Science.gov

Sample records for human neural crest-derived

  1. Isolation of Novel Multipotent Neural Crest-Derived Stem Cells from Adult Human Inferior Turbinate

    PubMed Central

    Hauser, Stefan; Widera, Darius; Qunneis, Firas; Müller, Janine; Zander, Christin; Greiner, Johannes; Strauss, Christina; Lüningschrör, Patrick; Heimann, Peter; Schwarze, Hartmut; Ebmeyer, Jörg; Sudhoff, Holger; Araúzo-Bravo, Marcos J.; Greber, Boris; Zaehres, Holm; Schöler, Hans; Kaltschmidt, Christian

    2012-01-01

    Adult human neural crest-derived stem cells (NCSCs) are of extraordinary high plasticity and promising candidates for the use in regenerative medicine. Here we describe for the first time a novel neural crest-derived stem cell population within the respiratory epithelium of human adult inferior turbinate. In contrast to superior and middle turbinates, high amounts of source material could be isolated from human inferior turbinates. Using minimally-invasive surgery methods isolation is efficient even in older patients. Within their endogenous niche, inferior turbinate stem cells (ITSCs) expressed high levels of nestin, p75NTR, and S100. Immunoelectron microscopy using anti-p75 antibodies displayed that ITSCs are of glial origin and closely related to nonmyelinating Schwann cells. Cultivated ITSCs were positive for nestin and S100 and the neural crest markers Slug and SOX10. Whole genome microarray analysis showed pronounced differences to human ES cells in respect to pluripotency markers OCT4, SOX2, LIN28, and NANOG, whereas expression of WDR5, KLF4, and c-MYC was nearly similar. ITSCs were able to differentiate into cells with neuro-ectodermal and mesodermal phenotype. Additionally ITSCs are able to survive and perform neural crest typical chain migration in vivo when transplanted into chicken embryos. However ITSCs do not form teratomas in severe combined immunodeficient mice. Finally, we developed a separation strategy based on magnetic cell sorting of p75NTR positive ITSCs that formed larger neurospheres and proliferated faster than p75NTR negative ITSCs. Taken together our study describes a novel, readily accessible source of multipotent human NCSCs for potential cell-replacement therapy. PMID:22128806

  2. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats.

    PubMed

    Müller, Janine; Ossig, Christiana; Greiner, Johannes F W; Hauser, Stefan; Fauser, Mareike; Widera, Darius; Kaltschmidt, Christian; Storch, Alexander; Kaltschmidt, Barbara

    2015-01-01

    Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model. PMID:25479965

  3. Adult human neural crest-derived cells for articular cartilage repair.

    PubMed

    Pelttari, Karoliina; Pippenger, Benjamin; Mumme, Marcus; Feliciano, Sandra; Scotti, Celeste; Mainil-Varlet, Pierre; Procino, Alfredo; von Rechenberg, Brigitte; Schwamborn, Thomas; Jakob, Marcel; Cillo, Clemente; Barbero, Andrea; Martin, Ivan

    2014-08-27

    In embryonic models and stem cell systems, mesenchymal cells derived from the neuroectoderm can be distinguished from mesoderm-derived cells by their Hox-negative profile--a phenotype associated with enhanced capacity of tissue regeneration. We investigated whether developmental origin and Hox negativity correlated with self-renewal and environmental plasticity also in differentiated cells from adults. Using hyaline cartilage as a model, we showed that adult human neuroectoderm-derived nasal chondrocytes (NCs) can be constitutively distinguished from mesoderm-derived articular chondrocytes (ACs) by lack of expression of specific HOX genes, including HOXC4 and HOXD8. In contrast to ACs, serially cloned NCs could be continuously reverted from differentiated to dedifferentiated states, conserving the ability to form cartilage tissue in vitro and in vivo. NCs could also be reprogrammed to stably express Hox genes typical of ACs upon implantation into goat articular cartilage defects, directly contributing to cartilage repair. Our findings identify previously unrecognized regenerative properties of HOX-negative differentiated neuroectoderm cells in adults, implying a role for NCs in the unmet clinical challenge of articular cartilage repair. An ongoing phase 1 clinical trial preliminarily indicated the safety and feasibility of autologous NC-based engineered tissues for the treatment of traumatic articular cartilage lesions. PMID:25163479

  4. Regeneration of neural crest derivatives in the Xenopus tadpole tail

    PubMed Central

    Lin, Gufa; Chen, Ying; Slack, Jonathan MW

    2007-01-01

    Background After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. Results Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. Conclusion On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue. PMID:17521450

  5. Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues

    PubMed Central

    Hall, Brian K; Gillis, J Andrew

    2013-01-01

    Urochordates (ascidians) have recently supplanted cephalochordates (amphioxus) as the extant sister taxon of vertebrates. Given that urochordates possess migratory cells that have been classified as ‘neural crest-like’– and that cephalochordates lack such cells – this phylogenetic hypothesis may have significant implications with respect to the origin of the neural crest and neural crest-derived skeletal tissues in vertebrates. We present an overview of the genes and gene regulatory network associated with specification of the neural crest in vertebrates. We then use these molecular data – alongside cell behaviour, cell fate and embryonic context – to assess putative antecedents (latent homologues) of the neural crest or neural crest cells in ascidians and cephalochordates. Ascidian migratory mesenchymal cells – non-pigment-forming trunk lateral line cells and pigment-forming ‘neural crest-like cells’ (NCLC) – are unlikely latent neural crest cell homologues. Rather, Snail-expressing cells at the neural plate of border of urochordates and cephalochordates likely represent the extent of neural crest elaboration in non-vertebrate chordates. We also review evidence for the evolutionary origin of two neural crest-derived skeletal tissues – cartilage and dentine. Dentine is a bona fide vertebrate novelty, and dentine-secreting odontoblasts represent a cell type that is exclusively derived from the neural crest. Cartilage, on the other hand, likely has a much deeper origin within the Metazoa. The mesodermally derived cellular cartilages of some protostome invertebrates are much more similar to vertebrate cartilage than is the acellular ‘cartilage-like’ tissue in cephalochordate pharyngeal arches. Cartilage, therefore, is not a vertebrate novelty, and a well-developed chondrogenic program was most likely co-opted from mesoderm to the neural crest along the vertebrate stem. We conclude that the neural crest is a vertebrate novelty, but that neural

  6. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla.

    PubMed

    Chung, Kuei-Fang; Sicard, Flavie; Vukicevic, Vladimir; Hermann, Andreas; Storch, Alexander; Huttner, Wieland B; Bornstein, Stefan R; Ehrhart-Bornstein, Monika

    2009-10-01

    Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Unlike the closely-related sympathetic neurons, a subpopulation of proliferation-competent cells exists even in the adult. Here, we describe the isolation, expansion, and in vitro characterization of proliferation-competent progenitor cells from the bovine adrenal medulla. Similar to neurospheres, these cells, when prevented from adherence to the culture dish, grew in spheres, which we named chromospheres. These chromospheres were devoid of mRNA specific for smooth muscle cells (MYH11) or endothelial cells (PECAM1). During sphere formation, markers for differentiated chromaffin cells, such as phenylethanolamine-N-methyl transferase, were downregulated while neural progenitor markers nestin, vimentin, musashi 1, and nerve growth factor receptor, as well as markers of neural crest progenitor cells such as Sox1 and Sox9, were upregulated. Clonal analysis and bromo-2'-deoxyuridine-incorporation analysis demonstrated the self-renewing capacity of chromosphere cells. Differentiation protocols using NGF and BMP4 or dexamethasone induced neuronal or endocrine differentiation, respectively. Electrophysiological analyses of neural cells derived from chromospheres revealed functional properties of mature nerve cells, such as tetrodotoxin-sensitive sodium channels and action potentials. Our study provides evidence that proliferation and differentiation competent chromaffin progenitor cells can be isolated from adult adrenal medulla and that these cells might harbor the potential for the treatment of neurodegenerative diseases, such as Parkinson's disease. PMID:19609938

  7. The EJC component Magoh regulates proliferation and expansion of neural crest-derived melanocytes.

    PubMed

    Silver, Debra L; Leeds, Karen E; Hwang, Hun-Way; Miller, Emily E; Pavan, William J

    2013-03-15

    Melanoblasts are a population of neural crest-derived cells that generate the pigment-producing cells of our body. Defective melanoblast development and function underlies many disorders including Waardenburg syndrome and melanoma. Understanding the genetic regulation of melanoblast development will help elucidate the etiology of these and other neurocristopathies. Here we demonstrate that Magoh, a component of the exon junction complex, is required for normal melanoblast development. Magoh haploinsufficient mice are hypopigmented and exhibit robust genetic interactions with the transcription factor, Sox10. These phenotypes are caused by a marked reduction in melanoblast number beginning at mid-embryogenesis. Strikingly, while Magoh haploinsufficiency severely reduces epidermal melanoblasts, it does not significantly affect the number of dermal melanoblasts. These data indicate Magoh impacts melanoblast development by disproportionately affecting expansion of epidermal melanoblast populations. We probed the cellular basis for melanoblast reduction and discovered that Magoh mutant melanoblasts do not undergo increased apoptosis, but instead are arrested in mitosis. Mitotic arrest is evident in both Magoh haploinsufficient embryos and in Magoh siRNA treated melanoma cell lines. Together our findings indicate that Magoh-regulated proliferation of melanoblasts in the dermis may be critical for production of epidermally-bound melanoblasts. Our results point to a central role for Magoh in melanocyte development. PMID:23333945

  8. Yap and Taz play a crucial role in neural crest-derived craniofacial development.

    PubMed

    Wang, Jun; Xiao, Yang; Hsu, Chih-Wei; Martinez-Traverso, Idaliz M; Zhang, Min; Bai, Yan; Ishii, Mamoru; Maxson, Robert E; Olson, Eric N; Dickinson, Mary E; Wythe, Joshua D; Martin, James F

    2016-02-01

    The role of the Hippo signaling pathway in cranial neural crest (CNC) development is poorly understood. We used the Wnt1(Cre) and Wnt1(Cre2SOR) drivers to conditionally ablate both Yap and Taz in the CNC of mice. When using either Cre driver, Yap and Taz deficiency in the CNC resulted in enlarged, hemorrhaging branchial arch blood vessels and hydrocephalus. However, Wnt1(Cre2SOR) mutants had an open cranial neural tube phenotype that was not evident in Wnt1(Cre) mutants. In O9-1 CNC cells, the loss of Yap impaired smooth muscle cell differentiation. RNA-sequencing data indicated that Yap and Taz regulate genes encoding Fox transcription factors, specifically Foxc1. Proliferation was reduced in the branchial arch mesenchyme of Yap and Taz CNC conditional knockout (CKO) embryos. Moreover, Yap and Taz CKO embryos had cerebellar aplasia similar to Dandy-Walker spectrum malformations observed in human patients and mouse embryos with mutations in Foxc1. In embryos and O9-1 cells deficient for Yap and Taz, Foxc1 expression was significantly reduced. Analysis of Foxc1 regulatory regions revealed a conserved recognition element for the Yap and Taz DNA binding co-factor Tead. ChIP-PCR experiments supported the conclusion that Foxc1 is directly regulated by the Yap-Tead complex. Our findings uncover important roles for Yap and Taz in CNC diversification and development. PMID:26718006

  9. In vivo impact of Dlx3 conditional inactivation in Neural Crest-Derived Craniofacial Bones

    PubMed Central

    Duverger, Olivier; Isaac, Juliane; Zah, Angela; Hwang, Joonsung; Berdal, Ariane; Lian, Jane B.; Morasso, Maria I.

    2012-01-01

    Mutations in DLX3 in humans lead to defects in craniofacial and appendicular bones, yet the in vivo activity related to Dlx3 function during normal skeletal development have not been fully elucidated. Here we used a conditional knockout approach to analyze the effects of neural crest deletion of Dlx3 on craniofacial bones development. At birth, mutant mice exhibit a normal overall positioning of the skull bones, but a change in the shape of the calvaria was observed. Molecular analysis of the genes affected in the frontal bones and mandibles from these mice identified several bone markers known to affect bone development, with a strong prediction for increased bone formation and mineralization in vivo. Interestingly, while a subset of these genes were similarly affected in frontal bones and mandibles (Sost, Mepe, Bglap, Alp, Ibsp, Agt), several genes, including Lect1 and Calca, were specifically affected in frontal bones. Consistent with these molecular alterations, cells isolated from the frontal bone of mutant mice exhibited increased differentiation and mineralization capacities ex vivo, supporting cell autonomous defects in neural crest cells. However, adult mutant animals exhibited decreased bone mineral density in both mandibles and calvaria, as well as a significant increase in bone porosity. Together, these observations suggest that mature osteoblasts in the adult respond to signals that regulate adult bone mass and remodeling. This study provides new downstream targets for Dlx3 in craniofacial bone, and gives additional evidence of the complex regulation of bone formation and homeostasis in the adult skeleton. PMID:22886599

  10. In vivo impact of Dlx3 conditional inactivation in neural crest-derived craniofacial bones.

    PubMed

    Duverger, Olivier; Isaac, Juliane; Zah, Angela; Hwang, Joonsung; Berdal, Ariane; Lian, Jane B; Morasso, Maria I

    2013-03-01

    Mutations in DLX3 in humans lead to defects in craniofacial and appendicular bones, yet the in vivo activities related to Dlx3 function during normal skeletal development have not been fully elucidated. Here we used a conditional knockout approach to analyze the effects of neural crest deletion of Dlx3 on craniofacial bones development. At birth, mutant mice exhibit a normal overall positioning of the skull bones, but a change in the shape of the calvaria was observed. Molecular analysis of the genes affected in the frontal bones and mandibles from these mice identified several bone markers known to affect bone development, with a strong prediction for increased bone formation and mineralization in vivo. Interestingly, while a subset of these genes were similarly affected in frontal bones and mandibles (Sost, Mepe, Bglap, Alp, Ibsp, Agt), several genes, including Lect1 and Calca, were specifically affected in frontal bones. Consistent with these molecular alterations, cells isolated from the frontal bone of mutant mice exhibited increased differentiation and mineralization capacities ex vivo, supporting cell autonomous defects in neural crest cells. However, adult mutant animals exhibited decreased bone mineral density in both mandibles and calvaria, as well as a significant increase in bone porosity. Together, these observations suggest that mature osteoblasts in the adult respond to signals that regulate adult bone mass and remodeling. This study provides new downstream targets for Dlx3 in craniofacial bone, and gives additional evidence of the complex regulation of bone formation and homeostasis in the adult skeleton. PMID:22886599

  11. Neurogenesis of neural crest-derived periodontal ligament stem cells by EGF and bFGF.

    PubMed

    Fortino, Veronica R; Chen, Ren-Shiang; Pelaez, Daniel; Cheung, Herman S

    2014-04-01

    Neuroregenerative medicine is an ever-growing field in which regeneration of lost cells/tissues due to a neurodegenerative disease is the ultimate goal. With the scarcity of available replacement alternatives, stem cells provide an attractive source for regenerating neural tissue. While many stem cell sources exist, including: mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells, the limited cellular potency, technical difficulties, and ethical considerations associated with these make finding alternate sources a desirable goal. Periodontal ligament stem cells (PDLSCs) derived from the neural crest were induced into neural-like cells using a combination of epidermal growth factor, and basic fibroblast growth factor. Morphological changes were evident in our treated group, seen under both light microscopy and scanning electron microscopy. A statistically significant increase in the expression of neuron-specific β-tubulin III and the neural stem/progenitor cell marker nestin, along with positive immunohistochemical staining for glial fibrillary acidic protein, demonstrated the success of our treatment in inducing both neuronal and glial phenotypes. Positive staining for synaptophysin demonstrated neural connections and electrophysiological recordings indicated that when subjected to whole-cell patch clamping, our treated cells displayed inward currents conducted through voltage-gated sodium (Na(+) ) channels. Taken together, our results indicate the success of our treatment in inducing PDLSCs to neural-like cells. The ease of sourcing and expansion, their embryologic neural crest origin, and the lack of ethical implications in their use make PDLSCs an attractive source for use in neuroregenerative medicine. PMID:24105823

  12. Neurogenesis of Neural Crest Derived Periodontal Ligament Stem Cells by EGF and bFGF

    PubMed Central

    Fortino, Veronica R.; Chen, Ren-Shiang; Pelaez, Daniel; Cheung, Herman S.

    2013-01-01

    Neuroregenerative medicine is an ever-growing field in which regeneration of lost cells/tissues due to a neurodegenerative disease is the ultimate goal. With the scarcity of available replacement alternatives, stem cells provide an attractive source for regenerating neural tissue. While many stem cell sources exist, including: mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs), the limited cellular potency, technical difficulties, and ethical considerations associated with these make finding alternate sources a desirable goal. Periodontal ligament stem cells (PDLSCs) derived from the neural crest were induced into neural-like cells using a combination of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Morphological changes were evident in our treated group, seen under both light microscopy and scanning electron microscopy (SEM). A statistically significant increase in the expression of neuron-specific β-tubulin III and the neural stem/progenitor cell marker nestin, along with positive immunohistochemical staining for glial fibrillary acidic protein (GFAP), demonstrated the success of our treatment in inducing both neuronal and glial phenotypes. Positive staining for synaptophysin demonstrated neural connections and electrophysiological recordings indicated that when subjected to whole cell patch clamping, our treated cells displayed inward currents conducted through voltage-gated sodium (Na+) channels. Taken together, our results indicate the success of our treatment in inducing PDLSCs to neural-like cells. The ease of sourcing and expansion, their embryologic neural crest origin, and the lack of ethical implications in their use make PDLSCs an attractive source for use in neuroregenerative medicine. PMID:24105823

  13. Analysis of neural crest-derived clones reveals novel aspects of facial development.

    PubMed

    Kaucka, Marketa; Ivashkin, Evgeny; Gyllborg, Daniel; Zikmund, Tomas; Tesarova, Marketa; Kaiser, Jozef; Xie, Meng; Petersen, Julian; Pachnis, Vassilis; Nicolis, Silvia K; Yu, Tian; Sharpe, Paul; Arenas, Ernest; Brismar, Hjalmar; Blom, Hans; Clevers, Hans; Suter, Ueli; Chagin, Andrei S; Fried, Kaj; Hellander, Andreas; Adameyko, Igor

    2016-08-01

    Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth. PMID:27493992

  14. Epigenetic Marks Define the Lineage and Differentiation Potential of Two Distinct Neural Crest-Derived Intermediate Odontogenic Progenitor Populations

    PubMed Central

    Gopinathan, Gokul; Kolokythas, Antonia

    2013-01-01

    Epigenetic mechanisms, such as histone modifications, play an active role in the differentiation and lineage commitment of mesenchymal stem cells. In the present study, epigenetic states and differentiation profiles of two odontogenic neural crest-derived intermediate progenitor populations were compared: dental pulp (DP) and dental follicle (DF). ChIP on chip assays revealed substantial H3K27me3-mediated repression of odontoblast lineage genes DSPP and dentin matrix protein 1 (DMP1) in DF cells, but not in DP cells. Mineralization inductive conditions caused steep increases of mineralization and patterning gene expression levels in DP cells when compared to DF cells. In contrast, mineralization induction resulted in a highly dynamic histone modification response in DF cells, while there was only a subdued effect in DP cells. Both DF and DP progenitors featured H3K4me3-active marks on the promoters of early mineralization genes RUNX2, MSX2, and DLX5, while OSX, IBSP, and BGLAP promoters were enriched for H3K9me3 or H3K27me3. Compared to DF cells, DP cells expressed higher levels of three pluripotency-associated genes, OCT4, NANOG, and SOX2. Finally, gene ontology comparison of bivalent marks unique for DP and DF cells highlighted cell–cell attachment genes in DP cells and neurogenesis genes in DF cells. In conclusion, the present study indicates that the DF intermediate odontogenic neural crest lineage is distinguished from its DP counterpart by epigenetic repression of DSPP and DMP1 genes and through dynamic histone enrichment responses to mineralization induction. Findings presented here highlight the crucial role of epigenetic regulatory mechanisms in the terminal differentiation of odontogenic neural crest lineages. PMID:23379639

  15. ADAM10 is essential for cranial neural crest-derived maxillofacial bone development.

    PubMed

    Tan, Yu; Fu, Runqing; Liu, Jiaqiang; Wu, Yong; Wang, Bo; Jiang, Ning; Nie, Ping; Cao, Haifeng; Yang, Zhi; Fang, Bing

    2016-07-01

    Growth disorders of the craniofacial bones may lead to craniofacial deformities. The majority of maxillofacial bones are derived from cranial neural crest cells via intramembranous bone formation. Any interruption of the craniofacial skeleton development process might lead to craniofacial malformation. A disintegrin and metalloprotease (ADAM)10 plays an essential role in organ development and tissue integrity in different organs. However, little is known about its function in craniofacial bone formation. Therefore, we investigated the role of ADAM10 in the developing craniofacial skeleton, particularly during typical mandibular bone development. First, we showed that ADAM10 was expressed in a specific area of the craniofacial bone and that the expression pattern dynamically changed during normal mouse craniofacial development. Then, we crossed wnt1-cre transgenic mice with adam10-flox mice to generate ADAM10 conditional knockout mice. The stereomicroscopic, radiographic, and von Kossa staining results showed that conditional knockout of ADAM10 in cranial neural crest cells led to embryonic death, craniofacial dysmorphia and bone defects. Furthermore, we demonstrated that impaired mineralization could be triggered by decreased osteoblast differentiation, increased cell death. Overall, these findings show that ADAM10 plays an essential role in craniofacial bone development. PMID:27221046

  16. Fibulin-1 is required for morphogenesis of neural crest-derived structures

    PubMed Central

    Cooley, Marion A.; Kern, Christine B.; Fresco, Victor M.; Wessels, Andy; Thompson, Robert P.; McQuinn, Tim C.; Twal, Waleed O.; Mjaatvedt, Corey H.; Drake, Christopher J.; Argraves, W. Scott

    2008-01-01

    Here we report that mouse embryos homozygous for a gene trap insertion in the fibulin-1 (Fbln1) gene are deficient in Fbln1 and exhibit cardiac ventricular wall thinning and ventricular septal defects with double outlet right ventricle or overriding aorta. Fbln1 nulls also display anomalies of aortic arch arteries, hypoplasia of the thymus and thyroid, underdeveloped skull bones, malformations of cranial nerves and hemorrhagic blood vessels in the head and neck. The spectrum of malformations is consistent with Fbln1 influencing neural crest cell (NCC)-dependent development of these tissues. This is supported by evidence that Fbln1 expression is associated with streams of cranial NCCs migrating adjacent to rhombomeres 2–7 and that Fbln1-deficient embryos display patterning anomalies of NCCs forming cranial nerves IX and X, which derive from rhombomeres 6 and 7. Additionally, Fbln1-deficient embryos show increased apoptosis in areas populated by NCCs derived from rhombomeres 4, 6 and 7. Based on these findings, it is concluded that Fbln1 is required for the directed migration and survival of cranial NCCs contributing to the development of pharyngeal glands, craniofacial skeleton, cranial nerves, aortic arch arteries, cardiac outflow tract and cephalic blood vessels. PMID:18538758

  17. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75{sup +} stem cells with dental follicle cell conditioned medium

    SciTech Connect

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Liu, Rui; Zhang, Li; Nie, Xin

    2015-09-10

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75{sup +}) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75{sup +} CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75{sup +} cells, suggesting their differentiation along cementoblast-like lineage. p75{sup +} stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75{sup +}) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75{sup +} CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75{sup +} cells express cementoblast specific mineralization

  18. Decreased proliferative, migrative and neuro-differentiative potential of postnatal rat enteric neural crest-derived cells during culture in vitro.

    PubMed

    Yu, Hui; Pan, Wei-Kang; Zheng, Bai-Jun; Wang, Huai-Jie; Chen, Xin-Lin; Liu, Yong; Gao, Ya

    2016-05-01

    A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures. ENCCs were isolated from the intestines of postnatal rats and were identified using an immunocytochemical approach. During continuous ENCC culture expansion, proliferation, migration, apoptosis, and differentiation potentials were monitored. The Cell Counting Kit-8 was used for assessment of ENCC vitality, Transwell inserts for cell migration, immunocytochemistry for cell counts and identification, and flow cytometry for apoptosis. Over six continuous generations, ENCC proliferation potency was reduced and with prolonged culture, the ratio of migratory ENCCs was decreased. The percentage of apoptosis showed an upward trend with prolonged intragenerational culture, but showed a downward trend with prolonged culture of combined generations. Furthermore, the percentage of peripherin(+) cells decreased whilst the percentage of GFAP(+) cells increased with age. The results demonstrated that alterations in ENCC growth characteristics occur with increased culture time, which may partially account for the poor results of proposed cell therapies. PMID:27068376

  19. Transforming growth factor-beta 1 differentially regulates proliferation, morphology, and extracellular matrix expression by three neural crest-derived neuroblastoma cell lines.

    PubMed

    Rogers, S L; Cutts, J L; Gegick, P J; McGuire, P G; Rosenberger, C; Krisinski, S

    1994-04-01

    We reported previously (S. L. Rogers, P. J. Gegick, S. M. Alexander, and P. G. McGuire, Dev. Biol. 151, 191-203, 1992) that transforming growth factor-beta 1 (TGF beta 1) inhibited proliferation, up-regulated fibronectin synthesis, and suppressed melanogenesis in a population of quail neural crest cells in vitro. Here, we report that cell lines derived from the parent SK-N-SH neuroblastoma line (R. A. Ross, B. A. Spengler, and J. L. Biedler, J. Natl. Cancer Inst. 71, 741-747, 1983) respond differentially to TGF beta 1, and their responses provide further insights into the actions of this growth factor on neural crest subpopulations. The SH-EP cell line exhibits primarily nonneuronal traits and responded to TGF beta 1 with increased thymidine uptake after 6 days of culture, increased expression of fibronectin mRNA and protein, and decreased laminin synthesis. Many SH-EP cells also acquired a dramatically elongated morphology, reminiscent of Schwann cells in culture. Thymidine uptake by the neuronal SY5Y cell line was not substantially altered. Neither fibronectin mRNA nor protein was detectable in either TGF beta 1-treated or untreated cultures, although laminin synthesis was upregulated by the growth factor. In TGF beta 1-treated cultures of the intermediate SH-IN cell line, which has been reported to display both neuronal and nonneuronal characteristics, there was marked flattening of many cells, a steady decrease in thymidine uptake, and increased expression of both fibronectin and laminin. The observed responses of SH-IN cells mimic those observed in primary neural crest cultures and appear to represent similar differentiation toward a mesenchymal phenotype. These results substantiate the idea that closely related but diverging neural crest-derived cell types respond selectively to TGF beta 1 and demonstrate that these SK-N-SH-derived cell lines will be useful in experimental approaches that will allow us to infer mechanisms underlying regulation of neural crest

  20. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro.

    PubMed

    Shao, Meiying; Liu, Chao; Song, Yingnan; Ye, Wenduo; He, Wei; Yuan, Guohua; Gu, Shuping; Lin, Congxin; Ma, Liang; Zhang, Yanding; Tian, Weidong; Hu, Tao; Chen, YiPing

    2015-10-01

    The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration. PMID:26243590

  1. Enteric Neurospheres Are Not Specific to Neural Crest Cultures: Implications for Neural Stem Cell Therapies

    PubMed Central

    Cooper, Julie; Kronfli, Rania; Cananzi, Mara; Delalande, Jean-Marie; McCann, Conor; Burns, Alan J.; Thapar, Nikhil

    2015-01-01

    Objectives Enteric neural stem cells provide hope of curative treatment for enteric neuropathies. Current protocols for their harvesting from humans focus on the generation of ‘neurospheres’ from cultures of dissociated gut tissue. The study aims to better understand the derivation, generation and composition of enteric neurospheres. Design Gut tissue was obtained from Wnt1-Cre;Rosa26Yfp/Yfp transgenic mice (constitutively labeled neural crest cells) and paediatric patients. Gut cells were cultured either unsorted (mixed neural crest/non-neural crest), or following FACS selection into neural crest (murine-YFP+ve/human-p75+ve) or non-neural crest (YFP-ve/p75-ve) populations. Cultures and resultant neurospheres were characterized using immunolabelling in vitro and following transplantation in vivo. Results Cultures of (i) unsorted, (ii) neural crest, and (iii) non-neural crest cell populations generated neurospheres similar in numbers, size and morphology. Unsorted neurospheres were highly heterogeneous for neural crest content. Neural crest-derived (YFP+ve/p75+ve) neurospheres contained only neural derivatives (neurons and glia) and were devoid of non-neural cells (i.e. negative for SMA, c-Kit), with the converse true for non-neural crest-derived (YFP-ve/p75-ve) ‘neurospheres’. Under differentiation conditions only YFP+ve cells gave rise to neural derivatives. Both YFP+ve and YFP-ve cells displayed proliferation and spread upon transplantation in vivo, but YFP-ve cells did not locate or integrate within the host ENS. Conclusions Spherical accumulations of cells, so-called ‘neurospheres’ forming in cultures of dissociated gut contain variable proportions of neural crest-derived cells. If they are to be used for ENS cell replacement therapy then improved protocols for their generation, including cell selection, should be sought in order to avoid inadvertent transplantation of non-therapeutic, non-ENS cells. PMID:25799576

  2. UV-Induced Wnt7a in the Human Skin Microenvironment Specifies the Fate of Neural Crest-Like Cells via Suppression of Notch.

    PubMed

    Fukunaga-Kalabis, Mizuho; Hristova, Denitsa M; Wang, Joshua X; Li, Ling; Heppt, Markus V; Wei, Zhi; Gyurdieva, Alexandra; Webster, Marie R; Oka, Masahiro; Weeraratna, Ashani T; Herlyn, Meenhard

    2015-06-01

    Multipotent stem cells with neural crest-like properties have been identified in the dermis of human skin. These neural crest stem cell (NCSC)-like cells display self-renewal capacity and differentiate into neural crest derivatives, including epidermal pigment-producing melanocytes. NCSC-like cells share many properties with aggressive melanoma cells, such as high migratory capabilities and expression of the neural crest markers. However, little is known about which intrinsic or extrinsic signals determine the proliferation or differentiation of these neural crest-like stem cells. Here we show that, in NCSC-like cells, Notch signaling is highly activated, similar to melanoma cells. Inhibition of Notch signaling reduced the proliferation of NCSC-like cells, induced cell death, and downregulated noncanonical Wnt5a, suggesting that the Notch pathway contributes to the maintenance and motility of these stem cells. In three-dimensional skin reconstructs, canonical Wnt signaling promoted the differentiation of NCSC-like cells into melanocytes. This differentiation was triggered by the endogenous Notch inhibitor Numb, which is upregulated in the stem cells by Wnt7a derived from UV-irradiated keratinocytes. Together, these data reveal a cross talk between the two conserved developmental pathways in postnatal human skin, and highlight the role of the skin microenvironment in specifying the fate of stem cells. PMID:25705850

  3. Wnt1 and BMP2: two factors recruiting multipotent neural crest progenitors isolated from adult bone marrow.

    PubMed

    Glejzer, A; Laudet, E; Leprince, P; Hennuy, B; Poulet, C; Shakhova, O; Sommer, L; Rogister, B; Wislet-Gendebien, S

    2011-06-01

    Recent studies have shown that neural crest-derived progenitor cells can be found in diverse mammalian tissues including tissues that were not previously shown to contain neural crest derivatives, such as bone marrow. The identification of those "new" neural crest-derived progenitor cells opens new strategies for developing autologous cell replacement therapies in regenerative medicine. However, their potential use is still a challenge as only few neural crest-derived progenitor cells were found in those new accessible locations. In this study, we developed a protocol, based on wnt1 and BMP2 effects, to enrich neural crest-derived cells from adult bone marrow. Those two factors are known to maintain and stimulate the proliferation of embryonic neural crest stem cells, however, their effects have never been characterized on neural crest cells isolated from adult tissues. Using multiple strategies from microarray to 2D-DIGE proteomic analyses, we characterized those recruited neural crest-derived cells, defining their identity and their differentiating abilities. PMID:20976520

  4. The quantum human central neural system.

    PubMed

    Alexiou, Athanasios; Rekkas, John

    2015-01-01

    In this chapter we present Excess Entropy Production for human aging system as the sum of their respective subsystems and electrophysiological status. Additionally, we support the hypothesis of human brain and central neural system quantumness and we strongly suggest the theoretical and philosophical status of human brain as one of the unknown natural Dirac magnetic monopoles placed in the center of a Riemann sphere. PMID:25416114

  5. Neural Plasticity in Fathers of Human Infants

    PubMed Central

    Kim, Pilyoung; Rigo, Paola; Mayes, Linda C.; Feldman, Ruth; Leckman, James F.; Swain, James E

    2014-01-01

    Fathering plays an important role in infants’ socioemotional and cognitive development. Previous studies have identified brain regions that are important for parenting behavior in human mothers. However, the neural basis of parenting in human fathers is largely unexplored. In the current longitudinal study, we investigated structural changes in fathers’ brains during the first four months postpartum using voxel-based morphometry (VBM) analysis. Biological fathers (n=16) with full-term, healthy infants were scanned at 2–4 weeks postpartum (Time 1) and at 12–16 weeks postpartum (Time 2). Fathers exhibited increases in gray matter volume in several neural regions involved in parental motivation, including the hypothalamus, amygdala and striatum and lateral prefrontal cortex. On the other hand, fathers exhibited decreases in gray matter volume in the orbitofrontal cortex, posterior cingulate cortex and insula. The findings provide evidence for neural plasticity in fathers’ brains. We also discuss the distinct patterns of associations among neural changes, postpartum mood symptoms, and parenting behaviors among fathers. PMID:24958358

  6. Clinical translation of human neural stem cells

    PubMed Central

    2013-01-01

    Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development. PMID:23987648

  7. Clinical translation of human neural stem cells.

    PubMed

    Tsukamoto, Ann; Uchida, Nobuko; Capela, Alexandra; Gorba, Thorsten; Huhn, Stephen

    2013-01-01

    Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development. PMID:23987648

  8. Oligodendroglial and Pan-neural Crest Expression of Cre Recombinase Directed by Sox10 Enhancer

    PubMed Central

    Stine, Zachary E.; Huynh, Jimmy L.; Loftus, Stacie K.; Gorkin, David U.; Salmasi, Amirali H.; Novak, Thomas; Purves, Todd; Miller, Ronald A.; Antonellis, Anthony; Gearhart, John P.; Pavan, William J.; McCallion, Andrew S.

    2010-01-01

    Utilizing a recently identified Sox10 distal enhancer directing Cre expression, we report S4F:Cre, a transgenic mouse line capable of inducing recombination in oligodendroglia and all examined neural crest derived tissues. Assayed using R26R:LacZ reporter mice expression was detected in neural crest derived tissues including the forming facial skeleton, dorsal root ganglia, sympathetic ganglia, enteric nervous system, aortae and melanoblasts, consistent with Sox10 expression. LacZ reporter expression was also detected in non-neural crest derived tissues including the oligodendrocytes and the ventral neural tube. This line provides appreciable differences in Cre expression pattern from other transgenic mouse lines that mark neural crest populations, including additional populations defined by the expression of other SoxE proteins. The S4F:Cre transgenic line will thus serve as a powerful tool for lineage tracing, gene function characterization and genome manipulation in these populations. PMID:19830815

  9. Expression of PROKR1 and PROKR2 in Human Enteric Neural Precursor Cells and Identification of Sequence Variants Suggest a Role in HSCR

    PubMed Central

    Ruiz-Ferrer, Macarena; Torroglosa, Ana; Núñez-Torres, Rocío; de Agustín, Juan Carlos; Antiñolo, Guillermo; Borrego, Salud

    2011-01-01

    Background The enteric nervous system (ENS) is entirely derived from neural crest and its normal development is regulated by specific molecular pathways. Failure in complete ENS formation results in aganglionic gut conditions such as Hirschsprung's disease (HSCR). Recently, PROKR1 expression has been demonstrated in mouse enteric neural crest derived cells and Prok-1 was shown to work coordinately with GDNF in the development of the ENS. Principal Findings In the present report, ENS progenitors were isolated and characterized from the ganglionic gut from children diagnosed with and without HSCR, and the expression of prokineticin receptors was examined. Immunocytochemical analysis of neurosphere-forming cells demonstrated that both PROKR1 and PROKR2 were present in human enteric neural crest cells. In addition, we also performed a mutational analysis of PROKR1, PROKR2, PROK1 and PROK2 genes in a cohort of HSCR patients, evaluating them for the first time as susceptibility genes for the disease. Several missense variants were detected, most of them affecting highly conserved amino acid residues of the protein and located in functional domains of both receptors, which suggests a possible deleterious effect in their biological function. Conclusions Our results suggest that not only PROKR1, but also PROKR2 might mediate a complementary signalling to the RET/GFRα1/GDNF pathway supporting proliferation/survival and differentiation of precursor cells during ENS development. These findings, together with the detection of sequence variants in PROKR1, PROK1 and PROKR2 genes associated to HSCR and, in some cases in combination with RET or GDNF mutations, provide the first evidence to consider them as susceptibility genes for HSCR. PMID:21858136

  10. A neural mediator of human anxiety sensitivity.

    PubMed

    Harrison, Ben J; Fullana, Miquel A; Soriano-Mas, Carles; Via, Esther; Pujol, Jesus; Martínez-Zalacaín, Ignacio; Tinoco-Gonzalez, Daniella; Davey, Christopher G; López-Solà, Marina; Pérez Sola, Victor; Menchón, José M; Cardoner, Narcís

    2015-10-01

    Advances in the neuroscientific understanding of bodily autonomic awareness, or interoception, have led to the hypothesis that human trait anxiety sensitivity (AS)-the fear of bodily autonomic arousal-is primarily mediated by the anterior insular cortex. Despite broad appeal, few experimental studies have comprehensively addressed this hypothesis. We recruited 55 individuals exhibiting a range of AS and assessed them with functional magnetic resonance imaging (fMRI) during aversive fear conditioning. For each participant, three primary measures of interest were derived: a trait Anxiety Sensitivity Index score; an in-scanner rating of elevated bodily anxiety sensations during fear conditioning; and a corresponding estimate of whole-brain functional activation to the conditioned versus nonconditioned stimuli. Using a voxel-wise mediation analysis framework, we formally tested for 'neural mediators' of the predicted association between trait AS score and in-scanner anxiety sensations during fear conditioning. Contrary to the anterior insular hypothesis, no evidence of significant mediation was observed for this brain region, which was instead linked to perceived anxiety sensations independently from AS. Evidence for significant mediation was obtained for the dorsal anterior cingulate cortex-a finding that we argue is more consistent with the hypothesized role of human cingulofrontal cortex in conscious threat appraisal processes, including threat-overestimation. This study offers an important neurobiological validation of the AS construct and identifies a specific neural substrate that may underlie high AS clinical phenotypes, including but not limited to panic disorder. PMID:26147233

  11. Canine Epidermal Neural Crest Stem Cells: Characterization and Potential as Therapy Candidate for a Large Animal Model of Spinal Cord Injury

    PubMed Central

    Gericota, Barbara; Anderson, Joseph S.; Mitchell, Gaela; Borjesson, Dori L.; Sturges, Beverly K.; Nolta, Jan A.

    2014-01-01

    The discovery of multipotent neural crest-derived stem cells, named epidermal neural crest stem cells (EPI-NCSC), that persist postnatally in an easy-to-access location—the bulge of hair follicles—opens a spectrum of novel opportunities for patient-specific therapies. We present a detailed characterization of canine EPI-NCSC (cEPI-NCSC) from multiple dog breeds and protocols for their isolation and ex vivo expansion. Furthermore, we provide novel tools for research in canines, which currently are still scarce. In analogy to human and mouse EPI-NCSC, the neural crest origin of cEPI-NCSC is shown by their expression of the neural crest stem cell molecular signature and other neural crest-characteristic genes. Similar to human EPI-NCSC, cEPI-NCSC also expressed pluripotency genes. We demonstrated that cEPI-NCSC can generate all major neural crest derivatives. In vitro clonal analyses established multipotency and self-renewal ability of cEPI-NCSC, establishing cEPI-NCSC as multipotent somatic stem cells. A critical analysis of the literature on canine spinal cord injury (SCI) showed the need for novel treatments and suggested that cEPI-NCSC represent viable candidates for cell-based therapies in dog SCI, particularly for chondrodystrophic dogs. This notion is supported by the close ontological relationship between neural crest stem cells and spinal cord stem cells. Thus, cEPI-NCSC promise to offer not only a potential treatment for canines but also an attractive and realistic large animal model for human SCI. Taken together, we provide the groundwork for the development of a novel cell-based therapy for a condition with extremely poor prognosis and no available effective treatment. PMID:24443004

  12. The neural basis of human tool use.

    PubMed

    Orban, Guy A; Caruana, Fausto

    2014-01-01

    In this review, we propose that the neural basis for the spontaneous, diversified human tool use is an area devoted to the execution and observation of tool actions, located in the left anterior supramarginal gyrus (aSMG). The aSMG activation elicited by observing tool use is typical of human subjects, as macaques show no similar activation, even after an extensive training to use tools. The execution of tool actions, as well as their observation, requires the convergence upon aSMG of inputs from different parts of the dorsal and ventral visual streams. Non-semantic features of the target object may be provided by the posterior parietal cortex (PPC) for tool-object interaction, paralleling the well-known PPC input to anterior intraparietal (AIP) for hand-object interaction. Semantic information regarding tool identity, and knowledge of the typical manner of handling the tool, could be provided by inferior and middle regions of the temporal lobe. Somatosensory feedback and technical reasoning, as well as motor and intentional constraints also play roles during the planning of tool actions and consequently their signals likewise converge upon aSMG. We further propose that aSMG may have arisen though duplication of monkey AIP and invasion of the duplicate area by afferents from PPC providing distinct signals depending on the kinematics of the manipulative action. This duplication may have occurred when Homo Habilis or Homo Erectus emerged, generating the Oldowan or Acheulean Industrial complexes respectively. Hence tool use may have emerged during hominid evolution between bipedalism and language. We conclude that humans have two parietal systems involved in tool behavior: a biological circuit for grasping objects, including tools, and an artifactual system devoted specifically to tool use. Only the latter allows humans to understand the causal relationship between tool use and obtaining the goal, and is likely to be the basis of all technological developments. PMID

  13. The neural basis of human tool use

    PubMed Central

    Orban, Guy A.; Caruana, Fausto

    2014-01-01

    In this review, we propose that the neural basis for the spontaneous, diversified human tool use is an area devoted to the execution and observation of tool actions, located in the left anterior supramarginal gyrus (aSMG). The aSMG activation elicited by observing tool use is typical of human subjects, as macaques show no similar activation, even after an extensive training to use tools. The execution of tool actions, as well as their observation, requires the convergence upon aSMG of inputs from different parts of the dorsal and ventral visual streams. Non-semantic features of the target object may be provided by the posterior parietal cortex (PPC) for tool-object interaction, paralleling the well-known PPC input to anterior intraparietal (AIP) for hand-object interaction. Semantic information regarding tool identity, and knowledge of the typical manner of handling the tool, could be provided by inferior and middle regions of the temporal lobe. Somatosensory feedback and technical reasoning, as well as motor and intentional constraints also play roles during the planning of tool actions and consequently their signals likewise converge upon aSMG. We further propose that aSMG may have arisen though duplication of monkey AIP and invasion of the duplicate area by afferents from PPC providing distinct signals depending on the kinematics of the manipulative action. This duplication may have occurred when Homo Habilis or Homo Erectus emerged, generating the Oldowan or Acheulean Industrial complexes respectively. Hence tool use may have emerged during hominid evolution between bipedalism and language. We conclude that humans have two parietal systems involved in tool behavior: a biological circuit for grasping objects, including tools, and an artifactual system devoted specifically to tool use. Only the latter allows humans to understand the causal relationship between tool use and obtaining the goal, and is likely to be the basis of all technological developments. PMID

  14. PAX transcription factors in neural crest development.

    PubMed

    Monsoro-Burq, Anne H

    2015-08-01

    The nine vertebrate PAX transcription factors (PAX1-PAX9) play essential roles during early development and organogenesis. Pax genes were identified in vertebrates using their homology with the Drosophila melanogaster paired gene DNA-binding domain. PAX1-9 functions are largely conserved throughout vertebrate evolution, in particular during central nervous system and neural crest development. The neural crest is a vertebrate invention, which gives rise to numerous derivatives during organogenesis, including neurons and glia of the peripheral nervous system, craniofacial skeleton and mesenchyme, the heart outflow tract, endocrine and pigment cells. Human and mouse spontaneous mutations as well as experimental analyses have evidenced the critical and diverse functions of PAX factors during neural crest development. Recent studies have highlighted the role of PAX3 and PAX7 in neural crest induction. Additionally, several PAX proteins - PAX1, 3, 7, 9 - regulate cell proliferation, migration and determination in multiple neural crest-derived lineages, such as cardiac, sensory, and enteric neural crest, pigment cells, glia, craniofacial skeleton and teeth, or in organs developing in close relationship with the neural crest such as the thymus and parathyroids. The diverse PAX molecular functions during neural crest formation rely on fine-tuned modulations of their transcriptional transactivation properties. These modulations are generated by multiple means, such as different roles for the various isoforms (formed by alternative splicing), or posttranslational modifications which alter protein-DNA binding, or carefully orchestrated protein-protein interactions with various co-factors which control PAX proteins activity. Understanding these regulations is the key to decipher the versatile roles of PAX transcription factors in neural crest development, differentiation and disease. PMID:26410165

  15. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration

    PubMed Central

    Ibarretxe, Gaskon; Crende, Olatz; Aurrekoetxea, Maitane; García-Murga, Victoria; Etxaniz, Javier; Unda, Fernando

    2012-01-01

    Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs), which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases. However, endogenous adult sources of neural stem cells present major drawbacks, such as their scarcity and complicated obtention. In this context, EMSCs from dental tissues emerge as good alternative candidates, since they are preserved in adult human individuals, and retain both high proliferation ability and a neural-like phenotype in vitro. In this paper, we discuss some important aspects of tissue regeneration by cell therapy and point out some advantages that EMSCs provide for dental and neural regeneration. We will finally review some of the latest research featuring experimental approaches and benefits of dental stem cell therapy. PMID:23093977

  16. Reprogramming of avian neural crest axial identity and cell fate.

    PubMed

    Simoes-Costa, Marcos; Bronner, Marianne E

    2016-06-24

    Neural crest populations along the embryonic body axis of vertebrates differ in developmental potential and fate, so that only the cranial neural crest can contribute to the craniofacial skeleton in vivo. We explored the regulatory program that imbues the cranial crest with its specialized features. Using axial-level specific enhancers to isolate and perform genome-wide profiling of the cranial versus trunk neural crest in chick embryos, we identified and characterized regulatory relationships between a set of cranial-specific transcription factors. Introducing components of this circuit into neural crest cells of the trunk alters their identity and endows these cells with the ability to give rise to chondroblasts in vivo. Our results demonstrate that gene regulatory circuits that support the formation of particular neural crest derivatives may be used to reprogram specific neural crest-derived cell types. PMID:27339986

  17. Data defining markers of human neural stem cell lineage potential.

    PubMed

    Oikari, Lotta E; Okolicsanyi, Rachel K; Griffiths, Lyn R; Haupt, Larisa M

    2016-06-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in "Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination" (Oikari et al. 2015) [1]. PMID:26958640

  18. Data defining markers of human neural stem cell lineage potential

    PubMed Central

    Oikari, Lotta E.; Okolicsanyi, Rachel K.; Griffiths, Lyn R.; Haupt, Larisa M.

    2016-01-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in “Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination” (Oikari et al. 2015) [1]. PMID:26958640

  19. Neural commitment of human pluripotent stem cells under defined conditions recapitulates neural development and generates patient-specific neural cells.

    PubMed

    Fernandes, Tiago G; Duarte, Sofia T; Ghazvini, Mehrnaz; Gaspar, Cláudia; Santos, Diana C; Porteira, Ana R; Rodrigues, Gonçalo M C; Haupt, Simone; Rombo, Diogo M; Armstrong, Judith; Sebastião, Ana M; Gribnau, Joost; Garcia-Cazorla, Àngels; Brüstle, Oliver; Henrique, Domingos; Cabral, Joaquim M S; Diogo, Maria Margarida

    2015-10-01

    Standardization of culture methods for human pluripotent stem cell (PSC) neural differentiation can greatly contribute to the development of novel clinical advancements through the comprehension of neurodevelopmental diseases. Here, we report an approach that reproduces neural commitment from human induced pluripotent stem cells using dual-SMAD inhibition under defined conditions in a vitronectin-based monolayer system. By employing this method it was possible to obtain neurons derived from both control and Rett syndrome patients' pluripotent cells. During differentiation mutated cells displayed alterations in the number of neuronal projections, and production of Tuj1 and MAP2-positive neurons. Although investigation of a broader number of patients would be required, these observations are in accordance with previous studies showing impaired differentiation of these cells. Consequently, our experimental methodology was proved useful not only for the generation of neural cells, but also made possible to compare neural differentiation behavior of different cell lines under defined culture conditions. This study thus expects to contribute with an optimized approach to study the neural commitment of human PSCs, and to produce patient-specific neural cells that can be used to gain a better understanding of disease mechanisms. PMID:26123315

  20. Human embryonic stem cell differentiation toward regional specific neural precursors.

    PubMed

    Erceg, Slaven; Ronaghi, Mohammad; Stojković, Miodrag

    2009-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration. PMID:18845761

  1. Human Embryonic Stem Cell Differentiation Toward Regional Specific Neural Precursors

    PubMed Central

    Erceg, Slaven; Ronaghi, Mohammad; Stojković, Miodrag

    2009-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration. PMID:18845761

  2. Persistent expression of Pax3 in the neural crest causes cleft palate and defective osteogenesis in mice

    PubMed Central

    Wu, Meilin; Li, Jun; Engleka, Kurt A.; Zhou, Bo; Lu, Min Min; Plotkin, Joshua B.; Epstein, Jonathan A.

    2008-01-01

    Transcription factors regulate tissue patterning and cell fate determination during development; however, expression of early regulators frequently abates upon differentiation, suggesting that they may also play a role in maintaining an undifferentiated phenotype. The transcription factor paired box 3 (Pax3) is expressed by multipotent neural crest precursors and is implicated in neural crest disorders in humans such as Waardenburg syndrome. Pax3 is required for development of multiple neural crest lineages and for activation of lineage-specific programs, yet expression is generally extinguished once neural crest cells migrate from the dorsal neural tube and differentiate. Using a murine Cre-inducible system, we asked whether persistent Pax3 expression in neural crest derivatives would affect development or patterning. We found that persistent expression of Pax3 in cranial neural crest cells resulted in cleft palate, ocular defects, malformation of the sphenoid bone, and perinatal lethality. Furthermore, we demonstrated that Pax3 directly regulates expression of Sostdc1, a soluble inhibitor of bone morphogenetic protein (BMP) signaling. Persistent Pax3 expression renders the cranial crest resistant to BMP-induced osteogenesis. Thus, one mechanism by which Pax3 maintains the undifferentiated state of neural crest mesenchyme may be to block responsiveness to differentiation signals from the environment. These studies provide in vivo evidence for the importance of Pax3 downregulation during differentiation of multipotent neural crest precursors and cranial development. PMID:18483623

  3. Skeletal myogenic potential of human and mouse neural stem cells.

    PubMed

    Galli, R; Borello, U; Gritti, A; Minasi, M G; Bjornson, C; Coletta, M; Mora, M; De Angelis, M G; Fiocco, R; Cossu, G; Vescovi, A L

    2000-10-01

    Distinct cell lineages established early in development are usually maintained throughout adulthood. Thus, adult stem cells have been thought to generate differentiated cells specific to the tissue in which they reside. This view has been challenged; for example, neural stem cells can generate cells that normally originate from a different germ layer. Here we show that acutely isolated and clonally derived neural stem cells from mice and humans could produce skeletal myotubes in vitro and in vivo, the latter following transplantation into adult animals. Myogenic conversion in vitro required direct exposure to myoblasts, and was blocked if neural cells were clustered. Thus, a community effect between neural cells may override such myogenic induction. We conclude that neural stem cells, which generate neurons, glia and blood cells, can also produce skeletal muscle cells, and can undergo various patterns of differentiation depending on exposure to appropriate epigenetic signals in mature tissues. PMID:11017170

  4. The development of the neural crest in the human

    PubMed Central

    O’Rahilly, Ronan; Müller, Fabiola

    2007-01-01

    The first systematic account of the neural crest in the human has been prepared after an investigation of 185 serially sectioned staged embryos, aided by graphic reconstructions. As many as fourteen named topographical subdivisions of the crest were identified and eight of them give origin to ganglia (Table 2). Significant findings in the human include the following. (1) An indication of mesencephalic neural crest is discernible already at stage 9, and trigeminal, facial, and postotic components can be detected at stage 10. (2) Crest was not observed at the level of diencephalon 2. Although pre-otic crest from the neural folds is at first continuous (stage 10), crest-free zones are soon observable (stage 11) in Rh.1, 3, and 5. (3) Emigration of cranial neural crest from the neural folds at the neurosomatic junction begins before closure of the rostral neuropore, and later crest cells do not accumulate above the neural tube. (4) The trigeminal, facial, glossopharyngeal and vagal ganglia, which develop from crest that emigrates before the neural folds have fused, continue to receive contributions from the roof plate of the neural tube after fusion of the folds. (5) The nasal crest and the terminalis-vomeronasal complex are the last components of the cranial crest to appear (at stage 13) and they persist longer. (6) The optic, mesencephalic, isthmic, accessory, and hypoglossal crest do not form ganglia. Cervical ganglion 1 is separated early from the neural crest and is not a Froriep ganglion. (7) The cranial ganglia derived from neural crest show a specific relationship to individual neuromeres, and rhombomeres are better landmarks than the otic primordium, which descends during stages 9–14. (8) Epipharyngeal placodes of the pharyngeal arches contribute to cranial ganglia, although that of arch 1 is not typical. (9) The neural crest from rhombomeres 6 and 7 that migrates to pharyngeal arch 3 and from there rostrad to the truncus arteriosus at stage 12 is identified

  5. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    PubMed Central

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  6. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    PubMed

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  7. Neural correlates of the contents of visual awareness in humans.

    PubMed

    Rees, Geraint

    2007-05-29

    The immediacy and directness of our subjective visual experience belies the complexity of the neural mechanisms involved, which remain incompletely understood. This review focuses on how the subjective contents of human visual awareness are encoded in neural activity. Empirical evidence to date suggests that no single brain area is both necessary and sufficient for consciousness. Instead, necessary and sufficient conditions appear to involve both activation of a distributed representation of the visual scene in primary visual cortex and ventral visual areas, plus parietal and frontal activity. The key empirical focus is now on characterizing qualitative differences in the type of neural activity in these areas underlying conscious and unconscious processing. To this end, recent progress in developing novel approaches to accurately decoding the contents of consciousness from brief samples of neural activity show great promise. PMID:17395576

  8. Human Identification with Electrocardiogram Signals: a Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Wan, Yongbo; Yao, Jianchu

    2009-05-01

    This paper presents a neural network developed to identify human subjects using electrocardiogram (ECG) signals collected from an "in-house" wearable electrocardiogram (ECG) sensor. In this project, noises were first removed from the raw signals with wavelet filters. ECG cycles were then extracted from the filtered signals and decomposed into wavelet coefficient structures. These coefficient structures were used as input vectors to a 3-layer feedforward neural network that generates the identification results. In the current study, 61 datasets collected from 23 subjects were utilized to train the neural network, which thereafter was tested with 15 new datasets from 15 different subjects. All the 15 subjects in the experiment were successfully identified. The testing results demonstrate that the neural network is effective.

  9. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain

    PubMed Central

    Ryu, Sun; Lee, Seung-Hoon; Kim, Seung U.; Yoon, Byung-Woo

    2016-01-01

    Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in the ischemic rat brain after the transplantation of human neural stem cells. Focal cerebral ischemia in the rat brain was induced by middle cerebral artery occlusion. Human neural stem cells were transplanted into the subventricular zone. The behavioral performance of human neural stem cells-treated ischemic rats was significantly improved and cerebral infarct volumes were reduced compared to those in untreated animals. Numerous transplanted human neural stem cells were alive and preferentially localized to the ipsilateral ischemic hemisphere. Furthermore, 5-bromo-2′-deoxyuridine-labeled endogenous neural stem cells were observed in the subventricular zone and hippocampus, where they differentiated into cells immunoreactive for the neural markers doublecortin, neuronal nuclear antigen NeuN, and astrocyte marker glial fibrillary acidic protein in human neural stem cells-treated rats, but not in the untreated ischemic animals. The number of 5-bromo-2′-deoxyuridine-positive ⁄ anti-von Willebrand factor-positive proliferating endothelial cells was higher in the ischemic boundary zone of human neural stem cells-treated rats than in controls. Finally, transplantation of human neural stem cells in the brains of rats with focal cerebral ischemia promoted the proliferation of endogenous neural stem cells and their differentiation into mature neural-like cells, and enhanced angiogenesis. This study provides valuable insights into the effect of human neural stem cell transplantation on focal cerebral ischemia, which can be applied to the development of an effective therapy for stroke. PMID:27073384

  10. Aebp2 as an epigenetic regulator for neural crest cells.

    PubMed

    Kim, Hana; Kang, Keunsoo; Ekram, Muhammad B; Roh, Tae-Young; Kim, Joomyeong

    2011-01-01

    Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2). We generated a mutant mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged colon and hypopigmentation, similar to those observed in human patients with Hirschsprung's disease and Waardenburg syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2 may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism. PMID:21949878

  11. Neural Structures within Human Meniscofemoral Ligaments: A Cadaveric Study

    PubMed Central

    Gupte, Chinmay M.; Shaerf, Daniel A.; Sandison, Ann; Bull, Anthony M. J.; Amis, Andrew A.

    2014-01-01

    Aim. To investigate the existence of neural structures within the meniscofemoral ligaments (MFLs) of the human knee. Methods. The MFLs from 8 human cadaveric knees were harvested. 5 μm sections were H&E-stained and examined under light microscopy. The harvested ligaments were then stained using an S100 monoclonal antibody utilising the ABC technique to detect neural components. Further examination was performed on 60–80 nm sections under electron microscopy. Results. Of the 8 knees, 6 were suitable for examination. From these both MFLs existed in 3, only anterior MFLs were present in 2, and an isolated posterior MFL existed in 1. Out of the 9 MFLs, 4 demonstrated neural structures on light and electron microscopy and this was confirmed with S100 staining. The ultrastructure of these neural components was morphologically similar to mechanoreceptors. Conclusion. Neural structures are present in MFLs near to their meniscal attachments. It is likely that the meniscofemoral ligaments contribute not only as passive secondary restraints to posterior draw but more importantly to proprioception and may therefore play an active role in providing a neurosensory feedback loop. This may be particularly important when the primary restraint has reduced function as in the posterior cruciate ligament—deficient human knee. PMID:25938111

  12. A neural circuit encoding sexual preference in humans.

    PubMed

    Poeppl, Timm B; Langguth, Berthold; Rupprecht, Rainer; Laird, Angela R; Eickhoff, Simon B

    2016-09-01

    Sexual preference determines mate choice for reproduction and hence guarantees conservation of species in mammals. Despite this fundamental role in human behavior, current knowledge on its target-specific neurofunctional substrate is based on lesion studies and therefore limited. We used meta-analytic remodeling of neuroimaging data from 364 human subjects with diverse sexual interests during sexual stimulation to quantify neural regions associated with sexual preference manipulations. We found that sexual preference is encoded by four phylogenetically old, subcortical brain structures. More specifically, sexual preference is controlled by the anterior and preoptic area of the hypothalamus, the anterior and mediodorsal thalamus, the septal area, and the perirhinal parahippocampus including the dentate gyrus. In contrast, sexual non-preference is regulated by the substantia innominata. We anticipate the identification of a core neural circuit for sexual preferences to be a starting point for further sophisticated investigations into the neural principles of sexual behavior and particularly of its aberrations. PMID:27339689

  13. Human Immunodeficiency Virus Type 1 Infection of Neural Xenografts

    NASA Astrophysics Data System (ADS)

    Cvetkovich, Therese A.; Lazar, Eliot; Blumberg, Benjamin M.; Saito, Yoshihiro; Eskin, Thomas A.; Reichman, Richard; Baram, David A.; del Cerro, Coca; Gendelman, Howard E.; del Cerro, Manuel; Epstein, Leon G.

    1992-06-01

    Human immunodeficiency virus type 1 (HIV-1) infection is highly specific for its human host. To study HIV-1 infection of the human nervous system, we have established a small animal model in which second-trimester (11 to 17.5 weeks) human fetal brain or neural retina is transplanted to the anterior chamber of the eye of immunosuppressed adult rats. The human xenografts vascularized, formed a blood-brain barrier, and differentiated, forming neurons and glia. The xenografts were infected with cell-free HIV-1 or with HIV-1-infected human monocytes. Analysis by polymerase chain reaction revealed HIV-1 sequences in DNA from xenograft tissue exposed to HIV-1 virions, and in situ hybridization demonstrated HIV-1 mRNA localized in macrophages and multinucleated giant cells. Pathological damage was observed only in neural xenografts containing HIV-1-infected human monocytes, supporting the hypothesis that these cells mediate neurotoxicity. This small animal model allows the study of direct and indirect effects of HIV-1 infection on developing human fetal neural tissues, and it should prove useful in evaluating antiviral therapies, which must ultimately target HIV-1 infection of the brain.

  14. Human aging alters the neural computation and representation of space.

    PubMed

    Schuck, Nicolas W; Doeller, Christian F; Polk, Thad A; Lindenberger, Ulman; Li, Shu-Chen

    2015-08-15

    The hippocampus and striatum are core neural circuits involved in spatial learning and memory. Although both neural systems support spatial navigation, experimental and theoretical evidence indicate that they play different roles. In particular, whereas hippocampal place cells generate allocentric neural representations of space that are sensitive to geometric information, striatum-dependent learning is influenced by local landmarks. How human aging affects these different neural representations, however, is still not well understood. In this paper, we combined virtual reality, computational modeling, and neuroimaging to investigate the effects of age upon the neural computation and representation of space in humans. We manipulated the geometry and local landmarks of a virtual environment and examined the effects on memory performance and brain activity during spatial learning. In younger adults, both behavior and brain activity in the medial-temporal lobe were consistent with predictions of a computational model of hippocampus-dependent boundary processing. In contrast, older adults' behavior and medial-temporal lobe activity were primarily influenced by local cue information, and spatial learning was more associated with activity in the caudate nucleus rather than the hippocampus. Together these results point to altered spatial representations and information processing in the hippocampal-striatal circuitry with advancing adult age, which may contribute to spatial learning and memory deficits associated with normal and pathological aging. PMID:26003855

  15. Direct reprogramming of human neural stem cells by OCT4.

    PubMed

    Kim, Jeong Beom; Greber, Boris; Araúzo-Bravo, Marcos J; Meyer, Johann; Park, Kook In; Zaehres, Holm; Schöler, Hans R

    2009-10-01

    Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by ectopic expression of four transcription factors (OCT4 (also called POU5F1), SOX2, c-Myc and KLF4). We previously reported that Oct4 alone is sufficient to reprogram directly adult mouse neural stem cells to iPS cells. Here we report the generation of one-factor human iPS cells from human fetal neural stem cells (one-factor (1F) human NiPS cells) by ectopic expression of OCT4 alone. One-factor human NiPS cells resemble human embryonic stem cells in global gene expression profiles, epigenetic status, as well as pluripotency in vitro and in vivo. These findings demonstrate that the transcription factor OCT4 is sufficient to reprogram human neural stem cells to pluripotency. One-factor iPS cell generation will advance the field further towards understanding reprogramming and generating patient-specific pluripotent stem cells. PMID:19718018

  16. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  17. A signature of neural coding at human perceptual limits.

    PubMed

    Bays, Paul M

    2016-09-01

    Simple visual features, such as orientation, are thought to be represented in the spiking of visual neurons using population codes. I show that optimal decoding of such activity predicts characteristic deviations from the normal distribution of errors at low gains. Examining human perception of orientation stimuli, I show that these predicted deviations are present at near-threshold levels of contrast. The findings may provide a neural-level explanation for the appearance of a threshold in perceptual awareness whereby stimuli are categorized as seen or unseen. As well as varying in error magnitude, perceptual judgments differ in certainty about what was observed. I demonstrate that variations in the total spiking activity of a neural population can account for the empirical relationship between subjective confidence and precision. These results establish population coding and decoding as the neural basis of perception and perceptual confidence. PMID:27604067

  18. Human face recognition by Euclidean distance and neural network

    NASA Astrophysics Data System (ADS)

    Pornpanomchai, Chomtip; Inkuna, Chittrapol

    2010-02-01

    The idea of this project development is to improve the concept of human face recognition that has been studied in order to apply it for a more precise and effective recognition of human faces, and offered an alternative to agencies with respect to their access-departure control system. To accomplish this, a technique of calculation of distances between face features, including efficient face recognition though a neural network, is used. The system uses a technique of image processing consisting of 3 major processes: 1) preprocessing or preparation of images, 2) feature extraction from images of eyes, ears, nose and mouth, used for a calculation of Euclidean distances between each organ; and 3) face recognition using a neural network method. Based on the experimental results from reading image of a total of 200 images from 100 human faces, the system can correctly recognize 96 % with average access time of 3.304 sec per image.

  19. Generating trunk neural crest from human pluripotent stem cells

    PubMed Central

    Huang, Miller; Miller, Matthew L.; McHenry, Lauren K.; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages. PMID:26812940

  20. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity.

    PubMed

    Schwartz, Michael P; Hou, Zhonggang; Propson, Nicholas E; Zhang, Jue; Engstrom, Collin J; Santos Costa, Vitor; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M; Daly, William; Wang, Yu; Stewart, Ron; Page, C David; Murphy, William L; Thomson, James A

    2015-10-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial. PMID:26392547

  1. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity

    PubMed Central

    Schwartz, Michael P.; Hou, Zhonggang; Propson, Nicholas E.; Zhang, Jue; Engstrom, Collin J.; Costa, Vitor Santos; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M.; Daly, William; Wang, Yu; Stewart, Ron; Page, C. David; Murphy, William L.; Thomson, James A.

    2015-01-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial. PMID:26392547

  2. The Neural Basis of Vocal Pitch Imitation in Humans.

    PubMed

    Belyk, Michel; Pfordresher, Peter Q; Liotti, Mario; Brown, Steven

    2016-04-01

    Vocal imitation is a phenotype that is unique to humans among all primate species, and so an understanding of its neural basis is critical in explaining the emergence of both speech and song in human evolution. Two principal neural models of vocal imitation have emerged from a consideration of nonhuman animals. One hypothesis suggests that putative mirror neurons in the inferior frontal gyrus pars opercularis of Broca's area may be important for imitation. An alternative hypothesis derived from the study of songbirds suggests that the corticostriate motor pathway performs sensorimotor processes that are specific to vocal imitation. Using fMRI with a sparse event-related sampling design, we investigated the neural basis of vocal imitation in humans by comparing imitative vocal production of pitch sequences with both nonimitative vocal production and pitch discrimination. The strongest difference between these tasks was found in the putamen bilaterally, providing a striking parallel to the role of the analogous region in songbirds. Other areas preferentially activated during imitation included the orofacial motor cortex, Rolandic operculum, and SMA, which together outline the corticostriate motor loop. No differences were seen in the inferior frontal gyrus. The corticostriate system thus appears to be the central pathway for vocal imitation in humans, as predicted from an analogy with songbirds. PMID:26696298

  3. Neural correlate of human reciprocity in social interactions

    PubMed Central

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions

  4. Expectation modulates neural representations of valence throughout the human brain.

    PubMed

    Ramayya, Ashwin G; Pedisich, Isaac; Kahana, Michael J

    2015-07-15

    The brain's sensitivity to unexpected gains or losses plays an important role in our ability to learn new behaviors (Rescorla and Wagner, 1972; Sutton and Barto, 1990). Recent work suggests that gains and losses are ubiquitously encoded throughout the human brain (Vickery et al., 2011), however, the extent to which reward expectation modulates these valence representations is not known. To address this question, we analyzed recordings from 4306 intracranially implanted electrodes in 39 neurosurgical patients as they performed a two-alternative probability learning task. Using high-frequency activity (HFA, 70-200 Hz) as an indicator of local firing rates, we found that expectation modulated reward-related neural activity in widespread brain regions, including regions that receive sparse inputs from midbrain dopaminergic neurons. The strength of unexpected gain signals predicted subjects' abilities to encode stimulus-reward associations. Thus, neural signals that are functionally related to learning are widely distributed throughout the human brain. PMID:25937489

  5. Effects of hypoxia on sympathetic neural control in humans

    NASA Technical Reports Server (NTRS)

    Smith, M. L.; Muenter, N. K.

    2000-01-01

    This special issue is principally focused on the time domain of the adaptive mechanisms of ventilatory responses to short-term, long-term and intermittent hypoxia. The purpose of this review is to summarize the limited literature on the sympathetic neural responses to sustained or intermittent hypoxia in humans and attempt to discern the time domain of these responses and potential adaptive processes that are evoked during short and long-term exposures to hypoxia.

  6. Generation and Applications of Human Pluripotent Stem Cells Induced into Neural Lineages and Neural Tissues

    PubMed Central

    Martinez, Y.; Dubois-Dauphin, M.; Krause, K.-H.

    2012-01-01

    Human pluripotent stem cells (hPSCs) represent a new and exciting field in modern medicine, now the focus of many researchers and media outlets. The hype is well-earned because of the potential of stem cells to contribute to disease modeling, drug screening, and even therapeutic approaches. In this review, we focus first on neural differentiation of these cells. In a second part we compare the various cell types available and their advantages for in vitro modeling. Then we provide a “state-of-the-art” report about two major biomedical applications: (1) the drug and toxicity screening and (2) the neural tissue replacement. Finally, we made an overview about current biomedical research using differentiated hPSCs. PMID:22457650

  7. Infrared neural stimulation of human spinal nerve roots in vivo

    PubMed Central

    Cayce, Jonathan M.; Wells, Jonathon D.; Malphrus, Jonathan D.; Kao, Chris; Thomsen, Sharon; Tulipan, Noel B.; Konrad, Peter E.; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2015-01-01

    Abstract. Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients (n=7) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and 1.23  J/cm2. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at 1.09  J/cm2 and a 2∶1 safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans. PMID:26157986

  8. Isolation of Human Neural Stem Cells from the Amniotic Fluid with Diagnosed Neural Tube Defects.

    PubMed

    Chang, Yu-Jen; Su, Hong-Lin; Hsu, Lee-Feng; Huang, Po-Jui; Wang, Tzu-Hao; Cheng, Fu-Chou; Hsu, Li-Wen; Tsai, Ming-Song; Chen, Chih-Ping; Chang, Yao-Lung; Chao, An-Shine; Hwang, Shiaw-Min

    2015-08-01

    Human neural stem cells (NSCs) are particularly valuable for the study of neurogenesis process and have a therapeutic potential in treating neurodegenerative disorders. However, current progress in the use of human NSCs is limited due to the available NSC sources and the complicated isolation and culture techniques. In this study, we describe an efficient method to isolate and propagate human NSCs from the amniotic fluid with diagnosed neural tube defects (NTDs), specifically, anencephaly. These amniotic fluid-derived NSCs (AF-NSCs) formed neurospheres and underwent long-term expansion in vitro. In addition, these cells showed normal karyotypes and telomerase activity and expressed NSC-specific markers, including Nestin, Sox2, Musashi-1, and the ATP-binding cassette G2 (ABCG2). AF-NSCs displayed typical morphological patterns and expressed specific markers that were consistent with neurons, astrocytes, oligodendrocytes, and dopaminergic neurons after proper induction conditions. Furthermore, grafted AF-NSCs improved the physiological functions in a rat stroke model. The ability to isolate and bank human NSCs from this novel source provides a unique opportunity for translational studies of neurological disorders. PMID:25923707

  9. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    PubMed

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future. PMID:27341268

  10. Neural mechanisms of discourse comprehension: a human lesion study.

    PubMed

    Barbey, Aron K; Colom, Roberto; Grafman, Jordan

    2014-01-01

    Discourse comprehension is a hallmark of human social behaviour and refers to the act of interpreting a written or spoken message by constructing mental representations that integrate incoming language with prior knowledge and experience. Here, we report a human lesion study (n = 145) that investigates the neural mechanisms underlying discourse comprehension (measured by the Discourse Comprehension Test) and systematically examine its relation to a broad range of psychological factors, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores obtained from these factors were submitted to voxel-based lesion-symptom mapping to elucidate their neural substrates. Stepwise regression analyses revealed that working memory and extraversion reliably predict individual differences in discourse comprehension: higher working memory scores and lower extraversion levels predict better discourse comprehension performance. Lesion mapping results indicated that these convergent variables depend on a shared network of frontal and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The observed findings motivate an integrative framework for understanding the neural foundations of discourse comprehension, suggesting that core elements of discourse processing emerge from a distributed network of brain regions that support specific competencies for executive and social function. PMID:24293267

  11. Neural mechanisms of discourse comprehension: a human lesion study

    PubMed Central

    Colom, Roberto; Grafman, Jordan

    2014-01-01

    Discourse comprehension is a hallmark of human social behaviour and refers to the act of interpreting a written or spoken message by constructing mental representations that integrate incoming language with prior knowledge and experience. Here, we report a human lesion study (n = 145) that investigates the neural mechanisms underlying discourse comprehension (measured by the Discourse Comprehension Test) and systematically examine its relation to a broad range of psychological factors, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores obtained from these factors were submitted to voxel-based lesion-symptom mapping to elucidate their neural substrates. Stepwise regression analyses revealed that working memory and extraversion reliably predict individual differences in discourse comprehension: higher working memory scores and lower extraversion levels predict better discourse comprehension performance. Lesion mapping results indicated that these convergent variables depend on a shared network of frontal and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The observed findings motivate an integrative framework for understanding the neural foundations of discourse comprehension, suggesting that core elements of discourse processing emerge from a distributed network of brain regions that support specific competencies for executive and social function. PMID:24293267

  12. Neural networks of tinnitus in humans: Elucidating severity and habituation.

    PubMed

    Husain, Fatima T

    2016-04-01

    The article reviews current data about the neural correlates of an individual's reaction to tinnitus, primarily from studies that employ magnetic resonance imaging (MRI). Human studies employing brain imaging remain the most commonly used method to understand neural biomarkers of the reaction to tinnitus, a subjective hearing disorder. Evidence from anatomical and functional MRI studies is reviewed to better understand the large-scale neural networks implicated in tinnitus habituation and severity. These networks are concerned with attention, audition, and emotion, both during tasks and at 'rest' when no goal-directed activity is expected. I place the data in the context of published literature and current theories about tinnitus severity, while explaining the challenges and limitations of human MRI studies. A possible model of habituation to tinnitus is described, that of the attention system (via the frontal cortex) suppressing the response from the amygdala and the use of alternate nodes of the limbic system such as the insula and the parahippocampal gyrus when mediating emotion. PMID:26415997

  13. WNT/β-catenin signaling mediates human neural crest induction via a pre-neural border intermediate.

    PubMed

    Leung, Alan W; Murdoch, Barbara; Salem, Ahmed F; Prasad, Maneeshi S; Gomez, Gustavo A; García-Castro, Martín I

    2016-02-01

    Neural crest (NC) cells arise early in vertebrate development, migrate extensively and contribute to a diverse array of ectodermal and mesenchymal derivatives. Previous models of NC formation suggested derivation from neuralized ectoderm, via meso-ectodermal, or neural-non-neural ectoderm interactions. Recent studies using bird and amphibian embryos suggest an earlier origin of NC, independent of neural and mesodermal tissues. Here, we set out to generate a model in which to decipher signaling and tissue interactions involved in human NC induction. Our novel human embryonic stem cell (ESC)-based model yields high proportions of multipotent NC cells (expressing SOX10, PAX7 and TFAP2A) in 5 days. We demonstrate a crucial role for WNT/β-catenin signaling in launching NC development, while blocking placodal and surface ectoderm fates. We provide evidence of the delicate temporal effects of BMP and FGF signaling, and find that NC development is separable from neural and/or mesodermal contributions. We further substantiate the notion of a neural-independent origin of NC through PAX6 expression and knockdown studies. Finally, we identify a novel pre-neural border state characterized by early WNT/β-catenin signaling targets that displays distinct responses to BMP and FGF signaling from the traditional neural border genes. In summary, our work provides a fast and efficient protocol for human NC differentiation under signaling constraints similar to those identified in vivo in model organisms, and strengthens a framework for neural crest ontogeny that is separable from neural and mesodermal fates. PMID:26839343

  14. The neural and hormonal bases of human parental care.

    PubMed

    Rilling, James K

    2013-03-01

    As parents in modern western societies face increasing pressures that strain their ability to provide quality childcare, it is important to consider the neural and hormonal bases of sensitive and nurturing parenting. The topic has been explored systematically in non-human animals, and these studies have yielded a rich source of hypotheses for human studies. Considerable evidence links oxytocin (OT) with sensitive caregiving in both men and women, and with stimulatory infant contact in men and affectionate infant contact in women. Testosterone, on the other hand, decreases in men who become involved fathers, and testosterone may interfere with aspects of paternal care. In neuroimaging studies, exposing parents to child stimuli activates neural systems involved in understanding others' facial expressions (the putative mirror neuron system), others' feelings (anterior insula and thalamocingulate regions) and others' thoughts (dorsomedial prefrontal cortex), as well as reward systems involved in approach-related motivation (ventral tegmental area, substantia nigra, ventral striatum and medial orbitofrontal cortex), and systems involved with emotion regulation (lateral prefrontal cortex). There is some evidence that this activity can be attenuated in mothers who do not breastfeed, and mothers with post-partum depression, perhaps due in part to lower levels of OT exposure. On the other hand, there is evidence suggesting that high levels of oxytocin (OT) may enhance activation in some of these systems. For example, OT may stimulate dopamine release in the ventral striatum, rendering child stimuli more rewarding. A few recent studies have gone beyond merely describing neural correlates to establishing the functional significance of activation patterns by linking them with observed maternal behavior outside the scanner. The results of these studies suggest that there may be an optimal range of activation within certain neural systems, neither too high nor too low, that

  15. Intraspinal transplantation of mouse and human neural precursor cells

    PubMed Central

    Weinger, Jason G.; Chen, Lu; Coleman, Ronald; Leang, Ronika; Plaisted, Warren C.; Loring, Jeanne F.; Lane, Thomas E.

    2013-01-01

    This unit describes the preparation and transplantation of human neural precursor cells (hNPCs) and mouse neural precursor cells (mNPCs) into the thoracic region of the mouse spinal cord. The techniques in this unit also describe how to prepare the mouse for surgery by performing a laminectomy to expose the spinal cord for transplantation. Here we show NPCs genetically labeled with eGFP transplanted into the spinal cord of a mouse following viralmediated demyelination can efficiently be detected via eGFP expression. Transplantation of these cells into the spinal cord is an efficacious way to determine their effects in neurological disorders such as multiple sclerosis, Alzheimer's disease, and spinal cord injury. PMID:24510791

  16. Neural, cognitive, and evolutionary foundations of human altruism.

    PubMed

    Marsh, Abigail A

    2016-01-01

    This article considers three forms of altruism from both a psychological and a neural perspective, with an emphasis on homologies that can be observed across species and potentially illuminate altruism's evolutionary origins. Kin-based altruism benefits biological relatives and, according to the theory of inclusive fitness, is ultimately beneficial to the altruist from a genetic standpoint. Kin selection adequately explains some altruistic behavior, but it is not applicable to much human altruism. Little is known about the neural processes that support it, but they may include cortical regions involved in processing autobiographical memory and the identities of familiar others. Reciprocity-based altruism is performed in expectation of future rewards and is supported by dopaminergic cortico-striatal networks that guide behavior according to anticipated rewards. Care-based altruism is aimed at improving the well-being of distressed and vulnerable individuals and is closely linked to empathic concern. This form of altruism is thought to rely on the subcortical neural systems that support parental care, particularly structures densely populated with receptors for the hormones oxytocin and vasopressin, including the amygdala, stria terminalis, and striatum. The amygdala may be a particularly important convergence point for care-based altruism because of its dual role in responding both to cues that signal infantile vulnerability and those that signal distress. Research on altruism continues to converge across disciplines, but more research linking molecular-level neural processes to altruistic behavior in humans and other species is needed, as is research on how various forms of altruism intersect. For further resources related to this article, please visit the WIREs website. PMID:26685796

  17. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    PubMed Central

    Ouchi, Takehito; Shibata, Shinsuke; Fujimura, Takumi; Kawana, Hiromasa; Okano, Hideyuki; Nakagawa, Taneaki

    2016-01-01

    Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs). The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs) are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research. PMID:27006661

  18. Neural mirroring mechanisms and imitation in human infants

    PubMed Central

    Marshall, Peter J.; Meltzoff, Andrew N.

    2014-01-01

    Studying human infants will increase our understanding of the nature, origins and function of neural mirroring mechanisms. Human infants are prolific imitators. Infant imitation indicates observation–execution linkages in the brain prior to language and protracted learning. Investigations of neural aspects of these linkages in human infants have focused on the sensorimotor mu rhythm in the electroencephalogram, which occurs in the alpha frequency range over central electrode sites. Recent results show that the infant mu rhythm is desynchronized during action execution as well as action observation. Current work is elucidating properties of the infant mu rhythm and how it may relate to prelinguistic action processing and social understanding. Here, we consider this neuroscience research in relation to developmental psychological theory, particularly the ‘Like-Me’ framework, which holds that one of the chief cognitive tasks of the human infant is to map the similarity between self and other. We elucidate the value of integrating neuroscience findings with behavioural studies of infant imitation, and the reciprocal benefit of examining mirroring mechanisms from an ontogenetic perspective. PMID:24778387

  19. CD4-independent infection of human neural cells by human immunodeficiency virus type 1.

    PubMed Central

    Harouse, J M; Kunsch, C; Hartle, H T; Laughlin, M A; Hoxie, J A; Wigdahl, B; Gonzalez-Scarano, F

    1989-01-01

    A number of studies have indicated that central nervous system-derived cells can be infected with human immunodeficiency virus type 1 (HIV-1). To determine whether CD4, the receptor for HIV-1 in lymphoid cells, was responsible for infection of neural cells, we characterized infectable human central nervous system tumor lines and primary fetal neural cells and did not detect either CD4 protein or mRNA. We then attempted to block infection with anti-CD4 antibodies known to block infection of lymphoid cells; we noted no effect on any of these cultured cells. The results indicate that CD4 is not the receptor for HIV-1 infection of the glioblastoma line U373-MG, medulloblastoma line MED 217, or primary human fetal neural cells. Images PMID:2786088

  20. Low immunogenicity of in vitro-expanded human neural cells despite high MHC expression.

    PubMed

    Odeberg, Jenny; Piao, Jing-Hua; Samuelsson, Eva-Britt; Falci, Scott; Akesson, Elisabet

    2005-04-01

    The ability to expand human neural precursor cells in vitro offers new possibilities for future cell therapies. However, concern over immunologically based rejection of in vitro-expanded human neural cells confounds their use as donor cells. Here, we demonstrate that the expression of human leukocyte antigen (HLA) class I and II molecules, but not the co-stimulatory proteins CD40, CD80 and CD86, substantially increase during expansion of neurospheres. Furthermore, peripheral lymphocytes were unresponsive when co-cultured with in vitro-expanded neural cells. Taken together, these results suggest a low immunogenicity of these cultured human neural cells despite HLA incompatibility and high HLA expression. PMID:15748938

  1. Autonomic neural control of dynamic cerebral autoregulation in humans

    NASA Technical Reports Server (NTRS)

    Zhang, Rong; Zuckerman, Julie H.; Iwasaki, Kenichi; Wilson, Thad E.; Crandall, Craig G.; Levine, Benjamin D.

    2002-01-01

    BACKGROUND: The purpose of the present study was to determine the role of autonomic neural control of dynamic cerebral autoregulation in humans. METHODS AND RESULTS: We measured arterial pressure and cerebral blood flow (CBF) velocity in 12 healthy subjects (aged 29+/-6 years) before and after ganglion blockade with trimethaphan. CBF velocity was measured in the middle cerebral artery using transcranial Doppler. The magnitude of spontaneous changes in mean blood pressure and CBF velocity were quantified by spectral analysis. The transfer function gain, phase, and coherence between these variables were estimated to quantify dynamic cerebral autoregulation. After ganglion blockade, systolic and pulse pressure decreased significantly by 13% and 26%, respectively. CBF velocity decreased by 6% (P<0.05). In the very low frequency range (0.02 to 0.07 Hz), mean blood pressure variability decreased significantly (by 82%), while CBF velocity variability persisted. Thus, transfer function gain increased by 81%. In addition, the phase lead of CBF velocity to arterial pressure diminished. These changes in transfer function gain and phase persisted despite restoration of arterial pressure by infusion of phenylephrine and normalization of mean blood pressure variability by oscillatory lower body negative pressure. CONCLUSIONS: These data suggest that dynamic cerebral autoregulation is altered by ganglion blockade. We speculate that autonomic neural control of the cerebral circulation is tonically active and likely plays a significant role in the regulation of beat-to-beat CBF in humans.

  2. Neural systems for landmark-based wayfinding in humans

    PubMed Central

    Epstein, Russell A.; Vass, Lindsay K.

    2014-01-01

    Humans and animals use landmarks during wayfinding to determine where they are in the world and to guide their way to their destination. To implement this strategy, known as landmark-based piloting, a navigator must be able to: (i) identify individual landmarks, (ii) use these landmarks to determine their current position and heading, (iii) access long-term knowledge about the spatial relationships between locations and (iv) use this knowledge to plan a route to their navigational goal. Here, we review neuroimaging, neuropsychological and neurophysiological data that link the first three of these abilities to specific neural systems in the human brain. This evidence suggests that the parahippocampal place area is critical for landmark recognition, the retrosplenial/medial parietal region is centrally involved in localization and orientation, and both medial temporal lobe and retrosplenial/medial parietal lobe regions support long-term spatial knowledge. PMID:24366141

  3. Neural responses to perceiving suffering in humans and animals.

    PubMed

    Franklin, Robert G; Nelson, Anthony J; Baker, Michelle; Beeney, Joseph E; Vescio, Theresa K; Lenz-Watson, Aurora; Adams, Reginald B

    2013-01-01

    The human ability to perceive and understand others' suffering is critical to reinforcing and maintaining our social bonds. What is not clear, however, is the extent to which this generalizes to nonhuman entities. Anecdotal evidence indicates that people may engage in empathy-like processes when observing suffering nonhuman entities, but psychological research suggests that we more readily empathize with those to whom we are closer and more similar. In this research, we examined neural responses in participants while they were presented with pictures of human versus dog suffering. We found that viewing human and animal suffering led to large overlapping regions of activation previously implicated in empathic responding to suffering, including the anterior cingulate gyrus and anterior insula. Direct comparisons of viewing human and animal suffering also revealed differences such that human suffering yielded significantly greater medial prefrontal activation, consistent with high-level theory of mind, whereas animal suffering yielded significantly greater parietal and inferior frontal activation, consistent with more semantic evaluation and perceptual simulation. PMID:23405957

  4. Neural crest contributions to the lamprey head

    NASA Technical Reports Server (NTRS)

    McCauley, David W.; Bronner-Fraser, Marianne

    2003-01-01

    The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.

  5. Inducible regulation of GDNF expression in human neural stem cells.

    PubMed

    Wang, ShuYan; Ren, Ping; Guan, YunQian; Zou, ChunLin; Fu, LinLin; Zhang, Yu

    2013-01-01

    Glial cell derived neurotrophic factor (GDNF) holds promises for treating neurodegenerative diseases such as Parkinson's disease. Human neural stem cells (hNSCs) have proved to be a suitable cell delivery vehicle for the safe and efficient introduction of GDNF into the brain. In this study, we used hNSCs-infected with a lentivirus encoding GDNF and the hygromycin resistance gene as such vehicles. A modified tetracycline operator 7 (tetO7) was inserted into a region upstream of the EF1-α promoter to drive GDNF expression. After hygromycin selection, hNSCs were infected with a lentivirus encoding a KRAB-tetracycline repressor fusion protein (TTS). TTS bound to tetO7 and suppressed the expression of GDNF in hNSCs. Upon administration of doxycycline (Dox) the TTS-tetO7 complex separated and the expression of GDNF resumed. The hNSCs infected with GDNF expressed the neural stem cell specific markers, nestin and sox2, and exhibited no significant change in proliferation rate. However, the rate of apoptosis in hNSCs expressing GDNF was lower compared with normal NSCs in response to actinomycin treatment. Furthermore, a higher percentage of Tuj-1 positive cells were obtained from GDNF-producing NSCs under conditions that induced differentiation compared to control NSCs. The inducible expression of GDNF in hNSCs may provide a system for the controllable delivery of GDNF in patients with neurodegenerative diseases. PMID:23269553

  6. Human neural progenitor cells in central nervous system lesions.

    PubMed

    Åkesson, Elisabet; Sundström, Erik

    2016-02-01

    Various immature cells can be isolated from human embryonic and fetal central nervous system (CNS) residual tissue and potentially be used in cell therapy for a number of neurological diseases and CNS insults. Transplantation of neural stem and progenitor cells is essential for replacing lost cells, particularly in the CNS with very limited endogenous regenerative capacity. However, while dopamine released from transplanted cells can substitute the lost dopamine neurons in the experimental models of Parkinson's disease, stem and progenitor cells primarily have a neuroprotective effect, probably through the release of trophic factors. Understanding the therapeutic effects of transplanted cells is crucial to determine the design of clinical trials. During the last few years, a number of clinical trials for CNS diseases and insults such as amyotrophic lateral sclerosis (ALS), stroke, and spinal cord trauma using neural progenitor cells have been initiated. Data from these early studies will provide vital information on the safety of transplanting these cells, which still is a major concern. That the beneficial results observed in experimental models also can be repeated in the clinical setting is highly hoped for. PMID:26803559

  7. Neural basis of rhythmic timing networks in the human brain.

    PubMed

    Thaut, Michael H

    2003-11-01

    The study of rhythmicity provides insights into the understanding of temporal coding of music and temporal information processing in the human brain. Auditory rhythms rapidly entrain motor responses into stable steady synchronization states below and above conscious perception thresholds. Studying the neural dynamics of entrainment by measuring brain wave responses (MEG) we found nonlinear scaling of M100 amplitudes generated in primary auditory cortex relative to changes in the period of the rhythmic interval during subliminal and supraliminal tempo modulations. In recent brain imaging studies we have described the neural networks involved in motor synchronization to auditory rhythm. Activated regions include primary sensorimotor and cingulate areas, bilateral opercular premotor areas, bilateral SII, ventral prefrontal cortex, and, subcortically, anterior insula, putamen, and thalamus. Within the cerebellum, vermal regions and anterior hemispheres ipsilateral to the movement became significantly activated. Tracking temporal modulations additionally activated predominantly right prefrontal, anterior cingulate, and intraparietal regions as well as posterior cerebellar hemispheres. Furthermore, strong evidence exists for the substantial benefits of rhythmic stimuli in rehabilitation training with motor disorders. PMID:14681157

  8. Applications of neural networks in human shape visual perception.

    PubMed

    Wu, Bo-Wen; Fang, Yi-Chin; Lin, David Pei-Cheng

    2015-12-01

    Advances in optical and electronic technology can immensely reduce noise in images and greatly enhance human visual recognition. However, it is still difficult for human eyes to identify low-resolution thermal images, due to the limits imposed by psychological and physiological factors. In addition, changes in monitor brightness and lens resolution may also interfere with visual recognition abilities. To overcome these limitations, we devised a suitable and effective recognition method which may help the military in revising the shape parameters of long-range targets. The modulation transfer function was used as a basis to extend the visual characteristics of the human visual model and a new model was produced through the incorporation of new shape parameters. The new human visual model was next used in combination with a backpropagation neural network for better recognition of low-resolution thermal images. The new model was then tested in experiments and the results showed that the accuracy rate of recognition steadily rose by over 95%. PMID:26831387

  9. Minimal humanity cues induce neural empathic reactions towards non-human entities.

    PubMed

    Vaes, Jeroen; Meconi, Federica; Sessa, Paola; Olechowski, Mateusz

    2016-08-01

    The present study tested whether the attribution of humanness by means of a minimal humanity cue is sufficient for the occurrence of empathic neural reactions towards non-human entities that are painfully stimulated. Vegetables have been used as a control condition to explore empathy towards humans' pain before. In the context of the present study, they were given a minimal humanity cue (i.e., a human name) or not (i.e., an adjective). Human associations with these different types of vegetables were measured and where either represented: pricked by a needle (painful condition) or touched by a Q-tip (touch condition) while recording electroencephalographic activity from a sample of 18 healthy students. Event-related potentials (ERP) indicated that those participants classified as high humanizers, showed an increased neural reaction when vegetables with a name were painfully rather than neutrally stimulated compared to vegetables without a name. These reactions occurred both in an early (P2: 130-180 ms) and a later (P3: 360-540 ms) ERP time-window. Moreover, this differential reaction on the P3 significantly correlated with participants' explicit empathic tendencies. Overall, these findings suggest that empathy can be triggered for non-human entities as long as they are seen as minimally human. PMID:27288560

  10. Finding the beat: a neural perspective across humans and non-human primates.

    PubMed

    Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W Tecumseh

    2015-03-19

    Humans possess an ability to perceive and synchronize movements to the beat in music ('beat perception and synchronization'), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia-thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization-continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. PMID:25646516

  11. Finding the beat: a neural perspective across humans and non-human primates

    PubMed Central

    Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W. Tecumseh

    2015-01-01

    Humans possess an ability to perceive and synchronize movements to the beat in music (‘beat perception and synchronization’), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia–thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization–continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. PMID:25646516

  12. Neural decoding of expressive human movement from scalp electroencephalography (EEG)

    PubMed Central

    Cruz-Garza, Jesus G.; Hernandez, Zachery R.; Nepaul, Sargoon; Bradley, Karen K.; Contreras-Vidal, Jose L.

    2014-01-01

    Although efforts to characterize human movement through electroencephalography (EEG) have revealed neural activities unique to limb control that can be used to infer movement kinematics, it is still unknown the extent to which EEG can be used to discern the expressive qualities that influence such movements. In this study we used EEG and inertial sensors to record brain activity and movement of five skilled and certified Laban Movement Analysis (LMA) dancers. Each dancer performed whole body movements of three Action types: movements devoid of expressive qualities (“Neutral”), non-expressive movements while thinking about specific expressive qualities (“Think”), and enacted expressive movements (“Do”). The expressive movement qualities that were used in the “Think” and “Do” actions consisted of a sequence of eight Laban Effort qualities as defined by LMA—a notation system and language for describing, visualizing, interpreting and documenting all varieties of human movement. We used delta band (0.2–4 Hz) EEG as input to a machine learning algorithm that computed locality-preserving Fisher's discriminant analysis (LFDA) for dimensionality reduction followed by Gaussian mixture models (GMMs) to decode the type of Action. We also trained our LFDA-GMM models to classify all the possible combinations of Action Type and Laban Effort quality (giving a total of 17 classes). Classification accuracy rates were 59.4 ± 0.6% for Action Type and 88.2 ± 0.7% for Laban Effort quality Type. Ancillary analyses of the potential relations between the EEG and movement kinematics of the dancer's body, indicated that motion-related artifacts did not significantly influence our classification results. In summary, this research demonstrates that EEG has valuable information about the expressive qualities of movement. These results may have applications for advancing the understanding of the neural basis of expressive movements and for the development of

  13. Neural decoding of expressive human movement from scalp electroencephalography (EEG).

    PubMed

    Cruz-Garza, Jesus G; Hernandez, Zachery R; Nepaul, Sargoon; Bradley, Karen K; Contreras-Vidal, Jose L

    2014-01-01

    Although efforts to characterize human movement through electroencephalography (EEG) have revealed neural activities unique to limb control that can be used to infer movement kinematics, it is still unknown the extent to which EEG can be used to discern the expressive qualities that influence such movements. In this study we used EEG and inertial sensors to record brain activity and movement of five skilled and certified Laban Movement Analysis (LMA) dancers. Each dancer performed whole body movements of three Action types: movements devoid of expressive qualities ("Neutral"), non-expressive movements while thinking about specific expressive qualities ("Think"), and enacted expressive movements ("Do"). The expressive movement qualities that were used in the "Think" and "Do" actions consisted of a sequence of eight Laban Effort qualities as defined by LMA-a notation system and language for describing, visualizing, interpreting and documenting all varieties of human movement. We used delta band (0.2-4 Hz) EEG as input to a machine learning algorithm that computed locality-preserving Fisher's discriminant analysis (LFDA) for dimensionality reduction followed by Gaussian mixture models (GMMs) to decode the type of Action. We also trained our LFDA-GMM models to classify all the possible combinations of Action Type and Laban Effort quality (giving a total of 17 classes). Classification accuracy rates were 59.4 ± 0.6% for Action Type and 88.2 ± 0.7% for Laban Effort quality Type. Ancillary analyses of the potential relations between the EEG and movement kinematics of the dancer's body, indicated that motion-related artifacts did not significantly influence our classification results. In summary, this research demonstrates that EEG has valuable information about the expressive qualities of movement. These results may have applications for advancing the understanding of the neural basis of expressive movements and for the development of neuroprosthetics to restore

  14. Antidepressants increase neural progenitor cells in the human hippocampus

    PubMed Central

    Boldrini, Maura; Underwood, Mark D.; Hen, René; Rosoklija, Gorazd B.; Dwork, Andrew J.; Mann, J. John; Arango, Victoria

    2009-01-01

    Selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) increase neurogenesis in the dentate gyrus (DG) of rodents and nonhuman primates. We determined whether SSRIs or TCAs increase neural progenitor (NPCs) and dividing cells in the human DG in major depressive disorder (MDD). Whole frozen hippocampi from untreated subjects with MDD (N = 5), antidepressant-treated MDD (MDDT, N = 7), and controls (C, N = 7) were fixed, sectioned and immunostained for NPCs and dividing cell markers (nestin and Ki-67 respectively), NeuN and GFAP, in single and double labeling. NPC and dividing cell numbers in the DG were estimated by stereology. Clinical data were obtained by psychological autopsy and toxicological and neuropathological examination performed in all subjects. NPCs decreased with age (p = 0.034). Females had more NPCs than males (p = 0.023). Correcting for age and sex, MDDT receiving SSRIs had more NPCs than untreated MDD (p ≤ 0.001) and controls (p ≤ 0.001), NPCs were not different in SSRIs- and TCAs-treated MDDT (p = 0.169). Dividing cell number, unaffected by age or sex, was greater in MDDT receiving TCAs than in untreated MDD (p ≤ 0.001), SSRI-treated MDD (p = 0.001) and controls (p ≤ 0.001). The NPCs and dividing cells increase in MDDT was localized to the rostral DG. MDDT had a larger DG volume compared with untreated MDD or controls (p = 0.009). Antidepressants increase neural progenitor cell number in the anterior human dentate gyrus. Whether this finding is critical or necessary for the antidepressants effect remains to be determined. PMID:19606083

  15. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells.

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium response, and are predominantly gamma-aminobutyric acid expressing. The 3D tissues will facilitate investigation of human neural development, function, and disease, and may be adaptable for engineering other 3D tissues from different stem cell types. PMID:27028356

  16. Neural crest requires Impdh2 for development of the enteric nervous system, great vessels, and craniofacial skeleton.

    PubMed

    Lake, Jonathan I; Avetisyan, Marina; Zimmermann, Albert G; Heuckeroth, Robert O

    2016-01-01

    Mutations that impair the proliferation of enteric neural crest-derived cells (ENCDC) cause Hirschsprung disease, a potentially lethal birth defect where the enteric nervous system (ENS) is absent from distal bowel. Inosine 5' monophosphate dehydrogenase (IMPDH) activity is essential for de novo GMP synthesis, and chemical inhibition of IMPDH induces Hirschsprung disease-like pathology in mouse models by reducing ENCDC proliferation. Two IMPDH isoforms are ubiquitously expressed in the embryo, but only IMPDH2 is required for life. To further understand the role of IMPDH2 in ENS and neural crest development, we characterized a conditional Impdh2 mutant mouse. Deletion of Impdh2 in the early neural crest using the Wnt1-Cre transgene produced defects in multiple neural crest derivatives including highly penetrant intestinal aganglionosis, agenesis of the craniofacial skeleton, and cardiac outflow tract and great vessel malformations. Analysis using a Rosa26 reporter mouse suggested that some or all of the remaining ENS in Impdh2 conditional-knockout animals was derived from cells that escaped Wnt1-Cre mediated DNA recombination. These data suggest that IMPDH2 mediated guanine nucleotide synthesis is essential for normal development of the ENS and other neural crest derivatives. PMID:26546974

  17. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium

    PubMed Central

    Stottmann, Rolf W.; Choi, Murim; Mishina, Yuji; Meyers, Erik N.; Klingensmith, John

    2010-01-01

    Summary The neural crest is a multipotent, migratory cell population arising from the border of the neural and surface ectoderm. In mouse, the initial migratory neural crest cells occur at the five-somite stage. Bone morphogenetic proteins (BMPs), particularly BMP2 and BMP4, have been implicated as regulators of neural crest cell induction, maintenance, migration, differentiation and survival. Mouse has three known BMP2/4 type I receptors, of which Bmpr1a is expressed in the neural tube sufficiently early to be involved in neural crest development from the outset; however, earlier roles in other domains obscure its requirement in the neural crest. We have ablated Bmpr1a specifically in the neural crest, beginning at the five-somite stage. We find that most aspects of neural crest development occur normally; suggesting that BMPRIA is unnecessary for many aspects of early neural crest biology. However, mutant embryos display a shortened cardiac outflow tract with defective septation, a process known to require neural crest cells and to be essential for perinatal viability. Surprisingly, these embryos die in mid-gestation from acute heart failure, with reduced proliferation of ventricular myocardium. The myocardial defect may involve reduced BMP signaling in a novel, minor population of neural crest derivatives in the epicardium, a known source of ventricular myocardial proliferation signals. These results demonstrate that BMP2/4 signaling in mammalian neural crest derivatives is essential for outflow tract development and may regulate a crucial proliferation signal for the ventricular myocardium. PMID:15073157

  18. Brief Azacytidine Step Allows The Conversion of Suspension Human Fibroblasts into Neural Progenitor-Like Cells

    PubMed Central

    Mirakhori, Fahimeh; Zeynali, Bahman; Kiani, Sahar; Baharvand, Hossein

    2015-01-01

    In recent years transdifferentiation technology has enabled direct conversion of human fibroblasts to become a valuable, abundant and accessible cell source for patient-specific induced cell generation in biomedical research. The majority of transdifferentiation approaches rely upon viral gene delivery which due to random integration with the host genome can cause genome instability and tumorigenesis upon transplantation. Here, we provide a simple way to induce neural progenitor-like cells from human fibroblasts without genetic manipulation by changing physicochemical culture properties from monolayer culture into a suspension in the presence of a chemical DNA methyltransferase inhibitor agent, Azacytidine. We have demonstrated the expression of neural progenitor-like markers, morphology and the ability to spontaneously differentiate into neural-like cells. This approach is simple, inexpensive, lacks genetic manipulation and could be a foundation for future chemical neural transdifferentiation and a safe induction of neural progenitor cells from human fibroblasts for clinical applications. PMID:25870845

  19. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    PubMed Central

    Prajumwongs, Piya; Weeranantanapan, Oratai; Jaroonwitchawan, Thiranut; Noisa, Parinya

    2016-01-01

    Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs) recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation. PMID:27239201

  20. Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors

    PubMed Central

    Edri, Reuven; Yaffe, Yakey; Ziller, Michael J.; Mutukula, Naresh; Volkman, Rotem; David, Eyal; Jacob-Hirsch, Jasmine; Malcov, Hagar; Levy, Carmit; Rechavi, Gideon; Gat-Viks, Irit; Meissner, Alexander; Elkabetz, Yechiel

    2015-01-01

    Decoding heterogeneity of pluripotent stem cell (PSC)-derived neural progeny is fundamental for revealing the origin of diverse progenitors, for defining their lineages, and for identifying fate determinants driving transition through distinct potencies. Here we have prospectively isolated consecutively appearing PSC-derived primary progenitors based on their Notch activation state. We first isolate early neuroepithelial cells and show their broad Notch-dependent developmental and proliferative potential. Neuroepithelial cells further yield successive Notch-dependent functional primary progenitors, from early and midneurogenic radial glia and their derived basal progenitors, to gliogenic radial glia and adult-like neural progenitors, together recapitulating hallmarks of neural stem cell (NSC) ontogeny. Gene expression profiling reveals dynamic stage-specific transcriptional patterns that may link development of distinct progenitor identities through Notch activation. Our observations provide a platform for characterization and manipulation of distinct progenitor cell types amenable for developing streamlined neural lineage specification paradigms for modelling development in health and disease. PMID:25799239

  1. Requirement for Foxd3 in Maintenance of Neural Crest Progenitors

    PubMed Central

    Teng, Lu; Mundell, Nathan A.; Frist, Audrey Y.; Wang, Qiaohong; Labosky, Patricia A.

    2008-01-01

    Summary Understanding the molecular mechanisms of stem cell maintenance is critical for the ultimate goal of manipulating stem cells for treatment of disease. Foxd3 is required early in mouse embryogenesis; Foxd3−/− embryos fail around the time of implantation, cells of the inner cell mass cannot be maintained in vitro, and blastocyst-derived stem cell lines cannot be established. Here, we report that Foxd3 is required for maintenance of the multipotent mammalian neural crest. Using tissue specific deletion of Foxd3 in the neural crest, we show that Foxd3flox/−; Wnt1-Cre mice die perinatally with a catastrophic loss of neural crest-derived structures. Cranial neural crest tissues are either missing or severely reduced in size, the peripheral nervous system consists of reduced dorsal root ganglia and cranial nerves, and the entire gastrointestinal tract is devoid of neural crest derivatives. These results demonstrate a global role for this transcriptional repressor in all aspects of neural crest maintenance along the anterior-posterior axis, and establish an unprecedented molecular link between multiple divergent progenitor lineages of the mammalian embryo. PMID:18367558

  2. The Hippo pathway member YAP enhances human neural crest cell fate and migration.

    PubMed

    Hindley, Christopher J; Condurat, Alexandra Larisa; Menon, Vishal; Thomas, Ria; Azmitia, Luis M; Davis, Jason A; Pruszak, Jan

    2016-01-01

    The Hippo/YAP pathway serves as a major integrator of cell surface-mediated signals and regulates key processes during development and tumorigenesis. The neural crest is an embryonic tissue known to respond to multiple environmental cues in order to acquire appropriate cell fate and migration properties. Using multiple in vitro models of human neural development (pluripotent stem cell-derived neural stem cells; LUHMES, NTERA2 and SH-SY5Y cell lines), we investigated the role of Hippo/YAP signaling in neural differentiation and neural crest development. We report that the activity of YAP promotes an early neural crest phenotype and migration, and provide the first evidence for an interaction between Hippo/YAP and retinoic acid signaling in this system. PMID:26980066

  3. The Hippo pathway member YAP enhances human neural crest cell fate and migration

    PubMed Central

    Hindley, Christopher J.; Condurat, Alexandra Larisa; Menon, Vishal; Thomas, Ria; Azmitia, Luis M.; Davis, Jason A.; Pruszak, Jan

    2016-01-01

    The Hippo/YAP pathway serves as a major integrator of cell surface-mediated signals and regulates key processes during development and tumorigenesis. The neural crest is an embryonic tissue known to respond to multiple environmental cues in order to acquire appropriate cell fate and migration properties. Using multiple in vitro models of human neural development (pluripotent stem cell-derived neural stem cells; LUHMES, NTERA2 and SH-SY5Y cell lines), we investigated the role of Hippo/YAP signaling in neural differentiation and neural crest development. We report that the activity of YAP promotes an early neural crest phenotype and migration, and provide the first evidence for an interaction between Hippo/YAP and retinoic acid signaling in this system. PMID:26980066

  4. An Fgf8 Mouse Mutant Phenocopies Human 22q11 Deletion Syndrome

    PubMed Central

    Frank, Deborah U.; Fotheringham, Lori K.; Brewer, Judson A.; Muglia, Louis J.; Tristani-Firouzi, Martin; Capecchi, Mario R.; Moon, Anne M.

    2006-01-01

    SUMMARY Deletion of chromosome 22q11, the most common microdeletion detected in humans, is associated with a life-threatening array of birth defects. Although 90% of affected individuals share the same three megabase deletion, their phenotype is highly variable and includes craniofacial and cardiovascular anomalies, hypoplasia or aplasia of the thymus with associated deficiency of T cells, hypocalcemia with hypoplasia or aplasia of the parathyroids, and a variety of central nervous system abnormalities. Because ablation of neural crest in chicks produces many features of the deletion 22q11 syndrome, it has been proposed that haploinsufficiency in this region impacts neural crest function during cardiac and pharyngeal arch development. Few factors required for migration, survival, proliferation and subsequent differentiation of pharyngeal arch neural crest and mesoderm-derived mesenchyme into their respective cardiovascular, musculoskeletal, and glandular derivatives have been identified. However, the importance of epithelial-mesenchymal interactions and pharyngeal endoderm function is becoming increasingly clear. Fibroblast growth factor 8 is a signaling molecule expressed in the ectoderm and endoderm of the developing pharyngeal arches and known to play an important role in survival and patterning of first arch tissues. We demonstrate a dosage-sensitive requirement for FGF8 during development of pharyngeal arch, pharyngeal pouch and neural crest-derived tissues. We show that FGF8 deficient embryos have lethal malformations of the cardiac outflow tract, great vessels and heart due, at least in part, to failure to form the fourth pharyngeal arch arteries, altered expression of Fgf10 in the pharyngeal mesenchyme, and abnormal apoptosis in pharyngeal and cardiac neural crest. The Fgf8 mutants described herein display the complete array of cardiovascular, glandular and craniofacial phenotypes seen in human deletion 22q11 syndromes. This represents the first single gene

  5. Methods for derivation of multipotent neural crest cells derived from human pluripotent stem cells

    PubMed Central

    Avery, John; Dalton, Stephen

    2016-01-01

    Summary Multipotent, neural crest cells (NCCs) produce a wide-range of cell types during embryonic development. This includes melanocytes, peripheral neurons, smooth muscle cells, osteocytes, chondrocytes and adipocytes. The protocol described here allows for highly-efficient differentiation of human pluripotent stem cells to a neural crest fate within 15 days. This is accomplished under feeder-free conditions, using chemically defined medium supplemented with two small molecule inhibitors that block glycogen synthase kinase 3 (GSK3) and bone morphogenic protein (BMP) signaling. This technology is well-suited as a platform to understand in greater detail the pathogenesis of human disease associated with impaired neural crest development/migration. PMID:25986498

  6. Plasticity and neural stem cells in the enteric nervous system.

    PubMed

    Schäfer, Karl-Herbert; Van Ginneken, Chris; Copray, Sjef

    2009-12-01

    The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to microenvironmental influences, be it in inflammatory bowel diseases or changing dietary habits. The presence of neural stem cells in the pre-, postnatal, and adult gut might be one of the prerequisites to adapt to changing conditions. During the last decade, the ENS has increasingly come into the focus of clinical neural stem cell research, forming a considerable pool of neural crest derived stem cells, which could be used for cell therapy of dysganglionosis, that is, diseases based on the deficient or insufficient colonization of the gut by neural crest derived stem cells; in addition, the ENS could be an easily accessible neural stem cell source for cell replacement therapies for neurodegenerative disorders or traumatic lesions of the central nervous system. PMID:19943347

  7. In our own image? Emotional and neural processing differences when observing human-human vs human-robot interactions.

    PubMed

    Wang, Yin; Quadflieg, Susanne

    2015-11-01

    Notwithstanding the significant role that human-robot interactions (HRI) will play in the near future, limited research has explored the neural correlates of feeling eerie in response to social robots. To address this empirical lacuna, the current investigation examined brain activity using functional magnetic resonance imaging while a group of participants (n = 26) viewed a series of human-human interactions (HHI) and HRI. Although brain sites constituting the mentalizing network were found to respond to both types of interactions, systematic neural variation across sites signaled diverging social-cognitive strategies during HHI and HRI processing. Specifically, HHI elicited increased activity in the left temporal-parietal junction indicative of situation-specific mental state attributions, whereas HRI recruited the precuneus and the ventromedial prefrontal cortex (VMPFC) suggestive of script-based social reasoning. Activity in the VMPFC also tracked feelings of eeriness towards HRI in a parametric manner, revealing a potential neural correlate for a phenomenon known as the uncanny valley. By demonstrating how understanding social interactions depends on the kind of agents involved, this study highlights pivotal sub-routes of impression formation and identifies prominent challenges in the use of humanoid robots. PMID:25911418

  8. Neural Population Tuning Links Visual Cortical Anatomy to Human Visual Perception

    PubMed Central

    Song, Chen; Schwarzkopf, Dietrich Samuel; Kanai, Ryota; Rees, Geraint

    2015-01-01

    Summary The anatomy of cerebral cortex is characterized by two genetically independent variables, cortical thickness and cortical surface area, that jointly determine cortical volume. It remains unclear how cortical anatomy might influence neural response properties and whether such influences would have behavioral consequences. Here, we report that thickness and surface area of human early visual cortices exert opposite influences on neural population tuning with behavioral consequences for perceptual acuity. We found that visual cortical thickness correlated negatively with the sharpness of neural population tuning and the accuracy of perceptual discrimination at different visual field positions. In contrast, visual cortical surface area correlated positively with neural population tuning sharpness and perceptual discrimination accuracy. Our findings reveal a central role for neural population tuning in linking visual cortical anatomy to visual perception and suggest that a perceptually advantageous visual cortex is a thinned one with an enlarged surface area. PMID:25619658

  9. Auditory training improves neural timing in the human brainstem.

    PubMed

    Russo, Nicole M; Nicol, Trent G; Zecker, Steven G; Hayes, Erin A; Kraus, Nina

    2005-01-01

    The auditory brainstem response reflects neural encoding of the acoustic characteristic of a speech syllable with remarkable precision. Some children with learning impairments demonstrate abnormalities in this preconscious measure of neural encoding especially in background noise. This study investigated whether auditory training targeted to remediate perceptually-based learning problems would alter the neural brainstem encoding of the acoustic sound structure of speech in such children. Nine subjects, clinically diagnosed with a language-based learning problem (e.g., dyslexia), worked with auditory perceptual training software. Prior to beginning and within three months after completing the training program, brainstem responses to the syllable /da/ were recorded in quiet and background noise. Subjects underwent additional auditory neurophysiological, perceptual, and cognitive testing. Ten control subjects, who did not participate in any remediation program, underwent the same battery of tests at time intervals equivalent to the trained subjects. Transient and sustained (frequency-following response) components of the brainstem response were evaluated. The primary pathway afferent volley -- neural events occurring earlier than 11 ms after stimulus onset -- did not demonstrate plasticity. However, quiet-to-noise inter-response correlations of the sustained response ( approximately 11-50 ms) increased significantly in the trained children, reflecting improved stimulus encoding precision, whereas control subjects did not exhibit this change. Thus, auditory training can alter the preconscious neural encoding of complex sounds by improving neural synchrony in the auditory brainstem. Additionally, several measures of brainstem response timing were related to changes in cortical physiology, as well as perceptual, academic, and cognitive measures from pre- to post-training. PMID:15474654

  10. Modeling physiological and pathological human neurogenesis in the dish

    PubMed Central

    Broccoli, Vania; Giannelli, Serena G.; Mazzara, Pietro G.

    2014-01-01

    New advances in directing the neuronal differentiation of human embryonic and induced pluripotent stem cells (hPSCs, abbreviation intended to convey both categories of pluripotent stem cells) have promoted the development of culture systems capable of modeling early neurogenesis and neural specification at some of their critical milestones. The hPSC-derived neural rosette can be considered the in vitro counterpart of the developing neural tube, since both structures share a virtually equivalent architecture and related functional properties. Epigenetic stimulation methods can modulate the identity of the rosette neural progenitors in order to generate authentic neuronal subtypes, as well as a full spectrum of neural crest derivatives. The intrinsic capacity of induced pluripotent cell-derived neural tissue to self-organize has become fully apparent with the emergence of innovative in vitro systems that are able to shape the neuronal differentiation of hPSCs into organized tissues that develop in three dimensions. However, significant hurdles remain that must be completely solved in order to facilitate the use of hPSCs in modeling (e.g., late-onset disorders) or in building therapeutic strategies for cell replacement. In this direction, new procedures have been established to promote the maturation and functionality of hPSC-derived neurons. Meanwhile, new methods to accelerate the aging of in vitro differentiating cells are still in development. hPSC-based technology has matured enough to offer a significant and reliable model system for early and late neurogenesis that could be extremely informative for the study of the physiological and pathological events that occur during this process. Thus, full exploitation of this cellular system can provide a better understanding of the physiological events that shape human brain structures, as well as a solid platform to investigate the pathological mechanisms at the root of human diseases. PMID:25104921

  11. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    PubMed Central

    Hurst, Jillian H; Mumaw, Jennifer; Machacek, David W; Sturkie, Carla; Callihan, Phillip; Stice, Steve L; Hooks, Shelley B

    2008-01-01

    Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP) cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA) and Sphingosine-1-phosphate (S1P) receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR)- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors. PMID:19077254

  12. Macroscopic Neural Oscillation during Skilled Reaching Movements in Humans

    PubMed Central

    Chung, Chun Kee

    2016-01-01

    The neural mechanism of skilled movements, such as reaching, has been considered to differ from that of rhythmic movement such as locomotion. It is generally thought that skilled movements are consciously controlled by the brain, while rhythmic movements are usually controlled autonomously by the spinal cord and brain stem. However, several studies in recent decades have suggested that neural networks in the spinal cord may also be involved in the generation of skilled movements. Moreover, a recent study revealed that neural activities in the motor cortex exhibit rhythmic oscillations corresponding to movement frequency during reaching movements as rhythmic movements. However, whether the oscillations are generated in the spinal cord or the cortical circuit in the motor cortex causes the oscillations is unclear. If the spinal cord is involved in the skilled movements, then similar rhythmic oscillations with time delays should be found in macroscopic neural activity. We measured whole-brain MEG signals during reaching. The MEG signals were analyzed using a dynamical analysis method. We found that rhythmic oscillations with time delays occur in all subjects during reaching movements. The results suggest that the corticospinal system is involved in the generation and control of the skilled movements as rhythmic movements. PMID:27524996

  13. Macroscopic Neural Oscillation during Skilled Reaching Movements in Humans.

    PubMed

    Yeom, Hong Gi; Kim, June Sic; Chung, Chun Kee

    2016-01-01

    The neural mechanism of skilled movements, such as reaching, has been considered to differ from that of rhythmic movement such as locomotion. It is generally thought that skilled movements are consciously controlled by the brain, while rhythmic movements are usually controlled autonomously by the spinal cord and brain stem. However, several studies in recent decades have suggested that neural networks in the spinal cord may also be involved in the generation of skilled movements. Moreover, a recent study revealed that neural activities in the motor cortex exhibit rhythmic oscillations corresponding to movement frequency during reaching movements as rhythmic movements. However, whether the oscillations are generated in the spinal cord or the cortical circuit in the motor cortex causes the oscillations is unclear. If the spinal cord is involved in the skilled movements, then similar rhythmic oscillations with time delays should be found in macroscopic neural activity. We measured whole-brain MEG signals during reaching. The MEG signals were analyzed using a dynamical analysis method. We found that rhythmic oscillations with time delays occur in all subjects during reaching movements. The results suggest that the corticospinal system is involved in the generation and control of the skilled movements as rhythmic movements. PMID:27524996

  14. Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment

    PubMed Central

    Kulesa, Paul M.; Kasemeier-Kulesa, Jennifer C.; Teddy, Jessica M.; Margaryan, Naira V.; Seftor, Elisabeth A.; Seftor, Richard E. B.; Hendrix, Mary J. C.

    2006-01-01

    Human metastatic melanoma cells express a dedifferentiated, plastic phenotype, which may serve as a selective advantage, because melanoma cells invade various microenvironments. Over the last three decades, there has been an increased focus on the role of the tumor microenvironment in cancer progression, with the goal of reversing the metastatic phenotype. Here, using an embryonic chick model, we explore the possibility of reverting the metastatic melanoma phenotype to its cell type of origin, the neural-crest-derived melanocyte. GFP-labeled adult human metastatic melanoma cells were transplanted in ovo adjacent to host chick premigratory neural crest cells and analyzed 48 and 96 h after egg reincubation. Interestingly, the transplanted melanoma cells do not form tumors. Instead, we find that transplanted melanoma cells invade surrounding chick tissues in a programmed manner, distributing along host neural-crest-cell migratory pathways. The invading melanoma cells display neural-crest-cell-like morphologies and populate host peripheral structures, including the branchial arches, dorsal root and sympathetic ganglia. Analysis of a melanocyte-specific phenotype marker (MART-1) and a neuronal marker (Tuj1) revealed a subpopulation of melanoma cells that invade the chick periphery and express MART-1 and Tuj1. Our results demonstrate the ability of adult human metastatic melanoma cells to respond to chick embryonic environmental cues, a subset of which may undergo a reprogramming of their metastatic phenotype. This model has the potential to provide insights into the regulation of tumor cell plasticity by an embryonic milieu, which may hold significant therapeutic promise. PMID:16505384

  15. Differential neural responses to humans vs. robots: an event-related potential study.

    PubMed

    Hirai, Masahiro; Hiraki, Kazuo

    2007-08-24

    Do we perceive humanoid robots as human beings? Recent neuroimaging studies have reported similarity in the neural processing of human and robot actions in the superior temporal sulcus area but a differential neural response in the premotor area. These studies suggest that the neural activity of the occipitotemporal region would not be affected by appearance information. Unlike those studies, in this study, by using the inversion effect as an index, we demonstrated for the first time that the appearance information of a presented action affects neural responses in the occipitotemporal region. In event-related potential (ERP) studies, the inversion effect is the phenomenon whereby an upright face- and body-sensitive ERP component in the occipitotemporal region is enhanced and delayed up to 200 ms in response to an inverted face and body, but not to an inverted object. We used three kinds of walking animation with different appearance information (human, robot, and point-light) as well as inverted stimuli of each appearance. The anatomical structure and walking speed of the presented stimuli were all identical. The results showed that the inversion effect occurred in the right occipitotemporal region only in response to human appearance, and not robotic and point-light appearances. That is, the amplitude of the inverted condition of human appearance was significantly larger than that of the upright condition only. Our results, which are contrary to other recent neuroimaging studies, suggested that appearance information affects the neural response in the occipitotemporal region. PMID:17658496

  16. Neural mechanisms of visual backward masking revealed by high temporal resolution imaging of human brain.

    PubMed

    Noguchi, Yasuki; Kakigi, Ryusuke

    2005-08-01

    Backward masking is one of the potent ways to reveal the neural mechanism of visual awareness in humans. Although previous neuroimaging studies have reported that the visual masking involves the attenuation of hemodynamic signals to the masked stimulus in visual ventral regions such as the fusiform and inferior temporal gyrus, the temporal profiles of this attenuation as a whole neural population is mostly unclear. Here we used magnetoencephalography and investigated the neural response changes in higher visual region induced by backward masking. The combination of our previous random dot blinking method with the sensor-based analysis isolated the neural responses in the higher visual cortex relating to shape perception. The results revealed that, as the visibility of the target stimulus was reduced by the mask following it, the neural response to the target in the ventral regions showed gradual decreases both in its peak amplitude and peak latency. Furthermore, this decrease in the peak amplitudes was significantly correlated with the behavioral accuracy of the target identification, while the peak latency was not. These results indicate that backward masking simultaneously produces two types of neural changes in higher visual regions: attenuation of the populational neural activity itself and temporal interruption of this activity by the subsequent mask response. Especially, our data suggest that the response attenuation in higher visual response is a main cause of the perceptual impairment observed in the backward masking paradigm. PMID:15878677

  17. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.

    PubMed

    Tani, Jun; Nishimoto, Ryu; Namikawa, Jun; Ito, Masato

    2008-02-01

    This paper examines characteristics of interactive learning between human tutors and a robot having a dynamic neural-network model, which is inspired by human parietal cortex functions. A humanoid robot, with a recurrent neural network that has a hierarchical structure, learns to manipulate objects. Robots learn tasks in repeated self-trials with the assistance of human interaction, which provides physical guidance until the tasks are mastered and learning is consolidated within the neural networks. Experimental results and the analyses showed the following: 1) codevelopmental shaping of task behaviors stems from interactions between the robot and a tutor; 2) dynamic structures for articulating and sequencing of behavior primitives are self-organized in the hierarchically organized network; and 3) such structures can afford both generalization and context dependency in generating skilled behaviors. PMID:18270081

  18. Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses.

    PubMed

    Merfeld, D M; Zupan, L H

    2002-02-01

    All linear accelerometers measure gravitoinertial force, which is the sum of gravitational force (tilt) and inertial force due to linear acceleration (translation). Neural strategies must exist to elicit tilt and translation responses from this ambiguous cue. To investigate these neural processes, we developed a model of human responses and simulated a number of motion paradigms used to investigate this tilt/translation ambiguity. In this model, the separation of GIF into neural estimates of gravity and linear acceleration is accomplished via an internal model made up of three principal components: 1) the influence of rotational cues (e.g., semicircular canals) on the neural representation of gravity, 2) the resolution of gravitoinertial force into neural representations of gravity and linear acceleration, and 3) the neural representation of the dynamics of the semicircular canals. By combining these simple hypotheses within the internal model framework, the model mimics human responses to a number of different paradigms, ranging from simple paradigms, like roll tilt, to complex paradigms, like postrotational tilt and centrifugation. It is important to note that the exact same mechanisms can explain responses induced by simple movements as well as by more complex paradigms; no additional elements or hypotheses are needed to match the data obtained during more complex paradigms. Therefore these modeled response characteristics are consistent with available data and with the hypothesis that the nervous system uses internal models to estimate tilt and translation in the presence of ambiguous sensory cues. PMID:11826049

  19. Comprehensive Gene Expression Analysis of Human Embryonic Stem Cells during Differentiation into Neural Cells

    PubMed Central

    Fathi, Ali; Hatami, Maryam; Hajihosseini, Vahid; Fattahi, Faranak; Kiani, Sahar; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2011-01-01

    Global gene expression analysis of human embryonic stem cells (hESCs) that differentiate into neural cells would help to further define the molecular mechanisms involved in neurogenesis in humans. We performed a comprehensive transcripteome analysis of hESC differentiation at three different stages: early neural differentiation, neural ectoderm, and differentiated neurons. We identified and validated time-dependent gene expression patterns and showed that the gene expression patterns reflect early ESC differentiation. Sets of genes are induced in primary ectodermal lineages and then in differentiated neurons, constituting consecutive waves of known and novel genes. Pathway analysis revealed dynamic expression patterns of members of several signaling pathways, including NOTCH, mTOR and Toll like receptors (TLR), during neural differentiation. An interaction network analysis revealed that the TGFβ family of genes, including LEFTY1, ID1 and ID2, are possible key players in the proliferation and maintenance of neural ectoderm. Collectively, these results enhance our understanding of the molecular dynamics underlying neural commitment and differentiation. PMID:21829537

  20. Genetic analysis of disheveled 2 and disheveled 3 in human neural tube defects.

    PubMed

    De Marco, Patrizia; Merello, Elisa; Consales, Alessandro; Piatelli, Gianluca; Cama, Armando; Kibar, Zoha; Capra, Valeria

    2013-03-01

    Neural tube defects are severe malformations affecting 1/1,000 live births. The planar cell polarity pathway controls the neural tube closure and has been implicated in the pathogenesis of neural tube defects both in animal models and human cohorts. In mouse disruption of Dvl2 alone (Dvl2 (-/-)) or Dvl2 and Dvl3 (Dvl2 (-/-); Dvl3 (+/-), Dvl2 (+/-); Dvl3 (-/-)) results in incomplete neurulation, suggesting a role for Disheveled in neural tube closure. Disheveled is a multifunctional protein that is involved in both the canonical Wnt signaling and the noncanonical planar cell polarity pathway. In this study, we analyzed the role of the human orthologs DVL2 and DVL3 in a cohort of 473 patients with neural tube defects. Rare variants were genotyped in 639 ethnically matched controls. We identified seven rare missense mutations that were absent in all controls analyzed. Two of these mutations, p.Tyr667Cys and p.Ala53Val, identified in DVL2 were predicted to be detrimental in silico. Significantly, a 1-bp insertion (c.1801_1802insG) in exon 15 of DVL2 predicted to lead to the truncation of the protein was identified in a patient with a complex form of caudal agenesis. In summary, we demonstrate a possible role for rare variants in DVL2 gene as risk factors for neural tube defects. PMID:22892949

  1. Migratory neuronal progenitors arise from the neural plate borders in tunicates

    PubMed Central

    Stolfi, Alberto; Ryan, Kerrianne; Meinertzhagen, Ian A.; Christiaen, Lionel

    2015-01-01

    The neural crest is an evolutionary novelty that fostered the emergence of vertebrate anatomical innovations such as the cranium and jaws1. During embryonic development, multipotent neural crest cells are specified at the lateral borders of the neural plate before delaminating, migrating, and differentiating into various cell types. In invertebrate chordates (cephalochordates and tunicates), neural plate border cells express conserved factors such as Msx, Snail, and Pax3/7 and generate melanin-containing pigment cells2-4, a derivative of the neural crest in vertebrates. However, invertebrate neural plate border cells have not been shown to generate homologues of other neural crest derivatives. Thus, proposed models of neural crest evolution postulate vertebrate-specific elaborations on an ancestral neural plate border program, through acquisition of migratory capabilities and the potential to generate multiple cell types5-7. Here we show that a particular neuronal cell type in the tadpole larva of the tunicate Ciona intestinalis, the bipolar tail neuron, shares a set of features with neural crest-derived spinal ganglia neurons in vertebrates. Bipolar tail neuron precursors derive from caudal neural plate border cells, delaminate, and migrate along the paraxial mesoderm on either side of the neural tube, eventually differentiating into afferent neurons that form synaptic contacts with both epidermal sensory cells and motor neurons. We propose that the neural plate borders of the chordate ancestor already produced migratory peripheral neurons and pigment cells, and that the neural crest evolved through the acquisition of a multipotent progenitor regulatory state upstream of multiple, pre-existing neural plate border cell differentiation programs. PMID:26524532

  2. Migratory neuronal progenitors arise from the neural plate borders in tunicates.

    PubMed

    Stolfi, Alberto; Ryan, Kerrianne; Meinertzhagen, Ian A; Christiaen, Lionel

    2015-11-19

    The neural crest is an evolutionary novelty that fostered the emergence of vertebrate anatomical innovations such as the cranium and jaws. During embryonic development, multipotent neural crest cells are specified at the lateral borders of the neural plate before delaminating, migrating and differentiating into various cell types. In invertebrate chordates (cephalochordates and tunicates), neural plate border cells express conserved factors such as Msx, Snail and Pax3/7 and generate melanin-containing pigment cells, a derivative of the neural crest in vertebrates. However, invertebrate neural plate border cells have not been shown to generate homologues of other neural crest derivatives. Thus, proposed models of neural crest evolution postulate vertebrate-specific elaborations on an ancestral neural plate border program, through acquisition of migratory capabilities and the potential to generate several cell types. Here we show that a particular neuronal cell type in the tadpole larva of the tunicate Ciona intestinalis, the bipolar tail neuron, shares a set of features with neural-crest-derived spinal ganglia neurons in vertebrates. Bipolar tail neuron precursors derive from caudal neural plate border cells, delaminate and migrate along the paraxial mesoderm on either side of the neural tube, eventually differentiating into afferent neurons that form synaptic contacts with both epidermal sensory cells and motor neurons. We propose that the neural plate borders of the chordate ancestor already produced migratory peripheral neurons and pigment cells, and that the neural crest evolved through the acquisition of a multipotent progenitor regulatory state upstream of multiple, pre-existing neural plate border cell differentiation programs. PMID:26524532

  3. Fusing human knowledge with neural networks in machine condition monitoring systems

    NASA Astrophysics Data System (ADS)

    Melvin, David G.; Penman, J.

    1995-04-01

    There is currently much interest in the application of artificial neural network (ANN) technology to the field of on-line machine condition monitoring (CM) for complex electro- mechanical systems. In this paper the authors discuss, with the help of an industrial case study, a few of the difficulties inherent in the application of neural network based condition monitoring. A method of overcoming these difficulties by utilizing a combination of human knowledge, encoded using techniques borrowed from fuzzy logic, Kohonen neural networks, and statistical K-means clustering has been constructed. The methodology is discussed in the paper by means of a direct comparison between this new approach and a purely neural approach. An analysis of other situations where this approach would be applicable is also presented and the paper discusses other current research work in the area of hybrid AI technologies which should assist further with the alleviation of the problems under consideration.

  4. Fetal neural transplantation: placing the ethical debate within the context of society's use of human material.

    PubMed

    Jones, D Gareth

    1991-01-01

    In this paper I wish to place the debate about the use of fetal tissue, as in fetal neural transplantation, within the context of society's use of, and dependence upon, human material for many teaching, research, and therapeutic purposes. I shall argue that such an emphasis is required if we are to be consistent in our approach to the ethical dimensions of the fetal neural transplantation debate. What will emerge is the ambivalence of society's ethical attitudes and also the diversity of perspectives in most debates involving the use of human material. PMID:11650946

  5. Neural correlates of socioeconomic status in the developing human brain.

    PubMed

    Noble, Kimberly G; Houston, Suzanne M; Kan, Eric; Sowell, Elizabeth R

    2012-07-01

    Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that language, memory, social-emotional processing, and cognitive control exhibit relatively large differences across SES. Here we investigated whether volumetric differences could be observed across SES in several neural regions that support these skills. In a sample of 60 socioeconomically diverse children, highly significant SES differences in regional brain volume were observed in the hippocampus and the amygdala. In addition, SES × age interactions were observed in the left superior temporal gyrus and left inferior frontal gyrus, suggesting increasing SES differences with age in these regions. These results were not explained by differences in gender, race or IQ. Likely mechanisms include differences in the home linguistic environment and exposure to stress, which may serve as targets for intervention at a time of high neural plasticity. PMID:22709401

  6. Flexible neural mechanisms of cognitive control within human prefrontal cortex.

    PubMed

    Braver, Todd S; Paxton, Jessica L; Locke, Hannah S; Barch, Deanna M

    2009-05-01

    A major challenge in research on executive control is to reveal its functional decomposition into underlying neural mechanisms. A typical assumption is that this decomposition occurs solely through anatomically based dissociations. Here we tested an alternative hypothesis that different cognitive control processes may be implemented within the same brain regions, with fractionation and dissociation occurring on the basis of temporal dynamics. Regions within lateral prefrontal cortex (PFC) were examined that, in a prior study, exhibited contrasting temporal dynamics between older and younger adults during performance of the AX-CPT cognitive control task. The temporal dynamics in younger adults fit a proactive control pattern (primarily cue-based activation), whereas in older adults a reactive control pattern was found (primarily probe-based activation). In the current study, we found that following a period of task-strategy training, these older adults exhibited a proactive shift within a subset of the PFC regions, normalizing their activity dynamics toward young adult patterns. Conversely, under conditions of penalty-based monetary incentives, the younger adults exhibited a reactive shift some of the same regions, altering their temporal dynamics toward the older adult baseline pattern. These experimentally induced crossover patterns of temporal dynamics provide strong support for dual modes of cognitive control that can be flexibly shifted within PFC regions, via modulation of neural responses to changing task conditions or behavioral goals. PMID:19380750

  7. Requirement for Foxd3 in the maintenance of neural crest progenitors.

    PubMed

    Teng, Lu; Mundell, Nathan A; Frist, Audrey Y; Wang, Qiaohong; Labosky, Patricia A

    2008-05-01

    Understanding the molecular mechanisms of stem cell maintenance is crucial for the ultimate goal of manipulating stem cells for the treatment of disease. Foxd3 is required early in mouse embryogenesis; Foxd3(-/-) embryos fail around the time of implantation, cells of the inner cell mass cannot be maintained in vitro, and blastocyst-derived stem cell lines cannot be established. Here, we report that Foxd3 is required for maintenance of the multipotent mammalian neural crest. Using tissue-specific deletion of Foxd3 in the neural crest, we show that Foxd3(flox/-); Wnt1-Cre mice die perinatally with a catastrophic loss of neural crest-derived structures. Cranial neural crest tissues are either missing or severely reduced in size, the peripheral nervous system consists of reduced dorsal root ganglia and cranial nerves, and the entire gastrointestinal tract is devoid of neural crest derivatives. These results demonstrate a global role for this transcriptional repressor in all aspects of neural crest maintenance along the anterior-posterior axis, and establish an unprecedented molecular link between multiple divergent progenitor lineages of the mammalian embryo. PMID:18367558

  8. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    SciTech Connect

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R.

    2011-11-15

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  9. Characterization of Human Neural Progenitor Cell Models for Developmental Neurotoxicity Screening

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating two different human neural progenitor cell (hNPC) models for their utility in screens for...

  10. NEURAL PLASTICITY, HUMAN GENETICS, AND RISK FOR ALCOHOL DEPENDENCE

    PubMed Central

    Hill, Shirley Y.

    2013-01-01

    Opportunities for advances in the neurobiology of alcohol dependence have been facilitated by the development of sophisticated neurophysiological and neuroimaging techniques that allow us to have a window on developmental changes in brain structure and function. The search for genes that may increase susceptibility to alcohol dependence has been greatly facilitated by the recognition that intermediate phenotypes, sometimes referred to as endophenotypes. may be closer to the genetic variation than is the more complex alcohol dependence phenotype. This chapter will review the evidence that the brain is highly plastic, exhibiting major postnatal changes, especially during adolescence, in neural circuits that appear to influence addiction susceptibility. This chapter will suggest that heritable aspects of brain structure and function that are seen developmentally may be an important endophenotypic characteristic associated with familial risk for developing alcohol dependence. Finally, a review of studies showing associations between brain structural and functional characteristics and specific genes will be offered. PMID:20813240

  11. Evolution of neural computations: Mantis shrimp and human color decoding

    PubMed Central

    Zaidi, Qasim; Marshall, Justin; Thoen, Hanne; Conway, Bevil R.

    2014-01-01

    Mantis shrimp and primates both possess good color vision, but the neural implementation in the two species is very different, a reflection of the largely unrelated evolutionary lineages of these creatures. Mantis shrimp have scanning compound eyes with 12 classes of photoreceptors, and have evolved a system to decode color information at the front-end of the sensory stream. Primates have image-focusing eyes with three classes of cones, and decode color further along the visual-processing hierarchy. Despite these differences, we report a fascinating parallel between the computational strategies at the color-decoding stage in the brains of stomatopods and primates. Both species appear to use narrowly tuned cells that support interval decoding color identification. PMID:26034560

  12. Neural population dynamics in human motor cortex during movements in people with ALS.

    PubMed

    Pandarinath, Chethan; Gilja, Vikash; Blabe, Christine H; Nuyujukian, Paul; Sarma, Anish A; Sorice, Brittany L; Eskandar, Emad N; Hochberg, Leigh R; Henderson, Jaimie M; Shenoy, Krishna V

    2015-01-01

    The prevailing view of motor cortex holds that motor cortical neural activity represents muscle or movement parameters. However, recent studies in non-human primates have shown that neural activity does not simply represent muscle or movement parameters; instead, its temporal structure is well-described by a dynamical system where activity during movement evolves lawfully from an initial pre-movement state. In this study, we analyze neuronal ensemble activity in motor cortex in two clinical trial participants diagnosed with Amyotrophic Lateral Sclerosis (ALS). We find that activity in human motor cortex has similar dynamical structure to that of non-human primates, indicating that human motor cortex contains a similar underlying dynamical system for movement generation. PMID:26099302

  13. Stem Cell Bioprinting: Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells (Adv. Healthcare Mater. 12/2016).

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    On page 1429 G. G. Wallace, J. M. Crook, and co-workers report the first example of fabricating neural tissue by 3D bioprinting human neural stem cells. A novel polysaccharide based bioink preserves stem cell viability and function within the printed construct, enabling self-renewal and differentiation to neurons and supporting neuroglia. Neurons are predominantly GABAergic, establish networks, are spontaneously active, and show a bicuculline induced increased calcium response. PMID:27333401

  14. Bioengineered Human Pyloric Sphincters Using Autologous Smooth Muscle and Neural Progenitor Cells.

    PubMed

    Rego, Stephen Lee; Zakhem, Elie; Orlando, Giuseppe; Bitar, Khalil N

    2016-01-01

    Gastroparesis leads to inadequate emptying of the stomach resulting in severe negative health impacts. Appropriate long-term treatments for these diseases may require pyloric sphincter tissue replacements that possess functional smooth muscle cell (SMC) and neural components. This study aims to bioengineer, for the first time, innervated human pylorus constructs utilizing autologous human pyloric sphincter SMCs and human neural progenitor cells (NPCs). Autologous SMCs and NPCs were cocultured in dual-layered hydrogels and formed concentrically aligned pylorus constructs. Innervated autologous human pylorus constructs were characterized through biochemical and physiologic assays to assess the phenotype and functionality of SMCs and neurons. SMCs within bioengineered human pylorus constructs displayed a tonic contractile phenotype and maintained circumferential alignment. Neural differentiation within bioengineered constructs was verified by positive expression of βIII-tubulin, neuronal nitric oxide synthase (nNOS), and choline acetyltransferase (ChAT). Autologous bioengineered innervated human pylorus constructs generated a robust spontaneous basal tone and contracted in response to potassium chloride (KCl). Contraction in response to exogenous neurotransmitter acetylcholine (ACh), relaxation in response to vasoactive intestinal peptide (VIP), and electrical field stimulation (EFS) were also observed. Neural network integrity was demonstrated by inhibition of EFS-induced relaxation in the presence of a neurotoxin or nNOS inhibitors. Partial inhibition of ACh-induced contraction and VIP-induced relaxation following neurotoxin treatment was observed. These studies provide a proof of concept for bioengineering functional innervated autologous human pyloric sphincter constructs that generate a robust basal tone and contain circumferentially aligned SMCs, which display a tonic contractile phenotype and functional differentiated neurons. These autologous constructs have

  15. Human-derived neural progenitors functionally replace astrocytes in adult mice

    PubMed Central

    Chen, Hong; Qian, Kun; Chen, Wei; Hu, Baoyang; Blackbourn, Lisle W.; Du, Zhongwei; Ma, Lixiang; Liu, Huisheng; Knobel, Karla M.; Ayala, Melvin; Zhang, Su-Chun

    2015-01-01

    Astrocytes are integral components of the homeostatic neural network as well as active participants in pathogenesis of and recovery from nearly all neurological conditions. Evolutionarily, compared with lower vertebrates and nonhuman primates, humans have an increased astrocyte-to-neuron ratio; however, a lack of effective models has hindered the study of the complex roles of human astrocytes in intact adult animals. Here, we demonstrated that after transplantation into the cervical spinal cords of adult mice with severe combined immunodeficiency (SCID), human pluripotent stem cell–derived (PSC-derived) neural progenitors migrate a long distance and differentiate to astrocytes that nearly replace their mouse counterparts over a 9-month period. The human PSC-derived astrocytes formed networks through their processes, encircled endogenous neurons, and extended end feet that wrapped around blood vessels without altering locomotion behaviors, suggesting structural, and potentially functional, integration into the adult mouse spinal cord. Furthermore, in SCID mice transplanted with neural progenitors derived from induced PSCs from patients with ALS, astrocytes were generated and distributed to a similar degree as that seen in mice transplanted with healthy progenitors; however, these mice exhibited motor deficit, highlighting functional integration of the human-derived astrocytes. Together, these results indicate that this chimeric animal model has potential for further investigating the roles of human astrocytes in disease pathogenesis and repair. PMID:25642771

  16. Contour junctions underlie neural representations of scene categories in high-level human visual cortex.

    PubMed

    Choo, Heeyoung; Walther, Dirk B

    2016-07-15

    Humans efficiently grasp complex visual environments, making highly consistent judgments of entry-level category despite their high variability in visual appearance. How does the human brain arrive at the invariant neural representations underlying categorization of real-world environments? We here show that the neural representation of visual environments in scene-selective human visual cortex relies on statistics of contour junctions, which provide cues for the three-dimensional arrangement of surfaces in a scene. We manipulated line drawings of real-world environments such that statistics of contour orientations or junctions were disrupted. Manipulated and intact line drawings were presented to participants in an fMRI experiment. Scene categories were decoded from neural activity patterns in the parahippocampal place area (PPA), the occipital place area (OPA) and other visual brain regions. Disruption of junctions but not orientations led to a drastic decrease in decoding accuracy in the PPA and OPA, indicating the reliance of these areas on intact junction statistics. Accuracy of decoding from early visual cortex, on the other hand, was unaffected by either image manipulation. We further show that the correlation of error patterns between decoding from the scene-selective brain areas and behavioral experiments is contingent on intact contour junctions. Finally, a searchlight analysis exposes the reliance of visually active brain regions on different sets of contour properties. Statistics of contour length and curvature dominate neural representations of scene categories in early visual areas and contour junctions in high-level scene-selective brain regions. PMID:27118087

  17. Human neuroblastoma cells express alpha and beta platelet-derived growth factor receptors coupling with neurotrophic and chemotactic signaling.

    PubMed Central

    Matsui, T; Sano, K; Tsukamoto, T; Ito, M; Takaishi, T; Nakata, H; Nakamura, H; Chihara, K

    1993-01-01

    Both platelet-derived growth factor (PDGF) A- and B-chains are expressed in mammalian neurons, but their precise roles still remain to be clarified. In the present studies, we examined the expression of two PDGF receptor genes in human tumor cell lines derived from neural crest. The expression of alpha and/or beta PDGF receptors was detected in a wide variety of neural crest-derived human tumor cell lines such as neuroblastoma, primitive neuroectodermal tumor, and Ewing's sarcoma by RNA blot analysis, and confirmed by immunoblot analysis. We have also demonstrated that PDGF receptors on the human neuroblastoma cell lines were biologically functional. Accordingly, chemotactic and mitogenic activities were induced by either PDGF-AA or PDGF-BB in serum-free medium. PDGF isoforms as well as nerve growth factor induced morphological changes showing neuronal cell maturation. Moreover, PDGF coordinately increased the levels of the transcript of the midsize neurofilament gene. The neuroblastoma cell lines also expressed the transcripts of PDGF A- and B-chains. These findings suggest that PDGF isoforms are involved not only in the promotion of the neuroblastoma cell growth, but also in neuronal cell migration, growth, and differentiation in human brain development. Images PMID:8376577

  18. Changing the Spatial Scope of Attention Alters Patterns of Neural Gain in Human Cortex

    PubMed Central

    Garcia, Javier O.; Rungratsameetaweemana, Nuttida; Sprague, Thomas C.

    2014-01-01

    Over the last several decades, spatial attention has been shown to influence the activity of neurons in visual cortex in various ways. These conflicting observations have inspired competing models to account for the influence of attention on perception and behavior. Here, we used electroencephalography (EEG) to assess steady-state visual evoked potentials (SSVEP) in human subjects and showed that highly focused spatial attention primarily enhanced neural responses to high-contrast stimuli (response gain), whereas distributed attention primarily enhanced responses to medium-contrast stimuli (contrast gain). Together, these data suggest that different patterns of neural modulation do not reflect fundamentally different neural mechanisms, but instead reflect changes in the spatial extent of attention. PMID:24381272

  19. Neurally augmented sexual function in human females: a preliminary investigation.

    PubMed

    Meloy, T Stuart; Southern, Joan P

    2006-01-01

    Objective.  Neurally augmented sexual function (NASF) is the production of pleasurable genital stimulation and subsequent orgasm through the application of electrical energy to provide stimulation of the spinal cord or peripheral nerves. The purpose of this paper is to demonstrate the reproducibility of this phenomenon. Materials and Methods.  Eleven otherwise healthy women, ages 32-60 years, were selected for this study. Through standard techniques, quadripolar (octopolar in the final patient) leads were placed in the epidural space percutaneuously. The lead was maneuvered initially to an L1-L2 position and then repositioned based on feedback from the patient. The patients were allowed to utilize the device ad libitum for up to 9 days. Results.  Successful stimulation was achieved in 91% (10/11) of patients. These women described a greater frequency in sexual activity, increased lubrication, and overall satisfaction. A smaller subset had substantial improvement in sexual function as measured by orgasmic capacity. This subset consisted of women with secondary anorgasmia. A return of orgasmic capacity was found in 80% (4/5) of patients having secondary anorgasmia with an average intensity of ≥ 3/5 while using the device. Once the device was removed, the patients returned to their previous anorgasmic status. Conclusions.  Pleasurable genital stimulation of the spinal cord is a consistently reproducible phenomenon. In a subset of the population studied, improvement in orgasmic function was noted. This was noted in the group with secondary orgasmic dysfunction. PMID:22151591

  20. Neural correlates of gesture processing across human development.

    PubMed

    Wakefield, Elizabeth M; James, Thomas W; James, Karin H

    2013-01-01

    Co-speech gesture facilitates learning to a greater degree in children than in adults, suggesting that the mechanisms underlying the processing of co-speech gesture differ as a function of development. We suggest that this may be partially due to children's lack of experience producing gesture, leading to differences in the recruitment of sensorimotor networks when comparing adults to children. Here, we investigated the neural substrates of gesture processing in a cross-sectional sample of 5-, 7.5-, and 10-year-old children and adults and focused on relative recruitment of a sensorimotor system that included the precentral gyrus (PCG) and the posterior middle temporal gyrus (pMTG). Children and adults were presented with videos in which communication occurred through different combinations of speech and gesture during a functional magnetic resonance imaging (fMRI) session. Results demonstrated that the PCG and pMTG were recruited to different extents in the two populations. We interpret these novel findings as supporting the idea that gesture perception (pMTG) is affected by a history of gesture production (PCG), revealing the importance of considering gesture processing as a sensorimotor process. PMID:23662858

  1. The neural signature of escalating frustration in humans.

    PubMed

    Yu, Rongjun; Mobbs, Dean; Seymour, Ben; Rowe, James B; Calder, Andrew J

    2014-05-01

    Mammalian studies show that frustration is experienced when goal-directed activity is blocked. Despite frustration's strongly negative role in health, aggression and social relationships, the neural mechanisms are not well understood. To address this we developed a task in which participants were blocked from obtaining a reward, an established method of producing frustration. Levels of experienced frustration were parametrically varied by manipulating the participants' motivation to obtain the reward prior to blocking. This was achieved by varying the participants' proximity to a reward and the amount of effort expended in attempting to acquire it. In experiment 1, we confirmed that proximity and expended effort independently enhanced participants' self-reported desire to obtain the reward, and their self-reported frustration and response vigor (key-press force) following blocking. In experiment 2, we used functional magnetic resonance imaging (fMRI) to show that both proximity and expended effort modulated brain responses to blocked reward in regions implicated in animal models of reactive aggression, including the amygdala, midbrain periaqueductal grey (PAG), insula and prefrontal cortex. Our findings suggest that frustration may serve an energizing function, translating unfulfilled motivation into aggressive-like surges via a cortical, amygdala and PAG network. PMID:24699035

  2. Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure.

    PubMed

    Colleoni, Silvia; Galli, Cesare; Gaspar, John Antony; Meganathan, Kesavan; Jagtap, Smita; Hescheler, Jurgen; Sachinidis, Agapios; Lazzari, Giovanna

    2011-12-01

    The aim of this study was the development of an alternative testing method based on human embryonic stem cells for prenatal developmental toxicity with particular emphasis on early neural development. To this purpose, we designed an in vitro protocol based on the generation of neural rosettes, representing the in vitro counterpart of the developing neural plate and neural tube, and we challenged this complex cell model with retinoic acid (RA), a well-known teratogenic agent. The cells were exposed to different concentrations of RA during the process of rosettes formation. Morphological and molecular parameters were evaluated in treated as compared with untreated cells to detect both cytotoxicity and specific neural toxicity. Transcriptomic analysis was performed with microarray Affymetrix platform and validated by quantitative real-time PCR for genes relevant to early neural development such as HoxA1, HoxA3, HoxB1, HoxB4, FoxA2, FoxC1, Otx2, and Pax7. The results obtained demonstrated that neural rosette forming cells respond to RA with clear concentration-dependent morphological, and gene expression changes remarkably similar to those induced in vivo, in the developing neural tube, by RA exposure. This strict correspondence indicates that the neural rosette protocol described is capable of detecting specific teratogenic mechanisms causing perturbations of early neural development and therefore represents a promising alternative test for human prenatal developmental toxicity. PMID:21934132

  3. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    NASA Astrophysics Data System (ADS)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  4. Recapitulating amyloid β and tau pathology in human neural cell culture models: clinical implications

    PubMed Central

    Choi, Se Hoon; Kim, Young Hye; D’Avanzo, Carla; Aronson, Jenna; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Summary The “amyloid β hypothesis” of Alzheimer’s disease (AD) has been the reigning hypothesis explaining pathogenic mechanisms of AD over the last two decades. However, this hypothesis has not been fully validated in animal models, and several major unresolved issues remain. We recently developed a human neural cell culture model of AD based on a three-dimensional (3D) cell culture system. This unique, cellular model recapitulates key events of the AD pathogenic cascade, including β-amyloid plaques and neurofibrillary tangles. Our 3D human neural cell culture model system provides a premise for a new generation of cellular AD models that can serve as a novel platform for studying pathogenic mechanisms and for high-throughput drug screening in a human brain-like environment. PMID:27019672

  5. Neural-Induced Human Mesenchymal Stem Cells Promote Cochlear Cell Regeneration in Deaf Guinea Pigs

    PubMed Central

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Jun, Jae Yeoul; Park, Jong-Seong; Jeong, Han-Seong

    2015-01-01

    Objectives In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae. Methods HMSCs were isolated from the bone marrow which was obtained from the mastoid process during mastoidectomy for ear surgery. Following neural induction with basic fibroblast growth factor and forskolin, we studied the several neural marker and performed electrophysiological analysis. NI-hMSCs were transplanted into the neomycin treated deafened guinea pig cochlea. Engraftment of NI-hMSCs was evaluated immunohistologically at 8 weeks after transplantation. Results Following neural differentiation, hMSCs expressed high levels of neural markers, ionic channel markers, which are important in neural function, and tetrodotoxin-sensitive voltage-dependent sodium currents. After transplantation into the scala tympani of damaged cochlea, NI-hMSCs-injected animals exhibited a significant increase in the number of SGNs compared to Hanks balanced salt solution-injected animals. Transplanted NI-hMSCs were found within the perilymphatic space, the organ of Corti, along the cochlear nerve fibers, and in the spiral ganglion. Furthermore, the grafted NI-hMSCs migrated into the spiral ganglion where they expressed the neuron-specific marker, NeuN. Conclusion The results show the potential of NI-hMSCs to give rise to replace the lost cochlear cells in hearing loss mammals. PMID:26045904

  6. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells

    PubMed Central

    Chen, Song; Zhang, Wei; Wang, Ji-Ming; Duan, Hong-Tao; Kong, Jia-Hui; Wang, Yue-Xin; Dong, Meng; Bi, Xue; Song, Jian

    2016-01-01

    AIM To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC) was able to differentiate into neural stem cell and neuron in vitro. METHODS The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS), then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) analyzes. RESULTS A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2), CD73 (SH3) and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE) and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2) and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases. PMID:26949608

  7. Changes of neural markers expression during late neurogenic differentiation of human adipose-derived stem cells

    PubMed Central

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Background: Different studies have been done to obtain sufficient number of neural cells for treatment of neurodegenerative diseases, spinal cord, and traumatic brain injury because neural stem cells are limited in central nerves system. Recently, several studies have shown that adipose-derived stem cells (ADSCs) are the appropriate source of multipotent stem cells. Furthermore, these cells are found in large quantities. The aim of this study was an assessment of proliferation and potential of neurogenic differentiation of ADSCs with passing time. Materials and Methods: Neurosphere formation was used for neural induction in isolated human ADSCs (hADSCs). The rate of proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and potential of neural differentiation of induced hADSCs was evaluated by immunocytochemical and real-time reverse transcription polymerase chain reaction analysis after 10 and 14 days post-induction. Results: The rate of proliferation of induced hADSCs increased after 14 days while the expression of nestin, glial fibrillary acidic protein, and microtubule-associated protein 2 was decreased with passing time during neurogenic differentiation. Conclusion: These findings showed that the proliferation of induced cells increased with passing time, but in early neurogenic differentiation of hADSCs, neural expression was higher than late of differentiation. Thus, using of induced cells in early differentiation may be suggested for in vivo application. PMID:26605238

  8. On the nature and evolution of the neural bases of human language

    NASA Technical Reports Server (NTRS)

    Lieberman, Philip

    2002-01-01

    The traditional theory equating the brain bases of language with Broca's and Wernicke's neocortical areas is wrong. Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, and comprehending the meaning of sentences. When we hear or read a word, neural structures involved in the perception or real-world associations of the word are activated as well as posterior cortical regions adjacent to Wernicke's area. Many areas of the neocortex and subcortical structures support the cortical-striatal-cortical circuits that confer complex syntactic ability, speech production, and a large vocabulary. However, many of these structures also form part of the neural circuits regulating other aspects of behavior. For example, the basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human linguistic ability and abstract reasoning. The cerebellum, traditionally associated with motor control, is active in motor learning. The basal ganglia are also key elements in reward-based learning. Data from studies of Broca's aphasia, Parkinson's disease, hypoxia, focal brain damage, and a genetically transmitted brain anomaly (the putative "language gene," family KE), and from comparative studies of the brains and behavior of other species, demonstrate that the basal ganglia sequence the discrete elements that constitute a complete motor act, syntactic process, or thought process. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. As Dobzansky put it, "Nothing in biology makes sense except in the light of evolution" (cited in Mayr, 1982). That applies with as much force to the human brain and the neural bases of language as it does to the human foot or jaw. The converse follows: the mark of evolution on

  9. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    PubMed

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. PMID:26395144

  10. Altered temporal dynamics of neural adaptation in the aging human auditory cortex.

    PubMed

    Herrmann, Björn; Henry, Molly J; Johnsrude, Ingrid S; Obleser, Jonas

    2016-09-01

    Neural response adaptation plays an important role in perception and cognition. Here, we used electroencephalography to investigate how aging affects the temporal dynamics of neural adaptation in human auditory cortex. Younger (18-31 years) and older (51-70 years) normal hearing adults listened to tone sequences with varying onset-to-onset intervals. Our results show long-lasting neural adaptation such that the response to a particular tone is a nonlinear function of the extended temporal history of sound events. Most important, aging is associated with multiple changes in auditory cortex; older adults exhibit larger and less variable response magnitudes, a larger dynamic response range, and a reduced sensitivity to temporal context. Computational modeling suggests that reduced adaptation recovery times underlie these changes in the aging auditory cortex and that the extended temporal stimulation has less influence on the neural response to the current sound in older compared with younger individuals. Our human electroencephalography results critically narrow the gap to animal electrophysiology work suggesting a compensatory release from cortical inhibition accompanying hearing loss and aging. PMID:27459921

  11. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro

    PubMed Central

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P. C.; Livesey, Frederick J.

    2015-01-01

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. PMID:26395144

  12. Prior Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex.

    PubMed

    Vandenbroucke, A R E; Fahrenfort, J J; Meuwese, J D I; Scholte, H S; Lamme, V A F

    2016-04-01

    To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision. PMID:25323417

  13. Morphological changes in human neural cells following tick-borne encephalitis virus infection.

    PubMed

    Růzek, Daniel; Vancová, Marie; Tesarová, Martina; Ahantarig, Arunee; Kopecký, Jan; Grubhoffer, Libor

    2009-07-01

    Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10,000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed. PMID:19264624

  14. Neural Differentiation in the Third Dimension: Generating a Human Midbrain.

    PubMed

    Marton, Rebecca M; Paşca, Sergiu P

    2016-08-01

    In recent years, technological improvements in three-dimensional (3D) culture systems have enabled the generation of organoids or spheroids representing a variety of tissues, including the brain. In this issue of Cell Stem Cell, Jo et al. (2016) describe a 3D culture model of the human midbrain containing dopaminergic neurons and neuromelanin. PMID:27494668

  15. Noncoding RNA in the transcriptional landscape of human neural progenitor cell differentiation.

    PubMed

    Hecht, Patrick M; Ballesteros-Yanez, Inmaculada; Grepo, Nicole; Knowles, James A; Campbell, Daniel B

    2015-01-01

    Increasing evidence suggests that noncoding RNAs play key roles in cellular processes, particularly in the brain. The present study used RNA sequencing to identify the transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding genes were found to account for 54.8 and 57.0% of expressed genes, respectively, and alignment of RNA sequencing reads revealed that only 25.5-28.1% mapped to exonic regions of the genome. Differential expression analysis in the two cell lines identified altered gene expression in both protein coding and noncoding RNAs as they undergo neural differentiation with 222 differentially expressed genes observed in SK-N-SH cells and 19 differentially expressed genes in ReNcell CX. Interestingly, genes showing differential expression in SK-N-SH cells are enriched in genes implicated in autism spectrum disorder, but not in gene sets related to cancer or Alzheimer's disease. Weighted gene co-expression network analysis (WGCNA) was used to detect modules of co-expressed protein coding and noncoding RNAs in SK-N-SH cells and found four modules to be associated with neural differentiation. These modules contain varying levels of noncoding RNAs ranging from 10.7 to 49.7% with gene ontology suggesting roles in numerous cellular processes important for differentiation. These results indicate that noncoding RNAs are highly expressed in human neural progenitor cells and likely hold key regulatory roles in gene networks underlying neural differentiation and neurodevelopmental disorders. PMID:26557050

  16. Noncoding RNA in the transcriptional landscape of human neural progenitor cell differentiation

    PubMed Central

    Hecht, Patrick M.; Ballesteros-Yanez, Inmaculada; Grepo, Nicole; Knowles, James A.; Campbell, Daniel B.

    2015-01-01

    Increasing evidence suggests that noncoding RNAs play key roles in cellular processes, particularly in the brain. The present study used RNA sequencing to identify the transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding genes were found to account for 54.8 and 57.0% of expressed genes, respectively, and alignment of RNA sequencing reads revealed that only 25.5–28.1% mapped to exonic regions of the genome. Differential expression analysis in the two cell lines identified altered gene expression in both protein coding and noncoding RNAs as they undergo neural differentiation with 222 differentially expressed genes observed in SK-N-SH cells and 19 differentially expressed genes in ReNcell CX. Interestingly, genes showing differential expression in SK-N-SH cells are enriched in genes implicated in autism spectrum disorder, but not in gene sets related to cancer or Alzheimer's disease. Weighted gene co-expression network analysis (WGCNA) was used to detect modules of co-expressed protein coding and noncoding RNAs in SK-N-SH cells and found four modules to be associated with neural differentiation. These modules contain varying levels of noncoding RNAs ranging from 10.7 to 49.7% with gene ontology suggesting roles in numerous cellular processes important for differentiation. These results indicate that noncoding RNAs are highly expressed in human neural progenitor cells and likely hold key regulatory roles in gene networks underlying neural differentiation and neurodevelopmental disorders. PMID:26557050

  17. Effect of different feeding schedules on the survival and neural differentiation of human embryonic and induced pluripotent stem cells

    PubMed Central

    Jensen, Matthew B.; Jager, Lindsey D.; Cohen, Laura K.; Kwok, Susanna S.; Kwon, Jin M.; Hall, Crystal A.

    2014-01-01

    Neural culture of human pluripotent stem cells is useful for neuroscience research, but the optimal feeding schedule for these in vitro systems is unclear. We evaluated the survival and neural differentiation profiles of human embryonic and induced pluripotent stem cells cultured with medium exchange schedules of five, six, or seven days weekly through two months of differentiation. No significant differences were seen in cell numbers or neural differentiation markers through this culture interval with either human pluripotent cell type. We conclude that there is unlikely to be an advantage of feeding more than five days weekly for this culture system. PMID:25328422

  18. BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage.

    PubMed

    Placantonakis, Dimitris G; Tomishima, Mark J; Lafaille, Fabien; Desbordes, Sabrina C; Jia, Fan; Socci, Nicholas D; Viale, Agnes; Lee, Hyojin; Harrison, Neil; Tabar, Viviane; Studer, Lorenz

    2009-03-01

    Human embryonic stem cells (hESCs) have enormous potential for applications in basic biology and regenerative medicine. However, harnessing the potential of hESCs toward generating homogeneous populations of specialized cells remains challenging. Here we describe a novel technology for the genetic identification of defined hESC-derived neural cell types using bacterial artificial chromosome (BAC) transgenesis. We generated hESC lines stably expressing Hes5::GFP, Dll1::GFP, and HB9::GFP BACs that yield green fluorescent protein (GFP)(+) neural stem cells, neuroblasts, and motor neurons, respectively. Faithful reporter expression was confirmed by cell fate analysis and appropriate transgene regulation. Prospective isolation of HB9::GFP(+) cells yielded purified human motor neurons with proper marker expression and electrophysiological activity. Global mRNA and microRNA analyses of Hes5::GFP(+) and HB9::GFP(+) populations revealed highly specific expression signatures, suggesting that BAC transgenesis will be a powerful tool for establishing expression libraries that define the human neural lineage and for accessing defined cell types in applications of human disease. PMID:19074416

  19. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    PubMed Central

    Snider, Paige; Olaopa, Michael; Firulli, Anthony B.

    2008-01-01

    Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that

  20. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion

    PubMed Central

    Song, Seungmoon; Geyer, Hartmut

    2015-01-01

    Neural networks along the spinal cord contribute substantially to generating locomotion behaviours in humans and other legged animals. However, the neural circuitry involved in this spinal control remains unclear. We here propose a specific circuitry that emphasizes feedback integration over central pattern generation. The circuitry is based on neurophysiologically plausible muscle-reflex pathways that are organized in 10 spinal modules realizing limb functions essential to legged systems in stance and swing. These modules are combined with a supraspinal control layer that adjusts the desired foot placements and selects the leg that is to transition into swing control during double support. Using physics-based simulation, we test the proposed circuitry in a neuromuscular human model that includes neural transmission delays, musculotendon dynamics and compliant foot–ground contacts. We find that the control network is sufficient to compose steady and transitional 3-D locomotion behaviours including walking and running, acceleration and deceleration, slope and stair negotiation, turning, and deliberate obstacle avoidance. The results suggest feedback integration to be functionally more important than central pattern generation in human locomotion across behaviours. In addition, the proposed control architecture may serve as a guide in the search for the neurophysiological origin and circuitry of spinal control in humans. PMID:25920414

  1. Optimal Recognition Method of Human Activities Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Oniga, Stefan; József, Sütő

    2015-12-01

    The aim of this research is an exhaustive analysis of the various factors that may influence the recognition rate of the human activity using wearable sensors data. We made a total of 1674 simulations on a publically released human activity database by a group of researcher from the University of California at Berkeley. In a previous research, we analyzed the influence of the number of sensors and their placement. In the present research we have examined the influence of the number of sensor nodes, the type of sensor node, preprocessing algorithms, type of classifier and its parameters. The final purpose is to find the optimal setup for best recognition rates with lowest hardware and software costs.

  2. Nonlinear spatio-temporal interactions and neural connections in human vision using transient and M-sequence stimuli

    SciTech Connect

    Chen, H.W.; Aine, C.J.; Flynn, E.R.; Wood, C.C.

    1996-02-01

    Reciprocal connections, in essence, are the dynamic wiring (connections) of the neural network circuitry. Given the high complexity of the neural circuitry in the human brain, it is quite a challenge to study the dynamic wiring of highly parallel and widely distributed neural networks. The measurements of stimulus evoked coherent oscillations provide indirect evidence of dynamic wiring. In this study, in addition to the coherent oscillation measurements, two more techniques are discussed for testing possible dynamic wiring: measurements of spatio-temporal interactions beyond the classical receptive fields, and neural structural testing using nonlinear systems analysis.

  3. Deep Neural Networks as a Computational Model for Human Shape Sensitivity

    PubMed Central

    Op de Beeck, Hans P.

    2016-01-01

    Theories of object recognition agree that shape is of primordial importance, but there is no consensus about how shape might be represented, and so far attempts to implement a model of shape perception that would work with realistic stimuli have largely failed. Recent studies suggest that state-of-the-art convolutional ‘deep’ neural networks (DNNs) capture important aspects of human object perception. We hypothesized that these successes might be partially related to a human-like representation of object shape. Here we demonstrate that sensitivity for shape features, characteristic to human and primate vision, emerges in DNNs when trained for generic object recognition from natural photographs. We show that these models explain human shape judgments for several benchmark behavioral and neural stimulus sets on which earlier models mostly failed. In particular, although never explicitly trained for such stimuli, DNNs develop acute sensitivity to minute variations in shape and to non-accidental properties that have long been implicated to form the basis for object recognition. Even more strikingly, when tested with a challenging stimulus set in which shape and category membership are dissociated, the most complex model architectures capture human shape sensitivity as well as some aspects of the category structure that emerges from human judgments. As a whole, these results indicate that convolutional neural networks not only learn physically correct representations of object categories but also develop perceptually accurate representational spaces of shapes. An even more complete model of human object representations might be in sight by training deep architectures for multiple tasks, which is so characteristic in human development. PMID:27124699

  4. Deep Neural Networks as a Computational Model for Human Shape Sensitivity.

    PubMed

    Kubilius, Jonas; Bracci, Stefania; Op de Beeck, Hans P

    2016-04-01

    Theories of object recognition agree that shape is of primordial importance, but there is no consensus about how shape might be represented, and so far attempts to implement a model of shape perception that would work with realistic stimuli have largely failed. Recent studies suggest that state-of-the-art convolutional 'deep' neural networks (DNNs) capture important aspects of human object perception. We hypothesized that these successes might be partially related to a human-like representation of object shape. Here we demonstrate that sensitivity for shape features, characteristic to human and primate vision, emerges in DNNs when trained for generic object recognition from natural photographs. We show that these models explain human shape judgments for several benchmark behavioral and neural stimulus sets on which earlier models mostly failed. In particular, although never explicitly trained for such stimuli, DNNs develop acute sensitivity to minute variations in shape and to non-accidental properties that have long been implicated to form the basis for object recognition. Even more strikingly, when tested with a challenging stimulus set in which shape and category membership are dissociated, the most complex model architectures capture human shape sensitivity as well as some aspects of the category structure that emerges from human judgments. As a whole, these results indicate that convolutional neural networks not only learn physically correct representations of object categories but also develop perceptually accurate representational spaces of shapes. An even more complete model of human object representations might be in sight by training deep architectures for multiple tasks, which is so characteristic in human development. PMID:27124699

  5. The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    1. Over the past 5 years, there has been emerging evidence that the vestibular system regulates sympathetic nerve activity in humans. We have studied this issue in humans by using head-down rotation (HDR) in the prone position. 2. These studies have clearly demonstrated increases in muscle sympathetic nerve activity (MSNA) and calf vascular resistance during HDR. These responses are mediated by engagement of the otolith organs and not the semicircular canals. 3. However, differential activation of sympathetic nerve activity has been observed during HDR. Unlike MSNA, skin sympathetic nerve activity does not increase with HDR. 4. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes (i.e. barorereflexes and skeletal muscle reflexes) has shown an additive interaction for MSNA. 5. The additive interaction between the baroreflexes and vestibulosympathetic reflex suggests that the vestibular system may assist in defending against orthostatic challenges in humans by elevating MSNA beyond that of the baroreflexes. 6. In addition, the further increase in MSNA via otolith stimulation during isometric handgrip, when arterial pressure is elevated markedly, indicates that the vestibulosympathetic reflex is a powerful activator of MSNA and may contribute to blood pressure and flow regulation during dynamic exercise. 7. Future studies will help evaluate the importance of the vestibulosympathetic reflex in clinical conditions associated with orthostatic hypotension.

  6. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3

    PubMed Central

    Nitzan, Erez; Pfaltzgraff, Elise R.; Labosky, Patricia A.; Kalcheim, Chaya

    2013-01-01

    Skin melanocytes arise from two sources: either directly from neural crest progenitors or indirectly from neural crest-derived Schwann cell precursors after colonization of peripheral nerves. The relationship between these two melanocyte populations and the factors controlling their specification remains poorly understood. Direct lineage tracing reveals that neural crest and Schwann cell progenitor-derived melanocytes are differentially restricted to the epaxial and hypaxial body domains, respectively. Furthermore, although both populations are initially part of the Foxd3 lineage, hypaxial melanocytes lose Foxd3 at late stages upon separation from the nerve, whereas we recently found that epaxial melanocytes segregate earlier from Foxd3-positive neural progenitors while still residing in the dorsal neural tube. Gain- and loss-of-function experiments in avians and mice, respectively, reveal that Foxd3 is both sufficient and necessary for regulating the balance between melanocyte and Schwann cell development. In addition, Foxd3 is also sufficient to regulate the switch between neuronal and glial fates in sensory ganglia. Together, we propose that differential fate acquisition of neural crest-derived cells depends on their progressive segregation from the Foxd3-positive lineage. PMID:23858437

  7. Modeling human target reaching with an adaptive observer implemented with dynamic neural fields.

    PubMed

    Fard, Farzaneh S; Hollensen, Paul; Heinke, Dietmar; Trappenberg, Thomas P

    2015-12-01

    Humans can point fairly accurately to memorized states when closing their eyes despite slow or even missing sensory feedback. It is also common that the arm dynamics changes during development or from injuries. We propose a biologically motivated implementation of an arm controller that includes an adaptive observer. Our implementation is based on the neural field framework, and we show how a path integration mechanism can be trained from few examples. Our results illustrate successful generalization of path integration with a dynamic neural field by which the robotic arm can move in arbitrary directions and velocities. Also, by adapting the strength of the motor effect the observer implicitly learns to compensate an image acquisition delay in the sensory system. Our dynamic implementation of an observer successfully guides the arm toward the target in the dark, and the model produces movements with a bell-shaped velocity profile, consistent with human behavior data. PMID:26559472

  8. Point-and-Click Cursor Control With an Intracortical Neural Interface System by Humans With Tetraplegia

    PubMed Central

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Friehs, Gerhard M.; Black, Michael J.

    2012-01-01

    We present a point-and-click intracortical neural interface system (NIS) that enables humans with tetraplegia to volitionally move a 2-D computer cursor in any desired direction on a computer screen, hold it still, and click on the area of interest. This direct brain–computer interface extracts both discrete (click) and continuous (cursor velocity) signals from a single small population of neurons in human motor cortex. A key component of this system is a multi-state probabilistic decoding algorithm that simultaneously decodes neural spiking activity of a small population of neurons and outputs either a click signal or the velocity of the cursor. The algorithm combines a linear classifier, which determines whether the user is intending to click or move the cursor, with a Kalman filter that translates the neural population activity into cursor velocity. We present a paradigm for training the multi-state decoding algorithm using neural activity observed during imagined actions. Two human participants with tetraplegia (paralysis of the four limbs) performed a closed-loop radial target acquisition task using the point-and-click NIS over multiple sessions. We quantified point-and-click performance using various human-computer interaction measurements for pointing devices. We found that participants could control the cursor motion and click on specified targets with a small error rate (<3% in one participant). This study suggests that signals from a small ensemble of motor cortical neurons (~40) can be used for natural point-and-click 2-D cursor control of a personal computer. PMID:21278024

  9. A neural representation of categorization uncertainty in the human brain.

    PubMed

    Grinband, Jack; Hirsch, Joy; Ferrera, Vincent P

    2006-03-01

    The ability to classify visual objects into discrete categories ("friend" versus "foe"; "edible" versus "poisonous") is essential for survival and is a fundamental cognitive function. The cortical substrates that mediate this function, however, have not been identified in humans. To identify brain regions involved in stimulus categorization, we developed a task in which subjects classified stimuli according to a variable categorical boundary. Psychophysical functions were used to define a decision variable, categorization uncertainty, which was systematically manipulated. Using event-related functional MRI, we discovered that activity in a fronto-striatal-thalamic network, consisting of the medial frontal gyrus, anterior insula, ventral striatum, and dorsomedial thalamus, was modulated by categorization uncertainty. We found this network to be distinct from the frontoparietal attention network, consisting of the frontal and parietal eye fields, where activity was not correlated with categorization uncertainty. PMID:16504950

  10. Human Neural Cells Transiently Express Reelin during Olfactory Placode Development.

    PubMed

    Antal, M Cristina; Samama, Brigitte; Ghandour, M Said; Boehm, Nelly

    2015-01-01

    Reelin, an extracellular glycoprotein is essential for migration and correct positioning of neurons during development. Since the olfactory system is known as a source of various migrating neuronal cells, we studied Reelin expression in the two chemosensory olfactory systems, main and accessory, during early developmental stages of human foetuses/embryos from Carnegie Stage (CS) 15 to gestational week (GW) 14. From CS 15 to CS 18, but not at later stages, a transient expression of Reelin was detected first in the presumptive olfactory and then in the presumptive vomeronasal epithelium. During the same period, Reelin-positive cells detach from the olfactory/vomeronasal epithelium and migrate through the mesenchyme beneath the telencephalon. Dab 1, an adaptor protein of the Reelin pathway, was simultaneously expressed in the migratory mass from CS16 to CS17 and, at later stages, in the presumptive olfactory ensheathing cells. Possible involvements of Reelin and Dab 1 in the peripheral migrating stream are discussed. PMID:26270645

  11. Human Neural Cells Transiently Express Reelin during Olfactory Placode Development

    PubMed Central

    Antal, M. Cristina; Samama, Brigitte; Ghandour, M. Said; Boehm, Nelly

    2015-01-01

    Reelin, an extracellular glycoprotein is essential for migration and correct positioning of neurons during development. Since the olfactory system is known as a source of various migrating neuronal cells, we studied Reelin expression in the two chemosensory olfactory systems, main and accessory, during early developmental stages of human foetuses/embryos from Carnegie Stage (CS) 15 to gestational week (GW) 14. From CS 15 to CS 18, but not at later stages, a transient expression of Reelin was detected first in the presumptive olfactory and then in the presumptive vomeronasal epithelium. During the same period, Reelin-positive cells detach from the olfactory/vomeronasal epithelium and migrate through the mesenchyme beneath the telencephalon. Dab 1, an adaptor protein of the Reelin pathway, was simultaneously expressed in the migratory mass from CS16 to CS17 and, at later stages, in the presumptive olfactory ensheathing cells. Possible involvements of Reelin and Dab 1 in the peripheral migrating stream are discussed. PMID:26270645

  12. Explaining neural signals in human visual cortex with an associative learning model.

    PubMed

    Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias

    2012-08-01

    "Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals. PMID:22845706

  13. Direct in vivo assessment of human stem cell graft-host neural circuits.

    PubMed

    Byers, Blake; Lee, Hyun Joo; Liu, Jia; Weitz, Andrew J; Lin, Peter; Zhang, Pengbo; Shcheglovitov, Aleksandr; Dolmetsch, Ricardo; Pera, Renee Reijo; Lee, Jin Hyung

    2015-07-01

    Despite the potential of stem cell-derived neural transplants for treating intractable neurological diseases, the global effects of a transplant's electrical activity on host circuitry have never been measured directly, preventing the systematic optimization of such therapies. Here, we overcome this problem by combining optogenetics, stem cell biology, and neuroimaging to directly map stem cell-driven neural circuit formation in vivo. We engineered human induced pluripotent stem cells (iPSCs) to express channelrhodopsin-2 and transplanted resulting neurons to striatum of rats. To non-invasively visualize the function of newly formed circuits, we performed high-field functional magnetic resonance imaging (fMRI) during selective stimulation of transplanted cells. fMRI successfully detected local and remote neural activity, enabling the global graft-host neural circuit function to be assessed. These results demonstrate the potential of a novel neuroimaging-based platform that can be used to identify how a graft's electrical activity influences the brain network in vivo. PMID:25936696

  14. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins

    PubMed Central

    Janmaat, C. J.; de Rooij, K. E; Locher, H; de Groot, S. C.; de Groot, J. C. M. J.; Frijns, J. H. M.; Huisman, M. A.

    2015-01-01

    In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality. PMID:26678612

  15. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins.

    PubMed

    Janmaat, C J; de Rooij, K E; Locher, H; de Groot, S C; de Groot, J C M J; Frijns, J H M; Huisman, M A

    2015-01-01

    In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality. PMID:26678612

  16. Environmental layout complexity affects neural activity during navigation in humans.

    PubMed

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. PMID:26990572

  17. Consciousness: a neural capacity for objectivity, especially pronounced in humans.

    PubMed

    Dijker, Anton J M

    2014-01-01

    Consciousness tends to be viewed either as subjective experience of sensations and feelings, or as perception and internal representation of objects. This paper argues that neither view sufficiently acknowledges that consciousness may refer to the brain's most adaptive property: its capacity to produce states of objectivity. It is proposed that this capacity relies on multiple sensorimotor networks for internally representing objects and their properties in terms of expectancies, as well as on motivational and motor mechanisms involved in exploration, play, and care for vulnerable living and non-living objects. States of objectivity are associated with a very special phenomenal aspect; the experience that subjective aspects are absent and one is "just looking" at the world as it really is and can be. However, these states are normally closely preceded and followed by (and tend to be combined or fused with) sensations and feelings which are caused by activation of sensory and motivational mechanisms. A capacity for objectivity may have evolved in different species and can be conceived as a common basis for other elusive psychological properties such as intelligence, conscience, and esthetic experience; all three linked to crucial behaviors in human evolution such as tool making, cooperation, and art. The brain's pervasive tendency to objectify may be responsible for wrongly equating consciousness with feelings and wrongly opposing it to well-learned or habitual ("unconscious") patterns of perception and behavior. PMID:24672506

  18. Consciousness: a neural capacity for objectivity, especially pronounced in humans

    PubMed Central

    Dijker, Anton J. M.

    2014-01-01

    Consciousness tends to be viewed either as subjective experience of sensations and feelings, or as perception and internal representation of objects. This paper argues that neither view sufficiently acknowledges that consciousness may refer to the brain’s most adaptive property: its capacity to produce states of objectivity. It is proposed that this capacity relies on multiple sensorimotor networks for internally representing objects and their properties in terms of expectancies, as well as on motivational and motor mechanisms involved in exploration, play, and care for vulnerable living and non-living objects. States of objectivity are associated with a very special phenomenal aspect; the experience that subjective aspects are absent and one is “just looking” at the world as it really is and can be. However, these states are normally closely preceded and followed by (and tend to be combined or fused with) sensations and feelings which are caused by activation of sensory and motivational mechanisms. A capacity for objectivity may have evolved in different species and can be conceived as a common basis for other elusive psychological properties such as intelligence, conscience, and esthetic experience; all three linked to crucial behaviors in human evolution such as tool making, cooperation, and art. The brain’s pervasive tendency to objectify may be responsible for wrongly equating consciousness with feelings and wrongly opposing it to well-learned or habitual (“unconscious”) patterns of perception and behavior. PMID:24672506

  19. Sp8 expression in putative neural progenitor cells in guinea pig and human cerebrum.

    PubMed

    Zhang, Xue-Mei; Cai, Yan; Wang, Fang; Wu, Jun; Mo, Lin; Zhang, Feng; Patrylo, Peter R; Pan, Aihua; Ma, Chao; Fu, Jin; Yan, Xiao-Xin

    2016-09-01

    Neural stem/progenitor cells have been characterized at neurogenic sites in adult mammalian brain with various molecular markers. Here it has been demonstrated that Sp8, a transcription factor typically expressed among mature GABAergic interneurons, also labels putative neural precursors in adult guinea pig and human cerebrum. In guinea pigs, Sp8 immunoreactive (Sp8+) cells were localized largely in the superficial layers of the cortex including layer I, as well as the subventricular zone (SVZ) and subgranular zone (SGZ). Sp8+ cells at the SGZ showed little colocalization with mature and immature neuronal markers, but co-expressed neural stem cell markers including Sox2. Some layer I Sp8+ cells also co-expressed Sox2. The amount of Sp8+ cells in the dentate gyrus was maintained 2 weeks after X-ray irradiation, while that of doublecortin (DCX+) cells was greatly reduced. Mild ischemic insult caused a transient increase of Sp8+ cells in the SGZ and layer I, with the subgranular Sp8+ cells exhibited an increased colabeling for the mitotic marker Ki67 and pulse-chased bromodeoxyuridine (BrdU). Sp8+ cells in the dentate gyrus showed an age-related decline in guinea pigs, in parallel with the loss of DCX+ cells in the same region. In adult humans, Sp8+ cells exhibited comparable morphological features as seen in guinea pigs, with those at the SGZ and some in cortical layer I co-expressed Sox2. Together, these results suggested that Sp8 may label putative neural progenitors in guinea pig and human cerebrum, with the labeled cells in the SGZ appeared largely not mitotically active under normal conditions. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 939-955, 2016. PMID:26585436

  20. Neural signal processing: the underestimated contribution of peripheral human C-fibers.

    PubMed

    Weidner, Christian; Schmelz, Martin; Schmidt, Roland; Hammarberg, Björn; Orstavik, Kristin; Hilliges, Marita; Torebjörk, H Erik; Handwerker, Hermann O

    2002-08-01

    The microneurography technique was used to analyze use-dependent frequency modulation of action potential (AP) trains in human nociceptive peripheral nerves. Fifty-one single C-afferent units (31 mechano-responsive, 20 mechano-insensitive) were recorded from cutaneous fascicles of the peroneal nerve in awake human subjects. Trains of two and four suprathreshold electrical stimuli at interstimulus intervals of 20 and 50 msec were applied to the receptive fields of single identified nociceptive units at varying repetition rates. The output frequency (interspike interval) recorded at knee level was compared with the input frequency (interstimulus interval) at different levels of accumulated neural accommodation. At low levels of use-dependent accommodation (measured as conduction velocity slowing of the first action potential in a train), intervals between spikes increased during conduction along the nerve. At increasing levels of neural accommodation, intervals decreased because of a relative supernormal period (SNP) and asymptotically approached the minimum "entrainment" interval of the nerve fiber (11 +/- 1.4 msec) corresponding to a maximum instantaneous discharge frequency (up to 190 Hz). For neural coding, this pattern of frequency decrease at low activity levels and frequency increase at high levels serves as a mechanism of peripheral contrast enhancement. The entrainment interval is a good minimum estimate for the duration of the refractory period of human C-fibers. At a given degree of neural accommodation, all afferent C-units exhibit a uniform pattern of aftereffects, independent of fiber class. The receptive class of a fiber only determines its susceptibility to accommodate. Thus, the time course of aftereffects and existence or absence of an SNP is fully explained by the amount of preexisting accommodation. PMID:12151549

  1. Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells by Cerebrospinal Fluid

    PubMed Central

    FARIVAR, Shirin; MOHAMADZADE, Zahra; SHIARI, Reza; FAHIMZAD, Alireza

    2015-01-01

    Objective Wharton’s jelly (WJ) is the gelatinous connective tissue from the umbilical cord. It is composed of mesenchymal stem cells, collagen fibers, and proteoglycans. The stem cells in WJ have properties that are interesting for research. For example, they are simple to harvest by noninvasive methods, provide large numbers of cells without risk to the donor, the stem cell population may be expanded in vitro, cryogenically stored, thawed, genetically manipulated, and differentiated in vitro. In our study, we investigated the effect of human cerebrospinal fluid (CSF) on neural differentiation of human WJ stem cells. Material & Methods The cells in passage 2 were induced into neural differentiation with different concentrations of human cerebrospinal fluid. Differentiation along with neural lineage was documented by expression of three neural markers: Nestin, Microtubule-Associated Protein 2 (MAP2), and Glial Fibrillary Astrocytic Protein (GFAP) for 21 days. The expression of the identified genes was confirmed by Reverse Transcriptase PCR (RT-PCR). Results Treatment with 100 and 200μg/ml CSF resulted in the expression of GFAP and glial cells marker on days 14 and 21. The expression of neural-specific genes following CSF treatment was dose-dependent and time-dependent. Treatment of the cells with a twofold concentration of CSF, led to the expression of MAP2 on day 14 of induction. No expression of GFAP was detected before day 14 or MAP2 before day 21, which shows the importance of the treatment period. In the present study, expression analysis for the known neural markers: Nestin, GFAP, and MAP2 using RT-PCR were performed. The data demonstrated that CSF could play a role as a strong inducer. Conclusion RT-PCR showed that cerebrospinal fluid promotes the expression of Nestin, MAP2, and GFAP mRNA in a dose-dependent manner, especially at a concentration of 200 μl/ml. In summary, CSF induces neurogenesis of WJ stem cells that encourages tissue engineering

  2. Differences in neural activation for object-directed grasping in chimpanzees and humans.

    PubMed

    Hecht, Erin E; Murphy, Lauren E; Gutman, David A; Votaw, John R; Schuster, David M; Preuss, Todd M; Orban, Guy A; Stout, Dietrich; Parr, Lisa A

    2013-08-28

    The human faculty for object-mediated action, including tool use and imitation, exceeds that of even our closest primate relatives and is a key foundation of human cognitive and cultural uniqueness. In humans and macaques, observing object-directed grasping actions activates a network of frontal, parietal, and occipitotemporal brain regions, but differences in human and macaque activation suggest that this system has been a focus of selection in the primate lineage. To study the evolution of this system, we performed functional neuroimaging in humans' closest living relatives, chimpanzees. We compare activations during performance of an object-directed manual grasping action, observation of the same action, and observation of a mimed version of the action that consisted of only movements without results. Performance and observation of the same action activated a distributed frontoparietal network similar to that reported in macaques and humans. Like humans and unlike macaques, these regions were also activated by observing movements without results. However, in a direct chimpanzee/human comparison, we also identified unique aspects of human neural responses to observed grasping. Chimpanzee activation showed a prefrontal bias, including significantly more activity in ventrolateral prefrontal cortex, whereas human activation was more evenly distributed across more posterior regions, including significantly more activation in ventral premotor cortex, inferior parietal cortex, and inferotemporal cortex. This indicates a more "bottom-up" representation of observed action in the human brain and suggests that the evolution of tool use, social learning, and cumulative culture may have involved modifications of frontoparietal interactions. PMID:23986247

  3. Neural Correlates of Decision Thresholds in the Human Subthalamic Nucleus.

    PubMed

    Herz, Damian M; Zavala, Baltazar A; Bogacz, Rafal; Brown, Peter

    2016-04-01

    If humans are faced with difficult choices when making decisions, the ability to slow down responses becomes critical in order to avoid suboptimal choices. Current models of decision making assume that the subthalamic nucleus (STN) mediates this function by elevating decision thresholds, thereby requiring more evidence to be accumulated before responding [1-9]. However, direct electrophysiological evidence for the exact role of STN during adjustment of decision thresholds is lacking. Here, we show that trial-by-trial variations in STN low-frequency oscillatory activity predict adjustments of decision thresholds before subjects make a response. The relationship between STN activity and decision thresholds critically depends on the subjects' level of cautiousness. While increased oscillatory activity of the STN predicts elevated decision thresholds during high levels of cautiousness, it predicts decreased decision thresholds during low levels of cautiousness. This context-dependent relationship may be mediated by increased influence of the medial prefrontal cortex (mPFC)-STN pathway on decision thresholds during high cautiousness. Subjects who exhibit a stronger increase in phase alignment of low-frequency oscillatory activity in mPFC and STN before making a response have higher decision thresholds and commit fewer erroneous responses. Together, our results demonstrate that STN low-frequency oscillatory activity and corresponding mPFC-STN coupling are involved in determining how much evidence subjects accumulate before making a decision. This finding might explain why deep-brain stimulation of the STN can impair subjects' ability to slow down responses and can induce impulsive suboptimal decisions. PMID:26996501

  4. Neural Correlates of Decision Thresholds in the Human Subthalamic Nucleus

    PubMed Central

    Herz, Damian M.; Zavala, Baltazar A.; Bogacz, Rafal; Brown, Peter

    2016-01-01

    Summary If humans are faced with difficult choices when making decisions, the ability to slow down responses becomes critical in order to avoid suboptimal choices. Current models of decision making assume that the subthalamic nucleus (STN) mediates this function by elevating decision thresholds, thereby requiring more evidence to be accumulated before responding [1, 2, 3, 4, 5, 6, 7, 8, 9]. However, direct electrophysiological evidence for the exact role of STN during adjustment of decision thresholds is lacking. Here, we show that trial-by-trial variations in STN low-frequency oscillatory activity predict adjustments of decision thresholds before subjects make a response. The relationship between STN activity and decision thresholds critically depends on the subjects’ level of cautiousness. While increased oscillatory activity of the STN predicts elevated decision thresholds during high levels of cautiousness, it predicts decreased decision thresholds during low levels of cautiousness. This context-dependent relationship may be mediated by increased influence of the medial prefrontal cortex (mPFC)-STN pathway on decision thresholds during high cautiousness. Subjects who exhibit a stronger increase in phase alignment of low-frequency oscillatory activity in mPFC and STN before making a response have higher decision thresholds and commit fewer erroneous responses. Together, our results demonstrate that STN low-frequency oscillatory activity and corresponding mPFC-STN coupling are involved in determining how much evidence subjects accumulate before making a decision. This finding might explain why deep-brain stimulation of the STN can impair subjects’ ability to slow down responses and can induce impulsive suboptimal decisions. PMID:26996501

  5. Human Embryonic Stem Cell-Derived Neural Precursors Develop Into Neurons and Integrate Into the Host Brain

    PubMed Central

    Guillaume, Daniel J.; Johnson, M. Austin; Li, Xue-Jun; Zhang, Su-Chun

    2009-01-01

    Whether and how in-vitro-produced human neural precursors mature and integrate into the brain are crucial to the utility of human embryonic stem (hES) cells in treating neurological disorders. After transplantation into the ventricles of neonatal immune-deficient mice, hES-cell-derived neural precursors stopped expressing the cell division marker Ki67, except in neurogenic areas, and differentiated into neurons and then glia in a temporal course intrinsic to that of human cells regardless of location. The human cells located in the gray matter became neurons in the olfactory bulb and striatum, whereas those in the white matter produced exclusively glia. Importantly, the grafted human cells formed synapses. Thus, the in-vitro-produced human neural precursors follow their intrinsic temporal program to produce neurons and glia and, in response to environmental signals, generate cells appropriate to their target regions and integrate into the brain. PMID:16941479

  6. A wireless transmission neural interface system for unconstrained non-human primates

    NASA Astrophysics Data System (ADS)

    Fernandez-Leon, Jose A.; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J.; Hansen, Bryan J.; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Objective. Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. Approach. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. Main results. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. Significance. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  7. Generation and properties of a new human ventral mesencephalic neural stem cell line

    SciTech Connect

    Villa, Ana; Liste, Isabel; Courtois, Elise T.; Seiz, Emma G.; Ramos, Milagros; Meyer, Morten; Juliusson, Bengt; Kusk, Philip

    2009-07-01

    Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH{sup +}) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity. Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.

  8. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    PubMed

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy. PMID:22683799

  9. Susceptibility of Human Embryonic Stem Cell-Derived Neural Cells to Japanese Encephalitis Virus Infection

    PubMed Central

    Shen, Shih-Cheng; Shen, Ching-I; Lin, Ho; Chen, Chun-Jung; Chang, Chia-Yu; Chen, Sheng-Mei; Lee, Hsiu-Chin; Lai, Ping-Shan; Su, Hong-Lin

    2014-01-01

    Pluripotent human embryonic stem cells (hESCs) can be efficiently directed to become immature neuroepithelial precursor cells (NPCs) and functional mature neural cells, including neurotransmitter-secreting neurons and glial cells. Investigating the susceptibility of these hESCs-derived neural cells to neurotrophic viruses, such as Japanese encephalitis virus (JEV), provides insight into the viral cell tropism in the infected human brain. We demonstrate that hESC-derived NPCs are highly vulnerable to JEV infection at a low multiplicity of infection (MOI). In addition, glial fibrillary acid protein (GFAP)-expressing glial cells are also susceptible to JEV infection. In contrast, only a few mature neurons were infected at MOI 10 or higher on the third day post-infection. In addition, functional neurotransmitter-secreting neurons are also resistant to JEV infection at high MOI. Moreover, we discover that vimentin intermediate filament, reported as a putative neurovirulent JEV receptor, is highly expressed in NPCs and glial cells, but not mature neurons. These results indicate that the expression of vimentin in neural cells correlates to the cell tropism of JEV. Finally, we further demonstrate that membranous vimentin is necessary for the susceptibility of hESC-derived NPCs to JEV infection. PMID:25517725

  10. Neural and Synaptic Defects in slytherin a Zebrafish Model for Human Congenital Disorders of Glycosylation

    SciTech Connect

    Y Song; J Willer; P Scherer; J Panzer; A Kugath; E Skordalakes; R Gregg; G Willer; R Balice-Gordon

    2011-12-31

    Congenital disorder of glycosylation type IIc (CDG IIc) is characterized by mental retardation, slowed growth and severe immunodeficiency, attributed to the lack of fucosylated glycoproteins. While impaired Notch signaling has been implicated in some aspects of CDG IIc pathogenesis, the molecular and cellular mechanisms remain poorly understood. We have identified a zebrafish mutant slytherin (srn), which harbors a missense point mutation in GDP-mannose 4,6 dehydratase (GMDS), the rate-limiting enzyme in protein fucosylation, including that of Notch. Here we report that some of the mechanisms underlying the neural phenotypes in srn and in CGD IIc are Notch-dependent, while others are Notch-independent. We show, for the first time in a vertebrate in vivo, that defects in protein fucosylation leads to defects in neuronal differentiation, maintenance, axon branching, and synapse formation. Srn is thus a useful and important vertebrate model for human CDG IIc that has provided new insights into the neural phenotypes that are hallmarks of the human disorder and has also highlighted the role of protein fucosylation in neural development.

  11. Neural and Synaptic Defects in slytherin, a Zebrafish Model for Human Congenital Disorders of Glycosylation

    PubMed Central

    Song, Yuanquan; Willer, Jason R.; Scherer, Paul C.; Panzer, Jessica A.; Kugath, Amy; Skordalakes, Emmanuel; Gregg, Ronald G.; Willer, Gregory B.; Balice-Gordon, Rita J.

    2010-01-01

    Congenital disorder of glycosylation type IIc (CDG IIc) is characterized by mental retardation, slowed growth and severe immunodeficiency, attributed to the lack of fucosylated glycoproteins. While impaired Notch signaling has been implicated in some aspects of CDG IIc pathogenesis, the molecular and cellular mechanisms remain poorly understood. We have identified a zebrafish mutant slytherin (srn), which harbors a missense point mutation in GDP-mannose 4,6 dehydratase (GMDS), the rate-limiting enzyme in protein fucosylation, including that of Notch. Here we report that some of the mechanisms underlying the neural phenotypes in srn and in CGD IIc are Notch-dependent, while others are Notch-independent. We show, for the first time in a vertebrate in vivo, that defects in protein fucosylation leads to defects in neuronal differentiation, maintenance, axon branching, and synapse formation. Srn is thus a useful and important vertebrate model for human CDG IIc that has provided new insights into the neural phenotypes that are hallmarks of the human disorder and has also highlighted the role of protein fucosylation in neural development. PMID:21060795

  12. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  13. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    PubMed Central

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation. PMID:26795421

  14. Detection of some anaemia types in human blood smears using neural networks

    NASA Astrophysics Data System (ADS)

    Elsalamony, Hany A.

    2016-08-01

    The identification process based on measuring the level of haemoglobin and the classification of red blood cells using microscopic examination of blood smears is the principal way to diagnose anaemia. This paper presents a proposed algorithm for detecting some anaemia types like sickle and elliptocytosis and trying to count them with healthy ones in human red blood smears based on the circular Hough transform and some morphological tools. Some cells with unknown shapes (not platelets or white cells) also have been detected. The extracted data from the detection process has been analyzed by neural network. The experimental results have demonstrated high accuracy, and the proposed algorithm has achieved the highest detection of around 98.9% out of all the cells in 27 microscopic images. Effectiveness rates up to 100%, 98%, and 99.3% have been achieved by using neural networks for sickle, elliptocytosis and cells with unknown shapes, respectively.

  15. Neural Plasticity following Abacus Training in Humans: A Review and Future Directions.

    PubMed

    Li, Yongxin; Chen, Feiyan; Huang, Wenhua

    2016-01-01

    The human brain has an enormous capacity to adapt to a broad variety of environmental demands. Previous studies in the field of abacus training have shown that this training can induce specific changes in the brain. However, the neural mechanism underlying these changes remains elusive. Here, we reviewed the behavioral and imaging findings of comparisons between abacus experts and average control subjects and focused on changes in activation patterns and changes in brain structure. Finally, we noted the limitations and the future directions of this field. We concluded that although current studies have provided us with information about the mechanisms of abacus training, more research on abacus training is needed to understand its neural impact. PMID:26881089

  16. Neural Plasticity following Abacus Training in Humans: A Review and Future Directions

    PubMed Central

    Li, Yongxin; Chen, Feiyan; Huang, Wenhua

    2016-01-01

    The human brain has an enormous capacity to adapt to a broad variety of environmental demands. Previous studies in the field of abacus training have shown that this training can induce specific changes in the brain. However, the neural mechanism underlying these changes remains elusive. Here, we reviewed the behavioral and imaging findings of comparisons between abacus experts and average control subjects and focused on changes in activation patterns and changes in brain structure. Finally, we noted the limitations and the future directions of this field. We concluded that although current studies have provided us with information about the mechanisms of abacus training, more research on abacus training is needed to understand its neural impact. PMID:26881089

  17. Experience-dependent modulation of tonotopic neural responses in human auditory cortex.

    PubMed Central

    Morris, J S; Friston, K J; Dolan, R J

    1998-01-01

    Experience-dependent plasticity of receptive fields in the auditory cortex has been demonstrated by electrophysiological experiments in animals. In the present study we used PET neuroimaging to measure regional brain activity in volunteer human subjects during discriminatory classical conditioning of high (8000 Hz) or low (200 Hz) frequency tones by an aversive 100 dB white noise burst. Conditioning-related, frequency-specific modulation of tonotopic neural responses in the auditory cortex was observed. The modulated regions of the auditory cortex positively covaried with activity in the amygdala, basal forebrain and orbitofrontal cortex, and showed context-specific functional interactions with the medial geniculate nucleus. These results accord with animal single-unit data and support neurobiological models of auditory conditioning and value-dependent neural selection. PMID:9608726

  18. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  19. A Src-Tks5 Pathway Is Required for Neural Crest Cell Migration during Embryonic Development

    PubMed Central

    Murphy, Danielle A.; Tsai, Jeff H.; Kawakami, Yasuhiko; Maurer, Jochen; Stewart, Rodney A.; Izpisúa-Belmonte, Juan Carlos; Courtneidge, Sara A.

    2011-01-01

    In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5, but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration. Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis. PMID:21799874

  20. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    SciTech Connect

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  1. Neural Correlates of Human Action Observation in Hearing and Deaf Subjects

    PubMed Central

    Corina, David; Chiu, Yi-Shiuan; Knapp, Heather; Greenwald, Ralf; Jose-Robertson, Lucia San; Braun, Allen

    2007-01-01

    Accumulating evidence has suggested the existence of a human action recognition system involving inferior frontal, parietal, and superior temporal regions that may participate in both the perception and execution of actions. However, little is known about the specificity of this system in response to different forms of human action. Here we present data from PET neuroimaging studies from passive viewing of three distinct action types, intransitive self-oriented actions (e.g., stretching, rubbing one’s eyes, etc.), transitive object-oriented actions (e.g., opening a door, lifting a cup to the lips to drink), and the abstract, symbolic actions–signs used in American Sign Language. Our results show that these different classes of human actions engage a frontal/parietal/STS human action recognition system in a highly similar fashion. However, the results indicate that this neural consistency across motion classes is true primarily for hearing subjects. Data from deaf signers shows a non-uniform response to different classes of human actions. As expected, deaf signers engaged left-hemisphere perisylvian language areas during the perception of signed language signs. Surprisingly, these subjects did not engage the expected frontal/parietal/STS circuitry during passive viewing of non-linguistic actions, but rather reliably activated middle-occipital temporal-ventral regions which are known to participate in the detection of human bodies, faces, and movements. Comparisons with data from hearing subjects establish statistically significant contributions of middle-occipital temporal-ventral during the processing of non-linguistic actions in deaf signers. These results suggest that during human motion processing, deaf individuals may engage specialized neural systems that allow for rapid, online differentiation of meaningful linguistic actions from non-linguistic human movements. PMID:17459349

  2. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.

    PubMed

    Parada, Carolina; Han, Dong; Grimaldi, Alexandre; Sarrión, Patricia; Park, Shery S; Pelikan, Richard; Sanchez-Lara, Pedro A; Chai, Yang

    2015-11-01

    Disrupted ERK1/2 signaling is associated with several developmental syndromes in humans. To understand the function of ERK2 (MAPK1) in the postmigratory neural crest populating the craniofacial region, we studied two mouse models: Wnt1-Cre;Erk2(fl/fl) and Osr2-Cre;Erk2(fl/fl). Wnt1-Cre;Erk2(fl/fl) mice exhibited cleft palate, malformed tongue, micrognathia and mandibular asymmetry. Cleft palate in these mice was associated with delay/failure of palatal shelf elevation caused by tongue malposition and micrognathia. Osr2-Cre;Erk2(fl/fl) mice, in which the Erk2 deletion is restricted to the palatal mesenchyme, did not display cleft palate, suggesting that palatal clefting in Wnt1-Cre;Erk2(fl/fl) mice is a secondary defect. Tongues in Wnt1-Cre;Erk2(fl/fl) mice exhibited microglossia, malposition, disruption of the muscle patterning and compromised tendon development. The tongue phenotype was extensively rescued after culture in isolation, indicating that it might also be a secondary defect. The primary malformations in Wnt1-Cre;Erk2(fl/fl) mice, namely micrognathia and mandibular asymmetry, are linked to an early osteogenic differentiation defect. Collectively, our study demonstrates that mutation of Erk2 in neural crest derivatives phenocopies the human Pierre Robin sequence and highlights the interconnection of palate, tongue and mandible development. Because the ERK pathway serves as a crucial point of convergence for multiple signaling pathways, our study will facilitate a better understanding of the molecular regulatory mechanisms of craniofacial development. PMID:26395480

  3. Effect of T3 hormone on neural differentiation of human adipose derived stem cells.

    PubMed

    Razavi, Shahnaz; Mostafavi, Fatemeh Sadat; Mardani, Mohammad; Zarkesh Esfahani, Hamid; Kazemi, Mohammad; Esfandiari, Ebrahim

    2014-12-01

    Human adult stem cells, which are capable of self-renewal and differentiation into other cell types, can be isolated from various tissues. There are no ethical and rejection problems as in the case of embryonic stem cells, so they are a promising source for cell therapy. The human body contains a great amount of adipose tissue that contains high numbers of mesenchymal stem cells. Human adipose-derived stem cells (hADSCs) could be easily induced to form neuron-like cells, and because of its availability and abundance, we can use it for clinical cell therapy. On the other hand, T3 hormone as a known neurotropic factor has important impressions on the nervous system. The aim of this study was to explore the effects of T3 treatment on neural differentiation of hADSCs. ADSCs were harvested from human adipose tissue, after neurosphere formation, and during final differentiation, treatment with T3 was performed. Immunocytochemistry, real-time RT-PCR, Western blotting techniques were used for detection of nestin, MAP2, and GFAP markers in order to confirm the effects of T3 on neural differentiation of hADSCs. Our results showed an increase in the number of glial cells but reduction in neuronal cells number fallowing T3 treatment. PMID:25431112

  4. Generation of primitive neural stem cells from human fibroblasts using a defined set of factors

    PubMed Central

    Miura, Takumi; Sugawara, Tohru; Fukuda, Atsushi; Tamoto, Ryo; Kawasaki, Tomoyuki; Umezawa, Akihiro; Akutsu, Hidenori

    2015-01-01

    ABSTRACT In mice, leukemia inhibitory factor (LIF)-dependent primitive neural stem cells (NSCs) have a higher neurogenic potential than bFGF-dependent definitive NSCs. Therefore, expandable primitive NSCs are required for research and for the development of therapeutic strategies for neurological diseases. There is a dearth of suitable techniques for the generation of human long-term expandable primitive NSCs. Here, we have described a method for the conversion of human fibroblasts to LIF-dependent primitive NSCs using a strategy based on techniques for the generation of induced pluripotent stem cells (iPSCs). These LIF-dependent induced NSCs (LD-iNSCs) can be expanded for >100 passages. Long-term cultured LD-iNSCs demonstrated multipotent neural differentiation potential and could generate motor neurons and dopaminergic neurons, as well as astrocytes and oligodendrocytes, indicating a high level of plasticity. Furthermore, LD-iNSCs easily reverted to human iPSCs, indicating that LD-iNSCs are in an intermediate iPSC state. This method may facilitate the generation of patient-specific human neurons for studies and treatment of neurodegenerative diseases. PMID:26490674

  5. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    SciTech Connect

    Manceur, Aziza P.; Tseng, Michael; Holowacz, Tamara; Witterick, Ian; Weksberg, Rosanna; McCurdy, Richard D.; Warsh, Jerry J.; Audet, Julie

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  6. 3D Normal Human Neural Progenitor Tissue-Like Assemblies: A Model of Persistent VZV Infection

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2013-01-01

    Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells.

  7. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    SciTech Connect

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook; Kim, Sun Kyung; Jang, In Keun; Eom, Young-woo; Park, Joon Seong; Kim, Hugh C.; Song, Kye Yong; Park, Soon Cheol; Lim, Hwan Sub; Kim, Young Jin . E-mail: jin@lifecord.co.kr

    2007-06-29

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types, including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.

  8. Neural summation in human motor cortex by subthreshold transcranial magnetic stimulations.

    PubMed

    Du, Xiaoming; Choa, Fow-Sen; Summerfelt, Ann; Tagamets, Malle A; Rowland, Laura M; Kochunov, Peter; Shepard, Paul; Hong, L Elliot

    2015-02-01

    Integration of diverse synaptic inputs is a basic neuronal operation that relies on many neurocomputational principles, one of which is neural summation. However, we lack empirical understanding of neuronal summation in the human brains in vivo. Here, we explored the effect of neural summation on the motor cortex using two subthreshold pulses of transcranial magnetic stimulation (TMS), each with intensities ranging from 60 to 95% of the resting motor threshold (RMT) and interstimulus interval (ISI) varying from 1 to 25 ms. We found that two subthreshold TMS pulses can produce suprathreshold motor response when ISIs were less than 10 ms, most prominent at 1, 1.5 and 3 ms. This facilitatory, above-threshold response was evident when the intensity of the subthreshold pulses was above 80% of RMT but was absent as the intensity was 70% or below. Modeling of the summation data across intensity suggested that they followed an exponential function with excellent model fitting. Understanding the constraints for inducing summation of subthreshold stimulations to generate above-threshold response may have implications in modeling neural operations and potential clinical applications. PMID:25399245

  9. Behavioral and genetic correlates of the neural response to infant crying among human fathers.

    PubMed

    Mascaro, Jennifer S; Hackett, Patrick D; Gouzoules, Harold; Lori, Adriana; Rilling, James K

    2014-11-01

    Although evolution has shaped human infant crying and the corresponding response from caregivers, there is marked variation in paternal involvement and caretaking behavior, highlighting the importance of understanding the neurobiology supporting optimal paternal responses to cries. We explored the neural response to infant cries in fathers of children aged 1-2, and its relationship with hormone levels, variation in the androgen receptor (AR) gene, parental attitudes and parental behavior. Although number of AR CAG trinucleotide repeats was positively correlated with neural activity in brain regions important for empathy (anterior insula and inferior frontal gyrus), restrictive attitudes were inversely correlated with neural activity in these regions and with regions involved with emotion regulation (orbitofrontal cortex). Anterior insula activity had a non-linear relationship with paternal caregiving, such that fathers with intermediate activation were most involved. These results suggest that restrictive attitudes may be associated with decreased empathy and emotion regulation in response to a child in distress, and that moderate anterior insula activity reflects an optimal level of arousal that supports engaged fathering. PMID:24336349

  10. Neural Summation in Human Motor Cortex by Subthreshold Transcranial Magnetic Stimulations

    PubMed Central

    Du, Xiaoming; Choa, Fow-Sen; Summerfelt, Ann; Tagamets, Malle A.; Rowland, Laura M.; Kochunov, Peter; Shepard, Paul; Hong, L. Elliot

    2014-01-01

    Integration of diverse synaptic inputs is a basic neuronal operation that relies on many neurocomputational principles, one of which is neural summation. However, we lack empirical understanding of neuronal summation in the human brains in vivo. Here we explored the effect of neural summation in the motor cortex using two subthreshold pulses of transcranial magnetic stimulation (TMS), each with intensities ranging from 60% - 95% of the resting motor threshold (RMT) and interstimulus intervals (ISI) varying from 1 – 25 ms. We found that two subthreshold TMS pulses can produce supra threshold motor response when ISIs were less than 10 ms, most prominent at 1, 1.5 and 3 ms. This facilitatory, above threshold response was evident when the intensity of the subthreshold pulses were above 80% of RMT but was absent as the intensity was 70% or below. Modeling of the summation data across intensity suggested that they followed an exponential function with excellent model fitting. Understanding the constraints for inducing summation of subthreshold stimulations to generate above threshold response may have implications in modeling neural operations and potential clinical applications. PMID:25399245

  11. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells.

    PubMed

    Pathak, Medha M; Nourse, Jamison L; Tran, Truc; Hwe, Jennifer; Arulmoli, Janahan; Le, Dai Trang T; Bernardis, Elena; Flanagan, Lisa A; Tombola, Francesco

    2014-11-11

    Neural stem cells are multipotent cells with the ability to differentiate into neurons, astrocytes, and oligodendrocytes. Lineage specification is strongly sensitive to the mechanical properties of the cellular environment. However, molecular pathways transducing matrix mechanical cues to intracellular signaling pathways linked to lineage specification remain unclear. We found that the mechanically gated ion channel Piezo1 is expressed by brain-derived human neural stem/progenitor cells and is responsible for a mechanically induced ionic current. Piezo1 activity triggered by traction forces elicited influx of Ca(2+), a known modulator of differentiation, in a substrate-stiffness-dependent manner. Inhibition of channel activity by the pharmacological inhibitor GsMTx-4 or by siRNA-mediated Piezo1 knockdown suppressed neurogenesis and enhanced astrogenesis. Piezo1 knockdown also reduced the nuclear localization of the mechanoreactive transcriptional coactivator Yes-associated protein. We propose that the mechanically gated ion channel Piezo1 is an important determinant of mechanosensitive lineage choice in neural stem cells and may play similar roles in other multipotent stem cells. PMID:25349416

  12. Transplantation of Defined Populations of Differentiated Human Neural Stem Cell Progeny

    PubMed Central

    Fortin, Jeff M.; Azari, Hassan; Zheng, Tong; Darioosh, Roya P.; Schmoll, Michael E.; Vedam-Mai, Vinata; Deleyrolle, Loic P.; Reynolds, Brent A.

    2016-01-01

    Many neurological injuries are likely too extensive for the limited repair capacity of endogenous neural stem cells (NSCs). An alternative is to isolate NSCs from a donor, and expand them in vitro as transplantation material. Numerous groups have already transplanted neural stem and precursor cells. A caveat to this approach is the undefined phenotypic distribution of the donor cells, which has three principle drawbacks: (1) Stem-like cells retain the capacity to proliferate in vivo. (2) There is little control over the cells’ terminal differentiation, e.g., a graft intended to replace neurons might choose a predominantly glial fate. (3) There is limited ability of researchers to alter the combination of cell types in pursuit of a precise treatment. We demonstrate a procedure for differentiating human neural precursor cells (hNPCs) in vitro, followed by isolation of the neuronal progeny. We transplanted undifferentiated hNPCs or a defined concentration of hNPC-derived neurons into mice, then compared these two groups with regard to their survival, proliferation and phenotypic fate. We present evidence suggesting that in vitro-differentiated-and-purified neurons survive as well in vivo as their undifferentiated progenitors, and undergo less proliferation and less astrocytic differentiation. We also describe techniques for optimizing low-temperature cell preservation and portability. PMID:27030542

  13. Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective

    PubMed Central

    Zirra, Alexandra; Wiethoff, Sarah; Patani, Rickie

    2016-01-01

    Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs) became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine. PMID:27069483

  14. Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth.

    PubMed

    Tang, Hengli; Hammack, Christy; Ogden, Sarah C; Wen, Zhexing; Qian, Xuyu; Li, Yujing; Yao, Bing; Shin, Jaehoon; Zhang, Feiran; Lee, Emily M; Christian, Kimberly M; Didier, Ruth A; Jin, Peng; Song, Hongjun; Ming, Guo-Li

    2016-05-01

    The suspected link between infection by Zika virus (ZIKV), a re-emerging flavivirus, and microcephaly is an urgent global health concern. The direct target cells of ZIKV in the developing human fetus are not clear. Here we show that a strain of the ZIKV, MR766, serially passaged in monkey and mosquito cells efficiently infects human neural progenitor cells (hNPCs) derived from induced pluripotent stem cells. Infected hNPCs further release infectious ZIKV particles. Importantly, ZIKV infection increases cell death and dysregulates cell-cycle progression, resulting in attenuated hNPC growth. Global gene expression analysis of infected hNPCs reveals transcriptional dysregulation, notably of cell-cycle-related pathways. Our results identify hNPCs as a direct ZIKV target. In addition, we establish a tractable experimental model system to investigate the impact and mechanism of ZIKV on human brain development and provide a platform to screen therapeutic compounds. PMID:26952870

  15. Human activities recognition by head movement using partial recurrent neural network

    NASA Astrophysics Data System (ADS)

    Tan, Henry C. C.; Jia, Kui; De Silva, Liyanage C.

    2003-06-01

    Traditionally, human activities recognition has been achieved mainly by the statistical pattern recognition methods or the Hidden Markov Model (HMM). In this paper, we propose a novel use of the connectionist approach for the recognition of ten simple human activities: walking, sitting down, getting up, squatting down and standing up, in both lateral and frontal views, in an office environment. By means of tracking the head movement of the subjects over consecutive frames from a database of different color image sequences, and incorporating the Elman model of the partial recurrent neural network (RNN) that learns the sequential patterns of relative change of the head location in the images, the proposed system is able to robustly classify all the ten activities performed by unseen subjects from both sexes, of different race and physique, with a recognition rate as high as 92.5%. This demonstrates the potential of employing partial RNN to recognize complex activities in the increasingly popular human-activities-based applications.

  16. Neural mechanisms underlying contextual dependency of subjective values: converging evidence from monkeys and humans.

    PubMed

    Abitbol, Raphaëlle; Lebreton, Maël; Hollard, Guillaume; Richmond, Barry J; Bouret, Sébastien; Pessiglione, Mathias

    2015-02-01

    A major challenge for decision theory is to account for the instability of expressed preferences across time and context. Such variability could arise from specific properties of the brain system used to assign subjective values. Growing evidence has identified the ventromedial prefrontal cortex (VMPFC) as a key node of the human brain valuation system. Here, we first replicate this observation with an fMRI study in humans showing that subjective values of painting pictures, as expressed in explicit pleasantness ratings, are specifically encoded in the VMPFC. We then establish a bridge with monkey electrophysiology, by comparing single-unit activity evoked by visual cues between the VMPFC and the orbitofrontal cortex. At the neural population level, expected reward magnitude was only encoded in the VMPFC, which also reflected subjective cue values, as expressed in Pavlovian appetitive responses. In addition, we demonstrate in both species that the additive effect of prestimulus activity on evoked activity has a significant impact on subjective values. In monkeys, the factor dominating prestimulus VMPFC activity was trial number, which likely indexed variations in internal dispositions related to fatigue or satiety. In humans, prestimulus VMPFC activity was externally manipulated through changes in the musical context, which induced a systematic bias in subjective values. Thus, the apparent stochasticity of preferences might relate to the VMPFC automatically aggregating the values of contextual features, which would bias subsequent valuation because of temporal autocorrelation in neural activity. PMID:25653384

  17. A 3D human neural cell culture system for modeling Alzheimer's disease.

    PubMed

    Kim, Young Hye; Choi, Se Hoon; D'Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J; Klee, Justin B; Brüstle, Oliver; Tanzi, Rudolph E; Kim, Doo Yeon

    2015-07-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer's disease (AD), because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel 3D culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of amyloid-β (Aβ) and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix and the analysis of AD pathogenesis. The 3D culture generation takes 1-2 d. The aggregation of Aβ is observed after 6 weeks of differentiation, followed by robust tau pathology after 10-14 weeks. PMID:26068894

  18. Neural Mechanisms Underlying Contextual Dependency of Subjective Values: Converging Evidence from Monkeys and Humans

    PubMed Central

    Abitbol, Raphaëlle; Lebreton, Maël; Hollard, Guillaume; Richmond, Barry J.; Bouret, Sébastien

    2015-01-01

    A major challenge for decision theory is to account for the instability of expressed preferences across time and context. Such variability could arise from specific properties of the brain system used to assign subjective values. Growing evidence has identified the ventromedial prefrontal cortex (VMPFC) as a key node of the human brain valuation system. Here, we first replicate this observation with an fMRI study in humans showing that subjective values of painting pictures, as expressed in explicit pleasantness ratings, are specifically encoded in the VMPFC. We then establish a bridge with monkey electrophysiology, by comparing single-unit activity evoked by visual cues between the VMPFC and the orbitofrontal cortex. At the neural population level, expected reward magnitude was only encoded in the VMPFC, which also reflected subjective cue values, as expressed in Pavlovian appetitive responses. In addition, we demonstrate in both species that the additive effect of prestimulus activity on evoked activity has a significant impact on subjective values. In monkeys, the factor dominating prestimulus VMPFC activity was trial number, which likely indexed variations in internal dispositions related to fatigue or satiety. In humans, prestimulus VMPFC activity was externally manipulated through changes in the musical context, which induced a systematic bias in subjective values. Thus, the apparent stochasticity of preferences might relate to the VMPFC automatically aggregating the values of contextual features, which would bias subsequent valuation because of temporal autocorrelation in neural activity. PMID:25653384

  19. Evolutionary Basis of Human Running and Its Impact on Neural Function.

    PubMed

    Schulkin, Jay

    2016-01-01

    Running is not unique to humans, but it is seemingly a basic human capacity. This article addresses the evolutionary origins of humans running long distances, the basic physical capability of running, and the neurogenesis of aerobic fitness. This article more specifically speaks to the conditions that set the stage for the act of running, and then looks at brain expression, and longer-term consequences of running within a context of specific morphological features and diverse information molecules that participate in our capacity for running and sport. While causal factors are not known, we do know that physiological factors are involved in running and underlie neural function. Multiple themes about running are discussed in this article, including neurogenesis, neural plasticity, and memory enhancement. Aerobic exercise increases anterior hippocampus size. This expansion is linked to the improvement of memory, which reflects the improvement of learning as a function of running activity in animal studies. Higher fitness is associated with greater expansion, not only of the hippocampus, but of several other brain regions. PMID:27462208

  20. Evolutionary Basis of Human Running and Its Impact on Neural Function

    PubMed Central

    Schulkin, Jay

    2016-01-01

    Running is not unique to humans, but it is seemingly a basic human capacity. This article addresses the evolutionary origins of humans running long distances, the basic physical capability of running, and the neurogenesis of aerobic fitness. This article more specifically speaks to the conditions that set the stage for the act of running, and then looks at brain expression, and longer-term consequences of running within a context of specific morphological features and diverse information molecules that participate in our capacity for running and sport. While causal factors are not known, we do know that physiological factors are involved in running and underlie neural function. Multiple themes about running are discussed in this article, including neurogenesis, neural plasticity, and memory enhancement. Aerobic exercise increases anterior hippocampus size. This expansion is linked to the improvement of memory, which reflects the improvement of learning as a function of running activity in animal studies. Higher fitness is associated with greater expansion, not only of the hippocampus, but of several other brain regions. PMID:27462208

  1. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.

    2008-12-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.

  2. A 3D human neural cell culture system for modeling Alzheimer’s disease

    PubMed Central

    Kim, Young Hye; Choi, Se Hoon; D’Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J.; Klee, Justin B.; Brüstle, Oliver; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer’s disease (AD) because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel three-dimensional (3D) culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of β-amyloid and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix, and the analysis of AD pathogenesis. The 3D culture generation takes 1–2 days. The aggregation of β-amyloid is observed after 6-weeks of differentiation followed by robust tau pathology after 10–14 weeks. PMID:26068894

  3. Using convolutional neural networks for human activity classification on micro-Doppler radar spectrograms

    NASA Astrophysics Data System (ADS)

    Jordan, Tyler S.

    2016-05-01

    This paper presents the findings of using convolutional neural networks (CNNs) to classify human activity from micro-Doppler features. An emphasis on activities involving potential security threats such as holding a gun are explored. An automotive 24 GHz radar on chip was used to collect the data and a CNN (normally applied to image classification) was trained on the resulting spectrograms. The CNN achieves an error rate of 1.65 % on classifying running vs. walking, 17.3 % error on armed walking vs. unarmed walking, and 22 % on classifying six different actions.

  4. Identification and classification of human neural stem cells by infrared spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Steiner, G.; Küchler, S.; Koch, E.; Salzer, R.; Schackert, G.; Kirsch, M.

    2009-02-01

    Human neural stem were cultivated and characterized using infrared spectroscopic imaging. A classification algorithm based on linear discriminate analysis was developed to distinguish the differentiation of the stem cells to neurons, astrocytes and stem cells without labeling. The classification is based upon spectral features which mainly arise from proteins, nucleic acids. A spectral training set was formed with spectra from cells which were identified by a subsequently staining according to a standard histological protocol. Differentiated cells could be classified with a high accuracy whereas not differentiated stem cells did exhibit some misclassifications

  5. Extensive Neuronal Differentiation of Human Neural Stem Cell Grafts in Adult Rat Spinal Cord

    PubMed Central

    Yan, Jun; Xu, Leyan; Welsh, Annie M; Hatfield, Glen; Hazel, Thomas; Johe, Karl; Koliatsos, Vassilis E

    2007-01-01

    Background Effective treatments for degenerative and traumatic diseases of the nervous system are not currently available. The support or replacement of injured neurons with neural grafts, already an established approach in experimental therapeutics, has been recently invigorated with the addition of neural and embryonic stem-derived precursors as inexhaustible, self-propagating alternatives to fetal tissues. The adult spinal cord, i.e., the site of common devastating injuries and motor neuron disease, has been an especially challenging target for stem cell therapies. In most cases, neural stem cell (NSC) transplants have shown either poor differentiation or a preferential choice of glial lineages. Methods and Findings In the present investigation, we grafted NSCs from human fetal spinal cord grown in monolayer into the lumbar cord of normal or injured adult nude rats and observed large-scale differentiation of these cells into neurons that formed axons and synapses and established extensive contacts with host motor neurons. Spinal cord microenvironment appeared to influence fate choice, with centrally located cells taking on a predominant neuronal path, and cells located under the pia membrane persisting as NSCs or presenting with astrocytic phenotypes. Slightly fewer than one-tenth of grafted neurons differentiated into oligodendrocytes. The presence of lesions increased the frequency of astrocytic phenotypes in the white matter. Conclusions NSC grafts can show substantial neuronal differentiation in the normal and injured adult spinal cord with good potential of integration into host neural circuits. In view of recent similar findings from other laboratories, the extent of neuronal differentiation observed here disputes the notion of a spinal cord that is constitutively unfavorable to neuronal repair. Restoration of spinal cord circuitry in traumatic and degenerative diseases may be more realistic than previously thought, although major challenges remain

  6. Spatial attention boosts short-latency neural responses in human visual cortex.

    PubMed

    Mishra, Jyoti; Martínez, Antígona; Schroeder, Charles E; Hillyard, Steven A

    2012-01-16

    In a previous study of visual-spatial attention, Martinez et al. (2007) replicated the well-known finding that stimuli at attended locations elicit enlarged early components in the averaged event-related potential (ERP), which were localized to extrastriate visual cortex. The mechanisms that underlie these attention-related ERP modulations in the latency range of 80-200 ms, however, remain unclear. The main question is whether attention produces increased ERP amplitudes in time-domain averages by augmenting stimulus-triggered neural activity, or alternatively, by increasing the phase-locking of ongoing EEG oscillations to the attended stimuli. We compared these alternative mechanisms using Morlet wavelet decompositions of event-related EEG changes. By analyzing single-trial spectral amplitudes in the theta (4-8 Hz) and alpha (8-12 Hz) bands, which were the dominant frequencies of the early ERP components, it was found that stimuli at attended locations elicited enhanced neural responses in the theta band in the P1 (88-120 ms) and N1 (148-184 ms) latency ranges that were additive with the ongoing EEG. In the alpha band there was evidence for both increased additive neural activity and increased phase-synchronization of the EEG following attended stimuli, but systematic correlations between pre- and post-stimulus alpha activity were more consistent with an additive mechanism. These findings provide the strongest evidence to date in humans that short-latency neural activity elicited by stimuli within the spotlight of spatial attention is boosted or amplified at early stages of processing in extrastriate visual cortex. PMID:21983181

  7. Kinesin Light Chain 1 Suppression Impairs Human Embryonic Stem Cell Neural Differentiation and Amyloid Precursor Protein Metabolism

    PubMed Central

    Killian, Rhiannon L.; Flippin, Jessica D.; Herrera, Cheryl M.; Almenar-Queralt, Angels; Goldstein, Lawrence S. B.

    2012-01-01

    The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark molecules amyloid beta (Aβ) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused by Kinesin-1 dysfunction perturbs levels of both Aβ and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1 dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-associated neural proteins, including Tau and less secreted Aβ, supporting the previously established connection between KLC1, Tau and Aβ. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have important implications for human neurodevelopmental and neurodegenerative diseases. PMID:22272245

  8. Improved Method for Ex Ovo-Cultivation of Developing Chicken Embryos for Human Stem Cell Xenografts

    PubMed Central

    Schomann, Timo; Qunneis, Firas; Widera, Darius; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2013-01-01

    The characterization of human stem cells for the usability in regenerative medicine is particularly based on investigations regarding their differentiation potential in vivo. In this regard, the chicken embryo model represents an ideal model organism. However, the access to the chicken embryo is only achievable by windowing the eggshell resulting in limited visibility and accessibility in subsequent experiments. On the contrary, ex ovo-culture systems avoid such negative side effects. Here, we present an improved ex ovo-cultivation method enabling the embryos to survive 13 days in vitro. Optimized cultivation of chicken embryos resulted in a normal development regarding their size and weight. Our ex ovo-approach closely resembles the development of chicken embryos in ovo, as demonstrated by properly developed nervous system, bones, and cartilage at expected time points. Finally, we investigated the usability of our method for trans-species transplantation of adult stem cells by injecting human neural crest-derived stem cells into late Hamburger and Hamilton stages (HH26–HH28/E5—E6) of ex ovo-incubated embryos. We demonstrated the integration of human cells allowing experimentally easy investigation of the differentiation potential in the proper developmental context. Taken together, this ex ovo-method supports the prolonged cultivation of properly developing chicken embryos enabling integration studies of xenografted mammalian stem cells at late developmental stages. PMID:23554818

  9. Perceptual and neural responses to sweet taste in humans and rodents

    PubMed Central

    Lemon, Christian H.

    2015-01-01

    Introduction This mini-review discusses some of the parallels between rodent neurophysiological and human psychophysical data concerning temperature effects on sweet taste. Methods and Purpose “Sweet” is an innately rewarding taste sensation that is associated in part with foods that contain calories in the form of sugars. Humans and other mammals can show unconditioned preference for select sweet stimuli. Such preference is poised to influence diet selection and, in turn, nutritional status, which underscores the importance of delineating the physiological mechanisms for sweet taste with respect to their influence on human health. Advances in our knowledge of the biology of sweet taste in humans have arisen in part through studies on mechanisms of gustatory processing in rodent models. Along this line, recent work has revealed there are operational parallels in neural systems for sweet taste between mice and humans, as indexed by similarities in the effects of temperature on central neurophysiological and psychophysical responses to sucrose in these species. Such association strengthens the postulate that rodents can serve as effective models of particular mechanisms of appetitive taste processing. Data supporting this link are discussed here, as are rodent and human data that shed light on relationships between mechanisms for sweet taste and ingestive disorders, such as alcohol abuse. Results and Conclusions Rodent models have utility for understanding mechanisms of taste processing that may pertain to human flavor perception. Importantly, there are limitations to generalizing data from rodents, albeit parallels across species do exist. PMID:26388965

  10. Classification of human activity on water through micro-Dopplers using deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Kim, Youngwook; Moon, Taesup

    2016-05-01

    Detecting humans and classifying their activities on the water has significant applications for surveillance, border patrols, and rescue operations. When humans are illuminated by radar signal, they produce micro-Doppler signatures due to moving limbs. There has been a number of research into recognizing humans on land by their unique micro-Doppler signatures, but there is scant research into detecting humans on water. In this study, we investigate the micro-Doppler signatures of humans on water, including a swimming person, a swimming person pulling a floating object, and a rowing person in a small boat. The measured swimming styles were free stroke, backstroke, and breaststroke. Each activity was observed to have a unique micro-Doppler signature. Human activities were classified based on their micro-Doppler signatures. For the classification, we propose to apply deep convolutional neural networks (DCNN), a powerful deep learning technique. Rather than using conventional supervised learning that relies on handcrafted features, we present an alternative deep learning approach. We apply the DCNN, one of the most successful deep learning algorithms for image recognition, directly to a raw micro-Doppler spectrogram of humans on the water. Without extracting any explicit features from the micro-Dopplers, the DCNN can learn the necessary features and build classification boundaries using the training data. We show that the DCNN can achieve accuracy of more than 87.8% for activity classification using 5- fold cross validation.

  11. Generation of Neural Stem Cells from Discarded Human Fetal Cortical Tissue

    PubMed Central

    Lu, Jie; Delli-Bovi, Laurent C.; Hecht, Jonathan; Folkerth, Rebecca; Sheen, Volney L.

    2011-01-01

    Neural stem cells (NSCs) reside along the ventricular zone neuroepithelium during the development of the cortical plate. These early progenitors ultimately give rise to intermediate progenitors and later, the various neuronal and glial cell subtypes that form the cerebral cortex. The capacity to generate and expand human NSCs (so called neurospheres) from discarded normal fetal tissue provides a means with which to directly study the functional aspects of normal human NSC development 1-5. This approach can also be directed toward the generation of NSCs from known neurological disorders, thereby affording the opportunity to identify disease processes that alter progenitor proliferation, migration and differentiation 6-9. We have focused on identifying pathological mechanisms in human Down syndrome NSCs that might contribute to the accelerated Alzheimer's disease phenotype 10,11. Neither in vivo nor in vitro mouse models can replicate the identical repertoire of genes located on human chromosome 21. Here we use a simple and reliable method to isolate Down syndrome NSCs from aborted human fetal cortices and grow them in culture. The methodology provides specific aspects of harvesting the tissue, dissection with limited anatomical landmarks, cell sorting, plating and passaging of human NSCs. We also provide some basic protocols for inducing differentiation of human NSCs into more selective cell subtypes. PMID:21654623

  12. In Vivo Tumorigenesis Was Observed after Injection of In Vitro Expanded Neural Crest Stem Cells Isolated from Adult Bone Marrow

    PubMed Central

    Neirinckx, Virginie; Hennuy, Benoit; Swingland, James T.; Laudet, Emerence; Sommer, Lukas; Shakova, Olga; Bours, Vincent; Rogister, Bernard

    2012-01-01

    Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC) as mixed populations of cells including mesenchymal (MSC) and neural crest stem cells (NCSC). Here, we report the transformation of NCSC into tumorigenic cells, after in vitro long-term passaging. Indeed, the characterization of 6 neural crest-derived clones revealed the presence of one tumorigenic clone. Transcriptomic analyses of this clone highlighted, among others, numerous cell cycle checkpoint modifications and chromosome 11q down-regulation (suggesting a deletion of chromosome 11q) compared with the other clones. Moreover, unsupervised analysis such as a dendrogram generated after agglomerative hierarchical clustering comparing several transcriptomic data showed important similarities between the tumorigenic neural crest-derived clone and mammary tumor cell lines. Altogether, it appeared that NCSC isolated from adult bone marrow represents a potential danger for cellular therapy, and consequently, we recommend that phenotypic, functional and genetic assays should be performed on bone marrow mesenchymal and neural crest stem cells before in vivo use, to demonstrate whether their biological properties, after ex vivo expansion, remain suitable for clinical application. PMID:23071568

  13. In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow.

    PubMed

    Wislet-Gendebien, Sabine; Poulet, Christophe; Neirinckx, Virginie; Hennuy, Benoit; Swingland, James T; Laudet, Emerence; Sommer, Lukas; Shakova, Olga; Bours, Vincent; Rogister, Bernard

    2012-01-01

    Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC) as mixed populations of cells including mesenchymal (MSC) and neural crest stem cells (NCSC). Here, we report the transformation of NCSC into tumorigenic cells, after in vitro long-term passaging. Indeed, the characterization of 6 neural crest-derived clones revealed the presence of one tumorigenic clone. Transcriptomic analyses of this clone highlighted, among others, numerous cell cycle checkpoint modifications and chromosome 11q down-regulation (suggesting a deletion of chromosome 11q) compared with the other clones. Moreover, unsupervised analysis such as a dendrogram generated after agglomerative hierarchical clustering comparing several transcriptomic data showed important similarities between the tumorigenic neural crest-derived clone and mammary tumor cell lines. Altogether, it appeared that NCSC isolated from adult bone marrow represents a potential danger for cellular therapy, and consequently, we recommend that phenotypic, functional and genetic assays should be performed on bone marrow mesenchymal and neural crest stem cells before in vivo use, to demonstrate whether their biological properties, after ex vivo expansion, remain suitable for clinical application. PMID:23071568

  14. Dual Roles of Histone H3 Lysine 9 Acetylation in Human Embryonic Stem Cell Pluripotency and Neural Differentiation*

    PubMed Central

    Qiao, Yunbo; Wang, Ran; Yang, Xianfa; Tang, Ke; Jing, Naihe

    2015-01-01

    Early neurodevelopment requires cell fate commitment from pluripotent stem cells to restricted neural lineages, which involves the epigenetic regulation of chromatin structure and lineage-specific gene transcription. However, it remains unclear how histone H3 lysine 9 acetylation (H3K9Ac), an epigenetic mark representing transcriptionally active chromatin, is involved in the neural commitment from pluripotent embryonic stem cells (ESCs). In this study, we demonstrate that H3K9Ac gradually declines during the first 4 days of in vitro neural differentiation of human ESCs (hESCs) and then increases during days 4–8. Consistent with this finding, the H3K9Ac enrichment at several pluripotency genes was decreased, and H3K9Ac occupancies at the loci of neurodevelopmental genes increased during hESC neural commitment. Inhibiting H3K9 deacetylation on days 0–4 by histone deacetylase inhibitors (HDACis) promoted hESC pluripotency and suppressed its neural differentiation. Conversely, HDACi-elicited up-regulation of H3K9 acetylation on days 4–8 enhanced neural differentiation and activated multiple neurodevelopmental genes. Mechanistically, HDACis promote pluripotency gene transcription to support hESC self-renewal through suppressing HDAC3 activity. During hESC neural commitment, HDACis relieve the inhibitory activities of HDAC1/5/8 and thereby promote early neurodevelopmental gene expression by interfering with gene-specific histone acetylation patterns. Furthermore, p300 is primarily identified as the major histone acetyltransferase involved in both hESC pluripotency and neural differentiation. Our results indicate that epigenetic modification plays pivotal roles during the early neural specification of hESCs. The histone acetylation, which is regulated by distinct HDAC members at different neurodevelopmental stages, plays dual roles in hESC pluripotency maintenance and neural differentiation. PMID:25519907

  15. Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation.

    PubMed

    Qiao, Yunbo; Wang, Ran; Yang, Xianfa; Tang, Ke; Jing, Naihe

    2015-01-23

    Early neurodevelopment requires cell fate commitment from pluripotent stem cells to restricted neural lineages, which involves the epigenetic regulation of chromatin structure and lineage-specific gene transcription. However, it remains unclear how histone H3 lysine 9 acetylation (H3K9Ac), an epigenetic mark representing transcriptionally active chromatin, is involved in the neural commitment from pluripotent embryonic stem cells (ESCs). In this study, we demonstrate that H3K9Ac gradually declines during the first 4 days of in vitro neural differentiation of human ESCs (hESCs) and then increases during days 4-8. Consistent with this finding, the H3K9Ac enrichment at several pluripotency genes was decreased, and H3K9Ac occupancies at the loci of neurodevelopmental genes increased during hESC neural commitment. Inhibiting H3K9 deacetylation on days 0-4 by histone deacetylase inhibitors (HDACis) promoted hESC pluripotency and suppressed its neural differentiation. Conversely, HDACi-elicited up-regulation of H3K9 acetylation on days 4-8 enhanced neural differentiation and activated multiple neurodevelopmental genes. Mechanistically, HDACis promote pluripotency gene transcription to support hESC self-renewal through suppressing HDAC3 activity. During hESC neural commitment, HDACis relieve the inhibitory activities of HDAC1/5/8 and thereby promote early neurodevelopmental gene expression by interfering with gene-specific histone acetylation patterns. Furthermore, p300 is primarily identified as the major histone acetyltransferase involved in both hESC pluripotency and neural differentiation. Our results indicate that epigenetic modification plays pivotal roles during the early neural specification of hESCs. The histone acetylation, which is regulated by distinct HDAC members at different neurodevelopmental stages, plays dual roles in hESC pluripotency maintenance and neural differentiation. PMID:25519907

  16. Pentimento: Neural Crest and the origin of mesectoderm.

    PubMed

    Weston, James A; Thiery, Jean Paul

    2015-05-01

    fates of Neural Crest-derived cells. We hope our discussion will resolve some ambiguities regarding both the range of derivatives in the Neural Crest lineage and the conventional understanding that cranial mesectodermal derivatives share a common Neural Crest-derived lineage precursor with components of the PNS. PMID:25598524

  17. Human epidermal neural crest stem cells as a source of Schwann cells

    PubMed Central

    Sakaue, Motoharu; Sieber-Blum, Maya

    2015-01-01

    We show that highly pure populations of human Schwann cells can be derived rapidly and in a straightforward way, without the need for genetic manipulation, from human epidermal neural crest stem cells [hEPI-NCSC(s)] present in the bulge of hair follicles. These human Schwann cells promise to be a useful tool for cell-based therapies, disease modelling and drug discovery. Schwann cells are glia that support axons of peripheral nerves and are direct descendants of the embryonic neural crest. Peripheral nerves are damaged in various conditions, including through trauma or tumour-related surgery, and Schwann cells are required for their repair and regeneration. Schwann cells also promise to be useful for treating spinal cord injuries. Ex vivo expansion of hEPI-NCSC isolated from hair bulge explants, manipulating the WNT, sonic hedgehog and TGFβ signalling pathways, and exposure of the cells to pertinent growth factors led to the expression of the Schwann cell markers SOX10, KROX20 (EGR2), p75NTR (NGFR), MBP and S100B by day 4 in virtually all cells, and maturation was completed by 2 weeks of differentiation. Gene expression profiling demonstrated expression of transcripts for neurotrophic and angiogenic factors, as well as JUN, all of which are essential for nerve regeneration. Co-culture of hEPI-NCSC-derived human Schwann cells with rodent dorsal root ganglia showed interaction of the Schwann cells with axons, providing evidence of Schwann cell functionality. We conclude that hEPI-NCSCs are a biologically relevant source for generating large and highly pure populations of human Schwann cells. PMID:26251357

  18. Tripartite containing motif 32 modulates proliferation of human neural precursor cells in HIV-1 neurodegeneration.

    PubMed

    Fatima, M; Kumari, R; Schwamborn, J C; Mahadevan, A; Shankar, S K; Raja, R; Seth, P

    2016-05-01

    In addition to glial cells, HIV-1 infection occurs in multipotent human neural precursor cells (hNPCs) and induces quiescence in NPCs. HIV-1 infection of the brain alters hNPC stemness, leading to perturbed endogenous neurorestoration of the CNS following brain damage by HIV-1, compounding the severity of dementia in adult neuroAIDS cases. In pediatric neuroAIDS cases, HIV-1 infection of neural stem cell can lead to delayed developmental milestones and impaired cognition. Using primary cultures of human fetal brain-derived hNPCs, we gained novel insights into the role of a neural stem cell determinant, tripartite containing motif 32 (TRIM32), in HIV-1 Tat-induced quiescence of NPCs. Acute HIV-1 Tat treatment of hNPCs resulted in proliferation arrest but did not induce differentiation. Cellular localization and levels of TRIM32 are critical regulators of stemness of NPCs. HIV-1 Tat exposure increased nuclear localization and levels of TRIM32 in hNPCs. The in vitro findings were validated by studying TRIM32 localization and levels in frontal cortex of HIV-1-seropositive adult patients collected at post mortem as well as by infection of hNPCs by HIV-1. We observed increased percentage of cells with nuclear localization of TRIM32 in the subventricular zone (SVZ) as compared with age-matched controls. Our quest for probing into the mechanisms revealed that TRIM32 is targeted by miR-155 as downregulation of miR-155 by HIV-1 Tat resulted in upregulation of TRIM32 levels. Furthermore, miR-155 or siRNA against TRIM32 rescued HIV-1 Tat-induced quiescence in NPCs. Our findings suggest a novel molecular cascade involving miR-155 and TRIM32 leading to HIV-1 Tat-induced attenuated proliferation of hNPCs. The study also uncovered an unidentified role for miR-155 in modulating human neural stem cell proliferation, helping in better understanding of hNPCs and diseased brain. PMID:26586575

  19. Tripartite containing motif 32 modulates proliferation of human neural precursor cells in HIV-1 neurodegeneration

    PubMed Central

    Fatima, M; Kumari, R; Schwamborn, J C; Mahadevan, A; Shankar, S K; Raja, R; Seth, P

    2016-01-01

    In addition to glial cells, HIV-1 infection occurs in multipotent human neural precursor cells (hNPCs) and induces quiescence in NPCs. HIV-1 infection of the brain alters hNPC stemness, leading to perturbed endogenous neurorestoration of the CNS following brain damage by HIV-1, compounding the severity of dementia in adult neuroAIDS cases. In pediatric neuroAIDS cases, HIV-1 infection of neural stem cell can lead to delayed developmental milestones and impaired cognition. Using primary cultures of human fetal brain-derived hNPCs, we gained novel insights into the role of a neural stem cell determinant, tripartite containing motif 32 (TRIM32), in HIV-1 Tat-induced quiescence of NPCs. Acute HIV-1 Tat treatment of hNPCs resulted in proliferation arrest but did not induce differentiation. Cellular localization and levels of TRIM32 are critical regulators of stemness of NPCs. HIV-1 Tat exposure increased nuclear localization and levels of TRIM32 in hNPCs. The in vitro findings were validated by studying TRIM32 localization and levels in frontal cortex of HIV-1-seropositive adult patients collected at post mortem as well as by infection of hNPCs by HIV-1. We observed increased percentage of cells with nuclear localization of TRIM32 in the subventricular zone (SVZ) as compared with age-matched controls. Our quest for probing into the mechanisms revealed that TRIM32 is targeted by miR-155 as downregulation of miR-155 by HIV-1 Tat resulted in upregulation of TRIM32 levels. Furthermore, miR-155 or siRNA against TRIM32 rescued HIV-1 Tat-induced quiescence in NPCs. Our findings suggest a novel molecular cascade involving miR-155 and TRIM32 leading to HIV-1 Tat-induced attenuated proliferation of hNPCs. The study also uncovered an unidentified role for miR-155 in modulating human neural stem cell proliferation, helping in better understanding of hNPCs and diseased brain. PMID:26586575

  20. Neural Mechanisms of Human Perceptual Learning: Electrophysiological Evidence for a Two-Stage Process

    PubMed Central

    Hamamé, Carlos M.; Cosmelli, Diego; Henriquez, Rodrigo; Aboitiz, Francisco

    2011-01-01

    Background Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. Methodology/Principal Findings We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30–60 Hz) and alpha (8–14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing. Conclusions/Significance We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes. PMID:21541280

  1. Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks.

    PubMed

    Zehr, E Paul; Balter, Jaclyn E; Ferris, Daniel P; Hundza, Sandra R; Loadman, Pamela M; Stoloff, Rebecca H

    2007-07-01

    It has been proposed that different forms of rhythmic human limb movement have a common central neural control ('common core hypothesis'), just as in other animals. We compared the modulation patterns of background EMG and cutaneous reflexes during walking, arm and leg cycling, and arm-assisted recumbent stepping. We hypothesized that patterns of EMG and reflex modulation during cycling and stepping (deduced from mathematical principal components analysis) would be comparable to those during walking because they rely on similar neural substrates. Differences between the tasks were assessed by evoking cutaneous reflexes via stimulation of nerves in the foot and hand in separate trials. The EMG was recorded from flexor and extensor muscles of the arms and legs. Angular positions of the hip, knee and elbow joints were also recorded. Factor analysis revealed that across the three tasks, four principal components explained more than 93% of the variance in the background EMG and middle-latency reflex amplitude. Phase modulation of reflex amplitude was observed in most muscles across all tasks, suggesting activity in similar control networks. Significant correlations between EMG level and reflex amplitude were frequently observed only during static voluntary muscle activation and not during rhythmic movement. Results from a control experiment showed that strong correlation between EMG and reflex amplitudes was observed during discrete, voluntary leg extension but not during walking. There were task-dependent differences in reflex modulation between the three tasks which probably arise owing to specific constraints during each task. Overall, the results show strong correlation across tasks and support common neural patterning as the regulator of arm and leg movement during various rhythmic human movements. PMID:17463036

  2. Protection of Visual Functions by Human Neural Progenitors in a Rat Model of Retinal Disease

    PubMed Central

    Gamm, David M.; Wang, Shaomei; Lu, Bin; Girman, Sergei; Holmes, Toby; Bischoff, Nicholas; Shearer, Rebecca L.; Sauvé, Yves; Capowski, Elizabeth; Svendsen, Clive N.; Lund, Raymond D.

    2007-01-01

    Background A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat. Methodology/Principal Findings Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90–100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed. Conclusions/Significance Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest

  3. Intermittent high oxygen influences the formation of neural retinal tissue from human embryonic stem cells.

    PubMed

    Gao, Lixiong; Chen, Xi; Zeng, Yuxiao; Li, Qiyou; Zou, Ting; Chen, Siyu; Wu, Qian; Fu, Caiyun; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    The vertebrate retina is a highly multilayered nervous tissue with a large diversity of cellular components. With the development of stem cell technologies, human retinas can be generated in three-dimensional (3-D) culture in vitro. However, understanding the factors modulating key productive processes and the way that they influence development are far from clear. Oxygen, as the most essential element participating in metabolism, is a critical factor regulating organic development. In this study, using 3-D culture of human stem cells, we examined the effect of intermittent high oxygen treatment (40% O2) on the formation and cellular behavior of neural retinas (NR) in the embryonic body (EB). The volume of EB and number of proliferating cells increased significantly under 40% O2 on day 38, 50, and 62. Additionally, the ratio of PAX6+ cells within NR was significantly increased. The neural rosettes could only develop with correct apical-basal polarity under 40% O2. In addition, the generation, migration and maturation of retinal ganglion cells were enhanced under 40% O2. All of these results illustrated that 40% O2 strengthened the formation of NR in EB with characteristics similar to the in vivo state, suggesting that the hyperoxic state facilitated the retinal development in vitro. PMID:27435522

  4. Unsupervised Decoding of Long-Term, Naturalistic Human Neural Recordings with Automated Video and Audio Annotations.

    PubMed

    Wang, Nancy X R; Olson, Jared D; Ojemann, Jeffrey G; Rao, Rajesh P N; Brunton, Bingni W

    2016-01-01

    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Implementing Brain Computer Interfaces (BCIs) outside carefully controlled experiments in laboratory settings requires adaptive and scalable strategies with minimal supervision. Here we describe an unsupervised approach to decoding neural states from naturalistic human brain recordings. We analyzed continuous, long-term electrocorticography (ECoG) data recorded over many days from the brain of subjects in a hospital room, with simultaneous audio and video recordings. We discovered coherent clusters in high-dimensional ECoG recordings using hierarchical clustering and automatically annotated them using speech and movement labels extracted from audio and video. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Interpretable behaviors were decoded from ECoG data, including moving, speaking and resting; the results were assessed by comparison with manual annotation. Discovered clusters were projected back onto the brain revealing features consistent with known functional areas, opening the door to automated functional brain mapping in natural settings. PMID:27148018

  5. Unsupervised Decoding of Long-Term, Naturalistic Human Neural Recordings with Automated Video and Audio Annotations

    PubMed Central

    Wang, Nancy X. R.; Olson, Jared D.; Ojemann, Jeffrey G.; Rao, Rajesh P. N.; Brunton, Bingni W.

    2016-01-01

    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Implementing Brain Computer Interfaces (BCIs) outside carefully controlled experiments in laboratory settings requires adaptive and scalable strategies with minimal supervision. Here we describe an unsupervised approach to decoding neural states from naturalistic human brain recordings. We analyzed continuous, long-term electrocorticography (ECoG) data recorded over many days from the brain of subjects in a hospital room, with simultaneous audio and video recordings. We discovered coherent clusters in high-dimensional ECoG recordings using hierarchical clustering and automatically annotated them using speech and movement labels extracted from audio and video. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Interpretable behaviors were decoded from ECoG data, including moving, speaking and resting; the results were assessed by comparison with manual annotation. Discovered clusters were projected back onto the brain revealing features consistent with known functional areas, opening the door to automated functional brain mapping in natural settings. PMID:27148018

  6. Neural correlates of spatial and nonspatial attention determined using intracranial electroencephalographic signals in humans.

    PubMed

    Park, Ga Young; Kim, Taekyung; Park, Jinsick; Lee, Eun Mi; Ryu, Han Uk; Kim, Sun I; Kim, In Young; Kang, Joong Koo; Jang, Dong Pyo; Husain, Masud

    2016-08-01

    Few studies have directly compared the neural correlates of spatial attention (i.e., attention to a particular location) and nonspatial attention (i.e., attention to a feature in the visual scene) using well-controlled tasks. Here, we investigated the neural correlates of spatial and nonspatial attention in humans using intracranial electroencephalography. The topography and number of electrodes showing significant event-related desynchronization (ERD) or event-related synchronization (ERS) in different frequency bands were studied in 13 epileptic patients. Performance was not significantly different between the two conditions. In both conditions, ERD in the low-frequency bands and ERS in the high-frequency bands were present bilaterally in the parietal cortex (prominently on the right hemisphere) and frontal regions. In addition to these common changes, spatial attention involved right-lateralized activity that was maximal in the right superior parietal lobule (SPL), whereas nonspatial attention involved wider brain networks including the bilateral parietal, frontal, and temporal regions, but still had maximal activity in the right parietal lobe. Within the parietal lobe, spatial attention involved ERD or ERS in the right SPL, whereas nonspatial attention involved ERD or ERS in the right inferior parietal lobule. These findings reveal that common as well as different brain networks are engaged in spatial and nonspatial attention. Hum Brain Mapp 37:3041-3054, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27125904

  7. Intermittent high oxygen influences the formation of neural retinal tissue from human embryonic stem cells

    PubMed Central

    Gao, Lixiong; Chen, Xi; Zeng, Yuxiao; Li, Qiyou; Zou, Ting; Chen, Siyu; Wu, Qian; Fu, Caiyun; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    The vertebrate retina is a highly multilayered nervous tissue with a large diversity of cellular components. With the development of stem cell technologies, human retinas can be generated in three-dimensional (3-D) culture in vitro. However, understanding the factors modulating key productive processes and the way that they influence development are far from clear. Oxygen, as the most essential element participating in metabolism, is a critical factor regulating organic development. In this study, using 3-D culture of human stem cells, we examined the effect of intermittent high oxygen treatment (40% O2) on the formation and cellular behavior of neural retinas (NR) in the embryonic body (EB). The volume of EB and number of proliferating cells increased significantly under 40% O2 on day 38, 50, and 62. Additionally, the ratio of PAX6+ cells within NR was significantly increased. The neural rosettes could only develop with correct apical-basal polarity under 40% O2. In addition, the generation, migration and maturation of retinal ganglion cells were enhanced under 40% O2. All of these results illustrated that 40% O2 strengthened the formation of NR in EB with characteristics similar to the in vivo state, suggesting that the hyperoxic state facilitated the retinal development in vitro. PMID:27435522

  8. Laminin enhances the growth of human neural stem cells in defined culture media

    PubMed Central

    Hall, Peter E; Lathia, Justin D; Caldwell, Maeve A; ffrench-Constant, Charles

    2008-01-01

    Background Human neural stem cells (hNSC) have the potential to provide novel cell-based therapies for neurodegenerative conditions such as multiple sclerosis and Parkinson's disease. In order to realise this goal, protocols need to be developed that allow for large quantities of hNSC to be cultured efficiently. As such, it is important to identify factors which enhance the growth of hNSC. In vivo, stem cells reside in distinct microenvironments or niches that are responsible for the maintenance of stem cell populations. A common feature of niches is the presence of the extracellular matrix molecule, laminin. Therefore, this study investigated the effect of exogenous laminin on hNSC growth. Results To measure hNSC growth, we established culture conditions using B27-supplemented medium that enable neurospheres to grow from human neural cells plated at clonal densities. Limiting dilution assays confirmed that neurospheres were derived from single cells at these densities. Laminin was found to increase hNSC numbers as measured by this neurosphere formation. The effect of laminin was to augment the proliferation/survival of the hNSC, rather than promoting the undifferentiated state. In agreement, apoptosis was reduced in dissociated neurospheres by laminin in an integrin β1-dependent manner. Conclusion The addition of laminin to the culture medium enhances the growth of hNSC, and may therefore aid their large-scale production. PMID:18651950

  9. Human facial neural activities and gesture recognition for machine-interfacing applications

    PubMed Central

    Hamedi, M; Salleh, Sh-Hussain; Tan, TS; Ismail, K; Ali, J; Dee-Uam, C; Pavaganun, C; Yupapin, PP

    2011-01-01

    The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human–machine interface (HMI) technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG)-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2–11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy >90% of chosen combinations proved their ability to be used as command controllers. PMID:22267930

  10. Human infants dissociate structural and dynamic information in biological motion: evidence from neural systems

    PubMed Central

    Hoehl, Stefanie; Landt, Jennifer; Striano, Tricia

    2008-01-01

    This study investigates how human infants process and interpret human movement. Neural correlates to the perception of (i) possible biomechanical motion, (ii) impossible biomechanical motion and (iii) biomechanically possible motion but nonhuman ‘corrupted’ body schema were assessed in infants of 8 months. Analysis of event-related potentials resulting from the passive viewing of these point-light displays (PLDs) indicated a larger positive amplitude over parietal channels between 300 and 700 ms for observing biomechanically impossible PLDs when compared with other conditions. An early negative activation over frontal channels between 200 and 350 ms dissociated schematically impossible PLDs from other conditions. These results show that in infants, different cognitive systems underlie the processing of structural and dynamic features by 8 months of age. PMID:19015106