Science.gov

Sample records for human mutation rates

  1. Studies of human mutation rates

    SciTech Connect

    Neel, J.V.

    1990-01-01

    November 1989, marked the beginning of a new three-year cycle of DOE grant support, in connection with which the program underwent a major reorganization. This document presents the progress on the three objectives of the present program which are: to isolate by the technique of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), proteins of special interest because of the relative mutability of the corresponding gene, establish the identity of the protein, and, for selected proteins, move to a characterization of the corresponding gene; to develop a more efficient approach, based on 2-D PAGE, for the detection of variants in DNA, with special reference to the identification of mutations in the parents of the individual whose DNA is being examined; and, to continue an effective interface with the genetic studies on the children of atomic bomb survivors in Japan, with reference to both the planning and implementation of new studies at the molecular level.

  2. Studies of human mutation rates

    SciTech Connect

    Neel, J.V.

    1991-07-15

    The three objectives of the program are: To isolate by the technique of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), proteins of special interest because of the relative mutability of the corresponding gene, establish the identity of the protein, and, for selected proteins, move to a characterization of the corresponding gene; To develop a more efficient approach, based on 2-D PAGE, for the detection of variants in DNA, with special reference to the identification of a variant in a child not present in either parent of the child (i.e., a mutation); and, To continue an effective interface with the genetic studies on the children of atomic bomb survivors in Japan, with reference to both the planning and implementation of new studies at the molecular level. For administrative purposes, the program is subdivided into four sections, each under the direction of one of the four co-PIs; the progress during the past year will be summarized in accordance with this sectional structure. 1 tab.

  3. How much do we know about spontaneous human mutation rates

    SciTech Connect

    Crow, J.F. )

    1993-01-01

    The much larger number of cell divisions between zygote and sperm than between zygote and egg, the increased age of fathers of children with new dominant mutations, and the greater evolution rate of pseudogenes on the Y chromosome than of those on autosomes all point to a much higher mutation rate in human males than in females, as first pointed out by Haldane in his classical study of X-linked hemophilia. The age of the father is the main factor determining the human spontaneous mutation rate, and probably the total mutation rate. The total mutation rate in Drosophila males of genes causing minor reduction in viability is at least 0.4 per sperm and may be considerably higher. The great mutation load implied by a rate of [approx] 1 per zygote can be greatly ameliorated by quasi-transition selection. Corresponding data are not available for the human population. The evolution rate of pseudogenes in primates suggests some 10[sup 2] new mutations per zygote. Presumably the overwhelming majority of these are neutral, but even the approximate fraction is not known. Statistical evidence in Drosophilia shows that mutations with minor effects cause about the same heterozygous impairment of fitness as those that are lethal when homozygous. The magnitude of heterozygous effect is such that almost all mutant genes are eliminated as heterozygotes before ever becoming homozygous. Although quantitative data in the human species are lacking, anecdotal information supports the conclusion that partial dominance is the rule here as well. This suggests that if the human mutation rate were increased or decreased, the effects would be spread over a period of 50-100 generations. 31 refs., 3 figs., 2 tabs.

  4. The study of human mutation rates

    SciTech Connect

    Neel, J.V.

    1992-01-01

    We will describe recent developments regarding the question of induced mutations in the survivors of the atomic bombings of Hiroshima and Nagasaki. As part of that work we, describe some developments with respect to the Amerindian blood samples collected under DoE sponsorship between 1964 and 1982. Then developments regarding the application of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) to the study of genetic variation and mutation affecting protein characteristics. In particular, we will report on the identification and isolation of genes of especial interest as reflected in the behavior of the proteins which they encode.

  5. Deterministic Mutation Rate Variation in the Human Genome

    PubMed Central

    Smith, Nick G.C.; Webster, Matthew T.; Ellegren, Hans

    2002-01-01

    Several studies of substitution rate variation have indicated that the local mutation rate varies over the mammalian genome. In the present study, we show significant variation in substitution rates within the noncoding part of the human genome using 4.7 Mb of human-chimpanzee pairwise comparisons. Moreover, we find a significant positive covariation of lineage-specific chimpanzee and human local substitution rates, and very similar mean substitution rates down the two lineages. The substitution rate variation is probably not caused by selection or biased gene conversion, and so we conclude that mutation rates vary deterministically across the noncoding nonrepetitive regions of the human genome. We also show that noncoding substitution rates are significantly affected by G+C base composition, partly because the base composition is not at equilibrium. PMID:12213772

  6. Timing, rates and spectra of human germline mutation

    PubMed Central

    Lindsay, Sarah J.; Hardwick, Robert J.; Alexandrov, Ludmil B.; Turki, Saeed Al; Dominiczak, Anna; Morris, Andrew; Porteous, David; Smith, Blair; Stratton, Michael R.; Hurles, Matthew E.

    2015-01-01

    Germline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. Mutation rate increased with paternal age in all families, but the number of additional mutations per year differed more than two-fold between families. Meta-analysis of 6,570 mutations showed that germline methylation influences mutation rates. In contrast to somatic mutations, we found remarkable consistency of germline mutation spectra between the sexes and at different paternal ages. 3.8% of mutations were mosaic in the parental germline, resulting in 1.3% of mutations being shared between siblings. The number of these shared mutations varied significantly between families. Our data suggest that the mutation rate per cell division is higher during both early embryogenesis and differentiation of primordial germ cells, but is reduced substantially during post-pubertal spermatogenesis. These findings have important consequences for the recurrence risks of disorders caused by de novo mutations. PMID:26656846

  7. Timing, rates and spectra of human germline mutation.

    PubMed

    Rahbari, Raheleh; Wuster, Arthur; Lindsay, Sarah J; Hardwick, Robert J; Alexandrov, Ludmil B; Al Turki, Saeed; Dominiczak, Anna; Morris, Andrew; Porteous, David; Smith, Blair; Stratton, Michael R; Hurles, Matthew E

    2016-02-01

    Germline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. The mutation rate increased with paternal age in all families, but the number of additional mutations per year differed by more than twofold between families. Meta-analysis of 6,570 mutations showed that germline methylation influences mutation rates. In contrast to somatic mutations, we found remarkable consistency in germline mutation spectra between the sexes and at different paternal ages. In parental germ line, 3.8% of mutations were mosaic, resulting in 1.3% of mutations being shared by siblings. The number of these shared mutations varied significantly between families. Our data suggest that the mutation rate per cell division is higher during both early embryogenesis and differentiation of primordial germ cells but is reduced substantially during post-pubertal spermatogenesis. These findings have important consequences for the recurrence risks of disorders caused by de novo mutations. PMID:26656846

  8. Mutation biases and mutation rate variation around very short human microsatellites revealed by human-chimpanzee-orangutan genomic sequence alignments.

    PubMed

    Amos, William

    2010-09-01

    I have studied mutation patterns around very short microsatellites, focusing mainly on sequences carrying only two repeat units. By using human-chimpanzee-orangutan alignments, inferences can be made about both the relative rates of mutations and which bases have mutated. I find remarkable non-randomness, with mutation rate depending on a base's position relative to the microsatellite, the identity of the base itself and the motif in the microsatellite. Comparing the patterns around AC2 with those around other four-base combinations reveals that AC2 does not stand out as being special in the sense that non-repetitive tetramers also generate strong mutation biases. However, comparing AC2 and AC3 with AC4 reveals a step change in both the rate and nature of mutations occurring, suggesting a transition state, AC4 exhibiting an alternating high-low mutation rate pattern consistent with the sequence patterning seen around longer microsatellites. Surprisingly, most changes in repeat number occur through base substitutions rather than slippage, and the relative probability of gaining versus losing a repeat in this way varies greatly with repeat number. Slippage mutations reveal rather similar patterns of mutability compared with point mutations, being rare at two repeats where most cause the loss of a repeat, with both mutation rate and the proportion of expansion mutations increasing up to 6-8 repeats. Inferences about longer repeat tracts are hampered by uncertainties about the proportion of multi-species alignments that fail due to multi-repeat mutations and other rearrangements. PMID:20700734

  9. The Y-chromosome point mutation rate in humans.

    PubMed

    Helgason, Agnar; Einarsson, Axel W; Guðmundsdóttir, Valdís B; Sigurðsson, Ásgeir; Gunnarsdóttir, Ellen D; Jagadeesan, Anuradha; Ebenesersdóttir, S Sunna; Kong, Augustine; Stefánsson, Kári

    2015-05-01

    Mutations are the fundamental source of biological variation, and their rate is a crucial parameter for evolutionary and medical studies. Here we used whole-genome sequence data from 753 Icelandic males, grouped into 274 patrilines, to estimate the point mutation rate for 21.3 Mb of male-specific Y chromosome (MSY) sequence, on the basis of 1,365 meioses (47,123 years). The combined mutation rate for 15.2 Mb of X-degenerate (XDG), X-transposed (XTR) and ampliconic excluding palindromes (rAMP) sequence was 8.71 × 10(-10) mutations per position per year (PPPY). We observed a lower rate (P = 0.04) of 7.37 × 10(-10) PPPY for 6.1 Mb of sequence from palindromes (PAL), which was not statistically different from the rate of 7.2 × 10(-10) PPPY for paternally transmitted autosomes. We postulate that the difference between PAL and the other MSY regions may provide an indication of the rate at which nascent autosomal and PAL de novo mutations are repaired as a result of gene conversion. PMID:25807285

  10. Studies of human mutation rates, December 1, 1985--November 30, 1986

    SciTech Connect

    Neel, J.V.

    1985-05-01

    This program seeks to quantify native human mutation rates and to determine how man's activities may affect these rates. The program is divided into six tasks, i.e. The American Indian mutation rate, monitoring populations for frequency of mutation by electrophoresis of blood proteins, application of molecular biological approaches to the detection and study of mutational events in human populations, development of two-dimensional electrophoresis for identification of mutant proteins, co-operative program with the Radiation Effects Research Foundation in Hiroshima and Nagasaki, Japan, and statistical problems associated with the estimation of mutation rates. Progress of each of the above tasks is related in detail. (DT)

  11. Differential DNA mismatch repair underlies mutation rate variation across the human genome

    PubMed Central

    Supek, Fran; Lehner, Ben

    2015-01-01

    Cancer genome sequencing has revealed considerable variation in somatic mutation rates across the human genome, with mutation rates elevated in heterochromatic late replicating regions and reduced in early replicating euchromatin1-5. Multiple mechanisms have been suggested to underlie this2,6-10, but the actual cause is unknown. Here we identify variable DNA mismatch repair (MMR) as the basis of this variation. Analysing ~17 million single nucleotide variants from the genomes of 652 tumours, we show that regional autosomal mutation rates at megabase resolution are largely stable across cancer types, with differences related to changes in replication timing and gene expression. However, mutations arising after the inactivation of MMR are no longer enriched in early replicating euchromatin relative to late replicating heterochromatin. Thus, differential DNA repair and not differential mutation supply is the primary cause of the large-scale regional mutation rate variation across the human genome. PMID:25707793

  12. The mutation rate of the human mtDNA deletion mtDNA{sup 4977}

    SciTech Connect

    Shenkar, R.; Navidi, W.; Tavare, S.

    1996-10-01

    The human mitochondrial mutation mtDNA{sup 4977} is a 4,977-bp deletion that originates between two 13-bp direct repeats. We grew 220 colonies of cells, each from a single human cell. For each colony, we counted the number of cells and amplified the DNA by PCR to test for the presence of a deletion. To estimate the mutation rate, we used a model that describes the relationship between the mutation rate and the probability that a colony of a given size will contain no mutants, taking into account such factors as possible mitochondrial turnover and mistyping due to PCR error. We estimate that the mutation rate for mtDNA{sup 4977} in cultured human cells is 5.95 x 10{sup {minus}8} per mitochondrial genome replication. This method can be applied to specific chromosomal, as well as mitochondrial, mutations. 17 refs., 1 fig., 1 tab.

  13. Calibrating the Human Mutation Rate via Ancestral Recombination Density in Diploid Genomes

    PubMed Central

    Lipson, Mark; Loh, Po-Ru; Sankararaman, Sriram; Patterson, Nick; Berger, Bonnie; Reich, David

    2015-01-01

    The human mutation rate is an essential parameter for studying the evolution of our species, interpreting present-day genetic variation, and understanding the incidence of genetic disease. Nevertheless, our current estimates of the rate are uncertain. Most notably, recent approaches based on counting de novo mutations in family pedigrees have yielded significantly smaller values than classical methods based on sequence divergence. Here, we propose a new method that uses the fine-scale human recombination map to calibrate the rate of accumulation of mutations. By comparing local heterozygosity levels in diploid genomes to the genetic distance scale over which these levels change, we are able to estimate a long-term mutation rate averaged over hundreds or thousands of generations. We infer a rate of 1.61 ± 0.13 × 10−8 mutations per base per generation, which falls in between phylogenetic and pedigree-based estimates, and we suggest possible mechanisms to reconcile our estimate with previous studies. Our results support intermediate-age divergences among human populations and between humans and other great apes. PMID:26562831

  14. Variation in genome-wide mutation rates within and between human families.

    PubMed

    Conrad, Donald F; Keebler, Jonathan E M; DePristo, Mark A; Lindsay, Sarah J; Zhang, Yujun; Casals, Ferran; Idaghdour, Youssef; Hartl, Chris L; Torroja, Carlos; Garimella, Kiran V; Zilversmit, Martine; Cartwright, Reed; Rouleau, Guy A; Daly, Mark; Stone, Eric A; Hurles, Matthew E; Awadalla, Philip

    2011-07-01

    J.B.S. Haldane proposed in 1947 that the male germline may be more mutagenic than the female germline. Diverse studies have supported Haldane's contention of a higher average mutation rate in the male germline in a variety of mammals, including humans. Here we present, to our knowledge, the first direct comparative analysis of male and female germline mutation rates from the complete genome sequences of two parent-offspring trios. Through extensive validation, we identified 49 and 35 germline de novo mutations (DNMs) in two trio offspring, as well as 1,586 non-germline DNMs arising either somatically or in the cell lines from which the DNA was derived. Most strikingly, in one family, we observed that 92% of germline DNMs were from the paternal germline, whereas, in contrast, in the other family, 64% of DNMs were from the maternal germline. These observations suggest considerable variation in mutation rates within and between families. PMID:21666693

  15. Estimation of Mutation Rates Based on the Analysis of Polypeptide Constituents of Cultured Human Lymphoblastoid Cells

    PubMed Central

    Chu, EHY.; Boehnke, M.; Hanash, S. M.; Kuick, R. D.; Lamb, B. J.; Neel, J. V.; Niezgoda, W.; Pivirotto, S.; Sundling, G.

    1988-01-01

    A subclone of a human diploid lymphoblastoid cell line, TK-6, with consistently high cloning efficiency has been used to estimate the rates of somatic mutations on the basis of protein variation detected by two-dimensional polyacrylamide gel electrophoresis. A panel of 267 polypeptide spots per gel was screened, representing the products of approximately 263 unselected loci. The rate of human somatic mutation in vitro was estimated by measuring the proportion of protein variants among cell clones isolated at various times during continuous exponential growth of a TK-6 cell population. Three mutants of spontaneous origin were observed, giving an estimated spontaneous rate of 6 X 10(-8) electrophoretic mutations per allele per cell generation (i.e., 1.2 X 10(-7) per locus per cell generation). Following treatment of cells with N-ethyl-N-nitrosourea, a total of 74 confirmed variants at 54 loci were identified among 1143 clones analyzed (approximately 601,000 allele tests). The induced variants include 65 electromorphs which exhibit altered isoelectric charge and/or apparent molecular weight and nine nullimorphs for each of which a gene product was not detected at its usual location on the gel. The induced frequency for these 65 structural gene mutants is 1.1 X 10(-4) per allele. An excess of structural gene mutations at ten known polymorphic loci and repeat mutations at these and other loci suggest nonrandomness of mutation in human somatic cells. Nullimorphs occurring at three heterozygous loci in TK-6 cells may be caused by genetic processes other than structural gene mutation. PMID:3402732

  16. Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates

    PubMed Central

    Palamara, Pier Francesco; Francioli, Laurent C.; Wilton, Peter R.; Genovese, Giulio; Gusev, Alexander; Finucane, Hilary K.; Sankararaman, Sriram; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Wakeley, John; Pe’er, Itsik; Price, Alkes L.

    2015-01-01

    The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10−8 per base per generation and a rate of 1.26 × 10−9 for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10−6. We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction. PMID:26581902

  17. Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates.

    PubMed

    Palamara, Pier Francesco; Francioli, Laurent C; Wilton, Peter R; Genovese, Giulio; Gusev, Alexander; Finucane, Hilary K; Sankararaman, Sriram; Sunyaev, Shamil R; de Bakker, Paul I W; Wakeley, John; Pe'er, Itsik; Price, Alkes L

    2015-12-01

    The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10(-8) per base per generation and a rate of 1.26 × 10(-9) for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10(-6). We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction. PMID:26581902

  18. Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans.

    PubMed

    Colangeli, Roberto; Arcus, Vic L; Cursons, Ray T; Ruthe, Ali; Karalus, Noel; Coley, Kathy; Manning, Shannon D; Kim, Soyeon; Marchiano, Emily; Alland, David

    2014-01-01

    Very little is known about the growth and mutation rates of Mycobacterium tuberculosis during latent infection in humans. However, studies in rhesus macaques have suggested that latent infections have mutation rates that are higher than that observed during active tuberculosis disease. Elevated mutation rates are presumed risk factors for the development of drug resistance. Therefore, the investigation of mutation rates during human latency is of high importance. We performed whole genome mutation analysis of M. tuberculosis isolates from a multi-decade tuberculosis outbreak of the New Zealand Rangipo strain. We used epidemiological and phylogenetic analysis to identify four cases of tuberculosis acquired from the same index case. Two of the tuberculosis cases occurred within two years of exposure and were classified as recently transmitted tuberculosis. Two other cases occurred more than 20 years after exposure and were classified as reactivation of latent M. tuberculosis infections. Mutation rates were compared between the two recently transmitted pairs versus the two latent pairs. Mean mutation rates assuming 20 hour generation times were 5.5 X 10(-10) mutations/bp/generation for recently transmitted tuberculosis and 7.3 X 10(-11) mutations/bp/generation for latent tuberculosis. Generation time versus mutation rate curves were also significantly higher for recently transmitted tuberculosis across all replication rates (p = 0.006). Assuming identical replication and mutation rates among all isolates in the final two years before disease reactivation, the u 20 hr mutation rate attributable to the remaining latent period was 1.6 × 10(-11) mutations/bp/generation, or approximately 30 fold less than that calculated during the two years immediately before disease. Mutations attributable to oxidative stress as might be caused by bacterial exposure to the host immune system were not increased in latent infections. In conclusion, we did not find any evidence to suggest

  19. Whole Genome Sequencing of Mycobacterium tuberculosis Reveals Slow Growth and Low Mutation Rates during Latent Infections in Humans

    PubMed Central

    Colangeli, Roberto; Arcus, Vic L.; Cursons, Ray T.; Ruthe, Ali; Karalus, Noel; Coley, Kathy; Manning, Shannon D.; Kim, Soyeon; Marchiano, Emily; Alland, David

    2014-01-01

    Very little is known about the growth and mutation rates of Mycobacterium tuberculosis during latent infection in humans. However, studies in rhesus macaques have suggested that latent infections have mutation rates that are higher than that observed during active tuberculosis disease. Elevated mutation rates are presumed risk factors for the development of drug resistance. Therefore, the investigation of mutation rates during human latency is of high importance. We performed whole genome mutation analysis of M. tuberculosis isolates from a multi-decade tuberculosis outbreak of the New Zealand Rangipo strain. We used epidemiological and phylogenetic analysis to identify four cases of tuberculosis acquired from the same index case. Two of the tuberculosis cases occurred within two years of exposure and were classified as recently transmitted tuberculosis. Two other cases occurred more than 20 years after exposure and were classified as reactivation of latent M. tuberculosis infections. Mutation rates were compared between the two recently transmitted pairs versus the two latent pairs. Mean mutation rates assuming 20 hour generation times were 5.5X10−10 mutations/bp/generation for recently transmitted tuberculosis and 7.3X10−11 mutations/bp/generation for latent tuberculosis. Generation time versus mutation rate curves were also significantly higher for recently transmitted tuberculosis across all replication rates (p = 0.006). Assuming identical replication and mutation rates among all isolates in the final two years before disease reactivation, the u20hr mutation rate attributable to the remaining latent period was 1.6×10−11 mutations/bp/generation, or approximately 30 fold less than that calculated during the two years immediately before disease. Mutations attributable to oxidative stress as might be caused by bacterial exposure to the host immune system were not increased in latent infections. In conclusion, we did not find any evidence to suggest

  20. Evidence for recent, population-specific evolution of the human mutation rate.

    PubMed

    Harris, Kelley

    2015-03-17

    As humans dispersed out of Africa they adapted to new environmental challenges, including changes in exposure to mutagenic solar radiation. Humans in temperate latitudes have acquired light skin that is relatively transparent to UV light, and some evidence suggests that their DNA damage response pathways have also experienced local adaptation. This raises the possibility that different populations have experienced different selective pressures affecting genome integrity. Here, I present evidence that the rate of a particular mutation type has recently increased in the European population, rising in frequency by 50% during the 40,000-80,000 y since Europeans began diverging from Asians. A comparison of SNPs private to Africa, Asia, and Europe in the 1000 Genomes data reveals that private European variation is enriched for the transition 5'-TCC-3' → 5'-TTC-3'. Although it is not clear whether UV played a causal role in changing the European mutational spectrum, 5'-TCC-3' → 5'-TTC-3' is known to be the most common somatic mutation present in melanoma skin cancers, as well as the mutation most frequently induced in vitro by UV. Regardless of its causality, this change indicates that DNA replication fidelity has not remained stable even since the origin of modern humans and might have changed numerous times during our recent evolutionary history. PMID:25733855

  1. Mutation rates as adaptations.

    PubMed

    Maley, C

    1997-06-01

    In order to better understand life, it is helpful to look beyond the envelop of life as we know it. A simple model of coevolution was implemented with the addition of a gene for the mutation rate of the individual. This allowed the mutation rate itself to evolve in a lineage. The model shows that when the individuals interact in a sort of zero-sum game, the lineages maintain relatively high mutation rates. However, when individuals engage in interactions that have greater consequences for one individual in the interaction than the other, lineages tend to evolve relatively low mutation rates. This model suggests that one possible cause for differential mutation rates across genes may be the coevolutionary pressure of the various forms of interactions with other genes. PMID:9219670

  2. Extensive Variation in the Mutation Rate Between and Within Human Genes Associated with Mendelian Disease.

    PubMed

    Smith, Thomas; Ho, Gladys; Christodoulou, John; Price, Elizabeth Ann; Onadim, Zerrin; Gauthier-Villars, Marion; Dehainault, Catherine; Houdayer, Claude; Parfait, Beatrice; van Minkelen, Rick; Lohman, Dietmar; Eyre-Walker, Adam

    2016-05-01

    We have investigated whether the mutation rate varies between genes and sites using de novo mutations (DNMs) from three genes associated with Mendelian diseases (RB1, NF1, and MECP2). We show that the relative frequency of mutations at CpG dinucleotides relative to non-CpG sites varies between genes and relative to the genomic average. In particular we show that the rate of transition mutation at CpG sites relative to the rate of non-CpG transversion is substantially higher in our disease genes than amongst DNMs in general; the rate of CpG transition can be several hundred-fold greater than the rate of non-CpG transversion. We also show that the mutation rate varies significantly between sites of a particular mutational type, such as non-CpG transversion, within a gene. We estimate that for all categories of sites, except CpG transitions, there is at least a 30-fold difference in the mutation rate between the 10% of sites with the highest and lowest mutation rates. However, our best estimate is that the mutation rate varies by several hundred-fold variation. We suggest that the presence of hypermutable sites may be one reason certain genes are associated with disease. PMID:26857394

  3. Estimating mutation rate: how to count mutations?

    PubMed Central

    Fu, Yun-Xin; Huai, Haying

    2003-01-01

    Mutation rate is an essential parameter in genetic research. Counting the number of mutant individuals provides information for a direct estimate of mutation rate. However, mutant individuals in the same family can share the same mutations due to premeiotic mutation events, so that the number of mutant individuals can be significantly larger than the number of mutation events observed. Since mutation rate is more closely related to the number of mutation events, whether one should count only independent mutation events or the number of mutants remains controversial. We show in this article that counting mutant individuals is a correct approach for estimating mutation rate, while counting only mutation events will result in underestimation. We also derived the variance of the mutation-rate estimate, which allows us to examine a number of important issues about the design of such experiments. The general strategy of such an experiment should be to sample as many families as possible and not to sample much more offspring per family than the reciprocal of the pairwise correlation coefficient within each family. To obtain a reasonably accurate estimate of mutation rate, the number of sampled families needs to be in the same or higher order of magnitude as the reciprocal of the mutation rate. PMID:12807798

  4. The study of human mutation rates. Progress report, 1989--1992

    SciTech Connect

    Neel, J.V.

    1992-12-01

    We will describe recent developments regarding the question of induced mutations in the survivors of the atomic bombings of Hiroshima and Nagasaki. As part of that work we, describe some developments with respect to the Amerindian blood samples collected under DoE sponsorship between 1964 and 1982. Then developments regarding the application of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) to the study of genetic variation and mutation affecting protein characteristics. In particular, we will report on the identification and isolation of genes of especial interest as reflected in the behavior of the proteins which they encode.

  5. Influence of low-dose and low-dose-rate ionizing radiation on mutation induction in human cells

    NASA Astrophysics Data System (ADS)

    Yatagai, F.; Umebayashi, Y.; Suzuki, M.; Abe, T.; Suzuki, H.; Shimazu, T.; Ishioka, N.; Iwaki, M.; Honma, M.

    This is a review paper to introduce our recent studies on the genetic effects of low-dose and low-dose-rate ionizing radiation (IR). Human lymphoblastoid TK6 cells were exposed to γ-rays at a dose-rate of 1.2 mGy/h (total 30 mGy). The frequency of early mutations (EMs) in the thymidine kinase ( TK) gene locus was determined to be 1.7 × 10 -6, or 1.9-fold higher than the level seen in unirradated controls [Umebayashi, Y., Honma, M., Suzuki, M., Suzuki, H., Shimazu, T., Ishioka, N., Iwaki, M., Yatagai, F., Mutation induction in cultured human cells after low-dose and low-dose-rate γ-ray irradiation: detection by LOH analysis. J. Radiat. Res., 48, 7-11, 2007]. These mutants were then analyzed for loss of heterozygosity (LOH) events. Small interstitial-deletion events were restricted to the TK gene locus and were not observed in EMs in unirradated controls, but they comprised about half of the EMs (8/15) after IR exposure. Because of the low level of exposure to IR, this specific type of event cannot be considered to be the direct result of an IR-induced DNA double strand break (DSB). To better understand the effects of low-level IR exposure, the repair efficiency of site-specific chromosomal DSBs was also examined. The pre γ-irradiation under the same condition did not largely influence the efficiency of DSB repair via end-joining, but enhanced such efficiency via homologous recombination to an about 40% higher level (unpublished data). All these results suggest that DNA repair and mutagenesis can be indirectly influenced by low-dose/dose-rate IR.

  6. Similarity of spontaneous germinal and in vitro somatic cell mutation rates in humans: implications for carcinogenesis and for the role of exogenous factors in "spontaneous" germinal mutagenesis.

    PubMed Central

    Kuick, R D; Neel, J V; Strahler, J R; Chu, E H; Bargal, R; Fox, D A; Hanash, S M

    1992-01-01

    The rate of spontaneous mutation resulting in electrophoretic variants per cell generation in a human lymphoblastoid cell line, on the basis of experiments described in this paper, is found to be 7.2 x 10(-8) per locus. A review of similar data on electrophoretic variants resulting from spontaneous mutation in the human germ line leads to an estimate of 3.3 x 10(-8) per locus per cell generation. It is argued that the similarity of these two estimates, despite an average cell generation time of 18.5 hr for the cultured somatic cells but about 26 days in the germ line, suggests that spontaneous mutation involving nucleotide substitutions is much more dependent on cell generation than on time. This finding permits the inference that environmental (exogenous) variables make a relatively small contribution to the rate of this type of human germinal spontaneous mutation. While in vitro somatic-cell mutation rates, such as derived in this study, provide a basis for modeling the contribution of nucleotide substitutions in multihit/clonal theories of carcinogenesis, it is also argued that the complex of events involved in carcinogenesis, including chromosomal rearrangements and mitotic recombination, could have very different individual probabilities. Estimates for the rates of these other types of mutation are needed to provide a better understanding of the manner in which multiple mutations accumulate in malignant cells. Images PMID:1495998

  7. Clock-like mutational processes in human somatic cells

    SciTech Connect

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; Sale, Julian E.; Campbell, Peter J.; Nik-Zainal, Serena; Stratton, Michael R.

    2015-11-09

    During the course of a lifetime, somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell's genome. Some processes generate mutations throughout life at a constant rate in all individuals, and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutation rates in different tissues. However, their mutation rates are not correlated, indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This paper provides the first survey of clock-like mutational processes operating in human somatic cells.

  8. Clock-like mutational processes in human somatic cells

    PubMed Central

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; Sale, Julian E.; Campbell, Peter J.; Nik-Zainal, Serena; Stratton, Michael R.

    2016-01-01

    During the course of a lifetime somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell’s genome. Some processes generate mutations throughout life at a constant rate in all individuals and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutation rates in different tissues. However, their mutation rates are not correlated indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This study provides the first survey of clock-like mutational processes operative in human somatic cells. PMID:26551669

  9. Evolution of Mutation Rate in Asexual Populations

    NASA Astrophysics Data System (ADS)

    Wylie, Scott; Levine, Herbert; Kessler, David

    2007-03-01

    Several evolution experiments with E. coli document the spontaneous emergence and eventual fixation of so called ``mutator'' alleles that increase the genomic mutation rate by the order of 100-fold. Variations in mutation rates are due to polymorphisms in the molecular machinery that copies and checks the genome for errors. These polymorphisms are coded in the genome and thus heritable. Like any heritable trait, elevated mutation rates are subject to natural selection and evolution. However, unlike other traits, mutation rate does not directly affect the rate at which an organism reproduces, i.e. its fitness. Rather, it affects the statistical distribution of the offspring's fitness. This fitness distribution, in turn, leads via ``hitchhiking'' to a change in the frequency of the mutator allele, i.e. evolution of the mutation rate itself. In our work we simulate a birth-death process that approximates simple asexual populations and we measure the fixation probability of rare mutators. We then develop an approximate analytic model of the population dynamics, the results of which agree reasonably well with simulation. In particular, we are able to analytically predict the ``effective fitness'' of mutators and the conditions under which they are expected to emerge.

  10. Elevated germline mutation rate in teenage fathers.

    PubMed

    Forster, Peter; Hohoff, Carsten; Dunkelmann, Bettina; Schürenkamp, Marianne; Pfeiffer, Heidi; Neuhuber, Franz; Brinkmann, Bernd

    2015-03-22

    Men age and die, while cells in their germline are programmed to be immortal. To elucidate how germ cells maintain viable DNA despite increasing parental age, we analysed DNA from 24 097 parents and their children, from Europe, the Middle East and Africa. We chose repetitive microsatellite DNA that mutates (unlike point mutations) only as a result of cellular replication, providing us with a natural 'cell-cycle counter'. We observe, as expected, that the overall mutation rate for fathers is seven times higher than for mothers. Also as expected, mothers have a low and lifelong constant DNA mutation rate. Surprisingly, however, we discover that (i) teenage fathers already set out from a much higher mutation rate than teenage mothers (potentially equivalent to 77-196 male germline cell divisions by puberty); and (ii) ageing men maintain sperm DNA quality similar to that of teenagers, presumably by using fresh batches of stem cells known as 'A-dark spermatogonia'. PMID:25694621

  11. Male mutation rates and the cost of sex for females

    NASA Astrophysics Data System (ADS)

    Redfield, Rosemary J.

    1994-05-01

    ALTHOUGH we do not know why sex evolved, the twofold cost of meiosis for females provides a standard against which postulated benefits of sex can be evaluated1. The most reliable benefit is sex's ability to reduce the impact of deleterious mutations2,3. But deleterious mutations may themselves generate a large and previously overlooked female-specific cost of sex. DNA sequence comparisons have confirmed Haldane's suggestion that most mutations arise in the male germ line4,5; recent estimates of α, the ratio of male to female mutation rates, are ten, six and two in humans, primates and rodents, respectively6-8. Consequently, male gametes may give progeny more mutations than the associated sexual recombination eliminates. Here I describe computer simulations showing that the cost of male mutations can easily exceed the benefits of recombination, causing females to produce fitter progeny by parthenogenesis than by mating. The persistence of sexual reproduction by females thus becomes even more problematic.

  12. Mutation rates and the evolution of germline structure

    PubMed Central

    2016-01-01

    Genome sequencing studies of de novo mutations in humans have revealed surprising incongruities in our understanding of human germline mutation. In particular, the mutation rate observed in modern humans is substantially lower than that estimated from calibration against the fossil record, and the paternal age effect in mutations transmitted to offspring is much weaker than expected from our long-standing model of spermatogenesis. I consider possible explanations for these discrepancies, including evolutionary changes in life-history parameters such as generation time and the age of puberty, a possible contribution from undetected post-zygotic mutations early in embryo development, and changes in cellular mutation processes at different stages of the germline. I suggest a revised model of stem-cell state transitions during spermatogenesis, in which ‘dark’ gonial stem cells play a more active role than hitherto envisaged, with a long cycle time undetected in experimental observations. More generally, I argue that the mutation rate and its evolution depend intimately on the structure of the germline in humans and other primates. This article is part of the themed issue ‘Dating species divergences using rocks and clocks'. PMID:27325834

  13. Mutation rates and the evolution of germline structure.

    PubMed

    Scally, Aylwyn

    2016-07-19

    Genome sequencing studies of de novo mutations in humans have revealed surprising incongruities in our understanding of human germline mutation. In particular, the mutation rate observed in modern humans is substantially lower than that estimated from calibration against the fossil record, and the paternal age effect in mutations transmitted to offspring is much weaker than expected from our long-standing model of spermatogenesis. I consider possible explanations for these discrepancies, including evolutionary changes in life-history parameters such as generation time and the age of puberty, a possible contribution from undetected post-zygotic mutations early in embryo development, and changes in cellular mutation processes at different stages of the germline. I suggest a revised model of stem-cell state transitions during spermatogenesis, in which 'dark' gonial stem cells play a more active role than hitherto envisaged, with a long cycle time undetected in experimental observations. More generally, I argue that the mutation rate and its evolution depend intimately on the structure of the germline in humans and other primates.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325834

  14. Clock-like mutational processes in human somatic cells

    DOE PAGESBeta

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; Sale, Julian E.; Campbell, Peter J.; Nik-Zainal, Serena; Stratton, Michael R.

    2015-11-09

    During the course of a lifetime, somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell's genome. Some processes generate mutations throughout life at a constant rate in all individuals, and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutationmore » rates in different tissues. However, their mutation rates are not correlated, indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This paper provides the first survey of clock-like mutational processes operating in human somatic cells.« less

  15. Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast.

    PubMed

    Lang, Gregory I; Parsons, Lance; Gammie, Alison E

    2013-09-01

    DNA mismatch repair is a highly conserved DNA repair pathway. In humans, germline mutations in hMSH2 or hMLH1, key components of mismatch repair, have been associated with Lynch syndrome, a leading cause of inherited cancer mortality. Current estimates of the mutation rate and the mutational spectra in mismatch repair defective cells are primarily limited to a small number of individual reporter loci. Here we use the yeast Saccharomyces cerevisiae to generate a genome-wide view of the rates, spectra, and distribution of mutation in the absence of mismatch repair. We performed mutation accumulation assays and next generation sequencing on 19 strains, including 16 msh2 missense variants implicated in Lynch cancer syndrome. The mutation rate for DNA mismatch repair null strains was approximately 1 mutation per genome per generation, 225-fold greater than the wild-type rate. The mutations were distributed randomly throughout the genome, independent of replication timing. The mutation spectra included insertions/deletions at homopolymeric runs (87.7%) and at larger microsatellites (5.9%), as well as transitions (4.5%) and transversions (1.9%). Additionally, repeat regions with proximal repeats are more likely to be mutated. A bias toward deletions at homopolymers and insertions at (AT)n microsatellites suggests a different mechanism for mismatch generation at these sites. Interestingly, 5% of the single base pair substitutions might represent double-slippage events that occurred at the junction of immediately adjacent repeats, resulting in a shift in the repeat boundary. These data suggest a closer scrutiny of tumor suppressors with homopolymeric runs with proximal repeats as the potential drivers of oncogenesis in mismatch repair defective cells. PMID:23821616

  16. Mutation rate estimation for 15 autosomal STR loci in a large population from Mainland China

    PubMed Central

    Zhao, Zhuo; Zhang, Jie; Wang, Hua; Liu, Zhi-Peng; Liu, Ming; Zhang, Yuan; Sun, Li; Zhang, Hui

    2015-01-01

    STR, short tandem repeats, are well known as a type of powerful genetic marker and widely used in studying human population genetics. Compared with the conventional genetic markers, the mutation rate of STR is higher. Additionally, the mutations of STR loci do not lead to genetic inconsistencies between the genotypes of parents and children; therefore, the analysis of STR mutation is more suited to assess the population mutation. In this study, we focused on 15 autosomal STR loci. DNA samples from a total of 42,416 unrelated healthy individuals (19,037 trios) from the population of Mainland China collected between Jan 2012 and May 2014 were successfully investigated. In our study, the allele frequencies, paternal mutation rates, maternal mutation rates and average mutation rates were detected. Furthermore, we also investigated the relationship between paternal ages, maternal ages, area, the time of pregnancy and average mutation rate. We found that the paternal mutation rate was higher than the maternal mutation rate and the paternal, maternal, and average mutation rates had a positive correlation with paternal age, maternal age and the time of pregnancy respectively. Additionally, the average mutation rate of coastal areas was higher than that of inland areas. PMID:26273562

  17. A resolution of the mutation load paradox in humans.

    PubMed

    Lesecque, Yann; Keightley, Peter D; Eyre-Walker, Adam

    2012-08-01

    Current information on the rate of mutation and the fraction of sites in the genome that are subject to selection suggests that each human has received, on average, at least two new harmful mutations from its parents. These mutations were subsequently removed by natural selection through reduced survival or fertility. It has been argued that the mutation load, the proportional reduction in population mean fitness relative to the fitness of an idealized mutation-free individual, allows a theoretical prediction of the proportion of individuals in the population that fail to reproduce as a consequence of these harmful mutations. Application of this theory to humans implies that at least 88% of individuals should fail to reproduce and that each female would need to have more than 16 offspring to maintain population size. This prediction is clearly at odds with the low reproductive excess of human populations. Here, we derive expressions for the fraction of individuals that fail to reproduce as a consequence of recurrent deleterious mutation () for a model in which selection occurs via differences in relative fitness, such as would occur through competition between individuals. We show that is much smaller than the value predicted by comparing fitness to that of a mutation-free genotype. Under the relative fitness model, we show that depends jointly on U and the selective effects of new deleterious mutations and that a species could tolerate 10's or even 100's of new deleterious mutations per genome each generation. PMID:22661324

  18. Deep Phylogenetic Analysis of Haplogroup G1 Provides Estimates of SNP and STR Mutation Rates on the Human Y-Chromosome and Reveals Migrations of Iranic Speakers

    PubMed Central

    Balanovsky, Oleg; Zhabagin, Maxat; Agdzhoyan, Anastasiya; Chukhryaeva, Marina; Zaporozhchenko, Valery; Utevska, Olga; Highnam, Gareth; Sabitov, Zhaxylyk; Greenspan, Elliott; Dibirova, Khadizhat; Skhalyakho, Roza; Kuznetsova, Marina; Koshel, Sergey; Yusupov, Yuldash; Nymadawa, Pagbajabyn; Zhumadilov, Zhaxybay; Pocheshkhova, Elvira; Haber, Marc; A. Zalloua, Pierre; Yepiskoposyan, Levon; Dybo, Anna; Tyler-Smith, Chris; Balanovska, Elena

    2015-01-01

    Y-chromosomal haplogroup G1 is a minor component of the overall gene pool of South-West and Central Asia but reaches up to 80% frequency in some populations scattered within this area. We have genotyped the G1-defining marker M285 in 27 Eurasian populations (n= 5,346), analyzed 367 M285-positive samples using 17 Y-STRs, and sequenced ~11 Mb of the Y-chromosome in 20 of these samples to an average coverage of 67X. This allowed detailed phylogenetic reconstruction. We identified five branches, all with high geographical specificity: G1-L1323 in Kazakhs, the closely related G1-GG1 in Mongols, G1-GG265 in Armenians and its distant brother clade G1-GG162 in Bashkirs, and G1-GG362 in West Indians. The haplotype diversity, which decreased from West Iran to Central Asia, allows us to hypothesize that this rare haplogroup could have been carried by the expansion of Iranic speakers northwards to the Eurasian steppe and via founder effects became a predominant genetic component of some populations, including the Argyn tribe of the Kazakhs. The remarkable agreement between genetic and genealogical trees of Argyns allowed us to calibrate the molecular clock using a historical date (1405 AD) of the most recent common genealogical ancestor. The mutation rate for Y-chromosomal sequence data obtained was 0.78×10-9 per bp per year, falling within the range of published rates. The mutation rate for Y-chromosomal STRs was 0.0022 per locus per generation, very close to the so-called genealogical rate. The “clan-based” approach to estimating the mutation rate provides a third, middle way between direct farther-to-son comparisons and using archeologically known migrations, whose dates are subject to revision and of uncertain relationship to genetic events. PMID:25849548

  19. Mutation and Human Exceptionalism: Our Future Genetic Load.

    PubMed

    Lynch, Michael

    2016-03-01

    Although the human germline mutation rate is higher than that in any other well-studied species, the rate is not exceptional once the effective genome size and effective population size are taken into consideration. Human somatic mutation rates are substantially elevated above those in the germline, but this is also seen in other species. What is exceptional about humans is the recent detachment from the challenges of the natural environment and the ability to modify phenotypic traits in ways that mitigate the fitness effects of mutations, e.g., precision and personalized medicine. This results in a relaxation of selection against mildly deleterious mutations, including those magnifying the mutation rate itself. The long-term consequence of such effects is an expected genetic deterioration in the baseline human condition, potentially measurable on the timescale of a few generations in westernized societies, and because the brain is a particularly large mutational target, this is of particular concern. Ultimately, the price will have to be covered by further investment in various forms of medical intervention. Resolving the uncertainties of the magnitude and timescale of these effects will require the establishment of stable, standardized, multigenerational measurement procedures for various human traits. PMID:26953265

  20. Mutation and Human Exceptionalism: Our Future Genetic Load

    PubMed Central

    Lynch, Michael

    2016-01-01

    Although the human germline mutation rate is higher than that in any other well-studied species, the rate is not exceptional once the effective genome size and effective population size are taken into consideration. Human somatic mutation rates are substantially elevated above those in the germline, but this is also seen in other species. What is exceptional about humans is the recent detachment from the challenges of the natural environment and the ability to modify phenotypic traits in ways that mitigate the fitness effects of mutations, e.g., precision and personalized medicine. This results in a relaxation of selection against mildly deleterious mutations, including those magnifying the mutation rate itself. The long-term consequence of such effects is an expected genetic deterioration in the baseline human condition, potentially measurable on the timescale of a few generations in westernized societies, and because the brain is a particularly large mutational target, this is of particular concern. Ultimately, the price will have to be covered by further investment in various forms of medical intervention. Resolving the uncertainties of the magnitude and timescale of these effects will require the establishment of stable, standardized, multigenerational measurement procedures for various human traits. PMID:26953265

  1. Precise estimates of mutation rate and spectrum in yeast

    PubMed Central

    Zhu, Yuan O.; Siegal, Mark L.; Hall, David W.; Petrov, Dmitri A.

    2014-01-01

    Mutation is the ultimate source of genetic variation. The most direct and unbiased method of studying spontaneous mutations is via mutation accumulation (MA) lines. Until recently, MA experiments were limited by the cost of sequencing and thus provided us with small numbers of mutational events and therefore imprecise estimates of rates and patterns of mutation. We used whole-genome sequencing to identify nearly 1,000 spontaneous mutation events accumulated over ∼311,000 generations in 145 diploid MA lines of the budding yeast Saccharomyces cerevisiae. MA experiments are usually assumed to have negligible levels of selection, but even mild selection will remove strongly deleterious events. We take advantage of such patterns of selection and show that mutation classes such as indels and aneuploidies (especially monosomies) are proportionately much more likely to contribute mutations of large effect. We also provide conservative estimates of indel, aneuploidy, environment-dependent dominant lethal, and recessive lethal mutation rates. To our knowledge, for the first time in yeast MA data, we identified a sufficiently large number of single-nucleotide mutations to measure context-dependent mutation rates and were able to (i) confirm strong AT bias of mutation in yeast driven by high rate of mutations from C/G to T/A and (ii) detect a higher rate of mutation at C/G nucleotides in two specific contexts consistent with cytosine methylation in S. cerevisiae. PMID:24847077

  2. Strong effects of ionizing radiation from Chernobyl on mutation rates.

    PubMed

    Møller, Anders Pape; Mousseau, Timothy A

    2015-01-01

    In this paper we use a meta-analysis to examine the relationship between radiation and mutation rates in Chernobyl across 45 published studies, covering 30 species. Overall effect size of radiation on mutation rates estimated as Pearson's product-moment correlation coefficient was very large (E = 0.67; 95% confidence intervals (CI) 0.59 to 0.73), accounting for 44.3% of the total variance in an unstructured random-effects model. Fail-safe calculations reflecting the number of unpublished null results needed to eliminate this average effect size showed the extreme robustness of this finding (Rosenberg's method: 4135 at p = 0.05). Indirect tests did not provide any evidence of publication bias. The effect of radiation on mutations varied among taxa, with plants showing a larger effect than animals. Humans were shown to have intermediate sensitivity of mutations to radiation compared to other species. Effect size did not decrease over time, providing no evidence for an improvement in environmental conditions. The surprisingly high mean effect size suggests a strong impact of radioactive contamination on individual fitness in current and future generations, with potentially significant population-level consequences, even beyond the area contaminated with radioactive material. PMID:25666381

  3. Strong effects of ionizing radiation from Chernobyl on mutation rates

    PubMed Central

    Møller, Anders Pape; Mousseau, Timothy A.

    2015-01-01

    In this paper we use a meta-analysis to examine the relationship between radiation and mutation rates in Chernobyl across 45 published studies, covering 30 species. Overall effect size of radiation on mutation rates estimated as Pearson's product-moment correlation coefficient was very large (E = 0.67; 95% confidence intervals (CI) 0.59 to 0.73), accounting for 44.3% of the total variance in an unstructured random-effects model. Fail-safe calculations reflecting the number of unpublished null results needed to eliminate this average effect size showed the extreme robustness of this finding (Rosenberg's method: 4135 at p = 0.05). Indirect tests did not provide any evidence of publication bias. The effect of radiation on mutations varied among taxa, with plants showing a larger effect than animals. Humans were shown to have intermediate sensitivity of mutations to radiation compared to other species. Effect size did not decrease over time, providing no evidence for an improvement in environmental conditions. The surprisingly high mean effect size suggests a strong impact of radioactive contamination on individual fitness in current and future generations, with potentially significant population-level consequences, even beyond the area contaminated with radioactive material. PMID:25666381

  4. Strong effects of ionizing radiation from Chernobyl on mutation rates

    NASA Astrophysics Data System (ADS)

    Møller, Anders Pape; Mousseau, Timothy A.

    2015-02-01

    In this paper we use a meta-analysis to examine the relationship between radiation and mutation rates in Chernobyl across 45 published studies, covering 30 species. Overall effect size of radiation on mutation rates estimated as Pearson's product-moment correlation coefficient was very large (E = 0.67; 95% confidence intervals (CI) 0.59 to 0.73), accounting for 44.3% of the total variance in an unstructured random-effects model. Fail-safe calculations reflecting the number of unpublished null results needed to eliminate this average effect size showed the extreme robustness of this finding (Rosenberg's method: 4135 at p = 0.05). Indirect tests did not provide any evidence of publication bias. The effect of radiation on mutations varied among taxa, with plants showing a larger effect than animals. Humans were shown to have intermediate sensitivity of mutations to radiation compared to other species. Effect size did not decrease over time, providing no evidence for an improvement in environmental conditions. The surprisingly high mean effect size suggests a strong impact of radioactive contamination on individual fitness in current and future generations, with potentially significant population-level consequences, even beyond the area contaminated with radioactive material.

  5. Mutations, mutation rates, and evolution at the hypervariable VNTR loci of Yersinia pestis.

    PubMed

    Vogler, Amy J; Keys, Christine E; Allender, Christopher; Bailey, Ira; Girard, Jessica; Pearson, Talima; Smith, Kimothy L; Wagner, David M; Keim, Paul

    2007-03-01

    VNTRs are able to discriminate among closely related isolates of recently emerged clonal pathogens, including Yersinia pestis the etiologic agent of plague, because of their great diversity. Diversity is driven largely by mutation but little is known about VNTR mutation rates, factors affecting mutation rates, or the mutational mechanisms. The molecular epidemiological utility of VNTRs will be greatly enhanced when this foundational knowledge is available. Here, we measure mutation rates for 43 VNTR loci in Y. pestis using an in vitro generated population encompassing approximately 96,000 generations. We estimate the combined 43-locus rate and individual rates for 14 loci. A comparison of Y. pestis and Escherichia coli O157:H7 VNTR mutation rates and products revealed a similar relationship between diversity and mutation rate in these two species. Likewise, the relationship between repeat copy number and mutation rate is nearly identical between these species, suggesting a generalized relationship that may be applicable to other species. The single- versus multiple-repeat mutation ratios and the insertion versus deletion mutation ratios were also similar, providing support for a general model for the mutations associated with VNTRs. Finally, we use two small sets of Y. pestis isolates to show how this general model and our estimated mutation rates can be used to compare alternate phylogenies, and to evaluate the significance of genotype matches, near-matches, and mismatches found in empirical comparisons with a reference database. PMID:17161849

  6. Genome-wide patterns and properties of de novo mutations in humans.

    PubMed

    Francioli, Laurent C; Polak, Paz P; Koren, Amnon; Menelaou, Androniki; Chun, Sung; Renkens, Ivo; van Duijn, Cornelia M; Swertz, Morris; Wijmenga, Cisca; van Ommen, Gertjan; Slagboom, P Eline; Boomsma, Dorret I; Ye, Kai; Guryev, Victor; Arndt, Peter F; Kloosterman, Wigard P; de Bakker, Paul I W; Sunyaev, Shamil R

    2015-07-01

    Mutations create variation in the population, fuel evolution and cause genetic diseases. Current knowledge about de novo mutations is incomplete and mostly indirect. Here we analyze 11,020 de novo mutations from the whole genomes of 250 families. We show that de novo mutations in the offspring of older fathers are not only more numerous but also occur more frequently in early-replicating, genic regions. Functional regions exhibit higher mutation rates due to CpG dinucleotides and show signatures of transcription-coupled repair, whereas mutation clusters with a unique signature point to a new mutational mechanism. Mutation and recombination rates independently associate with nucleotide diversity, and regional variation in human-chimpanzee divergence is only partly explained by heterogeneity in mutation rate. Finally, we provide a genome-wide mutation rate map for medical and population genetics applications. Our results provide new insights and refine long-standing hypotheses about human mutagenesis. PMID:25985141

  7. Multiple dispersed spontaneous mutations: A novel pathway of mutation in a malignant human cell line

    SciTech Connect

    Harwood, J.; Tachibana, Akira; Meuth, M. )

    1991-06-01

    The authors analyzed the nature of spontaneous mutations at the autosomal locus coding for adenine phosphoribosyltransferase in the human colorectal carcinoma cell line SW620 to establish whether distinctive mutational pathways exist that might underlie the more complex genome rearrangements arising in tumor cells. Point mutations occur at a low rate in part hemizygotes derived from SW620, largely as a result of base substitutions at G {center dot} C base pairs to yield transversions and transitions. However, a novel pathway is evident in the form of multiple dispersed mutations in which two errors, separated by as much as 1,800 bp, fall in the same mutant gene. Such mutations could be the result of error-prone DNA synthesis occurring during normal replication or during long-patch excision-repair of spontaneously arising DNA lesions. This process could also contribute to the chromosomal instability evident in these tumor cells.

  8. The experience of mutation rate quantitative evaluation in connection with environmental pollution (based on studies of congenital anomalies in human populations).

    PubMed

    Antipenko YeN; Kogut, N N

    1993-10-01

    relation between average annual general emission of atmospheric pollutants (M./Z.) was 2.21, the frequency of dominant and X-linked CA 2.20 and of new skeleton mutations 2.24. The difference of mutation rate in the towns studied was due to the dynamics of demographic processes. PMID:7690882

  9. Mitochondrial DNA mutations in human colonic crypt stem cells

    PubMed Central

    Taylor, Robert W.; Barron, Martin J.; Borthwick, Gillian M.; Gospel, Amy; Chinnery, Patrick F.; Samuels, David C.; Taylor, Geoffrey A.; Plusa, Stefan M.; Needham, Stephanie J.; Greaves, Laura C.; Kirkwood, Thomas B.L.; Turnbull, Douglass M.

    2003-01-01

    The mitochondrial genome encodes 13 essential subunits of the respiratory chain and has remarkable genetics based on uniparental inheritance. Within human populations, the mitochondrial genome has a high rate of sequence divergence with multiple polymorphic variants and thus has played a major role in examining the evolutionary history of our species. In recent years it has also become apparent that pathogenic mitochondrial DNA (mtDNA) mutations play an important role in neurological and other diseases. Patients harbor many different mtDNA mutations, some of which are mtDNA mutations, some of which are inherited, but others that seem to be sporadic. It has also been suggested that mtDNA mutations play a role in aging and cancer, but the evidence for a causative role in these conditions is less clear. The accumulated data would suggest, however, that mtDNA mutations occur on a frequent basis. In this article we describe a new phenomenon: the accumulation of mtDNA mutations in human colonic crypt stem cells that result in a significant biochemical defect in their progeny. These studies have important consequences not only for understanding of the finding of mtDNA mutations in aging tissues and tumors, but also for determining the frequency of mtDNA mutations within a cell. PMID:14597761

  10. RAD21 Mutations Cause a Human Cohesinopathy

    PubMed Central

    Deardorff, Matthew A.; Wilde, Jonathan J.; Albrecht, Melanie; Dickinson, Emma; Tennstedt, Stephanie; Braunholz, Diana; Mönnich, Maren; Yan, Yuqian; Xu, Weizhen; Gil-Rodríguez, María Concepcion; Clark, Dinah; Hakonarson, Hakon; Halbach, Sara; Michelis, Laura Daniela; Rampuria, Abhinav; Rossier, Eva; Spranger, Stephanie; Van Maldergem, Lionel; Lynch, Sally Ann; Gillessen-Kaesbach, Gabriele; Lüdecke, Hermann-Josef; Ramsay, Robert G.; McKay, Michael J.; Krantz, Ian D.; Xu, Huiling; Horsfield, Julia A.; Kaiser, Frank J.

    2012-01-01

    The evolutionarily conserved cohesin complex was originally described for its role in regulating sister-chromatid cohesion during mitosis and meiosis. Cohesin and its regulatory proteins have been implicated in several human developmental disorders, including Cornelia de Lange (CdLS) and Roberts syndromes. Here we show that human mutations in the integral cohesin structural protein RAD21 result in a congenital phenotype consistent with a “cohesinopathy.” Children with RAD21 mutations display growth retardation, minor skeletal anomalies, and facial features that overlap findings in individuals with CdLS. Notably, unlike children with mutations in NIPBL, SMC1A, or SMC3, these individuals have much milder cognitive impairment than those with classical CdLS. Mechanistically, these mutations act at the RAD21 interface with the other cohesin proteins STAG2 and SMC1A, impair cellular DNA damage response, and disrupt transcription in a zebrafish model. Our data suggest that, compared to loss-of-function mutations, dominant missense mutations result in more severe functional defects and cause worse structural and cognitive clinical findings. These results underscore the essential role of RAD21 in eukaryotes and emphasize the need for further understanding of the role of cohesin in human development. PMID:22633399

  11. Estimating Mutation Load in Human Genomes

    PubMed Central

    Henn, Brenna M.; Botigué, Laura R.; Bustamante, Carlos D.; Clark, Andrew G.; Gravel, Simon

    2016-01-01

    Next-generation sequencing technology has facilitated the discovery of millions of variants in human genomes. A sizeable fraction of these alleles are thought to be deleterious. We review the pattern of deleterious alleles as ascertained in genomic data and ask whether human populations differ in their predicted burden of deleterious alleles, a phenomenon known as “mutation load.” We discuss three demographic models that are predicted to affect mutation load and relate these models to the evidence (or the lack thereof) for variation in the efficacy of purifying selection in diverse human genomes. We also discuss why accurate estimation of mutation load depends on assumptions regarding the distribution of dominance and selection coefficients, quantities that are poorly characterized for current genomic datasets. PMID:25963372

  12. Quantification of designer nuclease induced mutation rates: a direct comparison of different methods

    PubMed Central

    Ehrke-Schulz, Eric; Bergmann, Thorsten; Schiwon, Maren; Doerner, Johannes; Saydaminova, Kamola; Lieber, Andre; Ehrhardt, Anja

    2016-01-01

    Designer nucleases are broadly applied to induce site-specific DNA double-strand breaks (DSB) in genomic DNA. These are repaired by nonhomologous end joining leading to insertions or deletions (in/dels) at the respective DNA-locus. To detect in/del mutations, the heteroduplex based T7-endonuclease I -assay is widely used. However, it only provides semi-quantitative evidence regarding the number of mutated alleles. Here we compared T7-endonuclease I- and heteroduplex mobility assays, with a quantitative polymerase chain reaction mutation detection method. A zinc finger nuclease pair specific for the human adeno-associated virus integration site 1 (AAVS1), a transcription activator-like effector nuclease pair specific for the human DMD gene, and a zinc finger nuclease- and a transcription activator-like effector nuclease pair specific for the human CCR5 gene were explored. We found that the heteroduplex mobility assays and T7-endonuclease I - assays detected mutations but the relative number of mutated cells/alleles can only be estimated. In contrast, the quantitative polymerase chain reaction based method provided quantitative results which allow calculating mutation and homologous recombination rates in different eukaryotic cell types including human peripheral blood mononuclear cells. In conclusion, our quantitative polymerase chain reaction based mutation detection method expands the array of methods for in/del mutation detection and facilitates quantification of introduced in/del mutations for a genomic locus containing a mixture of mutated and unmutated DNA. PMID:27419195

  13. Tobacco exposure results in increased E6 and E7 oncogene expression, DNA damage and mutation rates in cells maintaining episomal human papillomavirus 16 genomes

    PubMed Central

    Wei, Lanlan; Griego, Anastacia M.; Chu, Ming; Ozbun, Michelle A.

    2014-01-01

    High-risk human papillomavirus (HR-HPV) infections are necessary but insufficient agents of cervical and other epithelial cancers. Epidemiological studies support a causal, but ill-defined, relationship between tobacco smoking and cervical malignancies. In this study, we used mainstream tobacco smoke condensate (MSTS-C) treatments of cervical cell lines that maintain either episomal or integrated HPV16 or HPV31 genomes to model tobacco smoke exposure to the cervical epithelium of the smoker. MSTS-C exposure caused a dose-dependent increase in viral genome replication and correspondingly higher early gene transcription in cells with episomal HPV genomes. However, MSTS-C exposure in cells with integrated HR-HPV genomes had no effect on genome copy number or early gene transcription. In cells with episomal HPV genomes, the MSTS-C-induced increases in E6 oncogene transcription led to decreased p53 protein levels and activity. As expected from loss of p53 activity in tobacco-exposed cells, DNA strand breaks were significantly higher but apoptosis was minimal compared with cells containing integrated viral genomes. Furthermore, DNA mutation frequencies were higher in surviving cells with HPV episomes. These findings provide increased understanding of tobacco smoke exposure risk in HPV infection and indicate tobacco smoking acts more directly to alter HR-HPV oncogene expression in cells that maintain episomal viral genomes. This suggests a more prominent role for tobacco smoke in earlier stages of HPV-related cancer progression. PMID:25064354

  14. Condition-dependent mutation rates and sexual selection.

    PubMed

    Cotton, S

    2009-04-01

    'Good genes' models of sexual selection show that females can gain indirect benefits for their offspring if male ornaments are condition-dependent signals of genetic quality. Recurrent deleterious mutation is viewed as a major contributor to variance in genetic quality, and previous theoretical treatments of 'good genes' processes have assumed that the influx of new mutations is constant. I propose that this assumption is too simplistic, and that mutation rates vary in ways that are important for sexual selection. Recent data have shown that individuals in poor condition can have higher mutation rates, and I argue that if both male sexual ornaments and mutation rates are condition-dependent, then females can use male ornamentation to evaluate their mate's mutation rate. As most mutations are deleterious, females benefit from choosing well-ornamented mates, as they are less likely to contribute germline-derived mutations to offspring. I discuss some of the evolutionary ramifications of condition-dependent mutation rates and sexual selection. PMID:19210586

  15. Rate of fixation of beneficial mutations in sexual populations

    NASA Astrophysics Data System (ADS)

    Gouveia, Joseilme F.; de Oliveira, Viviane M.; Sátiro, Caio; Campos, Paulo R. A.

    2009-06-01

    We have investigated the rate of substitution of advantageous mutations in populations of haploid organisms where the rate of recombination can be controlled. We have verified that in all the situations recombination speeds up adaptation through recombination of beneficial mutations from distinct lineages in a single individual, and so reducing the intensity of clonal interference. The advantage of sex for adaptation is even stronger when deleterious mutations occur since now recombination can also restore genetic background free of deleterious mutations. However, our simulation results demonstrate that evidence of clonal interference, as increased mean selective effect of fixed mutations and reduced likelihood of fixation of small-effect mutations, are also present in sexual populations. What we see is that this evidence is delayed when compared to asexual populations.

  16. Evolution of evolvability via adaptation of mutation rates.

    PubMed

    Bedau, Mark A; Packard, Norman H

    2003-05-01

    We examine a simple form of the evolution of evolvability-the evolution of mutation rates-in a simple model system. The system is composed of many agents moving, reproducing, and dying in a two-dimensional resource-limited world. We first examine various macroscopic quantities (three types of genetic diversity, a measure of population fitness, and a measure of evolutionary activity) as a function of fixed mutation rates. The results suggest that (i) mutation rate is a control parameter that governs a transition between two qualitatively different phases of evolution, an ordered phase characterized by punctuated equilibria of diversity, and a disordered phase of characterized by noisy fluctuations around an equilibrium diversity, and (ii) the ability of evolution to create adaptive structure is maximized when the mutation rate is just below the transition between these two phases of evolution. We hypothesize that this transition occurs when the demands for evolutionary memory and evolutionary novelty are typically balanced. We next allow the mutation rate itself to evolve, and we observe that evolving mutation rates adapt to values at this transition. Furthermore, the mutation rates adapt up (or down) as the evolutionary demands for novelty (or memory) increase, thus supporting the balance hypothesis. PMID:12689727

  17. Population-Scale Sequencing Data Enable Precise Estimates of Y-STR Mutation Rates.

    PubMed

    Willems, Thomas; Gymrek, Melissa; Poznik, G David; Tyler-Smith, Chris; Erlich, Yaniv

    2016-05-01

    Short tandem repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. Previous studies have estimated the mutation rates of highly polymorphic STRs by using capillary electrophoresis and pedigree-based designs. Although this work has provided insights into the mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. Here, we harnessed whole-genome sequencing data to estimate the mutation rates of Y chromosome STRs (Y-STRs) with 2-6 bp repeat units that are accessible to Illumina sequencing. We genotyped 4,500 Y-STRs by using data from the 1000 Genomes Project and the Simons Genome Diversity Project. Next, we developed MUTEA, an algorithm that infers STR mutation rates from population-scale data by using a high-resolution SNP-based phylogeny. After extensive intrinsic and extrinsic validations, we harnessed MUTEA to derive mutation-rate estimates for 702 polymorphic STRs by tracing each locus over 222,000 meioses, resulting in the largest collection of Y-STR mutation rates to date. Using our estimates, we identified determinants of STR mutation rates and built a model to predict rates for STRs across the genome. These predictions indicate that the load of de novo STR mutations is at least 75 mutations per generation, rivaling the load of all other known variant types. Finally, we identified Y-STRs with potential applications in forensics and genetic genealogy, assessed the ability to differentiate between the Y chromosomes of father-son pairs, and imputed Y-STR genotypes. PMID:27126583

  18. The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Farlow, Ashley; Long, Hongan; Arnoux, Stéphanie; Sung, Way; Doak, Thomas G; Nordborg, Magnus; Lynch, Michael

    2015-10-01

    The rate at which new mutations arise in the genome is a key factor in the evolution and adaptation of species. Here we describe the rate and spectrum of spontaneous mutations for the fission yeast Schizosaccharomyces pombe, a key model organism with many similarities to higher eukaryotes. We undertook an ∼1700-generation mutation accumulation (MA) experiment with a haploid S. pombe, generating 422 single-base substitutions and 119 insertion-deletion mutations (indels) across the 96 replicates. This equates to a base-substitution mutation rate of 2.00 × 10(-10) mutations per site per generation, similar to that reported for the distantly related budding yeast Saccharomyces cerevisiae. However, these two yeast species differ dramatically in their spectrum of base substitutions, the types of indels (S. pombe is more prone to insertions), and the pattern of selection required to counteract a strong AT-biased mutation rate. Overall, our results indicate that GC-biased gene conversion does not play a major role in shaping the nucleotide composition of the S. pombe genome and suggest that the mechanisms of DNA maintenance may have diverged significantly between fission and budding yeasts. Unexpectedly, CpG sites appear to be excessively liable to mutation in both species despite the likely absence of DNA methylation. PMID:26265703

  19. Parental age affects somatic mutation rates in the progeny of flowering plants.

    PubMed

    Singh, Amit Kumar; Bashir, Tufail; Sailer, Christian; Gurumoorthy, Viswanathan; Ramakrishnan, Anantha Maharasi; Dhanapal, Shanmuhapreya; Grossniklaus, Ueli; Baskar, Ramamurthy

    2015-05-01

    In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes. PMID:25810093

  20. Parental Age Affects Somatic Mutation Rates in the Progeny of Flowering Plants1

    PubMed Central

    Singh, Amit Kumar; Bashir, Tufail; Sailer, Christian; Gurumoorthy, Viswanathan; Ramakrishnan, Anantha Maharasi; Dhanapal, Shanmuhapreya; Grossniklaus, Ueli; Baskar, Ramamurthy

    2015-01-01

    In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes. PMID:25810093

  1. Cis-regulatory mutations in human disease

    PubMed Central

    2009-01-01

    Cis-acting regulatory sequences are required for the proper temporal and spatial control of gene expression. Variation in gene expression is highly heritable and a significant determinant of human disease susceptibility. The diversity of human genetic diseases attributed, in whole or in part, to mutations in non-coding regulatory sequences is on the rise. Improvements in genome-wide methods of associating genetic variation with human disease and predicting DNA with cis-regulatory potential are two of the major reasons for these recent advances. This review will highlight select examples from the literature that have successfully integrated genetic and genomic approaches to uncover the molecular basis by which cis-regulatory mutations alter gene expression and contribute to human disease. The fine mapping of disease-causing variants has led to the discovery of novel cis-acting regulatory elements that, in some instances, are located as far away as 1.5 Mb from the target gene. In other cases, the prior knowledge of the regulatory landscape surrounding the gene of interest aided in the selection of enhancers for mutation screening. The success of these studies should provide a framework for following up on the large number of genome-wide association studies that have identified common variants in non-coding regions of the genome that associate with increased risk of human diseases including, diabetes, autism, Crohn's, colorectal cancer, and asthma, to name a few. PMID:19641089

  2. Interpreting the Dependence of Mutation Rates on Age and Time

    PubMed Central

    Gao, Ziyue; Wyman, Minyoung J.; Sella, Guy; Przeworski, Molly

    2016-01-01

    Mutations can originate from the chance misincorporation of nucleotides during DNA replication or from DNA lesions that arise between replication cycles and are not repaired correctly. We introduce a model that relates the source of mutations to their accumulation with cell divisions, providing a framework for understanding how mutation rates depend on sex, age, and cell division rate. We show that the accrual of mutations should track cell divisions not only when mutations are replicative in origin but also when they are non-replicative and repaired efficiently. One implication is that observations from diverse fields that to date have been interpreted as pointing to a replicative origin of most mutations could instead reflect the accumulation of mutations arising from endogenous reactions or exogenous mutagens. We further find that only mutations that arise from inefficiently repaired lesions will accrue according to absolute time; thus, unless life history traits co-vary, the phylogenetic “molecular clock” should not be expected to run steadily across species. PMID:26761240

  3. Ghrelin Receptor Mutations and Human Obesity.

    PubMed

    Wang, W; Tao, Y-X

    2016-01-01

    Growth hormone secretagogue receptor (GHSR) was originally identified as an orphan receptor in porcine and rat anterior pituitary membranes. In 1999, GHSR was deorphanized and shown to be a receptor for ghrelin, a peptide hormone secreted from the stomach. Therefore, GHSR is also called ghrelin receptor. In addition to regulating growth hormone secretion, ghrelin receptor regulates various physiological processes, including food intake and energy expenditure, glucose metabolism, cardiovascular functions, gastric acid secretion and motility, and immune function. Several human genetic studies conducted in populations originated from Europe, Africa, South America, and East Asia identified rare mutations and single nucleotide polymorphisms that might be associated with human obesity and short stature. Functional analyses of mutant GHSRs reveal multiple defects, including cell surface expression, ligand binding, and basal and stimulated signaling. With growing understanding in the functionality of naturally occurring GHSR mutations, potential therapeutic strategies including pharmacological chaperones and novel ligands could be used to correct the GHSR mutants. PMID:27288828

  4. Role of the conserved distal heme asparagine of coral allene oxide synthase (Asn137) and human catalase (Asn148): mutations affect the rate but not the essential chemistry of the enzymatic transformations.

    PubMed

    Gao, Benlian; Boeglin, William E; Brash, Alan R

    2008-09-15

    A catalase-related allene oxide synthase (cAOS) and true catalases that metabolize hydrogen peroxide have similar structure around the heme. One of the distal heme residues considered to help control catalysis is a highly conserved asparagine. Here we addressed the role of this residue in metabolism of the natural substrate 8R-hydroperoxyeicosatetraenoic acid by cAOS and in H(2)O(2) breakdown by catalase. In cAOS, the mutations N137A, N137Q, N137S, N137D, and N137H drastically reduced the rate of reaction (to 0.8-4% of wild-type), yet the mutants all formed the allene oxide as product. This is remarkable because there are many potential heme-catalyzed transformations of fatty acid hydroperoxides and special enzymatic control must be required. In human catalase, the N148A, N148S, or N148D mutations only reduced rates to approximately 20% of wild-type. The distal heme Asn is not essential in either catalase or cAOS. Its conservation throughout evolution may relate to a role in optimizing catalysis. PMID:18652800

  5. Modelling mutational landscapes of human cancers in vitro

    NASA Astrophysics Data System (ADS)

    Olivier, Magali; Weninger, Annette; Ardin, Maude; Huskova, Hana; Castells, Xavier; Vallée, Maxime P.; McKay, James; Nedelko, Tatiana; Muehlbauer, Karl-Rudolf; Marusawa, Hiroyuki; Alexander, John; Hazelwood, Lee; Byrnes, Graham; Hollstein, Monica; Zavadil, Jiri

    2014-03-01

    Experimental models that recapitulate mutational landscapes of human cancers are needed to decipher the rapidly expanding data on human somatic mutations. We demonstrate that mutation patterns in immortalised cell lines derived from primary murine embryonic fibroblasts (MEFs) exposed in vitro to carcinogens recapitulate key features of mutational signatures observed in human cancers. In experiments with several cancer-causing agents we obtained high genome-wide concordance between human tumour mutation data and in vitro data with respect to predominant substitution types, strand bias and sequence context. Moreover, we found signature mutations in well-studied human cancer driver genes. To explore endogenous mutagenesis, we used MEFs ectopically expressing activation-induced cytidine deaminase (AID) and observed an excess of AID signature mutations in immortalised cell lines compared to their non-transgenic counterparts. MEF immortalisation is thus a simple and powerful strategy for modelling cancer mutation landscapes that facilitates the interpretation of human tumour genome-wide sequencing data.

  6. Microsatellite Mutation Rate during Allohexaploidization of Newly Resynthesized Wheat

    PubMed Central

    Luo, Jiangtao; Hao, Ming; Zhang, Li; Chen, Jixiang; Zhang, Lianquan; Yuan, Zhongwei; Yan, Zehong; Zheng, Youliang; Zhang, Huaigang; Yen, Yang; Liu, Dengcai

    2012-01-01

    Simple sequence repeats (SSRs, also known as microsatellites) are known to be mutational hotspots in genomes. DNA rearrangements have also been reported to accompany allopolyploidization. A study of the effect of allopolyploidization on SSR mutation is therefore important for understanding the origin and evolutionary dynamics of SSRs in allopolyploids. Three synthesized double haploid (SynDH) populations were made from 241 interspecific F1 haploid hybrids between Triticum turgidum L. and Aegilops tauschii (Coss.) through spontaneous chromosome doubling via unreduced gametes. Mutation events were studied at 160 SSR loci in the S1 generation (the first generation after chromosome doubling) of the three SynDH populations. Of the 148260 SSR alleles investigated in S1 generation, only one mutation (changed number of repeats) was confirmed with a mutation rate of 6.74 × 10−6. This mutation most likely occurred in the respective F1 hybrid. In comparison with previously reported data, our results suggested that allohexaploidization of wheat did not increase SSR mutation rate. PMID:23202911

  7. Understanding mutagenesis through delineation of mutational signatures in human cancer

    DOE PAGESBeta

    Petljak, Mia; Alexandrov, Ludmil B.

    2016-06-01

    Each individual cell within a human body acquires a certain number of somatic mutations during a course of its lifetime. These mutations originate from a wide spectra of both endogenous and exogenous mutational processes that leave distinct patterns of mutations, termed mutational signatures, embedded within the genomes of all cells. In recent years, the vast amount of data produced by sequencing of cancer genomes was coupled with novel mathematical models and computational tools to generate the first comprehensive map of mutational signatures in human cancer. Up to date, >30 distinct mutational signatures have been identified, and etiologies have been proposedmore » for many of them. This paper provides a brief historical background on examination of mutational patterns in human cancer, summarizes the knowledge accumulated since introducing the concept of mutational signatures and discusses their future potential applications and perspectives within the field.« less

  8. Understanding mutagenesis through delineation of mutational signatures in human cancer.

    PubMed

    Petljak, Mia; Alexandrov, Ludmil B

    2016-06-01

    Each individual cell within a human body acquires a certain number of somatic mutations during a course of its lifetime. These mutations originate from a wide spectra of both endogenous and exogenous mutational processes that leave distinct patterns of mutations, termed mutational signatures, embedded within the genomes of all cells. In recent years, the vast amount of data produced by sequencing of cancer genomes was coupled with novel mathematical models and computational tools to generate the first comprehensive map of mutational signatures in human cancer. Up to date, >30 distinct mutational signatures have been identified, and etiologies have been proposed for many of them. This review provides a brief historical background on examination of mutational patterns in human cancer, summarizes the knowledge accumulated since introducing the concept of mutational signatures and discusses their future potential applications and perspectives within the field. PMID:27207657

  9. Unbiased estimation of mutation rates under fluctuating final counts.

    PubMed

    Ycart, Bernard; Veziris, Nicolas

    2014-01-01

    Estimation methods for mutation rates (or probabilities) in Luria-Delbrück fluctuation analysis usually assume that the final number of cells remains constant from one culture to another. We show that this leads to systematically underestimate the mutation rate. Two levels of information on final numbers are considered: either the coefficient of variation has been independently estimated, or the final number of cells in each culture is known. In both cases, unbiased estimation methods are proposed. Their statistical properties are assessed both theoretically and through Monte-Carlo simulation. As an application, the data from two well known fluctuation analysis studies on Mycobacterium tuberculosis are reexamined. PMID:24988217

  10. Mutational Biases Drive Elevated Rates of Substitution at Regulatory Sites across Cancer Types.

    PubMed

    Kaiser, Vera B; Taylor, Martin S; Semple, Colin A

    2016-08-01

    Disruption of gene regulation is known to play major roles in carcinogenesis and tumour progression. Here, we comprehensively characterize the mutational profiles of diverse transcription factor binding sites (TFBSs) across 1,574 completely sequenced cancer genomes encompassing 11 tumour types. We assess the relative rates and impact of the mutational burden at the binding sites of 81 transcription factors (TFs), by comparing the abundance and patterns of single base substitutions within putatively functional binding sites to control sites with matched sequence composition. There is a strong (1.43-fold) and significant excess of mutations at functional binding sites across TFs, and the mutations that accumulate in cancers are typically more disruptive than variants tolerated in extant human populations at the same sites. CTCF binding sites suffer an exceptionally high mutational load in cancer (3.31-fold excess) relative to control sites, and we demonstrate for the first time that this effect is seen in essentially all cancer types with sufficient data. The sub-set of CTCF sites involved in higher order chromatin structures has the highest mutational burden, suggesting a widespread breakdown of chromatin organization. However, we find no evidence for selection driving these distinctive patterns of mutation. The mutational load at CTCF-binding sites is substantially determined by replication timing and the mutational signature of the tumor in question, suggesting that selectively neutral processes underlie the unusual mutation patterns. Pervasive hyper-mutation within transcription factor binding sites rewires the regulatory landscape of the cancer genome, but it is dominated by mutational processes rather than selection. PMID:27490693

  11. Mutational Biases Drive Elevated Rates of Substitution at Regulatory Sites across Cancer Types

    PubMed Central

    Semple, Colin A.

    2016-01-01

    Disruption of gene regulation is known to play major roles in carcinogenesis and tumour progression. Here, we comprehensively characterize the mutational profiles of diverse transcription factor binding sites (TFBSs) across 1,574 completely sequenced cancer genomes encompassing 11 tumour types. We assess the relative rates and impact of the mutational burden at the binding sites of 81 transcription factors (TFs), by comparing the abundance and patterns of single base substitutions within putatively functional binding sites to control sites with matched sequence composition. There is a strong (1.43-fold) and significant excess of mutations at functional binding sites across TFs, and the mutations that accumulate in cancers are typically more disruptive than variants tolerated in extant human populations at the same sites. CTCF binding sites suffer an exceptionally high mutational load in cancer (3.31-fold excess) relative to control sites, and we demonstrate for the first time that this effect is seen in essentially all cancer types with sufficient data. The sub-set of CTCF sites involved in higher order chromatin structures has the highest mutational burden, suggesting a widespread breakdown of chromatin organization. However, we find no evidence for selection driving these distinctive patterns of mutation. The mutational load at CTCF-binding sites is substantially determined by replication timing and the mutational signature of the tumor in question, suggesting that selectively neutral processes underlie the unusual mutation patterns. Pervasive hyper-mutation within transcription factor binding sites rewires the regulatory landscape of the cancer genome, but it is dominated by mutational processes rather than selection. PMID:27490693

  12. Prospects for cellular mutational assays in human populations

    SciTech Connect

    Mendelsohn, M.L.

    1984-06-29

    Practical, sensitive, and effective human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis studies. Such assays would fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. This paper discusses the following possible human cellular assays: (1) HPRT (hypoxanthine phosphoribosyltransferase) somatic cell mutation based on 6-thioguanine resistance; (2) hemoglobin somatic cell mutation assay; (3) glycophorin somatic cell mutation assay; and (4) LDH-X sperm cell mutation assay. 18 references.

  13. Markov chain for estimating human mitochondrial DNA mutation pattern

    NASA Astrophysics Data System (ADS)

    Vantika, Sandy; Pasaribu, Udjianna S.

    2015-12-01

    The Markov chain was proposed to estimate the human mitochondrial DNA mutation pattern. One DNA sequence was taken randomly from 100 sequences in Genbank. The nucleotide transition matrix and mutation transition matrix were estimated from this sequence. We determined whether the states (mutation/normal) are recurrent or transient. The results showed that both of them are recurrent.

  14. Rates of spontaneous mutation in an archaeon from geothermal environments.

    PubMed Central

    Jacobs, K L; Grogan, D W

    1997-01-01

    To estimate the efficacy of mechanisms which may prevent or repair thermal damage to DNA in thermophilic archaea, a quantitative assay of forward mutation at extremely high temperature was developed for Sulfolobus acidocaldarius, based on the selection of pyrimidine-requiring mutants resistant to 5-fluoro-orotic acid. Maximum-likelihood analysis of spontaneous mutant distributions in wild-type cultures yielded maximal estimates of (2.8 +/- 0.7) x 10(-7) and (1.5 +/- 0.6) x 10(-7) mutational events per cell per division cycle for the pyrE and pyrF loci, respectively. To our knowledge, these results provide the first accurate measurement of the genetic fidelity maintained by archaea that populate geothermal environments. The measured rates of forward mutation at the pyrE and pyrF loci in S. acidocaldarius are close to corresponding rates reported for protein-encoding genes of Escherichia coli. The normal rate of spontaneous mutation in E. coli at 37 degrees C is known to require the functioning of several enzyme systems that repair spontaneous damage in DNA. Our results provide indirect evidence that S. acidocaldarius has cellular mechanisms, as yet unidentified, which effectively compensate for the higher chemical instability of DNA at the temperatures and pHs that prevail within growing Sulfolobus cells. PMID:9150227

  15. HPMV: human protein mutation viewer - relating sequence mutations to protein sequence architecture and function changes.

    PubMed

    Sherman, Westley Arthur; Kuchibhatla, Durga Bhavani; Limviphuvadh, Vachiranee; Maurer-Stroh, Sebastian; Eisenhaber, Birgit; Eisenhaber, Frank

    2015-10-01

    Next-generation sequencing advances are rapidly expanding the number of human mutations to be analyzed for causative roles in genetic disorders. Our Human Protein Mutation Viewer (HPMV) is intended to explore the biomolecular mechanistic significance of non-synonymous human mutations in protein-coding genomic regions. The tool helps to assess whether protein mutations affect the occurrence of sequence-architectural features (globular domains, targeting signals, post-translational modification sites, etc.). As input, HPMV accepts protein mutations - as UniProt accessions with mutations (e.g. HGVS nomenclature), genome coordinates, or FASTA sequences. As output, HPMV provides an interactive cartoon showing the mutations in relation to elements of the sequence architecture. A large variety of protein sequence architectural features were selected for their particular relevance to mutation interpretation. Clicking a sequence feature in the cartoon expands a tree view of additional information including multiple sequence alignments of conserved domains and a simple 3D viewer mapping the mutation to known PDB structures, if available. The cartoon is also correlated with a multiple sequence alignment of similar sequences from other organisms. In cases where a mutation is likely to have a straightforward interpretation (e.g. a point mutation disrupting a well-understood targeting signal), this interpretation is suggested. The interactive cartoon can be downloaded as standalone viewer in Java jar format to be saved and viewed later with only a standard Java runtime environment. The HPMV website is: http://hpmv.bii.a-star.edu.sg/ . PMID:26503432

  16. Holes influence the mutation spectrum of human mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Villagran, Martha; Miller, John

    Mutations drive evolution and disease, showing highly non-random patterns of variant frequency vs. nucleotide position. We use computational DNA hole spectroscopy [M.Y. Suarez-Villagran & J.H. Miller, Sci. Rep. 5, 13571 (2015)] to reveal sites of enhanced hole probability in selected regions of human mitochondrial DNA. A hole is a mobile site of positive charge created when an electron is removed, for example by radiation or contact with a mutagenic agent. The hole spectra are quantum mechanically computed using a two-stranded tight binding model of DNA. We observe significant correlation between spectra of hole probabilities and of genetic variation frequencies from the MITOMAP database. These results suggest that hole-enhanced mutation mechanisms exert a substantial, perhaps dominant, influence on mutation patterns in DNA. One example is where a trapped hole induces a hydrogen bond shift, known as tautomerization, which then triggers a base-pair mismatch during replication. Our results deepen overall understanding of sequence specific mutation rates, encompassing both hotspots and cold spots, which drive molecular evolution.

  17. Highly heterogeneous mutation rates in the hepatitis C virus genome.

    PubMed

    Geller, Ron; Estada, Úrsula; Peris, Joan B; Andreu, Iván; Bou, Juan-Vicente; Garijo, Raquel; Cuevas, José M; Sabariegos, Rosario; Mas, Antonio; Sanjuán, Rafael

    2016-01-01

    Spontaneous mutations are the ultimate source of genetic variation and have a prominent role in evolution. RNA viruses such as hepatitis C virus (HCV) have extremely high mutation rates, but these rates have been inferred from a minute fraction of genome sites, limiting our view of how RNA viruses create diversity. Here, by applying high-fidelity ultradeep sequencing to a modified replicon system, we scored >15,000 spontaneous mutations, encompassing more than 90% of the HCV genome. This revealed >1,000-fold differences in mutability across genome sites, with extreme variations even between adjacent nucleotides. We identify base composition, the presence of high- and low-mutation clusters and transition/transversion biases as the main factors driving this heterogeneity. Furthermore, we find that mutability correlates with the ability of HCV to diversify in patients. These data provide a site-wise baseline for interrogating natural selection, genetic load and evolvability in HCV, as well as for evaluating drug resistance and immune evasion risks. PMID:27572964

  18. Signatures of mutational processes in human cancer

    PubMed Central

    Alexandrov, Ludmil B.; Nik-Zainal, Serena; Wedge, David C.; Aparicio, Samuel A.J.R.; Behjati, Sam; Biankin, Andrew V.; Bignell, Graham R.; Bolli, Niccolo; Borg, Ake; Børresen-Dale, Anne-Lise; Boyault, Sandrine; Burkhardt, Birgit; Butler, Adam P.; Caldas, Carlos; Davies, Helen R.; Desmedt, Christine; Eils, Roland; Eyfjörd, Jórunn Erla; Foekens, John A.; Greaves, Mel; Hosoda, Fumie; Hutter, Barbara; Ilicic, Tomislav; Imbeaud, Sandrine; Imielinsk, Marcin; Jäger, Natalie; Jones, David T.W.; Jones, David; Knappskog, Stian; Kool, Marcel; Lakhani, Sunil R.; López-Otín, Carlos; Martin, Sancha; Munshi, Nikhil C.; Nakamura, Hiromi; Northcott, Paul A.; Pajic, Marina; Papaemmanuil, Elli; Paradiso, Angelo; Pearson, John V.; Puente, Xose S.; Raine, Keiran; Ramakrishna, Manasa; Richardson, Andrea L.; Richter, Julia; Rosenstiel, Philip; Schlesner, Matthias; Schumacher, Ton N.; Span, Paul N.; Teague, Jon W.; Totoki, Yasushi; Tutt, Andrew N.J.; Valdés-Mas, Rafael; van Buuren, Marit M.; van ’t Veer, Laura; Vincent-Salomon, Anne; Waddell, Nicola; Yates, Lucy R.; Zucman-Rossi, Jessica; Futreal, P. Andrew; McDermott, Ultan; Lichter, Peter; Meyerson, Matthew; Grimmond, Sean M.; Siebert, Reiner; Campo, Elías; Shibata, Tatsuhiro; Pfister, Stefan M.; Campbell, Peter J.; Stratton, Michael R.

    2013-01-01

    All cancers are caused by somatic mutations. However, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here, we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer with potential implications for understanding of cancer etiology, prevention and therapy. PMID:23945592

  19. HIV-1 Mutation and Recombination Rates Are Different in Macrophages and T-cells

    PubMed Central

    Cromer, Deborah; Schlub, Timothy E.; Smyth, Redmond P.; Grimm, Andrew J.; Chopra, Abha; Mallal, Simon; Davenport, Miles P.; Mak, Johnson

    2016-01-01

    High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p < 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p < 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics. PMID:27110814

  20. HIV-1 Mutation and Recombination Rates Are Different in Macrophages and T-cells.

    PubMed

    Cromer, Deborah; Schlub, Timothy E; Smyth, Redmond P; Grimm, Andrew J; Chopra, Abha; Mallal, Simon; Davenport, Miles P; Mak, Johnson

    2016-01-01

    High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p < 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p < 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics. PMID:27110814

  1. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells

    PubMed Central

    Rouhani, Foad J.; Nik-Zainal, Serena; Wuster, Arthur; Li, Yilong; Conte, Nathalie; Koike-Yusa, Hiroko; Kumasaka, Natsuhiko; Vallier, Ludovic; Yusa, Kosuke; Bradley, Allan

    2016-01-01

    The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50–70 de novo single nucleotide variants (SNVs) between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs), their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer. PMID:27054363

  2. Factors Influencing Ascertainment Bias of Microsatellite Allele Sizes: Impact on Estimates of Mutation Rates

    PubMed Central

    Li, Biao; Kimmel, Marek

    2013-01-01

    Microsatellite loci play an important role as markers for identification, disease gene mapping, and evolutionary studies. Mutation rate, which is of fundamental importance, can be obtained from interspecies comparisons, which, however, are subject to ascertainment bias. This bias arises, for example, when a locus is selected on the basis of its large allele size in one species (cognate species 1), in which it is first discovered. This bias is reflected in average allele length in any noncognate species 2 being smaller than that in species 1. This phenomenon was observed in various pairs of species, including comparisons of allele sizes in human and chimpanzee. Various mechanisms were proposed to explain observed differences in mean allele lengths between two species. Here, we examine the framework of a single-step asymmetric and unrestricted stepwise mutation model with genetic drift. Analysis is based on coalescent theory. Analytical results are confirmed by simulations using the simuPOP software. The mechanism of ascertainment bias in this model is a tighter correlation of allele sizes within a cognate species 1 than of allele sizes in two different species 1 and 2. We present computations of the expected average allele size difference, given the mutation rate, population sizes of species 1 and 2, time of separation of species 1 and 2, and the age of the allele. We show that when the past demographic histories of the cognate and noncognate taxa are different, the rate and directionality of mutations affect the allele sizes in the two taxa differently from the simple effect of ascertainment bias. This effect may exaggerate or reverse the effect of difference in mutation rates. We reanalyze literature data, which indicate that despite the bias, the microsatellite mutation rate estimate in the ancestral population is consistently greater than that in either human or chimpanzee and the mutation rate estimate in human exceeds or equals that in chimpanzee with the rate

  3. NASA Human-Rating Requirements

    NASA Technical Reports Server (NTRS)

    Groen, Frank; Harkins, Wil; Stamatelatos, Michael

    2010-01-01

    NASA's Procedural Requirements 87052B defines the Human-Rating Certification process and related technical requirements for human spaceflight programs developed by and for NASA. The document specifies Agency-level responsibilities related to the certification, processes to be established by the program, and technical requirements.

  4. bz-rates: A Web Tool to Estimate Mutation Rates from Fluctuation Analysis.

    PubMed

    Gillet-Markowska, Alexandre; Louvel, Guillaume; Fischer, Gilles

    2015-11-01

    Fluctuation analysis is the standard experimental method for measuring mutation rates in micro-organisms. The appearance of mutants is classically described by a Luria-Delbrück distribution composed of two parameters: the number of mutations per culture (m) and the differential growth rate between mutant and wild-type cells (b). A precise estimation of these two parameters is a prerequisite to the calculation of the mutation rate. Here, we developed bz-rates, a Web tool to calculate mutation rates that provides three useful advances over existing Web tools. First, it allows taking into account b, the differential growth rate between mutant and wild-type cells, in the estimation of m with the generating function. Second, bz-rates allows the user to take into account a deviation from the Luria-Delbrück distribution called z, the plating efficiency, in the estimation of m. Finally, the Web site provides a graphical visualization of the goodness-of-fit between the experimental data and the model. bz-rates is accessible at http://www.lcqb.upmc.fr/bzrates. PMID:26338660

  5. bz-rates: A Web Tool to Estimate Mutation Rates from Fluctuation Analysis

    PubMed Central

    Gillet-Markowska, Alexandre; Louvel, Guillaume; Fischer, Gilles

    2015-01-01

    Fluctuation analysis is the standard experimental method for measuring mutation rates in micro-organisms. The appearance of mutants is classically described by a Luria-Delbrück distribution composed of two parameters: the number of mutations per culture (m) and the differential growth rate between mutant and wild-type cells (b). A precise estimation of these two parameters is a prerequisite to the calculation of the mutation rate. Here, we developed bz-rates, a Web tool to calculate mutation rates that provides three useful advances over existing Web tools. First, it allows taking into account b, the differential growth rate between mutant and wild-type cells, in the estimation of m with the generating function. Second, bz-rates allows the user to take into account a deviation from the Luria-Delbrück distribution called z, the plating efficiency, in the estimation of m. Finally, the Web site provides a graphical visualization of the goodness-of-fit between the experimental data and the model. bz-rates is accessible at http://www.lcqb.upmc.fr/bzrates. PMID:26338660

  6. Extensive de novo mutation rate variation between individuals and across the genome of Chlamydomonas reinhardtii

    PubMed Central

    Ness, Rob W.; Morgan, Andrew D.; Vasanthakrishnan, Radhakrishnan B.; Colegrave, Nick; Keightley, Peter D.

    2015-01-01

    Describing the process of spontaneous mutation is fundamental for understanding the genetic basis of disease, the threat posed by declining population size in conservation biology, and much of evolutionary biology. Directly studying spontaneous mutation has been difficult, however, because new mutations are rare. Mutation accumulation (MA) experiments overcome this by allowing mutations to build up over many generations in the near absence of natural selection. Here, we sequenced the genomes of 85 MA lines derived from six genetically diverse strains of the green alga Chlamydomonas reinhardtii. We identified 6843 new mutations, more than any other study of spontaneous mutation. We observed sevenfold variation in the mutation rate among strains and that mutator genotypes arose, increasing the mutation rate approximately eightfold in some replicates. We also found evidence for fine-scale heterogeneity in the mutation rate, with certain sequence motifs mutating at much higher rates, and clusters of multiple mutations occurring at closely linked sites. There was little evidence, however, for mutation rate heterogeneity between chromosomes or over large genomic regions of 200 kbp. We generated a predictive model of the mutability of sites based on their genomic properties, including local GC content, gene expression level, and local sequence context. Our model accurately predicted the average mutation rate and natural levels of genetic diversity of sites across the genome. Notably, trinucleotides vary 17-fold in rate between the most and least mutable sites. Our results uncover a rich heterogeneity in the process of spontaneous mutation both among individuals and across the genome. PMID:26260971

  7. Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes.

    PubMed

    Clune, Jeff; Misevic, Dusan; Ofria, Charles; Lenski, Richard E; Elena, Santiago F; Sanjuán, Rafael

    2008-01-01

    The rate of mutation is central to evolution. Mutations are required for adaptation, yet most mutations with phenotypic effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value. Here, we used digital organisms to investigate the ability of natural selection to adjust and optimize mutation rates. We assessed the optimal mutation rate by empirically determining what mutation rate produced the highest rate of adaptation. Then, we allowed mutation rates to evolve, and we evaluated the proximity to the optimum. Although we chose conditions favorable for mutation rate optimization, the evolved rates were invariably far below the optimum across a wide range of experimental parameter settings. We hypothesized that the reason that mutation rates evolved to be suboptimal was the ruggedness of fitness landscapes. To test this hypothesis, we created a simplified landscape without any fitness valleys and found that, in such conditions, populations evolved near-optimal mutation rates. In contrast, when fitness valleys were added to this simple landscape, the ability of evolving populations to find the optimal mutation rate was lost. We conclude that rugged fitness landscapes can prevent the evolution of mutation rates that are optimal for long-term adaptation. This finding has important implications for applied evolutionary research in both biological and computational realms. PMID:18818724

  8. Natural Selection Fails to Optimize Mutation Rates for Long-Term Adaptation on Rugged Fitness Landscapes

    PubMed Central

    Clune, Jeff; Misevic, Dusan; Ofria, Charles; Lenski, Richard E.; Elena, Santiago F.; Sanjuán, Rafael

    2008-01-01

    The rate of mutation is central to evolution. Mutations are required for adaptation, yet most mutations with phenotypic effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value. Here, we used digital organisms to investigate the ability of natural selection to adjust and optimize mutation rates. We assessed the optimal mutation rate by empirically determining what mutation rate produced the highest rate of adaptation. Then, we allowed mutation rates to evolve, and we evaluated the proximity to the optimum. Although we chose conditions favorable for mutation rate optimization, the evolved rates were invariably far below the optimum across a wide range of experimental parameter settings. We hypothesized that the reason that mutation rates evolved to be suboptimal was the ruggedness of fitness landscapes. To test this hypothesis, we created a simplified landscape without any fitness valleys and found that, in such conditions, populations evolved near-optimal mutation rates. In contrast, when fitness valleys were added to this simple landscape, the ability of evolving populations to find the optimal mutation rate was lost. We conclude that rugged fitness landscapes can prevent the evolution of mutation rates that are optimal for long-term adaptation. This finding has important implications for applied evolutionary research in both biological and computational realms. PMID:18818724

  9. Human somatic mutation assays as biomarkers of carcinogenesis

    SciTech Connect

    Compton, P.J.E.; Smith, M.T. ); Hooper, K. )

    1991-08-01

    This paper describes four assays that detect somatic gene mutations in humans: the hypoxanthine-guanine phosphoribosyl transferase assay, the glycophorin A assay, the HLA-A assay, and the sickle cell hemoglobin assay. Somatic gene mutations can be considered a biomarker of carcinogenesis, and assays for somatic mutation may assist epidemiologists in studies that attempt to identify factors associated with increased risks of cancer. Practical aspects of the use of these assays are discussed.

  10. Frame Rate and Human Vision

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    2012-01-01

    To enhance the quality of the theatre experience, the film industry is interested in achieving higher frame rates for capture and display. In this talk I will describe the basic spatio-temporal sensitivities of human vision, and how they respond to the time sequence of static images that is fundamental to cinematic presentation.

  11. Genomic background and generation time influence deleterious mutation rates in Daphnia.

    PubMed

    Latta, Leigh C; Morgan, Kendall K; Weaver, Casse S; Allen, Desiree; Schaack, Sarah; Lynch, Michael

    2013-02-01

    Understanding how genetic variation is generated and how selection shapes mutation rates over evolutionary time requires knowledge of the factors influencing mutation and its effects on quantitative traits. We explore the impact of two factors, genomic background and generation time, on deleterious mutation in Daphnia pulicaria, a cyclically parthenogenic aquatic microcrustacean, using parallel mutation-accumulation experiments. The deleterious mutational properties of life-history characters for individuals from two different populations, and for individuals maintained at two different generation times, were quantified and compared. Mutational properties varied between populations, especially for clutch size, suggesting that genomic background influences mutational properties for some characters. Generation time was found to have a greater effect on mutational properties, with higher per-generation deleterious mutation rates in lines with longer generation times. These results suggest that differences in genetic architecture among populations and species may be explained in part by demographic features that significantly influence generation time and therefore the rate of mutation. PMID:23183667

  12. Exact Phase Diagram of a Quasispecies Model with a Mutation Rate Modifier

    NASA Astrophysics Data System (ADS)

    Nagar, Apoorva; Jain, Kavita

    2009-01-01

    We consider an infinite asexual population with a mutator allele which can elevate mutation rates. With probability f, a transition from nonmutator to mutator state occurs but the reverse transition is forbidden. We find that at f=0, the population is in the state with minimum mutation rate, and at f=fc, a phase transition occurs between a mixed phase with both nonmutators and mutators and a pure mutator phase. We calculate the critical probability fc and the total mutator fraction Q in the mixed phase exactly. Our predictions for Q are in agreement with those seen in microbial populations in static environments.

  13. Exact phase diagram of a quasispecies model with a mutation rate modifier.

    PubMed

    Nagar, Apoorva; Jain, Kavita

    2009-01-23

    We consider an infinite asexual population with a mutator allele which can elevate mutation rates. With probability f, a transition from nonmutator to mutator state occurs but the reverse transition is forbidden. We find that at f=0, the population is in the state with minimum mutation rate, and at f=fc, a phase transition occurs between a mixed phase with both nonmutators and mutators and a pure mutator phase. We calculate the critical probability fc and the total mutator fraction Q in the mixed phase exactly. Our predictions for Q are in agreement with those seen in microbial populations in static environments. PMID:19257397

  14. Resolving rates of mutation in the brain using single-neuron genomics

    PubMed Central

    Evrony, Gilad D; Lee, Eunjung; Park, Peter J; Walsh, Christopher A

    2016-01-01

    Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies. DOI: http://dx.doi.org/10.7554/eLife.12966.001 PMID:26901440

  15. Impacts of Usher Syndrome Type IB Mutations on Human Myosin VIIa Motor Function†

    PubMed Central

    Watanabe, Shinya; Umeki, Nobuhisa; Ikebe, Reiko; Ikebe, Mitsuo

    2010-01-01

    Usher syndrome (USH) is a human hereditary disorder characterized by profound congenital deafness, retinitis pigmentosa and vestibular dysfunction. Myosin VIIa has been identified as the responsible gene for USH type 1B, and a number of missense mutations have been identified in the affected families. However, the molecular basis of the dysfunction of USH gene, myosin VIIa, in the affected families is unknown to date. Here we clarified the effects of USH1B mutations on human myosin VIIa motor function for the first time. The missense mutations of USH1B significantly inhibited the actin activation of ATPase activity of myosin VIIa. G25R, R212C, A397D and E450Q mutations abolished the actin-activated ATPase activity completely. P503L mutation increased the basal ATPase activity for 2-3 fold, but reduced the actin-activated ATPase activity to 50% of the wild type. While all the mutations examined, except for R302H, reduced the affinity for actin and the ATP hydrolysis cycling rate, they did not largely decrease the rate of ADP release from acto-myosin, suggesting that the mutations reduce the duty ratio of myosin VIIa. Taken together, the results suggest that the mutations responsible for USH1B cause the complete loss of the actin-activated ATPase activity or the reduction of duty ratio of myosin VIIa. PMID:18700726

  16. Mutations in Haemophilus influenzae mismatch repair genes increase mutation rates of dinucleotide repeat tracts but not dinucleotide repeat-driven pilin phase variation rates.

    PubMed

    Bayliss, Christopher D; Sweetman, Wendy A; Moxon, E Richard

    2004-05-01

    High-frequency, reversible switches in expression of surface antigens, referred to as phase variation (PV), are characteristic of Haemophilus influenzae. PV enables this bacterial species, an obligate commensal and pathogen of the human upper respiratory tract, to adapt to changes in the host environment. Phase-variable hemagglutinating pili are expressed by many H. influenzae isolates. PV involves alterations in the number of 5' TA repeats located between the -10 and -35 promoter elements of the overlapping, divergently orientated promoters of hifA and hifBCDE, whose products mediate biosynthesis and assembly of pili. Dinucleotide repeat tracts are destabilized by mismatch repair (MMR) mutations in Escherichia coli. The influence of mutations in MMR genes of H. influenzae strain Rd on dinucleotide repeat-mediated PV rates was investigated by using reporter constructs containing 20 5' AT repeats. Mutations in mutS, mutL, and mutH elevated rates approximately 30-fold, while rates in dam and uvrD mutants were increased 14- and 3-fold, respectively. PV rates of constructs containing 10 to 12 5' AT repeats were significantly elevated in mutS mutants of H. influenzae strains Rd and Eagan. An intact hif locus was found in 14 and 12% of representative nontypeable H. influenzae isolates associated with either otitis media or carriage, respectively. Nine or more tandem 5' TA repeats were present in the promoter region. Surprisingly, inactivation of mutS in two serotype b H. influenzae strains did not alter pilin PV rates. Thus, although functionally analogous to the E. coli MMR pathway and active on dinucleotide repeat tracts, defects in H. influenzae MMR do not affect 5' TA-mediated pilin PV. PMID:15126452

  17. MUTATIONS INDUCED BY URBAN AIR AND DRINKING WATER: DO THEY LEAVE A MUTATIONAL SIGNATURE IN HUMAN TUMORS?

    EPA Science Inventory

    Mutations Induced by Urban Air and Drinking Water: Do They Leave a Mutational Signature in Human Tumors?

    Mutation spectra of complex environmental mixtures have been determined thus far only in Salmonella. We have determined mutation spectra for the particulate organics ...

  18. Human norovirus hyper-mutation revealed by ultra-deep sequencing.

    PubMed

    Cuevas, José M; Combe, Marine; Torres-Puente, Manoli; Garijo, Raquel; Guix, Susana; Buesa, Javier; Rodríguez-Díaz, Jesús; Sanjuán, Rafael

    2016-07-01

    Human noroviruses (NoVs) are a major cause of gastroenteritis worldwide. It is thought that, similar to other RNA viruses, high mutation rates allow NoVs to evolve fast and to undergo rapid immune escape at the population level. However, the rate and spectrum of spontaneous mutations of human NoVs have not been quantified previously. Here, we analyzed the intra-patient diversity of the NoV capsid by carrying out RT-PCR and ultra-deep sequencing with 100,000-fold coverage of 16 stool samples from symptomatic patients. This revealed the presence of low-frequency sequences carrying large numbers of U-to-C or A-to-G base transitions, suggesting a role for hyper-mutation in NoV diversity. To more directly test for hyper-mutation, we performed transfection assays in which the production of mutations was restricted to a single cell infection cycle. This confirmed the presence of sequences with multiple U-to-C/A-to-G transitions, and suggested that hyper-mutation contributed a large fraction of the total NoV spontaneous mutation rate. The type of changes produced and their sequence context are compatible with ADAR-mediated editing of the viral RNA. PMID:27094861

  19. Understanding the immunological impact of the human mutation explosion.

    PubMed

    Andrews, T D; Sjollema, G; Goodnow, C C

    2013-03-01

    The recent development of human exome sequencing technology has revealed that our immune system is riddled with more genetic defects than anyone imagined. As a legacy of the recent human population explosion, we each inherit hundreds of rare mutations that alter the sequence of proteins. This mutation load is ten times higher than that induced by experimental treatment of mice by ethylnitrosourea; a high fraction of which has substantial effects on immune function. This mutation burden is likely to be a major factor in the incidence of many human immune disorders, but understanding this at the level of individual patients will require new bioinformatics and experimental strategies to assess the impact of individual and combined mutations on immune response pathways. PMID:23333204

  20. Immunogenicity of somatic mutations in human gastrointestinal cancers.

    PubMed

    Tran, Eric; Ahmadzadeh, Mojgan; Lu, Yong-Chen; Gros, Alena; Turcotte, Simon; Robbins, Paul F; Gartner, Jared J; Zheng, Zhili; Li, Yong F; Ray, Satyajit; Wunderlich, John R; Somerville, Robert P; Rosenberg, Steven A

    2015-12-11

    It is unknown whether the human immune system frequently mounts a T cell response against mutations expressed by common epithelial cancers. Using a next-generation sequencing approach combined with high-throughput immunologic screening, we demonstrated that tumor-infiltrating lymphocytes (TILs) from 9 out of 10 patients with metastatic gastrointestinal cancers contained CD4(+) and/or CD8(+) T cells that recognized one to three neo-epitopes derived from somatic mutations expressed by the patient's own tumor. There were no immunogenic epitopes shared between these patients. However, we identified in one patient a human leukocyte antigen-C*08:02-restricted T cell receptor from CD8(+) TILs that targeted the KRAS(G12D) hotspot driver mutation found in many human cancers. Thus, a high frequency of patients with common gastrointestinal cancers harbor immunogenic mutations that can potentially be exploited for the development of highly personalized immunotherapies. PMID:26516200

  1. Is the rate of insertion and deletion mutation male biased?: Molecular evolutionary analysis of avian and primate sex chromosome sequences.

    PubMed Central

    Sundström, Hannah; Webster, Matthew T; Ellegren, Hans

    2003-01-01

    The rate of mutation for nucleotide substitution is generally higher among males than among females, likely owing to the larger number of DNA replications in spermatogenesis than in oogenesis. For insertion and deletion (indel) mutations, data from a few human genetic disease loci indicate that the two sexes may mutate at similar rates, possibly because such mutations arise in connection with meiotic crossing over. To address origin- and sex-specific rates of indel mutation we have conducted the first large-scale molecular evolutionary analysis of indels in noncoding DNA sequences from sex chromosomes. The rates are similar on the X and Y chromosomes of primates but about twice as high on the avian Z chromosome as on the W chromosome. The fact that indels are not uncommon on the nonrecombining Y and W chromosomes excludes meiotic crossing over as the main cause of indel mutation. On the other hand, the similar rates on X and Y indicate that the number of DNA replications (higher for Y than for X) is also not the main factor. Our observations are therefore consistent with a role of both DNA replication and recombination in the generation of short insertion and deletion mutations. A significant excess of deletion compared to insertion events is observed on the avian W chromosome, consistent with gradual DNA loss on a nonrecombining chromosome. PMID:12750337

  2. Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster

    PubMed Central

    Haag-Liautard, Cathy; Coffey, Nicole; Houle, David; Lynch, Michael; Charlesworth, Brian; Keightley, Peter D

    2008-01-01

    Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-species comparisons have also been used to estimate the mutation rate, using sites that are thought to evolve neutrally. We directly estimated the mtDNA mutation rate by scanning the mitochondrial genome of Drosophila melanogaster lines that had undergone approximately 200 generations of spontaneous mutation accumulation (MA). We detected a total of 28 point mutations and eight insertion-deletion (indel) mutations, yielding an estimate for the single-nucleotide mutation rate of 6.2 × 10−8 per site per fly generation. Most mutations were heteroplasmic within a line, and their frequency distribution suggests that the effective number of mitochondrial genomes transmitted per female per generation is about 30. We observed repeated occurrences of some indel mutations, suggesting that indel mutational hotspots are common. Among the point mutations, there is a large excess of G→A mutations on the major strand (the sense strand for the majority of mitochondrial genes). These mutations tend to occur at nonsynonymous sites of protein-coding genes, and they are expected to be deleterious, so do not become fixed between species. The overall mtDNA mutation rate per base pair per fly generation in Drosophila is estimated to be about 10× higher than the nuclear mutation rate, but the mitochondrial major strand G→A mutation rate is about 70× higher than the nuclear rate. Silent sites are substantially more strongly biased towards A and T than nonsynonymous sites, consistent with the extreme mutation bias towards A+T. Strand-asymmetric mutation bias, coupled with selection to maintain specific nonsynonymous bases, therefore provides an explanation for the extreme base composition of

  3. Costs and Benefits of High Mutation Rates: Adaptive Evolution of Bacteria in the Mouse Gut

    NASA Astrophysics Data System (ADS)

    Giraud, Antoine; Matic, Ivan; Tenaillon, Olivier; Clara, Antonio; Radman, Miroslav; Fons, Michel; Taddei, François

    2001-03-01

    We have shown that bacterial mutation rates change during the experimental colonization of the mouse gut. A high mutation rate was initially beneficial because it allowed faster adaptation, but this benefit disappeared once adaptation was achieved. Mutator bacteria accumulated mutations that, although neutral in the mouse gut, are often deleterious in secondary environments. Consistently, the competitiveness of mutator bacteria is reduced during transmission to and re-colonization of similar hosts. The short-term advantages and long-term disadvantages of mutator bacteria could account for their frequency in nature.

  4. Empirical evaluation reveals best fit of a logistic mutation model for human Y-chromosomal microsatellites.

    PubMed

    Jochens, Arne; Caliebe, Amke; Rösler, Uwe; Krawczak, Michael

    2011-12-01

    The rate of microsatellite mutation is dependent upon both the allele length and the repeat motif, but the exact nature of this relationship is still unknown. We analyzed data on the inheritance of human Y-chromosomal microsatellites in father-son duos, taken from 24 published reports and comprising 15,285 directly observable meioses. At the six microsatellites analyzed (DYS19, DYS389I, DYS390, DYS391, DYS392, and DYS393), a total of 162 mutations were observed. For each locus, we employed a maximum-likelihood approach to evaluate one of several single-step mutation models on the basis of the data. For five of the six loci considered, a novel logistic mutation model was found to provide the best fit according to Akaike's information criterion. This implies that the mutation probability at the loci increases (nonlinearly) with allele length at a rate that differs between upward and downward mutations. For DYS392, the best fit was provided by a linear model in which upward and downward mutation probabilities increase equally with allele length. This is the first study to empirically compare different microsatellite mutation models in a locus-specific fashion. PMID:21968190

  5. Empirical Evaluation Reveals Best Fit of a Logistic Mutation Model for Human Y-Chromosomal Microsatellites

    PubMed Central

    Jochens, Arne; Caliebe, Amke; Rösler, Uwe; Krawczak, Michael

    2011-01-01

    The rate of microsatellite mutation is dependent upon both the allele length and the repeat motif, but the exact nature of this relationship is still unknown. We analyzed data on the inheritance of human Y-chromosomal microsatellites in father–son duos, taken from 24 published reports and comprising 15,285 directly observable meioses. At the six microsatellites analyzed (DYS19, DYS389I, DYS390, DYS391, DYS392, and DYS393), a total of 162 mutations were observed. For each locus, we employed a maximum-likelihood approach to evaluate one of several single-step mutation models on the basis of the data. For five of the six loci considered, a novel logistic mutation model was found to provide the best fit according to Akaike’s information criterion. This implies that the mutation probability at the loci increases (nonlinearly) with allele length at a rate that differs between upward and downward mutations. For DYS392, the best fit was provided by a linear model in which upward and downward mutation probabilities increase equally with allele length. This is the first study to empirically compare different microsatellite mutation models in a locus-specific fashion. PMID:21968190

  6. Role of Duplicate Genes in Robustness against Deleterious Human Mutations

    PubMed Central

    Hsiao, Tzu-Lin; Vitkup, Dennis

    2008-01-01

    It is now widely recognized that robustness is an inherent property of biological systems [1],[2],[3]. The contribution of close sequence homologs to genetic robustness against null mutations has been previously demonstrated in simple organisms [4],[5]. In this paper we investigate in detail the contribution of gene duplicates to back-up against deleterious human mutations. Our analysis demonstrates that the functional compensation by close homologs may play an important role in human genetic disease. Genes with a 90% sequence identity homolog are about 3 times less likely to harbor known disease mutations compared to genes with remote homologs. Moreover, close duplicates affect the phenotypic consequences of deleterious mutations by making a decrease in life expectancy significantly less likely. We also demonstrate that similarity of expression profiles across tissues significantly increases the likelihood of functional compensation by homologs. PMID:18369440

  7. Mitochondrial DNA mutations in single human blood cells.

    PubMed

    Yao, Yong-Gang; Kajigaya, Sachiko; Young, Neal S

    2015-09-01

    Determination mitochondrial DNA (mtDNA) sequences from extremely small amounts of DNA extracted from tissue of limited amounts and/or degraded samples is frequently employed in medical, forensic, and anthropologic studies. Polymerase chain reaction (PCR) amplification followed by DNA cloning is a routine method, especially to examine heteroplasmy of mtDNA mutations. In this review, we compare the mtDNA mutation patterns detected by three different sequencing strategies. Cloning and sequencing methods that are based on PCR amplification of DNA extracted from either single cells or pooled cells yield a high frequency of mutations, partly due to the artifacts introduced by PCR and/or the DNA cloning process. Direct sequencing of PCR product which has been amplified from DNA in individual cells is able to detect the low levels of mtDNA mutations present within a cell. We further summarize the findings in our recent studies that utilized this single cell method to assay mtDNA mutation patterns in different human blood cells. Our data show that many somatic mutations observed in the end-stage differentiated cells are found in hematopoietic stem cells (HSCs) and progenitors within the CD34(+) cell compartment. Accumulation of mtDNA variations in the individual CD34+ cells is affected by both aging and family genetic background. Granulocytes harbor higher numbers of mutations compared with the other cells, such as CD34(+) cells and lymphocytes. Serial assessment of mtDNA mutations in a population of single CD34(+) cells obtained from the same donor over time suggests stability of some somatic mutations. CD34(+) cell clones from a donor marked by specific mtDNA somatic mutations can be found in the recipient after transplantation. The significance of these findings is discussed in terms of the lineage tracing of HSCs, aging effect on accumulation of mtDNA mutations and the usage of mtDNA sequence in forensic identification. PMID:26149767

  8. DRUMS: a human disease related unique gene mutation search engine.

    PubMed

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. PMID:21913285

  9. Human mitochondrial DNA: roles of inherited and somatic mutations

    PubMed Central

    Schon, Eric A.; DiMauro, Salvatore; Hirano, Michio

    2014-01-01

    Mutations in the human mitochondrial genome are known to cause an array of diverse disorders, most of which are maternally inherited, and all of which are associated with defects in oxidative energy metabolism. It is now emerging that somatic mutations in mitochondrial DNA (mtDNA) are also linked to other complex traits, including neurodegenerative diseases, ageing and cancer. Here we discuss insights into the roles of mtDNA mutations in a wide variety of diseases, highlighting the interesting genetic characteristics of the mitochondrial genome and challenges in studying its contribution to pathogenesis. PMID:23154810

  10. Computer simulations of human interferon gamma mutated forms

    NASA Astrophysics Data System (ADS)

    Lilkova, E.; Litov, L.; Petkov, P.; Petkov, P.; Markov, S.; Ilieva, N.

    2010-01-01

    In the general framework of the computer-aided drug design, the method of molecular-dynamics simulations is applied for investigation of the human interferon-gamma (hIFN-γ) binding to its two known ligands (its extracellular receptor and the heparin-derived oligosaccharides). A study of 100 mutated hIFN-γ forms is presented, the mutations encompassing residues 86-88. The structural changes are investigated by comparing the lengths of the α-helices, in which these residues are included, in the native hIFN-γ molecule and in the mutated forms. The most intriguing cases are examined in detail.

  11. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse.

    PubMed

    Yang, Fang; Silber, Sherman; Leu, N Adrian; Oates, Robert D; Marszalek, Janet D; Skaletsky, Helen; Brown, Laura G; Rozen, Steve; Page, David C; Wang, P Jeremy

    2015-09-01

    Genome-wide recombination is essential for genome stability, evolution, and speciation. Mouse Tex11, an X-linked meiosis-specific gene, promotes meiotic recombination and chromosomal synapsis. Here, we report that TEX11 is mutated in infertile men with non-obstructive azoospermia and that an analogous mutation in the mouse impairs meiosis. Genetic screening of a large cohort of idiopathic infertile men reveals that TEX11 mutations, including frameshift and splicing acceptor site mutations, cause infertility in 1% of azoospermic men. Functional evaluation of three analogous human TEX11 missense mutations in transgenic mouse models identified one mutation (V748A) as a potential infertility allele and found two mutations non-causative. In the mouse model, an intronless autosomal Tex11 transgene functionally substitutes for the X-linked Tex11 gene, providing genetic evidence for the X-to-autosomal retrotransposition evolution phenomenon. Furthermore, we find that TEX11 protein levels modulate genome-wide recombination rates in both sexes. These studies indicate that TEX11 alleles affecting expression level or substituting single amino acids may contribute to variations in recombination rates between sexes and among individuals in humans. PMID:26136358

  12. Adaptive evolution by recombination is not associated with increased mutation rates in Maize streak virus

    PubMed Central

    2012-01-01

    Background Single-stranded (ss) DNA viruses in the family Geminiviridae are proving to be very useful in real-time evolution studies. The high mutation rate of geminiviruses and other ssDNA viruses is somewhat mysterious in that their DNA genomes are replicated in host nuclei by high fidelity host polymerases. Although strand specific mutation biases observed in virus species from the geminivirus genus Mastrevirus indicate that the high mutation rates in viruses in this genus may be due to mutational processes that operate specifically on ssDNA, it is currently unknown whether viruses from other genera display similar strand specific mutation biases. Also, geminivirus genomes frequently recombine with one another and an alternative cause of their high mutation rates could be that the recombination process is either directly mutagenic or produces a selective environment in which the survival of mutants is favoured. To investigate whether there is an association between recombination and increased basal mutation rates or increased degrees of selection favoring the survival of mutations, we compared the mutation dynamics of the MSV-MatA and MSV-VW field isolates of Maize streak virus (MSV; Mastrevirus), with both a laboratory constructed MSV recombinant, and MSV recombinants closely resembling MSV-MatA. To determine whether strand specific mutation biases are a general characteristic of geminivirus evolution we compared mutation spectra arising during these MSV experiments with those arising during similar experiments involving the geminivirus Tomato yellow leaf curl virus (Begomovirus genus). Results Although both the genomic distribution of mutations and the occurrence of various convergent mutations at specific genomic sites indicated that either mutation hotspots or selection for adaptive mutations might elevate observed mutation rates in MSV, we found no association between recombination and mutation rates. Importantly, when comparing the mutation spectra of MSV

  13. Error-prone polymerase activity causes multinucleotide mutations in humans.

    PubMed

    Harris, Kelley; Nielsen, Rasmus

    2014-09-01

    About 2% of human genetic polymorphisms have been hypothesized to arise via multinucleotide mutations (MNMs), complex events that generate SNPs at multiple sites in a single generation. MNMs have the potential to accelerate the pace at which single genes evolve and to confound studies of demography and selection that assume all SNPs arise independently. In this paper, we examine clustered mutations that are segregating in a set of 1092 human genomes, demonstrating that the signature of MNM becomes enriched as large numbers of individuals are sampled. We estimate the percentage of linked SNP pairs that were generated by simultaneous mutation as a function of the distance between affected sites and show that MNMs exhibit a high percentage of transversions relative to transitions, findings that are reproducible in data from multiple sequencing platforms and cannot be attributed to sequencing error. Among tandem mutations that occur simultaneously at adjacent sites, we find an especially skewed distribution of ancestral and derived alleles, with GC → AA, GA → TT, and their reverse complements making up 27% of the total. These mutations have been previously shown to dominate the spectrum of the error-prone polymerase Pol ζ, suggesting that low-fidelity DNA replication by Pol ζ is at least partly responsible for the MNMs that are segregating in the human population. We develop statistical estimates of MNM prevalence that can be used to correct phylogenetic and population genetic inferences for the presence of complex mutations. PMID:25079859

  14. Error-prone polymerase activity causes multinucleotide mutations in humans

    PubMed Central

    Nielsen, Rasmus

    2014-01-01

    About 2% of human genetic polymorphisms have been hypothesized to arise via multinucleotide mutations (MNMs), complex events that generate SNPs at multiple sites in a single generation. MNMs have the potential to accelerate the pace at which single genes evolve and to confound studies of demography and selection that assume all SNPs arise independently. In this paper, we examine clustered mutations that are segregating in a set of 1092 human genomes, demonstrating that the signature of MNM becomes enriched as large numbers of individuals are sampled. We estimate the percentage of linked SNP pairs that were generated by simultaneous mutation as a function of the distance between affected sites and show that MNMs exhibit a high percentage of transversions relative to transitions, findings that are reproducible in data from multiple sequencing platforms and cannot be attributed to sequencing error. Among tandem mutations that occur simultaneously at adjacent sites, we find an especially skewed distribution of ancestral and derived alleles, with GC → AA, GA → TT, and their reverse complements making up 27% of the total. These mutations have been previously shown to dominate the spectrum of the error-prone polymerase Pol ζ, suggesting that low-fidelity DNA replication by Pol ζ is at least partly responsible for the MNMs that are segregating in the human population. We develop statistical estimates of MNM prevalence that can be used to correct phylogenetic and population genetic inferences for the presence of complex mutations. PMID:25079859

  15. The Rate and Spectrum of Spontaneous Mutations in a Plant RNA Virus

    PubMed Central

    Tromas, Nicolas; Elena, Santiago F.

    2010-01-01

    Knowing mutation rates and the molecular spectrum of spontaneous mutations is important to understanding how the genetic composition of viral populations evolves. Previous studies have shown that the rate of spontaneous mutations for RNA viruses widely varies between 0.01 and 2 mutations per genome and generation, with plant RNA viruses always occupying the lower side of this range. However, this peculiarity of plant RNA viruses is based on a very limited number of studies. Here we analyze the spontaneous mutational spectrum and the mutation rate of Tobacco etch potyvirus, a model system of positive sense RNA viruses. Our experimental setup minimizes the action of purifying selection on the mutational spectrum, thus giving a picture of what types of mutations are produced by the viral replicase. As expected for a neutral target, we found that transitions and nonsynonymous (including a few stop codons and small deletions) mutations were the most abundant type. This spectrum was notably different from the one previously described for another plant virus. We have estimated that the spontaneous mutation rate for this virus was in the range 10−6−10−5 mutations per site and generation. Our estimates are in the same biological ballpark that previous values reported for plant RNA viruses. This finding gives further support to the idea that plant RNA viruses may have lower mutation rates than their animal counterparts. PMID:20439778

  16. Longevity Is Linked to Mitochondrial Mutation Rates in Rockfish: A Test Using Poisson Regression.

    PubMed

    Hua, Xia; Cowman, Peter; Warren, Dan; Bromham, Lindell

    2015-10-01

    The mitochondrial theory of ageing proposes that the cumulative effect of biochemical damage in mitochondria causes mitochondrial mutations and plays a key role in ageing. Numerous studies have applied comparative approaches to test one of the predictions of the theory: That the rate of mitochondrial mutations is negatively correlated with longevity. Comparative studies face three challenges in detecting correlates of mutation rate: Covariation of mutation rates between species due to ancestry, covariation between life-history traits, and difficulty obtaining accurate estimates of mutation rate. We address these challenges using a novel Poisson regression method to examine the link between mutation rate and lifespan in rockfish (Sebastes). This method has better performance than traditional sister-species comparisons when sister species are too recently diverged to give reliable estimates of mutation rate. Rockfish are an ideal model system: They have long life spans with indeterminate growth and little evidence of senescence, which minimizes the confounding tradeoffs between lifespan and fecundity. We show that lifespan in rockfish is negatively correlated to rate of mitochondrial mutation, but not the rate of nuclear mutation. The life history of rockfish allows us to conclude that this relationship is unlikely to be driven by the tradeoffs between longevity and fecundity, or by the frequency of DNA replications in the germline. Instead, the relationship is compatible with the hypothesis that mutation rates are reduced by selection in long-lived taxa to reduce the chance of mitochondrial damage over its lifespan, consistent with the mitochondrial theory of ageing. PMID:26048547

  17. Human Rating Requirements for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Berdich, Debbie

    2009-01-01

    This slide presentation reviews the human system integration (HSI) process in achieving human ratings for NASA Constellation Program (CxP). The NASA Procedural Requirements (NPR) document that defines the Human Ratings Requirements is NPR 8705.2B. An example of the human rating requirements flow down is given in the handling qualities for space craft control.

  18. A Cryptochrome 2 mutation yields advanced sleep phase in humans.

    PubMed

    Hirano, Arisa; Shi, Guangsen; Jones, Christopher R; Lipzen, Anna; Pennacchio, Len A; Xu, Ying; Hallows, William C; McMahon, Thomas; Yamazaki, Maya; Ptáček, Louis J; Fu, Ying-Hui

    2016-01-01

    Familial Advanced Sleep Phase (FASP) is a heritable human sleep phenotype characterized by very early sleep and wake times. We identified a missense mutation in the human Cryptochrome 2 (CRY2) gene that co-segregates with FASP in one family. The mutation leads to replacement of an alanine residue at position 260 with a threonine (A260T). In mice, the CRY2 mutation causes a shortened circadian period and reduced phase-shift to early-night light pulse associated with phase-advanced behavioral rhythms in the light-dark cycle. The A260T mutation is located in the phosphate loop of the flavin adenine dinucleotide (FAD) binding domain of CRY2. The mutation alters the conformation of CRY2, increasing its accessibility and affinity for FBXL3 (an E3 ubiquitin ligase), thus promoting its degradation. These results demonstrate that CRY2 stability controlled by FBXL3 plays a key role in the regulation of human sleep wake behavior. PMID:27529127

  19. Thalassaemia mutations within the 5'UTR of the human beta-globin gene disrupt transcription.

    PubMed

    Sgourou, Argyro; Routledge, Samantha; Antoniou, Michael; Papachatzopoulou, Adamantia; Psiouri, Lambrini; Athanassiadou, Aglaia

    2004-03-01

    The mechanisms by which mutations within the 5' untranslated region (UTR) of the human beta-globin gene (HBB) cause thalassaemia are currently not well understood. We present here the first comprehensive comparative functional analysis of four 'silent' mutations in the human beta-globin 5'UTR, namely: +10(-T), +22(G --> A), +33(C --> G) and +(40-43)(-AAAC), which are present in patients with beta-thalassaemia intermedia. Expression of these genes under the control of the beta-globin locus control region in stable transfected murine erythroleukaemia cells showed that all four mutations decreased steady state levels of mRNA to 61.6%, 68%, 85.2% and 70.6%, respectively, compared with the wildtype gene. These mutations did not interfere with either mRNA transport from the nucleus to the cytoplasm, 3' end processing or mRNA stability. Nuclear run-on experiments demonstrated that mutations +10(-T) and +33(C --> G) reduced the rate of transcription to a degree that fully accounted for the observed lower level of mRNA accumulation, suggesting a disruption of downstream promoter sequences. Interestingly, mutation +22(G --> A) decreased the rate of transcription to a low degree, indicating the existence of a mechanism that acts post-transcriptionally. Generally, our data demonstrated the significance of functionally analysing mutants of this type in the presence of a full complement of transcriptional regulatory elements within a stably integrated chromatin context in an erythroid cell environment. PMID:15009072

  20. Mutations in TUBB8 cause human oocyte meiotic arrest

    PubMed Central

    Feng, Ruizhi; Sang, Qing; Kuang, Yanping; Sun, Xiaoxi; Yan, Zheng; Zhang, Shaozhen; Shi, Juanzi; Tian, Guoling; Luchniak, Anna; Fukuda, Yusuke; Li, Bin; Yu, Min; Chen, Junling; Xu, Yao; Guo, Luo; Qu, Ronggui; Wang, Xueqian; Sun, Zhaogui; Liu, Miao; Shi, Huijuan; Wang, Hongyan; Feng, Yi; Shao, Ruijin; Chai, Renjie; Li, Qiaoli; Xing, Qinghe; Zhang, Rui; Nogales, Eva; Jin, Li; He, Lin; Gupta, Mohan L.; Cowan, Nicholas J.; Wang, Lei

    2016-01-01

    Background Successful human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to human oocyte maturation arrest are unknown. Methods We recruited a rare four-generation family with female infertility as a consequence of oocyte meiosis I arrest. We applied whole-exome and direct Sanger sequencing to an additional 23 patients following identification of mutations in a candidate gene, TUBB8. Expression of TUBB8 and all other β-tubulin isotypes was measured in human oocytes, early embryos, sperm cells and several somatic tissues by qRT-PCR. The effect of the TUBB8 mutations was assessed on α/β tubulin heterodimer assembly in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes via microinjection of the corresponding cRNAs. Results We identified seven mutations in the primate-specific gene TUBB8 that are responsible for human oocyte meiosis I arrest in seven families. TUBB8 expression is unique to oocytes and the early embryo, where this gene accounts for almost all of the expressed β-tubulin. The mutations affect the chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, induce microtubule chaos upon expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle assembly defects and maturation arrest upon expression in mouse and human oocytes. Conclusions TUBB8 mutations function via dominant negative effects that massively disrupt proper microtubule behavior. TUBB8 is a key gene involved in human oocyte meiotic spindle assembly and maturation. PMID:26789871

  1. Evolution at a high imposed mutation rate: adaptation obscures the load in phage T7.

    PubMed

    Springman, R; Keller, T; Molineux, I J; Bull, J J

    2010-01-01

    Evolution at high mutation rates is expected to reduce population fitness deterministically by the accumulation of deleterious mutations. A high enough rate should even cause extinction (lethal mutagenesis), a principle motivating the clinical use of mutagenic drugs to treat viral infections. The impact of a high mutation rate on long-term viral fitness was tested here. A large population of the DNA bacteriophage T7 was grown with a mutagen, producing a genomic rate of 4 nonlethal mutations per generation, two to three orders of magnitude above the baseline rate. Fitness-viral growth rate in the mutagenic environment-was predicted to decline substantially; after 200 generations, fitness had increased, rejecting the model. A high mutation load was nonetheless evident from (i) many low- to moderate-frequency mutations in the population (averaging 245 per genome) and (ii) an 80% drop in average burst size. Twenty-eight mutations reached high frequency and were thus presumably adaptive, clustered mostly in DNA metabolism genes, chiefly DNA polymerase. Yet blocking DNA polymerase evolution failed to yield a fitness decrease after 100 generations. Although mutagenic drugs have caused viral extinction in vitro under some conditions, this study is the first to match theory and fitness evolution at a high mutation rate. Failure of the theory challenges the quantitative basis of lethal mutagenesis and highlights the potential for adaptive evolution at high mutation rates. PMID:19858285

  2. Mutational inactivation of STAG2 causes aneuploidy in human cancer.

    PubMed

    Solomon, David A; Kim, Taeyeon; Diaz-Martinez, Laura A; Fair, Joshlean; Elkahloun, Abdel G; Harris, Brent T; Toretsky, Jeffrey A; Rosenberg, Steven A; Shukla, Neerav; Ladanyi, Marc; Samuels, Yardena; James, C David; Yu, Hongtao; Kim, Jung-Sik; Waldman, Todd

    2011-08-19

    Most cancer cells are characterized by aneuploidy, an abnormal number of chromosomes. We have identified a clue to the mechanistic origins of aneuploidy through integrative genomic analyses of human tumors. A diverse range of tumor types were found to harbor deletions or inactivating mutations of STAG2, a gene encoding a subunit of the cohesin complex, which regulates the separation of sister chromatids during cell division. Because STAG2 is on the X chromosome, its inactivation requires only a single mutational event. Studying a near-diploid human cell line with a stable karyotype, we found that targeted inactivation of STAG2 led to chromatid cohesion defects and aneuploidy, whereas in two aneuploid human glioblastoma cell lines, targeted correction of the endogenous mutant alleles of STAG2 led to enhanced chromosomal stability. Thus, genetic disruption of cohesin is a cause of aneuploidy in human cancer. PMID:21852505

  3. Rates of genomic divergence in humans, chimpanzees and their lice

    PubMed Central

    Johnson, Kevin P.; Allen, Julie M.; Olds, Brett P.; Mugisha, Lawrence; Reed, David L.; Paige, Ken N.; Pittendrigh, Barry R.

    2014-01-01

    The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites. PMID:24403325

  4. Characterization of Disease-Associated Mutations in Human Transmembrane Proteins

    PubMed Central

    Molnár, János; Szakács, Gergely; Tusnády, Gábor E.

    2016-01-01

    Transmembrane protein coding genes are commonly associated with human diseases. We characterized disease causing mutations and natural polymorphisms in transmembrane proteins by mapping missense genetic variations from the UniProt database on the transmembrane protein topology listed in the Human Transmembrane Proteome database. We found characteristic differences in the spectrum of amino acid changes within transmembrane regions: in the case of disease associated mutations the non-polar to non-polar and non-polar to charged amino acid changes are equally frequent. In contrast, in the case of natural polymorphisms non-polar to charged amino acid changes are rare while non-polar to non-polar changes are common. The majority of disease associated mutations result in glycine to arginine and leucine to proline substitutions. Mutations to positively charged amino acids are more common in the center of the lipid bilayer, where they cause more severe structural and functional anomalies. Our analysis contributes to the better understanding of the effect of disease associated mutations in transmembrane proteins, which can help prioritize genetic variations in personal genomic investigations. PMID:26986070

  5. Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae.

    PubMed Central

    Zeyl, C; DeVisser, J A

    2001-01-01

    The per-genome, per-generation rate of spontaneous mutation affecting fitness (U) and the mean fitness cost per mutation (s) are important parameters in evolutionary genetics, but have been estimated for few species. We estimated U and sh (the heterozygous effect of mutations) for two diploid yeast strains differing only in the DNA mismatch-repair deficiency used to elevate the mutation rate in one (mutator) strain. Mutations were allowed to accumulate in 50 replicate lines of each strain, during 36 transfers of randomly chosen single colonies (approximately 600 generations). Among wild-type lines, fitnesses were bimodal, with one mode showing no change in mean fitness. The other mode showed a mean 29.6% fitness decline and the petite phenotype, usually caused by partial deletion of the mitochondrial genome. Excluding petites, maximum-likelihood estimates adjusted for the effect of selection were U = 9.5 x 10(-5) and sh = 0.217 for the wild type. Among the mutator lines, the best fit was obtained with 0.005 < or = U < or = 0.94 and 0.049 > or = sh > or = 0.0003. Like other recently tested model organisms, wild-type yeast have low mutation rates, with high mean fitness costs per mutation. Inactivation of mismatch repair increases the frequency of slightly deleterious mutations by approximately two orders of magnitude. PMID:11139491

  6. Evolution of digital organisms at high mutation rates leads to survival of the flattest

    NASA Astrophysics Data System (ADS)

    Wilke, Claus O.; Wang, Jia Lan; Ofria, Charles; Lenski, Richard E.; Adami, Christoph

    2001-07-01

    Darwinian evolution favours genotypes with high replication rates, a process called `survival of the fittest'. However, knowing the replication rate of each individual genotype may not suffice to predict the eventual survivor, even in an asexual population. According to quasi-species theory, selection favours the cloud of genotypes, interconnected by mutation, whose average replication rate is highest. Here we confirm this prediction using digital organisms that self-replicate, mutate and evolve. Forty pairs of populations were derived from 40 different ancestors in identical selective environments, except that one of each pair experienced a 4-fold higher mutation rate. In 12 cases, the dominant genotype that evolved at the lower mutation rate achieved a replication rate >1.5-fold faster than its counterpart. We allowed each of these disparate pairs to compete across a range of mutation rates. In each case, as mutation rate was increased, the outcome of competition switched to favour the genotype with the lower replication rate. These genotypes, although they occupied lower fitness peaks, were located in flatter regions of the fitness surface and were therefore more robust with respect to mutations.

  7. Human anion exchanger1 mutations and distal renal tubular acidosis.

    PubMed

    Yenchitsomanus, Pa-thai

    2003-09-01

    The human anion exchanger 1 (AE1 or SLC4A1) gene encodes anion exchanger 1 (or band 3) protein in erythrocytes and in alpha-intercalated cells of the kidney. Thus, AE1 mutations show pleiotrophic effects resulting in two distinct and seemingly unrelated defects, an erythrocyte abnormality and distal renal tubular acidosis (dRTA). Southeast Asian ovalocytosis (SAO), a well-known red blood cell (RBC) defect, which is widespread in Southeast Asian regions, is caused by AE1 mutation due to a deletion of 27 base pairs in codons 400-408 (delta400-408) leading to an in-frame 9 amino-acid loss in the protein. Co-existence of SAO and dRTA is usually not seen in the same individual. However, the two conditions can co-exist as the result of compound heterozygosities between delta400-408 and other mutations. The reported genotypes include delta400-408/G701D, delta400-408/R602H, delta400-408/deltaV850, and delta400-408/A858D. The presence of dRTA, with or without RBC abnormalities, may occur from homozygous or compound heterozygous conditions of recessive AE1 mutations (eg G701D/G701D, V488M/V488M, deltaV850/deltaV850, deltaV850/A858D, G701D/S773P) or heterozygous dominant AE1 mutations (eg R598H, R589C, R589S, S613F, R901X). Codon 589 of this gene seems to be a 'mutational hot-spot' since repeated mutations at this codon occurring in different ethnic groups and at least two de novo (R589H and R589C) mutations have been observed. Therefore, AE1 mutations can result in both recessive and dominant dRTA, possibly depending on the position of the amino acid change in the protein. As several mutant AE1 proteins still maintain a significant anion transport function but are defective in targeting to the cell surface, impaired intracellular trafficking of the mutant AE1 is an important molecular mechanism involved in the pathogenesis of dRTA associated with AE1 mutations. PMID:15115146

  8. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases

    PubMed Central

    Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A.; Jenkins, Andrew

    2015-01-01

    The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases. PMID:25904555

  9. Analysis of APC mutation in human ameloblastoma and clinical significance.

    PubMed

    Li, Ning; Liu, Bing; Sui, Chengguang; Jiang, Youhong

    2016-01-01

    As a highly conserved signaling pathway, Wnt/β-catenin signal transduction pathway plays an important role in many processes. Either in the occurrence or development of tumor, activation of this pathway takes an important place. APC inhibits Wnt/β-catenin pathway to regulate cell proliferation and differentiation. This study aimed to investigate the function of cancer suppressor gene. PCR amplification and sequencing method was used to analyze APC mutations of human clinical specimens. The pathological specimens were collected for PCR and clear electrophoretic bands were obtained after electrophoresis. The gene sequence obtained after purification and sequencing analysis was compared with the known APC gene sequence (NM_000038.5). Base mutations at APC 1543 (T → C), APC-4564 (G → A), APC-5353 (T → G), APC-5550 (T → A) and APC-5969 (G → A) locus existed in 22 (27.5 %), 12 (15 %), 5 (6.25 %), 13 (16.25 %) and 12 patients (15 %), respectively. Gene mutations existed in ameloblastoma, and the mutation loci were 1543 locus (T → C), 4564 locus (G → A), 5353 locus (T → G), 5550 locus (T → A) and 5969 locus (G → A) 15 %, respectively. APC mutation plays a certain role in monitoring the tumor malignant degree as it may indicate the transition process of ameloblastoma malignant phenotype. PMID:27065015

  10. Upper-limit mutation rate estimation for a plant RNA virus

    PubMed Central

    Sanjuán, Rafael; Agudelo-Romero, Patricia; Elena, Santiago F.

    2009-01-01

    It is generally accepted that mutation rates of RNA viruses are inherently high due to the lack of proofreading mechanisms. However, direct estimates of mutation rate are surprisingly scarce, in particular for plant viruses. Here, based on the analysis of in vivo mutation frequencies in tobacco etch virus, we calculate an upper-bound mutation rate estimation of 3×10−5 per site and per round of replication; a value which turns out to be undistinguishable from the methodological error. Nonetheless, the value is barely on the lower side of the range accepted for RNA viruses, although in good agreement with the only direct estimate obtained for other plant viruses. These observations suggest that, perhaps, differences in the selective pressures operating during plant virus evolution may have driven their mutation rates towards values lower than those characteristic of other RNA viruses infecting bacteria or animals. PMID:19324646

  11. Virology. Mutation rate and genotype variation of Ebola virus from Mali case sequences.

    PubMed

    Hoenen, T; Safronetz, D; Groseth, A; Wollenberg, K R; Koita, O A; Diarra, B; Fall, I S; Haidara, F C; Diallo, F; Sanogo, M; Sarro, Y S; Kone, A; Togo, A C G; Traore, A; Kodio, M; Dosseh, A; Rosenke, K; de Wit, E; Feldmann, F; Ebihara, H; Munster, V J; Zoon, K C; Feldmann, H; Sow, S

    2015-04-01

    The occurrence of Ebola virus (EBOV) in West Africa during 2013-2015 is unprecedented. Early reports suggested that in this outbreak EBOV is mutating twice as fast as previously observed, which indicates the potential for changes in transmissibility and virulence and could render current molecular diagnostics and countermeasures ineffective. We have determined additional full-length sequences from two clusters of imported EBOV infections into Mali, and we show that the nucleotide substitution rate (9.6 × 10(-4) substitutions per site per year) is consistent with rates observed in Central African outbreaks. In addition, overall variation among all genotypes observed remains low. Thus, our data indicate that EBOV is not undergoing rapid evolution in humans during the current outbreak. This finding has important implications for outbreak response and public health decisions and should alleviate several previously raised concerns. PMID:25814067

  12. A human de novo mutation in MYH10 phenocopies the loss of function mutation in mice

    PubMed Central

    Tuzovic, Lea; Yu, Lan; Zeng, Wenqi; Li, Xiang; Lu, Hong; Lu, Hsiao-Mei; Gonzalez, Kelly DF; Chung, Wendy K

    2013-01-01

    We used whole exome sequence analysis to investigate a possible genetic etiology for a patient with the phenotype of intrauterine growth restriction, microcephaly, developmental delay, failure to thrive, congenital bilateral hip dysplasia, cerebral and cerebellar atrophy, hydrocephalus, and congenital diaphragmatic hernia (CDH). Whole exome sequencing identified a novel de novo c.2722G > T (p.E908X) mutation in the Myosin Heavy Chain 10 gene (MYH10) which encodes for non-muscle heavy chain II B (NMHC IIB). Mutations in MYH10 have not been previously described in association with human disease. The E908X mutation is located in the coiled-coil region of the protein and is expected to delete the tail domain and disrupt filament assembly. Nonmuscle myosin IIs (NM IIs) are a group of ubiquitously expressed proteins, and NM II B is specifically enriched in neuronal tissue and is thought to be important in neuronal migration. It is also expressed in cardiac myocytes along with NM IIC. Homozygous NMHC II B-/B- mouse knockouts die by embryonic day (E)14.5 with severe cardiac defects (membranous ventricular septal defect and cardiac outflow tract abnormalities) and neurodevelopmental disorders (progressive hydrocephalus and neuronal migrational abnormalities). A heterozygous MYH10 loss of function mutation produces a severe neurologic phenotype and CDH but no apparent cardiac phenotype and suggests that MYH10 may represent a novel gene for brain malformations and/or CDH. PMID:25003005

  13. Mutational spectrometry without phenotypic selection: human mitochondrial DNA.

    PubMed Central

    Khrapko, K; Coller, H; André, P; Li, X C; Foret, F; Belenky, A; Karger, B L; Thilly, W G

    1997-01-01

    By first separating mutant from nonmutant DNA sequences on the basis of their melting temperatures and then increasing the number of copies by high-fidelity DNA amplification, we have developed a method that allows observation of point mutations in biological samples at fractions at or above 10-6. Using this method, we have observed the hotspot point mutations that lie in 100 base pairs of the mitochondrial genome in samples of cultured cells and human tissues. To date, 19 mutants have been isolated, their fractions ranging from 4x10-4 down to the limit of detection. We performed specific tests to determine if the observed signals were artefacts arising from contamination, polymerase errors during PCR or DNA adducts created during the procedure. We also tested the possibilities that DNA replication mismatch intermediates, or endogenous DNA adducts that were originally present in the cells, were included with true mutants in our separation steps and converted to mutants during PCR. We show that while most of the mutants behave as double-stranded point mutants in the cells, some appear to arise at least in part from mismatch intermediates or cellular DNA adducts. This technology is therefore sufficient for the observation of the spectrum of point mutations in human mitochondrial DNA and is a tool for discovering the primary causes of these mutations. PMID:9016616

  14. Mutations in TUBB8 and Human Oocyte Meiotic Arrest.

    PubMed

    Feng, Ruizhi; Sang, Qing; Kuang, Yanping; Sun, Xiaoxi; Yan, Zheng; Zhang, Shaozhen; Shi, Juanzi; Tian, Guoling; Luchniak, Anna; Fukuda, Yusuke; Li, Bin; Yu, Min; Chen, Junling; Xu, Yao; Guo, Luo; Qu, Ronggui; Wang, Xueqian; Sun, Zhaogui; Liu, Miao; Shi, Huijuan; Wang, Hongyan; Feng, Yi; Shao, Ruijin; Chai, Renjie; Li, Qiaoli; Xing, Qinghe; Zhang, Rui; Nogales, Eva; Jin, Li; He, Lin; Gupta, Mohan L; Cowan, Nicholas J; Wang, Lei

    2016-01-21

    Background Human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown. Methods We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other β-tubulin isotypes was assessed in human oocytes, early embryos, sperm cells, and several somatic tissues by means of a quantitative reverse-transcriptase-polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one β-tubulin polypeptide (α/β-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes. Results We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed β-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes. Conclusions TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility. (Funded by the National Basic Research Program of China and others.). PMID:26789871

  15. Direct determination of the point mutation rate of a murine retrovirus.

    PubMed Central

    Monk, R J; Malik, F G; Stokesberry, D; Evans, L H

    1992-01-01

    The point mutation rate of a murine leukemia virus (MuLV) genome (AKV) was determined under conditions in which the number of replicative cycles was carefully controlled and the point mutation rate was determined by direct examination of the RNA genomes of progeny viruses. A clonal cell line infected at a low multiplicity of infection (2 x 10(-3)) was derived to provide a source of virus with high genetic homogeneity. Virus stocks from this cell line were used to infect cells at a low multiplicity of infection, and the cells were seeded soon after infection to obtain secondary clonal cell lines. RNase T1-oligonucleotide fingerprinting analyses of virion RNAs from 93 secondary lines revealed only 3 base changes in nearly 130,000 bases analyzed. To obtain an independent assessment of the mutation rate, we directly sequenced virion RNAs by using a series of DNA oligonucleotide primers distributed across the genome. RNA sequencing detected no mutations in over 21,000 bases analyzed. The combined fingerprinting and sequencing analyses yielded a mutation rate for infectious progeny viruses of one base change per 50,000 (2 x 10(-5)) bases per replication cycle. Our results suggest that over 80% of infectious progeny MuLVs may be replicated with complete fidelity and that only a low percentage undergo more than one point mutation during a replication cycle. Previous estimates of retroviral mutation rates suggest that the majority of infectious progeny viruses have undergone one or more point mutations. Recent studies of the mutation rates of marker genes in spleen necrosis virus-based vectors estimate a base substitution rate lower than estimates for infectious avian retroviruses and nearly identical to our determinations with AKV. The differences between mutation rates observed in studies of retroviruses may reflect the imposition of different selective conditions. Images PMID:1316475

  16. Critical Mutation Rate Has an Exponential Dependence on Population Size in Haploid and Diploid Populations

    PubMed Central

    Aston, Elizabeth; Channon, Alastair; Day, Charles; Knight, Christopher G.

    2013-01-01

    Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the exponential model has

  17. The G1138A mutation rate in the fibroblast growth factor receptor 3 (FGFR3) gene is increased in cells carrying the t (4; 14) translocation.

    PubMed

    Reddy, P L; Grewal, R P

    2009-01-01

    Spontaneous mutations are a common phenomenon, occurring in both germ-line and somatic genomes. They may have deleterious consequences including the development of genetic disorders or, when occurring in somatic tissues, may participate in the process of carcinogenesis. Similar to many mutational hotspots, the G1138A mutation in the fibroblast growth factor receptor 3 (FGFR3) gene occurs at a CpG site. In germ-line tissues, the G1138A mutation results in achondroplasia and has one of the highest spontaneous mutation rates in the human genome. Although not at the G1138A site, there are increased rates of other somatic mutations in the FGFR3 gene that have been reported in multiple myeloma cases associated with a translocation, t (4; 14). The chromosome-4 break points in this translocation are clustered in a 70-kb region centromeric to the FGFR3 gene. We hypothesized that this translocation may impact the mutation rate at the G1138A site. We employed a semi-quantitative polymerase chain reaction-based assay to measure the frequency of this mutation in multiple myeloma cell lines carrying t (4; 14) translocation. Analysis of these cell lines varied from no change to a 10-fold increase in the mutation frequency compared with normal controls. In general, there was an increase in the G1138A mutational frequency suggesting that chromosomal rearrangement can affect the stability of the CpG hotspots. PMID:19551630

  18. Human Cancers Express a Mutator Phenotype: Hypothesis, Origin, and Consequences

    PubMed Central

    Loeb, Lawrence A.

    2016-01-01

    The mutator phenotype hypothesis was postulated more than 40 years ago. It was based on the multiple enzymatic steps required to precisely replicate the 6 billion bases in the human genome each time a normal cell divides. A reduction in this accuracy during tumor progression could be responsible for the striking heterogeneity of malignant cells within a tumor and for the rapidity by which cancers become resistant to therapy. PMID:27197248

  19. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis.

    PubMed

    Schoenmakers, Erik; Carlson, Bradley; Agostini, Maura; Moran, Carla; Rajanayagam, Odelia; Bochukova, Elena; Tobe, Ryuta; Peat, Rachel; Gevers, Evelien; Muntoni, Francesco; Guicheney, Pascale; Schoenmakers, Nadia; Farooqi, Sadaf; Lyons, Greta; Hatfield, Dolph; Chatterjee, Krishna

    2016-03-01

    Selenium is a trace element that is essential for human health and is incorporated into more than 25 human selenocysteine-containing (Sec-containing) proteins via unique Sec-insertion machinery that includes a specific, nuclear genome-encoded, transfer RNA (tRNA[Ser]Sec). Here, we have identified a human tRNA[Ser]Sec mutation in a proband who presented with a variety of symptoms, including abdominal pain, fatigue, muscle weakness, and low plasma levels of selenium. This mutation resulted in a marked reduction in expression of stress-related, but not housekeeping, selenoproteins. Evaluation of primary cells from the homozygous proband and a heterozygous parent indicated that the observed deficit in stress-related selenoprotein production is likely mediated by reduced expression and diminished 2'-O-methylribosylation at uridine 34 in mutant tRNA[Ser]Sec. Moreover, this methylribosylation defect was restored by cellular complementation with normal tRNA[Ser]Sec. This study identifies a tRNA mutation that selectively impairs synthesis of stress-related selenoproteins and demonstrates the importance of tRNA modification for normal selenoprotein synthesis. PMID:26854926

  20. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis

    PubMed Central

    Schoenmakers, Erik; Carlson, Bradley; Agostini, Maura; Moran, Carla; Rajanayagam, Odelia; Bochukova, Elena; Tobe, Ryuta; Peat, Rachel; Gevers, Evelien; Muntoni, Francesco; Guicheney, Pascale; Schoenmakers, Nadia; Farooqi, Sadaf; Lyons, Greta; Hatfield, Dolph; Chatterjee, Krishna

    2016-01-01

    Selenium is a trace element that is essential for human health and is incorporated into more than 25 human selenocysteine-containing (Sec-containing) proteins via unique Sec-insertion machinery that includes a specific, nuclear genome–encoded, transfer RNA (tRNA[Ser]Sec). Here, we have identified a human tRNA[Ser]Sec mutation in a proband who presented with a variety of symptoms, including abdominal pain, fatigue, muscle weakness, and low plasma levels of selenium. This mutation resulted in a marked reduction in expression of stress-related, but not housekeeping, selenoproteins. Evaluation of primary cells from the homozygous proband and a heterozygous parent indicated that the observed deficit in stress-related selenoprotein production is likely mediated by reduced expression and diminished 2′-O-methylribosylation at uridine 34 in mutant tRNA[Ser]Sec. Moreover, this methylribosylation defect was restored by cellular complementation with normal tRNA[Ser]Sec. This study identifies a tRNA mutation that selectively impairs synthesis of stress-related selenoproteins and demonstrates the importance of tRNA modification for normal selenoprotein synthesis. PMID:26854926

  1. Estimate of the genomic mutation rate deleterious to overall fitness in E. coll

    NASA Astrophysics Data System (ADS)

    Kibota, Travis T.; Lynch, Michael

    1996-06-01

    MUTATIONS are a double-edged sword: they are the ultimate source of genetic variation upon which evolution depends, yet most mutations affecting fitness (viability and reproductive success) appear to be harmful1. Deleterious mutations of small effect can escape natural selection, and should accumulate in small populations2-4. Reduced fitness from deleterious-mutation accumulation may be important in the evolution of sex5-7, mate choice8,9, and diploid life-cycles10, and in the extinction of small populations11,12. Few empirical data exist, however. Minimum estimates of the genomic deleterious-mutation rate for viability in Drosophila melanogaster are surprisingly high1,13,14, leading to the conjecture that the rate for total fitness could exceed 1.0 mutation per individual per generation5,6. Here we use Escherichia coli to provide an estimate of the genomic deleterious-mutation rate for total fitness in a microbe. We estimate that the per-microbe rate of deleterious mutations is in excess of 0.0002.

  2. Mutation rates at Y chromosome short tandem repeats in Texas populations.

    PubMed

    Ge, Jianye; Budowle, Bruce; Aranda, Xavier G; Planz, John V; Eisenberg, Arthur J; Chakraborty, Ranajit

    2009-06-01

    Father-son pairs from three populations (African American, Caucasian, and Hispanic) of Texas were typed for the 17 Y STR markers DYS19, DYS385, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS456, DYS458, DYS635, DYS448, and Y GATA H4 using the AmpFlSTR YfilerTM kit. With 49,578 allele transfers, 102 mutations were detected. One three-step and four two-step mutations were found, and all others (95.1%) were one-step mutations. The number of gains (48) and losses (54) of repeats were nearly similar. The average mutation rate in the total population is 2.1 x 10(-3) per locus (95% CI (1.7-2.5)x10(-3)). African Americans showed a higher mutation rate (3.0 x 10(-3); 95% CI (2.4-4.0)x10(-3)) than the Caucasians (1.7 x 10(-3); 95% CI (1.1-2.5)x10(-3)) and Hispanics (1.5 x 10(-3); 95% CI (1.0-2.2)x10(-3)), but grouped by repeat-lengths, such differences were not significant. Mutation is correlated with relative length of alleles, i.e., longer alleles are more likely to mutate compared with the shorter ones at the same locus. Mutation rates are also correlated with the absolute number of repeats, namely, alleles with higher number of repeats are more likely to mutate than the shorter ones (p-value=0.030). Finally, occurrences of none, one, and two mutations over the father-son transmission of alleles were consistent with the assumption of independence of mutation rates across loci. PMID:19414166

  3. Association of Intron Loss with High Mutation Rate in Arabidopsis: Implications for Genome Size Evolution

    PubMed Central

    Yang, Yu-Fei; Zhu, Tao; Niu, Deng-Ke

    2013-01-01

    Despite the prevalence of intron losses during eukaryotic evolution, the selective forces acting on them have not been extensively explored. Arabidopsis thaliana lost half of its genome and experienced an elevated rate of intron loss after diverging from A. lyrata. The selective force for genome reduction was suggested to have driven the intron loss. However, the evolutionary mechanism of genome reduction is still a matter of debate. In this study, we found that intron-lost genes have high synonymous substitution rates. Assuming that differences in mutability among different introns are conserved among closely related species, we used the nucleotide substitution rate between orthologous introns in other species as the proxy of the mutation rate of Arabidopsis introns, either lost or extant. The lost introns were found to have higher mutation rates than extant introns. At the genome-wide level, A. thaliana has a higher mutation rate than A. lyrata, which correlates with the higher rate of intron loss and rapid genome reduction of A. thaliana. Our results indicate that selection to minimize mutational hazards might be the selective force for intron loss, and possibly also for genome reduction, in the evolution of A. thaliana. Small genome size and lower genome-wide intron density were widely reported to be correlated with phenotypic features, such as high metabolic rates and rapid growth. We argue that the mutational-hazard hypothesis is compatible with these correlations, by suggesting that selection for rapid growth might indirectly increase mutational hazards. PMID:23516254

  4. Distinct mutation accumulation rates among tissues determine the variation in cancer risk

    PubMed Central

    Hao, Dapeng; Wang, Li; Di, Li-jun

    2016-01-01

    Cancer is believed to be a result of accumulated mutations. However, this concept has not been fully confirmed owing to the impossibility of tracking down the ancestral somatic cell. We sought to verify the concept by exploring the correlation between cancer risk and mutation accumulation among different tissues. We hypothesized that the detected mutations through bulk tumor sequencing are commonly shared in majority, if not all, of tumor cells and are therefore largely a reflection of the mutations accumulated in the ancestral cell that gives rise to tumor. We collected a comprehensive list of mutation frequencies revealed by bulk tumor sequencing, and investigated its correlation with cancer risk to mirror the correlation between mutation accumulation and cancer risk. This revealed an approximate 1:1 relationship between mutation frequency and cancer risk in 41 different cancer types based on the sequencing data of 5,542 patients. The correlation strongly suggests that variation in cancer risk among tissues is mainly attributable to distinct mutation accumulation rates. Moreover, the correlation establishes a baseline to evaluate the effect of non-mutagenic carcinogens on cancer risk. Finally, our mathematic modeling provides a reasonable explanation to reinforce that cancer risk is predominantly determined by the first rate-limiting mutation. PMID:26785814

  5. Distinct mutation accumulation rates among tissues determine the variation in cancer risk.

    PubMed

    Hao, Dapeng; Wang, Li; Di, Li-jun

    2016-01-01

    Cancer is believed to be a result of accumulated mutations. However, this concept has not been fully confirmed owing to the impossibility of tracking down the ancestral somatic cell. We sought to verify the concept by exploring the correlation between cancer risk and mutation accumulation among different tissues. We hypothesized that the detected mutations through bulk tumor sequencing are commonly shared in majority, if not all, of tumor cells and are therefore largely a reflection of the mutations accumulated in the ancestral cell that gives rise to tumor. We collected a comprehensive list of mutation frequencies revealed by bulk tumor sequencing, and investigated its correlation with cancer risk to mirror the correlation between mutation accumulation and cancer risk. This revealed an approximate 1:1 relationship between mutation frequency and cancer risk in 41 different cancer types based on the sequencing data of 5,542 patients. The correlation strongly suggests that variation in cancer risk among tissues is mainly attributable to distinct mutation accumulation rates. Moreover, the correlation establishes a baseline to evaluate the effect of non-mutagenic carcinogens on cancer risk. Finally, our mathematic modeling provides a reasonable explanation to reinforce that cancer risk is predominantly determined by the first rate-limiting mutation. PMID:26785814

  6. Evolution of the Insertion-Deletion Mutation Rate Across the Tree of Life.

    PubMed

    Sung, Way; Ackerman, Matthew S; Dillon, Marcus M; Platt, Thomas G; Fuqua, Clay; Cooper, Vaughn S; Lynch, Michael

    2016-01-01

    Mutations are the ultimate source of variation used for evolutionary adaptation, while also being predominantly deleterious and a source of genetic disorders. Understanding the rate of insertion-deletion mutations (indels) is essential to understanding evolutionary processes, especially in coding regions, where such mutations can disrupt production of essential proteins. Using direct estimates of indel rates from 14 phylogenetically diverse eukaryotic and bacterial species, along with measures of standing variation in such species, we obtain results that imply an inverse relationship of mutation rate and effective population size. These results, which corroborate earlier observations on the base-substitution mutation rate, appear most compatible with the hypothesis that natural selection reduces mutation rates per effective genome to the point at which the power of random genetic drift (approximated by the inverse of effective population size) becomes overwhelming. Given the substantial differences in DNA metabolism pathways that give rise to these two types of mutations, this consistency of results raises the possibility that refinement of other molecular and cellular traits may be inversely related to species-specific levels of random genetic drift. PMID:27317782

  7. Evolution of the Insertion-Deletion Mutation Rate Across the Tree of Life

    PubMed Central

    Sung, Way; Ackerman, Matthew S.; Dillon, Marcus M.; Platt, Thomas G.; Fuqua, Clay; Cooper, Vaughn S.; Lynch, Michael

    2016-01-01

    Mutations are the ultimate source of variation used for evolutionary adaptation, while also being predominantly deleterious and a source of genetic disorders. Understanding the rate of insertion-deletion mutations (indels) is essential to understanding evolutionary processes, especially in coding regions, where such mutations can disrupt production of essential proteins. Using direct estimates of indel rates from 14 phylogenetically diverse eukaryotic and bacterial species, along with measures of standing variation in such species, we obtain results that imply an inverse relationship of mutation rate and effective population size. These results, which corroborate earlier observations on the base-substitution mutation rate, appear most compatible with the hypothesis that natural selection reduces mutation rates per effective genome to the point at which the power of random genetic drift (approximated by the inverse of effective population size) becomes overwhelming. Given the substantial differences in DNA metabolism pathways that give rise to these two types of mutations, this consistency of results raises the possibility that refinement of other molecular and cellular traits may be inversely related to species-specific levels of random genetic drift. PMID:27317782

  8. Hypomorphic PCNA mutation underlies a human DNA repair disorder

    PubMed Central

    Baple, Emma L.; Chambers, Helen; Cross, Harold E.; Fawcett, Heather; Nakazawa, Yuka; Chioza, Barry A.; Harlalka, Gaurav V.; Mansour, Sahar; Sreekantan-Nair, Ajith; Patton, Michael A.; Muggenthaler, Martina; Rich, Phillip; Wagner, Karin; Coblentz, Roselyn; Stein, Constance K.; Last, James I.; Taylor, A. Malcolm R.; Jackson, Andrew P.; Ogi, Tomoo; Lehmann, Alan R.; Green, Catherine M.; Crosby, Andrew H.

    2014-01-01

    Numerous human disorders, including Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and trichothiodystrophy, result from the mutation of genes encoding molecules important for nucleotide excision repair. Here, we describe a syndrome in which the cardinal clinical features include short stature, hearing loss, premature aging, telangiectasia, neurodegeneration, and photosensitivity, resulting from a homozygous missense (p.Ser228Ile) sequence alteration of the proliferating cell nuclear antigen (PCNA). PCNA is a highly conserved sliding clamp protein essential for DNA replication and repair. Due to this fundamental role, mutations in PCNA that profoundly impair protein function would be incompatible with life. Interestingly, while the p.Ser228Ile alteration appeared to have no effect on protein levels or DNA replication, patient cells exhibited marked abnormalities in response to UV irradiation, displaying substantial reductions in both UV survival and RNA synthesis recovery. The p.Ser228Ile change also profoundly altered PCNA’s interaction with Flap endonuclease 1 and DNA Ligase 1, DNA metabolism enzymes. Together, our findings detail a mutation of PCNA in humans associated with a neurodegenerative phenotype, displaying clinical and molecular features common to other DNA repair disorders, which we showed to be attributable to a hypomorphic amino acid alteration. PMID:24911150

  9. Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice

    PubMed Central

    Barber, Ruth; Plumb, Mark A.; Boulton, Emma; Roux, Isabelle; Dubrova, Yuri E.

    2002-01-01

    Mutation rates at two expanded simple tandem repeat loci were studied in the germ line of first- and second-generation offspring of inbred male CBA/H, C57BL/6, and BALB/c mice exposed to either high linear energy transfer fission neutrons or low linear energy transfer x-rays. Paternal CBA/H exposure to either x-rays or fission neutrons resulted in increased mutation rates in the germ line of two subsequent generations. Comparable transgenerational effects were observed also in neutron-irradiated C57BL/6 and x-irradiated BALB/c mice. The levels of spontaneous mutation rates and radiation-induced transgenerational instability varied between strains (BALB/c>CBA/H>C57BL/6). Pre- and postmeiotic paternal exposure resulted in similar increases in mutation rate in the germ line of both generations of CBA/H mice, which together with our previous results suggests that radiation-induced expanded simple tandem repeat instability is manifested in diploid cells after fertilization. The remarkable finding that radiation-induced germ-line instability persists for at least two generations raises important issues of risk evaluation in humans. PMID:11997464

  10. Recombination affects accumulation of damaging and disease-associated mutations in human populations.

    PubMed

    Hussin, Julie G; Hodgkinson, Alan; Idaghdour, Youssef; Grenier, Jean-Christophe; Goulet, Jean-Philippe; Gbeha, Elias; Hip-Ki, Elodie; Awadalla, Philip

    2015-04-01

    Many decades of theory have demonstrated that, in non-recombining systems, slightly deleterious mutations accumulate non-reversibly, potentially driving the extinction of many asexual species. Non-recombining chromosomes in sexual organisms are thought to have degenerated in a similar fashion; however, it is not clear the extent to which damaging mutations accumulate along chromosomes with highly variable rates of crossing over. Using high-coverage sequencing data from over 1,400 individuals in the 1000 Genomes and CARTaGENE projects, we show that recombination rate modulates the distribution of putatively deleterious variants across the entire human genome. Exons in regions of low recombination are significantly enriched for deleterious and disease-associated variants, a signature varying in strength across worldwide human populations with different demographic histories. Regions with low recombination rates are enriched for highly conserved genes with essential cellular functions and show an excess of mutations with demonstrated effects on health, a phenomenon likely affecting disease susceptibility in humans. PMID:25685891

  11. Determination of somatic mutations in human erythrocytes by cytometry

    SciTech Connect

    Jensen, R.H.; Langlois, R.G.; Bigbee, W.L.

    1985-06-21

    Flow cytometric assays of human erythrocytes labeled with monoclonal antibodies specific for glycophorin A were used to enumerate variant cells that appear in peripheral blood as a result of somatic gene-loss mutations in erythrocyte precursor cells. The assay was performed on erythrocytes from 10 oncology patients who had received at least one treatment from radiation or mutagenic chemotherapy at least 3 weeks before being assayed. The patients were suffering from many different malignancies (e.g., breast, renal, bone, colon and lung), and were treated with several different mutagenic therapeutics (e.g., cisplatinum, adriamycin, daunomycin, or cyclophosphamide). The frequency of these variant cells is an indication of the amount of mutagenic damage accumulated in the individual's erythropoietic cell population. Comparing these results to HPRT clonogenic assays, we find similar baseline frequencies of somatic mutation as well as similar correlation with mutagenic exposures. 9 refs., 3 figs., 1 tab.

  12. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach.

    PubMed

    Chaturvedi, Swati; Singh, Ashok K; Keshari, Amit K; Maity, Siddhartha; Sarkar, Srimanta; Saha, Sudipta

    2016-01-01

    One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches. PMID:27051561

  13. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach

    PubMed Central

    Chaturvedi, Swati; Singh, Ashok K.; Maity, Siddhartha; Sarkar, Srimanta

    2016-01-01

    One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches. PMID:27051561

  14. Mutations in Melanocortin-3 Receptor Gene and Human Obesity.

    PubMed

    Yang, Z; Tao, Y-X

    2016-01-01

    The prevalence of obesity calls for novel therapeutic targets. The melanocortin-3 receptor (MC3R) has been increasingly recognized as an important regulator of energy homeostasis and MC3R has been intensively analyzed in molecular genetic studies for obesity-related traits. Twenty-seven MC3R mutations and two common polymorphic variants have been identified so far in different cohorts. The mutant MC3Rs demonstrate multiple defects in functional analysis and can be cataloged into different classes according to receptor life cycle based classification system. Although the pathogenic role of MC3R in human obesity remains controversial, recent findings in the noncanonical signaling pathway of MC3R mutants have provided new insights. Potential therapeutic strategies for obesity related to MC3R mutations are highlighted. PMID:27288827

  15. Fungal Infection Increases the Rate of Somatic Mutation in Scots Pine (Pinus sylvestris L.).

    PubMed

    Ranade, Sonali Sachin; Ganea, Laura-Stefana; Razzak, Abdur M; García Gil, M R

    2015-01-01

    Somatic mutations are transmitted during mitosis in developing somatic tissue. Somatic cells bearing the mutations can develop into reproductive (germ) cells and the somatic mutations are then passed on to the next generation of plants. Somatic mutations are a source of variation essential to evolve new defense strategies and adapt to the environment. Stem rust disease in Scots pine has a negative effect on wood quality, and thus adversely affects the economy. It is caused by the 2 most destructive fungal species in Scandinavia: Peridermium pini and Cronartium flaccidum. We studied nuclear genome stability in Scots pine under biotic stress (fungus-infected, 22 trees) compared to a control population (plantation, 20 trees). Stability was assessed as accumulation of new somatic mutations in 10 microsatellite loci selected for genotyping. Microsatellites are widely used as molecular markers in population genetics studies of plants, and are particularly used for detection of somatic mutations as their rate of mutation is of a much higher magnitude when compared with other DNA markers. We report double the rate of somatic mutation per locus in the fungus-infected trees (4.8×10(-3) mutations per locus), as compared to the controls (2.0×10(-3) mutations per locus) when individual samples were analyzed at 10 different microsatellite markers. Pearson's chi-squared test indicated a significant effect of the fungal infection which increased the number of mutations in the fungus-infected trees (χ(2) = 12.9883, df = 1, P = 0.0003134). PMID:25890976

  16. Microsatellite evolutionary rate and pattern in Schistocerca gregaria inferred from direct observation of germline mutations.

    PubMed

    Chapuis, M-P; Plantamp, C; Streiff, R; Blondin, L; Piou, C

    2015-12-01

    Unravelling variation among taxonomic orders regarding the rate of evolution in microsatellites is crucial for evolutionary biology and population genetics research. The mean mutation rate of microsatellites tends to be lower in arthropods than in vertebrates, but data are scarce and mostly concern accumulation of mutations in model species. Based on parent-offspring segregations and a hierarchical Bayesian model, the mean rate of mutation in the orthopteran insect Schistocerca gregaria was estimated at 2.1e(-4) per generation per untranscribed dinucleotide locus. This is close to vertebrate estimates and one order of magnitude higher than estimates from species of other arthropod orders, such as Drosophila melanogaster and Daphnia pulex. We also found evidence of a directional bias towards expansions even for long alleles and exceptionally large ranges of allele sizes. Finally, at transcribed microsatellites, the mean rate of mutation was half the rate found at untranscribed loci and the mutational model deviated from that usually considered, with most mutations involving multistep changes that avoid disrupting the reading frame. Our direct estimates of mutation rate were discussed in the light of peculiar biological and genomic features of S. gregaria, including specificities in mismatch repair and the dependence of its activity to allele length. Shedding new light on the mutational dynamics of grasshopper microsatellites is of critical importance for a number of research fields. As an illustration, we showed how our findings improve microsatellite application in population genetics, by obtaining a more precise estimation of S. gregaria effective population size from a published data set based on the same microsatellites. PMID:26562076

  17. Dose-Dependent Mutation Rates Determine Optimum Erlotinib Dosing Strategies for EGFR Mutant Non-Small Cell Lung Cancer Patients

    PubMed Central

    Liu, Lin L.; Li, Fei; Pao, William; Michor, Franziska

    2015-01-01

    Background The advent of targeted therapy for cancer treatment has brought about a paradigm shift in the clinical management of human malignancies. Agents such as erlotinib used for EGFR-mutant non-small cell lung cancer or imatinib for chronic myeloid leukemia, for instance, lead to rapid tumor responses. Unfortunately, however, resistance often emerges and renders these agents ineffective after a variable amount of time. The FDA-approved dosing schedules for these drugs were not designed to optimally prevent the emergence of resistance. To this end, we have previously utilized evolutionary mathematical modeling of treatment responses to elucidate the dosing schedules best able to prevent or delay the onset of resistance. Here we expand on our approaches by taking into account dose-dependent mutation rates at which resistant cells emerge. The relationship between the serum drug concentration and the rate at which resistance mutations arise can lead to non-intuitive results about the best dose administration strategies to prevent or delay the emergence of resistance. Methods We used mathematical modeling, available clinical trial data, and different considerations of the relationship between mutation rate and drug concentration to predict the effectiveness of different dosing strategies. Results We designed several distinct measures to interrogate the effects of different treatment dosing strategies and found that a low-dose continuous strategy coupled with high-dose pulses leads to the maximal delay until clinically observable resistance. Furthermore, the response to treatment is robust against different assumptions of the mutation rate as a function of drug concentration. Conclusions For new and existing targeted drugs, our methodology can be employed to compare the effectiveness of different dose administration schedules and investigate the influence of changing mutation rates on outcomes. PMID:26536620

  18. Similar relative mutation rates in the three genetic compartments of Mesostigma and Chlamydomonas.

    PubMed

    Hua, Jimeng; Smith, David Roy; Borza, Tudor; Lee, Robert W

    2012-01-01

    Levels of nucleotide substitution at silent sites in organelle versus nuclear DNAs have been used to estimate relative mutation rates among these compartments and explain lineage-specific features of genome evolution. Synonymous substitution divergence values in animals suggest that the rate of mutation in the mitochondrial DNA is 10-50 times higher than that of the nuclear DNA, whereas overall data for most seed plants support relative mutation rates in mitochondrial, plastid, and nuclear DNAs of 1:3:10. Little is known about relative mutation rates in green algae, as substitution rate data is limited to only the mitochondrial and nuclear genomes of the chlorophyte Chlamydomonas. Here, we measure silent-site substitution rates in the plastid DNA of Chlamydomonas and the three genetic compartments of the streptophyte green alga Mesostigma. In contrast to the situation in animals and land plants, our results support similar relative mutation rates among the three genetic compartments of both Chlamydomonas and Mesostigma. These data are discussed in relation to published intra-species genetic diversity data for the three genetic compartments of Chlamydomonas and are ultimately used to address contemporary hypotheses on the organelle genome evolution. To guide future work, we describe evolutionary divergence data of all publically available Mesostigma viride strains and identify, for the first time, three distinct lineages of Mesostigma. PMID:21621456

  19. Mutations that Cause Human Disease: A Computational/Experimental Approach

    SciTech Connect

    Beernink, P; Barsky, D; Pesavento, B

    2006-01-11

    International genome sequencing projects have produced billions of nucleotides (letters) of DNA sequence data, including the complete genome sequences of 74 organisms. These genome sequences have created many new scientific opportunities, including the ability to identify sequence variations among individuals within a species. These genetic differences, which are known as single nucleotide polymorphisms (SNPs), are particularly important in understanding the genetic basis for disease susceptibility. Since the report of the complete human genome sequence, over two million human SNPs have been identified, including a large-scale comparison of an entire chromosome from twenty individuals. Of the protein coding SNPs (cSNPs), approximately half leads to a single amino acid change in the encoded protein (non-synonymous coding SNPs). Most of these changes are functionally silent, while the remainder negatively impact the protein and sometimes cause human disease. To date, over 550 SNPs have been found to cause single locus (monogenic) diseases and many others have been associated with polygenic diseases. SNPs have been linked to specific human diseases, including late-onset Parkinson disease, autism, rheumatoid arthritis and cancer. The ability to predict accurately the effects of these SNPs on protein function would represent a major advance toward understanding these diseases. To date several attempts have been made toward predicting the effects of such mutations. The most successful of these is a computational approach called ''Sorting Intolerant From Tolerant'' (SIFT). This method uses sequence conservation among many similar proteins to predict which residues in a protein are functionally important. However, this method suffers from several limitations. First, a query sequence must have a sufficient number of relatives to infer sequence conservation. Second, this method does not make use of or provide any information on protein structure, which can be used to

  20. 5-Azacytidine and RNA secondary structure increase the retrovirus mutation rate.

    PubMed Central

    Pathak, V K; Temin, H M

    1992-01-01

    A broad spectrum of mutations occurs at a high rate during a single round of retrovirus replication (V.K. Pathak and H. M. Temin, Proc. Natl. Acad. Sci. USA 87:6019-6023, 1990). We have now determined that this high rate of spontaneous mutation can be further increased by 5-azacytidine (AZC) treatment or by regions of potential RNA secondary structure. We found a 13-fold increase in the mutation rate after AZC treatment of retrovirus-producing cells and target cells. The AZC-induced substitutions were located at the same target sites as previously identified spontaneous substitutions. The concordance of the AZC-induced and spontaneous substitutions indicates the presence of reverse transcription "pause sites," where the growing point is error prone. An analysis of nucleotides that neighbored substitutions revealed that transversions occur primarily by transient template misalignment, whereas transitions occur primarily by misincorporation. We also introduced a 34-bp potential stem-loop structure as an in-frame insertion within a lacZ alpha gene that was inserted in the long terminal repeat (LTR) U3 region and determined whether this potential secondary structure increased the rate of retrovirus mutations. We found a threefold increase in the retrovirus mutation rate. Fifty-seven of 96 mutations were deletions associated with the potential stem-loop. We also determined that these deletion mutations occurred primarily during minus-strand DNA synthesis by comparing the frequencies of mutations in recovered provirus plasmids containing both LTRs and in provirus plasmids containing only one LTR. PMID:1373201

  1. The repeatability of genome-wide mutation rate and spectrum estimates.

    PubMed

    Behringer, Megan G; Hall, David W

    2016-08-01

    Over the last decade, mutation studies have grown in popularity due to the affordability and accessibility of whole genome sequencing. As the number of species in which spontaneous mutation has been directly estimated approaches 20 across two domains of life, questions arise over the repeatability of results in such experiments. Five species were identified in which duplicate mutation studies have been performed. Across these studies the difference in estimated spontaneous mutation rate is at most, weakly significant (p < 0.01). However, a highly significant (p < 10(-5)), threefold difference in the rate of insertions/deletions (indels) exists between two recent studies in Schizosaccharomyces pombe. Upon investigation of the ancestral genome sequence for both studies, a possible anti-mutator allele was identified. The observed variation in indel rate may imply that the use of indel markers, such as microsatellites, for the investigation of genetic diversity within and among populations may be inappropriate because of the assumption of uniform mutation rate within a species. PMID:26919990

  2. Mutation rate at 17 Y-STR loci in "Father/Son" pairs from moroccan population.

    PubMed

    Laouina, Adil; Nadifi, Sellama; Boulouiz, Redouane; El Arji, Marzouk; Talbi, Jalal; El Houate, Brahim; Yahia, Hakima; Chbel, Faiza

    2013-09-01

    Precise knowledge of mutation rate at Y-STRs loci is essential for a correct evaluation of typing results in forensic casework and specially kinship genetic studies. In this study, we have examined 252 confirmed and unrelated father/son sample pairs from Moroccan population using the 17 Y-STR markers DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385a, DYS385b, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, and Y-GATA-H4 of the AmpFlSTR Yfiler™ kit used in routine casework. We observed a total of 15 single repeat mutations between fathers and sons as mutational events. Nine mutations resulted in the gain of a repeat in the son and six resulted in a loss of a repeat. The average mutation rate in the studied sample is 3.5×10(-3) (95% CI 2-5.8×10(-3)). Furthermore, Y-STRs mutation occurrence seems to be 4 times more frequent than autosomal STRs mutation in this sample. PMID:23623014

  3. Somatic deleterious mutation rate in a woody plant: estimation from phenotypic data

    PubMed Central

    Bobiwash, K; Schultz, S T; Schoen, D J

    2013-01-01

    We conducted controlled crosses in populations of the long-lived clonal shrub, Vaccinium angustifolium (lowbush blueberry) to estimate inbreeding depression and mutation parameters associated with somatic deleterious mutation. Inbreeding depression level was high, with many plants failing to set fruit after self-pollination. We also compared fruit set from autogamous pollinations (pollen collected from within the same inflorescence) with fruit set from geitonogamous pollinations (pollen collected from the same plant but from inflorescences separated by several meters of branch growth). The difference between geitonogamous versus autogamous fitness within single plants is referred to as ‘autogamy depression' (AD). AD can be caused by somatic deleterious mutation. AD was significantly different from zero for fruit set. We developed a maximum-likelihood procedure to estimate somatic mutation parameters from AD, and applied it to geitonogamous and autogamous fruit set data from this experiment. We infer that, on average, approximately three sublethal, partially dominant somatic mutations exist within the crowns of the plants studied. We conclude that somatic mutation in this woody plant results in an overall genomic deleterious mutation rate that exceeds the rate measured to date for annual plants. Some implications of this result for evolutionary biology and agriculture are discussed. PMID:23778990

  4. Human-Rating Implementation for Commercial Space

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Kubicek, Kate; Berdich, Debbie

    2010-01-01

    This slide presentation reviews the appropriate NASA standards and Health and Medical Technical Authority (HMTA) standards for human rated spacecraft developed by commercial vendors. Included are the HMTA requirements for the Constellation Program (CxP)

  5. Functional modules, mutational load and human genetic disease

    PubMed Central

    Zaghloul, Norann A.; Katsanis, Nicholas

    2013-01-01

    The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically-relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. PMID:20226561

  6. Mutational analysis of the human mitochondrial genome branches into the realm of bacterial genetics

    SciTech Connect

    Howell, N.

    1996-10-01

    This is shaping up as a vintage year for studies of the genetics and evolution of the human mitochondrial genome (mtDNA). In a theoretical and experimental tour de force, Shenkar et al. (1996), on pages 772-780 of this issue, derive the mutation rate of the 4,977-bp (or {open_quotes}common{close_quotes}) deletion in the human mtDNA through refinement and extension of fluctuation analysis, a technique that was first used >50 years ago. Shenkar et al., in essence, have solved or bypassed many of the difficulties that are inherent in the application of fluctuation analysis to human mitochondrial gene mutations. Their study is important for two principal reasons. In the first place, high levels of this deletion cause a variety of pathological disorders, including Kearns-Sayre syndrome and chronic progressive external ophthalmoplegia. Their current report, therefore, is a major step in the elucidation of the molecular genetic pathogenesis of this group of mitochondrial disorders. For example, it now may be feasible to analyze the effects of selection on transmission and segregation of this deletion and, perhaps, other mtDNA mutations as well. Second, and at a broader level, the approach of Shenkar et al. should find widespread applicability to the study of other mtDNA mutations. It has been recognized for several years that mammalian mtDNA mutates much more rapidly than nuclear DNA, a phenomenon with potentially profound evolutionary implications. It is exciting and useful, both experimentally and theoretically, that this {open_quotes}old{close_quotes} approach can be used for {open_quotes}new{close_quotes} applications. 56 refs.

  7. The evolution of mutation rate in an antagonistic coevolutionary model with maternal transmission of parasites

    PubMed Central

    Greenspoon, Philip B.; M'Gonigle, Leithen K.

    2013-01-01

    By constantly selecting for novel genotypes, coevolution between hosts and parasites can favour elevated mutation rates. Models of this process typically assume random encounters. However, offspring are often more likely to encounter their mother's parasites. Because parents and offspring are genetically similar, they may be susceptible to the same parasite strains and thus, in hosts, maternal transmission should select for mechanisms that decrease intergenerational genetic similarity. In parasites, however, maternal transmission should select for genetic similarity. We develop and analyse a model of host and parasite mutation rate evolution when parasites are maternally inherited. In hosts, we find that maternal transmission has two opposing effects. First, it eliminates coevolutionary cycles that previous work shows select for higher mutation. Second, it independently selects for higher mutation rates, because offspring that differ from their mothers are more likely to avoid infection. In parasites, however, the two effects of maternal transmission act in the same direction. As for hosts, maternal transmission eliminates coevolutionary cycles, thereby reducing selection for increased mutation. Unlike for hosts, however, maternal transmission additionally selects against higher mutation by favouring parasite offspring that are the same as their mothers. PMID:23760645

  8. Human embryonic stem cells carrying mutations for severe genetic disorders.

    PubMed

    Frumkin, Tsvia; Malcov, Mira; Telias, Michael; Gold, Veronica; Schwartz, Tamar; Azem, Foad; Amit, Ami; Yaron, Yuval; Ben-Yosef, Dalit

    2010-04-01

    Human embryonic stem cells (HESCs) carrying specific mutations potentially provide a valuable tool for studying genetic disorders in humans. One preferable approach for obtaining these cell lines is by deriving them from affected preimplantation genetically diagnosed embryos. These unique cells are especially important for modeling human genetic disorders for which there are no adequate research models. They can be further used to gain new insights into developmentally regulated events that occur during human embryo development and that are responsible for the manifestation of genetically inherited disorders. They also have great value for the exploration of new therapeutic protocols, including gene-therapy-based treatments and disease-oriented drug screening and discovery. Here, we report the establishment of 15 different mutant human embryonic stem cell lines derived from genetically affected embryos, all donated by couples undergoing preimplantation genetic diagnosis in our in vitro fertilization unit. For further information regarding access to HESC lines from our repository, for research purposes, please email dalitb@tasmc.health.gov.il. PMID:20186514

  9. Radiation-quality dependent cellular response in mutation induction in normal human cells.

    PubMed

    Suzuki, Masao; Tsuruoka, Chizuru; Uchihori, Yukio; Kitamura, Hisashi; Liu, Cui Hua

    2009-09-01

    We studied cellular responses in normal human fibroblasts induced with low-dose (rate) or low-fluence irradiations of different radiation types, such as gamma rays, neutrons and high linear energy transfer (LET) heavy ions. The cells were pretreated with low-dose (rate) or low-fluence irradiations (approximately 1 mGy/7-8 h) of 137Cs gamma rays, 241Am-Be neutrons, helium, carbon and iron ions before irradiations with an X-ray challenging dose (1.5 Gy). Helium (LET = 2.3 keV/microm), carbon (LET = 13.3 keV/microm) and iron (LET = 200 keV/microm) ions were produced by the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. No difference in cell-killing effect, measured by a colony forming assay, was observed among the pretreatment with different radiation types. In mutation induction, which was detected in the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus to measure 6-thioguanine resistant clones, there was no difference in mutation frequency induced by the X-ray challenging dose between unpretreated and gamma-ray pretreated cells. In the case of the pretreatment of heavy ions, X-ray-induced mutation was around 1.8 times higher in helium-ion pretreated and 4.0 times higher in carbon-ion pretreated cells than in unpretreated cells (X-ray challenging dose alone). However, the mutation frequency in cells pretreated with iron ions was the same level as either unpretreated or gamma-ray pretreated cells. In contrast, it was reduced at 0.15 times in cells pretreated with neutrons when compared to unpretreated cells. The results show that cellular responses caused by the influence of hprt mutation induced in cells pretreated with low-dose-rate or low-fluence irradiations of different radiation types were radiation-quality dependent manner. PMID:19680011

  10. Optimal response rates in humans and rats

    PubMed Central

    Freestone, David M.; Balcı, Fuat; Simen, Patrick; Church, Russell M.

    2015-01-01

    The analysis of response rates has been highly influential in psychology, giving rise to many prominent theories of learning. There is, however, growing interest in explaining response rates, not as a global response to associations or value, but as a decision about how to space responses in time. Recently, researchers have shown that humans and mice can time a single response optimally, i.e., in a way that maximizes reward. Here, we use the well-established DRL timing task to show that humans and rats come close to optimizing reinforcement rate, but respond systematically faster than they should. PMID:25706545

  11. Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development.

    PubMed

    Tischfield, Max A; Bosley, Thomas M; Salih, Mustafa A M; Alorainy, Ibrahim A; Sener, Emin C; Nester, Michael J; Oystreck, Darren T; Chan, Wai-Man; Andrews, Caroline; Erickson, Robert P; Engle, Elizabeth C

    2005-10-01

    We identified homozygous truncating mutations in HOXA1 in three genetically isolated human populations. The resulting phenotype includes horizontal gaze abnormalities, deafness, facial weakness, hypoventilation, vascular malformations of the internal carotid arteries and cardiac outflow tract, mental retardation and autism spectrum disorder. This is the first report to our knowledge of viable homozygous truncating mutations in any human HOX gene and of a mendelian disorder resulting from mutations in a human HOX gene critical for development of the central nervous system. PMID:16155570

  12. Numerical solution of the Penna model of biological aging with age-modified mutation rate.

    PubMed

    Magdoń-Maksymowicz, M S; Maksymowicz, A Z

    2009-06-01

    In this paper we present results of numerical calculation of the Penna bit-string model of biological aging, modified for the case of a -dependent mutation rate m(a), where a is the parent's age. The mutation rate m(a) is the probability per bit of an extra bad mutation introduced in offspring inherited genome. We assume that m(a) increases with age a. As compared with the reference case of the standard Penna model based on a constant mutation rate m , the dynamics of the population growth shows distinct changes in age distribution of the population. Here we concentrate on mortality q(a), a fraction of items eliminated from the population when we go from age (a) to (a+1) in simulated transition from time (t) to next time (t+1). The experimentally observed q(a) dependence essentially follows the Gompertz exponential law for a above the minimum reproduction age. Deviation from the Gompertz law is however observed for the very old items, close to the maximal age. This effect may also result from an increase in mutation rate m with age a discussed in this paper. The numerical calculations are based on analytical solution of the Penna model, presented in a series of papers by Coe et al. [J. B. Coe, Y. Mao, and M. E. Cates, Phys. Rev. Lett. 89, 288103 (2002)]. Results of the numerical calculations are supported by the data obtained from computer simulation based on the solution by Coe et al. PMID:19658536

  13. High mutational rates of large-scale duplication and deletion in Daphnia pulex.

    PubMed

    Keith, Nathan; Tucker, Abraham E; Jackson, Craig E; Sung, Way; Lucas Lledó, José Ignacio; Schrider, Daniel R; Schaack, Sarah; Dudycha, Jeffry L; Ackerman, Matthew; Younge, Andrew J; Shaw, Joseph R; Lynch, Michael

    2016-01-01

    Knowledge of the genome-wide rate and spectrum of mutations is necessary to understand the origin of disease and the genetic variation driving all evolutionary processes. Here, we provide a genome-wide analysis of the rate and spectrum of mutations obtained in two Daphnia pulex genotypes via separate mutation-accumulation (MA) experiments. Unlike most MA studies that utilize haploid, homozygous, or self-fertilizing lines, D. pulex can be propagated ameiotically while maintaining a naturally heterozygous, diploid genome, allowing the capture of the full spectrum of genomic changes that arise in a heterozygous state. While base-substitution mutation rates are similar to those in other multicellular eukaryotes (about 4 × 10(-9) per site per generation), we find that the rates of large-scale (>100 kb) de novo copy-number variants (CNVs) are significantly elevated relative to those seen in previous MA studies. The heterozygosity maintained in this experiment allowed for estimates of gene-conversion processes. While most of the conversion tract lengths we report are similar to those generated by meiotic processes, we also find larger tract lengths that are indicative of mitotic processes. Comparison of MA lines to natural isolates reveals that a majority of large-scale CNVs in natural populations are removed by purifying selection. The mutations observed here share similarities with disease-causing, complex, large-scale CNVs, thereby demonstrating that MA studies in D. pulex serve as a system for studying the processes leading to such alterations. PMID:26518480

  14. Frequency of private electrophoretic variants and indirect estimates of mutation rate in Papua New Guinea.

    PubMed Central

    Bhatia, K K; Blake, N M; Serjeantson, S W; Kirk, R L

    1981-01-01

    Data on rare and private electrophoretic variants have been used to estimate mutation rates for populations belonging to 55 language groups in Papua New Guinea. Three different methods yield values of 1.42 x 10(-6), 1.40 x 10(-6), and 5.58 x 10(-6)/locus per generation. The estimates for three islands populations off the north coast of New Guinea--Manus, Karkar, and Siassi--are much lower. The variability in mutation rates estimated from rare electrophoretic variants as a function of population size is discussed. The mean mutation rate in Papua New Guinea is less than half the estimates obtained for Australian Aborigines and Amerindians. PMID:7468589

  15. No evidence of increased mutation rates at microsatellite loci in offspring of A-bomb survivors.

    PubMed

    Kodaira, M; Ryo, H; Kamada, N; Furukawa, K; Takahashi, N; Nakajima, H; Nomura, T; Nakamura, N

    2010-02-01

    To evaluate the genetic effects of A-bomb radiation, we examined mutations at 40 microsatellite loci in exposed families (father-mother-offspring, mostly uni-parental exposures), which consisted of 66 offspring having a mean paternal dose of 1.87 Gy and a mean maternal dose of 1.27 Gy. The control families consisted of 63 offspring whose parents either were exposed to low doses of radiation (< 0.01 Gy) or were not in the cities of Hiroshima or Nagasaki at the time of the bombs. We found seven mutations in the exposed alleles (7/2,789; mutation rate 0.25 x 10(-2)/locus/generation) and 26 in the unexposed alleles (26/7,465; 0.35 x 10(-2)/locus/generation), which does not indicate an effect from parental exposure to radiation. Although we could not assign the parental origins of four mutations, the conclusion may hold since even if we assume that these four mutations had occurred in the exposed alleles, the estimated mean mutation rate would be 0.39 x 10(-2) in the exposed group [(7 + 4)/2,789)], which is slightly higher than 0.35 x 10(-2) in the control group, but the difference is not statistically significant. PMID:20095853

  16. De novo rearrangements found in 2% of index patients with spinal muscular atrophy: mutational mechanisms, parental origin, mutation rate, and implications for genetic counseling.

    PubMed Central

    Wirth, B; Schmidt, T; Hahnen, E; Rudnik-Schöneborn, S; Krawczak, M; Müller-Myhsok, B; Schönling, J; Zerres, K

    1997-01-01

    Spinal muscular atrophy (SMA) is a relatively common autosomal recessive neuromuscular disorder. We have identified de novo rearrangements in 7 (approximately 2%) index patients from 340 informative SMA families. In each, the rearrangements resulted in the absence of the telomeric copy of the survival motor neuron (SMN) gene (telSMN), in two cases accompanied by the loss of the neuronal apoptosis-inhibitory protein gene . Haplotype analysis revealed unequal recombination in four cases, with loss of markers Ag1-CA and C212, which are near the 5' ends of the SMN genes. In one case, an interchromosomal rearrangement involving both the SMN genes and a regrouping of Ag1-CA and C212 alleles must have occurred, suggesting either interchromosomal gene conversion or double recombination. In two cases, no such rearrangement was observed, but loss of telSMN plus Ag1-CA and C212 alleles in one case suggested intrachromosomal deletion or gene conversion. In six of the seven cases, the de novo rearrangement had occurred during paternal meiosis. Direct detection of de novo SMA mutations by molecular genetic means has allowed us to estimate for the first time the mutation rate for a recessive disorder in humans. The sex-averaged rate of 1.1 x 10(-4), arrived at in a proband-based approach, compares well with the rate of 0.9 x 10(-4) expected under a mutation-selection equilibrium for SMA. These findings have important implications for genetic counseling and prenatal diagnosis in that they emphasize the relevance of indirect genotype analysis in combination with direct SMN-gene deletion testing in SMA families. PMID:9345102

  17. De novo rearrangements found in 2% of index patients with spinal muscular atrophy: mutational mechanisms, parental origin, mutation rate, and implications for genetic counseling.

    PubMed

    Wirth, B; Schmidt, T; Hahnen, E; Rudnik-Schöneborn, S; Krawczak, M; Müller-Myhsok, B; Schönling, J; Zerres, K

    1997-11-01

    Spinal muscular atrophy (SMA) is a relatively common autosomal recessive neuromuscular disorder. We have identified de novo rearrangements in 7 (approximately 2%) index patients from 340 informative SMA families. In each, the rearrangements resulted in the absence of the telomeric copy of the survival motor neuron (SMN) gene (telSMN), in two cases accompanied by the loss of the neuronal apoptosis-inhibitory protein gene . Haplotype analysis revealed unequal recombination in four cases, with loss of markers Ag1-CA and C212, which are near the 5' ends of the SMN genes. In one case, an interchromosomal rearrangement involving both the SMN genes and a regrouping of Ag1-CA and C212 alleles must have occurred, suggesting either interchromosomal gene conversion or double recombination. In two cases, no such rearrangement was observed, but loss of telSMN plus Ag1-CA and C212 alleles in one case suggested intrachromosomal deletion or gene conversion. In six of the seven cases, the de novo rearrangement had occurred during paternal meiosis. Direct detection of de novo SMA mutations by molecular genetic means has allowed us to estimate for the first time the mutation rate for a recessive disorder in humans. The sex-averaged rate of 1.1 x 10(-4), arrived at in a proband-based approach, compares well with the rate of 0.9 x 10(-4) expected under a mutation-selection equilibrium for SMA. These findings have important implications for genetic counseling and prenatal diagnosis in that they emphasize the relevance of indirect genotype analysis in combination with direct SMN-gene deletion testing in SMA families. PMID:9345102

  18. Human Rating the Orion Parachute System

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo A.; Fisher, Timothy E.; Evans, Carol T.; Stewart, Christine E.

    2011-01-01

    Human rating begins with design. Converging on the requirements and identifying the risks as early as possible in the design process is essential. Understanding of the interaction between the recovery system and the spacecraft will in large part dictate the achievable reliability of the final design. Component and complete system full-scale flight testing is critical to assure a realistic evaluation of the performance and reliability of the parachute system. However, because testing is so often difficult and expensive, comprehensive analysis of test results and correlation to accurate modeling completes the human rating process. The National Aeronautics and Space Administration (NASA) Orion program uses parachutes to stabilize and decelerate the Crew Exploration Vehicle (CEV) spacecraft during subsonic flight in order to deliver a safe water landing. This paper describes the approach that CEV Parachute Assembly System (CPAS) will take to human rate the parachute recovery system for the CEV.

  19. DNA fingerprinting reveals elevated mutation rates in herring gulls inhabiting a genotoxically contaminated site

    SciTech Connect

    Yauk, C.L.; Quinn, J.S.

    1995-12-31

    The authors used multi-locus DNA fingerprinting to examine families of herring gulls (Larus argentatus) from a genotoxically contaminated site (Hamilton Harbour) and from a pristine location (Kent Island, Bay of Fundy) to show significant differences in mutation rates between the locations. Overall the authors identified 17 mutant bands from 15 individuals of the 35 examined from Hamilton Harbour, and 7 mutant fragments from 7 individuals, of the 43 examined from Kent Island; a mutation frequency of 0.429 per nestling for Hamilton Harbour and 0.163 for Kent Island. The total number of individuals with mutant bands was significantly higher at Hamilton Harbour than at Kent Island (X{sup 2}=6.734; df = 1; P < 0.01). Ongoing analysis of other less contaminated sites also reveals lower mutation rates than those seen in Hamilton Harbour. With multi-locus DNA fingerprinting many regions of the genome can be surveyed simultaneously. The tandemly repeated arrays of nucleotides examined with DNA fingerprinting are known to have elevated rates of mutation. Furthermore, the mutations seen with DNA fingerprinting are predominantly heritable. Other biomarkers currently used in situ are not able to monitor direct and heritable DNA mutation, or measure biological endpoints that frequently result in spontaneous abortion creating difficulty in observing significantly elevated levels in viable offspring. The authors suggest that multilocus DNA fingerprinting can be used as a biomarker to identify potentially heritable risks before the onset of other types of ecological damage. This approach provides a direct measure of mutation in situ and in vivo in a vertebrate species under ambient conditions.

  20. Recombinant human parainfluenza virus type 2 vaccine candidates containing a 3′ genomic promoter mutation and L polymerase mutations are attenuated and protective in non-human primates

    PubMed Central

    Nolan, Sheila M.; Skiadopoulos, Mario H.; Bradley, Konrad; Kim, Olivia S.; Bier, Stacia; Amaro-Carambot, Emerito; Surman, Sonja R.; Davis, Stephanie; St. Claire, Marisa; Elkins, Randy; Collins, Peter L.; Murphy, Brian R.; Schaap-Nutt, Anne

    2007-01-01

    Previously, we identified several attenuating mutations in the L polymerase protein of human parainfluenza virus type 2 (HPIV2) and genetically stabilized those mutations using reverse genetics (Nolan et al., 2005). Here we describe the discovery of an attenuating mutation at nucleotide 15 (15T→C) in the 3′ genomic promoter that was also present in the previously characterized mutants. We evaluated the properties of this promoter mutation alone and in various combinations with the L polymerase mutations. Amino acid substitutions at L protein positions 460 (460A or 460P) or 948 (948L), or deletion of amino acids 1724 and 1725 (Δ1724), each conferred a temperature sensitivity (ts) phenotype whereas the 15T→C mutation did not. The 460A and 948L mutations each contributed to restricted replication in the lower respiratory tract of African green monkeys, but the Δ1724 mutation increased attenuation only in certain combinations with other mutations. We constructed two highly attenuated viruses, rV94(15C)/460A/948L and rV94(15C)/948L/Δ1724, that were immunogenic and protective against challenge with wild-type HPIV2 in African green monkeys and, therefore, appear to be suitable for evaluation in humans. PMID:17658669

  1. Correcting human mitochondrial mutations with targeted RNA import.

    PubMed

    Wang, Geng; Shimada, Eriko; Zhang, Jin; Hong, Jason S; Smith, Geoffrey M; Teitell, Michael A; Koehler, Carla M

    2012-03-27

    Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects, and aging. An efficient and simple mechanism for neutralizing deleterious mitochondrial DNA (mtDNA) alterations has unfortunately remained elusive. Here, we report that a 20-ribonucleotide stem-loop sequence from the H1 RNA, the RNA component of the human RNase P enzyme, appended to a nonimported RNA directs the import of the resultant RNA fusion transcript into human mitochondria. The methodology is effective for both noncoding RNAs, such as tRNAs, and mRNAs. The RNA import component, polynucleotide phosphorylase (PNPASE), facilitates transfer of this hybrid RNA into the mitochondrial matrix. In addition, nucleus-encoded mRNAs for mitochondrial proteins, such as the mRNA of human mitochondrial ribosomal protein S12 (MRPS12), contain regulatory sequences in their 3'-untranslated region (UTR) that confers localization to the mitochondrial outer membrane, which is postulated to aid in protein translocation after translation. We show that for some mitochondrial-encoded transcripts, such as COX2, a 3'-UTR localization sequence is not required for mRNA import, whereas for corrective mitochondrial-encoded tRNAs, appending the 3'-UTR localization sequence was essential for efficient fusion-transcript translocation into mitochondria. In vivo, functional defects in mitochondrial RNA (mtRNA) translation and cell respiration were reversed in two human disease lines. Thus, this study indicates that a wide range of RNAs can be targeted to mitochondria by appending a targeting sequence that interacts with PNPASE, with or without a mitochondrial localization sequence, providing an exciting, general approach for overcoming mitochondrial genetic disorders. PMID:22411789

  2. Strategy abundance in 2 × 2 games for arbitrary mutation rates

    PubMed Central

    Antal, Tibor; Nowak, Martin A.; Traulsen, Arne

    2009-01-01

    We study evolutionary game dynamics in a well-mixed populations of finite size, N. A well-mixed population means that any two individuals are equally likely to interact. In particular we consider the average abundances of two strategies, A and B, under mutation and selection. The game dynamical interaction between the two strategies is given by the 2 × 2 payoff matrix (abcd). It has previously been shown that A is more abundant than B, if a(N − 2) + bN > cN + d(N − 2). This result has been derived for particular stochastic processes that operate either in the limit of asymptotically small mutation rates or in the limit of weak selection. Here we show that this result holds in fact for a wide class of stochastic birth-death processes for arbitrary mutation rate and for any intensity of selection. PMID:19111558

  3. cis-Regulatory Mutations Are a Genetic Cause of Human Limb Malformations

    PubMed Central

    VanderMeer, Julia E.; Ahituv, Nadav

    2011-01-01

    The underlying mutations that cause human limb malformations are often difficult to determine, particularly for limb malformations that occur as isolated traits. Evidence from a variety of studies shows that cis-regulatory mutations, specifically in enhancers, can lead to some of these isolated limb malformations. Here, we provide a review of human limb malformations that have been shown to be caused by enhancer mutations and propose that cis-regulatory mutations will continue to be identified as the cause of additional human malformations as our understanding of regulatory sequences improves. PMID:21509892

  4. Bottleneck Effect on Evolutionary Rate in the Nearly Neutral Mutation Model

    PubMed Central

    Araki, H.; Tachida, H.

    1997-01-01

    Variances of evolutionary rates among lineages in some proteins are larger than those expected from simple Poisson processes. This phenomenon is called overdispersion of the molecular clock. If population size N is constant, the overdispersion is observed only in a limited range of 2Nσ under the nearly neutral mutation model, where σ represents the standard deviation of selection coefficients of new mutants. In this paper, we investigated effects of changing population size on the evolutionary rate by computer simulations assuming the nearly neutral mutation model. The size was changed cyclically between two numbers, N(1) and N(2) (N(1) > N(2)), in the simulations. The overdispersion is observed if 2N(2)σ is less than two and the state of reduced size (bottleneck state) continues for more than ~0.1/u generations, where u is the mutation rate. The overdispersion results mainly because the average fitnesses of only a portion of populations go down when the population size is reduced and only in these populations subsequent advantageous substitutions occur after the population size becomes large. Since the fitness reduction after the bottleneck is stochastic, acceleration of the evolutionary rate does not necessarily occur uniformly among loci. From these results, we argue that the nearly neutral mutation model is a candidate mechanism to explain the overdispersed molecular clock. PMID:9335622

  5. Cellular Defense Enzyme Drives Exceptionally High Rate of Mutation in HIV.

    PubMed

    Robinson, Richard

    2015-09-01

    HIV-1 is already known to have an extremely fast mutation rate, but a new study shows it to be more than two orders of magnitude higher than previously believed, and that this is largely due to host cytidine deaminases. Read the Research Article. PMID:26375682

  6. Understanding differences between phylogenetic and pedigree-derived mtDNA mutation rate: a model using families from the Azores Islands (Portugal).

    PubMed

    Santos, Cristina; Montiel, Rafael; Sierra, Blanca; Bettencourt, Conceição; Fernandez, Elisabet; Alvarez, Luis; Lima, Manuela; Abade, Augusto; Aluja, M Pilar

    2005-06-01

    We analyzed the control region of the mitochondrial DNA (mtDNA) from maternally related individuals originating from the Azores Islands (Portugal) in order to estimate the mutation rate of mtDNA and to gain insights into the process by which a new mutation arises and segregates into heteroplasmy. Length and/or point heteroplasmies were found at least in one individual of 72% of the studied families. Eleven new point substitutions were found, all of them in heteroplasmy, from which five appear to be somatic mutations and six can be considered germinal, evidencing the high frequency of somatic mutations in mtDNA in healthy young individuals. Different values of the mutation rate according to different assumptions were estimated. When considering all the germinal mutations, the value of the mutation rate obtained is one of the highest reported so far in family studies. However, when corrected for gender (assuming that the mutations present in men have the same evolutionary weight of somatic mutations because they will inevitably be lost) and for the probability of intraindividual fixation, the value for the mutation rate obtained for HVRI and HVRII (0.2415 mutations/site/Myr) was in the upper end of the values provided by phylogenetic estimations. These results indicate that the discrepancy, that has been reported previously, between the human mtDNA mutation rates observed along evolutionary timescales and the estimations obtained using family pedigrees can be minimized when corrections for gender proportions in newborn individuals and for the probability of intraindividual fixation are introduced. The analyses performed support the hypothesis that (1) in a constant, tight bottleneck genetic drift alone can explain different patterns of heteroplasmy segregation and (2) in neutral conditions, the destiny of a new mutation is strictly related to the initial proportion of the new variant. Another important point arising from the data obtained is that, even in the absence

  7. Characterization of spectrum, de novo rate and genotype-phenotype correlation of dominant GJB2 mutations in Chinese hans.

    PubMed

    Pang, Xiuhong; Chai, Yongchuan; Sun, Lianhua; Chen, Dongye; Chen, Ying; Zhang, Zhihua; Wu, Hao; Yang, Tao

    2014-01-01

    Dominant mutations in GJB2 may lead to various degrees of sensorineural hearing impairment and/or hyperproliferative epidermal disorders. So far studies of dominant GJB2 mutations were mostly limited to case reports of individual patients and families. In this study, we identified 7 families, 11 subjects with dominant GJB2 mutations by sequencing of GJB2 in 2168 Chinese Han probands with sensorineural hearing impairment and characterized the associated spectrum, de novo rate and genotype-phenotype correlation. We identified p.R75Q, p.R75W and p.R184Q as the most frequent dominant GJB2 mutations among Chinese Hans, which had a very high de novo rate (71% of probands). A majority (10/11) of subjects carrying dominant GJB2 mutations exhibited palmoplantar keratoderma in addition to hearing impairment. In two families segregated with additional c.235delC or p.V37I mutations of GJB2, family members with the compound heterozygous mutations exhibited more severe phenotype than those with single dominant GJB2 mutation. Our study suggested that the high de novo mutation rate gives rise to a significant portion of dominant GJB2 mutations. The severity of the hearing and epidermal phenotypes associated with dominant GJB2 mutations may be modified by additional recessive mutations of GJB2. PMID:24945352

  8. Mutation rates and evolution of multiple coding in RNA-based protocells.

    PubMed

    de Boer, Folkert K; Hogeweg, Paulien

    2014-12-01

    RNA has a myriad of biological roles in contemporary life. We use the RNA paradigm for genotype-phenotype mappings to study the evolution of multiple coding in dependence to mutation rates. We study three different one-to-many genotype-phenotype mappings which have the potential to encode the information for multiple functions on a single sequence. These three different maps are (i) cofolding, where two sequences can bind and "cofold," (ii) suboptimal folding, where the alternative foldings within a certain range of the native state of sequences are considered, and (iii) adapter-based folding, in which protocells can evolve adapter-mediated alternative foldings. We study how protocells with a set of sequences can code for a set of predefined functional structures, while avoiding all other structures, which are considered to be misfoldings. Note that such misfolded structures are far more prevalent than functional ones. Our results highlight the flexibility of the RNA sequence to secondary structure mapping and the power of evolution to shape the genotype-phenotype mapping. We show that high fitness can be achieved even at high mutation rates. Mutation rates affect genome size, but differently depending on which folding method is used. We observe that cofolding limits the possibility to avoid misfolded structures and that adapters are always beneficial for fitness, but even more beneficial at low mutation rates. In all cases, the evolution procedure selects for molecules that can form additional structures. Our results indicate that inherent properties of RNA molecules and their interactions allow the evolution of complexity even at high mutation rates. PMID:25280530

  9. Somatic human ZBTB7A zinc finger mutations promote cancer progression.

    PubMed

    Liu, X-S; Liu, Z; Gerarduzzi, C; Choi, D E; Ganapathy, S; Pandolfi, P P; Yuan, Z-M

    2016-06-01

    We recently reported that ZBTB7A is a bona fide transcription repressor of key glycolytic genes and its downregulation in human cancer contributes to tumor metabolism. As reduced expression of ZBTB7A is found only in a subset of human cancers, we explored alternative mechanisms of its inactivation by mining human cancer genome databases. We discovered recurrent somatic mutations of ZBTB7A in multiple types of human cancers with a marked enrichment of mutations within the zinc finger domain. Functional characterization of the mutants demonstrated that mutations within the zinc finger region of ZBTB7A invariably resulted in loss of function. As a consequence, the glycolytic genes were markedly upregulated in cancer cells harboring ZBTB7A zinc finger mutation, leading to increased glycolysis and proliferation. Our study uncovers the loss-of-function mutation in ZBTB7A as a novel mechanism causing elevated glycolysis in human cancer, which carries important therapeutic implication. PMID:26455326

  10. Prediction of change in protein unfolding rates upon point mutations in two state proteins.

    PubMed

    Chaudhary, Priyashree; Naganathan, Athi N; Gromiha, M Michael

    2016-09-01

    Studies on protein unfolding rates are limited and challenging due to the complexity of unfolding mechanism and the larger dynamic range of the experimental data. Though attempts have been made to predict unfolding rates using protein sequence-structure information there is no available method for predicting the unfolding rates of proteins upon specific point mutations. In this work, we have systematically analyzed a set of 790 single mutants and developed a robust method for predicting protein unfolding rates upon mutations (Δlnku) in two-state proteins by combining amino acid properties and knowledge-based classification of mutants with multiple linear regression technique. We obtain a mean absolute error (MAE) of 0.79/s and a Pearson correlation coefficient (PCC) of 0.71 between predicted unfolding rates and experimental observations using jack-knife test. We have developed a web server for predicting protein unfolding rates upon mutation and it is freely available at https://www.iitm.ac.in/bioinfo/proteinunfolding/unfoldingrace.html. Prominent features that determine unfolding kinetics as well as plausible reasons for the observed outliers are also discussed. PMID:27264959

  11. A Bayesian Approach to Inferring Rates of Selfing and Locus-Specific Mutation.

    PubMed

    Redelings, Benjamin D; Kumagai, Seiji; Tatarenkov, Andrey; Wang, Liuyang; Sakai, Ann K; Weller, Stephen G; Culley, Theresa M; Avise, John C; Uyenoyama, Marcy K

    2015-11-01

    We present a Bayesian method for characterizing the mating system of populations reproducing through a mixture of self-fertilization and random outcrossing. Our method uses patterns of genetic variation across the genome as a basis for inference about reproduction under pure hermaphroditism, gynodioecy, and a model developed to describe the self-fertilizing killifish Kryptolebias marmoratus. We extend the standard coalescence model to accommodate these mating systems, accounting explicitly for multilocus identity disequilibrium, inbreeding depression, and variation in fertility among mating types. We incorporate the Ewens sampling formula (ESF) under the infinite-alleles model of mutation to obtain a novel expression for the likelihood of mating system parameters. Our Markov chain Monte Carlo (MCMC) algorithm assigns locus-specific mutation rates, drawn from a common mutation rate distribution that is itself estimated from the data using a Dirichlet process prior model. Our sampler is designed to accommodate additional information, including observations pertaining to the sex ratio, the intensity of inbreeding depression, and other aspects of reproduction. It can provide joint posterior distributions for the population-wide proportion of uniparental individuals, locus-specific mutation rates, and the number of generations since the most recent outcrossing event for each sampled individual. Further, estimation of all basic parameters of a given model permits estimation of functions of those parameters, including the proportion of the gene pool contributed by each sex and relative effective numbers. PMID:26374460

  12. COSMIC: exploring the world's knowledge of somatic mutations in human cancer

    PubMed Central

    Forbes, Simon A.; Beare, David; Gunasekaran, Prasad; Leung, Kenric; Bindal, Nidhi; Boutselakis, Harry; Ding, Minjie; Bamford, Sally; Cole, Charlotte; Ward, Sari; Kok, Chai Yin; Jia, Mingming; De, Tisham; Teague, Jon W.; Stratton, Michael R.; McDermott, Ultan; Campbell, Peter J.

    2015-01-01

    COSMIC, the Catalogue Of Somatic Mutations In Cancer (http://cancer.sanger.ac.uk) is the world's largest and most comprehensive resource for exploring the impact of somatic mutations in human cancer. Our latest release (v70; Aug 2014) describes 2 002 811 coding point mutations in over one million tumor samples and across most human genes. To emphasize depth of knowledge on known cancer genes, mutation information is curated manually from the scientific literature, allowing very precise definitions of disease types and patient details. Combination of almost 20 000 published studies gives substantial resolution of how mutations and phenotypes relate in human cancer, providing insights into the stratification of mutations and biomarkers across cancer patient populations. Conversely, our curation of cancer genomes (over 12 000) emphasizes knowledge breadth, driving discovery of unrecognized cancer-driving hotspots and molecular targets. Our high-resolution curation approach is globally unique, giving substantial insight into molecular biomarkers in human oncology. In addition, COSMIC also details more than six million noncoding mutations, 10 534 gene fusions, 61 299 genome rearrangements, 695 504 abnormal copy number segments and 60 119 787 abnormal expression variants. All these types of somatic mutation are annotated to both the human genome and each affected coding gene, then correlated across disease and mutation types. PMID:25355519

  13. Estimation of hominoid ancestral population sizes under bayesian coalescent models incorporating mutation rate variation and sequencing errors.

    PubMed

    Burgess, Ralph; Yang, Ziheng

    2008-09-01

    Estimation of population parameters for the common ancestors of humans and the great apes is important in understanding our evolutionary history. In particular, inference of population size for the human-chimpanzee common ancestor may shed light on the process by which the 2 species separated and on whether the human population experienced a severe size reduction in its early evolutionary history. In this study, the Bayesian method of ancestral inference of Rannala and Yang (2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics. 164:1645-1656) was extended to accommodate variable mutation rates among loci and random species-specific sequencing errors. The model was applied to analyze a genome-wide data set of approximately 15,000 neutral loci (7.4 Mb) aligned for human, chimpanzee, gorilla, orangutan, and macaque. We obtained robust and precise estimates for effective population sizes along the hominoid lineage extending back approximately 30 Myr to the cercopithecoid divergence. The results showed that ancestral populations were 5-10 times larger than modern humans along the entire hominoid lineage. The estimates were robust to the priors used and to model assumptions about recombination. The unusually low X chromosome divergence between human and chimpanzee could not be explained by variation in the male mutation bias or by current models of hybridization and introgression. Instead, our parameter estimates were consistent with a simple instantaneous process for human-chimpanzee speciation but showed a major reduction in X chromosome effective population size peculiar to the human-chimpanzee common ancestor, possibly due to selective sweeps on the X prior to separation of the 2 species. PMID:18603620

  14. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses.

    PubMed

    Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F X; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A; Roffler, Stefan

    2016-01-01

    DNA (class 2) transposons are mobile genetic elements which move within their 'host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind. PMID:27599761

  15. Rate-distortion theory and human perception.

    PubMed

    Sims, Chris R

    2016-07-01

    The fundamental goal of perception is to aid in the achievement of behavioral objectives. This requires extracting and communicating useful information from noisy and uncertain sensory signals. At the same time, given the complexity of sensory information and the limitations of biological information processing, it is necessary that some information must be lost or discarded in the act of perception. Under these circumstances, what constitutes an 'optimal' perceptual system? This paper describes the mathematical framework of rate-distortion theory as the optimal solution to the problem of minimizing the costs of perceptual error subject to strong constraints on the ability to communicate or transmit information. Rate-distortion theory offers a general and principled theoretical framework for developing computational-level models of human perception (Marr, 1982). Models developed in this framework are capable of producing quantitatively precise explanations for human perceptual performance, while yielding new insights regarding the nature and goals of perception. This paper demonstrates the application of rate-distortion theory to two benchmark domains where capacity limits are especially salient in human perception: discrete categorization of stimuli (also known as absolute identification) and visual working memory. A software package written for the R statistical programming language is described that aids in the development of models based on rate-distortion theory. PMID:27107330

  16. Experimental Estimation of Mutation Rates in a Wheat Population With a Gene Genealogy Approach

    PubMed Central

    Raquin, Anne-Laure; Depaulis, Frantz; Lambert, Amaury; Galic, Nathalie; Brabant, Philippe; Goldringer, Isabelle

    2008-01-01

    Microsatellite markers are extensively used to evaluate genetic diversity in natural or experimental evolving populations. Their high degree of polymorphism reflects their high mutation rates. Estimates of the mutation rates are therefore necessary when characterizing diversity in populations. As a complement to the classical experimental designs, we propose to use experimental populations, where the initial state is entirely known and some intermediate states have been thoroughly surveyed, thus providing a short timescale estimation together with a large number of cumulated meioses. In this article, we derived four original gene genealogy-based methods to assess mutation rates with limited bias due to relevant model assumptions incorporating the initial state, the number of new alleles, and the genetic effective population size. We studied the evolution of genetic diversity at 21 microsatellite markers, after 15 generations in an experimental wheat population. Compared to the parents, 23 new alleles were found in generation 15 at 9 of the 21 loci studied. We provide evidence that they arose by mutation. Corresponding estimates of the mutation rates ranged from 0 to 4.97 × 10−3 per generation (i.e., year). Sequences of several alleles revealed that length polymorphism was only due to variation in the core of the microsatellite. Among different microsatellite characteristics, both the motif repeat number and an independent estimation of the Nei diversity were correlated with the novel diversity. Despite a reduced genetic effective size, global diversity at microsatellite markers increased in this population, suggesting that microsatellite diversity should be used with caution as an indicator in biodiversity conservation issues. PMID:18689900

  17. The human prohibitin (PHB) gene family and its somatic mutations in human tumors

    SciTech Connect

    Sato, Takaaki; Sakamoto, Takashi; Takita, Ken-ichi; Saito, Hiroko; Okui, Keiko; Nakamura, Yusuke )

    1993-09-01

    Five cosmid clones, isolated by procedures to screen genomic libraries for homologous variants of the human prohibitin gene (PHB), were analyzed to determine their genomic structures. Four of these (PHBP1-4) were found to be processed pseudogenes, each located on a different chromosome from their counter-parts on chromosome 17q21. The DNA sequence of one clone (PHBP1, on chromosome 6q25) shared a 91.3% identity at the nucleotide level with the cDNA of functional prohibitin. A large number of human tumors of the breast, ovary, liver, and lung were examined for somatic mutations in the PHB gene. Although mutations were observed in a few sporadic breast cancers, none were identified in any of the other cancers. 15 refs., 2 figs., 1 tab.

  18. Calculation of Heavy Ion Inactivation and Mutation Rates in Radial Dose Model of Track Structure

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Shavers, Mark R.; Katz, Robert

    1997-01-01

    In the track structure model, the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated by using the dose response of the system to gamma rays and the radial dose of the ions and may be equal to unity at small impact parameters. We apply the track structure model to recent data with heavy ion beams irradiating biological samples of E. Coli, B. Subtilis spores, and Chinese hamster (V79) cells. Heavy ions have observed cross sections for inactivation that approach and sometimes exceed the geometric size of the cell nucleus. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT (hypoxanthine guanine phosphoribosyl transferase) mutations in V79 cells, and good agreement is found. Calculations show the high probability for mutation by relativistic ions due to the radial extension of ions track from delta rays. The effects of inactivation on mutation rates make it very unlikely that a single parameter such as LET (linear energy transfer) can be used to specify radiation quality for heavy ion bombardment.

  19. Comparing mutation rates under the Luria-Delbrück protocol.

    PubMed

    Zheng, Qi

    2016-06-01

    Comparison of microbial mutation rates under the Luria-Delbrück protocol is a routine laboratory task. However, execution of this important task has been hampered by the lack of proper statistical methods. Visual inspection or improper use of the t test and the Mann-Whitney test can impair the quality of genetic research. This paper proposes a unified framework for constructing likelihood ratio tests that overcome three important obstacles to the proper comparison of microbial mutation rates. Specifically, algorithms for likelihood ratio tests have been devised that allow for partial plating, differential growth rates and unequal terminal cell population sizes. The new algorithms were assessed by computer simulations. In addition, a strategy for multiple comparison was illustrated by reanalyzing the experimental data from a study of bacterial resistance against tuberculosis antibiotics. PMID:27188462

  20. Novel mutations in PDE6B causing human retinitis pigmentosa

    PubMed Central

    Cheng, Lu-Lu; Han, Ru-Yi; Yang, Fa-Yu; Yu, Xin-Ping; Xu, Jin-Ling; Min, Qing-Jie; Tian, Jie; Ge, Xiang-Lian; Zheng, Si-Si; Lin, Ye-Wen; Zheng, Yi-Han; Qu, Jia; Gu, Feng

    2016-01-01

    AIM To identify the genetic defects of a Chinese patient with sporadic retinitis pigmentosa (RP). METHODS Ophthalmologic examinations were performed on the sporadic RP patient, 144 genes associated with retinal diseases were scanned with capture next generation sequencing (CNGS) approach. Two heterozygous mutations in PDE6B were confirmed in the pedigree by Sanger sequencing subsequently. The carrier frequency of PDE6B mutations of reported PDE6B mutations based on the available two public exome databases (1000 Genomes Project and ESP6500 Genomes Project) and one in-house exome database was investigated. RESULTS We identified compound heterozygosity of two novel nonsense mutations c.1133G>A (p.W378X) and c.2395C>T (p.R799X) in PDE6B, one reported causative gene for RP. Neither of the two mutations in our study was presented in three exome databases. Two mutations (p.R74C and p.T604I) in PDE6B have relatively high frequencies in the ESP6500 and in-house databases, respectively, while no common dominant mutation in each of the database or across all databases. CONCLUSION We demonstrates that compound heterozygosity of two novel nonsense mutations in PDE6B could lead to RP. These results collectively point to enormous potential of next-generation sequencing in determining the genetic etiology of RP and how various mutations in PDE6B contribute to the genetic heterogeneity of RP. PMID:27588261

  1. Nonsense mutations in the human. beta. -globin gene affect mRNA metabolism

    SciTech Connect

    Baserga, S.J.; Benz, E.J. Jr. )

    1988-04-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.

  2. Mutation Rate and Dominance of Genes Affecting Viability in DROSOPHILA MELANOGASTER

    PubMed Central

    Mukai, Terumi; Chigusa, Sadao I.; Mettler, L. E.; Crow, James F.

    1972-01-01

    Spontaneous mutations were allowed to accumulate in a second chromosome that was transmitted only through heterozygous males for 40 generations. At 10-generation intervals the chromosomes were assayed for homozygous effects of the accumulated mutants. From the regression of homozygous viability on the number of generations of mutant accumulation and from the increase in genetic variance between replicate chromosomes it is possible to estimate the mutation rate and average effect of the individual mutants. Lethal mutations arose at a rate of 0.0060 per chromosome per generation. The mutants having small effects on viability are estimated to arise with a frequency at least 10 times as high as lethals, more likely 20 times as high, and possibly many more times as high if there is a large class of very nearly neutral mutations.—The dominance of such mutants was measured for chromosomes extracted from a natural population. This was determined from the regression of heterozygous viability on that of the sum of the two constituent homozygotes. The average dominance for minor viability genes in an equilibrium population was estimated to be 0.21. This is lower than the value for new mutants, as expected since those with the greatest heterozygous effect are most quickly eliminated from the population. That these mutants have a disproportionately large heterozygous effect on total fitness (as well as on the viability component thereof) is shown by the low ratio of the genetic load in equilibrium homozygotes to that of new mutant homozygotes. PMID:4630587

  3. Patterns and rates of exonic de novo mutations in autism spectrum disorders

    PubMed Central

    Neale, Benjamin M.; Kou, Yan; Liu, Li; Ma'ayan, Avi; Samocha, Kaitlin E.; Sabo, Aniko; Lin, Chiao-Feng; Stevens, Christine; Wang, Li-San; Makarov, Vladimir; Polak, Paz; Yoon, Seungtai; Maguire, Jared; Crawford, Emily L.; Campbell, Nicholas G.; Geller, Evan T.; Valladares, Otto; Shafer, Chad; Liu, Han; Zhao, Tuo; Cai, Guiqing; Lihm, Jayon; Dannenfelser, Ruth; Jabado, Omar; Peralta, Zuleyma; Nagaswamy, Uma; Muzny, Donna; Reid, Jeffrey G.; Newsham, Irene; Wu, Yuanqing; Lewis, Lora; Han, Yi; Voight, Benjamin F.; Lim, Elaine; Rossin, Elizabeth; Kirby, Andrew; Flannick, Jason; Fromer, Menachem; Shakir, Khalid; Fennell, Tim; Garimella, Kiran; Banks, Eric; Poplin, Ryan; Gabriel, Stacey; DePristo, Mark; Wimbish, Jack R.; Boone, Braden E.; Levy, Shawn E.; Betancur, Catalina; Sunyaev, Shamil; Boerwinkle, Eric; Buxbaum, Joseph D.; Cook, Edwin H.; Devlin, Bernie; Gibbs, Richard A.; Roeder, Kathryn; Schellenberg, Gerard D.; Sutcliffe, James S.; Daly, Mark J.

    2013-01-01

    Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified1,2. To identify further genetic risk factors, we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n= 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant and the overall rate of mutation is only modestly higher than the expected rate. In contrast, there is significantly enriched connectivity among the proteins encoded by genes harboring de novo missense or nonsense mutations, and excess connectivity to prior ASD genes of major effect, suggesting a subset of observed events are relevant to ASD risk. The small increase in rate of de novo events, when taken together with the connections among the proteins themselves and to ASD, are consistent with an important but limited role for de novo point mutations, similar to that documented for de novo copy number variants. Genetic models incorporating these data suggest that the majority of observed de novo events are unconnected to ASD, those that do confer risk are distributed across many genes and are incompletely penetrant (i.e., not necessarily causal). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5 to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favor of CHD8 and KATNAL2 as genuine autism risk factors. PMID:22495311

  4. ESA Human rating Requirements:Status

    NASA Astrophysics Data System (ADS)

    Trujillo, M.; Sgobba, T.

    2012-01-01

    The European Space Agency (ESA) human rating safety requirements are based on heritage requirements of the International Space Station as well as the knowledge and experience derived from European participation on international partnerships. This expertise in conjunction with recommendations derived from past accidents (i.e.: Columbia) and lessons learned have led to the identification of m inimum core safety tech nical requirements for hum an rated space syst ems. These requirements apply to th e crewed space vehicle, integrated space system (i.e.: cre wed vehicle on its launcher) and its interfaces with control centres, la unch pad, etc. In 2009, a first draft was issued. Then, in the summer of 2010, ESA established a working group comprised of more than twenty experts (from disciplines including propulsion, pyrotechnics, structures, avionics, human factors and life support among others) across the Agency to review this draft. This paper provides an overview of ESA "Safety technical re quirements for human rated s pace systems" document, its scope a nd structure, as well as the planned steps for verification of these requirements in term s of achieving the identified safety objectives for crew safety in t erms of a quantitative risk evaluation.

  5. Evolution of the rapidly mutating human salivary agglutinin gene (DMBT1) and population subsistence strategy

    PubMed Central

    Polley, Shamik; Louzada, Sandra; Forni, Diego; Sironi, Manuela; Balaskas, Theodosius; Hains, David S.; Yang, Fengtang; Hollox, Edward J.

    2015-01-01

    The dietary change resulting from the domestication of plant and animal species and development of agriculture at different locations across the world was one of the most significant changes in human evolution. An increase in dietary carbohydrates caused an increase in dental caries following the development of agriculture, mediated by the cariogenic oral bacterium Streptococcus mutans. Salivary agglutinin [SAG, encoded by the deleted in malignant brain tumors 1 (DMBT1) gene] is an innate immune receptor glycoprotein that binds a variety of bacteria and viruses, and mediates attachment of S. mutans to hydroxyapatite on the surface of the tooth. In this study we show that multiallelic copy number variation (CNV) within DMBT1 is extensive across all populations and is predicted to result in between 7–20 scavenger–receptor cysteine-rich (SRCR) domains within each SAG molecule. Direct observation of de novo mutation in multigeneration families suggests these CNVs have a very high mutation rate for a protein-coding locus, with a mutation rate of up to 5% per gamete. Given that the SRCR domains bind S. mutans and hydroxyapatite in the tooth, we investigated the association of sequence diversity at the SAG-binding gene of S. mutans, and DMBT1 CNV. Furthermore, we show that DMBT1 CNV is also associated with a history of agriculture across global populations, suggesting that dietary change as a result of agriculture has shaped the pattern of CNV at DMBT1, and that the DMBT1-S. mutans interaction is a promising model of host-pathogen-culture coevolution in humans. PMID:25848046

  6. Evolution of the rapidly mutating human salivary agglutinin gene (DMBT1) and population subsistence strategy.

    PubMed

    Polley, Shamik; Louzada, Sandra; Forni, Diego; Sironi, Manuela; Balaskas, Theodosius; Hains, David S; Yang, Fengtang; Hollox, Edward J

    2015-04-21

    The dietary change resulting from the domestication of plant and animal species and development of agriculture at different locations across the world was one of the most significant changes in human evolution. An increase in dietary carbohydrates caused an increase in dental caries following the development of agriculture, mediated by the cariogenic oral bacterium Streptococcus mutans. Salivary agglutinin [SAG, encoded by the deleted in malignant brain tumors 1 (DMBT1) gene] is an innate immune receptor glycoprotein that binds a variety of bacteria and viruses, and mediates attachment of S. mutans to hydroxyapatite on the surface of the tooth. In this study we show that multiallelic copy number variation (CNV) within DMBT1 is extensive across all populations and is predicted to result in between 7-20 scavenger-receptor cysteine-rich (SRCR) domains within each SAG molecule. Direct observation of de novo mutation in multigeneration families suggests these CNVs have a very high mutation rate for a protein-coding locus, with a mutation rate of up to 5% per gamete. Given that the SRCR domains bind S. mutans and hydroxyapatite in the tooth, we investigated the association of sequence diversity at the SAG-binding gene of S. mutans, and DMBT1 CNV. Furthermore, we show that DMBT1 CNV is also associated with a history of agriculture across global populations, suggesting that dietary change as a result of agriculture has shaped the pattern of CNV at DMBT1, and that the DMBT1-S. mutans interaction is a promising model of host-pathogen-culture coevolution in humans. PMID:25848046

  7. Transgenic mice with overexpression of mutated human optineurin(E50K) in the retina.

    PubMed

    Meng, Qingfeng; Xiao, Zheng; Yuan, Huiping; Xue, Fei; Zhu, Yuanmao; Zhou, Xinrong; Yang, Binbin; Sun, Jingbo; Meng, Bo; Sun, Xian; Cheng, Fang

    2012-02-01

    In the present work, Site-directed mutagenesis to insert the Glu50Lys amino acid substitution was achieved by PCR using plasmid pBluescript-OPTN. Mutated human OPTN(E50K) gene-driven mouse c-kit promoter was constructed and confirmed by endonuclease digestion and sequence analysis. Transgenic mice were generated via the microinjection method. PCR and DNA dot blot were used to screen the positive transgenic mice. RT-PCR analyzed the RNA level and location of mutated human OPTN(E50K) mRNA expression in transgenic mice. Western blot and immunohistochemistry were used to detect the level and location of mutated human OPTN(E50K) expression in transgenic mice. A transgenic mouse model with overexpression of mutated human OPTN(E50K) in retina was successfully established. The transgene was integrated and transmitted into the chromosome of transgenic mice. Mutated human OPTN(E50K) gene was controlled by c-kit promoter and expressed in the retina in mice. Mutated human OPTN(E50K) in transgenic mice was higher than that of wild type C57BL/6J mice. Our studies had provided a new transgenic model for investigating the molecular properties of mutated human OPTN(E50K). PMID:21681420

  8. The Rate and Molecular Spectrum of Spontaneous Mutations in the GC-Rich Multichromosome Genome of Burkholderia cenocepacia

    PubMed Central

    Dillon, Marcus M.; Sung, Way; Lynch, Michael; Cooper, Vaughn S.

    2015-01-01

    Spontaneous mutations are ultimately essential for evolutionary change and are also the root cause of many diseases. However, until recently, both biological and technical barriers have prevented detailed analyses of mutation profiles, constraining our understanding of the mutation process to a few model organisms and leaving major gaps in our understanding of the role of genome content and structure on mutation. Here, we present a genome-wide view of the molecular mutation spectrum in Burkholderia cenocepacia, a clinically relevant pathogen with high %GC content and multiple chromosomes. We find that B. cenocepacia has low genome-wide mutation rates with insertion–deletion mutations biased toward deletions, consistent with the idea that deletion pressure reduces prokaryotic genome sizes. Unlike prior studies of other organisms, mutations in B. cenocepacia are not AT biased, which suggests that at least some genomes with high %GC content experience unusual base-substitution mutation pressure. Importantly, we also observe variation in both the rates and spectra of mutations among chromosomes and elevated G:C > T:A transversions in late-replicating regions. Thus, although some patterns of mutation appear to be highly conserved across cellular life, others vary between species and even between chromosomes of the same species, potentially influencing the evolution of nucleotide composition and genome architecture. PMID:25971664

  9. Mutations in ARS1 increase the rate of simple loss of plasmids in Saccharomyces cerevisiae.

    PubMed

    Strich, R; Woontner, M; Scott, J F

    1986-09-01

    Autonomously replicating sequence (ARS) elements are DNA sequences that promote extrachromosomal maintenance of plasmids in yeast. Mutations generated in vitro in the ARS1 region were examined for their effect on plasmid maintenance in a yeast centromeric plasmid. Our data show that mutations in the regions surrounding the ARS1 consensus sequence cause increases in the frequency of simple loss (1:0) events without affecting the rate of nondisjunction (2:0). Removal of the consensus sequence itself causes a drastic increase in the rate of simple loss. Sequences sensitive to mutagenesis were identified in each flanking region and differ with respect to their location and importance to ARS function. These results suggest that the role ARS1 plays in plasmid maintenance deals with the replication and/or localization of the plasmid in yeast. PMID:3333306

  10. LET and ion-species dependence for mutation induction and mutation spectrum on hprt locus in normal human fibroblasts.

    PubMed

    Tsuruoka, Chizuru; Suzuki, Masao; Fujitaka, Kazunobu

    2004-11-01

    We have been studying LET and ion species dependence of RBE in mutation frequency and mutation spectrum of deletion pattern of exons in hprt locus. Normal human skin fibroblasts were irradiated with heavy-ion beams, such as carbon- (290 MeV/u and 135 MeV/u), neon- (230 MeV/u and 400 MeV/u), silicon- (490 MeV/u) and iron- (500 MeV/u) ion beams, generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) at national Institute of Radiological Sciences (NIRS). Mutation induction in hprt locus was detected to measure 6-thioguanine resistant colonies and deletion spectrum of exons was analyzed by multiplex PCR. The LET-RBE curves of mutation induction for carbon- and neon-ion beams showed a peak around 75 keV/micrometers and 155 keV/micrometers, respectively. On the other hand, there observed no clear peak for silicon-ion beams. The deletion spectrum of exons was different in induced mutants among different ion species. These results suggested that quantitative and qualitative difference in mutation occurred when using different ion species even if similar LET values. PMID:15858385

  11. Towards Improvements in the Estimation of the Coalescent: Implications for the Most Effective Use of Y Chromosome Short Tandem Repeat Mutation Rates

    PubMed Central

    Bird, Steven C.

    2012-01-01

    Over the past two decades, many short tandem repeat (STR) microsatellite loci on the human Y chromosome have been identified together with mutation rate estimates for the individual loci. These have been used to estimate the coalescent age, or the time to the most recent common ancestor (TMRCA) expressed in generations, in conjunction with the average square difference measure (ASD), an unbiased point estimator of TMRCA based upon the average within-locus allele variance between haplotypes. The ASD estimator, in turn, depends on accurate mutation rate estimates to be able to produce good approximations of the coalescent age of a sample. Here, a comparison is made between three published sets of per locus mutation rate estimates as they are applied to the calculation of the coalescent age for real and simulated population samples. A novel evaluation method is developed for estimating the degree of conformity of any Y chromosome STR locus of interest to the strict stepwise mutation model and specific recommendations are made regarding the suitability of thirty-two commonly used Y-STR loci for the purpose of estimating the coalescent. The use of the geometric mean for averaging ASD and across loci is shown to improve the consistency of the resulting estimates, with decreased sensitivity to outliers and to the number of STR loci compared or the particular set of mutation rates selected. PMID:23119076

  12. Mutation rate estimates for 13 STR loci in a large population from Rio Grande do Sul, Southern Brazil.

    PubMed

    Mardini, Ana Carolina; Rodenbusch, Rodrigo; Schumacher, Simone; Chula, Fernanda Goulart Lanes; Michelon, Candice Tosi; Gastaldo, André Zoratto; Maciel, Lila Partichelli; de Matos Almeida, Sabrina Esteves; da Silva, Cláudia Maria Dornelles

    2013-01-01

    Short tandem repeat (STR) polymorphisms have been extensively used in forensic genetics analysis. Knowledge about the locus-specific mutation rates of STRs improves forensic probability calculations and interpretations of diversity data. To incorporate single-locus diversity information into autosomal STR mutation rate estimations, 13 STR loci were studied during 2007-2009 in 10,959 paternity investigation cases from Rio Grande do Sul, the southernmost state of Brazil, covering an overall number of 284,934 allelic transfers. A total of 355 mutations were identified; 348 repeats were gains or losses of one step, three were gains or losses of two steps, and four were gains or losses of not stepwise mutation. The mutation rates ranged from 4.6 × 10(-5) to 2.3 × 10(-3), and the overall mutation rate estimate was 1.2 × 10(-3). The average of the paternal mutation rate (1.8 × 10(-3)) was five times higher than the maternal rate (0.36 × 10(-3)). The observed mutational features for STRs have important consequences for forensic applications, including the definition of criteria for exclusion in paternity testing and the interpretation of DNA profiles in identification analysis. PMID:22072310

  13. Enhancing Human Spermine Synthase Activity by Engineered Mutations

    PubMed Central

    Zhang, Zhe; Zheng, Yueli; Petukh, Margo; Pegg, Anthony; Ikeguchi, Yoshihiko; Alexov, Emil

    2013-01-01

    Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing. PMID:23468611

  14. Molecular analysis of mutations in the human HPRT gene.

    PubMed

    Keohavong, Phouthone; Xi, Liqiang; Grant, Stephen G

    2014-01-01

    The HPRT assay uses incorporation of toxic nucleotide analogues to select for cells lacking the purine scavenger enzyme hypoxanthine-guanine phosphoribosyl transferase. A major advantage of this assay is the ability to isolate mutant cells and determine the molecular basis for their functional deficiency. Many types of analyses have been performed at this locus: the current protocol involves generation of a cDNA and multiplex PCR of each exon, including the intron/exon junctions, followed by direct sequencing of the products. This analysis detects point mutations, small deletions and insertions within the gene, mutations affecting RNA splicing, and products of illegitimate V(D)J recombination within the gene. Establishment of and comparisons with mutational spectra hold the promise of identifying exposures to mutation-inducing genotoxicants from their distinctive pattern of gene-specific DNA damage at this easily analyzed reporter gene. PMID:24623237

  15. Influence of sex, smoking and age on human hprt mutation frequencies and spectra.

    PubMed Central

    Curry, J; Karnaoukhova, L; Guenette, G C; Glickman, B W

    1999-01-01

    Examination of the literature for hprt mutant frequencies from peripheral T cells yielded data from 1194 human subjects. Relationships between mutant frequency, age, sex, and smoking were examined, and the kinetics were described. Mutant frequency increases rapidly with age until about age 15. Afterward, the rate of increase falls such that after age 53, the hprt mutant frequency is largely stabilized. Sex had no effect on mutant frequency. Cigarette smoking increased mean mutant frequency compared to nonsmokers, but did not alter age vs. mutant frequency relationships. An hprt in vivo mutant database containing 795 human hprt mutants from 342 individuals was prepared. No difference in mutational spectra was observed comparing smokers to nonsmokers, confirming previous reports. Sex affected the frequency of deletions (>1 bp) that are recovered more than twice as frequently in females (P = 0. 008) compared to males. There is no indication of a significant shift in mutational spectra with age for individuals older than 19 yr, with the exception of A:T --> C:G transversions. These events are recovered more frequently in older individuals. PMID:10388825

  16. Mature Microsatellites: Mechanisms Underlying Dinucleotide Microsatellite Mutational Biases in Human Cells

    PubMed Central

    Baptiste, Beverly A.; Ananda, Guruprasad; Strubczewski, Noelle; Lutzkanin, Andrew; Khoo, Su Jen; Srikanth, Abhinaya; Kim, Nari; Makova, Kateryna D.; Krasilnikova, Maria M.; Eckert, Kristin A.

    2013-01-01

    Dinucleotide microsatellites are dynamic DNA sequences that affect genome stability. Here, we focused on mature microsatellites, defined as pure repeats of lengths above the threshold and unlikely to mutate below it in a single mutational event. We investigated the prevalence and mutational behavior of these sequences by using human genome sequence data, human cells in culture, and purified DNA polymerases. Mature dinucleotides (≥10 units) are present within exonic sequences of >350 genes, resulting in vulnerability to cellular genetic integrity. Mature dinucleotide mutagenesis was examined experimentally using ex vivo and in vitro approaches. We observe an expansion bias for dinucleotide microsatellites up to 20 units in length in somatic human cells, in agreement with previous computational analyses of germ-line biases. Using purified DNA polymerases and human cell lines deficient for mismatch repair (MMR), we show that the expansion bias is caused by functional MMR and is not due to DNA polymerase error biases. Specifically, we observe that the MutSα and MutLα complexes protect against expansion mutations. Our data support a model wherein different MMR complexes shift the balance of mutations toward deletion or expansion. Finally, we show that replication fork progression is stalled within long dinucleotides, suggesting that mutational mechanisms within long repeats may be distinct from shorter lengths, depending on the biochemistry of fork resolution. Our work combines computational and experimental approaches to explain the complex mutational behavior of dinucleotide microsatellites in humans. PMID:23450065

  17. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis.

    PubMed

    Zhang, Xue; Zhang, Chong; Zhou, Qian-Qian; Zhang, Xiao-Fei; Wang, Li-Yan; Chang, Hai-Bo; Li, He-Ping; Oda, Yoshimitsu; Xing, Xin-Hui

    2015-07-01

    DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories. PMID:26025015

  18. Mutated human androgen receptor gene detected in a prostatic cancer patient is also activated by estradiol

    SciTech Connect

    Elo, J.P.; Kvist, L.; Leinonen, K.; Isomaa, V.

    1995-12-01

    Androgens are necessary for the development of prostatic cancer. The mechanisms by which the originally androgen-dependent prostatic cancer cells are relieved of the requirement to use androgen for their growth are largely unknown. The human prostatic cancer cell line LNCaP has been shown to contain a point mutation in the human androgen receptor gene (hAR), suggesting that changes in the hAR may contribute to the abnormal hormone response of prostatic cells. To search for point mutations in the hAR, we used single strand conformation polymorphism analysis and a polymerase chain reaction direct sequencing method to screen 23 prostatic cancer specimens from untreated patients, 6 prostatic cancer specimens from treated patients, and 11 benign prostatic hyperplasia specimens. One mutation was identified in DNA isolated from prostatic cancer tissue, and the mutation was also detected in the leukocyte DNA of the patient and his offspring. The mutation changed codon 726 in exon E from arginine to leucine and was a germ line mutation. The mutation we found in exon E of the hAR gene does not alter the ligand binding specificity of the AR, but the mutated receptor was activated by estradiol to a significantly greater extent than the wild-type receptor. The AR gene mutation described in this study might be one explanation for the altered biological activity of prostatic cancer. 36 refs., 4 figs.

  19. Identification of Genetic Mutations in Human Lung Cancer by Targeted Sequencing

    PubMed Central

    Feng, Hongxiang; Wang, Xiaowei; Zhang, Zhenrong; Tang, Chuanning; Ye, Hua; Jones, Lindsey; Lou, Feng; Zhang, Dandan; Jiang, Shouwen; Sun, Hong; Dong, Haichao; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; Yan, He; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Nandakumar, Vijayalakshmi; Huang, Xue F; Chen, Si-Yi; Liu, Deruo

    2015-01-01

    Lung cancer remains the most prevalent malignancy and the primary cause of cancer-related deaths worldwide. Unique mutations patterns can be found in lung cancer subtypes, in individual cancers, or within a single tumor, and drugs that target these genetic mutations and signal transduction pathways are often beneficial to patients. In this study, we used the Ion Torrent AmpliSeq Cancer Panel to sequence 737 loci from 45 cancer-related genes and oncogenes to identify genetic mutations in 48 formalin-fixed, paraffin-embedded (FFPE) human lung cancer samples from Chinese patients. We found frequent mutations in EGFR, KRAS, PIK3CA, and TP53 genes. Moreover, we observed that a portion of the lung cancer samples harbored two or more mutations in these key genes. This study demonstrates the feasibility of using the Ion Torrent sequencing to efficiently identify genetic mutations in individual tumors for targeted lung cancer therapy. PMID:26244006

  20. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans.

    PubMed

    Docherty, Louise E; Rezwan, Faisal I; Poole, Rebecca L; Turner, Claire L S; Kivuva, Emma; Maher, Eamonn R; Smithson, Sarah F; Hamilton-Shield, Julian P; Patalan, Michal; Gizewska, Maria; Peregud-Pogorzelski, Jaroslaw; Beygo, Jasmin; Buiting, Karin; Horsthemke, Bernhard; Soellner, Lukas; Begemann, Matthias; Eggermann, Thomas; Baple, Emma; Mansour, Sahar; Temple, I Karen; Mackay, Deborah J G

    2015-01-01

    Human-imprinting disorders are congenital disorders of growth, development and metabolism, associated with disturbance of parent of origin-specific DNA methylation at imprinted loci across the genome. Some imprinting disorders have higher than expected prevalence of monozygotic twinning, of assisted reproductive technology among parents, and of disturbance of multiple imprinted loci, for which few causative trans-acting mutations have been found. Here we report mutations in NLRP5 in five mothers of individuals affected by multilocus imprinting disturbance. Maternal-effect mutations of other human NLRP genes, NLRP7 and NLRP2, cause familial biparental hydatidiform mole and multilocus imprinting disturbance, respectively. Offspring of mothers with NLRP5 mutations have heterogenous clinical and epigenetic features, but cases include a discordant monozygotic twin pair, individuals with idiopathic developmental delay and autism, and families affected by infertility and reproductive wastage. NLRP5 mutations suggest connections between maternal reproductive fitness, early zygotic development and genomic imprinting. PMID:26323243

  1. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans

    PubMed Central

    Docherty, Louise E.; Rezwan, Faisal I.; Poole, Rebecca L.; Turner, Claire L. S.; Kivuva, Emma; Maher, Eamonn R.; Smithson, Sarah F.; Hamilton-Shield, Julian P.; Patalan, Michal; Gizewska, Maria; Peregud-Pogorzelski, Jaroslaw; Beygo, Jasmin; Buiting, Karin; Horsthemke, Bernhard; Soellner, Lukas; Begemann, Matthias; Eggermann, Thomas; Baple, Emma; Mansour, Sahar; Temple, I. Karen; Mackay, Deborah J. G.

    2015-01-01

    Human-imprinting disorders are congenital disorders of growth, development and metabolism, associated with disturbance of parent of origin-specific DNA methylation at imprinted loci across the genome. Some imprinting disorders have higher than expected prevalence of monozygotic twinning, of assisted reproductive technology among parents, and of disturbance of multiple imprinted loci, for which few causative trans-acting mutations have been found. Here we report mutations in NLRP5 in five mothers of individuals affected by multilocus imprinting disturbance. Maternal-effect mutations of other human NLRP genes, NLRP7 and NLRP2, cause familial biparental hydatidiform mole and multilocus imprinting disturbance, respectively. Offspring of mothers with NLRP5 mutations have heterogenous clinical and epigenetic features, but cases include a discordant monozygotic twin pair, individuals with idiopathic developmental delay and autism, and families affected by infertility and reproductive wastage. NLRP5 mutations suggest connections between maternal reproductive fitness, early zygotic development and genomic imprinting. PMID:26323243

  2. Human gene mutation database-a biomedical information and research resource.

    PubMed

    Krawczak, M; Ball, E V; Fenton, I; Stenson, P D; Abeysinghe, S; Thomas, N; Cooper, D N

    2000-01-01

    Although 20 years have elapsed since the first single basepair substitution underlying an inherited disease in humans was characterised at the DNA level, the initiative has only recently been taken to establish central database resources for pathological genetic variants. Disease-associated gene lesions are currently collected and publicised by the Human Gene Mutation Database (HGMD) in Cardiff, locus-specific mutation databases, and to some extent also by the Genome Database (GDB) and Online Mendelian Inheritance in Man (OMIM). To date, HGMD represents the only comprehensive and publicly available database of gene lesions underlying human inherited disease. By July 1999, HGMD contained over 18,000 different mutations from some 900 human genes, the majority being single basepair substitutions. In addition to its potential as an information resource for clinicians and genetic counsellors, HGMD has allowed molecular geneticists to address a variety of biological questions through meta-analysis of the collated data. HGMD also promises to assist research workers in optimising mutation search strategies for a given gene. A questionnaire sent out to, and answered by, the editors of 20 key journals revealed that human genetics journals are increasingly reluctant to publish mutation reports. Electronic data submission and publication facilities are therefore urgently required. The World Wide Web (WWW) provides an excellent medium within which to combine the centralised management of basic mutation data, including rigorous quality control, with the possibility of publishing additional mutation-related information. In response to these needs, HGMD has both instituted a collaboration with Springer-Verlag GmbH, Heidelberg, to potentiate free online submission and electronic publication of human gene mutation data and developed links with the curators of locus-specific mutation databases. PMID:10612821

  3. Rates of Mutation and Host Transmission for an Escherichia coli Clone over 3 Years

    PubMed Central

    Reeves, Peter R.; Liu, Bin; Zhou, Zhemin; Li, Dan; Guo, Dan; Ren, Yan; Clabots, Connie; Lan, Ruiting; Johnson, James R.; Wang, Lei

    2011-01-01

    Although over 50 complete Escherichia coli/Shigella genome sequences are available, it is only for closely related strains, for example the O55:H7 and O157:H7 clones of E. coli, that we can assign differences to individual evolutionary events along specific lineages. Here we sequence the genomes of 14 isolates of a uropathogenic E. coli clone that persisted for 3 years within a household, including a dog, causing a urinary tract infection (UTI) in the dog after 2 years. The 20 mutations observed fit a single tree that allows us to estimate the mutation rate to be about 1.1 per genome per year, with minimal evidence for adaptive change, including in relation to the UTI episode. The host data also imply at least 6 host transfer events over the 3 years, with 2 lineages present over much of that period. To our knowledge, these are the first direct measurements for a clone in a well-defined host community that includes rates of mutation and host transmission. There is a concentration of non-synonymous mutations associated with 2 transfers to the dog, suggesting some selection pressure from the change of host. However, there are no changes to which we can attribute the UTI event in the dog, which suggests that this occurrence after 2 years of the clone being in the household may have been due to chance, or some unknown change in the host or environment. The ability of a UTI strain to persist for 2 years and also to transfer readily within a household has implications for epidemiology, diagnosis, and clinical intervention. PMID:22046404

  4. Phase variable genes of Campylobacter jejuni exhibit high mutation rates and specific mutational patterns but mutability is not the major determinant of population structure during host colonization

    PubMed Central

    Bayliss, Christopher D.; Bidmos, Fadil A.; Anjum, Awais; Manchev, Vladimir T.; Richards, Rebecca L .; Grossier, Jean-Philippe; Wooldridge, Karl G.; Ketley, Julian M.; Barrow, Paul A.; Jones, Michael A.; Tretyakov, Michael V.

    2012-01-01

    Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in ‘on/off’ status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen. PMID:22434884

  5. Albinism-Causing Mutations in Recombinant Human Tyrosinase Alter Intrinsic Enzymatic Activity

    PubMed Central

    Dolinska, Monika B.; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T.; Brooks, Brian P.; Sergeev, Yuri V.

    2014-01-01

    Background Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. Methodology/Principal Findings The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. Conclusions/Significance The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1. PMID:24392141

  6. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate

    PubMed Central

    Filipe, Laura N.S.

    2014-01-01

    Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate. PMID:25392761

  7. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate.

    PubMed

    Amos, William; Filipe, Laura N S

    2014-01-01

    Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate. PMID:25392761

  8. Limits to sustainable human metabolic rate.

    PubMed

    Westerterp, K R

    2001-09-01

    There is a limit to the performance of an organism set by energy intake and energy mobilization. Here, the focus is on humans with unlimited access to food and for whom physical activity can be limited by energy mobilization. The physical activity level (PAL) in the general population, calculated as doubly-labelled-water-assessed average daily metabolic rate as a multiple of basal metabolic rate, has an upper limit of 2.2-2.5. The upper limit of sustainable metabolic rate is approximately twice as high in endurance athletes, mainly because of long-term exercise training with simultaneous consumption of carbohydrate-rich food during exercise. Endurance athletes have an increased fat-free mass and can maintain energy balance at a PAL value of 4.0-5.0. High altitude limits exercise performance as a result of combined effects on nutrient supply and the capacity to process nutrients. Thus, trained subjects climbing Mount Everest reached PAL values of 2.0-2.7, well below the observed upper limit at sea level. PMID:11581332

  9. Infrequent mutation of ATBF1 in human breast cancer.

    PubMed

    Sun, Xiaodong; Zhou, Yingfa; Otto, Kristen B; Wang, Mingrong; Chen, Ceshi; Zhou, Wei; Subramanian, Krithika; Vertino, Paula M; Dong, Jin-Tang

    2007-02-01

    Deletion at chromosome 16q is frequent in prostate and breast cancers, suggesting the existence of one or more tumor suppressor genes in 16q. Recently, the transcription factor ATBF1 at 16q22 was identified as a strong candidate tumor suppressor gene in prostate cancer, and loss of ATBF1 expression was associated with poorer prognosis in breast cancer. In the present study, we examined mutation, expression, and promoter methylation of ATBF1 in 32 breast cancer cell lines. Only 2 of the 32 cancer cell lines had mutations, although 18 nucleotide polymorphisms were detected. In addition, 24 of 32 (75%) cancer cell lines had reduced ATBF1 mRNA levels, yet promoter methylation was not involved in gene silencing. These findings suggest that ATBF1 plays a role in breast cancer through transcriptional downregulation rather than mutations. PMID:16932943

  10. Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib family.

    PubMed

    Keightley, Peter D; Ness, Rob W; Halligan, Daniel L; Haddrill, Penelope R

    2014-01-01

    We employed deep genome sequencing of two parents and 12 of their offspring to estimate the mutation rate per site per generation in a full-sib family of Drosophila melanogaster recently sampled from a natural population. Sites that were homozygous for the same allele in the parents and heterozygous in one or more offspring were categorized as candidate mutations and subjected to detailed analysis. In 1.23 × 10(9) callable sites from 12 individuals, we confirmed six single nucleotide mutations. We estimated the false negative rate in the experiment by generating synthetic mutations using the empirical distributions of numbers of nonreference bases at heterozygous sites in the offspring. The proportion of synthetic mutations at callable sites that we failed to detect was <1%, implying that the false negative rate was extremely low. Our estimate of the point mutation rate is 2.8 × 10(-9) (95% confidence interval = 1.0 × 10(-9) - 6.1 × 10(-9)) per site per generation, which is at the low end of the range of previous estimates, and suggests an effective population size for the species of ∼1.4 × 10(6). At one site, point mutations were present in two individuals, indicating that there had been a premeiotic mutation cluster, although surprisingly one individual had a G→A transition and the other a G→T transversion, possibly associated with error-prone mismatch repair. We also detected three short deletion mutations and no insertions, giving a deletion mutation rate of 1.2 × 10(-9) (95% confidence interval = 0.7 × 10(-9) - 11 × 10(-9)). PMID:24214343

  11. Estimation of the Spontaneous Mutation Rate per Nucleotide Site in a Drosophila melanogaster Full-Sib Family

    PubMed Central

    Keightley, Peter D.; Ness, Rob W.; Halligan, Daniel L.; Haddrill, Penelope R.

    2014-01-01

    We employed deep genome sequencing of two parents and 12 of their offspring to estimate the mutation rate per site per generation in a full-sib family of Drosophila melanogaster recently sampled from a natural population. Sites that were homozygous for the same allele in the parents and heterozygous in one or more offspring were categorized as candidate mutations and subjected to detailed analysis. In 1.23 × 109 callable sites from 12 individuals, we confirmed six single nucleotide mutations. We estimated the false negative rate in the experiment by generating synthetic mutations using the empirical distributions of numbers of nonreference bases at heterozygous sites in the offspring. The proportion of synthetic mutations at callable sites that we failed to detect was <1%, implying that the false negative rate was extremely low. Our estimate of the point mutation rate is 2.8 × 10−9 (95% confidence interval = 1.0 × 10−9 − 6.1 × 10−9) per site per generation, which is at the low end of the range of previous estimates, and suggests an effective population size for the species of ∼1.4 × 106. At one site, point mutations were present in two individuals, indicating that there had been a premeiotic mutation cluster, although surprisingly one individual had a G→A transition and the other a G→T transversion, possibly associated with error-prone mismatch repair. We also detected three short deletion mutations and no insertions, giving a deletion mutation rate of 1.2 × 10−9 (95% confidence interval = 0.7 × 10−9 − 11 × 10−9). PMID:24214343

  12. A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model

    PubMed Central

    Min, Wonki; Angileri, Francesca; Luo, Haibin; Lauria, Antonino; Shanmugasundaram, Maruda; Almerico, Anna Maria; Cappello, Francesco; de Macario, Everly Conway; Lednev, Igor K.; Macario, Alberto J. L.; Robb, Frank T.

    2014-01-01

    Chaperonins mediate protein folding in a cavity formed by multisubunit rings. The human CCT has eight non-identical subunits and the His147Arg mutation in one subunit, CCT5, causes neuropathy. Knowledge is scarce on the impact of this and other mutations upon the chaperone's structure and functions. To make progress, experimental models must be developed. We used an archaeal mutant homolog and demonstrated that the His147Arg mutant has impaired oligomeric assembly, ATPase activity, and defective protein homeostasis functions. These results establish for the first time that a human chaperonin gene defect can be reproduced and studied at the molecular level with an archaeal homolog. The major advantage of the system, consisting of rings with eight identical subunits, is that it amplifies the effects of a mutation as compared with the human counterpart, in which just one subunit per ring is defective. Therefore, the slight deficit of a non-lethal mutation can be detected and characterized. PMID:25345891

  13. Mutations in the human GlyT2 gene define a presynaptic component of human startle disease

    PubMed Central

    Rees, Mark I.; Harvey, Kirsten; Pearce, Brian R.; Chung, Seo-Kyung; Duguid, Ian C.; Thomas, Philip; Beatty, Sarah; Graham, Gail E.; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J.; Zuberi, Sameer M.; Stephenson, John B.P.; Owen, Michael J.; Tijssen, Marina A.J.; van den Maagdenberg, Arn M.J.M.; Smart, Trevor G.; Supplisson, Stéphane; Harvey, Robert J.

    2011-01-01

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1)1-3. Genetic heterogeneity has been confirmed in isolated sporadic cases with mutations in other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB)4, gephyrin (GPHN)5 and RhoGEF collybistin (ARHGEF9)6. However, many sporadic patients diagnosed with hyperekplexia do not carry mutations in these genes2-7. Here we reveal that missense, nonsense and frameshift mutations in the presynaptic glycine transporter 2 (GlyT2) gene (SLC6A5)8 also cause hyperekplexia. Patients harbouring mutations in SLC6A5 presented with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnoea episodes. GlyT2 mutations result in defective subcellular localisation and/or decreased glycine uptake, with selected mutations affecting predicted glycine and Na+ binding sites. Our results demonstrate that SLC6A5 is a major gene for hyperekplexia and define the first neurological disorder linked to mutations in a Na+/Cl−-dependent transporter for a classical fast neurotransmitter. By analogy, we suggest that in other human disorders where defects in postsynaptic receptors have been identified, similar symptoms could result from defects in the cognate presynaptic neurotransmitter transporter. PMID:16751771

  14. High speed flow cytometric detection of rare glycophorin A mutations in human blood cells

    SciTech Connect

    Langlois, R.G.; Engh, G. van den )

    1993-01-01

    The glycophorin A (GPA) assay utilizes immunofluorescent labeling and flow cytometry to measure the frequency of peripheral erythrocytes with mutant phenotypes, presumably due to mutations in erythroid precursor cells. Analysis of 5 [times] 10[sup 6] cells/assay is used to enumerate variant erythrocytes that occur at a frequency of 3-10 [times] 10[sup [minus]6] in unexposed donors. Extension of this assay to human reticulocytes requires detection of variants that occur at frequencies as low as 3 [times] 10[sup [minus]8]. The authors have used high speed data acquisition and cell classification electronics to perform 3-color analysis at rates up to 20,000 cells/s. High speed analysis of up to 10[sup 8] cells/assay has been used to enumerate GPA-variant reticulocytes in normal donors.

  15. A bacterial model for expression of mutations in the human ornithine transcarbamylase (OTC) gene

    SciTech Connect

    Tuchman, M.; McCann, M.T.; Qureshi, A.A.

    1994-09-01

    OTC is a mitochondrial enzyme catalyzing the formation of citrulline from carbamyl phosphate and ornithine. X-linked deficiency of OTC is the most prevalent genetic defect of ureagenesis. Mutations and polymorphisms in the OTC gene identified in deficient patients have indicated the occurrence of many family-specific, unique alleles. Due to the low frequency of recurrent mutations, distinguishing between deleterious mutations and polymorphisms is difficult. Using a human OTC gene containing plasmid driven by a tac promoter, we have devised a simple and efficient method for expressing mutations in the mature human OTC enzyme. To demonstrate this method, PCR engineered site-directed mutagenesis was employed to generated cDNA fragments which contained either the R151Q or R277W known mutations found in patients with neonatal and late-onset OTC deficiency, respectively. The normal allele for each mutation was also generated by an identical PCR procedure. Digestion with Bgl II- and Sty I-generated mutant and normal replacement cassettes containing the respective mutant and wild type sequences. Upon transformation of JM109 E.coli cells, OTC enzymatic activity was measured at log and stationary phases of growth using a radiochromatographic method. The R141Q mutation abolished enzymatic activity (<0.02% of normal), whereas the R277W mutation expressed partial activity (2.3% of normal). In addition, a PCR-generated mutation, A280V, resulted in 73% loss of catalytic activity. This OTC expression system is clinically applicable for distinguishing between mutations and polymorphisms, and it can be used to investigate the effects of mutations on various domains of the OTC gene.

  16. Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans.

    PubMed

    Lee, Vivian S; Halabi, Carmen M; Hoffman, Erin P; Carmichael, Nikkola; Leshchiner, Ignaty; Lian, Christine G; Bierhals, Andrew J; Vuzman, Dana; Mecham, Robert P; Frank, Natasha Y; Stitziel, Nathan O

    2016-08-01

    Thoracic aortic aneurysms and dissections (TAAD) represent a substantial cause of morbidity and mortality worldwide. Many individuals presenting with an inherited form of TAAD do not have causal mutations in the set of genes known to underlie disease. Using whole-genome sequencing in two first cousins with TAAD, we identified a missense mutation in the lysyl oxidase (LOX) gene (c.893T > G encoding p.Met298Arg) that cosegregated with disease in the family. Using clustered regularly interspaced short palindromic repeats (CRISPR)/clustered regularly interspaced short palindromic repeats-associated protein-9 nuclease (Cas9) genome engineering tools, we introduced the human mutation into the homologous position in the mouse genome, creating mice that were heterozygous and homozygous for the human allele. Mutant mice that were heterozygous for the human allele displayed disorganized ultrastructural properties of the aortic wall characterized by fragmented elastic lamellae, whereas mice homozygous for the human allele died shortly after parturition from ascending aortic aneurysm and spontaneous hemorrhage. These data suggest that a missense mutation in LOX is associated with aortic disease in humans, likely through insufficient cross-linking of elastin and collagen in the aortic wall. Mutation carriers may be predisposed to vascular diseases because of weakened vessel walls under stress conditions. LOX sequencing for clinical TAAD may identify additional mutation carriers in the future. Additional studies using our mouse model of LOX-associated TAAD have the potential to clarify the mechanism of disease and identify novel therapeutics specific to this genetic cause. PMID:27432961

  17. Direct Estimate of the Spontaneous Mutation Rate Uncovers the Effects of Drift and Recombination in the Chlamydomonas reinhardtii Plastid Genome.

    PubMed

    Ness, Rob W; Kraemer, Susanne A; Colegrave, Nick; Keightley, Peter D

    2016-03-01

    Plastids perform crucial cellular functions, including photosynthesis, across a wide variety of eukaryotes. Since endosymbiosis, plastids have maintained independent genomes that now display a wide diversity of gene content, genome structure, gene regulation mechanisms, and transmission modes. The evolution of plastid genomes depends on an input of de novo mutation, but our knowledge of mutation in the plastid is limited to indirect inference from patterns of DNA divergence between species. Here, we use a mutation accumulation experiment, where selection acting on mutations is rendered ineffective, combined with whole-plastid genome sequencing to directly characterize de novo mutation in Chlamydomonas reinhardtii. We show that the mutation rates of the plastid and nuclear genomes are similar, but that the base spectra of mutations differ significantly. We integrate our measure of the mutation rate with a population genomic data set of 20 individuals, and show that the plastid genome is subject to substantially stronger genetic drift than the nuclear genome. We also show that high levels of linkage disequilibrium in the plastid genome are not due to restricted recombination, but are instead a consequence of increased genetic drift. One likely explanation for increased drift in the plastid genome is that there are stronger effects of genetic hitchhiking. The presence of recombination in the plastid is consistent with laboratory studies in C. reinhardtii and demonstrates that although the plastid genome is thought to be uniparentally inherited, it recombines in nature at a rate similar to the nuclear genome. PMID:26615203

  18. Human Enhancers Are Fragile and Prone to Deactivating Mutations

    PubMed Central

    Li, Shan; Ovcharenko, Ivan

    2015-01-01

    To explore the underlying mechanisms whereby noncoding variants affect transcriptional regulation, we identified nucleotides capable of disrupting binding of transcription factors and deactivating enhancers if mutated (dubbed candidate killer mutations or KMs) in HepG2 enhancers. On average, approximately 11% of enhancer positions are prone to KMs. A comparable number of enhancer positions are capable of creating de novo binding sites via a single-nucleotide mutation (dubbed candidate restoration mutations or RSs). Both KM and RS positions are evolutionarily conserved and tend to form clusters within an enhancer. We observed that KMs have the most deleterious effect on enhancer activity. In contrast, RSs have a smaller effect in increasing enhancer activity. Additionally, the KMs are strongly associated with liver-related Genome Wide Association Study traits compared with other HepG2 enhancer regions. By applying our framework to lymphoblastoid cell lines, we found that KMs underlie differential binding of transcription factors and differential local chromatin accessibility. The gene expression quantitative trait loci associated with the tissue-specific genes are strongly enriched in KM positions. In summary, we conclude that the KMs have the greatest impact on the level of gene expression and are likely to be the causal variants of tissue-specific gene expression and disease predisposition. PMID:25976354

  19. Human triosephosphate isomerase deficiency resulting from mutation of Phe-240

    SciTech Connect

    Minling Chang; Xiaoyun Wu; Maquat, L.E. ); Artymiuk, P.J. ); Hollan, S. ); Lammi, A. )

    1993-06-01

    Triosephosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketolisomerase [E.C.5.3.1.1]) deficiency is an autosomal recessive disorder that typically results in chronic, nonspherocytic hemolytic anemia and in neuromuscular impairment. The molecular basis of this disease was analyzed for one Hungarian family and for two Australian families by localizing the defects in TPI cDNA and by determining how each defect affects TPI gene expression. The Hungarian family is noteworthy in having the first reported case of an individual, A. Jo., who harbors two defective TPI alleles but who does not manifest neuromuscular disabilities. This family was characterized by two mutations that have never been described. One is a missense mutation within codon 240 (TTC [Phe][r arrow]CTC [Leu]), which creates a thermolabile protein, as indicated by the results of enzyme activity assays using cell extracts. This substitution, which changes a phylogenetically conserved amino acid, may affect enzyme activity by dusrupting intersubunit contacts or substrate binding, as deduced from enzyme structural studies. The other mutation has yet to be localized but reduces the abundance of TPI mRNA 10--20-fold. Each of the Australian families was characterized by a previously described mutation within codon 104 (GAG [Glu][r arrow]GAC [Asp]), which also results in thermolabile protein. 49 refs., 6 figs., 1 tab.

  20. Oncogenically active MYD88 mutations in human lymphoma

    PubMed Central

    Ngo, Vu N.; Young, Ryan M.; Schmitz, Roland; Jhavar, Sameer; Xiao, Wenming; Lim, Kian-Huat; Kohlhammer, Holger; Xu, Weihong; Yang, Yandan; Zhao, Hong; Shaffer, Arthur L.; Romesser, Paul; Wright, George; Powell, John; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Ott, German; Gascoyne, Randy D.; Connors, Joseph M.; Rimsza, Lisa M.; Campo, Elias; Jaffe, Elaine S.; Delabie, Jan; Smeland, Erlend B.; Fisher, Richard I.; Braziel, Rita M.; Tubbs, Raymond R.; Cook, J. R.; Weisenburger, Denny D.; Chan, Wing C.; Staudt, Louis M.

    2016-01-01

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy1. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling2,3, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt’s lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-β. Hence, theMYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations

  1. The human δ2 glutamate receptor gene is not mutated in patients with spinocerebellar ataxia

    PubMed Central

    Huang, Jinxiang; Lin, Aiyu; Dong, Haiyan; Wang, Chaodong

    2014-01-01

    The human glutamate receptor delta 2 gene (GRID2) shares 90% homology with the orthologous mouse gene. The mouse Grid2 gene is involved with functions of the cerebellum and spontaneous mutation of Grid2 leads to a spinocerebellar ataxia-like phenotype. To investigate whether such mutations occur in humans, we screened for mutations in the coding sequence of GRID2 in 24 patients with familial or sporadic spinocerebellar ataxia and in 52 normal controls. We detected no point mutations or insertion/deletion mutations in the 16 exons of GRID2. However, a polymorphic 4 nucleotide deletion (IVS5-121_-118 GAGT) and two single nucleotide polymorphisms (c.1251G>T and IVS14-63C>G) were identified. The frequency of these polymorphisms was similar between spinocerebellar ataxia patients and normal controls. These data indicate that spontaneous mutations do not occur in GRID2 and that the incidence of spinocerebellar ataxia in humans is not associated with GRID2 mutation or polymorphisms. PMID:25206761

  2. KinMutBase, a database of human disease-causing protein kinase mutations.

    PubMed

    Stenberg, K A; Riikonen, P T; Vihinen, M

    1999-01-01

    KinMutBase (http://www.uta.fi/laitokset/imt/KinMut Base.html) is a registry of mutations in human protein kinases related to disorders. Kinases are essential cellular signalling molecules, in which mutations can lead into diseases including, e.g., immunodeficiencies, cancers and endocrine disorders. The first release of KinMutBase contains information for nine protein tyrosine kinases. There are altogether 170 entries representing 273 families and 403 patients. Mutations appear both in conserved hallmark residues of the kinases as well as in non-homologous sites. The KinMutBase WWW pages provide plenty of information, namely mutation statistics and display, clickable sequences with mutations, restriction enzyme patterns and online submission. PMID:9847229

  3. His499 Regulates Dimerization and Prevents Oncogenic Activation by Asparagine Mutations of the Human Thrombopoietin Receptor.

    PubMed

    Leroy, Emilie; Defour, Jean-Philippe; Sato, Takeshi; Dass, Sharmila; Gryshkova, Vitalina; Shwe, Myat M; Staerk, Judith; Constantinescu, Stefan N; Smith, Steven O

    2016-02-01

    Ligand binding to the extracellular domain of the thrombopoietin receptor (TpoR) imparts a specific orientation on the transmembrane (TM) and intracellular domains of the receptors that is required for physiologic activation via receptor dimerization. To map the inactive and active dimeric orientations of the TM helices, we performed asparagine (Asn)-scanning mutagenesis of the TM domains of the murine and human TpoR. Substitution of Asn at only one position (S505N) activated the human receptor, whereas Asn substitutions at several positions activated the murine receptor. Second site mutational studies indicate that His(499) near the N terminus of the TM domain is responsible for protecting the human receptor from activation by Asn mutations. Structural studies reveal that the sequence preceding His(499) is helical in the murine receptor but non-helical in peptides corresponding to the TM domain of the inactive human receptor. The activating S505N mutation and the small molecule agonist eltrombopag both induce helix in this region of the TM domain and are associated with dimerization and activation of the human receptor. Thus, His(499) regulates the activation of human TpoR and provides additional protection against activating mutations, such as oncogenic Asn mutations in the TM domain. PMID:26627830

  4. Role of p53 gene mutations in human esophageal carcinogenesis: results from immunohistochemical and mutation analyses of carcinomas and nearby non-cancerous lesions.

    PubMed

    Shi, S T; Yang, G Y; Wang, L D; Xue, Z; Feng, B; Ding, W; Xing, E P; Yang, C S

    1999-04-01

    In order to characterize p53 alterations in esophageal cancer and to study their roles in carcinogenesis, we performed gene mutation and immunohistochemical analysis on 43 surgically resected human esophageal specimens, which contain squamous cell carcinoma (SCC) and adjacent non-cancerous lesions, from a high-incidence area of Linzhou in Henan, China. A newly developed immunohisto-selective sequencing (IHSS) method was used to enrich the p53 immunostain-positive cells for mutation analysis. p53 gene mutations were detected in 30 out of 43 (70%) SCC cases. Among 29 SCC cases that were stained positive for p53 protein, 25 (86%) were found to contain p53 mutations. In five cases of SCC with homogeneous p53 staining, the same mutation was observed in samples taken from four different positions of each tumor. In a well differentiated cancer nest, p53 mutation was detected in only the peripheral p53-positive cells. In tumor areas with heterogeneous p53 staining, either the area stained positive for p53 had an additional mutation to the negatively stained area or both areas lacked any detectable p53 mutation. In the p53-positive non-cancerous lesions adjacent to cancer, p53 mutations were detected in seven out of 16 (47%) samples with basal cell hyperplasia (BCH), eight out of 12 (67%) samples with dysplasia (DYS), and six out of seven (86%) samples with carcinoma in situ (CIS). All mutations found in lesions with DYS and CIS were the same as those in the nearby SCC. In seven cases of BCH containing mutations, only three had the same mutations as the nearby SCC. The results suggest that p53 mutation is an early event in esophageal carcinogenesis occurring in most of the DYS and CIS lesions, and cells with such mutations will progress to carcinoma, whereas the role of p53 mutations in BCH is less clear. PMID:10223186

  5. RTTN Mutations Cause Primary Microcephaly and Primordial Dwarfism in Humans

    PubMed Central

    Shamseldin, Hanan; Alazami, Anas M.; Manning, Melanie; Hashem, Amal; Caluseiu, Oana; Tabarki, Brahim; Esplin, Edward; Schelley, Susan; Innes, A. Micheil; Parboosingh, Jillian S.; Lamont, Ryan; Majewski, Jacek; Bernier, Francois P.; Alkuraya, Fowzan S.

    2015-01-01

    Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963∗] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration. PMID:26608784

  6. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    PubMed

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  7. Reaction Rate Theory of Radiation Exposure and Scaling Hypothesis in Mutation Frequency

    NASA Astrophysics Data System (ADS)

    Manabe, Yuichiro; Nakamura, Issei; Bando, Masako

    2014-11-01

    We have developed a kinetic reaction model for cells with irradiated DNA molecules due to ionizing radiation exposure. Our theory simultaneously accounts for the time-dependent reactions of DNA damage, DNA mutation and DNA repair, and the proliferation and apoptosis of cells in a tissue with a minimal set of model parameters. In contrast to existing theories of radiation exposition, we do not assume the relationships between the total dose and the induced mutation frequency. Our theory provides a universal scaling function that reasonably explains the mega-mouse experiments by Russell and Kelly [Proc. Natl. Acad. Sci. U.S.A. 79, 542 (1982)] with different dose rates. Furthermore, we have estimated the effective dose rate, which is biologically equivalent to the ionizing effects other than those caused by artificial irradiation. This value is 1.11 × 10-3 Gy/h, which is significantly larger than the effect caused by natural background radiation.

  8. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter

    PubMed Central

    Petersen, Ines; Gabryszewski, Stanislaw J.; Johnston, Geoffrey L.; Dhingra, Satish K.; Ecker, Andrea; Lewis, Rebecca E.; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp H.; Palatulan, Eugene; Johnson, David J.; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M.; Lanzer, Michael; Fidock, David A.

    2015-01-01

    Summary The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  9. The effects of a deleterious mutation load on patterns of influenza A/H3N2's antigenic evolution in humans

    PubMed Central

    Koelle, Katia; Rasmussen, David A

    2015-01-01

    Recent phylogenetic analyses indicate that RNA virus populations carry a significant deleterious mutation load. This mutation load has the potential to shape patterns of adaptive evolution via genetic linkage to beneficial mutations. Here, we examine the effect of deleterious mutations on patterns of influenza A subtype H3N2's antigenic evolution in humans. By first analyzing simple models of influenza that incorporate a mutation load, we show that deleterious mutations, as expected, act to slow the virus's rate of antigenic evolution, while making it more punctuated in nature. These models further predict three distinct molecular pathways by which antigenic cluster transitions occur, and we find phylogenetic patterns consistent with each of these pathways in influenza virus sequences. Simulations of a more complex phylodynamic model further indicate that antigenic mutations act in concert with deleterious mutations to reproduce influenza's spindly hemagglutinin phylogeny, co-circulation of antigenic variants, and high annual attack rates. DOI: http://dx.doi.org/10.7554/eLife.07361.001 PMID:26371556

  10. Mutations of the E-cadherin gene in human gynecologic cancers.

    PubMed

    Risinger, J I; Berchuck, A; Kohler, M F; Boyd, J

    1994-05-01

    Expression of the E-cadherin cell adhesion molecule is reduced in several types of human carcinomas, and the protein serves as an invasion suppressor in vitro. To determine if mutations of the E-cadherin gene (on chromosome 16q22) contribute to epithelial tumorigenesis, 135 carcinomas of the endometrium and ovary were examined for alterations in the E-cadherin coding region. Four mutations were identified: one somatic nonsense and one somatic missense mutation, both with retention of the wild-type alleles, and two missense mutations with somatic loss of heterozygosity in the tumour tissue. These data support the classification of E-cadherin as a human tumour suppressor gene. PMID:8075649

  11. Association between human papillomavirus and EGFR mutations in advanced lung adenocarcinoma

    PubMed Central

    Li, Ming; Deng, Fang; Qian, Li-Ting; Meng, Shui-Ping; Zhang, Yang; Shan, Wu-Lin; Zhang, Xiao-Lei; Wang, Bao-Long

    2016-01-01

    Previous studies have demonstrated an association between human papillomavirus (HPV) and mutations in the epidermal growth factor receptor (EGFR) gene in lung cancer patients; however, few studies have investigated this association in advanced lung adenocarcinoma patients undergoing gefitinib treatment. The present study investigated the association between HPV and EGFR mutations in advanced lung adenocarcinoma patients. A total of 95 advanced lung adenocarcinoma patients were enrolled in the study. The HPV infection status and presence of EGFR mutations in tumor tissue was evaluated. Patient clinical characteristics were also determined and compared with HPV infection and EGFR mutation status to analyze their impact on progression-free survival. HPV DNA was identified in 27/95 (28.4%) lung adenocarcinoma tumors and was most common in patients with lymph node metastasis (P=0.016). A total of 44/95 (46.3%) cases exhibited EGFR mutations, which were predominantly observed in female patients and non-smokers. The presence of HPV DNA was significantly associated with EGFR mutations (P=0.012) and multivariate analysis also revealed that HPV DNA was significantly associated with EGFR mutations (odds ratio=3.971) in advanced lung adenocarcinoma. Patients with both HPV infections and EGFR mutations exhibit a marked decrease in the risk of lung cancer progression when compared with those without HPV infection or EGFR mutations (adjusted HR=0.640; 95% confidence interval: 0.488–0.840; P=0.001). HPV infection was significantly associated with EGFR mutations in advanced lung adenocarcinoma patients. Furthermore, patients with HPV infections exhibited the longest progression-free survival times, which may be due to good response to tyrosine kinase inhibitor- or platinum-based-adjuvant therapy in these patients. Patients with EGFR mutations exhibited a better prognosis when compared with those exhibiting wild-type EGFR, regardless of HPV status. PMID:27602120

  12. [The mechanisms of palindrome-stimulated mutation and related human diseases].

    PubMed

    Chen, Xu; Xiao, Fei; Guo, Jian

    2013-05-01

    In prokaryotic and eukaryotic genomes, the palindrome regions are highly variable and instable. The reason for this instability is that palindrome can form a hairpin or cruciform structure, which can result in deletions or chromosomal translocations by certain mechanisms, such as slipped mispairing, single-strand annealing and non-homologous end joining. In human genomes, palindromes commonly exist in the essential elements which can regulate the expressions of different genes, and the mutations stimulated by palindromes are also closely associated with the occurrences and progressions of certain human diseases such as male infertility and thalassemia. Based on recent studies, we briefly summarize the types of mutations caused by palindromes and their possible mechanisms, as well as the related human diseases. This review would provide some information for the following researches about the roles and functions of palindromes in gene expression, regulation, mutation and related human diseases. PMID:23732662

  13. Many private mutations originate from the first few divisions of a human colorectal adenoma.

    PubMed

    Kang, Haeyoun; Salomon, Matthew P; Sottoriva, Andrea; Zhao, Junsong; Toy, Morgan; Press, Michael F; Curtis, Christina; Marjoram, Paul; Siegmund, Kimberly; Shibata, Darryl

    2015-11-01

    Intratumoural mutational heterogeneity (ITH) or the presence of different private mutations in different parts of the same tumour is commonly observed in human tumours. The mechanisms generating such ITH are uncertain. Here we find that ITH can be remarkably well structured by measuring point mutations, chromosome copy numbers, and DNA passenger methylation from opposite sides and individual glands of a 6 cm human colorectal adenoma. ITH was present between tumour sides and individual glands, but the private mutations were side-specific and subdivided the adenoma into two major subclones. Furthermore, ITH disappeared within individual glands because the glands were clonal populations composed of cells with identical mutant genotypes. Despite mutation clonality, the glands were relatively old, diverse populations when their individual cells were compared for passenger methylation and by FISH. These observations can be organized into an expanding star-like ancestral tree with co-clonal expansion, where many private mutations and multiple related clones arise during the first few divisions. As a consequence, most detectable mutational ITH in the final tumour originates from the first few divisions. Much of the early history of a tumour, especially the first few divisions, may be embedded within the detectable ITH of tumour genomes. PMID:26119426

  14. Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories.

    PubMed Central

    Di Rienzo, A; Donnelly, P; Toomajian, C; Sisk, B; Hill, A; Petzl-Erler, M L; Haines, G K; Barch, D H

    1998-01-01

    Microsatellites have been widely used to reconstruct human evolution. However, the efficient use of these markers relies on information regarding the process producing the observed variation. Here, we present a novel approach to the locus-by-locus characterization of this process. By analyzing somatic mutations in cancer patients, we estimated the distributions of mutation size for each of 20 loci. The same loci were then typed in three ethnically diverse population samples. The generalized stepwise mutation model was used to test the predicted relationship between population and mutation parameters under two demographic scenarios: constant population size and rapid expansion. The agreement between the observed and expected relationship between population and mutation parameters, even when the latter are estimated in cancer patients, confirms that somatic mutations may be useful for investigating the process underlying population variation. Estimated distributions of mutation size differ substantially amongst loci, and mutations of more than one repeat unit are common. A new statistic, the normalized population variance, is introduced for multilocus estimation of demographic parameters, and for testing demographic scenarios. The observed population variation is not consistent with a constant population size. Time estimates of the putative population expansion are in agreement with those obtained by other methods. PMID:9539441

  15. Humidity Testing for Human Rated Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Gary B.

    2009-01-01

    Determination that equipment can operate in and survive exposure to the humidity environments unique to human rated spacecraft presents widely varying challenges. Equipment may need to operate in habitable volumes where the atmosphere contains perspiration, exhalation, and residual moisture. Equipment located outside the pressurized volumes may be exposed to repetitive diurnal cycles that may result in moisture absorption and/or condensation. Equipment may be thermally affected by conduction to coldplate or structure, by forced or ambient air convection (hot/cold or wet/dry), or by radiation to space through windows or hatches. The equipment s on/off state also contributes to the equipment s susceptibility to humidity. Like-equipment is sometimes used in more than one location and under varying operational modes. Due to these challenges, developing a test scenario that bounds all physical, environmental and operational modes for both pressurized and unpressurized volumes requires an integrated assessment to determine the "worst-case combined conditions." Such an assessment was performed for the Constellation program, considering all of the aforementioned variables; and a test profile was developed based on approximately 300 variable combinations. The test profile has been vetted by several subject matter experts and partially validated by testing. Final testing to determine the efficacy of the test profile on actual space hardware is in the planning stages. When validation is completed, the test profile will be formally incorporated into NASA document CxP 30036, "Constellation Environmental Qualification and Acceptance Testing Requirements (CEQATR)."

  16. Pro-arrhythmogenic effects of the S140G KCNQ1 mutation in human atrial fibrillation - insights from modelling.

    PubMed

    Kharche, Sanjay; Adeniran, Ismail; Stott, Jonathan; Law, Phillip; Boyett, Mark R; Hancox, Jules C; Zhang, Henggui

    2012-09-15

    Functional analysis has shown that the missense gain-in-function KCNQ1 S140G mutation associated with familial atrial fibrillation produces an increase of the slow delayed rectifier potassium current (I(Ks)). Through computer modelling, this study investigated mechanisms by which the KCNQ1 S140G mutation promotes and perpetuates atrial fibrillation. In simulations, Courtemanche et al.'s model of human atrial cell action potentials (APs) was modified to incorporate experimental data on changes of I(Ks) induced by the KCNQ1 S140G mutation. The cell models for wild type (WT) and mutant type (MT) I(Ks) were incorporated into homogeneous multicellular 2D and 3D tissue models. Effects of the mutation were quantified on AP profile, AP duration (APD) restitution, effective refractory period (ERP) restitution, and conduction velocity (CV) restitution.Temporal and spatial vulnerabilities of atrial tissue to genesis of re-entry were computed. Dynamic behaviours of re-entrant excitation waves (lifespan (LS), tip meandering patterns and dominant frequency) in 2D and 3D models were characterised. It was shown that the KCNQ1 S140G mutation abbreviated atrial APD and ERP and flattened APD and ERP restitution curves. It reduced atrial CV at low excitation rates, but increased it at high excitation rates that facilitated the conduction of high rate atrial excitation waves. Although it increased slightly tissue temporal vulnerability for initiating re-entry, it reduced markedly the minimal substrate size necessary for sustaining re-entry (increasing the tissue spatial vulnerability). In the 2D and 3D models, the mutation also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. In the 3D model, scroll waves under the mutation condition MT conditions also degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, increased I(Ks) due to the KCNQ1 S140G mutation increases atrial susceptibility to arrhythmia due

  17. Functional Recurrent Mutations in the Human Mitochondrial Phylogeny: Dual Roles in Evolution and Disease

    PubMed Central

    Levin, Liron; Zhidkov, Ilia; Gurman, Yotam; Hawlena, Hadas; Mishmar, Dan

    2013-01-01

    Mutations frequently reoccur in the human mitochondrial DNA (mtDNA). However, it is unclear whether recurrent mtDNA nodal mutations (RNMs), that is, recurrent mutations in stems of unrelated phylogenetic nodes, are functional and hence selectively constrained. To answer this question, we performed comprehensive parsimony and maximum likelihood analyses of 9,868 publicly available whole human mtDNAs revealing 1,606 single nodal mutations (SNMs) and 679 RNMs. We then evaluated the potential functionality of synonymous, nonsynonymous and RNA SNMs and RNMs. For synonymous mutations, we have implemented the Codon Adaptation Index. For nonsynonymous mutations, we assessed evolutionary conservation, and employed previously described pathogenicity score assessment tools. For RNA genes’ mutations, we designed a bioinformatic tool which compiled evolutionary conservation and potential effect on RNA structure. While comparing the functionality scores of nonsynonymous and RNA SNMs and RNMs with those of disease-causing mtDNA mutations, we found significant difference (P < 0.001). However, 24 RNMs and 67 SNMs had comparable values with disease-causing mutations reflecting their potential function thus being the best candidates to participate in adaptive events of unrelated lineages. Strikingly, some functional RNMs occurred in unrelated mtDNA lineages that independently altered susceptibility to the same diseases, thus suggesting common functionality. To our knowledge, this is the most comprehensive analysis of selective signatures in the mtDNA not only within proteins but also within RNA genes. For the first time, we discover virtually all positively selected RNMs in our phylogeny while emphasizing their dual role in past evolutionary events and in disease today. PMID:23563965

  18. Functional recurrent mutations in the human mitochondrial phylogeny: dual roles in evolution and disease.

    PubMed

    Levin, Liron; Zhidkov, Ilia; Gurman, Yotam; Hawlena, Hadas; Mishmar, Dan

    2013-01-01

    Mutations frequently reoccur in the human mitochondrial DNA (mtDNA). However, it is unclear whether recurrent mtDNA nodal mutations (RNMs), that is, recurrent mutations in stems of unrelated phylogenetic nodes, are functional and hence selectively constrained. To answer this question, we performed comprehensive parsimony and maximum likelihood analyses of 9,868 publicly available whole human mtDNAs revealing 1,606 single nodal mutations (SNMs) and 679 RNMs. We then evaluated the potential functionality of synonymous, nonsynonymous and RNA SNMs and RNMs. For synonymous mutations, we have implemented the Codon Adaptation Index. For nonsynonymous mutations, we assessed evolutionary conservation, and employed previously described pathogenicity score assessment tools. For RNA genes' mutations, we designed a bioinformatic tool which compiled evolutionary conservation and potential effect on RNA structure. While comparing the functionality scores of nonsynonymous and RNA SNMs and RNMs with those of disease-causing mtDNA mutations, we found significant difference (P < 0.001). However, 24 RNMs and 67 SNMs had comparable values with disease-causing mutations reflecting their potential function thus being the best candidates to participate in adaptive events of unrelated lineages. Strikingly, some functional RNMs occurred in unrelated mtDNA lineages that independently altered susceptibility to the same diseases, thus suggesting common functionality. To our knowledge, this is the most comprehensive analysis of selective signatures in the mtDNA not only within proteins but also within RNA genes. For the first time, we discover virtually all positively selected RNMs in our phylogeny while emphasizing their dual role in past evolutionary events and in disease today. PMID:23563965

  19. Divergence times in Caenorhabditis and Drosophila inferred from direct estimates of the neutral mutation rate.

    PubMed

    Cutter, Asher D

    2008-04-01

    Accurate inference of the dates of common ancestry among species forms a central problem in understanding the evolutionary history of organisms. Molecular estimates of divergence time rely on the molecular evolutionary prediction that neutral mutations and substitutions occur at the same constant rate in genomes of related species. This underlies the notion of a molecular clock. Most implementations of this idea depend on paleontological calibration to infer dates of common ancestry, but taxa with poor fossil records must rely on external, potentially inappropriate, calibration with distantly related species. The classic biological models Caenorhabditis and Drosophila are examples of such problem taxa. Here, I illustrate internal calibration in these groups with direct estimates of the mutation rate from contemporary populations that are corrected for interfering effects of selection on the assumption of neutrality of substitutions. Divergence times are inferred among 6 species each of Caenorhabditis and Drosophila, based on thousands of orthologous groups of genes. I propose that the 2 closest known species of Caenorhabditis shared a common ancestor <24 MYA (Caenorhabditis briggsae and Caenorhabditis sp. 5) and that Caenorhabditis elegans diverged from its closest known relatives <30 MYA, assuming that these species pass through at least 6 generations per year; these estimates are much more recent than reported previously with molecular clock calibrations from non-nematode phyla. Dates inferred for the common ancestor of Drosophila melanogaster and Drosophila simulans are roughly concordant with previous studies. These revised dates have important implications for rates of genome evolution and the origin of self-fertilization in Caenorhabditis. PMID:18234705

  20. Genetic polymorphisms and mutation rates of 27 Y-chromosomal STRs in a Han population from Guangdong Province, Southern China.

    PubMed

    Wang, Ying; Zhang, Yong-Ji; Zhang, Chu-chu; Li, Ran; Yang, Yang; Ou, Xue-Ling; Tong, Da-yue; Sun, Hong-Yu

    2016-03-01

    In this study, we collected blood samples from 1033 father-son pairs of a Han population from Guangdong Province, Southern China, of which 1007 fathers were unrelated male individuals. All together, 2040 male individuals were analyzed at 27 Y-chromosomal short tandem repeats (Y-STRs) with Yfiler(®) Plus system. A total of 1003 different haplotypes were observed among 1007 unrelated fathers, with the overall haplotype diversity (HD) 0.999992 and discrimination capacity (DC) 0.996. The gene diversity (GD) values for the 27 Y-STR loci ranged from 0.4400 at DYS438 to 0.9597 at DYS385a/b. 11 off-ladder alleles and 25 copy number variants were detected in 1007 males. Population relationships were analyzed by comparison with 19 other worldwide populations. With 27,920 allele transfers in 1033 father-son pairs, 124 mutation events occurred, of which 118 were one-step mutations and 6 were two-step mutations. Eleven father-son pairs were found to have mutations at two loci, while one pair at three loci. The estimated locus-specific mutation rates varied from 0 to 1.74×10(-2), with an average estimated mutation rate 4.4×10(-3) (95%CI: 3.7×10(-3) to 5.3×10(-3)). Mutations were most frequently observed at three rapidly mutating Y-STRs (RM Y-STRs), DYS576, DYS518 and DYS627. However, at DYS570, DYS449 and DYF387S1 loci, which were also described as RM Y-STRs, the mutation rates in Guangdong Han population were not as high as estimated in other populations. PMID:26619377

  1. Mutation induction by different dose rates of gamma rays in radiation-sensitive mutants of mouse leukemia cells

    SciTech Connect

    Furuno-Fukushi, I.; Matsudaira, H. )

    1989-11-01

    Induction of cell killing and mutation to 6-thioguanine resistance was examined in a radiation-sensitive mutant strain LX830 of mouse leukemia cells following gamma irradiation at dose rates of 30 Gy/h (acute), 20 cGy/h (low dose rate), and 6.2 mGy/h (very low dose rate). LX830 cells were hypersensitive to killing by acute gamma rays. A slight but significant increase was observed in cell survival with decreasing dose rate down to 6.2 mGy/h, where the survival leveled off above certain total doses. The cells were also hypersensitive to mutation induction compared to the wild type. The mutation frequency increased linearly with increasing dose for all dose rates. No significant difference was observed in the frequency of induced mutations versus total dose at the three different dose rates so that the mutation frequency in LX830 cells at 6.2 mGy/h was not significantly different from that for moderate or acute irradiation.

  2. Bayesian Procedures for the Estimation of Mutation Rates from Fluctuation Experiments

    PubMed Central

    Asteris, G.; Sarkar, S.

    1996-01-01

    Bayesian procedures are developed for estimating mutation rates from fluctuation experiments. Three Bayesian point estimators are compared with four traditional ones using the results of 10,000 simulated experiments. The Bayesian estimators were found to be at least as efficient as the best of the previously known estimators. The best Bayesian estimator is one that uses (1/m(2)) as the prior probability density function and a quadratic loss function. The advantage of using these estimators is most pronounced when the number of fluctuation test tubes is small. Bayesian estimation allows the incorporation of prior knowledge about the estimated parameter, in which case the resulting estimators are the most efficient. It enables the straightforward construction of confidence intervals for the estimated parameter. The increase of efficiency with prior information and the narrowing of the confidence intervals with additional experimental results are investigated. The results of the simulations show that any potential inaccuracy of estimation arising from lumping together all cultures with more than n mutants (the jackpots) almost disappears at n = 70 (provided that the number of mutations in a culture is low). These methods are applied to a set of experimental data to illustrate their use. PMID:8770608

  3. Cloning of three human multifunctional de novo purine biosynthetic genes by functional complementation of yeast mutations.

    PubMed Central

    Schild, D; Brake, A J; Kiefer, M C; Young, D; Barr, P J

    1990-01-01

    Functional complementation of mutations in the yeast Saccharomyces cerevisiae has been used to clone three multifunctional human genes involved in de novo purine biosynthesis. A HepG2 cDNA library constructed in a yeast expression vector was used to transform yeast strains with mutations in adenine biosynthetic genes. Clones were isolated that complement mutations in the yeast ADE2, ADE3, and ADE8 genes. The cDNA that complemented the ade8 (phosphoribosylglycinamide formyltransferase, GART) mutation, also complemented the ade5 (phosphoribosylglycinamide synthetase) and ade7 [phosphoribosylaminoimidazole synthetase (AIRS; also known as PAIS)] mutations, indicating that it is the human trifunctional GART gene. Supporting data include homology between the AIRS and GART domains of this gene and the published sequence of these domains from other organisms, and localization of the cloned gene to human chromosome 21, where the GART gene has been shown to map. The cDNA that complemented ade2 (phosphoribosylaminoimidazole carboxylase) also complemented ade1 (phosphoribosylaminoimidazole succinocarboxamide synthetase), supporting earlier data suggesting that in some organisms these functions are part of a bifunctional protein. The cDNA that complemented ade3 (formyltetrahydrofolate synthetase) is different from the recently isolated human cDNA encoding this enzyme and instead appears to encode a related mitochondrial enzyme. Images PMID:2183217

  4. Pneumotachometer counts respiration rate of human subject

    NASA Technical Reports Server (NTRS)

    Graham, O.

    1964-01-01

    To monitor breaths per minute, two rate-to-analog converters are alternately used to read and count the respiratory rate from an impedance pneumograph sequentially displayed numerically on electroluminescent matrices.

  5. The mouse rumpshaker mutation of the proteolipid protein in human X-linked recessive spastic paraplegia

    SciTech Connect

    Kobayashi, H.; Hoffman, E.P.; Matise, T.C.

    1994-09-01

    X-linked recessive spastic paraplegia is a rare neurodegenerative disorder characterized by slowly progressive weakness and spasticity of the lower extremities. We have recently genetically analyzed the original X-linked recessive spastic paraplegia family reported by Johnston and McKusick in 1962. We employed a fluorescent multiplex CA repeat strategy using a 22 locus, 10 cM framework map of the human X chromosome and localized the gene within a 36 cM region of Xq2l.3-q24 which includes the PLP locus. Saugier-Veber et al. recently reported a point mutation (His139Tyr) in exon 3B of the PLP gene in an X-linked recessive spastic paraplegia family (SPG2). This family shows no optic atrophy, in contrast to the family we have studied. This data showed that SPG2 and Pelizaeus-Merzbacher disease were allelic disorders. We investigated the PLP gene as a candidate gene for the original X-linked recessive spastic paraplegia family using SSCP and direct sequencing methods. We found a point mutation (T to C) in exon 4 of affected males which alters the amino-acid (Ile to Thr) at residue 186. This change was absent in the unaffected males of the family and in 40 unrelated control females (80 X chromosomes). Surprisingly, this mutation is identical to the mutation previously identified in the rumpshaker mouse model. The complete homology between both the mouse and human PLP sequence, and the mouse rumpshaker mutation and human spastic paraplegia mutation in our family, permit direct parallels to be drawn with regards to pathophysiology. Our data indicates that the well-documented and striking clinical differences between Pelizaeus-Merzbacher disease and X-linked recessive spastic paraplegia is due to the specific effect of different mutations of the human PLP gene on oligodendrocyte differentiation and development and on later myelin production and maintenance.

  6. Mutational and Functional Analysis of the Tumor-Suppressor PTPRD in Human Melanoma

    PubMed Central

    Walia, Vijay; Prickett, Todd D.; Kim, Jung-Sik; Gartner, Jared J.; Lin, Jimmy C.; Zhou, Ming; Rosenberg, Steven A.; Elble, Randolph C.; Solomon, David A.; Waldman, Todd; Samuels, Yardena

    2015-01-01

    Protein tyrosine phosphatases (PTPs) tightly regulate tyrosine phosphorylation essential for cell growth, adhesion, migration, and survival. We performed a mutational analysis of the PTP gene family in cutaneous metastatic melanoma and identified 23 phosphatase genes harboring somatic mutations. Among these, receptor-type tyrosine–protein phosphatase delta (PTPRD) was one of the most highly mutated genes, harboring 17 somatic mutations in 79 samples, a prevalence of 21.5%. Functional evaluation of six PTPRD mutations revealed enhanced anchorage-dependent and anchorage-independent growth. Interestingly, melanoma cells expressing mutant PTPRD were significantly more migratory than cells expressing wild-type PTPRD or vector alone, indicating a novel gain-of-function associated with mutant PTPRD. To understand the molecular mechanisms of PTPRD mutations, we searched for its binding partners by converting the active PTPRD enzyme into a “substrate trap” form. Using mass spectrometry and coimmunoprecipitation, we report desmoplakin, a desmosomal protein that is implicated in cell–cell adhesion, as a novel PTPRD substrate. Further analysis showed reduced phosphatase activity of mutant PTPRD against desmoplakin. Our findings identify an essential signaling cascade that is disrupted in melanoma. Moreover, because PTPRD is also mutated in glioblastomas and adenocarcinoma of the colon and lung, our data might be applicable to a large number of human cancers. PMID:25113440

  7. Identification of a Novel GJA8 (Cx50) Point Mutation Causes Human Dominant Congenital Cataracts

    NASA Astrophysics Data System (ADS)

    Ge, Xiang-Lian; Zhang, Yilan; Wu, Yaming; Lv, Jineng; Zhang, Wei; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-02-01

    Hereditary cataracts are clinically and genetically heterogeneous lens diseases that cause a significant proportion of visual impairment and blindness in children. Human cataracts have been linked with mutations in two genes, GJA3 and GJA8, respectively. To identify the causative mutation in a family with hereditary cataracts, family members were screened for mutations by PCR for both genes. Sequencing the coding regions of GJA8, coding for connexin 50, revealed a C > A transversion at nucleotide 264, which caused p.P88T mutation. To dissect the molecular consequences of this mutation, plasmids carrying wild-type and mutant mouse ORFs of Gja8 were generated and ectopically expressed in HEK293 cells and human lens epithelial cells, respectively. The recombinant proteins were assessed by confocal microscopy and Western blotting. The results demonstrate that the molecular consequences of the p.P88T mutation in GJA8 include changes in connexin 50 protein localization patterns, accumulation of mutant protein, and increased cell growth.

  8. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70.

    PubMed

    Chan, Alice Y; Punwani, Divya; Kadlecek, Theresa A; Cowan, Morton J; Olson, Jean L; Mathes, Erin F; Sunderam, Uma; Fu, Shu Man; Srinivasan, Rajgopal; Kuriyan, John; Brenner, Steven E; Weiss, Arthur; Puck, Jennifer M

    2016-02-01

    A brother and sister developed a previously undescribed constellation of autoimmune manifestations within their first year of life, with uncontrollable bullous pemphigoid, colitis, and proteinuria. The boy had hemophilia due to a factor VIII autoantibody and nephrotic syndrome. Both children required allogeneic hematopoietic cell transplantation (HCT), which resolved their autoimmunity. The early onset, severity, and distinctive findings suggested a single gene disorder underlying the phenotype. Whole-exome sequencing performed on five family members revealed the affected siblings to be compound heterozygous for two unique missense mutations in the 70-kD T cell receptor ζ-chain associated protein (ZAP-70). Healthy relatives were heterozygous mutation carriers. Although pre-HCT patient T cells were not available, mutation effects were determined using transfected cell lines and peripheral blood from carriers and controls. Mutation R192W in the C-SH2 domain exhibited reduced binding to phosphorylated ζ-chain, whereas mutation R360P in the N lobe of the catalytic domain disrupted an autoinhibitory mechanism, producing a weakly hyperactive ZAP-70 protein. Although human ZAP-70 deficiency can have dysregulated T cells, and autoreactive mouse thymocytes with weak Zap-70 signaling can escape tolerance, our patients' combination of hypomorphic and activating mutations suggested a new disease mechanism and produced previously undescribed human ZAP-70-associated autoimmune disease. PMID:26783323

  9. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70

    PubMed Central

    Chan, Alice Y.; Punwani, Divya; Kadlecek, Theresa A.; Cowan, Morton J.; Olson, Jean L.; Mathes, Erin F.; Sunderam, Uma; Man Fu, Shu; Srinivasan, Rajgopal; Kuriyan, John; Brenner, Steven E.; Weiss, Arthur

    2016-01-01

    A brother and sister developed a previously undescribed constellation of autoimmune manifestations within their first year of life, with uncontrollable bullous pemphigoid, colitis, and proteinuria. The boy had hemophilia due to a factor VIII autoantibody and nephrotic syndrome. Both children required allogeneic hematopoietic cell transplantation (HCT), which resolved their autoimmunity. The early onset, severity, and distinctive findings suggested a single gene disorder underlying the phenotype. Whole-exome sequencing performed on five family members revealed the affected siblings to be compound heterozygous for two unique missense mutations in the 70-kD T cell receptor ζ-chain associated protein (ZAP-70). Healthy relatives were heterozygous mutation carriers. Although pre-HCT patient T cells were not available, mutation effects were determined using transfected cell lines and peripheral blood from carriers and controls. Mutation R192W in the C-SH2 domain exhibited reduced binding to phosphorylated ζ-chain, whereas mutation R360P in the N lobe of the catalytic domain disrupted an autoinhibitory mechanism, producing a weakly hyperactive ZAP-70 protein. Although human ZAP-70 deficiency can have dysregulated T cells, and autoreactive mouse thymocytes with weak Zap-70 signaling can escape tolerance, our patients’ combination of hypomorphic and activating mutations suggested a new disease mechanism and produced previously undescribed human ZAP-70–associated autoimmune disease. PMID:26783323

  10. Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios

    PubMed Central

    Besenbacher, Søren; Liu, Siyang; Izarzugaza, José M. G.; Grove, Jakob; Belling, Kirstine; Bork-Jensen, Jette; Huang, Shujia; Als, Thomas D.; Li, Shengting; Yadav, Rachita; Rubio-García, Arcadio; Lescai, Francesco; Demontis, Ditte; Rao, Junhua; Ye, Weijian; Mailund, Thomas; Friborg, Rune M.; Pedersen, Christian N. S.; Xu, Ruiqi; Sun, Jihua; Liu, Hao; Wang, Ou; Cheng, Xiaofang; Flores, David; Rydza, Emil; Rapacki, Kristoffer; Damm Sørensen, John; Chmura, Piotr; Westergaard, David; Dworzynski, Piotr; Sørensen, Thorkild I. A.; Lund, Ole; Hansen, Torben; Xu, Xun; Li, Ning; Bolund, Lars; Pedersen, Oluf; Eiberg, Hans; Krogh, Anders; Børglum, Anders D.; Brunak, Søren; Kristiansen, Karsten; Schierup, Mikkel H.; Wang, Jun; Gupta, Ramneek; Villesen, Palle; Rasmussen, Simon

    2015-01-01

    Building a population-specific catalogue of single nucleotide variants (SNVs), indels and structural variants (SVs) with frequencies, termed a national pan-genome, is critical for further advancing clinical and public health genetics in large cohorts. Here we report a Danish pan-genome obtained from sequencing 10 trios to high depth (50 × ). We report 536k novel SNVs and 283k novel short indels from mapping approaches and develop a population-wide de novo assembly approach to identify 132k novel indels larger than 10 nucleotides with low false discovery rates. We identify a higher proportion of indels and SVs than previous efforts showing the merits of high coverage and de novo assembly approaches. In addition, we use trio information to identify de novo mutations and use a probabilistic method to provide direct estimates of 1.27e−8 and 1.5e−9 per nucleotide per generation for SNVs and indels, respectively. PMID:25597990

  11. Molecular basis of human CD36 gene mutations.

    PubMed

    Rać, Monika Ewa; Safranow, Krzysztof; Poncyljusz, Wojciech

    2007-01-01

    CD36 is a transmembrane glycoprotein of the class B scavenger receptor family. The CD36 gene is located on chromosome 7 q11.2 and is encoded by 15 exons. Defective CD36 is a likely candidate gene for impaired fatty acid metabolism, glucose intolerance, atherosclerosis, arterial hypertension, diabetes, cardiomyopathy, Alzheimer disease, and modification of the clinical course of malaria. Contradictory data concerning the effects of antiatherosclerotic drugs on CD36 expression indicate that further investigation of the role of CD36 in the development of atherosclerosis may be important for the prevention and treatment of this disease. This review summarizes current knowledge of CD36 gene structure, splicing, and mutations and the molecular, metabolic, and clinical consequences of these phenomena. PMID:17673938

  12. Molecular Basis of Human CD36 Gene Mutations

    PubMed Central

    Rać, Monika Ewa; Safranow, Krzysztof; Poncyljusz, Wojciech

    2007-01-01

    CD36 is a transmembrane glycoprotein of the class B scavenger receptor family. The CD36 gene is located on chromosome 7 q11.2 and is encoded by 15 exons. Defective CD36 is a likely candidate gene for impaired fatty acid metabolism, glucose intolerance, atherosclerosis, arterial hypertension, diabetes, cardiomyopathy, Alzheimer disease, and modification of the clinical course of malaria. Contradictory data concerning the effects of antiatherosclerotic drugs on CD36 expression indicate that further investigation of the role of CD36 in the development of atherosclerosis may be important for the prevention and treatment of this disease. This review summarizes current knowledge of CD36 gene structure, splicing, and mutations and the molecular, metabolic, and clinical consequences of these phenomena. PMID:17673938

  13. Enhanced somatic mutation rates induced in stem cells of mice by low chronic exposure to ethylnitrosourea.

    PubMed Central

    Shaver-Walker, P M; Urlando, C; Tao, K S; Zhang, X B; Heddle, J A

    1995-01-01

    We have found that the somatic mutation rate at the Dlb-1 locus increases exponentially during low daily exposure to ethylnitrosourea over 4 months. This effect, enhanced mutagenesis, was not observed at a lacI transgene in the same tissue, although the two loci respond very similarly to acute doses. Since both mutations are neutral, the mutant frequency was expected to increase linearly with time in response to a constant mutagenic exposure, as it did for lacI. Enhanced mutagenesis does not result from an overall sensitization of the animals, since mice that had first been treated with a low daily dose for 90 days and then challenged with a large acute dose were not sensitized to the acute dose. Nor was the increased mutant frequency due to selection, since animals that were treated for 90 days and then left untreated for up to 60 days showed little change from the 90-day frequency. The effect is substantial: about 8 times as many Dlb-1 mutants were induced between 90 and 120 days as in the first 30 days. This resulted in a reverse dose rate effect such that 90 mg/kg induced more mutants when delivered at 1 mg/kg per day than at 3 mg/kg per day. We postulate that enhanced mutagenesis arises from increased stem cell proliferation and the preferential repair of transcribed genes. Enhanced mutagenesis may be important for risk evaluation, as the results show that chronic exposures can be more mutagenic than acute ones and raise the possibility of synergism between chemicals at low doses. PMID:8524785

  14. Human Immunoglobulin (Ig)M+IgD+ Peripheral Blood B Cells Expressing the CD27 Cell Surface Antigen Carry Somatically Mutated Variable Region Genes: CD27 as a General Marker for Somatically Mutated (Memory) B Cells

    PubMed Central

    Klein, Ulf; Rajewsky, Klaus; Küppers, Ralf

    1998-01-01

    Immunoglobulin (Ig)M+IgD+ B cells are generally assumed to represent antigen-inexperienced, naive B cells expressing variable (V) region genes without somatic mutations. We report here that human IgM+IgD+ peripheral blood (PB) B cells expressing the CD27 cell surface antigen carry mutated V genes, in contrast to CD27-negative IgM+IgD+ B cells. IgM+IgD+CD27+ B cells resemble class-switched and IgM-only memory cells in terms of cell phenotype, and comprise ∼15% of PB B lymphocytes in healthy adults. Moreover, a very small population (<1% of PB B cells) of highly mutated IgD-only B cells was detected, which likely represent the PB counterpart of IgD-only tonsillar germinal center and plasma cells. Overall, the B cell pool in the PB of adults consists of ∼40% mutated memory B cells and 60% unmutated, naive IgD+CD27− B cells (including CD5+ B cells). In the somatically mutated B cells, VH region genes carry a two- to threefold higher load of somatic mutation than rearranged Vκ genes. This might be due to an intrinsically lower mutation rate in κ light chain genes compared with heavy chain genes and/or result from κ light chain gene rearrangements in GC B cells. A common feature of the somatically mutated B cell subsets is the expression of the CD27 cell surface antigen which therefore may represent a general marker for memory B cells in humans. PMID:9802980

  15. [Characterization of genetic alterations in primary human melanomas carrying BRAF or NRAS mutation].

    PubMed

    Lázár, Viktória

    2013-06-01

    Human malignant melanoma is one of the most aggressive forms of skin cancer with an exceptionally bad prognosis. Melanoma often displays constitutively activated MAPK pathway through BRAF or NRAS mutations. It is also known that these mutations are almost never simultaneously present and that they appear at early stages and preserved throughout tumor progression, although it is proved that these alterations alone are insufficient to cause tumor progression. Therefore the first aim of our study was to evaluate those distinct genetic alterations which can properly differentiate the three important molecular subtypes of primary melanomas with a) BRAF, b) NRAS mutation and c) WT (wild type for both loci). High-resolution array comparative genomic hybridization (array CGH) was used to assess genome-wide analysis of DNA copy number alterations. Primary melanomas with BRAF mutation more frequently exhibited losses on 10q23-10q26 and gains on chromosome 7 and 1q23-1q25 compared to melanomas with NRAS mutation. Loss on the 11q23-11q25 sequence was found mainly in conjunction with NRAS mutation. Based on these results, we proved the existence of marked differences in the genetic pattern of the BRAF and NRAS mutated melanoma subgroups, which might suggest that these mutations contribute to the development of malignant melanoma in conjunction with distinct cooperating oncogenic events. In general, it is an interesting phenomenon suggesting that these mutations provide probably the "guiding force" for these tumors and it also suggests that there are alternative genetic pathways to melanoma. These additional oncogenic events which are associated with BRAF or NRAS mutations can provide rational additional targets for a combination therapy with kinase inhibitors. In this study we also investigated the specific dynamic activities among different signalling pathways highlighting the frequent alterations of genes involved in the signalling interactions between the MAPK-JAK pathways

  16. Functional Consequences and Structural Interpretation of Mutations of Human Choline Acetyltransferase

    PubMed Central

    Shen, Xin-Ming; Crawford, Thomas O.; Brengman, Joan; Acsadi, Gyula; Iannaconne, Susan; Karaca, Emin; Khoury, Chaouky; Mah, Jean K.; Edvardson, Shimon; Bajzer, Zeljko; Rodgers, David; Engel, Andrew G.

    2011-01-01

    Choline acetyltransferase (ChAT; EC 2.3.1.6) catalyzes synthesis of acetylcholine from acetyl-CoA and choline in cholinergic neurons. Mutations in CHAT (MIM # 118490) cause potentially lethal congenital myasthenic syndromes associated with episodic apnea (ChAT-CMS) (MIM # 254210). Here we analyze the functional consequences of 12 missense and 1 nonsense mutations of CHAT in 11 patients. Nine of the mutations are novel. We examine expression of the recombinant missense mutants in Bosc 23 cells, determine their kinetic properties and thermal stability, and interpret the functional effects of 11 mutations in the context of the atomic structural model of human ChAT. Five mutations (p.Trp421Ser, p.Ser498Pro, p.Thr553Asn, p.Ala557Thr, p.Ser572Trp) reduce enzyme expression to <50% of wild-type. Mutations with severe kinetic effects are located in the active-site tunnel (p.Met202Arg, p.Thr553Asn and p.Ala557Thr) or adjacent to the substrate binding site (p.Ser572Trp), or exert their effect allosterically (p.Trp421Ser and p.Ile689Ser). Two mutations with milder kinetic effects (p.Val136Met, p.Ala235Thr) are also predicted to act allosterically. One mutation (p.Thr608Asn) below the nucleotide binding site of CoA enhances dissociation of AcCoA from the enzyme-substrate complex. Two mutations introducing a proline residue into an α-helix (p.Ser498Pro and p.Ser704Pro) impair the thermal stability of ChAT. PMID:21786365

  17. Molecular analysis of formaldehyde-induced mutations in human lymphoblasts and E. coli

    SciTech Connect

    Crosby, R.M.; Richardson, K.K.; Craft, T.R.; Benforado, K.B.; Liber, H.L.; Skopek, T.R.

    1988-01-01

    The molecular nature of formaldehyde (HCHO)-induced mutations was studied in both human lymphoblasts and E. coli. Thirty HPRT/sup -/ human lymphoblast colonies induced by eight repetitive 150 ..mu..M HCHO treatments were characterized by Southern blot analysis. Fourteen of these mutants (47%) had visible deletions of some or all of the X-linked HPRT bands, indicating that HCHO can induce large losses of DNA in human lymphoblasts. In E. coli., DNA alterations induced by HCHO were characterized with use of the xanthine guanine phosphoribosyl transferase (gpt) gene as the genetic target. Exposure of E. coli to 4 mM HCHO for 1 hr induced large insertions (41%), large deletions (18%), and point mutations (41%). Dideoxy DNA sequencing revealed that most of the point mutations were transversions at GC base pairs. In contrast, exposure of E. coli to 40 mM HCHO for 1 hr produced 92% point mutations, 62% of which were transitions at a single AT base pair in the gene. Therefore, HCHO is capable of producing different genetic alterations in E. coli at different concentrations, suggesting fundamental differences in the mutagenic mechanisms operating at the two concentrations used. Naked pSV2gpt plasmid DNA was exposed to 3.3 or 10 mM HCHO and transformed into E. coli. Most of the resulting mutations were frameshifts, again suggesting a different mutagenic mechanism.

  18. NPMc+ cooperates with Flt3/ITD mutations to cause acute leukemia recapitulating human disease

    PubMed Central

    Rau, Rachel; Magoon, Daniel; Greenblatt, Sarah; Li, Li; Annesley, Colleen; Duffield, Amy S.; Huso, David; McIntyre, Emily; Clohessy, John G.; Reschke, Markus; Pandolfi, Pier Paolo; Small, Donald; Brown, Patrick

    2013-01-01

    Cytoplasmic nucleophosmin (NPMc+) mutations and FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations are two of the most common known molecular alterations in acute myeloid leukemia (AML), and they frequently occur together suggesting cooperative leukemogenesis. To explore the specific relationship between NPMc+ and FLT3/ITD in vivo, we crossed Flt3/ITD knock-in mice with transgenic NPMc+ mice. Mice with both mutations develop a transplantable leukemia of either myeloid or lymphoid lineage, definitively demonstrating cooperation between Flt3/ITD and NPMc+. In mice with myeloid leukemia, functionally significant loss of heterozygosity of the wild-type Flt3 allele is common, similar to what is observed in human FLT3/ITD+ AML, providing further in vivo evidence of the importance of loss of wild-type FLT3 in leukemic initiation and progression. Additionally, in vitro clonogenic assays reveal that the combination of Flt3/ITD and NPMc+ mutations causes a profound monocytic expansion, in excess of that seen with either mutation alone consistent with the predominance of myelomonocytic phenotype in human FLT3/ITD+/NPMc+ AML. This in vivo model of Flt3/ITD+/NPMc+ leukemia closely recapitulates human disease and will therefore serve as a tool for the investigation of the biology of this common disease entity. PMID:24184354

  19. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Shavers, M. R.; Katz, R.

    1996-01-01

    It has long been suggested that inactivation severely effects the probability of mutation by heavy ions in mammalian cells. Heavy ions have observed cross sections of inactivation that approach and sometimes exceed the geometric size of the cell nucleus in mammalian cells. In the track structure model of Katz the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated using the dose-response of the system to gamma-rays and the radial dose of the ions and may be equal to unity at small impact parameters for some ions. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections from heavy ions in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT mutations in Chinese hamster cells and good agreement is found. The resulting calculations qualitatively show that mutation cross sections for heavy ions display minima at velocities where inactivation cross sections display maxima. Also, calculations show the high probability of mutation by relativistic heavy ions due to the radial extension of ions track from delta-rays in agreement with the microlesion concept. The effects of inactivation on mutations rates make it very unlikely that a single parameter such as LET or Z*2/beta(2) can be used to specify radiation quality for heavy ion bombardment.

  20. Investigations of the Y Chromosome, Male Founder Structure and YSTR Mutation Rates in the Old Order Amish

    PubMed Central

    Pollin, Toni I.; McBride, Daniel J.; Agarwala, Richa; Schäffer, Alejandro A.; Shuldiner, Alan R.; Mitchell, Braxton D.; O'Connell, Jeffrey R.

    2007-01-01

    Objectives Using Y chromosome short tandem repeat (YSTR) genotypes, (1) evaluate the accuracy and completeness of the Lancaster County Old Order Amish (OOA) genealogical records and (2) estimate YSTR mutation rates. Methods Nine YSTR markers were genotyped in 739 Old Order Amish males who participated in several ongoing genetic studies of complex traits and could be connected into one of 28 all-male lineage pedigrees constructed using the Anabaptist Genealogy Database and the query software PedHunter. A putative founder YSTR haplotype was constructed for each pedigree, and observed and inferred father-son transmissions were used to estimate YSTR mutation rates. Results We inferred 27 distinct founder Y chromosome haplotypes in the 28 male lineages, which encompassed 27 surnames accounting for 98% of Lancaster OOA households. Nearly all deviations from founder haplotypes were consistent with mutation events rather than errors. The estimated marker-specific mutation rates ranged from 0 to 1.09% (average 0.33% using up to 283 observed meioses only and 0.28% using up to 1,232 observed and inferred meioses combined). Conclusions These data confirm the accuracy and completeness of the male lineage portion of the Anabaptist Genealogy Database and contribute mutation rate estimates for several commonly used Y chromosome STR markers. PMID:17898540

  1. Mutation rate is reduced by increased dosage of mutL gene in Escherichia coli K-12.

    PubMed

    Galán, Juan-Carlos; Turrientes, María-Carmen; Baquero, María-Rosario; Rodríguez-Alcayna, Manuel; Martínez-Amado, Jorge; Martínez, José-Luis; Baquero, Fernando

    2007-10-01

    A variable but substantial proportion of wild Escherichia coli isolates present consistently lower mutation frequencies than that found in the ensemble of strains. The genetic mechanisms responsible for the hypo-mutation phenotype are much less known than those involved in hyper-mutation. Changes in E. coli mutation frequencies derived from the gene-copy effect of mutS, mutL, mutH, uvrD, mutT, mutY, mutM, mutA, dnaE, dnaQ, and rpoS are explored. When present in a very high copy number ( approximately 300 copies cell(-1)), mutL, mutH, and mutA gene copies yielded >/=twofold decrease in mutation rates determined by Luria-Delbrück fluctuation tests. Nevertheless, when the copy number was not such high ( approximately 15 copies cell(-1)), only mutL results in a consistent twofold decrease in the mutation rate. This reduction seems to be independent from the RecA background, phase of growth, or from the presence of proficient MutS. An increase in mutL gene copies was also able to partially compensate the hypermutator phenotype of a mutS-defective E. coli derivative. PMID:17825069

  2. The glycophorin A assay for somatic cell mutations in humans

    SciTech Connect

    Langlois, R.G.; Bigbee, W.L.; Jensen, R.H.

    1989-08-18

    In this report we briefly review our past experience and some new developments with the GPA assay. Particular emphasis will be placed on two areas that affect the utility of the GPA assay for human population monitoring. The first is our efforts to simplify the GPA assay to make it more generally available for large population studies. The second is to begin to understand some of the characteristics of human hemopoiesis which affect the accumulation and expression of mutant phenotype cells. 11 refs., 4 figs.

  3. The Rate and Spectrum of Spontaneous Mutations in Mycobacterium smegmatis, a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway.

    PubMed

    Kucukyildirim, Sibel; Long, Hongan; Sung, Way; Miller, Samuel F; Doak, Thomas G; Lynch, Michael

    2016-01-01

    Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR) homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10(-10) per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP) domain, and/or the existence of a uracil-DNA glycosylase B (UdgB) homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase) methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways. PMID:27194804

  4. The Rate and Spectrum of Spontaneous Mutations in Mycobacterium smegmatis, a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway

    PubMed Central

    Kucukyildirim, Sibel; Long, Hongan; Sung, Way; Miller, Samuel F.; Doak, Thomas G.; Lynch, Michael

    2016-01-01

    Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR) homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10−10 per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP) domain, and/or the existence of a uracil-DNA glycosylase B (UdgB) homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase) methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways. PMID:27194804

  5. Ultra deep sequencing detects a low rate of mosaic mutations in Tuberous Sclerosis Complex

    PubMed Central

    Qin, Wei; Kozlowski, Piotr; Taillon, Bruce E.; Bouffard, Pascal; Holmes, Alison J.; Janne, Pasi; Camposano, Susana; Thiele, Elizabeth; Franz, David; Kwiatkowski, David J.

    2010-01-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous syndrome caused by mutations in TSC1 and TSC2. However, 10 to 15% TSC patients have no mutation identified with conventional molecular diagnostic studies. We used the ultra-deep pyrosequencing technique of 454 Sequencing to search for mosaicism in 38 TSC patients who had no TSC1 or TSC2 mutation identified by conventional methods. Two TSC2 mutations were identified, each at 5.3% read frequency in different patients, consistent with mosaicism. Both mosaic mutations were confirmed by several methods. Five of 38 samples were found to have heterozygous non-mosaic mutations, which had been missed in earlier analyses. Several other possible low frequency mosaic mutations were identified by deep sequencing, but were discarded as artifacts by secondary studies. The low frequency of detection of mosaic mutations, 2 (6%) of 33, suggests that the majority of TSC patients who have no mutation identified are not due to mosaicism, but rather other causes, which remain to be determined. These findings indicate the ability of deep sequencing, coupled with secondary confirmatory analyses, to detect low frequency mosaic mutations. PMID:20165957

  6. Human APOBEC3 Induced Mutation of Human Immunodeficiency Virus Type-1 Contributes to Adaptation and Evolution in Natural Infection

    PubMed Central

    Kim, Eun-Young; Lorenzo-Redondo, Ramon; Little, Susan J.; Chung, Yoon-Seok; Phalora, Prabhjeet K.; Maljkovic Berry, Irina; Archer, John; Penugonda, Sudhir; Fischer, Will; Richman, Douglas D.; Bhattacharya, Tanmoy; Malim, Michael H.; Wolinsky, Steven M.

    2014-01-01

    Human APOBEC3 proteins are cytidine deaminases that contribute broadly to innate immunity through the control of exogenous retrovirus replication and endogenous retroelement retrotransposition. As an intrinsic antiretroviral defense mechanism, APOBEC3 proteins induce extensive guanosine-to-adenosine (G-to-A) mutagenesis and inhibit synthesis of nascent human immunodeficiency virus-type 1 (HIV-1) cDNA. Human APOBEC3 proteins have additionally been proposed to induce infrequent, potentially non-lethal G-to-A mutations that make subtle contributions to sequence diversification of the viral genome and adaptation though acquisition of beneficial mutations. Using single-cycle HIV-1 infections in culture and highly parallel DNA sequencing, we defined trinucleotide contexts of the edited sites for APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H. We then compared these APOBEC3 editing contexts with the patterns of G-to-A mutations in HIV-1 DNA in cells obtained sequentially from ten patients with primary HIV-1 infection. Viral substitutions were highest in the preferred trinucleotide contexts of the edited sites for the APOBEC3 deaminases. Consistent with the effects of immune selection, amino acid changes accumulated at the APOBEC3 editing contexts located within human leukocyte antigen (HLA)-appropriate epitopes that are known or predicted to enable peptide binding. Thus, APOBEC3 activity may induce mutations that influence the genetic diversity and adaptation of the HIV-1 population in natural infection. PMID:25080100

  7. JAK2V617F somatic mutation in the general population: myeloproliferative neoplasm development and progression rate

    PubMed Central

    Nielsen, Camilla; Bojesen, Stig E.; Nordestgaard, Børge G.; Kofoed, Klaus F.; Birgens, Henrik S.

    2014-01-01

    Clinical significance of the JAK2V617F mutation in patients with a myeloproliferative neoplasm has been the target of intensive research in recent years. However, there is considerably uncertainty about prognosis in JAK2V617F positive individuals without overt signs of myeloproliferative disease. In this study, we tested the hypothesis that increased JAK2V617F somatic mutation burden is associated with myeloproliferative neoplasm progression rate in the general population. Among 49,488 individuals from the Copenhagen General Population Study, 63 (0.1%) tested positive for the JAK2V617F mutation in the time period 2003–2008. Of these, 48 were available for re-examination in 2012. Level of JAK2V617F mutation burden was associated with myeloproliferative neoplasm progression rate, consistent with a biological continuum of increasing JAK2V617F mutation burden across increasing severity of myeloproliferative neoplasm from no disease (n=8 at re-examination) through essential thrombocythemia (n=20) and polycythemia vera (n=13) to primary myelofibrosis (n=7). Among those diagnosed with a myeloproliferative neoplasm only at re-examination in 2012, in the preceding years JAK2V617F mutation burden increased by 0.55% per year, erythrocyte volume fraction increased by 1.19% per year, and erythrocyte mean corpuscular volume increased by 1.25% per year, while there was no change in platelet count or erythropoietin levels. Furthermore, we established a JAK2V617F mutation burden cut-off point of 2% indicative of disease versus no disease; however, individuals with a mutation burden below 2% may suffer from a latent form of myeloproliferative disease revealed by a slightly larger spleen and/or slightly higher lactic acid dehydrogenase concentration compared to controls. Of all 63 JAK2V617F positive individuals, 48 were eventually diagnosed with a myeloproliferative neoplasm. PMID:24907356

  8. IMPROVED FLOW CYTOMETRIC ASSAY FOR SOMATIC MUTATIONS AT THE GLYCOPHORIN A LOCUS IN HUMANS

    EPA Science Inventory

    An improved method has been developed for the glycophorin A assay for somatic cell mutations in humans. he new assay, named the "BR6" assay, can be performed on a commercially available, single-beam flow cytometer, in contrast to the previously described 1W1 assay that required a...

  9. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes.

    PubMed

    Maher, Geoffrey J; McGowan, Simon J; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O M

    2016-03-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones. PMID:26858415

  10. Integrin Alpha 8 Recessive Mutations Are Responsible for Bilateral Renal Agenesis in Humans

    PubMed Central

    Humbert, Camille; Silbermann, Flora; Morar, Bharti; Parisot, Mélanie; Zarhrate, Mohammed; Masson, Cécile; Tores, Frédéric; Blanchet, Patricia; Perez, Marie-José; Petrov, Yuliya; Khau Van Kien, Philippe; Roume, Joelle; Leroy, Brigitte; Gribouval, Olivier; Kalaydjieva, Luba; Heidet, Laurence; Salomon, Rémi; Antignac, Corinne; Benmerah, Alexandre; Saunier, Sophie; Jeanpierre, Cécile

    2014-01-01

    Renal hypodysplasia (RHD) is a heterogeneous condition encompassing a spectrum of kidney development defects including renal agenesis, hypoplasia, and (cystic) dysplasia. Heterozygous mutations of several genes have been identified as genetic causes of RHD with various severity. However, these genes and mutations are not associated with bilateral renal agenesis, except for RET mutations, which could be involved in a few cases. The pathophysiological mechanisms leading to total absence of kidney development thus remain largely elusive. By using a whole-exome sequencing approach in families with several fetuses with bilateral renal agenesis, we identified recessive mutations in the integrin α8-encoding gene ITGA8 in two families. Itga8 homozygous knockout in mice is known to result in absence of kidney development. We provide evidence of a damaging effect of the human ITGA8 mutations. These results demonstrate that mutations of ITGA8 are a genetic cause of bilateral renal agenesis and that, at least in some cases, bilateral renal agenesis is an autosomal-recessive disease. PMID:24439109

  11. Mutation analysis of IL2RG in human X-linked severe combined immunodeficiency.

    PubMed

    Puck, J M; Pepper, A E; Henthorn, P S; Candotti, F; Isakov, J; Whitwam, T; Conley, M E; Fischer, R E; Rosenblatt, H M; Small, T N; Buckley, R H

    1997-03-15

    Severe combined immunodeficiency (SCID) is a syndrome of profoundly impaired cellular and humoral immunity. In humans, SCID is most commonly caused by mutations in the X-linked gene IL2RG, which encodes the common gamma chain, gamma c, of the leukocyte receptors for interleukin-2 and multiple other cytokines. To investigate the frequency and variety of IL2RG mutations that cause SCID, we analyzed DNA, RNA, and B-cell lines from a total of 103 unrelated SCID-affected males and their relatives using a combination of molecular and immunologic techniques. Sixty-two different mutations spanning all eight IL2RG exons were found in 87 cases, making possible correlations between mutation type and functional consequences. Although skewed maternal X chromosome inactivation, single-strand conformation polymorphism, mRNA expression, and cell surface staining with anti-gamma c antibodies were all helpful in establishing IL2RG defects as the cause of SCID, only dideoxy fingerprinting and DNA sequence determination each detected 100% of the IL2RG mutations in our series. Abnormal gamma c chains may be expressed in the lymphocytes of as many as two thirds of patients with X-linked SCID. Specific mutation diagnosis thus remains technically challenging, but it is important for genetic counseling and perhaps for helping to select appropriate subjects for retroviral gene therapy trials, This is a US government work. There are no restrictions on its use. PMID:9058718

  12. Mutational analysis of human T-cell leukemia virus type 2 Tax.

    PubMed Central

    Ross, T M; Minella, A C; Fang, Z Y; Pettiford, S M; Green, P L

    1997-01-01

    A mutational analysis of human T-cell leukemia virus type 2 (HTLV-2) Tax (Tax-2) was performed to identify regions within Tax-2 important for activation of promoters through the CREB/ATF or NF-kappaB/Rel signaling pathway. Tax-2 mutations within the putative zinc-binding region as well as mutations at the carboxy terminus disrupted CREB/ATF transactivation. A single mutation within the central proline-rich region of Tax-2 disrupted the transactivation of the NF-kappaB/Rel pathway. Surprisingly, this mutation, which is thought to be in a separate activation domain, was suppressed by mutations within or around the putative zinc-binding region, suggesting an interaction between these two regions. These analyses indicate that the functional regions or domains important for transactivation through the CREB/ATF or NF-kappaB/Rel signaling pathway are similar, but not identical, in Tax-1 and Tax-2. Identification of these distinct Tax-2 mutants should facilitate comparative biological studies of HTLV-1 and HTLV-2 and ultimately lead to the determination of the functional importance of Tax trans-acting capacities in T-lymphocyte transformation by HTLV. PMID:9343258

  13. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes

    PubMed Central

    Maher, Geoffrey J.; McGowan, Simon J.; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O. M.

    2016-01-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39–90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones. PMID:26858415

  14. p53 mutations and human papillomavirus DNA in oral squamous cell carcinoma: correlation with apoptosis.

    PubMed Central

    Koh, J. Y.; Cho, N. P.; Kong, G.; Lee, J. D.; Yoon, K.

    1998-01-01

    Forty-two oral squamous cell carcinomas (SCCs) were analysed for p53 mutations and human papillomavirus (HPV) infection to examine the prevalency of these factors and correlation with apoptotic index (AI; number of apoptotic cells per 100 tumour cells) of the tumour tissue. In polymerase chain reaction (PCR)-Southern blot analysis, HPV DNAs were detected from 22 out of 42 SCCs (52%) with predominance of HPV-16 (68%). p53 mutations in exons 5-8, screened by nested PCR-single-strand conformation polymorphism (PCR-SSCP) analysis, were observed in 16 of 42 tumours (38%). The state of the p53 gene did not show any correlation with HPV infection. The terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labelling (TUNEL) method was used for detection of apoptotic cells. The mean AI was 2.35, ranging from 0.31 to 6.63. SCCs associated with p53 mutation had significantly lower AI than those without p53 mutation (P < 0.01), whereas no difference in AI was found between SCCs with and without HPV infection. The results of this study confirmed that HPV infection and/or p53 mutations are implicated, but are not mutually exclusive events, in carcinogenesis of oral SCC and also showed that decrease in apoptosis is more closely related to p53 mutation than HPV infection. Images Figure 1 Figure 2 Figure 3 PMID:9703282

  15. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans.

    PubMed

    Grall, Anaïs; Guaguère, Eric; Planchais, Sandrine; Grond, Susanne; Bourrat, Emmanuelle; Hausser, Ingrid; Hitte, Christophe; Le Gallo, Matthieu; Derbois, Céline; Kim, Gwang-Jin; Lagoutte, Laëtitia; Degorce-Rubiales, Frédérique; Radner, Franz P W; Thomas, Anne; Küry, Sébastien; Bensignor, Emmanuel; Fontaine, Jacques; Pin, Didier; Zimmermann, Robert; Zechner, Rudolf; Lathrop, Mark; Galibert, Francis; André, Catherine; Fischer, Judith

    2012-02-01

    Ichthyoses comprise a heterogeneous group of genodermatoses characterized by abnormal desquamation over the whole body, for which the genetic causes of several human forms remain unknown. We used a spontaneous dog model in the golden retriever breed, which is affected by a lamellar ichthyosis resembling human autosomal recessive congenital ichthyoses (ARCI), to carry out a genome-wide association study. We identified a homozygous insertion-deletion (indel) mutation in PNPLA1 that leads to a premature stop codon in all affected golden retriever dogs. We subsequently found one missense and one nonsense mutation in the catalytic domain of human PNPLA1 in six individuals with ARCI from two families. Further experiments highlighted the importance of PNPLA1 in the formation of the epidermal lipid barrier. This study identifies a new gene involved in human ichthyoses and provides insights into the localization and function of this yet uncharacterized member of the PNPLA protein family. PMID:22246504

  16. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis

    PubMed Central

    Cui, Yujun; Yu, Chang; Yan, Yanfeng; Li, Dongfang; Li, Yanjun; Jombart, Thibaut; Weinert, Lucy A.; Wang, Zuyun; Guo, Zhaobiao; Xu, Lizhi; Zhang, Yujiang; Zheng, Hancheng; Qin, Nan; Xiao, Xiao; Wu, Mingshou; Wang, Xiaoyi; Zhou, Dongsheng; Qi, Zhizhen; Du, Zongmin; Wu, Honglong; Yang, Xianwei; Cao, Hongzhi; Wang, Hu; Wang, Jing; Yao, Shusen; Rakin, Alexander; Li, Yingrui; Falush, Daniel; Balloux, Francois; Achtman, Mark; Song, Yajun; Wang, Jun; Yang, Ruifu

    2013-01-01

    The genetic diversity of Yersinia pestis, the etiologic agent of plague, is extremely limited because of its recent origin coupled with a slow clock rate. Here we identified 2,326 SNPs from 133 genomes of Y. pestis strains that were isolated in China and elsewhere. These SNPs define the genealogy of Y. pestis since its most recent common ancestor. All but 28 of these SNPs represented mutations that happened only once within the genealogy, and they were distributed essentially at random among individual genes. Only seven genes contained a significant excess of nonsynonymous SNP, suggesting that the fixation of SNPs mainly arises via neutral processes, such as genetic drift, rather than Darwinian selection. However, the rate of fixation varies dramatically over the genealogy: the number of SNPs accumulated by different lineages was highly variable and the genealogy contains multiple polytomies, one of which resulted in four branches near the time of the Black Death. We suggest that demographic changes can affect the speed of evolution in epidemic pathogens even in the absence of natural selection, and hypothesize that neutral SNPs are fixed rapidly during intermittent epidemics and outbreaks. PMID:23271803

  17. Human immunodeficiency virus type 1 integrase: effect on viral replication of mutations at highly conserved residues.

    PubMed

    Cannon, P M; Wilson, W; Byles, E; Kingsman, S M; Kingsman, A J

    1994-08-01

    Sequence comparisons of the integrase (IN) proteins from different retroviruses have identified several highly conserved residues. We have introduced mutations at 16 of these sites into the integrase gene of human immunodeficiency virus type 1 and analyzed the phenotypes of the resulting viruses. The viruses were all normal for p24 content and reverse transcriptase activity. In addition, all of the mutants could infect T-cell lines and undergo reverse transcription, as assessed by PCR analysis. Most of the mutant viruses also had normal Western blot (immunoblot) profiles, although three of the mutations resulted in reduced signals for IN relative to the wild type on the immunoblots and mutation of residue W235 completely abolished recognition of the protein by pooled sera from human immunodeficiency virus type 1-positive patients. Mutations that have previously been shown to abolish activity in in vitro studies produced noninfectious viruses. The substitution of W235 was notable in producing a noninfectious virus, despite previous reports of this residue being nonessential for IN activity in vitro (A.D. Leavitt, L. Shiue, and H.E. Varmus, J. Biol. Chem. 268:2113-2119, 1993). In addition, we have identified four highly conserved residues that can be mutated without any affect on viral replication in T-cell lines. PMID:8035478

  18. The human NPM1 mutation A perturbs megakaryopoiesis in a conditional mouse model.

    PubMed

    Sportoletti, Paolo; Varasano, Emanuela; Rossi, Roberta; Bereshchenko, Oxana; Cecchini, Debora; Gionfriddo, Ilaria; Bolli, Niccolò; Tiacci, Enrico; Intermesoli, Tamara; Zanghì, Pamela; Masciulli, Arianna; Martelli, Maria Paola; Falzetti, Franca; Martelli, Massimo F; Falini, Brunangelo

    2013-04-25

    The NPM1 mutation is the most frequent genetic alteration thus far identified in acute myeloid leukemia (AML). Despite progress in the clinical and biological characterization of NPM1-mutated AML, the role of NPM1 mutation in leukemogenesis in vivo has not been fully elucidated. We report a novel mouse model that conditionally expresses the most common human NPM1 mutation (type A) in the hematopoietic compartment. In Npm1-TCTG/WT;Cre(+) mice, the NPM1 mutant localized in the cytoplasm (NPMc(+)) of bone marrow (BM) cells. The mutant mice developed no AML after 1.5-year follow-up. However, NPMc(+) expression determined a significant platelet count reduction and an expansion of the megakaryocytic compartment in the BM and spleen. Serum thrombopoietin levels overlapped in mutant vs control mice, and BM cells from Npm1-TCTG/WT;Cre(+) mice formed more megakaryocytic colonies in vitro. Moreover, we demonstrated the up-regulation of microRNAs (miRNAs; miR-10a, miR-10b, and miR-20a) inhibiting megakaryocytic differentiation along with increased expression of HOXB genes. Notably, these findings mimic those of human NPM1-mutated AML, which also exhibits a similar miRNA profile and expansion of the megakaryocytic compartment. Our mouse model provides evidence that the NPM1 mutant affects megakaryocytic development, further expanding our knowledge of the role of NPM1 mutant in leukemogenesis. PMID:23435463

  19. PIK3CA mutations and EGFR overexpression predict for lithium sensitivity in human breast epithelial cells

    PubMed Central

    Higgins, Michaela J; Beaver, Julia A; Wong, Hong yuen; Gustin, John P; Lauring, Josh D; Garay, Joseph P; Konishi, Hiroyuki; Mohseni, Morassa; Wang, Grace M; Cidado, Justin; Jelovac, Danijela; Cosgrove, David P; Tamaki, Akina; Park, Ben Ho

    2011-01-01

    A high frequency of somatic mutations has been found in breast cancers within the gene encoding the catalytic p110α subunit of PI3K, PIK3CA. Using isogenic human breast epithelial cells, we have previously demonstrated that oncogenic PIK3CA “hotspot” mutations predict for response to the toxic effects of lithium. However, other somatic genetic alterations occur within this pathway in breast cancers, and it is possible that these changes may also predict for lithium sensitivity. We overexpressed the epidermal growth factor receptor (EGFR) into the non-tumorigenic human breast epithelial cell line MCF-10A, and compared these cells to isogenic cell lines previously created via somatic cell gene targeting to model Pten loss, PIK3CA mutations, and the invariant AKT1 mutation, E17K. EGFR overexpressing clones were capable of cellular proliferation in the absence of EGF and were sensitive to lithium similar to the results previously seen with cells harboring PIK3CA mutations. In contrast, AKT1 E17K cells and PTEN−/− cells displayed resistance or partial sensitivity to lithium, respectively. Western blot analysis demonstrated that lithium sensitivity correlated with significant decreases in both PI3K and MAPK signaling that were observed only in EGFR overexpressing and mutant PIK3CA cell lines. These studies demonstrate that EGFR overexpression and PIK3CA mutations are predictors of response to lithium, whereas Pten loss and AKT1 E17K mutations do not predict for lithium sensitivity. Our findings may have important implications for the use of these genetic lesions in breast cancer patients as predictive markers of response to emerging PI3K pathway inhibitors. PMID:21124076

  20. Are there x-ray induced signature mutations in human cells?

    SciTech Connect

    Nelson, S.L.; Giver, C.R.; Grosovsky, A.J.

    1994-12-31

    Investigations of mutational spectra generally have two primary objectives: identification of mutagen specific hallmark mutations, and insight into mutagenic mechanisms. In order to address these two crucial issues we have examined the spectrum of 116 x-ray induced, and 78 spontaneous, HPRT{sup -} mutants derived from the human B lymphoblastoid cell line TK6. Multiplex PCR analysis demonstrated that the overall representation of large deletions was not significantly different in the 2 spectra, although highly significant differences were observed for specific deletion types. Total gene deletions represented 41/78 (.53) of x-ray induced, but only 7/43 (.16) of spontaneous, deletions (p < .0001). In contrast, 5{prime} terminal deletions were significantly more common among spontaneous (17/43, .40) than x-ray induced (13/78, .17) large deletions (p=.0079). Chromosomal scale investigation of x-ray induced and spontaneous hprt total deletion mutants was also performed using cytogenetic examination, and X-linked PCR probes. The types of point mutations induced by x-ray exposure were very diverse, including all classes of transitions and transversions, tandem base substitutions, frameshifts, and a deletion/insertion compound mutation. Compared to spontaneous data, radiation induced point mutations exhibited a significantly reduced number of transitions, and an increased representation of small deletions. Small deletions were uniformly surrounded by direct sequence repeats. The distribution of x-ray induced point mutations was characterized by a cluster of 8 mutants within a 30 base region of exon 8. Thirteen HPRT{sup -} point mutants exhibited aberrant splicing, 4 of which were attributable to coding sequence alterations within exons 4 and 8. These results suggest that it may be possible to identify hallmark mutations associated with x-ray exposure of human cells.

  1. A Computational Protein Phenotype Prediction Approach to Analyze the Deleterious Mutations of Human MED12 Gene.

    PubMed

    Banaganapalli, Babajan; Mohammed, Kaleemuddin; Khan, Imran Ali; Al-Aama, Jumana Y; Elango, Ramu; Shaik, Noor Ahmad

    2016-09-01

    Genetic mutations in MED12, a subunit of Mediator complex are seen in a broad spectrum of human diseases. However, the underlying basis of how these pathogenic mutations elicit protein phenotype changes in terms of 3D structure, stability and protein binding sites remains unknown. Therefore, we aimed to investigate the structural and functional impacts of MED12 mutations, using computational methods as an alternate to traditional in vivo and in vitro approaches. The MED12 gene mutations details and their corresponding clinical associations were collected from different databases and by text-mining. Initially, diverse computational approaches were applied to categorize the different classes of mutations based on their deleterious impact to MED12. Then, protein structures for wild and mutant types built by integrative modeling were analyzed for structural divergence, solvent accessibility, stability, and functional interaction deformities. Finally, this study was able to identify that genetic mutations mapped to exon-2 region, highly conserved LCEWAV and Catenin domains induce biochemically severe amino acid changes which alters the protein phenotype as well as the stability of MED12-CYCC interactions. To better understand the deleterious nature of FS-IDs and Indels, this study asserts the utility of computational screening based on their propensity towards non-sense mediated decay. Current study findings may help to narrow down the number of MED12 mutations to be screened for mediator complex dysfunction associated genetic diseases. This study supports computational methods as a primary filter to verify the plausible impact of pathogenic mutations based on the perspective of evolution, expression and phenotype of proteins. J. Cell. Biochem. 117: 2023-2035, 2016. © 2016 Wiley Periodicals, Inc. PMID:26813965

  2. 5-hydroxymethylcytosine marks regions with reduced mutation frequency in human DNA

    PubMed Central

    Tomkova, Marketa; McClellan, Michael; Kriaucionis, Skirmantas; Schuster-Boeckler, Benjamin

    2016-01-01

    CpG dinucleotides are the main mutational hot-spot in most cancers. The characteristic elevated C>T mutation rate in CpG sites has been related to 5-methylcytosine (5mC), an epigenetically modified base which resides in CpGs and plays a role in transcription silencing. In brain nearly a third of 5mCs have recently been found to exist in the form of 5-hydroxymethylcytosine (5hmC), yet the effect of 5hmC on mutational processes is still poorly understood. Here we show that 5hmC is associated with an up to 53% decrease in the frequency of C>T mutations in a CpG context compared to 5mC. Tissue specific 5hmC patterns in brain, kidney and blood correlate with lower regional CpG>T mutation frequency in cancers originating in the respective tissues. Together our data reveal global and opposing effects of the two most common cytosine modifications on the frequency of cancer causing somatic mutations in different cell types. DOI: http://dx.doi.org/10.7554/eLife.17082.001 PMID:27183007

  3. IDH1(R132) mutation identified in one human melanoma metastasis, but not correlated with metastases to the brain.

    PubMed

    Lopez, Giselle Y; Reitman, Zachary J; Solomon, David; Waldman, Todd; Bigner, Darell D; McLendon, Roger E; Rosenberg, Steven A; Samuels, Yardena; Yan, Hai

    2010-07-30

    Isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) are enzymes which convert isocitrate to alpha-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP+to NADPH). IDH1/2 were recently identified as mutated in a large percentage of progressive gliomas. These mutations occur at IDH1(R132) or the homologous IDH2(R172). Melanomas share some genetic features with IDH1/2-mutated gliomas, such as frequent TP53 mutation. We sought to test whether melanoma is associated with IDH1/2 mutations. Seventy-eight human melanoma samples were analyzed for IDH1(R132) and IDH2(R172) mutation status. A somatic, heterozygous IDH1 c.C394T (p.R132C) mutation was identified in one human melanoma metastasis to the lung. Having identified this mutation in one metastasis, we sought to test the hypothesis that certain selective pressures in the brain environment may specifically favor the cell growth or survival of tumor cells with mutations in IDH1/2, regardless of primary tumor site. To address this, we analyzed IDH1(R132) and IDH2(R172) mutation status 53 metastatic brain tumors, including nine melanoma metastases. Results revealed no mutations in any samples. This lack of mutations would suggest that mutations in IDH1(R132) or IDH2(R172) may be necessary for the formation of tumors in a cell-lineage dependent manner, with a particularly strong selective pressure for mutations in progressive gliomas; this also suggests the lack of a particular selective pressure for growth in brain tissue in general. Studies on the cell-lineages of tumors with IDH1/2 mutations may help clarify the role of these mutations in the development of brain tumors. PMID:20603105

  4. Registered report: Diverse somatic mutation patterns and pathway alterations in human cancers

    PubMed Central

    Sharma, Vidhu; Young, Lisa; Allison, Anne B; Owen, Kate

    2016-01-01

    The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of key experiments from "Diverse somatic mutation patterns and pathway alterations in human cancers" by Kan and colleagues published in Nature in 2010 (Kan et al., 2010). The experiments to be replicated are those reported in Figures 3D-F and 4C-F. Kan and colleagues utilized mismatch repair detection (MRD) technology to identify somatic mutations in primary human tumor samples and identified a previously uncharacterized arginine 243 to histidine (R243H) mutation in the G-protein α subunit GNAO1 in breast carcinoma tissue. In Figures 3D-F, Kan and colleagues demonstrated that stable expression of mutant GNAO1R243D conferred a significant growth advantage in human mammary epithelial cells, confirming the oncogenic potential of this mutation. Similarly, expression of variants with somatic mutations in MAP2K4, a JNK pathway kinase (shown in Figures 4C-E) resulted in a significant increase in anchorage-independent growth. Interestingly, these mutants exhibited reduced kinase activity compared to wild type MAP2K4, indicating these mutations impose a dominant-negative influence to promote growth (Figure 4F). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife. DOI: http://dx.doi.org/10.7554/eLife.11566.001 PMID:26894955

  5. Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations.

    PubMed Central

    Fang, Jie; Hsu, Betty Y L; MacMullen, Courtney M; Poncz, Mortimer; Smith, Thomas J; Stanley, Charles A

    2002-01-01

    Glutamate dehydrogenase (GDH) catalyses the reversible oxidative deamination of l-glutamate to 2-oxoglutarate in the mitochondrial matrix. In mammals, this enzyme is highly regulated by allosteric effectors. The major allosteric activator and inhibitor are ADP and GTP, respectively; allosteric activation by leucine may play an important role in amino acid-stimulated insulin secretion. The physiological significance of this regulation has been highlighted by the identification of children with an unusual hyperinsulinism/hyperammonaemia syndrome associated with dominant mutations in GDH that cause a loss in GTP inhibition. In order to determine the effects of these mutations on the function of the human GDH homohexamer, we studied the expression, purification and characterization of two of these regulatory mutations (H454Y, which affects the putative GTP-binding site, and S448P, which affects the antenna region) and a mutation designed to alter the putative binding site for ADP (R463A). The sensitivity to GTP inhibition was impaired markedly in the purified H454Y (ED(50), 210 microM) and S448P (ED(50), 3.1 microM) human GDH mutants compared with the wild-type human GDH (ED(50), 42 nM) or GDH isolated from heterozygous patient cells (ED(50), 290 and 280 nM, respectively). Sensitivity to ADP or leucine stimulation was unaffected by these mutations, confirming that they interfere specifically with the inhibitory GTP-binding site. Conversely, the R463A mutation completely eliminated ADP activation of human GDH, but had little effect on either GTP inhibition or leucine activation. The effects of these three mutations on ATP regulation indicated that this nucleotide inhibits human GDH through binding of its triphosphate tail to the GTP site and, at higher concentrations, activates the enzyme through binding of the nucleotide to the ADP site. These data confirm the assignment of the GTP and ADP allosteric regulatory sites on GDH based on X-ray crystallography and provide

  6. Radiation-induced mutation at minisatellite loci

    SciTech Connect

    Dubrova, Y.E. |; Nesterov, V.N.; Krouchinsky, N.G.

    1997-10-01

    We are studying the radiation-induced increase of mutation rate in minisatellite loci in mice and humans. Minisatellite mutations were scored by multilocus DNA fingerprint analysis in the progeny of {gamma}-irradiated and non-irradiated mice. The frequency of mutation in offspring of irradiated males was 1.7 higher that in the control group. Germline mutation at human minisatellite loci was studied among children born in heavily polluted areas of the Mogilev district of Belarus after the Chernobyl accident and in a control population. The frequency of mutation assayed both by DNA fingerprinting and by eight single locus probes was found to be two times higher in the exposed families than in the control group. Furthermore, mutation rate was correlated with the parental radiation dose for chronic exposure {sup 137}Cs, consistent with radiation-induction of germline mutation. The potential use of minisatellites in monitoring germline mutation in humans will be discussed.

  7. Aberrant 5′ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization

    PubMed Central

    Buratti, Emanuele; Chivers, Martin; Královičová, Jana; Romano, Maurizio; Baralle, Marco; Krainer, Adrian R.; Vořechovský, Igor

    2007-01-01

    Despite a growing number of splicing mutations found in hereditary diseases, utilization of aberrant splice sites and their effects on gene expression remain challenging to predict. We compiled sequences of 346 aberrant 5′splice sites (5′ss) that were activated by mutations in 166 human disease genes. Mutations within the 5′ss consensus accounted for 254 cryptic 5′ss and mutations elsewhere activated 92 de novo 5′ss. Point mutations leading to cryptic 5′ss activation were most common in the first intron nucleotide, followed by the fifth nucleotide. Substitutions at position +5 were exclusively G>A transitions, which was largely attributable to high mutability rates of C/G>T/A. However, the frequency of point mutations at position +5 was significantly higher than that observed in the Human Gene Mutation Database, suggesting that alterations of this position are particularly prone to aberrant splicing, possibly due to a requirement for sequential interactions with U1 and U6 snRNAs. Cryptic 5′ss were best predicted by computational algorithms that accommodate nucleotide dependencies and not by weight-matrix models. Discrimination of intronic 5′ss from their authentic counterparts was less effective than for exonic sites, as the former were intrinsically stronger than the latter. Computational prediction of exonic de novo 5′ss was poor, suggesting that their activation critically depends on exonic splicing enhancers or silencers. The authentic counterparts of aberrant 5′ss were significantly weaker than the average human 5′ss. The development of an online database of aberrant 5′ss will be useful for studying basic mechanisms of splice-site selection, identifying splicing mutations and optimizing splice-site prediction algorithms. PMID:17576681

  8. Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans*

    PubMed Central

    Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki

    2013-01-01

    A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and dermatan sulfate biosynthetic enzymes cause various disorders of connective tissues. This minireview focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances in biosynthetic enzymes for sulfated GAGs. PMID:23457301

  9. Mutational analysis of the human immunodeficiency virus type 1 Eli Nef function.

    PubMed Central

    Zazopoulos, E; Haseltine, W A

    1992-01-01

    The studies presented here define an internally consistent experimental system that permits systematic analysis of the effect of nef on the rate of the human immunodeficiency virus type 1 (HIV-1) replication in a CD4+ tumor T-cell line and in primary peripheral blood mononuclear cells. The parental full-length Nef protein, derived from the Eli strain of HIV-1, accelerates virus replication in both cell types. Mutations that destabilize or alter the intracellular location of the protein affect the ability of the Nef protein to accelerate virus replication. A set of mutants was made in amino acids proposed to be required for Nef function, including threonine and serine residues proposed to be targets for phosphorylation, and in sequences thought to resemble the G-1, G-3, and G-4 sites of the family of G proteins. In most cases alterations of the critical amino acids yield stable Nef proteins of parental phenotype. These results challenge the existing theories for the mechanism of Nef function. The results also identify two residues in the carboxyl half of the protein that are important for Nef function. Images PMID:1631166

  10. Aku, a mutation of the mouse homologous to human alkaptonuria, maps to chromosome 16

    SciTech Connect

    Montagutelli, X.; Lalouette, A.; Guenet, J.L. ); Coude, M.; Kamoun, P. ); Forest, M. )

    1994-01-01

    Alkaptonuria is a human hereditary metabolic disease characterized by a very high urinary excretion of homogentisic acid, an intermediary product in the metabolism of tyrosine, in association with ochronosis and arthritis. This disease is due to a deficiency in the enzyme homogentisic acid oxidase and is inherited as an autosomal recessive condition. The authors have found a new recessive mutation (aku) in the mouse that is homologous to human alkaptonuria, during a mutagenesis program with ethylnitrosourea. Affected mice show high levels of urinary homogentisic acid without signs of ochronosis or arthritis. This mutation has been mapped to Chr 16 close to the D16Mit4 locus, in a region of synteny with human 3q. 22 refs., 1 fig., 1 tab.

  11. A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918

    PubMed Central

    2012-01-01

    Background The H1N1 influenza A virus has been circulating in the human population for over 95 years, first manifesting itself in the pandemic of 1917–1918. Initial mortality was extremely high, but dropped exponentially over time. Influenza viruses have high mutation rates, and H1N1 has undergone significant genetic changes since 1918. The exact nature of H1N1 mutation accumulation over time has not been fully explored. Methods We have made a comprehensive historical analysis of mutational changes within H1N1 by examining over 4100 fully-sequenced H1N1 genomes. This has allowed us to examine the genetic changes arising within H1N1 from 1918 to the present. Results We document multiple extinction events, including the previously known extinction of the human H1N1 lineage in the 1950s, and an apparent second extinction of the human H1N1 lineage in 2009. These extinctions appear to be due to a continuous accumulation of mutations. At the time of its disappearance in 2009, the human H1N1 lineage had accumulated over 1400 point mutations (more than 10% of the genome), including approximately 330 non-synonymous changes (7.4% of all codons). The accumulation of both point mutations and non-synonymous amino acid changes occurred at constant rates (μ = 14.4 and 2.4 new mutations/year, respectively), and mutations accumulated uniformly across the entire influenza genome. We observed a continuous erosion over time of codon-specificity in H1N1, including a shift away from host (human, swine, and bird [duck]) codon preference patterns. Conclusions While there have been numerous adaptations within the H1N1 genome, most of the genetic changes we document here appear to be non-adaptive, and much of the change appears to be degenerative. We suggest H1N1 has been undergoing natural genetic attenuation, and that significant attenuation may even occur during a single pandemic. This process may play a role in natural pandemic cessation and has apparently contributed to the

  12. Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia.

    PubMed

    Kraus, Marine R-C; Clauin, Séverine; Pfister, Yvan; Di Maïo, Massimo; Ulinski, Tim; Constam, Daniel; Bellanné-Chantelot, Christine; Grapin-Botton, Anne

    2012-01-01

    Bicaudal C homologue 1 (Bicc1) knockout in mice causes polycystic kidney disease and pancreas development defects, including a reduction in insulin-producing β-cells and ensuing diabetes. We therefore screened 137 patients with renal abnormalities or association of early-onset diabetes and renal disease for genetic alterations in BICC1. We identified two heterozygous mutations, one nonsense in the first K Homology (KH) domain and one missense in the sterile alpha motif (SAM) domain. In mice, Bicc1 blocks canonical Wnt signaling, mostly via its SAM domain. We show that the human BICC1, similar to its mouse counterpart, blocks canonical Wnt signaling. The nonsense mutation identified results in a complete loss of Wnt inhibitory activity. The point mutation in the SAM domain has a similar effect to a complete SAM domain deletion, resulting in a 22% loss of activity. PMID:21922595

  13. Mutation of the KIT (mast/stem cell growth factor receptor) protooncogene in human piebaldism

    SciTech Connect

    Giebel, L.B.; Spritz, R.A. )

    1991-10-01

    Piebaldism is an autosomal dominant genetic disorder characterized by congenital patches of skin and hair from which melanocytes are completely absent. A similar disorder of mouse, dominant white spotting (W), results from mutations of the c-Kit protooncogene, which encodes the receptor for mast/stem cell growth factor. The authors identified a KIT gene mutation in a proband with classic autosomal dominant piebaldism. This mutation results in a Gly {yields} Arg substitution at codon 664, within the tyrosine kinase domain. This substitution was not seen in any normal individuals and was completely linked to the piebald phenotype in the proband's family. Piebaldism in this family thus appears to be the human homologue to dominant white spotting (W) of the mouse.

  14. Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome

    PubMed Central

    Koutsopoulos, Olga S; Kretz, Christine; Weller, Claudia M; Roux, Aurelien; Mojzisova, Halina; Böhm, Johann; Koch, Catherine; Toussaint, Anne; Heckel, Emilie; Stemkens, Daphne; ter Horst, Simone A J; Thibault, Christelle; Koch, Muriel; Mehdi, Syed Q; Bijlsma, Emilia K; Mandel, Jean-Louis; Vermot, Julien; Laporte, Jocelyn

    2013-01-01

    Heterozygous mutations in dynamin 2 (DNM2) have been linked to dominant Charcot-Marie-Tooth neuropathy and centronuclear myopathy. We report the first homozygous mutation in the DNM2 protein p.Phe379Val, in three consanguineous patients with a lethal congenital syndrome associating akinesia, joint contractures, hypotonia, skeletal abnormalities, and brain and retinal hemorrhages. In vitro membrane tubulation, trafficking and GTPase assays are consistent with an impact of the DNM2p.Phe379Val mutation on endocytosis. Although DNM2 has been previously implicated in axonal and muscle maintenance, the clinical manifestation in our patients taken together with our expression analysis profile during mouse embryogenesis and knockdown approaches in zebrafish resulting in defects in muscle organization and angiogenesis support a pleiotropic role for DNM2 during fetal development in vertebrates and humans. PMID:23092955

  15. Mutational Separation of Aminoacylation and Cytokine Activities of Human Tyrosyl-tRNA Synthetase

    PubMed Central

    Kapoor, Mili; Otero, Francella J.; Slike, Bonnie M.; Ewalt, Karla L.; Yang, Xiang-Lei

    2009-01-01

    SUMMARY Aminoacyl-tRNA synthetases are known for catalysis of aminoacylation. Significantly, some mammalian synthetases developed cytokine functions possibly linked to disease-causing mutations in tRNA synthetases. Not understood is how epitopes for cytokine signaling were introduced into catalytic scaffolds without disturbing aminoacylation. Here we investigate human tyrosyl-tRNA synthetase, where a catalytic-domain surface helix—next to the active site—was recruited for IL-8-like cytokine signaling. Taking advantage of our high-resolution structure, the reciprocal impact of rational mutations designed to disrupt aminoacylation or cytokine signaling was investigated with multiple assays. The collective analysis demonstrated a protective fine–structure separation of aminoacylation from cytokine activities within the conserved catalytic domain. As a consequence, disease-causing mutations affecting cell signaling can arise without disturbing aminoacylation. These results with TyrRS also predict the previously unknown binding conformation of IL-8-like CXC cytokines. PMID:19477417

  16. Mutational separation of aminoacylation and cytokine activities of human tyrosyl-tRNA synthetase.

    PubMed

    Kapoor, Mili; Otero, Francella J; Slike, Bonnie M; Ewalt, Karla L; Yang, Xiang-Lei

    2009-05-29

    Aminoacyl tRNA synthetases are known for catalysis of aminoacylation. Significantly, some mammalian synthetases developed cytokine functions possibly linked to disease-causing mutations in tRNA synthetases. Not understood is how epitopes for cytokine signaling were introduced into catalytic scaffolds without disturbing aminoacylation. Here we investigate human tyrosyl-tRNA synthetase, where a catalytic-domain surface helix, next to the active site, was recruited for interleukin-8-like cytokine signaling. Taking advantage of our high resolution structure, the reciprocal impact of rational mutations designed to disrupt aminoacylation or cytokine signaling was investigated with multiple assays. The collective analysis demonstrated a protective fine-structure separation of aminoacylation from cytokine activities within the conserved catalytic domain. As a consequence, disease-causing mutations affecting cell signaling can arise without disturbing aminoacylation. These results with TyrRS also predict the previously unknown binding conformation of interleukin-8-like CXC cytokines. PMID:19477417

  17. Improved energy coupling of human P-glycoprotein by the glycine 185 to valine mutation.

    PubMed

    Omote, Hiroshi; Figler, Robert A; Polar, Mark K; Al-Shawi, Marwan K

    2004-04-01

    A glycine 185 to valine mutation of human P-glycoprotein (ABCB1, MDR1) has been previously isolated from high colchicine resistance cell lines. We have employed purified and reconstituted P-glycoproteins expressed in Saccharomyces cerevisiae [Figler et al. (2000) Arch. Biochem. Biophys. 376, 34-46] and devised a set of thermodynamic analyses to reveal the mechanism of improved resistance. Purified G185V enzyme shows altered basal ATPase activity but a strong stimulation of colchicine- and etoposide-dependent activities, suggesting a tight regulation of ATPase activity by these drugs. The mutant enzyme has a higher apparent K(m) for colchicine and a lower K(m) for etoposide than that of wild type. Kinetic constants for other transported drugs were not significantly modified by this mutation. Systematic thermodynamic analyses indicate that the G185V enzyme has modified thermodynamic properties of colchicine- and etoposide-dependent activities. To improve the rate of colchicine or etoposide transport, the G185V enzyme has lowered the Arrhenius activation energy of the transport rate-limiting step. The high transition state energies of wild-type P-glycoprotein, when transporting etoposide or colchicine, increase the probability of nonproductive degradation of the transition state without transport. G185V P-glycoprotein transports etoposide or colchicine in an energetically more efficient way with decreased enthalpic and entropic components of the activation energy. Our new data fully reconcile the apparently conflicting results of previous studies. EPR analysis of the spin-labeled G185C enzyme in a cysteine-less background and kinetic parameters of the G185C enzyme indicate that position 185 is surrounded by other residues and is volume sensitive. These results and atomic detail structural modeling suggest that residue 185 is a pivotal point in transmitting conformational changes between the catalytic sites and the colchicine drug binding domain. Replacement of this

  18. Human Erythroid 5-Aminolevulinate Synthase Mutations Associated with X-Linked Protoporphyria Disrupt the Conformational Equilibrium and Enhance Product Release.

    PubMed

    Fratz, Erica J; Clayton, Jerome; Hunter, Gregory A; Ducamp, Sarah; Breydo, Leonid; Uversky, Vladimir N; Deybach, Jean-Charles; Gouya, Laurent; Puy, Hervé; Ferreira, Gloria C

    2015-09-15

    Regulation of 5-aminolevulinate synthase (ALAS) is at the origin of balanced heme production in mammals. Mutations in the C-terminal region of human erythroid-specific ALAS (hALAS2) are associated with X-linked protoporphyria (XLPP), a disease characterized by extreme photosensitivity, with elevated blood concentrations of free protoporphyrin IX and zinc protoporphyrin. To investigate the molecular basis for this disease, recombinant hALAS2 and variants of the enzyme harboring the gain-of-function XLPP mutations were constructed, purified, and analyzed kinetically, spectroscopically, and thermodynamically. Enhanced activities of the XLPP variants resulted from increases in the rate at which the product 5-aminolevulinate (ALA) was released from the enzyme. Circular dichroism spectroscopy revealed that the XLPP mutations altered the microenvironment of the pyridoxal 5'-phosphate cofactor, which underwent further and specific alterations upon succinyl-CoA binding. Transient kinetic analyses of the variant-catalyzed reactions and protein fluorescence quenching upon binding of ALA to the XLPP variants demonstrated that the protein conformational transition step associated with product release was predominantly affected. Of relevance is the fact that XLPP could also be modeled in cell culture. We propose that (1) the XLPP mutations destabilize the succinyl-CoA-induced hALAS2 closed conformation and thus accelerate ALA release, (2) the extended C-terminus of wild-type mammalian ALAS2 provides a regulatory role that allows for allosteric modulation of activity, thereby controlling the rate of erythroid heme biosynthesis, and (3) this control is disrupted in XLPP, resulting in porphyrin accumulation. PMID:26300302

  19. Efficient inference of population size histories and locus-specific mutation rates from large-sample genomic variation data

    PubMed Central

    Bhaskar, Anand; Wang, Y.X. Rachel; Song, Yun S.

    2015-01-01

    With the recent increase in study sample sizes in human genetics, there has been growing interest in inferring historical population demography from genomic variation data. Here, we present an efficient inference method that can scale up to very large samples, with tens or hundreds of thousands of individuals. Specifically, by utilizing analytic results on the expected frequency spectrum under the coalescent and by leveraging the technique of automatic differentiation, which allows us to compute gradients exactly, we develop a very efficient algorithm to infer piecewise-exponential models of the historical effective population size from the distribution of sample allele frequencies. Our method is orders of magnitude faster than previous demographic inference methods based on the frequency spectrum. In addition to inferring demography, our method can also accurately estimate locus-specific mutation rates. We perform extensive validation of our method on simulated data and show that it can accurately infer multiple recent epochs of rapid exponential growth, a signal that is difficult to pick up with small sample sizes. Lastly, we use our method to analyze data from recent sequencing studies, including a large-sample exome-sequencing data set of tens of thousands of individuals assayed at a few hundred genic regions. PMID:25564017

  20. Recurrent AKT mutations in human cancers: functional consequences and effects on drug sensitivity

    PubMed Central

    Yi, Kyung H.; Lauring, Josh

    2016-01-01

    Precision oncology trials based on tumor gene sequencing depend on robust knowledge about the phenotypic consequences of the genetic variants identified in patients' tumors. Mutations in AKT1-3 occur in 3-5% of human cancers. Although a single hotspot mutation, E17K, is the most common, well characterized activating mutations account for a minority of Akt variants that have been identified in large tumor sequencing studies to date. In order to determine the potential clinical relevance of both common and rare Akt mutations, we expressed a set of over twenty recurrent Akt mutants in three different cell lines and evaluated activation of Akt pathway signaling and effects on growth. We determined their relative sensitivity to allosteric and ATP-competitive Akt inhibitors in clinical development. Most Akt mutants did not activate pathway signaling compared to wild type Akt and did not affect growth properties. In addition, the most common activating Akt mutations, including Akt1 E17K, L52R, and Q79K conferred neither sensitivity nor resistance to Akt inhibitors. Equivocal evidence was found that Akt1 D323H and Akt2 W80C mutants are relatively resistant to the allosteric Akt inhibitor MK-2206, but not an ATP-competitive inhibitor. Our results suggest that the vast majority of rare Akt variants are passenger mutations with no effect on drug sensitivity. The hypothesis that activating Akt mutations predict for Akt inhibitor sensitivity remains to be tested clinically, but is not yet supported by our preclinical data. PMID:26701849

  1. Structural Analysis of Mitochondrial Mutations Reveals a Role for Bigenomic Protein Interactions in Human Disease

    PubMed Central

    Lloyd, Rhiannon E.; McGeehan, John E.

    2013-01-01

    Mitochondria are the energy producing organelles of the cell, and mutations within their genome can cause numerous and often severe human diseases. At the heart of every mitochondrion is a set of five large multi-protein machines collectively known as the mitochondrial respiratory chain (MRC). This cellular machinery is central to several processes important for maintaining homeostasis within cells, including the production of ATP. The MRC is unique due to the bigenomic origin of its interacting proteins, which are encoded in the nucleus and mitochondria. It is this, in combination with the sheer number of protein-protein interactions that occur both within and between the MRC complexes, which makes the prediction of function and pathological outcome from primary sequence mutation data extremely challenging. Here we demonstrate how 3D structural analysis can be employed to predict the functional importance of mutations in mtDNA protein-coding genes. We mined the MITOMAP database and, utilizing the latest structural data, classified mutation sites based on their location within the MRC complexes III and IV. Using this approach, four structural classes of mutation were identified, including one underexplored class that interferes with nuclear-mitochondrial protein interactions. We demonstrate that this class currently eludes existing predictive approaches that do not take into account the quaternary structural organization inherent within and between the MRC complexes. The systematic and detailed structural analysis of disease-associated mutations in the mitochondrial Complex III and IV genes significantly enhances the predictive power of existing approaches and our understanding of how such mutations contribute to various pathologies. Given the general lack of any successful therapeutic approaches for disorders of the MRC, these findings may inform the development of new diagnostic and prognostic biomarkers, as well as new drugs and targets for gene therapy. PMID

  2. Mutations in human CPO gene predict clinical expression of either hepatic hereditary coproporphyria or erythropoietic harderoporphyria.

    PubMed

    Schmitt, Caroline; Gouya, Laurent; Malonova, Eva; Lamoril, Jérôme; Camadro, Jean-Michel; Flamme, Magali; Rose, Christian; Lyoumi, Said; Da Silva, Vasco; Boileau, Catherine; Grandchamp, Bernard; Beaumont, Carole; Deybach, Jean-Charles; Puy, Hervé

    2005-10-15

    Hereditary coproporphyria (HCP), an autosomal dominant acute hepatic porphyria, results from mutations in the gene that encodes coproporphyrinogen III oxidase (CPO). HCP (heterozygous or rarely homozygous) patients present with an acute neurovisceral crisis, sometimes associated with skin lesions. Four patients (two families) have been reported with a clinically distinct variant form of HCP. In such patients, the presence of a specific mutation (K404E) on both alleles or associated with a null allele, produces a unifying syndrome in which hematological disorders predominate: 'harderoporphyria'. Here, we report the fifth case (from a third family) with harderoporphyria. In addition, we show that harderoporphyric patients exhibit iron overload secondary to dyserythropoiesis. To investigate the molecular basis of this peculiar phenotype, we first studied the secondary structure of the human CPO by a predictive method, the hydrophobic cluster analysis (HCA) which allowed us to focus on a region of the enzyme. We then expressed mutant enzymes for each amino acid of the region of interest, as well as all missense mutations reported so far in HCP patients and evaluated the amount of harderoporphyrin in each mutant. Our results strongly suggest that only a few missense mutations, restricted to five amino acids encoded by exon 6, may accumulate significant amounts of harderoporphyrin: D400-K404. Moreover, all other type of mutations or missense mutations mapped elsewhere throughout the CPO gene, lead to coproporphyrin accumulation and subsequently typical HCP. Our findings, reinforced by recent crystallographic results of yeast CPO, shed new light on the genetic predisposition to HCP. It represents a first monogenic metabolic disorder where clinical expression of overt disease is dependent upon the location and type of mutation, resulting either in acute hepatic or in erythropoietic porphyria. PMID:16159891

  3. In vitro mutational spectrum of cyclopenta[cd]pyrene in the human HPRT gene.

    PubMed

    Keohavong, P; Melacrinos, A; Shukla, R

    1995-04-01

    Cyclopenta[cd]pyrene (CPP) is a widely distributed polycyclic aromatic hydrocarbon with potent mutagenic and carcinogenic activity. In order to acquire an understanding of the mutagenic pathways of CPP, we studied mutations induced by this chemical in human cells. Four independent cultures of a human cell line expressing cytochrome P450 CYP1A1 (cell line MCL-5) were treated with CPP, and mutants at the hypoxanthine phosphoribosyltransferase (HPRT) locus were selected en masse by 6-thioguanine (6TG) resistance. The kinds and positions of the mutations were analyzed using the combination of high-fidelity polymerase chain reaction (hifi-PCR) and denaturing gradient gel electrophoresis (DGGE). The third exon of the HPRT gene was amplified from the 6TG-resistant cells using the hifi-PCR and the amplified fragment was subsequently analyzed by DGGE to separate mutant sequences from the wild-type sequence. Mutant bands were excised from the gel, amplified using PCR and sequenced. Sixteen different mutations were identified and consisted mostly of the G to T and A to T transversions. Other mutations identified included G to A and A to G transitions, a G to C transversion, and a single G deletion. Of these mutations, six occurred within a run of six guanines. The predominance of transversions involving a guanine or an adenine observed with CPP is similar to the data previously reported for the racemic mixtures of benzo[a]pyrene (B[a]P), suggesting that the mechanisms of mutation induced by CPP may be similar to those induced by B[a]P. PMID:7728967

  4. AB036. Analysis of human mitochondrial genome mutations of Vietnamese patients tentatively diagnosed with encephalomyopathy

    PubMed Central

    Nghia, Phan Tuan; Thai, Trinh Hong; Hue, Truong Thi; Van Minh, Nguyen; Khanh, Phung Bao; Hiep, Tran Duc; Anh, Tran Kieu; Loan, Nguyen Thi Hong; Van, Nguyen Thi Hong; Anh, Pham Van; Hung, Cao Vu; Anh, Le Ngoc

    2015-01-01

    Human mitochondrial genome consists of 16,569 bp, and replicates independently from the nuclear genome. Mutations in mitochondrial genome are usually causative factors of various metabolic disorders, especially those of encephalomyopathy. DNA analysis is the most reliable method for detection of mitochondrial genome mutations, and accordingly an excellent diagnostic tool for mitochondrial mutation-related diseases. In this study, 19 different mitochondrial genome mutations including A3243G, A3251G, T3271C and T3291C (MELAS); A8344G, T8356C and G8363A (MERRF); G3460A, G11778A and T14484C (LHON); T8993G/C and T9176G (Leigh); A1555G (deafness) and A4225G, G4298A, T10010C, T14727C, T14728C, T14709C (encephalomyopathy in general) were analyzed using PCR-RFLP in combination with DNA sequencing. In addition, a real-time PCR method using locked nucleic acid (LNA) Taqman probe was set up for heteroplasmy determination. Screening of 283 tentatively diagnosed encephalomyopathy patients revealed 7 cases of A3243G, 1 case of G11778A, 1 case of A1555G, 1 case of A4225G, 1 case G4298A, and 1 case of 6 bp (ACTCCT/CTCCTA) deletion. Using the LNA Taqman probe real-time PCR, the heteroplasmy of some point mutations was determined and the results support a potential relationship between heteroplasmy level and severity of the disease.

  5. LET and ion-species dependence for cell killing and mutation induction in normal human fibroblasts.

    PubMed

    Tsuruoka, Chizuru; Suzuki, Masao; Fujitaka, Kazunobu

    2003-10-01

    We have been studying LET and ion species dependence of RBE values in cell killing and mutation induction. Normal human skin fibroblasts were irradiated with heavy-ion beams such as carbon (290 Mev/u and 135 Mev/u), neon (230 Mev/u and 400 Mev/u), silicon (490 Mev/u) and iron (500 Mev/u) ion beams, generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS). Cell killing effect was detected as reproductive cell death using a colony formation assay. Mutation induction in hprt locus was detected to measure 6-thioguanine resistant colonies. The RBE-LET curves of cell killing and mutation induction were different each ion beam. So, we plotted RBE for cell killing and mutation induction as function of Z*2/beta2 instead of LET. RBE-Z*2/beta2 curves of cell killing indicated that the discrepancy of RBE-LET curves was reconciled each ion species. But RBE-Z*2/beta2 curves of mutation induction didn't corresponded between carbon- and silicon-ion beams. These results suggested that different biological endpoints may be suitable for different physical parameter, which represent the track structure of energy deposition of ion beams. PMID:14676365

  6. Genome-Wide Estimates of Mutation Rates and Spectrum in Schizosaccharomyces pombe Indicate CpG Sites are Highly Mutagenic Despite the Absence of DNA Methylation

    PubMed Central

    Behringer, Megan G.; Hall, David W.

    2015-01-01

    We accumulated mutations for 1952 generations in 79 initially identical, haploid lines of the fission yeast Schizosaccharomyces pombe, and then performed whole-genome sequencing to determine the mutation rates and spectrum. We captured 696 spontaneous mutations across the 79 mutation accumulation (MA) lines. We compared the mutation spectrum and rate to a recently published equivalent experiment on the same species, and to another model ascomycetous yeast, the budding yeast Saccharomyces cerevisiae. While the two species are approximately 600 million years diverged from each other, they share similar life histories, genome size and genomic G/C content. We found that Sc. pombe and S. cerevisiae have similar mutation rates, but Sc. pombe exhibits a stronger insertion bias. Intriguingly, we observed an increased mutation rate at cytosine nucleotides, specifically CpG nucleotides, which is also seen in S. cerevisiae. However, the absence of methylation in Sc. pombe and the pattern of mutation at these sites, primarily C → A as opposed to C → T, strongly suggest that the increased mutation rate is not caused by deamination of methylated cytosines. This result implies that the high mutability of CpG dinucleotides in other species may be caused in part by a methylation-independent mechanism. Many of our findings mirror those seen in the recent study, despite the use of different passaging conditions, indicating that MA is a reliable method for estimating mutation rates and spectra. PMID:26564949

  7. The Role of the Prokineticin 2 Pathway in Human Reproduction: Evidence from the Study of Human and Murine Gene Mutations

    PubMed Central

    Martin, Cecilia; Balasubramanian, Ravikumar; Dwyer, Andrew A.; Au, Margaret G.; Sidis, Yisrael; Kaiser, Ursula B.; Seminara, Stephanie B.; Pitteloud, Nelly; Zhou, Qun-Yong

    2011-01-01

    A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a “second hit” or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans. PMID:21037178

  8. The presence of highly disruptive 16S rRNA mutations in clinical samples indicates a wider role for mutations of the mitochondrial ribosome in human disease

    PubMed Central

    Elson, Joanna L.; Smith, Paul M.; Greaves, Laura C.; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M.A.; Taylor, Robert W.; Vila-Sanjurjo, Antón

    2015-01-01

    Mitochondrial DNA mutations are well recognized as an important cause of disease, with over two hundred variants in the protein encoding and mt-tRNA genes associated with human disorders. In contrast, the two genes encoding the mitochondrial rRNAs (mt-rRNAs) have been studied in far less detail. This is because establishing the pathogenicity of mt-rRNA mutations is a major diagnostic challenge. Only two disease causing mutations have been identified at these loci, both mapping to the small subunit (SSU). On the large subunit (LSU), however, the evidence for the presence of pathogenic LSU mt-rRNA changes is particularly sparse. We have previously expanded the list of deleterious SSU mt-rRNA mutations by identifying highly disruptive base changes capable of blocking the activity of the mitoribosomal SSU. To do this, we used a new methodology named heterologous inferential analysis (HIA). The recent arrival of near-atomic-resolution structures of the human mitoribosomal LSU, has enhanced the power of our approach by permitting the analysis of the corresponding sites of mutation within their natural structural context. Here, we have used these tools to determine whether LSU mt-rRNA mutations found in the context of human disease and/or ageing could disrupt the function of the mitoribosomal LSU. Our results clearly show that, much like the for SSU mt-rRNA, LSU mt-rRNAs mutations capable of compromising the function of the mitoribosomal LSU are indeed present in clinical samples. Thus, our work constitutes an important contribution to an emerging view of the mitoribosome as an important element in human health. PMID:26349026

  9. Effect of internal cleavage site mutations in human immunodeficiency virus type 1 capsid protein on its structure and function.

    PubMed

    Tóth, Ferenc; Kádas, János; Mótyán, János András; Tőzsér, József

    2016-08-01

    The capsid protein of the human immunodeficiency virus type 1 has been found to be a substrate of the retroviral protease in vitro, and its processing was predicted to be strongly dependent on a pH-induced conformational change. Several protease cleavage sites have been identified within the capsid protein, but the importance of its cleavage by the viral protease at the early phase of infection is controversial. To confirm the relevance of this process, we aimed to design, produce, and characterize mutant capsid proteins, in which the protein susceptibility toward HIV-1 protease is altered without affecting other steps of the viral life cycle. Our results indicate that while the introduced mutations changed the cleavage rate at the mutated sites of the capsid protein by HIV-1 protease, some of them caused only negligible or moderate structural changes (A78V, L189F, and L189I). However, the effects of other mutations (W23A, A77P, and L189P) were dramatic, as assessed by secondary structure determination or cyclophilin A-binding assay. Based on our observations, the L189F mutant capsid remains structurally and functionally unchanged and may therefore be the best candidate for use in studies aimed at better understanding the role of the protease in the early postentry events of viral infection or retrovirus-mediated gene transduction. PMID:27516963

  10. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes.

    PubMed

    Henn, Brenna M; Botigué, Laura R; Peischl, Stephan; Dupanloup, Isabelle; Lipatov, Mikhail; Maples, Brian K; Martin, Alicia R; Musharoff, Shaila; Cann, Howard; Snyder, Michael P; Excoffier, Laurent; Kidd, Jeffrey M; Bustamante, Carlos D

    2016-01-26

    The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive. PMID:26712023

  11. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes

    PubMed Central

    Henn, Brenna M.; Botigué, Laura R.; Peischl, Stephan; Dupanloup, Isabelle; Lipatov, Mikhail; Maples, Brian K.; Martin, Alicia R.; Musharoff, Shaila; Cann, Howard; Snyder, Michael P.; Excoffier, Laurent; Kidd, Jeffrey M.; Bustamante, Carlos D.

    2016-01-01

    The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive. PMID:26712023

  12. An Estimate of the Average Number of Recessive Lethal Mutations Carried by Humans

    PubMed Central

    Gao, Ziyue; Waggoner, Darrel; Stephens, Matthew; Ober, Carole; Przeworski, Molly

    2015-01-01

    The effects of inbreeding on human health depend critically on the number and severity of recessive, deleterious mutations carried by individuals. In humans, existing estimates of these quantities are based on comparisons between consanguineous and nonconsanguineous couples, an approach that confounds socioeconomic and genetic effects of inbreeding. To overcome this limitation, we focused on a founder population that practices a communal lifestyle, for which there is almost complete Mendelian disease ascertainment and a known pedigree. Focusing on recessive lethal diseases and simulating allele transmissions, we estimated that each haploid set of human autosomes carries on average 0.29 (95% credible interval [0.10, 0.84]) recessive alleles that lead to complete sterility or death by reproductive age when homozygous. Comparison to existing estimates in humans suggests that a substantial fraction of the total burden imposed by recessive deleterious variants is due to single mutations that lead to sterility or death between birth and reproductive age. In turn, comparison to estimates from other eukaryotes points to a surprising constancy of the average number of recessive lethal mutations across organisms with markedly different genome sizes. PMID:25697177

  13. Erythropoietic differentiation of a human embryonic stem cell line harbouring the sickle cell anaemia mutation

    PubMed Central

    Pryzhkova, Marina V; Peters, Ann; Zambidis, Elias T

    2012-01-01

    Herein is reported efficient erythropoietic differentiation of a human embryonic stem cell (ESC) line derived from a preimplantation genetic diagnosis (PGD)-screened embryo that harbours the homozygous sickle cell disease (SCD) haemoglobinopathy mutation. This human ESC line possesses typical pluripotency characteristics and forms multilineage teratomas in vivo. SCD-human ESC efficiently differentiated to the haematopoietic lineage under serum-free and stromal co-culture conditions and gave rise to robust primitive and definitive erythrocytes. Expression of embryonic, fetal and adult sickle globin genes in SCD PGD-derived human ESC-derived erythrocytes was confirmed by quantitative real-time PCR, intracytoplasmic fluorescence-activated cell sorting and insitu immunostaining of PGD-derived human ESC teratoma sections. These data introduce important methodologies and paradigms for using patient-specific human ESC to generate normal and haemoglobinopathic erythroid progenitors for biomedical research. PMID:20541472

  14. Mutations that alter RNA splicing of the human HPRT gene: a review of the spectrum.

    PubMed

    O'Neill, J P; Rogan, P K; Cariello, N; Nicklas, J A

    1998-11-01

    The human HPRT gene contains spans approximately 42,000 base pairs in genomic DNA, has a mRNA of approximately 900 bases and a protein coding sequence of 657 bases (initiation codon AUG to termination codon UAA). This coding sequence is distributed into 9 exons ranging from 18 (exon 5) to 184 (exon 3) base pairs. Intron sizes range from 170 (intron 7) to 13,075 (intron 1) base pairs. In a database of human HPRT mutations, 277 of 2224 (12.5%) mutations result in alterations in splicing of the mRNA as analyzed by both reverse transcriptase mediated production of a cDNA followed by PCR amplification and cDNA sequencing and by genomic DNA PCR amplification and sequencing. Mutations have been found in all eight 5' (donor) and 3' (acceptor) splice sequences. Mutations in the 5' splice sequences of introns 1 and 5 result in intron inclusion in the cDNA due to the use of cryptic donor splice sequences within the introns; mutations in the other six 5' sites result in simple exon exclusion. Mutations in the 3' splice sequences of introns 1, 3, 7 and 8 result in partial exon exclusion due to the use of cryptic acceptor splice sequences within the exons; mutations in the other four 3' sites result in simple exon exclusion. A base substitution in exon 3 (209G-->T) creates a new 5' (donor) splice site which results in the exclusion of 110 bases of exon 3 from the cDNA. Two base substitutions in intron 8 (IVS8-16G-->A and IVS8-3T-->G) result in the inclusion of intron 8 sequences in the cDNA due to the creation of new 3' (acceptor) splice sites. Base substitution within exons 1, 3, 4, 6 and 8 also result in splice alterations in cDNA. Those in exons 1 and 6 are at the 3' end of the exon and may directly affect splicing. Those within exons 3 and 4 may be the result of the creation of nonsense codons, while those in exon 8 cannot be explained by this mechanism. Lastly, many mutations that affect splicing of the HPRT mRNA have pleiotropic effects in that multiple cDNA products are

  15. Women with BRCA1 and BRCA2 mutations survive ovarian cancer at higher rates

    Cancer.gov

    Results from a National Cancer Institute (NCI) sponsored multicenter study published in the Journal of the American Medical Association on January 25, 2012, provides strong evidence that BRCA1 and BRCA2 gene mutation carriers with ovarian cancer were more

  16. High rate of A2142G point mutation associated with clarithromycin resistance among Iranian Helicobacter pylori clinical isolates.

    PubMed

    Khashei, Reza; Dara, Mahintaj; Bazargani, Abdollah; Bagheri Lankarani, Kamran; Taghavi, Alireza; Moeini, Maryam; Dehghani, Behzad; Sohrabi, Maryam

    2016-09-01

    This study aimed to investigate the clarithromycin resistance and its associated molecular mechanisms among Helicobacter pylori isolates from dyspeptic patients in Shiraz, Iran. From January to May 2014, 100 H. pylori strains were isolated from patients with gastroduodenal disorders. The resistance to clarithromycin was quantitatively evaluated, using Epsilometer (E-test) method. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed on all the isolates to detect A2143G and A2142G mutations in 23S rRNA gene. The H. pylori isolation rate was found to be 31.4%. E-test showed that 20% of isolates were resistant to clarithromycin (MIC ≥ 1 mg/L). MIC of clarithromycin ranged between 0.016 and 24 mg/L. Findings of PCR-RFLP showed that the A2142G was the most (90%) frequently point mutation, followed by the A2143G (10%). No statistically significant difference was found between H. pylori clarithromycin resistance point mutations and patients' gender or age. To the best of our knowledge, this is the first report of high frequency of A2142G point mutation in Iran and probably in other regions of the world. Considering the increasing trend of H. pylori resistance to clarithromycin due to these mutations, it is crucial to investigate the new therapeutic approaches against H. pylori infection. PMID:27357065

  17. What limits affinity maturation of antibodies in Xenopus--the rate of somatic mutation or the ability to select mutants?

    PubMed Central

    Wilson, M; Hsu, E; Marcuz, A; Courtet, M; Du Pasquier, L; Steinberg, C

    1992-01-01

    Although the Xenopus immunoglobulin heavy chain locus is structurally and functionally similar to mammalian IgH loci, Xenopus antibodies are limited in heterogeneity, and they mature only slightly in affinity during immune responses. During the antibody response of isogenic frogs to DNP-KLH, mu and upsilon cDNA sequences using elements of the VH1 family were cloned, sequenced and compared with germline counterparts. There were zero to four mutations per sequence, mostly single base substitutions, in the framework and CDRs 1 and 2 of VH. No mutations were found in JH. Since the point mutation rate was only 4- to 7-fold lower than that calculated for mice, affinity maturation does not seem to be limited by mutant availability. Because of a relatively low ratio of replacement to silent mutations in the CDRs and a very high ratio of GC to AT base pairs altered by mutation, it is suggested that the problem results from the absence of an effective mechanism for selecting mutants, which in turn might be related to the absence of germinal centers in Xenopus. Images PMID:1425571

  18. Structural Insight into Processive Human Mitochondrial DNA Synthesis and Disease-Related Polymerase Mutations

    SciTech Connect

    Lee, Young-Sam; Kennedy, W. Dexter; Yin, Y. Whitney

    2010-09-07

    Human mitochondrial DNA polymerase (Pol {gamma}) is the sole replicase in mitochondria. Pol {gamma} is vulnerable to nonselective antiretroviral drugs and is increasingly associated with mutations found in patients with mitochondriopathies. We determined crystal structures of the human heterotrimeric Pol {gamma} holoenzyme and, separately, a variant of its processivity factor, Pol {gamma}B. The holoenzyme structure reveals an unexpected assembly of the mitochondrial DNA replicase where the catalytic subunit Pol {gamma}A interacts with its processivity factor primarily via a domain that is absent in all other DNA polymerases. This domain provides a structural module for supporting both the intrinsic processivity of the catalytic subunit alone and the enhanced processivity of holoenzyme. The Pol {gamma} structure also provides a context for interpreting the phenotypes of disease-related mutations in the polymerase and establishes a foundation for understanding the molecular basis of toxicity of anti-retroviral drugs targeting HIV reverse transcriptase.

  19. AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer.

    PubMed

    Vasudevan, Krishna M; Barbie, David A; Davies, Michael A; Rabinovsky, Rosalia; McNear, Chontelle J; Kim, Jessica J; Hennessy, Bryan T; Tseng, Hsiuyi; Pochanard, Panisa; Kim, So Young; Dunn, Ian F; Schinzel, Anna C; Sandy, Peter; Hoersch, Sebastian; Sheng, Qing; Gupta, Piyush B; Boehm, Jesse S; Reiling, Jan H; Silver, Serena; Lu, Yiling; Stemke-Hale, Katherine; Dutta, Bhaskar; Joy, Corwin; Sahin, Aysegul A; Gonzalez-Angulo, Ana Maria; Lluch, Ana; Rameh, Lucia E; Jacks, Tyler; Root, David E; Lander, Eric S; Mills, Gordon B; Hahn, William C; Sellers, William R; Garraway, Levi A

    2009-07-01

    Dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through activation of the AKT/PKB kinase. However, here we show through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast tumors exhibit only minimal AKT activation and a diminished reliance on AKT for anchorage-independent growth. Instead, these cells retain robust PDK1 activation and membrane localization and exhibit dependency on the PDK1 substrate SGK3. SGK3 undergoes PI3K- and PDK1-dependent activation in PIK3CA mutant cancer cells. Thus, PI3K may promote cancer through both AKT-dependent and AKT-independent mechanisms. Knowledge of differential PI3K/PDK1 signaling could inform rational therapeutics in cancers harboring PIK3CA mutations. PMID:19573809

  20. Cytoplasmic mislocalization of POU3F4 due to novel mutations leads to deafness in humans and mice.

    PubMed

    Parzefall, Thomas; Shivatzki, Shaked; Lenz, Danielle R; Rathkolb, Birgit; Ushakov, Kathy; Karfunkel, Daphne; Shapira, Yisgav; Wolf, Michael; Mohr, Manuela; Wolf, Eckhard; Sabrautzki, Sibylle; de Angelis, Martin Hrabé; Frydman, Moshe; Brownstein, Zippora; Avraham, Karen B

    2013-08-01

    POU3F4 is a POU domain transcription factor that is required for hearing. In the ear, POU3F4 is essential for mesenchymal remodeling of the bony labyrinth and is the causative gene for DFNX2 human nonsyndromic deafness. Ear abnormalities underlie this form of deafness, characterized previously in multiple spontaneous, radiation-induced and transgenic mouse mutants. Here, we report three novel mutations in the POU3F4 gene that result in profound hearing loss in both humans and mice. A p.Gln79* mutation was identified in a child from an Israeli family, revealed by massively parallel sequencing (MPS). This strategy demonstrates the strength of MPS for diagnosis with only one affected individual. A second mutation, p.Ile285Argfs*43, was identified by Sanger sequencing. A p.Cys300* mutation was found in an ENU-induced mutant mouse, schwindel (sdl), by positional cloning. The mutation leads to a predicted truncated protein, similar to the human mutations, providing a relevant mouse model. The p.Ile285Argfs*43 and p.Cys300* mutations lead to a shift of Pou3f4 nuclear localization to the cytoplasm, demonstrated in cellular localization studies and in the inner ears of the mutant mice. The discovery of these mutations facilitates a deeper comprehension of the molecular basis of inner ear defects due to mutations in the POU3F4 transcription factor. PMID:23606368

  1. Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity.

    PubMed

    Xu, J; Wang, J; Hu, Y; Qian, J; Xu, B; Chen, H; Zou, W; Fang, J-Y

    2014-01-01

    Mutation of p53 is the most common genetic change in human cancer, causing complex effects including not only loss of wild-type function but also gain of novel oncogenic functions (GOF). It is increasingly likely that p53-hotspot mutations may confer different types and magnitudes of GOF, but the evidences are mainly supported by cellular and transgenic animal models. Here we combine large-scale cancer genomic data to characterize the prognostic significance of different p53 mutations in human cancers. Unexpectedly, only mutations on the Arg248 and Arg282 positions displayed significant association with shorter patient survival, but such association was not evident for other hotspot GOF mutations. Gene set enrichment analysis on these mutations revealed higher activity of drug-metabolizing enzymes, including the CYP3A4 cytochrome P450. Ectopic expression of p53 mutant R282W in H1299 and SaOS2 cells significantly upregulated CYP3A4 mRNA and protein levels, and cancer cell lines bearing mortality-associated p53 mutations display higher CYP3A4 expression and resistance to several CYP3A4-metabolized chemotherapeutic drugs. Our results suggest that p53 mutations have unequal GOF activities in human cancers, and future evaluation of p53 as a cancer biomarker should consider which mutation is present in the tumor, rather than having comparison between wild-type and mutant genotypes. PMID:24603336

  2. Genotyping analysis of 3 RET polymorphisms demonstrates low somatic mutation rate in Chinese Hirschsprung disease patients

    PubMed Central

    Zhang, Zhen; Jiang, Qian; Li, Qi; Cheng, Wei; Qiao, Guoliang; Xiao, Ping; Gan, Liang; Su, Lin; Miao, Chunyue; Li, Long

    2015-01-01

    Background: Genetic mosaicism has been reported for both coding and non-coding sequences in the RET gene in Hirschsprung disease (HSCR) patients. This study aimed to investigate somatic mutation rate in Chinese population by comparing both homozygous genotype percentage and risk allele frequency of 3 RET single nucleotide polymorphisms (SNPs) among blood and colon samples. Methods: DNA was extracted from 59 HSCR blood samples, 59 control blood samples and 76 fresh frozen colon tissue samples (grouped into ganglionic, transitional and aganglionic level). Genotype status of rs2435357 and rs2506030 was examined by competitive allele specific hydrolysis probes (Taqman) PCR technology, and rs2506004 was examined by Sanger sequencing. Homozygous genotype percentage and risk allele frequency were calculated for each type of sample and compared by chi-square test. P<0.05 was regarded as being statistically significant. Results: Colon tissue DNA samples showed similar frequency of SNPs as that of the blood DNA samples in HSCR patients, both of which are significantly higher than the control blood group (rs2435357 TT genotype: 71.2%, 74.7% versus 22.0% in HSCR blood, HSCR colon and control blood DNA respectively, P=0.000; rs2506004 AA genotype: 72.4%, 83.1% versus 25.5%, P=0.000; rs2506030 GG genotype: 79.7%, 77.2% versus 54.2%, P=0.000 and 0.004). With respect to DNA extracted from ganglionic, transitional and aganglionic levels, no statistically significant difference was demonstrated in those 3 regions (rs2435357: P=0.897; rs2506004: P=0.740; rs2506030: P=0.901). Conclusion: Our data does not support the notion that high frequency of somatic changes as an underlying etiology of Chinese HSCR population. PMID:26191260

  3. Diphtheria toxin resistance in human lymphocytes and lymphoblasts in the in vivo somatic cell mutation test

    SciTech Connect

    Tomkins, D.J.; Wei, L.; Laurie, K.E.

    1985-01-01

    It has been shown that circulating peripheral blood lymphocytes can be used for the enumeration of 6-thioguanine-resistant cells that presumably arise by mutation in vivo. This somatic cell mutation test has been studied in lymphocytes from human populations exposed to known mutagens and/or carcinogens. The sensitivity of the test could be further enhanced by including other gene markers, since there is evidence for locus-specific differences in response to mutagens. Resistance to diphtheria toxin (Dip/sup r/) seemed like a potential marker to incorporate into the test because the mutation acts codominantly, can readily be selected in human diploid fibroblasts and Chinese hamster cells with no evidence for cell density or cross-feeding effects, and can be assayed for in nondividing cells by measuring protein synthesis inhibition. Blood samples were collected from seven individuals, and fresh, cryopreserved, or Epstein-Barr virus (EBV)-transformed lymphocytes were tested for continued DNA synthesis (TH-thymidine, autoradiography) or protein synthesis (TVS-methionine, scintillation counting). Both fresh and cryopreserved lymphocytes, stimulated to divide with phytohemagglutinin (PHA), continued to synthesize DNA in the presence of high doses of diphtheria toxin (DT). Similarly, both dividing (PHA-stimulated) and nondividing fresh lymphocytes carried on significant levels of protein synthesis even 68 hr after exposure to 100 flocculating units (LF)/ml DT. The results suggest that human T and B lymphocytes may not be as sensitive to DT protein synthesis inhibition as human fibroblast and Chinese hamster cells. For this reason, Dip/sup r/ may not be a suitable marker for the somatic cell mutation test.

  4. Quantitative assay for mutation in diploid human lymphoblasts using microtiter plates

    SciTech Connect

    Furth, E.A.; Thilly, W.G.; Penman, B.W.; Liber, H.L.; Rand, W.M.

    1981-01-01

    A microtiter plating technique which eliminates the need for soft agar and fibroblast feeder layers to determine the colony-forming ability of diploid human lymphoblast lines was described. The calculation of cloning efficiency is based on the Poisson distribution, and a statistical method for calculating confidence intervals is presented. This technique has been applied to the comcomitant examination of induced mutation at the putative loci for hypoxanthine guanine phosphoribosyl transferase, thymidine, kinase, and Na/sup +//K/sup +/ adenosine triphosphatase.

  5. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses

    PubMed Central

    Arai, Yasuha; Kawashita, Norihito; Daidoji, Tomo; Ibrahim, Madiha S.; El-Gendy, Emad M.; Takagi, Tatsuya; Takahashi, Kazuo; Suzuki, Yasuo; Ikuta, Kazuyoshi; Nakaya, Takaaki; Shioda, Tatsuo; Watanabe, Yohei

    2016-01-01

    A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation. PMID:27097026

  6. Critical Scale Invariance in a Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Sakata, Seiichiro; Hayano, Junichiro; Yamamoto, Yoshiharu

    2004-10-01

    We demonstrate the robust scale-invariance in the probability density function (PDF) of detrended healthy human heart rate increments, which is preserved not only in a quiescent condition, but also in a dynamic state where the mean level of the heart rate is dramatically changing. This scale-independent and fractal structure is markedly different from the scale-dependent PDF evolution observed in a turbulentlike, cascade heart rate model. These results strongly support the view that a healthy human heart rate is controlled to converge continually to a critical state.

  7. Cloning, characterization, localization, and mutational screening of the human BARX1 gene.

    PubMed

    Gould, D B; Walter, M A

    2000-09-15

    The Bar subclass of homeodomain proteins was first identified for its role in Drosophila eye development. The Bar subclass homolog, Barx1, has since been cloned in mouse and in chick. The expression of Barx1 in developing teeth and craniofacial mesenchyme of neural crest origin makes it a strong candidate for the related human disorders of Axenfeld-Reiger syndrome (ARS) and iridogoniodysgenesis syndrome (IGDS). Here we report the cloning and characterization of a novel human Bar class gene, human BARX1. Screening of a human fetal craniofacial library resulted in the isolation of a 1.6-kb full-length transcript. Sequence analysis indicated that human BARX1, mouse Barx1, and chick Barx1 show 100% identity at the amino acid level within their homeodomains. Human BARX1 is expressed in a number of tissues including testis and heart by Northern analysis and in iris and craniofacial tissues by PCR of cDNA libraries. BARX1 chromosomal localization to 9q12 was determined by radiation hybrid mapping. Intron/exon boundaries were established, and primers were generated to PCR amplify all four exons. A mutation screen was conducted in 55 patients affected with ARS, IGDS, or related ocular malformations. While six sequence polymorphisms were detected, no disease-causing mutations of BARX1 were observed. PMID:10995576

  8. Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations

    PubMed Central

    Webb, Bradley A.; Forouhar, Farhad; Szu, Fu-En; Seetharaman, Jayaraman; Tong, Liang; Barber, Diane L.

    2015-01-01

    Phosphofructokinase-1 (PFK1), the “gatekeeper” of glycolysis, catalyses the committed step of the glycolytic pathway by converting fructose 6-phosphate (F6P) to fructose 1,6-bisphosphate. Allosteric activation and inhibition of PFK1 by over 10 metabolites and in response to hormonal signaling fine-tune glycolytic flux to meet energy requirements1. Mutations inhibiting PFK1 activity cause glycogen storage disease type VII, also known as Tarui disease2, and mice deficient in muscle PFK1 have decreased fat stores3. Additionally, PFK1 is suggested to have important roles in metabolic reprograming in cancer4,5. Despite its critical role in glucose flux, the biologically relevant crystal structure of the mammalian PFK1 tetramer has not been determined. We report here the first structures of the mammalian PFK1 tetramer, for the human platelet isoform (PFKP), in complex with ATP-Mg2+ and ADP at 3.1 and 3.4 Å, respectively. The structures reveal substantial conformational changes in the enzyme upon nucleotide hydrolysis as well as a unique tetramer interface. Mutations of residues in this interface can affect tetramer formation, enzyme catalysis and regulation, indicating the functional importance of the tetramer. With altered glycolytic flux being a hallmark of cancers6, these new structures allow a molecular understanding of the functional consequences of somatic PFK1 mutations identified in human cancers. We characterized three of these mutations and show they have distinct effects on allosteric regulation of PFKP activity and lactate production. The PFKP structural blueprint for somatic mutations as well as the catalytic site can guide therapeutic targeting of PFK1 activity to control dysregulated glycolysis in disease. PMID:25985179

  9. Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme

    PubMed Central

    Caval, Vincent; Bouzidi, Mohamed S.; Suspène, Rodolphe; Laude, Hélène; Dumargne, Marie-Charlotte; Bashamboo, Anu; Krey, Thomas; Vartanian, Jean-Pierre; Wain-Hobson, Simon

    2015-01-01

    The human APOBEC3A and APOBEC3B genes (A3A and A3B) encode DNA mutator enzymes that deaminate cytidine and 5-methylcytidine residues in single-stranded DNA (ssDNA). They are important sources of mutations in many cancer genomes which show a preponderance of CG->TA transitions. Although both enzymes can hypermutate chromosomal DNA in an experimental setting, only A3A can induce double strand DNA breaks, even though the catalytic domains of A3B and A3A differ by only 9% at the protein level. Accordingly we sought the molecular basis underlying A3B attenuation through the generation of A3A-A3B chimeras and mutants. It transpires that the N-terminal domain facilitates A3B activity while a handful of substitutions in the catalytic C-terminal domain impacting ssDNA binding serve to attenuate A3B compared to A3A. Interestingly, functional attenuation is also observed for the rhesus monkey rhA3B enzyme compared to rhA3A indicating that this genotoxic dichotomy has been selected for and maintained for some 38 million years. Expression of all human ssDNA cytidine deaminase genes is absent in mature sperm indicating they contribute to somatic mutation and cancer but not human diversity. PMID:26384561

  10. Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder.

    PubMed

    Hudson, L D; Puckett, C; Berndt, J; Chan, J; Gencic, S

    1989-10-01

    Myelin is a highly specialized membrane unique to the nervous system that ensheaths axons to permit the rapid saltatory conduction of impulses. The elaboration of a compact myelin sheath is disrupted in a diverse spectrum of human disorders, many of which are of unknown etiology. The X chromosome-linked human disorder Pelizaeus-Merzbacher disease is a clinically and pathologically heterogeneous group of disorders that demonstrate a striking failure of oligodendrocyte differentiation. This disease appears pathologically and genetically to be similar to the disorder seen in the dysmyelinating mouse mutant jimpy, which has a point mutation in the gene encoding an abundant myelin protein, proteolipid protein (PLP). We report that the molecular defect in one Pelizaeus-Merzbacher family is likewise a point mutation in the PLP gene. A single T----C transition results in the substitution of a charged amino acid residue, arginine, for tryptophan in one of the four extremely hydrophobic domains of the PLP protein. The identification of a mutation in this Pelizaeus-Merzbacher family should facilitate the molecular classification and diagnosis of these X chromosome-linked human dysmyelinating disorders. PMID:2479017

  11. Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells

    SciTech Connect

    Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.

    2014-11-04

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. In conclusion, the results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.

  12. Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells.

    PubMed

    Severson, Paul L; Vrba, Lukas; Stampfer, Martha R; Futscher, Bernard W

    2014-12-01

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. PMID:25435355

  13. Comparing humans to automation in rating photographic aesthetics

    NASA Astrophysics Data System (ADS)

    Kakarala, Ramakrishna; Agrawal, Abhishek; Morales, Sandino

    2015-03-01

    Computer vision researchers have recently developed automated methods for rating the aesthetic appeal of a photograph. Machine learning techniques, applied to large databases of photos, mimic with reasonably good accuracy the mean ratings of online viewers. However, owing to the many factors underlying aesthetics, it is likely that such techniques for rating photos do not generalize well beyond the data on which they are trained. This paper reviews recent attempts to compare human ratings, obtained in a controlled setting, to ratings provided by machine learning techniques. We review methods to obtain meaningful ratings both from selected groups of judges and also from crowd sourcing. We find that state-of-the-art techniques for automatic aesthetic evaluation are only weakly correlated with human ratings. This shows the importance of obtaining data used for training automated systems under carefully controlled conditions.

  14. Crystallization and preliminary crystallographic studies of human septin 1 with site-directed mutations

    SciTech Connect

    Hu, Hao; Yu, Wen-bo; Li, Shu-xing; Ding, Xiang-ming; Yu, Long; Bi, Ru-Chang

    2006-02-01

    The homogeneity of septin 1 has been improved by site-directed mutation of serine residues and only a small alteration in the secondary structure is observed to arise from the mutations. Crystals of the septin 1 mutant were grown and diffraction data were collected to 2.5 Å resolution. Septin 1 is a member of an evolutionarily conserved family of GTP-binding and filament-forming proteins named septins, which function in diverse processes including cytokinasis, vesicle trafficking, apoptosis, remodelling of the cytoskeleton, infection, neurodegeneration and neoplasia. Human septin 1 has been expressed and purified, but suffers from severe aggregation. Studies have shown that septin 1 with site-directed mutations of five serine residues (Ser19, Ser206, Ser307, Ser312 and Ser315) has a much lower degree of aggregation and better structural homogeneity and that the mutations cause only slight perturbations in the secondary structure of septin 1. This septin 1 mutant was crystallized and diffraction data were collected to 2.5 Å resolution. The space group is P422, with unit-cell parameters a = b = 106.028, c = 137.852 Å.

  15. Ionizing radiation-induced mutation of human cells with different DNA repair capacities

    NASA Astrophysics Data System (ADS)

    Amundson, S. A.; Chen, D. J.

    We have observed significant differences in the response to ionizing radiation of two closely related human cell lines, and now compare the effects on these lines of both low and intermediate LET radiation. Compared to TK6, WTK1 has an enhanced X-ray survival, and is also more resistant to cell killing by alpha-particles. The hprt locus is more mutable in WTK1 than in TK6 by both X-rays and alpha-particles. WTK1 is also more mutable by alpha-particles than by X-rays at the hprt locus. X-ray-induced mutation at the heterozygous tk locus in WTK1 is about 25 fold higher than in TK6, while alpha-particle-induced mutation is nearly 50 fold higher at this locus. Also, the slowly growing tk- mutants, which comprise the majority of spontaneous and X-ray-inducedtk - mutants of TK6, were not induced significantly by alpha-particles. Previously, we showed that TK6 has a reduced capacity for recombination compared with WTK1, and therefore, these results indicate that recombinational repair may contribute to both cell survival and mutation-induction following exposure to ionizing radiation. Such a mechanism may aid cell survival, but could also result in increased deleterious effects such as the unmasking of recessive mutations in cancer suppresser genes.

  16. Ionizing radiation-induced mutation of human cells with different DNA repair capacities

    SciTech Connect

    Amundson, S.A.; Chen, D.J.

    1994-12-31

    We have observed significant differences in the response to ionizing radiation of two closely related human cell lines, and now compare the effects on these lines of both low and intermediate LET radiation. Compared to TK6, WTK1 has an enhanced X-ray survival, and is also more resistant to cell killing by {alpha}-particles. The hprt locus is more mutable in WTK1 than in TK6 by both X-rays and {alpha}-particles. WTK1 is also more mutable by {alpha}-particles than by X-rays at the hprt locus. X-ray-induced mutation at the heterozygous tk locus in WTK1 is about 25 fold higher than in TK6, while {alpha}-particle-induced mutation is nearly 50 fold higher at this locus. Also, the slowly growing tk- mutants, which comprise the majority of spontaneous and X-ray-induced tk- mutants of TK6, were not induced significantly by {alpha}-particles. Previously, we showed that TK6 has a reduced capacity for recombination compared with WTK1, and therefore, these results indicate that recombinational repair may contribute to both cell survival and mutation-induction following exposure to ionizing radiation. Such a mechanism may aid cell survival, but could also result in increased deleterious effects such as the unmasking of recessive mutations in cancer suppresser genes.

  17. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance

    PubMed Central

    Tischfield, Max A.; Baris, Hagit N.; Wu, Chen; Rudolph, Guenther; Van Maldergem, Lionel; He, Wei; Chan, Wai-Man; Andrews, Caroline; Demer, Joseph L.; Robertson, Richard L.; Mackey, David A.; Ruddle, Jonathan B.; Bird, Thomas D.; Gottlob, Irene; Pieh, Christina; Traboulsi, Elias I.; Pomeroy, Scott L.; Hunter, David G.; Soul, Janet S.; Newlin, Anna; Sabol, Louise J.; Doherty, Edward J.; de Uzcátegui, Clara E.; de Uzcátegui, Nicolas; Collins, Mary Louise Z.; Sener, Emin C.; Wabbels, Bettina; Hellebrand, Heide; Meitinger, Thomas; de Berardinis, Teresa; Magli, Adriano; Schiavi, Costantino; Pastore-Trossello, Marco; Koc, Feray; Wong, Agnes M.; Levin, Alex V.; Geraghty, Michael T.; Descartes, Maria; Flaherty, Maree; Jamieson, Robyn V.; Møller, H. U.; Meuthen, Ingo; Callen, David F.; Kerwin, Janet; Lindsay, Susan; Meindl, Alfons; Gupta, Mohan L.; Pellman, David; Engle, Elizabeth C.

    2011-01-01

    We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific β-tubulin isotype III, result in a spectrum of human nervous system disorders we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves, and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate normal TUBB3 is required for axon guidance and maintenance in mammals. PMID:20074521

  18. Noninvasive Quantification of 2-Hydroxyglutarate in Human Gliomas with IDH1 and IDH2 Mutations.

    PubMed

    Emir, Uzay E; Larkin, Sarah J; de Pennington, Nick; Voets, Natalie; Plaha, Puneet; Stacey, Richard; Al-Qahtani, Khalid; Mccullagh, James; Schofield, Christopher J; Clare, Stuart; Jezzard, Peter; Cadoux-Hudson, Tom; Ansorge, Olaf

    2016-01-01

    Mutations in the isocitrate dehydrogenase genes (IDH1/2) occur often in diffuse gliomas, where they are associated with abnormal accumulation of the oncometabolite 2-hydroxyglutarate (2-HG). Monitoring 2-HG levels could provide prognostic information in this disease, but detection strategies that are noninvasive and sufficiently quantitative have yet to be developed. In this study, we address this need by presenting a proton magnetic resonance spectroscopy ((1)H-MRS) acquisition scheme that uses an ultrahigh magnetic field (≥ 7T) capable of noninvasively detecting 2-HG with quantitative measurements sufficient to differentiate mutant cytosolic IDH1 and mitochondrial IDH2 in human brain tumors. Untargeted metabolomics analysis of in vivo (1)H-MRS spectra discriminated between IDH-mutant tumors and healthy tissue, and separated IDH1 from IDH2 mutations. High-quality spectra enabled the quantification of neurochemical profiles consisting of at least eight metabolites, including 2-HG, glutamate, lactate, and glutathione in both tumor and healthy tissue voxels. Notably, IDH2 mutation produced more 2-HG than IDH1 mutation, consistent with previous findings in cell culture. By offering enhanced sensitivity and specificity, this scheme can quantitatively detect 2-HG and associated metabolites that may accumulate during tumor progression, with implications to better monitor patient responses to therapy. PMID:26669865

  19. Human Capital and the Internal Rate of Return.

    ERIC Educational Resources Information Center

    Rosen, Sherwin

    The theory of human capital has made a significant impact on the practice of modern labor economics. At a broad and general level, the concept of human capital has obvious appeal for its simplicity, analytical power, and relationship to economic theory. The fundamental problem in labor economics is the determination of wage rates and earnings;…

  20. Mutator/Hypermutable Fetal/Juvenile Metakaryotic Stem Cells and Human Colorectal Carcinogenesis

    PubMed Central

    Kini, Lohith G.; Herrero-Jimenez, Pablo; Kamath, Tushar; Sanghvi, Jayodita; Gutierrez, Efren; Hensle, David; Kogel, John; Kusko, Rebecca; Rexer, Karl; Kurzweil, Ray; Refinetti, Paulo; Morgenthaler, Stephan; Koledova, Vera V.; Gostjeva, Elena V.; Thilly, William G.

    2013-01-01

    Adult age-specific colorectal cancer incidence rates increase exponentially from maturity, reach a maximum, then decline in extreme old age. Armitage and Doll (1) postulated that the exponential increase resulted from “n” mutations occurring throughout adult life in normal “cells at risk” that initiated the growth of a preneoplastic colony in which subsequent “m” mutations promoted one of the preneoplastic “cells at risk” to form a lethal neoplasia. We have reported cytologic evidence that these “cells at risk” are fetal/juvenile organogenic, then preneoplastic metakaryotic stem cells. Metakaryotic cells display stem-like behaviors of both symmetric and asymmetric nuclear divisions and peculiarities such as bell shaped nuclei and amitotic nuclear fission that distinguish them from embryonic, eukaryotic stem cells. Analyses of mutant colony sizes and numbers in adult lung epithelia supported the inferences that the metakaryotic organogenic stem cells are constitutively mutator/hypermutable and that their contributions to cancer initiation are limited to the fetal/juvenile period. We have amended the two-stage model of Armitage and Doll and incorporated these several inferences in a computer program CancerFit v.5.0. We compared the expectations of the amended model to adult (15–104 years) age-specific colon cancer rates for European-American males born 1890–99 and observed remarkable concordance. When estimates of normal colonic fetal/juvenile APC and OAT gene mutation rates (∼2–5 × 10−5 per stem cell doubling) and preneoplastic colonic gene loss rates (∼8 × 10−3) were applied, the model was in accordance only for the values of n = 2 and m = 4 or 5. PMID:24195059

  1. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models

    PubMed Central

    VI, James G. Taylor; Cheuk, Adam T.; Tsang, Patricia S.; Chung, Joon-Yong; Song, Young K.; Desai, Krupa; Yu, Yanlin; Chen, Qing-Rong; Shah, Kushal; Youngblood, Victoria; Fang, Jun; Kim, Su Young; Yeung, Choh; Helman, Lee J.; Mendoza, Arnulfo; Ngo, Vu; Staudt, Louis M.; Wei, Jun S.; Khanna, Chand; Catchpoole, Daniel; Qualman, Stephen J.; Hewitt, Stephen M.; Merlino, Glenn; Chanock, Stephen J.; Khan, Javed

    2009-01-01

    Rhabdomyosarcoma (RMS) is a childhood cancer originating from skeletal muscle, and patient survival is poor in the presence of metastatic disease. Few determinants that regulate metastasis development have been identified. The receptor tyrosine kinase FGFR4 is highly expressed in RMS tissue, suggesting a role in tumorigenesis, although its functional importance has not been defined. Here, we report the identification of mutations in FGFR4 in human RMS tumors that lead to its activation and present evidence that it functions as an oncogene in RMS. Higher FGFR4 expression in RMS tumors was associated with advanced-stage cancer and poor survival, while FGFR4 knockdown in a human RMS cell line reduced tumor growth and experimental lung metastases when the cells were transplanted into mice. Moreover, 6 FGFR4 tyrosine kinase domain mutations were found among 7 of 94 (7.5%) primary human RMS tumors. The mutants K535 and E550 increased autophosphorylation, Stat3 signaling, tumor proliferation, and metastatic potential when expressed in a murine RMS cell line. These mutants also transformed NIH 3T3 cells and led to an enhanced metastatic phenotype. Finally, murine RMS cell lines expressing the K535 and E550 FGFR4 mutants were substantially more susceptible to apoptosis in the presence of a pharmacologic FGFR inhibitor than the control cell lines expressing the empty vector or wild-type FGFR4. Together, our results demonstrate that mutationally activated FGFR4 acts as an oncogene, and these are what we believe to be the first known mutations in a receptor tyrosine kinase in RMS. These findings support the potential therapeutic targeting of FGFR4 in RMS. PMID:19809159

  2. Dihydropteroate synthase gene mutation rates in Pneumocystis jirovecii strains obtained from Iranian HIV-positive and non-HIV-positive patients.

    PubMed

    Sheikholeslami, Maryam-Fatemeh; Sadraei, Javid; Farnia, Parisa; Forozandeh Moghadam, Mehdi; Emadikochak, Hamid

    2015-05-01

    The dihydropteroate sulfate (DHPS) gene is associated with resistance to sulfa/sulfone drugs in Pneumocystis jirovecii. We investigated the DHPS mutation rate in three groups of Iranian HIV-positive and HIV-negative patients by polymerase chain reaction-restricted fragment length polymorphism analysis. Furthermore, an association between P. jirovecii DHPS mutations and strain typing was investigated based on direct sequencing of internal transcribed spacer region 1 (ITS1) and ITS2. The overall P. jirovecii DHPS mutation rate was (5/34; 14.7%), the lowest rate identified was in HIV-positive patients (1/16; 6.25%) and the highest rate was in malignancies patients (3/11; 27.3%). A moderate rate of mutation was detected in chronic obstructive pulmonary disease (COPD) patients (1/7; 14.3%). Most of the isolates were wild type (29/34; 85.3%). Double mutations in DHPS were detected in patients with malignancies, whereas single mutations at codons 55 and 57 were identified in the HIV-positive and COPD patients, respectively. In this study, two new and rare haplotypes were identified with DHPS mutations. Additionally, a positive relationship between P. jirovecii strain genotypes and DHPS mutations was identified. In contrast, no DHPS mutations were detected in the predominant (Eg) haplotype. This should be regarded as a warning of an increasing incidence of drug-resistant P. jirovecii strains. PMID:25631478

  3. Human PEX1 is mutated in complementation group 1 of the peroxisome biogenesis disorders.

    PubMed

    Portsteffen, H; Beyer, A; Becker, E; Epplen, C; Pawlak, A; Kunau, W H; Dodt, G

    1997-12-01

    Human peroxisome biogenesis disorders (PBDs) are a group of genetically heterogeneous autosomal-recessive disease caused by mutations in PEX genes that encode peroxins, proteins required for peroxisome biogenesis. These lethal diseases include Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD) and infantile Refsum's disease (IRD), three phenotypes now thought to represent a continuum of clinical features that are most severe in ZS, milder in NALD and least severe in IRD2. At least eleven PBD complementation groups have been identified by somatic-cell hybridization analysis compared to the eighteen PEX complementation groups that have been found in yeast. We have cloned the human PEX1 gene encoding a 147-kD member of the AAA protein family (ATPases associated with diverse cellular activities), which is the putative orthologue of Saccharomyces cerevisiae Pex1p (ScPex1p). Human PEX1 has been identified by computer-based 'homology probing' using the ScPex1p sequence to screen databases of expressed sequence tags (dbEST) for human cDNA clones. Expression of PEX1 rescued the cells from the biogenesis defect in human fibroblasts of complementation group 1 (CG1), the largest PBD complementation group. We show that PEX1 is mutated in CG1 patients. PMID:9398848

  4. Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity

    PubMed Central

    Grier, Jennifer T.; Forbes, Lisa R.; Monaco-Shawver, Linda; Oshinsky, Jennifer; Atkinson, T. Prescott; Moody, Curtis; Pandey, Rahul; Campbell, Kerry S.; Orange, Jordan S.

    2012-01-01

    The Fc receptor on NK cells, FcγRIIIA (CD16), has been extensively studied for its role in mediating antibody-dependent cellular cytotoxicity (ADCC). A homozygous missense mutation in CD16 (encoding a L66H substitution) is associated with severe herpesvirus infections in rare patients. Here, we identified a new patient with this CD16 mutation and compared the patient’s NK cells to those of the originally reported patient. Patients with the L66H mutation had intact ADCC, but deficient spontaneous NK cell cytotoxicity and decreased surface expression of CD2, a coactivation receptor. Mechanistic studies in a human NK cell line, NK-92, demonstrated that CD16 expression correlated with CD2 surface levels and enabled killing of a melanoma cell line typically resistant to CD16-deficient NK-92 cells. An association between CD16 and CD2 was identified biochemically and at the immunological synapse, which elicited CD16 signaling after CD2 engagement. Stable expression of CD16 L66H in NK-92 cells recapitulated the patient phenotype, abrogating association of CD16 with CD2 as well as CD16 signaling after CD2 ligation. Thus, CD16 serves a role in NK cell–mediated spontaneous cytotoxicity through a specific association with CD2 and represents a potential mechanism underlying a human congenital immunodeficiency. PMID:23006327

  5. Robot Printing of Reverse Dot Blot Arrays for Human Mutation Detection

    PubMed Central

    Lappin, Stephen; Cahlik, Jeff; Gold, Bert

    2001-01-01

    We report on a generally useful, partially automated, human mutation detection method based upon printing moderate density oligonucleotide arrays using a biorobot on activated nylon membranes. The Beckman Biomek 2000 was adapted to this task through fabrication of aluminum membrane filter holders and the development of an addressable Tool Command Language (Tcl) program, which can be invoked through BioScript. During program execution, a robot arm is moved along the x, y, and z axes to expel liquid, without dripping, from disposable barrier pipette tips and then to touch the drops on preactivated membranes. Printed arrays consist of alternating rows of oligonucleotides containing normal and mutant sequences. Hybridization of biotin labeled polymerase chain reaction products derived from human patient genomic DNA samples are visualized using chemiluminescent or chromogenic indicators. This technique allows unequivocal genotyping of 32 mutations at the β-thalassemia locus (11p15.5) and of 34 mutations and one polymorphism at the cystic fibrosis transconductance membrane regulator locus (7p35). PMID:11687602

  6. Mutations in CERS3 cause autosomal recessive congenital ichthyosis in humans.

    PubMed

    Radner, Franz P W; Marrakchi, Slaheddine; Kirchmeier, Peter; Kim, Gwang-Jin; Ribierre, Florence; Kamoun, Bourane; Abid, Leila; Leipoldt, Michael; Turki, Hamida; Schempp, Werner; Heilig, Roland; Lathrop, Mark; Fischer, Judith

    2013-06-01

    Autosomal recessive congenital ichthyosis (ARCI) is a rare genetic disorder of the skin characterized by abnormal desquamation over the whole body. In this study we report four patients from three consanguineous Tunisian families with skin, eye, heart, and skeletal anomalies, who harbor a homozygous contiguous gene deletion syndrome on chromosome 15q26.3. Genome-wide SNP-genotyping revealed a homozygous region in all affected individuals, including the same microdeletion that partially affects two coding genes (ADAMTS17, CERS3) and abolishes a sequence for a long non-coding RNA (FLJ42289). Whereas mutations in ADAMTS17 have recently been identified in autosomal recessive Weill-Marchesani-like syndrome in humans and dogs presenting with ophthalmologic, cardiac, and skeletal abnormalities, no disease associations have been described for CERS3 (ceramide synthase 3) and FLJ42289 so far. However, analysis of additional patients with non-syndromic ARCI revealed a splice site mutation in CERS3 indicating that a defect in ceramide synthesis is causative for the present skin phenotype of our patients. Functional analysis of patient skin and in vitro differentiated keratinocytes demonstrated that mutations in CERS3 lead to a disturbed sphingolipid profile with reduced levels of epidermis-specific very long-chain ceramides that interferes with epidermal differentiation. Taken together, these data present a novel pathway involved in ARCI development and, moreover, provide the first evidence that CERS3 plays an essential role in human sphingolipid metabolism for the maintenance of epidermal lipid homeostasis. PMID:23754960

  7. The human T-cell cloning assay: identifying genotypes susceptible to drug toxicity and somatic mutation.

    PubMed

    Hou, Sai-Mei

    2014-01-01

    Humans exhibit marked genetic polymorphisms in drug metabolism that contribute to high incidence of adverse effects in susceptible individuals due to altered balance between metabolic activation and detoxification. The T-cell cloning assay, which detects mutations in the gene for hypoxanthine-guanine phosphoribosyl transferase (HPRT), is the most well-developed reporter system for studying specific locus mutation in human somatic cells. The assay is based on a mitogen- and growth factor-dependent clonal expansion of peripheral T-lymphocytes in which the 6-thioguanine-resistant HPRT mutants can be selected, enumerated, and collected for molecular analysis of the mutational nature. The assay provides a unique tool for studying in vivo and in vitro mutagenesis, for investigating the functional impact of common polymorphism in metabolism and repair genes, and for identifying risk genotypes for drug-induced toxicity and mutagenicity. This chapter presents a simple and reliable method for the enumeration of HPRT mutant frequency induced in vitro without using any source of recombinant interleukin-2. The other main feature is that only truly induced and unique mutants are collected for further analysis. PMID:24623236

  8. Mutations Associated with Functional Disorder of Xanthine Oxidoreductase and Hereditary Xanthinuria in Humans

    PubMed Central

    Ichida, Kimiyoshi; Amaya, Yoshihiro; Okamoto, Ken; Nishino, Takeshi

    2012-01-01

    Xanthine oxidoreductase (XOR) catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid with concomitant reduction of either NAD+ or O2. The enzyme is a target of drugs to treat hyperuricemia, gout and reactive oxygen-related diseases. Human diseases associated with genetically determined dysfunction of XOR are termed xanthinuria, because of the excretion of xanthine in urine. Xanthinuria is classified into two subtypes, type I and type II. Type I xanthinuria involves XOR deficiency due to genetic defect of XOR, whereas type II xanthinuria involves dual deficiency of XOR and aldehyde oxidase (AO, a molybdoflavo enzyme similar to XOR) due to genetic defect in the molybdenum cofactor sulfurase. Molybdenum cofactor deficiency is associated with triple deficiency of XOR, AO and sulfite oxidase, due to defective synthesis of molybdopterin, which is a precursor of molybdenum cofactor for all three enzymes. The present review focuses on mutation or chemical modification studies of mammalian XOR, as well as on XOR mutations identified in humans, aimed at understanding the reaction mechanism of XOR and the relevance of mutated XORs as models to estimate the possible side effects of clinical application of XOR inhibitors. PMID:23203137

  9. Novel Mutations in the Transcriptional Activator Domain of the Human TBX20 in Patients with Atrial Septal Defect

    PubMed Central

    Monroy-Muñoz, Irma Eloisa; Rodríguez-Pérez, José Manuel; Muñoz-Medina, José Esteban; Angeles-Martínez, Javier; García-Trejo, José J.; Morales-Ríos, Edgar; Massó, Felipe; Sandoval-Jones, Juan Pablo; Cervantes-Salazar, Jorge; García-Montes, José Antonio; Calderón-Colmenero, Juan; Vargas-Alarcón, Gilberto

    2015-01-01

    Background. The relevance of TBX20 gene in heart development has been demonstrated in many animal models, but there are few works that try to elucidate the effect of TBX20 mutations in human congenital heart diseases. In these studies, all missense mutations associated with atrial septal defect (ASD) were found in the DNA-binding T-box domain, none in the transcriptional activator domain. Methods. We search for TBX20 mutations in a group of patients with ASD or ventricular septal defect (VSD) using the High Resolution Melting (HRM) method and DNA sequencing. Results. We report three missense mutations (Y309D, T370O, and M395R) within the transcriptional activator domain of human TBX20 that were associated with ASD. Conclusions. This is the first association of TBX20 transcriptional activator domain missense mutations with ASD. These findings could have implications for diagnosis, genetic screening, and patient follow-up. PMID:25834824

  10. Phase Transition in a Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Togo, Fumiharu; Yamamoto, Yoshiharu

    2005-07-01

    A healthy human heart rate displays complex fluctuations which share characteristics of physical systems in a critical state. We demonstrate that the human heart rate in healthy individuals undergoes a dramatic breakdown of criticality characteristics, reminiscent of continuous second order phase transitions. By studying the germane determinants, we show that the hallmark of criticality—highly correlated fluctuations—is observed only during usual daily activity, and a breakdown of these characteristics occurs in prolonged, strenuous exercise and sleep. This finding is the first reported discovery of the dynamical phase transition phenomenon in a biological control system and will be a key to understanding the heart rate control system in health and disease.

  11. Somatic mutations of the thyroid-stimulating hormone receptor gene in feline hyperthyroidism: parallels with human hyperthyroidism.

    PubMed

    Watson, S G; Radford, A D; Kipar, A; Ibarrola, P; Blackwood, L

    2005-09-01

    Hyperthyroidism is the most common endocrinopathy in cats, and is both clinically and histopathologically very similar to human toxic nodular goitre (TNG). Molecular studies on human TNG have revealed the presence of mis-sense mutations in the thyroid-stimulating hormone receptor (TSHR) gene, most frequently in exon 10. Our hypothesis was that similar mutations exist in hyperthyroid cats. Genomic DNA was extracted from 134 hyperplastic/adenomatous nodules (from 50 hyperthyroid cats), and analysed for the presence of mutations in exon 10 of the TSHR gene. 11 different mutations were detected, one silent and 10 mis-sense, of which nine were somatic mutations. 28 of the 50 cats (67/134 nodules) had at least one mis-sense mutation. The mis-sense mutations were Met-452-->Thr in 17 cats (35 nodules), Ser-504-->Arg (two different mutational forms) in two cats (two nodules), Val-508-->Arg in one cat (three nodules), Arg-530-->Gln in one cat (two nodules), Val-557-->Leu in 13 cats (36 nodules), Thr-631-->Ala or Thr-631-->Phe (each mutation seen in one nodule of one cat), Asp-632-->Tyr in six cats (10 nodules) and Asp-632-->His in one cat (one nodule). Five of these mutations have been associated previously with human hyperthyroidism. Of the 41 cats for which more than one nodule was available, 14 had nodules with different mutations. The identification of a potential genetic basis for feline hyperthyroidism is novel, increases our understanding of the pathogenesis of this significant feline disease, and confirms its similarity to TNG. PMID:16135672

  12. Proteomic Analysis of the Low Mutation Rate of Diploid Male Gametes Induced by Colchicine in Ginkgo biloba L.

    PubMed Central

    Yang, Nina; Sun, Yuhan; Wang, Yaru; Long, Cui; Li, Yingyue; Li, Yun

    2013-01-01

    Colchicine treatment of G. biloba microsporocytes results in a low mutation rate in the diploid (2n) male gamete. The mutation rate is significantly lower as compared to other tree species and impedes the breeding of new economic varieties. Proteomic analysis was done to identify the proteins that influence the process of 2n gamete formation in G. biloba. The microsporangia of G. biloba were treated with colchicine solution for 48 h and the proteins were analyzed using 2-D gel electrophoresis and compared to protein profiles of untreated microsporangia. A total of 66 proteins showed difference in expression levels. Twenty-seven of these proteins were identified by mass spectrometry. Among the 27 proteins, 14 were found to be up-regulated and the rest 13 were down-regulated. The identified proteins belonged to five different functional classes: ATP generation, transport and carbohydrate metabolism; protein metabolism; ROS scavenging and detoxifying enzymes; cell wall remodeling and metabolism; transcription, cell cycle and signal transduction. The identification of these differentially expressed proteins and their function could help in analysing the mechanism of lower mutation rate of diploid male gamete when the microsporangium of G. biloba was induced by colchicine. PMID:24167543

  13. Proteomic analysis of the low mutation rate of diploid male gametes induced by colchicine in Ginkgo biloba L.

    PubMed

    Yang, Nina; Sun, Yuhan; Wang, Yaru; Long, Cui; Li, Yingyue; Li, Yun

    2013-01-01

    Colchicine treatment of G. biloba microsporocytes results in a low mutation rate in the diploid (2n) male gamete. The mutation rate is significantly lower as compared to other tree species and impedes the breeding of new economic varieties. Proteomic analysis was done to identify the proteins that influence the process of 2n gamete formation in G. biloba. The microsporangia of G. biloba were treated with colchicine solution for 48 h and the proteins were analyzed using 2-D gel electrophoresis and compared to protein profiles of untreated microsporangia. A total of 66 proteins showed difference in expression levels. Twenty-seven of these proteins were identified by mass spectrometry. Among the 27 proteins, 14 were found to be up-regulated and the rest 13 were down-regulated. The identified proteins belonged to five different functional classes: ATP generation, transport and carbohydrate metabolism; protein metabolism; ROS scavenging and detoxifying enzymes; cell wall remodeling and metabolism; transcription, cell cycle and signal transduction. The identification of these differentially expressed proteins and their function could help in analysing the mechanism of lower mutation rate of diploid male gamete when the microsporangium of G. biloba was induced by colchicine. PMID:24167543

  14. Can a few non-coding mutations make a human brain?

    PubMed

    Franchini, Lucía F; Pollard, Katherine S

    2015-10-01

    The recent finding that the human version of a neurodevelopmental enhancer of the Wnt receptor Frizzled 8 (FZD8) gene alters neural progenitor cell cycle timing and brain size is a step forward to understanding human brain evolution. The human brain is distinctive in terms of its cognitive abilities as well as its susceptibility to neurological disease. Identifying which of the millions of genomic changes that occurred during human evolution led to these and other uniquely human traits is extremely challenging. Recent studies have demonstrated that many of the fastest evolving regions of the human genome function as gene regulatory enhancers during embryonic development and that the human-specific mutations in them might alter expression patterns. However, elucidating molecular and cellular effects of sequence or expression pattern changes is a major obstacle to discovering the genetic bases of the evolution of our species. There is much work to do before human-specific genetic and genomic changes are linked to complex human traits. PMID:26350501

  15. p53 mutations in human lymphoid malignancies: Association with Burkitt lymphoma and chronic lymphocytic leukemia

    SciTech Connect

    Gaidano, G.; Ballerini, P.; Gong, J.Z.; Inghirami, G.; Knowles, D.M.; Dalla-Favera, R. ); Neri, A, Centro Malattie del Sangue G. Marcora, Milan ); Newcomb, E.W. ); Magrath, I.T. )

    1991-06-15

    The authors have investigated the frequency of p53 mutations in B- and T-cell human lymphoid malignancies, including acute lymphoblastic leukemia, the major subtypes of non-Hodgkin lymphoma, and chronic lymphocytic leukemia. p53 exons 5-9 were studied by using genomic DNA from 197 primary tumors and 27 cell lines by single-strand conformation polymorphism analysis and by direst sequencing of PCR-amplified fragments. Mutations were found associated with (i) Burkitt lymphoma (9/27 biopsoes; 17/27 cell lines) and its leukemic counterpart L{sub 3}-type B-cell acute lymphoblastic leukemia (5/9), both of which also carry activated c-myc oncogenes, and (ii) B-cell chronic lymphocytic leukemia (6/40) and, in particular, its stage of progression known as Richter's transformation (3/7). Mutations were not found at any significant frequency in other types of non-Hodgkin lymphoma or acute lymphoblastic leukemia. In many cases, only the mutated allele was detectable, implying loss of the normal allele. These results suggest that (1) significant differences in the frequency of p53 mutations are present among subtypes of neoplasms derived from the same tissue; (2) p53 may play a role in tumor progression in B-cell chronic lymphocytic leukemia; (3) the presence of both p53 loss/inactivation and c-myc oncogene activation may be important in the pathogenesis of Burkitt lymphoma and its leukemia form L{sub 3}-type B-cell acute lymphoblastic leukemia.

  16. Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes.

    PubMed

    Zheng, Christina L; Wang, Nicholas J; Chung, Jongsuk; Moslehi, Homayoun; Sanborn, J Zachary; Hur, Joseph S; Collisson, Eric A; Vemula, Swapna S; Naujokas, Agne; Chiotti, Kami E; Cheng, Jeffrey B; Fassihi, Hiva; Blumberg, Andrew J; Bailey, Celeste V; Fudem, Gary M; Mihm, Frederick G; Cunningham, Bari B; Neuhaus, Isaac M; Liao, Wilson; Oh, Dennis H; Cleaver, James E; LeBoit, Philip E; Costello, Joseph F; Lehmann, Alan R; Gray, Joe W; Spellman, Paul T; Arron, Sarah T; Huh, Nam; Purdom, Elizabeth; Cho, Raymond J

    2014-11-20

    Somatic mutations in cancer are more frequent in heterochromatic and late-replicating regions of the genome. We report that regional disparities in mutation density are virtually abolished within transcriptionally silent genomic regions of cutaneous squamous cell carcinomas (cSCCs) arising in an XPC(-/-) background. XPC(-/-) cells lack global genome nucleotide excision repair (GG-NER), thus establishing differential access of DNA repair machinery within chromatin-rich regions of the genome as the primary cause for the regional disparity. Strikingly, we find that increasing levels of transcription reduce mutation prevalence on both strands of gene bodies embedded within H3K9me3-dense regions, and only to those levels observed in H3K9me3-sparse regions, also in an XPC-dependent manner. Therefore, transcription appears to reduce mutation prevalence specifically by relieving the constraints imposed by chromatin structure on DNA repair. We model this relationship among transcription, chromatin state, and DNA repair, revealing a new, personalized determinant of cancer risk. PMID:25456125

  17. Human Immune Disorder Arising from Mutation of the α Chain of the Interleukin-2 Receptor

    NASA Astrophysics Data System (ADS)

    Sharfe, Nigel; Dadi, Harjit K.; Shahar, Michal; Roifman, Chaim M.

    1997-04-01

    Profound cellular immunodeficiency occurs as the result of mutations in proteins involved in both the differentiation and function of mature lymphoid cells. We describe here a novel human immune aberration arising from a truncation mutation of the interleukin-2 receptor α chain (CD25), a subunit of the tripartite high-affinity receptor for interleukin 2. This immunodeficiency is characterized by decreased numbers of peripheral T cells displaying abnormal proliferation but normal B cell development. Extensive lymphocytic infiltration of tissues, including lung, liver, gut, and bone, is observed, accompanied by tissue atrophy and inflammation. Although mature T cells are present, the absence of CD25 does affect the differentiation of thymocytes. While displaying normal development of CD2, CD3, CD4, and CD8 expression, CD25-deficient cortical thymocytes do not express CD1, and furthermore they fail to normally down-regulate levels of the anti-apoptotic protein bcl-2.

  18. Crystallization and preliminary crystallographic studies of human septin 1 with site-directed mutations

    PubMed Central

    Hu, Hao; Yu, Wen-bo; Li, Shu-xing; Ding, Xiang-ming; Yu, Long; Bi, Ru-Chang

    2006-01-01

    Septin 1 is a member of an evolutionarily conserved family of GTP-binding and filament-forming proteins named septins, which function in diverse processes including cytokinasis, vesicle trafficking, apoptosis, remodelling of the cytoskeleton, infection, neurodegeneration and neoplasia. Human septin 1 has been expressed and purified, but suffers from severe aggregation. Studies have shown that septin 1 with site-directed mutations of five serine residues (Ser19, Ser206, Ser307, Ser312 and Ser315) has a much lower degree of aggregation and better structural homogeneity and that the mutations cause only slight perturbations in the secondary structure of septin 1. This septin 1 mutant was crystallized and diffraction data were collected to 2.5 Å resolution. The space group is P422, with unit-cell parameters a = b = 106.028, c = 137.852 Å. PMID:16511282

  19. Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations.

    PubMed Central

    Delaney, S J; Alton, E W; Smith, S N; Lunn, D P; Farley, R; Lovelock, P K; Thomson, S A; Hume, D A; Lamb, D; Porteous, D J; Dorin, J R; Wainwright, B J

    1996-01-01

    We have generated a mouse carrying the human G551D mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR) by a one-step gene targeting procedure. These mutant mice show cystic fibrosis pathology but have a reduced risk of fatal intestinal blockage compared with 'null' mutants, in keeping with the reduced incidence of meconium ileus in G551D patients. The G551D mutant mice show greatly reduced CFTR-related chloride transport, displaying activity intermediate between that of cftr(mlUNC) replacement ('null') and cftr(mlHGU) insertional (residual activity) mutants and equivalent to approximately 4% of wild-type CFTR activity. The long-term survival of these animals should provide an excellent model with which to study cystic fibrosis, and they illustrate the value of mouse models carrying relevant mutations for examining genotype-phenotype correlations. Images PMID:8605891

  20. Human Ovarian Cancer Stroma Contains Luteinized Theca Cells Harboring Tumor Suppressor Gene GT198 Mutations*

    PubMed Central

    Peng, Min; Zhang, Hao; Jaafar, Lahcen; Risinger, John I.; Huang, Shuang; Mivechi, Nahid F.; Ko, Lan

    2013-01-01

    Ovarian cancer is a highly lethal gynecological cancer, and its causes remain to be understood. Using a recently identified tumor suppressor gene, GT198 (PSMC3IP), as a unique marker, we searched for the identity of GT198 mutant cells in ovarian cancer. GT198 has germ line mutations in familial and early onset breast and ovarian cancers and recurrent somatic mutations in sporadic fallopian tube cancers. GT198 protein has been shown as a steroid hormone receptor coregulator and also as a crucial factor in DNA repair. In this study, using GT198 as a marker for microdissection, we find that ovarian tumor stromal cells harboring GT198 mutations are present in various types of ovarian cancer including high and low grade serous, endometrioid, mucinous, clear cell, and granulosa cell carcinomas and in precursor lesions such as inclusion cysts. The mutant stromal cells consist of a luteinized theca cell lineage at various differentiation stages including CD133+, CD44+, and CD34+ cells, although the vast majority of them are differentiated overexpressing steroidogenic enzyme CYP17, a theca cell-specific marker. In addition, wild type GT198 suppresses whereas mutant GT198 protein stimulates CYP17 expression. The chromatin-bound GT198 on the human CYP17 promoter is decreased by overexpressing mutant GT198 protein, implicating the loss of wild type suppression in mutant cells. Together, our results suggest that GT198 mutant luteinized theca cells overexpressing CYP17 are common in ovarian cancer stroma. Because first hit cancer gene mutations would specifically mark cancer-inducing cells, the identification of mutant luteinized theca cells may add crucial evidence in understanding the cause of human ovarian cancer. PMID:24097974

  1. The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes

    PubMed Central

    Waters, Aoife M; Asfahani, Rowan; Carroll, Paula; Bicknell, Louise; Lescai, Francesco; Bright, Alison; Chanudet, Estelle; Brooks, Anthony; Christou-Savina, Sonja; Osman, Guled; Walsh, Patrick; Bacchelli, Chiara; Chapgier, Ariane; Vernay, Bertrand; Bader, David M; Deshpande, Charu; O’ Sullivan, Mary; Ocaka, Louise; Stanescu, Horia; Stewart, Helen S; Hildebrandt, Friedhelm; Otto, Edgar; Johnson, Colin A; Szymanska, Katarzyna; Katsanis, Nicholas; Davis, Erica; Kleta, Robert; Hubank, Mike; Doxsey, Stephen; Jackson, Andrew; Stupka, Elia; Winey, Mark; Beales, Philip L

    2015-01-01

    Background Mutations in microtubule-regulating genes are associated with disorders of neuronal migration and microcephaly. Regulation of centriole length has been shown to underlie the pathogenesis of certain ciliopathy phenotypes. Using a next-generation sequencing approach, we identified mutations in a novel centriolar disease gene in a kindred with an embryonic lethal ciliopathy phenotype and in a patient with primary microcephaly. Methods and results Whole exome sequencing data from a non-consanguineous Caucasian kindred exhibiting mid-gestation lethality and ciliopathic malformations revealed two novel non-synonymous variants in CENPF, a microtubule-regulating gene. All four affected fetuses showed segregation for two mutated alleles [IVS5-2A>C, predicted to abolish the consensus splice-acceptor site from exon 6; c.1744G>T, p.E582X]. In a second unrelated patient exhibiting microcephaly, we identified two CENPF mutations [c.1744G>T, p.E582X; c.8692 C>T, p.R2898X] by whole exome sequencing. We found that CENP-F colocalised with Ninein at the subdistal appendages of the mother centriole in mouse inner medullary collecting duct cells. Intraflagellar transport protein-88 (IFT-88) colocalised with CENP-F along the ciliary axonemes of renal epithelial cells in age-matched control human fetuses but did not in truncated cilia of mutant CENPF kidneys. Pairwise co-immunoprecipitation assays of mitotic and serum-starved HEKT293 cells confirmed that IFT88 precipitates with endogenous CENP-F. Conclusions Our data identify CENPF as a new centriolar disease gene implicated in severe human ciliopathy and microcephaly related phenotypes. CENP-F has a novel putative function in ciliogenesis and cortical neurogenesis. PMID:25564561

  2. Effects of long terminal repeat mutations on human immunodeficiency virus type 1 replication.

    PubMed Central

    Lu, Y; Stenzel, M; Sodroski, J G; Haseltine, W A

    1989-01-01

    The effects of deletions within three functional regions of the long terminal repeat of human immunodeficiency virus type 1 upon the ability of the long terminal repeat to direct production of the chloramphenicol acetyltransferase gene product and upon the ability of viruses that carry the mutations to replicate in human cell lines was investigated. The results show that the enhancer and TATAA sequences were required for efficient virus replication. Deletion of the negative regulatory element (NRE) yielded a virus that replicated more rapidly than did an otherwise isogeneic NRE-positive virus. The suppressive effect of the NRE did not depend upon the negative regulatory gene (nef), as both NRE-positive and NRE-negative viruses were defective for nef. We conclude that factors specified by the cell interact with the NRE sequences to retard human immunodeficiency virus type 1 replication. PMID:2760991

  3. Short Tandem Repeats in Human Exons: A Target for Disease Mutations

    PubMed Central

    Madsen, Bo Eskerod; Villesen, Palle; Wiuf, Carsten

    2008-01-01

    Background In recent years it has been demonstrated that structural variations, such as indels (insertions and deletions), are common throughout the genome, but the implications of structural variations are still not clearly understood. Long tandem repeats (e.g. microsatellites or simple repeats) are known to be hypermutable (indel-rich), but are rare in exons and only occasionally associated with diseases. Here we focus on short (imperfect) tandem repeats (STRs) which fall below the radar of conventional tandem repeat detection, and investigate whether STRs are targets for disease-related mutations in human exons. In particular, we test whether they share the hypermutability of the longer tandem repeats and whether disease-related genes have a higher STR content than non-disease-related genes. Results We show that validated human indels are extremely common in STR regions compared to non-STR regions. In contrast to longer tandem repeats, our definition of STRs found them to be present in exons of most known human genes (92%), 99% of all STR sequences in exons are shorter than 33 base pairs and 62% of all STR sequences are imperfect repeats. We also demonstrate that STRs are significantly overrepresented in disease-related genes in both human and mouse. These results are preserved when we limit the analysis to STRs outside known longer tandem repeats. Conclusion Based on our findings we conclude that STRs represent hypermutable regions in the human genome that are linked to human disease. In addition, STRs constitute an obvious target when screening for rare mutations, because of the relatively low amount of STRs in exons (1,973,844 bp) and the limited length of STR regions. PMID:18789129

  4. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts

    PubMed Central

    Gagnon, Kenneth B.

    2013-01-01

    Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes. PMID:23325410

  5. [Mutation process in the protein-coding genes of human mitochondrial genome in context of evolution of the genus].

    PubMed

    Maliarchuk, B A

    2013-01-01

    The human mitochondrial genome, although it has a small size, is characterized by high level of variation, non-uniformly distributed in groups of nucleotide positions that differ in the degree of variability. Considering the mutation process in human mtDNA relative to the mitochondrial genomes of the genus Homo-neandertals, denisova hominin and other primate species, it appears that more than half (56.5%) variable positions in the human mtDNA protein-coding genes are characterized by back (reverse) mutations to the pre-H. sapiens state of mitochondrial genome. It has been found that hypervariable nucleotide positions show a minimal proportion of specific to H. sapiens mutations, and, conversely, a high proportion of mutations (both nucleotide and amino acid substitutions), leading to the loss of Homo-specific variants of polymorphisms. Most often, polymorphisms specific to H. sapiens arise in result of single forward mutations and disappear mainly due to multiple back mutations, including those in the mutational "hotspots". PMID:25509854

  6. Mutation dependance of the mitochondrial DNA copy number in the first stages of human embryogenesis.

    PubMed

    Monnot, Sophie; Samuels, David C; Hesters, Laetitia; Frydman, Nelly; Gigarel, Nadine; Burlet, Philippe; Kerbrat, Violaine; Lamazou, Frédéric; Frydman, René; Benachi, Alexandra; Feingold, Josué; Rotig, Agnes; Munnich, Arnold; Bonnefont, Jean-Paul; Steffann, Julie

    2013-05-01

    Mitochondrial DNA (mtDNA) content is thought to remain stable over the preimplantation period of human embryogenesis that is, therefore, suggested to be entirely dependent on ooplasm mtDNA capital. We have explored the impact of two disease-causing mutations [m.3243A>G myopathy, encephalopathy, lactic acidosis and stroke-like syndrome (MELAS) and m.8344A>G myoclonic epilepsy associated with ragged-red fibers (MERRF)] on mtDNA amounts in human oocytes and day 4-5 preimplantation embryos. The mtDNA amount was stable in MERRF and control materials, whereas gradually increasing from the germinal vesicle of oogenesis to the blastocyst stage of embryogenesis in MELAS cells, MELAS embryos carrying ∼3-fold higher mtDNA amount than control embryos (P = 0.0003). A correlation between mtDNA copy numbers and mutant loads was observed in MELAS embryos (R(2) = 0.42, P < 0.0013), suggestive of a compensation for the respiratory chain defect resulting from high mutation levels. These results suggest that mtDNA can replicate in early embryos and emphasize the need for sufficient amount of wild-type mtDNA to sustain embryonic development in humans. PMID:23390135

  7. RTTN Mutations Link Primary Cilia Function to Organization of the Human Cerebral Cortex

    PubMed Central

    Kheradmand Kia, Sima; Verbeek, Elly; Engelen, Erik; Schot, Rachel; Poot, Raymond A.; de Coo, Irenaeus F.M.; Lequin, Maarten H.; Poulton, Cathryn J.; Pourfarzad, Farzin; Grosveld, Frank G.; Brehm, António; de Wit, Marie Claire Y.; Oegema, Renske; Dobyns, William B.; Verheijen, Frans W.; Mancini, Grazia M.S.

    2012-01-01

    Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified as a centrosome-associated protein. The Drosophila melanogaster homolog of Rotatin, Ana3, is needed for structural integrity of centrioles and basal bodies and maintenance of sensory neurons. We show that Rotatin colocalizes with the basal bodies at the primary cilium. Cultured fibroblasts from affected individuals have structural abnormalities of the cilia and exhibit downregulation of BMP4, WNT5A, and WNT2B, which are key regulators of cortical patterning and are expressed at the cortical hem, the cortex-organizing center that gives rise to Cajal-Retzius (CR) neurons. Interestingly, we have shown that in mouse embryos, Rotatin colocalizes with CR neurons at the subpial marginal zone. Knockdown experiments in human fibroblasts and neural stem cells confirm a role for RTTN in cilia structure and function. RTTN mutations therefore link aberrant ciliary function to abnormal development and organization of the cortex in human individuals. PMID:22939636

  8. Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias.

    PubMed

    Kim, Woo Jae; Okimoto, Ross A; Purton, Louise E; Goodwin, Meagan; Haserlat, Sara M; Dayyani, Farshid; Sweetser, David A; McClatchey, Andrea I; Bernard, Olivier A; Look, A Thomas; Bell, Daphne W; Scadden, David T; Haber, Daniel A

    2008-05-01

    Ceramide is a lipid second messenger derived from the hydrolysis of sphingomyelin by sphingomyelinases (SMases) and implicated in diverse cellular responses, including growth arrest, differentiation, and apoptosis. Defects in the neutral SMase (nSMase) gene Smpd3, the primary regulator of ceramide biosynthesis, are responsible for developmental defects of bone; regulation of ceramide levels have been implicated in macrophage differentiation, but this pathway has not been directly implicated in human cancer. In a genomic screen for gene copy losses contributing to tumorigenesis in a mouse osteosarcoma model, we identified a somatic homozygous deletion specifically targeting Smpd3. Reconstitution of SMPD3 expression in mouse tumor cells lacking the endogenous gene enhanced tumor necrosis factor (TNF)-induced reduction of cell viability. Nucleotide sequencing of the highly conserved SMPD3 gene in a large panel of human cancers revealed mutations in 5 (5%) of 92 acute myeloid leukemias (AMLs) and 8 (6%) of 131 acute lymphoid leukemias (ALLs), but not in other tumor types. In a subset of these mutations, functional analysis indicated defects in protein stability and localization. Taken together, these observations suggest that disruption of the ceramide pathway may contribute to a subset of human leukemias. PMID:18299447

  9. Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias

    PubMed Central

    Kim, Woo Jae; Okimoto, Ross A.; Purton, Louise E.; Goodwin, Meagan; Haserlat, Sara M.; Dayyani, Farshid; Sweetser, David A.; McClatchey, Andrea I.; Bernard, Olivier A.; Look, A. Thomas; Bell, Daphne W.; Scadden, David T.

    2008-01-01

    Ceramide is a lipid second messenger derived from the hydrolysis of sphingomyelin by sphingomyelinases (SMases) and implicated in diverse cellular responses, including growth arrest, differentiation, and apoptosis. Defects in the neutral SMase (nSMase) gene Smpd3, the primary regulator of ceramide biosynthesis, are responsible for developmental defects of bone; regulation of ceramide levels have been implicated in macrophage differentiation, but this pathway has not been directly implicated in human cancer. In a genomic screen for gene copy losses contributing to tumorigenesis in a mouse osteosarcoma model, we identified a somatic homozygous deletion specifically targeting Smpd3. Reconstitution of SMPD3 expression in mouse tumor cells lacking the endogenous gene enhanced tumor necrosis factor (TNF)–induced reduction of cell viability. Nucleotide sequencing of the highly conserved SMPD3 gene in a large panel of human cancers revealed mutations in 5 (5%) of 92 acute myeloid leukemias (AMLs) and 8 (6%) of 131 acute lymphoid leukemias (ALLs), but not in other tumor types. In a subset of these mutations, functional analysis indicated defects in protein stability and localization. Taken together, these observations suggest that disruption of the ceramide pathway may contribute to a subset of human leukemias. PMID:18299447

  10. Detection of Human Papillomavirus Genotypes and Major BRCA Mutations in Familial Breast Cancer.

    PubMed

    Mohtasebi, Parinaz; Rassi, Hossein; Maleki, Fatemeh; Hajimohammadi, Sameh; Bagheri, Zahra; Fakhar Miandoab, Malihe; Naserbakht, Mahdieh

    2016-06-01

    Breast cancer is a multistep disease and infection with a DNA virus could play a role in one or more of the steps in this pathogenic process. High-risk human papillomaviruses (HPVs) are the causative agents of several cancers. In this study, we investigated HPV genotypes associated with breast cancer and its relationship with BRCA mutation for the detection of familial breast cancer. We analyzed 84 formalin-fixed, paraffin-embedded tissue blocks from 38 familial breast cancer and 46 nonfamilial breast cancer samples by multiplex polymerase chain reaction and clinical parameters. Overall prevalence of HPV infection was 27 of 84: 10 (37.03%) HPV-16, 9 (29.62%) HPV-18, 4 (14.81%) HPV-11, 1 (3.7%) HPV-31, 1 (3.7%) HPV-33, and 2 (7.4%) HPV35. Furthermore, 17 mtDNA4977 deletions and 5 5382insC mutations were detected from 38 familial breast cancer samples. Our results demonstrate that infection with HPV was prevalent among Iranian women with familial breast cancer and the testing of mtDNA4977 deletions and 5382insC mutations in combination with clinical parameters as major risk factors can serve in the identification of familial breast cancer. PMID:27186947

  11. The morbid anatomy of the human genome: chromosomal location of mutations causing disease.

    PubMed Central

    McKusick, V A; Amberger, J S

    1993-01-01

    Information is given in tabular form derived from a synopsis of the human gene map which has been updated continuously since 1973 as part of Mendelian Inheritance in Man (Johns Hopkins University Press, 10th ed, 1992) and of OMIM (Online Mendelian Inheritance in Man, available generally since 1987). The part of the synopsis reproduced here consists of chromosome by chromosome gene lists of loci for which there are associated disorders (table 1), a pictorial representation of this information (fig 1a-d), and an index of disorders for which the causative mutations have been mapped (table 2). In table 1, information on genes that have been located to specific chromosomal positions and are also the site of disease producing mutations is arranged by chromosome, starting with chromosome 1 and with the end of the short arm of the chromosome in each case. In table 2 an alphabetized list of these disorders and the chromosomal location of the mutation in each case are provided. Both in the 'Disorder' field of table 1 and in table 2, the numbers 1, 2, or 3 in parentheses after the name of the disorder indicate that its chromosomal location was determined by mapping of the wildtype gene (1), by mapping of the clinical phenotype (2), or by both strategies (3). PMID:8423603

  12. Mutations in NTRK3 suggest a novel signaling pathway in human congenital heart disease

    PubMed Central

    Werner, Petra; Paluru, Prasuna; Simpson, Anisha M.; Latney, Brande; Iyer, Radhika; Brodeur, Garrett M.; Goldmuntz, Elizabeth

    2014-01-01

    Congenital heart defects (CHDs) are the most common major birth defects and the leading cause of death from congenital malformations. The etiology remains largely unknown, though genetic variants clearly contribute. In a previous study, we identified a large copy number variant (CNV) that deleted 46 genes in a patient with a malalignment type ventricular septal defect (VSD). The CNV included the gene NTRK3 encoding neurotrophic tyrosine kinase receptor C (TrkC), which is essential for normal cardiogenesis in animal models. To evaluate the role of NTRK3 in human CHDs, we studied 467 patients with related heart defects for NTRK3 mutations. We identified four missense mutations in four patients with VSDs that were not found in ethnically matched controls and were predicted to be functionally deleterious. Functional analysis using neuroblastoma cell lines expressing mutant TrkC demonstrated that one of the mutations (c.278C>T, p.T93M) significantly reduced autophosphorylation of TrkC in response to ligand binding, subsequently decreasing phosphorylation of downstream target proteins. In addition compared to WT, three of the four cell lines expressing mutant TrkC showed altered cell growth in low-serum conditions without supplemental NT-3. These findings suggest a novel pathophysiological mechanism involving NTRK3 in the development of VSDs. PMID:25196463

  13. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis.

    PubMed

    Boisson, Bertrand; Wang, Chenhui; Pedergnana, Vincent; Wu, Ling; Cypowyj, Sophie; Rybojad, Michel; Belkadi, Aziz; Picard, Capucine; Abel, Laurent; Fieschi, Claire; Puel, Anne; Li, Xiaoxia; Casanova, Jean-Laurent

    2013-10-17

    Patients with inborn errors of interleukin-17F (IL-17F) or IL-17RA display chronic mucocutaneous candidiasis (CMC). We report a biallelic missense mutation (T536I) in the adaptor molecule ACT1 in two siblings with CMC. The mutation, located in the SEFIR domain, abolished the homotypic interaction of ACT1 with IL-17 receptors, with no effect on homodimerization. The patients' fibroblasts failed to respond to IL-17A and IL-17F, and their T cells to IL-17E. By contrast, healthy individuals homozygous for the common variant D10N, located in the ACT1 tumor necrosis factor receptor-associated factor-interacting domain and previously associated with psoriasis, had impaired, but not abolished, responses to IL-17 cytokines. SEFIR-independent interactions of ACT1 with other proteins, such as CD40, heat shock protein 70 (HSP70) and HSP90, were not affected by the T536I mutation. Overall, human IL-17A and IL-17F depend on ACT1 to mediate protective mucocutaneous immunity. Moreover, other ACT1-dependent IL-17 cytokines seem to be largely redundant in host defense. PMID:24120361

  14. A biallelic ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis

    PubMed Central

    Boisson, Bertrand; Wang, Chenhui; Pedergnana, Vincent; Wu, Ling; Cypowyj, Sophie; Rybojad, Michel; Belkadi, Aziz; Picard, Capucine; Abel, Laurent; Fieschi, Claire; Puel, Anne; Li, Xiaoxia; Casanova, Jean-Laurent

    2013-01-01

    Patients with inborn errors of IL-17F or IL-17RA display chronic mucocutaneous candidiasis (CMC). We report a biallelic missense mutation (T536I) in the adaptor molecule ACT1 in two siblings with CMC. The mutation, located in the SEFIR domain, abolished the homotypic interaction of ACT1 with IL-17 receptors, with no effect on homodimerization. The patients’ fibroblasts failed to respond to IL-17A and IL-17F, and their T cells to IL-17E. By contrast, healthy individuals homozygous for the common variant D10N, located in the ACT1 TNF receptor-associated factor (TRAF)-interacting domain and previously associated with psoriasis, had impaired, but not abolished, responses to IL-17 cytokines. SEFIR-independent interactions of ACT1 with other proteins, such as CD40, heat shock protein (HSP)70 and HSP90, were not affected by the T536I mutation. Overall, human IL-17A and IL-17F depend on ACT1 to mediate protective mucocutaneous immunity. Moreover, other ACT1-dependent IL-17 cytokines seem to be largely redundant in host defense. PMID:24120361

  15. Development of methods for characterizing fetal and adult somatic mutations detected in human erythroid precursor

    SciTech Connect

    Langlois, R.G.; Manchester, D.K.

    1994-12-31

    The glycophorin A (GPA) assay was developed to quantify somatic mutations in humans by measuring the frequency of peripheral erythrocytes with mutant phenotypes that are presumed to be progeny of mutated erythroid precursor cells. This assay has been used to identify GPA variant cells in unexposed individuals at a frequency of {approximately}10 per million erythrocytes, and to demonstrate significant increases in variant frequency after mutagenic exposures. Characterization of the mutations responsible for these variant cells requires that the assay be modified to allow flow analysis and sorting of variant erythroid precursor cells that contain nucleic acids. Cord blood samples contain low levels of both reticulocytes and nucleated erythrocytes. We have developed enrichment methods using centrifugation that yield samples containing up to 30% nucleated erythrocytes, and immunomagnetic separation methods that yield samples containing up to 90% reticulocytes. Enrichment methods for these two cell types are also being developed for adult bone marrow samples. We have confirmed that enrichment and labeling with a nucleic acid-specific dye are compatible with GPA analysis of erythrocytes, reticulocytes, and nucleated erythrocytes. Enriched samples have been successfully used for flow cytometric detection of GPA variant reticulocytes in cord blood. PCR-based analysis methods are being developed for molecular characterization of sorted variant cells at the mRNA level.

  16. Prevalent Accumulation of Non-Optimal Codons through Somatic Mutations in Human Cancers

    PubMed Central

    Wu, Xudong; Li, Guohui

    2016-01-01

    Cancer is characterized by uncontrolled cell growth, and the cause of different cancers is generally attributed to checkpoint dysregulation of cell proliferation and apoptosis. Recent studies have shown that non-optimal codons were preferentially adopted by genes to generate cell cycle-dependent oscillations in protein levels. This raises the intriguing question of how dynamic changes of codon usage modulate the cancer genome to cope with a non-controlled proliferative cell cycle. In this study, we comprehensively analyzed the somatic mutations of codons in human cancers, and found that non-optimal codons tended to be accumulated through both synonymous and non-synonymous mutations compared with other types of genomic substitution. We further demonstrated that non-optimal codons were prevalently accumulated across different types of cancers, amino acids, and chromosomes, and genes with accumulation of non-optimal codons tended to be involved in protein interaction/signaling networks and encoded important enzymes in metabolic networks that played roles in cancer-related pathways. This study provides insights into the dynamics of codons in the cancer genome and demonstrates that accumulation of non-optimal codons may be an adaptive strategy for cancerous cells to win the competition with normal cells. This deeper interpretation of the patterns and the functional characterization of somatic mutations of codons will help to broaden the current understanding of the molecular basis of cancers. PMID:27513638

  17. Mutations in the dopamine beta-hydroxylase gene are associated with human norepinephrine deficiency

    NASA Technical Reports Server (NTRS)

    Kim, Chun-Hyung; Zabetian, Cyrus P.; Cubells, Joseph F.; Cho, Sonhae; Biaggioni, Italo; Cohen, Bruce M.; Robertson, David; Kim, Kwang-Soo

    2002-01-01

    Norepinephrine (NE), a key neurotransmitter of the central and peripheral nervous systems, is synthesized by dopamine beta-hydroxylase (DBH) that catalyzes oxidation of dopamine (DA) to NE. NE deficiency is a congenital disorder of unknown etiology, in which affected patients suffer profound autonomic failure. Biochemical features of the syndrome include undetectable tissue and circulating levels of NE and epinephrine, elevated levels of DA, and undetectable levels of DBH. Here, we report identification of seven novel variants including four potentially pathogenic mutations in the human DBH gene (OMIM 223360) from analysis of two unrelated patients and their families. Both patients are compound heterozygotes for variants affecting expression of DBH protein. Each carries one copy of a T-->C transversion in the splice donor site of DBH intron 1, creating a premature stop codon. In patient 1, there is a missense mutation in DBH exon 2. Patient 2 carries missense mutations in exons 1 and 6 residing in cis. We propose that NE deficiency is an autosomal recessive disorder resulting from heterogeneous molecular lesions at DBH. Copyright 2002 Wiley-Liss, Inc.

  18. Mutations of Human NARS2, Encoding the Mitochondrial Asparaginyl-tRNA Synthetase, Cause Nonsyndromic Deafness and Leigh Syndrome

    PubMed Central

    Shahzad, Mohsin; Huang, Vincent H.; Qaiser, Tanveer A.; Potluri, Prasanth; Mahl, Sarah E.; Davila, Antonio; Nazli, Sabiha; Hancock, Saege; Yu, Margret; Gargus, Jay; Chang, Richard; Al-sheqaih, Nada; Newman, William G.; Abdenur, Jose; Starr, Arnold; Hegde, Rashmi; Dorn, Thomas; Busch, Anke; Park, Eddie; Wu, Jie; Schwenzer, Hagen; Flierl, Adrian; Florentz, Catherine; Sissler, Marie; Khan, Shaheen N.; Li, Ronghua; Guan, Min-Xin; Friedman, Thomas B.; Wu, Doris K.; Procaccio, Vincent; Riazuddin, Sheikh; Wallace, Douglas C.; Ahmed, Zubair M.; Huang, Taosheng; Riazuddin, Saima

    2015-01-01

    Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome. PMID:25807530

  19. Mutations of human NARS2, encoding the mitochondrial asparaginyl-tRNA synthetase, cause nonsyndromic deafness and Leigh syndrome.

    PubMed

    Simon, Mariella; Richard, Elodie M; Wang, Xinjian; Shahzad, Mohsin; Huang, Vincent H; Qaiser, Tanveer A; Potluri, Prasanth; Mahl, Sarah E; Davila, Antonio; Nazli, Sabiha; Hancock, Saege; Yu, Margret; Gargus, Jay; Chang, Richard; Al-Sheqaih, Nada; Newman, William G; Abdenur, Jose; Starr, Arnold; Hegde, Rashmi; Dorn, Thomas; Busch, Anke; Park, Eddie; Wu, Jie; Schwenzer, Hagen; Flierl, Adrian; Florentz, Catherine; Sissler, Marie; Khan, Shaheen N; Li, Ronghua; Guan, Min-Xin; Friedman, Thomas B; Wu, Doris K; Procaccio, Vincent; Riazuddin, Sheikh; Wallace, Douglas C; Ahmed, Zubair M; Huang, Taosheng; Riazuddin, Saima

    2015-03-01

    Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome. PMID:25807530

  20. A human skeletal overgrowth mutation increases maximal velocity and blocks desensitization of guanylyl cyclase-B☆

    PubMed Central

    Robinson, Jerid W.; Dickey, Deborah M.; Miura, Kohji; Michigami, Toshimi; Ozono, Keiichi; Potter, Lincoln R.

    2015-01-01

    C-type natriuretic peptide (CNP) increases long bone growth by stimulating guanylyl cyclase (GC)-B/NPR-B/NPR2. Recently, a Val to Met missense mutation at position 883 in the catalytic domain of GC-B was identified in humans with increased blood cGMP levels that cause abnormally long bones. Here, we determined how this mutation activates GC-B. In the absence of CNP, cGMP levels in cells expressing V883M-GC-B were increased more than 20 fold compared to cells expressing wild-type (WT)-GC-B, and the addition of CNP only further increased cGMP levels 2-fold. In the absence of CNP, maximal enzymatic activity (Vmax) of V883M-GC-B was increased 15-fold compared to WT-GC-B but the affinity of the enzymes for substrate as revealed by the Michaelis constant (Km) was unaffected. Surprisingly, CNP decreased the Km of V883M-GC-B 10-fold in a concentration dependent manner without increasing Vmax. Unlike the WT enzyme the Km reduction of V883M-GC-B did not require ATP. Unexpectedly, V883M-GC-B, but not WT-GC-B, failed to inactivate with time. Phosphorylation elevated but was not required for the activity increase associated with the mutation because the Val to Met substitution also activated a GC-B mutant lacking all known phosphorylation sites. We conclude that the V883M mutation increases maximal velocity in the absence of CNP, eliminates the requirement for ATP in the CNP-dependent Km reduction, and disrupts the normal inactivation process. PMID:23827346

  1. Mutations in CKAP2L, the Human Homolog of the Mouse Radmis Gene, Cause Filippi Syndrome

    PubMed Central

    Hussain, Muhammad Sajid; Battaglia, Agatino; Szczepanski, Sandra; Kaygusuz, Emrah; Toliat, Mohammad Reza; Sakakibara, Shin-ichi; Altmüller, Janine; Thiele, Holger; Nürnberg, Gudrun; Moosa, Shahida; Yigit, Gökhan; Beleggia, Filippo; Tinschert, Sigrid; Clayton-Smith, Jill; Vasudevan, Pradeep; Urquhart, Jill E.; Donnai, Dian; Fryer, Alan; Percin, Ferda; Brancati, Francesco; Dobbie, Angus; Śmigiel, Robert; Gillessen-Kaesbach, Gabriele; Wollnik, Bernd; Noegel, Angelika Anna; Newman, William G.; Nürnberg, Peter

    2014-01-01

    Filippi syndrome is a rare, presumably autosomal-recessive disorder characterized by microcephaly, pre- and postnatal growth failure, syndactyly, and distinctive facial features, including a broad nasal bridge and underdeveloped alae nasi. Some affected individuals have intellectual disability, seizures, undescended testicles in males, and teeth and hair abnormalities. We performed homozygosity mapping and whole-exome sequencing in a Sardinian family with two affected children and identified a homozygous frameshift mutation, c.571dupA (p.Ile191Asnfs∗6), in CKAP2L, encoding the protein cytoskeleton-associated protein 2-like (CKAP2L). The function of this protein was unknown until it was rediscovered in mice as Radmis (radial fiber and mitotic spindle) and shown to play a pivotal role in cell division of neural progenitors. Sanger sequencing of CKAP2L in a further eight unrelated individuals with clinical features consistent with Filippi syndrome revealed biallelic mutations in four subjects. In contrast to wild-type lymphoblastoid cell lines (LCLs), dividing LCLs established from the individuals homozygous for the c.571dupA mutation did not show CKAP2L at the spindle poles. Furthermore, in cells from the affected individuals, we observed an increase in the number of disorganized spindle microtubules owing to multipolar configurations and defects in chromosome segregation. The observed cellular phenotypes are in keeping with data from in vitro and in vivo knockdown studies performed in human cells and mice, respectively. Our findings show that loss-of-function mutations in CKAP2L are a major cause of Filippi syndrome. PMID:25439729

  2. Mutations in Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Zinc Fingers Cause Premature Reverse Transcription ▿

    PubMed Central

    Thomas, James A.; Bosche, William J.; Shatzer, Teresa L.; Johnson, Donald G.; Gorelick, Robert J.

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) requires that its genome be reverse transcribed into double-stranded DNA for productive infection of cells. This process requires not only reverse transcriptase but also the nucleocapsid protein (NC), which functions as a nucleic acid chaperone. Reverse transcription generally begins once the core of the virion enters the cytoplasm of a newly infected cell. However, some groups have reported the presence of low levels of viral DNA (vDNA) within particles prior to infection, the significance and function of which is controversial. We report here that several HIV-1 NC mutants, which we previously identified as being replication defective, contain abnormally high levels of intravirion DNA. These findings were further reinforced by the inability of these NC mutants to perform endogenous reverse transcription (ERT), in contrast to the readily measurable ERT activity in wild-type HIV-1. When either of the NC mutations is combined with a mutation that inactivates the viral protease, we observed a significant reduction in the amount of intravirion DNA. Interestingly, we also observed high levels of intravirion DNA in the context of wild-type NC when we delayed budding by means of a PTAP(−) (Pro-Thr-Ala-Pro) mutation. Premature reverse transcription is most probably occurring before these mutant virions bud from producer cells, but we fail to see any evidence that the NC mutations alter the timing of Pr55Gag processing. Critically, our results also suggest that the presence of intravirion vDNA could serve as a diagnostic for identifying replication-defective HIV-1. PMID:18667500

  3. Structural Characterization of Human 8-Oxoguanine DNA Glycosylase Variants Bearing Active Site Mutations

    SciTech Connect

    Radom,C.; Banerjee, A.; Verdine, G.

    2007-01-01

    The human 8-oxoguanine DNA glycosylase (hOGG1) protein is responsible for initiating base excision DNA repair of the endogenous mutagen 8-oxoguanine. Like nearly all DNA glycosylases, hOGG1 extrudes its substrate from the DNA helix and inserts it into an extrahelical enzyme active site pocket lined with residues that participate in lesion recognition and catalysis. Structural analysis has been performed on mutant versions of hOGG1 having changes in catalytic residues but not on variants having altered 7,8-dihydro-8-oxoguanine (oxoG) contact residues. Here we report high resolution structural analysis of such recognition variants. We found that Ala substitution at residues that contact the phosphate 5 to the lesion (H270A mutation) and its Watson-Crick face (Q315A mutation) simply removed key functionality from the contact interface but otherwise had no effect on structure. Ala substitution at the only residue making an oxoG-specific contact (G42A mutation) introduced torsional stress into the DNA contact surface of hOGG1, but this was overcome by local interactions within the folded protein, indicating that this oxoG recognition motif is 'hardwired'. Introduction of a side chain intended to sterically obstruct the active site pocket (Q315F mutation) led to two different structures, one of which (Q315F{sup *149}) has the oxoG lesion in an exosite flanking the active site and the other of which (Q315F{sup *292}) has the oxoG inserted nearly completely into the lesion recognition pocket. The latter structure offers a view of the latest stage in the base extrusion pathway yet observed, and its lack of catalytic activity demonstrates that the transition state for displacement of the lesion base is geometrically demanding.

  4. On the Sequence-Directed Nature of Human Gene Mutation: The Role of Genomic Architecture and the Local DNA Sequence Environment in Mediating Gene Mutations Underlying Human Inherited Disease

    PubMed Central

    Cooper, David N.; Bacolla, Albino; Férec, Claude; Vasquez, Karen M.; Kehrer-Sawatzki, Hildegard; Chen, Jian-Min

    2011-01-01

    Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher-order features of the genomic architecture. The human genome is now recognized to contain ‘pervasive architectural flaws’ in that certain DNA sequences are inherently mutation-prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of non-canonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair, and may serve to increase mutation frequencies in generalized fashion (i.e. both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease. PMID:21853507

  5. Intact Cohesion, Anaphase, and Chromosome Segregation in Human Cells Harboring Tumor-Derived Mutations in STAG2

    PubMed Central

    Kim, Jung-Sik; He, Xiaoyuan; Orr, Bernardo; Wutz, Gordana; Hill, Victoria; Peters, Jan-Michael; Compton, Duane A.; Waldman, Todd

    2016-01-01

    Somatic mutations of the cohesin complex subunit STAG2 are present in diverse tumor types. We and others have shown that STAG2 inactivation can lead to loss of sister chromatid cohesion and alterations in chromosome copy number in experimental systems. However, studies of naturally occurring human tumors have demonstrated little, if any, correlation between STAG2 mutational status and aneuploidy, and have further shown that STAG2-deficient tumors are often euploid. In an effort to provide insight into these discrepancies, here we analyze the effect of tumor-derived STAG2 mutations on the protein composition of cohesin and the expected mitotic phenotypes of STAG2 mutation. We find that many mutant STAG2 proteins retain their ability to interact with cohesin; however, the presence of mutant STAG2 resulted in a reduction in the ability of regulatory subunits WAPL, PDS5A, and PDS5B to interact with the core cohesin ring. Using AAV-mediated gene targeting, we then introduced nine tumor-derived mutations into the endogenous allele of STAG2 in cultured human cells. While all nonsense mutations led to defects in sister chromatid cohesion and a subset induced anaphase defects, missense mutations behaved like wild-type in these assays. Furthermore, only one of nine tumor-derived mutations tested induced overt alterations in chromosome counts. These data indicate that not all tumor-derived STAG2 mutations confer defects in cohesion, chromosome segregation, and ploidy, suggesting that there are likely to be other functional effects of STAG2 inactivation in human cancer cells that are relevant to cancer pathogenesis. PMID:26871722

  6. Functional Impact of 14 Single Nucleotide Polymorphisms Causing Missense Mutations of Human α7 Nicotinic Receptor

    PubMed Central

    Zhang, Qinhui; Du, Yingjie; Zhang, Jianliang; Xu, Xiaojun; Xue, Fenqin; Guo, Cong; Huang, Yao; Lukas, Ronald J.; Chang, Yongchang

    2015-01-01

    The α7nicotinic receptor (nAChR) is a major subtype of the nAChRs in the central nervous system, and the receptor plays an important role in brain function. In the dbSNP database, there are 55 single nucleotide polymorphisms (SNPs) that cause missense mutations of the human α7nAChR in the coding region. In this study, we tested the impact of 14 SNPs that cause missense mutations in the agonist binding site or the coupling region between binding site and channel gate on the receptor function. The wild type or mutant receptors were expressed or co-expressed in Xenopus oocytes, and the agonist-induced currents were tested using two-electrode voltage clamp. Our results demonstrated that 6 mutants were nonfunctional, 4 mutants had reduced current expression, and 1 mutants altered ACh and nicotine efficacy in the opposite direction, and one additional mutant had slightly reduced agonist sensitivity. Interestingly, the function of most of these nonfunctional mutants could be rescued by α7nAChR positive allosteric modulator PNU-120596 and agonist-PAM 4BP-TQS. Finally, when coexpressed with the wild type, the nonfunctional mutants could also influence the receptor function. These changes of the receptor properties by the mutations could potentially have an impact on the physiological function of the α7nAChR-mediated cholinergic synaptic transmission and anti-inflammatory effects in the human SNP carriers. Rescuing the nonfunctional mutants could provide a novel way to treat the related disorders. PMID:26340537

  7. EFFECT OF CLINICAL MUTATIONS ON FUNCTIONALITY OF THE HUMAN RIBOFLAVIN TRANSPORTER-2 (hRFT-2)

    PubMed Central

    Nabokina, Svetlana M.; Subramanian, Veedamali S.; Said, Hamid M.

    2012-01-01

    The Brown-Vialetto-Van Laere syndrome (BVVLS) is a rare neurological disease characterized by ponto-bulbar palsy, bilateral sensorineural deafness, and respiratory insufficiency. Recent genetic studies have identified mutations in the C20orf54 gene, which encodes the human riboflavin (RF) transporter -2 (hRFT-2) and suggested their link to the manifestation of BVVLS. However, there is nothing currently known about the effect of these mutations on functionality of hRFT-2, a protein that is expressed in a variety of tissues with high expression in the intestine. We addressed this issue using the human-derived intestinal epithelial Caco-2 cells. Our results showed significant (P < 0.01) impairment in RF uptake by Caco-2 cells transiently expressing W17R, P28T, E36K, E71K, and R132W (but not L350M) hRFT-2 mutants. This impairment in RF transport was not due to a decrease in transcription and/or translation of hRFT-2, since mRNA and protein levels of the carrier were similar in cells expressing the mutants and wild-type hRFT-2. Confocal images of live Caco-2 cells transiently transfected with hRFT-2 mutants (fused with green fluorescent protein) showed the P28T, E36K, E71K, and R132W mutants were retained within the endoplasmic reticulum, while the W17R and L350M mutants were expressed at the cell membrane; cell surface expression of the W17R mutant was further confirmed by direct determination of cell surface transporter density. These results show for the first time that some of the BVVLS associated mutations in hRFT-2 affect the transporter functionality and that this effect is mediated via alterations in membrane targeting and/or activity of the transporter. PMID:22273710

  8. Effect of clinical mutations on functionality of the human riboflavin transporter-2 (hRFT-2).

    PubMed

    Nabokina, Svetlana M; Subramanian, Veedamali S; Said, Hamid M

    2012-04-01

    The Brown-Vialetto-Van Laere syndrome (BVVLS) is a rare neurological disease characterized by ponto-bulbar palsy, bilateral sensorineural deafness, and respiratory insufficiency. Recent genetic studies have identified mutations in the C20orf54 gene, which encodes the human riboflavin (RF) transporter -2 (hRFT-2) and suggested their link to the manifestation of BVVLS. However, there is nothing currently known about the effect of these mutations on functionality of hRFT-2, a protein that is expressed in a variety of tissues with high expression in the intestine. We addressed this issue using the human-derived intestinal epithelial Caco-2 cells. Our results showed significant (P<0.01) impairment in RF uptake by Caco-2 cells transiently expressing W17R, P28T, E36K, E71K, and R132W (but not L350M) hRFT-2 mutants. This impairment in RF transport was not due to a decrease in transcription and/or translation of hRFT-2, since mRNA and protein levels of the carrier were similar in cells expressing the mutants and wild-type hRFT-2. Confocal images of live Caco-2 cells transiently transfected with hRFT-2 mutants (fused with green fluorescent protein) showed the P28T, E36K, E71K, and R132W mutants were retained within the endoplasmic reticulum, while the W17R and L350M mutants were expressed at the cell membrane; cell surface expression of the W17R mutant was further confirmed by direct determination of cell surface transporter density. These results show for the first time that some of the BVVLS associated mutations in hRFT-2 affect the transporter functionality and that this effect is mediated via alterations in membrane targeting and/or activity of the transporter. PMID:22273710

  9. Functional Impact of 14 Single Nucleotide Polymorphisms Causing Missense Mutations of Human α7 Nicotinic Receptor.

    PubMed

    Zhang, Qinhui; Du, Yingjie; Zhang, Jianliang; Xu, Xiaojun; Xue, Fenqin; Guo, Cong; Huang, Yao; Lukas, Ronald J; Chang, Yongchang

    2015-01-01

    The α7nicotinic receptor (nAChR) is a major subtype of the nAChRs in the central nervous system, and the receptor plays an important role in brain function. In the dbSNP database, there are 55 single nucleotide polymorphisms (SNPs) that cause missense mutations of the human α7nAChR in the coding region. In this study, we tested the impact of 14 SNPs that cause missense mutations in the agonist binding site or the coupling region between binding site and channel gate on the receptor function. The wild type or mutant receptors were expressed or co-expressed in Xenopus oocytes, and the agonist-induced currents were tested using two-electrode voltage clamp. Our results demonstrated that 6 mutants were nonfunctional, 4 mutants had reduced current expression, and 1 mutants altered ACh and nicotine efficacy in the opposite direction, and one additional mutant had slightly reduced agonist sensitivity. Interestingly, the function of most of these nonfunctional mutants could be rescued by α7nAChR positive allosteric modulator PNU-120596 and agonist-PAM 4BP-TQS. Finally, when coexpressed with the wild type, the nonfunctional mutants could also influence the receptor function. These changes of the receptor properties by the mutations could potentially have an impact on the physiological function of the α7nAChR-mediated cholinergic synaptic transmission and anti-inflammatory effects in the human SNP carriers. Rescuing the nonfunctional mutants could provide a novel way to treat the related disorders. PMID:26340537

  10. Somatic Mutations in the Notch, NF-KB, PIK3CA, and Hedgehog Pathways in Human Breast Cancers

    PubMed Central

    Jiao, Xiang; Wood, Laura; Lindman, Monica; Jones, Sian; Buckhaults, Phillip; Polyak, Kornelia; Sukumar, Saraswati; Carter, Hannah; Kim, Dewey; Karchin, Rachel; Sjöblom, Tobias

    2012-01-01

    Exome sequencing of human breast cancers has revealed a substantial number of candidate cancer genes with recurring but infrequent somatic mutations. To determine more accurately their mutation prevalence, we performed a mutation analysis of 36 novel candidate cancer genes in 96 human breast cancers. Somatic mutations with potential impact on protein function were observed in the genes ADAM12, CENTB1, CENTG1, DIP2C, GLI1, GRIN2D, HDLBP, IKBKB, KPNA5, NFKB1, NOTCH1, and OTOF. These findings strengthen the evidence for involvement of the Notch, Hedgehog, NF-KB, and PIK3CA pathways in breast cancer development, and point to novel processes that likely are involved. PMID:22302350

  11. Molecular and clonal analysis of in vivo hprt (hypoxanthine-guanine phosphoribosyl-transferase) mutations in human cells

    SciTech Connect

    Albertini, R.J.; O'Neill, J.P.; Nicklas, J.A.; Allegretta, M. . Genetics Lab.); Recio, L.; Skopek, T.R. )

    1989-08-08

    There is no longer doubt that gene mutations occur in vivo in human somatic cells, and that methods can be developed to detect, quantify and study them. Four assays are now available for such purpose; two detecting mutations that arise in bone marrow erythroid stem cells and two defining mutations that occur in T-lymphocytes. The red cell assays measure changes in mature red blood cells that involve either the blood group glycophorin-A locus or the hemoglobin loci; the lymphocyte assays score for genetic events at either the X-chromosomal hypoxanthine-guanine phosphoribosyl-transferase (hprt) locus. We describe here our attempts in studying in vivo gene mutations in human T-lymphocytes. 35 refs., 3 figs., 3 tabs.

  12. Increased Heart Rate Variability but Normal Resting Metabolic Rate in Hypocretin/Orexin-Deficient Human Narcolepsy

    PubMed Central

    Fronczek, Rolf; Overeem, Sebastiaan; Reijntjes, Robert; Lammers, Gert Jan; van Dijk, J. Gert; Pijl, Hanno

    2008-01-01

    Study Objectives: We investigated autonomic balance and resting metabolic rate to explore their possible involvement in obesity in hypocretin/orexin-deficient narcoleptic subjects. Methods: Resting metabolic rate (using indirect calorimetry) and variability in heart rate and blood pressure were determined in the fasted resting state. Subjects included 15 untreated, hypocretin-deficient male narcoleptics and 15 male controls matched for age and body mass index. Results: Spectral power analysis revealed greater heart rate and blood pressure variability in hypocretin-deficient male narcoleptic patients (heart rate: p = 0.01; systolic blood pressure: p = 0.02; diastolic: p < 0.01). The low to high frequency ratio of heart rate power did not differ between groups (p = 0.48), nor did resting metabolic rate (controls: 1767 ± 226 kcal/24 h; patients: 1766 ± 227 kcal/24h; p = 0.99). Conclusions: Resting metabolic rate was not reduced in hypocretin-deficient narcoleptic men and therefore does not explain obesity in this group. Whether the increased heart rate and blood pressure variability—suggesting reduced sympathetic tone—is involved in this regard remains to be elucidated. Citation: Fronczek R; Overeem S; Reijntjes R; Lammers GJ; van Dijk JG; Pijl H. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy. J Clin Sleep Med 2008;4(3):248–254. PMID:18595438

  13. Structural basis for early-onset neurological disorders caused by mutations in human selenocysteine synthase

    PubMed Central

    Puppala, Anupama K.; French, Rachel L.; Matthies, Doreen; Baxa, Ulrich; Subramaniam, Sriram; Simonović, Miljan

    2016-01-01

    Selenocysteine synthase (SepSecS) catalyzes the terminal reaction of selenocysteine, and is vital for human selenoproteome integrity. Autosomal recessive inheritance of mutations in SepSecS–Ala239Thr, Thr325Ser, Tyr334Cys and Tyr429*–induced severe, early-onset, neurological disorders in distinct human populations. Although harboring different mutant alleles, patients presented remarkably similar phenotypes typified by cerebellar and cerebral atrophy, seizures, irritability, ataxia, and extreme spasticity. However, it has remained unclear how these genetic alterations affected the structure of SepSecS and subsequently elicited the development of a neurological pathology. Herein, our biophysical and structural characterization demonstrates that, with the exception of Tyr429*, pathogenic mutations decrease protein stability and trigger protein misfolding. We propose that the reduced stability and increased propensity towards misfolding are the main causes for the loss of SepSecS activity in afflicted patients, and that these factors contribute to disease progression. We also suggest that misfolding of enzymes regulating protein synthesis should be considered in the diagnosis and study of childhood neurological disorders. PMID:27576344

  14. Disruption of dopamine neuron activity pattern regulation through selective expression of a human KCNN3 mutation.

    PubMed

    Soden, Marta E; Jones, Graham L; Sanford, Christina A; Chung, Amanda S; Güler, Ali D; Chavkin, Charles; Luján, Rafael; Zweifel, Larry S

    2013-11-20

    The calcium-activated small conductance potassium channel SK3 plays an essential role in the regulation of dopamine neuron activity patterns. Here we demonstrate that expression of a human disease-related SK3 mutation (hSK3Δ) in dopamine neurons of mice disrupts the balance between tonic and phasic dopamine neuron activity. Expression of hSK3Δ suppressed endogenous SK currents, reducing coupling between SK channels and NMDA receptors (NMDARs) and increasing permissiveness for burst firing. Consistent with enhanced excitability of dopamine neurons, hSK3Δ increased evoked calcium signals in dopamine neurons in vivo and potentiated evoked dopamine release. Specific expression of hSK3Δ led to deficits in attention and sensory gating and heightened sensitivity to a psychomimetic drug. Sensory-motor alterations and psychomimetic sensitivity were recapitulated in a mouse model of transient, reversible dopamine neuron activation. These results demonstrate the cell-autonomous effects of a human ion channel mutation on dopamine neuron physiology and the impact of activity pattern disruption on behavior. PMID:24206670

  15. Structural basis for early-onset neurological disorders caused by mutations in human selenocysteine synthase.

    PubMed

    Puppala, Anupama K; French, Rachel L; Matthies, Doreen; Baxa, Ulrich; Subramaniam, Sriram; Simonović, Miljan

    2016-01-01

    Selenocysteine synthase (SepSecS) catalyzes the terminal reaction of selenocysteine, and is vital for human selenoproteome integrity. Autosomal recessive inheritance of mutations in SepSecS-Ala239Thr, Thr325Ser, Tyr334Cys and Tyr429*-induced severe, early-onset, neurological disorders in distinct human populations. Although harboring different mutant alleles, patients presented remarkably similar phenotypes typified by cerebellar and cerebral atrophy, seizures, irritability, ataxia, and extreme spasticity. However, it has remained unclear how these genetic alterations affected the structure of SepSecS and subsequently elicited the development of a neurological pathology. Herein, our biophysical and structural characterization demonstrates that, with the exception of Tyr429*, pathogenic mutations decrease protein stability and trigger protein misfolding. We propose that the reduced stability and increased propensity towards misfolding are the main causes for the loss of SepSecS activity in afflicted patients, and that these factors contribute to disease progression. We also suggest that misfolding of enzymes regulating protein synthesis should be considered in the diagnosis and study of childhood neurological disorders. PMID:27576344

  16. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations*

    PubMed Central

    Halwani, Rabih; Ma, Cindy S.; Wong, Natalie; Soudais, Claire; Henderson, Lauren A.; Marzouqa, Hiyam; Shamma, Jamal; Gonzalez, Marcela; Martinez-Barricarte, Rubén; Okada, Chizuru; Avery, Danielle T.; Latorre, Daniela; Deswarte, Caroline; Jabot-Hanin, Fabienne; Torrado, Egidio; Fountain, Jeffrey; Belkadi, Aziz; Itan, Yuval; Boisson, Bertrand; Migaud, Mélanie; Arlehamn, Cecilia S. Lindestam; Sette, Alessandro; Breton, Sylvain; McCluskey, James; Rossjohn, Jamie; de Villartay, Jean-Pierre; Moshous, Despina; Hambleton, Sophie; Latour, Sylvain; Arkwright, Peter D.; Picard, Capucine; Lantz, Olivier; Engelhard, Dan; Kobayashi, Masao; Abel, Laurent; Casanova, Jean-Laurent

    2015-01-01

    Human inborn errors of immunity mediated by the cytokines interleukin (IL)-17A/F underlie mucocutaneous candidiasis, whereas inborn errors of interferon (IFN)-γ immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORγ and RORγT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORγ- and RORγT-deficient individuals also displayed an impaired IFN-γ response to Mycobacterium. This principally reflected profoundly defective IFN-γ production by circulating γδ T cells and CD4+CCR6+ CXCR3+ αβ T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORγ, or RORγT, or both. PMID:26160376

  17. Disentangling the effects of mating systems and mutation rates on cytoplamic diversity in gynodioecious Silene nutans and dioecious Silene otites

    PubMed Central

    Lahiani, E; Dufaÿ, M; Castric, V; Le Cadre, S; Charlesworth, D; Van Rossum, F; Touzet, P

    2013-01-01

    Many flowering plant species exhibit a variety of distinct sexual morphs, the two most common cases being the co-occurrence of females and males (dioecy) or the co-occurrence of hermaphrodites and females (gynodioecy). In this study, we compared DNA sequence variability of the three genomes (nuclear, mitochondrial and chloroplastic) of a gynodioecious species, Silene nutans, with that of a closely related dioecious species, Silene otites. In the light of theoretical models, we expect cytoplasmic diversity to differ between the two species due to the selective dynamics that acts on cytoplasmic genomes in gynodioecious species: under an epidemic scenario, the gynodioecious species is expected to exhibit lower cytoplasmic diversity than the dioecious species, while the opposite is expected in the case of balancing selection maintaining sterility cytoplasms in the gynodioecious species. We found no difference between the species for nuclear gene diversity, but, for the cytoplasmic loci, the gynodioecious S. nutans had more haplotypes, and higher nucleotide diversity, than the dioecious relative, S. otites, even though the latter has a relatively high rate of mitochondrial synonymous substitutions, and therefore presumably a higher mutation rate. Therefore, as the mitochondrial mutation rate cannot account for the higher cytoplasmic diversity found in S. nutans, our findings support the hypothesis that gynodioecy in S. nutans has been maintained by balancing selection rather than by epidemic-like dynamics. PMID:23591518

  18. Gamma radiation at a human relevant low dose rate is genotoxic in mice

    PubMed Central

    Graupner, Anne; Eide, Dag M.; Instanes, Christine; Andersen, Jill M.; Brede, Dag A.; Dertinger, Stephen D.; Lind, Ole C.; Brandt-Kjelsen, Anicke; Bjerke, Hans; Salbu, Brit; Oughton, Deborah; Brunborg, Gunnar; Olsen, Ann K.

    2016-01-01

    Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1−/−) and control animals (Ogg1+/−). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBCCD24−) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer. PMID:27596356

  19. Gamma radiation at a human relevant low dose rate is genotoxic in mice.

    PubMed

    Graupner, Anne; Eide, Dag M; Instanes, Christine; Andersen, Jill M; Brede, Dag A; Dertinger, Stephen D; Lind, Ole C; Brandt-Kjelsen, Anicke; Bjerke, Hans; Salbu, Brit; Oughton, Deborah; Brunborg, Gunnar; Olsen, Ann K

    2016-01-01

    Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1(-/-)) and control animals (Ogg1(+/-)). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBC(CD24-)) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer. PMID:27596356

  20. The age of human mutation: genealogical and linkage disequilibrium analysis of the CLN5 mutation in the Finnish population.

    PubMed Central

    Varilo, T.; Savukoski, M.; Norio, R.; Santavuori, P.; Peltonen, L.; Järvelä, I.

    1996-01-01

    Variant late infantile neuronal ceroid lipofuscinosis (vLINCL) is an autosomal recessive progressive encephalopathy of childhood enriched in the western part of Finland, with a local incidence of 1 in 1500. We recently assigned the locus for vLINCL, CLN5, to 13q21.1-q32. In the present study, the haplotype analysis of Finnish CLN5 chromosomes provides evidence that one single mutation causes vLINCL in the Finnish population. Eight microsatellite markers closely linked to the CLN5 gene on chromosome 13q were analyzed, to study identity by descent by shared haplotype analysis. One single haplotype formed by flanking markers D13S160 and D13S162 in strong linkage disequilibrium (P < .0001) was present in 81% of disease-bearing chromosomes. Allele 4 at the marker locus D13S162 was detected in 94% of disease-bearing chromosomes. To evaluate the age of the CLN5 mutation by virtue of its restricted geographical distribution, church records were used to identify the common ancestors for 18 vLINCL families diagnosed in Finland. The pedigrees of the vLINCL ancestors merged on many occasions, which also supports a single founder mutation that obviously happened 20 to 30 generations ago (i.e., approximately 500 years ago) in this isolated population. Linkage disequilibrium was detected with seven markers covering an extended genetic distance of 11 cM, which further supports the young age of the CLN5 mutation. When the results of genealogical and linkage disequilibrium studies were combined, the CLN5 gene was predicted to lie approximately 200 - 400 kb (total range 30 - 1360 kb) from the closest marker D13S162. Images Figure 1 PMID:8644710

  1. Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia

    SciTech Connect

    Meyer-Kleine, C.; Koch, M.C.; Steinmeyer, K.

    1995-12-01

    Autosomal dominant myotonia congenita and autosomal recessive generalized myotonia (GM) are genetic disorders characterized by the symptom of myotonia, which is based on an electrical instability of the muscle fiber membrane. Recently, these two phenotypes have been associated with mutations in the major muscle chloride channel gene CLCN1 on human chromosome 7q35. We have systematically screened the open reading frame of the CLCN1 gene for mutations by SSC analysis (SSCA) in a panel of 24 families and 17 single unrelated patients with human myotonia. By direct sequencing of aberrant SSCA conformers we revealed 15 different mutations in a total of 18 unrelated families and 13 single patients. Of these, 10 were novel (7 missense mutations, 2 mutations leading to frameshift, and 1 mutation predicted to affect normal splicing). In our overall sample of 94 GM chromsomes we were able to detect 48 (50%) mutant GM alleles. Three mutations (F413C, R894X, and a 14-bp deletion in exon 13) account for 32% of the GM chromosomes in the German population. Our finding that A437T is probably a polymorphism is in contrast to a recent report that the recessive phenotype GM is associated with this amino acid change. We also demonstrate that the R894X mutation may act as a recessive or a dominant mutation in the CLCN1 gene, probably depending on the genetic background. Functional expression of the R894X mutant in Xenopus oocytes revealed a large reduction, but not complete abolition, of chloride currents. Further, it had a weak dominant negative effect on wild-type currents in coexpression studies. Reduction of currents predicted for heterozygous carriers are close to the borderline value, which is sufficient to elicit myotonia. 31 refs., 6 figs., 3 tabs.

  2. Mutations in the Dimer Interface of Dihydrolipoamide Dehydrogenase Promote Site-specific Oxidative Damages in Yeast and Human Cells*

    PubMed Central

    Vaubel, Rachael A.; Rustin, Pierre; Isaya, Grazia

    2011-01-01

    Dihydrolipoamide dehydrogenase (DLD) is a multifunctional protein well characterized as the E3 component of the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes. Previously, conditions predicted to destabilize the DLD dimer revealed that DLD could also function as a diaphorase and serine protease. However, the relevance of these cryptic activities remained undefined. We analyzed human DLD mutations linked to strikingly different clinical phenotypes, including E340K, D444V, R447G, and R460G in the dimer interface domain that are responsible for severe multisystem disorders of infancy and G194C in the NAD+-binding domain that is typically associated with milder presentations. In vitro, all of these mutations decreased to various degrees dihydrolipoamide dehydrogenase activity, whereas dimer interface mutations also enhanced proteolytic and/or diaphorase activity. Human DLD proteins carrying each individual mutation complemented fully the respiratory-deficient phenotype of yeast cells lacking endogenous DLD even when residual dihydrolipoamide dehydrogenase activity was as low as 21% of controls. However, under elevated oxidative stress, expression of DLD proteins with dimer interface mutations greatly accelerated the loss of respiratory function, resulting from enhanced oxidative damage to the lipoic acid cofactor of pyruvate dehydrogenase and α-ketoglutarate dehydrogenase and other mitochondrial targets. This effect was not observed with the G194C mutation or a mutation that disrupts the proteolytic active site of DLD. As in yeast, lipoic acid cofactor was damaged in human D444V-homozygous fibroblasts after exposure to oxidative stress. We conclude that the cryptic activities of DLD promote oxidative damage to neighboring molecules and thus contribute to the clinical severity of DLD mutations. PMID:21930696

  3. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    SciTech Connect

    Pandey, Amit V.; Flueck, Christa E.; Mullis, Primus E.

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  4. Effect of strand-specific excision repair on the spectra of mutations induced by benzo[a]pyrene-diol epoxide and ultraviolet radiation in diploid human cells

    SciTech Connect

    Ruey-Hwa, Chen.

    1991-01-01

    To study the effect of excision repair on the spectra of mutations induced in diploid human cells by UV and [plus minus]-7[beta], 8[alpha]-dihydroxy-9[alpha],10[alpha]-epoxy- 7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), the author synchronized repair-proficient cells, treated them at the beginning of S phase or in G[sub 1] phase several hours prior to the onset of S phase, selected for thioguanine resistant cells, and determined the spectra of mutations in the coding region of the hyproxanthine(guanine)phosphoribosyl-transferase (HPRT) gene in the mutants. As a control, the spectra of mutations similarly induced in repair-deficient xeroderma pigmentosum (XP) cells were compared. There was no difference in the kinds of mutations observed in mutants derived from either cell strain treated with a particular mutagen either in S or in G[sub 1]. With BPDE, the majority were G.C[yields]T.A transversions; with UV, they were mainly G.C.[yields]A.T transitions. The strand distribution of premutagenic lesions in mutants from repair-proficient cells treated in S or G[sub 1] differed significantly. The results strongly support the hypothesis that human cells preferentially repair UV- and BPDE-induced lesions from the transcribed strand of the HPRT gene. To test this, the rate of repair of BPDE adducts from individual strands of the HPRT gene was measured, using the UvrABC exinuclease and Southern hybridizations with strand-specific probes to detect lesions remaining. BPDE lesions were removed from the transcribed strand at a significantly faster rate than from the nontranscribed strand, consistent with my hypothesis. It was found that BPDE adducts were removed faster from either strand of the HPRT gene than from a transcriptionally inactive locus, indicating preferential repair of active genes. The results of these studies provide biochemical and biological evidence of strand-specific DNA repair of BPDE adducts in human cells.

  5. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    NASA Technical Reports Server (NTRS)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  6. Mutation of SALL2 causes recessive ocular coloboma in humans and mice

    PubMed Central

    Kelberman, Daniel; Islam, Lily; Lakowski, Jörn; Bacchelli, Chiara; Chanudet, Estelle; Lescai, Francesco; Patel, Aara; Stupka, Elia; Buck, Anja; Wolf, Stephan; Beales, Philip L.; Jacques, Thomas S.; Bitner-Glindzicz, Maria; Liasis, Alki; Lehmann, Ordan J.; Kohlhase, Jürgen; Nischal, Ken K.; Sowden, Jane C.

    2014-01-01

    Ocular coloboma is a congenital defect resulting from failure of normal closure of the optic fissure during embryonic eye development. This birth defect causes childhood blindness worldwide, yet the genetic etiology is poorly understood. Here, we identified a novel homozygous mutation in the SALL2 gene in members of a consanguineous family affected with non-syndromic ocular coloboma variably affecting the iris and retina. This mutation, c.85G>T, introduces a premature termination codon (p.Glu29*) predicted to truncate the SALL2 protein so that it lacks three clusters of zinc-finger motifs that are essential for DNA-binding activity. This discovery identifies SALL2 as the third member of the Drosophila homeotic Spalt-like family of developmental transcription factor genes implicated in human disease. SALL2 is expressed in the developing human retina at the time of, and subsequent to, optic fissure closure. Analysis of Sall2-deficient mouse embryos revealed delayed apposition of the optic fissure margins and the persistence of an anterior retinal coloboma phenotype after birth. Sall2-deficient embryos displayed correct posterior closure toward the optic nerve head, and upon contact of the fissure margins, dissolution of the basal lamina occurred and PAX2, known to be critical for this process, was expressed normally. Anterior closure was disrupted with the fissure margins failing to meet, or in some cases misaligning leading to a retinal lesion. These observations demonstrate, for the first time, a role for SALL2 in eye morphogenesis and that loss of function of the gene causes ocular coloboma in humans and mice. PMID:24412933

  7. Mutation of SALL2 causes recessive ocular coloboma in humans and mice.

    PubMed

    Kelberman, Daniel; Islam, Lily; Lakowski, Jörn; Bacchelli, Chiara; Chanudet, Estelle; Lescai, Francesco; Patel, Aara; Stupka, Elia; Buck, Anja; Wolf, Stephan; Beales, Philip L; Jacques, Thomas S; Bitner-Glindzicz, Maria; Liasis, Alki; Lehmann, Ordan J; Kohlhase, Jürgen; Nischal, Ken K; Sowden, Jane C

    2014-05-15

    Ocular coloboma is a congenital defect resulting from failure of normal closure of the optic fissure during embryonic eye development. This birth defect causes childhood blindness worldwide, yet the genetic etiology is poorly understood. Here, we identified a novel homozygous mutation in the SALL2 gene in members of a consanguineous family affected with non-syndromic ocular coloboma variably affecting the iris and retina. This mutation, c.85G>T, introduces a premature termination codon (p.Glu29*) predicted to truncate the SALL2 protein so that it lacks three clusters of zinc-finger motifs that are essential for DNA-binding activity. This discovery identifies SALL2 as the third member of the Drosophila homeotic Spalt-like family of developmental transcription factor genes implicated in human disease. SALL2 is expressed in the developing human retina at the time of, and subsequent to, optic fissure closure. Analysis of Sall2-deficient mouse embryos revealed delayed apposition of the optic fissure margins and the persistence of an anterior retinal coloboma phenotype after birth. Sall2-deficient embryos displayed correct posterior closure toward the optic nerve head, and upon contact of the fissure margins, dissolution of the basal lamina occurred and PAX2, known to be critical for this process, was expressed normally. Anterior closure was disrupted with the fissure margins failing to meet, or in some cases misaligning leading to a retinal lesion. These observations demonstrate, for the first time, a role for SALL2 in eye morphogenesis and that loss of function of the gene causes ocular coloboma in humans and mice. PMID:24412933

  8. Modification of a Hydrophobic Layer by a Point Mutation in Syntaxin 1A Regulates the Rate of Synaptic Vesicle Fusion

    PubMed Central

    Lagow, Robert D; Bao, Hong; Cohen, Evan N; Daniels, Richard W; Zuzek, Aleksej; Williams, Wade H; Macleod, Gregory T; Sutton, R. Bryan; Zhang, Bing

    2007-01-01

    Both constitutive secretion and Ca2+-regulated exocytosis require the assembly of the soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes. At present, little is known about how the SNARE complexes mediating these two distinct pathways differ in structure. Using the Drosophila neuromuscular synapse as a model, we show that a mutation modifying a hydrophobic layer in syntaxin 1A regulates the rate of vesicle fusion. Syntaxin 1A molecules share a highly conserved threonine in the C-terminal +7 layer near the transmembrane domain. Mutation of this threonine to isoleucine results in a structural change that more closely resembles those found in syntaxins ascribed to the constitutive secretory pathway. Flies carrying the I254 mutant protein have increased levels of SNARE complexes and dramatically enhanced rate of both constitutive and evoked vesicle fusion. In contrast, overexpression of the T254 wild-type protein in neurons reduces vesicle fusion only in the I254 mutant background. These results are consistent with molecular dynamics simulations of the SNARE core complex, suggesting that T254 serves as an internal brake to dampen SNARE zippering and impede vesicle fusion, whereas I254 favors fusion by enhancing intermolecular interaction within the SNARE core complex. PMID:17341138

  9. Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity

    PubMed Central

    Barrowman, Jemima; Wiley, Patricia A.; Hudon-Miller, Sarah E.; Hrycyna, Christine A.; Michaelis, Susan

    2012-01-01

    The zinc metalloprotease ZMPSTE24 plays a critical role in nuclear lamin biology by cleaving the prenylated and carboxylmethylated 15-amino acid tail from the C-terminus of prelamin A to yield mature lamin A. A defect in this proteolytic event, caused by a mutation in the lamin A gene (LMNA) that eliminates the ZMPSTE24 cleavage site, underlies the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS). Likewise, mutations in the ZMPSTE24 gene that result in decreased enzyme function cause a spectrum of diseases that share certain features of premature aging. Twenty human ZMPSTE24 alleles have been identified that are associated with three disease categories of increasing severity: mandibuloacral dysplasia type B (MAD-B), severe progeria (atypical ‘HGPS’) and restrictive dermopathy (RD). To determine whether a correlation exists between decreasing ZMPSTE24 protease activity and increasing disease severity, we expressed mutant alleles of ZMPSTE24 in yeast and optimized in vivo yeast mating assays to directly compare the activity of alleles associated with each disease category. We also measured the activity of yeast crude membranes containing the ZMPSTE24 mutant proteins in vitro. We determined that, in general, the residual activity of ZMPSTE24 patient alleles correlates with disease severity. Complete loss-of-function alleles are associated with RD, whereas retention of partial, measureable activity results in MAD-B or severe progeria. Importantly, our assays can discriminate small differences in activity among the mutants, confirming that the methods presented here will be useful for characterizing any new ZMPSTE24 mutations that are discovered. PMID:22718200

  10. Null mutations in human and mouse orthologs frequently result in different phenotypes

    PubMed Central

    Liao, Ben-Yang; Zhang, Jianzhi

    2008-01-01

    One-to-one orthologous genes of relatively closely related species are widely assumed to have similar functions and cause similar phenotypes when deleted from the genome. Although this assumption is the foundation of comparative genomics and the basis for the use of model organisms to study human biology and disease, its validity is known only from anecdotes rather than from systematic examination. Comparing documented phenotypes of null mutations in humans and mice, we find that >20% of human essential genes have nonessential mouse orthologs. These changes of gene essentiality appear to be associated with adaptive evolution at the protein-sequence, but not gene-expression, level. Proteins localized to the vacuole, a cellular compartment for waste management, are highly enriched among essentiality-changing genes. It is probable that the evolution of the prolonged life history in humans required enhanced waste management for proper cellular function until the time of reproduction, which rendered these vacuole proteins essential and generated selective pressures for their improvement. If our gene sample represents the entire genome, our results would mean frequent changes of phenotypic effects of one-to-one orthologous genes even between relatively closely related species, a possibility that should be considered in comparative genomic studies and in making cross-species inferences of gene function and phenotypic effect. PMID:18458337

  11. Identification of cis-suppression of human disease mutations by comparative genomics.

    PubMed

    Jordan, Daniel M; Frangakis, Stephan G; Golzio, Christelle; Cassa, Christopher A; Kurtzberg, Joanne; Davis, Erica E; Sunyaev, Shamil R; Katsanis, Nicholas

    2015-08-13

    Patterns of amino acid conservation have served as a tool for understanding protein evolution. The same principles have also found broad application in human genomics, driven by the need to interpret the pathogenic potential of variants in patients. Here we performed a systematic comparative genomics analysis of human disease-causing missense variants. We found that an appreciable fraction of disease-causing alleles are fixed in the genomes of other species, suggesting a role for genomic context. We developed a model of genetic interactions that predicts most of these to be simple pairwise compensations. Functional testing of this model on two known human disease genes revealed discrete cis amino acid residues that, although benign on their own, could rescue the human mutations in vivo. This approach was also applied to ab initio gene discovery to support the identification of a de novo disease driver in BTG2 that is subject to protective cis-modification in more than 50 species. Finally, on the basis of our data and models, we developed a computational tool to predict candidate residues subject to compensation. Taken together, our data highlight the importance of cis-genomic context as a contributor to protein evolution; they provide an insight into the complexity of allele effect on phenotype; and they are likely to assist methods for predicting allele pathogenicity. PMID:26123021

  12. Liquid Biopsy for Detection of Actionable Oncogenic Mutations in Human Cancers and Electric Field Induced Release and Measurement Liquid Biopsy (eLB)

    PubMed Central

    Tu, Michael; Chia, David; Wei, Fang; Wong, David

    2015-01-01

    Oncogenic activations by mutations in key cancer genes such as EGFR and KRAS are frequently associated with human cancers. Molecular targeting of specific oncogenic mutations in human cancer is a major therapeutic inroad for anti-cancer drug therapy. In addition, progressive developments of oncogene mutations lead to drug resistance. Therefore, the ability to detect and continuously monitor key actionable oncogenic mutations is important to guide the use of targeted molecular therapies to improve long-term clinical outcomes in cancer patients. Current oncogenic mutation detection is based on direct sampling of cancer tissue by surgical resection or biopsy. Oncogenic mutations were recently shown to be detectable in circulating bodily fluids of cancer patients. This field of investigation, termed liquid biopsy, permits a less invasive means of assessing the oncogenic mutation profile of a patient. This paper will review the analytical strategies used to assess oncogenic mutations from biofluid samples. Clinical applications will also be discussed. PMID:26645892

  13. A normal cumulative conception rate after human pituitary gonadotropin.

    PubMed

    Healy, D L; Kovacs, G T; Pepperell, R J; Burger, H G

    1980-10-01

    Forty consecutive women were treated with human pituitary gonadotropin to induce ovulation. Thirty-seven patients (93%) ovulated and thirty (75%) conceived on at least one occasion. The cumulative conception rate for the series equaled that of the general population. Women with a past history of anorexia nervosa had the shortest average time to pregnancy. Of patients who did not conceive, four represented failures of patient selection in that they withdrew from treatment for a variety of psychiatric and social reasons, and six represented failures of treatment, not becoming pregnant despite the induction of ovulation. It is concluded that realistic goals for a contemporary human gonadotropin program include induction of ovulation in all patients and a cumulative conception rate equal to that of the general community. PMID:6252067

  14. Direct observation of homoclinic orbits in human heart rate variability

    NASA Astrophysics Data System (ADS)

    Żebrowski, J. J.; Baranowski, R.

    2003-05-01

    Homoclinic trajectories of the interbeat intervals between contractions of ventricles of the human heart are identified. The interbeat intervals are extracted from 24-h Holter ECG recordings. Three such recordings are discussed in detail. Mappings of the measured consecutive interbeat intervals are constructed. In the second and in some cases in the fourth iterate of the map of interbeat intervals homoclinic trajectories associated with a hyperbolic saddle are found. The homoclinic trajectories are often persistent for many interbeat intervals, sometimes spanning many thousands of heartbeats. Several features typical for homoclinic trajectories found in other systems were identified, including a signature of the gluing bifurcation. The homoclinic trajectories are present both in recordings of heart rate variability obtained from patients with an increased number of arrhythmias and in cases in which the sinus rhythm is dominant. The results presented are a strong indication of the importance of deterministic nonlinear instabilities in human heart rate variability.

  15. Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer.

    PubMed

    Sun, Xiaodong; Frierson, Henry F; Chen, Ceshi; Li, Changling; Ran, Qimei; Otto, Kristen B; Cantarel, Brandi L; Cantarel, Brandi M; Vessella, Robert L; Gao, Allen C; Petros, John; Miura, Yutaka; Simons, Jonathan W; Dong, Jin-Tang

    2005-04-01

    Cancer often results from the accumulation of multiple genetic alterations. Although most malignancies are sporadic, only a small number of genes have been shown to undergo frequent mutations in sporadic cancers. The long arm of chromosome 16 is frequently deleted in human cancers, but the target gene for this deletion has not been identified. Here we report that ATBF1, which encodes a transcription factor that negatively regulates AFP and MYB but transactivates CDKN1A, is a good candidate for the 16q22 tumor-suppressor gene. We narrowed the region of deletion at 16q22 to 861 kb containing ATBF1. ATBF1 mRNA was abundant in normal prostates but more scarce in approximately half of prostate cancers tested. In 24 of 66 (36%) cancers examined, we identified 22 unique somatic mutations, many of which impair ATBF1 function. Furthermore, ATBF1 inhibited cell proliferation. Hence, loss of ATBF1 is one mechanism that defines the absence of growth control in prostate cancer. PMID:15750593

  16. Pleiotropic effects of coat colour-associated mutations in humans, mice and other mammals.

    PubMed

    Reissmann, Monika; Ludwig, Arne

    2013-01-01

    The characterisation of the pleiotropic effects of coat colour-associated mutations in mammals illustrates that sensory organs and nerves are particularly affected by disorders because of the shared origin of melanocytes and neurocytes in the neural crest; e.g. the eye-colour is a valuable indicator of disorders in pigment production and eye dysfunctions. Disorders related to coat colour-associated alleles also occur in the skin (melanoma), reproductive tract and immune system. Additionally, the coat colour phenotype of an individual influences its general behaviour and fitness. Mutations in the same genes often produce similar coat colours and pleiotropic effects in different species (e.g., KIT [reproductive disorders, lethality], EDNRB [megacolon] and LYST [CHS]). Whereas similar disorders and similar-looking coat colour phenotypes sometimes have a different genetic background (e.g., deafness [EDN3/EDNRB, MITF, PAX and SNAI2] and visual diseases [OCA2, RAB38, SLC24A5, SLC45A2, TRPM1 and TYR]). The human predilection for fancy phenotypes that ignore disorders and genetic defects is a major driving force for the increase of pleiotropic effects in domestic species and laboratory subjects since domestication has commenced approximately 18,000 years ago. PMID:23583561

  17. Inhibitory effects of a novel Val to Thr mutation on the distal heme of human catalase

    PubMed Central

    Mashhadi, Zahra; Boeglin, William E.; Brash, Alan R.

    2014-01-01

    True catalases efficiently breakdown hydrogen peroxide, whereas the catalase-related enzyme allene oxide synthase (cAOS) is completely unreactive and instead metabolizes a fatty acid hydroperoxide. In cAOS a Thr residue adjacent to the distal His restrains reaction with H2O2 (Tosha et al (2006) J. Biol. Chem. 281:12610; De Luna et al (2013) J. Phys. Chem. B 117: 14635) and its mutation to the consensus Val of true catalases permits the interaction. Here we investigated the effects of the reciprocal experiment in which the Val74 of human catalase is mutated to Thr, Ser, Met, Pro, or Ala. The Val74Thr substitution decreased catalatic activity by 3.5-fold and peroxidatic activity by 3-fold. Substitution with Ser had similar negative effects (5- and 3-fold decreases). Met decreased catalatic activity 2-fold and eliminated peroxidatic activity altogether, whereas the Val74Ala substitution was well tolerated. (The Val74Pro protein lacked heme). We conclude that the conserved Val74 of true catalases helps optimize catalysis. There are rare substitutions of Val74 with Ala, Met, or Pro, but not with Ser of Thr, possibly due their hydrogen bonding affecting the conformation of His75, the essential distal heme residue for activity in catalases. PMID:25086217

  18. Inhibitory effects of a novel Val to Thr mutation on the distal heme of human catalase.

    PubMed

    Mashhadi, Zahra; Boeglin, William E; Brash, Alan R

    2014-11-01

    True catalases efficiently breakdown hydrogen peroxide, whereas the catalase-related enzyme allene oxide synthase (cAOS) is completely unreactive and instead metabolizes a fatty acid hydroperoxide. In cAOS a Thr residue adjacent to the distal His restrains reaction with H2O2 (Tosha et al. (2006) J. Biol. Chem. 281:12610; De Luna et al. (2013) J. Phys. Chem. B 117: 14635) and its mutation to the consensus Val of true catalases permits the interaction. Here we investigated the effects of the reciprocal experiment in which the Val74 of human catalase is mutated to Thr, Ser, Met, Pro, or Ala. The Val74Thr substitution decreased catalatic activity by 3.5-fold and peroxidatic activity by 3-fold. Substitution with Ser had similar negative effects (5- and 3-fold decreases). Met decreased catalatic activity 2-fold and eliminated peroxidatic activity altogether, whereas the Val74Ala substitution was well tolerated. (The Val74Pro protein lacked heme). We conclude that the conserved Val74 of true catalases helps optimize catalysis. There are rare substitutions of Val74 with Ala, Met, or Pro, but not with Ser of Thr, possibly due their hydrogen bonding affecting the conformation of His75, the essential distal heme residue for activity in catalases. PMID:25086217

  19. Parkin deletion causes cerebral and systemic amyloidosis in human mutated tau over-expressing mice.

    PubMed

    Rodríguez-Navarro, Jose A; Gómez, Ana; Rodal, Izaskun; Perucho, Juan; Martinez, Armando; Furió, Vicente; Ampuero, Israel; Casarejos, María J; Solano, Rosa M; de Yébenes, Justo García; Mena, Maria A

    2008-10-15

    Deposition of proteins leading to amyloid takes place in some neurodegenerative diseases such as Alzheimer's disease and Huntington's disease. Mutations of tau and parkin proteins produce neurofibrillary abnormalities without deposition of amyloid. Here we report that mature, parkin null, over-expressing human mutated tau (PK(-/-)/Tau(VLW)) mice have altered behaviour and dopamine neurotransmission, tau pathology in brain and amyloid deposition in brain and peripheral organs. PK(-/-)/Tau(VLW) mice have abnormal behaviour and severe drop out of dopamine neurons in the ventral midbrain, up to 70%, at 12 months and abundant phosphorylated tau positive neuritic plaques, neuro-fibrillary tangles, astrogliosis, microgliosis and plaques of murine beta-amyloid in the hippocampus. PK(-/-)/Tau(VLW) mice have organomegaly of the liver, spleen and kidneys. The electron microscopy of the liver confirmed the presence of a fibrillary protein deposits with amyloid characteristics. There is also accumulation of mouse tau in hepatocytes. These mice have lower levels of CHIP-HSP70, involved in the proteosomal degradation of tau, increased oxidative stress, measured as depletion of glutathione which, added to lack of parkin, could trigger tau accumulation and amyloidogenesis. This model is the first that demonstrates beta-amyloid deposits caused by over-expression of tau and without modification of the amyloid precursor protein, presenilins or secretases. PK(-/-)/Tau(VLW) mice provide a link between the two proteins more important for the pathogenesis of Alzheimer disease. PMID:18640988

  20. Human prostacyclin receptor structure and function from naturally-occurring and synthetic mutations.

    PubMed

    Stitham, Jeremiah; Arehart, Eric J; Gleim, Scott R; Douville, Karen L; Hwa, John

    2007-01-01

    Prostacyclin (PGI2) is released by vascular endothelial cells and serves as a potent vasodilator, inhibitor of platelet aggregation (anti-thrombotic), and moderator of vascular smooth muscle cell proliferation-migration-differentiation (anti-atherosclerotic). These actions are mediated via a seven transmembrane-spanning G-protein coupled receptor (GPCR), known as the human prostacyclin receptor or hIP. Animal studies using prostacyclin receptor knock-out (IP-/-) mice have revealed increased propensities towards thrombosis, intimal hyperplasia, atherosclerosis, restenosis, as well as reperfusion injury. Of further importance has been the world-wide withdrawal of selective COX-2 inhibitors, due to their discriminating suppression of COX-2-derived PGI2 and its cardioprotective effects, leading to increased cardiovascular events, including myocardial infarction and thrombotic stroke. Over the last decade, mutagenesis studies of the IP receptor, in conjunction with in vitro functional assays and molecular modeling, have provided critical insights into the molecular mechanisms of both agonist binding and receptor activation. Most recently, the discovery of naturally-occurring and dysfunctional mutations within the hIP has provided additional insights into the proposed cardioprotective role of prostacyclin. The aim of this review is to summarize the most recent findings regarding hIP receptor structure-function that have developed through the study of both synthetic and naturally-occurring mutations. PMID:17164137

  1. Structure of the human DNA-repair protein RAD52 containing surface mutations.

    PubMed

    Saotome, Mika; Saito, Kengo; Onodera, Keiichi; Kurumizaka, Hitoshi; Kagawa, Wataru

    2016-08-01

    The Rad52 protein is a eukaryotic single-strand DNA-annealing protein that is involved in the homologous recombinational repair of DNA double-strand breaks. The isolated N-terminal half of the human RAD52 protein (RAD52(1-212)) forms an undecameric ring structure with a surface that is mostly positively charged. In the present study, it was found that RAD52(1-212) containing alanine mutations of the charged surface residues (Lys102, Lys133 and Glu202) is highly amenable to crystallization. The structure of the mutant RAD52(1-212) was solved at 2.4 Å resolution. The structure revealed an association between the symmetry-related RAD52(1-212) rings, in which a partially unfolded, C-terminal region of RAD52 extended into the DNA-binding groove of the neighbouring ring in the crystal. The alanine mutations probably reduced the surface entropy of the RAD52(1-212) ring and stabilized the ring-ring association observed in the crystal. PMID:27487923

  2. An Insertion Mutation That Distorts Antibody Binding Site Architecture Enhances Function of a Human Antibody

    SciTech Connect

    Krause, Jens C.; Ekiert, Damian C.; Tumpey, Terrence M.; Smith, Patricia B.; Wilson, Ian A.; Crowe, Jr., James E.

    2011-09-02

    The structural and functional significance of somatic insertions and deletions in antibody chains is unclear. Here, we demonstrate that a naturally occurring three-amino-acid insertion within the influenza virus-specific human monoclonal antibody 2D1 heavy-chain variable region reconfigures the antibody-combining site and contributes to its high potency against the 1918 and 2009 pandemic H1N1 influenza viruses. The insertion arose through a series of events, including a somatic point mutation in a predicted hot-spot motif, introduction of a new hot-spot motif, a molecular duplication due to polymerase slippage, a deletion due to misalignment, and additional somatic point mutations. Atomic resolution structures of the wild-type antibody and a variant in which the insertion was removed revealed that the three-amino-acid insertion near the base of heavy-chain complementarity-determining region (CDR) H2 resulted in a bulge in that loop. This enlarged CDR H2 loop impinges on adjacent regions, causing distortion of the CDR H1 architecture and its displacement away from the antigen-combining site. Removal of the insertion restores the canonical structure of CDR H1 and CDR H2, but binding, neutralization activity, and in vivo activity were reduced markedly because of steric conflict of CDR H1 with the hemagglutinin antigen.

  3. PURIFICATION AND FUNCTIONAL CHARACTERIZATION OF HUMAN MITOCHONDRIAL DNA POLYMERASE GAMMA HARBORING DISEASE MUTATIONS

    PubMed Central

    Kasiviswanathan, Rajesh; Longley, Matthew J.; Young, Matthew J.; Copeland, William C.

    2010-01-01

    More than 150 different point mutations in POLG, the gene encoding the human mitochondrial DNA polymerase γ (pol γ), cause a broad spectrum of childhood and adult onset diseases like Alpers syndrome, Ataxia-Neuropathy syndrome and progressive external ophthalmoplegia. These disease mutations can affect the pol γ enzyme’s properties in numerous ways, thus potentially influencing the severity of the disease. Hence, a detailed characterization of disease mutants will greatly assist researchers and clinicians to develop a clear understanding of the functional defects caused by these mutant enzymes. Experimental approaches for characterizing the wild type (WT) and mutant pol γ enzymes are extensively described in this manuscript. The methods start with construction and purification of the recombinant wild type and mutant forms of pol γ protein, followed by assays to determine its structural integrity and thermal stability. Next, the biochemical characterization of these enzymes is described in detail, which includes measuring the purified enzyme’s catalytic activity, its steady state kinetic parameters and DNA binding activity, and determining the physical and functional interaction of these pol γ proteins with its p55 accessory subunit. PMID:20176107

  4. PIK3CA and TP53 Gene Mutations in Human Breast Cancer Tumors Frequently Detected by Ion Torrent DNA Sequencing

    PubMed Central

    Ye, Hua; Nandakumar, Vijayalakshmi; Wang, Zhuo; Chen, Lihong; Tang, Chuanning; Li, Jianhui; Li, Huijin; Zhang, Wei; Han, Wei; Lou, Feng; Zhang, Dandan; Sun, Hong; Dong, Haichao; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; Yan, He; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Jones, Lindsey; Huang, Xue F.; Chen, Si-Yi; Gao, Jinglong

    2014-01-01

    Breast cancer is the most common malignancy and the leading cause of cancer deaths in women worldwide. While specific genetic mutations have been linked to 5–10% of breast cancer cases, other environmental and epigenetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive breast cancer molecular profile is needed to develop more effective target therapies. Until recently, identifying genetic cancer mutations via personalized DNA sequencing was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 105 human breast cancer samples. The sequencing analysis revealed missense mutations in PIK3CA, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations. PMID:24918944

  5. Point mutations in the murine fumarylacetoacetate hydrolase gene: Animalmodels for the human genetic disorder hereditary tyrosinemia type 1

    SciTech Connect

    Aponte, Jennifer; Sega, Gary A; Hauser, Loren John; Dhar, Madhu; Withrow, Catherine; Carpenter, D A; Rinchik, Eugene M.; Culiat, Cymbeline T; Johnson, Dabney K

    2001-01-01

    Hereditary tyrosinemia type 1 (HT1) is a severe autosomal recessive metabolic disease associated with point mutations in the human fumarylacetoacetate hydrolase (FAH) gene that disrupt tyrosine catabolism. An acute form of HT1 results in death during the first months of life because of hepatic failure, whereas a chronic form leads to gradual development of liver disease often accompanied by renal dysfunction, childhood rickets, neurological crisis, and hepatocellular carcinoma. Mice homozygous for certain chromosome 7 deletions of the albino Tyr; c locus that also include Fah die perinatally as a result of liver dysfunction and exhibit a complex syndrome characterized by structural abnormalities and alterations in gene expression in the liver and kidney. Here we report that two independent, postnatally lethal mutations induced by N-ethyl-N-nitrosourea and mapped near Tyr are alleles of Fah. The Fah6287SB allele is a missense mutation in exon 6, and Fah5961SB is a splice mutation causing loss of exon 7, a subsequent frameshift in the resulting mRNA, and a severe reduction of Fah mRNA levels. Increased levels of the diagnostic metabolite succinylacetone in the urine of the Fah6287SB and Fah5961SB mutants indicate that these mutations cause a decrease in Fah enzymatic activity. Thus, the neonatal phenotype present in both mutants is due to a deficiency in Fah caused by a point mutation, and we propose Fah5961SB and Fah6287SB as mouse models for acute and chronic forms of human HT1, respectively.

  6. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome

    PubMed Central

    Bellin, Milena; Casini, Simona; Davis, Richard P; D'Aniello, Cristina; Haas, Jessica; Ward-van Oostwaard, Dorien; Tertoolen, Leon G J; Jung, Christian B; Elliott, David A; Welling, Andrea; Laugwitz, Karl-Ludwig; Moretti, Alessandra; Mummery, Christine L

    2013-01-01

    Patient-specific induced pluripotent stem cells (iPSCs) will assist research on genetic cardiac maladies if the disease phenotype is recapitulated in vitro. However, genetic background variations may confound disease traits, especially for disorders with incomplete penetrance, such as long-QT syndromes (LQTS). To study the LQT2-associated c.A2987T (N996I) KCNH2 mutation under genetically defined conditions, we derived iPSCs from a patient carrying this mutation and corrected it. Furthermore, we introduced the same point mutation in human embryonic stem cells (hESCs), generating two genetically distinct isogenic pairs of LQTS and control lines. Correction of the mutation normalized the current (IKr) conducted by the HERG channel and the action potential (AP) duration in iPSC-derived cardiomyocytes (CMs). Introduction of the same mutation reduced IKr and prolonged the AP duration in hESC-derived CMs. Further characterization of N996I-HERG pathogenesis revealed a trafficking defect. Our results demonstrated that the c.A2987T KCNH2 mutation is the primary cause of the LQTS phenotype. Precise genetic modification of pluripotent stem cells provided a physiologically and functionally relevant human cellular context to reveal the pathogenic mechanism underlying this specific disease phenotype. PMID:24213244

  7. Pol gene quasispecies of human immunodeficiency virus: mutations associated with drug resistance in virus from patients undergoing no drug therapy.

    PubMed Central

    Nájera, I; Holguín, A; Quiñones-Mateu, M E; Muñoz-Fernández, M A; Nájera, R; López-Galíndez, C; Domingo, E

    1995-01-01

    The nucleotide sequences of two pol gene regions (codons 41 to 108 and 181 to 219 of reverse transcriptase) of 60 human immunodeficiency virus type 1 genomes obtained directly from primary lymphocytes from infected individuals are reported. In addition, the mutant spectra of several quasispecies have been sampled by repetitive sequencing of molecular clones representing the same pol genomic regions. Average mutation frequencies ranged from 1.6 x 10(-2) to 3.4 x 10(-2) substitutions per nucleotide for independent samples (relative to their consensus nucleotide sequence) and from 3.6 x 10(-3) to 1.1 x 10(-2) substitutions per nucleotide for individual quasispecies distributions. Several mutations leading to amino acid substitutions related to loss of sensitivity to reverse transcriptase inhibitors have been identified in samples from patients not subjected to antiretroviral therapy. Mutation frequencies in the codons previously identified as involved in resistance to reverse transcriptase inhibitors were very similar to the average mutation frequencies in the pol region analyzed. Thus, the finding of mutations related to drug resistance (even in the absence of positive selection by the corresponding drugs) is the expected consequence of the statistical distribution of mutations along the pol gene. The presence of such critical amino acid replacements in human immunodeficiency virus type 1 populations underscores the importance of viral quasispecies as reservoirs of phenotypic virus variants and has a number of implications for AIDS control. PMID:7983713

  8. Characterisation of human diaphragm at high strain rate loading.

    PubMed

    Gaur, Piyush; Chawla, Anoop; Verma, Khyati; Mukherjee, Sudipto; Lalvani, Sanjeev; Malhotra, Rajesh; Mayer, Christian

    2016-07-01

    Motor vehicle crashes (MVC׳s) commonly results in life threating thoracic and abdominal injuries. Finite element models are becoming an important tool in analyzing automotive related injuries to soft tissues. Establishment of accurate material models including tissue tolerance limits is critical for accurate injury evaluation. The diaphragm is the most important skeletal muscle for respiration having a bi-domed structure, separating the thoracic cavity from abdominal cavity. Traumatic rupture of the diaphragm is a potentially serious injury which presents in different forms depending upon the mechanisms of the causative trauma. A major step to gain insight into the mechanism of traumatic rupture of diaphragm is to understand the high rate failure properties of diaphragm tissue. Thus, the main objective of this study was to estimate the mechanical and failure properties of human diaphragm at strain rates associated with blunt thoracic and abdominal trauma. A total of 23 uniaxial tensile tests were performed at various strain rates ranging from 0.001-200s(-1) in order to characterize the mechanical and failure properties on human diaphragm tissue. Each specimen was tested to failure at one of the four strain rates (0.001s(-1), 65s(-1), and 130s(-1), 190s(-1)) to investigate the effects of strain rate dependency. High speed video and markers placed on the grippers were used to measure the gripper to gripper displacement. Engineering stresses reported in the study is calculated from the ratio of force measured and initial cross sectional area whereas engineering strain is calculated from the ratio of the elongation to the undeformed length (gauge length) of the specimen.The results of this study showed that the diaphragm tissues is rate dependent with higher strain rate tests giving higher failure stress and higher failure strains. The failure stress for all tests ranged from 1.17MPa to 4.1MPa and failure strain ranged from 12.15% to 24.62%. PMID:27062242

  9. Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells

    DOE PAGESBeta

    Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.

    2014-11-04

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutationsmore » were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. In conclusion, the results of this study indi