentified antigens, using a large panel of metastatic melanomas (n=214), desmoplastic melanomas (n=34), gastrointestinal mucosal melanomas (n=54), benign nevi (n=27), clear cell sarcomas (n=16), and nonmelanocytic tumors (n=1218). Immunoreactivity for KBA62 and PNL2 was found in all pigmented nevi and in 86% and 90% of metastatic melanomas, respectively. Mucosal melanomas showed a similar rate of PNL2 immunoreactivity but somewhat less frequent KBA62 positivity (72%). In addition, KBA62 was found to be a sensitive diagnostic marker for desmoplastic melanoma (28 of 34; 82%), whereas PNL2 was only rarely positive (2 of 34; 6%). KBA62-positive normal tissues included pericytes, vascular and parenchymal smooth muscles, and basal cells of complex epithelia, including myoepithelia, whereas PNL2 labeled only melanocytes and neutrophils. Among nonmelanocytic tumors, those that were KBA62 positive were nodular fasciitis, leiomyoma and leiomyosarcoma, gastrointestinal stromal tumors, benign and malignant nerve sheath tumors, synovial sarcoma, and subsets of various carcinomas, especially those with squamous cell/stratified epithelial differentiation. PNL2 positivity in nonmelanocytic tumors was more restricted but occurred consistently in angiomyolipoma and other perivascular epitheloid cell tumor and in chronic myeloid leukemia tissue infiltrates. KBA62 may assist in the identification of desmoplastic melanomas, but its widespread occurrence in nonmelanomas limits utility. PNL2 is highly specific for melanomas but lacks reactivity with desmoplastic melanomas

  10. Differential biological effects of dehydroepiandrosterone (DHEA) between mouse (B16F10) and human melanoma (BLM) cell lines.

    PubMed

    Joshi, Kumud; Hassan, Sherif S; Ramaraj, Pandurangan

    2017-01-01

    Dehydroepiandrosterone (DHEA) is a weak androgen and had been shown to have anti-cancer, anti-adipogenic and anti-inflammatory effects on mouse and other rodent models, but not on humans, suggesting a systemic level difference between mouse and human. Our previous study on DHEA biological functions involving a variety of cell lines, suggested that the functional differences between mouse and human existed even at the cellular level. Hence, using mouse and human melanoma cell models, in-vitro effects of DHEA on cell growth, mechanism of cell death and mechanism of DHEA action were studied. Results indicated a differential biological effects of DHEA between mouse and human melanoma cell lines. These in-vitro studies also suggested that the differential biological effects observed between these two cell lines could be due to the difference in the way DHEA was processed or metabolized inside the cell.

  11. Proteomic Analysis of Laser Microdissected Melanoma Cells from Skin Organ Cultures

    PubMed Central

    Hood, Brian L.; Grahovac, Jelena; Flint, Melanie S.; Sun, Mai; Charro, Nuno; Becker, Dorothea; Wells, Alan; Conrads, Thomas P

    2010-01-01

    Gaining insights into the molecular events that govern the progression from melanoma in situ to advanced melanoma, and understanding how the local microenvironment at the melanoma site influences this progression, are two clinically pivotal aspects that to date are largely unexplored. In an effort to identify key regulators of the crosstalk between melanoma cells and the melanoma-skin microenvironment, primary and metastatic human melanoma cells were seeded into skin organ cultures (SOCs), and grown for two weeks. Melanoma cells were recovered from SOCs by laser microdissection and whole-cell tryptic digests analyzed by nanoflow liquid chromatography-tandem mass spectrometry with an LTQ-Orbitrap. The differential protein abundances were calculated by spectral counting, the results of which provides evidence that cell-matrix and cell-adhesion molecules that are upregulated in the presence of these melanoma cells recapitulate proteomic data obtained from comparative analysis of human biopsies of invasive melanoma and a tissue sample of adjacent, non-involved skin. This concordance demonstrates the value of SOCs for conducting proteomic investigations of the melanoma microenvironment. PMID:20459140

  12. Long-term efficiency of mesenchymal stromal cell-mediated CD-MSC/5FC therapy in human melanoma xenograft model.

    PubMed

    Kucerova, L; Skolekova, S; Demkova, L; Bohovic, R; Matuskova, M

    2014-10-01

    Mesenchymal stromal cells (MSC) can be exploited as cellular delivery vehicles for the enzymes converting non-toxic prodrugs to toxic substances. Because of their inherent chemoresistance, they exert potent bystander and antitumor effect. Here we show that the human adipose tissue-derived MSC expressing fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CD-MSC) in combination with 5-fluorocytosine (5FC) mediated a long-term tumor-free survival in the 83.3% of tumor-bearing animals. CD-MSC/5FC treatment induced cytotoxicity against model human melanoma cells EGFP-A375. Only 4% of the therapeutic CD-MSC cells eliminated >98.5% of the tumor cells in vitro. Long-term tumor-free survival was confirmed in 15 out of the 18 animals. However, repeatedly used CD-MSC/5FC therapeutic regimen generated more aggressive and metastatic variant of the melanoma cells EGFP-A375/Rel3. These cells derived from the refractory xenotransplants exhibited increased resistance to the CD-MSC/5FC treatment, altered cell adhesion, migration, tumorigenic and metastatic properties. However, long-term curative effect was achieved by the augmentation of the CD-MSC/5FC regimen along with the inhibition of c-Met/hepatocyte growth factor signaling axis in this aggressive melanoma derivative. In summary, the CD-MSC/5FC regimen can be regarded as a very effective antitumor approach to achieve long-term tumor-free survival as demonstrated on a mouse model of aggressive human melanoma xenografts.

  13. Selective sensitivity to wasabi-derived 6-(methylsulfinyl)hexyl isothiocyanate of human breast cancer and melanoma cell lines studied in vitro.

    PubMed

    Nomura, Takahiro; Shinoda, Shoko; Yamori, Takao; Sawaki, Saeko; Nagata, Ikuko; Ryoyama, Kazuo; Fuke, Yoko

    2005-01-01

    Recently, attention has focused on the anticancer properties of an aromatic component 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) in a typical Japanese spice, wasabi. In this paper, anticancer activity of 6-MITC in vitro was studied by using a human cancer cell (HCC) panel. 6-MITC directly affected the cells in the HCC panel and inhibited their growth in culture. The mean concentration required to inhibit 50% of control cell growth was 3.9 microM, which is a sufficiently low dosage for practical use. The suppression influenced not only the cell growth, but also the survival of these cells. The mean concentration to suppress cells to a 50% survival was 43.7 microM. The reduction activity of 6-MITC was differential, and it suppressed specific cells. These severely suppressed cell lines included breast cancer and melanoma cell lines. For example, one melanoma line was seriously damaged at a concentration of 0.3 microM of 6-MITC. Compared with other MITCs (2-MITC, 4-MITC and 8-MITC), 6-MITC showed the most effective suppression and with the most specific manner of the cells mentioned above. A "COMPARE" analysis using a computerized algorithm, which was based on the HCC database, suggested that the suppression mechanism of 6-MITC is unique and may be different from that of other known chemicals. The actual mechanism may not a simple one but may involve multiple pathways. On account of its sufficiently small size, 6-MITC is a new possible candidate for controlling cancer cells.

  14. Melanoma

    MedlinePlus

    Melanoma is the most serious type of skin cancer. Often the first sign of melanoma is a change in the size, shape, color, or feel of a mole. Most melanomas have a black or black-blue area. Melanoma ...

  15. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma.

    PubMed

    Byrum, Stephanie D; Larson, Signe K; Avaritt, Nathan L; Moreland, Linley E; Mackintosh, Samuel G; Cheung, Wang L; Tackett, Alan J

    2013-03-01

    Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.

  16. Integrative Genome Comparison of Primary and Metastatic Melanomas

    PubMed Central

    Feng, Bin; Nazarian, Rosalynn M.; Bosenberg, Marcus; Wu, Min; Scott, Kenneth L.; Kwong, Lawrence N.; Xiao, Yonghong; Cordon-Cardo, Carlos; Granter, Scott R.; Ramaswamy, Sridhar; Golub, Todd; Duncan, Lyn M.; Wagner, Stephan N.; Brennan, Cameron; Chin, Lynda

    2010-01-01

    A cardinal feature of malignant melanoma is its metastatic propensity. An incomplete view of the genetic events driving metastatic progression has been a major barrier to rational development of effective therapeutics and prognostic diagnostics for melanoma patients. In this study, we conducted global genomic characterization of primary and metastatic melanomas to examine the genomic landscape associated with metastatic progression. In addition to uncovering three genomic subclasses of metastastic melanomas, we delineated 39 focal and recurrent regions of amplification and deletions, many of which encompassed resident genes that have not been implicated in cancer or metastasis. To identify progression-associated metastasis gene candidates, we applied a statistical approach, Integrative Genome Comparison (IGC), to define 32 genomic regions of interest that were significantly altered in metastatic relative to primary melanomas, encompassing 30 resident genes with statistically significant expression deregulation. Functional assays on a subset of these candidates, including MET, ASPM, AKAP9, IMP3, PRKCA, RPA3, and SCAP2, validated their pro-invasion activities in human melanoma cells. Validity of the IGC approach was further reinforced by tissue microarray analysis of Survivin showing significant increased protein expression in thick versus thin primary cutaneous melanomas, and a progression correlation with lymph node metastases. Together, these functional validation results and correlative analysis of human tissues support the thesis that integrated genomic and pathological analyses of staged melanomas provide a productive entry point for discovery of melanoma metastases genes. PMID:20520718

  17. Detection of melanomas by digital imaging of spectrally resolved UV light-induced autofluorescence of human skin

    NASA Astrophysics Data System (ADS)

    Chwirot, B. W.; Chwirot, S.; Jedrzejczyk, W.; Redzinski, J.; Raczynska, A. M.; Telega, K.

    2001-07-01

    We studied spectral and spatial distributions of the intensity of the ultraviolet light-excited fluorescence of human skin. Our studied performed in situ in 162 patients with malignant and non-malignant skin lesions resulted in a new method of detecting melanomas in situ using digital imaging of the spectrally resolved fluorescence. With our diagnostic algorithm we could successfully detect 88.5% of the cases of melanoma in the group of patients subject to examinations with the fluorescence method. A patent application for the method has been submitted to the Patent Office in Warsaw.

  18. Differential response of human melanoma and Ehrlich ascites cells in vitro to the ribosome-inactivating protein luffin.

    PubMed

    Poma, A; Miranda, M; Spanò, L

    1998-10-01

    The cytotoxicity and inhibitory effect on proliferation of the type 1 ribosome-inactivating protein luffin purified from the seeds of Luffa aegyptiaca were investigated both in human metastatic melanoma cells and in murine Ehrlich ascites tumour cells. Results indicate that luffin from the seeds of Luffa aegyptiaca is cytotoxic to the cell lines tested, with approximately 10 times greater potency in Ehrlich cells. Luffin was found to induce an increase in cytosolic oligonucleosome-bound DNA in both melanoma and Ehrlich ascites tumour cells, the level of DNA fragmentation in the former cell line being higher than in the latter. Experiments with melanoma cells indicate that an increase in cytosolic nucleosomes could be supportive of apoptosis as the type of cell death induced by luffin.

  19. Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells.

    PubMed

    Del Bello, Barbara; Toscano, Marzia; Moretti, Daniele; Maellaro, Emilia

    2013-01-01

    The interplay between a non-lethal autophagic response and apoptotic cell death is still a matter of debate in cancer cell biology. In the present study performed on human melanoma cells, we investigate the role of basal or stimulated autophagy in cisplatin-induced cytotoxicity, as well as the contribution of cisplatin-induced activation of caspases 3/7 and conventional calpains. The results show that, while down-regulating Beclin-1, Atg14 and LC3-II, cisplatin treatment inhibits the basal autophagic response, impairing a physiological pro-survival response. Consistently, exogenously stimulated autophagy, obtained with trehalose or calpains inhibitors (MDL-28170 and calpeptin), protects from cisplatin-induced apoptosis, and such a protection is reverted by inhibiting autophagy with 3-methyladenine or ATG5 silencing. In addition, during trehalose-stimulated autophagy, the cisplatin-induced activation of calpains is abrogated, suggesting the existence of a feedback loop between the autophagic process and calpains. On the whole, our results demonstrate that in human melanoma cells autophagy may function as a beneficial stress response, hindered by cisplatin-induced death mechanisms. In a therapeutic perspective, these findings suggest that the efficacy of cisplatin-based polychemotherapies for melanoma could be potentiated by inhibitors of autophagy.

  20. The anti-apoptotic BAG3 protein is involved in BRAF inhibitor resistance in melanoma cells.

    PubMed

    Guerriero, Luana; Palmieri, Giuseppe; De Marco, Margot; Cossu, Antonio; Remondelli, Paolo; Capunzo, Mario; Turco, Maria Caterina; Rosati, Alessandra

    2017-10-06

    BAG3 protein, a member of BAG family of co-chaperones, has a pro-survival role in several tumour types. BAG3 anti-apoptotic properties rely on its characteristic to bind several intracellular partners, thereby modulating crucial events such as apoptosis, differentiation, cell motility, and autophagy. In human melanomas, BAG3 positivity is correlated with the aggressiveness of the tumour cells and can sustain IKK-γ levels, allowing a sustained activation of NF-κB. Furthermore, BAG3 is able to modulate BRAFV600E levels and activity in thyroid carcinomas. BRAFV600E is the most frequent mutation detected in malignant melanomas and is targeted by Vemurafenib, a specific inhibitor found to be effective in the treatment of advanced melanoma. However, patients with BRAF-mutated melanoma may result insensitive ab initio or, mostly, develop acquired resistance to the treatment with this molecule. Here we show that BAG3 down-modulation interferes with BRAF levels in melanoma cells and sensitizes them to Vemurafenib treatment. Furthermore, the down-modulation of BAG3 protein in an in vitro model of acquired resistance to Vemurafenib can induce sensitization to the BRAFV600E specific inhibition by interfering with BRAF pathway through reduction of ERK phosphorylation, but also on parallel survival pathways. Future studies on BAG3 molecular interactions with key proteins responsible of acquired BRAF inhibitor resistance may represent a promising field for novel multi-drugs treatment design.

  1. The anti-apoptotic BAG3 protein is involved in BRAF inhibitor resistance in melanoma cells

    PubMed Central

    Guerriero, Luana; Palmieri, Giuseppe; De Marco, Margot; Cossu, Antonio; Remondelli, Paolo; Capunzo, Mario; Turco, Maria Caterina; Rosati, Alessandra

    2017-01-01

    BAG3 protein, a member of BAG family of co-chaperones, has a pro-survival role in several tumour types. BAG3 anti-apoptotic properties rely on its characteristic to bind several intracellular partners, thereby modulating crucial events such as apoptosis, differentiation, cell motility, and autophagy. In human melanomas, BAG3 positivity is correlated with the aggressiveness of the tumour cells and can sustain IKK-γ levels, allowing a sustained activation of NF-κB. Furthermore, BAG3 is able to modulate BRAFV600E levels and activity in thyroid carcinomas. BRAFV600E is the most frequent mutation detected in malignant melanomas and is targeted by Vemurafenib, a specific inhibitor found to be effective in the treatment of advanced melanoma. However, patients with BRAF-mutated melanoma may result insensitive ab initio or, mostly, develop acquired resistance to the treatment with this molecule. Here we show that BAG3 down-modulation interferes with BRAF levels in melanoma cells and sensitizes them to Vemurafenib treatment. Furthermore, the down-modulation of BAG3 protein in an in vitro model of acquired resistance to Vemurafenib can induce sensitization to the BRAFV600E specific inhibition by interfering with BRAF pathway through reduction of ERK phosphorylation, but also on parallel survival pathways. Future studies on BAG3 molecular interactions with key proteins responsible of acquired BRAF inhibitor resistance may represent a promising field for novel multi-drugs treatment design. PMID:29113311

  2. Diagnostic Inaccuracy of Smart Phone Applications for Melanoma Detection

    PubMed Central

    Wolf, Joel; Moreau, Jacqui; Akilov, Oleg; Patton, Timothy; English, Joseph C; Ho, Jon; Ferris, Laura Korb

    2013-01-01

    Objective To measure the performance of smart phone applications which evaluate photographs of skin lesions and provide the user feedback as to their likelihood of malignancy. Design Case-control diagnostic accuracy study Setting Academic dermatology department Participants Digital clinical images of pigmented cutaneous lesions (60 melanoma cases and 128 benign lesion controls), all with histologic diagnosis rendered by a board-certified dermatopathologist, obtained prior to biopsy in patients undergoing lesion removal as part of routine care. Main Outcome Measures Sensitivity, specificity, and positive and negative predictive values of four smart phone applications designed to aid non-clinician users in determining if their skin lesion is benign or malignant. Results Sensitivity of the four tested applications ranged from 6.8% to 98.1%. Specificity ranged from 30.4% to 93.7%. Positive predictive value ranged from 33.3% to 42.1%, and negative predictive value ranged from 65.4% to 97.0%. The highest sensitivity for melanoma diagnosis was observed for an application that sends the image directly to a board-certified dermatologist for analysis and the lowest sensitivity was observed for applications that use automated algorithms to analyze images. Conclusions The performance of smart phone applications in assessing melanoma risk is highly variable, and 3 out of 4 smart phone applications incorrectly classified 30% or more of melanomas as unconcerning. Reliance on these applications, which are not subject to regulatory oversight, in lieu of medical consultation, has the potential to delay the diagnosis of melanoma and to harm users. PMID:23325302

  3. Cross-Priming of Naive Cd8 T Cells against Melanoma Antigens Using Dendritic Cells Loaded with Killed Allogeneic Melanoma Cells

    PubMed Central

    Berard, Frederic; Blanco, Patrick; Davoust, Jean; Neidhart-Berard, Eve-Marie; Nouri-Shirazi, Mahyar; Taquet, Nicolas; Rimoldi, Donata; Cerottini, Jean Charles; Banchereau, Jacques; Palucka, A. Karolina

    2000-01-01

    The goal of tumor immunotherapy is to elicit immune responses against autologous tumors. It would be highly desirable that such responses include multiple T cell clones against multiple tumor antigens. This could be obtained using the antigen presenting capacity of dendritic cells (DCs) and cross-priming. That is, one could load the DC with tumor lines of any human histocompatibility leukocyte antigen (HLA) type to elicit T cell responses against the autologous tumor. In this study, we show that human DCs derived from monocytes and loaded with killed melanoma cells prime naive CD45RA+CD27+CD8+ T cells against the four shared melanoma antigens: MAGE-3, gp100, tyrosinase, and MART-1. HLA-A201+ naive T cells primed by DCs loaded with HLA-A201− melanoma cells are able to kill several HLA-A201+ melanoma targets. Cytotoxic T lymphocyte priming towards melanoma antigens is also obtained with cells from metastatic melanoma patients. This demonstration of cross-priming against shared tumor antigens builds the basis for using allogeneic tumor cell lines to deliver tumor antigens to DCs for vaccination protocols. PMID:11104796

  4. A novel fully-humanised 3D skin equivalent to model early melanoma invasion

    PubMed Central

    Hill, David S; Robinson, Neil D P; Caley, Matthew P; Chen, Mei; O’Toole, Edel A; Armstrong, Jane L; Przyborski, Stefan; Lovat, Penny E

    2015-01-01

    Metastatic melanoma remains incurable, emphasising the acute need for improved research models to investigate the underlying biological mechanisms mediating tumour invasion and metastasis, and to develop more effective targeted therapies to improve clinical outcome. Available animal models of melanoma do not accurately reflect human disease and current in vitro human skin equivalent models incorporating melanoma cells are not fully representative of the human skin microenvironment. We have developed a robust and reproducible, fully-humanised 3D skin equivalent comprising a stratified, terminally differentiated epidermis and a dermal compartment consisting of fibroblast-generated extracellular matrix. Melanoma cells incorporated into the epidermis were able to invade through the basement membrane and into the dermis, mirroring early tumour invasion in vivo. Comparison of our novel 3D melanoma skin equivalent with melanoma in situ and metastatic melanoma indicates this model accurately recreates features of disease pathology, making it a physiologically representative model of early radial and vertical growth phase melanoma invasion. PMID:26330548

  5. Ionizing radiation modulates the surface expression of human leukocyte antigen-G in a human melanoma cell line.

    PubMed

    Michelin, Severino; Gallegos, Cristina E; Dubner, Diana; Favier, Benoit; Carosella, Edgardo D

    2009-12-01

    Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule involved in fetus protection from the maternal immune system, transplant tolerance, and viral and tumoral immune escape. Tumor-specific HLA-G expression has been described for a wide variety of malignancies, including melanomas. The aim of this study was to evaluate whether ionizing radiation (IR) could modulate the surface expression of HLA-G1 in a human melanoma cell line that expresses endogenously membrane-bound HLA-G1. For this purpose, cells were exposed to increasing doses of gamma-irradiation (0-20 Gy) and HLA-G1 levels at the plasma membrane were analyzed at different times postirradiation by flow cytometry. HLA-G total expression and the presence of the soluble form of HLA-G1 (sHLA-G1) in the culture medium of irradiated cells were also evaluated. IR was capable of downregulating cell surface and total HLA-G levels, with a concomitant increase of sHLA-G1 in the medium. These results could indicate that gamma-irradiation decreases HLA-G1 surface levels by enhancing the proteolytic cleavage of this molecule.

  6. Accumulation of prohibitin is a common cellular response to different stressing stimuli and protects melanoma cells from ER stress and chemotherapy-induced cell death

    PubMed Central

    Tortelli, Tharcisio Citrangulo; de Godoy, Lyris Martins Franco; de Souza, Gustavo Antonio; Bonatto, Diego; Otake, Andreia Hanada; de Freitas Saito, Renata; Rosa, Jose Cesar; Greene, Lewis Joel; Chammas, Roger

    2017-01-01

    Melanoma is responsible for most deaths among skin cancers and conventional and palliative care chemotherapy are limited due to the development of chemoresistance. We used proteomic analysis to identify cellular responses that lead to chemoresistance of human melanoma cell lines to cisplatin. A systems approach to the proteomic data indicated the participation of specific cellular processes such as oxidative phosphorylation, mitochondrial organization and homeostasis, as well as the unfolded protein response (UPR) to be required for the survival of cells treated with cisplatin. Prohibitin (PHB) was among the proteins consistently accumulated, interacting with the functional clusters associated with resistance to cisplatin. We showed PHB accumulated at different levels in melanoma cell lines under stressing stimuli, such as (i) treatment with temozolomide (TMZ), dacarbazine (DTIC) and cisplatin; (ii) serum deprivation; (iii) tunicamycin, an UPR inducer. Prohibitin accumulated in the mitochondria of melanoma cells after cisplatin and tunicamycin treatment and its de novo accumulation led to chemoresistance melanoma cell lines. In contrast, PHB knock-down sensitized melanoma cells to cisplatin and tunicamycin treatment. We conclude that PHB participates in the survival of cells exposed to different stress stimuli, and can therefore serve as a target for the sensitization of melanoma cells to chemotherapy. PMID:28562344

  7. Receptor-mediated cytotoxicity of alpha-MSH fragments containing melphalan in a human melanoma cell line.

    PubMed

    Morandini, R; Süli-Vargha, H; Libert, A; Loir, B; Botyánszki, J; Medzihradszky, K; Ghanem, G

    1994-01-02

    Four alpha-MSH drug conjugates have been synthesized, 2 C-terminal (Pep 3 and 4) and 2 central fragments (Pep 1 and 2), the latter being the 4-10 sequence known to be the main alpha-MSH-receptor-recognition site. Melphalan was introduced into each sequence at different locations. Their ability to recognize alpha-MSH receptors as well as their cytotoxic effects were compared in 3 cell lines: melanoma, carcinoma and fibroblast cells. Pep 1 and 2 were able to specifically bind to MSH receptors on melanoma cells by displacing labelled alpha-MSH from its binding sites at concentrations similar to the 4-10 heptapeptide sequence known to contain the main receptor-recognition site. They subsequently penetrate the cell, most probably by a receptor internalization mechanism, since about half of their effect could be inhibited by competition at the receptor level. Significant and selective cytotoxic effects to melanoma cells could be observed after only 2 hr exposure to the drug conjugates. Interestingly, these 2 conjugates, differing only in melphalan position, showed completely different cytotoxicity in terms of IC50 values, Pep 1 being 24 times more toxic to all cells; but the 2 were equally specific to melanoma cells. However, they both were less toxic to all cells than melphalan itself. Furthermore, Pep 1 and 2 were able to block the receptor and, unlike Pep 3 and 4, their cytotoxic effect could be significantly inhibited by an alpha-MSH agonist. Pep 3 and 4 were 5 to 10 times less toxic than melphalan to melanoma and carcinoma cells and 50 times less to fibroblast cells, and did not show any cell-type selectivity. They were less toxic than Pep 1 to melanoma and carcinoma cells by a factor of 2, but equally toxic to fibroblasts. In contrast, they were more toxic than Pep 2 to fibroblasts, melanoma and carcinoma by a factor of 3, 10 and 24 respectively. Our data strongly suggest a receptor-mediated cytotoxicity mechanism occurring with alpha-MSH central fragments in human

  8. Aggressive melanoma cells escape from BMP7-mediated autocrine growth inhibition through coordinated Noggin upregulation

    PubMed Central

    Hsu, Mei-Yu; Rovinsky, Sherry; Lai, Chiou-Yan; Qasem, Shadi; Liu, Xiaoming; How, Joan; Engelhardt, John F.; Murphy, George F.

    2009-01-01

    Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily responsible for mediating a diverse array of cellular functions both during embryogenesis and in adult life. Previously, we reported that upregulation of BMP7 in human melanoma correlates with tumor progression. However, melanoma cells are either inhibited by or become resistant to BMP7 as a function of tumor progression, with normal melanocytes being most susceptible. Herein, real-time quantitative reverse transcriptase-polymerase chain reactions and Western blotting revealed that the expression of BMP antagonist, Noggin, correlates with resistance to BMP7 in advanced melanoma cells. To test the hypothesis that coordinated upregulation of Noggin protects advanced melanoma cells from autocrine inhibition by BMP7, functional expression of Noggin in susceptible melanoma cells was achieved by adenoviral gene transfer. The Noggin-overexpressing cells exhibited a growth advantage in response to subsequent BMP7 transduction in vitro under anchorage-dependent and -independent conditions, in three-dimensional skin reconstructs, as well as in vivo in severe combined immune-deficiency mice. In concordance, Noggin knockdown by lentiviral shRNA confers sensitivity to BMP7-induced growth inhibition in advanced melanoma cells. Our findings suggest that, like TGF-β, BMP7 acts as an autocrine growth inhibitor in melanocytic cells, and that advanced melanoma cells may escape from BMP7-induced inhibition through concomitant aberrant expression of Noggin. PMID:18560367

  9. Quantitative comparison of the spreading and invasion of radial growth phase and metastatic melanoma cells in a three-dimensional human skin equivalent model.

    PubMed

    Haridas, Parvathi; McGovern, Jacqui A; McElwain, Sean D L; Simpson, Matthew J

    2017-01-01

    Standard two-dimensional (2D) cell migration assays do not provide information about vertical invasion processes, which are critical for melanoma progression. We provide information about three-dimensional (3D) melanoma cell migration, proliferation and invasion in a 3D melanoma skin equivalent (MSE) model. In particular, we pay careful attention to compare the structure of the tissues in the MSE with similarly-prepared 3D human skin equivalent (HSE) models. The HSE model is identically prepared to the MSE model except that melanoma cells are omitted. Using the MSE model, we examine melanoma migration, proliferation and invasion from two different human melanoma cell lines. One cell line, WM35, is associated with the early phase of the disease where spreading is thought to be confined to the epidermis. The other cell line, SK-MEL-28, is associated with the later phase of the disease where spreading into the dermis is expected. 3D MSE and HSE models are constructed using human de-epidermised dermis (DED) prepared from skin tissue. Primary fibroblasts and primary keratinocytes are used in the MSE and HSE models to ensure the formation of a stratified epidermis, with a well-defined basement membrane. Radial spreading of cells across the surface of the HSE and MSE models is observed. Vertical invasion of melanoma cells downward through the skin is observed and measured using immunohistochemistry. All measurements of invasion are made at day 0, 9, 15 and 20, providing detailed time course data. Both HSE and MSE models are similar to native skin in vivo , with a well-defined stratification of the epidermis that is separated from the dermis by a basement membrane. In the HSE and MSE we find fibroblast cells confined to the dermis, and differentiated keratinocytes in the epidermis. In the MSE, melanoma cells form colonies in the epidermis during the early part of the experiment. In the later stage of the experiment, the melanoma cells in the MSE invade deeper into the

  10. Quantitative comparison of the spreading and invasion of radial growth phase and metastatic melanoma cells in a three-dimensional human skin equivalent model

    PubMed Central

    Haridas, Parvathi; McGovern, Jacqui A.; McElwain, Sean D.L.

    2017-01-01

    Background Standard two-dimensional (2D) cell migration assays do not provide information about vertical invasion processes, which are critical for melanoma progression. We provide information about three-dimensional (3D) melanoma cell migration, proliferation and invasion in a 3D melanoma skin equivalent (MSE) model. In particular, we pay careful attention to compare the structure of the tissues in the MSE with similarly-prepared 3D human skin equivalent (HSE) models. The HSE model is identically prepared to the MSE model except that melanoma cells are omitted. Using the MSE model, we examine melanoma migration, proliferation and invasion from two different human melanoma cell lines. One cell line, WM35, is associated with the early phase of the disease where spreading is thought to be confined to the epidermis. The other cell line, SK-MEL-28, is associated with the later phase of the disease where spreading into the dermis is expected. Methods 3D MSE and HSE models are constructed using human de-epidermised dermis (DED) prepared from skin tissue. Primary fibroblasts and primary keratinocytes are used in the MSE and HSE models to ensure the formation of a stratified epidermis, with a well-defined basement membrane. Radial spreading of cells across the surface of the HSE and MSE models is observed. Vertical invasion of melanoma cells downward through the skin is observed and measured using immunohistochemistry. All measurements of invasion are made at day 0, 9, 15 and 20, providing detailed time course data. Results Both HSE and MSE models are similar to native skin in vivo, with a well-defined stratification of the epidermis that is separated from the dermis by a basement membrane. In the HSE and MSE we find fibroblast cells confined to the dermis, and differentiated keratinocytes in the epidermis. In the MSE, melanoma cells form colonies in the epidermis during the early part of the experiment. In the later stage of the experiment, the melanoma cells in the MSE

  11. ATG5 mediates a positive feedback loop between Wnt signaling and autophagy in melanoma

    PubMed Central

    Ndoye, Abibatou; Budina-Kolomets, Anna; Kugel, Curtis H.; Webster, Marie; Kaur, Amanpreet; Behera, Reeti; Rebecca, Vito; Li, Ling; Brafford, Patricia; Liu, Qin; Gopal, Y.N. Vashisht; Davies, Michael A.; Mills, Gordon B.; Xu, Xiaowei; Wu, Hong; Herlyn, Meenhard; Nicastri, Michael; Winkler, Jeffrey; Soengas, Maria S.; Amaravadi, Ravi; Murphy, Maureen; Weeraratna, Ashani T.

    2017-01-01

    Autophagy mediates resistance to various anticancer agents. In melanoma, resistance to targeted therapy has been linked to expression of Wnt5A, an intrinsic inhibitor of β-catenin, which also promotes invasion. In this study, we assessed the interplay between Wnt5A and autophagy by combining expression studies in human clinical biopsies with functional analyses in cell lines and mouse models. Melanoma cells with high Wnt5A and low β-catenin displayed increased basal autophagy. Genetic blockade of autophagy revealed an unexpected feedback loop whereby knocking down the autophagy factor ATG5 in Wnt5Ahigh cells decreased Wnt5A and increased β-catenin. To define the physiological relevance of this loop, melanoma cells with different Wnt status were treated in vitro and in vivo with the potent lysosomotropic compound Lys05. Wnt5Ahigh cells were less sensitive to Lys05 and could be reverted by inducing β-catenin activity. Our results suggest the efficacy of autophagy inhibitors might be improved by taking the Wnt signature of melanoma cells into account. PMID:28887323

  12. Single-chain antibody-delivered Livin siRNA inhibits human malignant melanoma growth in vitro and in vivo.

    PubMed

    Wang, Hao; Yang, Yifei; Wang, Wei; Guan, Bing; Xun, Meng; Zhang, Hai; Wang, Ziling; Zhao, Yong

    2017-05-01

    Although gene therapy has brought new insights into the treatment of malignant melanoma, targeting delivery of nucleic acid which targets critical oncogene/anti-oncogene in vivo is still a bottleneck in the therapeutic application. Our previous in vitro studies have found that the oncogene Livin could serve as a potential molecular target by small interfering RNA for gene therapy of malignant melanoma. However, how to transport Livin small interfering RNA into malignant melanoma cells specifically and efficiently in vivo needs further investigation. Cumulative evidence has suggested that single-chain antibody-mediated small interfering RNA targeted delivery is an effective way to silence specific genes in human cancer cells. Indeed, this study designed a protamine-single-chain antibody fusion protein, anti-MM scFv-tP, to deliver Livin small interfering RNA into LiBr cells. Further experiments confirmed the induction of cell apoptosis and suppression of cell proliferation by anti-MM scFv-tP in LiBr cells, along with efficient silence of Livin gene both in vitro and in vivo. Altogether, our findings provide a feasible approach to transport Livin small interfering RNA to malignant melanoma cells which would be a new therapeutic strategy for combating malignant melanoma.

  13. PP2B and ERK1/2 regulate hyaluronan synthesis of HT168 and WM35 human melanoma cell lines.

    PubMed

    Katona, Éva; Juhász, Tamás; Somogyi, Csilla Szűcs; Hajdú, Tibor; Szász, Csaba; Rácz, Kálmán; Kókai, Endre; Gergely, Pál; Zákány, Róza

    2016-03-01

    Hyaluronan (HA) is the major glycosaminoglycan component of the extracellular matrix in either normal or malignant tissues and it may affect proliferation, motility and differentiation of various cell types. Three isoforms of plasma membrane-bound hyaluronan synthases (HAS 1, 2 and 3) secrete and simultaneously bind pericellular HA. HAS enzymes are subjects of post-translational protein phosphorylation which is believed to regulate their enzymatic activity. In this study, we investigated the HA homeostasis of normal human epidermal melanocytes, HT168 and WM35 human melanoma cell lines and melanoma metastases. HAS2 and HAS3 were detected in all the samples, while the expression of HAS1 was not detectable in any case. Malignant tissue samples and melanoma cell lines contained extra- and intracellular HA abundantly but not normal melanocytes. Applying HA as a chemoattractant facilitated the migration of melanoma cells in Boyden chamber. The amount of HA was reduced upon the inhibition of calcineurin with cyclosporine A (CsA), while the inhibition of ERK1/2 with PD098059 elevated it in both cell lines. The signals of Ser/Thr phosphoproteins at 57 kD were stronger after CsA treatment, while a markedly weaker signal was detected upon inhibition of the MAPK pathway. Our results suggest opposing effects of the two investigated enzymes on the HA homeostasis of melanoma cells. We propose that the dephosphorylation of HAS enzymes targeted by PP2B augments HA production, while their phosphorylation by the activity of MAPK pathway reduces HA synthesis. As the expression of the HA receptor RHAMM was also significantly enhanced by PD098059, the MAPK pathway exerted a complex attenuating effect on HA signalling in the investigated melanoma cells. This observation suggests that the application of MAPK-ERK pathway inhibitors requires a careful therapeutic design in melanoma treatment.

  14. PP2B and ERK1/2 regulate hyaluronan synthesis of HT168 and WM35 human melanoma cell lines

    PubMed Central

    KATONA, ÉVA; JUHÁSZ, TAMÁS; SOMOGYI, CSILLA SZŰCS; HAJDÚ, TIBOR; SZÁSZ, CSABA; RÁCZ, KÁLMÁN; KÓKAI, ENDRE; GERGELY, PÁL; ZÁKÁNY, RÓZA

    2016-01-01

    Hyaluronan (HA) is the major glycosaminoglycan component of the extracellular matrix in either normal or malignant tissues and it may affect proliferation, motility and differentiation of various cell types. Three isoforms of plasma membrane-bound hyaluronan synthases (HAS 1, 2 and 3) secrete and simultaneously bind pericellular HA. HAS enzymes are subjects of post-translational protein phosphorylation which is believed to regulate their enzymatic activity. In this study, we investigated the HA homeostasis of normal human epidermal melanocytes, HT168 and WM35 human melanoma cell lines and melanoma metastases. HAS2 and HAS3 were detected in all the samples, while the expression of HAS1 was not detectable in any case. Malignant tissue samples and melanoma cell lines contained extra- and intracellular HA abundantly but not normal melanocytes. Applying HA as a chemoattractant facilitated the migration of melanoma cells in Boyden chamber. The amount of HA was reduced upon the inhibition of calcineurin with cyclosporine A (CsA), while the inhibition of ERK1/2 with PD098059 elevated it in both cell lines. The signals of Ser/Thr phosphoproteins at 57 kD were stronger after CsA treatment, while a markedly weaker signal was detected upon inhibition of the MAPK pathway. Our results suggest opposing effects of the two investigated enzymes on the HA homeostasis of melanoma cells. We propose that the dephosphorylation of HAS enzymes targeted by PP2B augments HA production, while their phosphorylation by the activity of MAPK pathway reduces HA synthesis. As the expression of the HA receptor RHAMM was also significantly enhanced by PD098059, the MAPK pathway exerted a complex attenuating effect on HA signalling in the investigated melanoma cells. This observation suggests that the application of MAPK-ERK pathway inhibitors requires a careful therapeutic design in melanoma treatment. PMID:26717964

  15. BRAF and MEK inhibitor therapy eliminates nestin expressing melanoma cells in human tumors.

    PubMed

    Doxie, Deon B; Greenplate, Allison R; Gandelman, Jocelyn S; Diggins, Kirsten E; Roe, Caroline E; Dahlman, Kimberly B; Sosman, Jeffrey A; Kelley, Mark C; Irish, Jonathan M

    2018-05-19

    Little is known about the in vivo impacts of targeted therapy on melanoma cell abundance and protein expression. Here, 21 antibodies were added to an established melanoma mass cytometry panel to measure 32 cellular features, distinguish malignant cells, and characterize dabrafenib and trametinib responses in BRAF V 600mut melanoma. Tumor cells were biopsied before neoadjuvant therapy and compared to cells surgically resected from the same site after 4 weeks of therapy. Approximately 50,000 cells per tumor were characterized by mass cytometry and computational tools t-SNE/viSNE, FlowSOM, and MEM. The resulting single cell view of melanoma treatment response revealed initially heterogeneous melanoma tumors were consistently cleared of Nestin expressing melanoma cells. Melanoma cells subsets that persisted to week 4 were heterogeneous but expressed SOX2 or SOX10 proteins and specifically lacked surface expression of MHC I proteins by MEM analysis. Traditional histology imaging of tissue microarrays from the same tumors confirmed mass cytometry results, including persistence of NES- SOX10+ S100β+ melanoma cells. This quantitative single cell view of melanoma treatment response revealed protein features of malignant cells that are not eliminated by targeted therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Antiproliferative and apoptosis-inducing effects of lipophilic vitamins on human melanoma A375 cells in vitro.

    PubMed

    Ishibashi, Mai; Arai, Mariko; Tanaka, Sachiko; Onda, Kenji; Hirano, Toshihiko

    2012-01-01

    The effects of six lipophilic vitamins: tretinoin (ATRA), vitamin D(3) (VD(3)), VE, VK(1), VK(3), and VK(5) on cell proliferation and apoptosis in human A375 melanoma cells were investigated. VD(3), VK(3), and VK(5) were found to inhibit cell proliferation significantly at concentration ranges of 10-100 μmol/L (p<0.01), while the other vitamins did not show inhibitory effects at 100 μmol/L. VK(3) and VK(5) showed the strongest effects with IC(50) values of less than 10 μmol/L. Dacarbazine slightly inhibited the proliferation of A375 cells at a concentration range of 25-100 μmol/L, but the effects were not statistically significant. VK(3) and VK(5) increased annexin-V positive apoptotic cells, as well as activating caspase-3, in A375 cells. Our findings showed that VD(3), VK(3,) and VK(5) inhibited the growth of dacarbazine resistant human melanoma cells, while ATRA, VE, and VK(1) had little effect on the cell growth. The effects of VK(3) and VK(5) were observed at concentrations lower than 10 μmol/L, which are suggested to have resulted from apoptosis-induction in the melanoma cells.

  17. ALK Inhibitor Response in Melanomas Expressing EML4-ALK Fusions and Alternate ALK Isoforms.

    PubMed

    Couts, Kasey L; Bemis, Judson; Turner, Jacqueline A; Bagby, Stacey M; Murphy, Danielle; Christiansen, Jason; Hintzsche, Jennifer D; Le, Anh; Pitts, Todd M; Wells, Keith; Applegate, Allison; Amato, Carol; Multani, Pratik; Chow-Maneval, Edna; Tentler, John J; Shellman, Yiqun G; Rioth, Matthew J; Tan, Aik-Choon; Gonzalez, Rene; Medina, Theresa; Doebele, Robert C; Robinson, William A

    2018-01-01

    Oncogenic ALK fusions occur in several types of cancer and can be effectively treated with ALK inhibitors; however, ALK fusions and treatment response have not been characterized in malignant melanomas. Recently, a novel isoform of ALK ( ALK ATI ) was reported in 11% of melanomas but the response of melanomas expressing ALK ATI to ALK inhibition has not been well characterized. We analyzed 45 melanoma patient-derived xenograft models for ALK mRNA and protein expression. ALK expression was identified in 11 of 45 (24.4%) melanomas. Ten melanomas express wild-type (wt) ALK and/or ALK ATI and one mucosal melanoma expresses multiple novel EML4-ALK fusion variants. Melanoma cells expressing different ALK variants were tested for response to ALK inhibitors. Whereas the melanoma expressing EML4-ALK were sensitive to ALK inhibitors in vitro and in vivo , the melanomas expressing wt ALK or ALK ATI were not sensitive to ALK inhibitors. In addition, a patient with mucosal melanoma expressing ALK ATI was treated with an ALK/ROS1/TRK inhibitor (entrectinib) on a phase I trial but did not respond. Our results demonstrate ALK fusions occur in malignant melanomas and respond to targeted therapy, whereas melanomas expressing ALK ATI do not respond to ALK inhibitors. Targeting ALK fusions is an effective therapeutic option for a subset of melanoma patients, but additional clinical studies are needed to determine the efficacy of targeted therapies in melanomas expressing wt ALK or ALK ATI Mol Cancer Ther; 17(1); 222-31. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma.

    PubMed

    Jayachandran, Aparna; Anaka, Matthew; Prithviraj, Prashanth; Hudson, Christopher; McKeown, Sonja J; Lo, Pu-Han; Vella, Laura J; Goding, Colin R; Cebon, Jonathan; Behren, Andreas

    2014-07-30

    Epithelial-to-mesenchymal transition (EMT), in which epithelial cells loose their polarity and become motile mesenchymal cells, is a determinant of melanoma metastasis. We compared gene expression signatures of mesenchymal-like melanoma cells with those of epithelial-like melanoma cells, and identified Thrombospondin 1 (THBS1) as highly up-regulated in the mesenchymal phenotype. This study investigated whether THBS1, a major physiological activator of transforming growth factor (TGF)-beta, is involved in melanoma EMT-like process. We sought to examine expression patterns in distinct melanoma phenotypes including invasive, de-differentiated, label-retaining and drug resistant populations that are putatively associated with an EMT-like process. Here we show that THBS1 expression and secretion was elevated in melanoma cells exhibiting invasive, drug resistant, label retaining and mesenchymal phenotypes and correlated with reduced expression of genes involved in pigmentation. Elevated THBS1 levels were detected in Vemurafenib resistant melanoma cells and inhibition of THBS1 led to significantly reduced chemoresistance in melanoma cells. Notably, siRNA-mediated silencing of THBS1 and neutralizing antibody to THBS1 reduced invasion in mesenchymal-like melanoma cells, while ectopic THBS1 expression in epithelial-like melanoma cells enhanced invasion. Furthermore, the loss of THBS1 inhibited in vivo motility of melanoma cells within the embryonic chicken neural tube. In addition, we found aberrant THBS1 protein expression in metastatic melanoma tumor biopsies. These results implicate a role for THBS1 in EMT, and hence THBS1 may serve as a novel target for strategies aimed at the treatment of melanoma invasion and drug resistance.

  19. Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma

    PubMed Central

    Jayachandran, Aparna; Anaka, Matthew; Prithviraj, Prashanth; Hudson, Christopher; McKeown, Sonja J; Lo, Pu-Han; Vella, Laura J; Goding, Colin R; Cebon, Jonathan; Behren, Andreas

    2014-01-01

    Epithelial-to-mesenchymal transition (EMT), in which epithelial cells loose their polarity and become motile mesenchymal cells, is a determinant of melanoma metastasis. We compared gene expression signatures of mesenchymal-like melanoma cells with those of epithelial-like melanoma cells, and identified Thrombospondin 1 (THBS1) as highly up-regulated in the mesenchymal phenotype. This study investigated whether THBS1, a major physiological activator of transforming growth factor (TGF)-beta, is involved in melanoma EMT-like process. We sought to examine expression patterns in distinct melanoma phenotypes including invasive, de-differentiated, label-retaining and drug resistant populations that are putatively associated with an EMT-like process. Here we show that THBS1 expression and secretion was elevated in melanoma cells exhibiting invasive, drug resistant, label retaining and mesenchymal phenotypes and correlated with reduced expression of genes involved in pigmentation. Elevated THBS1 levels were detected in Vemurafenib resistant melanoma cells and inhibition of THBS1 led to significantly reduced chemoresistance in melanoma cells. Notably, siRNA-mediated silencing of THBS1 and neutralizing antibody to THBS1 reduced invasion in mesenchymal-like melanoma cells, while ectopic THBS1 expression in epithelial-like melanoma cells enhanced invasion. Furthermore, the loss of THBS1 inhibited in vivo motility of melanoma cells within the embryonic chicken neural tube. In addition, we found aberrant THBS1 protein expression in metastatic melanoma tumor biopsies. These results implicate a role for THBS1 in EMT, and hence THBS1 may serve as a novel target for strategies aimed at the treatment of melanoma invasion and drug resistance. PMID:25051363

  20. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression

    PubMed Central

    Kim, Sun-Hee; Hashimoto, Yuuri; Cho, Sung-Nam; Roszik, Jason; Milton, Denái R.; Dal, Fulya; Kim, Sangwon F.; Menter, David G.; Yang, Peiying; Ekmekcioglu, Suhendan; Grimm, Elizabeth A.

    2016-01-01

    Summary COX-2 and its product PGE2 enhance carcinogenesis and tumor progression, which has been previously reported in melanoma. As most COX inhibitors cause much toxicity, the downstream microsomal PGE2 synthase-1 (mPGES1) is a consideration for targeting. Human melanoma TMAs were employed for testing mPGES1 protein staining intensity and percentage levels and both increased with clinical stage; employing a different Stage III TMA, mPGES1 intensity (not percentage) associated with reduced patient survival. Our results further show that iNOS was also highly expressed in melanoma tissues with high mPGES1 levels, and iNOS-mediated NO promoted mPGES1 expression and PGE2 production. An mPGES1specific inhibitor (CAY10526) as well as siRNA attenuated cell survival and increased apoptosis. CAY10526 significantly suppressed tumor growth and increased apoptosis in melanoma xenografts. Our findings support the value of a prognostic and predictive role for mPGES1, and suggest targeting this molecule in the PGE2 pathway as another avenue toward improving melanoma therapy. PMID:26801201

  1. IGF-1 contributes to the expansion of melanoma-initiating cells through an epithelial-mesenchymal transition process.

    PubMed

    Le Coz, Vincent; Zhu, Chaobin; Devocelle, Aurore; Vazquez, Aimé; Boucheix, Claude; Azzi, Sandy; Gallerne, Cindy; Eid, Pierre; Lecourt, Séverine; Giron-Michel, Julien

    2016-12-13

    Melanoma is a particularly virulent human cancer, due to its resistance to conventional treatments and high frequency of metastasis. Melanomas contain a fraction of cells, the melanoma-initiating cells (MICs), responsible for tumor propagation and relapse. Identification of the molecular pathways supporting MICs is, therefore, vital for the development of targeted treatments. One factor produced by melanoma cells and their microenvironment, insulin-like growth factor-1 (IGF- 1), is linked to epithelial-mesenchymal transition (EMT) and stemness features in several cancers.We evaluated the effect of IGF-1 on the phenotype and chemoresistance of B16-F10 cells. IGF-1 inhibition in these cells prevented malignant cell proliferation, migration and invasion, and lung colony formation in immunodeficient mice. IGF-1 downregulation also markedly inhibited EMT, with low levels of ZEB1 and mesenchymal markers (N-cadherin, CD44, CD29, CD105) associated with high levels of E-cadherin and MITF, the major regulator of melanocyte differentiation. IGF-1 inhibition greatly reduced stemness features, including the expression of key stem markers (SOX2, Oct-3/4, CD24 and CD133), and the functional characteristics of MICs (melanosphere formation, aldehyde dehydrogenase activity, side population). These features were associated with a high degree of sensitivity to mitoxantrone treatment.In this study, we deciphered new connections between IGF-1 and stemness features and identified IGF-1 as instrumental for maintaining the MIC phenotype. The IGF1/IGF1-R nexus could be targeted for the development of more efficient anti-melanoma treatments. Blocking the IGF-1 pathway would improve the immune response, decrease the metastatic potential of tumor cells and sensitize melanoma cells to conventional treatments.

  2. Safety of administering the canine melanoma DNA vaccine (Oncept) to cats with malignant melanoma - a retrospective study.

    PubMed

    Sarbu, Luminita; Kitchell, Barbara E; Bergman, Philip J

    2017-02-01

    Objectives A xenogeneic human tyrosinase DNA vaccine was developed for treatment of dogs with oral malignant melanoma (Oncept; Merial). No studies have evaluated the safety or efficacy of this vaccine in cats. The purpose of this study was to evaluate the safety of the canine melanoma vaccine in cats diagnosed with melanoma. Methods Medical records were reviewed from cats diagnosed with malignant melanoma and treated with the canine melanoma DNA vaccine (Oncept). Data regarding signalment, melanoma location, treatments received, vaccine adverse effects and cause of death were collected. Results A total of 114 melanoma vaccines were administered to 24 cats. Seven cats (11.4%) had clinical adverse effects from a total of 13 vaccines classified as grade 1 or 2 based on the Veterinary Cooperative Oncology Group's common terminology criteria for adverse events v1.1. These included pain on vaccine administration, brief muscle fasciculation, transient inappetence, depression, nausea and mild increase in pigmentation at the injection site. Nineteen cats were deceased at study close. The most common cause of death was melanoma (14 cats). Hematological and biochemical changes were observed in six cats, five of which had concurrent disease or treatments that likely caused or greatly contributed to the laboratory abnormalities found. Therefore, these adverse events were considered unlikely to be caused by the melanoma vaccine. One cat had transient grade 1 hypoalbuminemia, which was possibly caused by the vaccination but not thoroughly evaluated. Conclusions and relevance The canine melanoma DNA vaccine can be safely administered to cats, with minimal risk of adverse effects.

  3. Genetic and environmental melanoma models in fish

    PubMed Central

    Patton, E Elizabeth; Mitchell, David L; Nairn, Rodney S

    2010-01-01

    Experimental animal models are extremely valuable for the study of human diseases, especially those with underlying genetic components. The exploitation of various animal models, from fruitflies to mice, has led to major advances in our understanding of the etiologies of many diseases, including cancer. Cutaneous malignant melanoma is a form of cancer for which both environmental insult (i.e., UV) and hereditary predisposition are major causative factors. Fish melanoma models have been used in studies of both spontaneous and induced melanoma formation. Genetic hybrids between platyfish and swordtails, different species of the genus Xiphophorus, have been studied since the 1920s to identify genetic determinants of pigmentation and melanoma formation. Recently, transgenesis has been used to develop zebrafish and medaka models for melanoma research. This review will provide a historical perspective on the use of fish models in melanoma research, and an updated summary of current and prospective studies using these unique experimental systems. PMID:20230482

  4. An electrochemical immunosensing method for detecting melanoma cells.

    PubMed

    Seenivasan, Rajesh; Maddodi, Nityanand; Setaluri, Vijaysaradhi; Gunasekaran, Sundaram

    2015-06-15

    An electrochemical immunosensing method was developed to detect melanoma cells based on the affinity between cell surface melanocortin 1 receptor (MC1R) antigen and anti-MC1R antibody (MC1R-Ab). The MC1R-Abs were immobilized in amino-functionalized silica nanoparticles (n-SiNPs)-polypyrrole (PPy) nanocomposite modified on working electrode surface of screen-printed electrode (SPE). Cyclic voltammetry was employed, with the help of redox mediator ([Fe(CN)6](3-)), to measure the change in anodic oxidation peak current arising due to the specific interaction between MC1R antigens and MC1R-Abs when the target melanoma cells are present in the sample. Various factors affecting the sensor performance, such as the amount of MC1R-Abs loaded, incubation time with the target melanoma cells, the presence of interfering non-melanoma cells, were tested and optimized over different expected melanoma cell loads in the range of 50-7500 cells/2.5 mL. The immunosensor is highly sensitive (20 cells/mL), specific, and reproducible, and the antibody-loaded electrode in ready-to-use stage is stable over two weeks. Thus, in conjunction with a microfluidic lab-on-a-chip device our electrochemical immunosensing approach may be suitable for highly sensitive, selective, and rapid detection of circulating tumor cells (CTCs) in blood samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. MGDB: a comprehensive database of genes involved in melanoma.

    PubMed

    Zhang, Di; Zhu, Rongrong; Zhang, Hanqian; Zheng, Chun-Hou; Xia, Junfeng

    2015-01-01

    The Melanoma Gene Database (MGDB) is a manually curated catalog of molecular genetic data relating to genes involved in melanoma. The main purpose of this database is to establish a network of melanoma related genes and to facilitate the mechanistic study of melanoma tumorigenesis. The entries describing the relationships between melanoma and genes in the current release were manually extracted from PubMed abstracts, which contains cumulative to date 527 human melanoma genes (422 protein-coding and 105 non-coding genes). Each melanoma gene was annotated in seven different aspects (General Information, Expression, Methylation, Mutation, Interaction, Pathway and Drug). In addition, manually curated literature references have also been provided to support the inclusion of the gene in MGDB and establish its association with melanoma. MGDB has a user-friendly web interface with multiple browse and search functions. We hoped MGDB will enrich our knowledge about melanoma genetics and serve as a useful complement to the existing public resources. Database URL: http://bioinfo.ahu.edu.cn:8080/Melanoma/index.jsp. © The Author(s) 2015. Published by Oxford University Press.

  6. Evaluation of phototoxic potential of aerial components of the fig tree against human melanoma.

    PubMed

    Conforti, F; Menichini, G; Zanfini, L; Tundis, R; Statti, G A; Provenzano, E; Menichini, F; Somma, F; Alfano, C

    2012-06-01

    To date, Ficus carica L. cultivar Dottato (F. carica) has not been studied from a phototoxic point of view. In the present work, aerial components of F. carica from Italy, were examined to assess their antioxidant and phototoxic activity on human melanoma cells. A relationship between antioxidant, phototoxic activities and chemical composition has also been investigated. Coumarin and fatty acid content in F. carica leaves, bark and woody parts were examined and compared by capillary GC and GC/MS. Polyphenolic content was also determined. Linoleic acid peroxidation and DPPH test were used to assess antioxidant activities, and MTT assay was used to evaluate anti-proliferative activity, on C32 human melanoma cells, after irradiation with a UVA dose of 1.08 J/cm(2). Leaves demonstrated the best antioxidant and anti-proliferative activity in comparison to bark and wood. In particular, leaves were shown to possess the highest anti-radical activity and inhibition of peroxidation, with IC(50) values of 64 and 1.48 μg/ml respectively. The leaves had highest anti-proliferative activity with IC(50) value of 3.92 μg/ml. The phytochemical investigation revealed different composition between the coumarins, psoralen and bergapten, fatty acids, polyphenols and flavonoid content among plant parts. Data obtained indicate that this type of fig tree may constitute an excellent source of bioactive compounds, such as phenolics, coumarins and fatty acids. This study offers a new perspective in developing others formulations potentially useful in photodynamic therapy for treatment of non-melanoma skin cancers. © 2012 Blackwell Publishing Ltd.

  7. Tumor-line specific causes of intertumor heterogeneity in blood supply in human melanoma xenografts.

    PubMed

    Simonsen, Trude G; Gaustad, Jon-Vidar; Leinaas, Marit N; Rofstad, Einar K

    2013-01-01

    The efficacy of most cancer treatments is strongly influenced by the tumor blood supply. The results of experimental studies using xenografted tumors to evaluate novel cancer treatments may therefore vary considerably depending on the blood supply of the specific tumor model being used. Mechanisms underlying intertumor heterogeneity in the blood supply of xenografted tumors derived from same tumor line are poorly understood, and were investigated here by using intravital microscopy to assess tumor blood supply and vascular morphology in human melanomas growing in dorsal window chambers in BALB/c nu/nu mice. Two melanoma lines, A-07 and R-18, were included in the study. These lines differed substantially in angiogenic profiles. Thus, when the expression of 84 angiogenesis-related genes was investigated with a quantitative PCR array, 25% of these genes showed more than a 10-fold difference in expression. Furthermore, A-07 tumors showed higher vascular density, higher vessel tortuosity, higher vessel diameters, shorter vessel segments, and more chaotic vascular architecture than R-18 tumors. Both lines showed large intertumor heterogeneity in blood supply. In the A-07 line, tumors with low microvascular density, long vessel segment, and high vessel tortuosity showed poor blood supply, whereas in the R-18 line, poor tumor blood supply was associated with low tumor arteriolar diameters. Thus, tumor-line specific causes of intertumor heterogeneity in blood supply were identified in human melanoma xenografts, and these tumor-line specific mechanisms were possibly a result of tumor-line specific angiogenic profiles. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    PubMed

    Taghizadeh, Rouzbeh; Noh, Minsoo; Huh, Yang Hoon; Ciusani, Emilio; Sigalotti, Luca; Maio, Michele; Arosio, Beatrice; Nicotra, Maria R; Natali, PierGiorgio; Sherley, James L; La Porta, Caterina A M

    2010-12-22

    A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone. The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  9. PIM kinases as therapeutic targets against advanced melanoma

    PubMed Central

    Shannan, Batool; Watters, Andrea; Chen, Quan; Mollin, Stefan; Dörr, Markus; Meggers, Eric; Xu, Xiaowei; Gimotty, Phyllis A.; Perego, Michela; Li, Ling; Benci, Joseph; Krepler, Clemens; Brafford, Patricia; Zhang, Jie; Wei, Zhi; Zhang, Gao; Liu, Qin; Yin, Xiangfan; Nathanson, Katherine L.; Herlyn, Meenhard; Vultur, Adina

    2016-01-01

    Therapeutic strategies for the treatment of metastatic melanoma show encouraging results in the clinic; however, not all patients respond equally and tumor resistance still poses a challenge. To identify novel therapeutic targets for melanoma, we screened a panel of structurally diverse organometallic inhibitors against human-derived normal and melanoma cells. We observed that a compound that targets PIM kinases (a family of Ser/Thr kinases) preferentially inhibited melanoma cell proliferation, invasion, and viability in adherent and three-dimensional (3D) melanoma models. Assessment of tumor tissue from melanoma patients showed that PIM kinases are expressed in pre- and post-treatment tumors, suggesting PIM kinases as promising targets in the clinic. Using knockdown studies, we showed that PIM1 contributes to melanoma cell proliferation and tumor growth in vivo; however, the presence of PIM2 and PIM3 could also influence the outcome. The inhibition of all PIM isoforms using SGI-1776 (a clinically-available PIM inhibitor) reduced melanoma proliferation and survival in preclinical models of melanoma. This was potentiated in the presence of the BRAF inhibitor PLX4720 and in the presence of PI3K inhibitors. Our findings suggest that PIM inhibitors provide promising additions to the targeted therapies available to melanoma patients. PMID:27448973

  10. The utility of ultrasound in patients with melanoma.

    PubMed

    Uren, Roger F; Sanki, Amira; Thompson, John F

    2007-11-01

    The highest quality gray-scale ultrasound images are obtained with high-frequency transducers; however, such high frequencies do not penetrate more than a few centimeters into body tissue. Fortunately, in patients with melanoma, the structures of interest are close to the skin surface, making them ideal targets for examination with high-resolution ultrasound. These include primary cutaneous melanomas, uveal melanomas and the regional lymph nodes draining the skin that lie in the axilla, groin, neck and other locations. Although ultrasound study of primary melanomas arising in the skin and eye has provided some insights, a major role for ultrasound has evolved recently, to provide early detection of metastatic melanoma in regional lymph nodes. Ultrasound is clearly superior to clinical palpation of the nodes during follow-up and, when combined with guided fine-needle biopsy, allows the earliest possible surgical intervention for regional nodal metastases. In the future the use of ultrasound contrast agents may improve the sensitivity of ultrasound in the detection of very small metastatic deposits.

  11. NRAS-mutant melanoma: current challenges and future prospect

    PubMed Central

    Muñoz-Couselo, Eva; Adelantado, Ester Zamora; Ortiz, Carolina; García, Jesús Soberino; Perez-Garcia, José

    2017-01-01

    Melanoma is one of the most common cutaneous cancers worldwide. Activating mutations in RAS oncogenes are found in a third of all human cancers and NRAS mutations are found in 15%–20% of melanomas. The NRAS-mutant subset of melanoma is more aggressive and associated with poorer outcomes, compared to non-NRAS-mutant melanoma. Although immune checkpoint inhibitors and targeted therapies for BRAF-mutant melanoma are transforming the treatment of metastatic melanoma, the ideal treatment for NRAS-mutant melanoma remains unknown. Despite promising preclinical data, current therapies for NRAS-mutant melanoma remain limited, showing a modest increase in progression-free survival but without any benefit in overall survival. Combining MEK inhibitors with agents inhibiting cell cycling and the PI3K–AKT pathway appears to provide additional benefit; in particular, a strategy of MEK inhibition and CDK4/6 inhibition is likely to be a viable treatment option in the future. Patients whose tumors had NRAS mutations had better response to immunotherapy and better outcomes than patients whose tumors had other genetic subtypes, suggesting that immune therapies – especially immune checkpoint inhibitors – may be particularly effective as treatment options for NRAS-mutant melanoma. Improved understanding of NRAS-mutant melanoma will be essential to develop new treatment strategies for this subset of patients with melanoma. PMID:28860801

  12. Hypoxia-driven mechanism of vemurafenib resistance in melanoma

    PubMed Central

    Qin, Yong; Roszik, Jason; Chattopadhyay, Chandrani; Hashimoto, Yuuri; Liu, Chengwen; Cooper, Zachary A.; Wargo, Jennifer A.; Hwu, Patrick; Ekmekcioglu, Suhendan; Grimm, Elizabeth A.

    2016-01-01

    Melanoma is molecularly and structurally heterogeneous, with some tumor cells existing under hypoxic conditions. Our cell growth assays showed that under controlled hypoxic conditions, BRAF(V600E) melanoma cells rapidly became resistant to vemurafenib. By employing both a three-dimensional (3D) spheroid model and a two-dimensional (2D) hypoxic culture system to model hypoxia in vivo, we identified upregulation of HGF/MET signaling as a major mechanism associated with vemurafenib resistance as compared to 2D standard tissue culture in ambient air. We further confirmed that the upregulation of HGF/MET signaling was evident in drug-resistant melanoma patient tissues and mouse xenografts. Pharmacologic inhibition of the c-Met/Akt pathway restored the sensitivity of melanoma spheroids or 2D hypoxic cultures to vemurafenib. PMID:27458138

  13. Kinome-wide transcriptional profiling of uveal melanoma reveals new vulnerabilities to targeted therapeutics.

    PubMed

    Bailey, Fiona P; Clarke, Kim; Kalirai, Helen; Kenyani, Jenna; Shahidipour, Haleh; Falciani, Francesco; Coulson, Judy M; Sacco, Joseph J; Coupland, Sarah E; Eyers, Patrick A

    2018-03-01

    Metastatic uveal melanoma (UM) is invariably fatal, usually within a year of diagnosis. There are currently no effective therapies, and clinical studies employing kinase inhibitors have so far demonstrated limited success. This is despite common activating mutations in GNAQ/11 genes, which trigger signalling pathways that might predispose tumours to a variety of targeted drugs. In this study, we have profiled kinome expression network dynamics in various human ocular melanomas. We uncovered a shared transcriptional profile in human primary UM samples and across a variety of experimental cell-based models. The poor overall response of UM cells to FDA-approved kinase inhibitors contrasted with much higher sensitivity to the bromodomain inhibitor JQ1, a broad transcriptional repressor. Mechanistically, we identified a repressed FOXM1-dependent kinase subnetwork in JQ1-exposed cells that contained multiple cell cycle-regulated protein kinases. Consistently, we demonstrated vulnerability of UM cells to inhibitors of mitotic protein kinases within this network, including the investigational PLK1 inhibitor BI6727. We conclude that analysis of kinome-wide signalling network dynamics has the potential to reveal actionable drug targets and inhibitors of potential therapeutic benefit for UM patients. © 2017 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons.

  14. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression.

    PubMed

    Kim, Sun-Hee; Hashimoto, Yuuri; Cho, Sung-Nam; Roszik, Jason; Milton, Denái R; Dal, Fulya; Kim, Sangwon F; Menter, David G; Yang, Peiying; Ekmekcioglu, Suhendan; Grimm, Elizabeth A

    2016-05-01

    COX-2 and its product PGE2 enhance carcinogenesis and tumor progression, which has been previously reported in melanoma. As most COX inhibitors cause much toxicity, the downstream microsomal PGE2 synthase-1 (mPGES1) is a consideration for targeting. Human melanoma TMAs were employed for testing mPGES1 protein staining intensity and percentage levels, and both increased with clinical stage; employing a different Stage III TMA, mPGES1 intensity (not percentage) associated with reduced patient survival. Our results further show that iNOS was also highly expressed in melanoma tissues with high mPGES1 levels, and iNOS-mediated NO promoted mPGES1 expression and PGE2 production. An mPGES1-specific inhibitor (CAY10526) as well as siRNA attenuated cell survival and increased apoptosis. CAY10526 significantly suppressed tumor growth and increased apoptosis in melanoma xenografts. Our findings support the value of a prognostic and predictive role for mPGES1, and suggest targeting this molecule in the PGE2 pathway as another avenue toward improving melanoma therapy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. ROCK1 is a potential combinatorial drug target for BRAF mutant melanoma

    PubMed Central

    Smit, Marjon A; Maddalo, Gianluca; Greig, Kylie; Raaijmakers, Linsey M; Possik, Patricia A; van Breukelen, Bas; Cappadona, Salvatore; Heck, Albert JR; Altelaar, AF Maarten; Peeper, Daniel S

    2014-01-01

    Treatment of BRAF mutant melanomas with specific BRAF inhibitors leads to tumor remission. However, most patients eventually relapse due to drug resistance. Therefore, we designed an integrated strategy using (phospho)proteomic and functional genomic platforms to identify drug targets whose inhibition sensitizes melanoma cells to BRAF inhibition. We found many proteins to be induced upon PLX4720 (BRAF inhibitor) treatment that are known to be involved in BRAF inhibitor resistance, including FOXD3 and ErbB3. Several proteins were down-regulated, including Rnd3, a negative regulator of ROCK1 kinase. For our genomic approach, we performed two parallel shRNA screens using a kinome library to identify genes whose inhibition sensitizes to BRAF or ERK inhibitor treatment. By integrating our functional genomic and (phospho)proteomic data, we identified ROCK1 as a potential drug target for BRAF mutant melanoma. ROCK1 silencing increased melanoma cell elimination when combined with BRAF or ERK inhibitor treatment. Translating this to a preclinical setting, a ROCK inhibitor showed augmented melanoma cell death upon BRAF or ERK inhibition in vitro. These data merit exploration of ROCK1 as a target in combination with current BRAF mutant melanoma therapies. PMID:25538140

  16. Targeting Sphingosine Kinase-1 To Inhibit Melanoma

    PubMed Central

    Madhunapantula, SubbaRao V.; Hengst, Jeremy; Gowda, Raghavendra; Fox, Todd E.; Yun, Jong K; Robertson, Gavin P.

    2012-01-01

    SUMMARY Resistance to therapies develops rapidly for melanoma leading to more aggressive disease. Therefore, agents are needed that specifically inhibit proteins or pathways controlling the development of this disease, which can be combined, dependent on genes deregulated in a particular patient’s tumors. This study shows that elevated sphingosine-1-phosphate (S-1-P) levels resulting from increased activity of sphingosine kinase-1 (SPHK1) occur in advanced melanomas. Targeting SPHK1 using siRNA decreased anchorage dependent and independent growth as well as sensitized melanoma cells to apoptosis inducing agents. Pharmacological SPHK1 inhibitors SKI-I but not SKI-II decreased S-1-P content, elevated ceramide levels, caused a G2-M block and induced apoptotic cell death in melanomas. Targeting SPHK1 using siRNA or the pharmacological agent called SKI-I, decreased the levels of pAKT. Furthermore, SKI-I inhibited the expression of CYCLIN D1 protein and increased the activity of caspase-3/7, which in turn led to the degradation of PARP. In animals, SKI-I but not SKI-II retarded melanoma growth by 25-40%. Thus, targeting SPHK1 using siRNAs or SKI-I has therapeutic potential for melanoma treatment either alone or in combination with other targeted agents. PMID:22236408

  17. Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk

    PubMed Central

    Salerno, Elise P.; Bedognetti, Davide; Mauldin, Ileana S.; Deacon, Donna H.; Shea, Sofia M.; Obeid, Joseph M.; Coukos, George; Gajewski, Thomas F.; Marincola, Francesco M.; Slingluff, Craig L.

    2016-01-01

    ABSTRACT We have identified eight genes whose expression in human melanoma metastases and ovarian cancers is associated with a lack of Th1 immune signatures. They encode molecules with mechanical barrier function in the skin and other normal tissues and include filaggrin (FLG), tumor-associated calcium signal transducer 2 (TACSTD2), and six desmosomal proteins (DST, DSC3, DSP, PPL, PKP3, and JUP). This association has been validated in an independent series of 114 melanoma metastases. In these, DST expression alone is sufficient to identify melanomas without immune signatures, while FLG and the other six putative barrier molecules are overexpressed in a different subset of melanomas lacking immune signatures. Similar associations have been identified in a set of 186 ovarian cancers. RNA-seq data from 471 melanomas and 307 ovarian cancers in the TCGA database further support these findings and also reveal that overexpression of barrier molecules is strongly associated with early patient mortality for melanoma (p = 0.0002) and for ovarian cancer (p < 0.01). Interestingly, this association persists for FLG for melanoma (p = 0.012) and ovarian cancer (p = 0.006), whereas DST overexpression is negatively associated with CD8+ gene expression, but not with patient survival. Thus, overexpression of FLG or DST identifies two distinct patient populations with low immune cell infiltration in these cancers, but with different prognostic implications for each. These data raise the possibility that molecules with mechanical barrier function in skin and other tissues may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction. PMID:28123876

  18. Efficient TGF-β/SMAD signaling in human melanoma cells associated with high c-SKI/SnoN expression

    PubMed Central

    2011-01-01

    Background SKI and SnoN proteins have been shown to inhibit TGF-β signaling, acting both as transcriptional co-repressors in the cell nucleus, and as sequestrators of SMAD proteins in the cytoplasm. TGF-β, on the other hand, induces rapid, proteasome-mediated, degradation of both proteins. How elevated SKI and SnoN protein levels co-exist with active autocrine TGF-β signaling in cancer cells is yet to be understood. Results In this study, we found elevated SKI and SnoN protein levels in a panel of melanoma cell lines, as compared to normal melanocytes. There was no correlation between SKI protein content and the capacity of melanoma cells to invade Matrigel™, to form subcutaneous tumors, or to metastasize to bone after intracardiac inoculation into nude mice. Nor did we find a correlation between SKI expression and histopathological staging of human melanoma. TGF-β induced a rapid and dose-dependent degradation of SKI protein, associated with SMAD3/4 specific transcriptional response and induction of pro-metastatic target genes, partially prevented by pharmacologic blockade of proteasome activity. SKI knockdown in 1205Lu melanoma cells did not alter their invasive capacity or transcriptional responses to TGF-β, and did not allow p21 expression in response to TGF-β or reveal any growth inhibitory activity of TGF-β. Conclusions Despite high expression in melanoma cells, the role of SKI in melanoma remains elusive: SKI does not efficiently interfere with the pro-oncogenic activities of TGF-β, unless stabilized by proteasome blockade. Its highly labile nature makes it an unlikely target for therapeutic intervention. PMID:21211030

  19. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.

    PubMed

    Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa

    2018-05-01

    Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.

  20. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth

    PubMed Central

    Kleffel, Sonja; Posch, Christian; Barthel, Steven R.; Mueller, Hansgeorg; Schlapbach, Christoph; Guenova, Emmanuella; Elco, Christopher P.; Lee, Nayoung; Juneja, Vikram R.; Zhan, Qian; Lian, Christine G.; Thomi, Rahel; Hoetzenecker, Wolfram; Cozzio, Antonio; Dummer, Reinhard; Mihm, Martin C.; Flaherty, Keith T.; Frank, Markus H.; Murphy, George F.; Sharpe, Arlene H.; Kupper, Thomas S.; Schatton, Tobias

    2015-01-01

    SUMMARY Therapeutic antibodies targeting programmed cell death-1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNA interference, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy. PMID:26359984

  1. Fibroblasts from patients with hereditary cutaneous malignant melanoma are abnormally sensitive to the mutagenic effect of simulated sunlight and 4-nitroquinoline 1-oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, J.N.; Greene, M.H.; Corner, R.C.

    Because of a possible etiologic link between mutations and carcinogenesis, the authors compared fibroblasts derived from skin biopsies of several patients with hereditary cutaneous malignant melanoma and the dysplastic nevus syndrome for sensitivity to the mutagenic and/or cytotoxic effect of broad-spectrum simulated sunlight and of a UV mimetic carcinogen, 4-nitroquinoline 1-oxide (4NQO). The genetic marker was resistant to 6-thioguanine; loss of colony-forming ability was the assay for cytotoxicity. All five strains tested were more sensitive than normal to the killing effect of 4NQO (slopes of survival curves were 2- to 3-fold steeper), but only one strain was hypersensitive to killingmore » by Sun Lamp radiation. Two strains were tested for mutagenicity. The response of each to the mutagenic action of these agents corresponded to its response to cell killing. Both strains were hypermutable after exposure to 4NQO, but only one showed a higher than normal frequency of mutants induced by simulated sunlight. The finding that nonmalignant fibroblasts from patients with a hereditary variant of malignant fibroblasts from patients with a hereditary variant of malignant melanoma are abnormally susceptible to carcinogen-induced mutations suggests that hypersensitivity to mutagens contributes to risk of melanoma in patients. It also supports the somatic cell mutation hypothesis for the origin of cancer. 46 references, 3 figures.« less

  2. Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells

    PubMed Central

    Halder, Babli; Singh, Shruti; Thakur, Suman S.

    2015-01-01

    In Ayurveda, Withania somnifera is commonly known as Ashwagandha, its roots are specifically used in medicinal and clinical applications. It possesses numerous therapeutic actions which include anti-inflammatory, sedative, hypnotic and narcotic. Extracts from this plant have been reported for its anticancer properties. In this study we evaluated for the first time, the cytotoxic effect of Withania root extract on human malignant melanoma A375 cells. The crude extract of Withania was tested for cytotoxicity against A375 cells by MTT assay. Cell morphology of treated A375 cells was visualized through phase contrast as well as fluorescence microscopy. Agarose gel electrophoresis was used to check DNA fragmentation of the crude extract treated cells. Crude extract of Withania root has the potency to reduce viable cell count in dose as well as time dependent manner. Morphological change of the A375 cells was also observed in treated groups in comparison to untreated or vehicle treated control. Apoptotic body and nuclear blebbing were observed in DAPI stained treated cells under fluorescence microscope. A ladder of fragmented DNA was noticed in treated cells. Thus it might be said that the crude water extract of Withania somnifera has potent cytotoxic effect on human malignant melanoma A375 cells. PMID:26334881

  3. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both humanmore » and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.« less

  4. Eradication of Human Hepatic and Pulmonary Melanoma Metastases in SCID Mice by Antibody--Interleukin 2 Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.

    1996-04-01

    Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

  5. Synergistic anti-tumor effect of 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 on human melanoma.

    PubMed

    Calero, R; Morchon, E; Martinez-Argudo, I; Serrano, R

    2017-10-10

    Drug resistance by MAPK signaling recovery or activation of alternative signaling pathways, such as PI3K/AKT/mTOR, is an important factor that limits the long-term efficacy of targeted therapies in melanoma patients. In the present study, we investigated the phospho-proteomic profile of RTKs and its correlation with downstream signaling pathways in human melanoma. We found that tyrosine kinase receptors expression correlated with the expression of pivotal downstream components of the RAS/RAF/MAPK and PI3K/AKT/mTOR pathways in melanoma cell lines and tumors. We also found high expression of HSP90 and the PI3K/AKT/mTOR pathway proteins, 4EBP1 and AKT compared with healthy tissue and this correlated with poor overall survival of melanoma patients. The combination of the HSP90 inhibitor 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 showed a synergistic activity decreasing melanoma cell growth, inducing apoptosis and targeting simultaneously the MAPK and PI3K/AKT/mTOR pathways. These results demonstrate that the combination of HSP90 and PI3K/mTOR inhibitors could be an effective therapeutic strategy that target the main survival pathways in melanoma and must be considered to overcome resistance to BRAF inhibitors in melanoma patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Lebein, a Snake Venom Disintegrin, Induces Apoptosis in Human Melanoma Cells

    PubMed Central

    Hammouda, Manel B.; Montenegro, María F.; Sánchez-del-Campo, Luis; Zakraoui, Ons; Aloui, Zohra; Riahi-Chebbi, Ichrak; Karoui, Habib; Rodríguez-López, José Neptuno; Essafi-Benkhadir, Khadija

    2016-01-01

    Melanoma, the most threatening form of skin cancer, has a very poor prognosis and is characterized by its very invasive and chemoresistant properties. Despite the recent promising news from the field of immunotherapy, there is an urgent need for new therapeutic approaches that are free of resistance mechanisms and side effects. Anti-neoplasic properties have been highlighted for different disintegrins from snake venom including Lebein; however, the exact effect of Lebein on melanoma has not yet been defined. In this study, we showed that Lebein blocks melanoma cell proliferation and induces a more differentiated phenotype with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and microphthalmia-associated transcription factor (MITF) overexpression. Melanoma cells became detached but were less invasive with upregulation of E-cadherin after Lebein exposure. Lebein induced a caspase-independent apoptotic program with apoptosis inducing factor (AIF), BCL-2-associated X protein (BAX) and Bim overexpression together with downregulation of B-cell lymphoma-2 (BCL-2). It generated a distinct response in reactive oxygen species (ROS) generation and p53 levels depending on the p53 cell line status (wild type or mutant). Therefore, we propose Lebein as a new candidate for development of potential therapies for melanoma. PMID:27399772

  7. Heterogeneity of Metastatic Melanoma:  Correlation of MITF With Its Transcriptional Targets MLSN1, PEDF, HMB-45, and MART-1.

    PubMed

    Zand, Sarvenaz; Buzney, Elizabeth; Duncan, Lyn M; Dadras, Soheil S

    2016-09-01

    Histologic and molecular heterogeneity is well recognized in malignant melanoma; however, the diversity of expression of new and classic melanoma markers has not been correlated in serial sections of metastases. We examined and correlated the expression of microphthalmia transcription factor (MITF) with its transcriptional targets, including melastatin (MLSN1/TRPM1), pigment epithelium-derived factor (SERPINF1/PEDF), SILV/PMEL17/GP100 (human melanoma black 45 [HMB-45]), and melanoma antigen recognized by T cells 1 (MART-1)/MLANA, in 13 melanoma metastases in lymph nodes of 13 patients. The expression levels and patterns of marker expression were recorded by a semiquantitative, 4-point ordinal reactivity method. Our results showed a consistently robust and diffuse expression of MITF protein in 12 (92%) of 13 metastatic tumors compared with variable expression of MLSN1 (46%) messenger RNA or PEDF (75%), HMB-45 (54%), and MART-1 (46%) proteins. Overall, in melanoma lymph node metastases, MITF protein expression was not tightly correlated with its gene targets. Moreover, the immunoreactivity for MITF, compared with MART-1 and HMB-45, was retained, supporting immunohistochemical detection of MITF as a more sensitive method of detecting metastatic melanoma. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells.

    PubMed

    Chen, Tianfeng; Wong, Yum-Shing; Zheng, Wenjie; Bai, Yan; Huang, Liang

    2008-11-15

    Selenium nanoparticle (Nano-Se) is a novel Se species with novel biological activities and low toxicity. In the present study, we demonstrated a simple method for synthesis of size-controlled Nano-Se by adding Undaria pinnatifida polysaccharides to the redox system of selenite and ascorbic acid. A panel of four human cancer cell lines was shown to be susceptible to Nano-Se, with IC(50) values ranging from 3.0 to 14.1 microM. Treatment of A375 human melanoma cells with the Nano-Se resulted in dose-dependent cell apoptosis as indicated by DNA fragmentation and phosphatidylserine translocation. Further investigation on intracellular mechanisms found that Nano-Se treatment triggered apoptotic cell death in A375 cells with the involvement of oxidative stress and mitochondrial dysfunction. Our results suggest that Nano-Se may be a candidate for further evaluation as a chemopreventive and chemotherapeutic agent for human cancers, especially melanoma cancer.

  9. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis.

    PubMed

    Medrano, Estela E

    2003-05-19

    Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.

  10. Communication about melanoma and risk reduction after melanoma diagnosis.

    PubMed

    Rodríguez, Vivian M; Berwick, Marianne; Hay, Jennifer L

    2017-12-01

    Melanoma patients are advised to perform regular risk-reduction practices, including sun protection as well as skin self-examinations (SSEs) and physician-led examinations. Melanoma-specific communication regarding family risk and screening may promote such behaviors. To this end, associations between patients' melanoma-specific communication and risk reduction were examined. Melanoma patients (N = 169) drawn from a population-based cancer registry reported their current risk-reduction practices, perceived risk of future melanoma, and communication with physicians and relatives about melanoma risk and screening. Patients were, on average, 56 years old and 6.7 years' post diagnosis; 51% were male, 93% reported "fair/very fair" skin color, 75% completed at least some college, and 22% reported a family history of melanoma. Patients reported varying levels of regular (always/nearly always) sun protection: sunscreen use (79%), shade seeking (60%), hat use (54%), and long-sleeve shirt use (30%). Only 28% performed thorough SSE regularly, whereas 92% reported undergoing physician-led skin examinations within the past year. Participants who were female, younger, and had a higher perceived risk of future melanoma were more likely to report past communication. In adjusted analyses, communication remained uniquely associated with increased sunscreen use and SSE. Encouraging melanoma patients to have a more active role in discussions concerning melanoma risk and screening with relatives and physicians alike may be a useful strategy to promote 2 key risk-reduction practices post melanoma diagnosis and treatment. Future research is needed to identify additional strategies to improve comprehensive risk reduction in long-term melanoma patients. Copyright © 2016 John Wiley & Sons, Ltd.

  11. A new O6-alkylguanine-DNA alkyltransferase inhibitor associated with a nitrosourea (cystemustine) validates a strategy of melanoma-targeted therapy in murine B16 and human-resistant M4Beu melanoma xenograft models.

    PubMed

    Rapp, Maryse; Maurizis, Jean C; Papon, Janine; Labarre, Pierre; Wu, Ting-Di; Croisy, Alain; Guerquin-Kern, Jean L; Madelmont, Jean C; Mounetou, Emmanuelle

    2008-07-01

    Chemoresistance to O(6)-alkylating agents is a major barrier to successful treatment of melanoma. It is mainly due to a DNA repair suicide protein, O(6)-alkylguanine-DNA alkyltransferase (AGT). Although AGT inactivation is a powerful clinical strategy for restoring tumor chemosensitivity, it was limited by increased toxicity to nontumoral cells resulting from a lack of tumor selectivity. Achieving enhanced chemosensitization via AGT inhibition preferably in the tumor should protect normal tissue. To this end, we have developed a strategy to target AGT inhibitors. In this study, we tested a new potential melanoma-directed AGT inhibitor [2-amino-6-(4-iodobenzyloxy)-9-[4-(diethylamino) ethylcarbamoylbenzyl] purine; IBgBZ] designed as a conjugate of O(6)-(4-iododbenzyl)guanine (IBg) as the AGT inactivator and a N,N-diethylaminoethylenebenzamido (BZ) moiety as the carrier to the malignant melanocytes. IBgBZ demonstrated AGT inactivation ability and potentiation of O(6)-alkylating agents (cystemustine, a chloroethylnitrosourea) in M4Beu highly chemoresistant human melanoma cells both in vitro and in tumor models. The biodisposition study on mice bearing B16 melanoma, the standard model for the evaluation of melanoma-directed agents, and the secondary ion mass spectrometry imaging confirmed the concentration of IBgBZ in the tumor and in particular in the intracytoplasmic melanosomes. These results validate the potential of IBgBZ as a new, more tumor-selective, AGT inhibitor in a strategy of melanoma-targeted therapy.

  12. Pre-clinical assessment of A-674563 as an anti-melanoma agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ying; Fan, Guobiao; Wang, Xuemin, E-mail: wangxuemeidr@yeah.net

    The present study aims to investigate the anti-melanoma activity by an Akt1 specific inhibitor A-674563. We showed that A-674563 was anti-proliferative and cytotoxic when added to human melanoma cells (A375, WM-115 and SK-Mel-2 lines). A-674563 induced caspase-dependent apoptotic death of human melanoma cells, and its cytotoxicity was inhibited with pre-treatment of caspase inhibitors. Further, A-674563 treatment blocked Akt and its downstream S6 Kinase 1 (S6K1) activation in A375 melanoma cells. Significantly, restoring Akt-S6K1 activation via introduction of constitutively-active Akt1 (ca-Akt1) only partially attenuated A-674563's cytotoxicity against A375 cells. Further, A-674563 induced pro-apoptotic ceramide production in A375 cells. Significantly, sphingosine-1-phosphate (S1P) inhibited A-674563-inducedmore » ceramide production and subsequent A375 cell apoptosis. On the other hand, co-treatment with the glucosylceramide synthase (GCS) inhibitor PDMP or the cell permeable short-chain ceramide (C6) potentiated A-674563's cytotoxicity against A375 cells. In vivo, A-674563 oral gavage inhibited A375 xenograft growth in severe combined immunodeficiency (scid) mice. Akt inactivation, caspase-3 activation and ceramide production were also observed in A-674563-treated A375 xenografts. Together, these results suggest that A-674563 exerts potent anti-melanoma activity, involving Akt-dependent and Akt-independent mechanisms. - Highlights: • A-674563 inhibits human melanoma cell survival and proliferation. • A-674563 induces melanoma cell apoptotic death, inhibited by caspase inhibitors. • A-674563 inhibits melanoma cells via Akt-dependent and -independent mechanisms. • A-674563 induces ceramide production in melanoma cells, independent of Akt inhibition. • A-674563 oral administration potently inhibits A375 xenograft growth in mice.« less

  13. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo

    PubMed Central

    Sheen, Joon-Ho; Zoncu, Roberto; Kim, Dohoon; Sabatini, David M.

    2011-01-01

    SUMMARY Autophagy is of increasing interest as a target for cancer therapy. We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy. Hyperactivation of the RAS-MEK pathway, which is common in melanoma, prevents leucine deprivation from inhibiting mTORC1, the main repressor of autophagy under nutrient-rich conditions. In an in vivo tumor xenograft model, the combination of a leucine-free diet and an autophagy inhibitor synergistically suppresses the growth of human melanoma tumors and triggers widespread apoptosis of the cancer cells. Together, our study represents proof of principle that anti-cancer effects can be obtained with a combination of autophagy inhibition and strategies to deprive tumors of leucine. PMID:21575862

  14. In vivo pump-probe microscopy of melanoma and pigmented lesions

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Degan, Simone; Mitropoulos, Tanya; Selim, M. Angelica; Zhang, Jennifer Y.; Warren, Warren S.

    2012-03-01

    A growing number of dermatologists and pathologists are concerned that the rapidly rising incidence of melanoma reflects not a true 'epidemic' but an increasing tendency to overdiagnose pigmented lesions. Addressing this problem requires both a better understanding of early-stage melanoma and new diagnostic criteria based on more than just cellular morphology and architecture. Here we present a method for in-vivo optical microscopy that utilizes pump-probe spectroscopy to image the distribution of the two forms of melanin in skin: eumelanin and pheomelanin. Images are acquired in a scanning microscope with a sensitive modulation transfer technique by analyzing back-scattered probe light with a lock-in amplifier. Early-stage melanoma is studied in a human skin xenografted mouse model. Individual melanocytes have been observed, in addition to pigmented keratinocytes. Combining the pump-probe images simultaneously with other noninvasive laser microscopy methods (confocal reflectance, multiphoton autofluorescence, and second harmonic generation) allows visualization of the skin architecture, framing the functional pump-probe image in the context of the surrounding tissue morphology. It is found that pump-probe images of melanin can be acquired with low peak intensities, enabling wide field-of-view pigmentation surveys. Finally, we investigate the diagnostic potential of the additional chemical information available from pump-probe microscopy.

  15. Human melanoma cells resistant to MAPK inhibitors can be effectively targeted by inhibition of the p90 ribosomal S6 kinase

    PubMed Central

    Kosnopfel, Corinna; Sinnberg, Tobias; Sauer, Birgit; Niessner, Heike; Schmitt, Anja; Makino, Elena; Forschner, Andrea; Hailfinger, Stephan; Garbe, Claus; Schittek, Birgit

    2017-01-01

    The clinical availability of small molecule inhibitors specifically targeting mutated BRAF marked a significant breakthrough in melanoma therapy. Despite a dramatic anti-tumour activity and improved patient survival, rapidly emerging resistance, however, greatly limits the clinical benefit. The majority of the already described resistance mechanisms involve a reactivation of the MAPK signalling pathway. The p90 ribosomal S6 kinase (RSK), a downstream effector of the MAPK signalling cascade, has been reported to enhance survival of melanoma cells in response to chemotherapy. Here, we can show that RSK activity is significantly increased in human melanoma cells with acquired resistance to the BRAFV600E/K inhibitor vemurafenib. Interestingly, inhibition of RSK signalling markedly impairs the viability of vemurafenib resistant melanoma cells and is effective both in two-dimensional and in three-dimensional culture systems, especially in a chronic, long-term application. The effect of RSK inhibition can be partly replicated by downregulation of the well-known RSK target, Y-box binding protein 1 (YB-1). Intriguingly, RSK inhibition also retains its efficacy in melanoma cells with combined resistance to vemurafenib and the MEK inhibitor trametinib. These data suggest that active RSK signalling might be an attractive novel therapeutic target in melanoma with acquired resistance to MAPK pathway inhibitors. PMID:28415756

  16. Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance.

    PubMed

    Krumm, Andrea; Barckhausen, Christina; Kücük, Pelin; Tomaszowski, Karl-Heinz; Loquai, Carmen; Fahrer, Jörg; Krämer, Oliver Holger; Kaina, Bernd; Roos, Wynand Paul

    2016-05-15

    DNA-damaging anticancer drugs remain a part of metastatic melanoma therapy. Epigenetic reprogramming caused by increased histone deacetylase (HDAC) activity arising during tumor formation may contribute to resistance of melanomas to the alkylating drugs temozolomide, dacarbazine, and fotemustine. Here, we report on the impact of class I HDACs on the response of malignant melanoma cells treated with alkylating agents. The data show that malignant melanomas in situ contain a high level of HDAC1/2 and malignant melanoma cells overexpress HDAC1/2/3 compared with noncancer cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes malignant melanoma cells to apoptosis following exposure to alkylating agents, while not affecting primary melanocytes. Inhibition of HDAC1/2/3 caused sensitization of melanoma cells to temozolomide in vitro and in melanoma xenografts in vivo HDAC1/2/3 inhibition resulted in suppression of DNA double-strand break (DSB) repair by homologous recombination because of downregulation of RAD51 and FANCD2. This sensitized cells to the cytotoxic DNA lesion O(6)-methylguanine and caused a synthetic lethal interaction with the PARP-1 inhibitor olaparib. Furthermore, knockdown experiments identified HDAC2 as being responsible for the regulation of RAD51. The influence of class I HDACs on DSB repair by homologous recombination and the possible clinical implication on malignant melanoma therapy with temozolomide and other alkylating drugs suggests a combination approach where class I HDAC inhibitors such as valproic acid or MS-275 (entinostat) appear to counteract HDAC- and RAD51/FANCD2-mediated melanoma cell resistance. Cancer Res; 76(10); 3067-77. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Nodular melanoma serendipitously detected by airport full body scanners.

    PubMed

    Mayer, Jonathan E; Adams, Brian B

    2015-01-01

    Nodular melanoma is the most dangerous form of melanoma and often evades early detection. We present a frequently traveling businessman whose nodular melanoma was detected by airport full body scanners. For about 20 flights over 2 months, the airport full body scanners singled out an area on his left lower leg for a pat-down. Dermatologic examination discovered a nodular melanoma in this area, and after surgical excision, the man traveled without incident. This case raises the possibility of using full body imaging in the detection of melanomas, especially of the nodular subtype. In its current form, full body scanning would most likely not be sensitive or specific enough to become a recommended screening tool. Nonetheless, for travelers with areas repeatedly singled out by the machines without a known justification, airport scanners could serve as incidental free screening for suspicious nodular lesions that should prompt dermatologist referral. © 2014 S. Karger AG, Basel.

  18. The detection of melanoma cells in peripheral blood by reverse transcription-polymerase chain reaction.

    PubMed Central

    Foss, A. J.; Guille, M. J.; Occleston, N. L.; Hykin, P. G.; Hungerford, J. L.; Lightman, S.

    1995-01-01

    Both cutaneous and uveal melanoma undergo haematogenous dissemination. Detection of tyrosinase mRNA by reverse transcription-polymerase chain reaction (RT-PCR) has been described as an extremely sensitive way of detecting circulating viable melanoma cells in the peripheral venous blood, and this technique may be of value in the early detection of dissemination. Also, it has been suggested that surgical manipulation of the eye, such as occurs during enucleation, can provoke uveal melanoma dissemination. The purpose of this study was to evaluate whether tyrosinase mRNA is detectable in the peripheral blood of patients with uveal and cutaneous melanoma and in patients with uveal melanoma undergoing surgical procedures on the eye harbouring the tumour. Venous blood samples from 36 patients diagnosed as having active uveal melanoma and from six patients with advanced metastatic cutaneous melanoma were analysed. In addition, blood samples were spiked with known numbers of cells from three cell lines and four primary uveal melanoma cultures. The reported sensitivity of the technique was confirmed, with an ability to detect down to one cell per ml of blood. All 51 blood samples from the 36 patients with uveal melanoma were negative, and this included 20 perioperative blood samples. The test was also negative for the six patients with advanced cutaneous melanoma. There were two positives among 31 control samples analysed. This study demonstrates that there are far fewer circulating viable melanocytes than has been previously supposed in patients with melanoma and that the RT-PCR is of no clinical value in detecting metastatic melanoma disease. There was no evidence for surgery causing a bolus of melanoma cells to enter the peripheral circulation. Images Figure 1 Figure 2 PMID:7599046

  19. Early diagnosis of genital mucosal melanoma: how good are our dermoscopic criteria?

    PubMed

    Rogers, Tova; Pulitzer, Melissa; Marino, Maria L; Marghoob, Ashfaq A; Zivanovic, Oliver; Marchetti, Michael A

    2016-10-01

    There are limited studies on the dermoscopic features of mucosal melanoma, particularly early-stage lesions. Described criteria include the presence of blue, gray, or white colors, with a reported sensitivity of 100%. It is unclear if these features will aid in the detection of early mucosal melanoma or improve diagnostic accuracy compared to naked-eye examination alone. An Asian female in her fifties was referred for evaluation of an asymptomatic, irregularly pigmented patch of the clitoral hood and labia minora of unknown duration. Her past medical history was notable for Stage IV non-small cell lung cancer. She denied a personal or family history of skin cancer. Dermoscopic evaluation of the vulvar lesion revealed heterogeneous brown and black pigmentation mostly composed of thick lines. There were no other colors or structures present. As the differential diagnosis included vulvar melanosis and mucosal melanoma, the patient was recommended to undergo biopsy, which was delayed due to complications from her underlying lung cancer. Repeat dermoscopic imaging performed three months later revealed significant changes concerning for melanoma, including increase in size, asymmetric darkening, and the appearance of structureless areas and central blue and pink colors. Histopathological examination of a biopsy and subsequent resection confirmed the diagnosis of melanoma in situ. Previously described dermoscopic features for mucosal melanoma may not have high sensitivity for early melanomas. Additional studies are needed to define the dermoscopic characteristics of mucosal melanomas that aid in early detection. Health care providers should have a low threshold for biopsy of mucosal lesions that show any clinical or dermoscopic features of melanoma, especially in older women.

  20. A novel interaction between calcium-modulating cyclophilin ligand and Basigin regulates calcium signaling and matrix metalloproteinase activities in human melanoma cells.

    PubMed

    Long, Tingting; Su, Juan; Tang, Wen; Luo, Zhongling; Liu, Shuang; Liu, Zhaoqian; Zhou, Honghao; Qi, Min; Zeng, Weiqi; Zhang, Jianglin; Chen, Xiang

    2013-10-01

    Intracellular free calcium is a ubiquitous second messenger regulating a multitude of normal and pathogenic cellular responses, including the development of melanoma. Upstream signaling pathways regulating the intracellular free calcium concentration ([Ca2+]i) may therefore have a significant impact on melanoma growth and metastasis. In this study, we demonstrate that the endoplasmic reticulum (ER)-associated protein calcium-modulating cyclophilin ligand (CAML) is bound to Basigin, a widely expressed integral plasma membrane glycoprotein and extracellular matrix metalloproteinase inducer (EMMPRIN, or CD147) implicated in melanoma proliferation, invasiveness, and metastasis. This interaction between CAML and Basigin was first identified using yeast two-hybrid screening and further confirmed by co-immunoprecipitation. In human A375 melanoma cells, CAML and Basigin were co-localized to the ER. Knockdown of Basigin in melanoma cells by siRNA significantly decreased resting [Ca2+]i and the [Ca2+]i increase induced by the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin (TG), indicating that the interaction between CAML and Basigin regulates ER-dependent [Ca2+]i signaling. Meanwhile upregulating the [Ca2+]i either by TG or phorbol myristate acetate (PMA) could stimulate the production of MMP-9 in A375 cells with the expression of Basigin. Our study has revealed a previously uncharacterized [Ca2+]i signaling pathway that may control melanoma invasion, and metastasis. Disruption of this pathway may be a novel therapeutic strategy for melanoma treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Effects of Malignant Melanoma Initiating Cells on T-Cell Activation

    PubMed Central

    Schatton, Tobias; Schütte, Ute; Frank, Markus H.

    2016-01-01

    Although human malignant melanoma is a highly immunogenic cancer, both the endogenous antitumor immune response and melanoma immunotherapy often fail to control neoplastic progression. Accordingly, characterizing melanoma cell subsets capable of evading antitumor immunity could unravel optimized treatment strategies that might reduce morbidity and mortality from melanoma. By virtue of their preferential capacity to modulate antitumor immune responses and drive inexorable tumor growth and progression, malignant melanoma-initiating cells (MMICs) warrant closer investigation to further elucidate the cellular and molecular mechanisms underlying melanoma immune evasion and immunotherapy resistance. Here we describe methodologies that enable the characterization of immunoregulatory effects of purified MMICs versus melanoma bulk populations in coculture with syngeneic or allogeneic lymphocytes, using [3H] thymidine incorporation, enzyme-linked immunosorbent spot (ELISPOT), or ELISA assays. These assays were traditionally developed to analyze alloimmune processes and we successfully adapted them for the study of tumor-mediated immunomodulatory functions. PMID:26786883

  2. Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma.

    PubMed

    Andreucci, Elena; Bianchini, Francesca; Biagioni, Alessio; Del Rosso, Mario; Papucci, Laura; Schiavone, Nicola; Magnelli, Lucia

    2017-01-01

    Fibroblast growth factor 2 (FGF2) is involved in many physiological and pathological processes. Fgf2 deregulation contributes to the acquisition of malignant features of melanoma and other cancers. FGF2 is an alternative translation product expressed as five isoforms, a low-molecular-weight (18 KDa) and four high-molecular-weight (22, 22.5, 24, 34 KDa) isoforms, with different subcellular distributions. An internal ribosomal entry site (IRES) in its mRNA controls the translation of all the isoforms with the exception for the cap-dependent 34 KDa. The 18-KDa isoform has been extensively studied, while very few is known about the roles of high molecular weight isoforms. FGF2 is known to promote melanoma development and progression. To disclose the differential contribution of FGF2 isoforms in melanoma, we forced the expression of IRES-dependent low-molecular-weight (LMW, 18 KDa) and high-molecular-weight (HMW, 22, 22.5, 24 KDa) isoforms in a human metastatic melanoma cell line. This comparative study highlights that, while LMW isoform confers stem-like features to melanoma cells and promotes angiogenesis, HMW isoforms induce higher migratory ability and contribute to tumor perfusion by promoting vasculogenic mimicry (VM) when endothelial cell-driven angiogenesis is lacking. To conclude, FGF2 isoforms mainly behave in specific, antithetical manners, but can cooperate in different steps of tumor progression, providing melanoma cells with major malignant features. FGF2 is an alternative translation product expressed as different isoforms termed LMW and HMW. FGF2 is involved in melanoma development and progression. HMW FGF2 isoforms enhance in vitro motility of melanoma cells. LMW FGF2 confers stem-like features and increases in vivo metastasization. LMW FGF2 promotes angiogenesis while HMW FGF2 induces vasculogenic mimicry.

  3. Ensemble approach for differentiation of malignant melanoma

    NASA Astrophysics Data System (ADS)

    Rastgoo, Mojdeh; Morel, Olivier; Marzani, Franck; Garcia, Rafael

    2015-04-01

    Melanoma is the deadliest type of skin cancer, yet it is the most treatable kind depending on its early diagnosis. The early prognosis of melanoma is a challenging task for both clinicians and dermatologists. Due to the importance of early diagnosis and in order to assist the dermatologists, we propose an automated framework based on ensemble learning methods and dermoscopy images to differentiate melanoma from dysplastic and benign lesions. The evaluation of our framework on the recent and public dermoscopy benchmark (PH2 dataset) indicates the potential of proposed method. Our evaluation, using only global features, revealed that ensembles such as random forest perform better than single learner. Using random forest ensemble and combination of color and texture features, our framework achieved the highest sensitivity of 94% and specificity of 92%.

  4. Co-stimulation through the CD137/4-1BB pathway protects human melanoma tumor-infiltrating lymphocytes from activation-induced cell death and enhances anti-tumor effector function

    PubMed Central

    Hernandez-Chacon, Jessica Ann; Li, Yufeng; Wu, Richard C.; Bernatchez, Chantale; Wang, Yijun; Weber, Jeffrey; Hwu, Patrick; Radvanyi, Laszlo

    2011-01-01

    Adoptive T-cell therapy (ACT) using expanded tumor-infiltrating lymphocytes (TIL) with high-dose IL-2 is a promising form of immunotherapy for Stage IV melanoma having clinical response rates of 50% or more. One of the major problems preventing further success of this therapy is that the current protocols used to highly expand TIL for infusion drive CD8+ T cells to differentiate into effector cells losing key co-stimulatory molecules such as CD28 and CD27. This has been associated with a lack of persistence in vivo for reasons not entirely clear. In this study, we demonstrate that while human melanoma CD8+ TIL lost CD27 and CD28 expression during the rapid expansion for ACT, they gained expression of the alternative co-stimulatory molecule CD137/4-1BB, and to a lesser extent CD134/OX40. Post-REP TIL were found to be highly sensitive to activation-induced cell death (AICD) when re-activated through the TCR with low levels of OKT3 antibody. However, co-ligation of 4-1BB using two different agonistic anti-4-1BB antibodies potently prevented AICD of post-REP CD8+ TIL, including those specific for MART-1, and facilitated even further cell expansion. This was correlated with increased levels of bcl-2 and bcl-xL together with decreased bim expression. 4-1BB-co-stimulated post-REP TIL also expressed increased levels of the cytolytic granule proteins and exhibited enhanced CTL activity against melanoma cells. Lastly, post-REP CD8+ TIL were protected from cell death by anti-4-1BB ligation when exposed to HLA-matched melanoma cells. Our results indicate that 4-1BB co-stimulation may significantly improve TIL survival during melanoma ACT and boost anti-tumor cytolytic activity. PMID:21389874

  5. Regulation of miR-21 expression in human melanoma via UV-ray-induced melanin pigmentation.

    PubMed

    Lin, Kuan-Yu; Chen, Chien-Min; Lu, Cheng-You; Cheng, Chun-Yuan; Wu, Yu-Hsin

    2017-08-01

    Excessive environmental ultraviolet (UV) radiation produces genetic mutations that can lead to skin cancer. This study was designed to assess the potential inhibitory activity of microRNA-21 (miR-21) on the UV irradiation-stimulated melanogenesis signal pathway in melanoma cells. The molecular mechanism of miR-21-induced inhibitory activity on UV-ray-stimulated melanogenesis-regulating proteins was examined in A375.S2 human melanoma and B16F10 mouse melanoma cells. UV irradiation for 30 min induced melanogenesis signal pathway by increasing melanin production and the number of A375.S2 cells. Similarly, UV radiation increased the expression of α-melanocyte-stimulating hormone (α-MSH) protein and decreased the melanogenesis-regulating signal, such as EGFR and Akt phosphorylation. Notably, miR-21 overexpression in UV-ray-stimulated A375.S2 cells decreased α-MSH expression and increased EGFR and Akt phosphorylation levels. Furthermore, miR-21 on UV-ray- induced melanogenesis was down-regulated by the Akt inhibitor and the EGFR inhibitor (Gefitinib). Results suggest that the suppressive activity of miR-21 on UV-ray-stimulated melanogenesis may involve the down-regulation of α-MSH and the activation in both of EGFR and Akt. © 2017 Wiley Periodicals, Inc.

  6. Therapeutic Efficacy of a {sup 188}Re-Labeled {alpha}-Melanocyte-Stimulating Hormone Peptide Analog in Murine and Human Melanoma-Bearing Mouse Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yubin; Owen, Nellie K.; Fisher, Darrell R.

    2005-01-01

    The purpose of this study was to examine the therapeutic efficacy of {sup 188}Re-(Arg{sup 11})CCMSH in the B16/F1 murine melanoma and TXM13 human melanoma bearing mouse models. Method: (Arg11)CCMSH was synthesized and labeled with {sup 188}Re to form {sup 188}Re-(Agr{sup 11})CCMSH. B16/F1 melanoma tumor bearing mice were administrated with 200 Ci, 600 Ci and 2x400 Ci of {sup 188}Re-(Arg{sup 11})CCMSH via the tail vein, respectively. TXM13 melanoma tumor hearing mice were separately injected with 600 Ci, 2x400 Ci and 1000 Ci of 100Re-(Arg{sup 11})CCMSH through the tail vein. Two groups of 10 mice bearing either B16/F1 or TXM13 tumors weremore » injected with saline as untreated controls. Results: In contrast to the untreated control group, {sup 188}Re(Arg11)CCMSH yielded rapid and lasting therapeutic effects in the treatment groups with either B16/F1 or TXM13 tumors. The tumor growth rate was reduced and the survival rate was prolonged in the treatment groups. Treatment with 2x400 Ci of {sup 188}Re-Arg{sup 11}CCMSH significantly extended the mean life of B16/F1 tumor mice (p<0.05), while the mean life of TXm13 tumor mice was significantly prolonged after treatment with 600 Ci and 1000 Ci doses of {sup 188}Re-(Arg{sup 11})CCMSH (p<0.05 High-dose {sup 188}Re-(Arg{sup 11}))CCMSH produced no observed normal-tissue toxicity. Conclusions: The therapy study results revealed that {sup 188}Re-Arg11 CCMSH yielded significant therapeutic effects in both B16/F1 murine melanoma and TXM13 human melanoma bearing mouse models. {sup 188}Re-(Arg{sup 11})CCMSH appears to be a promising radiolabeled peptide for targeted radionuclide therapy of melanoma.« less

  7. Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells.

    PubMed

    Kim, Ji Sung; Kim, Yong Guk; Pyo, Minji; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2015-04-01

    Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity.

  8. Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells

    PubMed Central

    Kim, Ji Sung; Kim, Yong Guk; Pyo, Minji; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo

    2015-01-01

    Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity. PMID:25922594

  9. Germline determinants of clinical outcome of cutaneous melanoma

    PubMed Central

    Vogelsang, Matjaz; Wilson, Melissa; Kirchhoff, Tomas

    2016-01-01

    Cutaneous melanoma (CM) is the most lethal form of skin cancer. Despite the constant increase of melanoma incidence, which is in part due to incremental advances in early diagnostic modalities, mortality rates have not improved over the last decade and for advanced stages remain steadily high. While conventional prognostic biomarkers currently in use find significant utility for predicting overall general survival probabilities, they are not sensitive enough for a more personalized clinical assessment on an individual level. In recent years, the advent of genomic technologies has brought the promise of identification of germline DNA alterations that may associate with CM outcomes and hence represent novel biomarkers for clinical utilization. This review attempts to summarize the current state of knowledge of germline genetic factors studied for their impact on melanoma clinical outcomes. We also discuss ongoing problems and hurdles in validating such surrogates, and we also project future directions in discovery of more powerful germline genetic factors with clinical utility in melanoma prognostication. PMID:26342156

  10. TRIM16 inhibits proliferation and migration through regulation of interferon beta 1 in melanoma cells

    PubMed Central

    Sutton, Selina K.; Koach, Jessica; Tan, Owen; Liu, Bing; Carter, Daniel R.; Wilmott, James S.; Yosufi, Benafsha; Haydu, Lauren E.; Mann, Graham J.; Thompson, John F.; Long, Georgina V.; Liu, Tao; McArthur, Grant; Zhang, Xu Dong; Scolyer, Richard A.; Cheung, Belamy B.; Marshall, Glenn M.

    2014-01-01

    High basal or induced expression of the tripartite motif protein, TRIM16, leads to reduce cell growth and migration of neuroblastoma and skin squamous cell carcinoma cells. However, the role of TRIM16 in melanoma is currently unknown. TRIM16 protein levels were markedly reduced in human melanoma cell lines, compared with normal human epidermal melanocytes due to both DNA methylation and reduced protein stability. TRIM16 knockdown strongly increased cell migration in normal human epidermal melanocytes, while TRIM16 overexpression reduced cell migration and proliferation of melanoma cells in an interferon beta 1 (IFNβ1)-dependent manner. Chromatin immunoprecipitation assays revealed TRIM16 directly bound the IFNβ1 gene promoter. Low level TRIM16 expression in 91 melanoma patient samples, strongly correlated with lymph node metastasis, and, predicted poor patient prognosis in a separate cohort of 170 melanoma patients with lymph node metastasis. The BRAF inhibitor, vemurafenib, increased TRIM16 protein levels in melanoma cells in vitro, and induced growth arrest in BRAF-mutant melanoma cells in a TRIM16-dependent manner. High levels of TRIM16 in melanoma tissues from patients treated with Vemurafenib correlated with clinical response. Our data, for the first time, demonstrates TRIM16 is a marker of cell migration and metastasis, and a novel treatment target in melanoma. PMID:25333256

  11. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma.

    PubMed

    Su, Juan; Gao, Tianyuan; Jiang, Minghao; Wu, Lisha; Zeng, Weiqi; Zhao, Shuang; Peng, Cong; Chen, Xiang

    2016-10-04

    Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma.

  12. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma

    PubMed Central

    Su, Juan; Gao, Tianyuan; Jiang, Minghao; Wu, Lisha; Zeng, Weiqi; Zhao, Shuang; Peng, Cong; Chen, Xiang

    2016-01-01

    Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma. PMID:27556188

  13. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets

    PubMed Central

    Litou, Zoi I.; Konstandi, Ourania A.; Giannopoulou, Aikaterini F.; Anastasiadou, Ema; Voutsinas, Gerassimos E.; Tsangaris, George Th.; Stravopodis, Dimitrios J.

    2017-01-01

    Cutaneous melanoma is a malignant tumor of skin melanocytes that are pigment-producing cells located in the basal layer (stratum basale) of epidermis. Accumulation of genetic mutations within their oncogenes or tumor-suppressor genes compels melanocytes to aberrant proliferation and spread to distant organs of the body, thereby resulting in severe and/or lethal malignancy. Metastatic melanoma’s heavy mutational load, molecular heterogeneity and resistance to therapy necessitate the development of novel biomarkers and drug-based protocols that target key proteins involved in perpetuation of the disease. To this direction, we have herein employed a nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) proteomics technology to profile the deep-proteome landscape of WM-266-4 human metastatic melanoma cells. Our advanced melanoma-specific catalogue proved to contain 6,681 unique proteins, which likely constitute the hitherto largest single cell-line-derived proteomic collection of the disease. Through engagement of UNIPROT, DAVID, KEGG, PANTHER, INTACT, CYTOSCAPE, dbEMT and GAD bioinformatics resources, WM-266-4 melanoma proteins were categorized according to their sub-cellular compartmentalization, function and tumorigenicity, and successfully reassembled in molecular networks and interactomes. The obtained data dictate the presence of plastically inter-converted sub-populations of non-cancer and cancer stem cells, and also indicate the oncoproteomic resemblance of melanoma to glioma and lung cancer. Intriguingly, WM-266-4 cells seem to be subjected to both epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) programs, with 1433G and ADT3 proteins being identified in the EMT/MET molecular interface. Oncogenic addiction of WM-266-4 cells to autocrine/paracrine signaling of IL17-, DLL3-, FGF(2/13)- and OSTP-dependent sub-routines suggests their critical contribution to the metastatic melanoma chemotherapeutic refractoriness. Interestingly, the

  14. In situ photoimmunotherapy for melanoma: preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Naylor, Mark F.; Nordquist, Robert E.; Teauge, T. Kent; Perry, Lisa A.; Chen, Wei R.

    2006-02-01

    Although melanoma accounts for only 4% of skin cancer cases, it causes 79% of all skin cancer deaths. Patients with metastatic melanoma have a poor prognosis, and long term survival is only about 5% [1, 2]. Conventional therapies such as surgery and radiation therapy usually do not cure stage III or stage IV melanoma, while traditional chemotherapy is primarily palliative. Over the last decade we have been developing new methods for treating solid tumors like melanoma, first in animal models and now in humans. We present here preliminary results from a new technique that utilizes a combination of laser stimulation and drug therapy to stimulate brisk immunological responses in cases of advanced melanoma with cutaneous metastases. A high-power, near-infrared diode laser (805 nm) is used to kill tumors in situ and a topical toll-like receptor agonist (imiquimod cream, 5%) is used to intensify the resulting immunological response. This is essentially an in situ, tumor vaccine approach to treating solid tumors.

  15. AMPK activators inhibit the proliferation of human melanomas bearing the activated MAPK pathway.

    PubMed

    Petti, Carlotta; Vegetti, Claudia; Molla, Alessandra; Bersani, Ilaria; Cleris, Loredana; Mustard, Kirsty J; Formelli, Franca; Hardie, Grahame D; Sensi, Marialuisa; Anichini, Andrea

    2012-10-01

    Raf/MEK/ERK signaling can inhibit the liver kinase B1-AMP-activated protein kinase (LKB1-AMPK) pathway, thus rendering melanoma cells resistant to energy stress conditions. We evaluated whether pharmacological reactivation of the AMPK function could exert antitumor effects on melanoma cells bearing this pathway constitutively active because of a mutation in NRAS or BRAF genes. Nine melanoma cell lines were treated with the AMPK activators 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR) and phenformin. The activation of AMPK enzymatic activity, phosphorylation of AMPK and acetyl-CoA carboxylase kinase, in-vitro proliferation, cell cycle, and in-vivo growth of xenografts in nude mice were evaluated. AICAR and phenformin promoted phosphorylation and enzymatic activity of AMPK, as well as phosphorylation of the AMPK downstream target acetyl-CoA carboxylase. Drug treatment of either BRAF-mutant or NRAS-mutant melanomas, at doses not inducing cell death, was accompanied by a dose-dependent decrease in melanoma cell proliferation because of cell cycle arrest in either the G0/G1 or the S phase, associated with an increased expression of the p21 cell cycle inhibitor. Melanomas isolated from subcutaneously implanted mice, 25 days from treatment with AICAR, showed increased staining of the senescence-associated marker β-galactosidase, high p21 expression, and evidence of necrosis. Altogether, these results indicate that pharmacological activators of AMPK-dependent pathways inhibit the cell growth of melanoma cells with active Raf/MEK/ERK signaling and provide a rationale for further investigation on their use in combination therapies.

  16. Investigation of the phototoxic effect of ZnO nanorods on fibroblasts and melanoma human cells

    NASA Astrophysics Data System (ADS)

    Kishwar, S.; Siddique, M.; Israr-Qadir, M.; Nur, O.; Willander, M.; Öllinger, K.

    2014-11-01

    Photocytotoxic effects of as-grown and zinc oxide (ZnO) nanorods coated with 5-aminolevulinic acid (ALA) have been studied on human cells, i.e. melanoma and foreskin fibroblast, under dark and ultraviolet light exposures. Zinc oxide nanorods have been grown on the very sharp tip (diameter = 700 nm) of borosilicate glass pipettes and then were coated by the photosensitizer for targeted investigations inside human cells. The coated glass pipette’s tip with photosensitizer has been inserted inside the cells with the help of a micro-manipulator and irradiated through ultraviolet light (UVA), which reduces the membrane potential of the mitochondria leading to cell death. Cell viability loss has been detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay when exposed to the dissolved ZnO nanorods and the production of the reactive oxygen species (ROS) has been detected along with the enhanced cytotoxic effect under UVA irradiation. Additionally, the influence of the lipid soluble antioxidant vitamin E and water-soluble N-acetyl-cysteine toward the enhancement or reduction of the toxicity has been investigated. A comparative analysis of the toxic nature of ZnO nanorods has been drawn between normal human fibroblast and melanoma cells, which can be favorable for understanding the clinical setting for killing tumor cells.

  17. Melanoma detection. A prospective study comparing diagnosis with the naked eye, dermatoscopy and telespectrophotometry.

    PubMed

    Bono, Aldo; Bartoli, Cesare; Cascinelli, Natale; Lualdi, Manuela; Maurichi, Andrea; Moglia, Daniele; Tragni, Gabrina; Tomatis, Stefano; Marchesini, Renato

    2002-01-01

    Successful treatment of melanoma depends directly on early diagnosis. Such a diagnosis is based on clinical examination and dermatoscopy. Recently, automated instruments for melanoma detection are under development. To prospectively evaluate the diagnostic possibilities provided by clinical and dermatoscopic examinations and by a computerized telespectrophotometric system (TS). The study involves a consecutive series of 298 patients with 313 cutaneous pigmented lesions (66 melanomas and 247 non-melanoma lesions). Each lesion was subjected to the triple diagnostic evaluation, before surgery. Results were expressed in terms of sensitivity and specificity of each kind of evaluation. Clinical evaluation had sensitivity and specificity values of 86 and 77%, respectively, whereas dermatoscopy gave corresponding values of 91 and 74%. TS assessment resulted in a sensitivity of 80% and a specificity of 49%. Differences between clinical and dermatoscopic diagnoses lacked statistical significance (p = 0.22), whereas there was a significant difference comparing both clinical and TS evaluations (p < 0.01) and dermatoscopic and TS evaluations (p < 0.01). Combining clinical and dermatoscopic evaluations, a sensitivity of 97% was achieved. Addition of TS has not changed this figure. Results of this study confirm and stress the importance of dermatoscopy in the diagnosis of melanoma. Clinical evaluation coupled with dermatoscopy can be considered the cornerstone of such a diagnosis. Although TS is able to achieve interesting results, at present it cannot significantly compete with any of the other tested methods. Copyright 2002 S. Karger AG, Basel

  18. Unusual presentations of melanoma: melanoma of unknown primary site, melanoma arising in childhood, and melanoma arising in the eye and on mucosal surfaces.

    PubMed

    Sondak, Vernon K; Messina, Jane L

    2014-10-01

    Most melanomas present as primary tumors on the skin surface in adults; however, melanomas also arise in the eye and on the mucosal surfaces or present as apparently metastatic disease without any known history of a cutaneous primary. Melanoma is also being diagnosed during childhood more frequently than ever. Surgeons need to be aware of and understand these unusual presentations of melanoma to optimally manage their patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Cytotoxic activity against human neuroblastoma and melanoma cells mediated by IgM antibodies derived from peripheral blood of healthy donors.

    PubMed

    Devarapu, Satish Kumar; Mamidi, Srinivas; Plöger, Frank; Dill, Othmar; Blixt, Ola; Kirschfink, Michael; Schwartz-Albiez, Reinhard

    2016-06-15

    A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies. © 2016 UICC.

  20. MAGE-A1 promotes melanoma proliferation and migration through C-JUN activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong; The 309th Hospital of China People's Liberation Army, Beijing 100091; Wang, Junyun

    2016-05-13

    MAGE-A1 belongs to the chromosome X-clustered genes of cancer-testis antigen family and is normally expressed in the human germ line but is also overexpressed in various tumors. Previous studies of MAGE-A1 in melanoma mainly focused on methylation changes or its role in immunotherapy, however, its biological functions in melanoma have remained unknown. In order to determine the role of MAGE-A1 in melanoma growth and metastasis, we manipulated melanoma cell lines with overexpression and knockdown of MAGE-A1. Integration of cell proliferation assays, transwell migration and invasion assays, and RNA-Seq analysis revealed that up-regulation of MAGE-A1 dramatically promoted proliferation, migration, and invasionmore » of human melanoma cell lines in vitro, while down-regulation of MAGE-A1 inhibited those characteristics associated with tumor cells. Furthermore, transcriptome sequencing revealed that MAGE-A1 exerts its tumor promoting activity by activating p-C-JUN directly or through ERK-MAPK signaling pathways. Based on our findings, we propose that MAGE-A1 may be a potential therapeutic target for melanoma patients. - Highlights: • MAGE-A1 promotes proliferation and clone formation in melanoma cell lines. • MAGE-A1 enhances tumor cell migration and invasion in melanoma cell lines. • Network including C-JUN, IL8, and ARHGAP29 play critical role in malignant melanoma. • Oncogenic MAGE-A1 increases p-C-JUN levels, possibly via ERK-MAPK signaling pathway.« less

  1. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells

    PubMed Central

    Zhong, Hai-Jing; Dong, Zhen-Zhen; Vellaisamy, Kasipandi; Lu, Jin-Jian; Chen, Xiu-Ping; Chiu, Pauline; Kwong, Daniel W. J.; Han, Quan-Bin; Ma, Dik-Lung

    2017-01-01

    The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been suggested as a potential molecular target for anti-melanoma therapeutics. However, few JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone analogues were evaluated for their activity against human malignant melanoma cells. The most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cellular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates. Moreover, compound 1 showed higher antiproliferative activity against human melanoma A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be investigated for use as an anti-melanoma agent. PMID:28570563

  2. Validation of the VE1 Immunostain for the BRAF V600E Mutation in Melanoma

    PubMed Central

    Pearlstein, Michelle V.; Zedek, Daniel C.; Ollila, David W.; Treece, Amanda; Gulley, Margaret L.; Groben, Pamela A.; Thomas, Nancy E.

    2014-01-01

    BACKGROUND BRAF mutation status, and therefore eligibility for BRAF inhibitors, is currently determined by sequencing methods. We assessed the validity of VE1, a monoclonal antibody against the BRAF V600E mutant protein, in the detection of mutant BRAF V600E melanomas as classified by DNA pyrosequencing. METHODS The cases were 76 metastatic melanoma patients with only one known primary melanoma who had had BRAF codon 600 pyrosequencing of either their primary (n=19), metastatic (n=57) melanoma, or both (n=17). All melanomas (n=93) were immunostained with the BRAF VE1 antibody using a red detection system. The staining intensity of these specimens was scored from 0 – 3+ by a dermatopathologist. Scores of 0 and 1+ were considered as negative staining while scores of 2+ and 3+ were considered positive. RESULTS The VE1 antibody demonstrated a sensitivity of 85% and a specificity of 100% as compared to DNA pyrosequencing results. There was 100% concordance between VE1 immunostaining of primary and metastatic melanomas from the same patient. V600K, V600Q, and V600R BRAF melanomas did not positively stain with VE1. CONCLUSIONS This hospital-based study finds high sensitivity and specificity for the BRAF VE1 immunostain in comparison to pyrosequencing in detection of BRAF V600E in melanomas. PMID:24917033

  3. Monoclonal antibody (AFH1) immunoreactive on morphologically abnormal basal melanocytes within dysplastic nevi, nevocellular nevus nests, and melanoma.

    PubMed

    Aronson, P J; Ito, K; Fukaya, T; Hashimoto, K; Mehregan, A H

    1988-04-01

    The mouse monoclonal antibody AFH1 was produced using formalin-fixed, sham paraffin-embedded human melanoma cell culture line A375 as immunogen. Reactivity of this antibody was assessed by immunohistochemical techniques against formalin- or acid alcohol-fixed paraffin-embedded tissue as well as formalin- or acid alcohol-fixed unembedded lesions. Ninety-seven nevomelanocytic lesions, neurofibromas, epithelial lesions, and a plasmacellular infiltrate were evaluated. AFH1 was immunoreactive on 54 of 55 nevocytic lesions (98.2%), 15 of 16 primary melanomas (93.7%), a lentigo maligna, and nests in 21 of 21 dysplastic nevi (100%). Of 100 consecutive basal melanocytes of intraepidermal melanoma cells counted in each lesion, mean AFH1 immunoreactivity for nonnested basal melanocytes in nevocellular nevi was 3.8%; for dysplastic nevi, 13.8%; and for intraepidermal melanoma cells, 78.0%. When nonnested basal melanocytes were subdivided into cytologically normal and abnormal cell groups, AFH1 immunoreactivity was 9.4% and 72.6%, respectively. AFH1 recognition of the lentiginous portion of dysplastic nevi corresponds statistically to the appearance of abnormal melanocyte cytology, nest formation, or both. Using 50% immunoreactive nonnested melanocytes as the criterion, AFH1 seems to distinguish primary melanoma from dysplastic nevi with a sensitivity of 93.8% and a specificity of 95.8%.

  4. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells.

    PubMed

    Zalfa, Francesca; Panasiti, Vincenzo; Carotti, Simone; Zingariello, Maria; Perrone, Giuseppe; Sancillo, Laura; Pacini, Laura; Luciani, Flavie; Roberti, Vincenzo; D'Amico, Silvia; Coppola, Rosa; Abate, Simona Osella; Rana, Rosa Alba; De Luca, Anastasia; Fiers, Mark; Melocchi, Valentina; Bianchi, Fabrizio; Farace, Maria Giulia; Achsel, Tilmann; Marine, Jean-Christophe; Morini, Sergio; Bagni, Claudia

    2017-11-16

    The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets.

  5. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells

    PubMed Central

    Zalfa, Francesca; Panasiti, Vincenzo; Carotti, Simone; Zingariello, Maria; Perrone, Giuseppe; Sancillo, Laura; Pacini, Laura; Luciani, Flavie; Roberti, Vincenzo; D'Amico, Silvia; Coppola, Rosa; Abate, Simona Osella; Rana, Rosa Alba; De Luca, Anastasia; Fiers, Mark; Melocchi, Valentina; Bianchi, Fabrizio; Farace, Maria Giulia; Achsel, Tilmann; Marine, Jean-Christophe; Morini, Sergio; Bagni, Claudia

    2017-01-01

    The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets. PMID:29144507

  6. Digital imaging biomarkers feed machine learning for melanoma screening.

    PubMed

    Gareau, Daniel S; Correa da Rosa, Joel; Yagerman, Sarah; Carucci, John A; Gulati, Nicholas; Hueto, Ferran; DeFazio, Jennifer L; Suárez-Fariñas, Mayte; Marghoob, Ashfaq; Krueger, James G

    2017-07-01

    We developed an automated approach for generating quantitative image analysis metrics (imaging biomarkers) that are then analysed with a set of 13 machine learning algorithms to generate an overall risk score that is called a Q-score. These methods were applied to a set of 120 "difficult" dermoscopy images of dysplastic nevi and melanomas that were subsequently excised/classified. This approach yielded 98% sensitivity and 36% specificity for melanoma detection, approaching sensitivity/specificity of expert lesion evaluation. Importantly, we found strong spectral dependence of many imaging biomarkers in blue or red colour channels, suggesting the need to optimize spectral evaluation of pigmented lesions. © 2016 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  7. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma

    NASA Astrophysics Data System (ADS)

    Bald, Tobias; Quast, Thomas; Landsberg, Jennifer; Rogava, Meri; Glodde, Nicole; Lopez-Ramos, Dorys; Kohlmeyer, Judith; Riesenberg, Stefanie; van den Boorn-Konijnenberg, Debby; Hömig-Hölzel, Cornelia; Reuten, Raphael; Schadow, Benjamin; Weighardt, Heike; Wenzel, Daniela; Helfrich, Iris; Schadendorf, Dirk; Bloch, Wilhelm; Bianchi, Marco E.; Lugassy, Claire; Barnhill, Raymond L.; Koch, Manuel; Fleischmann, Bernd K.; Förster, Irmgard; Kastenmüller, Wolfgang; Kolanus, Waldemar; Hölzel, Michael; Gaffal, Evelyn; Tüting, Thomas

    2014-03-01

    Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere

  8. Forecasting the prognosis of choroidal melanoma with an artificial neural network.

    PubMed

    Kaiserman, Igor; Rosner, Mordechai; Pe'er, Jacob

    2005-09-01

    To develop an artificial neural network (ANN) that will forecast the 5-year mortality from choroidal melanoma. Retrospective, comparative, observational cohort study. One hundred fifty-three eyes of 153 consecutive patients with choroidal melanoma (age, 58.4+/-14.6 years) who were treated with ruthenium 106 brachytherapy between 1988 and 1998 at the Department of Ophthalmology, Hadassah University Hospital, Jerusalem, Israel. Patients were observed clinically and ultrasonographically (A- and B-mode standardized ultrasonography). Metastatic screening included liver function tests and liver imaging. Backpropagation ANNs composed of 3 or 4 layers of neurons with various types of transfer functions and training protocols were assessed for their ability to predict the 5-year mortality. The ANNs were trained on 77 randomly selected patients and tested on a different set of 76 patients. Artificial neural networks were compared based on their sensitivity, specificity, forecasting accuracy, area under the receiver operating curves, and likelihood ratios (LRs). The best ANN was compared with the results of logistic regression and the performance of an ocular oncologist. The ability of the ANNs to forecast the 5-year mortality from choroidal melanoma. Thirty-one patients died during the follow-up period of metastatic choroidal melanoma. The best ANN (one hidden layer of 16 neurons) had 84% forecasting accuracy and an LR of 31.5. The number of hidden neurons significantly influenced the ANNs' performance (P<0.001). The performance of the ANNs was not significantly influenced by the training protocol, the number of hidden layers, or the type of transfer function. In comparison, logistic regression reached 86% forecasting accuracy, with a very low LR (0.8), whereas the human expert forecasting ability was <70% (LR, 1.85). Artificial neural networks can be used for forecasting the prognosis of choroidal melanoma and may support decision-making in treating this malignancy.

  9. Current State of Animal (Mouse) Modeling in Melanoma Research.

    PubMed

    Kuzu, Omer F; Nguyen, Felix D; Noory, Mohammad A; Sharma, Arati

    2015-01-01

    Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future.

  10. Rendomab B4, a monoclonal antibody that discriminates the human endothelin B receptor of melanoma cells and inhibits their migration

    PubMed Central

    Borrull, Aurélie; Allard, Bertrand; Wijkhuisen, Anne; Herbet, Amaury; Lamourette, Patricia; Birouk, Wided; Leiber, Denis; Tanfin, Zahra; Ducancel, Frédéric; Boquet, Didier; Couraud, Jean-Yves; Robin, Philippe

    2016-01-01

    ABSTRACT Metastatic melanoma is an aggressive cancer with a poor prognostic, and the design of new targeted drugs to treat melanoma is a therapeutic challenge. A promising approach is to produce monoclonal antibodies (mAbs) against the endothelin B receptor (ETB), which is known to be overexpressed in melanoma and to contribute to proliferation, migration and vasculogenic mimicry associated with invasiveness of this cancer. We previously described rendomab-B1, a mAb produced by DNA immunization. It is endowed with remarkable characteristics in term of affinity, specificity and antagonist properties against human ETB expressed by the endothelial cells, but, surprisingly, had poor affinity for ETB expressed by melanoma cells. This characteristic strongly suggested the existence of a tumor-specific ETB form. In the study reported here, we identified a new mAb, rendomab-B4, which, in contrast to rendomab-B1, binds ETB expressed on UACC-257, WM-266-4 and SLM8 melanoma cells. Moreover, after binding to UACC-257 cells, rendomab-B4 is internalized and colocalizes with the endosomal protein EEA-1. Interestingly, rendomab-B4, despite its inability to compete with endothelin binding, is able to inhibit phospholipase C pathway and migration induced by endothelin. By contrast, rendomab-B4 fails to decrease ERK1/2 phosphorylation induced by endothelin, suggesting a biased effect on ETB. These particular properties make rendomab-B4 an interesting tool to analyze ETB-structure/function and a promising starting point for the development of new immunological tools in the field of melanoma therapeutics. PMID:27390909

  11. [¹²³I]ICF01012 melanoma imaging and [¹³¹I]ICF01012 dosimetry allow adapted internal targeted radiotherapy in preclinical melanoma models.

    PubMed

    Viallard, Claire; Perrot, Yann; Boudhraa, Zied; Jouberton, Elodie; Miot-Noirault, Elisabeth; Bonnet, Mathilde; Besse, Sophie; Mishellany, Florence; Cayre, Anne; Maigne, Lydia; Rbah-Vidal, Latifa; D'Incan, Michel; Cachin, Florent; Chezal, Jean-Michel; Degoul, Françoise

    2015-01-01

    Melanin-targeting radiotracers are interesting tools for imaging and treatment of pigmented melanoma metastases. However, variation of the pigment concentration may alter the efficiency of such targeting. A clear assessment of both tumor melanin status and dosimetry are therefore prerequisites for internal radiotherapy of disseminated melanoma. The melanin tracer ICF01012 was labelled with iodine-123 for melanoma imaging in pigmented murine B16F0 and human SK-Mel 3 melanomas. In vivo imaging showed that the uptake of [(123)I]ICF01012 to melanomas correlated significantly with melanin content. Schedule treatment of 3 × 25 MBq [(131)I]ICF01012 significantly reduced SK-Mel 3 tumor growth and significantly increased the median survival in treated mice. For this protocol, the calculated delivered dose was 53.2 Gy. Radio-iodinated ICF01012 is a good candidate for both imaging and therapeutic purposes for patients with metastatic pigmented melanomas.

  12. The role of spectrophotometry in the diagnosis of melanoma.

    PubMed

    Ascierto, Paolo A; Palla, Marco; Ayala, Fabrizio; De Michele, Ileana; Caracò, Corrado; Daponte, Antonio; Simeone, Ester; Mori, Stefano; Del Giudice, Maurizio; Satriano, Rocco A; Vozza, Antonio; Palmieri, Giuseppe; Mozzillo, Nicola

    2010-08-13

    Spectrophotometry (SPT) could represent a promising technique for the diagnosis of cutaneous melanoma (CM) at earlier stages of the disease. Starting from our experience, we further assessed the role of SPT in CM early detection. During a health campaign for malignant melanoma at National Cancer Institute of Naples, we identified a subset of 54 lesions to be addressed to surgical excision and histological examination. Before surgery, all patients were investigated by clinical and epiluminescence microscopy (ELM) screenings; selected lesions underwent spectrophotometer analysis. For SPT, we used a video spectrophotometer imaging system (Spectroshade MHT S.p.A., Verona, Italy). Among the 54 patients harbouring cutaneous pigmented lesions, we performed comparison between results from the SPT screening and the histological diagnoses as well as evaluation of both sensitivity and specificity in detecting CM using either SPT or conventional approaches. For all pigmented lesions, agreement between histology and SPT classification was 57.4%. The sensitivity and specificity of SPT in detecting melanoma were 66.6% and 76.2%, respectively. Although SPT is still considered as a valuable diagnostic tool for CM, its low accuracy, sensitivity, and specificity represent the main hamper for the introduction of such a methodology in clinical practice. Dermoscopy remains the best diagnostic tool for the preoperative diagnosis of pigmented skin lesions.

  13. Personal history of non-melanoma skin cancer diagnosis and death from melanoma in women.

    PubMed

    Chen, Steven T; Li, Xin; Han, Jiali

    2018-04-15

    Melanoma incidence is increasing. We evaluated risk of melanoma death after diagnosis of non-melanoma skin cancer (NMSC). We followed 77,288 female American nurses from the Nurses' Health Study from 1986 to 2012. We used Cox proportional hazards models to determine the hazard ratio (HR) of lethal and non-lethal melanoma diagnosis and melanoma death, according to personal NMSC history. Among melanoma cases, we examined the HR of melanoma death and the odds ratio (OR) of melanoma with a Breslow thickness ≥0.8 mm or Clark's levels of IV and V according to history of NMSC. We documented 930 melanoma cases without NMSC history and 615 melanoma cases with NMSC history over 1.8 million person-years. The multivariate-adjusted HR (95% confidence interval) of melanoma death associated with personal history of NMSC was 2.89 (1.85-4.50). Women with history of NMSC were more likely to develop non-lethal melanoma than lethal melanoma (HR (95% CI): 2.31 (2.05-2.60) vs. 1.74 (1.05-2.87)). Among melanoma cases, women with history of NMSC had a non-significant decreased risk of melanoma deaths (0.87 (0.55-1.37)), Breslow thickness ≥0.8 mm (0.85 (0.59-1.21)) and Clark's levels IV and V (0.81(0.52-1.24)). Women with NMSC history were less likely to be diagnosed with a lethal melanoma than a non-lethal melanoma, but overall rate of melanoma diagnosis was increased in both subtypes, leading to the increased risk of melanoma death. Our findings suggest the continued need for dermatologic screening for patients after NMSC diagnosis, given increased melanoma risk. Early detection among NMSC patients may decrease deaths from melanoma. © 2017 UICC.

  14. A Novel Therapy for Melanoma Developed in Mice: Transformation of Melanoma into Dendritic Cells with Listeria monocytogenes

    PubMed Central

    Bronchalo-Vicente, Lucia; Rodriguez-Del Rio, Estela; Freire, Javier; Calderon-Gonzalez, Ricardo; Frande-Cabanes, Elisabet; Gomez-Roman, Jose Javier; Fernández-Llaca, Hector; Yañez-Diaz, Sonsoles; Alvarez-Dominguez, Carmen

    2015-01-01

    Listeria monocytogenes is a gram-positive bacteria and human pathogen widely used in cancer immunotherapy because of its capacity to induce a specific cytotoxic T cell response in tumours. This bacterial pathogen strongly induces innate and specific immunity with the potential to overcome tumour induced tolerance and weak immunogenicity. Here, we propose a Listeria based vaccination for melanoma based in its tropism for these tumour cells and its ability to transform in vitro and in vivo melanoma cells into matured and activated dendritic cells with competent microbicidal and antigen processing abilities. This Listeria based vaccination using low doses of the pathogen caused melanoma regression by apoptosis as well as bacterial clearance. Vaccination efficacy is LLO dependent and implies the reduction of LLO-specific CD4+ T cell responses, strong stimulation of innate pro-inflammatory immune cells and a prevalence of LLO-specific CD8+ T cells involved in tumour regression and Listeria elimination. These results support the use of low doses of pathogenic Listeria as safe melanoma therapeutic vaccines that do not require antibiotics for bacterial removal. PMID:25760947

  15. DNA from human polyomaviruses, TSPyV, MWPyV, HPyV6, 7 and 9 was not detected in primary mucosal melanomas.

    PubMed

    Ramqvist, Torbjörn; Nordfors, Cecilia; Dalianis, Tina; Ragnarsson-Olding, Boel

    2014-02-01

    Mucosal melanomas arise in non UV-light exposed areas and causative factors are yet unknown. Human polyomaviruses (HPyVs) are rapidly increasing in numbers and are potentially oncogenic, as has been established for MCPyV in Merkel cell carcinoma, an unusual skin cancer type. The aim of the present study was to investigate the association between TSPyV, MWPyV, HPyV6, 7 and 9 and mucosal melanoma. Fifty-five mucosal melanomas, were analyzed by a Luminex assay, for the presence of 10 HPyVs (BKPyV, JCPyV, KIPyV, WUPyV, TSPyV, MWPyV, HPyV6, 7 and 9) and two primate viruses (SV40 and LPyV). In 37 samples the DNA quality was satisfactory for analysis. However, none of the samples analyzed were positive for any of the examined viruses. None of the above-analyzed HPyVs were detected in mucosal melanoma samples, and they are for this reason unlikely to play a major role in the development of this tumor type.

  16. Role of β-catenin signaling in the anti-invasive effect of the omega-3 fatty acid DHA in human melanoma cells.

    PubMed

    Serini, Simona; Zinzi, Antonio; Ottes Vasconcelos, Renata; Fasano, Elena; Riillo, Maria Greca; Celleno, Leonardo; Trombino, Sonia; Cassano, Roberta; Calviello, Gabriella

    2016-11-01

    We previously found that docosahexaenoic acid (DHA), a dietary polyunsaturated fatty acid present at high level in fatty fish, inhibited cell growth and induced differentiation of melanoma cells in vitro by increasing nuclear β-catenin content. An anti-neoplastic role of nuclear β-catenin was suggested in melanoma, and related to the presence in the melanocyte lineage of the microphtalmia transcription factor (MITF), which interferes with the transcription of β-catenin/TCF/LEF pro-invasive target genes. In the present work we investigated if DHA could inhibit the invasive potential of melanoma cells, and if this effect could be related to DHA-induced alterations of the Wnt/β-catenin signaling, including changes in MITF expression. WM115 and WM266-4 human melanoma, and B16-F10 murine melanoma cell lines were used. Cell invasion was evaluated by Wound Healing and Matrigel transwell assays. Protein expression was analyzed by Western Blotting and β-catenin phosphorylation by immunoprecipitation. The role of MITF in the anti-invasive effect of DHA was analyzed by siRNA gene silencing. We found that DHA inhibited anchorage-independent cell growth, reduced their migration/invasion in vitro and down-regulated several Matrix Metalloproteinases (MMP: MMP-2, MT1-MMP and MMP-13), known to be involved in melanoma invasion. We related these effects to the β-catenin increased nuclear expression and PKA-dependent phosphorylation, as well as to the increased expression of MITF. The data obtained further support the potential role of dietary DHA as suppressor of melanoma progression to invasive malignancy through its ability to enhance MITF expression and PKA-dependent nuclear β-catenin phosphorylation. Copyright © 2016. Published by Elsevier Ireland Ltd.

  17. Licochalcone D induces apoptosis and inhibits migration and invasion in human melanoma A375 cells

    PubMed Central

    Si, Lingling; Yan, Xinyan; Hao, Wenjin; Ma, Xiaoyi; Ren, Huanhuan; Ren, Boxue; Li, Defang; Dong, Zhengping; Zheng, Qiusheng

    2018-01-01

    The aim of the present study was to determine the effects of Licochalcone D (LD) on the apoptosis and migration and invasion in human melanoma A375 cells. Cell proliferation was determined by sulforhodamine B assay. Apoptosis was assessed by Hoechst 33258 and Annexin V-FITC/PI staining and JC-1 assay. Total intracellular reactive oxygen species (ROS) was examined by DCFH-DA. Wound healing and Transwell assays were used to detect migration and invasion of the cells. The activities of matrix metalloproteinase (MMP-2 and MMP-9) were assessed via gelatin zymography. Tumor growth in vivo was evaluated in C57BL/6 mice. RT-PCR, qPCR, ELISA and western blot analysis were utilized to measure the mRNA and protein levels. Our results showed that LD inhibited the proliferation of A375 and SK-MEL-5 cells in a concentration-dependent manner. After treatment with LD, A375 cells displayed obvious apoptotic characteristics, and the number of apoptotic cells was significantly increased. Pro-apoptotic protein Bax, caspase-9 and caspase-3 were upregulated, while anti-apoptotic protein Bcl-2 was downregulated in the LD-treated cells. Meanwhile, LD induced the loss of mitochondrial membrane potential (ΔΨm) and increased the level of ROS. ROS production was inhibited by the co-treatment of LD and free radical scavenger N-acetyl-cysteine (NAC). Furthermore, LD also blocked A375 cell migration and invasion in vitro which was associated with the downregulation of MMP-9 and MMP-2. Finally, intragastric administration of LD suppressed tumor growth in the mouse xenograft model of murine melanoma B16F0 cells. These results suggest that LD may be a potential drug for human melanoma treatment by inhibiting proliferation, inducing apoptosis via the mitochondrial pathway and blocking cell migration and invasion. PMID:29565458

  18. Linear discriminant analysis of dermoscopic parameters for the differentiation of early melanomas from Clark naevi.

    PubMed

    Oka, Hiroshi; Tanaka, Masaru; Kobayashi, Seiichiro; Argenziano, Giuseppe; Soyer, H Peter; Nishikawa, Takeji

    2004-04-01

    As a first step to develop a screening system for pigmented skin lesions, we performed digital discriminant analyses between early melanomas and Clark naevi. A total of 59 cases of melanoma, including 23 melanoma in situ and 36 thin invasive melanomas (Breslow thickness < or =0.75 mm), and 188 clinically equivocal, histopathologically diagnosed Clark naevi were used in our study. After calculating 62 mathematical variables related to the colour, texture, asymmetry and circularity based on the dermoscopic findings of the pigmented skin lesions, we performed multivariate stepwise discriminant analysis using these variables to differentiate melanomas from naevi. The sensitivities and specificities of our model were 94.4 and 98.4%, respectively, for discriminating between melanomas (Breslow thickness < or =0.75 mm) and Clark naevi, and 73.9 and 85.6%, respectively, for discriminating between melanoma in situ and Clark naevi. Our algorithm accurately discriminated invasive melanomas from Clark naevi, but not melanomas in situ from Clark naevi.

  19. GENETIC COUNSELLING IN MELANOMA

    PubMed Central

    Badenas, Celia; Aguilera, Paula; Puig-Butillé, Joan A.; Carrera, Cristina; Malvehy, Josep; Puig, Susana

    2012-01-01

    Summary Genetic counselling may be offered to families with melanoma and to individuals with multiple melanomas to better understand the genetic susceptibility of the disease, the influence of environmental factors, the inheritance of the risk and behaviour that decreases the risk of dying from melanoma including specific dermatological follow-up such as total body photography and digital dermoscopy. Genetic testing may be offered to those individuals with more than a 10% chance of being a carrier of a mutation. This risk varies according to the incidence of melanoma in the country and sun behaviour. In countries with a low-medium incidence of melanoma, genetic testing should be offered to families with two cases of melanoma or an individual with two primary melanomas. In countries with a high incidence, families with three cases of melanoma, with two melanomas and one pancreatic adenocarcinoma, or patients with three primary melanomas may benefit from genetic testing. PMID:23046018

  20. ARMS depletion facilitates UV irradiation induced apoptotic cell death in melanoma.

    PubMed

    Liao, Yi-Hua; Hsu, Su-Ming; Huang, Pei-Hsin

    2007-12-15

    Tumor cells often aberrantly reexpress molecules that mediate proper embryonic development for advantageous growth or survival. Here, we report that ankyrin repeat-rich membrane spanning (ARMS), a transmembrane protein abundant in the developing and adult neural tissues, is overexpressed in melanoma, a tumor ontogenetically originating from neural crest. Immunohistochemical study of 79 melanocytic lesions showed significantly increased expression of ARMS in primary malignant melanomas (92.9%) and metastatic melanoma (60.0%) in comparison with benign nevocellular nevi (26.7%). To investigate the role of ARMS in melanoma formation, murine B16F0 melanoma cells with stable knockdown of ARMS were established by RNA interference. Down-regulation of ARMS resulted in significant inhibition of anchorage-independent growth in soft agar and restrictive growth of melanoma in severe combined immunodeficient mice. Importantly, depletion of ARMS facilitated UVB-induced apoptosis in melanoma cells through inactivation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK. Addition of MEK inhibitor PD98059 further sensitized ARMS-depleted melanoma cells to UVB-induced apoptosis, whereas constitutively active MEK rescued ARMS-depleted cells from apoptosis. We further showed that BRAF, a downstream signaling molecule of ARMS in ERK pathway, is not mutated as a constitutively active form in acral lentiginous melanoma; in contrast, BRAF(T1799A) mutation, which leads to constitutive activation of ERK signaling, was detected in 57.1% of superficial spreading melanoma. Our study suggests that overexpression of ARMS per se serves as one mechanism to promote melanoma formation by preventing stress-induced apoptotic death mediated by the MEK/ERK signaling pathway, especially in acral lentiginous melanoma, most of which does not harbor BRAF mutation.

  1. Diagnostic accuracy of fine needle biopsy for metastatic melanoma and its implications for patient management.

    PubMed

    Doubrovsky, Anna; Scolyer, Richard A; Murali, Rajmohan; McKenzie, Paul R; Watson, Geoffrey F; Lee, C Soon; McLeod, Duncan J; McCarthy, William H; Uren, Roger F; Stretch, Jonathan R; Saw, Robyn P; Thompson, John F

    2008-01-01

    The use of fine needle biopsy (FNB) for the diagnosis of metastatic melanoma can lead to the early removal and treatment of metastases, reduce the frequency of unnecessary surgery, and facilitate the staging of patients enrolled in clinical trials of adjuvant therapies. In this study, the accuracy of FNB for the diagnosis of metastatic melanoma was investigated. A retrospective cohort study was performed with 2204 consecutive FNBs performed on 1416 patients known or suspected to have metastatic melanoma. Almost three-quarters (1582) of these FNBs were verified by either histopathologic diagnosis following surgical resection or clinical follow-up. FNB for metastatic melanoma was found to have an overall sensitivity of 92.1% and a specificity of 99.2%, with 69 false-negative and 5 false-positive findings identified. The sensitivity of the procedure was found to be influenced by six factors. The use of immunostains, reporting of the specimen by a cytopathologist who had reported >500 cases, lesions located in the skin and subcutis, and patients with ulcerated primary melanomas were factors associated with a significant improvement in the sensitivity of the test. However, FNBs performed in masses located in lymph nodes of the axilla and FNBs that required more than one needle pass to obtain a sample were far more likely to result in false-negative results. FNB is a rapid, accurate, and clinically useful technique for the assessment of disease status in patients with suspected metastatic melanoma.

  2. Diagnostic Accuracy of Fine Needle Biopsy for Metastatic Melanoma and Its Implications for Patient Management

    PubMed Central

    Doubrovsky, Anna; Scolyer, Richard A.; Murali, Rajmohan; McKenzie, Paul R.; Watson, Geoffrey F.; Lee, C. Soon; McLeod, Duncan J.; McCarthy, William H.; Uren, Roger F.; Stretch, Jonathan R.; Saw, Robyn P.

    2007-01-01

    Background The use of fine needle biopsy (FNB) for the diagnosis of metastatic melanoma can lead to the early removal and treatment of metastases, reduce the frequency of unnecessary surgery, and facilitate the staging of patients enrolled in clinical trials of adjuvant therapies. In this study, the accuracy of FNB for the diagnosis of metastatic melanoma was investigated. Methods A retrospective cohort study was performed with 2204 consecutive FNBs performed on 1416 patients known or suspected to have metastatic melanoma. Almost three-quarters (1582) of these FNBs were verified by either histopathologic diagnosis following surgical resection or clinical follow-up. Results FNB for metastatic melanoma was found to have an overall sensitivity of 92.1% and a specificity of 99.2%, with 69 false-negative and 5 false-positive findings identified. The sensitivity of the procedure was found to be influenced by six factors. The use of immunostains, reporting of the specimen by a cytopathologist who had reported >500 cases, lesions located in the skin and subcutis, and patients with ulcerated primary melanomas were factors associated with a significant improvement in the sensitivity of the test. However, FNBs performed in masses located in lymph nodes of the axilla and FNBs that required more than one needle pass to obtain a sample were far more likely to result in false-negative results. Conclusions FNB is a rapid, accurate, and clinically useful technique for the assessment of disease status in patients with suspected metastatic melanoma. PMID:17990041

  3. Ocular melanoma metastatic to skin: the value of HMB-45 staining.

    PubMed

    Schwartz, Robert A; Kist, Joseph M; Thomas, Isabelle; Fernández, Geover; Cruz, Manuel A; Koziorynska, Ewa I; Lambert, W Clark

    2004-06-01

    Cutaneous metastatic disease is an important finding that may represent the first sign of systemic cancer, or, if already known, that may change tumor staging and thus dramatically altered therapeutic plans. Although cutaneous metastases are relatively frequent in patients with cutaneous melanoma, they are less so from ocular melanoma. To demonstrate the value of HMB-45, staining in the detection of ocular melanoma metastatic to skin. The immunohistochemical stain HMB-45 a monoclonal antibody directed against intact human melanoma cells, was employed on a skin biopsy specimen from a cutaneous tumor. HMB-45 staining was positive in the atypical hyperchromatic cells of the deep dermis. HMB-45 may be of value in the detection of ocular melanoma metastatic to skin. Cutaneous metastatic disease is a somewhat common and extremely important diagnosis. Although cutaneous metastases from cutaneous melanoma are relatively frequent, those from ocular melanomas are less so. Use of histochemical staining, especially the HMB-45 stain, allows confirmation of the diagnosis.

  4. Sensitization to human milk.

    PubMed

    Schulmeister, U; Swoboda, I; Quirce, S; de la Hoz, B; Ollert, M; Pauli, G; Valenta, R; Spitzauer, S

    2008-01-01

    Allergy to milk is one of the earliest manifestations of IgE-mediated allergies and affects about 2.5% of newborn children. Several reports indicate that milk-allergic patients may be sensitized also to human milk proteins. To analyse the specificity and possible biological relevance of IgE reactivity to human milk antigens in milk-allergic patients. The specificity of IgE reactivity to cow's milk and human milk antigens was analysed with sera from milk-allergic children and adults by IgE immunoblotting. IgE cross-reactivity between milk antigens was studied by immunoblot inhibition experiments. That IgE reactivity to human milk antigens is not due to alloreactivity or due to the transmission of foreign antigens into mother's milk was demonstrated through the analysis of milk samples from genetically unrelated mothers before and after intake of dietary milk products. The biological relevance of IgE reactivity to human milk was confirmed by skin testing. Results IgE antibodies to human milk were found in more than 80% of the tested milk-allergic patients. Cross-reactive IgE-reactive human antigens such as alpha-lactalbumin and non-cross-reactive human milk antigens were identified. Immediate-type skin reactions could be elicited with human milk samples in patients with IgE reactivity to human milk. IgE reactivity to human milk in milk-allergic patients can be due to cross- sensitization and genuine sensitization to human milk and may cause allergic symptoms. IgE-mediated sensitization to human milk is common in milk-allergic patients and may require diagnostic testing and monitoring.

  5. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis

    PubMed Central

    Bracalente, Candelaria; Salguero, Noelia; Notcovich, Cintia; Müller, Carolina B.; da Motta, Leonardo L.; Klamt, Fabio; Ibañez, Irene L.; Durán, Hebe

    2016-01-01

    Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy. PMID:27206672

  6. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis.

    PubMed

    Bracalente, Candelaria; Salguero, Noelia; Notcovich, Cintia; Müller, Carolina B; da Motta, Leonardo L; Klamt, Fabio; Ibañez, Irene L; Durán, Hebe

    2016-07-05

    Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy.

  7. Integrin β1 activation induces an anti-melanoma host response

    PubMed Central

    Sole, Xavier; Salony; Chowdhury, Joeeta; Ross, Kenneth N.; Ramaswamy, Sridhar

    2017-01-01

    TGF-β is a cytokine thought to function as a tumor promoter in advanced malignancies. In this setting, TGF-β increases cancer cell proliferation, survival, and migration, and orchestrates complex, pro-tumorigenic changes in the tumor microenvironment. Here, we find that in melanoma, integrin β1-mediated TGF-β activation may also produce tumor suppression via an altered host response. In the A375 human melanoma cell nu/nu xenograft model, we demonstrate that cell surface integrin β1-activation increases TGF-β activity, resulting in stromal activation, neo-angiogenesis and, unexpectedly for this nude mouse model, increase in the number of intra-tumoral CD8+ T lymphocytes within the tumor microenvironment. This is associated with attenuation of tumor growth and long-term survival benefit. Correspondingly, in human melanomas, TGF-β1 correlates with integrin β1/TGF-β1 activation and the expression of markers for vasculature and stromal activation. Surprisingly, this integrin β1/TGF-β1 transcriptional footprint also correlates with the expression of markers for tumor-infiltrating lymphocytes, multiple immune checkpoints and regulatory pathways, and, importantly, better long-term survival of patients. These correlations are unique to melanoma, in that we do not observe similar associations between β1 integrin/TGF-β1 activation and better long-term survival in other human tumor types. These results suggest that activation of TGF-β1 in melanoma may be associated with the generation of an anti-tumor host response that warrants further study. PMID:28448494

  8. Deltex-3-like (DTX3L) stimulates metastasis of melanoma through FAK/PI3K/AKT but not MEK/ERK pathway

    PubMed Central

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y.; Iida, Machiko; Suzuki, Tamio; Kato, Masashi

    2015-01-01

    Deltex-3-like (DTX3L), an E3 ligase, is a member of the Deltex (DTX) family and is also called B-lymphoma and BAL-associated protein (BBAP). Previously, we established RFP/RET-transgenic mice, in which systemic hyperpigmented skin, benign melanocytic tumor(s) and melanoma(s) develop stepwise. Here we showed that levels of Dtx3l/DTX3L in spontaneous melanoma in RFP/RET-transgenic mice and human melanoma cell lines were significantly higher than those in benign melanocytic cells and primarily cultured normal human epithelial melanocytes, respectively. Immunohistochemical analysis of human tissues showed that more than 80% of the melanomas highly expressed DTX3L. Activity of FAK/PI3K/AKT signaling, but not that of MEK/ERK signaling, was decreased in Dtx3l/DTX3L-depleted murine and human melanoma cells. In summary, we demonstrated not only increased DTX3L level in melanoma cells but also DTX3L-mediated regulation of invasion and metastasis in melanoma through FAK/PI3K/AKT but not MEK/ERK signaling. Our analysis in human BRAFV600E inhibitor-resistant melanoma cells showed about 80% decreased invasion in the DTX3L-depleted cells compared to that in the DTX3L-intact cells. Thus, DTX3L is clinically a potential therapeutic target as well as a potential biomarker for melanoma. PMID:26033450

  9. COX-2 expression positively correlates with PD-L1 expression in human melanoma cells.

    PubMed

    Botti, Gerardo; Fratangelo, Federica; Cerrone, Margherita; Liguori, Giuseppina; Cantile, Monica; Anniciello, Anna Maria; Scala, Stefania; D'Alterio, Crescenzo; Trimarco, Chiara; Ianaro, Angela; Cirino, Giuseppe; Caracò, Corrado; Colombino, Maria; Palmieri, Giuseppe; Pepe, Stefano; Ascierto, Paolo Antonio; Sabbatino, Francesco; Scognamiglio, Giosuè

    2017-02-23

    The resistance to PD-1/PD-L1 inhibitors for the treatment of melanoma have prompted investigators to implement novel clinical trials which combine immunotherapy with different treatment modalities. Moreover is also important to investigate the mechanisms which regulate the dynamic expression of PD-L1 on tumor cells and PD-1 on T cells in order to identify predictive biomarkers of response. COX-2 is currently investigated as a major player of tumor progression in several type of malignancies including melanoma. In the present study we investigated the potential relationship between COX-2 and PD-L1 expression in melanoma. Tumor samples obtained from primary melanoma lesions and not matched lymph node metastases were analyzed for both PD-L1 and COX-2 expression by IHC analysis. Status of BRAF and NRAS mutations was analyzed by sequencing and PCR. Co-localization of PD-L1 and COX-2 expression was analyzed by double fluorescence staining. Lastly the BRAF V600E A375 and NRAS Q61R SK-MEL-2 melanoma cell lines were used to evaluate the effect of COX-2 inhibition by celecoxib on expression of PD-L1 in vitro. BRAF V600E/V600K and NRAS Q61R/Q61L were detected in 57.8 and 8.9% of the metastatic lesions, and in 65.9 and 6.8% of the primary tumors, respectively. PD-L1 and COX-2 expression were heterogeneously expressed in both primary melanoma lesions and not matched lymph node metastases. A significantly lower number of PD-L1 negative lesions was found in primary tumors as compared to not matched metastatic lesions (P = 0.002). COX-2 expression significantly correlated with PD-L1 expression in both primary (P = 0.001) and not matched metastatic (P = 0.048) lesions. Furthermore, in melanoma tumors, cancer cells expressing a higher levels of COX-2 also co-expressed a higher level of PD-L1. Lastly, inhibition of COX-2 activity by celecoxib down-regulated the expression of PD-L1 in both BRAF V600E A375 and NRAS Q61R SK-MEL-2 melanoma cell lines. COX-2 expression correlates

  10. The role of tumor microenvironment in development and progression of malignant melanomas - a systematic review.

    PubMed

    Gurzu, Simona; Beleaua, Marius Alexandru; Jung, Ioan

    2018-01-01

    To reveal the particular aspects of the tumor microenvironment of malignant melanomas, a systematic review including 34 representative papers was performed. The review took into account the aspects related the Wnt/β-catenin pathway-related epithelial-mesenchymal transition (EMT) versus mesenchymal-epithelial transition (MET) of keratinocytes, fibroblasts and melanoma cells, as possible tools for understanding genesis and evolution of malignant melanoma. The possible reversible features of EMT and the role of tumor microenvironment in the metastatic process were also analyzed. A particular issue was related on the cancer stem cells that include melanocyte stem cells (McSCs) and multipotent mesenchymal stem/stromal cells (MSCs). As the McSCs embryological development in mouse is not similar to human development, the role of stem cells in genesis and development of human melanoma should be proved in human melanoma cells only. For further development of targeted therapy, a better understanding of melanomagenesis pathways and its microenvironment particularities is necessary.

  11. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages.

    PubMed

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M; Gao, Feng; Xia, Younan; Wang, Lihong V

    2010-08-24

    Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bioconjugated with [Nle(4),D-Phe(7)]-alpha-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bioconjugated AuNCs enhanced contrast approximately 300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS).

  12. Hypericum perforatum L. subsp. perforatum induces inhibition of free radicals and enhanced phototoxicity in human melanoma cells under ultraviolet light.

    PubMed

    Menichini, G; Alfano, C; Marrelli, M; Toniolo, C; Provenzano, E; Statti, G A; Nicoletti, M; Menichini, F; Conforti, F

    2013-04-01

    Our interest continues in discovering phytocomplexes from medicinal plants with phototoxic activity against human melanoma cells; thus the aim of the present study was to assess antioxidant, anti-inflammatory and phototoxic activity of Hypericum perforatum L. subsp. perforatum, and relate these properties to the plant's chemical composition. Components of H. perforatum subsp. perforatum were extracted by hydroalcoholic solution and chemical profiles of preparations (HyTE-3) performed by HPTLC. Linoleic acid peroxidation and DPPH tests were used to assess antioxidant activity, while MTT assay allowed evaluation of anti-proliferative activity with respect to A375 human melanoma cells after irradiation with UVA dose, 1.8 J/cm(2) . Inhibition of nitric oxide production of macrophages was also investigated. HyTE-3 indicated better antioxidant activity with β-carotene bleaching test in comparison to DPPH assay (IC50 = 0.89 μg/ml); significant phototoxicity in A375 cells at 78 μg/ml concentration resulted in cell destruction of 50%. HyTE-3 caused significant dose-related inhibition of nitric oxide production in murine monocytic macrophage cell line RAW 264.7 with IC50 value of 342 μg/ml. The H. perforatum subsp. perforatum-derived product was able to suppress proliferation of human malignant melanoma A375 cells; extract together with UVA irradiation enhanced phototoxicity. This biological activity of antioxidant effects was combined with inhibition of nitric oxide production. © 2013 Blackwell Publishing Ltd.

  13. Nevus-associated melanomas: clinicopathologic features.

    PubMed

    Shitara, Danielle; Nascimento, Mauricio M; Puig, Susana; Yamada, Sérgio; Enokihara, Milvia M S S; Michalany, Nilceo; Bagatin, Ediléia

    2014-10-01

    The clinical significance of nevus-associated melanoma compared with de novo melanomas remains controversial. It has been suggested that nevus-associated melanomas have a higher Breslow thickness and therefore worse prognosis. Over a 10-year period, this study evaluated the incidence of nevus-associated melanoma and its prognostic significance related to clinicopathologic features. Cross-sectional study from 1995 through 2004 in a dermatopathology referral center. With available data, we evaluated sex, primary location, histologic subtype, Breslow thickness, Clark level, presence of ulceration, associated lesion, and histologic subtype of the associated lesion. Of 135,653 pathologic records from skin biopsy specimens over a 10-year period, 1,190 melanoma records were selected. Nevus-associated melanomas corresponded to 390 (32.8%) melanomas, with thin melanomas having a nevus 1.52 times the association observed with thick melanomas (>1.01 mm; 95% confidence interval, 1.16-1.99; P < .001). Superficial spreading melanoma was the most frequent, while no lentigo maligna melanoma was associated with nevi. The median Breslow thickness of nevus-associated melanomas was lower than that of de novo melanomas. Nevus-associated melanomas, which represent one-third of the melanomas in southeast Brazil, are associated with intermittent sun exposure, superficial spreading melanomas, and lower Breslow thickness. This is one of the largest series describing nevus-associated melanomas in Latin America. Copyright© by the American Society for Clinical Pathology.

  14. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappa, Germana; College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104; Mercapide, Javier

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that threemore » distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1

  15. Genetically fluorescent melanoma bone and organ metastasis models.

    PubMed

    Yang, M; Jiang, P; An, Z; Baranov, E; Li, L; Hasegawa, S; Al-Tuwaijri, M; Chishima, T; Shimada, H; Moossa, A R; Hoffman, R M

    1999-11-01

    We report here the establishment and metastatic properties of bright, highly stable, green fluorescent protein (GFP) expression transductants of the B16 mouse malignant melanoma cell line and the LOX human melanoma line. The highly fluorescent malignant melanoma cell lines allowed the visualization of skeletal and multiorgan metastases after i.v. injection of B16 cells in C57BL/6 mice and intradermal injection of LOX cells in nude mice. The melanoma cell lines were transduced with the pLEIN expression retroviral vector containing the GFP and neomycin resistance genes. Stable B16F0 and LOX clones expressing high levels of GFP were selected stepwise in vitro in levels of G418 of up to 800 microg/ml. Extensive bone and bone marrow metastases of B16F0 were visualized by GFP expression when the animals were sacrificed 3 weeks after cell implantation. Metastases for both cell lines were visualized in many organs, including the brain, lung, pleural membrane, liver, kidney, adrenal gland, lymph nodes, skeleton, muscle, and skin by GFP fluorescence. This is the first observation of experimental skeletal metastases of melanoma, which was made possible by GFP expression. These models should facilitate future studies of the mechanism and therapy of bone and multiorgan metastasis of melanoma.

  16. GPNMB expression in uveal melanoma: a potential for targeted therapy.

    PubMed

    Williams, Michelle D; Esmaeli, Bita; Soheili, Aydin; Simantov, Ronit; Gombos, Dan S; Bedikian, Agop Y; Hwu, Patrick

    2010-06-01

    Uveal melanoma is an aggressive disease without effective adjuvant therapy for metastases. Despite genomic differences between cutaneous and uveal melanomas, therapies based on shared biological factors could be effective against both tumor types. High expression of glycoprotein-NMB (GPNMB) in cutaneous melanomas led to the development of CDX-011 (glembatumumab vedotin), a fully human monoclonal antibody against the extracellular domain of GPNMB conjugated to the cytotoxic microtubule toxin monomethylauristatin E. Ongoing phase II trials suggest that CDX-011 has activity against advanced cutaneous melanomas. To determine the potential role of CDX-011 in uveal melanomas, we studied their GPNMB expression. Paraffin-embedded tissues from 22 uveal melanomas treated by enucleation from 2004-2007 at one institution were evaluated immunohistochemically for expression of GPNMB using biotinylated CDX-011 (unconjugated) antibody. Melanoma cells were evaluated for percentage and intensity of expression. Spectral imaging was used in one case with high melanin content. Clinical data were reviewed. Twelve women and 10 men with a median age of 58.7 years (range: 28-83 years) were included. Eighteen of 21 tumors evaluated immunohistochemically (85.7%) expressed GPNMB in 10-90% of tumor cells with variable intensity (5 tumors, 1+; 11, 2+; and 2, 3+). Eleven of 18 tumors (61.1%) expressed GPNMB in >or=50% of cells. Spectral imaging showed diffuse CDX-011 (unconjugated) reactivity in the remaining case. Uveal melanoma, like cutaneous melanoma, commonly expresses GPNMB. Ongoing clinical trials of CDX-011 should be extended to patients with metastatic uveal melanoma to determine potential efficacy in this subset of patients with melanoma.

  17. Epigenetic regulation of REG1A and chemosensitivity of cutaneous melanoma

    PubMed Central

    Sato, Yusuke; Marzese, Diego M; Ohta, Katsuya; Huang, Sharon K; Sim, Myung Shin; Chong, Kelly; Hoon, Dave SB

    2013-01-01

    Regenerating gene 1A (REG1A) plays an important role in tissue regeneration and in cell proliferation in epithelium origin tumors; however, its role in melanoma has not been explored in details. The objective of this study was to identify whether REG1A is expressed in cutaneous melanoma and if REG1A expression status can predict prognosis in cutaneous melanoma patients with metastasis. We also determined whether epigenetic regulation of the promoter region regulates REG1A expression. AJCC stage III cutaneous melanoma specimens with clinically well annotated stage III lymph node melanoma metastasis tissue microarray were assessed by IHC. MALDI-TOF-mass spectrometry and HM450K array were used to identify REG1A promoter region CpG site methylation. Chemotherapeutic agent response by melanoma cells as related to REG1A protein expression was assessed. Post-surgery melanoma patients followed by adjuvant chemotherapy with high REG1A expression had a significantly better prognosis (disease-specific survival) compared with patients with low REG1A expression (log rank test; p = 0.0013). The demethylating reagent 5-Aza-2′-deoxycytidine activated REG1A promoter region resulting in enhanced REG1A mRNA and protein expression in melanoma cell lines. Promoter region CpG methylation was shown to regulate REG1A expression in melanoma cells. Moreover, melanoma lines with high REG1A mRNA expression were more susceptible to Dacarbazine and Cisplatin, as compared with those with low REG1A mRNA expression. In conclusion, REG1A expression status may be useful as a biomarker in melanoma patients for sensitivity to these chemotherapeutic agents. The epigenetic regulation of the REG1A promoter region may offer a potential therapeutic approach to improve chemotherapy for metastatic melanoma patients. PMID:23903855

  18. Melanoma.

    PubMed

    Gershenwald, J E

    2001-01-01

    The presentations at the American Society of Clinical Oncology 2001 meeting reported or updated the results of phase I, II, and III randomized trials and also reported important meta-analyses and retrospective studies impacting on the management of patients with melanoma. In the treatment of early stage melanoma, the prognostic significance of pathologic status of sentinel lymph nodes was affirmed. With respect to regional nodal involvement (American Joint Committee on Cancer [AJCC] stage III), investigators presented the interim results of the United Kingdom randomized low-dose interferon (IFN) trial, and up-to-date meta-analyses of several IFN trials including a pooled analysis of the Eastern Cooperative Oncology Group trials evaluating interferon in the adjuvant setting. In the advanced disease setting (AJCC stage IV), several studies elucidated the pros and cons of biochemotherapy in patients with metastatic melanoma, with an emphasis on seeking to improve response in the central nervous system and durability of response in general. Thought provoking was new data regarding the potential for lovastatin to act as a chemopreventive agent for melanoma. Translational studies were presented, one supporting the importance of HLA-typing in developing targeted vaccine therapy. Finally, the results of a novel experimental melanoma vaccine were presented using autologous tumor-derived heat-shock protein peptide complex-96 (HSPPC-96).

  19. Personal attributions for melanoma risk in melanoma-affected patients and family members

    PubMed Central

    Hay, Jennifer; DiBonaventura, Marco; Baser, Raymond; Press, Nancy; Shoveller, Jeanne; Bowen, Deborah

    2010-01-01

    Personal attributions for cancer risk involve factors that individuals believe contribute to their risk for developing cancer. Understanding personal risk attributions for melanoma may dictate gene-environment melanoma risk communication strategies. We examined attributions for melanoma risk in a population-based sample of melanoma survivors, first degree family members, and family members who are also parents (N=939). We conducted qualitative examination of open-ended risk attributions and logistic regression examining predictors (demographics, family member type, perceived risk) of the attributions reported (ultraviolet radiation [UVR] exposure, heredity/genetics, phenotype, personal melanoma history, miscellaneous). We found a predominance of risk attributions to UVR and heredity/genetics (80% and 45% of the sample, respectively). Those reporting higher education levels were more likely to endorse attributions to heredity/genetics, as well as to phenotype, than those of lower education levels. First-degree relatives and parent family members were more likely to endorse heredity/genetic attributions than melanoma survivors; melanoma survivors were more likely to endorse personal history of melanoma attributions compared to first-degree relatives and parent family members. These findings inform the development of risk communication interventions for melanoma families. PMID:20809355

  20. The Broad Spectrum Receptor Tyrosine Kinase Inhibitor Dovitinib Suppresses Growth of BRAF Mutant Melanoma Cells in Combination with Other Signaling Pathway Inhibitors

    PubMed Central

    Langdon, Casey G.; Held, Matthew A.; Platt, James T.; Meeth, Katrina; Iyidogan, Pinar; Mamillapalli, Ramanaiah; Koo, Andrew B.; Klein, Michael; Liu, Zongzhi; Bosenberg, Marcus W.; Stern, David F.

    2016-01-01

    Summary BRAF inhibitors have revolutionized treatment of mutant BRAF metastatic melanomas. However, resistance develops rapidly following BRAF inhibitor treatment. We have found that BRAF-mutant melanoma cell lines are more sensitive than wild-type BRAF cells to the small molecule tyrosine kinase inhibitor dovitinib. Sensitivity is associated with inhibition of a series of known dovitinib targets. Dovitinib in combination with several agents inhibits growth more effectively than either agent alone. These combinations inhibit BRAF-mutant melanoma and colorectal carcinoma cell lines, including cell lines with intrinsic or selected BRAF inhibitor resistance. Hence, combinations of dovitinib with second agents are potentially effective therapies for BRAF-mutant melanomas, regardless of their sensitivity to BRAF inhibitors. PMID:25854919

  1. CDKN2B loss promotes progression from benign melanocytic nevus to melanoma

    PubMed Central

    McNeal, Andrew S.; Liu, Kevin; Nakhate, Vihang; Natale, Christopher A.; Duperret, Elizabeth K.; Capell, Brian C.; Dentchev, Tzvete; Berger, Shelley L.; Herlyn, Meenhard; Seykora, John T.; Ridky, Todd W.

    2015-01-01

    Deletion of the entire CDKN2B-CDKN2A gene cluster is among the most common genetic events in cancer. The tumor-promoting effects are generally attributed to loss of CDKN2A-encoded p16 and p14ARF tumor suppressors. The degree to which the associated CDKN2B-encoded p15 loss contributes to human tumorigenesis is unclear. Here we show that CDKN2B is highly upregulated in benign melanocytic nevi, contributes to maintaining nevus melanocytes in a growth-arrested premalignant state, and is commonly lost in melanoma. Using primary melanocytes isolated directly from freshly excised human nevi naturally expressing the common BRAF(V600E) activating mutation, nevi progressing to melanoma, and normal melanocytes engineered to inducibly express BRAF(V600E), we show that BRAF activation results in reversible, TGFβ-dependent, p15 induction that halts proliferation. Further, we engineer human skin grafts containing nevus-derived melanocytes to establish a new, architecturally faithful, in vivo melanoma model, and demonstrate that p15 loss promotes the transition from benign nevus to melanoma. PMID:26183406

  2. The role of spectrophotometry in the diagnosis of melanoma

    PubMed Central

    2010-01-01

    Background Spectrophotometry (SPT) could represent a promising technique for the diagnosis of cutaneous melanoma (CM) at earlier stages of the disease. Starting from our experience, we further assessed the role of SPT in CM early detection. Methods During a health campaign for malignant melanoma at National Cancer Institute of Naples, we identified a subset of 54 lesions to be addressed to surgical excision and histological examination. Before surgery, all patients were investigated by clinical and epiluminescence microscopy (ELM) screenings; selected lesions underwent spectrophotometer analysis. For SPT, we used a video spectrophotometer imaging system (Spectroshade® MHT S.p.A., Verona, Italy). Results Among the 54 patients harbouring cutaneous pigmented lesions, we performed comparison between results from the SPT screening and the histological diagnoses as well as evaluation of both sensitivity and specificity in detecting CM using either SPT or conventional approaches. For all pigmented lesions, agreement between histology and SPT classification was 57.4%. The sensitivity and specificity of SPT in detecting melanoma were 66.6% and 76.2%, respectively. Conclusions Although SPT is still considered as a valuable diagnostic tool for CM, its low accuracy, sensitivity, and specificity represent the main hamper for the introduction of such a methodology in clinical practice. Dermoscopy remains the best diagnostic tool for the preoperative diagnosis of pigmented skin lesions. PMID:20707921

  3. Dermoscopy for melanoma detection in family practice

    PubMed Central

    Herschorn, Andrea

    2012-01-01

    Abstract Objective To assess the diagnostic accuracy and clinical utility of dermoscopy for melanoma detection in family practice. Quality of evidence Ovid MEDLINE (1946 to June 2011), EMBASE, PubMed, and Cochrane databases were searched using the following terms: dermoscopy, dermatoscopy, epiluminescence microscopy, family practice, general practice, primary health care, melanoma, skin neoplasms, and pigmented nevus. To be included, studies had to be primary research articles with family physicians as the subjects and dermoscopy training and use as the intervention. Four papers met all inclusion criteria and provided level I evidence according to the Canadian Task Force on Preventive Health Care definition. Main message Among family physicians, dermoscopy has higher sensitivity for melanoma detection than naked-eye examination with generally no decrease in specificity. Dermoscopy also helps to increase family physicians’ confidence in their preliminary diagnosis of lesions. When using dermoscopy, compared with naked-eye examination, there is a higher likelihood that a lesion assessed as being malignant is in fact malignant and that a lesion assessed as being benign is in fact benign. Conclusion Dermoscopy has been shown to be a useful and fairly inexpensive tool for melanoma detection in family practice. This technique can increase family physicians’ confidence in their referral accuracy to dermatologists and can assist in decreasing unnecessary biopsies. Dermoscopy might be especially useful in examining patients at high risk of melanoma, as the current Canadian clinical practice guideline recommends yearly screening in these individuals. PMID:22859635

  4. Selenium for the Prevention of Cutaneous Melanoma

    PubMed Central

    Cassidy, Pamela B.; Fain, Heidi D.; Cassidy, James P.; Tran, Sally M.; Moos, Philip J.; Boucher, Kenneth M.; Gerads, Russell; Florell, Scott R.; Grossman, Douglas; Leachman, Sancy A.

    2013-01-01

    The role of selenium (Se) supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence. PMID:23470450

  5. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells

    PubMed Central

    2013-01-01

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation. PMID:23701745

  6. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells.

    PubMed

    Niero, Evandro Luís de Oliveira; Machado-Santelli, Gláucia Maria

    2013-05-23

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.

  7. Incorporating clinical metadata with digital image features for automated identification of cutaneous melanoma.

    PubMed

    Liu, Z; Sun, J; Smith, M; Smith, L; Warr, R

    2013-11-01

    Computer-assisted diagnosis (CAD) of malignant melanoma (MM) has been advocated to help clinicians to achieve a more objective and reliable assessment. However, conventional CAD systems examine only the features extracted from digital photographs of lesions. Failure to incorporate patients' personal information constrains the applicability in clinical settings. To develop a new CAD system to improve the performance of automatic diagnosis of melanoma, which, for the first time, incorporates digital features of lesions with important patient metadata into a learning process. Thirty-two features were extracted from digital photographs to characterize skin lesions. Patients' personal information, such as age, gender and, lesion site, and their combinations, was quantified as metadata. The integration of digital features and metadata was realized through an extended Laplacian eigenmap, a dimensionality-reduction method grouping lesions with similar digital features and metadata into the same classes. The diagnosis reached 82.1% sensitivity and 86.1% specificity when only multidimensional digital features were used, but improved to 95.2% sensitivity and 91.0% specificity after metadata were incorporated appropriately. The proposed system achieves a level of sensitivity comparable with experienced dermatologists aided by conventional dermoscopes. This demonstrates the potential of our method for assisting clinicians in diagnosing melanoma, and the benefit it could provide to patients and hospitals by greatly reducing unnecessary excisions of benign naevi. This paper proposes an enhanced CAD system incorporating clinical metadata into the learning process for automatic classification of melanoma. Results demonstrate that the additional metadata and the mechanism to incorporate them are useful for improving CAD of melanoma. © 2013 British Association of Dermatologists.

  8. Preexisting MEK1 Exon 3 Mutations in V600E/KBRAF Melanomas Do Not Confer Resistance to BRAF Inhibitors

    PubMed Central

    Shi, Hubing; Moriceau, Gatien; Kong, Xiangju; Koya, Richard C.; Nazarian, Ramin; Pupo, Gulietta M.; Bacchiocchi, Antonella; Dahlman, Kimberly B.; Chmielowski, Bartosz; Sosman, Jeffrey A.; Halaban, Ruth; Kefford, Richard F.; Long, Georgina V.; Ribas, Antoni; Lo, Roger S.

    2012-01-01

    BRAF inhibitors (BRAFi) induce antitumor responses in nearly 60% of patients with advanced V600E/KBRAF melanomas. Somatic activating MEK1 mutations are thought to be rare in melanomas, but their potential concurrence with V600E/KBRAF may be selected for by BRAFi. We sequenced MEK1/2 exon 3 in melanomas at baseline and upon disease progression. Of 31 baseline V600E/KBRAF melanomas, 5 (16%) carried concurrent somatic BRAF/MEK1 activating mutations. Three of 5 patients with BRAF/MEK1 double-mutant baseline melanomas showed objective tumor responses, consistent with the overall 60% frequency. No MEK1 mutation was found in disease progression melanomas, except when it was already identified at baseline. MEK1-mutant expression in V600E/KBRAF melanoma cell lines resulted in no significant alterations in p-ERK1/2 levels or growth-inhibitory sensitivities to BRAFi, MEK1/2 inhibitor (MEKi), or their combination. Thus, activating MEK1 exon 3 mutations identified herein and concurrent with V600E/KBRAF do not cause BRAFi resistance in melanoma. SIGNIFICANCE As BRAF inhibitors gain widespread use for treatment of advanced melanoma, bio-markers for drug sensitivity or resistance are urgently needed. We identify here concurrent activating mutations in BRAF and MEK1 in melanomas and show that the presence of a downstream mutation in MEK1 does not necessarily make BRAF–mutant melanomas resistant to BRAF inhibitors. PMID:22588879

  9. Pleckstrin homology domain-interacting protein (PHIP) as a marker and mediator of melanoma metastasis

    PubMed Central

    De Semir, David; Nosrati, Mehdi; Bezrookove, Vladimir; Dar, Altaf A.; Federman, Scot; Bienvenu, Geraldine; Venna, Suraj; Rangel, Javier; Climent, Joan; Meyer Tamgüney, Tanja M.; Thummala, Suresh; Tong, Schuyler; Leong, Stanley P. L.; Haqq, Chris; Billings, Paul; Miller, James R.; Sagebiel, Richard W.; Debs, Robert; Kashani-Sabet, Mohammed

    2012-01-01

    Although melanomas with mutant v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) can now be effectively targeted, there is no molecular target for most melanomas expressing wild-type BRAF. Here, we show that the activation of Pleckstrin homology domain-interacting protein (PHIP), promotes melanoma metastasis, can be used to classify a subset of primary melanomas, and is a prognostic biomarker for melanoma. Systemic, plasmid-based shRNA targeting of Phip inhibited the metastatic progression of melanoma, whereas stable suppression of Phip in melanoma cell lines suppressed metastatic potential and prolonged the survival of tumor-bearing mice. The human PHIP gene resides on 6q14.1, and although 6q loss has been observed in melanoma, the PHIP locus was preserved in melanoma cell lines and patient samples, and its overexpression was an independent adverse predictor of survival in melanoma patients. In addition, a high proportion of PHIP-overexpressing melanomas harbored increased PHIP copy number. PHIP-overexpressing melanomas include tumors with wild-type BRAF, neuroblastoma RAS viral (v-ras) oncogene homolog, and phosphatase and tensin homolog, demonstrating PHIP activation in triple-negative melanoma. These results describe previously unreported roles for PHIP in predicting and promoting melanoma metastasis, and in the molecular classification of melanoma. PMID:22511720

  10. Docosahexaenoic acid, G protein-coupled receptors, and melanoma: is G protein-coupled receptor 40 a potential therapeutic target?

    PubMed

    Nehra, Deepika; Pan, Amy H; Le, Hau D; Fallon, Erica M; Carlson, Sarah J; Kalish, Brian T; Puder, Mark

    2014-05-15

    To determine the effect of docosahexaenoic acid (DHA) on the growth of human melanoma in vitro and in vivo and to better understand the potential role of the G protein-coupled receptors (GPRs) in mediating this effect. For in vitro studies, human melanoma and control fibroblast cells were treated with DHA and TAK-875 (selective GPR40 agonist) and a cell viability assay was performed to determine cell counts. A murine subcutaneous xenograft model of human melanoma was used to test the effect of dietary treatment with an omega-3 fatty acid (FA) rich diet compared with an omega-6 FA rich diet on the growth of human melanoma in vivo. A similar animal model was used to test the effect of oral TAK-875 on the growth of established melanoma tumors in vivo. DHA has an inhibitory effect on the growth of human melanoma both in vitro and in vivo. Tumors from animals on the omega-3 FA rich diet were 69% smaller in weight (P = 0.005) and 76% smaller in volume compared with tumors from animals on the omega-6 FA rich diet. TAK-875 has an inhibitory effect on the growth of human melanoma both in vitro and in vivo. Tumors from animals treated with TAK-875 were 46% smaller in weight (P = 0.07), 62% smaller in volume (P = 0.03), and grew 77% slower (P = 0.04) compared with the placebo group. DHA and TAK-875 have a profound and selective inhibitory effect on the growth of human melanoma both in vitro and in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The effect of Taurolidine on adherent and floating subpopulations of melanoma cells.

    PubMed

    Shrayer, D P; Lukoff, H; King, T; Calabresi, P

    2003-04-01

    The annual incidence of malignant melanoma is estimated at 10-12 per 100000 inhabitants in countries of Central Europe and the US, with more recent estimates showing a dramatic upward trend. Taurolidine (Carter/Wallace, Cranberry, NJ) is a novel, potentially effective, antitumor chemotherapeutic agent. We hypothesized that Taurolidine could inhibit the growth, induce apoptosis, affect the cell cycle and change morphology of melanoma cells. We expected this process to be different in adherent and floating subpopulations that may be reflective of solid tumors and their metastases. Analysis of MNT-1 human and B16F10 murine melanoma cells showed that at 72 h the IC(50) of Taurolidine was 25.4+/-3.3 microM for MNT-1 human melanoma cells and 30.9+/-3.6 microM for B16F10 murine melanoma cells. Taurolidine induced DNA fragmentation of melanoma cells in a dose-dependent manner. Taurolidine (75 and 100 microM) induced 52-97% Annexin-V binding (apoptosis), respectively. Evaluation of cell cycle after 72 h exposure to Taurolidine (0-100 microM) revealed that the percentage of melanoma cells in S phase increased from 27 to 40% in the adherent subpopulation and from 33 to 49% in the floating subpopulation. Phase contrast microscopy revealed a marked swelling of melanoma cells and decreasing cell numbers in adherent subpopulation starting at 24 h with 25 microM Taurolidine. Shrinkage of cells dominated at 75-100 microM Taurolidine. Using Cytospin assay in the floating population, we observed swelling of melanoma cells induced by 25-100 micro Taurolidine and appearance of giant (multinuclear) forms resulting from exposure to 75-100 micro Taurolidine. Some floating cells with normal morphology were observed with low concentrations of Taurolidine (0-25 microM). These data show that effects of Taurolidine may be different in adherent and floating subpopulations of melanoma cells. More importantly, floating subpopulations that may contain some viable melanoma cells, may be reflective

  12. Potent Antitumor Effects of Combination Therapy With IFNs and Monocytes in Mouse Models of Established Human Ovarian and Melanoma Tumors

    PubMed Central

    Nakashima, Hideyuki; Miyake, Kotaro; Clark, Christopher R; Bekisz, Joseph; Finbloom, Joel; Husain, Syed R.; Baron, Samuel; Puri, Raj K.; Zoon, Kathryn C.

    2012-01-01

    Interferon-activated monocytes are known to exert cytocidal activity against tumor cells in vitro. Here, we have examined whether a combination of IFN-α2a and IFN-γ and human monocytes mediate significant antitumor effects against human ovarian and melanoma tumor xenografts in mouse models. OVCAR-3 tumors were treated i.t. with monocytes alone, IFN-α2a and IFN-γ alone or combination of all three on day 0, 15 or 30 post-tumor implantation. Mice receiving combination therapy beginning day 15 showed significantly reduced tumor growth and prolonged survival including complete regression in 40% mice., Tumor volumes measured on day 80 in mice receiving combination therapy (206 mm3) were significantly smaller than those of mice receiving the IFNs alone (1041 mm3), monocytes alone (1111 mm3) or untreated controls (1728 mm3). Similarly, combination therapy with monocytes and IFNs of much larger tumor also inhibited OVCAR-3 tumor growth. Immunohistochemistry studies showed a large number of activated macrophages (CD31+/CD68+) infiltrating into OVCAR-3 tumors and higher densities of IL-12, IP10 and NOS2, markers of M1 (classical) macrophages in tumors treated with combination therapy compared to the controls. Interestingly, IFNs activated macrophages induced apoptosis of OVCAR-3 tumor cells as monocytes alone or IFNs alone did not mediate significant apoptosis. Similar antitumor activity was observed in the LOX melanoma mouse model, but not as profound as seen with the OVCAR-3 tumors. Administration of either mixture of monocytes and IFN-α2a or monocytes and IFN-γ did not inhibit Lox melanoma growth; however a significant inhibition was observed when tumors were treated with a mixture of monocytes, IFN-α2a and IFN-γ. These results indicate that monocytes and both IFN-α2a and IFN-γ may be required to mediate profound antitumor effect against human ovarian and melanoma tumors in mouse models. PMID:22159517

  13. Germline MC1R status influences somatic mutation burden in melanoma.

    PubMed

    Robles-Espinoza, Carla Daniela; Roberts, Nicola D; Chen, Shuyang; Leacy, Finbarr P; Alexandrov, Ludmil B; Pornputtapong, Natapol; Halaban, Ruth; Krauthammer, Michael; Cui, Rutao; Timothy Bishop, D; Adams, David J

    2016-07-12

    The major genetic determinants of cutaneous melanoma risk in the general population are disruptive variants (R alleles) in the melanocortin 1 receptor (MC1R) gene. These alleles are also linked to red hair, freckling, and sun sensitivity, all of which are known melanoma phenotypic risk factors. Here we report that in melanomas and for somatic C>T mutations, a signature linked to sun exposure, the expected single-nucleotide variant count associated with the presence of an R allele is estimated to be 42% (95% CI, 15-76%) higher than that among persons without an R allele. This figure is comparable to the expected mutational burden associated with an additional 21 years of age. We also find significant and similar enrichment of non-C>T mutation classes supporting a role for additional mutagenic processes in melanoma development in individuals carrying R alleles.

  14. Comparison of a treatment strategy combining CCI-779 plus DTIC versus DTIC monotreatment in human melanoma in SCID mice.

    PubMed

    Thallinger, Christiane; Werzowa, Johannes; Poeppl, Wolfgang; Kovar, Florian M; Pratscher, Barbara; Valent, Peter; Quehenberger, Peter; Joukhadar, Christian

    2007-10-01

    This study compares the antineoplastic potential of a novel treatment strategy combining cell cycle inhibitor-779 (CCI-779) plus dacarbazine (DTIC) versus DTIC monotreatment, the current chemotherapeutic mainstay in combating metastatic melanoma. A controlled four-group parallel study design comprising 24-40 mice per tumor cell line was used in a severe combined immunodeficiency (SCID)-mouse xenotransplantation model. SCID mice were injected with 518A2, Mel-JUSO, or 607B human melanoma cells. After they developed tumors, mice received daily CCI-779 or solvent over 14 days. From treatment day 4-8 mice were additionally injected with DTIC or saline. Treatment with CCI-779 plus DTIC was superior to single agent DTIC in two out of three cell lines (P<0.05). The tumor weight reduction was 44+/-17 and 61+/-6% compared with DTIC monotreatment in Mel-JUSO and 607B melanomas, respectively (P<0.05). In contrast, in 518A2 xenotransplants, CCI-779 plus DTIC treatment was as effective as DTIC monotreatment. CCI-779 monotherapy exerted no statistically significant antitumor effect. Collectively, these data indicate that CCI-779 has the potential to increase the chemotherapeutic efficacy, as the combination of CCI-779 plus DTIC proved to be more efficacious compared to DTIC monotherapy in two out of three melanoma cell lines in vivo.

  15. New imaging-based biomarkers for melanoma diagnosis using coherent Raman Scattering microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Hequn; Osseiran, Sam; Roider, Elisabeth; Fisher, David E.; Evans, Conor L.

    2016-02-01

    Recently, pheomelanin has been found to play a critical role in melanoma progression given its pro-oxidant chemical properties as well as its marked presence in pre-cancerous and malignant melanoma lesions, even in the absence of ultraviolet radiation. In addition, epidemiological evidence indicates a strong correlation between melanoma incidence and skin type, with the highest incidence occurring in individuals of the red-haired/fair-skinned phenotype. Interestingly, nevus count correlates well with melanoma incidence and skin type, except in the population most prone to developing melanoma, where nevus count strikingly drops. As such, a current hypothesis proposes that fair-skinned red-haired individuals, who are unable to stimulate production of eumelanin due to a mutation in MC1R in melanocytes, may actually harbor numerous "invisible", pheomelanin-rich nevi that evade clinical detection, supporting the high incidence of melanoma in that population. Here, we show for the very first time that melanocytes extracted from genetically modified MC1R-mutant, red-haired mice displayed bright perinuclear distributions of signal within the cells under coherent anti-Stokes Raman scattering (CARS) microscopy. Changes in pheomelanin production in siRNA knockdowns of cultured human melanoma cells were also sensed. We then successfully imaged pheomelanin distributions in both ex vivo and in vivo mouse ear skin. Finally, melanosomes within amelanotic melanoma patient tissue sections were found to show bright pheomelanin signals. This is the first time, to our knowledge, that pheomelanin has been found spatially localized in a human amelanotic melanoma sample. These pheomelanotic CARS features may be used as potential biomarkers for melanoma detection, especially for amelanotic melanomas.

  16. Licochalcone D induces apoptosis and inhibits migration and invasion in human melanoma A375 cells.

    PubMed

    Si, Lingling; Yan, Xinyan; Hao, Wenjin; Ma, Xiaoyi; Ren, Huanhuan; Ren, Boxue; Li, Defang; Dong, Zhengping; Zheng, Qiusheng

    2018-05-01

    The aim of the present study was to determine the effects of Licochalcone D (LD) on the apoptosis and migration and invasion in human melanoma A375 cells. Cell proliferation was determined by sulforhodamine B assay. Apoptosis was assessed by Hoechst 33258 and Annexin V‑FITC/PI staining and JC‑1 assay. Total intracellular reactive oxygen species (ROS) was examined by DCFH‑DA. Wound healing and Transwell assays were used to detect migration and invasion of the cells. The activities of matrix metalloproteinase (MMP‑2 and MMP‑9) were assessed via gelatin zymography. Tumor growth in vivo was evaluated in C57BL/6 mice. RT‑PCR, qPCR, ELISA and western blot analysis were utilized to measure the mRNA and protein levels. Our results showed that LD inhibited the proliferation of A375 and SK‑MEL‑5 cells in a concentration‑dependent manner. After treatment with LD, A375 cells displayed obvious apoptotic characteristics, and the number of apoptotic cells was significantly increased. Pro‑apoptotic protein Bax, caspase‑9 and caspase‑3 were upregulated, while anti‑apoptotic protein Bcl‑2 was downregulated in the LD‑treated cells. Meanwhile, LD induced the loss of mitochondrial membrane potential (ΔΨm) and increased the level of ROS. ROS production was inhibited by the co‑treatment of LD and free radical scavenger N‑acetyl‑cysteine (NAC). Furthermore, LD also blocked A375 cell migration and invasion in vitro which was associated with the downregulation of MMP‑9 and MMP‑2. Finally, intragastric administration of LD suppressed tumor growth in the mouse xenograft model of murine melanoma B16F0 cells. These results suggest that LD may be a potential drug for human melanoma treatment by inhibiting proliferation, inducing apoptosis via the mitochondrial pathway and blocking cell migration and invasion.

  17. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  18. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags.

    PubMed

    Wee, Eugene J H; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.

  19. The BRAF inhibitor vemurafenib activates mitochondrial metabolism and inhibits hyperpolarized pyruvate-lactate exchange in BRAF mutant human melanoma cells

    PubMed Central

    Delgado-Goni, Teresa; Falck Miniotis, Maria; Wantuch, Slawomir; Parkes, Harold G.; Marais, Richard; Workman, Paul; Leach, Martin O.; Beloueche-Babari, Mounia

    2016-01-01

    Understanding the impact of BRAF signaling inhibition in human melanoma on key disease mechanisms is important for developing biomarkers of therapeutic response and combination strategies to improve long term disease control. This work investigates the downstream metabolic consequences of BRAF inhibition with vemurafenib, the molecular and biochemical processes that underpin them, their significance for antineoplastic activity and potential as non-invasive imaging response biomarkers.1H NMR spectroscopy showed that vemurafenib decreases the glycolytic activity of BRAF mutant (WM266.4 and SKMEL28) but not BRAFWT (CHL-1 and D04) human melanoma cells. In WM266.4 cells, this was associated with increased acetate, glycine and myo-inositol levels and decreased fatty acyl signals, while the bioenergetic status was maintained. 13C NMR metabolic flux analysis of treated WM266.4 cells revealed inhibition of de novo lactate synthesis and glucose utilization, associated with increased oxidative and anaplerotic pyruvate carboxylase mitochondrial metabolism and decreased lipid synthesis. This metabolic shift was associated with depletion of HKII, acyl-CoA dehydrogenase 9, 3-phosphoglycerate dehydrogenase and monocarboxylate transporter (MCT) 1 and 4 in BRAF mutant but not BRAFWT cells and, interestingly, decreased BRAF mutant cell dependency on glucose and glutamine for growth. Further, the reduction in MCT1 expression observed led to inhibition of hyperpolarized 13C-pyruvate-lactate exchange, a parameter that is translatable to in vivo imaging studies, in live WM266.4 cells. In conclusion, our data provide new insights into the molecular and metabolic consequences of BRAF inhibition in BRAF-driven human melanoma cells that may have potential for combinatorial therapeutic targeting as well as non-invasive imaging of response. PMID:27765851

  20. In vivo molecular photoacoustic tomography of melanomas targeted by bio-conjugated gold nanocages

    PubMed Central

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M.; Gao, Feng; Xia, Younan; Wang, Lihong V.

    2010-01-01

    Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bio-conjugated with [Nle4,D-Phe7]-α-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bio-conjugated AuNCs enhanced contrast ~300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS). PMID:20731439

  1. Paired comparison of the sensitivity and specificity of multispectral digital skin lesion analysis and reflectance confocal microscopy in the detection of melanoma in vivo: A cross-sectional study.

    PubMed

    Song, Eunice; Grant-Kels, Jane M; Swede, Helen; D'Antonio, Jody L; Lachance, Avery; Dadras, Soheil S; Kristjansson, Arni K; Ferenczi, Katalin; Makkar, Hanspaul S; Rothe, Marti J

    2016-12-01

    Several technologies have been developed to aid dermatologists in the detection of melanoma in vivo including dermoscopy, multispectral digital skin lesion analysis (MDSLA), and reflectance confocal microscopy (RCM). To our knowledge, there have been no studies directly comparing MDSLA and RCM. We conducted a repeated measures analysis comparing the sensitivity and specificity of MDSLA and RCM in the detection of melanoma (n = 55 lesions from 36 patients). Study patients (n = 36) with atypical-appearing pigmented lesions (n = 55) underwent imaging by both RCM and MDSLA. Lesions were biopsied and analyzed by histopathology. RCM exhibited superior test metrics (P = .001, McNemar test) compared with MDSLA. Respectively, sensitivity measures were 85.7% and 71.4%, and specificity rates were 66.7% and 25.0%. The sample size was relatively small and was collected from only one dermatologist's patient base; there was some degree of dermatopathologist interobserver variability; and only one confocalist performed the RCM image evaluations. RCM is a useful adjunct during clinical assessment of in vivo lesions suspicious for melanoma or those requiring re-excision because of high level of dysplasia or having features consistent with an atypical melanocytic nevus with severe cytologic atypia. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Visual screening for malignant melanoma: a cost-effectiveness analysis.

    PubMed

    Losina, Elena; Walensky, Rochelle P; Geller, Alan; Beddingfield, Frederick C; Wolf, Lindsey L; Gilchrest, Barbara A; Freedberg, Kenneth A

    2007-01-01

    To evaluate the cost-effectiveness of various melanoma screening strategies proposed in the United States. We developed a computer simulation Markov model to evaluate alternative melanoma screening strategies. Hypothetical cohort of the general population and siblings of patients with melanoma. Intervention We considered the following 4 strategies: background screening only, and screening 1 time, every 2 years, and annually, all beginning at age 50 years. Prevalence, incidence, and mortality data were taken from the Surveillance, Epidemiology, and End Results Program. Sibling risk, recurrence rates, and treatment costs were taken from the literature. Outcomes included life expectancy, quality-adjusted life expectancy, and lifetime costs. Cost-effectiveness ratios were in dollars per quality-adjusted life year (US dollars/QALY) gained. In the general population, screening 1 time, every 2 years, and annually saved 1.6, 4.4, and 5.2 QALYs per 1000 persons screened, with incremental cost-effectiveness ratios of US dollars 10,100/QALY, US dollars 80,700/QALY, and US dollars 586,800/QALY, respectively. In siblings of patients with melanoma (relative risk, 2.24 compared with the general population), 1-time, every-2-years, and annual screenings saved 3.6, 9.8, and 11.4 QALYs per 1000 persons screened, with incremental cost-effectiveness ratios of US dollars 4000/QALY, US dollars 35,500/QALY, and US dollars 257,800/QALY, respectively. In higher risk siblings of patients with melanoma (relative risk, 5.56), screening was more cost-effective. Results were most sensitive to screening cost, melanoma progression rate, and specificity of visual screening. One-time melanoma screening of the general population older than 50 years is very cost-effective compared with other cancer screening programs in the United States. Screening every 2 years in siblings of patients with melanoma is also cost-effective.

  3. Photoacoustic imaging of single circulating melanoma cells in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Lidai; Yao, Junjie; Zhang, Ruiying; Xu, Song; Li, Guo; Zou, Jun; Wang, Lihong V.

    2015-03-01

    Melanoma, one of the most common types of skin cancer, has a high mortality rate, mainly due to a high propensity for tumor metastasis. The presence of circulating tumor cells (CTCs) is a potential predictor for metastasis. Label-free imaging of single circulating melanoma cells in vivo provides rich information on tumor progress. Here we present photoacoustic microscopy of single melanoma cells in living animals. We used a fast-scanning optical-resolution photoacoustic microscope to image the microvasculature in mouse ears. The imaging system has sub-cellular spatial resolution and works in reflection mode. A fast-scanning mirror allows the system to acquire fast volumetric images over a large field of view. A 500-kHz pulsed laser was used to image blood and CTCs. Single circulating melanoma cells were imaged in both capillaries and trunk vessels in living animals. These high-resolution images may be used in early detection of CTCs with potentially high sensitivity. In addition, this technique enables in vivo study of tumor cell extravasation from a primary tumor, which addresses an urgent pre-clinical need.

  4. Fear of new or recurrent melanoma after treatment for localised melanoma.

    PubMed

    Bell, Katy J L; Mehta, Yachna; Turner, Robin M; Morton, Rachael L; Dieng, Mbathio; Saw, Robyn; Guitera, Pascale; McCaffery, Kirsten; Low, Donald; Low, Cynthia; Jenkins, Marisa; Irwig, Les; Webster, Angela C

    2017-11-01

    To estimate the amount of fear of new or recurrent melanoma among people treated for localised melanoma in an Australian specialist centre. We randomly selected 400 potential participants from all those treated for localised melanoma at the Melanoma Institute Australia during 2014 (n = 902). They were asked to complete an adapted version of the Fear of Cancer Recurrence Inventory (FCRI). We calculated summary statistics for demographics, clinical variables and total FCRI and subscale scores. Two hundred fifteen people (54%) completed the FCRI questionnaire. The overall mean severity subscale score was 15.0 (95% CI 14.0-16.1). A high proportion of participants had scores above a proposed threshold to screen for clinical fear of cancer recurrence (77% and 63% of participants with and without new or recurrent melanoma had severity subscale scores ≥13). Most participants also had scores above a threshold found to have high specificity for clinical fear of cancer recurrence (65% and 48% of participants with and without new or recurrent melanoma had severity subscale scores ≥16). The severity subscale appeared to discriminate well between groups with differing levels of risk of new or recurrent melanoma. There is a substantial amount of fear of new or recurrent melanoma among this population, despite most having a very good prognosis. Copyright © 2017 John Wiley & Sons, Ltd.

  5. PIK3CA-mutated melanoma cells rely on cooperative signaling through mTORC1/2 for sustained proliferation.

    PubMed

    Silva, Jillian M; Deuker, Marian M; Baguley, Bruce C; McMahon, Martin

    2017-05-01

    Malignant conversion of BRAF- or NRAS-mutated melanocytes into melanoma cells can be promoted by PI3'-lipid signaling. However, the mechanism by which PI3'-lipid signaling cooperates with mutationally activated BRAF or NRAS has not been adequately explored. Using human NRAS- or BRAF-mutated melanoma cells that co-express mutationally activated PIK3CA, we explored the contribution of PI3'-lipid signaling to cell proliferation. Despite mutational activation of PIK3CA, melanoma cells were more sensitive to the biochemical and antiproliferative effects of broader spectrum PI3K inhibitors than to an α-selective PI3K inhibitor. Combined pharmacological inhibition of MEK1/2 and PI3K signaling elicited more potent antiproliferative effects and greater inhibition of the cell division cycle compared to single-agent inhibition of either pathway alone. Analysis of signaling downstream of MEK1/2 or PI3K revealed that these pathways cooperate to regulate cell proliferation through mTORC1-mediated effects on ribosomal protein S6 and 4E-BP1 phosphorylation in an AKT-dependent manner. Although PI3K inhibition resulted in cytostatic effects on xenografted NRAS Q61H /PIK3CA H1047R melanoma, combined inhibition of MEK1/2 plus PI3K elicited significant melanoma regression. This study provides insights as to how mutationally activated PIK3CA acts in concert with MEK1/2 signaling to cooperatively regulate mTORC1/2 to sustain PIK3CA-mutated melanoma proliferation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Comparing the efficacy of photodynamic and sonodynamic therapy in non-melanoma and melanoma skin cancer.

    PubMed

    McEwan, Conor; Nesbitt, Heather; Nicholas, Dean; Kavanagh, Oisin N; McKenna, Kevin; Loan, Philip; Jack, Iain G; McHale, Anthony P; Callan, John F

    2016-07-01

    Sonodynamic therapy (SDT) involves the activation of a non-toxic sensitiser drug using low-intensity ultrasound to produce cytotoxic reactive oxygen species (ROS). Given the low tissue attenuation of ultrasound, SDT provides a significant benefit over the more established photodynamic therapy (PDT) as it enables activation of sensitisers at a greater depth within human tissue. In this manuscript, we compare the efficacy of aminolevulinic acid (ALA) mediated PDT and SDT in a squamous cell carcinoma (A431) cell line as well as the ability of these treatments to reduce the size of A431 ectopic tumours in mice. Similarly, the relative cytotoxic ability of Rose Bengal mediated PDT and SDT was investigated in a B16-melanoma cell line and also in a B16 ectopic tumour model. The results reveal no statistically significant difference in efficacy between ALA mediated PDT or SDT in the non-melanoma model while Rose Bengal mediated SDT was significantly more efficacious than PDT in the melanoma model. This difference in efficacy was, at least in part, attributed to the dark pigmentation of the melanoma cells that effectively filtered the excitation light preventing it from activating the sensitiser while the use of ultrasound circumvented this problem. These results suggest SDT may provide a better outcome than PDT when treating highly pigmented cancerous skin lesions. Copyright © 2016. Published by Elsevier Ltd.

  7. NF-kappaB mediates mitogen-activated protein kinase pathway-dependent iNOS expression in human melanoma.

    PubMed

    Uffort, Deon G; Grimm, Elizabeth A; Ellerhorst, Julie A

    2009-01-01

    Tumor expression of inducible nitric oxide synthase (iNOS) predicts poor outcomes for melanoma patients. We have reported the regulation of melanoma iNOS by the mitogen-activated protein kinase (MAPK) pathway. In this study, we test the hypothesis that NF-kappaB mediates this regulation. Western blotting of melanoma cell lysates confirmed the constitutive expression of iNOS. Western blot detected baseline levels of activated nuclear extracellular signal-regulated kinase and NF-kappaB. Indirect immunofluorescence confirmed the presence of NF-kappaB p50 and p65 in melanoma cell nuclei, with p50 being more prevalent. Electrophoretic mobility shift assay demonstrated baseline NF-kappaB activity, the findings confirmed by supershift analysis. Treatment of melanoma cells with the MEK inhibitor U0126 decreased NF-kappaB binding to its DNA recognition sequence, implicating the MAPK pathway in NF-kappaB activation. Two specific NF-kappaB inhibitors suppressed iNOS expression, demonstrating regulation of iNOS by NF-kappaB. Several experiments indicated the presence of p50 homodimers, which lack a transactivation domain and rely on the transcriptional coactivator Bcl-3 to carry out this function. Bcl-3 was detected in melanoma cells and co-immunoprecipitated with p50. These data suggest that the constitutively activated melanoma MAPK pathway stimulates activation of NF-kappaB hetero- and homodimers, which, in turn, drive iNOS expression and support melanoma tumorigenesis.

  8. EPR studies of free radicals in A-2058 human melanoma cells treated by valproic acid and 5,7-dimethoxycoumarin.

    PubMed

    Zdybel, Magdalena; Chodurek, Ewa; Pilawa, Barbara

    2014-01-01

    Free radicals in A-2058 human melanoma cells were studied by the use of electron paramagnetic resonance (EPR) spectroscopy. The aim of this work was to determine the changes in relative free radical concentrations in tumor A-2058 cells after treatment by valproic acid (VPA) and 5,7-dimethoxycoumarin (DMC). The influences of VPA and DMC on free radicals in A-2058 cells were compared with those for human melanoma malignum A-375 and G-361 cells, which were tested by us earlier. Human malignant melanoma A-2058 cells were exposed to interactions with VPA, DMC, and both VPA and DMC. The tumor cells A-2058 were purchased from LGC Standards (Lomianki, Poland), and they were grown in the standard conditions: at 37°C and in an atmosphere containing 95% air and 5% CO2, in the Minimum Essential Medium Eagle (MEM, Sigma-Aldrich). The A-2058 cells were incubated with VPA (1 mM) and DMC (10 μM) for 4 days. The first-derivative EPR spectra of the control A-2058 cells, and the cells treated with VPA, DMC, and both VPA and DMC, were measured by the electron paramagnetic resonance spectrometer of Radiopan (Poznań, Poland) with microwaves from an X-band (9.3 GHz). The parameters of the EPR lines: amplitudes (A), integral intensities (I), line widths (ΔBpp), and g-factors, were analyzed. The changes of amplitudes and line widths with microwave power increasing from 2.2 to 70 mW were drawn evaluated, o-Semiquinone free radicals of melanin biopolymer are mainly responsible for the EPR lines of A-2058 melanoma malignum cells. The amounts of free radicals in A-2058 cells treated with VPA, and both VPA and DMC, were lower than in the untreated control cells. Application of the tested substances (VPA, and both VPA and DMC) as the antitumor compounds was discussed. DMC without VPA did not decrease free radicals concentration in A-2058 cells. The studies con-firmed that EPR spectroscopy may be used to examine interactions of free radicals with antitumor compounds.

  9. NFATc2 is an intrinsic regulator of melanoma dedifferentiation.

    PubMed

    Perotti, V; Baldassari, P; Molla, A; Vegetti, C; Bersani, I; Maurichi, A; Santinami, M; Anichini, A; Mortarini, R

    2016-06-02

    Melanoma dedifferentiation, characterized by the loss of MITF and MITF regulated genes and by upregulation of stemness markers as CD271, is implicated in resistance to chemotherapy, target therapy and immunotherapy. The identification of intrinsic mechanisms fostering melanoma dedifferentiation may provide actionable therapeutic targets to improve current treatments. Here, we identify NFATc2 transcription factor as an intrinsic regulator of human melanoma dedifferentiation. In panels of melanoma cell lines, NFATc2 expression correlated inversely with MITF at both mRNA and protein levels. NFATc2(+/Hi) melanoma cell lines were CD271(+) and deficient for expression of melanocyte differentiation antigens (MDAs) MART-1, gp100, tyrosinase and of GPNMB, PGC1-α and Rab27a, all regulated by MITF. Targeting of NFATc2 by small interfering RNA, short hairpin RNA and by an NFATc2 inhibitor upregulated MITF, MDAs, GPNMB, PGC-1α, tyrosinase activity and pigmentation and suppressed CD271. Mechanistically, we found that NFATc2 controls melanoma dedifferentiation by inducing expression in neoplastic cells of membrane-bound tumor necrosis factor-α (mTNF-α) and that melanoma-expressed TNF-α regulates a c-myc-Brn2 axis. Specifically, NFATc2, mTNF-α and expression of TNF receptors were significantly correlated in panels of cell lines. NFATc2 silencing suppressed TNF-α expression, and neutralization of melanoma-expressed TNF-α promoted melanoma differentiation. Moreover, silencing of NFATc2 and TNF-α neutralization downmodulated c-myc and POU3F2/Brn2. Brn2 was strongly expressed in NFATc2(+/Hi) MITF(Lo) cell lines and its silencing upregulated MITF. Targeting of c-myc, by silencing or by a c-myc inhibitor, suppressed Brn2 and upregulated MITF and MART-1 in melanoma cells. The relevance of NFATc2-dependent melanoma dedifferentiation for immune escape was shown by cytolytic T-cell assays. NFATc2(Hi) MITF(Lo) MDA(Lo) HLA-A2.1(+) melanoma cells were poorly recognized by MDA

  10. Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines.

    PubMed

    Melnikova, Vladislava O; Bolshakov, Svetlana V; Walker, Christopher; Ananthaswamy, Honnavara N

    2004-03-25

    We have conducted an analysis of genetic alterations in spontaneous murine melanoma cell line B16F0 and its two metastatic clones, B16F1 and B16F10 and the carcinogen-induced murine melanoma cell lines CM519, CM3205, and K1735. We found that unlike human melanomas, the murine melanoma cell lines did not have activating mutations in the Braf oncogene at exon 11 or 15. However, there were distinct patterns of alterations in the ras, Ink4a/Arf, and p53 genes in the two melanoma groups. In the spontaneous B16 melanoma cell lines, expression of p16Ink4a and p19Arf tumor suppressor proteins was lost as a consequence of a large deletion spanning Ink4a/Arf exons 1alpha, 1beta, and 2. In contrast, the carcinogen-induced melanoma cell lines expressed p16Ink4a but had inactivating mutations in either p19Arf (K1735) or p53 (CM519 and CM3205). Inactivation of p19Arf or p53 in carcinogen-induced melanomas was accompanied by constitutive activation of mitogen-activated protein kinases (MAPKs) and/or mutation-associated activation of N-ras. These results indicate that genetic alterations in p16Ink4a/p19Arf, p53 and ras-MAPK pathways can cooperate in the development of murine melanoma.

  11. Precision Diagnosis Of Melanoma And Other Skin Lesions From Digital Images.

    PubMed

    Bhattacharya, Abhishek; Young, Albert; Wong, Andrew; Stalling, Simone; Wei, Maria; Hadley, Dexter

    2017-01-01

    Melanoma will affect an estimated 73,000 new cases this year and result in 9,000 deaths, yet precise diagnosis remains a serious problem. Without early detection and preventative care, melanoma can quickly spread to become fatal (Stage IV 5-year survival rate is 20-10%) from a once localized skin lesion (Stage IA 5- year survival rate is 97%). There is no biomarker for melanoma in clinical use, and the current diagnostic criteria for skin lesions remains subjective and imprecise. Accurate diagnosis of melanoma relies on a histopathologic gold standard; thus, aggressive excision of melanocytic skin lesions has been the mainstay of treatment. It is estimated that 36 biopsies are performed for every melanoma confirmed by pathology among excised lesions. There is significant morbidity in misdiagnosing melanoma such as progression of the disease for a false negative prediction vs the risks of unnecessary surgery for a false positive prediction. Every year, poor diagnostic precision adds an estimated $673 million in overall cost to manage the disease. Currently, manual dermatoscopic imaging is the standard of care in selecting atypical skin lesions for biopsy, and at best it achieves 90% sensitivity but only 59% specificity when performed by an expert dermatologist. Many computer vision (CV) algorithms perform better than dermatologists in classifying skin lesions although not significantly so in clinical practice. Meanwhile, open source deep learning (DL) techniques in CV have been gaining dominance since 2012 for image classification, and today DL can outperform humans in classifying millions of digital images with less than 5% error rates. Moreover, DL algorithms are readily run on commoditized hardware and have a strong online community of developers supporting their rapid adoption. In this work, we performed a successful pilot study to show proof of concept to DL skin pathology from images. However, DL algorithms must be trained on very large labelled datasets of

  12. Usp5 links suppression of p53 and FAS levels in melanoma to the BRAF pathway

    PubMed Central

    Potu, Harish; Peterson, Luke F.; Pal, Anupama; Verhaegen, Monique; Cao, Juxiang; Talpaz, Moshe; Donato, Nicholas J.

    2014-01-01

    Usp5 is a deubiquitinase (DUB) previously shown to regulate unanchored polyubiquitin (Ub) chains, p53 transcriptional activity and double-strand DNA repair. In BRAF mutant melanoma cells, Usp5 activity was suppressed by BRAF inhibitor (vemurafenib) in sensitive but not in acquired or intrinsically resistant cells. Usp5 knockdown overcame acquired vemurafenib resistance and sensitized BRAF and NRAS mutant melanoma cells to apoptosis initiated by MEK inhibitor, cytokines or DNA-damaging agents. Knockdown and overexpression studies demonstrated that Usp5 regulates p53 (and p73) levels and alters cell growth and cell cycle distribution associated with p21 induction. Usp5 also regulates the intrinsic apoptotic pathway by modulating p53-dependent FAS expression. A small molecule DUB inhibitor (EOAI3402143) phenocopied the FAS induction and apoptotic sensitization of Usp5 knockdown and fully blocked melanoma tumor growth in mice. Overall, our results demonstrate that BRAF activates Usp5 to suppress cell cycle checkpoint control and apoptosis by blocking p53 and FAS induction; all of which can be restored by small molecule-mediated Usp5 inhibition. These results suggest that Usp5 inhibition can provide an alternate approach in recovery of diminished p53 (or p73) function in melanoma and can add to the targeted therapies already used in the treatment of melanoma. PMID:24980819

  13. Identification of glycogen synthase kinase 3α as a therapeutic target in melanoma

    PubMed Central

    Madhunapantula, SubbaRao V.; Sharma, Arati; Gowda, Raghavendra; Robertson, Gavin P.

    2014-01-01

    Summary Deregulated expression or activity of kinases can lead to melanomas, but often the particular kinase isoform causing the effect is not well established, making identification and validation of different isoforms regulating disease development especially important. To accomplish this objective, an siRNA screen was undertaken that which identified glycogen synthase kinase 3α (GSK3α) as an important melanoma growth regulator. Melanocytes and melanoma cell lines representing various stages of melanoma tumor progression expressed both GSK3α and GSK3β, but analysis of tumors in patients with melanoma showed elevated expression of GSK3α in 72% of samples, which was not observed for GSK3β. Furthermore, 80% of tumors in patients with melanoma expressed elevated levels of catalytically active phosphorylated GSK3α (pGSK3αY279), but not phosphorylated GSK3β (pGSK3βY216). siRNA-mediated reduction in GSK3α protein levels reduced melanoma cell survival and proliferation, sensitized cells to apoptosis-inducing agents and decreased xenografted tumor development by up to 56%. Mechanistically, inhibiting GSK3α expression using siRNA or the pharmacological agent AR-A014418 arrested melanoma cells in the G0/G1 phase of the cell cycle and induced apoptotic death to retard tumorigenesis. Therefore, GSK3α is a key therapeutic target in melanoma. PMID:24034838

  14. Up-Regulated Dicer Expression in Patients with Cutaneous Melanoma

    PubMed Central

    Ma, Zhihai; Swede, Helen; Cassarino, David; Fleming, Elizabeth; Fire, Andrew; Dadras, Soheil S.

    2011-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs (18–24 nucleotides) that have recently been shown to regulate gene expression during cancer progression. Dicer, a central enzyme in the multi-component miRNA biogenesis pathway, is involved in cutting precursor miRNAs to functionally mature forms. Emerging evidence shows that Dicer expression is deregulated in some human malignancies and it correlates with tumor progression, yet this role has not yet been investigated in skin cancers. Methods and Findings Using an anti-human monoclonal antibody against Dicer and immunohistochemistry, we compared the expression of Dicer protein among 404 clinically annotated controls and skin tumors consisting of melanocytic nevi (n = 71), a variety of melanomas (n = 223), carcinomas (n = 73) and sarcomas (n = 12). Results showed a cell-specific up-regulated Dicer in 81% of cutaneous, 80% of acrolentiginous and 96% of metastatic melanoma specimens compared to carcinoma or sarcoma specimens (P<0.0001). The expression of Dicer was significantly higher in melanomas compared to benign melanocytic nevi (P<0.0001). In patients with cutaneous melanomas, Dicer up-regulation was found to be significantly associated with an increased tumor mitotic index (P = 0.04), Breslow's depth of invasion (P = 0.03), nodal metastasis (P = 0.04) and a higher American Joint Committee on Caner (AJCC) clinical stage (P = 0.009). Using western blot analysis, we confirmed the cell-specific up-regulation of Dicer protein in vitro. A pooled-analysis on mRNA profiling in cutaneous tumors showed up-regulation of Dicer at the RNA level in cutaneous melanoma, also showing deregulation of other enzymes that participate in the biogenesis and maturation of canonical miRNAs. Conclusions Increased Dicer expression may be a clinically useful biomarker for patients with cutaneous melanoma. Understanding deregulation of Dicer and its influence on miRNA maturation is needed to predict

  15. The sodium pump α1 sub-unit: a disease progression–related target for metastatic melanoma treatment

    PubMed Central

    Mathieu, Véronique; Pirker, Christine; Martin de Lassalle, Elisabeth; Vernier, Mathieu; Mijatovic, Tatjana; DeNeve, Nancy; Gaussin, Jean-François; Dehoux, Mischael; Lefranc, Florence; Berger, Walter; Kiss, Robert

    2009-01-01

    Melanomas remain associated with dismal prognosis because they are naturally resistant to apoptosis and they markedly metastasize. Up-regulated expression of sodium pump α sub-units has previously been demonstrated when comparing metastatic to non-metastatic melanomas. Our previous data revealed that impairing sodium pump α1 activity by means of selective ligands, that are cardiotonic steroids, markedly impairs cell migration and kills apoptosis-resistant cancer cells. The objective of this study was to determine the expression levels of sodium pump α sub-units in melanoma clinical samples and cell lines and also to characterize the role of α1 sub-units in melanoma cell biology. Quantitative RT-PCR, Western blotting and immunohistochemistry were used to determine the expression levels of sodium pump α sub-units. In vitro cytotoxicity of various cardenolides and of an anti-α1 siRNA was evaluated by means of MTT assay, quantitative videomicroscopy and through apoptosis assays. The in vivo activity of a novel cardenolide UNBS1450 was evaluated in a melanoma brain metastasis model. Our data show that all investigated human melanoma cell lines expressed high levels of the α1 sub-unit, and 33% of human melanomas displayed significant α1 sub-unit expression in correlation with the Breslow index. Furthermore, cardenolides (notably UNBS1450; currently in Phase I clinical trials) displayed marked anti-tumour effects against melanomas in vitro. This activity was closely paralleled by decreases in cMyc expression and by increases in apoptotic features. UNBS1450 also displayed marked anti-tumour activity in the aggressive human metastatic brain melanoma model in vivo. The α1 sodium pump sub-unit could represent a potential novel target for combating melanoma. PMID:19243476

  16. Cancer stem cell as therapeutic target for melanoma treatment.

    PubMed

    Alamodi, Abdulhadi A; Eshaq, Abdulaziz M; Hassan, Sofie-Yasmin; Al Hmada, Youssef; El Jamal, Siraj M; Fothan, Ahmed M; Arain, Omair M; Hassan, Sarah-Lilly; Haikel, Youssef; Megahed, Mosaad; Hassan, Mohamed

    2016-12-01

    Human malignant melanoma is a highly aggressive skin tumor that is characterized by its extraordinary heterogeneity, propensity for dissemination to distant organs and resistance to cytotoxic agents. Although chemo- and immune-based therapies have been evaluated in clinical trials, most of these therapeutics do not show significant benefit for patients with advanced disease. Treatment failure in melanoma patients is attributed mainly to the development of tumor heterogeneity resulting from the formation of genetically divergent subpopulations. These subpopulations are composed of cancer stem-like cells (CSCs) as a small fraction and non-cancer stem cells that form the majority of the tumor mass. In recent years, CSCs gained more attention and suggested as valuable experimental model system for tumor study. In melanoma, intratumoral heterogeneity, progression and drug resistance result from the unique characteristics of melanoma stem cells (MSCs). These MSCs are characterized by their distinct protein signature and tumor growth-driving pathways, whose activation is mediated by driver mutation-dependent signal. The molecular features of MSCs are either in a causal or consequential relationship to melanoma progression, drug resistance and relapse. Here, we review the current scientific evidence that supports CSC hypothesis and the validity of MSCs-dependent pathways and their key molecules as potential therapeutic target for melanoma treatment.

  17. Eradication of melanoma in vitro and in vivo via targeting with a Killer-Red-containing telomerase-dependent adenovirus.

    PubMed

    Takehara, Kiyoto; Yano, Shuya; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Narii, Nobuhiro; Mizuguchi, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-08-18

    Melanoma is a highly recalcitrant cancer and transformative therapy is necessary for the cure of this disease. We recently developed a telomerase-dependent adenovirus containing the fluorescent protein Killer-Red. In the present report, we first determined the efficacy of Killer-Red adenovirus combined with laser irradiation on human melanoma cell lines in vitro. Cell viability of human melanoma cells was reduced in a dose-dependent and irradiation-time-dependent manner. We used an intradermal xenografted melanoma model in nude mice to determine efficacy of the Killer-Red adenovirus. Intratumoral injection of Killer-Red adenovirus, combined with laser irradiation, eradicated the melanoma indicating the potential of a new paradigm of cancer therapy.

  18. miR-193b Regulates Mcl-1 in Melanoma

    PubMed Central

    Chen, Jiamin; Zhang, Xiao; Lentz, Cindy; Abi-Daoud, Marie; Paré, Geneviève C.; Yang, Xiaolong; Feilotter, Harriet E.; Tron, Victor A.

    2011-01-01

    MicroRNAs play important roles in gene regulation, and their expression is frequently dysregulated in cancer cells. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 in melanoma cells, suggesting that miR-193b could act as a tumor suppressor. Herein, we demonstrate that miR-193b also down-regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. MicroRNA microarray profiling revealed that miR-193b is expressed at a significantly lower level in malignant melanoma than in benign nevi. Consistent with this, Mcl-1 is detected at a higher level in malignant melanoma than in benign nevi. In a survey of melanoma samples, the level of Mcl-1 is inversely correlated with the level of miR-193b. Overexpression of miR-193b in melanoma cells represses Mcl-1 expression. Previous studies showed that Mcl-1 knockdown cells are hypersensitive to ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-XL, and Bcl-w. Similarly, overexpression of miR-193b restores ABT-737 sensitivity to ABT-737–resistant cells. Furthermore, the effect of miR-193b on the expression of Mcl-1 seems to be mediated by direct interaction between miR-193b and seed and seedless pairing sequences in the 3′ untranslated region of Mcl-1 mRNA. Thus, this study provides evidence that miR-193b directly regulates Mcl-1 and that down-regulation of miR-193b in vivo could be an early event in melanoma progression. PMID:21893020

  19. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression

    PubMed Central

    Yang, Eric V.; Kim, Seung-jae; Donovan, Elise L.; Chen, Min; Gross, Amy C.; Webster Marketon, Jeanette I.; Barsky, Sanford H.; Glaser, Ronald

    2009-01-01

    Studies suggest that stress can be a co-factor for the initiation and progression of cancer. The catecholamine stress hormone, norepinephrine (NE), may influence tumor progression by modulating the expression of factors implicated in angiogenesis and metastasis. The goal of this study was to examine the influence of NE on the expression of VEGF, IL-8, and IL-6 by the human melanoma cell lines, C8161, 1174MEL, and Me18105. Cells were treated with NE and levels of VEGF, IL-8, and IL-6 were measured using ELISA and real-time PCR. The expression of β-adrenergic receptors (β-ARs) mRNA and protein were also assessed. Finally, immunohistochemitry was utilized to examine the presence of β1- and β2-AR in primary and metastatic human melanoma biopsies. We show that NE treatment upregulated production of VEGF, IL-8, and IL-6 in C8161 cells and to a lesser extent 1174MEL and Me18105 cells. The upregulation was associated with induced gene expression. The effect on C8161 cells was mediated by both β1- and β2-ARs. Furthermore, 18 of 20 melanoma biopsies examined expressed β2-AR while 14 of 20 melanoma biopsies expressed β1-AR. Our data support the hypothesis that NE can stimulate the aggressive potential of melanoma tumor cells, in part, by inducing the production VEGF, IL-8, and IL-6. This line of research further suggests that interventions targeting components of the activated sympathetic-adrenal medullary (SAM) axis, or the utilization of β-AR blocking agents, may represent new strategies for slowing down the progression of malignant disease and improving cancer patients’ quality of life. PMID:18996182

  20. Hypoxia-activated prodrug enhances therapeutic effect of sunitinib in melanoma

    PubMed Central

    Liu, Shujing; Tetzlaff, Michael T.; Wang, Tao; Chen, Xiang; Yang, Ruifeng; Kumar, Suresh M.; Vultur, Adina; Li, Pengxiang; Martin, James S.; Herlyn, Meenhard; Amaravadi, Ravi

    2017-01-01

    Angiogenesis is a critical step during tumor progression. Anti-angiogenic therapy has only provided modest benefits in delaying tumor progression despite its early promise in cancer treatment. It has been postulated that anti-angiogenic therapy may promote the emergence of a more aggressive cancer cell phenotype by generating increased tumor hypoxia—a well-recognized promoter of tumor progression. TH-302 is a 2-nitroimidazole triggered hypoxia-activated prodrug (HAP) which has been shown to selectively target the hypoxic tumor compartment and reduce tumor volume. Here, we show that melanoma cells grown under hypoxic conditions exhibit increased resistance to a wide variety of therapeutic agents in vitro and generate larger and more aggressive tumors in vivo than melanoma cells grown under normoxic conditions. However, hypoxic melanoma cells exhibit a pronounced sensitivity to TH-302 which is further enhanced by the addition of sunitinib. Short term sunitinib treatment fails to prolong the survival of melanoma bearing genetically engineered mice (Tyr::CreER; BRafCA;Ptenlox/lox) but increases tumor hypoxia. Long term TH-302 alone modestly prolongs the overall survival of melanoma bearing mice. Combination therapy of TH-302 with sunitinib further increases the survival of treated mice. These studies provide a translational rationale for combining hypoxic tumor cell targeted therapies with anti-angiogenics for treatment of melanoma. PMID:29383148

  1. Specific c-Jun target genes in malignant melanoma.

    PubMed

    Schummer, Patrick; Kuphal, Silke; Vardimon, Lily; Bosserhoff, Anja K; Kappelmann, Melanie

    2016-05-03

    A fundamental event in the development and progression of malignant melanoma is the de-regulation of cancer-relevant transcription factors. We recently showed that c-Jun is a main regulator of melanoma progression and, thus, is the most important member of the AP-1 transcription factor family in this disease. Surprisingly, no cancer-related specific c-Jun target genes in melanoma were described in the literature, so far. Therefore, we focused on pre-existing ChIP-Seq data (Encyclopedia of DNA Elements) of 3 different non-melanoma cell lines to screen direct c-Jun target genes. Here, a specific c-Jun antibody to immunoprecipitate the associated promoter DNA was used. Consequently, we identified 44 direct c-Jun targets and a detailed analysis of 6 selected genes confirmed their deregulation in malignant melanoma. The identified genes were differentially regulated comparing 4 melanoma cell lines and normal human melanocytes and we confirmed their c-Jun dependency. Direct interaction between c-Jun and the promoter/enhancer regions of the identified genes was confirmed by us via ChIP experiments. Interestingly, we revealed that the direct regulation of target gene expression via c-Jun can be independent of the existence of the classical AP-1 (5´-TGA(C/G)TCA-3´) consensus sequence allowing for the subsequent down- or up-regulation of the expression of these cancer-relevant genes. In summary, the results of this study indicate that c-Jun plays a crucial role in the development and progression of malignant melanoma via direct regulation of cancer-relevant target genes and that inhibition of direct c-Jun targets through inhibition of c-Jun is a potential novel therapeutic option for treatment of malignant melanoma.

  2. Melanoma-specific marker expression in skin biopsy tissues as a tool to facilitate melanoma diagnosis.

    PubMed

    Alexandrescu, Doru T; Kauffman, C Lisa; Jatkoe, Timothy A; Hartmann, Dan P; Vener, Tatiana; Wang, Haiying; Derecho, Carlo; Rajpurohit, Yashoda; Wang, Yixin; Palma, John F

    2010-07-01

    Diagnosis of cutaneous melanoma requires accurate differentiation of true malignant tumors from highly atypical lesions, which lack the capacity to develop uncontrolled proliferation and to metastasize. We used melanoma markers from previous work to differentiate benign and atypical lesions from melanoma using paraffin-embedded tissue. This critical step in diagnosis generates the most uncertainty and discrepancy between dermatopathologists. A total of 193 biopsy tissues were selected: 47 melanomas, 48 benign nevi, and 98 atypical/suspicious, including 48 atypical nevi and 50 melanomas as later assigned by expert dermatopathologists. Performance for SILV, GDF15, and L1CAM normalized to TYR in unequivocal melanoma versus benign nevi resulted in an area under the curve (AUC) of 0.94, 0.67, and 0.5, respectively. SILV also differentiated atypical cases classified as melanoma from atypical nevi with an AUC=0.74. Furthermore, SILV showed a significant difference between suspicious melanoma and each suspicious atypia group: melanoma versus severe atypia and melanoma versus moderate atypia had P-values of 0.0077 and 0.0009, respectively. SILV showed clear discrimination between melanoma and benign unequivocal cases as well as between different atypia subgroups in the group of suspicious samples. The role and potential utility of this molecular assay as an adjunct to the morphological diagnosis of melanoma are discussed.

  3. An Inducible Endothelial Cell Surface Glycoprotein Mediates Melanoma Adhesion

    NASA Astrophysics Data System (ADS)

    Rice, G. Edgar; Bevilacqua, Michael P.

    1989-12-01

    Hematogenous metastasis requires the arrest and extravasation of blood-borne tumor cells, possibly involving direct adhesive interactions with vascular endothelium. Cytokine activation of cultured human endothelium increases adhesion of melanoma and carcinoma cell lines. An inducible 110-kD endothelial cell surface glycoprotein, designated INCAM-110, appears to mediate adhesion of melanoma cells. In addition, an inducible endothelial receptor for neutrophils, ELAM-1, supports the adhesion of a human colon carcinoma cell line. Thus, activation of vascular endothelium in vivo that results in increased expression of INCAM-110 and ELAM-1 may promote tumor cell adhesion and affect the incidence and distribution of metastases.

  4. Diagnosing malignant melanoma in ambulatory care: a systematic review of clinical prediction rules

    PubMed Central

    Harrington, Emma; Clyne, Barbara; Wesseling, Nieneke; Sandhu, Harkiran; Armstrong, Laura; Bennett, Holly; Fahey, Tom

    2017-01-01

    Objectives Malignant melanoma has high morbidity and mortality rates. Early diagnosis improves prognosis. Clinical prediction rules (CPRs) can be used to stratify patients with symptoms of suspected malignant melanoma to improve early diagnosis. We conducted a systematic review of CPRs for melanoma diagnosis in ambulatory care. Design Systematic review. Data sources A comprehensive search of PubMed, EMBASE, PROSPERO, CINAHL, the Cochrane Library and SCOPUS was conducted in May 2015, using combinations of keywords and medical subject headings (MeSH) terms. Study selection and data extraction Studies deriving and validating, validating or assessing the impact of a CPR for predicting melanoma diagnosis in ambulatory care were included. Data extraction and methodological quality assessment were guided by the CHARMS checklist. Results From 16 334 studies reviewed, 51 were included, validating the performance of 24 unique CPRs. Three impact analysis studies were identified. Five studies were set in primary care. The most commonly evaluated CPRs were the ABCD, more than one or uneven distribution of Colour, or a large (greater than 6 mm) Diameter (ABCD) dermoscopy rule (at a cut-point of >4.75; 8 studies; pooled sensitivity 0.85, 95% CI 0.73 to 0.93, specificity 0.72, 95% CI 0.65 to 0.78) and the 7-point dermoscopy checklist (at a cut-point of ≥1 recommending ruling in melanoma; 11 studies; pooled sensitivity 0.77, 95% CI 0.61 to 0.88, specificity 0.80, 95% CI 0.59 to 0.92). The methodological quality of studies varied. Conclusions At their recommended cut-points, the ABCD dermoscopy rule is more useful for ruling out melanoma than the 7-point dermoscopy checklist. A focus on impact analysis will help translate melanoma risk prediction rules into useful tools for clinical practice. PMID:28264830

  5. miR-137 inhibits glutamine catabolism and growth of malignant melanoma by targeting glutaminase.

    PubMed

    Luan, Wenkang; Zhou, Zhou; Zhu, Yan; Xia, Yun; Wang, Jinlong; Xu, Bin

    2018-01-01

    Glutamine catabolism is considered to be an important metabolic pathway for cancer cells. Glutaminase (GLS) is the important rate-limiting enzyme of glutamine catabolism. miR-137 functions as a tumor suppressor in many human malignant tumors. However, the role and molecular mechanism of miR-137 and GLS in malignant melanoma has not been reported. In this study, we showed that miR-137 was decreased in melanoma tissue, and the low miR-137 level and high GLS expression are independent risk factor in melanoma. miR-137 suppressed the proliferation and glutamine catabolism of melanoma cells. GLS is crucial for glutamine catabolism and growth of malignant melanoma. We also demonstrated that miR-137 acts as a tumor suppressor in melanoma by targeting GLS. This result elucidates a new mechanism for miR-137 in melanoma development and provides a survival indicator and potential therapeutic target for melanoma patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Lymphatic invasion and the Shields index in predicting melanoma metastases.

    PubMed

    Špirić, Zorica; Erić, Mirela; Eri, Živka

    2017-11-01

    Findings of the prognostic significance of lymphatic invasion are contradictory. To determine an as efficient cutaneous melanoma metastasis predictor as possible, Shields et al. created a new prognostic index. This study aimed to examine whether the lymphatic invasion analysis and the Shields index calculation can be used in predicting lymph node status in patients with cutaneous melanoma. Lymphatic invasion of 100 melanoma specimens was detected by dual immunohistochemistry staining for the lymphatic endothelial marker D2-40 and melanoma cell S-100 protein. The Shields index was calculated as a logarithm by multiplying the melanoma thickness, square of peritumoural lymphatic vessel density and the number "2" for the present lymphatic invasion. No statistically significant difference was observed between lymph node metastatic and nonmetastatic melanomas regarding the lymphatic invasion. Metastatic melanomas showed a significantly higher Shields index value than nonmetastatic melanomas (p = 0.00). Area under the receiver operator characteristic (ROC) curve (AUC) proved that the Shields index (AUC = 0.86, 95% confidence interval (CI) 0.79-0.93, p = 0.00) was the most accurate predictor of lymph node status, followed by the melanoma thickness (AUC = 0.76, 95% CI 0.67-0.86, p = 0.00) and American Joint Committee on Cancer (AJCC) staging (AUC = 0.75, 95% CI 0.66-0.85, p = 0.00), while lymphatic invasion was not successful in predicting (AUC = 0.56, 95% CI 0.45-0.67, p = 0.31). The Shields index achieved 81.3% sensitivity and 75% specificity (cut-off mean value). Our findings show that D2-40/S-100 immunohistochemical analysis of lymphatic invasion cannot be used for predicting the lymph node status, while the Shields index calculation predicts disease outcome more accurately than the melanoma thickness and AJCC staging. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights

  7. The morphologic universe of melanoma.

    PubMed

    Jaimes, Natalia; Marghoob, Ashfaq A

    2013-10-01

    Differentiating dysplastic nevi from melanoma remains one of the main objectives of dermoscopy. Melanomas tend not to manifest any of the benign patterns described for nevi and instead usually display chaotic dermoscopic morphologies. Melanomas located on the face, chronically sun-damaged skin, volar surfaces, nails, and mucosal surfaces have additional features that can assist in their identification. However, some melanomas lack any defined dermoscopic structures. These so-called featureless melanomas can be identified via digital surveillance. This article reviews the melanoma-specific structures as a function of anatomic location (ie, melanomas on nonglabrous skin, face, volar surfaces, mucosae, and nails). Copyright © 2013 Elsevier Inc. All rights reserved.

  8. How many melanomas might be prevented if more people applied sunscreen regularly?

    PubMed

    Olsen, C M; Wilson, L F; Green, A C; Biswas, N; Loyalka, J; Whiteman, D C

    2018-01-01

    Ultraviolet radiation causes cutaneous melanoma. Sunscreen prevents sunburn and protects skin cells against mutations. High-quality epidemiological studies suggest regular sunscreen use prevents melanoma. To calculate the potential impact fraction (PIF) for melanoma in the U.S.A. and Australia assuming a range of different intervention scenarios intended to increase sunscreen use. We calculated the PIF, the proportional difference between the observed number of melanomas arising under prevailing levels of sunscreen use compared with the number expected under counterfactual scenarios. We used published melanoma incidence projections for Australia and the white population in the U.S.A. from 2012 through to 2031 as the baseline condition, with estimates for protective effects of 'regular sunscreen use' from the literature. Sunscreen prevalence was sourced from national or state surveys. Under a plausible public health intervention scenario comprising incremental increases in sunscreen prevalence over a 10-year implementation programme, we estimated that cumulatively to 2031, 231 053 fewer melanomas would arise in the U.S. white population (PIF 11%) and 28 071 fewer melanomas would arise in Australia (PIF 10%). Under the theoretical maximum model of sunscreen use, almost 797 000 (PIF 38%) and approximately 96 000 (PIF 34%) melanomas would be prevented in the U.S.A. and Australia, respectively between 2012 and 2031. A sensitivity analysis using weaker effect estimates resulted in more conservative PIF estimates. Overall, interventions to increase use of sunscreen would result in moderate reductions in melanoma incidence, assuming no compensatory overexposure to the sun. Countries with a high incidence of melanoma should monitor levels of sunscreen use in the community. © 2017 British Association of Dermatologists.

  9. Separate Primary Melanomas of the Bulbar Conjunctiva and Eyelid Skin: Clinical Implications of Multiple Primary Melanomas.

    PubMed

    Jacinto, Frances A; Fisher, George H; Espana, Edgar M; Leyngold, Ilya M; Margo, Curtis E

    2016-10-01

    We report a patient with previous in situ melanoma of the forehead skin who was referred for treatment of a bulbar conjunctival melanoma and a separate superficially invasive melanoma of the eyelid skin, and we offer a review of the biological and clinical implications of patients who have multiple primary melanomas. This article offers a clinicopathological correlation with a review of the relevant literature. An 80-year-old white man was referred for evaluation of a suspicious conjunctival tumor and a lower-eyelid lesion. Excisional biopsies revealed that both were primary melanomas arising within in situ disease. Over the span of 25 years, the patient had three separate foci of in situ melanoma, two of which spawned invasive melanoma. Separate melanomas arising from the bulbar conjunctiva and eyelid skin have rarely been reported. Multiple primary melanomas of the skin, however, are not uncommon. Based on studies of persons with multiple cutaneous melanomas, the prognosis is best predicted by the tumor with the greatest depth of invasion. Patients with multiple melanomas should be examined for dysplastic nevi, additional cutaneous melanomas, and screened periodically for future lesions. Ongoing studies enrolling patients with multiple primary melanomas are attempting to generate insights into low-penetrance susceptibility genes.

  10. Dysplastic Nevi and Melanoma

    PubMed Central

    Goldstein, Alisa M.; Tucker, Margaret A.

    2013-01-01

    Dysplastic nevi (DN) are described as being on a continuum between common acquired nevi and melanoma because they are morphologically and biologically intermediate between these two entities. Since initially being reported as histologic lesions observed in melanoma-prone families, there has been considerable debate about the definition of dysplastic nevi, the histologic and clinical criteria used to define them, and their biological importance. Their role as precursor lesions for melanoma is not their primary role in their relationship to melanoma because of the rarity of transformation of any individual nevus to a melanoma. Although there is still no single universally agreed upon histologic or clinical definition or even name for these nevi, dysplastic nevi should be considered important because of their association with an increased risk for melanoma. PMID:23549396

  11. AMP kinase-related kinase NUAK2 affects tumor growth, migration, and clinical outcome of human melanoma.

    PubMed

    Namiki, Takeshi; Tanemura, Atsushi; Valencia, Julio C; Coelho, Sergio G; Passeron, Thierry; Kawaguchi, Masakazu; Vieira, Wilfred D; Ishikawa, Masashi; Nishijima, Wataru; Izumo, Toshiyuki; Kaneko, Yasuhiko; Katayama, Ichiro; Yamaguchi, Yuji; Yin, Lanlan; Polley, Eric C; Liu, Hongfang; Kawakami, Yutaka; Eishi, Yoshinobu; Takahashi, Eishi; Yokozeki, Hiroo; Hearing, Vincent J

    2011-04-19

    The identification of genes that participate in melanomagenesis should suggest strategies for developing therapeutic modalities. We used a public array comparative genomic hybridization (CGH) database and real-time quantitative PCR (qPCR) analyses to identify the AMP kinase (AMPK)-related kinase NUAK2 as a candidate gene for melanomagenesis, and we analyzed its functions in melanoma cells. Our analyses had identified a locus at 1q32 where genomic gain is strongly associated with tumor thickness, and we used real-time qPCR analyses and regression analyses to identify NUAK2 as a candidate gene at that locus. Associations of relapse-free survival and overall survival of 92 primary melanoma patients with NUAK2 expression measured using immunohistochemistry were investigated using Kaplan-Meier curves, log rank tests, and Cox regression models. Knockdown of NUAK2 induces senescence and reduces S-phase, decreases migration, and down-regulates expression of mammalian target of rapamycin (mTOR). In vivo analysis demonstrated that knockdown of NUAK2 suppresses melanoma tumor growth in mice. Survival analysis showed that the risk of relapse is greater in acral melanoma patients with high levels of NUAK2 expression than in acral melanoma patients with low levels of NUAK2 expression (hazard ratio = 3.88; 95% confidence interval = 1.44-10.50; P = 0.0075). These data demonstrate that NUAK2 expression is significantly associated with the oncogenic features of melanoma cells and with the survival of acral melanoma patients. NUAK2 may provide a drug target to suppress melanoma progression. This study further supports the importance of NUAK2 in cancer development and tumor progression, while AMPK has antioncogenic properties.

  12. Induction of arginosuccinate synthetase (ASS) expression affects the antiproliferative activity of arginine deiminase (ADI) in melanoma cells.

    PubMed

    Manca, Antonella; Sini, Maria Cristina; Izzo, Francesco; Ascierto, Paolo A; Tatangelo, Fabiana; Botti, Gerardo; Gentilcore, Giusy; Capone, Marilena; Mozzillo, Nicola; Rozzo, Carla; Cossu, Antonio; Tanda, Francesco; Palmieri, Giuseppe

    2011-06-01

    Arginine deiminase (ADI), an arginine-degrading enzyme, has been used in the treatment of tumours sensitive to arginine deprivation, such as malignant melanoma (MM) and hepatocellular carcinoma (HCC). Endogenous production of arginine is mainly dependent on activity of ornithine transcarbamylase (OTC) and argininosuccinate synthetase (ASS) enzymes. We evaluated the effect of ADI treatment on OTC and ASS expression in a series of melanoma cell lines. Twenty-five primary melanoma cell lines and normal fibroblasts as controls underwent cell proliferation assays and Western blot analyses in the presence or absence of ADI. Tissue sections from primary MMs (N = 20) and HCCs (N = 20) were investigated by immunohistochemistry for ASS expression. Overall, 21/25 (84%) MM cell lines presented a cell growth inhibition by ADI treatment; none of them presented constitutive detectable levels of the ASS protein. However, 7/21 (33%) ADI-sensitive melanoma cell lines presented markedly increased expression levels of the ASS protein following ADI treatment, with a significantly higher IC50 median value. Growth was not inhibited and the IC50 was not reached among the remaining 4/25 (16%) MM cell lines; all of them showed constitutive ASS expression. The OTC protein was found expressed in all melanoma cell lines before and after the ADI treatment. Lack of ASS immunostaining was observed in all analyzed in vivo specimens. Our findings suggest that response to ADI treatment in melanoma is significantly correlated with the ability of cells to express ASS either constitutively at basal level (inducing drug resistance) or after the treatment (reducing sensitivity to ADI).

  13. MicroRNA miR-125b induces senescence in human melanoma cells.

    PubMed

    Glud, Martin; Manfé, Valentina; Biskup, Edyta; Holst, Line; Dirksen, Anne Marie Ahlburg; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T; Gniadecki, Robert

    2011-06-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules involved in gene regulation. Aberrant expression of miRNA has been associated with the development or progression of several diseases, including cancer. In a previous study, we found that the expression of miRNA-125b (miR-125b) was two-fold lower in malignant melanoma producing lymph node micrometastases than in nonmetastasizing tumors. To get further insight into the functional role of miR-125b, we assessed whether its overexpression or silencing affects apoptosis, proliferation, or senescence in melanoma cell lines. We showed that overexpression of miR-125b induced typical senescent cell morphology, including increased cytoplasmatic/nucleus ratio and intensive cytoplasmatic β-galactosidase expression. In contrast, inhibition of miR-125b resulted in 30-35% decreased levels of spontaneous apoptosis. We propose that downregulation of miR-125b in an early cutaneous malignant melanoma can contribute to the increased metastatic capability of this tumor.

  14. A systematic review of automated melanoma detection in dermatoscopic images and its ground truth data

    NASA Astrophysics Data System (ADS)

    Ali, Abder-Rahman A.; Deserno, Thomas M.

    2012-02-01

    Malignant melanoma is the third most frequent type of skin cancer and one of the most malignant tumors, accounting for 79% of skin cancer deaths. Melanoma is highly curable if diagnosed early and treated properly as survival rate varies between 15% and 65% from early to terminal stages, respectively. So far, melanoma diagnosis is depending subjectively on the dermatologist's expertise. Computer-aided diagnosis (CAD) systems based on epiluminescense light microscopy can provide an objective second opinion on pigmented skin lesions (PSL). This work systematically analyzes the evidence of the effectiveness of automated melanoma detection in images from a dermatoscopic device. Automated CAD applications were analyzed to estimate their diagnostic outcome. Searching online databases for publication dates between 1985 and 2011, a total of 182 studies on dermatoscopic CAD were found. With respect to the systematic selection criterions, 9 studies were included, published between 2002 and 2011. Those studies formed databases of 14,421 dermatoscopic images including both malignant "melanoma" and benign "nevus", with 8,110 images being available ranging in resolution from 150 x 150 to 1568 x 1045 pixels. Maximum and minimum of sensitivity and specificity are 100.0% and 80.0% as well as 98.14% and 61.6%, respectively. Area under the receiver operator characteristics (AUC) and pooled sensitivity, specificity and diagnostics odds ratio are respectively 0.87, 0.90, 0.81, and 15.89. So, although that automated melanoma detection showed good accuracy in terms of sensitivity, specificity, and AUC, but diagnostic performance in terms of DOR was found to be poor. This might be due to the lack of dermatoscopic image resources (ground truth) that are needed for comprehensive assessment of diagnostic performance. In future work, we aim at testing this hypothesis by joining dermatoscopic images into a unified database that serves as a standard reference for dermatology related research in

  15. Tight Junction–Associated Signaling Pathways Modulate Cell Proliferation in Uveal Melanoma

    PubMed Central

    Jayagopal, Ashwath; Yang, Jin-Long; Haselton, Frederick R.; Chang, Min S.

    2011-01-01

    Purpose. To investigate the role of tight junction (TJ)–associated signaling pathways in the proliferation of uveal melanoma. Methods. Human uveal melanoma cell lines overexpressing the TJ molecule blood vessel epicardial substance (Bves) were generated. The effects of Bves overexpression on TJ protein expression, cell proliferation, and cell cycle distribution were quantified. In addition, localization and transcription activity of the TJ-associated protein ZO-1–associated nucleic acid binding protein (ZONAB) were evaluated using immunofluorescence and bioluminescence reporter assays to study the involvement of Bves signaling in cell proliferation-associated pathways. Results. Bves overexpression in uveal melanoma cell lines resulted in increased expression of the TJ proteins occludin and ZO-1, reduced cell proliferation, and increased sequestration of ZONAB at TJs and reduced ZONAB transcriptional activity. Conclusions. TJ proteins are present in uveal melanoma, and TJ-associated signaling pathways modulate cell signaling pathways relevant to proliferation in uveal melanoma. PMID:20861479

  16. Immunohistochemical detection of XIAP in melanoma.

    PubMed

    Emanuel, Patrick O M; Phelps, Robert G; Mudgil, Adarsh; Shafir, Michail; Burstein, David E

    2008-03-01

    The X-linked inhibitor of apoptosis protein (XIAP) is the most potent of the inhibitor of apoptosis family of eight proteins. High levels of XIAP have been found in melanoma cell lines and are believed to play a role in therapeutic resistance in a number of malignancies. XIAP expression has not been investigated in clinically obtained melanoma tissue samples, nor have studies attempted to correlate XIAP expression with prognostic variables or clinical aggressiveness of melanomas. Sixty-seven patients with primary cutaneous malignant melanoma for whom clinical follow up was available were identified from the records of the Mount Sinai Hospital, comprising 37 thin melanomas (Breslow thickness < 1.0 mm) and 30 thick melanomas (Breslow thickness > 1.0 mm). Archival paraffin sections from primary lesions and corresponding metastases were stained with monoclonal anti-XIAP antibody using routine immunohistochemical methods. Six benign intradermal nevi and four in situ melanomas were XIAP negative. 9 of 37 thin melanomas (24%) were XIAP positive. In contrast, 21 of 30 (73%) thick melanomas were XIAP positive, including 3 of 4 ulcerated melanomas that were strongly positive. Over a follow-up period ranging from 6 months to 6 years, 23 melanomas metastasized (22 thick, 1 thin). In total, XIAP was immunohistochemically detected in 17 of 23 metastases (74%). Metastasis occurred in 1 of 9 XIAP-positive thin melanomas; 0 of 28 XIAP-negative thin melanomas; 17 of 22 XIAP-positive thick melanomas, and 5 of 8 XIAP-negative thick melanomas (63%). XIAP is immunohistochemically detectable nearly three times more frequently in thick compared with thin melanomas. These results suggest that XIAP elevation may be correlated with increasing melanoma thickness and tumor progression.

  17. Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma

    PubMed Central

    Cao, Hui-Hui; Chu, Jian-Hong; Kwan, Hiu-Yee; Su, Tao; Yu, Hua; Cheng, Chi-Yan; Fu, Xiu-Qiong; Guo, Hui; Li, Ting; Tse, Anfernee Kai-Wing; Chou, Gui-Xin; Mo, Huan-Biao; Yu, Zhi-Ling

    2016-01-01

    Signal transducer and activator of transcription 3 (STAT3) signaling is constantly activated in human melanoma, and promotes melanoma metastasis. The dietary flavonoid apigenin is a bioactive compound that possesses low toxicity and exerts anti-metastatic activity in melanoma. However, the anti-metastasis mechanism of apigenin has not been fully elucidated. In the present study, we showed that apigenin suppressed murine melanoma B16F10 cell lung metastasis in mice, and inhibited cell migration and invasion in human and murine melanoma cells. Further study indicated that apigenin effectively suppressed STAT3 phosphorylation, decreased STAT3 nuclear localization and inhibited STAT3 transcriptional activity. Apigenin also down-regulated STAT3 target genes MMP-2, MMP-9, VEGF and Twist1, which are involved in cell migration and invasion. More importantly, overexpression of STAT3 or Twist1 partially reversed apigenin-impaired cell migration and invasion. Our data not only reveal a novel anti-metastasis mechanism of apigenin but also support the notion that STAT3 is an attractive and promising target for melanoma treatment. PMID:26911838

  18. NGF reprograms metastatic melanoma to a bipotent glial-melanocyte neural crest-like precursor

    PubMed Central

    Kasemeier-Kulesa, Jennifer C.; Romine, Morgan H.; Morrison, Jason A.; Bailey, Caleb M.; Welch, Danny R.

    2018-01-01

    ABSTRACT Melanoma pathogenesis from normal neural crest-derived melanocytes is often fatal due to aggressive cell invasion throughout the body. The identification of signals that reprogram de-differentiated, metastatic melanoma cells to a less aggressive and stable phenotype would provide a novel strategy to limit disease progression. In this study, we identify and test the function of developmental signals within the chick embryonic neural crest microenvironment to reprogram and sustain the transition of human metastatic melanoma to a neural crest cell-like phenotype. Results reveal that co-culture of the highly aggressive and metastatic human melanoma cell line C8161 upregulate a marker of melanosome formation (Mart-1) in the presence of embryonic day 3.5 chick trunk dorsal root ganglia. We identify nerve growth factor (NGF) as the signal within this tissue driving Mart-1 re-expression and show that NGF receptors trkA and p75 cooperate to induce Mart-1 re-expression. Furthermore, Mart-1 expressing C8161 cells acquire a gene signature of poorly aggressive C81-61 cells. These data suggest that targeting NGF signaling may yield a novel strategy to reprogram metastatic melanoma toward a benign cell type. PMID:29175861

  19. miR-193b Regulates Mcl-1 in Melanoma.

    PubMed

    Chen, Jiamin; Zhang, Xiao; Lentz, Cindy; Abi-Daoud, Marie; Paré, Geneviève C; Yang, Xiaolong; Feilotter, Harriet E; Tron, Victor A

    2011-11-01

    MicroRNAs play important roles in gene regulation, and their expression is frequently dysregulated in cancer cells. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 in melanoma cells, suggesting that miR-193b could act as a tumor suppressor. Herein, we demonstrate that miR-193b also down-regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. MicroRNA microarray profiling revealed that miR-193b is expressed at a significantly lower level in malignant melanoma than in benign nevi. Consistent with this, Mcl-1 is detected at a higher level in malignant melanoma than in benign nevi. In a survey of melanoma samples, the level of Mcl-1 is inversely correlated with the level of miR-193b. Overexpression of miR-193b in melanoma cells represses Mcl-1 expression. Previous studies showed that Mcl-1 knockdown cells are hypersensitive to ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-w. Similarly, overexpression of miR-193b restores ABT-737 sensitivity to ABT-737-resistant cells. Furthermore, the effect of miR-193b on the expression of Mcl-1 seems to be mediated by direct interaction between miR-193b and seed and seedless pairing sequences in the 3' untranslated region of Mcl-1 mRNA. Thus, this study provides evidence that miR-193b directly regulates Mcl-1 and that down-regulation of miR-193b in vivo could be an early event in melanoma progression. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. TGF-β-Induced Transcription Sustains Amoeboid Melanoma Migration and Dissemination

    PubMed Central

    Cantelli, Gaia; Orgaz, Jose L.; Rodriguez-Hernandez, Irene; Karagiannis, Panagiotis; Maiques, Oscar; Matias-Guiu, Xavier; Nestle, Frank O.; Marti, Rosa M.; Karagiannis, Sophia N.; Sanz-Moreno, Victoria

    2015-01-01

    Summary Cell migration underlies metastatic dissemination of cancer cells, and fast “amoeboid” migration in the invasive fronts of tumors is controlled by high levels of actomyosin contractility. How amoeboid migration is regulated by extracellular signals and sustained over time by transcriptional changes is not fully understood. Transforming growth factor β (TGF-β) is well known to promote epithelial-to-mesenchymal transition (EMT) and contribute to metastasis, but melanocytes are neural crest derivatives that have undergone EMT during embryonic development. Surprisingly, we find that in melanoma, TGF-β promotes amoeboid features such as cell rounding, membrane blebbing, high levels of contractility, and increased invasion. Using genome-wide transcriptomics, we find that amoeboid melanoma cells are enriched in a TGF-β-driven signature. We observe that downstream of TGF-β, SMAD2 and its adaptor CITED1 control amoeboid behavior by regulating the expression of key genes that activate contractile forces. Moreover, CITED1 is highly upregulated during melanoma progression, and its high expression is associated with poor prognosis. CITED1 is coupled to a contractile-rounded, amoeboid phenotype in a panel of 16 melanoma cell lines, in mouse melanoma xenografts, and in 47 human melanoma patients. Its expression is also enriched in the invasive fronts of lesions. Functionally, we show how the TGF-β-SMAD2-CITED1 axis promotes different steps associated with progression: melanoma detachment from keratinocytes, 2D and 3D migration, attachment to endothelial cells, and in vivo lung metastatic initial colonization and outgrowth. We propose a novel mechanism by which TGF-β-induced transcription sustains actomyosin force in melanoma cells and thereby promotes melanoma progression independently of EMT. PMID:26526369

  1. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma.

    PubMed

    Linnemann, Carsten; van Buuren, Marit M; Bies, Laura; Verdegaal, Els M E; Schotte, Remko; Calis, Jorg J A; Behjati, Sam; Velds, Arno; Hilkmann, Henk; Atmioui, Dris El; Visser, Marten; Stratton, Michael R; Haanen, John B A G; Spits, Hergen; van der Burg, Sjoerd H; Schumacher, Ton N M

    2015-01-01

    Tumor-specific neo-antigens that arise as a consequence of mutations are thought to be important for the therapeutic efficacy of cancer immunotherapies. Accumulating evidence suggests that neo-antigens may be commonly recognized by intratumoral CD8+ T cells, but it is unclear whether neo-antigen-specific CD4+ T cells also frequently reside within human tumors. In view of the accepted role of tumor-specific CD4+ T-cell responses in tumor control, we addressed whether neo-antigen-specific CD4+ T-cell reactivity is a common property in human melanoma.

  2. Melanoma Is Skin Deep: A 3D Reconstruction Technique for Computerized Dermoscopic Skin Lesion Classification

    PubMed Central

    Satheesha, T. Y.; Prasad, M. N. Giri; Dhruve, Kashyap D.

    2017-01-01

    Melanoma mortality rates are the highest amongst skin cancer patients. Melanoma is life threating when it grows beyond the dermis of the skin. Hence, depth is an important factor to diagnose melanoma. This paper introduces a non-invasive computerized dermoscopy system that considers the estimated depth of skin lesions for diagnosis. A 3-D skin lesion reconstruction technique using the estimated depth obtained from regular dermoscopic images is presented. On basis of the 3-D reconstruction, depth and 3-D shape features are extracted. In addition to 3-D features, regular color, texture, and 2-D shape features are also extracted. Feature extraction is critical to achieve accurate results. Apart from melanoma, in-situ melanoma the proposed system is designed to diagnose basal cell carcinoma, blue nevus, dermatofibroma, haemangioma, seborrhoeic keratosis, and normal mole lesions. For experimental evaluations, the PH2, ISIC: Melanoma Project, and ATLAS dermoscopy data sets is considered. Different feature set combinations is considered and performance is evaluated. Significant performance improvement is reported the post inclusion of estimated depth and 3-D features. The good classification scores of sensitivity = 96%, specificity = 97% on PH2 data set and sensitivity = 98%, specificity = 99% on the ATLAS data set is achieved. Experiments conducted to estimate tumor depth from 3-D lesion reconstruction is presented. Experimental results achieved prove that the proposed computerized dermoscopy system is efficient and can be used to diagnose varied skin lesion dermoscopy images. PMID:28512610

  3. [Melanoma in organ transplant patients].

    PubMed

    Lévêque, L; Dalac, S; Dompmartin, A; Louvet, S; Euvrard, S; Catteau, B; Hazan, M; Schollhamer, M; Aubin, F; Dreno, B; Daguin, P; Chevrant-Breton, J; Frances, C; Bismuth, M J; Tanter, Y; Lambert, D

    2000-02-01

    The incidence of cutaneous melanoma has rapidly increased in the white population over the last decades. It has been estimated that the incidence doubles world-wide every 10 years. Different risk factors have been identified, including immunosuppression. The aim of our study-was to determine the relative risk of developing melanoma in the organ transplant population and the clinical and histological features of their melanomas. This retrospective study was conducted with the collaboration of 9 University Hospital Centers: Besançon, Brest, Caen, Dijon, Lille, Lyon, Nantes, Paris (Pitié-Salpétrière) and Rennes. A questionnaire was sent to the different departments of dermatology of these hospitals to obtain information on patients who had presented a melanoma after a transplantation between 1971 and 1997. During this period, there were 12,477 organ transplant recipients in the transplantation units of these 9 hospitals. Average follow-up for these patients was about 5 years and the average duration of immunosuppressive therapy was about 4.5 years. Among 12,477 organ transplant recipients, we found 17 cases of melanoma but no data could be obtain on one case: 14 occurred in renal transplant recipients and 3 in cardiac transplant recipients. Clinical and histological data were only available in 16 patients. The average time between transplantation and diagnosis of melanoma was 63 months, but it was 5 times shorter for 2 patients who had a past history of melanoma before transplantation. Two patients had a mucosal melanoma; for the cutaneous melanomas, 2 appeared on Dubreuilh melanosis, 2 were in situ melanomas, 7 were superficial spreading melanomas and 3 were nodular melanomas. The histological review of 11 cutaneous melanomas revealed a precursor nevus in 6 cases and a weak or no stroma reaction in 7/7 cases. Complete excision of the melanoma was performed in all patients except one with anorectal melanoma. Four patients died of visceral metastasis within a mean

  4. Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells

    PubMed Central

    Beck, Daniela; Niessner, Heike; Smalley, Keiran S.M.; Flaherty, Keith; Paraiso, Kim H.T.; Busch, Christian; Sinnberg, Tobias; Vasseur, Sophie; Iovanna, Juan Lucio; Drießen, Stefan; Stork, Björn; Wesselborg, Sebastian; Schaller, Martin; Biedermann, Tilo; Bauer, Jürgen; Lasithiotakis, Konstantinos; Weide, Benjamin; Eberle, Jürgen; Schittek, Birgit; Schadendorf, Dirk; Garbe, Claus; Kulms, Dagmar; Meier, Friedegund

    2013-01-01

    The V600E mutation in the kinase BRAF is frequently detected in melanomas and results in constitutive activation of BRAF, which then promotes cell proliferation by the mitogen-activated protein kinase (MAPK) signaling pathway. Although the BRAFV600E kinase inhibitor vemurafenib has remarkable antitumor activity in patients with BRAFV600E-mutated melanoma, its effects are limited by the onset of drug resistance. We found that exposure of melanoma cell lines with the BRAFV600E mutation to vemurafenib decreased the abundance of anti-apoptotic proteins and induced intrinsic mitochondrial apoptosis. Vemurafenib-treated melanoma cells showed increased cytosolic concentration of calcium, a potential trigger for endoplasmic reticulum (ER) stress, which can lead to apoptosis. Consistent with an ER stress-induced response, vemurafenib decreased the abundance of the ER chaperone protein GRP78, increased the abundance of the spliced isoform of the transcription factor X-box protein 1 (XBP1) (which transcriptionally activates genes involved in ER stress responses), increased the phosphorylation of the translation initiation factor eIF2α (which would be expected to inhibit protein synthesis), and induced the expression of ER stress-related genes. Knockdown of the ER stress response protein ATF4 significantly reduced vemurafenib-induced apoptosis. Moreover, the ER stress inducer thapsigargin prevented invasive growth of tumors formed from vemurafenib-sensitive melanoma cells in vivo. In melanoma cells with low sensitivity or resistance to vemurafenib, combination treatment with thapsigargin augmented or induced apoptosis. Thus, thapsigargin or other inducers of ER stress may be useful in combination therapies to overcome vemurafenib resistance. PMID:23362240

  5. Rare Variant, Gene-Based Association Study of Hereditary Melanoma Using Whole-Exome Sequencing.

    PubMed

    Artomov, Mykyta; Stratigos, Alexander J; Kim, Ivana; Kumar, Raj; Lauss, Martin; Reddy, Bobby Y; Miao, Benchun; Daniela Robles-Espinoza, Carla; Sankar, Aravind; Njauw, Ching-Ni; Shannon, Kristen; Gragoudas, Evangelos S; Marie Lane, Anne; Iyer, Vivek; Newton-Bishop, Julia A; Timothy Bishop, D; Holland, Elizabeth A; Mann, Graham J; Singh, Tarjinder; Daly, Mark J; Tsao, Hensin

    2017-12-01

    Extraordinary progress has been made in our understanding of common variants in many diseases, including melanoma. Because the contribution of rare coding variants is not as well characterized, we performed an exome-wide, gene-based association study of familial cutaneous melanoma (CM) and ocular melanoma (OM). Using 11 990 jointly processed individual DNA samples, whole-exome sequencing was performed, followed by large-scale joint variant calling using GATK (Genome Analysis ToolKit). PLINK/SEQ was used for statistical analysis of genetic variation. Four models were used to estimate the association among different types of variants. In vitro functional validation was performed using three human melanoma cell lines in 2D and 3D proliferation assays. In vivo tumor growth was assessed using xenografts of human melanoma A375 melanoma cells in nude mice (eight mice per group). All statistical tests were two-sided. Strong signals were detected for CDKN2A (Pmin = 6.16 × 10-8) in the CM cohort (n = 273) and BAP1 (Pmin = 3.83 × 10-6) in the OM (n = 99) cohort. Eleven genes that exhibited borderline association (P < 10-4) were independently validated using The Cancer Genome Atlas melanoma cohort (379 CM, 47 OM) and a matched set of 3563 European controls with CDKN2A (P = .009), BAP1 (P = .03), and EBF3 (P = 4.75 × 10-4), a candidate risk locus, all showing evidence of replication. EBF3 was then evaluated using germline data from a set of 132 familial melanoma cases and 4769 controls of UK origin (joint P = 1.37 × 10-5). Somatically, loss of EBF3 expression correlated with progression, poorer outcome, and high MITF tumors. Functionally, induction of EBF3 in melanoma cells reduced cell growth in vitro, retarded tumor formation in vivo, and reduced MITF levels. The results of this large rare variant germline association study further define the mutational landscape of hereditary melanoma and implicate EBF3 as a possible CM predisposition gene.

  6. Ligand-directed targeting of lymphatic vessels uncovers mechanistic insights in melanoma metastasis.

    PubMed

    Christianson, Dawn R; Dobroff, Andrey S; Proneth, Bettina; Zurita, Amado J; Salameh, Ahmad; Dondossola, Eleonora; Makino, Jun; Bologa, Cristian G; Smith, Tracey L; Yao, Virginia J; Calderone, Tiffany L; O'Connell, David J; Oprea, Tudor I; Kataoka, Kazunori; Cahill, Dolores J; Gershenwald, Jeffrey E; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2015-02-24

    Metastasis is the most lethal step of cancer progression in patients with invasive melanoma. In most human cancers, including melanoma, tumor dissemination through the lymphatic vasculature provides a major route for tumor metastasis. Unfortunately, molecular mechanisms that facilitate interactions between melanoma cells and lymphatic vessels are unknown. Here, we developed an unbiased approach based on molecular mimicry to identify specific receptors that mediate lymphatic endothelial-melanoma cell interactions and metastasis. By screening combinatorial peptide libraries directly on afferent lymphatic vessels resected from melanoma patients during sentinel lymphatic mapping and lymph node biopsies, we identified a significant cohort of melanoma and lymphatic surface binding peptide sequences. The screening approach was designed so that lymphatic endothelium binding peptides mimic cell surface proteins on tumor cells. Therefore, relevant metastasis and lymphatic markers were biochemically identified, and a comprehensive molecular profile of the lymphatic endothelium during melanoma metastasis was generated. Our results identified expression of the phosphatase 2 regulatory subunit A, α-isoform (PPP2R1A) on the cell surfaces of both melanoma cells and lymphatic endothelial cells. Validation experiments showed that PPP2R1A is expressed on the cell surfaces of both melanoma and lymphatic endothelial cells in vitro as well as independent melanoma patient samples. More importantly, PPP2R1A-PPP2R1A homodimers occur at the cellular level to mediate cell-cell interactions at the lymphatic-tumor interface. Our results revealed that PPP2R1A is a new biomarker for melanoma metastasis and show, for the first time to our knowledge, an active interaction between the lymphatic vasculature and melanoma cells during tumor progression.

  7. Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma

    PubMed Central

    Anna, Brozyna; Blazej, Zbytek; Jacqueline, Granese; Andrew, Carlson J.; Jeffrey, Ross; Andrzej, Slominski

    2008-01-01

    Summary Melanoma consists 4–5 % of all skin cancers, but it contributes to 71–80 % of skin cancers deaths. UV light affects cell and tissue homeostasis due to its damaging effects on DNA integrity and modification of expression of a plethora of genes. DNA repair systems protect cells from UV-induced lesions. Several animal models of melanoma have been developed (Xiphophorus, Opossum Monodelphis domestica, mouse models and human skin engrafts into other animals). This review discusses possible links between UV and genes significantly related to melanoma but does not discuss melanoma genetics. These include oncogenes, tumor suppressor genes, genes related to melanocyte-keratinocyte and melanocyte-matrix interaction, growth factors and their receptors, CRH, ACTH, α-MSH, glucocorticoids, ID1, NF-kappaB and vitamin D3. PMID:18846265

  8. Dermoscopic features of thin melanomas: a comparative study of melanoma in situ and invasive melanomas smaller than or equal to 1mm*

    PubMed Central

    da Silva, Vanessa Priscilla Martins; Ikino, Juliana Kida; Sens, Mariana Mazzochi; Nunes, Daniel Holthausen; Di Giunta, Gabriella

    2013-01-01

    BACKGROUND Dermoscopy allows the early detection of melanomas. The preoperative determination of Breslow index by dermoscopy could be useful in planning the surgical approach and in selecting patients for sentinel lymph node biopsy. OBJECTIVES This study aims at describing the dermoscopic features of thin melanomas and comparing melanomas in situ with invasive melanomas less than or equal to 1 mm thick. METHODS This was an observational retrospective study in which the dermoscopy photographs of 41 thin melanomas were evaluated. Three observers evaluated together 14 dermoscopic criteria. RESULTS Among thin melanomas, the most frequent criteria were presence of asymmetry in two axes in 95% of cases (39 cases), 3 or more colors in 80.4% of cases (33 cases), atypical dots or globules in 58.5% of cases (24 cases) and atypical network or streaks in 53.6% of cases (22 cases). The group of invasive melanomas presented with a higher frequency and statistical significance (p <0.05) 3 or more colors (OR: 16.1), milky red areas (OR: 4.8) and blue-white veil (OR: 20.4), and a greater tendency to have streaks or atypical network (OR: 3.66). CONCLUSIONS Thin melanomas tend to have asymmetry in the two axes, 3 or more colors, atypical dots or globules and atypical network or streaks. Melanomas in situ tend to have up to 2 colors, no blue-white veil and no milky red area. Invasive melanomas tend to have 3 or more colors, a milky red area, blue-white veil, and atypical network or streaks. Further studies are needed to confirm these findings. PMID:24173175

  9. Epigenetic regulation of the transcription factor Foxa2 directs differential elafin expression in melanocytes and melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Kyung Sook; Jo, Ji Yoon; Kim, Su Jin

    2011-04-29

    Highlights: {yields} Elafin expression is epigenetically silenced in human melanoma cells. {yields} Foxa2 expression in melanoma cells is silenced by promoter hypermethylation. {yields} Foxa2 directs activation of the elafin promoter in vivo. {yields} Foxa2 expression induces apoptosis of melanoma cells via elafin re-expression. -- Abstract: Elafin, a serine protease inhibitor, induces the intrinsic apoptotic pathway in human melanoma cells, where its expression is transcriptionally silenced. However, it remains unknown how the elafin gene is repressed in melanoma cells. We here demonstrate that elafin expression is modulated via epigenetically regulated expression of the transcription factor Foxa2. Treatment of melanoma cells withmore » a DNA methyltransferase inhibitor induced elafin expression, which was specifically responsible for reduced proliferation and increased apoptosis. Suppression of Foxa2 transcription, mediated by DNA hypermethylation in its promoter region, was released in melanoma cells upon treatment with the demethylating agent. Luciferase reporter assays indicated that the Foxa2 binding site in the elafin promoter was critical for the activation of the promoter. Chromatin immunoprecipitation assays further showed that Foxa2 bound to the elafin promoter in vivo. Analyses of melanoma cells with varied levels of Foxa2 revealed a correlated expression between Foxa2 and elafin and the ability of Foxa2 to induce apoptosis. Our results collectively suggest that, in melanoma cells, Foxa2 expression is silenced and therefore elafin is maintained unexpressed to facilitate cell proliferation in the disease melanoma.« less

  10. Clinicopathologic features and survival in Spitzoid malignant melanoma and conventional malignant melanoma.

    PubMed

    Semkova, Kristina; Lott, Jason P; Lazova, Rossitza

    2014-09-01

    Although recent advances in genetics have revealed distinct mutational profiles and molecular signaling pathways associated with Spitzoid malignant melanoma (SMM), less is known about the clinicopathologic characteristics and behavior of SMM compared with conventional melanoma. We sought to determine the clinicopathologic characteristics and mortality risk associated with SMM and conventional malignant melanoma. We conducted a retrospective study of 30 patients with SMM and 30 patients with conventional melanoma. The two groups were matched by age, gender, and depth of tumor invasion. Additional patient- and tumor-level characteristics were compared between groups and regression modeling was used to assess relative mortality risk. Unadjusted analyses of SMM and conventional malignant melanoma revealed no significant differences in clinical impression, anatomic location, mitotic rate, and presence of ulceration. Sentinel lymph node biopsy, completion lymphadenectomy, and visceral metastases did not differ between groups. Cox proportional hazards regression showed no differences in mortality between Spitzoid and conventional melanoma. Small sample size, short follow-up duration, and residual confounding may limit the accuracy and generalizability of our results. SMM and conventional malignant melanoma differ in some clinicopathologic features. We did not find a statistically significant difference in mortality between the two. Copyright © 2014 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  11. Digital image analysis improves precision of programmed death ligand 1 (PD-L1) scoring in cutaneous melanoma.

    PubMed

    Koelzer, Viktor H; Gisler, Aline; Hanhart, Jonathan C; Griss, Johannes; Wagner, Stephan N; Willi, Niels; Cathomas, Gieri; Sachs, Melanie; Kempf, Werner; Thommen, Daniela S; Mertz, Kirsten D

    2018-04-16

    Immune checkpoint inhibitors have become a successful treatment in metastatic melanoma. The high response rates in a subset of patients suggest that a sensitive companion diagnostic test is required. The predictive value of programmed death ligand 1 (PD-L1) staining in melanoma has been questioned due to inconsistent correlation with clinical outcome. Whether this is due to predictive irrelevance of PD-L1 expression or inaccurate assessment techniques remains unclear. The aim of this study was to develop a standardized digital protocol for the assessment of PD-L1 staining in melanoma and to compare the output data and reproducibility to conventional assessment by expert pathologists. In two cohorts with a total of 69 cutaneous melanomas, a highly significant correlation was found between pathologist-based consensus reading and automated PD-L1 analysis (R=0.97, p<0.0001). Digital scoring captured the full diagnostic spectrum of PD-L1 expression at single cell resolution. An average of 150.472 melanoma cells (median 38.668 cells; range 733-1.078.965) were scored per lesion. Machine learning was used to control for heterogeneity introduced by PD-L1 positive inflammatory cells in the tumour microenvironment. The PD-L1 image analysis protocol showed excellent reproducibility (R=1.0, p<0.0001) when carried out on independent workstations and reduced variability in PD-L1 scoring of human observers. When melanomas were grouped by PD-L1 expression status, we found a clear correlation of PD-L1 positivity with CD8 positive T-cell infiltration, but not with tumour stage, metastasis or driver mutation status. Digital evaluation of PD-L1 reduces scoring variability and may facilitate patient stratification in clinical practice. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy

    PubMed Central

    Filip, Gabriela Adriana; Olteanu, Diana; Cenariu, Mihai; Tabaran, Flaviu; Ion, Rodica Mariana; Gligor, Lucian; Baldea, Ioana

    2017-01-01

    Background Melanoma therapy is challenging, especially in advanced cases, due to multiple developed tumor defense mechanisms. Photodynamic therapy (PDT) might represent an adjuvant treatment, because of its bimodal action: tumor destruction and immune system awakening. In this study, a combination of PDT mediated by a metal substituted phthalocyanine—Gallium phthalocyanine chloride (GaPc) and Metformin was used against melanoma. The study aimed to: (1) find the anti-melanoma efficacy of GaPc-PDT, (2) assess possible beneficial effects of Metformin addition to PDT, (3) uncover some of the mechanisms underlining cell killing and anti-angiogenic effects. Methods Two human lightly pigmented melanoma cell lines: WM35 and M1/15 subjected to previous Metformin exposure were treated by GaPc-PDT. Cell viability, death mechanism, cytoskeleton alterations, oxidative damage, were assessed by means of colorimetry, flowcytometry, confocal microscopy, spectrophotometry, ELISA, Western Blotting. Results GaPc proved an efficient photosensitizer. Metformin addition enhanced cell killing by mechanisms dependent on the cell line, namely apoptosis in the metastatic M1/15 and necrosis in the radial growth phase, WM35. Cell death mechanism relied on the inhibition of nuclear transcription factor (NF)-κB activation and tumor necrosis factor (TNF)—related apoptosis-inducing ligand (TRAIL) sensitization, leading to TRAIL and TNF-α induced apoptosis. Metformin diminished the anti-angiogenic effect of PDT. Conclusions Metformin addition to GaPc-PDT increased tumor cell killing through enhanced oxidative damage and induction of proapoptotic mechanisms, but altered PDT anti-angiogenic effects. General significance Combination of Metformin and PDT might represent a solution to enhance the efficacy, leading to a potential adjuvant role of PDT in melanoma therapy. PMID:28278159

  13. Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy.

    PubMed

    Tudor, Diana; Nenu, Iuliana; Filip, Gabriela Adriana; Olteanu, Diana; Cenariu, Mihai; Tabaran, Flaviu; Ion, Rodica Mariana; Gligor, Lucian; Baldea, Ioana

    2017-01-01

    Melanoma therapy is challenging, especially in advanced cases, due to multiple developed tumor defense mechanisms. Photodynamic therapy (PDT) might represent an adjuvant treatment, because of its bimodal action: tumor destruction and immune system awakening. In this study, a combination of PDT mediated by a metal substituted phthalocyanine-Gallium phthalocyanine chloride (GaPc) and Metformin was used against melanoma. The study aimed to: (1) find the anti-melanoma efficacy of GaPc-PDT, (2) assess possible beneficial effects of Metformin addition to PDT, (3) uncover some of the mechanisms underlining cell killing and anti-angiogenic effects. Two human lightly pigmented melanoma cell lines: WM35 and M1/15 subjected to previous Metformin exposure were treated by GaPc-PDT. Cell viability, death mechanism, cytoskeleton alterations, oxidative damage, were assessed by means of colorimetry, flowcytometry, confocal microscopy, spectrophotometry, ELISA, Western Blotting. GaPc proved an efficient photosensitizer. Metformin addition enhanced cell killing by mechanisms dependent on the cell line, namely apoptosis in the metastatic M1/15 and necrosis in the radial growth phase, WM35. Cell death mechanism relied on the inhibition of nuclear transcription factor (NF)-κB activation and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) sensitization, leading to TRAIL and TNF-α induced apoptosis. Metformin diminished the anti-angiogenic effect of PDT. Metformin addition to GaPc-PDT increased tumor cell killing through enhanced oxidative damage and induction of proapoptotic mechanisms, but altered PDT anti-angiogenic effects. Combination of Metformin and PDT might represent a solution to enhance the efficacy, leading to a potential adjuvant role of PDT in melanoma therapy.

  14. Sunburn, suntan and the risk of cutaneous malignant melanoma--The Western Canada Melanoma Study.

    PubMed Central

    Elwood, J. M.; Gallagher, R. P.; Davison, J.; Hill, G. B.

    1985-01-01

    A comparison of interview data on 595 patients with newly incident cutaneous melanoma, excluding lentigo maligna melanoma and acral lentiginous melanoma, with data from comparison subjects drawn from the general population, showed that melanoma risk increased in association with the frequency and severity of past episodes of sunburn, and also that melanoma risk was higher in subjects who usually had a relatively mild degree of suntan compared to those with moderate or deep suntan in both winter and summer. The associations with sunburn and with suntan were independent. Melanoma risk is also increased in association with a tendency to burn easily and tan poorly and with pigmentation characteristics of light hair and skin colour, and history freckles; the associations with sunburn and suntan are no longer significant when these other factors are taken into account. This shows that pigmentation characteristics, and the usual skin reaction to sun, are more closely associated with melanoma risk than are sunburn and suntan histories. PMID:3978032

  15. Are tanning beds "safe"? Human studies of melanoma.

    PubMed

    Berwick, Marianne

    2008-10-01

    Controversy continues over the carcinogenic properties of tanning beds. The tanning industry "sells" tanning beds as a safe alternative to UV exposure for both tanning as well as vitamin D biosynthesis. But, how safe are tanning beds? Epidemiologic data - incomplete and unsatisfactory - suggests that tanning beds are not safer than solar ultraviolet radiation and that they may have independent effects from solar exposure that increase risk for melanoma.

  16. Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi

    PubMed Central

    Matthews, Thomas E.; Piletic, Ivan R.; Selim, M. Angelica; Simpson, Mary Jane; Warren, Warren S.

    2012-01-01

    Melanoma diagnosis is clinically challenging; the accuracy of visual inspection by dermatologists is highly variable and heavily weighted toward false positives. Even the current gold standard of biopsy results in varying diagnoses among pathologists. We have developed a multiphoton technique (based on pump-probe spectroscopy) that directly determines the microscopic distribution of eumelanin and pheomelanin in pigmented lesions of human skin. Our initial results showed a marked difference in the chemical variety of melanin between nonmalignant nevi and melanoma, as well as a number of substantial architectural differences. We examined slices from 42 pigmented lesions and found that melanomas had an increased eumelanin content compared to nonmalignant nevi. When used as a diagnostic criterion, the ratio of eumelanin to pheomelanin captured all investigated melanomas but excluded three-quarters of dysplastic nevi and all benign dermal nevi. Evaluating architectural and cytological features revealed by multiphoton imaging, including the maturation of melanocytes, presence of pigmented melanocytes in the dermis, number and location of melanocytic nests, and confluency of pigmented cells in the epidermis, further increased specificity, allowing rejection of more than half of the remaining false-positive results. We then adapted this multiphoton imaging technique to hematoxylin and eosin (H&E)–stained slides. By adding melanin chemical contrast to H&E-stained slides, pathologists will gain complementary information to increase the ease and accuracy of melanoma diagnosis. PMID:21346168

  17. Expression and clinicopathological significance of microRNA-21 and programmed cell death 4 in malignant melanoma.

    PubMed

    Jiao, Jian; Fan, Yu; Zhang, Yan

    2015-10-01

    To measure levels of microRNA (miR)-21 and its target gene, programmed cell death 4 (PDCD4), in samples of human cutaneous malignant melanoma and normal non-malignant control skin. Relative levels of miR-21 and PDCD4 mRNA were measured using a quantitative real-time reverse transcription-polymerase chain reaction. Correlations between the levels of the two molecules and the clinicopathological characteristics of malignant melanoma were analysed. A total of 67 cases of human cutaneous malignant melanoma were analysed and compared with 67 samples of normal nonmalignant control skin. Compared with normal skin samples, the relative level of miR-21 was significantly higher and the relative level of PDCD4 mRNA was significantly lower in the melanoma specimens. A significant negative correlation between PDCD4 mRNA and miR-21 was demonstrated in malignant melanoma (r = -0.602). Elevated miR-21 and reduced PDCD4 mRNA levels were both significantly correlated with increased tumour size, a higher Clark classification level and the presence of lymph node metastases in malignant melanoma. These findings suggest that miR-21 and PDCD4 might be potential biomarkers for malignant melanoma and might provide treatment targets in the future. © The Author(s) 2015.

  18. Pigmented basal cell carcinoma mimicking a superficial spreading melanoma.

    PubMed

    Hasbún Acuña, Paula; Cullen Aravena, Roberto; Maturana Donaire, César; Ares Mora, Raúl; Porras Kusmanic, Ninoska

    2016-12-20

    Basal cell carcinoma is the most common form of skin cancer, especially in elderly people. Pigmented basal cell carcinoma is a rare subtype and has been described in the literature as a nodular and hyperpigmented lesion; rarely, it can appear as an extensive pigmented plate, which may be clinically indistinguishable from superficial spreading melanoma and Bowen disease. Dermatoscopy has a high sensitivity in the diagnosis of basal cell carcinoma. When Menzies criteria are used; however, the final diagnosis is made by histopathology. The objective of the present report is to analyze the case of a patient with pigmented basal cell carcinoma simulating a superficial spreading melanoma.

  19. Impact of BRAF kinase inhibitors on the miRNomes and transcriptomes of melanoma cells.

    PubMed

    Kozar, Ines; Cesi, Giulia; Margue, Christiane; Philippidou, Demetra; Kreis, Stephanie

    2017-11-01

    Melanoma is an aggressive skin cancer with increasing incidence worldwide. The development of BRAF kinase inhibitors as targeted treatments for patients with BRAF-mutant tumours contributed profoundly to an improved overall survival of patients with metastatic melanoma. Despite these promising results, the emergence of rapid resistance to targeted therapy remains a serious clinical issue. To investigate the impact of BRAF inhibitors on miRNomes and transcriptomes, we used in vitro melanoma models consisting of BRAF inhibitor-sensitive and -resistant cell lines generated in our laboratory. Subsequently, microarray analyses were performed followed by RT-qPCR validations. Regarding miRNome and transcriptome changes, the long-term effects of BRAF inhibition differed in a cell line-specific manner with the two different BRAF inhibitors inducing comparable responses in three melanoma cell lines. Despite this heterogeneity, several miRNAs (e.g. miR-92a-1-5p, miR-708-5p) and genes (e.g. DOK5, PCSK2) were distinctly differentially expressed in drug-resistant versus -sensitive cell lines. Analyses of coexpressed miRNAs, as well as inversely correlated miRNA-mRNA pairs, revealed a low MITF/AXL ratio in two drug-resistant cell lines that might be regulated by miRNAs. Several genes and miRNAs were differentially regulated in the drug-resistant and -sensitive cell lines and might be considered as prognostic and/or diagnostic resistance biomarkers in melanoma drug resistance. Thus far, only little information is available on the significance and role of miRNAs with respect to kinase inhibitor treatments and emergence of drug resistance. In this study, promising miRNAs and genes were identified and associated to BRAF inhibitor-mediated resistance in melanoma. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Selective expression of inhibitory Fcgamma receptor by metastatic melanoma impairs tumor susceptibility to IgG-dependent cellular response.

    PubMed

    Cassard, Lydie; Cohen-Solal, Joel F G; Fournier, Emilie M; Camilleri-Broët, Sophie; Spatz, Alain; Chouaïb, Salem; Badoual, Cécile; Varin, Audrey; Fisson, Sylvain; Duvillard, Pierre; Boix, Charlotte; Loncar, Shannon M; Sastre-Garau, Xavier; Houghton, Alan N; Avril, Marie-Françoise; Gresser, Ion; Fridman, Wolf H; Sautès-Fridman, Catherine

    2008-12-15

    During melanoma progression, patients develop anti-tumor immunity including the production of anti-tumor antibodies. Although the strategies developed by malignant cells to escape anti-tumor cellular immunity have been extensively investigated, little is known about tumor resistance to humoral immunity. The main effect of IgG antibodies is to activate the immune response by binding to host Fc gamma receptors (FcgammaR) expressed by immune cells. We previously reported in a limited study that some human metastatic melanoma cells ectopically express the FcgammaRIIB1, an inhibitory isoform of FcgammaR. By analyzing a large panel of different types of human primary and metastatic solid tumors, we report herein that expression of FcgammaRIIB is restricted to melanoma and is acquired during tumor progression. We show that FcgammaRIIB expression prevents the lysis of human metastatic melanoma cells by NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) in vitro, independently of the intracytoplasmic region of FcgammaRIIB. Using experimental mouse models, we demonstrate that expression of FcgammaRIIB protects B16F0 melanoma tumors from the ADCC induced by monoclonal and polyclonal anti-tumor IgG in vivo. Thus, our results identify FcgammaRIIB as a marker of human metastatic melanoma that impairs the tumor susceptibility to FcgammaR-dependent innate effector responses. (c) 2008 Wiley-Liss, Inc.

  1. [Dermoscopy in cutaneous melanoma].

    PubMed

    Gallegos-Hernández, José Francisco; Ortiz-Maldonado, Alma Lilia; Minauro-Muñoz, Gerardo Gabriel; Arias-Ceballos, Héctor; Hernández-Sanjuan, Martín

    2015-01-01

    The mortality of cutaneous melanoma has not declined over the past 50 years. The only interventions that can reduce mortality are primary prevention and early diagnosis, and the dermoscopic evaluation is essential to achieve this. Dermoscopy identifies characteristics of melanoma that would go unnoticed to the naked eye. The aim of this paper is to report the most frequent dermoscopic findings in patients diagnosed with in situ and invasive melanoma. An observational and retrospective study of contact dermoscopy was performed using LED DermliteTM and camera DermliteTM dermoscope. The findings evaluated were: asymmetry in two axes, association of colours, lack of pigment, irregular points, atypical network, pseudopods, blue veil, ulceration, and peri-lesional pink ring. These dermoscopic findings were compared with the histological diagnosis. The study included 65 patients with cutaneous melanoma; 10 in situ, and 55 invasive. The mean Breslow in invasive melanoma was 3 mm. Most patients (35) had localization in extremities. In all patients, the most frequent dermoscopic finding was asymmetry in two axes, followed by association of two or more colours; in melanoma in situ, asymmetry was the most frequent, followed by atypical-irregular points. In invasive melanoma asymmetry in two axes, the association of two or more colours, and pseudopods, were the most frequent findings. Asymmetry in two axes is the most common dermoscopic finding in in situ and invasive melanoma. The presence of two or more colours in a pigmented lesion should be suspected in an invasive melanoma. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  2. Nodular melanoma is less likely than superficial spreading melanoma to be histologically associated with a naevus.

    PubMed

    Pan, Yan; Adler, Nikki R; Wolfe, Rory; McLean, Catriona A; Kelly, John W

    2017-10-16

    To determine the frequency of naevus-associated melanoma among superficial spreading and nodular subtypes; and to investigate associations between naevus-associated melanoma and other clinico-pathological characteristics. Cross-sectional study of all patients with nodular and superficial spreading melanomas diagnosed between 1994 and 2015 at the Victorian Melanoma Service, Melbourne. Clinical and pathological characteristics of naevus-associated and de novo melanomas were assessed in univariable and multivariable logistic regression analyses. Of 3678 primary melanomas, 1360 (37.0%) were histologically associated with a naevus and 2318 (63.0%) were de novo melanomas; 71 of 621 nodular (11.4%) and 1289 of 3057 superficial spreading melanomas (42.2%) were histologically associated with a naevus. In multivariable analyses, the odds of being associated with a naevus were higher for melanomas located on the trunk (v head and neck: adjusted odds ratio [OR], 2.27; 95% CI, 1.73-2.96; P < 0.001), while the odds were lower for thicker tumours (adjusted OR, 0.75 per millimetre increase in Breslow thickness; 95% CI, 0.69-0.81; P < 0.001), amelanotic/hypomelanotic melanomas (adjusted OR, 0.68; 95% CI, 0.48-0.97; P = 0.035), and older age (patients 70 years or older v patients under 30 at diagnosis: adjusted OR, 0.28; 95% CI, 0.20-0.40; P < 0.001). After adjusting for confounders, the odds of an associated naevus was three times as high for superficial spreading melanomas as for nodular melanomas (adjusted OR, 3.05; 95% CI, 2.24-4.17; P < 0.001). Melanomas are most likely to arise in the absence of a pre-existing naevus, particularly nodular melanomas. Public health campaigns should therefore emphasise the detection of suspicious de novo lesions, as well as of changing lesions.

  3. Frequency and characteristics of melanomas missed at a pigmented lesion clinic: a registry-based study.

    PubMed

    Carli, Paolo; Nardini, Paolo; Crocetti, Emanuele; De Giorgi, Vincenzo; Giannotti, Benvenuto

    2004-10-01

    To ensure the removal of all melanomas at an early phase, a number of benign lesions are currently excised for diagnostic evaluation. Nevertheless, little is known about the frequency of melanomas missed (neither recognized nor excised for diagnostic verification) by early detection practices. This study aimed to investigate the diagnostic performance of a specialized pigmented lesion clinic (PLC) through linkage with a local cancer registry. In 1997, 1741 individuals resident in the area of Florence and Prato, Italy, the catchment area of the Tuscany Cancer Registry (RTT), were consecutively examined at a specialized PLC that has been running since 1992 at the Department of Dermatology of Florence. The outcomes of dermatological consultations retrieved from PLC case notes were compared with all the diagnoses of both in situ and invasive melanoma recorded by the RTT until 31 December 1999. The performance of the PLC in detecting cutaneous melanoma was evaluated in terms of sensitivity, specificity and predictive values, with the RTT data as the gold standard. In the population examined at the PLC, 15 newly incident melanomas, all histologically demonstrated, were recorded by the RTT. In 13 of the 15 cases, excision of the lesion had been recommended by PLC staff, while two melanomas, one in situ and one level II 0.60 mm thick invasive, were missed and were subsequently excised 586 and 824 days, respectively, after the first PLC examination. The clinical and dermoscopic features of the invasive lesion were in agreement with a 'featureless' melanoma, and lacked the well-established parameters of malignancy. A total of 67 benign pigmented skin lesions were excised for diagnostic evaluation. Thus the PLC showed a sensitivity in detecting cutaneous melanoma of 86.7% (95% confidence interval [CI] 85.1-88.3%), a specificity of 95.4% (95% CI 94.3-96.3%), a positive predictive value of 13.7% (95% CI 12.1-15.3%) and a negative predictive value of 99.9% (95% CI 99

  4. Impact of melanoma genetic test reporting on perceived control over melanoma prevention.

    PubMed

    Aspinwall, Lisa G; Stump, Tammy K; Taber, Jennifer M; Kohlmann, Wendy; Leaf, Samantha L; Leachman, Sancy A

    2015-10-01

    To determine whether receiving melanoma genetic test results undermines perceived control over melanoma prevention, control-related beliefs were examined among 60 adults from melanoma-prone families receiving CDKN2A/p16 test results (27 unaffected noncarriers, 15 unaffected carriers, 18 affected carriers; response rate at 2 years = 64.9 % of eligible respondents). Multilevel modeling of perceived control ratings over a 2-year period revealed significant variation in individual trajectories: most participants showed increases (45 %) or no change (38.3 %), while 16.7 % showed decreases. At the group level, noncarriers reported sustained increases through the 2-year follow-up (ps < .05); unaffected carriers reported significant short-term increases (ps < .05); and affected carriers reported no change. Participants in all groups continued to rate photoprotection as highly effective in reducing melanoma risk and reported decreased beliefs that carrying the p16 mutation would inevitably lead to the development of melanoma. Qualitative responses immediately following counseling and test reporting corroborated these findings, as 93 % indicated it was possible to either prevent (64.9 %) or decrease the likelihood (28.1 %) of future melanomas. Thus, genetic test reporting does not generally undermine perceived control over melanoma prevention, though variability in response to positive results warrants future study.

  5. The Role of BPTF in Melanoma Progression and in Response to BRAF-Targeted Therapy

    PubMed Central

    Dar, Altaf A.; Nosrati, Mehdi; Bezrookove, Vladimir; de Semir, David; Majid, Shahana; Thummala, Suresh; Sun, Vera; Tong, Schuyler; Leong, Stanley P. L.; Minor, David; Billings, Paul R.; Soroceanu, Liliana; Debs, Robert; Miller, James R.; Sagebiel, Richard W.

    2015-01-01

    Background: Bromodomain PHD finger transcription factor (BPTF) plays an important role in chromatin remodeling, but its functional role in tumor progression is incompletely understood. Here we explore the oncogenic effects of BPTF in melanoma. Methods: The consequences of differential expression of BPTF were explored using shRNA-mediated knockdown in several melanoma cell lines. Immunoblotting was used to assess the expression of various proteins regulated by BPTF. The functional role of BPTF in melanoma progression was investigated using assays of colony formation, invasion, cell cycle, sensitivity to selective BRAF inhibitors, and in xenograft models of melanoma progression (n = 12 mice per group). The biomarker role of BPTF in melanoma progression was assessed using fluorescence in situ hybridization and immunohistochemical analyses. All statistical tests were two-sided. Results: shRNA-mediated BPTF silencing suppressed the proliferative capacity (by 65.5%) and metastatic potential (by 66.4%) of melanoma cells. Elevated BPTF copy number (mean ≥ 3) was observed in 28 of 77 (36.4%) melanomas. BPTF overexpression predicted poor survival in a cohort of 311 melanoma patients (distant metastasis-free survival P = .03, and disease-specific survival P = .008), and promoted resistance to BRAF inhibitors in melanoma cell lines. Metastatic melanoma tumors progressing on BRAF inhibitors contained low BPTF-expressing, apoptotic tumor cell subclones, indicating the continued presence of drug-responsive subclones within tumors demonstrating overall resistance to anti-BRAF agents. Conclusions: These studies demonstrate multiple protumorigenic functions for BPTF and identify it as a novel target for anticancer therapy. They also suggest the combination of BPTF targeting with BRAF inhibitors as a novel therapeutic strategy for melanomas with mutant BRAF. PMID:25713167

  6. Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1.

    PubMed

    Ge, Rui; Liu, Lin; Dai, Wei; Zhang, Weigang; Yang, Yuqi; Wang, Huina; Shi, Qiong; Guo, Sen; Yi, Xiuli; Wang, Gang; Gao, Tianwen; Luan, Qi; Li, Chunying

    2016-06-01

    Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Diagnosis of metastatic melanoma by fine-needle biopsy: analysis of 2,204 cases.

    PubMed

    Murali, Rajmohan; Doubrovsky, Anna; Watson, Geoffrey F; McKenzie, Paul R; Lee, C Soon; McLeod, Duncan J; Uren, Roger F; Stretch, Jonathan R; Saw, Robyn P M; Thompson, John F; Scolyer, Richard A

    2007-03-01

    Fine-needle biopsy (FNB) has been reported as a rapid, minimally invasive technique for the diagnosis of metastatic melanoma. The diagnostic accuracy of FNB was assessed in a consecutive series of 2,204 FNBs of clinically suspicious lesions from patients with previous primary melanomas treated at the Sydney Melanoma Unit, Sydney, Australia, between January 1992 and December 2002. The sensitivity and specificity of FNB were 96.3% and 98.9%, respectively. There were 5 false-positive cases (0.6%), which were verified as metastatic adenocarcinoma (3 cases) or reactive processes (organizing hematoma and chronic osteomyelitis, 1 each). False-negative diagnoses (6.7% of cases) were associated with a variety of clinicopathologic factors, including difficult-to-access anatomic sites (eg, high axilla or deep inguinal), small lesions, and lesional characteristics such asfibrosis, necrosis, or cystic change. FNB is a highly accurate, rapid, and cost-effective procedure for the diagnosis of metastatic melanoma and should be considered as the initial diagnostic procedure of choice in patients with melanoma with clinically suspected metastases.

  8. Intraoperative evaluation of sentinel lymph nodes for metastatic melanoma by imprint cytology.

    PubMed

    Soo, Victoria; Shen, Perry; Pichardo, Rita; Azzazy, Hossam; Stewart, John H; Geisinger, Kim R; Levine, Edward A

    2007-05-01

    Sentinel lymph node biopsy (SLN) has revolutionized nodal staging. Accurate intraoperative evaluation of SLN permits a single procedure, with lymphadenectomy being performed during the initial operative procedure when the SLN is positive. There is a paucity of literature on intraoperative imprint cytology (IIC) evaluation of the SLN in melanoma. The purpose of this article is to present an update to our experience with IIC for SLN in melanoma. Melanoma patients had SLNs examined by IIC. SLNs were bisected, and imprints were made from each half. Imprints were stained with hematoxylin and eosin and with Diff-Quik. Paraffin-embedded sections were examined with multiple hematoxylin and eosin-stained sections from the SLNs in conjunction with immunohistochemical staining for S-100, Melan-A, and HMB-45 proteins. Metastases were identified in 40 (17%) of 229 patients. Of these, 13 patients were detected by IIC (sensitivity, 33%). The negative predictive value was 88%. No false-positive results were identified (specificity, 100%). The positive predictive value was 100%. The accuracy of IIC was 78%. The sensitivity for detecting macrometastases (>2 mm) was better than that for detecting micrometastases (< or =2 mm): 62% vs. 16% (P < .01). Patients with positive SLNs by IIC had lymphadenectomy under the same anesthetic. A total of 533 nonsentinel lymph nodes were identified in 42 patients. Only two patients (8%) had positive nonsentinel lymph nodes after a negative IIC. IIC is a viable alternative to frozen sectioning when intraoperative evaluation is desired. IIC is significantly more sensitive for macrometastases. IIC evaluation of SLNs in melanoma makes a single operative procedure possible for a significant proportion of patients with regional nodal metastases.

  9. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance

    PubMed Central

    Thakur, Meghna Das; Salangsang, Fernando; Landman, Allison S.; Sellers, William R.; Pryer, Nancy K.; Levesque, Mitchell P.; Dummer, Reinhard; McMahon, Martin; Stuart, Darrin D.

    2014-01-01

    Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, with ≥ 50% of tumours expressing the BRAF(V600E) oncoprotein1,2. Moreover, the marked tumour regression and improved survival of late-stage BRAF-mutated melanoma patients in response to treatment with vemurafenib demonstrates the essential role of oncogenic BRAF in melanoma maintenance3,4. However, as most patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is critical to providing improved therapy5. Here we investigate the cause and consequences of vemurafenib resistance using two independently derived primary human melanoma xeno-graft models in which drugresistanceisselected by continuous vemurafenib administration. In one of these models, resistant tumours show continued dependency on BRAF(V600E) → MEK → ERK signalling owing to elevated BRAF(V600E) expression. Most importantly, we demonstrate that vemurafenib-resistant melanomas become drug dependent for their continued proliferation, such that cessation of drug administration leads to regression of established drug-resistant tumours. We further demonstrate that a discontinuous dosing strategy, which exploits the fitness disadvantage displayed by drug-resistant cells in the absence of the drug, forestalls the onset of lethal drug-resistant disease. These data highlight the concept that drug-resistant cells may also display drug dependency, such that altered dosing may prevent the emergence of lethal drug resistance. Such observations may contribute to sustaining the durability of the vemurafenib response with the ultimate goal of curative therapy for the subset of melanoma patients with BRAF mutations. PMID:23302800

  10. Diagnosing malignant melanoma in ambulatory care: a systematic review of clinical prediction rules.

    PubMed

    Harrington, Emma; Clyne, Barbara; Wesseling, Nieneke; Sandhu, Harkiran; Armstrong, Laura; Bennett, Holly; Fahey, Tom

    2017-03-06

    Malignant melanoma has high morbidity and mortality rates. Early diagnosis improves prognosis. Clinical prediction rules (CPRs) can be used to stratify patients with symptoms of suspected malignant melanoma to improve early diagnosis. We conducted a systematic review of CPRs for melanoma diagnosis in ambulatory care. Systematic review. A comprehensive search of PubMed, EMBASE, PROSPERO, CINAHL, the Cochrane Library and SCOPUS was conducted in May 2015, using combinations of keywords and medical subject headings (MeSH) terms. Studies deriving and validating, validating or assessing the impact of a CPR for predicting melanoma diagnosis in ambulatory care were included. Data extraction and methodological quality assessment were guided by the CHARMS checklist. From 16 334 studies reviewed, 51 were included, validating the performance of 24 unique CPRs. Three impact analysis studies were identified. Five studies were set in primary care. The most commonly evaluated CPRs were the ABCD, more than one or uneven distribution of Colour, or a large (greater than 6 mm) Diameter (ABCD) dermoscopy rule (at a cut-point of >4.75; 8 studies; pooled sensitivity 0.85, 95% CI 0.73 to 0.93, specificity 0.72, 95% CI 0.65 to 0.78) and the 7-point dermoscopy checklist (at a cut-point of ≥1 recommending ruling in melanoma; 11 studies; pooled sensitivity 0.77, 95% CI 0.61 to 0.88, specificity 0.80, 95% CI 0.59 to 0.92). The methodological quality of studies varied. At their recommended cut-points, the ABCD dermoscopy rule is more useful for ruling out melanoma than the 7-point dermoscopy checklist. A focus on impact analysis will help translate melanoma risk prediction rules into useful tools for clinical practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Differential effects of selenite and selenate on human melanocytes, keratinocytes, and melanoma cells.

    PubMed

    Bandura, Laura; Drukala, Justyna; Wolnicka-Glubisz, Agnieszka; Björnstedt, Mikael; Korohoda, Wlodzimierz

    2005-04-01

    Among the substances that attracted the attention of oncologists in recent years are selenium-containing compounds, both inorganic and organic. Several epidemiological studies have shown an inverse correlation between selenium intake and cancer incidence. In the experiments reported here, we compared the effects of 2 inorganic selenium-containing salts that differed in the level of selenium oxidation, selenite IV and selenate VI. We tested the effects of these 2 compounds on cell survival and growth, cell cycle processing, cell morphology, cytoskeleton, and lipid peroxidation in 3 human skin cell types: normal keratinocytes, melanocytes, and human melanoma cell line HTB140. The different effects of selenite and selenate on the viability, growth, and morphology of normal cells and tumor cells are reported and provide a base for future research and treatment of some neoplastic diseases. The attention is paid to cell apoptosis induced by selenite and not by selenate, and the effects of tested substances on thioredoxin reductase system are postulated.

  12. Malignant Melanoma Presenting as a Mediastinal Malignant Melanoma Presenting as a Mediastinal Unknown Primary Origin?

    PubMed

    Pujani, Mukta; Hassan, Mohd Jaseem; Jetley, Sujata; Raina, Prabhat Kumar; Kumar, Mukesh

    2017-01-01

    The most common site of primary malignant melanoma is the skin, however, virtually any organ system may be involved. Metastatic melanoma of unknown primary origin accounts for approximately 2-6% of all melanoma cases. The mediastinum as the site for malignant melanoma is extremely rare, both as a primary or metastatic lesion. Primary malignant melanoma of mediastinum is very rare with only a handful of reports in the literature. We hereby report a rare case of malignant melanoma of mediastinum in a 31 year old male who was initially misdiagnosed on fine needle aspiration cytology as adenocarcinoma for which he received chemotherapy with clinical deterioration. Even on extensive meticulous search, no primary was discovered.

  13. Functional Erythropoietin Autocrine Loop in Melanoma

    PubMed Central

    Kumar, Suresh M.; Acs, Geza; Fang, Dong; Herlyn, Meenhard; Elder, David E.; Xu, Xiaowei

    2005-01-01

    Although erythropoietin (Epo) is a known stimulator of erythropoiesis, recent evidence suggests that its biological functions are not confined to hematopoietic cells. To elucidate the role of Epo and erythropoietin receptor (EpoR) in melanoma, we examined the expression and function of these proteins in melanocytes and melanoma cells. We found increased expression of Epo in melanoma cells compared to melanocyte in vitro. EpoR was also strongly expressed in all of the melanoma cell lines and two of the three melanocyte cell lines examined. Epo expression was significantly higher in melanoma than in benign nevi as determined by immunohistochemistry. Although melanoma cells secreted Epo in normoxic condition in vitro, hypoxia and CoCl2 treatment increased Epo secretion. EpoR in melanoma cells was functional, because exogenous Epo increased melanoma resistance to hypoxic stress, pretreatment of melanoma cells with Epo significantly increased resistance to dacarbazine treatment, and Epo increased the phosphorylation of EpoR, RAF, and MEK. In conclusion, we demonstrated constitutive expression of Epo and EpoR as well as autonomous secretion of Epo by melanoma cells, indicating a novel autocrine loop of Epo in melanoma. The results suggest that the autocrine and paracrine functions of Epo might play a role in malignant transformation of melanocytes and in the survival of melanoma cells in hypoxia and other adverse conditions. PMID:15743794

  14. Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces

    NASA Astrophysics Data System (ADS)

    Tsao, Simon Chang-Hao; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G.; Christophi, Christopher; Cebon, Jonathan; Shiddiky, Muhammad J. A.; Behren, Andreas; Trau, Matt

    2016-01-01

    With new systemic therapies becoming available for metastatic melanoma such as BRAF and PD-1 inhibitors, there is an increasing demand for methods to assist with treatment selection and response monitoring. Quantification and characterisation of circulating melanoma cells (CMCs) has been regarded as an excellent non-invasive candidate but a sensitive and efficient tool to do these is lacking. Herein we demonstrate a microfluidic approach for melanoma cell capture and subsequent on-chip evaluation of BRAF mutation status. Our approach utilizes a recently discovered alternating current electrohydrodynamic (AC-EHD)-induced surface shear forces, referred to as nanoshearing. A key feature of nanoshearing is the ability to agitate fluid to encourage contact with surface-bound antibody for the cell capture whilst removing nonspecific cells from the surface. By adjusting the AC-EHD force to match the binding affinity of antibodies against the melanoma-associated chondroitin sulphate proteoglycan (MCSP), a commonly expressed melanoma antigen, this platform achieved an average recovery of 84.7% from biological samples. Subsequent staining with anti-BRAFV600E specific antibody enabled on-chip evaluation of BRAFV600E mutation status in melanoma cells. We believe that the ability of nanoshearing-based capture to enumerate melanoma cells and subsequent on-chip characterisation has the potential as a rapid screening tool while making treatment decisions.

  15. Anti-melanoma activity of the 9.2.27PE immunotoxin in dacarbazine resistant cells.

    PubMed

    Risberg, Karianne; Fodstad, Oystein; Andersson, Yvonne

    2010-04-01

    We have earlier shown that the 9.2.27 Pseudomonas Exotoxin A (PE) immunotoxin (IT) efficiently kills melanoma cells through inhibition of protein synthesis followed by some morphologic and biochemical features of apoptosis, a different cell killing mechanism than the one caused by Dacarbazine (DTIC), a chemotherapeutic drug used to treat malignant melanoma. To examine whether induced DTIC resistance also is a determining factor for the effectiveness of 9.2.27PE IT, we developed a DTIC resistant subline, FEMX-200DR, from the DTIC sensitive cell line FEMX. The cell variants were treated with 9.2.27PE, an IT binding to the high molecular weight-melanoma associated antigen (HMW-MAA) expressed on most malignant melanoma cells. The IT was equally effective in killing the FEMX-200DR and the FEMX cells, and the cell death was primarily caused by inhibition of protein synthesis. The DNA repair enzyme and apoptotic marker PARP, a substrate of caspase-3, was inactivated, although we observed only a minor activation of caspase-3 and caspase-8, intracellular proteases involved in apoptosis. In addition to being DTIC resistant, the FEMX-200DR cells were also more resistant to apoptosis than the parent cells as a 3 times higher concentration of the apoptotic inducer Staurosporine was needed to obtain IC50. Furthermore, in early passage malignant melanoma cell lines established from lymph node metastases, the 9.2.27PE caused a time-dependent and dose-dependent decrease in cell viability independent of their DTIC sensitivity. These findings show that the 9.2.27PE IT efficiently can cause cell death in malignant melanoma cells independent of their level of resistance to apoptosis and DTIC.

  16. Melanoma-Derived Conditioned Media Efficiently Induce the Differentiation of Monocytes to Macrophages that Display a Highly Invasive Gene Signature

    PubMed Central

    Wang, Tao; Ge, Yingbin; Xiao, Min; Lopez-Coral, Alfonso; Azuma, Rikka; Somasundaram, Rajasekharan; Zhang, Gao; Wei, Zhi; Xu, Xiaowei; Rauscher, Frank J.; Herlyn, Meenhard; Kaufman, Russel E.

    2013-01-01

    Summary The presence of tumor-associated macrophages (TAMs) in melanomas is correlated with a poor clinical prognosis. However, there is limited information on the characteristics and biological activities of human TAMs in melanomas. In this study, we developed an in vitro method to differentiate human monocytes to macrophages using modified melanoma-conditioned medium (MCM). We demonstrate that factors from MCM-induced macrophages (MCMI-Mϕ) express both M1-Mϕ and M2-Mϕ markers, and inhibit melanoma-specific T cell proliferation. Furthermore, microarray analyses reveal that the majority of genes up-regulated in MCMI-Mϕ are associated with tumor invasion. The most strikingly up-regulated genes are CCL2 and MMP-9. Consistent with this, blockade of both CCL-2 and MMPs diminish MCMI-Mϕ-induced melanoma invasion. Finally, we demonstrate that both MCMI-Mϕ and in vivo TAMs express the pro-invasive, melanoma-associated gene, GPMNB. Our study provides a framework for understanding the mechanisms of crosstalk between TAMs and melanoma cells within the tumor microenvironment. PMID:22498258

  17. Blue light inhibits proliferation of melanoma cells

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  18. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells.

    PubMed

    Lin, Shuw-Yuan; Lai, Wan-Wen; Chou, Chi-Chung; Kuo, Hsiu-Maan; Li, Te-Mao; Chung, Jing-Gung; Yang, Jen-Hung

    2006-12-01

    Vitamin C has been reported to be useful in the treatment and prevention of cancer. Inconsistent effects from growth stimulation to induction of apoptosis of malignant tumor cells, however, have been reported. Melanoma is an increasingly common and potentially lethal malignancy. It was reported that melanoma cells were more susceptible to ascorbate toxicity than any other tumor cells. The mechanisms accounting for ascorbate-induced apoptosis in human melanoma cells, however, have remained unclear. This study was undertaken to investigate the effect of sodium ascorbate on cytotoxicity and apoptosis in human malignant melanoma A375.S2 cells. A375.S2 cells were incubated with a certain range of concentrations of sodium ascorbate for various time periods. In order to examine the effects of sodium ascorbate on cell proliferation, cell cycle, apoptosis and necrosis, we performed 4,6-diamidino-2-phenylindole dihydrochloride assays and flow cytometry analysis. Polymerase chain reaction was used to examine the mRNA levels of p53, p21, p27, cyclin A, cyclin E, CDK2 and CDK4, which are associated with cell cycle S-phase arrest and apoptosis. Flow cytometric analysis showed that sodium ascorbate significantly induced cell cycle arrest and apoptosis in the A375.S2 cell line in a dose-dependent manner. The increased expressions of p53 and p21, and the decreased expressions of cyclin A, cyclin E, CDK2 and CDK4, indicated the cell cycle arrest at G1/S phase after the cells had been treated with sodium ascorbate. Induction of apoptosis involved an increase in the levels of p53, p21 and cellular Ca, and a decrease in mitochondrial membrane potential and activation of caspase 3 before culminating in apoptosis in sodium ascorbate-treated A375.S2 cells.

  19. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    PubMed

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  20. Vitamin D status and risk for malignant cutaneous melanoma: recent advances

    PubMed Central

    Ombra, Maria N.; Doneddu, Valentina; Sini, Maria C.; Colombino, Maria; Rozzo, Carla; Stanganelli, Ignazio; Tanda, Francesco; Cossu, Antonio; Palmieri, Giuseppe

    2017-01-01

    Cutaneous malignant melanoma, whose incidence is increasing steadily worldwide, is the result of complex interactions between individual genetic factors and environmental risk factors. Ultraviolet radiation represents the most important environmental risk factor for the development of skin cancers, including melanoma. Sun exposure and early sunburn during childhood are the principal causes of cutaneous melanoma insurgence in adults, with double the risk relative to a nonexposed population. Consequently, ultraviolet protection has long been recognized as an important measure to prevent such a malignancy. Biological and epidemiological data suggest that vitamin D status could affect the risk of cancer and play a role in cancer prevention by exerting antiproliferative effects. Solar radiations are critical for vitamin D synthesis in humans; however, uncontrolled and intensive sun exposure is dangerous to skin health and may contribute toward the development of cutaneous malignant melanoma. An optimum balance between sun protection and exposure is thus advocated. Additional research is required to confirm the preventive role of vitamin D in melanoma incidence or a positive influence on patient outcome. PMID:28125434

  1. ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors.

    PubMed

    Richard, Geoffrey; Dalle, Stéphane; Monet, Marie-Ambre; Ligier, Maud; Boespflug, Amélie; Pommier, Roxane M; de la Fouchardière, Arnaud; Perier-Muzet, Marie; Depaepe, Lauriane; Barnault, Romain; Tondeur, Garance; Ansieau, Stéphane; Thomas, Emilie; Bertolotto, Corine; Ballotti, Robert; Mourah, Samia; Battistella, Maxime; Lebbé, Céleste; Thomas, Luc; Puisieux, Alain; Caramel, Julie

    2016-10-01

    Targeted therapies with MAPK inhibitors (MAPKi) are faced with severe problems of resistance in BRAF-mutant melanoma. In parallel to the acquisition of genetic mutations, melanoma cells may also adapt to the drugs through phenotype switching. The ZEB1 transcription factor, a known inducer of EMT and invasiveness, is now considered as a genuine oncogenic factor required for tumor initiation, cancer cell plasticity, and drug resistance in carcinomas. Here, we show that high levels of ZEB1 expression are associated with inherent resistance to MAPKi in BRAF V 600 -mutated cell lines and tumors. ZEB1 levels are also elevated in melanoma cells with acquired resistance and in biopsies from patients relapsing while under treatment. ZEB1 overexpression is sufficient to drive the emergence of resistance to MAPKi by promoting a reversible transition toward a MITF low /p75 high stem-like and tumorigenic phenotype. ZEB1 inhibition promotes cell differentiation, prevents tumorigenic growth in vivo, sensitizes naive melanoma cells to MAPKi, and induces cell death in resistant cells. Overall, our results demonstrate that ZEB1 is a major driver of melanoma cell plasticity, driving drug adaptation and phenotypic resistance to MAPKi. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Thick melanoma in Tuscany.

    PubMed

    Chiarugi, Alessandra; Nardini, Paolo; Borgognoni, Lorenzo; Brandani, Paola; Gerlini, Gianni; Rubegni, Pietro; Lamberti, Arianna; Salvini, Camilla; Lo Scocco, Giovanni; Cecchi, Roberto; Sirna, Riccardo; Lorenzi, Stefano; Gattai, Riccardo; Battistini, Silvio; Crocetti, Emanuele

    2017-03-14

    The epidemiologic trends of cutaneous melanoma are similar in several countries with a Western-type life style, where there is a progressive increasing incidence and a low but not decreasing mor- tality, or somewhere an increase too, especially in the older age groups. Also in Tuscany there is a steady rise in incidence with prevalence of in situ and invasive thin melanomas, with also an increase of thick melanomas. It is necessary to reduce the frequency of thick melanomas to reduce specific mortality. The objective of the current survey has been to compare, in the Tuscany population, by a case- case study, thin and thick melanoma cases, trying to find out those personal and tumour characteristics which may help to customize preventive interventions. RESULTS The results confirmed the age and the lower edu- cation level are associated with a later detection. The habit to perform skin self-examination is resulted protec- tive forward thick melanoma and also the diagnosis by a doctor. The elements emerging from the survey allow to hypothesize a group of subjects resulting at higher risk for a late diagnosis, aged over 50 and carrier of a fewer constitutional and environmental risk factors: few total and few atypical nevi, and lower sun exposure and burning. It is assumable that a part of people did not be reached from messages of prevention because does not recognize oneself in the categories of people at risk for skin cancers described in educational cam- paigns. If we want to obtain better results on diagnosis of skin melanoma we have to think a new strategy. At least to think over the educational messages discriminating people more at risk of incidence of melanoma from people more at risk to die from melanoma, and to renewed active involvement of the Gen- eral Practitioners .

  3. FOXP3 over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis.

    PubMed Central

    Tan, BeeShin; Anaka, Matthew; Deb, Siddhartha; Freyer, Claudia; Ebert, Lisa M.; Chueh, Anderly C.; Al-Obaidi, Sheren; Behren, Andreas; Jayachandran, Aparna; Cebon, Jonathan; Chen, Weisan; Mariadason, John M.

    2014-01-01

    The Forkhead box P3 (FOXP3) transcription factor is the key driver of regulatory T cell (Treg cells) differentiation and immunosuppressive function. In addition, FOXP3 has been reported to be expressed in many tumors, including melanoma. However, its role in tumorigenesis is conficting, with both tumor suppressive and tumor promoting functions described. The aim of the current study was to characterize the expression and function of FOXP3 in melanoma. FOXP3 expression was detected by immunohistochemistry (IHC) in 12% (18/146) of stage III and IV melanomas. However expression was confined to fewer than 1% of cells in these tumors. Stable over-expression of FOXP3 in the SK-MEL-28 melanoma cell line reduced cell proliferation and clonogenicity in vitro, and reduced xenograft growth in vivo. FOXP3 over-expression also increased pigmentation and the rate of apoptosis of SK-MEL-28 cells. Based on its infrequent expression in human melanoma, and its growth inhibitory and pro-apoptotic effect in over-expressing melanoma cells, we conclude that FOXP3 is not likely to be a key tumor suppressor or promoter in melanoma. PMID:24406338

  4. FOXP3 over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis.

    PubMed

    Tan, BeeShin; Anaka, Matthew; Deb, Siddhartha; Freyer, Claudia; Ebert, Lisa M; Chueh, Anderly C; Al-Obaidi, Sheren; Behren, Andreas; Jayachandran, Aparna; Cebon, Jonathan; Chen, Weisan; Mariadason, John M

    2014-01-15

    The Forkhead box P3 (FOXP3) transcription factor is the key driver of regulatory T cell (Treg cells) differentiation and immunosuppressive function. In addition, FOXP3 has been reported to be expressed in many tumors, including melanoma. However, its role in tumorigenesis is conflicting, with both tumor suppressive and tumor promoting functions described. The aim of the current study was to characterize the expression and function of FOXP3 in melanoma. FOXP3 expression was detected by immunohistochemistry (IHC) in 12% (18/146) of stage III and IV melanomas. However expression was confined to fewer than 1% of cells in these tumors. Stable over-expression of FOXP3 in the SK-MEL-28 melanoma cell line reduced cell proliferation and clonogenicity in vitro, and reduced xenograft growth in vivo. FOXP3 over-expression also increased pigmentation and the rate of apoptosis of SK-MEL-28 cells. Based on its infrequent expression in human melanoma, and its growth inhibitory and pro-apoptotic effect in over-expressing melanoma cells, we conclude that FOXP3 is not likely to be a key tumor suppressor or promoter in melanoma.

  5. Mitochondrial oxidative stress is the achille's heel of melanoma cells resistant to Braf-mutant inhibitor

    PubMed Central

    André, Fanny; Jonneaux, Aurélie; Scalbert, Camille; Garçon, Guillaume; Malet-Martino, Myriam; Balayssac, Stéphane; Rocchi, Stephane; Savina, Ariel; Formstecher, Pierre; Mortier, Laurent; Kluza, Jérome; Marchetti, Philippe

    2013-01-01

    Vemurafenib/PLX4032, a selective inhibitor of mutant BRAFV600E, constitutes a paradigm shift in melanoma therapy. Unfortunately, acquired resistance, which unavoidably occurs, represents one major limitation to clinical responses. Recent studies have highlighted that vemurafenib activated oxidative metabolism in BRAFV600E melanomas expressing PGC1α. However, the oxidative state of melanoma resistant to BRAF inhibitors is unknown. We established representative in vitro and in vivo models of human melanoma resistant to vemurafenib including primary specimens derived from melanoma patients. Firstly, our study reveals that vemurafenib increased mitochondrial respiration and ROS production in BRAFV600E melanoma cell lines regardless the expression of PGC1α. Secondly, melanoma cells that have acquired resistance to vemurafenib displayed intrinsically high rates of mitochondrial respiration associated with elevated mitochondrial oxidative stress irrespective of the presence of vemurafenib. Thirdly, the elevated ROS level rendered vemurafenib-resistant melanoma cells prone to cell death induced by pro-oxidants including the clinical trial drug, elesclomol. Based on these observations, we propose that the mitochondrial oxidative signature of resistant melanoma constitutes a novel opportunity to overcome resistance to BRAF inhibition. PMID:24161908

  6. Perspectives in melanoma prevention: the case of sunbeds.

    PubMed

    Autier, Philippe

    2004-11-01

    The incidence of cutaneous malignant melanoma (melanoma) and of basal cell carcinoma is still increasing in most fair-skinned populations. The fashion of intermittent exposure to solar ultraviolet (UV) radiations is considered the main cause of this increase. In 20 years time, tan acquisition through exposure to artificial sources of UV radiations has become frequent among fair-skinned adolescents and young adults. Modern sunbeds are powerful sources of UV radiations that do not exist in the nature, and repeated exposures to high doses of UVA constitute a new phenomenon in humans. A large prospective cohort study on 106,379 Norwegian and Swedish women conducted between 1991 and 1999 has provided evidence for a significant, moderate increase in melanoma risk among regular sunbed users. Failure of past case-control studies to document with consistency the sunbed-melanoma association was probably due to a too short latency period between sunbed use and melanoma diagnosis, and to too few subjects with high total durations of sunbed use. Regulations of sunbed installation, operation and use should become standardised across the 25 European Union countries. Enforcement of regulations in tanning parlours remains inadequate. In contrast, the existence of regulations is presented by many tanning salon operators as a guarantee that sunbed use is safe. We stress the need for the control of information disseminated by the "tanning industry" on suppositions that sunbed use is safer than sun exposure, and on the hypothetical health benefits of tanning. New fluorescent UV lamps are proposed that have a spectrum similar to the midday sun. Given the known association between intermittent sun exposure and melanoma, public-health authorities should reconsider the soundness of the commercialisation of these lamps.

  7. Rare Variant, Gene-Based Association Study of Hereditary Melanoma Using Whole-Exome Sequencing

    PubMed Central

    Artomov, Mykyta; Stratigos, Alexander J; Kim, Ivana; Kumar, Raj; Lauss, Martin; Reddy, Bobby Y; Miao, Benchun; Daniela Robles-Espinoza, Carla; Sankar, Aravind; Njauw, Ching-Ni; Shannon, Kristen; Gragoudas, Evangelos S; Marie Lane, Anne; Iyer, Vivek; Newton-Bishop, Julia A; Timothy Bishop, D; Holland, Elizabeth A; Mann, Graham J; Singh, Tarjinder; Daly, Mark J; Tsao, Hensin

    2017-01-01

    Abstract Background Extraordinary progress has been made in our understanding of common variants in many diseases, including melanoma. Because the contribution of rare coding variants is not as well characterized, we performed an exome-wide, gene-based association study of familial cutaneous melanoma (CM) and ocular melanoma (OM). Methods Using 11 990 jointly processed individual DNA samples, whole-exome sequencing was performed, followed by large-scale joint variant calling using GATK (Genome Analysis ToolKit). PLINK/SEQ was used for statistical analysis of genetic variation. Four models were used to estimate the association among different types of variants. In vitro functional validation was performed using three human melanoma cell lines in 2D and 3D proliferation assays. In vivo tumor growth was assessed using xenografts of human melanoma A375 melanoma cells in nude mice (eight mice per group). All statistical tests were two-sided. Results Strong signals were detected for CDKN2A (Pmin = 6.16 × 10-8) in the CM cohort (n = 273) and BAP1 (Pmin = 3.83 × 10‐6) in the OM (n = 99) cohort. Eleven genes that exhibited borderline association (P < 10‐4) were independently validated using The Cancer Genome Atlas melanoma cohort (379 CM, 47 OM) and a matched set of 3563 European controls with CDKN2A (P = .009), BAP1 (P = .03), and EBF3 (P = 4.75 × 10‐4), a candidate risk locus, all showing evidence of replication. EBF3 was then evaluated using germline data from a set of 132 familial melanoma cases and 4769 controls of UK origin (joint P = 1.37 × 10‐5). Somatically, loss of EBF3 expression correlated with progression, poorer outcome, and high MITF tumors. Functionally, induction of EBF3 in melanoma cells reduced cell growth in vitro, retarded tumor formation in vivo, and reduced MITF levels. Conclusions The results of this large rare variant germline association study further define the mutational landscape of hereditary melanoma and

  8. IFN-gamma priming up-regulates IFN-stimulated gene factor 3 (ISGF3) components, augmenting responsiveness of IFN-resistant melanoma cells to type I IFNs.

    PubMed

    Wong, L H; Hatzinisiriou, I; Devenish, R J; Ralph, S J

    1998-06-01

    IFN-stimulated gene factor 3 (ISGF3) mediates transcriptional activation of IFN-sensitive genes (ISGs). The component subunits of ISGF3, STAT1alphabeta, STAT2, and p48-ISGF3gamma, are tyrosine phosphorylated before their assembly into a complex. Subsequently, the ISGF3 complex is translocated to the nucleus. We have recently established that the responsiveness of human melanoma cell lines to type I IFNs correlates directly with their intracellular levels of ISGF3 components, particularly STAT1. In the present study, we show that pretreating IFN-resistant melanoma cell lines with IFN-gamma (IFN-gamma priming) before stimulation with type I IFN also results in increased levels of ISGF3 components and enhanced DNA-binding activation of ISGF3. In addition, IFN-gamma priming of IFN-resistant melanoma cell lines increased expression of type I IFN-induced ISG products, including ISG54, 2'-5'-oligoadenylate synthase, HLA class I, B7-1, and ICAM-1 Ags. Furthermore, IFN-gamma priming enhanced the antiviral effect of IFN-beta on the IFN-resistant melanoma cell line, MM96. These results support a role for IFN-gamma priming in up-regulating ISGF3, thereby augmenting the responsiveness of IFN-resistant melanoma cell lines to type I IFN and providing a molecular basis and justification for using sequential IFN therapy, as proposed by others, to enhance the use of IFNs in the treatment of melanoma.

  9. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    PubMed

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor

  10. Validating malignant melanoma ICD-9-CM codes in Umbria, ASL Napoli 3 Sud and Friuli Venezia Giulia administrative healthcare databases: a diagnostic accuracy study

    PubMed Central

    Orso, Massimiliano; Serraino, Diego; Fusco, Mario; Giovannini, Gianni; Casucci, Paola; Cozzolino, Francesco; Granata, Annalisa; Gobbato, Michele; Stracci, Fabrizio; Ciullo, Valerio; Vitale, Maria Francesca; Orlandi, Walter; Montedori, Alessandro; Bidoli, Ettore

    2018-01-01

    Objectives To assess the accuracy of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes in identifying subjects with melanoma. Design A diagnostic accuracy study comparing melanoma ICD-9-CM codes (index test) with medical chart (reference standard). Case ascertainment was based on neoplastic lesion of the skin and a histological diagnosis from a primary or metastatic site positive for melanoma. Setting Administrative databases from Umbria Region, Azienda Sanitaria Locale (ASL) Napoli 3 Sud (NA) and Friuli Venezia Giulia (FVG) Region. Participants 112, 130 and 130 cases (subjects with melanoma) were randomly selected from Umbria, NA and FVG, respectively; 94 non-cases (subjects without melanoma) were randomly selected from each unit. Outcome measures Sensitivity and specificity for ICD-9-CM code 172.x located in primary position. Results The most common melanoma subtype was malignant melanoma of skin of trunk, except scrotum (ICD-9-CM code: 172.5), followed by malignant melanoma of skin of lower limb, including hip (ICD-9-CM code: 172.7). The mean age of the patients ranged from 60 to 61 years. Most of the diagnoses were performed in surgical departments. The sensitivities were 100% (95% CI 96% to 100%) for Umbria, 99% (95% CI 94% to 100%) for NA and 98% (95% CI 93% to 100%) for FVG. The specificities were 88% (95% CI 80% to 93%) for Umbria, 77% (95% CI 69% to 85%) for NA and 79% (95% CI 71% to 86%) for FVG. Conclusions The case definition for melanoma based on clinical or instrumental diagnosis, confirmed by histological examination, showed excellent sensitivities and good specificities in the three operative units. Administrative databases from the three operative units can be used for epidemiological and outcome research of melanoma. PMID:29678984

  11. Validating malignant melanoma ICD-9-CM codes in Umbria, ASL Napoli 3 Sud and Friuli Venezia Giulia administrative healthcare databases: a diagnostic accuracy study.

    PubMed

    Orso, Massimiliano; Serraino, Diego; Abraha, Iosief; Fusco, Mario; Giovannini, Gianni; Casucci, Paola; Cozzolino, Francesco; Granata, Annalisa; Gobbato, Michele; Stracci, Fabrizio; Ciullo, Valerio; Vitale, Maria Francesca; Eusebi, Paolo; Orlandi, Walter; Montedori, Alessandro; Bidoli, Ettore

    2018-04-20

    To assess the accuracy of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes in identifying subjects with melanoma. A diagnostic accuracy study comparing melanoma ICD-9-CM codes (index test) with medical chart (reference standard). Case ascertainment was based on neoplastic lesion of the skin and a histological diagnosis from a primary or metastatic site positive for melanoma. Administrative databases from Umbria Region, Azienda Sanitaria Locale (ASL) Napoli 3 Sud (NA) and Friuli Venezia Giulia (FVG) Region. 112, 130 and 130 cases (subjects with melanoma) were randomly selected from Umbria, NA and FVG, respectively; 94 non-cases (subjects without melanoma) were randomly selected from each unit. Sensitivity and specificity for ICD-9-CM code 172.x located in primary position. The most common melanoma subtype was malignant melanoma of skin of trunk, except scrotum (ICD-9-CM code: 172.5), followed by malignant melanoma of skin of lower limb, including hip (ICD-9-CM code: 172.7). The mean age of the patients ranged from 60 to 61 years. Most of the diagnoses were performed in surgical departments.The sensitivities were 100% (95% CI 96% to 100%) for Umbria, 99% (95% CI 94% to 100%) for NA and 98% (95% CI 93% to 100%) for FVG. The specificities were 88% (95% CI 80% to 93%) for Umbria, 77% (95% CI 69% to 85%) for NA and 79% (95% CI 71% to 86%) for FVG. The case definition for melanoma based on clinical or instrumental diagnosis, confirmed by histological examination, showed excellent sensitivities and good specificities in the three operative units. Administrative databases from the three operative units can be used for epidemiological and outcome research of melanoma. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Melanoma - neck (image)

    MedlinePlus

    This melanoma on the neck is variously colored with a very darkly pigmented area found centrally. It has irregular ... be larger than 0.5 cm. Prognosis in melanoma is best defined by its depth on resection.

  13. Gene Network Rewiring to Study Melanoma Stage Progression and Elements Essential for Driving Melanoma

    PubMed Central

    Kaushik, Abhinav; Bhatia, Yashuma; Ali, Shakir; Gupta, Dinesh

    2015-01-01

    Metastatic melanoma patients have a poor prognosis, mainly attributable to the underlying heterogeneity in melanoma driver genes and altered gene expression profiles. These characteristics of melanoma also make the development of drugs and identification of novel drug targets for metastatic melanoma a daunting task. Systems biology offers an alternative approach to re-explore the genes or gene sets that display dysregulated behaviour without being differentially expressed. In this study, we have performed systems biology studies to enhance our knowledge about the conserved property of disease genes or gene sets among mutually exclusive datasets representing melanoma progression. We meta-analysed 642 microarray samples to generate melanoma reconstructed networks representing four different stages of melanoma progression to extract genes with altered molecular circuitry wiring as compared to a normal cellular state. Intriguingly, a majority of the melanoma network-rewired genes are not differentially expressed and the disease genes involved in melanoma progression consistently modulate its activity by rewiring network connections. We found that the shortlisted disease genes in the study show strong and abnormal network connectivity, which enhances with the disease progression. Moreover, the deviated network properties of the disease gene sets allow ranking/prioritization of different enriched, dysregulated and conserved pathway terms in metastatic melanoma, in agreement with previous findings. Our analysis also reveals presence of distinct network hubs in different stages of metastasizing tumor for the same set of pathways in the statistically conserved gene sets. The study results are also presented as a freely available database at http://bioinfo.icgeb.res.in/m3db/. The web-based database resource consists of results from the analysis presented here, integrated with cytoscape web and user-friendly tools for visualization, retrieval and further analysis. PMID

  14. WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors

    PubMed Central

    Anastas, Jamie N.; Kulikauskas, Rima M.; Tamir, Tigist; Rizos, Helen; Long, Georgina V.; von Euw, Erika M.; Yang, Pei-Tzu; Chen, Hsiao-Wang; Haydu, Lauren; Toroni, Rachel A.; Lucero, Olivia M.; Chien, Andy J.; Moon, Randall T.

    2014-01-01

    About half of all melanomas harbor a mutation that results in a constitutively active BRAF kinase mutant (BRAFV600E/K) that can be selectively inhibited by targeted BRAF inhibitors (BRAFis). While patients treated with BRAFis initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. Here, we observed marked elevation of WNT5A in a subset of tumors from patients exhibiting disease progression on BRAFi therapy. WNT5A transcript and protein were also elevated in BRAFi-resistant melanoma cell lines generated by long-term in vitro treatment with BRAFi. RNAi-mediated reduction of endogenous WNT5A in melanoma decreased cell growth, increased apoptosis in response to BRAFi challenge, and decreased the activity of prosurvival AKT signaling. Conversely, overexpression of WNT5A promoted melanoma growth, tumorigenesis, and activation of AKT signaling. Similarly to WNT5A knockdown, knockdown of the WNT receptors FZD7 and RYK inhibited growth, sensitized melanoma cells to BRAFi, and reduced AKT activation. Together, these findings suggest that chronic BRAF inhibition elevates WNT5A expression, which promotes AKT signaling through FZD7 and RYK, leading to increased growth and therapeutic resistance. Furthermore, increased WNT5A expression in BRAFi-resistant melanomas correlates with a specific transcriptional signature, which identifies potential therapeutic targets to reduce clinical BRAFi resistance. PMID:24865425

  15. p54nrb is a new regulator of progression of malignant melanoma.

    PubMed

    Schiffner, Susanne; Zimara, Nicole; Schmid, Rainer; Bosserhoff, Anja-Katrin

    2011-08-01

    Nuclear RNA-binding protein p54(nrb) and its murine homolog NonO are known to be involved in a variety of nuclear processes including transcription and RNA processing. Melanoma inhibitory activity (MIA) has been shown to play an essential role in the progression of malignant melanoma and to influence melanoma-associated molecules and pathways in the early tumor formation steps. Interestingly, recent studies suggest that MIA is a regulator of p54(nrb). Here, we show that p54(nrb) is strongly expressed and localized in the nucleus of both melanoma cell lines and melanoma tissue samples compared with normal human melanocytes or normal skin, respectively. Furthermore, all tested melanoma cell lines revealed strong p54(nrb) promoter activity. Treatment with MIA-specific small interfering RNAs showed an influence of MIA on p54(nrb) expression on both messenger RNA (mRNA) and protein level. Knockdown of p54(nrb) protein in melanoma cell lines led to reduced proliferation rates and to a strong decrease in their migratory potential. In addition, attachment to laminin and poly-l-lysine was significantly increased. We could identify Connexin-43 (Cx-43) as a downstream target molecule of p54(nrb) as knockdown of p54(nrb) resulted in enhanced Cx-43 mRNA and protein levels. As a confirmation of these findings, melanoma cell lines showed very low Cx-43 expression levels compared with melanocytes. Our results demonstrate that p54(nrb) is highly expressed in malignant melanoma and, as a MIA target molecule, it seems to be involved in the development and progression of malignant melanoma.

  16. Hereditary Melanoma: Update on Syndromes and Management - Genetics of familial atypical multiple mole melanoma syndrome

    PubMed Central

    Soura, E.; Eliades, P.; Shannon, K.; Stratigos, A.; Tsao, H.

    2015-01-01

    Malignant melanoma is considered the most lethal skin cancer if not detected and treated at its early stages. About 10% of melanoma patients report a family history of melanoma; however, individuals with features of true hereditary melanoma (i.e. unilateral lineage, multi-generational, multiple primary lesions, and early onset of disease) are in fact quite rare. Although many new loci have been implicated in hereditary melanoma, CDKN2A mutations remain the most common. Familial melanoma in the presence of multiple atypical nevi should raise suspicion for a germline CDKN2A mutation. Such patients have a high risk of developing multiple primary melanomas and internal organ malignancies especially pancreatic cancer; thus, a multidisciplinary approach is necessary in many cases. The value of dermoscopy examination and total body photography performed at regular intervals has been suggested by a number of studies, and should therefore be considered for these patients and their first degree relatives. In addition, genetic counseling with the possibility of testing can be a valuable adjunct for familial melanoma patients. But, this must be performed with care and only by qualified individuals trained in cancer risk analysis. PMID:26892650

  17. Nestin is expressed in HMB-45 negative melanoma cells in dermal parts of nodular melanoma.

    PubMed

    Kanoh, Maho; Amoh, Yasuyuki; Tanabe, Kenichi; Maejima, Hideki; Takasu, Hiroshi; Katsuoka, Kensei

    2010-06-01

    Nestin, a marker of neural stem cells, is expressed in the stem cells of the mouse hair follicle. The nestin-expressing hair follicle stem cells can differentiate into neurons, glia, keratocytes, smooth muscle cells and melanocytes in vitro. These pluripotent nestin-expressing stem cells are keratin 15 (K15)-negative, suggesting that they are in a relatively undifferentiated state. Recent studies suggest that the epithelial stem cells are important in tumorigenesis, and nestin expression is thought to be important in tumorigenesis. In the present study, we examined the expression of the hair follicle and neural stem cell marker nestin, as well as S-100 and HMB-45, in melanoma. Nestin immunoreactivity was observed in the HMB-45-negative melanoma cells in all five cases of amelanotic nodular melanomas. Moreover, nestin immunoreactivity was observed in the dermal parts in seven of 10 cases of melanotic nodular melanomas. Especially, nestin immunoreactivity was observed in the HMB-45-negative melanoma cells in the dermal parts of all 10 cases of HMB-45-negative amelanotic and melanotic nodular melanomas. On the other hand, nestin expression was negative in 10 of 12 cases of superficial spreading melanoma. These results suggest that nestin is an important marker of HMB-45-negative melanoma cells in the dermal parts of patients with nodular melanoma.

  18. Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles

    PubMed Central

    Vannucci, Luca; Falvo, Elisabetta; Fornara, Manuela; Di Micco, Patrizio; Benada, Oldrich; Krizan, Jiri; Svoboda, Jan; Hulikova-Capkova, Katarina; Morea, Veronica; Boffi, Alberto; Ceci, Pierpaolo

    2012-01-01

    Background Nanoparticle-based systems are promising for the development of imaging and therapeutic agents. The main advantage of nanoparticles over traditional systems lies in the possibility of loading multiple functionalities onto a single molecule, which are useful for therapeutic and/or diagnostic purposes. These functionalities include targeting moieties which are able to recognize receptors overexpressed by specific cells and tissues. However, targeted delivery of nanoparticles requires an accurate system design. We present here a rationally designed, genetically engineered, and chemically modified protein-based nanoplatform for cell/tissue-specific targeting. Methods Our nanoparticle constructs were based on the heavy chain of the human protein ferritin (HFt), a highly symmetrical assembly of 24 subunits enclosing a hollow cavity. HFt-based nanoparticles were produced using both genetic engineering and chemical functionalization methods to impart several functionalities, ie, the α-melanocyte-stimulating hormone peptide as a melanoma-targeting moiety, stabilizing and HFt-masking polyethylene glycol molecules, rhodamine fluorophores, and magnetic resonance imaging agents. The constructs produced were extensively characterized by a number of physicochemical techniques, and assayed for selective melanoma-targeting in vitro and in vivo. Results Our HFt-based nanoparticle constructs functionalized with the α-melanocyte-stimulating hormone peptide moiety and polyethylene glycol molecules were specifically taken up by melanoma cells but not by other cancer cell types in vitro. Moreover, experiments in melanoma-bearing mice indicate that these constructs have an excellent tumor-targeting profile and a long circulation time in vivo. Conclusion By masking human HFt with polyethylene glycol and targeting it with an α-melanocyte-stimulating hormone peptide, we developed an HFt-based melanoma-targeting nanoplatform for application in melanoma diagnosis and treatment

  19. Chronic mild stress facilitates melanoma tumor growth in mouse lines selected for high and low stress-induced analgesia.

    PubMed

    Ragan, Agnieszka R; Lesniak, Anna; Bochynska-Czyz, Marta; Kosson, Anna; Szymanska, Hanna; Pysniak, Kazimiera; Gajewska, Marta; Lipkowski, Andrzej W; Sacharczuk, Mariusz

    2013-09-01

    Both chronic stress conditions and hyperergic reaction to environmental stress are known to enhance cancer susceptibility. We described two mouse lines that displayed high (HA) and low (LA) swim stress-induced analgesia (SSIA) to investigate the relationship between inherited differences in sensitivity to stress and proneness to an increased growth rate of subcutaneously inoculated melanoma. These lines display several genetic and physiological differences, among which distinct sensitivity to mutagens and susceptibility to cancer are especially noticeable. High analgesic mice display high proneness both to stress and a rapid local spread of B16F0 melanoma. However, stress-resistant LA mice do not develop melanoma tumors after inoculation, or if so, tumors regress spontaneously. We found that the chronic mild stress (CMS) procedure leads to enhanced interlinear differences in melanoma susceptibility. Tumors developed faster in stress conditions in both lines. However, LA mice still displayed a tendency for spontaneous regression, and 50% of LA mice did not develop a tumor, even under stressed conditions. Moreover, we showed that chronic stress, but not tumor progression, induces depressive behavior, which may be an important clue in cancer therapy. Our results clearly indicate how the interaction between genetic susceptibility to stress and environmental stress determine the risk and progression of melanoma. To our knowledge, HA/LA mouse lines are the first animal models of distinct melanoma progression mediated by inherited differences in stress reactivity.

  20. Kruppel-like factor 6 in the progression and prognosis of malignant melanoma.

    PubMed

    Cai, Daxing; Zhao, Jing; Sun, Qing

    2014-02-01

    The aims of this study were to investigate the incidence of Krüppel-like factor 6 (KLF6) protein staining in patients with cutaneous malignant melanoma and examine its potential relevance to clinicopathological characteristics and tumour cell proliferation. Clinicopathological data from patients with cutaneous malignant melanoma were analysed retrospectively. Presence of KLF6 and the antigen Ki-67 in malignant melanoma and healthy tissue samples from each patient was detected by immunohistochemistry. The proliferation index was calculated on the basis of Ki-67 expression. The relationship between KLF6 and clinicopathological characteristics was also analysed. KLF6 was detected more frequently in normal healthy skin tissue compared with cutaneous malignant melanoma lesions (n = 40). There was a negative correlation between the presence of KLF6 and the proliferation index. The presence of KLF6 was also significantly correlated with tumour diameter, lymph node metastasis, tumour-node-metastasis stage and 3-year survival rate. KLF6 protein is downregulated in human cutaneous malignant melanoma lesions compared with healthy skin tissue. KLF6 may be involved in tumour progression and may be a tumour suppressor and prognostic marker for cutaneous malignant melanoma.

  1. Ligand-activated BMP signaling inhibits cell differentiation and death to promote melanoma

    PubMed Central

    Venkatesan, Arvind M.; Vyas, Rajesh; Gramann, Alec K.; Gujja, Sharvari; Bhatnagar, Sanchita; Gomes, Camilla Borges Ferreira; Xi, Hualin Simon; Lian, Christine G.; Houvras, Yariv; Edwards, Yvonne J. K.; Deng, April; Ceol, Craig J.

    2017-01-01

    Oncogenomic studies indicate that copy number variation (CNV) alters genes involved in tumor progression; however, identification of specific driver genes affected by CNV has been difficult, as these rearrangements are often contained in large chromosomal intervals among several bystander genes. Here, we addressed this problem and identified a CNV-targeted oncogene by performing comparative oncogenomics of human and zebrafish melanomas. We determined that the gene encoding growth differentiation factor 6 (GDF6), which is the ligand for the BMP family, is recurrently amplified and transcriptionally upregulated in melanoma. GDF6-induced BMP signaling maintained a trunk neural crest gene signature in melanomas. Additionally, GDF6 repressed the melanocyte differentiation gene MITF and the proapoptotic factor SOX9, thereby preventing differentiation, inhibiting cell death, and promoting tumor growth. GDF6 was specifically expressed in melanomas but not melanocytes. Moreover, GDF6 expression levels in melanomas were inversely correlated with patient survival. Our study has identified a fundamental role for GDF6 and BMP signaling in governing an embryonic cell gene signature to promote melanoma progression, thus providing potential opportunities for targeted therapy to treat GDF6-positive cancers. PMID:29202482

  2. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors

    PubMed Central

    Seip, Kotryna; Nygaard, Vigdis; Haugen, Mads H.; Engesæter, Birgit Ø.; Mælandsmo, Gunhild M.; Prasmickaite, Lina

    2016-01-01

    The knowledge on how tumor-associated stroma influences efficacy of anti-cancer therapy just started to emerge. Here we show that lung fibroblasts reduce melanoma sensitivity to the BRAF inhibitor (BRAFi) vemurafenib only if the two cell types are in close proximity. In the presence of fibroblasts, the adjacent melanoma cells acquire de-differentiated mesenchymal-like phenotype. Upon treatment with BRAFi, such melanoma cells maintain high levels of phospho ribosomal protein S6 (pS6), i.e. active mTOR signaling, which is suppressed in the BRAFi sensitive cells without stromal contacts. Inhibitors of PI3K/mTOR in combination with BRAFi eradicate pS6high cell subpopulations and potentiate anti-cancer effects in melanoma protected by the fibroblasts. mTOR and BRAF co-inhibition also delayed the development of early-stage lung metastases in vivo. In conclusion, we demonstrate that upon influence from fibroblasts, melanoma cells undergo a phenotype switch to the mesenchymal state, which can support PI3K/mTOR signaling. The lost sensitivity to BRAFi in such cells can be overcome by co-targeting PI3K/mTOR. This knowledge could be explored for designing BRAFi combination therapies aiming to eliminate both stroma-protected and non-protected counterparts of metastases. PMID:26918352

  3. Association Between NRAS and BRAF Mutational Status and Melanoma-Specific Survival Among Patients With Higher Risk Primary Melanoma

    PubMed Central

    Thomas, Nancy E.; Edmiston, Sharon N.; Alexander, Audrey; Groben, Pamela A.; Parrish, Eloise; Kricker, Anne; Armstrong, Bruce K.; Anton-Culver, Hoda; Gruber, Stephen B.; From, Lynn; Busam, Klaus J.; Hao, Honglin; Orlow, Irene; Kanetsky, Peter A.; Luo, Li; Reiner, Anne S.; Paine, Susan; Frank, Jill S.; Bramson, Jennifer I.; Marrett, Lorraine D.; Gallagher, Richard P.; Zanetti, Roberto; Rosso, Stefano; Dwyer, Terence; Cust, Anne E.; Ollila, David W.; Begg, Colin B.; Berwick, Marianne; Conway, Kathleen

    2015-01-01

    Importance NRAS and BRAF mutations in melanoma inform current treatment paradigms but their role in survival from primary melanoma has not been established. Identification of patients at high risk of melanoma-related death based on their primary melanoma characteristics before evidence of recurrence could inform recommendations for patient follow-up and eligibility for adjuvant trials. Objective To determine tumor characteristics and survival from primary melanoma by somatic NRAS and BRAF status. Design, Setting, and Participants A population-based study with median follow-up of 7.6 years for 912 patients with first primary cutaneous melanoma analyzed for NRAS and BRAF mutations diagnosed in the year 2000 from the United States and Australia in the Genes, Environment and Melanoma Study and followed through 2007. Main Outcomes and Measures Tumor characteristics and melanoma-specific survival of primary melanoma by NRAS and BRAF mutational status. Results The melanomas were 13% NRAS+, 30% BRAF+, and 57% with neither NRAS nor BRAF mutation (wildtype). In a multivariable model including clinicopathologic characteristics, NRAS+ melanoma was associated (P<.05) with mitoses, lower tumor infiltrating lymphocyte (TIL) grade, and anatomic site other than scalp/neck and BRAF+ melanoma was associated with younger age, superficial spreading subtype, and mitoses, relative to wildtype melanoma. There was no significant difference in melanoma-specific survival for melanoma harboring mutations in NRAS (HR 1.7, 95% CI, 0.8–3.4) or BRAF (HR, 1.5, 95% CI, 0.8–2.9) compared to wildtype melanoma adjusted for age, sex, site, AJCC tumor stage, TIL grade, and study center. However, melanoma-specific survival was significantly poorer for higher risk (T2b or higher stage) tumors with NRAS (HR 2.9; 95% CI 1.1–7.7) or BRAF (HR 3.1; 95% CI 1.2–8.5) mutations but not for lower risk (T2a or lower) tumors (P=.65) adjusted for age, sex, site, AJCC tumor stage, TIL grade, and study center

  4. EMMPRIN regulates β1 integrin-mediated adhesion through Kindlin-3 in human melanoma cells.

    PubMed

    Delyon, Julie; Khayati, Farah; Djaafri, Ibtissem; Podgorniak, Marie-Pierre; Sadoux, Aurélie; Setterblad, Niclas; Boutalbi, Zineb; Maouche, Kamel; Maskos, Uwe; Menashi, Suzanne; Lebbé, Céleste; Mourah, Samia

    2015-06-01

    EMMPRIN is known to promote tumor invasion through extracellular matrix (ECM) degradation. Here we report that EMMPRIN can regulate melanoma cell adhesion to the ECM through an interaction with β1 integrin involving kindlin-3. In this study, EMMPRIN knockdown in the human melanoma cell line M10 using siRNA decreased cell invasion and significantly increased cell adhesion and spreading. A morphological change from a round to a spread shape was observed associated with enhanced phalloidin-labelled actin staining. In situ proximity ligation assay and co-immunoprecipitation revealed that EMMPRIN silencing increased the interaction of β1 integrin with kindlin-3, a focal adhesion protein. This was associated with an increase in β1 integrin activation and a decrease in the phosphorylation of the downstream integrin kinase FAK. Moreover, the expression at both the transcript and protein level of kindlin-3 and of β1 integrin was inversely regulated by EMMPRIN. EMMPRIN did not regulate either talin expression or its interaction with β1 integrin. These results are consistent with our in vivo demonstration that EMMPRIN inhibition increased β1 integrin activation and its interaction with kindlin-3. To conclude, these findings reveal a new role of EMMPRIN in tumor cell migration through ß1 integrin/kindlin-3-mediated adhesion pathway. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Regulation of apoptosis in human melanoma and neuroblastoma cells by statins, sodium arsenite and TRAIL: a role of combined treatment versus monotherapy

    PubMed Central

    Ivanov, Vladimir N.; Hei, Tom K.

    2015-01-01

    Treatment of melanoma cells by sodium arsenite or statins (simvastatin and lovastatin) dramatically modified activities of the main cell signaling pathways resulting in the induction of heme oxygenase-1 (HO-1) and in a downregulation of cyclooxygenase-2 (COX-2) protein levels. Through heme degradation and the production of carbon monoxide and biliverdin, HO-1 plays a protective role in different scenario of oxidative stress followed by mitochondrial apoptosis. Both sodium arsenite and statins could be efficient inducers of apoptosis in some melanoma cell lines, but often exhibited only modest proapoptotic activity in others, due to numerous protective mechanisms. We demonstrated in the present study that treatment by sodium arsenite or statins with an additional inhibition of HO-1 expression (or activation) caused a substantial upregulation of apoptosis in melanoma cells. Sodium arsenite- or statin-induced apoptosis was independent of BRAF status (wild type versus V600E) in melanoma lines. Monotreatment required high doses of statins (20–40 μM) for effective induction of apoptosis. As an alternative approach, pretreatment of melanoma cells with statin at decreased doses (5–20 μM) dramatically enhanced TRAIL-induced apoptosis, due to suppression of the NF-κB and STAT3-transcriptional targets (including COX-2) and downregulation of cFLIP-L (a caspase-8 inhibitor) protein levels. Furthermore, combined treatment with sodium arsenite and TRAIL or simvastatin and TRAIL efficiently induced apoptotic commitment in human neuroblastoma cells. In summary, our findings on enhancing effects of combined treatment of cancer cells using statin and TRAIL provide the rationale for further preclinical evaluation. PMID:21910007

  6. Detection of Melanoma Skin Cancer in Dermoscopy Images

    NASA Astrophysics Data System (ADS)

    Eltayef, Khalid; Li, Yongmin; Liu, Xiaohui

    2017-02-01

    Malignant melanoma is the most hazardous type of human skin cancer and its incidence has been rapidly increasing. Early detection of malignant melanoma in dermoscopy images is very important and critical, since its detection in the early stage can be helpful to cure it. Computer Aided Diagnosis systems can be very helpful to facilitate the early detection of cancers for dermatologists. In this paper, we present a novel method for the detection of melanoma skin cancer. To detect the hair and several noises from images, pre-processing step is carried out by applying a bank of directional filters. And therefore, Image inpainting method is implemented to fill in the unknown regions. Fuzzy C-Means and Markov Random Field methods are used to delineate the border of the lesion area in the images. The method was evaluated on a dataset of 200 dermoscopic images, and superior results were produced compared to alternative methods.

  7. Modulation of T Cell Activation by Malignant Melanoma Initiating Cells

    PubMed Central

    Schatton, Tobias; Schütte, Ute; Frank, Natasha Y.; Zhan, Qian; Hoerning, André; Robles, Susanne C.; Zhou, Jun; Hodi, F. Stephen; Spagnoli, Giulio C.; Murphy, George F.; Frank, Markus H.

    2010-01-01

    Highly immunogenic cancers such as malignant melanoma are capable of inexorable tumor growth despite the presence of antitumor immunity. This raises the possibility that only a restricted minority of tumorigenic malignant cells might possess the phenotypic and functional characteristics to modulate tumor-directed immune activation. Here we provide evidence supporting this hypothesis, by demonstrating that tumorigenic ABCB5+ malignant melanoma-initiating cells (MMICs) possess the capacity to preferentially inhibit interleukin (IL)-2-dependent T cell activation and to support, in a B7.2-dependent manner, regulatory T (Treg) cell induction. Compared to melanoma bulk populations, ABCB5+ MMICs expressed lower levels of the major histocompatibility complex (MHC) class I, showed aberrant positivity for MHC class II, and exhibited lower expression levels of the melanoma-associated antigens (MAAs) MART-1, ML-IAP, NY-ESO-1, and MAGE-A. In addition, tumorigenic ABCB5+ subpopulations preferentially expressed the costimulatory molecules B7.2 and PD-1 in both established melanoma xenografts and clinical tumor specimens in vivo. In immune activation assays, ABCB5+ melanoma cells inhibited mitogen-dependent human peripheral blood mononuclear cell (PBMC) proliferation and IL-2 production more efficiently than ABCB5− populations. Moreover, coculture with ABCB5+ MMICs increased, in a B7.2 signalling-dependent manner, CD4+CD25+FoxP3+ Treg cell abundance and IL-10 production by mitogen-activated PBMCs. Consistent with these findings, ABCB5+ melanoma subsets also preferentially inhibited IL-2 production and induced IL-10 secretion by cocultured patient-derived, syngeneic PBMCs. Our findings identify novel T cell-modulatory functions of ABCB5+ melanoma subpopulations and suggest specific roles for MMICs in the evasion of antitumor immunity and in cancer immunotherapeutic resistance. PMID:20068175

  8. Genome sequencing of mucosal melanomas reveals that they are driven by distinct mechanisms from cutaneous melanoma.

    PubMed

    Furney, Simon J; Turajlic, Samra; Stamp, Gordon; Nohadani, Mahrokh; Carlisle, Anna; Thomas, J Meirion; Hayes, Andrew; Strauss, Dirk; Gore, Martin; van den Oord, Joost; Larkin, James; Marais, Richard

    2013-07-01

    Mucosal melanoma displays distinct clinical and epidemiological features compared to cutaneous melanoma. Here we used whole genome and whole exome sequencing to characterize the somatic alterations and mutation spectra in the genomes of ten mucosal melanomas. We observed somatic mutation rates that are considerably lower than occur in sun-exposed cutaneous melanoma, but comparable to the rates seen in cancers not associated with exposure to known mutagens. In particular, the mutation signatures are not indicative of ultraviolet light- or tobacco smoke-induced DNA damage. Genes previously reported as mutated in other cancers were also mutated in mucosal melanoma. Notably, there were substantially more copy number and structural variations in mucosal melanoma than have been reported in cutaneous melanoma. Thus, mucosal and cutaneous melanomas are distinct diseases with discrete genetic features. Our data suggest that different mechanisms underlie the genesis of these diseases and that structural variations play a more important role in mucosal than in cutaneous melanomagenesis. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  9. Shifting the Balance of Activating and Inhibitory Natural Killer Receptor Ligands on BRAFV600E Melanoma Lines with Vemurafenib.

    PubMed

    Frazao, Alexandra; Colombo, Marina; Fourmentraux-Neves, Emmanuelle; Messaoudene, Meriem; Rusakiewicz, Sylvie; Zitvogel, Laurence; Vivier, Eric; Vély, Frédéric; Faure, Florence; Dréno, Brigitte; Benlalam, Houssem; Bouquet, Fanny; Savina, Ariel; Pasmant, Eric; Toubert, Antoine; Avril, Marie-Françoise; Caignard, Anne

    2017-07-01

    Over 60% of human melanoma tumors bear a mutation in the BRAF gene. The most frequent mutation is a substitution at codon 600 (V600E), leading to a constitutively active BRAF and overactivation of the MAPK pathway. Patients harboring mutated BRAF respond to kinase inhibitors such as vemurafenib. However, these responses are transient, and relapses are frequent. Melanoma cells are efficiently lysed by activated natural killer (NK) cells. Melanoma cells express several stress-induced ligands that are recognized by activating NK-cell receptors. We have investigated the effect of vemurafenib on the immunogenicity of seven BRAF -mutated melanoma cells to NK cells and on their growth and sensitivity to NK-cell-mediated lysis. We showed that vemurafenib treatment modulated expression of ligands for two activating NK receptors, increasing expression of B7-H6, a ligand for NKp30, and decreasing expression of MICA and ULBP2, ligands for NKG2D. Vemurafenib also increased expression of HLA class I and HLA-E molecules, likely leading to higher engagement of inhibitory receptors (KIRs and NKG2A, respectively), and decreased lysis of vemurafenib-treated melanoma cell lines by cytokine-activated NK cells. Finally, we showed that whereas batimastat (a broad-spectrum matrix metalloprotease inhibitor) increased cell surface ULBP2 by reducing its shedding, vemurafenib lowered soluble ULBP2, indicating that BRAF signal inhibition diminished expression of both cell-surface and soluble forms of NKG2D ligands. Vemurafenib, inhibiting BRAF signaling, shifted the balance of activatory and inhibitory NK ligands on melanoma cells and displayed immunoregulatory effects on NK-cell functional activities. Cancer Immunol Res; 5(7); 582-93. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Clinical evaluation of melanomas and common nevi by spectral imaging

    PubMed Central

    Diebele, Ilze; Kuzmina, Ilona; Lihachev, Alexey; Kapostinsh, Janis; Derjabo, Alexander; Valeine, Lauma; Spigulis, Janis

    2012-01-01

    A clinical trial on multi-spectral imaging of malignant and non-malignant skin pathologies comprising 17 melanomas and 65 pigmented common nevi was performed. Optical density data of skin pathologies were obtained in the spectral range 450–950 nm using the multispectral camera Nuance EX. An image parameter and maps capable of distinguishing melanoma from pigmented nevi were proposed. The diagnostic criterion is based on skin optical density differences at three fixed wavelengths: 540nm, 650nm and 950nm. The sensitivity and specificity of this method were estimated to be 94% and 89%, respectively. The proposed methodology and potential clinical applications are discussed. PMID:22435095

  11. Combined activity of temozolomide and the mTOR inhibitor temsirolimus in metastatic melanoma involves DKK1.

    PubMed

    Niessner, Heike; Kosnopfel, Corinna; Sinnberg, Tobias; Beck, Daniela; Krieg, Kathrin; Wanke, Ines; Lasithiotakis, Konstantinos; Bonin, Michael; Garbe, Claus; Meier, Friedegund

    2017-07-01

    The BRAFV600E inhibitor vemurafenib achieves remarkable clinical responses in patients with BRAF-mutant melanoma, but its effects are limited by the onset of drug resistance. In the case of resistance, chemotherapy can still be applied as second line therapy. However, it yields low response rates and strategies are urgently needed to potentiate its effects. In a previous study, we showed that the inhibition of the PI3K-AKT-mTOR pathway significantly increases sensitivity of melanoma cells to chemotherapeutic drugs (J. Invest. Dermatol. 2009, 129, 1500). In this study, the combination of the mTOR inhibitor temsirolimus with the chemotherapeutic agent temozolomide significantly increases growth inhibition and apoptosis in melanoma cells compared to temsirolimus or temozolomide alone. The combination of temozolomide with temsirolimus is not only effective in established but also in newly isolated and vemurafenib-resistant metastatic melanoma cell lines. These effects are associated with the downregulation of the anti-apoptotic protein Mcl-1 and the upregulation of the Wnt antagonist Dickkopf homologue 1 (DKK1). Knock-down of DKK1 suppresses apoptosis induction by the combination of temsirolimus and temozolomide. These data suggest that the inhibition of the mTOR pathway increases sensitivity of melanoma cells towards temozolomide. Chemosensitisation is associated with enhanced expression of the Wnt antagonist DKK1. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. [Soft tissue melanoma: a clinical case].

    PubMed

    Frikh, Rachid; Oumakhir, Siham; Chahdi, Hafsa; Oukabli, Mohammed; Albouzidi, Abderrahmane; Baba, Noureddine; Hjira, Naoufal; Boui, Mohammed

    2017-01-01

    Soft tissue melanoma was first described by Enzinger in 1965 under the name of clear cell sarcoma. In 1983, Chung and Enzinger renamed it soft tissue melanoma due to its immunohistochemical similarities with melanoma. We here report the case of a 22-year old young man with this rare type of melanoma, presenting with molluscoid lesion on his ankle without any clinical sign of malignancy. Histology examination confirmed the diagnosis of soft tissue melanoma.

  13. MiR-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meng; Long, Chaoqin; Yang, Guilan

    2016-03-11

    Alterations in microRNA-26b (miR-26b) expression have been shown to participate in various malignant tumor developments. However, the possible function of miR-26b in human melanoma cells remains unclarified. In this study, quantitative polymerase chain reaction was used to explore the expression profiles of miR-26b in melanoma cells. The effect of miR-26b on cell viability was determined by using MTT assays and colony formation assay. The apoptosis levels were evaluated by using Annexin V/fluorescein isothiocyanate (FITC) apoptosis detection kit and the apoptosis cells were confirmed by Transmission Electron Microscopy (TEM). Luciferase reporter plasmids were constructed to confirm direct targeting. Our study foundmore » that the expression of miR-26b was downregulated in human melanoma specimens. Overexpression of miR-26b significantly increased the anti-proliferative effects and apoptosis in A375 and B16F10 melanoma cells. In addition, luciferase gene reporter assays confirmed that TRAF5 was a direct target gene of miR-26b and the anti-tumor effect of miR-26b in melanoma cells was significantly counteracted by treatment with TRAF5 overexpression. Furthermore, the molecular mechanisms underlying the tumor suppressor of miR-26b in malignant melanomas may be due to the dephosphorylation of MAPK pathway caused by the decrease in TRAF5 expression when miR-26b is up-regulated in melanoma cells. These findings indicate that miR-26b might influence TRAF5-MAPK signaling pathways to facilitate the malignant progression of melanoma cells. - Highlights: • miR-26b is downregulated in human melanomas. • miR-26b suppressed melanoma cell proliferation and enhanced cell apoptosis. • TRAF5 is a direct target of miR-26b and inversely correlates with miR-26b expression. • miR-26b modulated MAPK signaling pathway by targeting TRAF5.« less

  14. Pesticide Use and Cutaneous Melanoma in Pesticide Applicators in the Agricultural Heath Study

    PubMed Central

    Dennis, Leslie K.; Lynch, Charles F.; Sandler, Dale P.; Alavanja, Michael C.R.

    2010-01-01

    Background Melanoma rates continue to increase; however, few risk factors other than sun sensitivity and ultraviolet radiation (including sun exposure) have been identified. Although studies of farmers have shown an excess risk of melanoma and other skin cancers, it is unclear how much of this is related to sun exposure compared with other agricultural exposures. Methods We examined dose–response relationships for 50 agricultural pesticides and cutaneous melanoma incidence in the Agricultural Health Study cohort of licensed pesticide applicators, along with ever use of older pesticides that contain arsenic. Logistic regression was used to examine odds ratios (ORs) and 95% confidence intervals (CIs) associated with pesticide exposure adjusted for age, sex, and other potential confounders. Results We found significant associations between cutaneous melanoma and maneb/mancozeb (63 exposure days: OR = 2.4; 95% CI, 1.2–4.9; trend p = 0.006), parathion (≥ 56 exposure days: OR = 2.4; 95% CI, 1.3–4.4; trend p = 0.003), and carbaryl (≥ 56 exposure days: OR = 1.7; 95% CI, 1.1–2.5; trend p = 0.013). Other associations with benomyl and ever use of arsenical pesticides were also suggested. Conclusions Most previous melanoma literature has focused on host factors and sun exposure. Our research shows an association between several pesticides and melanoma, providing support for the hypotheses that agricultural chemicals may be another important source of melanoma risk. PMID:20164001

  15. On the role of classical and novel forms of vitamin D in melanoma progression and management.

    PubMed

    Slominski, Andrzej T; Brożyna, Anna A; Skobowiat, Cezary; Zmijewski, Michal A; Kim, Tae-Kang; Janjetovic, Zorica; Oak, Allen S; Jozwicki, Wojciech; Jetten, Anton M; Mason, Rebecca S; Elmets, Craig; Li, We; Hoffman, Robert M; Tuckey, Robert C

    2018-03-01

    Melanoma represents a significant clinical problem affecting a large segment of the population with a relatively high incidence and mortality rate. Ultraviolet radiation (UVR) is an important etiological factor in malignant transformation of melanocytes and melanoma development. UVB, while being a full carcinogen in melanomagenesis, is also necessary for the cutaneous production of vitamin D3 (D3). Calcitriol (1,25(OH) 2 D3) and novel CYP11A1-derived hydroxyderivatives of D3 show anti-melanoma activities and protective properties against damage induced by UVB. The former activities include inhibitory effects on proliferation, plating efficiency and anchorage-independent growth of cultured human and rodent melanomas in vitro, as well as the in vivo inhibition of tumor growth by 20(OH)D3 after injection of human melanoma cells into immunodeficient mice. The literature indicates that low levels of 25(OH)D3 are associated with more advanced melanomas and reduced patient survivals, while single nucleotide polymorphisms of the vitamin D receptor or the D3 binding protein gene affect development or progression of melanoma, or disease outcome. An inverse correlation of VDR and CYP27B1 expression with melanoma progression has been found, with low or undetectable levels of these proteins being associated with poor disease outcomes. Unexpectedly, increased expression of CYP24A1 was associated with better melanoma prognosis. In addition, decreased expression of retinoic acid orphan receptors α and γ, which can also bind vitamin D3 hydroxyderivatives, showed positive association with melanoma progression and shorter disease-free and overall survival. Thus, inadequate levels of biologically active forms of D3 and disturbances in expression of the target receptors, or D3 activating or inactivating enzymes, can affect melanomagenesis and disease progression. We therefore propose that inclusion of vitamin D into melanoma management should be beneficial for patients, at least as

  16. Ultrasonographic detection of regional lymph node metastases in patients with intermediate or thick malignant melanoma.

    PubMed

    Brountzos, Elias N; Panagiotou, Irene E; Bafaloukos, Dimitrios I; Kelekis, Dimitrios A

    2003-01-01

    Careful monitoring of regional lymph nodes and early detection of metastases in malignant melanoma patients has an impact on their survival, since it may permit beneficial surgical therapy. Palpation is routinely used in clinical practice. The value of ultrasonography for routine follow-up of melanoma patients, still, is not generally accepted. The aim of our study was to assess the sensitivity and specificity of ultrasound and clinical examination respectively, in the detection of melanoma regional node metastases. Additionally, we evaluated whether early detection of metastases improved overall survival. One hundred and forty-eight melanoma patients with an intermediate or thick primary lesion were followed between January 1997 and May 2001. Clinical examination and concomitant regional lymph node ultrasonography were performed, every 3-4 months. If suspicious findings were identified, regional lymph node dissection was undertaken. Forty-four from the initial 148 patients relapsed with regional lymph nodal metastases. In 11 patients (25%) palpation failed to reveal the disease and metastases were depicted only by ultrasonography. In only 1 patient ultrasonography was false-negative. The sensitivity and specificity of palpation were 72.7 and 97% respectively, while those of ultrasonography were 97.7 (p<0.001) and 98% respectively. Ultrasonography was more sensitive in detecting lymph node metastases in the axilla (100%) and the groin (93.3%). When overall survival of patients presenting with local-regional recurrence was calculated--depending on the number of involved lymph nodes--a survival benefit (p<0.05) was found for patients with only one lymph node metastasis. In conclusion, ultrasonography is superior to clinical examination in the early detection of regional lymph node metastases from an intermediate or thick malignant melanoma and should be a part of those patients' surveillance.

  17. The in-vitro and in-vivo inhibitory activity of biflorin in melanoma.

    PubMed

    Vasconcellos, Marne C; Bezerra, Daniel P; Fonseca, Aluísio M; Araújo, Ana Jérsia; Pessoa, Cláudia; Lemos, Telma L G; Costa-Lotufo, Letícia V; de Moraes, Manoel Odorico; Montenegro, Raquel C

    2011-04-01

    Biflorin, an ortho-naphthoquinone, is an active compound found in the roots of Capraria biflora L. It has been reported that biflorin presents anticancer activity, inhibiting both tumor cell line growth in culture and tumor development in mice. The aim of this study was to examine the effectiveness of biflorin treatment using both in-vitro and in-vivo melanoma models. Biflorin displayed considerable cytotoxicity against all tested cell lines, with half maximal inhibitory concentration values ranging from 0.58 μg/ml in NCI H23 (human lung adenocarcinoma) to 14.61 μg/ml in MDA-MB-231 (human breast cancer) cell lines. In a second set of experiments using B16 melanoma cells as a model, biflorin reduced cell viability but did not cause significant increase in the number of nonviable cells. In addition, the DNA synthesis was significantly inhibited. Flow cytometry analysis showed that biflorin may lead to an apoptotic death in melanoma cells, inducing DNA fragmentation and mitochondria depolarization, without affecting membrane integrity. In B16 melanoma-bearing mice, administration of biflorin (25mg/day) for 10 days inhibited tumor growth, and also increased the mean survival rate from 33.3±0.9 days (control) to 44.5±3.4 days (treated). Our findings suggest that biflorin may be considered as a promising lead compound for designing new drugs to be used in the treatment of melanoma.

  18. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model.

    PubMed

    Mirzaei, Hamed; Salehi, Hossein; Oskuee, Reza Kazemi; Mohammadpour, Ali; Mirzaei, Hamid Reza; Sharifi, Mohammad Reza; Salarinia, Reza; Darani, Hossein Yousofi; Mokhtari, Mojgan; Masoudifar, Aria; Sahebkar, Amirhossein; Salehi, Rasoul; Jaafari, Mahmoud Reza

    2018-04-10

    Interferon γ-induced protein 10 kDa (IP-10) is a potent chemoattractant and has been suggested to enhance antitumor activity and mediate tumor regression through multiple mechanisms of action. Multiple lines of evidence have indicated that genetically-modified adult stem cells represent a potential source for cell-based cancer therapy. In the current study, we assessed therapeutic potential of human adipose derived mesenchymal stem cells (hADSC) genetically-modified to express IP-10 for the treatment of lung metastasis in an immunocompetent mouse model of metastatic melanoma. A Piggybac vector encoding IP-10 was employed to transfect hADSC ex vivo. Expression and bioactivity of the transgenic protein from hADSCs expressing IP-10 were confirmed prior to in vivo studies. Our results indicated that hADSCs expressing IP-10 could inhibit the growth of B16F10 melanoma cells and significantly prolonged survival. Immunohistochemistry analysis, TUNEL assay and western blot analysis indicated that hADSCs expressing IP-10 inhibited tumor cell growth, hindered tumor infiltration of Tregs, restricted angiogenesis and significantly prolonged survival. In conclusion, our results demonstrated that targeting metastatic tumor sites by hADSC expressing IP-10 could reduce melanoma tumor growth and lung metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Evaluation of antitumor effects of folate-conjugated methyl-β-cyclodextrin in melanoma.

    PubMed

    Motoyama, Keiichi; Onodera, Risako; Tanaka, Nao; Kameyama, Kazuhisa; Higashi, Taishi; Kariya, Ryusho; Okada, Seiji; Arima, Hidetoshi

    2015-01-01

    Melanoma is a life-threatening disorder and its incidence is increasing gradually. Despite the numerous treatment approaches, conventional systemic chemotherapy has not reduced the mortality rate among melanoma patients, probably due to the induction of toxicity to normal tissues. Recently, we have developed folate-conjugated methyl-β-cyclodextrin (FA-M-β-CyD) and clarified its potential as a new antitumor agent involved in autophagic cell death. However, it remains uncertain whether FA-M-β-CyD exerts anticancer effects against melanomas. Therefore, in this study, we investigated the effects of FA-M-β-CyD on the folate receptor-α (FR-α)-expressing melanoma cell-selective cytotoxic effect. FA-M-β-CyD showed cytotoxic effects in Ihara cells, a human melanoma cell line expressing FR-α. In sharp contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered Ihara cells [FR-α(+)] through FR-α-mediated endocytosis. Additionally, FA-M-β-CyD elicited the formation of autophagosomes in Ihara cells. Notably, FA-M-β-CyD suppressed melanoma growth in BALB/c nude recombinase-activating gene-2 (Rag-2)/Janus kinase 3 (Jak3) double deficient mice bearing Ihara cells. Therefore, these results suggest that FA-M-β-CyD could be utilized as a potent anticancer agent for melanoma chemotherapy by regulating autophagy.

  20. Vaccine Therapy in Treating Patients With Stage IIC-IV Melanoma

    ClinicalTrials.gov

    2014-05-20

    Ciliary Body and Choroid Melanoma, Medium/Large Size; Ciliary Body and Choroid Melanoma, Small Size; Extraocular Extension Melanoma; Iris Melanoma; Metastatic Intraocular Melanoma; Mucosal Melanoma; Recurrent Intraocular Melanoma; Recurrent Melanoma; Stage IIC Melanoma; Stage IIIA Intraocular Melanoma; Stage IIIA Melanoma; Stage IIIB Intraocular Melanoma; Stage IIIB Melanoma; Stage IIIC Intraocular Melanoma; Stage IIIC Melanoma; Stage IV Intraocular Melanoma; Stage IV Melanoma

  1. microRNA-625 inhibits tumorigenicity by suppressing proliferation, migration and invasion in malignant melanoma.

    PubMed

    Fang, Wei; Fan, Yibin; Fa, Zhenzong; Xu, Jinhua; Yu, Hongyu; Li, Pu; Gu, Julin

    2017-02-21

    Dysregulated microRNA (miR)-625 expression has been observed in several kinds of cancer. MicroRNAs are important factors in the development and progression of malignant melanoma, though the clinical significance and function of miR-625 in human malignant melanoma remain unclear. Levels of miR-625 expression were therefore determined in 36 pairs of malignant melanoma and adjacent non-tumor tissue using qPCR. The effects of miR-625 dysregulation on malignant melanoma cell proliferation, wound healing, migration and invasion in vitro and tumorigenicity in vivo were investigated using CCK-8, transwell assays, and a nude mouse subcutaneous tumor model. Bioinformatics analysis and luciferase reporter system were used to predict and confirm the target gene of miR-625. miR-625 levels were frequently decreased in malignant melanoma. Ectopic expression of miR-625 suppressed proliferation, wound healing, migration, and tumorgenicity in malignant melanoma. Moreover, miR-625 acted, at least in part, by suppressing potential target SOX2. These results show that miR-625 is a tumor suppressor that inhibits the development and progression of malignant melanoma, which suggests miR-625 is potentially a new diagnostic marker and therapeutic target of malignant melanoma.

  2. A novel immune resistance mechanism of melanoma cells controlled by the ADAR1 enzyme

    PubMed Central

    Galore-Haskel, Gilli; Nemlich, Yael; Greenberg, Eyal; Ashkenazi, Shira; Hakim, Motti; Itzhaki, Orit; Shoshani, Noa; Shapira-Fromer, Ronnie; Ben-Ami, Eytan; Ofek, Efrat; Anafi, Liat; Besser, Michal J.

    2015-01-01

    The blossom of immunotherapy in melanoma highlights the need to delineate mechanisms of immune resistance. Recently, we have demonstrated that the RNA editing protein, adenosine deaminase acting on RNA-1 (ADAR1) is down-regulated during metastatic transition of melanoma, which enhances melanoma cell proliferation and tumorigenicity. Here we investigate the role of ADAR1 in melanoma immune resistance. Importantly, knockdown of ADAR1 in human melanoma cells induces resistance to tumor infiltrating lymphocytes in a cell contact-dependent mechanism. We show that ADAR1, in an editing-independent manner, regulates the biogenesis of miR-222 at the transcription level and thereby Intercellular Adhesion Molecule 1 (ICAM1) expression, which consequently affects melanoma immune resistance. ADAR1 thus has a novel, pivotal, role in cancer immune resistance. Corroborating with these results, the expression of miR-222 in melanoma tissue specimens was significantly higher in patients who had no clinical benefit from treatment with ipilimumab as compared to patients that responded clinically, suggesting that miR-222 could function as a biomarker for the prediction of response to ipilimumab. These results provide not only novel insights on melanoma immune resistance, but also pave the way to the development of innovative personalized tools to enable optimal drug selection and treatment. PMID:26338962

  3. KIT gene mutations and patterns of protein expression in mucosal and acral melanoma.

    PubMed

    Abu-Abed, Suzan; Pennell, Nancy; Petrella, Teresa; Wright, Frances; Seth, Arun; Hanna, Wedad

    2012-01-01

    Recently characterized KIT (CD117) gene mutations have revealed new pathways involved in melanoma pathogenesis. In particular, certain subtypes harbor mutations similar to those observed in gastrointestinal stromal tumors, which are sensitive to treatment with tyrosine kinase inhibitors. The purpose of this study was to characterize KIT gene mutations and patterns of protein expression in mucosal and acral melanoma. Formalin-fixed, paraffin-embedded tissues were retrieved from our archives. Histologic assessment included routine hematoxylin-eosin stains and immunohistochemical staining for KIT. Genomic DNA was used for polymerase chain reaction-based amplification of exons 11 and 13. We identified 59 acral and mucosal melanoma cases, of which 78% showed variable levels of KIT expression. Sequencing of exons 11 and 13 was completed on all cases, and 4 (6.8%) mutant cases were isolated. We successfully optimized conditions for the detection of KIT mutations and showed that 8.6% of mucosal and 4.2% of acral melanoma cases at our institution harbor KIT mutations; all mutant cases showed strong, diffuse KIT protein expression. Our case series represents the first Canadian study to characterize KIT gene mutations and patterns of protein expression in acral and mucosal melanoma.

  4. Initial experiences in the photoacoustic detection of melanoma metastases in resected lymph nodes

    NASA Astrophysics Data System (ADS)

    Grootendorst, D.; Jose, J.; Van der Jagt, P.; Van der Weg, W.; Nagel, K.; Wouters, M.; Van Boven, H.; Van Leeuwen, T. G.; Steenbergen, W.; Ruers, T.; Manohar, S.

    2011-03-01

    Accurate lymph node analysis is essential to determine the prognosis and treatment of patients suffering from melanoma. The initial results of a tomographic photoacoustic modality to detect melanoma metastases in resected lymph nodes are presented based on phantom models and a human lymph node. The results show melanoma metastases detection is feasible and the setup is capable of distinguishing absorbing structures down to 1 mm. In addition, the use of longer laser wavelengths could result in an image containing a higher contrast ratio. Future research shall be focused on using the melanin characteristics to improve contrast and detection possibilities.

  5. Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study.

    PubMed

    El Sayed, Salah Mohamed; Mohamed, Walaa Gamal; Seddik, Minnat-Allah Hassan; Ahmed, Al-Shimaa Ahmed; Mahmoud, Asmaa Gamal; Amer, Wael Hassan; Helmy Nabo, Manal Mohamed; Hamed, Ahmed Roshdi; Ahmed, Nagwa Sayed; Abd-Allah, Ali Abdel-Rahman

    2014-07-01

    3-Bromopyruvate (3BP) is a new, promising anticancer alkylating agent with several notable functions. In addition to inhibiting key glycolysis enzymes including hexokinase II and lactate dehydrogenase (LDH), 3BP also selectively inhibits mitochondrial oxidative phosphorylation, angiogenesis, and energy production in cancer cells. Moreover, 3BP induces hydrogen peroxide generation in cancer cells (oxidative stress effect) and competes with the LDH substrates pyruvate and lactate. There is only one published human clinical study showing that 3BP was effective in treating fibrolamellar hepatocellular carcinoma. LDH is a good measure for tumor evaluation and predicts the outcome of treatment better than the presence of a residual tumor mass. According to the Warburg effect, LDH is responsible for lactate synthesis, which facilitates cancer cell survival, progression, aggressiveness, metastasis, and angiogenesis. Lactate produced through LDH activity fuels aerobic cell populations inside tumors via metabolic symbiosis. In melanoma, the most deadly skin cancer, 3BP induced necrotic cell death in sensitive cells, whereas high glutathione (GSH) content made other melanoma cells resistant to 3BP. Concurrent use of a GSH depletor with 3BP killed resistant melanoma cells. Survival of melanoma patients was inversely associated with high serum LDH levels, which was reported to be highly predictive of melanoma treatment in randomized clinical trials. Here, we report a 28-year-old man presented with stage IV metastatic melanoma affecting the back, left pleura, and lung. The disease caused total destruction of the left lung and a high serum LDH level (4,283 U/L). After ethics committee approval and written patient consent, the patient received 3BP intravenous infusions (1-2.2 mg/kg), but the anticancer effect was minimal as indicated by a high serum LDH level. This may have been due to high tumor GSH content. On combining oral paracetamol, which depletes tumor GSH, with 3BP

  6. Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study

    PubMed Central

    El Sayed, Salah Mohamed; Mohamed, Walaa Gamal; Seddik, Minnat-Allah Hassan; Ahmed, Al-Shimaa Ahmed; Mahmoud, Asmaa Gamal; Amer, Wael Hassan; Helmy Nabo, Manal Mohamed; Hamed, Ahmed Roshdi; Ahmed, Nagwa Sayed; Abd-Allah, Ali Abdel-Rahman

    2014-01-01

    3-Bromopyruvate (3BP) is a new, promising anticancer alkylating agent with several notable functions. In addition to inhibiting key glycolysis enzymes including hexokinase II and lactate dehydrogenase (LDH), 3BP also selectively inhibits mitochondrial oxidative phosphorylation, angiogenesis, and energy production in cancer cells. Moreover, 3BP induces hydrogen peroxide generation in cancer cells (oxidative stress effect) and competes with the LDH substrates pyruvate and lactate. There is only one published human clinical study showing that 3BP was effective in treating fibrolamellar hepatocellular carcinoma. LDH is a good measure for tumor evaluation and predicts the outcome of treatment better than the presence of a residual tumor mass. According to the Warburg effect, LDH is responsible for lactate synthesis, which facilitates cancer cell survival, progression, aggressiveness, metastasis, and angiogenesis. Lactate produced through LDH activity fuels aerobic cell populations inside tumors via metabolic symbiosis. In melanoma, the most deadly skin cancer, 3BP induced necrotic cell death in sensitive cells, whereas high glutathione (GSH) content made other melanoma cells resistant to 3BP. Concurrent use of a GSH depletor with 3BP killed resistant melanoma cells. Survival of melanoma patients was inversely associated with high serum LDH levels, which was reported to be highly predictive of melanoma treatment in randomized clinical trials. Here, we report a 28-year-old man presented with stage IV metastatic melanoma affecting the back, left pleura, and lung. The disease caused total destruction of the left lung and a high serum LDH level (4,283 U/L). After ethics committee approval and written patient consent, the patient received 3BP intravenous infusions (1-2.2 mg/kg), but the anticancer effect was minimal as indicated by a high serum LDH level. This may have been due to high tumor GSH content. On combining oral paracetamol, which depletes tumor GSH, with 3BP

  7. Primary mucosal melanomas: a comprehensive review

    PubMed Central

    Mihajlovic, Marija; Vlajkovic, Slobodan; Jovanovic, Predrag; Stefanovic, Vladisav

    2012-01-01

    Primary mucosal melanomas arise from melanocytes located in mucosal membranes lining respiratory, gastrointestinal and urogenital tract. Although a majority of mucosal melanomas originate from the mucosa of the nasal cavity and accessory sinuses, oral cavity, anorectum, vulva and vagina, they can arise in almost any part of mucosal membranes. Most of mucosal melanomas occur in occult sites, which together with the lack of early and specific signs contribute to late diagnosis, and poor prognosis. Because of their rareness the knowledge about their pathogenesis and risk factors is insufficient, and also there are not well established protocols for staging and treatment of mucosal melanomas. Surgery is the mainstay of treatment, with trends toward more conservative treatment since radical surgery did not show an advantage for survival. Radiotherapy can provide better local control in some locations, but did not show improvement in survival. There is no effective systemic therapy for these aggressive tumors. Compared with cutaneous and ocular melanoma, mucosal melanomas have lowest percent of five-year survival. Recently revealed molecular changes underlying mucosal melanomas offer new hope for development of more effective systemic therapy for mucosal melanomas. Herein we presented a comprehensive review of various locations of primary melanoma along mucosal membranes, their epidemiological and clinical features, and treatment options. We also gave a short comparison of some characteristics of cutaneous and mucosal melanomas. PMID:23071856

  8. Primary mucosal melanomas: a comprehensive review.

    PubMed

    Mihajlovic, Marija; Vlajkovic, Slobodan; Jovanovic, Predrag; Stefanovic, Vladisav

    2012-01-01

    Primary mucosal melanomas arise from melanocytes located in mucosal membranes lining respiratory, gastrointestinal and urogenital tract. Although a majority of mucosal melanomas originate from the mucosa of the nasal cavity and accessory sinuses, oral cavity, anorectum, vulva and vagina, they can arise in almost any part of mucosal membranes. Most of mucosal melanomas occur in occult sites, which together with the lack of early and specific signs contribute to late diagnosis, and poor prognosis. Because of their rareness the knowledge about their pathogenesis and risk factors is insufficient, and also there are not well established protocols for staging and treatment of mucosal melanomas. Surgery is the mainstay of treatment, with trends toward more conservative treatment since radical surgery did not show an advantage for survival. Radiotherapy can provide better local control in some locations, but did not show improvement in survival. There is no effective systemic therapy for these aggressive tumors. Compared with cutaneous and ocular melanoma, mucosal melanomas have lowest percent of five-year survival. Recently revealed molecular changes underlying mucosal melanomas offer new hope for development of more effective systemic therapy for mucosal melanomas. Herein we presented a comprehensive review of various locations of primary melanoma along mucosal membranes, their epidemiological and clinical features, and treatment options. We also gave a short comparison of some characteristics of cutaneous and mucosal melanomas.

  9. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma

    NASA Astrophysics Data System (ADS)

    Sun, Chong; Wang, Liqin; Huang, Sidong; Heynen, Guus J. J. E.; Prahallad, Anirudh; Robert, Caroline; Haanen, John; Blank, Christian; Wesseling, Jelle; Willems, Stefan M.; Zecchin, Davide; Hobor, Sebastijan; Bajpe, Prashanth K.; Lieftink, Cor; Mateus, Christina; Vagner, Stephan; Grernrum, Wipawadee; Hofland, Ingrid; Schlicker, Andreas; Wessels, Lodewyk F. A.; Beijersbergen, Roderick L.; Bardelli, Alberto; di Nicolantonio, Federica; Eggermont, Alexander M. M.; Bernards, Rene

    2014-04-01

    Treatment of BRAF(V600E) mutant melanoma by small molecule drugs that target the BRAF or MEK kinases can be effective, but resistance develops invariably. In contrast, colon cancers that harbour the same BRAF(V600E) mutation are intrinsically resistant to BRAF inhibitors, due to feedback activation of the epidermal growth factor receptor (EGFR). Here we show that 6 out of 16 melanoma tumours analysed acquired EGFR expression after the development of resistance to BRAF or MEK inhibitors. Using a chromatin-regulator-focused short hairpin RNA (shRNA) library, we find that suppression of sex determining region Y-box 10 (SOX10) in melanoma causes activation of TGF-β signalling, thus leading to upregulation of EGFR and platelet-derived growth factor receptor-β (PDGFRB), which confer resistance to BRAF and MEK inhibitors. Expression of EGFR in melanoma or treatment with TGF-β results in a slow-growth phenotype with cells displaying hallmarks of oncogene-induced senescence. However, EGFR expression or exposure to TGF-β becomes beneficial for proliferation in the presence of BRAF or MEK inhibitors. In a heterogeneous population of melanoma cells having varying levels of SOX10 suppression, cells with low SOX10 and consequently high EGFR expression are rapidly enriched in the presence of drug, but this is reversed when the drug treatment is discontinued. We find evidence for SOX10 loss and/or activation of TGF-β signalling in 4 of the 6 EGFR-positive drug-resistant melanoma patient samples. Our findings provide a rationale for why some BRAF or MEK inhibitor-resistant melanoma patients may regain sensitivity to these drugs after a `drug holiday' and identify patients with EGFR-positive melanoma as a group that may benefit from re-treatment after a drug holiday.

  10. Melanoma survivorship: research opportunities.

    PubMed

    Oliveria, Susan A; Hay, Jennifer L; Geller, Alan C; Heneghan, Maureen K; McCabe, Mary S; Halpern, Allan C

    2007-03-01

    The rising incidence and mortality rates of melanoma, the most fatal form of skin cancer, are among the greatest increases of all preventable cancers over the past decade. However, because of recent advances in early detection, secondary prevention efforts, and treatment, the number of melanoma survivors is increasing. Little research has been conducted on melanoma survivors and important opportunities exist for research in this understudied population. Here, we outline the important research opportunities related to the study of melanoma survivorship and summarize the paucity of literature currently available. A computerized literature search was performed of the MEDLINE database of the National Library of Medicine from 1966-2005. The scope of the search was limited to those studies published in English. The search was conducted using the following MeSH headings: melanoma, neoplasms, skin neoplasms, survival, and survival rate. The reference lists of relevant book chapters and review articles were further reviewed, and printed materials from recent scientific meetings addressing this topic were obtained. Several factors that affect melanoma survivors warrant further study, including: physiologic long-term effects; psychosocial, behavioral, and cognitive factors; demographic characteristics; surveillance practices; recurrences, secondary primaries, and other cancers; family members of survivors; and economic issues, access to health care/life insurance. Understanding recurrence and second primary cancer risk, psychosocial and cognitive characteristics, behaviors, surveillance patterns, economic sequelae, and family issues of melanoma survivors is important from a public health standpoint to promote the health and well-being of this cohort. Melanoma is an understudied cancer, and the incidence and mortality of this disease are increasing. Describing the long term burden of this cancer and identifying factors that contribute to them will facilitate efforts to develop

  11. Computer-Aided Diagnosis of Micro-Malignant Melanoma Lesions Applying Support Vector Machines.

    PubMed

    Jaworek-Korjakowska, Joanna

    2016-01-01

    Background. One of the fatal disorders causing death is malignant melanoma, the deadliest form of skin cancer. The aim of the modern dermatology is the early detection of skin cancer, which usually results in reducing the mortality rate and less extensive treatment. This paper presents a study on classification of melanoma in the early stage of development using SVMs as a useful technique for data classification. Method. In this paper an automatic algorithm for the classification of melanomas in their early stage, with a diameter under 5 mm, has been presented. The system contains the following steps: image enhancement, lesion segmentation, feature calculation and selection, and classification stage using SVMs. Results. The algorithm has been tested on 200 images including 70 melanomas and 130 benign lesions. The SVM classifier achieved sensitivity of 90% and specificity of 96%. The results indicate that the proposed approach captured most of the malignant cases and could provide reliable information for effective skin mole examination. Conclusions. Micro-melanomas due to the small size and low advancement of development create enormous difficulties during the diagnosis even for experts. The use of advanced equipment and sophisticated computer systems can help in the early diagnosis of skin lesions.

  12. Molecular pathogenesis of malignant melanoma: a different perspective from the studies of melanocytic nevus and acral melanoma.

    PubMed

    Takata, Minoru; Murata, Hiroshi; Saida, Toshiaki

    2010-02-01

    The Clark model for melanoma progression emphasizes a series of histopathological changes beginning from benign melanocytic nevus to melanoma via dysplastic nevus. Several models of the genetic basis of melanoma development and progression are based on this Clark's multi-step model, and predict that the acquisition of a BRAF mutation can be a founder event in melanocytic neoplasia. However, our recent investigations have challenged this view, showing the polyclonality of BRAF mutations in melanocytic nevi. Furthermore, it is suggested that many melanomas, including acral and mucosal melanomas, arise de novo, not from melanocytic nevus. While mutations of the BRAF gene are frequent in melanomas on non-chronic sun damaged skin which are prevalent in Caucasians, acral and mucosal melanomas harbor mutations of the KIT gene as well as the amplifications of cyclin D1 or cyclin-dependent kinase 4 gene. Amplifications of the cyclin D1 gene are detected in normal-looking 'field melanocytes', which represent a latent progression phase of acral melanoma that precedes the stage of atypical melanocyte proliferation in the epidermis. Based on these observations, we propose an alternative genetic progression model for melanoma.

  13. p53 Reactivation by PRIMA-1(Met) (APR-246) sensitises (V600E/K)BRAF melanoma to vemurafenib.

    PubMed

    Krayem, Mohammad; Journe, Fabrice; Wiedig, Murielle; Morandini, Renato; Najem, Ahmad; Salès, François; van Kempen, Leon C; Sibille, Catherine; Awada, Ahmad; Marine, Jean-Christophe; Ghanem, Ghanem

    2016-03-01

    Intrinsic and acquired resistance of metastatic melanoma to (V600E/K)BRAF and/or MEK inhibitors, which is often caused by activation of the PI3K/AKT survival pathway, represents a major clinical challenge. Given that p53 is capable of antagonising PI3K/AKT activation we hypothesised that pharmacological restoration of p53 activity may increase the sensitivity of BRAF-mutant melanoma to MAPK-targeted therapy and eventually delay and/or prevent acquisition of drug resistance. To test this possibility we exposed a panel of vemurafenib-sensitive and resistant (innate and acquired) (V600E/K)BRAF melanomas to a (V600E/K)BRAF inhibitor (vemurafenib) alone or in combination with a direct p53 activator (PRIMA-1(Met)/APR-246). Strikingly, PRIMA-1(Met) synergised with vemurafenib to induce apoptosis and suppress proliferation of (V600E/K)BRAF melanoma cells in vitro and to inhibit tumour growth in vivo. Importantly, this drug combination decreased the viability of both vemurafenib-sensitive and resistant melanoma cells irrespectively of the TP53 status. Notably, p53 reactivation was invariably accompanied by PI3K/AKT pathway inhibition, the activity of which was found as a dominant resistance mechanism to BRAF inhibition in our lines. From all various combinatorial modalities tested, targeting the MAPK and PI3K signalling pathways through p53 reactivation or not, the PRIMA-1(Met)/vemurafenib combination was the most cytotoxic. We conclude that PRIMA-1(Met) through its ability to directly reactivate p53 regardless of the mechanism causing its deactivation, and thereby dampen PI3K signalling, sensitises (V600E/K)BRAF-positive melanoma to BRAF inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Melanoma Therapy with Rhenium-Cyclized Alpha Melanocyte Stimulating Hormone Peptide Analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas P Quinn

    2005-11-22

    Malignant melanoma is the 6th most commonly diagnosed cancer with increasing incidence in the United States. It is estimated that 54,200 cases of malignant melanoma will be newly diagnosed and 7,600 cases of death will occur in the United States in the year 2003 (1). At the present time, more than 1.3% of Americans will develop malignant melanoma during their lifetime (2). The average survival for patients with metastatic melanoma is about 6-9 months (3). Moreover, metastatic melanoma deposits are resistant to conventional chemotherapy and external beam radiation therapy (3). Systematic chemotherapy is the primary therapeutic approach to treat patientsmore » with metastatic melanoma. Dacarbazine is the only single chemotherapy agent approved by FDA for metastatic melanoma treatment (5). However, the response rate to Dacarbazine is only approximately 20% (6). Therefore, there is a great need to develop novel treatment approaches for metastatic melanoma. The global goal of this research program is the rational design, characterization and validation of melanoma imaging and therapeutic radiopharmaceuticals. Significant progress has been made in the design and characterization of metal-cyclized radiolabeled alpha-melanocyte stimulating hormone peptides. Therapy studies with {sup 188}Re-CCMSH demonstrated the therapeutic efficacy of the receptor-targeted treatment in murine and human melanoma bearing mice (previous progress report). Dosimetry calculations, based on biodistribution data, indicated that a significant dose was delivered to the tumor. However, {sup 188}Re is a very energetic beta-particle emitter. The longer-range beta-particles theoretically would be better for larger tumors. In the treatment of melanoma, the larger primary tumor is usually surgically removed leaving metastatic disease as the focus of targeted radiotherapy. Isotopes with lower beta-energies and/or shorter particle lengths should be better suited for targeting metastases. The {sup 177}Lu

  15. Adjuvant Treatment of Melanoma

    PubMed Central

    Moreno Nogueira, J. A.; Valero Arbizu, M.; Pérez Temprano, R.

    2013-01-01

    Melanomas represent 4% of all malignant tumors of the skin, yet account for 80% of deaths from skin cancer.While in the early stages patients can be successfully treated with surgical resection, metastatic melanoma prognosis is dismal. Several oncogenes have been identified in melanoma as BRAF, NRAS, c-Kit, and GNA11 GNAQ, each capable of activating MAPK pathway that increases cell proliferation and promotes angiogenesis, although NRAS and c-Kit also activate PI3 kinase pathway, including being more commonly BRAF activated oncogene. The treatment of choice for localised primary cutaneous melanoma is surgery plus lymphadenectomy if regional lymph nodes are involved. The justification for treatment in addition to surgery is based on the poor prognosis for high risk melanomas with a relapse index of 50–80%. Patients included in the high risk group should be assessed for adjuvant treatment with high doses of Interferon-α2b, as it is the only treatment shown to significantly improve disease free and possibly global survival. In the future we will have to analyze all these therapeutic possibilities on specific targets, probably associated with chemotherapy and/or interferon in the adjuvant treatment, if we want to change the natural history of melanomas. PMID:23476798

  16. Metastatic potential of melanoma cells is not affected by electrochemotherapy.

    PubMed

    Todorovic, Vesna; Sersa, Gregor; Mlakar, Vid; Glavac, Damjan; Flisar, Karel; Cemazar, Maja

    2011-06-01

    Electrochemotherapy is a local treatment combining chemotherapy and application of electric pulses to the tumour. Electrochemotherapy with bleomycin and cisplatin has shown its effectiveness in controlling local tumour growth in the treatment of malignant melanoma. However, the effect of electrochemotherapy on the metastatic potential of tumour cells is not known. Prevention of metastasis is an important aspect of successful treatment; however, it is known that metastasis can be induced by different treatment modalities. Therefore, the aim of this study was to evaluate the effect of electrochemotherapy with cisplatin on the metastatic potential of human malignant melanoma cells. Cells treated by electrochemotherapy with cisplatin were tested for their ability to migrate and invade through Matrigel-coated porous membrane. In addition, RNA was isolated from cells after treatment and differentially expressed genes were investigated by microarray analysis to evaluate the effect of electrochemotherapy with cisplatin on gene expression. There were no significant changes observed in cell migration and invasion of melanoma cells after electrochemotherapy. In addition, there were no changes observed in cell adhesion on Matrigel. Gene expression analysis showed that a very low number of genes were differentially expressed after electrochemotherapy with cisplatin. Two genes, LAMB3 and CD63 involved in cell migration, were both downregulated after electrochemotherapy with cisplatin and the expression of metastasis promoting genes was not increased after electrochemotherapy. Our data suggest that electrochemotherapy does not increase the metastatic behaviour of human melanoma cells.

  17. Changing presentation of cutaneous malignant melanoma.

    PubMed

    Klit, Anders; Lassen, Cecilie Brandt; Olsen, Caroline Holkmann; Lock-Andersen, Jørgen

    2015-10-01

    The incidence of cutaneous malignant melanoma is rapidly increasing in Denmark like in other Northern and Western European countries. Our objective was to investigate the characteristics of current patients suffering from cutaneous malignant melanoma. We evaluated patient and tumour characteristics in a cross-sectional study based on data from the Danish Melanoma Register. We included all patients diagnosed with cutaneous malignant melanoma in Healthcare Region Zealand in 2012 and 2013. We identified 520 patients with invasive cutaneous malignant melanoma. More females than males suffered from cutaneous malignant melanoma. Furthermore, females were younger than males, and the anatomical distribution of malignant melanoma varied between the genders. Outcome of sentinel lymph node biopsy was associated with tumour thickness. When comparing findings in our study with earlier Danish studies, we see a trend towards an increase in age at diagnosis. Furthermore, tumour thickness is decreasing and the topical distribution of cutaneous malignant melanoma in females changes towards a male pattern. none. The study has been approved by the Danish National Data Protection Agency.

  18. Other primary systemic cancers in patients with melanoma: Analysis of balanced acral and nonacral melanomas.

    PubMed

    Bae, Soo Hyeon; Seon, Hyun Ju; Choi, Yoo Duk; Shim, Hyun-Jeong; Lee, Jee-Bum; Yun, Sook Jung

    2016-02-01

    Although other primary systemic cancers in patients with melanoma have been studied, there have been few focusing on acral melanomas. We assessed other primary systemic cancers in patients with acral and nonacral melanomas. We analyzed other primary cancers in 452 patients with melanoma from 1994 to 2013. Metachronous cancers were defined as those given a diagnosis more than 2 months after diagnosis of melanoma. The others were considered prechronous or synchronous cancers. Among 51 cases of other primary cancers, gastrointestinal cancer (35.3%, n = 18/51) was the most common, followed by thyroid (17.6%), lung (11.8%), and breast (5.9%). Those were more prevalent in the acral melanoma group (12.8%, n = 31/243) compared with the nonacral melanoma group (9.6%, n = 20/209). Of 23 cases of metachronous cancer, the risk was the highest in bone marrow, followed by oral cavity, bladder, colon, lung, and thyroid. Among 28 cases of prechronous or synchronous cancers, gastrointestinal tract (35.7%, n = 10/28) was the most common site, followed by thyroid (17.9%), breast (10.7%), and lung (7.1%). The study is limited by a small number of patients. Careful follow-up and imaging studies are necessary for early detection of other primary cancers and metastatic lesions in patients with melanoma. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  19. A challenging case of ocular melanoma.

    PubMed

    Costache, Mariana; Dumitru, Adrian Vasile; Pătraşcu, Oana Maria; Popa-Cherecheanu, Daniela Alina; Bădilă, Patricia; Miu, Jeni Cătălina; Procop, Alexandru; Popa, Manuela; Tampa, Mircea Ştefan; Sajin, Maria; Simionescu, Olga; Cîrstoiu, Monica Mihaela

    2015-01-01

    Ocular melanoma is a rare malignancy found in clinical practice. In this paper, we present a case of highly aggressive ocular melanoma, which was surgically removed at the Department of Ophthalmology and diagnosed at the Department of Pathology, Emergency University Hospital, Bucharest, Romania, using conventional histopathological techniques. Uveal melanoma, a subset of ocular melanoma, has a distinct behavior in comparison to cutaneous melanoma and has a widely divergent prognosis. Approximately half of patients with ocular melanoma will develop metastatic disease, predominantly with hepatic, pulmonary or cerebral location, over a 10 to 15 years period. No systemic therapy was associated with an evident clinical outcome for patients with advanced disease and overall survival rate remains poor.

  20. Pediatric melanoma: incidence, treatment, and prognosis

    PubMed Central

    Saiyed, Faiez K; Hamilton, Emma C; Austin, Mary T

    2017-01-01

    The purpose of this review is to outline recent advancements in diagnosis, treatment, and prevention of pediatric melanoma. Despite the recent decline in incidence, it continues to be the deadliest form of skin cancer in children and adolescents. Pediatric melanoma presents differently from adult melanoma; thus, the traditional asymmetry, border irregularity, color variegation, diameter >6 mm, and evolution (ABCDE) criteria have been modified to include features unique to pediatric melanoma (amelanotic, bleeding/bump, color uniformity, de novo/any diameter, evolution of mole). Surgical and medical management of pediatric melanoma continues to derive guidelines from adult melanoma treatment. However, more drug trials are being conducted to determine the specific impact of drug combinations on pediatric patients. Alongside medical and surgical treatment, prevention is a central component of battling the incidence, as ultraviolet (UV)-related mutations play a central role in the vast majority of pediatric melanoma cases. Aggressive prevention measures targeting sun safety and tanning bed usage have shown positive sun-safety behavior trends, as well as the potential to decrease melanomas that manifest later in life. As research into the field of pediatric melanoma continues to expand, a prevention paradigm needs to continue on a community-wide level. PMID:29388632

  1. Genetically Engineered Cancer Models, But Not Xenografts, Faithfully Predict Anticancer Drug Exposure in Melanoma Tumors

    PubMed Central

    Combest, Austin J.; Roberts, Patrick J.; Dillon, Patrick M.; Sandison, Katie; Hanna, Suzan K.; Ross, Charlene; Habibi, Sohrab; Zamboni, Beth; Müller, Markus; Brunner, Martin; Sharpless, Norman E.

    2012-01-01

    Background. Rodent studies are a vital step in the development of novel anticancer therapeutics and are used in pharmacokinetic (PK), toxicology, and efficacy studies. Traditionally, anticancer drug development has relied on xenograft implantation of human cancer cell lines in immunocompromised mice for efficacy screening of a candidate compound. The usefulness of xenograft models for efficacy testing, however, has been questioned, whereas genetically engineered mouse models (GEMMs) and orthotopic syngeneic transplants (OSTs) may offer some advantages for efficacy assessment. A critical factor influencing the predictability of rodent tumor models is drug PKs, but a comprehensive comparison of plasma and tumor PK parameters among xenograft models, OSTs, GEMMs, and human patients has not been performed. Methods. In this work, we evaluated the plasma and tumor dispositions of an antimelanoma agent, carboplatin, in patients with cutaneous melanoma compared with four different murine melanoma models (one GEMM, one human cell line xenograft, and two OSTs). Results. Using microdialysis to sample carboplatin tumor disposition, we found that OSTs and xenografts were poor predictors of drug exposure in human tumors, whereas the GEMM model exhibited PK parameters similar to those seen in human tumors. Conclusions. The tumor PKs of carboplatin in a GEMM of melanoma more closely resembles the tumor disposition in patients with melanoma than transplanted tumor models. GEMMs show promise in becoming an improved prediction model for intratumoral PKs and response in patients with solid tumors. PMID:22993143

  2. Synthesis and evaluation of ¹²³/¹³¹I-Iochlonicotinamide as a novel SPECT probe for malignant melanoma.

    PubMed

    Chang, Chih-Chao; Chang, Chih-Hsien; Shen, Chih-Chieh; Chen, Chuan-Lin; Liu, Ren-Shyan; Lin, Ming-Hsien; Wang, Hsin-Ell

    2015-05-01

    Malignant melanoma expresses a highly aggressive metastasis. Early diagnosis of malignant melanoma is important for patient survival. Radiolabeled benzamides and nicotinamides have been reported to be attractive candidates for malignant melanoma diagnosis as they bind to melanin, a characteristic substance that displays in malignant melanoma, and show high tumor accumulation and retention. Herein, we designed and synthesized a novel (123/131)I-labeled nicotinamide derivative that specifically binds to melanin. (123/131)I-Iochlonicotinamide was prepared with good radiochemical yield (50-70%, decay corrected) and high specific radioactivity (50-80 GBq/μmol). (131)I-Iochlonicotinamide exhibited good in vitro stability (radiochemical purity >95% after a 24-h incubation) in human serum. High uptake of (123/131)I-Iochlonicotinamide in B16F0 melanoma cells compared to that in A375 amelanotic cells demonstrated its selective binding to melanin. Intravenous administration of (123/131)I-Iochlonicotinamide in a melanoma-bearing mouse model revealed high uptake in melanotic melanoma and high tumor-to-muscle ratio. MicroSPECT scan of (123/131)I-Iochlonicotinamide injected mice also displayed high contrast tumor imaging as compared with normal organs. The radiation-absorbed dose projection for the administration of (131)I-Iochlonicotinamide to human was based on the results of biodistribution study. The effective dose appears to be approximately 0.44 mSv/MBq(-1). The specific binding of (123/131)I-Iochlonicotinamide to melanin along with a prolonged tumor retention and acceptable projected human dosimetry suggest that it may be a promising theranostic agent for treating malignant melanoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET

    PubMed Central

    Peinado, Héctor; Alečković, Maša; Lavotshkin, Simon; Matei, Irina; Costa-Silva, Bruno; Moreno-Bueno, Gema; Hergueta-Redondo, Marta; Williams, Caitlin; García-Santos, Guillermo; Nitadori-Hoshino, Ayuko; Hoffman, Caitlin; Badal, Karen; Garcia, Benjamin A.; Callahan, Margaret K.; Yuan, Jianda; Martins, Vilma R.; Skog, Johan; Kaplan, Rosandra N.; Brady, Mary S.; Wolchok, Jedd D.; Chapman, Paul B.; Kang, Yibin; Bromberg, Jacqueline; Lyden, David

    2013-01-01

    Tumor-derived exosomes are emerging mediators of tumorigenesis with tissue-specific addresses and messages. We explored the function of melanoma-derived exosomes in the formation of primary tumor and metastases in mouse and human subjects. Exosomes from highly metastatic melanoma increased the metastatic behavior of primary tumors by permanently “educating” bone marrow (BM) progenitors via the MET receptor. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites, and reprogrammed BM progenitors towards a c-Kit+Tie2+Met+ pro-vasculogenic phenotype. Reducing Met expression in exosomes diminished the pro-metastatic behavior of BM cells. Importantly, MET expression was elevated in circulating CD45−C-KITlow/+TIE2+ BM progenitors from metastatic melanoma subjects. RAB1a, RAB5b, RAB7, and RAB27a were highly expressed in melanoma cells and Rab27a RNA interference decreased exosome production, preventing BM education, tumor growth and metastasis. Finally, we identified an exosome-specific “melanoma signature” with prognostic and therapeutic potential, comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. PMID:22635005

  4. Filamin A Modulates Kinase Activation and Intracellular Trafficking of Epidermal Growth Factor Receptors in Human Melanoma Cells

    PubMed Central

    Fiori, Jennifer L.; Zhu, Tie-Nian; O'Connell, Michael P.; Hoek, Keith S.; Indig, Fred E.; Frank, Brittany P.; Morris, Christa; Kole, Sutapa; Hasskamp, Joanne; Elias, George; Weeraratna, Ashani T.; Bernier, Michel

    2009-01-01

    The actin-binding protein filamin A (FLNa) affects the intracellular trafficking of various classes of receptors and has a potential role in oncogenesis. However, it is unclear whether FLNa regulates the signaling capacity and/or down-regulation of the activated epidermal growth factor receptor (EGFR). Here it is shown that partial knockdown of FLNa gene expression blocked ligand-induced EGFR responses in metastatic human melanomas. To gain greater insights into the role of FLNa in EGFR activation and intracellular sorting, we used M2 melanoma cells that lack endogenous FLNa and a subclone in which human FLNa cDNA has been stably reintroduced (M2A7 cells). Both tyrosine phosphorylation and ubiquitination of EGFR were significantly lower in epidermal growth factor (EGF)-stimulated M2 cells when compared with M2A7 cells. Moreover, the lack of FLNa interfered with EGFR interaction with the ubiquitin ligase c-Cbl. M2 cells exhibited marked resistance to EGF-induced receptor degradation, which was very active in M2A7 cells. Despite comparable rates of EGF-mediated receptor endocytosis, internalized EGFR colocalized with the lysosomal marker lysosome-associated membrane protein-1 in M2A7 cells but not M2 cells, in which EGFR was found to be sequestered in large vesicles and subsequently accumulated in punctated perinuclear structures after EGF stimulation. These results suggest the requirement of FLNa for efficient EGFR kinase activation and the sorting of endocytosed receptors into the degradation pathway. PMID:19213840

  5. Molecular determinants of melanoma malignancy: selecting targets for improved efficacy of chemotherapy

    PubMed Central

    Yang, Jinming; Zaja-Milatovic, Snjezana; Thu, Yee-Mon; Lee, Francis; Smykla, Richard; Richmond, Ann

    2011-01-01

    The BRAFV600E mutation is common in human melano-ma. This mutation enhances IκB kinase (IKK)/nuclear factor-κB (NF-κB) and extracellular signal-regulated kinase/activator protein signaling cascades. In this study, we evaluated the efficacy of targeting either B-Raf or IKKβ in combination with the DNA alkylating agent temozolomide for treatment of advanced metastatic melanoma. Xenografts of Hs294T human metastatic melanoma cells exhibiting the BRAFV600E mutation were treated with inhibitors of IKKβ (BMS-345541), B-Raf (BAY 54–9085), and/or temozolomide. Drug response was mechanistically analyzed in vitro and in vivo. In this study, we determined that the antitumor activity of all three drugs depends on inhibition of NF-κB. BMS-345541 inhibits IKKβ-mediated phosphorylation of IκBα and thus blocks the nuclear localization of NF-κB, whereas BAY 54–9085 inhibits activation of NF-κB through a mechanism that does not involve stabilization of IκBα. Moreover, BMS-345541, but not BAY 54–9085, activates the death pathways of p53 and c-Jun-NH2-kinase, contributing to the killing of melanoma cells. Temozolomide inhibits both NF-κB and extracellular signal-regulated kinase activity, conferring effective in vivo antitumor activity. Thus, temozolomide, but not BAY 54–9085, has a synergistic in vivo antitumor effect with BMS-345541. We conclude that the efficacy of antimelanoma therapy depends on inhibition of expression of antiapoptotic genes transcriptionally regulated by NF-κB. In contrast, drug targeting of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway alone in melanoma cells is ineffective for melanoma therapy in cases where NF-κB is not also targeted. PMID:19276165

  6. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling

    PubMed Central

    Syed, Deeba N.; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K.; Adhami, Vaqar M.; Mukhtar, Hasan

    2014-01-01

    The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. PMID:24675012

  7. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling.

    PubMed

    Syed, Deeba N; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K; Adhami, Vaqar M; Mukhtar, Hasan

    2014-06-01

    The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. Published by Elsevier Inc.

  8. Tumor-infiltrating lymphocyte grade in primary melanomas is independently associated with melanoma-specific survival in the population-based genes, environment and melanoma study.

    PubMed

    Thomas, Nancy E; Busam, Klaus J; From, Lynn; Kricker, Anne; Armstrong, Bruce K; Anton-Culver, Hoda; Gruber, Stephen B; Gallagher, Richard P; Zanetti, Roberto; Rosso, Stefano; Dwyer, Terence; Venn, Alison; Kanetsky, Peter A; Groben, Pamela A; Hao, Honglin; Orlow, Irene; Reiner, Anne S; Luo, Li; Paine, Susan; Ollila, David W; Wilcox, Homer; Begg, Colin B; Berwick, Marianne

    2013-11-20

    Although most hospital-based studies suggest more favorable survival with tumor-infiltrating lymphocytes (TILs) present in primary melanomas, it is uncertain whether TILs provide prognostic information beyond existing melanoma staging definitions. We addressed the issue in an international population-based study of patients with single and multiple primary melanomas. On the basis of the Genes, Environment and Melanoma (GEM) study, we conducted follow-up of 2,845 patients diagnosed from 1998 to 2003 with 3,330 invasive primary melanomas centrally reviewed for TIL grade (absent, nonbrisk, or brisk). The odds of TIL grades associated with clinicopathologic features and survival by TIL grade were examined. Independent predictors (P < .05) for nonbrisk TIL grade were site, histologic subtype, and Breslow thickness, and for brisk TIL grade, they were age, site, Breslow thickness, and radial growth phase. Nonbrisk and brisk TIL grades were each associated with lower American Joint Committee on Cancer (AJCC) tumor stage compared with TIL absence (P(trend) < .001). Death as a result of melanoma was 30% less with nonbrisk TIL grade (hazard ratio [HR], 0.7; 95% CI, 0.5 to 1.0) and 50% less with brisk TIL grade (HR, 0.5; 95% CI, 0.3 to 0.9) relative to TIL absence, adjusted for age, sex, site, and AJCC tumor stage. At the population level, higher TIL grade of primary melanoma is associated with a lower risk of death as a result of melanoma independently of tumor characteristics currently used for AJCC tumor stage. We conclude that TIL grade deserves further prospective investigation to determine whether it should be included in future AJCC staging revisions.

  9. Tumor-Infiltrating Lymphocyte Grade in Primary Melanomas Is Independently Associated With Melanoma-Specific Survival in the Population-Based Genes, Environment and Melanoma Study

    PubMed Central

    Thomas, Nancy E.; Busam, Klaus J.; From, Lynn; Kricker, Anne; Armstrong, Bruce K.; Anton-Culver, Hoda; Gruber, Stephen B.; Gallagher, Richard P.; Zanetti, Roberto; Rosso, Stefano; Dwyer, Terence; Venn, Alison; Kanetsky, Peter A.; Groben, Pamela A.; Hao, Honglin; Orlow, Irene; Reiner, Anne S.; Luo, Li; Paine, Susan; Ollila, David W.; Wilcox, Homer; Begg, Colin B.; Berwick, Marianne

    2013-01-01

    Purpose Although most hospital-based studies suggest more favorable survival with tumor-infiltrating lymphocytes (TILs) present in primary melanomas, it is uncertain whether TILs provide prognostic information beyond existing melanoma staging definitions. We addressed the issue in an international population-based study of patients with single and multiple primary melanomas. Patients and Methods On the basis of the Genes, Environment and Melanoma (GEM) study, we conducted follow-up of 2,845 patients diagnosed from 1998 to 2003 with 3,330 invasive primary melanomas centrally reviewed for TIL grade (absent, nonbrisk, or brisk). The odds of TIL grades associated with clinicopathologic features and survival by TIL grade were examined. Results Independent predictors (P < .05) for nonbrisk TIL grade were site, histologic subtype, and Breslow thickness, and for brisk TIL grade, they were age, site, Breslow thickness, and radial growth phase. Nonbrisk and brisk TIL grades were each associated with lower American Joint Committee on Cancer (AJCC) tumor stage compared with TIL absence (Ptrend < .001). Death as a result of melanoma was 30% less with nonbrisk TIL grade (hazard ratio [HR], 0.7; 95% CI, 0.5 to 1.0) and 50% less with brisk TIL grade (HR, 0.5; 95% CI, 0.3 to 0.9) relative to TIL absence, adjusted for age, sex, site, and AJCC tumor stage. Conclusion At the population level, higher TIL grade of primary melanoma is associated with a lower risk of death as a result of melanoma independently of tumor characteristics currently used for AJCC tumor stage. We conclude that TIL grade deserves further prospective investigation to determine whether it should be included in future AJCC staging revisions. PMID:24127443

  10. Expression of Tissue Factor by Melanoma Cells Promotes Efficient Hematogenous Metastasis

    NASA Astrophysics Data System (ADS)

    Mueller, Barbara M.; Reisfeld, Ralph A.; Edgington, Thomas S.; Ruf, Wolfram

    1992-12-01

    Metastasis is a multistep process which requires highly adapted interactions of tumor cells with host target organs. Compared with nonmetastatic cells, metastatic human melanoma cells express 1000-fold higher levels of tissue factor (TF), the major cellular initiator of the plasma coagulation protease cascades. To explore whether TF may contribute to metastatic tumor dissemination, we analyzed the effect of specific inhibition of TF function on human melanoma metastasis in severe combined immunodeficient (SCID) mice. Using species-specific antibodies to TF, we demonstrate that initial adherence is insufficient for successful tumor cell implantation in a target organ. Rapid arrest of human tumor cells in the lungs of mice was not diminished by inhibition of TF. However, inhibition of TF receptor function and consequent reduction in local protease generation abolished prolonged adherence of tumor cells, resulting in significantly reduced numbers of tumor cells retained in the vasculature of the lungs. The growth of pulmonary metastases was also significantly inhibited by a blocking anti-TF monoclonal antibody and Fab fragments thereof, whereas a noninhibitory antibody lacked antimetastatic effects. Cell surface expression of functional TF thus contributes to melanoma progression by allowing metastatic cells to provide requisite signals for prolonged adhesive interactions and/or transmigration of tumor cells across the endothelium, resulting in successful metastatic tumor implantation.

  11. Malignant melanoma of the nose.

    PubMed

    Souza, S D; Sujata, G

    2001-04-01

    Invasive tumors containing abnormal melanocvtes are termed ax malignant melanomas. Primary malignant melanomas of the nasal and paranasal cavities are extremely rare. A 65 years old female presented with bleeding from the nose and a gradually increasing mass in the left nostril. Histopathological examination of the specimen showed "poorly differentiated carcinoma" like features. But S-100 staining proved it to be a malignant melanoma. This case is reported here for its rarity. The literature on malignant melanoma is reviewed and the aetiology pathology, diagnostic and therapeutic problems are also discussed.

  12. Noncalcemic 20-hydroxyvitamin D3 inhibits human melanoma growth in in vitro and in vivo models

    PubMed Central

    Kim, Tae-Kang; Yang, Chuan He; Pfeffer, Lawrence M.; Tuckey, Robert C.; Slominski, Andrzej T.

    2017-01-01

    A novel pathway of vitamin D3 (D3) metabolism, initiated by C20-hydroxylation of D3 by CYP11A1, has been confirmed to operate in vivo. Its major product, 20(OH)D3, exhibits antiproliferative activity in vitro comparable to that of 1,25(OH)2D3, but is noncalcemic in mice and rats. To further characterize the antimelanoma activity of 20(OH)D3, we tested its effect on colony formation of human melanoma cells in monolayer culture and anchorage-independent growth in soft agar. The migratory capabilities of the cells and cell-cell and cell-extracellular matrix interactions were also evaluated using transwell cell migration and spheroid toxicity assays. To assess the antimelanoma activity of 20(OH)D3 in vivo, age-matched immunocompromised mice were subcutaneously implanted with luciferase-labelled SKMel-188 cells and were randomly assigned to be treated with either 20(OH)D3 or vehicle (n=10 per group). Tumor size was measured with caliper and live bioimaging methods, and overall health condition expressed as a total body score scale. The following results were observed: (i) 20(OH)D3 inhibited colony formation both in monolayer and soft agar conditions, (ii) 20(OH)D3 inhibited melanoma cells in both transwell migration and spheroid toxicity assays, and (iii) 20(OH)D3 inhibited melanoma tumor growth in immunocompromised mice without visible signs of toxicity. However, although the survival rate was 90% in both groups, the total body score was higher in the treatment group compared to control group (2.8 vs. 2.55). In conclusion, 20(OH)D3, an endogenously produced secosteroid, is an excellent candidate for further preclinical testing as an antimelanoma agent. PMID:28039464

  13. Role of Apollon in Human Melanoma Resistance to Antitumor Agents That Activate the Intrinsic or the Extrinsic Apoptosis Pathways

    PubMed Central

    Tassi, Elena; Zanon, Marina; Vegetti, Claudia; Molla, Alessandra; Bersani, Ilaria; Perotti, Valentina; Pennati, Marzia; Zaffaroni, Nadia; Milella, Michele; Ferrone, Soldano; Carlo-Stella, Carmelo; Gianni, Alessandro M.; Mortarini, Roberta; Anichini, Andrea

    2012-01-01

    Purpose To assess the role of Apollon in melanoma resistance to intrinsic and extrinsic pathways of apoptosis and to identify strategies to reduce its expression. Experimental Design Apollon expression was assessed in melanoma cells in vitro and in vivo. Apollon modulation and melanoma apoptosis were evaluated by Western blot and/or flow cytometry in response to cytotoxic drugs, mitogen-activated protein/extracellular signal–regulated kinase (MEK)-, BRAFV600E-, and mTOR-specific inhibitors, TRAIL and anti-HLA class II monoclonal antibodies (mAb). Mitochondrial depolarization, caspase activation, apoptosis assays, and gene expression profiling were used to test effects of Apollon silencing, by siRNA, on melanoma response to antitumor agents. Results Apollon was constitutively expressed by melanoma cells, in vitro and in vivo, and at higher levels than in benign melanocytic lesions. Melanoma apoptosis correlated significantly with Apollon protein downmodulation in response to cytotoxic drugs, MEK, or BRAFV600E-specific inhibitors. Combinatorial treatment with MEK and mTOR inhibitors and HLA class II ligation, by a specific mAb, promoted Apollon downmodulation and enhanced melanoma apoptosis. Apollon downmodulation induced by antitumor agents was caspase independent, but proteasome dependent. Knockdown of Apollon, by siRNA, triggered apoptosis and/or significantly enhanced melanoma cell death in response to cytotoxic drugs, MEK- and BRAFV600E-specific inhibitors, and soluble or membrane-bound TRAIL. Apollon silencing promoted mitochondrial depolarization and caspase-2, caspase-8, caspase-9, and caspase-3 activation in response to different antitumor agents and altered the profile of genes modulated by MEK or BRAFV600E-specific inhibitors. Conclusions Targeting of Apollon may significantly improve melanoma cell death in response to antitumor agents that trigger the intrinsic or the extrinsic apoptosis pathways. PMID:22553342

  14. Molecular Classification of Melanoma

    Cancer.gov

    Tissue-based analyses of precursors, melanoma tumors and metastases within existing study populations to further understanding of the heterogeneity of melanoma and determine a predictive pattern of progression for dysplastic nevi.

  15. MelanomaDB: A Web Tool for Integrative Analysis of Melanoma Genomic Information to Identify Disease-Associated Molecular Pathways

    PubMed Central

    Trevarton, Alexander J.; Mann, Michael B.; Knapp, Christoph; Araki, Hiromitsu; Wren, Jonathan D.; Stones-Havas, Steven; Black, Michael A.; Print, Cristin G.

    2013-01-01

    Despite on-going research, metastatic melanoma survival rates remain low and treatment options are limited. Researchers can now access a rapidly growing amount of molecular and clinical information about melanoma. This information is becoming difficult to assemble and interpret due to its dispersed nature, yet as it grows it becomes increasingly valuable for understanding melanoma. Integration of this information into a comprehensive resource to aid rational experimental design and patient stratification is needed. As an initial step in this direction, we have assembled a web-accessible melanoma database, MelanomaDB, which incorporates clinical and molecular data from publically available sources, which will be regularly updated as new information becomes available. This database allows complex links to be drawn between many different aspects of melanoma biology: genetic changes (e.g., mutations) in individual melanomas revealed by DNA sequencing, associations between gene expression and patient survival, data concerning drug targets, biomarkers, druggability, and clinical trials, as well as our own statistical analysis of relationships between molecular pathways and clinical parameters that have been produced using these data sets. The database is freely available at http://genesetdb.auckland.ac.nz/melanomadb/about.html. A subset of the information in the database can also be accessed through a freely available web application in the Illumina genomic cloud computing platform BaseSpace at http://www.biomatters.com/apps/melanoma-profiler-for-research. The MelanomaDB database illustrates dysregulation of specific signaling pathways across 310 exome-sequenced melanomas and in individual tumors and identifies the distribution of somatic variants in melanoma. We suggest that MelanomaDB can provide a context in which to interpret the tumor molecular profiles of individual melanoma patients relative to biological information and available drug therapies. PMID:23875173

  16. Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma.

    PubMed

    Pritchard-Jones, R O; Dunn, D B A; Qiu, Y; Varey, A H R; Orlando, A; Rigby, H; Harper, S J; Bates, D O

    2007-07-16

    Malignant melanoma is the most lethal of the skin cancers and the UK incidence is rising faster than that of any other cancer. Angiogenesis - the growth of new vessels from preexisting vasculature - is an absolute requirement for tumour survival and progression beyond a few hundred microns in diameter. We previously described a class of anti-angiogenic isoforms of VEGF, VEGF(xxx)b, that inhibit tumour growth in animal models, and are downregulated in some cancers, but have not been investigated in melanoma. To determine whether VEGF(xxx)b expression was altered in melanoma, PCR and immunohistochemistry of archived human tumour samples were used. In normal epidermis and in a proportion of melanoma samples, VEGF(xxx)b staining was seen. Some melanomas had much weaker staining. Subsequent examination revealed that expression was significantly reduced in primary melanoma samples (both horizontal and vertical growth phases) from patients who subsequently developed tumour metastasis compared with those who did not (analysis of variance (ANOVA) P<0.001 metastatic vs nonmetastatic), irrespective of tumour thickness, while the surrounding epidermis showed no difference in expression. Staining for total VEGF expression showed staining in metastatic and nonmetastatic melanomas, and normal epidermis. An absence of VEGF(xxx)b expression appears to predict metastatic spread in patients with primary melanoma. These results suggest that there is a switch in splicing as part of the metastatic process, from anti-angiogenic to pro-angiogenic VEGF isoforms. This may form part of a wider metastatic splicing phenotype.

  17. Intracranial Tumor Cell Migration and the Development of Multiple Brain Metastases in Malignant Melanoma.

    PubMed

    Simonsen, Trude G; Gaustad, Jon-Vidar; Rofstad, Einar K

    2016-06-01

    A majority of patients with melanoma brain metastases develop multiple lesions, and these patients show particularly poor prognosis. To develop improved treatment strategies, detailed insights into the biology of melanoma brain metastases, and particularly the development of multiple lesions, are needed. The purpose of this preclinical investigation was to study melanoma cell migration within the brain after cell injection into a well-defined intracerebral site. A-07, D-12, R-18, and U-25 human melanoma cells transfected with green fluorescent protein were injected stereotactically into the right cerebral hemisphere of nude mice. Moribund mice were killed and autopsied, and the brain was evaluated by fluorescence imaging or histological examination. Intracerebral inoculation of melanoma cells produced multiple lesions involving all regions of the brain, suggesting that the cells were able to migrate over substantial distances within the brain. Multiple modes of transport were identified, and all transport modes were observed in all four melanoma lines. Thus, the melanoma cells were passively transported via the flow of cerebrospinal fluid in the meninges and ventricles, they migrated actively along leptomeningeal and brain parenchymal blood vessels, and they migrated actively along the surfaces separating different brain compartments. Migration of melanoma cells after initial arrest, extravasation, and growth at a single location within the brain may contribute significantly to the development of multiple melanoma brain metastases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue

    NASA Astrophysics Data System (ADS)

    He, Jinping; Wang, Nan; Tsurui, Hiromichi; Kato, Masashi; Iida, Machiko; Kobayashi, Takayoshi

    2016-07-01

    Skin cancer is one of the most common cancers. Melanoma accounts for less than 2% of skin cancer cases but causes a large majority of skin cancer deaths. Early detection of malignant melanoma remains the key factor in saving lives. However, the melanoma diagnosis is still clinically challenging. Here, we developed a confocal photothermal microscope for noninvasive, label-free, three-dimensional imaging of melanoma. The axial resolution of confocal photothermal microscope is ~3 times higher than that of commonly used photothermal microscope. Three-dimensional microscopic distribution of melanin in pigmented lesions of mouse skin is obtained directly with this setup. Classic morphometric and fractal analysis of sixteen 3D images (eight for benign melanoma and eight for malignant) showed a capability of pathology of melanoma: melanin density and size become larger during the melanoma growth, and the melanin distribution also becomes more chaotic and unregulated. The results suggested new options for monitoring the melanoma growth and also for the melanoma diagnosis.

  19. MicroRNA signatures differentiate melanoma subtypes

    PubMed Central

    Chan, Elcie; Patel, Rajeshvari; Nallur, Sunitha; Ratner, Elena; Bacchiocchi, Antonella; Hoyt, Kathleen; Szpakowski, Sebastian; Godshalk, Sirie; Ariyan, Stephan; Sznol, Mario; Halaban, Ruth; Krauthammer, Michael; Tuck, David; Slack, Frank J

    2011-01-01

    Melanoma is an aggressive cancer that is highly resistance to therapies once metastasized. We studied microRNA (miRNA) expression in clinical melanoma subtypes and evaluated different miRNA signatures in the background of gain of function somatic and inherited mutations associated with melanoma. Total RNA from 42 patient derived primary melanoma cell lines and three independent normal primary melanocyte cell cultures was evaluated by miRNA array. MiRNA expression was then analyzed comparing subtypes and additional clinicopathologic criteria including somatic mutations. The prevalence and association of an inherited variant in a miRNA binding site in the 3′UTR of the KRAS oncogene, referred to as the KRAS-variant, was also evaluated. We show that seven miRNAs, miR-142-3p, miR-486, miR-214, miR-218, miR-362, miR-650 and miR-31, were significantly correlated with acral as compared to non-acral melanomas (p < 0.04). In addition, we discovered that the KRAS-variant was enriched in non-acral melanoma (25%), and that miR-137 under expression was significantly associated with melanomas with the KRAS-variant. Our findings indicate that miRNAs are differentially expressed in melanoma subtypes and that their misregulation can be impacted by inherited gene variants, supporting the hypothesis that miRNA misregulation reflects biological differences in melanoma. PMID:21543894

  20. Methotrexate inhibits the viability of human melanoma cell lines and enhances Fas/Fas-ligand expression, apoptosis and response to interferon-alpha: Rationale for its use in combination therapy

    PubMed Central

    Nihal, Minakshi; Wu, Jianqiang; Wood, Gary S.

    2015-01-01

    Melanoma, a highly aggressive form of cancer, is notoriously resistant to available therapies. Methotrexate (MTX), an antifolate, competitively inhibits DNA synthesis and is effective for several types of cancer. In cutaneous T-cell lymphoma (CTCL), MTX increases Fas death receptor by decreasing Fas promoter methylation by blocking the synthesis of SAM, the principal methyl donor for DNMTs, resulting in enhanced Fas-mediated apoptosis. The objective of this study was to explore the effects of MTX in human melanoma. MTX variably inhibited the survival of melanoma cells and induced apoptosis as evident by annexin V positivity and senescence associated β-galactosidase activity induction. Furthermore, MTX caused increased transcript and protein levels of extrinsic apoptotic pathway factors Fas and Fas-ligand, albeit at different levels in different cell lines. Our pyrosequencing studies showed that this increased expression of Fas was associated with Fas promoter demethylation. Overall, the ability of MTX to up-regulate Fas/FasL and enhance melanoma apoptosis through extrinsic as well as intrinsic pathways might make it a useful component of novel combination therapies designed to affect multiple melanoma targets simultaneously. In support of this concept, combination therapy with MTX and interferon-alpha (IFNα) induced significantly greater apoptosis in the aggressive A375 cell line than either agent alone. PMID:24862567

  1. Cystatin C takes part in melanoma-microglia cross-talk: possible implications for brain metastasis.

    PubMed

    Moshe, Adi; Izraely, Sivan; Sagi-Assif, Orit; Prakash, Roshini; Telerman, Alona; Meshel, Tsipi; Carmichael, Thomas; Witz, Isaac P

    2018-05-02

    The development of melanoma brain metastasis is largely dependent on mutual interactions between the melanoma cells and cells in the brain microenvironment. Here, we report that the extracellular cysteine protease inhibitor cystatin C (CysC) is involved in these interactions. Microglia-derived factors upregulated CysC secretion by melanoma. Similarly, melanoma-derived factors upregulated CysC secretion by microglia. Whereas CysC enhanced melanoma cell migration through a layer of brain endothelial cells, it inhibited the migration of microglia cells toward melanoma cells. CysC was also found to promote the formation of melanoma three-dimensional structures in matrigel. IHC analysis revealed increased expression levels of CysC in the brain of immune-deficient mice bearing xenografted human melanoma brain metastasis compared to the brain of control mice. Based on these in vitro and in vivo experiments we hypothesize that CysC promotes melanoma brain metastasis. Increased expression levels of CysC were detected in the regenerating brain of mice after stroke. Post-stroke brain with melanoma brain metastasis showed an even stronger expression of CysC. The in vitro induction of stroke-like conditions in brain microenvironmental cells increased the levels of CysC in the secretome of microglia cells, but not in the secretome of brain endothelial cells. The similarities between melanoma brain metastasis and stroke with respect to CysC expression by and secretion from microglia cells suggest that CysC may be involved in shared pathways between brain metastasis and post-stroke regeneration. This manifests the tendency of tumor cells to highjack physiological molecular pathways in their progression.

  2. Updated evidence-based clinical practice guidelines for the diagnosis and management of melanoma: definitive excision margins for primary cutaneous melanoma.

    PubMed

    Sladden, Michael J; Nieweg, Omgo E; Howle, Julie; Coventry, Brendon J; Thompson, John F

    2018-02-19

    Definitive management of primary cutaneous melanoma consists of surgical excision of the melanoma with the aim of curing the patient. The melanoma is widely excised together with a safety margin of surrounding skin and subcutaneous tissue, after the diagnosis and Breslow thickness have been established by histological assessment of the initial excision biopsy specimen. Sentinel lymph node biopsy should be discussed for melanomas ≥ 1 mm thickness (≥ 0.8 mm if other high risk features) in which case lymphoscintigraphy must be performed before wider excision of the primary melanoma site. The 2008 evidence-based clinical practice guidelines for the management of melanoma (http://www.cancer.org.au/content/pdf/HealthProfessionals/ClinicalGuidelines/ClinicalPracticeGuidelines-ManagementofMelanoma.pdf) are currently being revised and updated in a staged process by a multidisciplinary working party established by Cancer Council Australia. The guidelines for definitive excision margins for primary melanomas have been revised as part of this process. Main recommendations: The recommendations for definitive wide local excision of primary cutaneous melanoma are: melanoma in situ: 5-10 mm margins invasive melanoma (pT1) ≤ 1.0 mm thick: 1 cm margins invasive melanoma (pT2) 1.01-2.00 mm thick: 1-2 cm margins invasive melanoma (pT3) 2.01-4.00 mm thick: 1-2 cm margins invasive melanoma (pT4) > 4.0 mm thick: 2 cm margins Changes in management as a result of the guideline: Based on currently available evidence, excision margins for invasive melanoma have been left unchanged compared with the 2008 guidelines. However, melanoma in situ should be excised with 5-10 mm margins, with the aim of achieving complete histological clearance. Minimum clearances from all margins should be assessed and stated. Consideration should be given to further excision if necessary; positive or close histological margins are unacceptable.

  3. Anti-Melanogenic Activity and Cytotoxicity of Pistacia vera Hull on Human Melanoma SKMEL-3 Cells.

    PubMed

    Sarkhail, Parisa; Salimi, Mona; Sarkheil, Pantea; Mostafapour Kandelous, Hirsa

    2017-07-01

    Pistacia vera seed is a common food and medicinal seed in Iran. It's hull (outer skin) as a significant byproduct of pistachio, is traditionally used as tonic, sedative and antidiarrheal and has been shown to be a rich source of antioxidants. The aim of the present study is to evaluate the anti-melanogenic activity of the pistachio hulls in order to discover a new alternative herbal agent to treat skin hyperpigmentation disorders. In this work, antioxidant and anti-tyrosinase activity of MeOH extract from Pistacia vera hull (MPH) were evaluated in vitro, respectively, by DPPH radical scavenging and mushroom tyrosinase activity assays. Then the effect of MPH on the melanin content, cellular tyrosinase activity and cytotoxicity (MTT assay) on human melanoma SKMEL-3 cell were determined followed by 72 h incubation. The results indicated that MPH had valuable DPPH radical scavenging effect and weak anti-tyrosinase activity when compared to the well-known antioxidant (BHT) and tyrosinase inhibitor (kojic acid), respectively. MPH, at a high dose (0.5 mg/mL), showed significant cytotoxic activity (~63%) and strong anti-melanogenic effect (~57%) on SKMEL-3 cells. The effect of MPH in the reduction of melanin content may be related to its cytotoxicity. The results obtained suggest that MPH can be used as an effective agent in the treatment of some skin hyperpigmentation disorders such as melanoma.

  4. Current and Future Trials of Targeted Therapies in Cutaneous Melanoma

    PubMed Central

    Madhunapantula, SubbaRao V.; Robertson, Gavin P.; Drabick, Joseph J.

    2013-01-01

    In order to effectively treat melanoma, targeted inhibition of key mechanistic events regulating melanoma development such as cell proliferation, survival, angiogenesis and invasion or metastasis needs to be accomplished. The Mitogen Activated Protein Kinase (MAPK) pathway has been identified as a key player in melanoma development making this cascade an important therapeutic target. However, identification of the ideal pathway member to therapeutically target for maximal clinical benefit remains a challenge. In normal cells, the MAPK pathway relays extracellular signals from the cell membrane to the nucleus via a cascade of phosphorylation events, which promote cancer development. Dysregulation of the MAPK pathway occurs frequently in many human cancers including melanoma. Mutations in the B-RAF and RAS genes, genetic or epigenetic modifications are the key aberrations observed in this signaling cascade. Constitutive activation of this pathway causes oncogenic transformation of cells by promoting cell proliferation, invasion, metastasis, migration, survival and angiogenesis. This review provides an overview of (a) key members of MAPK signaling regulating melanoma development; (b) key proteins which can serve as biomarkers to assess disease progression; (c) the clinical efficacy of various pharmacological agents targeting MAPK pathway; (d) current clinical trials evaluating downstream targets of the MAPK pathway; (e) issues associated with pharmacological agents such as drug resistance, induction of cancers; and finally (e) various strategies overcoming drug resistance. PMID:23288642

  5. Recombinant Interferon Alfa-2b in Treating Patients With Melanoma

    ClinicalTrials.gov

    2016-05-17

    Stage IA Skin Melanoma; Stage IB Skin Melanoma; Stage IIA Skin Melanoma; Stage IIB Skin Melanoma; Stage IIC Skin Melanoma; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Skin Melanoma

  6. Mucosal melanoma: an update.

    PubMed

    Ballester Sánchez, R; de Unamuno Bustos, B; Navarro Mira, M; Botella Estrada, R

    2015-03-01

    Mucosal melanoma is a rare melanoma subtype that differs from the cutaneous form of the tumor in its biology, clinical manifestations, and management. Diagnosis is usually late due to a lack of early or specific signs and the location of lesions in areas that are difficult to access on physical examination. Surgical excision is the treatment of choice for localized disease. The value of sentinel lymph node biopsy and lymphadenectomy is still unclear. Radiotherapy can be used as adjuvant therapy for the control of local disease. c-KIT mutations are more common than in other types of melanoma and this has led to significant advances in the use of imatinib for the treatment of metastatic mucosal melanoma. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  7. Mitochondria-Associated Apoptosis in Human Melanoma Cells Induced by Cardanol Monoene from Cashew Nut Shell Liquid.

    PubMed

    Su, Wei-Chao; Lin, Yu-Feng; Yu, Xiang-Ping; Wang, Yu-Xia; Lin, Xiao-Dong; Su, Qiao-Zhen; Shen, Dong-Yan; Chen, Qing-Xi

    2017-07-19

    Cardanol monoene (CM) is the major phenolic component extracted from cashew nut shell liquid (CNSL), which has been relevant to wide range of biological effects. In this study, we found that CM could inhibit the M14 human melanoma cells proliferation in a dose dependent and time dependent manner, and the IC 50 values were determined to be 23.15 ± 2.42 μM and 12.30 ± 1.67 μM after 24 and 48 h treatment, respectively. The flow cytometric analysis demonstrated that CM induced M14 cell cycle arrest at the S phase, along with the collapse of mitochondrial membrane potential (ΔΨm) and the accumulation of reactive oxygen species (ROS) level in cells, but the apoptotic cells reduced when treated with Z-VAD-FMK (pan-caspase inhibitor). Western blotting showed that the expressions of p53, cytosol cytochrome C, cleaved-caspase-3, and cleaved-PARP were up-regulated, and the expression level of Bax/Bcl-2 ratio increased significantly. The 2527 significant differentially expressed genes were obtained by RNA-seq, which were assigned to 270 KEGG pathways. These results indicated that CM induced M14 cells apoptosis via the ROS triggered mitochondrial-associated pathways, which supports the potential application of CM for the therapy of melanoma cancer.

  8. Melanoma-specific mortality and competing mortality in patients with non-metastatic malignant melanoma: a population-based analysis.

    PubMed

    Shen, Weidong; Sakamoto, Naoko; Yang, Limin

    2016-07-07

    The objectives of this study were to evaluate and model the probability of melanoma-specific death and competing causes of death for patients with melanoma by competing risk analysis, and to build competing risk nomograms to provide individualized and accurate predictive tools. Melanoma data were obtained from the Surveillance Epidemiology and End Results program. All patients diagnosed with primary non-metastatic melanoma during the years 2004-2007 were potentially eligible for inclusion. The cumulative incidence function (CIF) was used to describe the probability of melanoma mortality and competing risk mortality. We used Gray's test to compare differences in CIF between groups. The proportional subdistribution hazard approach by Fine and Gray was used to model CIF. We built competing risk nomograms based on the models that we developed. The 5-year cumulative incidence of melanoma death was 7.1 %, and the cumulative incidence of other causes of death was 7.4 %. We identified that variables associated with an elevated probability of melanoma-specific mortality included older age, male sex, thick melanoma, ulcerated cancer, and positive lymph nodes. The nomograms were well calibrated. C-indexes were 0.85 and 0.83 for nomograms predicting the probability of melanoma mortality and competing risk mortality, which suggests good discriminative ability. This large study cohort enabled us to build a reliable competing risk model and nomogram for predicting melanoma prognosis. Model performance proved to be good. This individualized predictive tool can be used in clinical practice to help treatment-related decision making.

  9. Increased expression of sex determining region Y-box 11 (SOX11) in cutaneous malignant melanoma.

    PubMed

    Jian, Jiao; Guoying, Wang; Jing, Zhao

    2013-08-01

    To observe sex determining region Y-box 11 (SOX11) gene expression in cutaneous malignant melanoma and its effect on tumour cell proliferation. Clinicopathological data and tissue samples from patients with cutaneous malignant melanoma, together with tissue samples from healthy volunteers (controls), were retrospectively reviewed. Protein levels of SOX11 and the antigen identified by monoclonal antibody Ki-67 (Ki-67) in skin lesions were analysed using immunohistochemistry. The correlation between protein levels and clinipathological parameters was investigated. Out of 40 patient samples, 25 (62.5%) were positive for SOX11 protein in malignant melanoma tissue. This was significantly higher than in 40 control tissue samples, in which no SOX11 protein was detected. Presence of SOX11 protein was positively related to the proliferation index of cutaneous malignant melanoma tumour cells. Presence of SOX11 protein in cutaneous malignant melanoma was related to tumour type, tumour location, lymph node metastasis and 5-year survival rate. Human cutaneous malignant melanoma tissues expressed high levels of SOX11 compared with healthy controls, suggesting that SOX11 may be a new prognostic marker for malignant melanoma.

  10. RASSF6 exhibits promoter hypermethylation in metastatic melanoma and inhibits invasion in melanoma cells

    PubMed Central

    Mezzanotte, Jessica J; Hill, Victoria; Schmidt, M Lee; Shinawi, Thoraia; Tommasi, Stella; Krex, Dietmar; Schackert, Gabriele; Pfeifer, Gerd P; Latif, Farida; Clark, Geoffrey J

    2014-01-01

    Brain metastasis is a major contributor to cancer mortality, yet, the genetic changes underlying the development of this capacity remain poorly understood. RASSF proteins are a family of tumor suppressors that often suffer epigenetic inactivation during tumorigenesis. However, their epigenetic status in brain metastases has not been well characterized. We have examined the promoter methylation of the classical RASSF members (RASSF1A-RASSF6) in a panel of metastatic brain tumor samples. RASSF1A and RASSF2 have been shown to undergo promoter methylation at high frequency in primary lung and breast tumors and in brain metastases. Other members exhibited little or no methylation in these tumors. In examining melanoma metastases, however, we found that RASSF6 exhibits the highest frequency of inactivation in melanoma and in melanoma brain metastases. Most melanomas are driven by an activating mutation in B-Raf. Introduction of RASSF6 into a B-RafV600E-containing metastatic melanoma cell line inhibited its ability to invade through collagen and suppressed MAPK pathway activation and AKT. RASSF6 also appears to increase the association of mutant B-Raf and MST1, providing a potential mechanism by which RASSF6 is able to suppress MAPK activation. Thus, we have identified a novel potential role for RASSF6 in melanoma development. Promoter methylation leading to reduced expression of RASSF6 may play an important role in melanoma development and may contribute to brain metastases. PMID:25482183

  11. Efficacy of in vitro sensitized cells generated by in vivo priming with OK-432 for adoptive immunotherapy of the poorly immunogenic B16-Bl6 melanoma.

    PubMed

    Mukai, S; Kato, H; Kimura, S; Asai, K; Kawahito, Y; Inoue, M; Yamamura, Y; Sano, H; Sugino, S; Shu, S; Kondo, M

    1996-02-01

    We investigated the efficacy of the streptococcal preparation OK-432 as an adjuvant for in vivo priming in induction of sensitized cells for adoptive immunotherapy of the poorly immunogenic B16-BL6 (BL6) melanoma. C57BL/6 (B6) mice were immunized subcutaneously (s.c.) with 3 x 10(6) viable BL6 tumor cells admixed with various doses of OK-432 ranging from 1 to 100 micrograms in the foot-pad. Draining popliteal lymph nodes (LNs) were harvested 7 days after immunization and LN cells were further sensitized with irradiated tumor cells in the presence of 60-300 IU/ml of IL-2 for 11 days. These in vitro sensitized (IVS) cells (2 x 10(6)) were transferred intravenously (i.v.) to B6 mice bearing 4-day pulmonary metastases established by i.v. injection of 2-4 x 10(5) viable BL6 cells. The mice were also received intraperitoneally (i.p.) 4 x 10(4) IU/day of IL-2 for 4 days after adoptive transfer. Transfer of IVS cells from mice immunized by s.c. injection of tumor cells admixed with 10 micrograms of OK-432 significantly reduced the numbers of BL6 pulmonary metastases compared with that of control IVS' cells without the administration of OK-432 (P = 0.003). These effective IVS cells also significantly prolonged the survival of treated animals (P = 0.003). Functional IVS cells required in vitro stimulation with tumor cells. However, addition of OK-432 in the vaccine resulted in no enhancement of in vitro cytotoxicity and no characteristic change of phenotype of IVS cells. These results suggest that in vivo priming of OK-432 facilitates the sensitization of tumor-reactive T-cells. The procedure of in vivo priming with OK-432 may be beneficial in the adoptive immunotherapy of melanoma.

  12. General Information about Melanoma

    MedlinePlus

    ... Screening Research Melanoma Treatment (PDQ®)–Patient Version General Information About Melanoma Go to Health Professional Version Key ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  13. Clinicopathological features and pituitary homeobox 1 gene expression in the progression and prognosis of cutaneous malignant melanoma.

    PubMed

    Barut, Figen; Udul, Perihan; Kokturk, Furuzan; Kandemir, Nilufer Onak; Keser, Sevinc Hallac; Ozdamar, Sukru Oguz

    2016-10-01

    The evidence that PITX1 (pituitary homeobox 1) is a significant tumor suppressor in human cancer remains largely circumstantial, but it clearly warrants further study as little is known about the tumor-inhibitory roles of PITX1 in cutaneous malignant melanoma. The aims of this study were to investigate PITX1 gene expression in patients with cutaneous malignant melanoma and to evaluate its potential relevance to clinicopathological characteristics and tumor cell proliferation. Clinicopathological findings of patients with cutaneous malignant melanoma were analyzed retrospectively. PITX1 and Ki-67 expression were detected by immunohistochemistry in malignant melanoma and healthy tissue samples from each patient. Labeling indices were calculated based on PITX1 gene and Ki-67 expression. The correlation between PITX1and Ki-67 expressions was analyzed in cutaneous malignant melanoma cases. The relationship between PITX1 expression intensity and clinicopathological characteristics was also analyzed. PITX1 expression was observed in all (100%) normal healthy skin tissue samples. In addition, PITX1 expression was found in 56 (80%) and was absent in 14 (20%) of the 70 cutaneous malignant melanoma cases. Ki-67 positive expression was only detected in the 14 (20%) PITX1-negative cases. PITX1-positive tumor cells were observed on the surface, but Ki-67 positive tumor cells were observed in deeper zones of the tumor nests. PITX1 expression was downregulated in human cutaneous malignant melanoma lesions compared with healthy skin tissue, but Ki-67 expression was upregulated in concordance with the progression of cutaneous malignant melanoma. PITX1 expression may be involved in tumor progression and is a potential tumor suppressor gene and prognostic marker for cutaneous malignant melanoma. Copyright © 2016. Published by Elsevier Taiwan.

  14. Periostin Is a Key Niche Component for Wound Metastasis of Melanoma

    PubMed Central

    Fukuda, Keitaro; Sugihara, Eiji; Ohta, Shoichiro; Izuhara, Kenji; Funakoshi, Takeru; Amagai, Masayuki; Saya, Hideyuki

    2015-01-01

    Tissue injury promotes metastasis of several human cancers, although factors associated with wound healing that attract circulating tumor cells have remained unknown. Here, we examined the primary and metastatic lesions that appeared 1 month after trauma in a patient with acral lentiginous melanoma. The levels of mRNA for periostin (POSTN), type 1 collagen, and fibronectin were significantly increased in the metastatic lesion relative to the primary lesion. The increase of these extracellular matrix proteins at the wound site was reproduced in a mouse model of wound healing, with the upregulation of Postn mRNA persisting the longest. POSTN was expressed in the region surrounding melanoma cell nests in metastatic lesions of both wounded mice and the patient. POSTN attenuated the cell adhesion and promoted the migration of melanoma cells without affecting their proliferation in vitro. In the mouse model, the wound site as well as subcutaneously injected osteoblasts that secrete large amounts of POSTN invited the metastasis of remotely-transplanted melanoma cells on the sites. Osteoblasts with suppression of POSTN by shRNA showed a greatly reduced ability to promote such metastasis. Our results suggest that POSTN is a key factor in promoting melanoma cell metastasis to wound sites by providing a premetastatic niche. PMID:26083413

  15. Periostin Is a Key Niche Component for Wound Metastasis of Melanoma.

    PubMed

    Fukuda, Keitaro; Sugihara, Eiji; Ohta, Shoichiro; Izuhara, Kenji; Funakoshi, Takeru; Amagai, Masayuki; Saya, Hideyuki

    2015-01-01

    Tissue injury promotes metastasis of several human cancers, although factors associated with wound healing that attract circulating tumor cells have remained unknown. Here, we examined the primary and metastatic lesions that appeared 1 month after trauma in a patient with acral lentiginous melanoma. The levels of mRNA for periostin (POSTN), type 1 collagen, and fibronectin were significantly increased in the metastatic lesion relative to the primary lesion. The increase of these extracellular matrix proteins at the wound site was reproduced in a mouse model of wound healing, with the upregulation of Postn mRNA persisting the longest. POSTN was expressed in the region surrounding melanoma cell nests in metastatic lesions of both wounded mice and the patient. POSTN attenuated the cell adhesion and promoted the migration of melanoma cells without affecting their proliferation in vitro. In the mouse model, the wound site as well as subcutaneously injected osteoblasts that secrete large amounts of POSTN invited the metastasis of remotely-transplanted melanoma cells on the sites. Osteoblasts with suppression of POSTN by shRNA showed a greatly reduced ability to promote such metastasis. Our results suggest that POSTN is a key factor in promoting melanoma cell metastasis to wound sites by providing a premetastatic niche.

  16. Association Between NRAS and BRAF Mutational Status and Melanoma-Specific Survival Among Patients With Higher-Risk Primary Melanoma.

    PubMed

    Thomas, Nancy E; Edmiston, Sharon N; Alexander, Audrey; Groben, Pamela A; Parrish, Eloise; Kricker, Anne; Armstrong, Bruce K; Anton-Culver, Hoda; Gruber, Stephen B; From, Lynn; Busam, Klaus J; Hao, Honglin; Orlow, Irene; Kanetsky, Peter A; Luo, Li; Reiner, Anne S; Paine, Susan; Frank, Jill S; Bramson, Jennifer I; Marrett, Lorraine D; Gallagher, Richard P; Zanetti, Roberto; Rosso, Stefano; Dwyer, Terence; Cust, Anne E; Ollila, David W; Begg, Colin B; Berwick, Marianne; Conway, Kathleen

    2015-06-01

    NRAS and BRAF mutations in melanoma inform current treatment paradigms, but their role in survival from primary melanoma has not been established. Identification of patients at high risk of melanoma-related death based on their primary melanoma characteristics before evidence of recurrence could inform recommendations for patient follow-up and eligibility for adjuvant trials. To determine tumor characteristics and survival from primary melanoma by somatic NRAS and BRAF status. A population-based study with a median follow-up of 7.6 years (through 2007), including 912 patients from the United States and Australia in the Genes, Environment, and Melanoma (GEM) Study, with first primary cutaneous melanoma diagnosed in the year 2000 and analyzed for NRAS and BRAF mutations. Tumor characteristics and melanoma-specific survival of primary melanoma by NRAS and BRAF mutational status. The melanomas were 13% NRAS+, 30% BRAF+, and 57% with neither NRAS nor BRAF mutation (wildtype [WT]). In a multivariable model including clinicopathologic characteristics, relative to WT melanoma (with results reported as odds ratios [95% CIs]), NRAS+ melanoma was associated with presence of mitoses (1.8 [1.0-3.3]), lower tumor-infiltrating lymphocyte (TIL) grade (nonbrisk, 0.5 [0.3-0.8]; and brisk, 0.3 [0.5-0.7] [vs absent TILs]), and anatomic site other than scalp/neck (0.1 [0.01-0.6] for scalp/neck vs trunk/pelvis), and BRAF+ melanoma was associated with younger age (ages 50-69 years, 0.7 [0.5-1.0]; and ages >70 years, 0.5 [0.3-0.8] [vs <50 years]), superficial spreading subtype (nodular, 0.5 [0.2-1.0]; lentigo maligna, 0.4 [0.2-0.7]; and unclassified/other, 0.2 [0.1-0.5] [vs superficial spreading]), and presence of mitoses (1.7 [1.1-2.6]) (P < .05 for all). There was no significant difference in melanoma-specific survival (reported as hazard ratios [95% CIs]) for melanoma harboring mutations in NRAS (1.7 [0.8-3.4]) or BRAF (1.5 [0.8-2.9]) compared with WT melanoma, as adjusted for age

  17. KIT Suppresses BRAFV600E-Mutant Melanoma by Attenuating Oncogenic RAS/MAPK Signaling.

    PubMed

    Neiswender, James V; Kortum, Robert L; Bourque, Caitlin; Kasheta, Melissa; Zon, Leonard I; Morrison, Deborah K; Ceol, Craig J

    2017-11-01

    The receptor tyrosine kinase KIT promotes survival and migration of melanocytes during development, and excessive KIT activity hyperactivates the RAS/MAPK pathway and can drive formation of melanomas, most notably of rare melanomas that occur on volar and mucosal surfaces of the skin. The much larger fraction of melanomas that occur on sun-exposed skin is driven primarily by BRAF- or NRAS-activating mutations, but these melanomas exhibit a surprising loss of KIT expression, which raises the question of whether loss of KIT in these tumors facilitates tumorigenesis. To address this question, we introduced a kit(lf) mutation into a strain of Tg(mitfa:BRAF V600E ); p53(lf) melanoma-prone zebrafish. Melanoma onset was accelerated in kit(lf); Tg(mitfa:BRAF V600E ); p53(lf) fish. Tumors from kit(lf) animals were more invasive and had higher RAS/MAPK pathway activation. KIT knockdown also increased RAS/MAPK pathway activation in a BRAF V600E -mutant human melanoma cell line. We found that pathway stimulation upstream of BRAF V600E could paradoxically reduce signaling downstream of BRAF V600E , and wild-type BRAF was necessary for this effect, suggesting that its activation can dampen oncogenic BRAF V600E signaling. In vivo , expression of wild-type BRAF delayed melanoma onset, but only in a kit -dependent manner. Together, these results suggest that KIT can activate signaling through wild-type RAF proteins, thus interfering with oncogenic BRAF V600E -driven melanoma formation. Cancer Res; 77(21); 5820-30. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Identification, genetic testing, and management of hereditary melanoma.

    PubMed

    Leachman, Sancy A; Lucero, Olivia M; Sampson, Jone E; Cassidy, Pamela; Bruno, William; Queirolo, Paola; Ghiorzo, Paola

    2017-03-01

    Several distinct melanoma syndromes have been defined, and genetic tests are available for the associated causative genes. Guidelines for melanoma genetic testing have been published as an informal "rule of twos and threes," but these guidelines apply to CDKN2A testing and are not intended for the more recently described non-CDKN2A melanoma syndromes. In order to develop an approach for the full spectrum of hereditary melanoma patients, we have separated melanoma syndromes into two types: "melanoma dominant" and "melanoma subordinate." Syndromes in which melanoma is a predominant cancer type are considered melanoma dominant, although other cancers, such as mesothelioma or pancreatic cancers, may also be observed. These syndromes are associated with defects in CDKN2A, CDK4, BAP1, MITF, and POT1. Melanoma-subordinate syndromes have an increased but lower risk of melanoma than that of other cancer(s) seen in the syndrome, such as breast and ovarian cancer or Cowden syndrome. Many of these melanoma-subordinate syndromes are associated with well-established predisposition genes (e.g., BRCA1/2, PTEN). It is likely that these predisposition genes are responsible for the increased susceptibility to melanoma as well but with lower penetrance than that observed for the dominant cancer(s) in those syndromes. In this review, we describe our extension of the "rule of twos and threes" for melanoma genetic testing. This algorithm incorporates an understanding of the spectrum of cancers and genes seen in association with melanoma to create a more comprehensive and tailored approach to genetic testing.

  19. 177Lu-DOTA-Bevacizumab: Radioimmunotherapy Agent for Melanoma.

    PubMed

    Camacho, Ximena; Calzada, Victoria; Fernandez, Marcelo; Alonso, Omar; Chammas, Roger; Riva, Eloisa; Gambini, Juan Pablo; Cabral, Pablo

    2017-01-01

    Vascular endothelial growth factor (VEGF) is one of the classic factors to tumor-induced angiogenesis in several types, including melanoma. Bevacizumab is a humanized monoclonal antibody directed against VEGF. To radiolabel Bevacizumab with 177-Lutetium as a potential radioimmunotherapy agent for melanoma. Bevacizumab was derivatized with DOTA-NHS-ester at 4 ºC for 18 h. DOTABevacizumab was radiolabeled with 177LuCl3 (15 MBq/mg) at 37 ºC for 1 h. The studies were performed in healthy and B16F1 tumor-bearing C57BL/6J mice at 24 and 48 h (n = 5). Scinthigraphic imaging studies were performed at 24 h to determine the radiochemical stability, targeting specificity and pharmacokinetics of the 177Lutetium-labeled antibody. DOTA-Bevacizumab was efficiently labeled with 177LuCl3 at 37 °C. The in-vitro stability of labeled product was optimal over 72 h. In-vivo biodistribution studies showed a high liver and tumor uptake of 177Lu-DOTA-Bevacizumab, with tumor-to-muscle ratios of 11.58 and 6.37 at 24 and 48 h p.i. Scintigraphic imaging of melanoma tumor-bearing C57BL/6J mice showed liver and a high tumor selective uptake of 177Lu-DOTA-Bevacizumab at 24 h. Our results support the potential role of 177Lu-DOTA-Bevacizumab as a novel radioimmunotherapy agent for melanoma. We hope that these novel molecular imaging agents will open the path to new diagnostic and therapeutic strategies for Melanoma disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Inhibition of melanoma cell motility by the snake venom disintegrin eristostatin

    PubMed Central

    Tian, Jing; Paquette-Straub, Carrie; Sage, E. Helene; Funk, Sarah E.; Patel, Vivek; Galileo, Deni; McLane, Mary Ann

    2007-01-01

    Eristostatin, an RGD-containing disintegrin isolated from the venom of Eristicophis macmahoni, inhibits lung or liver colonization of melanoma cells in a mouse model. In this study, transwell migration and in vitro wound closure assays were used to determine the effect of eristostatin on the migration of melanoma cells. Eristostatin significantly impaired the migration of 5 human melanoma cell lines. Furthermore, it specifically inhibited cell migration on fibronectin in a concentration-dependent manner, but not that on collagen IV or laminin. In contrast, eristostatin was found to have no effect on cell proliferation or angiogenesis. These results indicate that the interaction between eristostatin and melanoma cells may involve fibronectin-binding integrins that mediate cell migration. Mutations to alanine of seven residues within the RGD loop of eristostatin and four residues outside the RGD loop of eristostatin resulted in significantly less potency in both platelet aggregation and wound closure assays. For six of the mutations, however, decreased activity was found only in the latter assay. We conclude that a different mechanism and/or integrin is involved in these two cell activities. PMID:17316731