Science.gov

Sample records for human phosphoinositide-specific phospholipase

  1. Structure, function, and control of phosphoinositide-specific phospholipase C.

    PubMed

    Rebecchi, M J; Pentyala, S N

    2000-10-01

    Phosphoinositide-specific phospholipase C (PLC) subtypes beta, gamma, and delta comprise a related group of multidomain phosphodiesterases that cleave the polar head groups from inositol lipids. Activated by all classes of cell surface receptor, these enzymes generate the ubiquitous second messengers inositol 1,4, 5-trisphosphate and diacylglycerol. The last 5 years have seen remarkable advances in our understanding of the molecular and biological facets of PLCs. New insights into their multidomain arrangement and catalytic mechanism have been gained from crystallographic studies of PLC-delta(1), while new modes of controlling PLC activity have been uncovered in cellular studies. Most notable is the realization that PLC-beta, -gamma, and -delta isoforms act in concert, each contributing to a specific aspect of the cellular response. Clues to their true biological roles were also obtained. Long assumed to function broadly in calcium-regulated processes, genetic studies in yeast, slime molds, plants, flies, and mammals point to specific and conditional roles for each PLC isoform in cell signaling and development. In this review we consider each subtype of PLC in organisms ranging from yeast to mammals and discuss their molecular regulation and biological function. PMID:11015615

  2. Molecular and Enzymatic Characterization of Three Phosphoinositide-Specific Phospholipase C Isoforms from Potato1

    PubMed Central

    Kopka, Joachim; Pical, Christophe; Gray, Julie E.; Müller-Röber, Bernd

    1998-01-01

    Many cellular responses to stimulation of cell-surface receptors by extracellular signals are transmitted across the plasma membrane by hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2), which is cleaved into diacylglycerol and inositol-1,4,5-tris-phosphate by phosphoinositide-specific phospholipase C (PI-PLC). We present structural, biochemical, and RNA expression data for three distinct PI-PLC isoforms, StPLC1, StPLC2, and StPLC3, which were cloned from a guard cell-enriched tissue preparation of potato (Solanum tuberosum) leaves. All three enzymes contain the catalytic X and Y domains, as well as C2-like domains also present in all PI-PLCs. Analysis of the reaction products obtained from PIP2 hydrolysis unequivocally identified these enzymes as genuine PI-PLC isoforms. Recombinant StPLCs showed an optimal PIP2-hydrolyzing activity at 10 μm Ca2+ and were inhibited by Al3+ in equimolar amounts. In contrast to PI-PLC activity in plant plasma membranes, however, recombinant enzymes could not be activated by Mg2+. All three stplc genes are expressed in various tissues of potato, including leaves, flowers, tubers, and roots, and are affected by drought stress in a gene-specific manner. PMID:9449844

  3. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    SciTech Connect

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF or thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).

  4. A plasma-membrane linker for the phosphoinositide-specific phospholipase C in tobacco plants.

    PubMed

    Nakamura, Kimiyo; Sano, Hiroshi

    2009-01-01

    We previously screened genes that were transcriptionally activated during the early stage of wound response in tobacco plants (Nicotiana tabacum), and isolated a particular clone, which encoded a membrane-located protein, designated as NtC7. Upon overexpression in tobacco plants, NtC7 conferred a marked tolerance to osmotic stress, suggesting it to be involved in maintenance of osmotic adjustments. In this study, we searched for proteins which interact with NtC7 by the yeast two-hybrid screening, and isolated a clone encoding phosphoinositide-specific phospholipase C, designated as NtPI-PLC. Physical interaction between NtC7 and C2 domain of NtPI-PLC was confirmed by the pull-down assay. Expression of fused protein to green-fluorescence protein in onion epidermal cell layers indicated both proteins to predominantly localize to the plasma membrane. Their interaction in planta was shown by the bimolecular fluorescence complementation, which exhibited a clear fluorescence of reconstituted yellow fluorescence protein. Transcripts of NtC7 and NtPI-PLC were markedly increased 30 to 60 min after wounding. PI-PLC is one of key enzymes in metabolism of inositol phospholipids, which function in signal transduction and also in response to stresses including osmotic changes. It was shown to localize to plasma-membrane and, to a lesser extent, to cytosol. However, molecular mechanism of membrane localization has remained to be determined, because of the apparent lack of domains for membrane association. The present results suggest that one of such mechanisms is tethering NtPI-PLC to the plasma membrane through interaction with NtC7, which possesses a transmembrane domain at the C-terminus. PMID:19704699

  5. A mutation in PLC1, a candidate phosphoinositide-specific phospholipase C gene from Saccharomyces cerevisiae, causes aberrant mitotic chromosome segregation.

    PubMed Central

    Payne, W E; Fitzgerald-Hayes, M

    1993-01-01

    We identified a putative Saccharomyces cerevisiae homolog of a phosphoinositide-specific phospholipase C (PI-PLC) gene, PLC1, which encodes a protein most similar to the delta class of PI-PLC enzymes. The PLC1 gene was isolated during a study of yeast strains that exhibit defects in chromosome segregation. plc1-1 cells showed a 10-fold increase in aberrant chromosome segregation compared with the wild type. Molecular analysis revealed that PLC1 encodes a predicted protein of 101 kDa with approximately 50 and 26% identity to the highly conserved X and Y domains of PI-PLC isozymes from humans, bovines, rats, and Drosophila melanogaster. The putative yeast protein also contains a consensus EF-hand domain that is predicted to bind calcium. Interestingly, the temperature-sensitive and chromosome missegregation phenotypes exhibited by plc1-1 cells were partially suppressed by exogenous calcium. Images PMID:8391635

  6. Expression of Phosphoinositide-Specific Phospholipase C Isoforms in Native Endothelial Cells

    PubMed Central

    Béziau, Delphine M.; Toussaint, Fanny; Blanchette, Alexandre; Dayeh, Nour R.; Charbel, Chimène; Tardif, Jean-Claude; Dupuis, Jocelyn; Ledoux, Jonathan

    2015-01-01

    Phospholipase C (PLC) comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η) based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs) remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA), pulmonary (PA) and middle cerebral arteries (MCA). mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA), δ4 (only expressed in MCA), η1 (expressed in all but MA) and ζ (not detected in any vascular beds tested). The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1) in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found in the

  7. Arabidopsis AtPLC2 Is a Primary Phosphoinositide-Specific Phospholipase C in Phosphoinositide Metabolism and the Endoplasmic Reticulum Stress Response

    PubMed Central

    Kanehara, Kazue; Yu, Chao-Yuan; Cho, Yueh; Cheong, Wei-Fun; Torta, Federico; Shui, Guanghou; Wenk, Markus R; Nakamura, Yuki

    2015-01-01

    Abstract Phosphoinositides represent important lipid signals in the plant development and stress response. However, multiple isoforms of the phosphoinositide biosynthetic genes hamper our understanding of the pivotal enzymes in each step of the pathway as well as their roles in plant growth and development. Here, we report that phosphoinositide-specific phospholipase C2 (AtPLC2) is the primary phospholipase in phosphoinositide metabolism and is involved in seedling growth and the endoplasmic reticulum (ER) stress responses in Arabidopsis thaliana. Lipidomic profiling of multiple plc mutants showed that the plc2-1 mutant increased levels of its substrates phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, suggesting that the major phosphoinositide metabolic pathway is impaired. AtPLC2 displayed a distinct tissue expression pattern and localized at the plasma membrane in different cell types, where phosphoinositide signaling occurs. The seedlings of plc2-1 mutant showed growth defect that was complemented by heterologous expression of AtPLC2, suggesting that phosphoinositide-specific phospholipase C activity borne by AtPLC2 is required for seedling growth. Moreover, the plc2-1 mutant showed hypersensitive response to ER stress as evidenced by changes in relevant phenotypes and gene expression profiles. Our results revealed the primary enzyme in phosphoinositide metabolism, its involvement in seedling growth and an emerging link between phosphoinositide and the ER stress response. PMID:26401841

  8. Arabidopsis AtPLC2 Is a Primary Phosphoinositide-Specific Phospholipase C in Phosphoinositide Metabolism and the Endoplasmic Reticulum Stress Response.

    PubMed

    Kanehara, Kazue; Yu, Chao-Yuan; Cho, Yueh; Cheong, Wei-Fun; Torta, Federico; Shui, Guanghou; Wenk, Markus R; Nakamura, Yuki

    2015-09-01

    Phosphoinositides represent important lipid signals in the plant development and stress response. However, multiple isoforms of the phosphoinositide biosynthetic genes hamper our understanding of the pivotal enzymes in each step of the pathway as well as their roles in plant growth and development. Here, we report that phosphoinositide-specific phospholipase C2 (AtPLC2) is the primary phospholipase in phosphoinositide metabolism and is involved in seedling growth and the endoplasmic reticulum (ER) stress responses in Arabidopsis thaliana. Lipidomic profiling of multiple plc mutants showed that the plc2-1 mutant increased levels of its substrates phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, suggesting that the major phosphoinositide metabolic pathway is impaired. AtPLC2 displayed a distinct tissue expression pattern and localized at the plasma membrane in different cell types, where phosphoinositide signaling occurs. The seedlings of plc2-1 mutant showed growth defect that was complemented by heterologous expression of AtPLC2, suggesting that phosphoinositide-specific phospholipase C activity borne by AtPLC2 is required for seedling growth. Moreover, the plc2-1 mutant showed hypersensitive response to ER stress as evidenced by changes in relevant phenotypes and gene expression profiles. Our results revealed the primary enzyme in phosphoinositide metabolism, its involvement in seedling growth and an emerging link between phosphoinositide and the ER stress response. PMID:26401841

  9. Phosphoinositide-specific phospholipase C-delta 1: effect of monolayer surface pressure and electrostatic surface potentials on activity.

    PubMed

    Rebecchi, M; Boguslavsky, V; Boguslavsky, L; McLaughlin, S

    1992-12-29

    We added phospholipase C-delta 1 (PLC-delta) to the aqueous subphase beneath monolayers formed from mixtures of phosphatidylinositol 4,5-bisphosphate (2% PIP2), phosphatidylserine (33% PS), and phosphatidylcholine (65% PC) and then measured the initial rate of hydrolysis of PIP2 after addition of 10 microM free calcium. Increasing the surface pressure of the monolayer, pi, from 20 to 40 mN/m decreased the rate of hydrolysis 200-fold. The rate of hydrolysis depends exponentially on the surface pressure: rate alpha exp(-pi Ap/kT) where k is the Boltzmann constant, T is the temperature, and Ap congruent to 1 nm2. Similar results were obtained with different (1 and 100 microM) free [Ca2+] and with different mole fractions of PIP2. The results are consistent with a model in which PLC-delta binds to PIP2 with high affinity (Ka = 10(6) M-1) in the absence of calcium ions [Rebecchi, M.J., Peterson, A., & McLaughlin, S. (1993) Biochemistry (preceding paper in this issue)], and a portion of PLC-delta of area Ap inserts into the monolayer doing work = pi Ap prior to hydrolysis of PIP2. Removing the monovalent acidic lipid PS from the monolayer decreases the activity of PLC-delta 4-fold, this effect of PS on activity is similar to the effect of monovalent acidic lipids on the binding of PLC-delta to PIP2 in bilayer vesicles. PMID:1334430

  10. Effect of monolayer surface pressure on the activities of phosphoinositide-specific phospholipase C-beta 1, -gamma 1, and -delta 1.

    PubMed

    Boguslavsky, V; Rebecchi, M; Morris, A J; Jhon, D Y; Rhee, S G; McLaughlin, S

    1994-03-15

    Three isoforms of phospholipase C, either PLC-beta 1, PLC-gamma 1, or PLC-delta 1, were added to the aqueous subphase beneath phospholipid monolayers formed at an air-solution interface, and the initial rate of hydrolysis of phosphatidylinositol 4,5-bisphosphate was measured after addition of 10 microM free Ca2+. The monolayers were formed from mixtures of phosphatidylcholine (65% PC), phosphatidylserine (33% PS), and phosphatidylinositol 4,5-biphosphate (2% PIP2). Increasing the surface pressure of the monolayer, pi, from 15 to 25 mN/m decreases the rate of hydrolysis 16-, 13-, and 5-fold for PLC-beta 1, PLC-gamma 1, and PLC-delta 1, respectively. The simplest interpretation of these results is that a portion of each of the enzymes of area Ap must insert into the monolayer, doing work pi Ap, prior to hydrolysis of PIP2; binding studies with simple model compounds of known cross-sectional area are consistent with this interpretation. Removing the monovalent acidic lipid PS from the monolayer decreases the initial rates of hydrolysis of PIP2 about 3-fold for each PLC isoform, which suggests that negative electrostatic surface potentials increase the PLC activity. PMID:8130216

  11. Phosphoinositide-specific Phospholipase C β 1b (PI-PLCβ1b) Interactome: Affinity Purification-Mass Spectrometry Analysis of PI-PLCβ1b with Nuclear Protein*

    PubMed Central

    Piazzi, Manuela; Blalock, William L.; Bavelloni, Alberto; Faenza, Irene; D'Angelo, Antonietta; Maraldi, Nadir M.; Cocco, Lucio

    2013-01-01

    Two isoforms of inositide-dependent phospholipase C β1 (PI-PLCβ1) are generated by alternative splicing (PLCβ1a and PLCβ1b). Both isoforms are present within the nucleus, but in contrast to PLCβ1a, the vast majority of PLCβ1b is nuclear. In mouse erythroid leukemia cells, PI-PLCβ1 is involved in the regulation of cell division and the balance between cell proliferation and differentiation. It has been demonstrated that nuclear localization is crucial for the enzymatic function of PI-PLCβ1, although the mechanism by which this nuclear import occurs has never been fully characterized. The aim of this study was to characterize both the mechanism of nuclear localization and the molecular function of nuclear PI-PLCβ1 by identifying its interactome in Friend's erythroleukemia isolated nuclei, utilizing a procedure that coupled immuno-affinity purification with tandem mass spectrometry analysis. Using this procedure, 160 proteins were demonstrated to be in association with PI-PLCβ1b, some of which have been previously characterized, such as the splicing factor SRp20 (Srsf3) and Lamin B (Lmnb1). Co-immunoprecipitation analysis of selected proteins confirmed the data obtained via mass spectrometry. Of particular interest was the identification of the nuclear import proteins Kpna2, Kpna4, Kpnb1, Ran, and Rangap1, as well as factors involved in hematological malignancies and several anti-apoptotic proteins. These data give new insight into possible mechanisms of nuclear trafficking and functioning of this critical signaling molecule. PMID:23665500

  12. Roles of phosphoinositide-specific phospholipase Cγ1 in brain development.

    PubMed

    Kang, Du-Seock; Yang, Yong Ryoul; Lee, Cheol; Kim, SaetByeol; Ryu, Sung Ho; Suh, Pann-Ghill

    2016-01-01

    Over the past decade, converging evidence suggests that PLCγ1 signaling has key roles in controlling neural development steps. PLCγ1 functions as a signal transducer that converts an extracellular stimulus into intracellular signals by generating second messengers such as DAG and IP3. DAG functions as an activator of either PKC or transient receptor potential cation channels (TRPCs), while IP3 induces the calcium release from intracellular calcium stores. These second messengers regulate the morphological change of neuron, such as neurite outgrowth, migration, axon pathfinding, and synapse formation. These morphological changes depend on finely tuned calcium signaling following receptor tyrosine kinase-mediated PLCγ1 signaling. Thus, deregulation of PLCγ1 signaling causes various abnormalities of neuronal development and it may be associated with diverse neurological disorders. Herein, we discuss the current understanding of the PLCγ1 signaling pathway in neural development and provide recent advances of how PLCγ1 signaling is involved in the formation of neuronal processes for functionally faithful brain development. PMID:26588873

  13. Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes.

    PubMed

    Lo Vasco, Vincenza Rita; Fabrizi, Cinzia; Artico, Marco; Cocco, Lucio; Billi, Anna Maria; Fumagalli, Lorenzo; Manzoli, Francesco Antonio

    2007-03-01

    Signal transduction from plasma membrane to cell nucleus is a complex process depending on various components including lipid signaling molecules, in particular phosphoinositides and their related enzymes, which act at cell periphery and/or plasma membrane as well as at nuclear level. As far as the nervous system may concern the inositol lipid cycle has been hypothesized to be involved in numerous neural as well as glial functions. In this context, however, a precise panel of glial PLC isoforms has not been determined yet. In the present experiments we investigated astrocytic PLC isoforms in astrocytes obtained from foetal primary cultures of rat brain and from an established cultured (C6) rat astrocytoma cell line, two well known cell models for experimental studies on glia. Identification of PLC isoforms was achieved by using a combination of RT-PCR and immunocytochemistry experiments. While in both cell models the most represented PI-PLC isoforms were beta4, gamma1, delta4, and epsilon, isoforms PI-PLC beta2 and delta3 were not detected. Moreover, in primary astrocyte cultures PI-PLC delta3 resulted well expressed in C6 cells but was absent in astrocytes. Immunocytochemistry performed with antibodies against specific PLC isoforms substantially confirmed this pattern of expression both in astrocytes and C6 glioma cells. In particular while some isoenzymes (namely isoforms beta3 and beta4) resulted mainly nuclear, others (isoforms delta4 and epsilon) were preferentially localized at cytoplasmic and plasma membrane level. PMID:17063484

  14. Modulation of phospholipase A2 activity in human fibroblasts.

    PubMed Central

    Solito, E.; Parente, L.

    1989-01-01

    1. Human embryonic skin fibroblasts (HSF) incubated overnight with either human recombinant interleukin-1 alpha (rIL-1 alpha) or interleukin-1 beta (rIL-1 beta) released large amounts of prostaglandin E2 (PGE2). 2. rIL-1 beta, bradykinin (Bk) and arachidonic acid (AA) significantly stimulated PGE2 release from HSF incubated overnight in the presence of either interleukin. 3. Hydrocortisone inhibited the PGE2 release induced by rIL-1 beta and Bk, but not by AA. 4. The steroid inhibitory effect was reversed by actinomycin D as well as by an anti-lipocortin monoclonal antibody. 5. The results suggest that in HSF, rIL-1 beta is able to stimulate both cyclo-oxygenase and phospholipase A2 (PLA2) activity. 6. The stimulation of PLA2 activity by rIL-1 beta is inhibited by hydrocortisone, probably via induction of lipocortin-like proteins. PMID:2785834

  15. Activation of human inflammatory cells by secreted phospholipases A2.

    PubMed

    Triggiani, Massimo; Granata, Francescopaolo; Frattini, Annunziata; Marone, Gianni

    2006-11-01

    Secreted phospholipases A(2) (sPLA(2)s) are enzymes detected in serum and biological fluids of patients with various inflammatory, autoimmune and allergic disorders. Different isoforms of sPLA(2)s are expressed and released by human inflammatory cells, such as neutrophils, eosinophils, T cells, monocytes, macrophages and mast cells. sPLA(2)s generate arachidonic acid and lysophospholipids thus contributing to the production of bioactive lipid mediators in inflammatory cells. However, sPLA(2)s also activate human inflammatory cells by mechanisms unrelated to their enzymatic activity. Several human and non-human sPLA(2)s induce degranulation of mast cells, neutrophils and eosinophils and activate exocytosis in macrophages. In addition some, but not all, sPLA(2) isoforms promote cytokine and chemokine production from macrophages, neutrophils, eosinophils, monocytes and endothelial cells. These effects are primarily mediated by binding of sPLA(2)s to specific membrane targets (heparan sulfate proteoglycans, M-type, N-type or mannose receptors) expressed on effector cells. Thus, sPLA(2)s may play an important role in the initiation and amplification of inflammatory reactions by at least two mechanisms: production of lipid mediators and direct activation of inflammatory cells. Selective inhibitors of sPLA(2)-enzymatic activity and specific antagonists of sPLA(2) receptors are current being tested for pharmacological treatment of inflammatory and autoimmune diseases. PMID:16952481

  16. Muscarine enhances soluble amyloid precursor protein secretion in human neuroblastoma SH-SY5Y by a pathway dependent on protein kinase C(alpha), src-tyrosine kinase and extracellular signal-regulated kinase but not phospholipase C.

    PubMed

    Canet-Aviles, Rosa-Maria; Anderton, Mark; Hooper, Nigel M; Turner, Anthony J; Vaughan, Peter F T

    2002-06-15

    The signalling pathways by which muscarine and epidermal growth factor (EGF) regulate the secretion of the alpha-secretase cleavage product (sAPPalpha) of the amyloid precursor protein (APP) were examined in the human neuroblastoma SH-SY5Y. Using specific inhibitors it was found that over 80% of sAPPalpha secretion, enhanced by muscarine, occurred via the extracellular signal-regulated kinase (ERK1/2) member of the mitogen-activated protein kinase (MAPK) family and was dependent on protein kinase Calpha (PKCalpha) and a member of the Src family of non-receptor tyrosine kinases (Src-TK). In contrast the stimulation of sAPPalpha secretion by EGF was not affected by inhibitors of PKC nor Src-TK but was dependent on ERK1/2. In addition muscarine-enhanced sAPPalpha secretion and ERK1/2 activation were inhibited 60 and 80%, respectively, by micromolar concentrations of the phosphatidylinositol 3 kinase (PI-3K) inhibitor wortmannin. In comparison wortmannin decreased EGF stimulation of sAPPalpha secretion and ERK 1/2 activation by approximately 40%. Unexpectedly, U73122, an inhibitor of phosphoinositide-specific phospholipase C, did not inhibit muscarine enhancement of sAPPalpha secretion. These data are discussed in relation to a pathway for the enhancement of sAPPalpha secretion by muscarine which involves the activation of a Src-TK by G-protein beta/gamma-subunits leading to activation of PKCalpha, and ERK1/2 by a mechanism not involving phospholipase C. PMID:12191495

  17. Human group II 14 kDa phospholipase A2 activates human platelets.

    PubMed Central

    Polgár, J; Kramer, R M; Um, S L; Jakubowski, J A; Clemetson, K J

    1997-01-01

    Recombinant human group II phospholipase A2 (sPLA2) added to human platelets in the low microg/ml range induced platelet activation, as demonstrated by measurement of platelet aggregation, thromboxane A2 generation and influx of intracellular free Ca2+ concentration and by detection of time-dependent tyrosine phosphorylation of platelet proteins. The presence of Ca2+ at low millimolar concentrations is a prerequisite for the activation of platelets by sPLA2. Mg2+ cannot replace Ca2+. Mg2+, given in addition to the necessary Ca2+, inhibits sPLA2-induced platelet activation. Pre-exposure to sPLA2 completely blocked the aggregating effect of a second dose of sPLA2. Albumin or indomethacin inhibited sPLA2-induced aggregation, similarly to the inhibition of arachidonic acid-induced aggregation. Platelets pre-treated with heparitinase or phosphatidylinositol-specific phospholipase C lost their ability to aggregate in response to sPLA2, although they still responded to other agonists. This suggests that a glycophosphatidylinositol-anchored platelet-membrane heparan sulphate proteoglycan is the binding site for sPLA2 on platelets. Previous reports have stated that sPLA2 is unable to activate platelets. The inhibitory effect of albumin and Mg2+, frequently used in aggregation studies, and the fact that isolated platelets lose their responsiveness to sPLA2 relatively quickly, may explain why the platelet-activating effects of sPLA2 have not been reported earlier. PMID:9355761

  18. Phospholipase Cε Modulates Rap1 Activity and the Endothelial Barrier.

    PubMed

    DiStefano, Peter V; Smrcka, Alan V; Glading, Angela J

    2016-01-01

    The phosphoinositide-specific phospholipase C, PLCε, is a unique signaling protein with known roles in regulating cardiac myocyte growth, astrocyte inflammatory signaling, and tumor formation. PLCε is also expressed in endothelial cells, however its role in endothelial regulation is not fully established. We show that endothelial cells of multiple origins, including human pulmonary artery (HPAEC), human umbilical vein (HUVEC), and immortalized brain microvascular (hCMEC/D3) endothelial cells, express PLCε. Knockdown of PLCε in arterial endothelial monolayers decreased the effectiveness of the endothelial barrier. Concomitantly, RhoA activity and stress fiber formation were increased. PLCε-deficient arterial endothelial cells also exhibited decreased Rap1-GTP levels, which could be restored by activation of the Rap1 GEF, Epac, to rescue the increase in monolayer leak. Reintroduction of PLCε rescued monolayer leak with both the CDC25 GEF domain and the lipase domain of PLCε required to fully activate Rap1 and to rescue endothelial barrier function. Finally, we demonstrate that the barrier promoting effects PLCε are dependent on Rap1 signaling through the Rap1 effector, KRIT1, which we have previously shown is vital for maintaining endothelial barrier stability. Thus we have described a novel role for PLCε PIP2 hydrolytic and Rap GEF activities in arterial endothelial cells, where PLCε-dependent activation of Rap1/KRIT1 signaling promotes endothelial barrier stability. PMID:27612188

  19. A fluorescence-based assay for human type II phospholipase A2.

    PubMed

    Blanchard, S G; Harris, C O; Parks, D J

    1994-11-01

    A fluorescence assay for quantitation of human Type II Phospholipase A2 activity is described. Hydrolysis of 1-Acyl-2-(N-4-nitrobenzo-2-oxo-1,3-diazole)aminododecanoyl Phosphatidylethanolamine is accompanied by an increase in fluorescence intensity that is linearly proportional to enzyme activity. Substrate is prepared in the absence of detergents as a sonicated dispersion in aqueous buffer. Hydrolysis of the corresponding phosphatidylcholine derivative is more than an order of magnitude slower under identical assay conditions. A plot of initial rate versus substrate concentration could be fit to a simple Michaelis-Menten relationship with Km = 13 microM. In contrast to commonly used radiochemical assays for this enzyme, the method described here is continuous and allows estimation of enzyme activity without separation of substrate from product. Thus, the method is suitable for both kinetic analysis and large-scale screening using automated readers for 96-well tissue culture plates. The fluorescence-based assay displays advantages over other continuous assays for human Type II Phospholipase A2 based on (a) high sensitivity and (b) the use of a commercially available substrate. PMID:7864369

  20. Long-wave ultraviolet light induces phospholipase activation in cultured human epidermal keratinocytes

    SciTech Connect

    Hanson, D.; DeLeo, V. )

    1990-08-01

    Long wave ultraviolet radiation (UVA) has been shown to play an important role in the overall response of skin to solar radiation, including sunburn, tanning, premature aging, and non-melanoma skin cancer. UVA induction of inflammation in human skin is thought to be mediated by membrane lipid derived products. In order to investigate the mechanism of this response we examined the effect of UVA on phospholipid metabolism of human epidermal keratinocytes in culture. Keratinocytes were grown in serum free low calcium medium. The cells were prelabeled with (3H) arachidonic acid or (3H) choline and irradiated with UVA (Honle 2002-Hg vapor lamp). Identification and quantitation of specific membrane phospholipid-derived components was achieved using high-performance liquid chromatography, paper chromatography, and radioimmunoassay. UVA resulted in a linear dose dependent release of (3H) arachidonic acid into medium between 1 and 20 joule/cm2. This response was inhibited in an oxygen-reduced environment. The radiolabel released was predominantly free arachidonate and cyclooxygenase metabolites. Cyclooxygenase metabolites prostaglandin E2 and prostacyclin derivative, 6-keto-prostaglandin F1a, were stimulated following UVA irradiation, but the lipoxygenase metabolite, leukotriene B was not detected. Maximal release was measured immediately after irradiation and changed little over 24 h post-irradiation. UVA stimulated an increase of (3H) choline metabolites glycerophosphorylcholine and phosphorylcholine in media extracts suggesting UVA activation of phospholipase C and phospholipase A2 or diacylglyceride lipase.

  1. Human cardiac phospholipase D activity is tightly controlled by phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Kurz, Thomas; Kemken, Dorit; Mier, Kenneth; Weber, Isabel; Richardt, Gert

    2004-02-01

    Phospholipase D (PLD) plays a central role in receptor-mediated breakdown of choline phospholipids and formation of phosphatidic acid (PA), an important regulator of cardiac function. However, specific mechanisms that regulate myocardial PLD activity remain largely unknown, particularly in the human heart. We hypothesized that phosphatidylinositol 4,5-bisphosphate (PIP2), best known as substrate for phospholipase C (PLC) isozymes, plays a critical role in regulating myocardial PLD activity. We examined the effect of PIP2 on human myocardial PLD activity in vitro by utilizing a fluorescence HPLC assay. PIP2 increased 10-fold the maximal activity of a partially solubilized PLD from human atrial myocardium. PIP2-stimulated PLD activity was accompanied by a consecutive increase in diacylglycerol, indicating dephosphorylation of PA by PA phosphohydrolase. Likewise, phosphatidylinositol 3,4,5-trisphosphate, which is produced from PIP2 by phosphatidylinositol 3-kinase, increased PLD activity with about the same potency but with somewhat lower efficacy. In contrast, other phospholipids were ineffective, indicating that the action of PIP2 on PLD is highly specific. Neomycin, a high-affinity ligand of PIP2, inhibited PLD activity in human atrial myocardium, but had no effect on the activity of partially solubilized enzyme. The addition of PIP2 restored the sensitivity of solubilized PLD to neomycin inhibition, indicating that neomycin inhibits PLD activity by binding to endogenous PIP2. Our results demonstrate a critical role for PIP2 in human cardiac PLD activity and suggest that PIP2 synthesis (by phosphatidylinositol 4-phosphate 5-kinase) and hydrolysis (by PIP2-specific PLC) could be important determinants in regulating PLD signal transduction in the human heart. PMID:14871550

  2. Induction of cytosolic phospholipase A2 activity by phosphatidic acid and diglycerides in permeabilized human neutrophils: interrelationship between phospholipases D and A2.

    PubMed Central

    Bauldry, S A; Wooten, R E

    1997-01-01

    Relationships between phospholipases are poorly understood, but phosphatidic acid (PA) and diglycerides (DGs), produced by phospholipase D (PLD) and phosphatidate phosphohydrolase actions, might function as second messengers coupling cell stimulation to cellular responses. This study investigates the role of PLD-mediated PA and DG formation in inducing phospholipase A2 (PLA2) activity in intact human neutrophils (PMNs) and in PMNs permeabilized with Staphylococcus aureus alpha-toxin. PMNs were labelled with [3H]arachidonic acid (AA) to assess AA release and metabolism and diacylglycerol formation, or with [3H]1-O-hexadecyl-2-lyso-glycerophosphatidylcholine for the determination of platelet-activating factor (PAF), PA and alkylacylglycerol production. In intact PMNs primed with tumour necrosis factor alpha before stimulation with N-formyl-Met-Leu-Phe, AA release and metabolism and PAF formation increased in parallel with enhanced PA and DG formation, and inhibition of PA and DG production led to a decrease in both AA release and PAF accumulation. In alpha-toxin-permeabilized PMNs, AA release and PAF production result from the specific activation of cytosolic PLA2 (cPLA2). In this system, PA and DG formation were always present when cPLA2 activation occurred; blocking PA and DG production inhibited AA release and PAF accumulation. Adding either PA or DG back to permeabilized cells (with endogenous PA and DG formation blocked) led to a partial restoration of AA release and PAF formation; a combination of PA and DGs reconstituted full cPLA2 activity. These results strongly suggest that products of PLD participate in activating cPLA2 in PMNs. PMID:9065750

  3. Expression of group XIIA phospholipase A2 in human digestive organs.

    PubMed

    Peuravuori, Heikki; Kollanus, Sinikka; Nevalainen, Timo J

    2014-12-01

    Cellular distribution of group XIIA phospholipase A2 (GXIIA PLA2) was studied in human digestive organs by immunohistochemistry. GXIIA PLA2 protein was detected in epithelial cells of normal gastrointestinal tract, gallbladder and pancreatic acinar cells. The GXIIA PLA2 protein was evenly distributed in the cytoplasm in contrast to secretory granular distribution of GIB PLA2 and GIIA PLA2 in pancreatic acinar cells and small intestinal Paneth cells respectively. Epithelial cells of intestinal glands in Crohn's disease and ulcerative colitis expressed abundant GXIIA PLA2 , whereas inflammatory cells were devoid of the enzyme protein. Tumour cells in colonic adenomas and carcinomas and pancreatic ductogenic carcinomas expressed GXIIA PLA2 protein at varying intensity levels. The putative functions of GXIIA PLA2 remain to be investigated and its role in healthy and diseased digestive organs can only be speculated on at present. PMID:24862647

  4. Phospholipase Cepsilon regulates ovulation in Caenorhabditis elegans.

    PubMed

    Kariya, Ken-Ichi; Bui, Yen Kim; Gao, Xianlong; Sternberg, Paul W; Kataoka, Tohru

    2004-10-01

    Phospholipase Cepsilon (PLCepsilon) is a novel class of phosphoinositide-specific PLC with unknown physiological functions. Here, we present the first genetic analysis of PLCepsilon in an intact organism, the nematode Caenorhabditis elegans. Ovulation in C. elegans is dependent on an inositol 1,4,5-trisphosphate (IP(3)) signaling pathway activated by the receptor tyrosine kinase LET-23. We generated deletion mutants of the gene, plc-1, encoding C. elegans PLCepsilon. We observed a novel ovulation phenotype whereby oocytes are trapped in the spermatheca due to delayed dilation of the spermatheca-uterine valve. The expression of plc-1 in the adult spermatheca is consistent with its involvement in regulation of ovulation. On the other hand, we failed to observe genetic interaction of plc-1 with let-23-mediated IP(3) signaling pathway genes, suggesting a complex mechanism for control of ovulation. PMID:15355798

  5. Cytosolic phospholipase A{sub 2} gene in human and rat: Chromosomal localization and polymorphic markers

    SciTech Connect

    Tay, A.; Simon, J.S.; Jacob, H.J.

    1995-03-01

    The authors report the chromosomal localization and a simple sequence repeat (SSR) in the cytosolic phospholipase A{sub 2} (cPLA{sub 2}) gene in both human and rat. A (CA){sub 18} repeat in the promoter of the rat gene was determined to exhibit length polymorphism when analyzed using the polymerase chain reaction (PCR) in 19 different inbred rat strains. Genotyping for this marker in 234 F{sub 2} progeny of a SHRXBN intercross mapped the gene to rat chromosome 13. Using a PCR strategy, a fragment of the promoter for the human gene was isolated, and a (CA){sub 18} repeat was identified. Since this marker displayed a low heterozygosity index, they also identified a mononucleotide repeat in the promoter for cPLA{sub 2} that displayed a polymorphism information content value of 0.76. The human gene was mapped using fluorescence in situ hybridization (FISH) to chromosome 1q25. Of interest, the gene encoding the enzyme prostaglandin-endoperoxide synthase 2 (cyclooxygenase-2), which acts on the arachidonic acid product of cPLA{sub 2}, was previously localized to this same chromosomal region, raising the possibility of coordinate regulation. Identification of intragenic markers may facilitate studies of polymorphic variants of these genes as candidates for disorders in which perturbations of the eicosanoid cascade may play a role. 20 refs., 3 figs., 2 tabs.

  6. Sequence specific inhibition of human type II phospholipase A2 enzyme activity by phosphorothioate oligonucleotides.

    PubMed Central

    Bennett, C F; Chiang, M Y; Wilson-Lingardo, L; Wyatt, J R

    1994-01-01

    Phosphorothioate oligonucleotides were identified which directly inhibited human type II phospholipase A2 (PLA2) enzyme activity in a sequence specific manner. The minimum pharmacophore common to all oligonucleotides which inhibited PLA2 enzyme activity consisted of two sets of three or more consecutive guanosine residues in a row. These oligonucleotides appear to form G quartets resulting in the formation of oligonucleotide aggregates. Additionally, a phosphorothioate backbone was required to be effective inhibitors of type II PLA2. The activity of one oligodeoxynucleotide, IP 3196 (5'-GGGTGGGTATAGAAGGGCTCC-3') has been characterized in more detail. IP 3196 inhibited PLA2 enzyme activity when the substrate was presented in the form of a phospholipid bilayer but not when presented in the form of a mixed micelle with anionic detergents. Human type II PLA2 was 50-fold more sensitive to inhibition by IP 3196 than venom and pancreatic type I enzymes. These data demonstrate that phosphorothioate oligonucleotides can specifically inhibit human type II PLA2 enzyme activity in a sequence specific manner. PMID:8065936

  7. Relationship between phospholipase C zeta immunoreactivity and DNA fragmentation and oxidation in human sperm

    PubMed Central

    Park, Ju Hee; Kim, Seul Ki; Kim, Jayeon; Kim, Ji Hee; Chang, Jae Hoon; Kim, Seok Hyun

    2015-01-01

    Objective The study aimed to evaluate the feasibility and reproducibility of measuring phospholipase C zeta (PLCζ) using immunostaining in human sperm and to investigate the relationship between PLCζ immunoreactivity and DNA fragmentation and oxidation in human sperm. Methods Semen samples were obtained from participants (n=44) and processed by the conventional swim-up method. Sperm concentration, motility, normal form by strict morphology, DNA fragmentation index assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling method and immunofluorescent expression for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and PLCζ were assessed. Results When duplicate PLCζ tests were performed on two sperm samples from each of the 44 participants, similar results were obtained (74.1±9.4% vs. 75.4±9.7%). Two measurements of PLCζ were found to be highly correlated with each other (r=0.759, P<0.001). Immunoreactivity of PLCζ was not associated with donor's age, sperm concentration, motility, and the percentage of normal form as well as DNA fragmentation index. However, immunoreactivity of PLCζ showed a significant negative relationship with 8-OHdG immunoreactivity (r=-0.404, P=0.009). Conclusion Measurement of PLCζ by immunostaining is feasible and reproducible. Lower expression of PLCζ in human sperm may be associated with higher sperm DNA oxidation status. PMID:26023673

  8. The effects of phorbol ester, diacylglycerol, phospholipase C and Ca2+ ionophore on protein phosphorylation in human and sheep erythrocytes.

    PubMed Central

    Raval, P J; Allan, D

    1985-01-01

    Treatment of human or sheep erythrocytes with PMA (phorbol myristate acetate) enhanced [32P]phosphate labelling of membrane polypeptides of approx. 100, 80 and 46 kDa. The 80 kDa and 46 kDa polypeptides coincided with bands 4.1 and 4.9 respectively on Coomassie-Blue-stained gels. Similar but smaller effects were obtained by treating human cells with 1-oleoyl-2-acetyl-rac-glycerol (OAG), exogenous bacterial phospholipase C or ionophore A23187 + Ca2+, each of which treatments would be expected to raise the concentration of membrane diacylglycerol. In contrast, sheep cells, which do not increase their content of diacylglycerol when treated with phospholipase C or A23187 + Ca2+, only showed enhanced phosphorylation with OAG. Neither human nor sheep cells showed any enhanced [32P]phosphate labelling of phosphoproteins when treated with 1-mono-oleoyl-rac-glycerol. It is concluded that diacylglycerol from a variety of sources can activate erythrocyte protein kinase C, but that the most effective diacylglycerol is that derived from endogenous polyphosphoinositides. In contrast with bacterial phospholipase C and A23187, which stimulate synthesis of phosphatidate by increasing the cell-membrane content of diacylglycerol in human erythrocytes, PMA, OAG or 1-mono-oleoyl-rac-glycerol caused no change in phospholipid metabolism. Images PMID:4084238

  9. Inhibition of phospholipase A/sub 2/ from human plasma by sodium bisulfite

    SciTech Connect

    Wiggins, C.W.; Franson, R.C.

    1987-05-01

    The anti-oxidant sodium bisulfite has been shown to inhibit acid active(lysosomal), non-Ca/sup + +/-dependent phospholipase A/sub 2/ (PLA/sub 2/), and to interact reversibly with unsaturated fatty acids, altering their chromatographic mobility. The authors examined the effect of bisulfite on neutral active, Ca/sup + +/-dependent PLA/sub 2/ from human plasma. Using (1-/sup 14/C)oleate-labelled autoclaved E. coli as substrate, PLA/sub 2/ activity was inhibited in a dose-dependent manner by bisulfite. Maximal inhibition occurred at 100..mu..M bisulfite. Preincubation of plasma for 0-30 minutes with bisulfite resulted in a time-dependent increase in PLA/sub 2/ inhibition. Preincubation of substrate with bisulfite had no such effect. When the plasma PLA/sub 2/ was purified 25-fold by SP-Sephadex chromatography it was no longer inhibited by bisulfite. The SP-Sephadex wash through fraction, which contained greater than 95% of the applied protein but not PLA/sub 2/ activity, did not inhibit the purified enzyme. When incubated with bisulfite however, the SP-wash through fraction produced dose-dependent inhibition of the purified enzyme. These results indicate that sodium bisulfite inhibits human plasma PLA/sub 2/, in vitro, indirectly by interaction with a factor(s) present in plasma and suggests that anti-oxidants may similarly influence expression of extracellular PLA/sub 2/ in vivo.

  10. Mechanosensitivity of human osteosarcoma cells and phospholipase C {beta}2 expression

    SciTech Connect

    Hoberg, M. . E-mail: Maik.Hoberg@med.uni-tuebingen.de; Gratz, H.-H.; Noll, M.; Jones, D.B.

    2005-07-22

    Bone adapts to mechanical load by osteosynthesis, suggesting that osteoblasts might respond to mechanical stimuli. We therefore investigated cell proliferation and phospholipase C (PLC) expression in osteoblasts. One Hertz uniaxial stretching at 4000 {mu}strains significantly increased the proliferation rates of human osteoblast-like osteosarcoma cell line MG-63 and primary human osteoblasts. However, U-2/OS, SaOS-2, OST, and MNNG/HOS cells showed no significant changes in proliferation rate. We investigated the expression pattern of different isoforms of PLC in these cell lines. We were able to detect PLC {beta}1, {beta}3, {gamma}1, {gamma}2, and {delta}1 in all cells, but PLC {beta}2 was only detectable in the mechanosensitive cells. We therefore investigated the possible role of PLC {beta}2 in mechanotransduction. Inducible antisense expression for 24 h inhibited the translation of PLC {beta}1 in U-2/OS cells by 35% and PLC {beta}2 in MG-63 by 29%. Fluid shear flow experiments with MG-63 lacking PLC {beta}2 revealed a significantly higher level of cells losing attachment to coverslips and a significantly lower number of cells increasing intracellular free calcium.

  11. Myxococcus CsgA, Drosophila Sniffer, and human HSD10 are cardiolipin phospholipases

    PubMed Central

    Boynton, Tye O'Hara; Shimkets, Lawrence Joseph

    2015-01-01

    Myxococcus xanthus development requires CsgA, a member of the short-chain alcohol dehydrogenase (SCAD) family of proteins. We show that CsgA and SocA, a protein that can replace CsgA function in vivo, oxidize the 2′-OH glycerol moiety on cardiolipin and phosphatidylglycerol to produce diacylglycerol (DAG), dihydroxyacetone, and orthophosphate. A lipid extract enriched in DAGs from wild-type cells initiates development and lipid body production in a csgA mutant to bypass the mutational block. This novel phospholipase C-like reaction is widespread. SCADs that prevent neurodegenerative disorders, such as Drosophila Sniffer and human HSD10, oxidize cardiolipin with similar kinetic parameters. HSD10 exhibits a strong preference for cardiolipin with oxidized fatty acids. This activity is inhibited in the presence of the amyloid β peptide. Three HSD10 variants associated with neurodegenerative disorders are inactive with cardiolipin. We suggest that HSD10 protects humans from reactive oxygen species by removing damaged cardiolipin before it induces apoptosis. PMID:26338420

  12. Splicing of a human endogenous retrovirus to a novel phospholipase A2 related gene.

    PubMed Central

    Feuchter-Murthy, A E; Freeman, J D; Mager, D L

    1993-01-01

    As part of an investigation into the effects of endogenous retroviruses on adjacent genes, we have isolated a cDNA clone derived from the human teratocarcinoma cell line NTera2D1 representing a chimeric transcript in which an endogenous retrovirus-like element, RTVL-H, has been spliced to downstream cellular sequences. The 5' terminus of this clone, termed AF-5, occurs one bp downstream of the predicted transcriptional start site in the RTVL-H long terminal repeat (LTR). AF-5 contains an open reading frame of 689 amino acids beginning within RTVL-H sequences that has two domains of homology with phospholipase A2 (PLA2). These domains, of approximately 120 amino acids each, are 30-38% identical to secreted PLA2s and contain sequence features of both group I and II enzymes. The corresponding AF-5 transcript is 2.5 kb and is derived from a single copy novel gene termed PLA2L. Southern analysis indicates that the RTVL-H element is normally present in human DNA upstream of the PLA2L gene. RTVL-H/PLA2L chimeric transcripts were detected in two independent teratocarcinoma cell lines but not in several other cell lines or primary human tissues. Characterization of additional cDNA clones and PCR analysis indicates that multiple RTVL-H/PLA2L alternatively spliced transcripts are expressed. No evidence has been found for transcription from a non-LTR promoter. These findings strongly suggest that the endogenous LTR promotes expression of the human PLA2L gene in teratocarcinoma cells. Images PMID:8382789

  13. Structure of Human GIVD Cytosolic Phospholipase A2 Reveals Insights into Substrate Recognition.

    PubMed

    Wang, Hui; Klein, Michael G; Snell, Gyorgy; Lane, Weston; Zou, Hua; Levin, Irena; Li, Ke; Sang, Bi-Ching

    2016-07-01

    Cytosolic phospholipases A2 (cPLA2s) consist of a family of calcium-sensitive enzymes that function to generate lipid second messengers through hydrolysis of membrane-associated glycerophospholipids. The GIVD cPLA2 (cPLA2δ) is a potential drug target for developing a selective therapeutic agent for the treatment of psoriasis. Here, we present two X-ray structures of human cPLA2δ, capturing an apo state, and in complex with a substrate-like inhibitor. Comparison of the apo and inhibitor-bound structures reveals conformational changes in a flexible cap that allows the substrate to access the relatively buried active site, providing new insight into the mechanism for substrate recognition. The cPLA2δ structure reveals an unexpected second C2 domain that was previously unrecognized from sequence alignments, placing cPLA2δ into the class of membrane-associated proteins that contain a tandem pair of C2 domains. Furthermore, our structures elucidate novel inter-domain interactions and define three potential calcium-binding sites that are likely important for regulation and activation of enzymatic activity. These findings provide novel insights into the molecular mechanisms governing cPLA2's function in signal transduction. PMID:27220631

  14. Inhibition of human platelet phospholipase A/sub 2/ by mono(2-ethylhexyl)phthalate

    SciTech Connect

    Labow, R.S.; Meek, E.; Adams, G.A.; Rock, G.

    1988-06-01

    There is evidence that the carcinogenic and teratogenic effects attributed to the plasticizer di(2-ethylhexyl)phthalate (DEHP) are due to its major metabolite mono(2-ethylhexyl)phthalate (MEHP). MEHP is also formed ex vivo by a plasma enzyme in blood products stored in polyvinyl chloride (PVC) DEHP plastic containers. People who receive large amounts of blood products, such as hemophiliacs or patients undergoing hemodialysis, cardiopulmonary bypass, or massive transfusion, are exposed to significant levels of plasticizer. In this study, the platelet was used to show that MEHP inhibits phospholipase A/sub 2/ (PLA/sub 2/), one of the enzymes important in the release of arachidonic acid from membrane phospholipids. PLA/sub 2/ was measured by the liberation of /sup 14/C-arachidonic acid from 1-stearoyl-2-(1-/sup 14/C)arachidonyl-L-3-phosphatidylcholine. MEHP inhibits PLA/sub 2/ activity noncompetitively in intact human platelets and lysates with a K/sub i/ of 3.7 x 10/sup -4/ M. DEHP does not inhibit PLA/sub 2/ in whole platelets. Inhibition of PLA/sub 2/ by MEHP occurs at only three times the circulating level of MEHP measured in neonates undergoing exchange transfusion and 20-fold the levels experienced by patients during cardiopulmonary bypass. Therefore, infants and adult patients with multisystem failure who accumulate MEHP in their blood may be at risk for decreased platelet function.

  15. Cloning and identification of amino acid residues of human phospholipase C delta 1 essential for catalysis.

    PubMed

    Cheng, H F; Jiang, M J; Chen, C L; Liu, S M; Wong, L P; Lomasney, J W; King, K

    1995-03-10

    In vitro single point mutagenesis, inositol phospholipid hydrolysis, and substrate protection experiments were used to identify catalytic residues of human phosphatidylinositide-specific phospholipase C delta 1 (PLC delta 1) isolated from a human aorta cDNA library. Invariant amino acid residues containing a functional side chain in the highly conserved X region were changed by in vitro mutagenesis. Most of the mutant enzymes were still able to hydrolyze inositol phospholipid with activity ranging from 10 to 100% of levels in the wild type enzyme. Exceptions were mutants with the conversion of Arg338 to Leu (R338L), Glu341 to Gly (E341G), or His356 to Leu (H356L), which made the enzyme severely defective in hydrolyzing inositol phospholipid. Phospholipid vesicle binding experiments showed that these three cleavage-defective mutant forms of PLC delta 1 could specifically bind to phosphatidylinositol 4,5-bisphosphate (PIP2) with an affinity similar to that of wild type enzyme. Western blotting analysis of trypsin-treated enzyme-PIP2 complexes revealed that a 67-kDa major protein fragment survived trypsin digestion if the wild type enzyme, E341G, or H356L mutant PLC delta 1 was preincubated with 7.5 microM PIP2, whereas if it was preincubated with 80 microM PIP2, the size of major protein surviving was comparable to that of intact enzyme. However, mutant enzyme R338L was not protected from trypsin degradation by PIP2 binding. These observations suggest that PLC delta 1 can recognize PIP2 through a high affinity and a low affinity binding site and that residues Glu341 and His356 are not involved in either high affinity or low affinity PIP2 binding but rather are essential for the Ca(2+)-dependent cleavage activity of PLC. PMID:7890667

  16. Phospholipase cgamma1 is required for activation of store-operated channels in human keratinocytes.

    PubMed

    Tu, Chia-Ling; Chang, Wenhan; Bikle, Daniel D

    2005-01-01

    Store-operated calcium entry depicts the movement of extracellular Ca2+ into cells through plasma membrane Ca2+ channels activated by depletion of intracellular Ca2+ stores. The members of the canonical subfamily of transient receptor potential channels (TRPC) have been implicated as the molecular bases for store-operated channels (SOC). Here we investigate the role of phospholipase C (PLC) in regulation of native SOC and the expression of endogenous TRPC in human epidermal keratinocytes. Calcium entry in response to store depletion with thapsigargin was reversibly blocked by 2-aminoethoxydiphenyl borane, an effective SOC inhibitor, and suppressed by the diacylglycerol analoge, 1-oleoyl-2-acetyl-sn-glycerol. Inhibition of PLC with U73122 or transfection of a PLCgamma1 antisense cDNA construct completely blocked SOC activity, indicating a requirement for PLC, especially PLCgamma1, in the activation of SOC. RT-PCR and immunoblotting analyses showed that TRPC1, TRPC3, TRPC4, TRPC5, and TRPC6 are expressed in keratinocytes. Knockdown of the level of endogenous TRPC1 or TRPC4 inhibited store-operated calcium entry, indicating they are part of the native SOC. Co-immunoprecipitation studies demonstrated that TRPC1, but not TRPC4, interacts with PLCgamma1 and the inositol 1,4,5-trisphosphate receptor (IP3R). The association of TRPC1 with PLCgamma1 and IP3R decreased in keratinocytes with higher intracellular Ca2+, coinciding with a downregulation in SOC activity. Our results indicate that the activation of SOC in keratinocytes depends, at least partly, on the interaction of TRPC with PLCgamma1 and IP3R. PMID:15654973

  17. Epigenetic Regulation of Cytosolic Phospholipase A2 in SH-SY5Y Human Neuroblastoma Cells.

    PubMed

    Tan, Charlene Siew-Hon; Ng, Yee-Kong; Ong, Wei-Yi

    2016-08-01

    Group IVA cytosolic phospholipase A2 (cPLA2 or PLA2G4A) is a key enzyme that contributes to inflammation via the generation of arachidonic acid and eicosanoids. While much is known about regulation of cPLA2 by posttranslational modification such as phosphorylation, little is known about its epigenetic regulation. In this study, treatment with histone deacetylase (HDAC) inhibitors, trichostatin A (TSA), valproic acid, tubacin and the class I HDAC inhibitor, MS-275, were found to increase cPLA2α messenger RNA (mRNA) expression in SH-SY5Y human neuroblastoma cells. Co-treatment of the histone acetyltransferase (HAT) inhibitor, anacardic acid, modulated upregulation of cPLA2α induced by TSA. Specific involvement of class I HDACs and HAT in cPLA2α regulation was further shown, and a Tip60-specific HAT inhibitor, NU9056, modulated the upregulation of cPLA2α induced by MS-275. In addition, co-treatment of with histone methyltransferase (HMT) inhibitor, 5'-deoxy-5'-methylthioadenosine (MTA) suppressed TSA-induced cPLA2α upregulation. The above changes in cPLA2 mRNA expression were reflected at the protein level by Western blots and immunocytochemistry. Chromatin immunoprecipitation (ChIP) showed TSA increased binding of trimethylated H3K4 to the proximal promoter region of the cPLA2α gene. Cell injury after TSA treatment as indicated by lactate dehydrogenase (LDH) release was modulated by anacardic acid, and a role of cPLA2 in mediating TSA-induced injury shown, after co-incubation with the cPLA2 selective inhibitor, arachidonoyl trifluoromethyl ketone (AACOCF3). Together, results indicate epigenetic regulation of cPLA2 and the potential of such regulation for treatment of chronic inflammation. PMID:26162318

  18. Evidence for two forms of phospholipase A2 in human semen

    SciTech Connect

    Antaki, P.; Langlais, J.; Ross, P.; Guerette, P.; Roberts, K.D.

    1988-03-01

    The molecular weight of the active unit of phospholipase A2 (PA2) in human seminal plasma and spermatozoa was determined using the radiation inactivation technique. Fresh spermatozoa possess more than one form of PA2 activity as judged by the biphasic nature of the curve obtained during enzyme inactivation. However, when stored frozen for several months followed by a period of heating for 60 min at 60 degrees C prior to irradiation, the sperm exhibited PA2 activity, which corresponded to a single low molecular mass form of 12,000 d when radioactive phosphatidylcholine (PC) was used as substrate and 8,000 d when radioactive phosphatidylethanolamine (PE) was used as substrate. In fresh seminal fluid, only one active form of PA2 was detected as judged by the linear nature of the curve obtained during enzyme inactivation by irradiation. Using PC as substrate, the active unit was again estimated to be 12,000 d, whereas it corresponded to 18,000 d when PE was used. The PA2 activity associated with normal spermatozoa exhibited a 60% decrease in activity after storage at -20 degrees C for 48 hr followed by a heating period of 10 min at 60 degrees C. Long-term storage of spermatozoa at -20 degrees C also resulted in a similar decrease in the deacylation of PC. No further loss of activity was observed during subsequent heat treatment at 60 degrees C. Seminal plasma, however, showed no loss of activity following short (48 hr at 4 degrees C or -20 degrees C) or long-term storage and subsequent heat treatment. Thus, the behavior of PA2 when the effect of temperature was studied and in radiation inactivation experiments indicates that the low molecular weight component in the seminal plasma as well as in spermatozoa is temperature resistant. However, in fresh spermatozoa, a second form of PA2 was found and was sensitive to changes in temperature.

  19. Modulation of human type II secretory phospholipase A2 by sphingomyelin and annexin VI.

    PubMed

    Koumanov, K; Wolf, C; Béreziat, G

    1997-08-15

    Conjectural results have been reported on the capacity of inflammatory secreted phospholipase A2 (sPLA2) to hydrolyse mammalian membrane phospholipids. Development of an assay based on the release of non-esterified fatty acids by the enzyme acting on the organized phospholipid mixture constituting the membrane matrix has led to the identification of two prominent effectors, sphingomyelin (SPH) and annexin. Recombinant human type II sPLA2 hydrolyses red-cell membrane phospholipids with a marked preference for the inner leaflet. This preference is apparently related to the high content of SPH in the outer leaflet, which inhibits sPLA2. This inhibition by SPH is specific for sPLA2. Cholesterol counteracts the inhibition of sPLA2 by SPH, suggesting that the SPH-to-cholesterol ratio accounts in vivo for the variable susceptibility of cell membranes to sPLA2. Different effects were observed of the presence of the non-hydrolysable D-alpha-dipalmitoyl phosphatidylcholine (D-DPPC), which renders the membranes rigid but does not inhibit sPLA2. Annexin VI was shown, along with other annexins, to inhibit sPLA2 activity by sequestering the phospholipid substrate. The present study has provided the first evidence that annexin VI, in concentrations that inhibit hydrolysis of purified phospholipid substrates, stimulated the hydrolysis of membrane phospholipids by sPLA2. The activation requires the presence of membrane proteins. The effect is specific for type II sPLA2 and is not reproducible with type I PLA2. The activation by annexin VI of sPLA2 acting on red cell membranes results in the preferential release of polyunsaturated fatty acids. It suggests that type II sPLA2, in conjunction with annexin VI, might be involved in the final step of endocytosis and/or exocytosis providing the free polyunsaturated fatty acids acting synergistically to cause membrane fusion. PMID:9337873

  20. Phospholipase C and diacylglycerol lipase in human gallbladder and hepatic bile.

    PubMed

    Pattinson, N R; Willis, K E

    1990-12-01

    A phospholipase C in bile, free of bacterial infection, has recently been identified from cholesterol gallstone patients. Because of the importance of phosphatidylcholine in solubilizing cholesterol in bile, this study further investigates the metabolism of phosphatidylcholine in delipidated gallbladder and common bile duct biles. Phospholipase C activity, as measured by the release of phosphoryl[3H]choline from the substrate 1,2-dipalmitoyl-sn-glycero-3-phospho [N-methyl-3H]choline, was identified in both hepatic and gallbladder biles. Similar levels of activity (nmol.h-1.mg-1 of delipidated protein) were found in common bile duct (11.25 +/- 14.23) and gallbladder bile (19.07 +/- 22.24), although per milliliter of bile, the mean gallbaldder levels were 6.4 times greater than those found in common duct bile. With the tow substrates, 1-palmitoyl-2[9,10-3H] palmitoyl-sn-glycero-3-phosphocholine and 1,2(1-14C) dipalmitoyl-sn-glycero-3-phosphocholine, the majority of organically extracted label, after thin-layer chromatography, was recovered as radiolabeled diglyceride, confirming the presence of phospholipase C. Diglyceride levels were found to be closely correlated with [3H]choline (slope, 0.9820; r = 0.9844). In addition to diglyceride, both radiolabeled free fatty acid and monoglyceride were identified in common bile duct and gallbladder biles, although their levels were an order of magnitude less than measurable phospholipase C activity. To determine whether the free fatty acid release was due to either a diacylglycerol-lipase or a phospholipase A2, the effect of adding unlabeled diglyceride on free fatty acid formation from the substrate [14C]DPPC was examined. As the concentration of unlabeled diglyceride was increased, the amount of free fatty acid and monoglyceride released were both reduced in parallel. Direct measurement of diacylglycerol-lipase activity by incubating the diglyceride, sn-2[3H]dipalmitoyl, resulted in release of both products in a ratio

  1. Epigenetic control of group V phospholipase A2 expression in human malignant cells.

    PubMed

    Menschikowski, Mario; Hagelgans, Albert; Nacke, Brit; Jandeck, Carsten; Mareninova, Olga A; Asatryan, Liana; Siegert, Gabriele

    2016-06-01

    Secreted phospholipases A2 (sPLA2) are suggested to play an important role in inflammation and tumorigenesis. Different mechanisms of epigenetic regulation are involved in the control of group IIA, III and X sPLA2s expression in cancer cells, but group V sPLA2 (GV-PLA2) in this respect has not been studied. Here, we demonstrate the role of epigenetic mechanisms in regulation of GV-PLA2 expression in different cell lines originating from leukaemia and solid cancers. In blood leukocytes from leukaemic patients, levels of GV-PLA2 transcripts were significantly lower in comparison to those from healthy individuals. Similarly, in DU-145 and PC-3 prostate and CAL-51 and MCF-7 mammary cancer cell lines, levels of GV-PLA2 transcripts were significantly lower in relation to those found in normal epithelial cells of prostate or mammary. By sequencing and methylation-specific high-resolution melting (MS-HRM) analyses of bisulphite-modified DNA, distinct CpG sites in the GV-PLA2 promoter region were identified that were differentially methylated in cancer cells in comparison to normal epithelial and endothelial cells. Spearman rank order analysis revealed a significant negative correlation between the methylation degree and the cellular expression of GV-PLA2 (r = -0.697; p = 0.01). The effects of demethylating agent (5-aza-2'-deoxycytidine) and histone deacetylase inhibitor (trichostatin A) on GV-PLA2 transcription in the analysed cells confirmed the importance of DNA methylation and histone modification in the regulation of the GV-PLA2 gene expression in leukaemic, prostate and mammary cancer cell lines. The exposure of tumour cells to human recombinant GV-PLA2 resulted in a reduced colony forming activity of MCF-7, HepG2 and PC-3 cells, but not of DU-145 cells suggesting a cell-type-dependent effect of GV-PLA2 on cell growth. In conclusion, our results suggest that epigenetic mechanisms such as DNA methylation and histone modification play an important role in

  2. DNA sequences, recombinant DNA molecules and processes producing human phospholipase inhibitor polypeptides

    SciTech Connect

    Wallner, B.P.; Pepinsky, R.B.; Garwin, J.L.

    1989-11-07

    This patent describes a recombinant DNA molecule. In comprises a DNA sequence coding for a phospholopase inhibitor polypeptide and being selected from the group consisting of: the cDNA insert of ALC, DNA sequences which code on expression for a phospholopase inhibitor, and DNA sequences which are degenerate as a result of the genetic code to either of the foregoing DNA sequences and which code on expression for a phospholipase inhibitor.

  3. sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor

    PubMed Central

    Pan, Yangbin; Wan, Jianxin; Liu, Yipeng; Yang, Qian; Liang, Wei; Singhal, Pravin C.; Saleem, Moin A.; Ding, Guohua

    2014-01-01

    The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content. PMID:25335547

  4. Membrane associated phospholipase C from bovine brain

    SciTech Connect

    Lee, K.; Ryu, S.H.; Suh, P.; Choi, W.C.; Rhee, S.G.

    1987-05-01

    Cytosolic fractions of bovine brain contain 2 immunologically distinct phosphoinositide-specific phospholipase (PLC), PLC-I and PLC-II, whose MW are 150,000 and 145,000 respectively, under a denaturing condition. Monoclonal antibodies were derived against each form and specific radioimmunoassays were developed. Distribution of PLC-I and PLC-II in cytosolic and particulate fractions was measured using the radioimmunoassay. More than 90% of PLC-II was found in the cytosolic fraction, while the anti-PLC-I antibody cross-reacting protein was distributed nearly equally between the soluble fraction and the 2 M KCl extract of particulate fraction. The PLC enzyme in the particulate fraction was purified to homogeneity, yielding 2 proteins of 140 KDa and 150 KDa when analyzed on SDS-PAGE. Neither of the 2 enzymes cross-reacted with anti-PLC-II antibodies, but both could be immunoblotted by all 4 different anti-PLC-I antibodies. This suggests that the 140 KDa PLC was derived from the 150 KDa form. The 150 Kda form from particulate fraction was indistinguishable from the cytosolic PLC-I when their mixture was analyzed on SDS-PAGE. In addition, the elution profile of tryptic peptides derived from the 150 KDa particulate form was identical to that of cytosolic PLC-I. This result indicates that PLC-I is reversibly associated to membranes.

  5. Human Phospholipase D Activity Transiently Regulates Pyrimidine Biosynthesis in Malignant Gliomas

    PubMed Central

    Mathews, Thomas P.; Hill, Salisha; Rose, Kristie L.; Ivanova, Pavlina T.; Lindsley, Craig W.; Brown, H. Alex

    2015-01-01

    Cancer cells reorganize their metabolic pathways to fuel demanding rates of proliferation. Oftentimes, these metabolic phenotypes lie downstream of prominent oncogenes. The lipid signaling molecule phosphatidic acid (PtdOH), which is produced by the hydrolytic enzyme phospholipase D (PLD), has been identified as a critical regulatory molecule for oncogenic signaling in many cancers. In an effort to identify novel regulatory mechanisms for PtdOH, we screened various cancer cell lines, assessing whether treatment of cancer models with PLD inhibitors altered production of intracellular metabolites. Preliminary findings lead us to focus on how deoxyribonucleoside triphosphates (dNTPs) are altered upon PLD inhibitor treatment in gliomas. Using a combination of proteomics and small molecule intracellular metabolomics, we show herein that PtdOH acutely regulates the production of these pyrimidine metabolites through activation of CAD via mTOR signaling pathways independently of Akt. These changes are responsible for decreases in dNTP production after PLD inhibitor treatment. Our data identify a novel regulatory role for PLD activity in specific cancer types. PMID:25646564

  6. Thromboxane-insensitive dog platelets have impaired activation of phospholipase C due to receptor-linked G protein dysfunction.

    PubMed Central

    Johnson, G J; Leis, L A; Dunlop, P C

    1993-01-01

    Human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors are linked to phosphoinositide-specific phospholipase C (PI-PLC) via a G protein tentatively identified as a member of the Gq class. In contrast, platelet thrombin receptors appear to activate PI-PLC via other unidentified G proteins. Platelets from most dogs are TXA2 insensitive (TXA2-); i.e., they do not aggregate irreversibly or secrete although they bind TXA2, but they respond normally to thrombin. In contrast, a minority of dogs have TXA2-sensitive (TXA2+) platelets that are responsive to TXA2. To determine the mechanism responsible for TXA2- platelets, we evaluated receptor activation of PI-PLC. Equilibrium binding of TXA2/PGH2 receptor agonists, [125I]BOP and [3H]U46619, and antagonist, [3H]SQ29,548, revealed comparable high-affinity binding to TXA2-, TXA2+, and human platelets. U46619-induced PI-PLC activation was impaired in TXA2- platelets as evidenced by reduced (a) phosphorylation of the 47-kD substrate of protein kinase C, (b) phosphatidic acid (PA) formation, (c) rise in cytosolic calcium concentration, and (d) inositol 1,4,5 trisphosphate (IP3) formation, while thrombin-induced PI-PLC activation was not impaired. GTPase activity stimulated by U46619, but not by thrombin, was markedly reduced in TXA2- platelets. Antisera to Gq class alpha subunits abolished U46619-induced GTPase activity in TXA2-, TXA2+, and human platelets. Direct G protein stimulation by GTP gamma S yielded significantly less PA and IP3 in TXA2- platelets. Immunotransfer blotting revealed comparable quantities of Gq class alpha-subunits in all three platelet types. Thus, TXA2- dog platelets have impaired PI-PLC activation in response to TXA2/PGH2 receptor agonists secondary to G protein dysfunction, presumably involving a member of the Gq class. Images PMID:8227362

  7. Mapping the Human Platelet Lipidome Reveals Cytosolic Phospholipase A2 as a Regulator of Mitochondrial Bioenergetics during Activation.

    PubMed

    Slatter, David A; Aldrovandi, Maceler; O'Connor, Anne; Allen, Stuart M; Brasher, Christopher J; Murphy, Robert C; Mecklemann, Sven; Ravi, Saranya; Darley-Usmar, Victor; O'Donnell, Valerie B

    2016-05-10

    Human platelets acutely increase mitochondrial energy generation following stimulation. Herein, a lipidomic circuit was uncovered whereby the substrates for this are exclusively provided by cPLA2, including multiple fatty acids and oxidized species that support energy generation via β-oxidation. This indicates that acute lipid membrane remodeling is required to support energetic demands during platelet activation. Phospholipase activity is linked to energy metabolism, revealing cPLA2 as a central regulator of both lipidomics and energy flux. Using a lipidomic approach (LipidArrays), we also estimated the total number of lipids in resting, thrombin-activated, and aspirinized platelets. Significant diversity between genetically unrelated individuals and a wealth of species was revealed. Resting platelets demonstrated ∼5,600 unique species, with only ∼50% being putatively identified. Thrombin elevated ∼900 lipids >2-fold with 86% newly appearing and 45% inhibited by aspirin supplementation, indicating COX-1 is required for major activation-dependent lipidomic fluxes. Many lipids were structurally identified. With ∼50% of the lipids being absent from databases, a major opportunity for mining lipids relevant to human health and disease is presented. PMID:27133131

  8. A maternally inherited autosomal point mutation in human phospholipase C zeta (PLCζ) leads to male infertility

    PubMed Central

    Kashir, Junaid; Konstantinidis, Michalis; Jones, Celine; Lemmon, Bernadette; Chang Lee, Hoi; Hamer, Rebecca; Heindryckx, Bjorn; Deane, Charlotte M.; De Sutter, Petra; Fissore, Rafael A.; Parrington, John; Wells, Dagan; Coward, Kevin

    2012-01-01

    BACKGROUND Male factor and idiopathic infertility contribute significantly to global infertility, with abnormal testicular gene expression considered to be a major cause. Certain types of male infertility are caused by failure of the sperm to activate the oocyte, a process normally regulated by calcium oscillations, thought to be induced by a sperm-specific phospholipase C, PLCzeta (PLCζ). Previously, we identified a point mutation in an infertile male resulting in the substitution of histidine for proline at position 398 of the protein sequence (PLCζH398P), leading to abnormal PLCζ function and infertility. METHODS AND RESULTS Here, using a combination of direct-sequencing and mini-sequencing of the PLCζ gene from the patient and his family, we report the identification of a second PLCζ mutation in the same patient resulting in a histidine to leucine substitution at position 233 (PLCζH233L), which is predicted to disrupt local protein interactions in a manner similar to PLCζH398P and was shown to exhibit abnormal calcium oscillatory ability following predictive 3D modelling and cRNA injection in mouse oocytes respectively. We show that PLCζH233L and PLCζH398P exist on distinct parental chromosomes, the former inherited from the patient's mother and the latter from his father. Neither mutation was detected utilizing custom-made single-nucleotide polymorphism assays in 100 fertile males and females, or 8 infertile males with characterized oocyte activation deficiency. CONCLUSIONS Collectively, our findings provide further evidence regarding the importance of PLCζ at oocyte activation and forms of male infertility where this is deficient. Additionally, we show that the inheritance patterns underlying male infertility are more complex than previously thought and may involve maternal mechanisms. PMID:22095789

  9. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins

    PubMed Central

    Dutta, Mouparna; Ghosh, Anindya S.; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J.; Dandekar, Abhaya M.; Goñi, Félix M.

    2015-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  10. Active site mutants of human secreted Group IIA Phospholipase A2 lacking hydrolytic activity retain their bactericidal effect.

    PubMed

    Chioato, Lucimara; Aragão, Elisangela Aparecida; Ferreira, Tatiana Lopes; Ward, Richard J

    2012-01-01

    The Human Secreted Group IIA Phospholipase A(2) (hsPLA2GIIA) presents potent bactericidal activity, and is considered to contribute to the acute-phase immune response. Hydrolysis of inner membrane phospholipids is suggested to underlie the bactericidal activity, and we have evaluated this proposal by comparing catalytic activity with bactericidal and liposome membrane damaging effects of the G30S, H48Q and D49K hsPLA2GIIA mutants. All mutants showed severely impaired hydrolytic activities against mixed DOPC:DOPG liposome membranes, however the bactericidal effect against Micrococcus luteus was less affected, with 50% killing at concentrations of 1, 3, 7 and 9 μg/mL for the wild-type, D49K, H48Q and G30S mutants respectively. Furthermore, all proteins showed Ca(2+)-independent damaging activity against liposome membranes demonstrating that in addition to the hydrolysis-dependent membrane damage, the hsPLA2GIIA presents a mechanism for permeabilization of phospholipid bilayers that is independent of catalytic activity, which may play a role in the bactericidal function of the protein. PMID:21986368

  11. Phospholipase A2 Mediates Apolipoprotein-Independent Uptake of Chylomicron Remnant-Like Particles by Human Macrophages

    PubMed Central

    Napolitano, Mariarosaria; Kruth, Howard S.; Bravo, Elena

    2012-01-01

    Apolipoprotein E-receptor-mediated pathways are the main routes by which macrophages take up chylomicron remnants, but uptake may also be mediated by receptor-independent routes. To investigate these mechanisms, triacylglycerol (TG) accumulation induced by apolipoprotein-free chylomicron remnant-like particles (CRLPw/o) in human monocyte-derived macrophages was evaluated. Macrophage TG content increased about 5-fold after incubation with CRLPw/o, and this effect was not reduced by the inhibition of phagocytosis, macropinocytosis, apolipoprotein E function, or proteoglycan bridging. The role of lipases, including lipoprotein lipase, cholesteryl ester hydrolase, and secretory (sPLA2) and cytosolic phospholipase A2, was studied using [3H]TG-labelled CRLPw/o. Total cell radioactivity after incubation with [3H]TG CRLPw/o was reduced by 15–30% by inhibitors of lipoprotein lipase and cholesteryl ester hydrolase and by about 45% by inhibitors of sPLA2 and cytosolic PLA2 . These results suggest that macrophage lipolytic enzymes mediate the internalization of postprandial TG-rich lipoproteins and that sPLA2 and cytosolic PLA2, play a more important role than extracellular lipoprotein lipase-mediated TG hydrolysis. PMID:21876814

  12. Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum.

    PubMed

    Chapman, Robert; Lin, Yiyang; Burnapp, Mark; Bentham, Andrew; Hillier, David; Zabron, Abigail; Khan, Shahid; Tyreman, Matthew; Stevens, Molly M

    2015-03-24

    A rapid and highly sensitive point-of-care (PoC) lateral flow assay for phospholipase A2 (PLA2) is demonstrated in serum through the enzyme-triggered release of a new class of biotinylated multiarmed polymers from a liposome substrate. Signal from the enzyme activity is generated by the adhesion of polystreptavidin-coated gold nanoparticle networks to the lateral flow device, which leads to the appearance of a red test line due to the localized surface plasmon resonance effect of the gold. The use of a liposome as the enzyme substrate and multivalent linkers to link the nanoparticles leads to amplification of the signal, as the cleavage of a small amount of lipids is able to release a large amount of polymer linker and adhesion of an even larger amount of gold nanoparticles. By optimizing the molecular weight and multivalency of these biotinylated polymer linkers, the sensitivity of the device can be tuned to enable naked-eye detection of 1 nM human PLA2 in serum within 10 min. This high sensitivity enabled the correct diagnosis of pancreatitis in diseased clinical samples against a set of healthy controls using PLA2 activity in a point-of-care device for the first time. PMID:25756526

  13. Purified group X secretory phospholipase A(2) induced prominent release of arachidonic acid from human myeloid leukemia cells.

    PubMed

    Hanasaki, K; Ono, T; Saiga, A; Morioka, Y; Ikeda, M; Kawamoto, K; Higashino, K; Nakano, K; Yamada, K; Ishizaki, J; Arita, H

    1999-11-26

    Group X secretory phospholipase A(2) (sPLA(2)-X) possesses several structural features characteristic of both group IB and IIA sPLA(2)s (sPLA(2)-IB and -IIA) and is postulated to be involved in inflammatory responses owing to its restricted expression in the spleen and thymus. Here, we report the purification of human recombinant COOH-terminal His-tagged sPLA(2)-X, the preparation of its antibody, and the purification of native sPLA(2)-X. The affinity-purified sPLA(2)-X protein migrated as various molecular species of 13-18 kDa on SDS-polyacrylamide gels, and N-glycosidase F treatment caused shifts to the 13- and 14-kDa bands. NH(2)-terminal amino acid sequencing analysis revealed that the 13-kDa form is a putative mature sPLA(2)-X and the 14-kDa protein possesses a propeptide of 11 amino acid residues attached at the NH(2) termini of the mature protein. Separation with reverse-phase high performance liquid chromatography revealed that N-linked carbohydrates are not required for the enzymatic activity and pro-sPLA(2)-X has a relatively weak potency compared with the mature protein. The mature sPLA(2)-X induced the release of arachidonic acid from phosphatidylcholine more efficiently than other human sPLA(2) groups (IB, IIA, IID, and V) and elicited a prompt and marked release of arachidonic acid from human monocytic THP-1 cells compared with sPLA(2)-IB and -IIA with concomitant production of prostaglandin E(2). A prominent release of arachidonic acid was also observed in sPLA(2)-X-treated human U937 and HL60 cells. Immunohistochemical analysis of human lung preparations revealed its expression in alveolar epithelial cells. These results indicate that human sPLA(2)-X is a unique N-glycosylated sPLA(2) that releases arachidonic acid from human myeloid leukemia cells more efficiently than sPLA(2)-IB and -IIA. PMID:10567392

  14. Crystal structures of human group-VIIA phospholipase A2 inhibited by organophosphorus nerve agents exhibit non-aged complexes

    SciTech Connect

    Samanta, Uttamkumar; Kirby, Stephen D.; Srinivasan, Prabhavathi; Cerasoli, Douglas M.; Bahnson, Brian J.

    2009-09-02

    The enzyme group-VIIA phospholipase A2 (gVIIA-PLA2) is bound to lipoproteins in human blood and hydrolyzes the ester bond at the sn-2 position of phospholipid substrates with a short sn-2 chain. The enzyme belongs to a serine hydrolase superfamily of enzymes, which react with organophosphorus (OP) nerve agents. OPs ultimately exert their toxicity by inhibiting human acetycholinesterase at nerve synapses, but may additionally have detrimental effects through inhibition of other serine hydrolases. We have solved the crystal structures of gVIIA-PLA2 following inhibition with the OPs diisopropylfluorophosphate, sarin, soman and tabun. The sarin and soman complexes displayed a racemic mix of P{sub R} and P{sub S} stereoisomers at the P-chiral center. The tabun complex displayed only the P{sub R} stereoisomer in the crystal. In all cases, the crystal structures contained intact OP adducts that had not aged. Aging refers to a secondary process OP complexes can go through, which dealkylates the nerve agent adduct and results in a form that is highly resistant to either spontaneous or oxime-mediated reactivation. Non-aged OP complexes of the enzyme were corroborated by trypsin digest and matrix-assisted laser desorption ionization mass spectrometry of OP-enzyme complexes. The lack of stereoselectivity of sarin reaction was confirmed by gas chromatography/mass spectrometry using a chiral column to separate and quantitate the unbound stereoisomers of sarin following incubation with enzyme. The structural details and characterization of nascent reactivity of several toxic nerve agents is discussed with a long-term goal of developing gVIIA-PLA2 as a catalytic bioscavenger of OP nerve agents.

  15. Crystal structures of human group-VIIA phospholipase A2 inhibited by organophosphorus nerve agents exhibit non-aged complexes.

    PubMed

    Samanta, Uttamkumar; Kirby, Stephen D; Srinivasan, Prabhavathi; Cerasoli, Douglas M; Bahnson, Brian J

    2009-08-15

    The enzyme group-VIIA phospholipase A2 (gVIIA-PLA2) is bound to lipoproteins in human blood and hydrolyzes the ester bond at the sn-2 position of phospholipid substrates with a short sn-2 chain. The enzyme belongs to a serine hydrolase superfamily of enzymes, which react with organophosphorus (OP) nerve agents. OPs ultimately exert their toxicity by inhibiting human acetycholinesterase at nerve synapses, but may additionally have detrimental effects through inhibition of other serine hydrolases. We have solved the crystal structures of gVIIA-PLA2 following inhibition with the OPs diisopropylfluorophosphate, sarin, soman and tabun. The sarin and soman complexes displayed a racemic mix of P(R) and P(S) stereoisomers at the P-chiral center. The tabun complex displayed only the P(R) stereoisomer in the crystal. In all cases, the crystal structures contained intact OP adducts that had not aged. Aging refers to a secondary process OP complexes can go through, which dealkylates the nerve agent adduct and results in a form that is highly resistant to either spontaneous or oxime-mediated reactivation. Non-aged OP complexes of the enzyme were corroborated by trypsin digest and matrix-assisted laser desorption ionization mass spectrometry of OP-enzyme complexes. The lack of stereoselectivity of sarin reaction was confirmed by gas chromatography/mass spectrometry using a chiral column to separate and quantitate the unbound stereoisomers of sarin following incubation with enzyme. The structural details and characterization of nascent reactivity of several toxic nerve agents is discussed with a long-term goal of developing gVIIA-PLA2 as a catalytic bioscavenger of OP nerve agents. PMID:19394314

  16. Cool-temperature-mediated activation of phospholipase C-γ2 in the human hereditary disease PLAID.

    PubMed

    Schade, Anja; Walliser, Claudia; Wist, Martin; Haas, Jennifer; Vatter, Petra; Kraus, Johann M; Filingeri, Davide; Havenith, George; Kestler, Hans A; Milner, Joshua D; Gierschik, Peter

    2016-09-01

    Deletions in the gene encoding signal-transducing inositol phospholipid-specific phospholipase C-γ2 (PLCγ2) are associated with the novel human hereditary disease PLAID (PLCγ2-associated antibody deficiency and immune dysregulation). PLAID is characterized by a rather puzzling concurrence of augmented and diminished functions of the immune system, such as cold urticaria triggered by only minimal decreases in temperature, autoimmunity, and immunodeficiency. Understanding of the functional effects of the genomic alterations at the level of the affected enzyme, PLCγ2, is currently lacking. PLCγ2 is critically involved in coupling various cell surface receptors to regulation of important functions of immune cells such as mast cells, B cells, monocytes/macrophages, and neutrophils. PLCγ2 is unique by carrying three Src (SH) and one split pleckstrin homology domain (spPH) between the two catalytic subdomains (spPHn-SH2n-SH2c-SH3-spPHc). Prevailing evidence suggests that activation of PLCγ2 is primarily due to loss of SH-region-mediated autoinhibition and/or enhanced plasma membrane translocation. Here, we show that the two PLAID PLCγ2 mutants lacking portions of the SH region are strongly (>100-fold), rapidly, and reversibly activated by cooling by only a few degrees. We found that the mechanism(s) underlying PLCγ2 PLAID mutant activation by cool temperatures is distinct from a mere loss of SH-region-mediated autoinhibition and dependent on both the integrity and the pliability of the spPH domain. The results suggest a new mechanism of PLCγ activation with unique thermodynamic features and assign a novel regulatory role to its spPH domain. Involvement of this mechanism in other human disease states associated with cooling such as exertional asthma and certain acute coronary events appears an intriguing possibility. PMID:27196803

  17. In Vitro Anti-Plasmodium falciparum Properties of the Full Set of Human Secreted Phospholipases A2

    PubMed Central

    Guillaume, Carole; Payré, Christine; Jemel, Ikram; Jeammet, Louise; Bezzine, Sofiane; Naika, Gajendra S.; Bollinger, James; Grellier, Philippe; Gelb, Michael H.; Schrével, Joseph

    2015-01-01

    We have previously shown that secreted phospholipases A2 (sPLA2s) from animal venoms inhibit the in vitro development of Plasmodium falciparum, the agent of malaria. In addition, the inflammatory-type human group IIA (hGIIA) sPLA2 circulates at high levels in the serum of malaria patients. However, the role of the different human sPLA2s in host defense against P. falciparum has not been investigated. We show here that 4 out of 10 human sPLA2s, namely, hGX, hGIIF, hGIII, and hGV, exhibit potent in vitro anti-Plasmodium properties with half-maximal inhibitory concentrations (IC50s) of 2.9 ± 2.4, 10.7 ± 2.1, 16.5 ± 9.7, and 94.2 ± 41.9 nM, respectively. Other human sPLA2s, including hGIIA, are inactive. The inhibition is dependent on sPLA2 catalytic activity and primarily due to hydrolysis of plasma lipoproteins from the parasite culture. Accordingly, purified lipoproteins that have been prehydrolyzed by hGX, hGIIF, hGIII, and hGV are more toxic to P. falciparum than native lipoproteins. However, the total enzymatic activities of human sPLA2s on purified lipoproteins or plasma did not reflect their inhibitory activities on P. falciparum. For instance, hGIIF is 9-fold more toxic than hGV but releases a lower quantity of nonesterified fatty acids (NEFAs). Lipidomic analyses of released NEFAs from lipoproteins demonstrate that sPLA2s with anti-Plasmodium properties are those that release polyunsaturated fatty acids (PUFAs), with hGIIF being the most selective enzyme. NEFAs purified from lipoproteins hydrolyzed by hGIIF were more potent at inhibiting P. falciparum than those from hGV, and PUFA-enriched liposomes hydrolyzed by sPLA2s were highly toxic, demonstrating the critical role of PUFAs. The selectivity of sPLA2s toward low- and high-density (LDL and HDL, respectively) lipoproteins and their ability to directly attack parasitized erythrocytes further explain their anti-Plasmodium activity. Together, our findings indicate that 4 human sPLA2s are active against P

  18. Inhibition of PAF synthesis by stimulated human polymorphonuclear leucocytes with cloricromene, an inhibitor of phospholipase A2 activation.

    PubMed Central

    Ribaldi, E.; Mezzasoma, A. M.; Francescangeli, E.; Prosdocimi, M.; Nenci, G. G.; Goracci, G.; Gresele, P.

    1996-01-01

    1. A phospholipase A2 (PLA2) represents the key enzyme in the remodelling pathway of platelet-activating factor (PAF) synthesis in human polymorphonuclear (PMN) leucocytes. 2. PLA2 activation is also the rate-limiting step for the release of the arachidonic acid utilized for the synthesis of leukotrienes in stimulated leucocytes; however, it is unknown whether the PLA2s involved in the two biosynthetic pathways are identical. 3. Cloricromene (8-monochloro-3-beta-diethylaminoethyl-4-methyl-7-ethoxy- carbonylmethoxy coumarin) is an antithrombotic coumarin derivative which inhibits platelet and leucocyte function and suppresses arachidonic acid liberation by interfering with PLA2 activation. 4. The aim of the present study was to assess whether chloricromene inhibits PAF synthesis by stimulated human polymorphonuclear leucocytes (PMNs). 5. Cloricromene (50-500 microM) inhibited in a concentration-dependent manner the release of PAF, as measured by h.p.l.c. bioassay, from A23187-stimulated PMNs. Significant inhibition (45%) of PAF-release was obtained with 50 microM cloricromene and the IC50 was 85 microM. Mepacrine (500 microM), a non-specific PLA2 inhibitor, strikingly reduced PAF release. 6. The incorporation of [3H]-acetate into [3H]-PAF induced by serum-treated zymosan in human PMNs was also inhibited concentration-dependently by cloricromene, with an IC50 of 105 microM. Mepacrine also suppressed [3H]-acetate incorporation into [3H]-PAF. 7. Cloricromene did not affect the activities of the enzymes involved in PAF-synthesis acetyltransferase or phosphocholine transferase. 8. Our data demonstrate that cloricromene, an inhibitor of PLA2-activation in human leucocytes, reduces the synthesis of PAF by stimulated PMNs. This finding has a twofold implication: the PLA2s (or the mechanisms that regulate their activation) involved in PAF synthesis and arachidonate release in human leucocytes are either identical or else indistinguishable by their sensitivity to cloricromene

  19. The effect of CD137-CD137 ligand interaction on phospholipase C signaling pathway in human endothelial cells.

    PubMed

    Yan, Jinchuan; Wang, Cuiping; Wang, Zhongqun; Yuan, Wei

    2013-11-25

    We previously reported the emerging role of CD137-CD137L interaction in inflammation and atherosclerosis. The mechanism of CD137-CD137L interaction may be related to a variety of signaling pathways. The most important signaling pathway involves the activation of phospholipase C(PLC) which induces the diacylglycerol-protein kinase C(DAG-PKC) and the inositol trisphosphate-intracellular free calcium (IP3-[Ca(2+)]i) pathway. In the current study, we investigated whether CD137-CD137L interaction can stimulate the PLC signaling pathway in human umbilical vein endothelial cells (HUVEC). The diacylglycerol (DAG) and inositol trisphosphate (IP3) levels in HUVEC were measured by radioenzymatic assay. The activity of protein kinase (PKC) was detected by its ability to transfer phosphate from [γ-(32)P]ATP to lysine-rich histone. The [Ca(2+)]i concentrations were measured by flow cytometric analysis. The DAG level and PKC activity were increased in a concentration-dependent, biphasic manner in HUVEC induced by anti-CD137. PKC activity was mainly in the cytosol at rest, and then translocated to the membrane when stimulated by anti-CD137. Similarly, rapid IP3 formation induced by anti-CD137 coincided with the peak of the DAG level. Moreover, anti-CD137 induced peak [Ca(2+)]i responses including the rapid transient phase and the sustained phase. However, anti-CD137L suppressed the activation of the DAG-PKC and IP3-[Ca(2+)]i signaling pathway, which was stimulated by anti-CD137 in HUVEC. In conclusion, the data suggested that CD137-CD137L interaction induces robust activation of the PLC signaling pathway in HUVEC. PMID:24070733

  20. Group V secreted phospholipase A2 is upregulated by IL-4 in human macrophages and mediates phagocytosis via hydrolysis of ethanolamine phospholipids.

    PubMed

    Rubio, Julio M; Rodríguez, Juan P; Gil-de-Gómez, Luis; Guijas, Carlos; Balboa, María A; Balsinde, Jesús

    2015-04-01

    Studies on the heterogeneity and plasticity of macrophage populations led to the identification of two major polarization states: classically activated macrophages or M1, induced by IFN-γ plus LPS, and alternatively activated macrophages, induced by IL-4. We studied the expression of multiple phospholipase A2 enzymes in human macrophages and the effect that polarization of the cells has on their levels. At least 11 phospholipase A2 genes were found at significant levels in human macrophages, as detected by quantitative PCR. None of these exhibited marked changes after treating the cells with IFN-γ plus LPS. However, macrophage treatment with IL-4 led to strong upregulation of the secreted group V phospholipase A2 (sPLA2-V), both at the mRNA and protein levels. In parallel with increasing sPLA2-V expression levels, IL-4-treated macrophages exhibited increased phagocytosis of yeast-derived zymosan and bacteria, and we show that both events are causally related, because cells deficient in sPLA2-V exhibited decreased phagocytosis, and cells overexpressing the enzyme manifested higher rates of phagocytosis. Mass spectrometry analyses of lipid changes in the IL-4-treated macrophages suggest that ethanolamine lysophospholipid (LPE) is an sPLA2-V-derived product that may be involved in regulating phagocytosis. Cellular levels of LPE are selectively maintained by sPLA2-V. By supplementing sPLA2-V-deficient cells with LPE, phagocytosis of zymosan or bacteria was fully restored in IL-4-treated cells. Collectively, our results show that sPLA2-V is required for efficient phagocytosis by IL-4-treated human macrophages and provide evidence that sPLA2-V-derived LPE is involved in the process. PMID:25725101

  1. Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered through X-ray Fragment Screening.

    PubMed

    Woolford, Alison J-A; Pero, Joseph E; Aravapalli, Sridhar; Berdini, Valerio; Coyle, Joseph E; Day, Philip J; Dodson, Andrew M; Grondin, Pascal; Holding, Finn P; Lee, Lydia Y W; Li, Peng; Manas, Eric S; Marino, Joseph; Martin, Agnes C L; McCleland, Brent W; McMenamin, Rachel L; Murray, Christopher W; Neipp, Christopher E; Page, Lee W; Patel, Vipulkumar K; Potvain, Florent; Rich, Sharna; Rivero, Ralph A; Smith, Kirsten; Somers, Donald O; Trottet, Lionel; Velagaleti, Ranganadh; Williams, Glyn; Xie, Ren

    2016-06-01

    Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA2) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA2 in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273). Using structure guided design, we optimized a fragment that bound in this pocket to generate a novel low nanomolar chemotype, which did not interact with the catalytic residues. PMID:27167608

  2. Bacterial phospholipases C.

    PubMed Central

    Titball, R W

    1993-01-01

    A variety of pathogenic bacteria produce phospholipases C, and since the discovery in 1944 that a bacterial toxin (Clostridium perfringens alpha-toxin) possessed an enzymatic activity, there has been considerable interest in this class of proteins. Initial speculation that all phospholipases C would have lethal properties has not been substantiated. Most of the characterized enzymes fall into one of four groups of structurally related proteins: the zinc-metallophospholipases C, the sphingomyelinases, the phosphatidylinositol-hydrolyzing enzymes, and the pseudomonad phospholipases C. The zinc-metallophospholipases C have been most intensively studied, and lethal toxins within this group possess an additional domain. The toxic phospholipases C can interact with eukaryotic cell membranes and hydrolyze phosphatidylcholine and sphingomyelin, leading to cell lysis. However, measurement of the cytolytic potential or lethality of phospholipases C may not accurately indicate their roles in the pathogenesis of disease. Subcytolytic concentrations of phospholipase C can perturb host cells by activating the arachidonic acid cascade or protein kinase C. Nonlethal phospholipases C, such as the Listeria monocytogenes PLC-A, appear to enhance the release of the organism from the host cell phagosome. Since some phospholipases C play important roles in the pathogenesis of disease, they could form components of vaccines. A greater understanding of the modes of action and structure-function relationships of phospholipases C will facilitate the interpretation of studies in which these enzymes are used as membrane probes and will enhance the use of these proteins as models for eukaryotic phospholipases C. PMID:8336671

  3. Expression of secretory phospholipase A2 enzymes in lungs of humans with pneumonia and their potential prostaglandin-synthetic function in human lung-derived cells.

    PubMed

    Masuda, Seiko; Murakami, Makoto; Mitsuishi, Michiko; Komiyama, Kazuo; Ishikawa, Yukio; Ishii, Toshiharu; Kudo, Ichiro

    2005-04-01

    Although a number of sPLA2 (secretory phospholipase A2) enzymes have been identified in mammals, the localization and functions of individual enzymes in human pathologic tissues still remain obscure. In the present study, we have examined the expression and function of sPLA2s in human lung-derived cells and in human lungs with pneumonia. Group IID, V and X sPLA2s were expressed in cultured human bronchial epithelial cells (BEAS-2B) and normal human pulmonary fibroblasts with distinct requirement for cytokines (interleukin-1b, tumour necrosis factor a and interferon-g). Lentivirus- or adenovirus-mediated transfection of various sPLA2s into BEAS-2B or normal human pulmonary fibroblast cells revealed that group V and X sPLA2s increased arachidonate release and prostaglandin production in both cell types, whereas group IIA and IID sPLA2s failed to do so. Immunohistochemistry of human lungs with pneumonia demonstrated that group V and X sPLA2s were widely expressed in the airway epithelium, interstitium and alveolar macrophages, in which group IID sPLA2 was also positive, whereas group IIA sPLA2 was restricted to the pulmonary arterial smooth muscle layers and bronchial chondrocytes, and group IIE and IIF sPLA2s were minimally detected. These results suggest that group V and X sPLA2s affect lung pathogenesis by facilitating arachidonate metabolism or possibly through other functions. PMID:15509193

  4. PID15, a novel 6 kDa secreted peptide, mediates Naja naja venom phospholipase A2 induced apoptosis in isolated human peripheral lymphocytes

    PubMed Central

    2014-01-01

    Background Snake venoms are a complex mixture of active principles mainly peptides and proteins also including amino acids, nucleotides, free lipids, carbohydrates and metallic elements bound to proteins that interfere in several biological systems. In this study, we aimed to understand the mode of action of the apoptosis inducing ability of Naja naja venom phospholipase A2 (NV-PLA2) using isolated human peripheral lymphocytes. Results Human peripheral lymphocytes when incubated with Naja naja venom phospholipase A2 (NV-PLA2) induced up to 68% DNA fragmentation. The dialysed conditioned media obtained by incubating lymphocytes with NV-PLA2 at 15th min induced 44% DNA fragmentation, referred to as cmlp-active. Cmlp-active showed 20.5% increased protein concentration than the corresponding control condition media cmlp-c-15. Test for creatine kinase activity in cmlp-active proved negative and negligible amount of lactate dehydrogenase did not show significant DNA fragmentation. Fractionation of cmlp-active on Sephadex G-25 showed two peaks, major peak induced 38% DNA fragmentation, which was further rechromatographed on Sephadex G-25. The single peak obtained was named PID15 (Phospholipase A 2 Induced DNA fragmentation factor secreted at 15 th min). Q-Tof MS/MS analysis of PID-15 showed it is a 6 kDa peptide. PID15 sequence analysis gave 40 amino acids in the following order, msilpcknvs iwvikdtaas dkevvlgsdr aikflylatg. The homology search for the sequence revealed it to be an Apoptosis Inducing Factor (AIF). Conclusion Results indicate that the secretion of PID15 is dependent on concentration of NV-PLA2 treatment, incubation time and also on temperature and the probable membrane origin of PID15 and not of cytosolic origin with apoptosis inducing ability. PMID:25030355

  5. A 32-kDa protein associated with phospholipase A2-inhibitory activity from human placenta.

    PubMed

    Hayashi, H; Owada, M K; Sonobe, S; Kakunaga, T; Kawakatsu, H; Yano, J

    1987-11-01

    Two monomeric 32-kDa proteins, termed 32K-I (pI 5.8) and 32K-II (pI 5.1), were isolated from human placenta, which was solubilized by a Ca2+-chelator. Only 32K-I was associated with PLA2-inhibitory activity. CNBr peptide mapping indicated that 32K-I was distinct from 32K-II and two 36-kDa proteins, called calpactin I and II or lipocortin II and I, which have been shown to possess PLA2-inhibitory activity. 32K-I bound to PS in a Ca2+-dependent manner. 32K-I was detected in many tissues except brain, cardiac and skeletal muscle. PMID:3666152

  6. Leptin signalling and leptin-mediated activation of human platelets: importance of JAK2 and the phospholipases Cgamma2 and A2.

    PubMed

    Dellas, Claudia; Schäfer, Katrin; Rohm, Ilonka K; Lankeit, Mareike; Leifheit, Maren; Loskutoff, David J; Hasenfuss, Gerd; Konstantinides, Stavros V

    2007-11-01

    Leptin enhances agonist-induced platelet aggregation, and human platelets have been reported to express the leptin receptor. However, the pathways and mediators lying downstream of leptin binding to platelets remain, with few exceptions, unknown. In the present study, we sought to gain further insight into the possible role of leptin as a platelet agonist. Stimulation of platelets with leptin promoted thromboxane generation and activation of alpha(IIb)beta(3), as demonstrated by PAC-1 binding. Furthermore, it increased the adhesion to immobilised fibrinogen (p<0.001) and induced cytoskeletal rearrangement of both platelets and Meg01 cells. Leptin time- and dose-dependently phosphorylated the intracellular signalling molecules JAK2 and STAT3, although the importance of STAT3 for leptin-induced platelet activation remains to be determined. Important intracellular mediators and pathways activated by leptin downstream of JAK2 were found to include phosphatidylinositol-3 kinase, phospholipase Cgamma2 and protein kinase C, as well as the p38 MAP kinase-phospholipase A(2) axis. Accordingly, incubation with the specific inhibitors AG490, Ly294002, U73122, and SB203580 prevented leptin-mediated platelet activation. These results help delineate biologically relevant leptin signalling pathways in platelets and may improve our understanding of the mechanisms linking hyperleptinaemia to the increased thrombosis risk in human obesity. PMID:18000612

  7. Organochlorine insecticides induce NADPH oxidase-dependent reactive oxygen species in human monocytic cells via phospholipase A2/arachidonic acid.

    PubMed

    Mangum, Lee C; Borazjani, Abdolsamad; Stokes, John V; Matthews, Anberitha T; Lee, Jung Hwa; Chambers, Janice E; Ross, Matthew K

    2015-04-20

    Bioaccumulative organohalogen chemicals, such as organochlorine (OC) insecticides, have been increasingly associated with disease etiology; however, the mechanistic link between chemical exposure and diseases, such as atherosclerosis, cancer, and diabetes, is complex and poorly defined. Systemic oxidative stress stemming from OC exposure might play a vital role in the development of these pathologies. Monocytes are important surveillance cells of the innate immune system that respond to extracellular signals possessing danger-associated molecular patterns by synthesizing oxyradicals, such as superoxide, for the purpose of combating infectious pathogens. We hypothesized that OC chemicals can be toxic to monocytes because of an inappropriate elevation in superoxide-derived reactive oxygen species (ROS) capable of causing cellular oxidative damage. Reactive oxyradicals are generated in monocytes in large part by NADPH oxidase (Nox). The present study was conducted to examine the ability of two chlorinated cyclodiene compounds, trans-nonachlor and dieldrin, as well as p,p'-DDE, a chlorinated alicyclic metabolite of DDT, to stimulate Nox activity in a human monocytic cell line and to elucidate the mechanisms for this activation. Human THP-1 monocytes treated with either trans-nonachlor or dieldrin (0.1-10 μM in the culture medium) exhibited elevated levels of intracellular ROS, as evidenced by complementary methods, including flow cytometry analysis using the probe DCFH-DA and hydroethidine-based fluorometric and UPLC-MS assays. In addition, the induced reactive oxygen flux caused by trans-nonachlor was also observed in two other cell lines, murine J774 macrophages and human HL-60 cells. The central role of Nox in OC-mediated oxidative stress was demonstrated by the attenuated superoxide production in OC-exposed monocytes treated with the Nox inhibitors diphenyleneiodonium and VAS-2870. Moreover, monocytes challenged with OCs exhibited increased phospho-p47(phox

  8. Phospholipase C treatment of certain human target cells reduces their susceptibility to NK lysis without affecting binding or sensitivity to lytic granules.

    PubMed

    Une, C; Grönberg, A; Axberg, I; Jondal, M; Orn, A

    1991-03-01

    Phosphatidylinositol-specific phospholipase C (PI-PLC) is an enzyme that has the capacity to release glycosyl-phosphatidyl inositol (G-PI)-anchored proteins from the cells surface. Pretreatment of the human T-cell leukemia cell line Molt-4 with PI-PLC resulted in a decrease in the susceptibility to lysis by natural killer (NK) cells. Treatment of the erythroleukemia cell line K562 with PI-PLC had no effect on its NK susceptibility. PI-PLC-treated and untreated Molt-4 bound equally well to lymphocytes in target-binding studies with effector cell preparations enriched for NK cells. Susceptibility to cytolytic granules isolated from rat LGL tumor cells remained the same after treatment of Molt-4 or K562 with PI-PLC. Combined treatment of Molt-4 with PI-PLC and rlFN-alpha or rlFN-gamma resulted in additive reductions of the NK susceptibility, suggesting that PI-PLC and interferons act on different mechanisms to protect cells from NK lysis. When expression of a number of antigens on Molt-4 and K562 was analyzed in flow cytometry, only the expression of CD58 was reduced after PI-PLC treatment. The susceptibility of Con A blasts to MLR derived cytotoxic T-cells was not altered by treatment with phospholipase. These data suggest that PI-PLC treatment reduces the capacity of some target cells to activate NK cells upon contract. The mechanism behind this phenomenon is presently unclear. PMID:1703925

  9. Mu-opioids activate phospholipase C in SH-SY5Y human neuroblastoma cells via calcium-channel opening.

    PubMed

    Smart, D; Smith, G; Lambert, D G

    1995-01-15

    We have recently reported that, in SH-SY5Y cells, mu-opioid receptor occupancy activates phospholipase C via a pertussis toxin-sensitive G-protein. In the present study we have further characterized the mechanisms involved in this process. Fentanyl (0.1 microM) caused a monophasic increase in inositol 1,4,5-trisphosphate mass formation, with a peak (20.5 +/- 3.6 pmol/mg of protein) at 15 s. Incubation in Ca(2+)-free buffer abolished this response, while Ca2+ replacement 1 min later restored the stimulation of inositol 1,4,5-trisphosphate formation (20.1 +/- 0.6 pmol/mg of protein). In addition, nifedipine (1 nM-0.1 mM), an L-type Ca(2+)-channel antagonist, caused a dose-dependent inhibition of inositol 1,4,5-trisphosphate formation, with an IC50 of 60.3 +/- 1.1 nM. Elevation of endogenous beta/gamma subunits by selective activation of delta-opioid and alpha 2 adrenoceptors failed to stimulate phospholipase C. Fentanyl also caused a dose-dependent (EC50 of 16.2 +/- 1.0 nM), additive enhancement of carbachol-induced inositol 1,4,5-trisphosphate formation. In summary, we have demonstrated that in SH-SY5Y cells activation of the mu-opioid receptor allows Ca2+ influx to activate phospholipase C. However, the possible role of this mechanism in the process of analgesia remains to be elucidated. PMID:7832776

  10. Lentivirus-mediated PLCγ1 gene short-hairpin RNA suppresses tumor growth and metastasis of human gastric adenocarcinoma.

    PubMed

    Zhang, Bingchang; Wang, Fen; Dai, Lianzhi; Cai, Heguo; Zhan, Yanyan; Gang, Song; Hu, Tianhui; Xia, Chun; Zhang, Bing

    2016-02-16

    Targeted molecular therapy has gradually been a potential solution in cancer therapy. Other authors' and our previous studies have demonstrated that phosphoinositide-specific phospholipase γ (PLCγ) is involved in regulating tumor growth and metastasis. However, the molecular mechanism underlying PLCγ-dependent tumor growth and metastasis of gastric adenocarcinoma and whether PLCγ may be a potential target for tumor therapy in human gastric adenocarcinoma are not yet well determined. Here, we investigated the role of PLCγ inhibition in tumor growth and metastasis of human gastric adenocarcinoma using BGC-823 cell line and a nude mouse tumor xenograft model. The results manifested that the depletion of PLCγ1 by the transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vector led to the decrease of tumor growth and metastasis of human gastric adenocarcinoma in vitro and in vivo. Furthermore, the Akt/Bad, Akt/S6, and ERK/Bad signal axes were involved in PLCγ1-mediated tumor growth and metastasis of human gastric adenocarcinoma. Therefore, the abrogation of PLCγ1 signaling by shRNA could efficaciously suppress human gastric adenocarcinoma tumor growth and metastasis, with important implication for validating PLCγ1 as a potential target for human gastric adenocarcinoma. PMID:26811493

  11. Lentivirus-mediated PLCγ1 gene short-hairpin RNA suppresses tumor growth and metastasis of human gastric adenocarcinoma

    PubMed Central

    Zhang, Bingchang; Wang, Fen; Dai, Lianzhi; Cai, Heguo; Zhan, Yanyan; Gang, Song; Hu, Tianhui; Xia, Chun; Zhang, Bing

    2016-01-01

    Targeted molecular therapy has gradually been a potential solution in cancer therapy. Other authors' and our previous studies have demonstrated that phosphoinositide-specific phospholipase γ (PLCγ) is involved in regulating tumor growth and metastasis. However, the molecular mechanism underlying PLCγ-dependent tumor growth and metastasis of gastric adenocarcinoma and whether PLCγ may be a potential target for tumor therapy in human gastric adenocarcinoma are not yet well determined. Here, we investigated the role of PLCγ inhibition in tumor growth and metastasis of human gastric adenocarcinoma using BGC-823 cell line and a nude mouse tumor xenograft model. The results manifested that the depletion of PLCγ1 by the transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vector led to the decrease of tumor growth and metastasis of human gastric adenocarcinoma in vitro and in vivo. Furthermore, the Akt/Bad, Akt/S6, and ERK/Bad signal axes were involved in PLCγ1-mediated tumor growth and metastasis of human gastric adenocarcinoma. Therefore, the abrogation of PLCγ1 signaling by shRNA could efficaciously suppress human gastric adenocarcinoma tumor growth and metastasis, with important implication for validating PLCγ1 as a potential target for human gastric adenocarcinoma. PMID:26811493

  12. Humanized-Single Domain Antibodies (VH/VHH) that Bound Specifically to Naja kaouthia Phospholipase A2 and Neutralized the Enzymatic Activity

    PubMed Central

    Chavanayarn, Charnwit; Thanongsaksrikul, Jeeraphong; Thueng-in, Kanyarat; Bangphoomi, Kunan; Sookrung, Nitat; Chaicumpa, Wanpen

    2012-01-01

    Naja kaouthia (monocled cobra) venom contains many isoforms of secreted phospholipase A2 (sPLA2). The PLA2 exerts several pharmacologic and toxic effects in the snake bitten subject, dependent or independent on the enzymatic activity. N. kaouthia venom appeared in two protein profiles, P3 and P5, after fractionating the venom by ion exchange column chromatography. In this study, phage clones displaying humanized-camel single domain antibodies (VH/VHH) that bound specifically to the P3 and P5 were selected from a humanized-camel VH/VHH phage display library. Two phagemid transfected E. coli clones (P3-1 and P3-3) produced humanized-VHH, while another clone (P3-7) produced humanized-VH. At the optimal venom:antibody ratio, the VH/VHH purified from the E. coli homogenates neutralized PLA2 enzyme activity comparable to the horse immune serum against the N. kaouthia holo-venom. Homology modeling and molecular docking revealed that the VH/VHH covered the areas around the PLA2 catalytic groove and inserted their Complementarity Determining Regions (CDRs) into the enzymatic cleft. It is envisaged that the VH/VHH would ameliorate/abrogate the principal toxicity of the venom PLA2 (membrane phospholipid catabolism leading to cellular and subcellular membrane damage which consequently causes hemolysis, hemorrhage, and dermo-/myo-necrosis), if they were used for passive immunotherapy of the cobra bitten victim. The speculation needs further investigations. PMID:22852068

  13. Phospholipases in arterial tissue

    PubMed Central

    Eisenberg, S.; Stein, Y.; Stein, O.

    1969-01-01

    The role of phospholipases in the regulation of the changing phospholipid composition of normal human aortae with age was studied. Portions of grossly and histologically lesion-free ascending aortae from 16 females and 29 males obtained at autopsy, were analyzed for deoxyribonucleic acid (DNA), phospholipid, and cholesterol content and phospholipid composition. Enzymic activity toward four substrates, lecithin (LE), phosphatidyl ethanolamine, lysolecithin, and sphingomyelin (SP), was determined on portions of the same homogenate. By regression analysis for correlation between all determinations and age the following results were obtained: (a) total phospholipids and choleserol increased linearly with age; (b) the increase in sphingomyelin accounted for about 70% of the phospholipid increment; (c) hydrolysis of lecithin and phosphatidyl ethanolamine increased markedly with age, that of lysolecithin only moderately; (d) hydrolysis of sphingomyelin decreased with age; and (e) an inverse relation between the SP/LE ratio and age and sphingomyelinase/lecithinase activity and age was obtained. These results were interpreted to indicate that a causal relation exists between the fall in sphingomyelinase activity, both absolute and relative to lecithinase activity, and the accumulation of sphingomyelin with age. PMID:5355343

  14. Bacterial Sphingomyelinases and Phospholipases as Virulence Factors.

    PubMed

    Flores-Díaz, Marietta; Monturiol-Gross, Laura; Naylor, Claire; Alape-Girón, Alberto; Flieger, Antje

    2016-09-01

    Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases. PMID:27307578

  15. Loss of function variants in human PNPLA8 encoding calcium-independent phospholipase A2γ recapitulate the mitochondriopathy of the homologous null mouse

    PubMed Central

    Saunders, Carol J.; Moon, Sung Ho; Liu, Xinping; Thiffault, Isabelle; Coffman, Keith; LePichon, Jean-Baptiste; Taboada, Eugenio; Smith, Laurie D.; Farrow, Emily G.; Miller, Neil; Gibson, Margaret; Patterson, Melanie; Kingsmore, Stephen F.; Gross, Richard W.

    2015-01-01

    Mitochondriopathies are a group of clinically heterogeneous genetic diseases caused by defects in mitochondrial metabolism, bioenergetic efficiency, and/or signaling functions. The large majority of proteins involved in mitochondrial function are encoded by nuclear genes, with many yet to be associated with human disease. We performed exome sequencing on a young girl with a suspected mitochondrial myopathy that manifested as progressive muscle weakness, hypotonia, seizures, poor weight gain, and lactic acidosis. She was compound heterozygous for two frameshift mutations, p. Asn112HisfsX29 and p. Leu659AlafsX4, in the PNPLA8 gene, which encodes mitochondrial calcium independent phospholipase A2γ (iPLA2γ). Western blot analysis of affected muscle displayed the absence of PNPLA8 protein. iPLA2s are critical mediators of a variety of cellular processes including growth, metabolism, and lipid second messenger generation, exerting their functions through catalyzing the cleavage of the acyl groups in glycerophospholipids. The clinical presentation, muscle histology and the mitochondrial ultrastructural abnormalities of this proband are highly reminiscent of Pnpla8 null mice. Although other iPLA2–related diseases have been identified, namely infantile neuroaxonal dystrophy and neutral lipid storage disease with myopathy, this is the first report of PNPLA8-related disease in a human. We suggest PNPLA8 join the increasing list of human genes involved in lipid metabolism associated with neuromuscular diseases due to mitochondrial dysfunction. PMID:25512002

  16. GDP beta S enhances the activation of phospholipase C caused by thrombin in human platelets: evidence for involvement of an inhibitory GTP-binding protein

    SciTech Connect

    Oberdisse, E.; Lapetina, E.G.

    1987-05-14

    Guanosine 5'-O-thiotriphosphate (GTP gamma S) and thrombin stimulate the activity of phospholipase C in platelets that have been permeabilized with saponin and whose inositol phospholipids have been prelabeled with (/sup 3/H)inositol. Ca/sup 2 +/ has opposite effects on the formation of (/sup 3/H)inositol phosphates induced by thrombin or GTP gamma S. While the action of GTP gamma S on the formation of (/sup 3/H)inositol phosphates is inhibited by Ca/sup 2 +/, action of thrombin is stimulated by Ca/sup 2 +/. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits the function of GTP-binding proteins, also inhibits the effect of GTP gamma S on phospholipase C stimulation but, surprisingly, increases the effect of thrombin. Ca/sup 2 +/ increases the inhibitory effect of GDP beta S on GTP gamma S activation of phospholipase C, but Ca/sup 2 +/ further enhances the stimulatory effect of GDP beta S on the thrombin activation of phospholipase C. This indicates that two mechanisms are responsible for the activation of phospholipase C in platelets. A GTP-binding protein is responsible for regulation of phospholipase C induced by GTP gamma S, while the effect of thrombin on the stimulation of phospholipase C is independent of GTP-binding proteins. However, the effect of thrombin may be modulated by the action of an inhibitory GTP-binding protein.

  17. Does advancing male age influence the expression levels and localisation patterns of phospholipase C zeta (PLCζ) in human sperm?

    PubMed Central

    Yeste, Marc; Jones, Celine; Amdani, Siti Nornadhirah; Yelumalai, Suseela; Mounce, Ginny; da Silva, Sarah J. Martins; Child, Tim; Coward, Kevin

    2016-01-01

    Socio-economic factors have led to an increasing trend for couples to delay parenthood. However, advancing age exerts detrimental effects upon gametes which can have serious consequences upon embryo viability. While such effects are well documented for the oocyte, relatively little is known with regard to the sperm. One fundamental role of sperm is to activate the oocyte at fertilisation, a process initiated by phospholipase C zeta (PLCζ), a sperm-specific protein. While PLCζ deficiency can lead to oocyte activation deficiency and infertility, it is currently unknown whether the expression or function of PLCζ is compromised by advancing male age. Here, we evaluate sperm motility and the proportion of sperm expressing PLCζ in 71 males (22–54 years; 44 fertile controls and 27 infertile patients), along with total levels and localisation patterns of PLCζ within the sperm head. Three different statistical approaches were deployed with male age considered both as a categorical and a continuous factor. While progressive motility was negatively correlated with male age, all three statistical models concurred that no PLCζ–related parameter was associated with male age, suggesting that advancing male age is unlikely to cause problems in terms of the sperm’s fundamental ability to activate an oocyte. PMID:27270687

  18. Does advancing male age influence the expression levels and localisation patterns of phospholipase C zeta (PLCζ) in human sperm?

    PubMed

    Yeste, Marc; Jones, Celine; Amdani, Siti Nornadhirah; Yelumalai, Suseela; Mounce, Ginny; da Silva, Sarah J Martins; Child, Tim; Coward, Kevin

    2016-01-01

    Socio-economic factors have led to an increasing trend for couples to delay parenthood. However, advancing age exerts detrimental effects upon gametes which can have serious consequences upon embryo viability. While such effects are well documented for the oocyte, relatively little is known with regard to the sperm. One fundamental role of sperm is to activate the oocyte at fertilisation, a process initiated by phospholipase C zeta (PLCζ), a sperm-specific protein. While PLCζ deficiency can lead to oocyte activation deficiency and infertility, it is currently unknown whether the expression or function of PLCζ is compromised by advancing male age. Here, we evaluate sperm motility and the proportion of sperm expressing PLCζ in 71 males (22-54 years; 44 fertile controls and 27 infertile patients), along with total levels and localisation patterns of PLCζ within the sperm head. Three different statistical approaches were deployed with male age considered both as a categorical and a continuous factor. While progressive motility was negatively correlated with male age, all three statistical models concurred that no PLCζ-related parameter was associated with male age, suggesting that advancing male age is unlikely to cause problems in terms of the sperm's fundamental ability to activate an oocyte. PMID:27270687

  19. Measurement of Ether Phospholipids in Human Plasma with HPLC-ELSD and LC/ESI-MS After Hydrolysis of Plasma with Phospholipase A1.

    PubMed

    Mawatari, Shiro; Hazeyama, Seira; Fujino, Takehiko

    2016-08-01

    Ethanolamine ether phospholipid (eEtnGpl) and choline ether phospholipid (eChoGpl) are present in human plasma or serum, but the relative concentration of the ether phospholipids in plasma is very low as compared to those in other tissues. Nowadays, measurement of ether phospholipids in plasma depends on tandem mass spectrometry (LC/MS/MS), but a system for LC/MS/MS is generally too expensive for usual clinical laboratories. Treatment of plasma with phospholipase A1 (PLA1) causes complete hydrolysis of diacylphospholipids, but ether phospholipids remain intact. After the treatment of plasma with PLA1, both eEtnGpl and eChoGpl are detected as independent peaks by high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD). The same sample used for HPLC-ELSD can be applied to detect eEtnGpl and eChoGpl with electrospray ionization mass spectrometry. Presence of alkylacylphospholipids in both eChoGpl and eEtnGpl in human plasma was indicated by sequential hydrolysis of plasma with PLA1 and hydrochloric acid. PMID:27386871

  20. Effect of Retinoic Acid on Gene Expression in Human Conjunctival Epithelium: Secretory phospholipase A2 mediates retinoic acid induction of MUC16.

    PubMed Central

    Hori, Yuichi; Spurr-Michaud, Sandra J.; Russo, Cindy Leigh; Argüeso, Pablo; Gipson, Ilene K.

    2005-01-01

    Purpose. How vitamin A contributes to the maintenance of the wet-surfaced phenotype at the ocular surface is not well understood. We sought to identify vitamin A responsive genes in ocular surface epithelia using gene microarray analysis of cultures of a human conjunctival epithelial cell line (HCjE) grown with all-trans-retinoic acid (RA). The analysis showed that secretory phospholipase A2 Group IIA (sPLA2-IIA) was the gene most upregulated by RA, followed by the membrane-associated mucin MUC16 at a later time point. Since eicosanoids, the product of arachidonic acid generated by the phospholipase A2 family, have been shown to increase mucin production, we sought to determine if sPLA2 mediates the RA induction of MUC16. Methods. HCjE cells were cultured with or without RA for 3, 6, 24 and 48 hours. Complementary RNA prepared from RNA of the HCjE cells was hybridized to human gene chips (HG-U133A; Affymetrix) and analyzed using Rosetta Resolver software. Microarray data on mucin expression were validated by real-time PCR. To investigate whether sPLA2 is associated with RA-induced MUC16 upregulation, HCjE cells were incubated with RA and the broad spectrum PLA2 inhibitor, aristolochic acid (ArA) or the specific sPLA2-IIA inhibitor LY315920, followed by analysis of MUC16 mRNA and protein by real-time PCR and Western blot analysis. Results. After RA addition, 28 transcripts were upregulated and 6 downregulated by over 2.0-fold (p < 0.01) at both 3 and 6 hours (early phase). Eighty gene transcripts were upregulated and 45 downregulated at both 24 and 48 hours (late phase). Group IIA sPLA2, significantly upregulated by 24 hours, and MUC16 were the most upregulated RNAs by RA at 48 hours. sPLA2 upregulation by RA was confirmed by Western blot analysis. When HCjE cells were incubated with RA plus ArA or specific inhibitor of sPLA2-IIA, LY315920, the RA-induced MUC16 mRNA was significantly reduced (p < 0.01). Conclusion. The retinoic acid-associated upregulation of

  1. Humanized-single domain antibodies (VH/VHH) that bound specifically to Naja kaouthia phospholipase A2 and neutralized the enzymatic activity.

    PubMed

    Chavanayarn, Charnwit; Thanongsaksrikul, Jeeraphong; Thueng-In, Kanyarat; Bangphoomi, Kunan; Sookrung, Nitat; Chaicumpa, Wanpen

    2012-07-01

    Naja kaouthia (monocled cobra) venom contains many isoforms of secreted phospholipase A2 (sPLA(2)). The PLA(2) exerts several pharmacologic and toxic effects in the snake bitten subject, dependent or independent on the enzymatic activity. N. kaouthia venom appeared in two protein profiles, P3 and P5, after fractionating the venom by ion exchange column chromatography. In this study, phage clones displaying humanized-camel single domain antibodies (VH/V(H)H) that bound specifically to the P3 and P5 were selected from a humanized-camel VH/V(H)H phage display library. Two phagemid transfected E. coli clones (P3-1 and P3-3) produced humanized-V(H)H, while another clone (P3-7) produced humanized-VH. At the optimal venom:antibody ratio, the VH/V(H)H purified from the E. coli homogenates neutralized PLA(2) enzyme activity comparable to the horse immune serum against the N. kaouthia holo-venom. Homology modeling and molecular docking revealed that the VH/V(H)H covered the areas around the PLA(2) catalytic groove and inserted their Complementarity Determining Regions (CDRs) into the enzymatic cleft. It is envisaged that the VH/V(H)H would ameliorate/abrogate the principal toxicity of the venom PLA(2) (membrane phospholipid catabolism leading to cellular and subcellular membrane damage which consequently causes hemolysis, hemorrhage, and dermo-/myo-necrosis), if they were used for passive immunotherapy of the cobra bitten victim. The speculation needs further investigations. PMID:22852068

  2. Plasma membrane associated phospholipase C from human platelets: Synergistic stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis by thrombin and guanosine 5 prime -O-(3-thiotriphosphate)

    SciTech Connect

    Baldassare, J.J.; Henderson, P.A.; Fisher, G.J. )

    1989-01-10

    The effects of thrombin and GTP{gamma}S on the hydrolysis of phosphoinositides by membrane-associated phospholipase C (PLC) from human platelets were examined with endogenous ({sup 3}H)inositol-labeled membranes or with lipid vesicles containing either ({sup 3}H)phosphatidylinositol or ({sup 3}H)phosphatidylinositol 4,5-bisphosphate. GTP{gamma}S (1 {mu}M) or thrombin (1 unit/mL) did not stimulate release of inositol trisphosphate (IP{sub 3}), inositol bisphosphate (IP{sub 2}), or inositol phosphate (IP) from ({sup 3}H)inositol-labeled membranes. IP{sub 2} and IP{sub 3}, but not IP, from ({sup 3}H)inositol-labeled membranes were, however, stimulated 3-fold by GTP{gamma}S (1 {mu}M) plus thrombin (1 unit/mL). A higher concentration of GTP{gamma}S (100 {mu}M) alone also stimulated IP{sub 2} and IP{sub 3}, but not IP, release. In the presence of 1 mM calcium, release of IP{sub 2} and IP{sub 3} was increased 6-fold over basal levels; however, formation of IP was not observed. At submicromolar calcium concentration, hydrolysis of exogenous phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}) by platelet membrane associated PLC was also markedly enhanced by GTP{gamma}S (100 {mu}M) or GTP{gamma}S (1 {mu}M) plus thrombin (1 unit/mL). Under identical conditions, exogenous phosphatidylinositol (PI) was not hydrolyzed. The same substrate specificity was observed when the membrane-associated PLC was activated with 1 mM calcium. Thrombin-induced hydrolysis of PIP{sub 2} was inhibited by treatment of the membranes with pertussis toxin or pretreatment of intact platelets with 12-O-tetradecanoyl-13-acetate (TPA) prior to preparation of membranes. Pertussis toxin did not inhibit GTP{gamma}S (100 {mu}M) or calcium (1 mM) dependent PIP{sub 2} breakdown, while TPA inhibited GTP{gamma}S-dependent but not calcium-dependent phospholipase C activity.

  3. Acidity and lipolysis by group V secreted phospholipase A(2) strongly increase the binding of apoB-100-containing lipoproteins to human aortic proteoglycans.

    PubMed

    Lähdesmäki, Katariina; Öörni, Katariina; Alanne-Kinnunen, Mervi; Jauhiainen, Matti; Hurt-Camejo, Eva; Kovanen, Petri T

    2012-02-01

    Local acidic areas characterize diffuse intimal thickening (DIT) and advanced atherosclerotic lesions. The role of acidity in the modification and extra- and intracellular accumulation of triglyceride-rich VLDL and IDL particles has not been studied before. Here, we examined the effects of acidic pH on the activity of recombinant human group V secreted phospholipase A(2) (sPLA(2)-V) toward small VLDL (sVLDL), IDL, and LDL, on the binding of these apoB-100-containing lipoproteins to human aortic proteoglycans, and on their uptake by human monocyte-derived macrophages. At acidic pH, the ability of sPLA(2)-V to lipolyze the apoB-100-containing lipoproteins was moderately, but significantly, increased while binding of the lipoproteins to proteoglycans increased >60-fold and sPLA(2)-V-modification further doubled the binding. Moreover, acidic pH more than doubled macrophage uptake of soluble complexes of sPLA(2)-V-LDL with aortic proteoglycans. Proteoglycan-affinity chromatography at pH 7.5 and 5.5 revealed that sVLDL, IDL, and LDL consisted of populations with different proteoglycan-binding affinities, and, surprisingly, the sVLDL fractions with the highest proteoglycan-affinity contained only low amounts of apolipoproteins E and C-III. Our results suggest that in atherosclerotic lesions with acidic extracellular pH, sPLA(2)-V is able to lipolyze sVLDL, IDL, and LDL, and increase their binding to proteoglycans. This is likely to provoke extracellular accumulation of lipids derived from these atherogenic lipoprotein particles and to increase the progression of the atherosclerotic lesions. PMID:22041135

  4. Mitochondrial localization of cyclooxygenase-2 and calcium-independent phospholipase A{sub 2} in human cancer cells: Implication in apoptosis resistance

    SciTech Connect

    Liou, J.-Y.; Aleksic, Nena; Chen, S.-F.; Han, T.-J.; Shyue, Song-Kun . E-mail: skshyue@ibms.sinica.edu.tw; Wu, Kenneth K. . E-mail: Kenneth.K.Wu@uth.tmc.edu

    2005-05-15

    Cyclooxygenase-2 (COX-2) is inducible by myriad stimuli. The inducible COX-2 in primary cultured human cells has been reported to localize to nuclear envelope, endoplasmic reticulum, nucleus and caveolae. As COX-2 plays an important role in tumor growth, we were interested in its subcellular location in cancer cells. We examined COX-2 localization in several cancer cell lines by confocal microscopy. A majority of COX-2 was colocalized with heat shock protein 60, a mitochondrial protein, in colon cancer (HT-29, HCT-15 and DLD-1), breast cancer (MCF7), hepatocellular cancer (HepG2) and lung cancer cells (A549) with a similar distribution pattern. By contrast, COX-2 was not localized to mitochondria in human foreskin fibroblasts or endothelial cells. Immunoblot analysis of COX-2 in mitochondrial and cytosolic fractions confirmed localization of COX-2 to mitochondria in HT-29 and DLD-1 cells but not in fibroblasts. Calcium-independent phospholipase A2 was colocalized with heat shock protein 60 to mitochondria not only in cancer cells (HT-29 and DLD-1) but also in fibroblasts. HT-29 which expressed more abundant mitochondrial COX-2 than DLD-1 was highly resistant to arachidonic acid and H{sub 2}O{sub 2}-induced apoptosis whereas DLD-1 was less resistant and human fibroblasts were highly susceptible. Treatment of HT-29 cells with sulindac or SC-236, a selective COX-2 inhibitor, resulted in loss of resistance to apoptosis. These results suggest that mitochondrial COX-2 in cancer cells confer resistance to apoptosis by reducing the proapoptotic arachidonic acid.

  5. Human Neutrophil Elastase Induce Interleukin-10 Expression in Peripheral Blood Mononuclear Cells through Protein Kinase C Theta/Delta and Phospholipase Pathways

    PubMed Central

    Kawata, Jin; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Sakamoto, Arisa; Aoki, Manabu; Kitano, Masafumi; Umehashi, Misako; Hirose, Eiji; Yamaguchi, Yasuo

    2016-01-01

    Objective Neutrophils have an important role in the rapid innate immune response, and the release or active secretion of elastase from neutrophils is linked to various inflammatory responses. Purpose of this study was to determine how the human neutrophil elastase affects the interleukin-10 (IL-10) response in peripheral blood mononuclear cells (PBMC). Materials and Methods In this prospective study, changes in IL-10 messenger RNA (mRNA) and protein expression levels in monocytes derived from human PBMCs were investigated after stimulation with human neutrophil elastase (HNE). A set of inhibitors was used for examining the pathways for IL-10 production induced by HNE. Results Reverse transcription polymerase chain reaction (RT-PCR) showed that stimulation with HNE upregulated IL-10 mRNA expression by monocytes, while the enzyme-linked immunosorbent assay (ELISA) revealed an increase of IL-10 protein level in the culture medium. A phospholipase C inhibitor (U73122) partially blunt- ed the induction of IL-10 mRNA expression by HNE, while IL-10 mRNA expression was significantly reduced by a protein kinase C (PKC) inhibitor (Rottlerin). A calcium chelator (3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester: TMB-8) inhibited the response of IL-10 mRNA to stimulation by HNE. In addition, pretreatment with a broad-spectrum PKC inhibitor (Ro-318425) partly blocked the response to HNE. Finally, an inhibitor of PKC theta/delta abolished the increased level of IL-10 mRNA expression. Conclusion These results indicate that HNE mainly upregulates IL-10 mRNA ex- pression and protein production in moncytes via a novel PKC theta/delta, although partially via the conventional PKC pathway. PMID:26862528

  6. Subcellular localization of phospholipase Cζ in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation

    PubMed Central

    Escoffier, Jessica; Yassine, Sandra; Lee, Hoi Chang; Martinez, Guillaume; Delaroche, Julie; Coutton, Charles; Karaouzène, Thomas; Zouari, Raoudha; Metzler-Guillemain, Catherine; Pernet-Gallay, Karin; Hennebicq, Sylviane; Ray, Pierre F.; Fissore, Rafael; Arnoult, Christophe

    2015-01-01

    We recently identified the DPY19L2 gene as the main genetic cause of human globozoospermia (70%) and described that Dpy19l2 knockout (KO) mice faithfully reproduce the human phenotype of globozoospermia making it an excellent model to characterize the molecular physiopathology of globozoospermia. Recent case studies on non-genetically characterized men with globozoospermia showed that phospholipase C, zeta (PLCζ), the sperm factor thought to induce the Ca2+ oscillations at fertilization, was absent from their sperm, explaining the poor fertilization potential of these spermatozoa. Since 30% of globozoospermic men remain genetically uncharacterized, the absence of PLCζ in DPY19L2 globozoospermic men remains to be formally established. Moreover, the precise localization of PLCζ and the reasons underlying its loss during spermatogenesis in globozoospermic patients are still not understood. Herein, we show that PLCζ is absent, or its presence highly reduced, in human and mouse sperm with DPY19L2-associated globozoospermia. As a consequence, fertilization with sperm from Dpy19l2 KO mice failed to initiate Ca2+ oscillations and injected oocytes remained arrested at the metaphase II stage, although a few human oocytes injected with DPY19L2-defective sperm showed formation of 2-pronuclei embryos. We report for the first time the subcellular localization of PLCζ in control human sperm, which is along the inner acrosomal membrane and in the perinuclear theca, in the area corresponding to the equatorial region. Because these cellular components are absent in globozoospermic sperm, the loss of PLCζ in globozoospermic sperm is thus consistent and reinforces the role of PLCζ as an oocyte activation factor necessary for oocyte activation. In our companion article, we showed that chromatin compaction during spermiogenesis in Dpy19l2 KO mouse is defective and leads to sperm DNA damage. Together, these defects explain the poor fertilization potential of DPY19L2

  7. Subcellular localization of phospholipase Cζ in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation.

    PubMed

    Escoffier, Jessica; Yassine, Sandra; Lee, Hoi Chang; Martinez, Guillaume; Delaroche, Julie; Coutton, Charles; Karaouzène, Thomas; Zouari, Raoudha; Metzler-Guillemain, Catherine; Pernet-Gallay, Karin; Hennebicq, Sylviane; Ray, Pierre F; Fissore, Rafael; Arnoult, Christophe

    2015-02-01

    We recently identified the DPY19L2 gene as the main genetic cause of human globozoospermia (70%) and described that Dpy19l2 knockout (KO) mice faithfully reproduce the human phenotype of globozoospermia making it an excellent model to characterize the molecular physiopathology of globozoospermia. Recent case studies on non-genetically characterized men with globozoospermia showed that phospholipase C, zeta (PLCζ), the sperm factor thought to induce the Ca(2+) oscillations at fertilization, was absent from their sperm, explaining the poor fertilization potential of these spermatozoa. Since 30% of globozoospermic men remain genetically uncharacterized, the absence of PLCζ in DPY19L2 globozoospermic men remains to be formally established. Moreover, the precise localization of PLCζ and the reasons underlying its loss during spermatogenesis in globozoospermic patients are still not understood. Herein, we show that PLCζ is absent, or its presence highly reduced, in human and mouse sperm with DPY19L2-associated globozoospermia. As a consequence, fertilization with sperm from Dpy19l2 KO mice failed to initiate Ca(2+) oscillations and injected oocytes remained arrested at the metaphase II stage, although a few human oocytes injected with DPY19L2-defective sperm showed formation of 2-pronuclei embryos. We report for the first time the subcellular localization of PLCζ in control human sperm, which is along the inner acrosomal membrane and in the perinuclear theca, in the area corresponding to the equatorial region. Because these cellular components are absent in globozoospermic sperm, the loss of PLCζ in globozoospermic sperm is thus consistent and reinforces the role of PLCζ as an oocyte activation factor necessary for oocyte activation. In our companion article, we showed that chromatin compaction during spermiogenesis in Dpy19l2 KO mouse is defective and leads to sperm DNA damage. Together, these defects explain the poor fertilization potential of DPY19L2

  8. Overexpression of myristoylated alanine-rich C-kinase substrate enhances activation of phospholipase D by protein kinase C in SK-N-MC human neuroblastoma cells.

    PubMed Central

    Morash, S C; Rosé, S D; Byers, D M; Ridgway, N D; Cook, H W

    1998-01-01

    Signal transduction can involve the activation of protein kinase C (PKC) and the subsequent phosphorylation of protein substrates, including myristoylated alanine-rich C kinase substrate (MARCKS). Previously we showed that stimulation of phosphatidylcholine (PtdCho) synthesis by PMA in SK-N-MC human neuroblastoma cells required overexpression of MARCKS, whereas PKCalpha alone was insufficient. We have now investigated the role of MARCKS in PMA-stimulated PtdCho hydrolysis by phospholipase D (PLD). Overexpression of MARCKS enhanced PLD activity 1.3-2.5-fold compared with vector controls in unstimulated cells, and 3-4-fold in cells stimulated with 100 nM PMA. PMA-stimulated PLD activity was blocked by the PKC inhibitor bisindolylmaleimide. Activation of PLD by PMA was linear with time to 60 min, whereas stimulation of PtdCho synthesis by PMA in clones overexpressing MARCKS was observed after a 15 min time lag, suggesting that the hydrolysis of PtdCho by PLD preceded synthesis. The formation of phosphatidylbutanol by PLD was greatest when PtdCho was the predominantly labelled phospholipid, indicating that PtdCho was the preferred, but not the only, phospholipid substrate for PLD. Cells overexpressing MARCKS had 2-fold higher levels of PKCalpha than in vector control cells analysed by Western blot analysis; levels of PKCbeta and PLD were similar in all clones. The loss of both MARCKS and PKCalpha expression at higher subcultures of the clones was paralleled by the loss of stimulation of PLD activity and PtdCho synthesis by PMA. Our results show that MARCKS is an essential link in the PKC-mediated activation of PtdCho-specific PLD in these cells and that the stimulation of PtdCho synthesis by PMA is a secondary response. PMID:9601059

  9. Progesterone-Dependent Induction of Phospholipase C-Related Catalytically Inactive Protein 1 (PRIP-1) in Decidualizing Human Endometrial Stromal Cells.

    PubMed

    Muter, Joanne; Brighton, Paul J; Lucas, Emma S; Lacey, Lauren; Shmygol, Anatoly; Quenby, Siobhan; Blanks, Andrew M; Brosens, Jan J

    2016-07-01

    Decidualization denotes the transformation of endometrial stromal cells into specialized decidual cells. In pregnancy, decidual cells form a protective matrix around the implanting embryo, enabling coordinated trophoblast invasion and formation of a functional placenta. Continuous progesterone (P4) signaling renders decidual cells resistant to various environmental stressors, whereas withdrawal inevitably triggers tissue breakdown and menstruation or miscarriage. Here, we show that PLCL1, coding phospholipase C (PLC)-related catalytically inactive protein 1 (PRIP-1), is highly induced in response to P4 signaling in decidualizing human endometrial stromal cells (HESCs). Knockdown experiments in undifferentiated HESCs revealed that PRIP-1 maintains basal phosphoinositide 3-kinase/Protein kinase B activity, which in turn prevents illicit nuclear translocation of the transcription factor forkhead box protein O1 and induction of the apoptotic activator BIM. By contrast, loss of this scaffold protein did not compromise survival of decidual cells. PRIP-1 knockdown did also not interfere with the responsiveness of HESCs to deciduogenic cues, although the overall expression of differentiation markers, such as PRL, IGFBP1, and WNT4, was blunted. Finally, we show that PRIP-1 in decidual cells uncouples PLC activation from intracellular Ca(2+) release by attenuating inositol 1,4,5-trisphosphate signaling. In summary, PRIP-1 is a multifaceted P4-inducible scaffold protein that gates the activity of major signal transduction pathways in the endometrium. It prevents apoptosis of proliferating stromal cells and contributes to the relative autonomy of decidual cells by silencing PLC signaling downstream of Gq protein-coupled receptors. PMID:27167772

  10. Progesterone-Dependent Induction of Phospholipase C-Related Catalytically Inactive Protein 1 (PRIP-1) in Decidualizing Human Endometrial Stromal Cells

    PubMed Central

    Muter, Joanne; Brighton, Paul J.; Lucas, Emma S.; Lacey, Lauren; Shmygol, Anatoly; Quenby, Siobhan; Blanks, Andrew M.

    2016-01-01

    Decidualization denotes the transformation of endometrial stromal cells into specialized decidual cells. In pregnancy, decidual cells form a protective matrix around the implanting embryo, enabling coordinated trophoblast invasion and formation of a functional placenta. Continuous progesterone (P4) signaling renders decidual cells resistant to various environmental stressors, whereas withdrawal inevitably triggers tissue breakdown and menstruation or miscarriage. Here, we show that PLCL1, coding phospholipase C (PLC)-related catalytically inactive protein 1 (PRIP-1), is highly induced in response to P4 signaling in decidualizing human endometrial stromal cells (HESCs). Knockdown experiments in undifferentiated HESCs revealed that PRIP-1 maintains basal phosphoinositide 3-kinase/Protein kinase B activity, which in turn prevents illicit nuclear translocation of the transcription factor forkhead box protein O1 and induction of the apoptotic activator BIM. By contrast, loss of this scaffold protein did not compromise survival of decidual cells. PRIP-1 knockdown did also not interfere with the responsiveness of HESCs to deciduogenic cues, although the overall expression of differentiation markers, such as PRL, IGFBP1, and WNT4, was blunted. Finally, we show that PRIP-1 in decidual cells uncouples PLC activation from intracellular Ca2+ release by attenuating inositol 1,4,5-trisphosphate signaling. In summary, PRIP-1 is a multifaceted P4-inducible scaffold protein that gates the activity of major signal transduction pathways in the endometrium. It prevents apoptosis of proliferating stromal cells and contributes to the relative autonomy of decidual cells by silencing PLC signaling downstream of Gq protein-coupled receptors. PMID:27167772

  11. Loss of Ypk1, the yeast homolog to the human serum- and glucocorticoid-induced protein kinase, accelerates phospholipase B1-mediated phosphatidylcholine deacylation.

    PubMed

    Surlow, Beth A; Cooley, Benjamin M; Needham, Patrick G; Brodsky, Jeffrey L; Patton-Vogt, Jana

    2014-11-01

    Ypk1, the yeast homolog of the human serum- and glucocorticoid-induced kinase (Sgk1), affects diverse cellular activities, including sphingolipid homeostasis. We now report that Ypk1 also impacts the turnover of the major phospholipid, phosphatidylcholine (PC). Pulse-chase radiolabeling reveals that a ypk1Δ mutant exhibits increased PC deacylation and glycerophosphocholine production compared with wild type yeast. Deletion of PLB1, a gene encoding a B-type phospholipase that hydrolyzes PC, in a ypk1Δ mutant curtails the increased PC deacylation. In contrast to previous data, we find that Plb1 resides in the ER and in the medium. Consistent with a link between Ypk1 and Plb1, the levels of both Plb1 protein and PLB1 message are elevated in a ypk1Δ strain compared with wild type yeast. Furthermore, deletion of PLB1 in a ypk1Δ mutant exacerbates phenotypes associated with loss of YPK1, including slowed growth and sensitivity to cell wall perturbation, suggesting that increased Plb1 activity buffers against the loss of Ypk1. Because Plb1 lacks a consensus phosphorylation site for Ypk1, we probed other processes under the control of Ypk1 that might be linked to PC turnover. Inhibition of sphingolipid biosynthesis by the drug myriocin or through utilization of a lcb1-100 mutant results in increased PLB1 expression. Furthermore, we discovered that the increase in PLB1 expression observed upon inhibition of sphingolipid synthesis or loss of Ypk1 is under the control of the Crz1 transcription factor. Taken together, these results suggest a functional interaction between Ypk1 and Plb1 in which altered sphingolipid metabolism up-regulates PLB1 expression via Crz1. PMID:25258318

  12. Diagnosis of snake envenomation using a simple phospholipase A2 assay

    PubMed Central

    Maduwage, Kalana; O'Leary, Margaret A.; Isbister, Geoffrey K.

    2014-01-01

    Diagnosis of snake envenomation is challenging but critical for deciding on antivenom use. Phospholipase A2 enzymes occur commonly in snake venoms and we hypothesized that phospholipase activity detected in human blood post-bite may be indicative of envenomation. Using a simple assay, potentially a bedside test, we detected high phospholipase activity in sera of patients with viper and elapid envenomation compared to minimal activity in non-envenomed patients. PMID:24777205

  13. Plant phospholipases D and C and their diverse functions in stress responses.

    PubMed

    Hong, Yueyun; Zhao, Jian; Guo, Liang; Kim, Sang-Chul; Deng, Xianjun; Wang, Geliang; Zhang, Gaoyang; Li, Maoyin; Wang, Xuemin

    2016-04-01

    Phospholipases D (PLD) and C (PLC) hydrolyze the phosphodiesteric linkages of the head group of membrane phospholipids. PLDs and PLCs in plants occur in different forms: the calcium-dependent phospholipid binding domain-containing PLDs (C2-PLDs), the plekstrin homology and phox homology domain-containing PLDs (PX/PH-PLDs), phosphoinositide-specific PLC (PI-PLC), and non-specific PLC (NPC). They differ in structures, substrate selectivities, cofactor requirements, and/or reaction conditions. These enzymes and their reaction products, such as phosphatidic acid (PA), diacylglycerol (DAG), and inositol polyphosphates, play important, multifaceted roles in plant response to abiotic and biotic stresses. Here, we review biochemical properties, cellular effects, and physiological functions of PLDs and PLCs, particularly in the context of their roles in stress response along with advances made on the role of PA and DAG in cell signaling in plants. The mechanism of actions, including those common and distinguishable among different PLDs and PLCs, will also be discussed. PMID:26783886

  14. Bacterial lipopolysaccharide primes human neutrophils for enhanced release of arachidonic acid and causes phosphorylation of an 85-kD cytosolic phospholipase A2.

    PubMed Central

    Doerfler, M E; Weiss, J; Clark, J D; Elsbach, P

    1994-01-01

    Production of leukotriene B4 (LTB4) by human neutrophils (PMN) in response to different stimuli is increased after pretreatment with lipopolysaccharides (LPS). We have analyzed the steps in arachidonic acid (AA) metabolism affected by LPS by examining release of AA and its metabolites from [3H]AA prelabeled PMN. Pretreatment of PMN for 60 min with up to 1 microgram/ml of LPS alone had no effect, but release of [3H]AA was stimulated up to fivefold during subsequent stimulation with a second agent. In the absence of LPS-binding protein (LBP), priming was maximal after pretreatment of PMN with 10 ng of LPS/ml for 60 min; in the presence of LBP maximal priming occurred within 45 min at 0.1 ng of LPS/ml and within 15 min at 100 ng of LPS/ml. Treatment of PMN with 10 ng of LPS/ml also increased uptake of opsonized zymosan by up to 60%. Phospholipids are the source of released [3H]AA. No release was observed from [14C]oleic acid (OA)-labeled PMN suggesting that phospholipolysis may be specific for [3H]AA-labeled phospholipid pools. Cytosol from PMN primed with LPS contains two to three times the phospholipase A2 (PLA2) activity of control PMN, against 1-palmitoyl-[2-14C]arachidonoyl-phosphatidylcholine. This activity is Ca2+ dependent and dithiothreitol resistant. LPS priming is accompanied by reduced migration during SDS-PAGE of an 85-kD protein, identified as a cytosolic PLA2. The extent and kinetics of this effect of LPS on cPLA2 parallel the priming of [3H]AA release, both depending on LPS concentration either with or without LBP. These findings suggest that priming by LPS of AA metabolism by PMN includes phosphorylation of an AA-phospholipid-selective cytosolic PLA2 that is dissociated from activation until a second stimulus is applied. Images PMID:7512985

  15. Activation of group IV cytosolic phospholipase A2 in human eosinophils by phosphoinositide 3-kinase through a mitogen-activated protein kinase-independent pathway.

    PubMed

    Myou, Shigeharu; Leff, Alan R; Myo, Saori; Boetticher, Evan; Meliton, Angelo Y; Lambertino, Anissa T; Liu, Jie; Xu, Chang; Munoz, Nilda M; Zhu, Xiangdong

    2003-10-15

    Activation of group IV cytosolic phospholipase A(2) (gIV-PLA(2)) is the essential first step in the synthesis of inflammatory eicosanoids and in integrin-mediated adhesion of leukocytes. Prior investigations have demonstrated that phosphorylation of gIV-PLA(2) results from activation of at least two isoforms of mitogen-activated protein kinase (MAPK). We investigated the potential role of phosphoinositide 3-kinase (PI3K) in the activation of gIV-PLA(2) and the hydrolysis of membrane phosphatidylcholine in fMLP-stimulated human blood eosinophils. Transduction into eosinophils of Deltap85, a dominant negative form of class IA PI3K adaptor subunit, fused to an HIV-TAT protein transduction domain (TAT-Deltap85) concentration dependently inhibited fMLP-stimulated phosphorylation of protein kinase B, a downstream target of PI3K. FMLP caused increased arachidonic acid (AA) release and secretion of leukotriene C(4) (LTC(4)). TAT-Deltap85 and LY294002, a PI3K inhibitor, blocked the phosphorylation of gIV-PLA(2) at Ser(505) caused by fMLP, thus inhibiting gIV-PLA(2) hydrolysis and production of AA and LTC(4) in eosinophils. FMLP also caused extracellular signal-related kinases 1 and 2 and p38 MAPK phosphorylation in eosinophils; however, neither phosphorylation of extracellular signal-related kinases 1 and 2 nor p38 was inhibited by TAT-Deltap85 or LY294002. Inhibition of 1) p70 S6 kinase by rapamycin, 2) protein kinase B by Akt inhibitor, or 3) protein kinase C by Ro-31-8220, the potential downstream targets of PI3K for activation of gIV-PLA(2), had no effect on AA release or LTC(4) secretion caused by fMLP. We find that PI3K is required for gIV-PLA(2) activation and hydrolytic production of AA in activated eosinophils. Our data suggest that this essential PI3K independently activates gIV-PLA(2) through a pathway that does not involve MAPK. PMID:14530366

  16. Mammalian phospholipase C.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2013-01-01

    Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale. PMID:23140367

  17. Role of phospholipases in adrenal steroidogenesis.

    PubMed

    Bollag, Wendy B

    2016-04-01

    Phospholipases are lipid-metabolizing enzymes that hydrolyze phospholipids. In some cases, their activity results in remodeling of lipids and/or allows the synthesis of other lipids. In other cases, however, and of interest to the topic of adrenal steroidogenesis, phospholipases produce second messengers that modify the function of a cell. In this review, the enzymatic reactions, products, and effectors of three phospholipases, phospholipase C, phospholipase D, and phospholipase A2, are discussed. Although much data have been obtained concerning the role of phospholipases C and D in regulating adrenal steroid hormone production, there are still many gaps in our knowledge. Furthermore, little is known about the involvement of phospholipase A2, perhaps, in part, because this enzyme comprises a large family of related enzymes that are differentially regulated and with different functions. This review presents the evidence supporting the role of each of these phospholipases in steroidogenesis in the adrenal cortex. PMID:26878860

  18. Involvement of phospholipase D and phosphatidic acid in the light-dependent up-regulation of sorghum leaf phosphoenolpyruvate carboxylase-kinase

    PubMed Central

    Monreal, José Antonio; López-Baena, Francisco Javier; Vidal, Jean; Echevarría, Cristina; García-Mauriño, Sofía

    2010-01-01

    The photosynthetic phosphoenolpyruvate carboxylase (C4-PEPC) is regulated by phosphorylation by a phosphoenolpyruvate carboxylase kinase (PEPC-k). In Digitaria sanguinalis mesophyll protoplasts, this light-mediated transduction cascade principally requires a phosphoinositide-specific phospholipase C (PI-PLC) and a Ca2+-dependent step. The present study investigates the cascade components at the higher integrated level of Sorghum bicolor leaf discs and leaves. PEPC-k up-regulation required light and photosynthetic electron transport. However, the PI-PLC inhibitor U-73122 and inhibitors of calcium release from intracellular stores only partially blocked this process. Analysis of [32P]phosphate-labelled phospholipids showed a light-dependent increase in phospholipase D (PLD) activity. Treatment of leaf discs with n-butanol, which decreases the formation of phosphatidic acid (PA) by PLD, led to the partial inhibition of the C4-PEPC phosphorylation, suggesting the participation of PLD/PA in the signalling cascade. PPCK1 gene expression was strictly light-dependent. Addition of neomycin or n-butanol decreased, and a combination of both inhibitors markedly reduced PPCK1 expression and the concomitant rise in PEPC-k activity. The calcium/calmodulin antagonist W7 blocked the light-dependent up-regulation of PEPC-k, pointing to a Ca2+-dependent protein kinase (CDPK) integrating both second messengers, calcium and PA, which were shown to increase the activity of sorghum CDPK. PMID:20410319

  19. Role of lipid packing in the activity of phospholipase C-delta1 as determined by hydrostatic pressure measurements.

    PubMed Central

    Rebecchi, M; Bonhomme, M; Scarlata, S

    1999-01-01

    Previous studies with phospholipid monolayers revealed a large decrease in the activity of phosphoinositide-specific phospholipase C-delta(1) (PLC-delta(1)) which catalyses the hydrolysis of PtdIns(4, 5)P(2) as lateral pressure is applied to the membrane. If stress on the membrane is the sole inhibitor of PLC-delta(1) activity, the enzyme must penetrate the membrane surface to engage its substrate. To test the effect on PLC-delta(1) activity of lipid packing in the absence of a directional stress, we examined the effects of increasing hydrostatic pressure on enzymic activity. We find that, in contrast with monolayer studies, increasing lipid packing by hydrostatic pressure does not affect membrane binding and increases enzymic activity by 90% in going from atmospheric pressure to 10(8) Pa (approx. 1000 atm). The increase in activity could be accounted for mainly by electrostriction of water around the multiply-charged product. Our results show that when there is no net stress on the monolayer, lipid packing does not alter PLC-delta(1) activity, possibly because penetration of the enzyme into the membrane surface is shallow. We suggest that, in biological membranes, the activity of this and possibly other interfacial proteins is independent of headgroup packing. PMID:10417319

  20. Identifying New Drug Targets for Potent Phospholipase D Inhibitors: Combining Sequence Alignment, Molecular Docking, and Enzyme Activity/Binding Assays.

    PubMed

    Djakpa, Helene; Kulkarni, Aditya; Barrows-Murphy, Scheneque; Miller, Greg; Zhou, Weihong; Cho, Hyejin; Török, Béla; Stieglitz, Kimberly

    2016-05-01

    Phospholipase D enzymes cleave phospholipid substrates generating choline and phosphatidic acid. Phospholipase D from Streptomyces chromofuscus is a non-HKD (histidine, lysine, and aspartic acid) phospholipase D as the enzyme is more similar to members of the diverse family of metallo-phosphodiesterase/phosphatase enzymes than phospholipase D enzymes with active site HKD repeats. A highly efficient library of phospholipase D inhibitors based on 1,3-disubstituted-4-amino-pyrazolopyrimidine core structure was utilized to evaluate the inhibition of purified S. chromofuscus phospholipase D. The molecules exhibited inhibition of phospholipase D activity (IC50 ) in the nanomolar range with monomeric substrate diC4 PC and micromolar range with phospholipid micelles and vesicles. Binding studies with vesicle substrate and phospholipase D strongly indicate that these inhibitors directly block enzyme vesicle binding. Following these compelling results as a starting point, sequence searches and alignments with S. chromofuscus phospholipase D have identified potential new drug targets. Using AutoDock, inhibitors were docked into the enzymes selected from sequence searches and alignments (when 3D co-ordinates were available) and results analyzed to develop next-generation inhibitors for new targets. In vitro enzyme activity assays with several human phosphatases demonstrated that the predictive protocol was accurate. The strategy of combining sequence comparison, docking, and high-throughput screening assays has helped to identify new drug targets and provided some insight into how to make potential inhibitors more specific to desired targets. PMID:26691755

  1. Effects of phospholipase A2 and its products on structural stability of human LDL: relevance to formation of LDL-derived lipid droplets[S

    PubMed Central

    Jayaraman, Shobini; Gantz, Donald L.; Gursky, Olga

    2011-01-01

    Hydrolysis and oxidation of LDL stimulate LDL entrapment in the arterial wall and promote inflammation and atherosclerosis via various mechanisms including lipoprotein fusion and lipid droplet formation. To determine the effects of FFA on these transitions, we hydrolyzed LDL by phospholipase A2 (PLA2), removed FFA by albumin, and analyzed structural stability of the modified lipoproteins. Earlier, we showed that heating induces LDL remodeling, rupture, and coalescence into lipid droplets resembling those found in atherosclerotic lesions. Here, we report how FFA affect these transitions. Circular dichroism showed that mild LDL lipolysis induces partial β-sheet unfolding in apolipoprotein B. Electron microscopy, turbidity, and differential scanning calorimetry showed that mild lipolysis promotes LDL coalescence into lipid droplets. FFA removal by albumin restores LDL stability but not the protein conformation. Consequently, FFA enhance LDL coalescence into lipid droplets. Similar effects of FFA were observed in minimally oxidized LDL, in LDL enriched with exogenous FFA, and in HDL and VLDL. Our results imply that FFA promote lipoprotein coalescence into lipid droplets and explain why LDL oxidation enhances such coalescence in vivo but hampers it in vitro. Such lipid droplet formation potentially contributes to the pro-atherogenic effects of FFA. PMID:21220788

  2. Thrombin produces phosphorylation of cytosolic phospholipase A2 by a mitogen-activated protein kinase kinase-independent mechanism in the human astrocytoma cell line 1321N1.

    PubMed Central

    Hernández, M; Bayón, Y; Sánchez Crespo, M; Nieto, M L

    1997-01-01

    The release of [3H]arachidonic acid was studied in the 1321N1 astrocytoma cell line upon stimulation with thrombin. The effect of thrombin was antagonized by hirudin only when both compounds were added simultaneously, which suggests activation of thrombin receptor. Evidence that the cytosolic phospholipase A2 (cPLA2) takes part in thrombin-induced arachidonate release was provided by the finding that thrombin induced retardation of the mobility of cPLA2 in SDS/polyacrylamide gels, which is a feature of the activation of cPLA2 by mitogen-activated protein (MAP) kinases. Thrombin induced activation of two members of the MAP kinase family whose consensus primary sequence appears in cPLA2, namely p42-MAP kinase and c-Jun kinase. However, the activation of c-Jun kinase preceded the phosphorylation of cPLA2 more clearly than the activation of p42-MAK kinase did. Both cPLA2 and c-Jun kinase activation were not affected by PD-98059, a specific inhibitor of MAP kinase kinases, which indeed completely blocked p42-MAP kinase shift. Heat shock, a well-known activator of c-Jun kinase, also phosphorylated cPLA2 but not p42-MAP kinase. These data indicate the existence in astrocytoma cells of a signalling pathway triggered by thrombin receptor stimulation that activates a kinase cascade acting on the Pro-Leu-Ser-Pro consensus primary sequence, activates cPLA2, and associates the release of arachidonate with nuclear signalling pathways. PMID:9359863

  3. Amygdala-Hippocampal Phospholipase D (PLD) Signaling As Novel Mechanism of Cocaine-Environment Maladaptive Conditioned Responses

    PubMed Central

    2016-01-01

    Background: Drug-environment associative memory mechanisms and the resulting conditioned behaviors are key contributors in relapse to cocaine dependence. Recently, we reported rat amygdala phospholipase D as a key convergent downstream signaling partner in the expression of cocaine-conditioned behaviors mediated by glutamatergic and dopaminergic pathways. In the present study, 1 of the 2 known upstream serotonergic targets of phospholipase D, the serotonin (5-hydroxytryptamine) 2C receptor, was investigated for its role in recruiting phospholipase D signaling in cocaine-conditioned behaviors altered in the rat amygdala and dorsal hippocampus. Methods: Using Western-blot analysis, amygdala phospholipase D phosphorylation and total expression of phospholipase D/5-hydroxytryptamine 2C receptor were observed in early (Day-1) and late (Day-14) withdrawal (cocaine-free) states among male Sprague-Dawley rats subjected to 7-day cocaine-conditioned hyperactivity training. Functional studies were conducted using Chinese Hamster Ovary cells with stably transfected human unedited isoform of 5-hydroxytryptamine 2C receptor. Results: Phosphorylation of phospholipase D isoforms was altered in the Day-1 group of cocaine-conditioned animals, while increased amygdala and decreased dorsal hippocampus phospholipase D/5-hydroxytryptamine 2C receptor protein expression were observed in the Day-14 cocaine-conditioned rats. Functional cellular studies established that increased p phospholipase D is a mechanistic response to 5-HT2CR activation and provided the first evidence of a biased agonism by specific 5-hydroxytryptamine 2C receptor agonist, WAY163909 in phospholipase D phosphorylation 2, but not phospholipase D phosphorylation 1 activation. Conclusions: Phospholipase D signaling, activated by dopaminergic, glutamatergic, and serotonergic signaling, can be a common downstream element recruited in associative memory mechanisms altered by cocaine, where increased expression in amygdala

  4. Factors affecting dense and alpha-granule secretion from electropermeabilized human platelets: Ca(2+)-independent actions of phorbol ester and GTP gamma S.

    PubMed Central

    Coorssen, J R; Davidson, M M; Haslam, R J

    1990-01-01

    both dense and alpha-granules that were not mediated by PKC. Measurement of [3H]inositol phosphate formation in permeabilized platelets containing [3H]phosphoinositides showed that GTP gamma S did not stimulate phosphoinositide-specific phospholipase C in the absence of Ca2+. It follows that in permeabilized platelets, GTP gamma S can both stimulate PKC and enhance secretion via G-protein-linked effectors other than this phospholipase. PMID:1966891

  5. DAG/PKCδ and IP3/Ca2+/CaMK IIβ Operate in Parallel to Each Other in PLCγ1-Driven Cell Proliferation and Migration of Human Gastric Adenocarcinoma Cells, through Akt/mTOR/S6 Pathway

    PubMed Central

    Dai, Lianzhi; Zhuang, Luhua; Zhang, Bingchang; Wang, Fen; Chen, Xiaolei; Xia, Chun; Zhang, Bing

    2015-01-01

    Phosphoinositide specific phospholipase Cγ (PLCγ) activates diacylglycerol (DAG)/protein kinase C (PKC) and inositol 1,4,5-trisphosphate (IP3)/Ca2+/calmodulin-dependent protein kinase II (CaMK II) axes to regulate import events in some cancer cells, including gastric adenocarcinoma cells. However, whether DAG/PKCδ and IP3/Ca2+/CaMK IIβ axes are simultaneously involved in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells and the underlying mechanism are not elucidated. Here, we investigated the role of DAG/PKCδ or CaMK IIβ in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells, using the BGC-823 cell line. The results indicated that the inhibition of PKCδ and CaMK IIβ could block cell proliferation and migration of BGC-823 cells as well as the effect of inhibiting PLCγ1, including the decrease of cell viability, the increase of apoptotic index, the down-regulation of matrix metalloproteinase (MMP) 9 expression level, and the decrease of cell migration rate. Both DAG/PKCδ and CaMK IIβ triggered protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/S6 pathway to regulate protein synthesis. The data indicate that DAG/PKCδ and IP3/Ca2+/CaMK IIβ operate in parallel to each other in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells through Akt/mTOR/S6 pathway, with important implication for validating PLCγ1 as a molecular biomarker in early gastric cancer diagnosis and disease surveillance. PMID:26633375

  6. Phospholipase D1 is threonine-phosphorylated in human-airway epithelial cells stimulated by sphingosine-1-phosphate by a mechanism involving Src tyrosine kinase and protein kinase Cdelta.

    PubMed Central

    Ghelli, Anna; Porcelli, Anna M; Facchini, Annalisa; Hrelia, Silvana; Flamigni, Flavio; Rugolo, Michela

    2002-01-01

    The regulatory role of protein kinase C (PKC) delta isoform in the stimulation of phospholipase D (PLD) by sphingosine-1-phosphate (SPP) in a human-airway epithelial cell line (CFNPE9o(-)) was revealed by using antisense oligodeoxynucleotide to PKCdelta, in combination with the specific inhibitor rottlerin. Cell treatment with antisense oligodeoxynucleotide, but not with sense oligodeoxynucleotide, completely eliminated PKCdelta expression and resulted in the strong inhibition of SPP-stimulated phosphatidic acid formation. Indeed, among the PKCalpha, beta, delta, epsilon and zeta isoforms expressed in these cells, only PKCdelta was activated on cell stimulation with SPP, as indicated by translocation into the membrane fraction. Furthermore, pertussis toxin and genistein eliminated both PKCdelta translocation and PLD activation. In particular, a significant reduction in phosphatidylbutanol formation by SPP was observed in the presence of 4-amino-5-(4-methylphenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine (PP1), an inhibitor of Src tyrosine kinase. Furthermore, the activity of Src kinase was slightly increased by SPP and inhibited by PP1. However, the level of PKCdelta tyrosine phosphorylation was not increased in SPP-stimulated cells, suggesting that Src did not directly phosphorylate PKCdelta. Finally, the level of serine phosphorylation of PLD1 and PLD2 isoforms was not changed, whereas the PLD1 isoform alone was threonine-phosphorylated in SPP-treated cells. PLD1 threonine phosphorylation was strongly inhibited by rottlerin, by anti-PKCdelta oligodeoxynucleotide and by PP1. In conclusion, in CFNPE9o(-) cells, SPP interacts with a membrane receptor linked to a G(i) type of G-protein, leading to activation of PLD, probably the PLD1 isoform, by a signalling pathway involving Src and PKCdelta. PMID:12014986

  7. A specific phospholipase C activity regulates phosphatidylinositol levels in lung surfactant of patients with acute respiratory distress syndrome.

    PubMed

    Spyridakis, Spyros; Leondaritis, George; Nakos, George; Lekka, Marilena E; Galanopoulou, Dia

    2010-03-01

    Lung surfactant (LS) is a lipid-rich material lining the inside of the lungs. It reduces surface tension at the liquid/air interface and thus, it confers protection of the alveoli from collapsing. The surface-active component of LS is dipalmitoyl-phosphatidylcholine, while anionic phospholipids such as phosphatidylinositol (PtdIns) and primarily phosphatidylglycerol are involved in the stabilization of the LS monolayer. The exact role of PtdIns in this system is not well-understood; however, PtdIns levels change dramatically during the acute respiratory distress syndrome (ARDS) evolution. In this report we present evidence of a phosphoinositide-specific phospholipase C (PI-PLC) activity in bronchoalveolar lavage (BAL) fluid, which may regulate PtdIns levels. Characterization of this extracellular activity showed specificity for PtdIns and phosphatidylinositol 4,5-bisphosphate, sharing the typical substrate concentration-, pH-, and calcium-dependencies with mammalian PI-PLCs. Fractionation of BAL fluid showed that PI-PLC did not co-fractionate with large surfactant aggregates, but it was found mainly in the soluble fraction. Importantly, analysis of BAL samples from control subjects and from patients with ARDS showed that the PI-PLC specific activity was decreased by 4-fold in ARDS samples concurrently with the increase in BAL PtdIns levels. Thus, we have identified for the first time an extracellular PI-PLC enzyme activity that may be acutely involved in the regulation of PtdIns levels in LS. PMID:19491339

  8. Proliferating or Differentiating Stimuli Act on Different Lipid-dependent Signaling Pathways in Nuclei of Human Leukemia Cells

    PubMed Central

    Neri, Luca M.; Bortul, Roberta; Borgatti, Paola; Tabellini, Giovanna; Baldini, Giovanna; Capitani, Silvano; Martelli, Alberto M.

    2002-01-01

    Previous results have shown that the human promyelocytic leukemia HL-60 cell line responds to either proliferating or differentiating stimuli. When these cells are induced to proliferate, protein kinase C (PKC)-βII migrates toward the nucleus, whereas when they are exposed to differentiating agents, there is a nuclear translocation of the α isoform of PKC. As a step toward the elucidation of the early intranuclear events that regulate the proliferation or the differentiation process, we show that in the HL-60 cells, a proliferating stimulus (i.e., insulin-like growth factor-I [IGF-I]) increased nuclear diacylglycerol (DAG) production derived from phosphatidylinositol (4,5) bisphosphate, as indicated by the inhibition exerted by 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine and U-73122 (1-[6((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione), which are pharmacological inhibitors of phosphoinositide-specific phospholipase C. In contrast, when HL-60 cells were induced to differentiate along the granulocytic lineage by dimethyl sulfoxide, we observed a rise in the nuclear DAG mass, which was sensitive to either neomycin or propranolol, two compounds with inhibitory effect on phospholipase D (PLD)-mediated DAG generation. In nuclei of dimethyl sulfoxide-treated HL-60 cells, we observed a rise in the amount of a 90-kDa PLD, distinct from PLD1 or PLD2. When a phosphatidylinositol (4,5) bisphosphate-derived DAG pool was generated in the nucleus, a selective translocation of PKC-βII occurred. On the other hand, nuclear DAG derived through PLD, recruited PKC-α to the nucleus. Both of these PKC isoforms were phosphorylated on serine residues. These results provide support for the proposal that in the HL-60 cell nucleus there are two independently regulated sources of DAG, both of which are capable of acting as the driving force that attracts to this organelle distinct, DAG-dependent PKC isozymes. Our results assume a particular

  9. Protein kinase C activity is not involved in N-formylmethionyl-leucyl-phenylalanine-induced phospholipase D activation in human neutrophils, but is essential for concomitant NADPH oxidase activation: studies with a staurosporine analogue with improved selectivity for protein kinase C.

    PubMed

    Kessels, G C; Krause, K H; Verhoeven, A J

    1993-06-15

    Stimulation of human neutrophils by the receptor agonist N-formylmethionyl-leucyl-phenylalanine (fMLP) results in a respiratory burst, catalysed by an NADPH oxidase. Concomitantly, phospholipase D (PLD) is activated. To investigate the role of protein kinase C (PKC) in these neutrophil responses, we have compared the effects of staurosporine and a structural analogue of staurosporine (cgp41251), that reflects a higher selectivity towards PKC [Meyer, Regenass, Fabbro, Alteri, Rösel, Müller, Caravatti and Matter (1989) Int. J. Cancer 43, 851-856]. Both staurosporine and cgp41251 dose-dependently inhibited the production of superoxide induced by phorbol 12-myristate 13-acetate (PMA). Both compounds also caused inhibition of the fMLP-induced respiratory burst, but with a lower efficacy during the initiation phase of this response. This latter observation cannot be taken as evidence against PKC involvement in the activation of the respiratory burst, because pretreatment of neutrophils with ionomycin before PMA stimulation also results in a lower efficacy of inhibition. Activation of PLD by fMLP was enhanced in the presence of staurosporine, but not in the presence of cgp41251. Enhancement of PLD activation was also observed in the presence of H-89, an inhibitor of cyclic-AMP-dependent protein kinase (PKA). Both staurosporine and H-89 reversed the dibutyryl-cyclic-AMP-induced inhibition of PLD activation, whereas cgp41251 was without effect. These results indicate that the potentiating effect of staurosporine on PLD activation induced by fMLP does not reflect a feedback inhibition by PKC activation, but instead a feedback inhibition by PKC activation. Taken together, our results indicate that in human neutrophils: (i) PKC activity is not essential for fMLP-induced activation of PLD; (ii) PKC activity does play an essential role in the activation of the respiratory burst by fMLP, other than mediating or modulating PLD activation; (iii) there exists a negative

  10. Phospholipase A2 and Phospholipase B Activities in Fungi

    PubMed Central

    Köhler, Gerwald A.; Brenot, Audrey; Haas-Stapleton, Eric; Agabian, Nina; Deva, Rupal; Nigam, Santosh

    2007-01-01

    As saprophytes or disease causing microorganisms, fungi acquire nutrients from dead organic material or living host organisms. Lipids as structural components of cell membranes and storage compartments play an important role as energy-rich food source. In recent years, it also has become clear that lipids have a wide range of bioactive properties including signal transduction and cell to cell communication. Thus, it is not surprising that fungi possess a broad range of hydrolytic enzymes that attack neutral lipids and phospholipids. Especially during infection of a mammalian host, phospholipase A2 (PLA2) enzymes released by fungi could play important roles not only for nutrient acquisition and tissue invasion, but for intricate modulation of the host’s immune response. Sequencing of fungal genomes has revealed a wide range of genes encoding PLA2 activities in fungi. We are just beginning to become aware of the significance these enzymes could have for the fungal cells and their interaction with the host. PMID:17081801

  11. Molecular modeling of Gly80 and Ser80 variants of human group IID phospholipase A2 and their receptor complexes: potential basis for weight loss in chronic obstructive pulmonary disease.

    PubMed

    Khan, Mohd Imran; Gupta, Ashish Kumar; Kumar, Domada Ratna; Kumar, Manoj; Ethayathulla, Abdul Samarth; Hariprasad, Gururao

    2016-09-01

    Weight loss is a well known systemic manifestation of chronic obstructive pulmonary disease (COPD). A Gly80Ser mutation on human group IID secretory phospholipase A2 (sPLA2) enhances expression of the cytokines that are responsible for weight loss. In this study, we seek to establish a structural correlation of wild type sPLA2 and the Gly80Ser mutation with function. sPLA2 with glycine and serine at the 80th positions and the M-type receptor were modelled. The enzymes were docked to the receptor and molecular dynamics was carried out to 70 ns. Structural analysis revealed the enzymes to comprise three helices (H1-H3), two short helices (SH1 and SH2), and five loops including a calcium binding loop (L1-L5), and to be stabilized by seven disulfide bonds. The overall backbone folds of the two models are very similar, with main chain RMSD of less than 1 Å. The active site within the substrate binding channel shows a catalytic triad of water-His67-Asp112, showing a hydrogen bonded network. Major structural differences between wild type and mutant enzymes were observed locally at the site of the mutation and in their global conformations. These differences include: (1) loop-L3 between H2 and H3, which bears residue Gly80 in the wild type, is in a closed conformation with respect to the channel opening, while in the mutant enzyme it adopts a relatively open conformation; (2) the mutant enzyme is less compact and has higher solvent accessible surface area; and (3) interfacial binding contact surface area is greater, and the quality of interactions with the receptor is better in the mutant enzyme as compared to the wild type. Therefore, the structural differences delineated in this study are potential biophysical factors that could determine the increased potency of the mutant enzyme with macrophage receptor for cytokine secreting function, resulting in exacerbation of cachexia in COPD. PMID:27585677

  12. Assaying nonspecific phospholipase C activity.

    PubMed

    Pejchar, Přemysl; Scherer, Günther F E; Martinec, Jan

    2013-01-01

    Plant nonspecific phospholipase C (NPC) is a recently described enzyme which plays a role in membrane rearrangement during phosphate starvation. It is also involved in responses of plants to brassinolide, abscisic acid (ABA), elicitors, and salt. The NPC activity is decreased in cells treated with aluminum. In the case of salt stress, the molecular mechanism of NPC action is based on accumulation of diacylglycerol (DAG) by hydrolysis of phospholipids and conversion of DAG, the product of NPC activity, to phosphatidic acid (PA) that participates in ABA signaling pathways. Here we describe a step-by-step protocol, which can be used to determine in situ or in vitro NPC activity. Determination is based on quantification of fluorescently labeled DAG as a product of cleavage of the fluorescently labeled substrate lipid, phosphatidylcholine. High-performance thin-layer chromatography is used for separation of fluorescent DAG. The spot is visualized with a laser scanner and the relative amounts of fluorescent DAG are quantified using imaging software. PMID:23681535

  13. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new..., phospholipase A2-hydrolyzed (PMN P-93-333) is subject to reporting under this section for the significant...

  14. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new..., phospholipase A2-hydrolyzed (PMN P-93-333) is subject to reporting under this section for the significant...

  15. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new..., phospholipase A2-hydrolyzed (PMN P-93-333) is subject to reporting under this section for the significant...

  16. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new..., phospholipase A2-hydrolyzed (PMN P-93-333) is subject to reporting under this section for the significant...

  17. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new..., phospholipase A2-hydrolyzed (PMN P-93-333) is subject to reporting under this section for the significant...

  18. Phospholipases in food industry: a review.

    PubMed

    Casado, Víctor; Martín, Diana; Torres, Carlos; Reglero, Guillermo

    2012-01-01

    Mammal, plant, and mainly microbial phospholipases are continuously being studied, experimented, and some of them are even commercially available at industrial scale for food industry. This is because the use of phospholipases in the production of specific foods leads to attractive advantages, such as yield improvement, energy saving, higher efficiency, improved properties, or better quality of the final product. Furthermore, biocatalysis approaches in the food industry are of current interest as non-pollutant and cleaner technologies. The present chapter reviews the most representative examples of the use of phospholipases in food industry, namely edible oils, dairy, and baking products, emulsifying agents, as well as the current trend to the development of novel molecular species of phospholipids with added-value characteristics. PMID:22426737

  19. Phospholipase A2 activity in platelets. Immuno-purification and localization of the enzyme in rat platelets.

    PubMed

    Aarsman, A J; Leunissen-Bijvelt, J; Van den Koedijk, C D; Neys, F W; Verkleij, A J; Van den Bosch, H

    1989-01-01

    A comparative study on phospholipase A2 activity in platelet lysates from various species was carried out using identical assay conditions with phosphatidylethanolamine as substrate. Platelet phospholipase A2, both when expressed as activity per ml blood and as specific activity in KCl extracts, was low in human, cow, pig and goat. Moderate activities, in increasing order, were found in sheep, horse and rabbit, while rats showed by far the highest activity. In the latter four species total lysate activity was recovered in 1 M KCl extracts, suggesting that the enzyme occurs either in soluble form or as a peripheral membrane-associated protein. Immune cross-reactivity with monoclonal antibodies against rat liver mitochondrial phospholipase A2 was studied in dot-blot and monoclonal antibody-Sepharose binding experiments. Only sheep and rat platelet extracts contained cross-reactive phospholipase(s) A2. Immuno-affinity chromatography of rat platelet extracts indicated virtually complete binding of total phospholipase A2 activity and yielded pure enzyme in a single purification step. Enzyme visualization by immunogold electron microscopy showed a predominant localization in the matrix of alpha-granules. PMID:2519886

  20. Studies on the phospholipases of rat intestinal mucosa

    PubMed Central

    Subbaiah, P. V.; Ganguly, J.

    1970-01-01

    1. Subcellular distribution and characteristics of different phospholipases of rat intestinal mucosa were studied. 2. The presence of free fatty acid was necessary for the maximal hydrolysis of lecithin (phosphatidylcholine), but there was no accumulation of lysolecithin (1 or 2-acylglycerophosphorylcholine);lysolecithin accumulated when the reaction was carried out in the presence of sodium deoxycholate and at or above pH8.0. 3. The fatty acid-activated phospholipase B as well as lysolecithinase showed optimum activity at pH6.5, whereas for the phospholipase A it was about pH8.6. 4. The bulk of the phospholipase A was present in the microsomal fraction, whereas the phospholipase B and lysolecithinase activities were distributed between the microsomal and soluble fractions of the mucosal homogenate. 5. Phospholipase A was equally distributed between the brush border and brush-border-free particulate fraction, with the brush border having highest specific activity, whereas the other two activities were distributed between the brush-border-free particulate and soluble fractions. 6. Various treatments showed marked differences between the phospholipase A and phospholipase B activities, but not between phospholipase B and lysolecithinase activities. 7. By using (β[1-14C]-oleoyl) lecithin it was shown that the mucosal phospholipase A was specific for the β-ester linkage of the lecithin molecule. PMID:5484667

  1. Involvement of a phospholipase C in the hemolytic activity of a clinical strain of Pseudomonas fluorescens

    PubMed Central

    Rossignol, Gaelle; Merieau, Annabelle; Guerillon, Josette; Veron, Wilfried; Lesouhaitier, Olivier; Feuilloley, Marc GJ; Orange, Nicole

    2008-01-01

    Background Pseudomonas fluorescens is a ubiquitous Gram-negative bacterium frequently encountered in hospitals as a contaminant of injectable material and surfaces. This psychrotrophic bacterium, commonly described as unable to grow at temperatures above 32°C, is now considered non pathogenic. We studied a recently identified clinical strain of P. fluorescens biovar I, MFN1032, which is considered to cause human lung infection and can grow at 37°C in laboratory conditions. Results We found that MFN1032 secreted extracellular factors with a lytic potential at least as high as that of MF37, a psychrotrophic strain of P. fluorescens or the mesophilic opportunistic pathogen, Pseudomonas aeruginosa PAO1. We demonstrated the direct, and indirect – through increases in biosurfactant release – involvement of a phospholipase C in the hemolytic activity of this bacterium. Sequence analysis assigned this phospholipase C to a new group of phospholipases C different from those produced by P. aeruginosa. We show that changes in PlcC production have pleiotropic effects and that plcC overexpression and plcC extinction increase MFN1032 toxicity and colonization, respectively. Conclusion This study provides the first demonstration that a PLC is involved in the secreted hemolytic activity of a clinical strain of Pseudomonas fluorescens. Moreover, this phospholipase C seems to belong to a complex biological network associated with the biosurfactant production. PMID:18973676

  2. Changing serine-485 to alanine in the opossum parathyroid hormone (PTH)/PTH-related peptide receptor enhances PTH stimulation of phospholipase C in a stably transfected human kidney cell line: a useful model for PTH-analog screening?

    PubMed

    John, M R; Bösel, J; Breit, S; Wickert, H; Ziegler, R; Blind, E

    2001-02-01

    Using site-directed mutagenesis, we have introduced a serine-485-to-alanine mutation in the opossum parathyroid hormone (PTH) receptor. This amino acid is considered to be phosphorylated by protein kinase A upon ligand binding. Both wild-type (WT) and mutant receptor were stably expressed in 293-EBNA HEK cells. The mutant receptor showed comparable binding characteristics and only a slight increase in cAMP production compared with WT. However, the PTH dose-dependent increase in inositol phosphate production was 24-fold for the mutant receptor vs. 6-fold for the WT receptor. This mutant might prove useful in the sensitive detection of phospholipase C activation through various ligands, as the PTH receptor becomes a target of therapeutic intervention in osteoporosis. PMID:11182376

  3. Association of solubilized angiotensin II receptors with phospholipase C-alpha in murine neuroblastoma NIE-115 cells.

    PubMed

    Mah, S J; Ades, A M; Mir, R; Siemens, I R; Williamson, J R; Fluharty, S J

    1992-08-01

    The peptide angiotensin II (AngII) has been reported to stimulate phosphoinositide-specific phospholipase C (PLC) activity in the murine neuroblastoma cell line N1E-115. In the present study, polyclonal antibodies raised against a PLC isoenzyme, PLC-alpha, reacted with a 60-kDa protein present in both membrane and cytosolic fractions of differentiated N1E-115 cells. In order to examine the possible association of PLC-alpha with cell surface AngII receptors (AngII-Rs), membranes from differentiated N1E-115 cells were solubilized, using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). CHAPS (1%) solubilized AngII-Rs, from N1E-115 cells, that maintained their high affinity for agonists. Gel filtration analysis of the solubilized membranes revealed that the majority of the specific binding of 125I-AngII eluted as a large protein complex with a molecular mass of 380 kDa and that agonist binding was partially reduced by guanosine-5'-O-(3-thio)triphosphate (GTP gamma S), within this complex. CHAPS also effectively solubilized immunoreactive PLC-alpha, from N1E-115 cell membranes, that was similarly present within the 380-kDa AngII-binding complex. Anti-PLC-alpha antisera immunoprecipitated approximately 16% of the total phosphatidylinositol-4,5-bisphosphate-specific PLC activity in the 1% CHAPS extract and 40% of cytosolic PLC activity. Moreover, a 60-kDa 35S-Trans S-labeled protein, comigrating with immunoreactive PLC-alpha, was immunoprecipitated from the 1% CHAPS extract by the antisera. In addition, anti-PLC-alpha antisera immunoprecipitated approximately 20% of solubilized AngII-Rs prebound with 125I-AngII but failed to precipitate receptors prebound with the antagonist 125I-Sarc1,Ile8-AngII. The anti-PLC-alpha antisera also immunoprecipitated AngII-Rs when intact membranes were labeled with 125I-AngII before solubilization in 1% CHAPS, suggesting that the AngII-R interaction with PLC-alpha was not the result of detergent

  4. Loss of phospholipase D2 impairs VEGF-induced angiogenesis

    PubMed Central

    Lee, Chang Sup; Ghim, Jaewang; Song, Parkyong; Suh, Pann-Ghill; Ryu, Sung Ho

    2016-01-01

    Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis and critical for normal embryonic development and repair of pathophysiological conditions in adults. Although phospholipase D (PLD) activity has been implicated in angiogenic processes, its role in VEGF signaling during angiogenesis in mammals is unclear. Here, we found that silencing of PLD2 by siRNA blocked VEGF-mediated signaling in immortalized human umbilical vein endothelial cells (iHUVECs). Also, VEGF-induced endothelial cell survival, proliferation, migration, and tube formation were inhibited by PLD2 silencing. Furthermore, while Pld2-knockout mice exhibited normal development, loss of PLD2 inhibited VEGF-mediated ex vivo angiogenesis. These findings suggest that PLD2 functions as a key mediator in the VEGF-mediated angiogenic functions of endothelial cells. [BMB Reports 2016; 49(3): 191-196] PMID:26818087

  5. Effects of dexamethasone on palate mesenchymal cell phospholipase activity

    SciTech Connect

    Bulleit, R.F.; Zimmerman, E.F.

    1984-09-15

    Corticosteroids will induce cleft palate in mice. One suggested mechanism for this effect is through inhibition of phospholipase activity. This hypothesis was tested by measuring the effects of dexamethasone, a synthetic corticosteroid, on phospholipase activity in cultures of palate mesenchymal cells. Palate mesenchymal cells were prelabeled with (3H)arachidonic acid. The cells were subsequently treated with various concentrations of dexamethasone. Concurrently, cultures of M-MSV-transformed 3T3 cells were prepared identically. After treatment, phospholipase activity was stimulated by the addition of serum or epidermal growth factor (EGF), and radioactivity released into the medium was taken as a measure of phospholipase activity. Dexamethasone (1 X 10(-5) or 1 X 10(-4) M) could inhibit serum-stimulated phospholipase activity in transformed 3T3 cells after 1 to 24 hr of treatment. However, no inhibition of activity was measured in palate mesenchymal cells following this period of treatment. Not until 120 hr of treatment with dexamethasone (1 X 10(-4) M) was any significant inhibition of serum-stimulated phospholipase activity observed in palate mesenchymal cells. When EGF was used to stimulate phospholipase activity, dexamethasone (1 X 10(-5) M) caused an increase in phospholipase activity in palate mesenchymal cells. These observations suggested that phospholipase in transformed 3T3 cells was sensitive to inhibition by dexamethasone. However, palate mesenchymal cell phospholipase is only minimally sensitive to dexamethasone, and in certain instances can be enhanced. These results cannot support the hypothesis that corticosteroids mediate their teratogenic effect via inhibition of phospholipase activity.

  6. Purification and characterization of phospholipase C of Salmonella gallinarum.

    PubMed

    Singh, B R; Sharma, V D

    1998-12-01

    Phospholipase C was isolated from an outbreak strain of Salmonella gallinarum with ciprofloxacin extraction, dialysis, gel filtration, ion exchange chromatography and chromatofocussing. Purified phospholipase C (mol wt. 65 KDa; isoelectric point, pI 3.5) was resistant to pasteurization, stomach enzyme (pepsin), bacterial protease and lipase but lost its activity on trypsin and chymotrypsin treatment. It was sensitive to pH > or = 8.0. It was haemolytic, embryotoxic, enterohaemorrhagic, lethal to birds, cytotoxic to Vero and MDBK cells, dermonecrotoxic in rabbit and antigenically active protein. Antisera raised against purified phospholipase C neutralized its all biological activities and agglutinated the producer Salmonella strains. Serologically it was proved similar to phospholipase C of Klebsiella pneumoniae and S. weltevreden. Fluorescent antibody technique (FAT) was standardized to detect phospholipase producer strains. PMID:10093508

  7. The Role of Phospholipase D in Regulated Exocytosis.

    PubMed

    Rogasevskaia, Tatiana P; Coorssen, Jens R

    2015-11-27

    There are a diversity of interpretations concerning the possible roles of phospholipase D and its biologically active product phosphatidic acid in the late, Ca(2+)-triggered steps of regulated exocytosis. To quantitatively address functional and molecular aspects of the involvement of phospholipase D-derived phosphatidic acid in regulated exocytosis, we used an array of phospholipase D inhibitors for ex vivo and in vitro treatments of sea urchin eggs and isolated cortices and cortical vesicles, respectively, to study late steps of exocytosis, including docking/priming and fusion. The experiments with fluorescent phosphatidylcholine reveal a low level of phospholipase D activity associated with cortical vesicles but a significantly higher activity on the plasma membrane. The effects of phospholipase D activity and its product phosphatidic acid on the Ca(2+) sensitivity and rate of fusion correlate with modulatory upstream roles in docking and priming rather than to direct effects on fusion per se. PMID:26433011

  8. Measurement of the phospholipase activity of endothelial lipase in mouse plasma.

    PubMed

    Basu, Debapriya; Lei, Xia; Josekutty, Joby; Hussain, M Mahmood; Jin, Weijun

    2013-01-01

    Endothelial lipase (EL) is a major negative regulator of plasma HDL levels in mice, rabbits, and most probably, humans. Although this regulatory function is critically dependent on EL's hydrolysis of HDL phospholipids, as yet there is no phospholipase assay specific for EL in plasma. We developed such an assay for the mouse enzyme using a commercially available phospholipid-like fluorescent substrate in combination with an EL neutralizing antibody. The specificity of the assay was established using EL knockout mice and its utility demonstrated by detection of an increase in plasma EL phospholipase activity following exposure of wild-type mice to lipopolysaccharide. The assay revealed that murine pre-heparin plasma does not contain measurable EL activity, indicating that the hydrolysis of HDL phospholipids by EL in vivo likely occurs on the cell surface. PMID:23103358

  9. Reminiscence of phospholipase B in Penicillium notatum

    PubMed Central

    SAITO, Kunihiko

    2014-01-01

    Since the phospholipase B (PLB) was reported as a deacylase of both lecithin and lysolecithin yielding fatty acids and glycerophosphocholine (GPC), there was a question as to whether it is a single enzyme or a mixture of a phospholipase A2 (PLA2) and a lysophospholipase (LPL). We purified the PLB in Penicillium notatum and showed that it catalyzed deacylation of sn-1 and sn-2 fatty acids of 1,2-diacylphospholipids and also sn-1 or sn-2 fatty acids of 1- or 2-monoacylphospholipids (lysophospholipids). Further, it also has a monoacyllipase activity. The purified PLB is a glycoprotein with m.w. of 91,300. The sugar moiety is M9 only and the protein moiety consists of 603 amino acids. PLB, different from PLA2, shows other enzymatic activities, such as transacylase, lipase and acylesterase. PLB activity is influenced by various substances, e.g. detergents, deoxycholate, diethylether, Fe3+, and endogenous protease. Therefore, PLB might have broader roles than PLA2 in vivo. The database shows an extensive sequence similarity between P. notatum PLB and fungal PLB, cPLA2 and patatin, suggesting a homologous relationship. The catalytic triad of cPLA2, Ser, Asp and Arg, is also present in P. notatum PLB. Other related PLBs, PLB/Lipases are discussed. PMID:25391318

  10. Reminiscence of phospholipase B in Penicillium notatum.

    PubMed

    Saito, Kunihiko

    2014-01-01

    Since the phospholipase B (PLB) was reported as a deacylase of both lecithin and lysolecithin yielding fatty acids and glycerophosphocholine (GPC), there was a question as to whether it is a single enzyme or a mixture of a phospholipase A2 (PLA2) and a lysophospholipase (LPL). We purified the PLB in Penicillium notatum and showed that it catalyzed deacylation of sn-1 and sn-2 fatty acids of 1,2-diacylphospholipids and also sn-1 or sn-2 fatty acids of 1- or 2-monoacylphospholipids (lysophospholipids). Further, it also has a monoacyllipase activity. The purified PLB is a glycoprotein with m.w. of 91,300. The sugar moiety is M9 only and the protein moiety consists of 603 amino acids. PLB, different from PLA2, shows other enzymatic activities, such as transacylase, lipase and acylesterase. PLB activity is influenced by various substances, e.g. detergents, deoxycholate, diethylether, Fe(3+), and endogenous protease. Therefore, PLB might have broader roles than PLA2 in vivo. The database shows an extensive sequence similarity between P. notatum PLB and fungal PLB, cPLA2 and patatin, suggesting a homologous relationship. The catalytic triad of cPLA2, Ser, Asp and Arg, is also present in P. notatum PLB. Other related PLBs, PLB/Lipases are discussed. PMID:25391318

  11. The role of phospholipase D in Glut-4 translocation.

    PubMed

    Huang, Ping; Frohman, Michael A

    2003-01-01

    Insulin-stimulated Glut-4 translocation is regulated through a complex pathway. Increasing attention is being paid to the role undertaken in this process by Phospholipase D, a signal transduction-activated enzyme that generates the lipid second-messenger phosphatidic acid. Phospholipase D facilitates Glut-4 translocation at potentially multiple steps in its outward movement. Current investigation is centered on Phospholipase D promotion of Glut-4-containing membrane vesicle trafficking and vesicle fusion into the plasma membrane, in part through activation of atypical protein kinase C isoforms. PMID:14648804

  12. Interleukin 1 amplifies receptor-mediated activation of phospholipase A2 in 3T3 fibroblasts.

    PubMed Central

    Burch, R M; Connor, J R; Axelrod, J

    1988-01-01

    Human recombinant interleukin 1 alpha (IL-1 alpha) and IL-1 beta stimulated prostaglandin E2 synthesis in 3T3 fibroblasts in a time- and concentration-dependent manner. Enhanced prostaglandin E2 synthesis after IL-1 treatment was apparent by 1 hr and continued to increase for at least 2 days. Half-maximal stimulation occurred at 0.5 pM IL-1 alpha or IL-1 beta, and both interleukins were equally effective, with maximal stimulation occurring in response to 5-10 pM IL-1. In contrast to IL-1, bradykinin stimulation of prostaglandin E2 synthesis is rapid; its effect is maximal by 5 min. In cells that had been pretreated with IL-1 for 24 hr, prostaglandin E2 synthesis in response to bradykinin was amplified more than 10-fold. IL-1 also amplified the receptor-mediated formation of prostaglandin E2 by bombesin and thrombin. The lymphokine did not affect bradykinin receptor number or affinity. IL-1 treatment induced phospholipase A2 and cyclooxygenase but not phospholipase C or prostaglandin E isomerase. It also enhanced bradykinin-stimulated GTPase activity, suggesting possible induction of the GTP-binding regulatory protein coupled to the bradykinin receptor. Thus, IL-1 enhanced receptor-mediated release of prostaglandin E2 in response to bradykinin, bombesin, and thrombin by increasing the cellular levels of phospholipase A2, cyclooxygenase, and GTP-binding regulatory protein(s). PMID:2901097

  13. Analysis of genetic polymorphism in the phospholipase region of Mycobacterium tuberculosis.

    PubMed Central

    Vera-Cabrera, L; Howard, S T; Laszlo, A; Johnson, W M

    1997-01-01

    mtp40 was originally identified as a short genomic region that was found in strains of Mycobacterium tuberculosis but not in Mycobacterium bovis. Subsequent studies have revealed that the sequence is part of the mpcA gene, which encodes a phospholipase C. To investigate further the distribution of the mtp40 sequence, we analyzed strains of the M. tuberculosis complex by PCR and were able to amplify the mtp40 sequence in 90 of 94 strains of M. tuberculosis and in 2 strains of Mycobacterium microti but not in M. bovis or M. bovis BCG. Based on this, we developed a dot blot assay using genomic DNA which allows M. bovis to be distinguished from the majority of M. tuberculosis strains. We also probed Southern blots of 140 clinical isolates of M. tuberculosis to determine the frequency of strains lacking mtp40. This revealed an unexpected polymorphism in the phospholipase region. Two fragments were detected in 57% of samples. The expected fragment of 0.75 kbp corresponds to the region of mpcA containing mtp40. A 2.1-kbp fragment was observed to belong to a recently discovered second phospholipase gene, mpcB. In addition, some strains appeared to lack both genes, while others showed only the presence of mpcA. A few strains had additional bands, suggesting the existence of other homologs to the two phospholipase genes. We also detected the insertion of IS6110 in the mpcA coding region of one strain. The absence of these genes in some clinical isolates raises questions about their function during infection and in the development of tuberculosis disease in humans. PMID:9114405

  14. Purification and biochemical characterization of a secreted group IIA chicken intestinal phospholipase A2

    PubMed Central

    2011-01-01

    Background Secretory phospholipase A2 group IIA (IIA PLA2) is a protein shown to be highly expressed in the intestine of mammals. However, no study was reported in birds. Results Chicken intestinal group IIA phospholipase A2 (ChPLA2-IIA) was obtained after an acidic treatment (pH.3.0), precipitation by ammonium sulphate, followed by sequential column chromatographies on Sephadex G-50 and mono-S ion exchanger. The enzyme was found to be a monomeric protein with a molecular mass of around 14 kDa. The purified enzyme showed a substrate preference for phosphatidylethanolamine and phosphatidylglycerol, and didn't hydrolyse phosphatidylcholine. Under optimal assay conditions, in the presence of 10 mM NaTDC and 10 mM CaCl2, a specific activity of 160 U.mg-1 for purified ChPLA2-IIA was measured using egg yolk as substrate. The fifteen NH2-terminal amino acid residues of ChPLA2-IIA were sequenced and showed a close homology with known intestinal secreted phospholipases A2. The gene encoding the mature ChPLA2-IIA was cloned and sequenced. To further investigate structure-activity relationship, a 3D model of ChPLA2-IIA was built using the human intestinal phospholipase A2 structure as template. Conclusion ChPLA2-IIA was purified to homogeneity using only two chromatographic colomns. Sequence analysis of the cloned cDNA indicates that the enzyme is highly basic with a pI of 9.0 and has a high degree of homology with mammalian intestinal PLA2-IIA. PMID:21284884

  15. Cytosolic phospholipase A2: physiological function and role in disease

    PubMed Central

    Leslie, Christina C.

    2015-01-01

    The group IV phospholipase A2 (PLA2) family is comprised of six intracellular enzymes (GIVA, -B, -C, -D, -E, and -F) commonly referred to as cytosolic PLA2 (cPLA2)α, -β, -γ, -δ, -ε, and -ζ. They contain a Ser-Asp catalytic dyad and all except cPLA2γ have a C2 domain, but differences in their catalytic activities and subcellular localization suggest unique regulation and function. With the exception of cPLA2α, the focus of this review, little is known about the in vivo function of group IV enzymes. cPLA2α catalyzes the hydrolysis of phospholipids to arachidonic acid and lysophospholipids that are precursors of numerous bioactive lipids. The regulation of cPLA2α is complex, involving transcriptional and posttranslational processes, particularly increases in calcium and phosphorylation. cPLA2α is a highly conserved widely expressed enzyme that promotes lipid mediator production in human and rodent cells from a variety of tissues. The diverse bioactive lipids produced as a result of cPLA2α activation regulate normal physiological processes and disease pathogenesis in many organ systems, as shown using cPLA2α KO mice. However, humans recently identified with cPLA2α deficiency exhibit more pronounced effects on health than observed in mice lacking cPLA2α, indicating that much remains to be learned about this interesting enzyme. PMID:25838312

  16. Primary phospholipase C and brain disorders.

    PubMed

    Yang, Yong Ryoul; Kang, Du-Seock; Lee, Cheol; Seok, Heon; Follo, Matilde Y; Cocco, Lucio; Suh, Pann-Ghill

    2016-05-01

    In the brain, the primary phospholipase C (PLC) proteins, PLCβ, and PLCγ, are activated primarily by neurotransmitters, neurotrophic factors, and hormones through G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). Among the primary PLC isozymes, PLCβ1, PLCβ4, and PLCγ1 are highly expressed and differentially distributed, suggesting a specific role for each PLC subtype in different regions of the brain. Primary PLCs control neuronal activity, which is important for synapse function and development. In addition, dysregulation of primary PLC signaling is linked to several brain disorders including epilepsy, schizophrenia, bipolar disorder, Huntington's disease, depression and Alzheimer's disease. In this review, we included current knowledge regarding the roles of primary PLC isozymes in brain disorders. PMID:26639088

  17. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    SciTech Connect

    Park, Mi Hee; Min, Do Sik

    2011-09-09

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety of cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.

  18. Biochemical and Genetic Evidence for the Presence of Multiple Phosphatidylinositol- and Phosphatidylinositol 4,5-Bisphosphate-Specific Phospholipases C in Tetrahymena▿‡

    PubMed Central

    Leondaritis, George; Sarri, Theoni; Dafnis, Ioannis; Efstathiou, Antonia; Galanopoulou, Dia

    2011-01-01

    Eukaryotic phosphoinositide-specific phospholipases C (PI-PLC) specifically hydrolyze phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], produce the Ca2+-mobilizing agent inositol 1,4,5-trisphosphate, and regulate signaling in multicellular organisms. Bacterial PtdIns-specific PLCs, also present in trypanosomes, hydrolyze PtdIns and glycosyl-PtdIns, and they are considered important virulence factors. All unicellular eukaryotes studied so far contain a single PI-PLC-like gene. In this report, we show that ciliates are an exception, since we provide evidence that Tetrahymena species contain two sets of functional genes coding for both bacterial and eukaryotic PLCs. Biochemical characterization revealed two PLC activities that differ in their phosphoinositide substrate utilization, subcellular localization, secretion to extracellular space, and sensitivity to Ca2+. One of these activities was identified as a typical membrane-associated PI-PLC activated by low-micromolar Ca2+, modestly activated by GTPγS in vitro, and inhibited by the compound U73122 [1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione]. Importantly, inhibition of PI-PLC in vivo resulted in rapid upregulation of PtdIns(4,5)P2 levels, suggesting its functional importance in regulating phosphoinositide turnover in Tetrahymena. By in silico and molecular analysis, we identified two PLC genes that exhibit significant similarity to bacterial but not trypanosomal PLC genes and three eukaryotic PI-PLC genes, one of which is a novel inactive PLC similar to proteins identified only in metazoa. Comparative studies of expression patterns and PI-PLC activities in three T. thermophila strains showed a correlation between expression levels and activity, suggesting that the three eukaryotic PI-PLC genes are functionally nonredundant. Our findings imply the presence of a conserved and elaborate PI-PLC-Ins(1,4,5)P3-Ca2+ regulatory axis in ciliates. PMID:21169416

  19. Therapeutic inhibition of phospholipase D1 suppresses hepatocellular carcinoma.

    PubMed

    Xiao, Junjie; Sun, Qi; Bei, Yihua; Zhang, Ling; Dimitrova-Shumkovska, Jasmina; Lv, Dongchao; Yang, Yuefeng; Cao, Yan; Zhao, Yingying; Song, Meiyi; Song, Yang; Wang, Fei; Yang, Changqing

    2016-07-01

    Hepatocellular carcinoma (HCC) represents a leading cause of deaths worldwide. Novel therapeutic targets for HCC are needed. Phospholipase D (PD) is involved in cell proliferation and migration, but its role in HCC remains unclear. In the present study, we show that PLD1, but not PLD2, was overexpressed in HCC cell lines (HepG2, Bel-7402 and Bel-7404) compared with the normal human L-02 hepatocytes. PLD1 was required for the proliferation, migration and invasion of HCC cells without affecting apoptosis and necrosis, and PLD1 overexpression was sufficient to promote those effects. By using HCC xenograft models, we demonstrated that therapeutic inhibition of PLD1 attenuated tumour growth and epithelial-mesenchymal transition (EMT) in HCC mice. Moreover, PLD1 was found to be highly expressed in tumour tissues of HCC patients. Finally, mTOR (mechanistic target of rapamycin) and Akt (protein kinase B) were identified as critical pathways responsible for the role of PLD1 in HCC cells. Taken together, the present study indicates that PLD1 activation contributes to HCC development via regulation of the proliferation, migration and invasion of HCC cells, as well as promoting the EMT process. These observations suggest that inhibition of PLD1 represents an attractive and novel therapeutic modality for HCC. PMID:27129182

  20. Molecular characteristics of horse phospholipase C zeta (PLCζ).

    PubMed

    Sato, Kana; Wakai, Takuya; Seita, Yasunari; Takizawa, Akiko; Fissore, Rafael A; Ito, Junya; Kashiwazaki, Naomi

    2013-04-01

    A sperm-specific phospholipase C (PLC), PLCzeta (PLCζ), is thought to underlie the initiation of calcium ([Ca(2+) ]i ) oscillations that induce egg activation in mammals. In large domestic species, only bovine, porcine and recently equine PLCζ have been cloned, and the physiological functions of these molecules have not been fully characterized. Here, we evaluated the physiological functions of equine PLCζ (ePLCζ) in mouse oocytes. ePLCζ was cloned from testis using RT-PCR. The expression of ePLCζ messenger RNA was confirmed in testis but not in other tissues. Microinjection of ePLCζ complementary RNA (cRNA) into mouse oocytes induced long-lasting [Ca(2+) ]i oscillations, and most of the injected oocytes formed pronuclei (PN). The injection of cRNAs encoding horse, mouse, human and cow PLCζ into mouse oocytes showed that ePLCζ had the highest [Ca(2+) ]i oscillation-inducing activity among the species tested. Mutation of D202R, which renders the protein inactive, abrogated the activity of ePLCζ. The nuclear translocation ability of ePLCζ was defective when expressed in mouse oocytes. Taken together, our findings show for the first time that ePLCζ has highest activity of the mammalian species studied to date. Our findings will be useful for the improvement of reproductive technologies in the horse. PMID:23590511

  1. Variable Substrate Preference among Phospholipase D Toxins from Sicariid Spiders*

    PubMed Central

    Lajoie, Daniel M.; Roberts, Sue A.; Zobel-Thropp, Pamela A.; Delahaye, Jared L.; Bandarian, Vahe; Binford, Greta J.; Cordes, Matthew H. J.

    2015-01-01

    Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used 31P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, and all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. The evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey. PMID:25752604

  2. Are events after endotoxemia related to circulating phospholipase A2?

    PubMed Central

    Santos, A A; Browning, J L; Scheltinga, M R; Lynch, E A; Brown, E F; Lawton, P; Chambers, E; Dougas, I; Benjamin, C D; Dinarello, C A

    1994-01-01

    OBJECTIVE: The authors sought to determine whether the signs and symptoms of endotoxemia were related to the endotoxin-stimulated increase in circulating phospholipase A2 (PLA2) activity. BACKGROUND: Because hypotension and pulmonary injury have been associated with elevated PLA2 activity in septic shock and PLA2 levels are reduced with the administration of glucocorticoids, the PLA2 response to endotoxin was investigated in volunteers pretreated with and without hydrocortisone. METHODS: Carefully screened human subjects were studied under four conditions: (1) saline, (2) hydrocortisone, (3) endotoxin, and (4) hydrocortisone administration before endotoxin exposure. Pulse rate, blood pressure, temperature, and symptoms of endotoxemia were serially measured. Plasma for tumor necrosis factor concentrations and PLA2 activity was obtained. RESULTS: After lipopolysaccharide, pulse rate and tumor necrosis factor concentrations rose at 1 to 2 hours; temperature increased maximally at 4 hours. PLA2 activity reached peak levels at 24 hours. With hydrocortisone pretreatment, a 50% reduction in the concentrations of tumor necrosis factor and PLA2 occurred. Significant correlations between other variables and PLA2 activity were not observed. The enzyme identified by monoclonal antibody was the secreted nonpancreatic PLA2 (SNP-PLA2). CONCLUSIONS: The results of this study suggest that elevations in circulating SNP-PLA2 activity and systemic events associated with intravenous endotoxin administration are unrelated. PMID:8129489

  3. Cloning and expression analysis of murine phospholipase D1.

    PubMed Central

    Colley, W C; Altshuller, Y M; Sue-Ling, C K; Copeland, N G; Gilbert, D J; Jenkins, N A; Branch, K D; Tsirka, S E; Bollag, R J; Bollag, W B; Frohman, M A

    1997-01-01

    Activation of phosphatidylcholine-specific phospholipase D(PLD) occurs as part of the complex signal-transduction cascade initiated by agonist stimulation of tyrosine kinase and G-protein-coupled receptors. A variety of mammalian PLD activities have been described, and cDNAs for two PLDs recently reported (human PLD1 and murine PLD2). We describe here the cloning and chromosomal localization of murine PLD1. Northern-blot hybridization and RNase protection analyses were used to examine the expression of murine PLD1 and PLD2 ina variety of cell lines and tissues. PLD1 and PLD2 were expressed in all RNA samples examined, although the absolute expression of each isoform varied, as well as the ratio of PLD1 to PLD2. Moreover, in situ hybridization of adult brain and murine embryo sections revealed high levels of expression of individual PLDs in some cell types and no detectable expression in others. Thus the two PLDs probably carry out distinct roles in restricted subsets of cells rather than ubiquitous roles in all cells. PMID:9307024

  4. A thermoactive secreted phospholipase A₂ purified from the venom glands of Scorpio maurus: relation between the kinetic properties and the hemolytic activity.

    PubMed

    Louati, Hanen; Krayem, Najeh; Fendri, Ahmed; Aissa, Imen; Sellami, Mohamed; Bezzine, Sofiane; Gargouri, Youssef

    2013-09-01

    A lipolytic activity was located in the scorpion venom glands (telsons), from which a phospholipase A₂ (Sm-PLVG) was purified. Like known phospholipases A₂ from scorpion venom, which are 14-18 kDa proteins, the purified Scorpio maurus-Phospholipase from Venom Glands (Sm-PLVG) has a molecular mass of 17 kDa containing long and short chains linked by disulfide bridge. It has a specific activity of 5500 U/mg measured at 47 °C and pH 8.5 using phosphatidylcholine as a substrate in presence of 8 mM NaTDC and 12 mM CaCl₂. The NH₂-terminal amino acid sequences of the purified Sm-PLVG showed similarities with those of long and short chains of some previously purified phospholipases from venom scorpions. Moreover, the Sm-PLVG exhibits hemolytic activity toward human, rabbit or rat erythrocytes. This hemolytic activity was related to its ability to interact with phospholipids' monolayer at high surface pressure. These properties are similar to those of phospholipases isolated from snake venoms. PMID:23831286

  5. Acinetobacter baumannii Virulence Is Mediated by the Concerted Action of Three Phospholipases D

    PubMed Central

    Stahl, Julia; Bergmann, Holger; Göttig, Stephan; Ebersberger, Ingo; Averhoff, Beate

    2015-01-01

    Acinetobacter baumannii causes a broad range of opportunistic infections in humans. Its success as an emerging pathogen is due to a combination of increasing antibiotic resistance, environmental persistence and adaptation to the human host. To date very little is known about the molecular basis of the latter. Here we demonstrate that A. baumannii can use phosphatidylcholine, an integral part of human cell membranes, as sole carbon and energy source. We report on the identification of three phospholipases belonging to the PLD superfamily. PLD1 and PLD2 appear restricted to the bacteria and display the general features of bacterial phospholipases D. They possess two PLDc_2 PFAM domains each encompassing the HxKx4Dx6GS/GGxN (HKD) motif necessary for forming the catalytic core. The third candidate, PLD3, is found in bacteria as well as in eukaryotes and harbours only one PLDc_2 PFAM domain and one conserved HKD motif, which however do not overlap. Employing a markerless mutagenesis system for A. baumannii ATCC 19606T, we generated a full set of PLD knock-out mutants. Galleria mellonella infection studies as well as invasion experiments using A549 human lung epithelial cells revealed that the three PLDs act in a concerted manner as virulence factors and are playing an important role in host cell invasion. PMID:26379240

  6. Ubiquitin Activates Patatin-Like Phospholipases from Multiple Bacterial Species

    PubMed Central

    Anderson, David M.; Sato, Hiromi; Dirck, Aaron T.; Feix, Jimmy B.

    2014-01-01

    Phospholipase A2 enzymes are ubiquitously distributed throughout the prokaryotic and eukaryotic kingdoms and are utilized in a wide array of cellular processes and physiological and immunological responses. Several patatin-like phospholipase homologs of ExoU from Pseudomonas aeruginosa were selected on the premise that ubiquitin activation of this class of bacterial enzymes was a conserved process. We found that ubiquitin activated all phospholipases tested in both in vitro and in vivo assays via a conserved serine-aspartate catalytic dyad. Ubiquitin chains versus monomeric ubiquitin were superior in inducing catalysis, and ubiquitin-like proteins failed to activate phospholipase activity. Toxicity studies in a prokaryotic dual-expression system grouped the enzymes into high- and low-toxicity classes. Toxicity measured in eukaryotic cells also suggested a two-tiered classification but was not predictive of the severity of cellular damage, suggesting that each enzyme may correspond to unique properties perhaps based on its specific biological function. Additional studies on lipid binding preference suggest that some enzymes in this family may be differentially sensitive to phosphatidyl-4,5-bisphosphate in terms of catalytic activation enhancement and binding affinity. Further analysis of the function and amino acid sequences of this enzyme family may lead to a useful approach to formulating a unifying model of how these phospholipases behave after delivery into the cytoplasmic compartment. PMID:25404699

  7. Enzymatic action of phospholipase A₂ on liposomal drug delivery systems.

    PubMed

    Hansen, Anders H; Mouritsen, Ole G; Arouri, Ahmad

    2015-08-01

    The overexpression of secretory phospholipase A2 (sPLA2) in tumors has opened new avenues for enzyme-triggered active unloading of liposomal antitumor drug carriers selectively at the target tumor. However, the effects of the liposome composition, drug encapsulation, and tumor microenvironment on the activity of sPLA2 are still not well understood. We carried out a physico-chemical study to characterize the sPLA2-assisted breakdown of liposomes using dye-release assays in the context of drug delivery and under physiologically relevant conditions. The influence of temperature, lipid concentration, enzyme concentration, and drug loading on the hydrolysis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, Tm=42°C) liposomes with snake venom sPLA2 was investigated. The sensitivity of human sPLA2 to the liposome composition was checked using binary lipid mixtures of phosphatidylcholine (PC) and phosphatidylglycerol (PG) phospholipids with C14 and C16 acyl chains. Increasing temperature (36-41°C) was found to mainly shorten the enzyme lag-time, whereas the effect on lipid hydrolysis rate was modest. The enzyme lag-time was also found to be inversely dependent on the lipid-to-enzyme ratio. Drug encapsulation can alter the hydrolysis profile of the carrier liposomes. The activity of human sPLA2 was highly sensitive to the phospholipid acyl-chain length and negative surface charge density of the liposomes. We believe our work will prove useful for the optimization of sPLA2-susceptible liposomal formulations as well as will provide a solid ground for predicting the hydrolysis profile of the liposomes in vivo at the target site. PMID:26056930

  8. Bee venom phospholipase A2 as a membrane-binding vector for cell surface display or internalization of soluble proteins.

    PubMed

    Babon, Aurélie; Wurceldorf, Thibault; Almunia, Christine; Pichard, Sylvain; Chenal, Alexandre; Buhot, Cécile; Beaumelle, Bruno; Gillet, Daniel

    2016-06-15

    We showed that bee venom phospholipase A2 can be used as a membrane-binding vector to anchor to the surface of cells a soluble protein fused to its C-terminus. ZZ, a two-domain derivative of staphylococcal protein A capable of binding constant regions of antibodies was fused to the C-terminus of the phospholipase or to a mutant devoid of enzymatic activity. The fusion proteins bound to the surface of cells and could themselves bind IgGs. Their fate depended on the cell type to which they bound. On the A431 carcinoma cell line the proteins remained exposed on the cell surface. In contrast, on human dendritic cells the proteins were internalized into early endosomes. PMID:26253725

  9. Phospholipase A2 as a mechanosensor.

    PubMed Central

    Lehtonen, J Y; Kinnunen, P K

    1995-01-01

    Osmotic swelling of large unilamellar vesicles (LUVs) causes membrane stretching and thus reduces the lateral packing of lipids. This is demonstrated to modulate strongly the catalytic activity of phospholipase A2 (PLA2) toward a fluorescent phospholipid, 1-palmitoyl-2-[(6-pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) residing in LUVs composed of different unsaturated and saturated phosphatidylcholines. The magnitude of the osmotic pressure gradient delta omega required for maximal PLA2 activity as well as the extent of activation depend on the degree of saturation of the membrane phospholipid acyl chains. More specifically, delta omega needed for maximal hydrolytic activity increases in the sequence DOPC < SOPC < DMPC in accordance with the increment in the intensity of chain-chain van der Waals interactions. Previous studies on the hydrolysis of substrate monolayers by C. adamanteus and N. naja PLA2 revealed maximal hydrolytic rates for these two enzymes to be achieved at lipid packing densities corresponding to surface pressures of 12 and 18 mN m-1, respectively. In keeping with the above the magnitudes of delta omega producing maximal activity of Crotalus adamanteus and Naja naja toward PPDPC/DMPC LUVs were 40 and 20 mOsm/kg, respectively. Our findings suggest a novel possibility of regulating the activity of PLA2 and perhaps also other lipid packing density-dependent enzymes in vivo by osmotic forces applied on cellular membranes. Importantly, our results reveal serendipitously that the responsiveness of membranes to osmotic stress is modulated by the acyl chain composition of the lipids. PMID:7612831

  10. Biochemical and molecular analysis of phospholipase C and phospholipase D activity in mycobacteria.

    PubMed Central

    Johansen, K A; Gill, R E; Vasil, M L

    1996-01-01

    Resurgence of mycobacterial infections in the United States has led to an intense effort to identify potential virulence determinants in the genus Mycobacterium, particularly ones that would be associated with the more virulent species (e.g., Mycobacterium tuberculosis). Thin-layer chromatography (TLC) using radiolabeled phosphatidylcholine and sphingomyelin as substrates indicated that cell extracts of M. tuberculosis contain both phospholipase C (PLC) and phospholipase D (PLD) activities. In contrast, only PLD activity was detected in cell extracts of M. smegmatis. Neither activity was detected in cell-free culture supernatants from these organisms. We and others recently identified two open reading frames in M. tuberculosis with the potential to encode proteins which are highly homologous to the nonhemolytic (PlcN) and hemolytic (PlcH) phospholipase C enzymes of Pseudomonas aeruginosa. In contrast to the plc genes in P. aeruginosa, which are considerably distal to each other (min 34 and 64 on the chromosome), the mycobacterial genes, designated mpcA and mpcB, are tandemly arranged in the same relative orientation and separated by only 191 bp. Both the mpcA and the mpcB genes were individually cloned in M. smegmatis, and PLC activity was expressed from each gene in this organism. Hybridization experiments using the mpcA and the mpcB genes as probes under conditions of moderate stringency identified sequences homologous to these genes in M. bovis, M. bovis BCG, and M. marinum but not in several other Mycobacterium species, including M. smegmatis, M. avium, and M. intracellulare. TLC analysis using radiolabeled substrates indicated that M. bovis and M. marinum cell extracts contain PLC and PLD activities, but only PLD activity was detected in M. bovis BCG cell extracts. Sphingomyelinase activity was also detected in whole-cell extracts of M. tuberculosis, M. marinum, M. bovis, and M. bovis BCG, but this activity was not detected in extracts of M. smegmatis

  11. The PNPLA-family phospholipases involved in glycerophospholipid homeostasis of HeLa cells.

    PubMed

    Hermansson, Martin; Hänninen, Satu; Hokynar, Kati; Somerharju, Pentti

    2016-09-01

    Mammalian cells maintain the glycerophospholipid (GPL) compositions of their membranes nearly constant. To achieve this, GPL synthesis and degradation must be coordinated. There is strong evidence that A-type phospholipases (PLAs) are key players in homeostatic degradation of GPLs, but the identities of the PLAs involved have not been established. However, some members of the Patatin-like phospholipase domain-containing proteins (PNPLAs) have been implicated. Accordingly, we knocked down all the PNPLAs significantly expressed in human HeLa cells using RNA interference and then determined whether the turnover of the major glycerophospholipids is affected by using mass spectrometry and metabolic labeling with stable isotope-labeled precursors. Knockdown of PNPLA9, PNPLA6 or PNPLA4 significantly (30-50%) reduced the turnover of phosphatidylcholine, -ethanolamine and -serine. In a notable contrast, turnover of phosphatidylinositol was not significantly affected by the knockdown of any PNPLA. Depletion of PNPLA9 and PNPLA4 also inhibited G0/G1 to S cell cycle progression, which could thus be regulated by GPL turnover. These results strongly suggest that PNPLA9, -6 and -4 play a key role in GPL turnover and homeostasis in human cells. A hypothetical model suggesting how these enzymes could recognize the relative concentration of the different GPLs is proposed. PMID:27317427

  12. Milleporin-1, a new phospholipase A2 active protein from the fire coral Millepora platyphylla nematocysts.

    PubMed

    Radwan, Faisal F Y; Aboul-Dahab, Hosney M

    2004-12-01

    Stings of fire corals, potent hydroids common in the Red Sea, are known to cause severe pain and they develop burns and itching that lasts few hours after contact. Nematocyst venom of Millepora platyphylla (Mp-TX) was isolated according to a recent method developed in our laboratory to conduct a previous investigation on the nematocyst toxicity of Millepora dichotoma and M. platyphylla. In this study, Mp-TX was fractionated by using both gel filtration and ion exchange chromatography. Simultaneous biological and biochemical assays were performed to monitor the hemolytic (using washed human red blood cells, RBCs) and phospholipase A2 (using radiolabeled sn-2 C14-arachidonyl phosphatidylcholine as a substrate) active venom fractions. The magnitude of both hemolysis and phospholipase A2 activity was found in a fraction rich of proteins of molecular masses approximately 30,000-34,000 Daltons. The former fraction was purified by ion exchange chromatography, and a major bioactive protein factor (approx. 32,500 Daltons , here named milleporin-1) was recovered. Milleporin-1 enzymatic activity showed a significant contribution to the overall hemolysis of human RBCs. This activity, however, could not be completely inhibited using phospholipid substrates. Melliporin-1 fraction retained about 30% hemolysis, until totally rendered inactive when boiled for 3 min. The overall mechanism of action of milleporin-1 to impact the cellular membrane was discussed; however, it is pending more biochemical and pharmacological future studies. PMID:15683837

  13. Lysophospholipid generation and phosphatidylglycerol depletion in phospholipase A(2)-mediated surfactant dysfunction.

    PubMed

    Hite, R Duncan; Seeds, Michael C; Safta, Anca M; Jacinto, Randolph B; Gyves, Julianna I; Bass, David A; Waite, B Moseley

    2005-04-01

    Pulmonary surfactant's complex mixture of phospholipids and proteins reduces the work of breathing by lowering alveolar surface tension during respiration. One mechanism of surfactant damage appears to be the hydrolysis of phospholipid by phospholipases activated in the inflamed lung. Humans have several candidate secretory phospholipase A(2) (sPLA(2)) enzymes in lung cells and infiltrating leukocytes that could damage extracellular surfactant. We considered two mechanisms of surfactant disruption by five human sPLA(2)s, including generation of lysophospholipids and the depletion of specific phospholipids. All five sPLA(2)s studied ultimately caused surfactant dysfunction. Each enzyme exhibited a different pattern of hydrolysis of surfactant phospholipids. Phosphatidylcholine, the major phospholipid in surfactant and the greatest potential source for generation of lysophospholipids, was susceptible to hydrolysis by group IB, group V, and group X sPLA(2)s, but not group IIA or IID. Group IIA hydrolyzed both phosphatidylethanolamine and phosphatidylglycerol, whereas group IID was active against only phosphatidylglycerol. Thus, with groups IB and X, the generation of lysophospholipids corresponded with surfactant dysfunction. However, hydrolysis of and depletion of phosphatidylglycerol had a greater correlation with surfactant dysfunction for groups IIA and IID. Surfactant dysfunction caused by group V sPLA(2) is less clear and may be the combined result of both mechanisms. PMID:15516491

  14. The first report on coagulation and phospholipase A2 activities of Persian Gulf lionfish, Pterois russelli, an Iranian venomous fish.

    PubMed

    Memar, Bahareh; Jamili, Shahla; Shahbazzadeh, Delavar; Bagheri, Kamran Pooshang

    2016-04-01

    Pterois russelli is a venomous fish belonging to scorpionidae family. Regarding to high significance value for tracing potential therapeutic molecules and special agents from venomous marine creatures, the present study was aimed to characterization of the Persian Gulf lionfish venom. Proteolytic, phospholipase, hemolytic, coagulation, edematogenic and dermonecrotic activities were determined for extracted venom. The LD50 of P. russelli venom was determined by intravenous injection in white Balb/c mice. Phospholipase A2 activity was recorded at 20 μg of total venom. Coagulation activity on human plasma was shown by Prothrombin Time (PT) and activated Partial Thromboplastin Time (APTT) assays and coagulation visualized after 7 and 14 s respectively for 60 μg of crude venom. LD50 was calculated as 10.5 mg/kg. SDS-PAGE revealed the presence of major and minor protein bands between 6 and 205 kDa. Different amounts of crude venom ranged from 1.87 to 30 μg showed proteolytic activity on casein. The highest edematic activity was detected at 20 μg. Our findings showed that the edematic activity was dose dependent and persisted for 48 h after injection. The crude venom did not induce dermonecrotic activity on rabbit skin and showed no hemolytic activity on human, mouse and rabbit erythrocytes. This is the first report for phospholipase A2 and coagulation activity in venomous fish and venomous marine animals respectively. Proteolytic activity of P. russelli venom is in accordance with the other genara of scorpionidae family. According to venom activity on intrinsic and extrinsic coagulation pathways, lionfish venom would be contained an interesting pharmaceutical agent. This study is pending to further characterization of phospholipase A2, coagulation, and protease activities and also in vivo activity on animal model of surface and internal bleeding. PMID:26853495

  15. Phospholipase A2 regulates eicosanoid class switching during inflammasome activation.

    PubMed

    Norris, Paul C; Gosselin, David; Reichart, Donna; Glass, Christopher K; Dennis, Edward A

    2014-09-01

    Initiation and resolution of inflammation are considered to be tightly connected processes. Lipoxins (LX) are proresolution lipid mediators that inhibit phlogistic neutrophil recruitment and promote wound-healing macrophage recruitment in humans via potent and specific signaling through the LXA4 receptor (ALX). One model of lipoxin biosynthesis involves sequential metabolism of arachidonic acid by two cell types expressing a combined transcellular metabolon. It is currently unclear how lipoxins are efficiently formed from precursors or if they are directly generated after receptor-mediated inflammatory commitment. Here, we provide evidence for a pathway by which lipoxins are generated in macrophages as a consequence of sequential activation of toll-like receptor 4 (TLR4), a receptor for endotoxin, and P2X7, a purinergic receptor for extracellular ATP. Initial activation of TLR4 results in accumulation of the cyclooxygenase-2-derived lipoxin precursor 15-hydroxyeicosatetraenoic acid (15-HETE) in esterified form within membrane phospholipids, which can be enhanced by aspirin (ASA) treatment. Subsequent activation of P2X7 results in efficient hydrolysis of 15-HETE from membrane phospholipids by group IVA cytosolic phospholipase A2, and its conversion to bioactive lipoxins by 5-lipoxygenase. Our results demonstrate how a single immune cell can store a proresolving lipid precursor and then release it for bioactive maturation and secretion, conceptually similar to the production and inflammasome-dependent maturation of the proinflammatory IL-1 family cytokines. These findings provide evidence for receptor-specific and combinatorial control of pro- and anti-inflammatory eicosanoid biosynthesis, and potential avenues to modulate inflammatory indices without inhibiting downstream eicosanoid pathways. PMID:25139986

  16. Extracellular Paracoccidioides brasiliensis phospholipase B involvement in alveolar macrophage interaction

    PubMed Central

    2010-01-01

    Background Phospholipase B (PLB) has been reported to be one of the virulence factors for human pathogenic fungi and has also been described as necessary for the early events in infection. Based on these data, we investigated the role of PLB in virulence and modulation of the alveolar pulmonary immune response during infection using an in-vitro model of host-pathogen interaction, i.e. Paracoccidioides brasiliensis yeast cells infecting alveolar macrophage (MH-S) cells. Results The effect of PLB was analyzed using the specific inhibitor alexidine dihydrochloride (0.25 μM), and pulmonary surfactant (100 μg mL-1), during 6 hours of co-cultivation of P. brasiliensis and MH-S cells. Alexidine dihydrochloride inhibited PLB activity by 66% and significantly decreased the adhesion and internalization of yeast cells by MH-S cells. Genes involved in phagocytosis (trl2, cd14) and the inflammatory response (nfkb, tnf-α, il-1β) were down-regulated in the presence of this PLB inhibitor. In contrast, PLB activity and internalization of yeast cells significantly increased in the presence of pulmonary surfactant; under this condition, genes such as clec2 and the pro-inflammatory inhibitor (nkrf) were up-regulated. Also, the pulmonary surfactant did not alter cytokine production, while alexidine dihydrochloride decreased the levels of interleukin-10 (IL-10) and increased the levels of IL-12 and tumor necrosis factor-α (TNF-α). In addition, gene expression analysis of plb1, sod3 and icl1 suggests that P. brasiliensis gene re-programming is effective in facilitating adaptation to this inhospitable environment, which mimics the lung-environment interaction. Conclusion P. brasiliensis PLB activity is involved in the process of adhesion and internalization of yeast cells at the MH-S cell surface and may enhance virulence and subsequent down-regulation of macrophage activation. PMID:20843362

  17. Alopecia in a Viable Phospholipase C Delta 1 and Phospholipase C Delta 3 Double Mutant

    PubMed Central

    Runkel, Fabian; Hintze, Maik; Griesing, Sebastian; Michels, Marion; Blanck, Birgit; Fukami, Kiyoko; Guénet, Jean-Louis; Franz, Thomas

    2012-01-01

    Background Inositol 1,4,5trisphosphate (IP3) and diacylglycerol (DAG) are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD) forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia), whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. Methodology/Principal Findings We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3mNab) that resulted from the insertion of an intracisternal A particle (IAP) into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3mNab alleles are phenotypically normal. However, the presence of one Plcd3mNab allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9)olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved. Mice double homozygous for both the Del(9)olt1Pas and the Plcd3mNab mutations survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some structural genes and shortened phases of proliferation in hair follicle matrix cells. Conclusions/Significance The Plcd3mNab mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface. PMID:22723964

  18. Structural deterioration in produce: Phospholipase D, membrane deterioration and senescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following cloning of the first phospholipase D (PLD) gene from castor bean, there has been good progress in determining physiological roles of members of the plant PLD gene family, now known to comprise six classes: alpha, beta, gamma, delta, epsilon and zeta. Most notably, phosphatidic acid derived...

  19. Phospholipase A2 activity during cold acclimation of wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phospholipase A2 (EC 3.1.1.4; PLA2) activity in wheat (Triticum aestivum L.) crown tissue from plants undergoing cold acclimation and/or chilling stress was investigated in a moderately cold tolerant winter wheat, a spring wheat, and a poorly cold tolerant winter wheat. Activity levels were inv...

  20. Fluorometric High-Throughput Screening Assay for Secreted Phospholipases A2 Using Phospholipid Vesicles.

    PubMed

    Ewing, Heather; Fernández-Vega, Virneliz; Spicer, Timothy P; Chase, Peter; Brown, Steven; Scampavia, Louis; Roush, William R; Riley, Sean; Rosen, Hugh; Hodder, Peter; Lambeau, Gerard; Gelb, Michael H

    2016-08-01

    There is interest in developing inhibitors of human group III secreted phospholipase A2 (hGIII-sPLA2) because this enzyme plays a role in mast cell maturation. There are no potent inhibitors for hGIII-sPLA2 reported to date, so we adapted a fluorescence-based enzyme activity monitoring method to a high-throughput screening format. We opted to use an assay based on phospholipid substrate present in phospholipid vesicles since this matrix more closely resembles the natural substrate of hGIII-sPLA2, as opposed to phospholipid/detergent mixed micelles. The substrate is a phospholipid analogue containing BODIPY fluorophores dispersed as a minor component in vesicles of nonfluorescent phospholipids. Action of hGIII-sPLA2 liberates a free fatty acid from the phospholipid, leading to a reduction in quenching of the fluorophore and hence an increase in fluorescence. The assay uses optical detection in a 1536-well plate format with an excitation wavelength far away from the UV range so as to minimize false-positive library hits that result from quenching of the fluorescence. The high-throughput screen was successfully carried out on a library of 370,276 small molecules. Several hits were discovered, and data have been uploaded to PubChem. This study describes the first high-throughput optical screening assay for secreted phospholipase A2 inhibitors based on a phospholipid vesicle substrate. PMID:27146384

  1. Listeria monocytogenes listeriolysin O and phosphatidylinositol-specific phospholipase C affect adherence to epithelial cells.

    PubMed

    Krawczyk-Balska, Agata; Bielecki, Jacek

    2005-09-01

    Listeria monocytogenes, a foodborn intracellular animal and human pathogen, produces several exotoxins contributing to virulence. Among these are listeriolysin O (LLO), a pore-forming cholesterol-dependent hemolysin, and a phosphatidylinositol-specific phospholipase C (PI-PLC). LLO is known to play an important role in the escape of bacteria from the primary phagocytic vacuole of macrophages, and PI-PLC supports this process. Evidence is accumulating that LLO and PI-PLC are multifunctional virulence factors with many important roles in the host-parasite interaction other than phagosomal membrane disruption. LLO and PI-PLC may induce a number of host cell responses by modulating signal transduction of infected cells via intracellular Ca2+ levels and the metabolism of phospholipids. This would result in the activation of host phospholipase C and protein kinase C. In the present study, using Bacillus sub tilis strains expressing LLO, PI-PLC, and simultaneously LLO and PI-PLC, we show that LLO and PI-PLC enhance bacterial binding to epithelial cells Int407, with LLO being necessary and PI-PLC playing an accessory role. The results of this work suggest that these two listerial proteins act on epithelial cells prior to internalization. PMID:16391652

  2. Pla2g16 phospholipase mediates gain-of-function activities of mutant p53.

    PubMed

    Xiong, Shunbin; Tu, Huolin; Kollareddy, Madhusudhan; Pant, Vinod; Li, Qin; Zhang, Yun; Jackson, James G; Suh, Young-Ah; Elizondo-Fraire, Ana C; Yang, Peirong; Chau, Gilda; Tashakori, Mehrnoosh; Wasylishen, Amanda R; Ju, Zhenlin; Solomon, Hilla; Rotter, Varda; Liu, Bin; El-Naggar, Adel K; Donehower, Lawrence A; Martinez, Luis Alfonso; Lozano, Guillermina

    2014-07-29

    p53(R172H/+) mice inherit a p53 mutation found in Li-Fraumeni syndrome and develop metastatic tumors at much higher frequency than p53(+/-) mice. To explore the mutant p53 metastatic phenotype, we used expression arrays to compare primary osteosarcomas from p53(R172H/+) mice with metastasis to osteosarcomas from p53(+/-) mice lacking metastasis. For this study, 213 genes were differentially expressed with a P value <0.05. Of particular interest, Pla2g16, which encodes a phospholipase that catalyzes phosphatidic acid into lysophosphatidic acid and free fatty acid (both implicated in metastasis), was increased in p53(R172H/+) osteosarcomas. Functional analyses showed that Pla2g16 knockdown decreased migration and invasion in mutant p53-expressing cells, and vice versa: overexpression of Pla2g16 increased the invasion of p53-null cells. Furthermore, Pla2g16 levels were increased upon expression of mutant p53 in both mouse and human osteosarcoma cell lines, indicating that Pla2g16 is a downstream target of the mutant p53 protein. ChIP analysis revealed that several mutant p53 proteins bind the Pla2g16 promoter at E26 transformation-specific (ETS) binding motifs and knockdown of ETS2 suppressed mutant p53 induction of Pla2g16. Thus, our study identifies a phospholipase as a transcriptional target of mutant p53 that is required for metastasis. PMID:25024203

  3. Expression of phospholipase A2 receptor in primary cultured podocytes derived from dog kidneys.

    PubMed

    Sugahara, Go; Kamiie, Junichi; Kobayashi, Ryosuke; Mineshige, Takayuki; Shirota, Kinji

    2016-06-01

    Phospholipase A2 receptor (PLA2R) expressed in human podocytes has been highlighted as a causative autoantigen of human idiopathic membranous nephropathy. However, its expression was found to be minimal or absent in murine and rat podocytes. In this study, immunofluorescence revealed the expression of PLA2R in the glomerular podocytes in the kidney tissue sections of dogs. We then attempted to culture canine podocytes and investigate the expression of PLA2R in these cells. Glomeruli were isolated from dog kidneys and cultured to obtain podocytes using nylon mesh-based isolation method as followed for isolating rat podocytes. The cultured cells expressed PLA2R mRNA and protein in addition to other podocyte markers (synaptopodin, podocin and nephrin). These results indicate that the canine podocytes express PLA2R. PMID:26854253

  4. Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase.

    PubMed

    Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A; Tesmer, John J G

    2015-01-01

    Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high-resolution crystal structures of human LPLA2 and a low-resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome. PMID:25727495

  5. Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase

    NASA Astrophysics Data System (ADS)

    Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A.; Tesmer, John J. G.

    2015-03-01

    Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high-resolution crystal structures of human LPLA2 and a low-resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome.

  6. Phospholipase Cgamma1 inhibitory principles from the sarcotestas of Ginkgo biloba.

    PubMed

    Lee, J S; Cho, Y S; Park, E J; Kim, J; Oh, W K; Lee, H S; Ahn, J S

    1998-07-01

    Ten phenolic compounds were isolated from the CHCl3 extract of Ginkgo biloba sarcotestas (Ginkgoaceae) as a new class of phosphatidylinositol-specific phospholipase Cgamma1 (PI-PLCgamma1) inhibitors. The substances without the long chain were ineffective. On the other hand, the activities of these compounds were dramatically decreased by acetylation of aromatic hydroxyl groups of cardanol, phenolic acid, and bilobol and by methylation of the aromatic carboxyl group of phenolic acid. The unsaturated long chain as well as the aromatic hydroxyl and carboxyl groups might play a key role for the PI-PLCgamma1 inhibitory activity. These compounds also inhibited the growth of a number of human cancer cell lines, but were less cytotoxic against a human normal colon cell line. PMID:9677265

  7. Expression of phospholipase A2 receptor in primary cultured podocytes derived from dog kidneys

    PubMed Central

    SUGAHARA, Go; KAMIIE, Junichi; KOBAYASHI, Ryosuke; MINESHIGE, Takayuki; SHIROTA, Kinji

    2016-01-01

    Phospholipase A2 receptor (PLA2R) expressed in human podocytes has been highlighted as a causative autoantigen of human idiopathic membranous nephropathy. However, its expression was found to be minimal or absent in murine and rat podocytes. In this study, immunofluorescence revealed the expression of PLA2R in the glomerular podocytes in the kidney tissue sections of dogs. We then attempted to culture canine podocytes and investigate the expression of PLA2R in these cells. Glomeruli were isolated from dog kidneys and cultured to obtain podocytes using nylon mesh-based isolation method as followed for isolating rat podocytes. The cultured cells expressed PLA2R mRNA and protein in addition to other podocyte markers (synaptopodin, podocin and nephrin). These results indicate that the canine podocytes express PLA2R. PMID:26854253

  8. Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase

    PubMed Central

    Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A; Tesmer, John JG

    2015-01-01

    Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high resolution crystal structures of human LPLA2 and a low resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome. PMID:25727495

  9. Phospholipase A2 Isolated from the Venom of Crotalus durissus terrificus Inactivates Dengue virus and Other Enveloped Viruses by Disrupting the Viral Envelope

    PubMed Central

    Muller, Vanessa Danielle; Soares, Ricardo Oliveira; dos Santos-Junior, Nilton Nascimento; Trabuco, Amanda Cristina; Cintra, Adelia Cristina; Figueiredo, Luiz Tadeu; Caliri, Antonio; Sampaio, Suely Vilela; Aquino, Victor Hugo

    2014-01-01

    The Flaviviridae family includes several virus pathogens associated with human diseases worldwide. Within this family, Dengue virus is the most serious threat to public health, especially in tropical and sub-tropical regions of the world. Currently, there are no vaccines or specific antiviral drugs against Dengue virus or against most of the viruses of this family. Therefore, the development of vaccines and the discovery of therapeutic compounds against the medically most important flaviviruses remain a global public health priority. We previously showed that phospholipase A2 isolated from the venom of Crotalus durissus terrificus was able to inhibit Dengue virus and Yellow fever virus infection in Vero cells. Here, we present evidence that phospholipase A2 has a direct effect on Dengue virus particles, inducing a partial exposure of genomic RNA, which strongly suggests inhibition via the cleavage of glycerophospholipids at the virus lipid bilayer envelope. This cleavage might induce a disruption of the lipid bilayer that causes a destabilization of the E proteins on the virus surface, resulting in inactivation. We show by computational analysis that phospholipase A2 might gain access to the Dengue virus lipid bilayer through the pores found on each of the twenty 3-fold vertices of the E protein shell on the virus surface. In addition, phospholipase A2 is able to inactivate other enveloped viruses, highlighting its potential as a natural product lead for developing broad-spectrum antiviral drugs. PMID:25383618

  10. Phospholipase A2 activating protein and idiopathic inflammatory bowel disease.

    PubMed Central

    Peterson, J W; Dickey, W D; Saini, S S; Gourley, W; Klimpel, G R; Chopra, A K

    1996-01-01

    BACKGROUND: Crohn's disease and ulcerative colitis are idiopathic inflammatory bowel diseases (IBD) involving synthesis of eicosanoids from arachidonic acid (AA), which is released from membrane phospholipids by phospholipase A2 (PLA2). A potentially important regulator of the production of these mediators is a protein activator of PLA2, referred to as PLA2 activating protein (PLAP). AIMS: The purpose of this investigation was to discover if PLAP values might be increased in the inflamed intestinal tissue of patients with IBD and in intestinal tissue of mice with colitis. PATIENTS: Biopsy specimens were taken from patients with ulcerative colitis and Crohn's disease undergoing diagnostic colonoscopy, and normal colonic mucosa was obtained from patients without IBD after surgical resection. METHODS: Immunocytochemistry with affinity purified antibodies to PLAP synthetic peptides was used to locate PLAP antigen in sections of intestinal biopsy specimens from IBD patients compared with that of normal intestinal tissue. Northern blot analysis with a murine [32P] labelled plap cDNA probe was performed on RNA extracted from the colons of mice fed dextran sulphate sodium (DSS) and cultured HT-29 cells exposed to lipopolysaccharide (LPS). RESULTS: PLAP antigen was localised predominantly within monocytes and granulocytes in intestinal tissue sections from IBD patients, and additional deposition of extracellular PLAP antigen was associated with blood vessels and oedema fluid in the inflamed tissues. In contrast, tissue sections from normal human intestine were devoid of PLAP reactive antigen, except for some weak cytoplasmic reaction of luminal intestinal epithelial cells. Similarly, colonic tissue from DSS treated mice contained an increased amount of PLAP antigen compared with controls. The stroma of the lamina propria of the colonic mucosa from the DSS treated mice reacted intensely with antibodies to PLAP synthetic peptides, while no reaction was observed with control

  11. Purification of phospholipase D from citrus callus tissue.

    PubMed

    Witt, W; Yelenosky, G; Mayer, R T

    1987-11-15

    Phospholipase D in extracts of soluble proteins from callus cultures derived from cotyledons of Citrus sinensis (L.) Osbeck is activated by Ca2+ and anionic detergents and has a pH optimum of 6.5. The enzyme was purified 703-fold over the crude protein extract with a yield of 15% by ammonium sulfate precipitation, ion exchange chromatography, gel filtration, hydrophobic interaction chromatography, and preparative acrylamide gel electrophoresis. Preparative electrophoresis was carried out using conventional slab gel equipment and electroelution of the sliced gel. Analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified phospholipase revealed two bands of the same staining intensity running at 94.2K and 90.5K. PMID:3688883

  12. Odorant-sensitive phospholipase C in insect antennae.

    PubMed

    Boekhoff, I; Strotmann, J; Raming, K; Tareilus, E; Breer, H

    1990-01-01

    Exogenous tritiated phosphatidylinositol bisphosphate added to antennal preparations from locust and cockroach was hydrolysed releasing inositol trisphosphate. High activity of phospholipase C was detected in the soluble as well as in the membrane fraction. At low free calcium concentrations hydrolysis of the labelled lipid was stimulated by odorants and pheromones in a GTP-dependent manner. Consequently the level of inositol trisphosphate in antennal preparations increased upon odorant stimulation. PMID:2176800

  13. Purification and characterization of a phospholipase by Photobacterium damselae subsp. piscicida from cobia Rachycentron canadum.

    PubMed

    Hsu, Po-Yuan; Lee, Kuo-Kau; Hu, Chih-Chuang; Liu, Ping-Chung

    2014-09-01

    Toxicity of the extracellular products (ECPs) and the lethal attributes of phospholipase secreted by pathogenic Photobacterium damselae subsp. piscicida from cobia Rachycentron canadum was studied. An extracellular lethal toxin in the ECPs was partially purified by using Fast Protein Liquid Chromatography system. A protein band (27 kDa) exhibited phospholipase activity on Native-PAGE (by 0.3% egg yolk agar-overlay), was excised and eluted. The pI value of the purified phospholipase was determined as 3.65 and was determined as a phospholipase C by using the Amplex™ Red phosphatidylcholine -Specific phospholipase C Assay kit. The phospholipase showed maximum activity at temperature around 4-40 °C and maximal activity at pH between 8 and 9. The enzyme was inhibited by ethylenediamine-tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS); but was activated by Ca(2+) and Mg(2+) and inactivated by Zn(2+) and Cu(2+) . Both the ECPs and phospholipase were hemolytic against erythrocytes of cobia and lethal to the fish with LD50 values of 3.25 and 0.91 µg protein g(-1) fish, respectively. In toxicity neutralization test, the rabbit antisera against the phospholipase could neutralize the toxicity of ECPs, indicating that the phospholipase is a major extracellular toxin produced by the bacterium. PMID:23787821

  14. [Do phospholipases, key enzymes in sperm physiology, represent therapeutic challenges?].

    PubMed

    Arnoult, Christophe; Escoffier, Jessica; Munch, Léa; Pierre, Virginie; Hennebicq, Sylviane; Lambeau, Gérard; Ray, Pierre

    2012-05-01

    The spermatozoon is one of the most differentiated cells in mammals and its production requires an extremely complex machinery. Subtle but critical molecular changes take place during capacitation, which comprises the last series of maturation steps that naturally occur between the cauda epididymidis where spermatozoa are stored and their ultimate destination inside the oocyte. Phospholipases, by hydrolyzing various phospholipids, have been found to be critical in sperm processes such as 1) the control of flagellum beats, 2) capacitation - the molecular transformations preparing the sperm for fertilization, 3) acrosome reaction and 4) oocyte activation by eliciting calcium oscillations. The emerging important role of phospholipases is also emphasized by the fact that alterations of sperm lipids can lead to infertility. Phospholipases may represent valuable targets to develop anti- and pro-fertility drugs. Results obtained in mice are encouraging, since treatment of sperm with recombinant sPLA(2) of group X, known to be involved in capacitation, improves fertilization in vitro, while co-injection of PLCζ RNA with infertile sperm restores oocyte activation. PMID:22643005

  15. Phospholipase C in Beijing strains of Mycobacterium tuberculosis

    PubMed Central

    Mirsamadi, ES; Farnia, P; Jahani Sherafat, S; Esfahani, M; Faramarzi, N

    2010-01-01

    Background and Objectives Phospholipase of Mycobacterium tuberculosis plays an important role in pathogenesis through breaking up phospholipids and production of diacylglycerol. In this study, we examined the Beijing strains of Mycobacterium tuberculosis isolated from Iranian patients for the genes encoding this enzyme. Materials and Methods DNA extraction was performed using CTAB (cetyltrimethylammonium bromide) from positive culture specimens in tuberculosis patients. PCR was then used to amplify the plcA, plcB, plcC genes of Beijing strain, and non-Beijing strains were identified by spoligotyping. Results Of 200 specimens, 19 (9.5%) were Beijing strain and 181 (90.5%) were non-Beijing strains. The results of PCR for Beijing strains were as follows: 16 strains (84.2%) were positive for plcA, 17 (89.4%) were positive for plcB and 17 (89.4%) were positive for plcC genes. The standard strain (H37RV) was used as control. Conclusion The majority of Beijing strains have phospholipase C genes which can contribute to their pathogenesis but we need complementary studies to confirm the role of phospholipase C in pathogenecity of Mycobacterium tuberculosis. PMID:22347572

  16. Regulation of retinal angiogenesis by phospholipase C-β3 signaling pathway.

    PubMed

    Ha, Jung Min; Baek, Seung Hoon; Kim, Young Hwan; Jin, Seo Yeon; Lee, Hye Sun; Kim, Sun Ja; Shin, Hwa Kyoung; Lee, Dong Hyung; Song, Sang Heon; Kim, Chi Dae; Bae, Sun Sik

    2016-01-01

    Angiogenesis has an essential role in many pathophysiologies. Here, we show that phospholipase C-β3 (PLC-β3) isoform regulates endothelial cell function and retinal angiogenesis. Silencing of PLC-β3 in human umbilical vein endothelial cells (HUVECs) significantly delayed proliferation, migration and capillary-like tube formation. In addition, mice lacking PLC-β3 showed impaired retinal angiogenesis with delayed endothelial proliferation, reduced endothelial cell activation, abnormal vessel formation and hemorrhage. Finally, tumor formation was significantly reduced in mice lacking PLC-β3 and showed irregular size and shape of blood vessels. These results suggest that regulation of endothelial function by PLC-β3 may contribute to angiogenesis. PMID:27311705

  17. Phospholipase D toxins of brown spider venom convert lysophosphatidylcholine and sphingomyelin to cyclic phosphates.

    PubMed

    Lajoie, Daniel M; Zobel-Thropp, Pamela A; Kumirov, Vlad K; Bandarian, Vahe; Binford, Greta J; Cordes, Matthew H J

    2013-01-01

    Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using (31)P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation. PMID:24009677

  18. Regulation of retinal angiogenesis by phospholipase C-β3 signaling pathway

    PubMed Central

    Ha, Jung Min; Baek, Seung Hoon; Kim, Young Hwan; Jin, Seo Yeon; Lee, Hye Sun; Kim, Sun Ja; Shin, Hwa Kyoung; Lee, Dong Hyung; Song, Sang Heon; Kim, Chi Dae; Bae, Sun Sik

    2016-01-01

    Angiogenesis has an essential role in many pathophysiologies. Here, we show that phospholipase C-β3 (PLC-β3) isoform regulates endothelial cell function and retinal angiogenesis. Silencing of PLC-β3 in human umbilical vein endothelial cells (HUVECs) significantly delayed proliferation, migration and capillary-like tube formation. In addition, mice lacking PLC-β3 showed impaired retinal angiogenesis with delayed endothelial proliferation, reduced endothelial cell activation, abnormal vessel formation and hemorrhage. Finally, tumor formation was significantly reduced in mice lacking PLC-β3 and showed irregular size and shape of blood vessels. These results suggest that regulation of endothelial function by PLC-β3 may contribute to angiogenesis. PMID:27311705

  19. Phospholipase D Toxins of Brown Spider Venom Convert Lysophosphatidylcholine and Sphingomyelin to Cyclic Phosphates

    PubMed Central

    Lajoie, Daniel M.; Zobel-Thropp, Pamela A.; Kumirov, Vlad K.; Bandarian, Vahe; Binford, Greta J.; Cordes, Matthew H. J.

    2013-01-01

    Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using 31P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation. PMID:24009677

  20. Restoration of Responsiveness of Phospholipase Cγ2-Deficient Platelets by Enforced Expression of Phospholipase Cγ1

    PubMed Central

    Zheng, Yongwei; Adams, Tamara; Zhi, Huiying; Yu, Mei; Wen, Renren; Newman, Peter J.; Wang, Demin; Newman, Debra K.

    2015-01-01

    Receptor-mediated platelet activation requires phospholipase C (PLC) activity to elevate intracellular calcium and induce actin cytoskeleton reorganization. PLCs are classified into structurally distinct β, γ, δ, ε, ζ, and η isoforms. There are two PLCγ isoforms (PLCγ1, PLCγ2), which are critical for activation by tyrosine kinase-dependent receptors. Platelets express both PLCγ1 and PLCγ2. Although PLCγ2 has been shown to play a dominant role in platelet activation, the extent to which PLCγ1 contributes has not been evaluated. To ascertain the relative contributions of PLCγ1 and PLCγ2 to platelet activation, we generated conditionally PLCγ1-deficient, wild-type (WT), PLCγ2-deficient, and PLCγ1/PLCγ2 double-deficient mice and measured the ability of platelets to respond to different agonists. We found that PLCγ2 deficiency abrogated αIIbβ3-dependent platelet spreading, GPVI-dependent platelet aggregation, and thrombus formation on collagen-coated surfaces under shear conditions, which is dependent on both GPVI and αIIbβ3. Addition of exogenous ADP overcame defective spreading of PLCγ2-deficient platelets on immobilized fibrinogen, suggesting that PLCγ2 is required for granule secretion in response to αIIbβ3 ligation. Consistently, αIIbβ3-mediated release of granule contents was impaired in the absence of PLCγ2. In contrast, PLCγ1-deficient platelets spread and released granule contents normally on fibrinogen, exhibited normal levels of GPVI-dependent aggregation, and formed thrombi normally on collagen-coated surfaces. Interestingly, enforced expression of PLCγ1 fully restored GPVI-dependent aggregation and αIIbβ3-dependent spreading of PLCγ2-deficient platelets. We conclude that platelet activation through GPVI and αIIbβ3 utilizes PLCγ2 because PLCγ1 levels are insufficient to support responsiveness, but that PLCγ1 can restore responsiveness if expressed at levels normally achieved by PLCγ2. PMID:25793864

  1. Characterization of N-Acyl Phosphatidylethanolamine-Specific Phospholipase-D Isoforms in the Nematode Caenorhabditis elegans

    PubMed Central

    Harrison, Neale; Lone, Museer A.; Kaul, Tiffany K.; Reis Rodrigues, Pedro; Ogungbe, Ifedayo Victor; Gill, Matthew S.

    2014-01-01

    N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans) where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-acylethanolamine levels. C. elegans has two N-acyl phosphatidylethanolamine-specific phospholipase-D orthologs, nape-1 and nape-2, that are likely to have arisen from a gene duplication event. Here, we find that recombinant C. elegans NAPE-1 and NAPE-2 are capable of generating N-acylethanolamines in vitro, confirming their functional conservation. In vivo, they exhibit overlapping expression in the pharynx and the nervous system, but are also expressed discretely in these and other tissues, suggesting divergent roles. Indeed, nape-1 over-expression results in delayed growth and shortened lifespan only at 25°C, while nape-2 over-expression results in significant larval arrest and increased adult lifespan at 15°C. Interestingly, deletion of the N-acylethanolamine degradation enzyme faah-1 exacerbates nape-1 over-expression phenotypes, but suppresses the larval arrest phenotype of nape-2 over-expression, suggesting that faah-1 is coupled to nape-2, but not nape-1, in a negative feedback loop. We also find that over-expression of either nape-1 or nape-2 significantly enhances recovery from the dauer larval stage in the insulin signaling mutant daf-2(e1368), but only nape-1 over-expression reduces daf-2 adult lifespan, consistent with increased levels of the N-acylethanolamine eicosapentaenoyl ethanolamine. These results provide evidence that N-acylethanolamine biosynthetic enzymes in C. elegans have conserved function and suggest a temperature-dependent, functional divergence between the two isoforms. PMID:25423491

  2. Phospholipase activity of Mycobacterium leprae harvested from experimentally infected armadillo tissue.

    PubMed Central

    Wheeler, P R; Ratledge, C

    1991-01-01

    Three types of phospholipase activity--phospholipase A1, A2, and lysophospholipase--were detected in Mycobacterium leprae harvested from armadillo tissue at about 25% of the specific activity found in a slowly growing mycobacterium, Mycobacterium microti, which was grown in medium to optimize its phospholipase activity. The highest activity found was lysophospholipase, which released fatty acid from 2-lyso-phosphatidylcholine. Phospholipase activity was detected by using phosphatidylcholine and phosphatidylethanolamine. Differences in relative activities with these three types of substrate distinguished phospholipase activity in M. leprae extracts from armadillo liver extracts. Furthermore, retention of activity in M. leprae after NaOH treatment showed that the activity associated with M. leprae was not host derived. The specific activity of phospholipase was 20 times higher in extracts of M. leprae than in intact M. leprae organisms. Diazotization, a treatment which abolishes activities of surface enzymes exposed to the environment by the formation of covalent azide bonds with exposed amino groups, did not affect M. leprae's phospholipase activity, with one exception: release of arachidonic acid from phosphatidylcholine, which was partially inhibited. Phenolic glycolipid I, the major excreted amphipathic lipid of M. leprae, inhibited phospholipase activity, including release of arachidonic acid, for both M. leprae- and armadillo-derived activity. PMID:1855994

  3. Purification and analysis of a phospholipase A2-like lytic factor of Trichomonas vaginalis.

    PubMed

    Lubick, Kirk J; Burgess, Donald E

    2004-03-01

    Trichomonas vaginalis produces soluble factors that have been reported to have the ability to damage target cells in vitro, and it has been hypothesized that these factors may play a role in the pathogenesis of human trichomoniasis. A lytic factor (LF) was purified from T. vaginalis, and the molecular characteristics of LF were determined. T. vaginalis extract was subjected to hydrophobic chromatography with a 10 to 60% N-propanol gradient in 0.1 M ammonium acetate, resulting in the elution of LF from the column at 30% N-propanol. Cytotoxicity assays revealed that LF was cytotoxic to WEHI 164 cells and bovine red blood cells, and inactivation of LF by treatment with trypsin suggested that the active component of LF was a protein. Size exclusion chromatography of LF produced two fractions at 144 and 168 kDa, and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of LF under reducing conditions revealed two subunits of 57 and 60 kDa. Results of a fluorescence assay of LF on carboxyfluorescein-labeled liposomes composed of phosphatidylcholine-cholesterol showed that liposomes were hydrolyzed, suggesting that LF had phospholipase activity. Thin-layer chromatography analysis of BODIPY (4,4-difluoro-3a,4adiaza-s-indacene)-labeled phosphatidylcholine treated with LF demonstrated products that migrated identically to the products produced by treatment with phospholipase A(2) (PLA(2)). These results suggest that LF is a PLA(2) and may be an important virulence factor of T. vaginalis mediating the destruction of host cells and contributing to tissue damage and inflammation in trichomoniasis. PMID:14977929

  4. Phylogenetic and structural analysis of the phospholipase A2 gene family in vertebrates

    PubMed Central

    HUANG, QI; WU, YUAN; QIN, CHAO; HE, WENWU; WEI, XING

    2015-01-01

    The phospholipase A (PLA)2 family is the most complex gene family of phospholipases and plays a crucial role in a number of physiological activities. However, the phylogenetic background of the PLA2 gene family and the amino acid residues of the PLA2G7 gene following positive selection gene remain undetermined. In this study, we downloaded 49 genomic data sets of PLA from different species, including the human, house mouse, Norway rat, pig, dog, chicken, cattle, African clawed frog, Sumatran orangutan and the zebrafish species. Phylogenetic relationships were determined using the neighbor-joining (NJ), minimum evolution (ME) and maximum parsimony (MP) methods, as well as the Bayesian information criterion. The results were then presented as phylogenetic trees. Positive selection sites were detected using site, branch and branch-site models. These methods led us to the following assumptions: i) closer lineages were observed between PLA2G16 and PLA2G6, PLA2G7 and PLA2G4, PLA2G3 and PLA2G12, as well as among PLA2G10, PLA2G5 and PLA2G15; ii) PLA2G5 appeared to be the origin of the PLA2 family, and PLA2G7 was one of the most evolutionarily distant PLA2 proteins; iii) 16 positive-selection sites were detected and were marked in the PLA2G7 protein sequence as 327D, 257Q, 276G, 34s, 66G, 67C, 319S, 28N, 50S, 54T, 58R, 75T, 88Q, 92R, 179H and 191K. PMID:25543670

  5. The distribution of phospholipase D in developing and mature plants

    PubMed Central

    Quarles, R. H.; Dawson, R. M. C.

    1969-01-01

    1. The distribution of phospholipase D (phosphatidylcholine phosphatido-hydrolase, EC 3.1.4.4) was examined in the tissues of a number of plants and seeds. 2. The highest activities were found in various swollen storage tissues of certain plants: cabbage, central stalk; cauliflower, flower; celery, swollen leaf stalk; Kohl rabi, swollen stem; carrot, root; pea and marrow, seed. 3. Appreciable activity was retained in pea seeds for at least 1 year after drying. After germination and growth in the dark the total activity present in the cotyledons and also in the whole seedling decreased. 4. In the growing pea seedling (7 days old), about 3% of the total activity was in the plumule, 9% in the root and the remainder in the cotyledons. However, the activity in the root on a dry-weight basis was higher than that in the cotyledons. In both the root and the plumule the activity on a wet- or a dry-weight basis was highest in the growing tip. 5. The activity per dry weight in the roots and aerial parts of pea plants declined to low values as growth continued, but roots struck from cuttings of mature plants showed the same high activity as found in roots from young seedlings with cotyledons attached. 6. The total phospholipids present in the cotyledons of pea seeds were depleted on germination and growth. Of the individual phospholipids, phosphatidylcholine and phosphatidylethanolamine showed the same loss in 11 days as the whole phospholipid fraction, whereas phosphatidylinositol was decreased to a greater extent and cardiolipin and phosphatidylserine were not decreased. There was no increase of phosphatidic acid, as might have been expected if the phospholipids had disappeared through phospholipase D hydrolysis. 7. It is concluded that phospholipase D in plant storage tissues and seeds may be related to the rapid growth involved in their formation rather than being necessary for the utilization of their food reserve substances. PMID:4309675

  6. A role for Phospholipase D in Drosophila embryonic cellularization

    PubMed Central

    LaLonde, Mary; Janssens, Hilde; Yun, Suyong; Crosby, Juan; Redina, Olga; Olive, Virginie; Altshuller, Yelena M; Choi, Seok-Yong; Du, Guangwei; Gergen, J Peter; Frohman, Michael A

    2006-01-01

    Background Cellularization of the Drosophila embryo is an unusually synchronous form of cytokinesis in which polarized membrane extension proceeds in part through incorporation of new membrane via fusion of apically-translocated Golgi-derived vesicles. Results We describe here involvement of the signaling enzyme Phospholipase D (Pld) in regulation of this developmental step. Functional analysis using gene targeting revealed that cellularization is hindered by the loss of Pld, resulting frequently in early embryonic developmental arrest. Mechanistically, chronic Pld deficiency causes abnormal Golgi structure and secretory vesicle trafficking. Conclusion Our results suggest that Pld functions to promote trafficking of Golgi-derived fusion-competent vesicles during cellularization. PMID:17156430

  7. Phospholipases as GTPase activity accelerating proteins (GAPs) in plants.

    PubMed

    Pandey, Sona

    2016-05-01

    GTPase activity accelerating proteins (GAPs) are key regulators of the G-protein signaling cycle. By facilitating effective hydrolysis of the GTP bound on Gα proteins, GAPs control the timing and amplitude of the signaling cycle and ascertain the availability of the inactive heterotrimer for the next round of activation. Until very recently, the studies of GAPs in plants were focused exclusively on the regulator of G-protein signaling (RGS) protein. We now show that phospholipase Dα1 (PLDα1) is also a bona fide GAP in plants and together with the RGS protein controls the level of active Gα protein. PMID:27124090

  8. Modulation of oxidative stress, inflammation, and atherosclerosis by lipoprotein-associated phospholipase A2

    PubMed Central

    Rosenson, Robert S.; Stafforini, Diana M.

    2012-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2), also known as platelet-activating factor acetylhydrolase (PAF-AH), is a unique member of the phospholipase A2 superfamily. This enzyme is characterized by its ability to specifically hydrolyze PAF as well as glycerophospholipids containing short, truncated, and/or oxidized fatty acyl groups at the sn-2 position of the glycerol backbone. In humans, Lp-PLA2 circulates in active form as a complex with low- and high-density lipoproteins. Clinical studies have reported that plasma Lp-PLA2 activity and mass are strongly associated with atherogenic lipids and vascular risk. These observations led to the hypothesis that Lp-PLA2 activity and/or mass levels could be used as biomarkers of cardiovascular disease and that inhibition of the activity could offer an attractive therapeutic strategy. Darapladib, a compound that inhibits Lp-PLA2 activity, is anti-atherogenic in mice and other animals, and it decreases atherosclerotic plaque expansion in humans. However, disagreement continues to exist regarding the validity of Lp-PLA2 as an independent marker of atherosclerosis and a scientifically justified target for intervention. Circulating Lp-PLA2 mass and activity are associated with vascular risk, but the strength of the association is reduced after adjustment for basal concentrations of the lipoprotein carriers with which the enzyme associates. Genetic studies in humans harboring an inactivating mutation at this locus indicate that loss of Lp-PLA2 function is a risk factor for inflammatory and vascular conditions in Japanese cohorts. Consistently, overexpression of Lp-PLA2 has anti-inflammatory and anti-atherogenic properties in animal models. This thematic review critically discusses results from laboratory and animal studies, analyzes genetic evidence, reviews clinical work demonstrating associations between Lp-PLA2 and vascular disease, and summarizes results from animal and human clinical trials in which administration of

  9. Interactions of phospholipase D and cytochrome P450 protein stability

    SciTech Connect

    Zangar, Richard C.; Fan, Yang-Yi; Chapkin, Robert S.

    2004-08-01

    Previous studies have suggested a relationship between cytochrome P450 (P450) 3A (CYP3A) conformation and the phospholipid composition of the associated membrane. In this study, we utilized a novel microsomal incubation system that mimics many of the characteristics of CYP3A degradation pathway that have been observed in vivo and in cultured cells to study the effects of phospholipid composition on protein stability. We found that addition of phosphatidylcholine-specific phospholipase D (PLD) stabilized CYP3A in this system, but that phosphatidylinositol-specific phospholipase C (PLC) was without effect. Addition of phosphatidic acid also stabilized CYP3A protein in the microsomes. The use of 1,10-phenanthroline (phenanthroline), an inhibitor of PLD activity, decreased CYP3A stability in incubated microsomes. Similarly, 6-h treatment of primary cultures of rat hepatocytes with phenanthroline resulted in nearly complete loss of CYP3A protein. Treatment of rats with nicardipine or dimethylsulfoxide (DMSO), which have been shown to affect CYP3A stability, altered the phospholipid composition of hepatic microsomes. It did not appear, though, that the changes in phospholipid composition that resulted from these in vivo treatments accounted for the change in CYP3A stability observed in hepatic microsomes from these animals.

  10. Effects of Phospholipase A2 Inhibitors on Bilayer Lipid Membranes.

    PubMed

    Dubinin, Mikhail V; Astashev, Maxim E; Penkov, Nikita V; Gudkov, Sergey V; Dyachenko, Igor A; Samartsev, Victor N; Belosludtsev, Konstantin N

    2016-06-01

    The work examines the effect of inhibitors of cytosolic Ca(2+)-dependent and Ca(2+)-independent phospholipases A2 on bilayer lipid membranes. It was established that trifluoroperazine (TFP) and, to a lesser extent, arachidonyl trifluoromethyl ketone (AACOCF3) and palmitoyl trifluoromethyl ketone (PACOCF3) were able to permeabilize artificial lipid membranes (BLM and liposomes). It was shown that AACOCF3 lowered the temperature of phase transition of DMPC liposomes, inducing disordering of the hydrophobic region of lipid bilayer. TFP disordered membranes both in the hydrophobic region and in the region of hydrophilic heads, this being accompanied by changes in the membrane permeability: appearance of a channel-like BLM activity and leakage of sulforhodamine B from liposomes. In contrast to AACOCF3 and TFP, PACOCF3 increased membrane orderliness in the hydrophobic region (heightened the temperature of phase transition of DMPC liposomes) and in the region of lipid heads. The effectiveness of AACOCF3 and PACOCF3 as inductors of BLM and liposome permeabilization was considerably lower comparatively to TFP. As revealed by dynamic light scattering, incorporation of TFP, AACOCF3 and PACOCF3 into the membrane of liposomes resulted in the increase of the average size of particles in the suspension, presumably due to their aggregation or fusion. The paper discusses possible mechanisms of the influence of phospholipase A2 inhibitors on bilayer lipid membranes. PMID:26762382

  11. Biochemical and monolayer characterization of Tunisian snake venom phospholipases.

    PubMed

    Baîram, Douja; Aissa, Imen; Louati, Hanen; Othman, Houcemeddine; Abdelkafi-Koubaa, Zaineb; Krayem, Najeh; El Ayeb, Mohamed; Srairi-Abid, Najet; Marrakchi, Naziha; Gargouri, Youssef

    2016-08-01

    The present study investigated the kinetic and interfacial properties of two secreted phospholipases isolated from Tunisian vipers'venoms: Cerastes cerastes (CC-PLA2) and Macrovipera lebetina transmediterranea (MVL-PLA2). Results show that these enzymes have great different abilities to bind and hydrolyse phospholipids. Using egg-yolk emulsions as substrate at pH 8, we found that MVL-PLA2 has a specific activity of 1473U/mg at 37°C in presence of 1mM CaCl2. Furthermore the interfacial kinetic and binding data indicate that MVL-PLA2 has a preference to the zwitterionic phosphatidylcholine monolayers (PC). Conversely, CC-PLA2 was found to be able to hydrolyse preferentially negatively charged head group phospholipids (PG and PS) and exhibits a specific activity 9 times more important (13333U/mg at 60°C in presence of 3mM CaCl2). Molecular models of both CC-PLA2 and MVL-PLA2 3D structures have been built and their electrostatic potentials surfaces have been calculated. A marked anisotropy of the overall electrostatic charge distribution leads to a significantly difference in the dipole moment intensity between the two enzymes explaining the great differences in catalytic and binding properties, which seems to be governed by the electrostatic and hydrophobic forces operative at the surface of the two phospholipases. PMID:27164498

  12. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme

    PubMed Central

    Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori

    2015-01-01

    Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. PMID:26637123

  13. Phosphatidylinositol 4,5-bisphosphate phospholipase C and phosphomonoesterase in Dunaliella salina membranes

    SciTech Connect

    Einspahr, K.J.; Peeler, T.C.; Thompson, G.A. Jr. )

    1989-07-01

    In comparison with other cell organelles, the Dunaliella salina plasma membrane was found to be highly enriched in phospholipase C activity toward exogenous ({sup 3}H)phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}). Based on release of ({sup 3}H)inositol phosphates, the plasma membrane exhibited a PIP{sub 2}-phospholipase C activity nearly tenfold higher than the nonplasmalemmal, nonchloroplast bottom phase (BP) membrane fraction and 47 times higher than the chloroplast membrane fraction. The majority of phospholipase activity was clearly of a phospholipase C nature since over 80% of ({sup 3}H)inositol phosphates released were recovered as ({sup 3}H)inositol trisphosphate (IP{sub 3}). These results suggest a plausible mechanism for the rapid breakdown of PIP{sub 2} and phosphatidylinositol 4-phosphate (PIP) following hypoosmotic shock. The authors have also examined some of the in vitro characteristics of the plasma membrane phospholipase C activity and have found it to be calcium sensitive, reaching maximal activity at 10 micromolar free (Ca{sup 2+}). They also report here that 100 micromolar GTP{gamma}S stimulates phospholipase C activity over a range of free (Ca{sup 2+}). Together, these results provide evidence that the plasma membrane PIP{sub 2}-phospholipase C of D. salina may be subject to Ca{sup 2+} and G-protein regulation.

  14. Down-regulation of phospholipase C-beta1 following chronic muscarinic receptor activation.

    PubMed

    Sorensen, S D; Linseman, D A; Fisher, S K

    1998-04-01

    To determine whether prolonged activation of a phospholipase C-coupled receptor can lead to a down-regulation of its effector enzyme, SH-SY5Y neuroblastoma cells were incubated for 24 h with the muscarinic receptor agonist, oxotremorine-M. Under these conditions, significant reductions (46-53%) in muscarinic cholinergic receptor density, G(alphaq/11) and phospholipase C-beta1 (but not the beta3-or gamma1 isoforms) were observed. These results suggest that a selective down-regulation of phospholipase C-beta1 may play a role in adaptation to chronic muscarinic receptor activation. PMID:9617763

  15. Phospholipase A2 activity in Epstein-Barr virus-transformed lymphoblast cells from schizophrenic patients.

    PubMed

    Bennett, E R; Yedgar, S; Lerer, B; Ebstein, R P

    1991-06-01

    We examined the activity of phospholipase A2 in Epstein-Barr virus-transformed lymphoblast cell lines established from ten schizophrenic patients and ten controls. A novel method for determination of enzyme activity in whole cells was employed, by measuring the hydrolysis of a fluorescent analogue of phosphatidylcholine. No significant difference in phospholipase A2 activity was found between the groups. These results suggest that the previously reported changes in phospholipase A2 activity in plasma and in fresh peripheral cells are indicative of environmental influences and not of "trait" characteristics intrinsic to schizophrenia. PMID:1651772

  16. Lemnitoxin, the major component of Micrurus lemniscatus coral snake venom, is a myotoxic and pro-inflammatory phospholipase A2.

    PubMed

    Casais-E-Silva, Luciana L; Teixeira, Catarina F P; Lebrun, Ivo; Lomonte, Bruno; Alape-Girón, Alberto; Gutiérrez, José María

    2016-08-22

    The venom of Micrurus lemniscatus, a coral snake of wide geographical distribution in South America, was fractionated by reverse-phase HPLC and the fractions screened for phospholipase A2 (PLA2) activity. The major component of the venom, a PLA2, here referred to as 'Lemnitoxin', was isolated and characterized biochemically and toxicologically. It induces myotoxicity upon intramuscular or intravenous injection into mice. The amino acid residues Arg15, Ala100, Asn108, and a hydrophobic residue at position 109, which are characteristic of myotoxic class I phospholipases A2, are present in Lemnitoxin. This PLA2 is antigenically related to M. nigrocinctus nigroxin, Notechis scutatus notexin, Pseudechis australis mulgotoxin, and Pseudonaja textilis textilotoxin, as demonstrated with monoclonal and polyclonal antibodies. Lemnitoxin is highly selective in its targeting of cells, being cytotoxic for differentiated myotubes in vitro and muscle fibers in vivo, but not for undifferentiated myoblasts or endothelial cells. Lemnitoxin is not lethal after intravenous injection at doses up to 2μg/g in mice, evidencing its lack of significant neurotoxicity. Lemnitoxin displays anticoagulant effect on human plasma and proinflammatory activity also, as it induces paw edema and mast cell degranulation. Thus, the results of this work demonstrate that Lemnitoxin is a potent myotoxic and proinflammatory class I PLA2. PMID:27282409

  17. Translational studies of lipoprotein-associated phospholipase A2 in inflammation and atherosclerosis

    PubMed Central

    Ferguson, Jane F; Hinkle, Christine C; Mehta, Nehal N; Bagheri, Roshanak; DerOhannessian, Stephanie L; Shah, Rhia; Mucksavage, Megan I; Bradfield, Jonathan P; Hakonarson, Hakon; Wang, Xuexia; Master, Stephen R; Rader, Daniel J; Li, Mingyao; Reilly, Muredach P

    2012-01-01

    Objectives To examine the role of lipoprotein-associated phospholipase A2 (Lp-PLA2/PLA2G7) in human inflammation and coronary atherosclerosis. Background Lp-PLA2 has emerged as a potential therapeutic target in coronary heart disease (CHD). Data supporting Lp-PLA2 are indirect and confounded by species differences; whether Lp-PLA2 is causal in CHD remains in question. Methods We examined inflammatory regulation of Lp-PLA2 during experimental endotoxemia in human, probed the source of Lp-PLA2 in human leukocytes under inflammatory conditions, and assessed the relationship of variation in PLA2G7, the gene encoding Lp-PLA2, with coronary artery calcification (CAC). Results In contrast to circulating TNFα and CRP, blood and monocyte Lp-PLA2 mRNA decreased transiently, and plasma Lp-PLA2 mass declined modestly during endotoxemia. In vitro, Lp-PLA2 expression increased dramatically during human monocyte to macrophage differentiation and further in inflammatory macrophages and foam like-cells. Despite only a marginal association of SNPs in PLA2G7 with Lp-PLA2 activity or mass, numerous PLA2G7 SNPs were associated with CAC. In contrast, several SNPs in CRP were significantly associated with plasma CRP levels but had no relation with CAC. Conclusions Circulating Lp-PLA2 did not increase during acute phase response in human, while inflammatory macrophages and foam cells, but not circulating monocytes, are major leukocyte sources of Lp-PLA2. Common genetic variation in PLA2G7 is associated with sub-clinical coronary atherosclerosis. These data link Lp-PLA2 to atherosclerosis in human while highlighting the challenge in using circulating Lp-PLA2 as a biomarker of Lp-PLA2 actions in the vasculature. PMID:22340269

  18. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence

    PubMed Central

    Theiss, Stephanie; Ishdorj, Ganchimeg; Brenot, Audrey; Kretschmar, Marianne; Lan, Chung-Yu; Nichterlein, Thomas; Hacker, Jörg; Nigam, Santosh; Agabian, Nina; Köhler, Gerwald A.

    2008-01-01

    Phospholipases are critical for modification and redistribution of lipid substrates, membrane remodeling and microbial virulence. Among the many different classes of phospholipases, fungal phospholipase B (Plb) proteins show the broadest range of substrate specificity and hydrolytic activity, hydrolyzing acyl ester bonds in phospholipids and lysophospholipids and further catalyzing lysophospholipase-transacylase reactions. The genome of the opportunistic fungal pathogen Candida albicans encodes a PLB multigene family with five putative members; we present the first characterization of this group of potential virulence determinants. CaPLB5, the third member of this multigene family characterized herein is a putative secretory protein with a predicted GPI-anchor attachment site. Real-time RT-PCR gene expression analysis of CaPLB5 and the additional CaPLB gene family members revealed that filamentous growth and physiologically relevant environmental conditions are associated with increased phospholipase B gene activity. The phenotypes expressed by null mutant and revertant strains of CaPLB5 indicate that this lipid hydrolase plays an important role for cell-associated phospholipase A2 activity and in vivo organ colonization. PMID:16759910

  19. Proteolysis sensitizes LDL particles to phospholipolysis by secretory phospholipase A2 group V and secretory sphingomyelinase

    PubMed Central

    Plihtari, Riia; Hurt-Camejo, Eva; Öörni, Katariina; Kovanen, Petri T.

    2010-01-01

    LDL particles that enter the arterial intima become exposed to proteolytic and lipolytic modifications. The extracellular hydrolases potentially involved in LDL modification include proteolytic enzymes, such as chymase, cathepsin S, and plasmin, and phospholipolytic enzymes, such as secretory phospholipases A2 (sPLA2-IIa and sPLA2-V) and secretory acid sphingomyelinase (sSMase). Here, LDL was first proteolyzed and then subjected to lipolysis, after which the effects of combined proteolysis and lipolysis on LDL fusion and on binding to human aortic proteoglycans (PG) were studied. Chymase and cathepsin S led to more extensive proteolysis and release of peptide fragments from LDL than did plasmin. sPLA2-IIa was not able to hydrolyze unmodified LDL, and even preproteolysis of LDL particles failed to enhance lipolysis by this enzyme. However, preproteolysis with chymase and cathepsin S accelerated lipolysis by sPLA2-V and sSMase, which resulted in enhanced fusion and proteoglycan binding of the preproteolyzed LDL particles. Taken together, the results revealed that proteolysis sensitizes the LDL particles to hydrolysis by sPLA2-V and sSMase. By promoting fusion and binding of LDL to human aortic proteoglycans, the combination of proteolysis and phospholipolysis of LDL particles potentially enhances extracellular accumulation of LDL-derived lipids during atherogenesis. PMID:20124257

  20. Modulation of the Activity of Secretory Phospholipase A2 by Antimicrobial Peptides

    PubMed Central

    Zhao, Hongxia; Kinnunen, Paavo K. J.

    2003-01-01

    The antimicrobial peptides magainin 2, indolicidin, and temporins B and L were found to modulate the hydrolytic activity of secretory phospholipase A2 (sPLA2) from bee venom and in human lacrimal fluid. More specifically, hydrolysis of phosphatidylcholine (PC) liposomes by bee venom sPLA2 at 10 μM Ca2+ was attenuated by these peptides while augmented product formation was observed in the presence of 5 mM Ca2+. The activity of sPLA2 towards anionic liposomes was significantly enhanced by the antimicrobial peptides at low [Ca2+] and was further enhanced in the presence of 5 mM Ca2+. Similarly, with 5 mM Ca2+ the hydrolysis of anionic liposomes was enhanced significantly by human lacrimal fluid sPLA2, while that of PC liposomes was attenuated. These results indicate that concerted action of antimicrobial peptides and sPLA2 could improve the efficiency of the innate response to infections. Interestingly, inclusion of a cationic gemini surfactant in the vesicles showed an essentially similar pattern on sPLA2 activity, suggesting that the modulation of the enzyme activity by the antimicrobial peptides may involve also charge properties of the substrate surface. PMID:12604528

  1. Interferon-gamma induces the synthesis and activation of cytosolic phospholipase A2.

    PubMed Central

    Wu, T; Levine, S J; Lawrence, M G; Logun, C; Angus, C W; Shelhamer, J H

    1994-01-01

    Both IFN-alpha/beta and IFN-gamma have recently been demonstrated to induce a rapid but transient activation of phospholipase A2 (PLA2) in BALB/c 3T3 fibroblasts and a human neuroblastoma cell line. We report that IFN-gamma induces the synthesis and prolonged activation of cytosolic phospholipase A2 (cPLA2) in a human bronchial epithelial cell line (BEAS 2B). Treatment of the cells with IFN-gamma (300 U/ml) increased the release of [3H]arachidonic acid (AA) from prelabeled cells with a maximal effect at 12 h after stimulation. The increased [3H]AA release was inhibited by the PLA2 inhibitor p-bromophenacyl bromide (10(-5) M). Calcium ionophore A23187 (10(-5) M) further increased the [3H]AA release from the IFN-gamma-treated cells. Subcellular enzyme activity assay revealed that IFN-gamma increased PLA2 activity in both the cytosol and membrane fractions with a translocation of the cPLA2 to cell membranes in a Ca(2+)-free cell lysing buffer. Treatment with IFN-gamma also induced the release of 15-HETE, an arachidonic acid metabolite. Immunoblot showed that IFN-gamma induced the synthesis of cPLA2 protein. Nuclear run-on assay demonstrated that IFN-gamma initiated cPLA2 gene transcription within 15 min, and this effect was sustained at 4 h and returned to near control level at 12 h. The cPLA2 mRNA level was assayed by reverse transcription and PCR. IFN-gamma was found to increase the cPLA2 mRNA after 2-24 h treatment. Furthermore, the IFN-gamma induced cPLA2 mRNA increase was blocked by inhibitors of protein kinase C and calcium/calmodulin-dependent protein kinases, suggesting the involvement of these protein kinases in IFN-gamma-induced gene expression of cPLA2. This study shows that IFN-gamma induces the synthesis and prolonged activation of cPLA2. Images PMID:8113394

  2. Defective phosphatidic acid-phospholipase C signaling in diabetic cardiomyopathy.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Dibrov, Elena; Austria, J Alejandro; Sahi, Nidhi; Panagia, Vincenzo; Pierce, Grant N

    2004-03-26

    The effects of exogenous phosphatidic acid (PA) on Ca2+ transients and contractile activity were studied in cardiomyocytes isolated from chronic streptozotocin-induced diabetic rats. In control cells, 25 microM PA induced a significant increase in active cell shortening and Ca2+ transients. PA increased IP3 generation in the control cardiomyocytes and its inotropic effects were blocked by a phospholipase C inhibitor. In cardiomyocytes from diabetic rats, PA induced a 25% decrease in active cell shortening and no significant effect on Ca2+ transients. Basal and PA-induced IP3 generation in diabetic rat cardiomyocytes was 3-fold lower as compared to control cells. Sarcolemmal membrane PLC activity was impaired. Insulin treatment of the diabetic animals resulted in a partial recovery of PA responses. Our results, therefore, identify an important defect in the PA-PLC signaling pathway in diabetic rat cardiomyocytes, which may have significant implications for heart dysfunction during diabetes. PMID:15003542

  3. Purification and kinetics of extracellular phospholipase A of Salmonella newport.

    PubMed

    Neena, S; Asnani, P J; Bhandari, S; Vohra, R

    1992-01-01

    Attempts were made to purify and study the kinetics of extracellular phospholipase A of Salmonella newport (6,8, eb; 1,2). The enzyme was purified by salt precipitation followed by gel filtration, using different grades of Sephadex. The enzymically active purified preparation was found to be a protein, having molar mass ranging between 43 and 67 kDa. The enzyme had a pH optimum at 7.5, giving 18.2 micrograms of lysophosphatidylcholine per mg protein. Its activity was enhanced by all metal ions except potassium, by solvents and surfactants except sodium dodecyl sulfate. It hydrolyzed the membrane phospholipids of red blood cells and was inhibitory to the growth of other microorganisms. PMID:1505883

  4. Recent research progress with phospholipase C from Bacillus cereus.

    PubMed

    Lyu, Yan; Ye, Lidan; Xu, Jun; Yang, Xiaohong; Chen, Weiwei; Yu, Hongwei

    2016-01-01

    Phospholipase C (PLC) catalyzes the hydrolysis of phospholipids to produce phosphate monoesters and diacylglycerol. It has many applications in the enzymatic degumming of plant oils. PLC Bc , a bacterial PLC from Bacillus cereus, is an optimal choice for this activity in terms of its wide substrate spectrum, high activity, and approved safety. Unfortunately, its large-scale production and reliable high-throughput screening of PLC Bc remain challenging. Herein, we summarize the research progress regarding PLC Bc with emphasis on the screening methods, expression systems, catalytic mechanisms and inhibitor of PLC Bc . This review hopefully will inspire new achievements in related areas, to promote the sustainable development of PLC Bc and its application. PMID:26437973

  5. Autoproteolytic Activation of a Symbiosis-regulated Truffle Phospholipase A2.

    PubMed

    Cavazzini, Davide; Meschi, Francesca; Corsini, Romina; Bolchi, Angelo; Rossi, Gian Luigi; Einsle, Oliver; Ottonello, Simone

    2013-01-18

    Fungal phospholipases are members of the fungal/bacterial group XIV secreted phospholipases A(2) (sPLA(2)s). TbSP1, the sPLA(2) primarily addressed in this study, is up-regulated by nutrient deprivation and is preferentially expressed in the symbiotic stage of the ectomycorrhizal fungus Tuber borchii. A peculiar feature of this phospholipase and of its ortholog from the black truffle Tuber melanosporum is the presence of a 54-amino acid sequence of unknown functional significance, interposed between the signal peptide and the start of the conserved catalytic core of the enzyme. X-ray diffraction analysis of a recombinant TbSP1 form corresponding to the secreted protein previously identified in T. borchii mycelia revealed a structure comprising the five α-helices that form the phospholipase catalytic module but lacking the N-terminal 54 amino acids. This finding led to a series of functional studies that showed that TbSP1, as well as its T. melanosporum ortholog, is a self-processing pro-phospholipase A(2), whose phospholipase activity increases up to 80-fold following autoproteolytic removal of the N-terminal peptide. Proteolytic cleavage occurs within a serine-rich, intrinsically flexible region of TbSP1, does not involve the phospholipase active site, and proceeds via an intermolecular mechanism. Autoproteolytic activation, which also takes place at the surface of nutrient-starved, sPLA(2) overexpressing hyphae, may strengthen and further control the effects of phospholipase up-regulation in response to nutrient deprivation, also in the context of symbiosis establishment and mycorrhiza formation. PMID:23192346

  6. Autoproteolytic Activation of a Symbiosis-regulated Truffle Phospholipase A2*

    PubMed Central

    Cavazzini, Davide; Meschi, Francesca; Corsini, Romina; Bolchi, Angelo; Rossi, Gian Luigi; Einsle, Oliver; Ottonello, Simone

    2013-01-01

    Fungal phospholipases are members of the fungal/bacterial group XIV secreted phospholipases A2 (sPLA2s). TbSP1, the sPLA2 primarily addressed in this study, is up-regulated by nutrient deprivation and is preferentially expressed in the symbiotic stage of the ectomycorrhizal fungus Tuber borchii. A peculiar feature of this phospholipase and of its ortholog from the black truffle Tuber melanosporum is the presence of a 54-amino acid sequence of unknown functional significance, interposed between the signal peptide and the start of the conserved catalytic core of the enzyme. X-ray diffraction analysis of a recombinant TbSP1 form corresponding to the secreted protein previously identified in T. borchii mycelia revealed a structure comprising the five α-helices that form the phospholipase catalytic module but lacking the N-terminal 54 amino acids. This finding led to a series of functional studies that showed that TbSP1, as well as its T. melanosporum ortholog, is a self-processing pro-phospholipase A2, whose phospholipase activity increases up to 80-fold following autoproteolytic removal of the N-terminal peptide. Proteolytic cleavage occurs within a serine-rich, intrinsically flexible region of TbSP1, does not involve the phospholipase active site, and proceeds via an intermolecular mechanism. Autoproteolytic activation, which also takes place at the surface of nutrient-starved, sPLA2 overexpressing hyphae, may strengthen and further control the effects of phospholipase up-regulation in response to nutrient deprivation, also in the context of symbiosis establishment and mycorrhiza formation. PMID:23192346

  7. Phospholipases of Mineralization Competent Cells and Matrix Vesicles: Roles in Physiological and Pathological Mineralizations

    PubMed Central

    Mebarek, Saida; Abousalham, Abdelkarim; Magne, David; Do, Le Duy; Bandorowicz-Pikula, Joanna; Pikula, Slawomir; Buchet, René

    2013-01-01

    The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in

  8. Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer

    PubMed Central

    Bruntz, Ronald C.; Lindsley, Craig W.

    2014-01-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein–coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. PMID:25244928

  9. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    PubMed Central

    Borrelli, Grazia M.; Trono, Daniela

    2015-01-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes. PMID:26340621

  10. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications.

    PubMed

    Borrelli, Grazia M; Trono, Daniela

    2015-01-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes. PMID:26340621

  11. Modulation of membrane phospholipids, the cytosolic calcium influx and cell proliferation following treatment of B16-F10 cells with recombinant phospholipase-D from Loxosceles intermedia (brown spider) venom.

    PubMed

    Wille, Ana Carolina Martins; Chaves-Moreira, Daniele; Trevisan-Silva, Dilza; Magnoni, Mariana Gabriel; Boia-Ferreira, Marianna; Gremski, Luiza Helena; Gremski, Waldemiro; Chaim, Olga Meiri; Senff-Ribeiro, Andrea; Veiga, Silvio Sanches

    2013-06-01

    The mechanism through which brown spiders (Loxosceles genus) cause dermonecrosis, dysregulated inflammatory responses, hemolysis and platelet aggregation, which are effects reported following spider bites, is currently attributed to the presence of phospholipase-D in the venom. In the present investigation, through two-dimensional immunoblotting, we observed immunological cross-reactivity for at least 25 spots in crude Loxosceles intermedia venom, indicating high expression levels for different isoforms of phospholipase-D. Using a recombinant phospholipase-D from the venom gland of L. intermedia (LiRecDT1) in phospholipid-degrading kinetic experiments, we determined that this phospholipase-D mainly hydrolyzes synthetic sphingomyelin in a time-dependent manner, generating ceramide 1-phosphate plus choline, as well as lysophosphatidylcholine, generating lysophosphatidic acid plus choline, but exhibits little activity against phosphatidylcholine. Through immunofluorescence assays with antibodies against LiRecDT1 and using a recombinant GFP-LiRecDT1 fusion protein, we observed direct binding of LiRecDT1 to the membrane of B16-F10 cells. We determined that LiRecDT1 hydrolyzes phospholipids in detergent extracts and from ghosts of B16-F10 cells, generating choline, indicating that the enzyme can access and modulate and has activity against membrane phospholipids. Additionally, using Fluo-4, a calcium-sensitive fluorophore, it was shown that treatment of cells with phospholipase-D induced an increase in the calcium concentration in the cytoplasm, but without altering viability or causing damage to cells. Finally, based on the known endogenous activity of phospholipase-D as an inducer of cell proliferation and the fact that LiRecDT1 binds to the cell surface, hydrolyzing phospholipids to generate bioactive lipids, we employed LiRecDT1 as an exogenous source of phospholipase-D in B16-F10 cells. Treatment of the cells was effective in increasing their proliferation in a

  12. Group III secreted phospholipase A2 transgenic mice spontaneously develop inflammation

    PubMed Central

    Sato, Hiroyasu; Taketomi, Yoshitaka; Isogai, Yuki; Masuda, Seiko; Kobayashi, Tetsuyuki; Yamamoto, Kei; Murakami, Makoto

    2009-01-01

    PLA2 (phospholipase A2) group III is an atypical sPLA2 (secretory PLA2) that is homologous with bee venom PLA2 rather than with other mammalian sPLA2s. In the present paper, we show that endogenous group III sPLA2 (PLA2G3) is expressed in mouse skin and that Tg (transgenic) mice overexpressing human PLA2G3 spontaneously develop skin inflammation. Pla2g3-Tg mice over 9 months of age frequently developed dermatitis with hyperkeratosis, acanthosis, parakeratosis, erosion, ulcer and sebaceous gland hyperplasia. The dermatitis was accompanied by infiltration of neutrophils and macrophages and by elevated levels of pro-inflammatory cytokines, chemokines and prostaglandin E2. In addition, Pla2g3-Tg mice had increased lymph aggregates and mucus in the airway, lymphocytic sialadenitis, hepatic extramedullary haemopoiesis, splenomegaly with increased populations of granulocytes and monocytes/macrophages, and increased serum IgG1. Collectively, these observations provide the first demonstration of spontaneous development of inflammation in mice with Tg overexpression of mammalian sPLA2. PMID:19371233

  13. Natural phospholipase A(2) myotoxin inhibitor proteins from snakes, mammals and plants.

    PubMed

    Lizano, Sergio; Domont, Gilberto; Perales, Jonas

    2003-12-15

    A renewed interest in the phenomenon of inter- and intra-species resistance towards the toxicity of snake venoms, coupled with the search for new strategies for treatment of snake envenomations, has prompted the discovery of proteins which neutralize the major toxic components of these venoms. Among these emerging groups of proteins are inhibitors of toxic phospholipases A2 (PLA2s), many of which exhibit a wide range of toxic effects including muscle-tissue damage, neurotoxicity, and inflammation. These proteins have been isolated from both venomous and non-venomous snakes, mammals, and most recently from medicinal plant extracts. The snake blood-derived inhibitors have been grouped into three major classes, alpha, beta, and gamma, based on common structural motifs found in other proteins with diverse physiological properties. In mammals, DM64, an anti-myotoxic protein isolated from opossum serum, belongs to the immunoglobulin super gene family and is homologous to human alpha1B-glycoprotein and DM43, a metalloproteinase inhibitor from the same organism. In plants, a short note is made of WSG, a newly described anti-toxic-PLA2 glycoprotein isolated from Withania somnifera (Ashwaganda), a medicinal plant whose aqueous extracts neutralize the PLA2 activity of the Naja naja venom. The implications of these new groups of PLA2 toxin inhibitors in the context of our current understanding of snake biology as well as in the development of novel therapeutic reagents in the treatment of snake envenomations worldwide are discussed. PMID:15019494

  14. Predominant role of cytosolic phospholipase A2α in dioxin-induced neonatal hydronephrosis in mice.

    PubMed

    Yoshioka, Wataru; Kawaguchi, Tatsuya; Fujisawa, Nozomi; Aida-Yasuoka, Keiko; Shimizu, Takao; Matsumura, Fumio; Tohyama, Chiharu

    2014-01-01

    Hydronephrosis is a common disease characterized by dilation of the renal pelvis and calices, resulting in loss of kidney function in the most severe cases. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces nonobstructive hydronephrosis in mouse neonates through upregulation of prostaglandin E2 (PGE2) synthesis pathway consisting of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) by a yet unknown mechanism. We here studied possible involvement of cytosolic phospholipase A2α (cPLA2α) in this mechanism. To this end, we used a cPLA2α-null mouse model and found that cPLA2α has a significant role in the upregulation of the PGE2 synthesis pathway through a noncanonical pathway of aryl hydrocarbon receptor. This study is the first to demonstrate the predominant role of cPLA2α in hydronephrosis. Elucidation of the pathway leading to the onset of hydronephrosis using the TCDD-exposed mouse model will deepen our understanding of the molecular basis of nonobstructive hydronephrosis in humans. PMID:24509627

  15. Emergence of a metalloproteinase / phospholipase A2 axis of systemic inflammation

    PubMed Central

    Fernandez-Patron, Carlos; Leung, Dickson

    2015-01-01

    We review select aspects of the biology of matrix metalloproteinases (MMPs) with a focus on the modulation of inflammatory responses by MMP-2. MMP-2 is a zinc- and calcium-dependent endoprotease with substrates including extracellular matrix proteins, vasoactive peptides and chemokines. Humans and mice with MMP-2 deficiency exhibit a predominantly inflammatory phenotype. Recent research shows that MMP-2 deficient mice display elevated activity of a secreted phospholipase A2 in the heart. Additionally, MMP-2 deficient mice exhibit abnormally high prostaglandin E2 levels in various organs (i.e., the heart, brain and liver), signs of inflammation and exacerbated lipopolysaccharide-induced fever. We briefly review the biology of sPLA2 enzymes to propose the existence of a heart-centric MMP-2/sPLA2 axis of systemic inflammation. Moreover, we postulate that PLA2 activation is induced by chemokines, whose ability to signal inflammation is regulated in a tissue-specific fashion by MMPs. Thus, genetic and pharmacologically induced MMP-deficiencies can be expected to perturb PLA2-mediated inflammatory mechanisms. PMID:26491703

  16. Sodium and potassium regulate endothelial phospholipase C-γ and Bmx.

    PubMed

    Ying, Wei-Zhong; Aaron, Kristal J; Sanders, Paul W

    2014-07-01

    The amount of Na(+) and K(+) in the diet promotes significant changes in endothelial cell function. In the present study, a series of in vitro and in vivo experiments determined the role of Na(+) and K(+) in the regulation of two pleckstrin homology domain-containing intracellular signaling molecules, phospholipase C (PLC)-γ1 and epithelial and endothelial tyrosine kinase/bone marrow tyrosine kinase on chromosome X (Bmx), and agonist-generated Ca(2+) signaling in the endothelium. Extracellular K(+) concentration regulated the levels of activated PLC-γ1, Bmx, and carbachol-stimulated intracellular Ca(2+) mobilization in human endothelial cells. Additional experiments confirmed that high-conductance Ca(2+)-activated K(+) channels and phosphatidylinositol 3-kinase mediated these effects. The content of Na(+) and K(+) in the diet also regulated Bmx levels in endothelial cells and activated PLC-γ1 levels in rats in vivo. The effects of dietary K(+) on Bmx were more pronounced in rats fed a high-salt diet compared with rats fed a low-salt diet. These experiments elucidated an endothelial cell signaling mechanism regulated by electrolytes, further demonstrating an integral relationship between endothelial cell function and dietary Na(+) and K(+) content. PMID:24785188

  17. Phospholipase C-β1 Hypofunction in the Pathogenesis of Schizophrenia

    PubMed Central

    Kim, Seong-Wook; Cho, Taesup; Lee, Sukchan

    2015-01-01

    Schizophrenia is a mental disorder that is characterized by various abnormal symptoms. Previous studies indicate decreased expression of phospholipase C-β1 (PLC-β1) in the brains of patients with schizophrenia. PLC-β1-null (PLC-β1−/−) mice exhibit multiple endophenotypes of schizophrenia. Furthermore, a study of PLC-β1 knockdown in the medial prefrontal cortex of mice has shown a specific behavioral deficit, impaired working memory. These results support the notion that disruption of PLC-β1-linked signaling in the brain is strongly involved in the pathogenesis of schizophrenia. In this review, we broadly investigate recent studies regarding schizophrenia-related behaviors as well as their various clinical and biological correlates in PLC-β1−/− and knockdown mouse models. This will provide a better understanding of the pathological relevance of the altered expression of PLC-β1 in the brains of patients with schizophrenia. Evidence accumulated will shed light on future in-depth studies, possibly in human subjects. PMID:26635636

  18. Conjugated polyelectrolyte supported bead based assays for phospholipase A2 activity.

    PubMed

    Chemburu, Sireesha; Ji, Eunkyung; Casana, Yosune; Wu, Yang; Buranda, Tione; Schanze, Kirk S; Lopez, Gabriel P; Whitten, David G

    2008-11-20

    A fluorescence based assay for human serum-derived phospholipase activity has been developed in which cationic conjugated polyelectrolytes are supported on silica microspheres. The polymer-coated beads are overcoated with an anionic phospholipid (1,2-dimyristoyl-sn-glycero-3-[phospho- rac-(1-glycerol)) (DMPG) to provide "lipobeads" that serve as a sensor for PLA2. The lipid serves a dual role as a substrate for PLA2 and an agent to attenuate quenching of the polymer fluorescence by the external electron transfer quencher 9,10-anthraquinone-2,6-disulfonic acid (AQS). In this case quenching of the polymer fluorescence by AQS increases as the PLA2 digests the lipid. The lipid can also be used itself as a quencher and substrate by employing a small amount of energy transfer quencher substituted lipid in the DMPG. In this case the fluorescence of the polymer is quenched when the lipid layer is intact; as the enzyme digests the lipid, the fluorescence of the polymer is restored. The sensing of PLA2 activity has been studied both by monitoring fluorescence changes in a multiwell plate reader and by flow cytometry. The assay exhibits good sensitivity with EC50 values in the nanomolar range. PMID:18808092

  19. Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARgamma by cyclic phosphatidic acid.

    PubMed

    Tsukahara, Tamotsu; Tsukahara, Ryoko; Fujiwara, Yuko; Yue, Junming; Cheng, Yunhui; Guo, Huazhang; Bolen, Alyssa; Zhang, Chunxiang; Balazs, Louisa; Re, Fabio; Du, Guangwei; Frohman, Michael A; Baker, Daniel L; Parrill, Abby L; Uchiyama, Ayako; Kobayashi, Tetsuyuki; Murakami-Murofushi, Kimiko; Tigyi, Gabor

    2010-08-13

    Cyclic phosphatidic acid (1-acyl-2,3-cyclic-glycerophosphate, CPA), one of nature's simplest phospholipids, is found in cells from slime mold to humans and has a largely unknown function. We find here that CPA is generated in mammalian cells in a stimulus-coupled manner by phospholipase D2 (PLD2) and binds to and inhibits the nuclear hormone receptor PPARgamma with nanomolar affinity and high specificity through stabilizing its interaction with the corepressor SMRT. CPA production inhibits the PPARgamma target-gene transcription that normally drives adipocytic differentiation of 3T3-L1 cells, lipid accumulation in RAW264.7 cells and primary mouse macrophages, and arterial wall remodeling in a rat model in vivo. Inhibition of PLD2 by shRNA, a dominant-negative mutant, or a small molecule inhibitor blocks CPA production and relieves PPARgamma inhibition. We conclude that CPA is a second messenger and a physiological inhibitor of PPARgamma, revealing that PPARgamma is regulated by endogenous agonists as well as by antagonists. PMID:20705243

  20. Phospholipase D1 decreases type I collagen levels in hepatic stellate cells via induction of autophagy.

    PubMed

    Seo, H-Y; Jang, B-K; Jung, Y-A; Lee, E-J; Kim, H-S; Jeon, J-H; Kim, J-G; Lee, I-K; Kim, M-K; Park, K-G

    2014-06-20

    Hepatic stellate cells (HSCs) are major players in liver fibrogenesis. Accumulating evidence shows that suppression of autophagy plays an important role in the development and progression of liver disease. Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA) and choline, was recently shown to modulate autophagy. However, little is known about the effects of PLD1 on the production of type I collagen that characterizes liver fibrosis. Here, we examined whether PLD1 regulates type I collagen levels in HSCs through induction of autophagy. Adenovirus-mediated overexpression of PLD-1 (Ad-PLD1) reduced type I collagen levels in the activated human HSC lines, hTERT and LX2. Overexpression of PLD1 in HSCs led to induction of autophagy as demonstrated by increased LC3-II conversion and formation of LC3 puncta, and decreased p62 abundance. Moreover, inhibiting the induction of autophagy by treating cells with bafilomycin or a small interfering (si)RNA for ATG7 rescued Ad-PLD1-induced suppression of type I collagen accumulation in HSCs. The effects of PLD on type I collagen levels were not related to TGF-β/Smad signaling. Furthermore, treatment of cells with PA induced autophagy and inhibited type I collagen accumulation. The present study indicates that PLD1 plays a role in regulating type I collagen accumulation through induction of autophagy. PMID:24802400

  1. Regulation of macrophage differentiation and polarization by group IVC phospholipase A₂.

    PubMed

    Ishihara, Keiichi; Kuroda, Asuka; Sugihara, Kanako; Kanai, Shiho; Nabe, Takeshi; Akiba, Satoshi

    2011-12-16

    Although the cellular function of group IVC phospholipase A(2) (IVC-PLA(2)) remains to be understood, the expression of IVC-PLA(2) in human monocytic THP-1 cells was increased during phorbol ester-induced macrophage differentiation. We therefore examined the role of IVC-PLA(2) in macrophage differentiation using THP-1 cells. Two THP-1 cell lines stably expressing IVC-PLA(2)-specific shRNA were established. Differentiation and maturation into macrophages on treatment with phorbol ester were facilitated by knockdown of IVC-PLA(2) without the compensatory induction of mRNA expression for other group IV and VI PLA(2)s. Furthermore, the enhancement of macrophage differentiation by IVC-PLA(2)-knockdown were abolished by treatment with lysophosphatidylcholine, a metabolite of phospholipids generated by PLA(2)-mediated hydrolysis, indicating that PLA(2) activity is necessary for the inhibition of macrophage differentiation by IVC-PLA(2). Additionally, we found that the differentiation into classically activated M1 macrophage was superior in IVC-PLA(2)-knockdown cells, whereas the differentiation into alternatively activated M2 macrophage was suppressed by IVC-PLA(2)-knockdown. These findings suggest that IVC-PLA(2) is involved in regulations of macrophage differentiation and macrophage polarization. PMID:22108055

  2. Lipoprotein-associated phospholipase A2: a novel marker of cardiovascular risk and potential therapeutic target.

    PubMed

    Macphee, Colin; Benson, G Martin; Shi, Yi; Zalewski, Andrew

    2005-06-01

    Although the clinical benefit of statins is well established, these agents reduce the risk of cardiovascular events by only 20 - 40%, and the residual risk for high-risk patients is considerable. The recognition of atherosclerosis as an inflammatory disease has opened the door to numerous complementary therapeutic approaches to further reduce risk and the overall burden of cardiovascular disease. Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is a novel inflammatory marker of cardiovascular risk that is being evaluated as a potential therapeutic target. The biological function of this enzyme in atherosclerosis has been controversial but recent evidence supports its pro-atherogenic role. The enzyme is predominantly bound to low-density lipoprotein cholesterol particles in humans, and its activity produces bioactive lipid mediators that promote inflammatory processes present at every stage of atherogenesis, from atheroma initiation to plaque destabilisation and rupture. Initial clinical studies suggest that the inhibitors of Lp-PLA(2) can block enzyme activity in plasma and within atherosclerotic plaques. However, more studies are needed to determine the potential clinical benefits of inhibiting Lp-PLA(2). PMID:16004595

  3. Evolutionary conservation of physical and functional interactions between phospholipase D and actin.

    PubMed

    Kusner, David J; Barton, James A; Qin, Chunbo; Wang, Xuemin; Iyer, Shankar S

    2003-04-15

    Phospholipase D (PLD) enzymes from bacteria to mammals exhibit a highly conserved core structure and catalytic mechanism, but whether protein-protein interactions exhibit similar commonality is unknown. Our objective was to determine whether the physical and functional interactions of mammalian PLDs with actin are evolutionarily conserved among bacterial and plant PLDs. Highly purified bacterial and plant PLDs cosedimented with mammalian skeletal muscle alpha-actin, indicating direct interaction with F-actin. The binding of bacterial PLD to G-actin exhibited two affinity states, with dissociation constants of 1.13 pM and 0.58 microM. The effects of actin on the activities of bacterial and plant PLDs were polymerization dependent; monomeric G-actin inhibited PLD activity, whereas polymerized F-actin augmented PLD activity. Actin modulation of bacterial and plant PLDs demonstrated kinetic characteristics, efficacies, and potencies similar to those of human PLD1. Thus, physical and functional interactions between PLD and actin in PLD family members from bacteria to mammals are highly conserved throughout evolution. PMID:12667487

  4. Revisiting the role of phospholipases C in virulence and the lifecycle of Mycobacterium tuberculosis

    PubMed Central

    Le Chevalier, Fabien; Cascioferro, Alessandro; Frigui, Wafa; Pawlik, Alexandre; Boritsch, Eva C.; Bottai, Daria; Majlessi, Laleh; Herrmann, Jean Louis; Brosch, Roland

    2015-01-01

    Mycobacterium tuberculosis, the agent of human tuberculosis has developed different virulence mechanisms and virulence-associated tools during its evolution to survive and multiply inside the host. Based on previous reports and by analogy with other bacteria, phospholipases C (PLC) of M. tuberculosis were thought to be among these tools. To get deeper insights into the function of PLCs, we investigated their putative involvement in the intracellular lifestyle of M. tuberculosis, with emphasis on phagosomal rupture and virulence, thereby re-visiting a research theme of longstanding interest. Through the construction and use of an M. tuberculosis H37Rv PLC-null mutant (ΔPLC) and control strains, we found that PLCs of M. tuberculosis were not required for induction of phagosomal rupture and only showed marginal, if any, impact on virulence of M. tuberculosis in the cellular and mouse infection models used in this study. In contrast, we found that PLC-encoding genes were strongly upregulated under phosphate starvation and that PLC-proficient M. tuberculosis strains survived better than ΔPLC mutants under conditions where phosphatidylcholine served as sole phosphate source, opening new perspectives for studies on the role of PLCs in the lifecycle of M. tuberculosis. PMID:26603639

  5. Analysis of the promoter region of a cardiac specific phospholipase A{sub 2} gene located at 1p35

    SciTech Connect

    Winstead, M.V.; Chen, J.; Tischfield, J.A.

    1994-09-01

    Phospholipases may play an important role in the pathology of tissue damage and in membrane remodeling. We have previously shown that the Group II PLA{sub 2} gene and two PLA{sub 2}-like gene fragments map to 1p35. We have since shown that at least one of the fragments is part of a cardiac-specific PLA{sub 2} gene. Thus the identification and characterization of the regulatory regions of this new phospholipase A{sub 2} (PLA{sub 2}) may be important for understanding the regulation of this gene under normal and pathologic conditions. HPLA2-10, mainly expressed in heart, is a low molecular weight, Ca{sup 2+}-dependent PLA{sub 2} that we have classified as a new group (Group III) based on structural considerations. The 5{prime} regulatory region of HPLA2-10 was isolated from a human genomic DNA bacteriophage library and cloned into pUC19. Computer analysis of the region`s DNA sequence indicates the presence of multiple transcription factor binding sites. A comparison between the human promoter region and the promoter region of the rat homologue, RPLA2-10, indicates that at least two putative transcription factor binding sites are conserved between the two species. These include a CCAAT box and an AGTCCT hexanucleotide, which has been implicated as a binding site for the glucocorticoid receptor. DNA footprint analysis is being performed to determine whether or not these putative regions are sites of protein binding. Also, a proposed view of the evolution of the distinct groups of low molecular weight PLA{sub 2}s will be presented.

  6. The galactolipase activity of Fusarium solani (phospho)lipase.

    PubMed

    Jallouli, Raida; Othman, Houcemeddine; Amara, Sawsan; Parsiegla, Goetz; Carriere, Frédéric; Srairi-Abid, Najet; Gargouri, Youssef; Bezzine, Sofiane

    2015-03-01

    The purified (phospho)lipase of Fusarium solani (FSL), was known to be active on both triglycerides and phospholipids. This study aimed at assessing the potential of this enzyme in hydrolyzing galactolipids. FSL was found to hydrolyze at high rates of synthetic medium chains monogalactosyldiacylglycerol (4658±146U/mg on DiC8-MGDG) and digalactosyldiacylglycerol (3785±83U/mg on DiC8-DGDG) and natural long chain monogalactosyldiacylglycerol extracted from leek leaves (991±85U/mg). It is the microbial enzyme with the highest activity on galactolipids identified so far with a level of activity comparable to that of pancreatic lipase-related protein 2. FSL maximum activity on galactolipids was measured at pH8. The analysis of the hydrolysis product of natural MGDG from leek showed that FSL hydrolyzes preferentially the ester bond at the sn-1 position of galactolipids. To investigate the structure-activity relationships of FSL, a 3D model of this enzyme was built. In silico docking of medium chains MGDG and DGDG and phospholipid in the active site of FSL reveals structural solutions which are in concordance with in vitro tests. PMID:25529980

  7. Phospholipase Dε and Phosphatidic Acid Enhance Arabidopsis Growth

    PubMed Central

    Hong, Yueyun; Devaiah, Shivakumar P.; Bahn, SungChul; Thamasandra, Bharath N.; Li, Maoyin; Welti, Ruth; Wang, Xuemin

    2014-01-01

    Summary The activation of phospholipase D (PLD) produces phosphatidic acid (PA), a new lipid messenger implicated in cell growth and proliferation, but direct evidence for PLD and PA promotion of growth at an organismal level is lacking. Here we characterized a new PLD, PLDε, and show that PLDε plays a role in promoting Arabidopsis growth. PLDε is mainly associated with the plasma membrane and is the most permissive of all PLDs tested in activity requirements. Knockout (KO) of PLDε decreases, whereas overexpression (OE) of PLDε enhances root growth and biomass accumulation. The level of PA was higher in OE, but lower in KO than in wild-type plants, and suppression of PLD-mediated PA formation by alcohol alleviated the growth-promoting effect of PLDε. OE and KO of PLDε had the opposite effect on lateral root elongation in response to nitrogen (N). Increased expression of PLDε also promoted root hair elongation and primary root growth at severe N deprivation. The results suggest that PLDε and PA promote organismal growth and play a role in N response. The lipid signaling process may play a role in translating the membrane sensing of nutrient status to increasing plant growth and biomass production. PMID:19143999

  8. G Protein Activation Stimulates Phospholipase D Signaling in Plants.

    PubMed Central

    Munnik, T.; Arisz, S. A.; De Vrije, T.; Musgrave, A.

    1995-01-01

    We provide direct evidence for phospholipase D (PLD) signaling in plants by showing that this enzyme is stimulated by the G protein activators mastoparan, ethanol, and cholera toxin. An in vivo assay for PLD activity in plant cells was developed based on the use of a "reporter alcohol" rather than water as a transphosphatidylation substrate. The product was a phosphatidyl alcohol, which, in contrast to the normal product phosphatidic acid, is a specific measure of PLD activity. When 32P-labeled cells were treated with 0.1% n-butanol, 32P-phosphatidyl butanol (32P-PtdBut) was formed in a time-dependent manner. In cells treated with any of the three G protein activators, the production of 32P-PtdBut was increased in a dose-dependent manner. The G protein involved was pertussis toxin insensitive. Ethanol could activate PLD but was itself consumed by PLD as transphosphatidylation substrate. In contrast, secondary alcohols (e.g., sec-butyl alcohol) activated PLD but did not function as substrate, whereas tertiary alcohols did neither. Although most of the experiments were performed with the green alga Chlamydomonas eugametos, the relevance for higher plants was demonstrated by showing that PLD in carnation petals could also be activated by mastoparan. The results indicate that PLD activation must be considered as a potential signal transduction mechanism in plants, just as in animals. PMID:12242371

  9. Going into labor and beyond: phospholipase A2 in pregnancy.

    PubMed

    Besenboeck, Carolin; Cvitic, Silvija; Lang, Uwe; Desoye, Gernot; Wadsack, Christian

    2016-06-01

    The phospholipase A2 (PLA2) family is a very diverse group of enzymes, all serving in the cleavage of phospholipids, thereby releasing high amounts of arachidonic acid (AA) and lysophospholipids. AA serves as a substrate for prostaglandin production, which is of special importance in pregnancy for the onset of parturition. Novel research demonstrates that PLA2 action affects the immune response of the mother toward the child and is therefore probably implied in the tolerance of the fetus and prevention of miscarriage. This review presents data on the biochemical and enzymatic properties of PLA2 during gestation with a special emphasis on its role for the placental function and development of the fetus. We also critically discuss the possible pathophysiological significance of PLA2 alterations and its possible functional consequences. These alterations are often associated with pregnancy pathologies such as preeclampsia and villitis or pregnancy complications such as obesity and diabetes in the mother as well as preterm onset of labor. PMID:26908920

  10. Membrane and inhibitor interactions of intracellular phospholipases A2.

    PubMed

    Mouchlis, Varnavas D; Dennis, Edward A

    2016-05-01

    Studying phospholipases A2 (PLA2s) is a challenging task since they act on membrane-like aggregated substrates and not on monomeric phospholipids. Multidisciplinary approaches that include hydrogen/deuterium exchange mass spectrometry (DXMS) and computational techniques have been employed with great success in order to address important questions about the mode of interactions of PLA2 enzymes with membranes, phospholipid substrates and inhibitors. Understanding the interactions of PLA2s is crucial since these enzymes are the upstream regulators of the eicosanoid pathway liberating free arachidonic acid (AA) and other polyunsaturated fatty acids (PUFA). The liberation of AA by PLA2 enzymes sets off a cascade of molecular events that involves downstream regulators such as cyclooxygenase (COX) and lipoxygenase (LOX) metabolites leading to inflammation. Aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) work by inhibiting COX, while Zileuton inhibits LOX and both rely on PLA2 enzymes to provide them with AA. That means PLA2 enzymes can potentially also be targeted to diminish inflammation at an earlier point in the process. In this review we describe extensive efforts reported in the past to define the interactions of PLA2 enzymes with membranes, substrate phospholipids and inhibitors using DXMS, molecular docking, and molecular dynamics (MD) simulations. PMID:26774606

  11. Identification of a new phospholipase D in Carica papaya latex.

    PubMed

    Abdelkafi, Slim; Abousalham, Abdelkarim; Fendri, Imen; Ogata, Hiroyuki; Barouh, Nathalie; Fouquet, Benjamin; Scheirlinckx, Frantz; Villeneuve, Pierre; Carrière, Frédéric

    2012-05-15

    Phospholipase D (PLD) is a lipolytic enzyme involved in signal transduction, vesicle trafficking and membrane metabolism. It catalyzes the hydrolysis and transphosphatidylation of glycerophospholipids at the terminal phosphodiester bond. The presence of a PLD in the latex of Carica papaya (CpPLD1) was demonstrated by transphosphatidylation of phosphatidylcholine (PtdCho) in the presence of 2% ethanol. Although the protein could not be purified to homogeneity due to its presence in high molecular mass aggregates, a protein band was separated by SDS-PAGE after SDS/chloroform-methanol/TCA-acetone extraction of the latex insoluble fraction. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by micro-LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (723 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 2424 bp encoding a protein of 808 amino acid residues, with a theoretical molecular mass of 92.05 kDa. From sequence analysis, CpPLD1 was identified as a PLD belonging to the plant phosphatidylcholine phosphatidohydrolase family. PMID:22450361

  12. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend.

    PubMed

    Lee, Gihyun; Bae, Hyunsu

    2016-02-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson's disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes. PMID:26907347

  13. Stability of soybean oil degumming using immobilized phospholipase A(2).

    PubMed

    Yu, Dianyu; Ma, Ying; Jiang, Lianzhou; Walid, Elfalleh; He, Shenghua; He, Yanming; Xiaoyu, Zhou; Zhang, Jianing; Hu, Lizhi

    2014-01-01

    The aim of this study was evaluation of stability of immobilized phospholipase A2 (PLA2) for soybean oil degumming. Also, the effect of reaction time on residual phosphorus levels was investigated according to the optimum pH and temperature. The free PLA2 and three immobilized PLA2 demonstrated significant differences in optimum operation conditions. pH, temperature and reaction time increased upon immobilization for three different immobilized PLA2 (PLA2-CA, PLA2-CAC and PLA2-CAG). Immobilized PLA2 showed enhanced thermal stability and retained more than 74% of relative activity after 1 h of incubation at 60°C, while the free PLA2 retained only 33%. The three immobilized PLA2 retained 30% to 60% of initial activities after 7 recycles. In particular, PLA2-CAC has more significant profiles in pH, temperature, reaction time and showed the highest remaining activity, thermal stability, reusability. Therefore, PLA2-CAC is a suitable immobilized enzyme for soybean oil degumming process. PMID:24371193

  14. Probing phospholipase a(2) with fluorescent phospholipid substrates.

    PubMed

    Wichmann, Oliver; Gelb, Michael H; Schultz, Carsten

    2007-09-01

    The Foerster resonance energy transfer-based sensor, PENN, measures intracellular phospholipase A(2) (PLA(2)) activity in living cells and small organisms. In an attempt to modify the probe for the detection of particular isoforms, we altered the sn-2 fatty acid in such a way that either one or three of the Z double bonds in arachidonic acid were present in the sensor molecule. Arachidonic-acid-mimicking fatty acids were prepared by copper-mediated coupling reactions. Probes with a single double bond in the 5-position exhibited favorable substrate properties for secretory PLA(2)s. In vitro experiments with the novel unsaturated doubly labeled phosphatidylethanolamine derivatives showed preferred cleavage of the sensor PENN2 (one double bond) by the physiologically important group V sPLA(2), while the O-methyl-derivative PMNN2 was accepted best by the isoform from hog pancreas. For experiments in living cells, we demonstrated that bioactivation via S-acetylthioethyl (SATE) groups is essential for probe performance. Surprisingly, membrane-permeant versions of the new sensors that contained double bonds, PENN2 and PENN3, were only cleaved to a minor extent in HeLa cells while the saturated form, PENN, was well accepted. PMID:17661302

  15. Cell wounding activates phospholipase D in primary mouse keratinocytes

    PubMed Central

    Arun, Senthil N.; Xie, Ding; Howard, Amber C.; Zhong, Quincy; Zhong, Xiaofeng; McNeil, Paul L.; Bollag, Wendy B.

    2013-01-01

    Plasma membrane disruptions occur in mechanically active tissues such as the epidermis and can lead to cell death if the damage remains unrepaired. Repair occurs through fusion of vesicle patches to the damaged membrane region. The enzyme phospholipase D (PLD) is involved in membrane traffickiing; therefore, the role of PLD in membrane repair was investigated. Generation of membrane disruptions by lifting epidermal keratinocytes from the substratum induced PLD activation, whereas removal of cells from the substratum via trypsinization had no effect. Pretreatment with 1,25-dihydroxyvitamin D3, previously shown to increase PLD1 expression and activity, had no effect on, and a PLD2-selective (but not a PLD1-selective) inhibitor decreased, cell lifting-induced PLD activation, suggesting PLD2 as the isoform activated. PLD2 interacts functionally with the glycerol channel aquaporin-3 (AQP3) to produce phosphatidylglycerol (PG); however, wounding resulted in decreased PG production, suggesting a potential PG deficiency in wounded cells. Cell lifting-induced PLD activation was transient, consistent with a possible role in membrane repair, and PLD inhibitors inhibited membrane resealing upon laser injury. In an in vivo full-thickness mouse skin wound model, PG accelerated wound healing. These results suggest that PLD and the PLD2/AQP3 signaling module may be involved in membrane repair and wound healing. PMID:23288946

  16. Effects of Phospholipase C on Fusarium graminearum Growth and Development.

    PubMed

    Zhu, Qili; Zhou, Benguo; Gao, Zhengliang; Liang, Yuancun

    2015-12-01

    Phospholipase C (PLC) plays important roles in regulating various biological processes in eukaryotes. Currently, little is known about the function of PLC in filamentous fungi, especially the plant pathogenic fungi. Fusarium graminearum is the causal agent of Fusarium head blight in many cereal crops. BLAST search revealed that Fusarium genome contains six FgPLC genes. Using quantitative RT-PCR, different FgPLC gene expressions in mycelia were analyzed. To investigate the role of FgPLC in F. graminearum biology, a pharmacological study using a known inhibitor of PLC (U73122) was conducted. Results showed that inhibition of FgPLC resulted in significant alterations of mycelial growth, conidiation, conidial germination, perithecium formation, and expressions of Tri5 and Tri6 genes. As expected, the treatment of F. graminearum with U73343, an inactive analog of U73122, showed no effect on F. graminearum biology. Our results suggested strongly that FgPLC plays important roles in F. graminearum growth and development. PMID:26316232

  17. Activation of Phospholipase A by Plant Defense Elicitors.

    PubMed Central

    Chandra, S.; Heinstein, P. F.; Low, P. S.

    1996-01-01

    Participation of phospholipase A (PLase A) in plant signal transduction has been documented for auxin stimulation of growth but not for elicitation of any plant defense response. In this paper, we report two independent assays for monitoring PLase A induction in plant cells and have used these assays to evaluate whether transduction of defense-related signals might require PLase A activation. Oligogalacturonic acid, a potent elicitor of the soybean (Glycine max) H2O2 burst, was unable to stimulate endogenous PLase A, suggesting that PLase A activation is not an obligate intermediate in the oligogalacturonic acid-induced burst pathway. In contrast, harpin and an extract from the pathogenic fungus Verticillium dahliae both stimulated the oxidative burst and promoted a rapid increase in PLase A activity. To evaluate the possible role of this inducible PLase A activity in transducing the oxidative burst, we tested the effect of chlorpromazine-HCl, a PLase A inhibitor on elicitor-stimulated burst activity. Pretreatment with chloropromazine was found to inhibit the H2O2 burst triggered by V. dahliae extract at the same concentration at which it blocked PLase A activation. In contrast, neither the harpin- nor oligogalacturonic acid-induced burst was altered by addition of chlorpromazine. These data suggest that PLase A stimulation may be important in certain elicitor-induced oxidative bursts (e.g. V. dahliae) and that other elicitors such as oligogalacturonic acid and harpin must operate through independent signaling intermediates to activate the same defense response. PMID:12226235

  18. Cell wounding activates phospholipase D in primary mouse keratinocytes.

    PubMed

    Arun, Senthil N; Xie, Ding; Howard, Amber C; Zhong, Quincy; Zhong, Xiaofeng; McNeil, Paul L; Bollag, Wendy B

    2013-03-01

    Plasma membrane disruptions occur in mechanically active tissues such as the epidermis and can lead to cell death if the damage remains unrepaired. Repair occurs through fusion of vesicle patches to the damaged membrane region. The enzyme phospholipase D (PLD) is involved in membrane traffickiing; therefore, the role of PLD in membrane repair was investigated. Generation of membrane disruptions by lifting epidermal keratinocytes from the substratum induced PLD activation, whereas removal of cells from the substratum via trypsinization had no effect. Pretreatment with 1,25-dihydroxyvitamin D₃, previously shown to increase PLD1 expression and activity, had no effect on, and a PLD2-selective (but not a PLD1-selective) inhibitor decreased, cell lifting-induced PLD activation, suggesting PLD2 as the isoform activated. PLD2 interacts functionally with the glycerol channel aquaporin-3 (AQP3) to produce phosphatidylglycerol (PG); however, wounding resulted in decreased PG production, suggesting a potential PG deficiency in wounded cells. Cell lifting-induced PLD activation was transient, consistent with a possible role in membrane repair, and PLD inhibitors inhibited membrane resealing upon laser injury. In an in vivo full-thickness mouse skin wound model, PG accelerated wound healing. These results suggest that PLD and the PLD2/AQP3 signaling module may be involved in membrane repair and wound healing. PMID:23288946

  19. Differential regulation of renal phospholipase C isoforms by catecholamines.

    PubMed

    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A

    1995-01-01

    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam or pramipexole) or antinatriuresis (NE) occurred, the kidneys were removed for analysis of PLC isoform protein expression activity. Western blot analysis revealed that in renal cortical membranes, fenoldopam and pramipexole increased expression of PLC beta 1 and decreased expression of PLC gamma 1; PLC delta was unchanged. In the cytosol, pramipexole and fenoldopam increased expression of both PLC beta 1 and PLC gamma 1. No effects were noted in the medulla. A preferential D1 antagonist, SKF 83742, which by itself had no effect, blocked the effects of pramipexole, thus confirming the involvement of the D1 receptor. In contrast, NE also increased PLC beta 1 but did not affect PLC gamma 1 protein expression in membranes. The changes in PLC isoform expression were accompanied by similar changes in PLC isoform activity. These studies demonstrate for the first time differential regulation of PLC isoforms by catecholamines. PMID:7814630

  20. Pyrimidinoceptor-mediated activation of phospholipase C and phospholipase A2 in RAW 264.7 macrophages.

    PubMed Central

    Lin, W. W.; Lee, Y. T.

    1996-01-01

    1. As well as the presence of P2Z purinoceptors previously found in macrophages, we identified pyrimidinoceptors in RAW 264.7 cells, which activate phospholipase C (PLC) and phospholipase A2 (PLA2). 2. The relative potency of agonists to stimulate inositol phosphate (IP) formation and arachidonic acid (AA) release was UTP = UDP > > ATP, ATP gamma S, 2MeSATP. For both signalling pathways, the EC50 values for UTP and UDP (3 microM) were significantly lower than that for ATP and all other analogues tested (> 100 microM). 3. UTP and UDP displayed no additivity in terms of IP formation and AA release at maximally effective concentrations. 4. UTP-, but not ATP-, evoked AA release was 60% inhibited by pertussis toxin (PTX), while stimulation of IP formation by both agonists was unaffected. Short-term treatment with phorbol 12-myristate 13-acetate (PMA) led to a dose-dependent inhibition of IP responses to UTP and UDP, but failed to affect the AA responses. Removal of extracellular Ca2+ inhibited the PI response to UTP, but abolished its AA response. 5. ATP-induction of these two transmembrane signal pathways was decreased in high Mg(2+)-containing medium but potentiated by the removal of extracellular Mg2+. 6. Suramin and reactive blue displayed equal potency to inhibit the IP responses of UTP and ATP. 7. Both UTP and UDP (0.1-100 microM) induced a sustained increase in [Ca2+]i which lasted for more than 10 min. 8. Taken together, these results indicate that in mouse RAW 264.7 macrophages, pyrimidinoceptors with specificity for UTP and UDP mediate the activation of PLC and cytosolic (c) PLA2. The activation of PLC is via a PTX-insensitive G protein, whereas that of cPLA2 is via a PTX-sensitive G protein-dependent pathway. The sustained Ca2+ influx caused by UTP contributes to the activation of cPLA2. RAW 264.7 cells also possess P2z purinoceptors which mediate ATP(4-)-induced PLC and PLA2 activation. Images Figure 3 PMID:8886407

  1. [Immobilization of phospholipase A2 from Central Asian cobra venom on polyamide sorbents].

    PubMed

    Akhmedzhanov, R A; Salikhova, Z T; Aripov, T F; Rakhimov, M M

    1988-01-01

    The effect of the immobilization technique and the ligand nature on catalytic properties of phospholipase A2 from the cobra venom was studied. Preparations of phospholipase A2 adsorbed on and covalently bound to polyamide sorbents were obtained. The enzyme was coupled to polyamide beads modified with glutaraldehyde. In this case only 9% of the enzyme activity was retained. The enzyme adsorbed on polyamide modified with phosphatidylethanolamine retained up to 20% of the initial activity. The binding selectivity of phospholipase A2 was maximum in case of the sorbent with a binary ligand, e. g. phosphatidylethanolamine+cytotoxin, the sorbent capacity for the bound enzyme increased 2-3 times (460-600 units/g sorbent. The specific activity of the adsorbed phospholipase A2 was 17-40 units/g sorbent in contrast to 8.6 units/g sorbent for the covalently bound enzyme. Immobilization of the enzyme on polyamide sorbents resulted in changes of the pH-optimum, sensitivity to Ca2+ ions and the character of the enzyme-substrate interactions. Heart stability of the adsorbed phospholipase A2 was lower than that of the covalently bound enzyme. However, the adsorbed enzyme can be used, for example, in affinity chromatography due to its higher specific activity, selectivity and reversibility of the sorption. PMID:3244675

  2. Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Shansky, J.; Karlisch, P.; Solerssi, R. L.

    1993-01-01

    Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins (PG) E2 and F2 alpha which regulate protein turnover rates and muscle cell growth. These stretch-induced PG increases are reduced in low extracellular calcium medium and by specific phospholipase inhibitors. Mechanical stimulation increases the breakdown rate of 3H-arachidonic acid labelled phospholipids, releasing free 3H-arachidonic acid, the rate-limiting precursor of PG synthesis. Mechanical stimulation also increases 3H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-[2-3H]inositol labelled phospholipids. Phospholipase A2 (PLA2), phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are all activated by stretch. The stretch-induced increases in PG production, 3H-arachidonic acid labelled phospholipid breakdown, and 3H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitive) whereas the formation of inositol phosphates from myo-[2-3H]inositol labelled phospholipids is dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and PG through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC.

  3. A nutrient-regulated, dual localization phospholipase A2 in the symbiotic fungus Tuber borchii

    PubMed Central

    Soragni, Elisabetta; Bolchi, Angelo; Balestrini, Raffaella; Gambaretto, Claudio; Percudani, Riccardo; Bonfante, Paola; Ottonello, Simone

    2001-01-01

    Important morphogenetic transitions in fungi are triggered by starvation-induced changes in the expression of structural surface proteins. Here, we report that nutrient deprivation causes a strong and reversible up-regulation of TbSP1, a surface-associated, Ca2+-dependent phospholipase from the mycorrhizal fungus Tuber borchii. TbSP1 is the first phospholipase A2 to be described in fungi and identifies a novel class of phospholipid-hydrolyzing enzymes. The TbSP1 phospholipase, which is synthesized initially as a pre-protein, is processed efficiently and secreted during the mycelial phase. The mature protein, however, also localizes to the inner cell wall layer, close to the plasma membrane, in both free-living and symbiosis-engaged hyphae. It thus appears that a dual localization phospholipase A2 is involved in the adaptation of a symbiotic fungus to conditions of persistent nutritional limitation. Moreover, the fact that TbSP1-related sequences are present in Streptomyces and Neurospora, and not in wholly sequenced non-filamentous microorganisms, points to a general role for TbSP1 phospholipases A2 in the organization of multicellular filamentous structures in bacteria and fungi. PMID:11566873

  4. Active site mapping of Loxosceles phospholipases D: Biochemical and biological features.

    PubMed

    Vuitika, L; Chaves-Moreira, D; Caruso, I; Lima, M A; Matsubara, F H; Murakami, M T; Takahashi, H K; Toledo, M S; Coronado, M A; Nader, H B; Senff-Ribeiro, A; Chaim, O M; Arni, R K; Veiga, S S

    2016-09-01

    Brown spider phospholipases D from Loxosceles venoms are among the most widely studied toxins since they induce dermonecrosis, triggering inflammatory responses, increase vascular permeability, cause hemolysis, and renal failure. The catalytic (H12 and H47) and metal-ion binding (E32 and D34) residues in Loxosceles intermedia phospholipase D (LiRecDT1) were mutated to understand their roles in the observed activities. All mutants were identified using whole venom serum antibodies and a specific antibody to wild-type LiRecDT1, they were also analyzed by circular dichroism (CD) and differential scanning calorimetry (DSC). The phospholipase D activities of H12A, H47A, H12A-H47A, E32, D34 and E32A-D34A, such as vascular permeability, dermonecrosis, and hemolytic effects were inhibited. The mutant Y228A was equally detrimental to biochemical and biological effects of phospholipase D, suggesting an essential role of this residue in substrate recognition and binding. On the other hand, the mutant C53A-C201A reduced the enzyme's ability to hydrolyze phospholipids and promote dermonecrosis, hemolytic, and vascular effects. These results provide the basis understanding the importance of specific residues in the observed activities and contribute to the design of synthetic and specific inhibitors for Brown spider venom phospholipases D. PMID:27233517

  5. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells.

    PubMed

    Liu, Y; Fanburg, B L

    2008-09-01

    We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [(3)H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpression of an inactive mutant of human PLD1R898R blocked 5-HT-induced proliferation. Furthermore, 1-butanol inhibited 5-HT activation of S6K1 and S6 protein, downstream effectors of mammalian target of rapamycin (mTOR), by 80 and 72%, respectively, and partially blocked activation of extracellular signal-regulated kinase (ERK) by 30% but had no effect on other associated signaling pathways. Exogenous PA caused cellular proliferation and revitalized cyclin D1 expression by 5-HT of the 1-butanol-treated cells. PA also reproduced activations by 5-HT of mTOR, S6K1, and ERK. Transfection with inactive human PLD1 reduced 5-HT-induced activation of S6K1 by approximately 50%. Inhibition of 5-HT receptor 2A (R 2A) with ketaserin blocked PLD activation by 5-HT. Inhibition with PI3-kinase inhibitor failed to block either activation of PLD by 5-HT or PA-dependent S6K1 phosphorylation. Taken together, these results indicate that ligation of the 5-HTR 2A by 5-HT initiates PLD activation in SMCs, and that its product, PA, is an early signaling molecule in 5-HT-induced pulmonary artery SMC proliferation. Signaling by PA produces its downstream effects primarily through the mTOR/S6K1 pathway and to a lesser extent through the ERK pathway. Hydrolysis of cell membrane lipid may be important in vascular effects of 5-HT. PMID:18621911

  6. Interaction of surfactant protein A with peroxiredoxin 6 regulates phospholipase A2 activity.

    PubMed

    Wu, Yong-Zheng; Manevich, Yefim; Baldwin, James L; Dodia, Chandra; Yu, Kevin; Feinstein, Sheldon I; Fisher, Aron B

    2006-03-17

    Peroxiredoxin 6 (Prdx6) is a "moonlighting" protein with both GSH peroxidase and phospholipase A(2) (PLA(2)) activities. This protein is responsible for degradation of internalized dipalmitoylphosphatidylcholine, the major phospholipid component of lung surfactant. The PLA(2) activity is inhibited by surfactant protein A (SP-A). We postulate that SP-A regulates the PLA(2) activity of Prdx6 through direct protein-protein interaction. Recombinant human Prdx6 and SP-A isolated from human alveolar proteinosis fluid were studied. Measurement of kinetic constants at pH 4.0 (maximal PLA(2) activity) showed K(m)0.35 mm and V(max) 138 nmol/min/mg of protein. SP-A inhibited PLA(2) activity non-competitively with K(i) 10 mug/ml and was Ca(2+) -independent. Activity at pH 7.4 was approximately 50% less, and inhibition by SP-A was partially dependent on Ca(2+). Interaction of SP-A and Prdx6 at pH 7.4 was shown by Prdx6-mediated inhibition of SP-A binding to agarose beads, a pull-down assay using His-tagged Prdx6 and Ni(2) -chelating beads, co-immunoprecipitation from lung epithelial cells and from a binary mixture of the two proteins, binding after treatment with a trifunctional cross-linker, and size-exclusion chromatography. Analysis by static light scattering and surface plasmon resonance showed calcium-independent SP-A binding to Prdx6 at pH 4.0 and partial Ca(2+) dependence of binding at pH 7.4. These results indicate a direct interaction between SP-A and Prdx6, which provides a mechanism for regulation of the PLA(2) activity of Prdx6 by SP-A. PMID:16330552

  7. Characterization of a novel inhibitor of cytosolic phospholipase A2alpha, pyrrophenone.

    PubMed Central

    Ono, Takashi; Yamada, Katsutoshi; Chikazawa, Yukiko; Ueno, Masahiko; Nakamoto, Shozo; Okuno, Takayuki; Seno, Kaoru

    2002-01-01

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha), one of the three subtypes of cPLA(2) (alpha, beta and gamma), is thought to be a rate-limiting enzyme in eicosanoid biosynthesis. We developed a novel and potent cPLA(2)alpha inhibitor with an optically active pyrrolidine, termed pyrrophenone, and characterized this compound in detail using enzyme and cellular assay systems. Pyrrophenone, which shows strong inhibition of cPLA(2)alpha activity, is one of the most potent cPLA(2)alpha inhibitors reported to date. Similar inhibitory potencies for cPLA(2)alpha were obtained from three different assays. The inhibitory activity of pyrrophenone is two or three orders of magnitude more potent than arachidonyl trifluoromethyl ketone (AACOCF(3)) under the same assay conditions. Pyrrophenone shows reversible inhibition of cPLA(2)alpha and displays no characteristics of the slow-binding inhibition observed for AACOCF(3). Pyrrophenone also inhibited the esterase and lysophospholipase activities of cPLA(2)alpha. However, the inhibition by pyrrophenone of 14 kDa secretory PLA(2)s, types IB and IIA, was over two orders of magnitude less potent than that for cPLA(2)alpha. Pyrrophenone strongly inhibited arachidonic acid release in calcium ionophore (A23187)-stimulated human monocytic cells (THP-1 cells) in a dose-dependent manner with an IC(50) value of 0.024 microM, followed by suppression of eicosanoid synthesis, and also showed dose-dependent inhibition for interleukin-1-induced prostaglandin E(2) synthesis in human renal mesangial cells with an IC(50) value of 0.0081 microM. The mechanism of inhibition of eicosanoid synthesis in these cell-based assays was due to inhibition of only one step of arachidonic acid release without any effect on cyclo-oxygenase or lipoxygenase pathways. These results suggest that pyrrophenone could be a potential therapeutic agent for inflammatory diseases. PMID:11964173

  8. Effects of endotoxin and dexamethasone on group I and II phospholipase A2 in rat ileum and stomach.

    PubMed Central

    Lilja, I; Dimberg, J; Sjödahl, R; Tagesson, C; Gustafson-Svärd, C

    1994-01-01

    Phospholipase A2 (EC 3.1.1.4) is a key enzyme in inflammation and is thought to play an important part in inflammatory diseases of the gastrointestinal tract. To investigate the nature and regulation of phospholipase A2 activity in the gastrointestinal mucosa, the distribution of messenger ribonucleic acid (mRNA) for group II phospholipase A2 in various parts of the rat gastrointestinal tract was studied, as well as the influence of endotoxin or dexamethasone, or both, on the group I and II phospholipase A2 mRNA expression and activity in the rat glandular stomach and distal ileum. The results show that (a) group II phospholipase A2 is present along the whole gastrointestinal tract, but in particularly large amounts in the distal ileum, (b) endotoxin increases group II, but not group I, phospholipase A2 mRNA expression in the glandular stomach and distal ileum, and (c) dexamethasone reduces the endotoxin induced increases in group II phospholipase mRNA expression and activity in the gastrointestinal mucosa. These findings suggest that phospholipase A2 of type II is a mediator of endotoxin effects in the gastrointestinal mucosa and that its expression at the mRNA level can be inhibited by corticosteroids. Images Figure 1 PMID:8307447

  9. Group X Secreted Phospholipase A2 Releases ω3 Polyunsaturated Fatty Acids, Suppresses Colitis, and Promotes Sperm Fertility.

    PubMed

    Murase, Remi; Sato, Hiroyasu; Yamamoto, Kei; Ushida, Ayako; Nishito, Yasumasa; Ikeda, Kazutaka; Kobayashi, Tetsuyuki; Yamamoto, Toshinori; Taketomi, Yoshitaka; Murakami, Makoto

    2016-03-25

    Within the secreted phospholipase A2(sPLA2) family, group X sPLA2(sPLA2-X) has the highest capacity to hydrolyze cellular membranes and has long been thought to promote inflammation by releasing arachidonic acid, a precursor of pro-inflammatory eicosanoids. Unexpectedly, we found that transgenic mice globally overexpressing human sPLA2-X (PLA2G10-Tg) displayed striking immunosuppressive and lean phenotypes with lymphopenia and increased M2-like macrophages, accompanied by marked elevation of free ω3 polyunsaturated fatty acids (PUFAs) and their metabolites. Studies usingPla2g10-deficient mice revealed that endogenous sPLA2-X, which is highly expressed in the colon epithelium and spermatozoa, mobilized ω3 PUFAs or their metabolites to protect against dextran sulfate-induced colitis and to promote fertilization, respectively. In colitis, sPLA2-X deficiency increased colorectal expression of Th17 cytokines, and ω3 PUFAs attenuated their production by lamina propria cells partly through the fatty acid receptor GPR120. In comparison, cytosolic phospholipase A2(cPLA2α) protects from colitis by mobilizing ω6 arachidonic acid metabolites, including prostaglandin E2 Thus, our results underscore a previously unrecognized role of sPLA2-X as an ω3 PUFA mobilizerin vivo, segregated mobilization of ω3 and ω6 PUFA metabolites by sPLA2-X and cPLA2α, respectively, in protection against colitis, and the novel role of a particular sPLA2-X-driven PUFA in fertilization. PMID:26828067

  10. Plasma membrane phospholipase A2 controls hepatocellular fatty acid uptake and is responsive to pharmacological modulation: implications for nonalcoholic steatohepatitis.

    PubMed

    Stremmel, Wolfgang; Staffer, Simone; Wannhoff, Andreas; Pathil, Anita; Chamulitrat, Walee

    2014-07-01

    Excess hepatic fat accumulation leads to nonalcoholic steatohepatitis (NASH), a serious threat to health for which no effective treatment is available. However, the mechanism responsible for fatty acid uptake by hepatocytes remains unclear. Using the human hepatocyte-derived tumor cell line HepG2, we found that fatty acid influx is mediated by a heterotetrameric plasma membrane protein complex consisting of plasma membrane fatty acid-binding protein, caveolin-1, CD36, and calcium-independent membrane phospholipase A2 (iPLA2β). Blocking iPLA2β with the bile acid-phospholipid conjugate ursodeoxycholate-lysophosphatidylethanolamide (UDCA-LPE) caused the dissociation of the complex, thereby inhibiting fatty acid influx (IC50 47 μM), and suppressed the synthesis of all subunits through a reduction in lysophosphatidylcholine from 8.0 to 3.5 μmol/mg of protein and corresponding depletion of phosphorylated c-Jun N-terminal kinase. These findings were substantiated by an observed 56.5% decrease in fatty acid influx in isolated hepatocytes derived from iPLA2β-knockout mice. Moreover, steatosis and inflammation were abrogated by UDCA-LPE treatment in a cellular model of NASH. Thus, iPLA2β acts as an upstream checkpoint for mechanisms that regulate fatty acid uptake, and its inhibition by UDCA-LPE qualifies this nontoxic compound as a therapeutic candidate for the treatment of NASH.-Stremmel, W., Staffer, S., Wannhoff, A., Pathil, A., Chamulitrat, W. Plasma membrane phospholipase A2 controls hepatocellular fatty acid uptake and is responsive to pharmacological modulation: implications for nonalcoholic steatohepatitis. PMID:24719358

  11. Methylmercury-induced toxicity is mediated by enhanced intracellular calcium through activation of phosphatidylcholine-specific phospholipase C

    SciTech Connect

    Kang, Mi Sun; Jeong, Ju Yeon; Seo, Ji Heui; Jeon, Hyung Jun; Jung, Kwang Mook; Chin, Mi-Reyoung; Moon, Chang-Kiu; Bonventre, Joseph V.; Jung, Sung Yun; Kim, Dae Kyong . E-mail: proteinlab@hanmail.net

    2006-10-15

    Methylmercury (MeHg) is a ubiquitous environmental toxicant to which humans can be exposed by ingestion of contaminated food. MeHg has been suggested to exert its toxicity through its high reactivity to thiols, generation of arachidonic acid and reactive oxygen species (ROS), and elevation of free intracellular Ca{sup 2+} levels ([Ca{sup 2+}]{sub i}). However, the precise mechanism has not been fully defined. Here we show that phosphatidylcholine-specific phospholipase C (PC-PLC) is a critical pathway for MeHg-induced toxicity in MDCK cells. D609, an inhibitor of PC-PLC, significantly reversed the toxicity in a time- and dose-dependent manner with concomitant inhibition of the diacylglycerol (DAG) generation and the phosphatidylcholine (PC)-breakdown. MeHg activated the group IV cytosolic phospholipase A{sub 2} (cPLA{sub 2}) and acidic form of sphingomyelinase (A-SMase) downstream of PC-PLC, but these enzymes as well as protein kinase C (PKC) were not linked to the toxicity by MeHg. Furthermore, MeHg produced ROS, which did not affect the toxicity. Addition of EGTA to culture media resulted in partial decrease of [Ca{sup 2+}]{sub i} and partially blocked the toxicity. In contrast, when the cells were treated with MeHg in the presence of Ca{sup 2+} in the culture media, D609 completely prevented cell death with parallel decrease in [Ca{sup 2+}]{sub i}. Our results demonstrated that MeHg-induced toxicity was linked to elevation of [Ca{sup 2+}]{sub i} through activation of PC-PLC, but not attributable to the signaling pathways such as cPLA{sub 2}, A-SMase, and PKC, or to the generation of ROS.

  12. Forty five years with membrane phospholipids, phospholipases and lipid mediators: A historical perspective.

    PubMed

    Chap, Hugues

    2016-06-01

    Phospholipases play a key role in the metabolism of phospholipids and in cell signaling. They are also a very useful tool to explore phospholipid structure and metabolism as well as membrane organization. They are at the center of this review, covering a period starting in 1971 and focused on a number of subjects in which my colleagues and I have been involved. Those include determination of phospholipid asymmetry in the blood platelet membrane, biosynthesis of lysophosphatidic acid, biochemistry of platelet-activating factor, first attempts to define the role of phosphoinositides in cell signaling, and identification of novel digestive (phospho)lipases such as pancreatic lipase-related protein 2 (PLRP2) or phospholipase B. Besides recalling some of our contributions to those various fields, this review makes an appraisal of the impressive and often unexpected evolution of those various aspects of membrane phospholipids and lipid mediators. It is also the occasion to propose some new working hypotheses. PMID:27059515

  13. Preliminary crystallographic study of an acidic phospholipase A2 from Ophiophagus hannah (king cobra).

    PubMed

    Xu, Sujuan; Gu, Lichuan; Wang, Qiuyan; Shu, Yuyan; Lin, Zhengjiong

    2002-10-01

    An acidic phospholipase A(2) (OH APLA(2)-II) with an isoelectric point (pI) of 4.0 was recently isolated from Ophiophagus hannah (king cobra) from Guangxi province, China. Comparison of this enzyme to a previously reported homologous phospholipase A(2) from the same venom shows that it lacks toxicity and exhibits a greater phospholipase activity. OH APLA(2)-II has been crystallized by the hanging-drop vapour-diffusion method using 1,6-hexanediol and magnesium chloride as precipitants. The crystal belongs to space group P6(3), with unit-cell parameters a = b = 98.06, c = 132.39 A. The diffraction data were collected under cryoconditions (100 K) and reduced to 2.1 A resolution. A molecular-replacement solution has been determined and shows that there are six molecules in one asymmetric unit. PMID:12351830

  14. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development.

    PubMed

    Stith, Bradley J

    2015-05-15

    This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG. PMID:25748412

  15. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development

    PubMed Central

    Stith, Bradley J.

    2015-01-01

    This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG. PMID:25748412

  16. Structural and functional changes in rabbit ileum by purified extracellular phospholipase A of Salmonella newport.

    PubMed

    Neena; Asnani, P J

    1991-01-01

    As phospholipases of Salmonella species may play a role in the pathogenesis of gastrointestinal tract diseases. Salmonella newport, the causative agent of infantile diarrhoea was examined for the production of phospholipase. The enzyme was purified by gel filtration chromatography and was found to be a protein of molar mass ranging from 43 to 67 kDa. The purified enzyme alone or in combination with organisms, produced both structural and functional changes in rabbit ileum, contributing towards pathogenesis of diarrhoea due to this organism. PMID:1841873

  17. Biochemical signal transmitted by Fc gamma receptors: phospholipase A2 activity of Fc gamma 2b receptor of murine macrophage cell line P388D1.

    PubMed Central

    Suzuki, T; Saito-Taki, T; Sadasivan, R; Nitta, T

    1982-01-01

    The detergent lysate of the P388D1 macrophage cell line was subjected to affinity chromatography on two different media, Sepharose coupled to heat-aggregated human IgG (IgG-Sepharose) and Sepharose coupled to the phosphatidylcholine analog rac-1-(9-carboxyl)nonyl-2-hexadecylglycero-3-phosphocholine (PC-Sepharose). Both IgG- and phosphatidylcholine-binding proteins were further purified by Sephadex G-100 gel filtration and isoelectric focusing in the presence of 6 M urea. The isolated IgG-binding proteins specifically bound to IgG2a, but not to IgG2b, whereas the isolated phosphatidylcholine-binding proteins specifically bound to IgG2b but not to IgG2a. Phosphatidylcholine-binding proteins possessed a typical phospholipase A2 activity (phosphatide 2-acylhydrolase, EC 3.1.1.4), which was maximal (10 mumol/min per mg of protein) at pH 9.5, depended on Ca2+, and was specific for cleavage of fatty acid from the C-2 position of the glycerol backbone of phosphatidylcholine. The noted enzymatic activity was augmented 4-fold by preincubating phosphatidylcholine-binding proteins with heat-aggregated murine IgG2b but not with IgG2a. IgG-binding proteins, on the other hand, are devoid of any detectable phospholipase A2 activity. Thus, the functional significance of Fc gamma 2b receptor of P388D1 macrophage cell line would be the generation of phospholipase A2 activity at the cell surface upon specific binding to Fc gamma 2b fragment. PMID:6804944

  18. Cloning and Characterization of the Gene Encoding the Major Cell-Associated Phospholipase A of Legionella pneumophila, plaB, Exhibiting Hemolytic Activity

    PubMed Central

    Flieger, Antje; Rydzewski, Kerstin; Banerji, Sangeeta; Broich, Markus; Heuner, Klaus

    2004-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, is an intracellular pathogen of amoebae, macrophages, and epithelial cells. The pathology of Legionella infections involves alveolar cell destruction, and several proteins of L. pneumophila are known to contribute to this ability. By screening a genomic library of L. pneumophila, we found an additional L. pneumophila gene, plaB, which coded for a hemolytic activity and contained a lipase consensus motif in its deduced protein sequence. Moreover, Escherichia coli harboring the L. pneumophila plaB gene showed increased activity in releasing fatty acids predominantly from diacylphospho- and lysophospholipids, demonstrating that it encodes a phospholipase A. It has been reported that culture supernatants and cell lysates of L. pneumophila possess phospholipase A activity; however, only the major secreted lysophospholipase A PlaA has been investigated on the molecular level. We therefore generated isogenic L. pneumophila plaB mutants and tested those for hemolysis, lipolytic activities, and intracellular survival in amoebae and macrophages. Compared to wild-type L. pneumophila, the plaB mutant showed reduced hemolysis of human red blood cells and almost completely lost its cell-associated lipolytic activity. We conclude that L. pneumophila plaB is the gene encoding the major cell-associated phospholipase A, possibly contributing to bacterial cytotoxicity due to its hemolytic activity. On the other hand, in view of the fact that the plaB mutant multiplied like the wild type both in U937 macrophages and in Acanthamoeba castellanii amoebae, plaB is not essential for intracellular survival of the pathogen. PMID:15102773

  19. Edema Toxin Impairs Anthracidal Phospholipase A2 Expression by Alveolar Macrophages

    PubMed Central

    Raymond, Benoit; Leduc, Dominique; Ravaux, Lucas; Goffic, Ronan Le; Candela, Thomas; Raymondjean, Michel; Goossens, Pierre Louis; Touqui, Lhousseine

    2007-01-01

    Bacillus anthracis, the etiological agent of anthrax, is a spore-forming Gram-positive bacterium. Infection with this pathogen results in multisystem dysfunction and death. The pathogenicity of B. anthracis is due to the production of virulence factors, including edema toxin (ET). Recently, we established the protective role of type-IIA secreted phospholipase A2 (sPLA2-IIA) against B. anthracis. A component of innate immunity produced by alveolar macrophages (AMs), sPLA2-IIA is found in human and animal bronchoalveolar lavages at sufficient levels to kill B. anthracis. However, pulmonary anthrax is almost always fatal, suggesting the potential impairment of sPLA2-IIA synthesis and/or action by B. anthracis factors. We investigated the effect of purified ET and ET-deficient B. anthracis strains on sPLA2-IIA expression in primary guinea pig AMs. We report that ET inhibits sPLA2-IIA expression in AMs at the transcriptional level via a cAMP/protein kinase A–dependent process. Moreover, we show that live B. anthracis strains expressing functional ET inhibit sPLA2-IIA expression, whereas ET-deficient strains induced this expression. This stimulatory effect, mediated partly by the cell wall peptidoglycan, can be counterbalanced by ET. We conclude that B. anthracis down-regulates sPLA2-IIA expression in AMs through a process involving ET. Our study, therefore, describes a new molecular mechanism implemented by B. anthracis to escape innate host defense. These pioneering data will provide new molecular targets for future intervention against this deathly pathogen. PMID:18069891

  20. INHIBITION OF CALCIUM INDEPENDENT PHOSPHOLIPASE A2 PREVENTS INFLAMMATORY MEDIATOR PRODUCTION IN PULMONARY MICROVASCULAR ENDOTHELIUM

    PubMed Central

    Rastogi, Prerna; McHowat, Jane

    2010-01-01

    Inhalation of allergens can result in mast cell degranulation and release of granule contents, including tryptase, in the lung. Injury to human pulmonary microvascular endothelial cells (HMVEC-L) can also result in activation of the coagulation cascade and thrombin generation. We hypothesize that these proteases activate calcium-independent phospholipase A2 (iPLA2), in HMVEC-L, leading to the production of membrane phospholipids-derived inflammatory mediators. Both thrombin and tryptase stimulation of HMVEC-L increased iPLA2 activity that was inhibited by pretreatment with the iPLA2 selective inhibitor bromoenol lactone (BEL). Arachidonic acid and prostaglandin I2 (PGI2) release were also increased in tryptase and thrombin stimulated cells and inhibited by BEL pretreatment. Pretreating the endothelial cells with AACOCF3 a cytosolic PLA2 inhibitor did not inhibit tryptase or thrombin induced arachidonic acid and PGI2 release. In addition thrombin and tryptase also increased HMVEC-L platelet activating factor (PAF) production that significantly contributes to the recruitment and initial adherence of polymorphonuclear neutrophils (PMN) to the endothelium. Tryptase or thrombin stimulated increase in PMN adherence to the endothelium was inhibited by pretreatment of HMVEC-L with BEL or pretreatment of PMN with CV3988, a PAF receptor specific antagonist. Collectively, these data support our hypothesis that iPLA2 activity is responsible for membrane phospholipid hydrolysis in response to tryptase or thrombin stimulation in HMVEC-L. Therefore selective inhibition of iPLA2 may be a pharmacological target to inhibit the early inflammation in pulmonary vasculature that occurs as a consequence of mast cell degranulation or acute lung injury. PMID:19059366

  1. Phospholipase A2 in Experimental Allergic Bronchitis: A Lesson from Mouse and Rat Models

    PubMed Central

    Mruwat, Rufayda; Yedgar, Saul; Lavon, Iris; Ariel, Amiram; Krimsky, Miron; Shoseyov, David

    2013-01-01

    Background Phospholipases A2 (PLA2) hydrolyzes phospholipids, initiating the production of inflammatory lipid mediators. We have previously shown that in rats, sPLA2 and cPLA2 play opposing roles in the pathophysiology of ovalbumin (OVA)-induced experimental allergic bronchitis (OVA-EAB), an asthma model: Upon disease induction sPLA2 expression and production of the broncho-constricting CysLTs are elevated, whereas cPLA2 expression and the broncho-dilating PGE2 production are suppressed. These were reversed upon disease amelioration by treatment with an sPLA2 inhibitor. However, studies in mice reported the involvement of both sPLA2 and cPLA2 in EAB induction. Objectives To examine the relevance of mouse and rat models to understanding asthma pathophysiology. Methods OVA-EAB was induced in mice using the same methodology applied in rats. Disease and biochemical markers in mice were compared with those in rats. Results As in rats, EAB in mice was associated with increased mRNA of sPLA2, specifically sPLA2gX, in the lungs, and production of the broncho-constricting eicosanoids CysLTs, PGD2 and TBX2 in bronchoalveolar lavage (BAL). In contrast, EAB in mice was associated also with elevated cPLA2 mRNA and PGE2 production. Yet, treatment with an sPLA2 inhibitor ameliorated the EAB concomitantly with reverting the expression of both cPLA2 and sPLA2, and eicosanoid production. Conclusions In both mice and rats sPLA2 is pivotal in OVA-induced EAB. Yet, amelioration of asthma markers in mouse models, and human tissues, was observed also upon cPLA2 inhibition. It is plausible that airway conditions, involving multiple cell types and organs, require the combined action of more than one, essential, PLA2s. PMID:24204651

  2. Cellular responses to Pyrularia thionin are mediated by Ca2+ influx and phospholipase A2 activation and are inhibited by thionin tyrosine iodination.

    PubMed Central

    Evans, J; Wang, Y D; Shaw, K P; Vernon, L P

    1989-01-01

    Pyrularia thionin, isolated from nuts of Pyrularia pubera, is a strongly basic peptide of 47 amino acids. The amino acid sequence and configuration of its four disulfide bonds place this plant peptide, known to be hemolytic, cytotoxic, and neurotoxic, among the thionins. We report and compare several cellular responses mediated by Pyrularia thionin: hemolysis of human erythrocytes, activation of an endogenous phospholipase A2 in Swiss 3T3 cells, cytotoxicity toward HeLa and mouse B16 melanoma cells in culture, viability of rat hepatocytes and lymphocytes measured by trypan blue exclusion, and lethality in mice. Cellular responses related to ion movement include a toxin-mediated influx of Ca2+ into mouse P388 cells measured by Fura-2 fluorescence, depolarization of mouse P388 plasma membrane measured by fluorescence of bis(1,3-diethylthiobarbituric acid)trimethine oxonol (bisoxonol), and depolarization of frog (Rana pipiens) sartorius muscle determined by direct measurement of membrane potential. Graded iodination of Pyrularia thionin leads to a related loss of activity for hemolysis, phospholipase A2 activation, cytotoxicity, and lethality in mice. The mediated Ca2+ influx into and depolarization of P388 cells require Ca2+ in the external medium and are inhibited by 100 microM Ni2+. Depolarization of sartorius muscle by Pyrularia thionin also requires a functional Ca2+ channel, as shown by verapamil inhibition. This muscle depolarization also involves phospholipase A2 activation because dexamethasone and quinacrin, but not indomethacin, protect against depolarization. The IC50 values for viability of rat hepatocytes and splenic lymphocytes measured by trypan blue exclusion were 0.17 and 40 microM, respectively. The general response of cells to Pyrularia thionin involves a membrane alteration leading to depolarization and a channel-mediated influx of Ca2+. There is a related activation of phospholipase A2 that results in loss of membrane integrity, hemolysis in the

  3. Snake Venom Cytotoxins, Phospholipase A2s, and Zn2+-dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance

    PubMed Central

    Gasanov, Sardar E; Dagda, Ruben K; Rael, Eppie D

    2014-01-01

    Snake venom toxins are responsible for causing severe pathology and toxicity following envenomation including necrosis, apoptosis, neurotoxicity, myotoxicity, cardiotoxicity, profuse hemorrhage, and disruption of blood homeostasis. Clinically, snake venom toxins therefore represent a significant hazard to snakebite victims which underscores the need to produce more efficient anti-venom. Some snake venom toxins, however, have great potential as drugs for treating human diseases. In this review, we discuss the biochemistry, structure/function, and pathology induced by snake venom toxins on human tissue. We provide a broad overview of cobra venom cytotoxins, catalytically active and inactive phospholipase A2s (PLA2s), and Zn2+-dependent metalloproteinases. We also propose biomedical applications whereby snake venom toxins can be employed for treating human diseases. Cobra venom cytotoxins, for example, may be utilized as anti-cancer agents since they are efficient at destroying certain types of cancer cells including leukemia. Additionally, increasing our understanding of the molecular mechanism(s) by which snake venom PLA2s promote hydrolysis of cell membrane phospholipids can give insight into the underlying biomedical implications for treating autoimmune disorders that are caused by dysregulated endogenous PLA2 activity. Lastly, we provide an exhaustive overview of snake venom Zn2+-dependent metalloproteinases and suggest ways by which these enzymes can be engineered for treating deep vein thrombosis and neurodegenerative disorders. PMID:24949227

  4. Secretory Phospholipase A2-IIA and Cardiovascular Disease

    PubMed Central

    Holmes, Michael V.; Simon, Tabassome; Exeter, Holly J.; Folkersen, Lasse; Asselbergs, Folkert W.; Guardiola, Montse; Cooper, Jackie A.; Palmen, Jutta; Hubacek, Jaroslav A.; Carruthers, Kathryn F.; Horne, Benjamin D.; Brunisholz, Kimberly D.; Mega, Jessica L.; van Iperen, Erik P.A.; Li, Mingyao; Leusink, Maarten; Trompet, Stella; Verschuren, Jeffrey J.W.; Hovingh, G. Kees; Dehghan, Abbas; Nelson, Christopher P.; Kotti, Salma; Danchin, Nicolas; Scholz, Markus; Haase, Christiane L.; Rothenbacher, Dietrich; Swerdlow, Daniel I.; Kuchenbaecker, Karoline B.; Staines-Urias, Eleonora; Goel, Anuj; van 't Hooft, Ferdinand; Gertow, Karl; de Faire, Ulf; Panayiotou, Andrie G.; Tremoli, Elena; Baldassarre, Damiano; Veglia, Fabrizio; Holdt, Lesca M.; Beutner, Frank; Gansevoort, Ron T.; Navis, Gerjan J.; Mateo Leach, Irene; Breitling, Lutz P.; Brenner, Hermann; Thiery, Joachim; Dallmeier, Dhayana; Franco-Cereceda, Anders; Boer, Jolanda M.A.; Stephens, Jeffrey W.; Hofker, Marten H.; Tedgui, Alain; Hofman, Albert; Uitterlinden, André G.; Adamkova, Vera; Pitha, Jan; Onland-Moret, N. Charlotte; Cramer, Maarten J.; Nathoe, Hendrik M.; Spiering, Wilko; Klungel, Olaf H.; Kumari, Meena; Whincup, Peter H.; Morrow, David A.; Braund, Peter S.; Hall, Alistair S.; Olsson, Anders G.; Doevendans, Pieter A.; Trip, Mieke D.; Tobin, Martin D.; Hamsten, Anders; Watkins, Hugh; Koenig, Wolfgang; Nicolaides, Andrew N.; Teupser, Daniel; Day, Ian N.M.; Carlquist, John F.; Gaunt, Tom R.; Ford, Ian; Sattar, Naveed; Tsimikas, Sotirios; Schwartz, Gregory G.; Lawlor, Debbie A.; Morris, Richard W.; Sandhu, Manjinder S.; Poledne, Rudolf; Maitland-van der Zee, Anke H.; Khaw, Kay-Tee; Keating, Brendan J.; van der Harst, Pim; Price, Jackie F.; Mehta, Shamir R.; Yusuf, Salim; Witteman, Jaqueline C.M.; Franco, Oscar H.; Jukema, J. Wouter; de Knijff, Peter; Tybjaerg-Hansen, Anne; Rader, Daniel J.; Farrall, Martin; Samani, Nilesh J.; Kivimaki, Mika; Fox, Keith A.A.; Humphries, Steve E.; Anderson, Jeffrey L.; Boekholdt, S. Matthijs; Palmer, Tom M.; Eriksson, Per; Paré, Guillaume; Hingorani, Aroon D.; Sabatine, Marc S.; Mallat, Ziad; Casas, Juan P.; Talmud, Philippa J.

    2013-01-01

    Objectives This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease. Background Higher circulating levels of sPLA2-IIA mass or sPLA2 enzyme activity have been associated with increased risk of cardiovascular events. However, it is not clear if this association is causal. A recent phase III clinical trial of an sPLA2 inhibitor (varespladib) was stopped prematurely for lack of efficacy. Methods We conducted a Mendelian randomization meta-analysis of 19 general population studies (8,021 incident, 7,513 prevalent major vascular events [MVE] in 74,683 individuals) and 10 acute coronary syndrome (ACS) cohorts (2,520 recurrent MVE in 18,355 individuals) using rs11573156, a variant in PLA2G2A encoding the sPLA2-IIA isoenzyme, as an instrumental variable. Results PLA2G2A rs11573156 C allele associated with lower circulating sPLA2-IIA mass (38% to 44%) and sPLA2 enzyme activity (3% to 23%) per C allele. The odds ratio (OR) for MVE per rs11573156 C allele was 1.02 (95% confidence interval [CI]: 0.98 to 1.06) in general populations and 0.96 (95% CI: 0.90 to 1.03) in ACS cohorts. In the general population studies, the OR derived from the genetic instrumental variable analysis for MVE for a 1-log unit lower sPLA2-IIA mass was 1.04 (95% CI: 0.96 to 1.13), and differed from the non-genetic observational estimate (OR: 0.69; 95% CI: 0.61 to 0.79). In the ACS cohorts, both the genetic instrumental variable and observational ORs showed a null association with MVE. Instrumental variable analysis failed to show associations between sPLA2 enzyme activity and MVE. Conclusions Reducing sPLA2-IIA mass is unlikely to be a useful therapeutic goal for preventing cardiovascular events. PMID:23916927

  5. Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Shansky, Janet; Karlisch, Patricia; Solerssi, Rosa Lopez

    1991-01-01

    Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins E2 and F2(alpha) which regulate protein turnover rates and muscle cell growth. Mechnical stimulation significantly increases the breakdown rate of (3)H-arachidonic acid labelled phospholipids, releasing free (3)H-arachidonic acid, and the rate-limiting precursor of prostaglandin synthesis. Mechanical stimulation also significantly increases (3)H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-2-(3)H inositol labelled phospholipids. Phospholipase A2, phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are activated by stretch. The lipase inhibitors bromophenacylbromide and RHC80267 together reduce stretch-induced prostaglandin production by 73-83 percent. The stretch-induced increases in prostaglandin production, (3)H-arachidonic acid labelled phospholipid breakdown, and (3)H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitive) whereas the formation of inositol phosphates from myo-2-(3)H inositol labelled phospholipids are dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and prostaglandins through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC.

  6. Angiogenin stimulates endothelial cell prostacyclin secretion by activation of phospholipase A2.

    PubMed Central

    Bicknell, R; Vallee, B L

    1989-01-01

    Angiogenin stimulates capillary and umbilical vein endothelial cell prostacyclin secretion but not that of prostaglandins of the E series. The response was quantitated by radioimmunoassay and by [3H]arachidonate labeling followed by analysis of the secreted prostaglandins. The stimulated secretion lasts for several minutes and is optimal at 2-4 min. The dose-response (peak at 1-10 ng/ml) is similar to that previously observed for activation of endothelial cell phospholipase C. Stimulated secretion was blocked by pretreatment with the inhibitors of prostacyclin synthesis, indomethacin and tranylcypromine, and also the specific inhibitor of phospholipase A2, quinacrine, as well as pertussis toxin and the diglyceryl and monoglyceryl lipase inhibitor RHC 80267. Stimulated secretion was also abolished in cells that were either pretreated for 48 hr with phorbol ester to down-regulate protein kinase C or incubated with the protein kinase inhibitor H7. Hydrolysis of phosphatidylinositol by phospholipase A2 appears to be the source of angiogenin-mobilized arachidonate; angiogenin-induced hydrolysis of phosphatidylcholine was not detected. Activation of phospholipase A2 occurs in the absence of an angiogenin-induced calcium flux. The results are discussed in terms of mechanisms of agonist-induced intracellular arachidonate mobilization and relevance to angiogenesis. PMID:2646638

  7. Selective and programmed cleavage of GPI-anchored proteins from the surface membrane by phospholipase C.

    PubMed

    Müller, Alexandra; Klöppel, Christine; Smith-Valentine, Megan; Van Houten, Judith; Simon, Martin

    2012-01-01

    Many surface proteins of eukaryotic cells are tethered to the membrane by a GPI-anchor which is enzymatically cleavable. Here, we investigate cleavage and release of different GPI-proteins by phospholipase C from the outer membrane of the ciliate Paramecium tetraurelia. Our data indicate that different GPI-proteins are not equally cleaved as proteins of the surface antigen family are preferentially released in vitro compared to several smaller GPI-proteins. Likewise, the analysis of culture medium indicates exclusive in vivo release of surface antigens by two phospholipase C isoforms (PLC2 and PLC6). This suggests that phospholipase C shows affinity for select groups of GPI-anchored proteins. Our data also reveal an up-regulation of PLC isoforms in GPI-anchored protein cleavage during antigenic switching. As a consequence, silencing of these PLCs leads to a drastic decrease of antigen concentration in the medium. These results suggest a higher order of GPI-regulation by phospholipase C as cleavage occurs programmed and specific for single GPI-proteins instead of an unspecific shedding of the entire surface membrane GPI-content. PMID:22024023

  8. INFLUENCE OF CCL4 BIOTRANSFORMATION ON THE ACTIVATION OF RAT LIVER PHOSPHOLIPASE C IN VITRO

    EPA Science Inventory

    The Influence of CCl4 Biotransforrnation on the Activation of Rat Liver Phospholipase C in Vitro. Coleman, J.F., Condie, L.W. AND LAMB, R.G. (1988). Toxicol. Appl Pharmacol. 95, 200-207. Carbon tetrachloride (CCL4) biotransformation and covalent binding was measured in l000g live...

  9. Genes Encoding Phospholipases A2 Mediate Insect Nodulation Reactions to Bacterial Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We propose that expression of four genes encoding secretory phospholipases A2 (sPLA2) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis...

  10. Carbonothioate phospholipids as substrate for a spectrophotometric assay of phospholipase A2.

    PubMed

    Yu, L; Ternansky, R J; Crisologo, J F; Chang, J; Baker, B L; Coutts, S M

    1998-12-01

    A continuous spectrophotometric assay for phospholipase A2 (PLA2) was developed using novel carbonothioate phospholipids. These phospholipid analogues contain a carbonothioate bond in the place of the sn-2 ester of the natural substrates of phospholipase A2 and were synthesized in a one-pot two-step reaction. Phospholipase A2 from cobra venom (Naja naja atra) hydrolyzes carbonothioate phospholipids and liberates a free thiol, alkylmercaptan, which is reacted with 5,5'-dithiobis(2-nitrobenzoic acid) to yield a product that absorbs at 412 nm. The kinetic studies on PLA2 hydrolysis of carbonothioate phospholipids were carried out in pure phospholipid forms and in Triton X-100 mixed micelles. The hydrolysis of pure carbonothioate phospholipids exhibits an interfacial activation phenomenon. The hydrolysis of phospholipid in mixed Triton X-100 micelles follows classical Michaelis-Menten kinetics. In a mixed micellar system, the catalytic efficiency observed with this series of substrates is two orders of magnitude lower than that of the hydrolysis of the natural substrate dipalmitoyl phosphocholine. However, these substrates bind to the enzyme over 10 times tighter than does the natural substrate. Application of this carbonothioate assay to screen both reversible and irreversible enzyme inhibitors of phospholipase A2 is also demonstrated. PMID:9866705

  11. Role of polyamines and phospholipase D in maize (Zea mays L.) response to drought stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroponic experiment was conducted to elucidate the role of polyamines and phospholipase D (PLD) in regulating response of maize plants to drought stress (DS). During the early stage of DS, an increase in PLD activity, independent of polyamines contents, was mainly responsible for stomatal closure...

  12. Oocyte activation and phospholipase C zeta (PLCζ): diagnostic and therapeutic implications for assisted reproductive technology

    PubMed Central

    2012-01-01

    Infertility affects one in seven couples globally and has recently been classified as a disease by the World Health Organisation (WHO). While in-vitro fertilisation (IVF) offers effective treatment for many infertile couples, cases exhibiting severe male infertility (19–57%) often remain difficult, if not impossible to treat. In such cases, intracytoplasmic sperm injection (ICSI), a technique in which a single sperm is microinjected into the oocyte, is implemented. However, 1–5% of ICSI cycles still fail to fertilise, affecting over 1000 couples per year in the UK alone. Pregnancy and delivery rates for IVF and ICSI rarely exceed 30% and 23% respectively. It is therefore imperative that Assisted Reproductive Technology (ART) protocols are constantly modified by associated research programmes, in order to provide patients with the best chances of conception. Prior to fertilisation, mature oocytes are arrested in the metaphase stage of the second meiotic division (MII), which must be alleviated to allow the cell cycle, and subsequent embryogenesis, to proceed. Alleviation occurs through a series of concurrent events, collectively termed ‘oocyte activation’. In mammals, oocytes are activated by a series of intracellular calcium (Ca2+) oscillations following gamete fusion. Recent evidence implicates a sperm-specific phospholipase C, PLCzeta (PLCζ), introduced into the oocyte following membrane fusion as the factor responsible. This review summarises our current understanding of oocyte activation failure in human males, and describes recent advances in our knowledge linking certain cases of male infertility with defects in PLCζ expression and activity. Systematic literature searches were performed using PubMed and the ISI-Web of Knowledge. Databases compiled by the United Nations and World Health Organisation databases (UNWHO), and the Human Fertilization and Embryology Authority (HFEA) were also scrutinised. It is clear that PLCζ plays a fundamental role in

  13. Phospholipase C zeta (PLCζ) and male infertility: Clinical update and topical developments.

    PubMed

    Amdani, Siti Nornadhirah; Yeste, Marc; Jones, Celine; Coward, Kevin

    2016-05-01

    The development of a mammalian embryo is initiated by a sequence of molecular events collectively referred to as 'oocyte activation' and regulated by the release of intracellular calcium in the ooplasm. Over the last decade, phospholipase C zeta (PLCζ), a sperm protein introduced into the oocyte upon gamete fusion, has gained almost universal acceptance as the protein factor responsible for initiating oocyte activation. A large body of consistent and reproducible evidence, from both biochemical and clinical settings, confers support for the role of PLCζ in this fundamental biological context, which has significant ramifications for the management of human male infertility. Oocyte activation deficiency (OAD) and total fertilisation failure (TFF) are known causes of infertility and have both been linked to abnormalities in the structure, expression, and localisation pattern of PLCζ in human sperm. Assisted oocyte activators (AOAs) represent the only therapeutic option available for OAD at present, although these agents have been the source of much debate recently, particularly with regard to their potential epigenetic effects upon the embryo. Consequently, there is much interest in the deployment of sensitive PLCζ assays as prognostic/diagnostic tests and human recombinant PLCζ protein as an alternative form of therapy. Although PLCζ deficiency has been directly linked to a cohort of infertile cases, we have yet to identify the specific causal mechanisms involved. While two genetic mutations have been identified which link defective PLCζ protein to an infertile phenotype, both were observed in the same patient, and have yet to be described in other patients. Consequently, some researchers are investigating the possibility that genetic variations in the form of single nucleotide polymorphisms (SNPs) could provide some explanation, especially since >6000 SNPs have been identified in the PLCζ gene. As yet, however, there is no consistent data to suggest that any

  14. Expression of enzymatically inactive wasp venom phospholipase A1 in Pichia pastoris.

    PubMed

    Borodina, Irina; Jensen, Bettina M; Wagner, Tim; Hachem, Maher A; Søndergaard, Ib; Poulsen, Lars K

    2011-01-01

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect on growth of the yeast cells. To overcome the problem we introduced three different point mutations at the critical points of the active site, where serine137, aspartate165 or histidine229 were replaced by alanine (S137A, D165A and H229A). All the three mutated forms could be expressed in P. pastoris. The H229A mutant did not have any detectable phospholipase A1 activity and was secreted at the level of several mg/L in shake flask culture. The protein was purified by nickel-affinity chromatography and its identity was confirmed by MALDI-TOF mass spectrometry. The protein could bind IgE antibodies from wasp venom allergic patients and could inhibit the binding of wasp venom to IgE antibodies specific for phospholipase A1 as shown by Enzyme Allergo-Sorbent Test (EAST). Moreover, the recombinant protein was allergenic in a biological assay as demonstrated by its capability to induce histamine release of wasp venom-sensitive basophils.The recombinant phospholipase A1 presents a good candidate for wasp venom immunotherapy. PMID:21731687

  15. Expression of Enzymatically Inactive Wasp Venom Phospholipase A1 in Pichia pastoris

    PubMed Central

    Borodina, Irina; Jensen, Bettina M.; Wagner, Tim; Hachem, Maher A.; Søndergaard, Ib; Poulsen, Lars K.

    2011-01-01

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification. Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect on growth of the yeast cells. To overcome the problem we introduced three different point mutations at the critical points of the active site, where serine137, aspartate165 or histidine229 were replaced by alanine (S137A, D165A and H229A). All the three mutated forms could be expressed in P. pastoris. The H229A mutant did not have any detectable phospholipase A1 activity and was secreted at the level of several mg/L in shake flask culture. The protein was purified by nickel-affinity chromatography and its identity was confirmed by MALDI-TOF mass spectrometry. The protein could bind IgE antibodies from wasp venom allergic patients and could inhibit the binding of wasp venom to IgE antibodies specific for phospholipase A1 as shown by Enzyme Allergo-Sorbent Test (EAST). Moreover, the recombinant protein was allergenic in a biological assay as demonstrated by its capability to induce histamine release of wasp venom-sensitive basophils. The recombinant phospholipase A1 presents a good candidate for wasp venom immunotherapy. PMID:21731687

  16. The Antimicrobial Activity of an Acidic Phospholipase A₂ (NN-XIa-PLA₂) from the Venom of Naja naja naja (Indian Cobra).

    PubMed

    Sudarshan, S; Dhananjaya, B L

    2015-08-01

    Microbial resistance against antibiotics is considered as a potentially serious threat to public health. Therefore, there is much interest in developing new molecules with novel modes of action. In this study, when antimicrobial potential of an acidic protein-NN-XIa-PLA2 (Naja naja venom phospholipase A2 fraction-XIa) of N. naja venom was evaluated, it demonstrated potent bactericidal action against the human pathogenic strains. It inhibited more significantly, the gram-positive bacteria, when compared to gram-negative bacteria. The minimum inhibitory concentration (MIC) values ranged from 17 to 20 μg/ml. It was interesting to observe that the NN-XIa-PLA2 showed comparable antibacterial activity to the standard antibiotics used. It was found that there was a strong correlation between phospholipase A2 (PLA2) activities, hemolytic, and antimicrobial activity. Further, it is found that in the presence of p-bromophenacyl bromide (p-BPB), there is a significant decrease in enzymatic activity and associated antimicrobial activities, suggesting that a strong correlation exists between catalytic activity and antimicrobial effects, which thereby destabilize the membrane bilayer. However, other mechanisms cannot be completely ruled out. Thus, these studies encourage further in-depth study on molecular mechanisms of antibacterial properties and thereby help in development of this protein into a possible therapeutic lead molecule for treating bacterial infections. PMID:26109249

  17. Critical role of phospholipase A2 group IID in age-related susceptibility to severe acute respiratory syndrome–CoV infection

    PubMed Central

    Vijay, Rahul; Hua, Xiaoyang; Meyerholz, David K.; Miki, Yoshimi; Yamamoto, Kei; Gelb, Michael; Murakami, Makoto

    2015-01-01

    Oxidative stress and chronic low-grade inflammation in the lungs are associated with aging and may contribute to age-related immune dysfunction. To maintain lung homeostasis, chronic inflammation is countered by enhanced expression of proresolving/antiinflammatory factors. Here, we show that age-dependent increases of one such factor in the lungs, a phospholipase A2 (PLA2) group IID (PLA2G2D) with antiinflammatory properties, contributed to worse outcomes in mice infected with severe acute respiratory syndrome-coronavirus (SARS-CoV). Strikingly, infection of mice lacking PLA2G2D expression (Pla2g2d−/− mice) converted a uniformly lethal infection to a nonlethal one (>80% survival), subsequent to development of enhanced respiratory DC migration to the draining lymph nodes, augmented antivirus T cell responses, and diminished lung damage. We also observed similar effects in influenza A virus–infected middle-aged Pla2g2d−/− mice. Furthermore, oxidative stress, probably via lipid peroxidation, was found to induce PLA2G2D expression in mice and in human monocyte–derived macrophages. Thus, our results suggest that directed inhibition of a single inducible phospholipase, PLA2G2D, in the lungs of older patients with severe respiratory infections is potentially an attractive therapeutic intervention to restore immune function. PMID:26392224

  18. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice.

    PubMed

    Ye, Minsook; Chung, Hwan-Suck; Lee, Chanju; Hyun Song, Joo; Shim, Insop; Kim, Youn-Sub; Bae, Hyunsu

    2016-01-01

    α-Synuclein (α-Syn) has a critical role in microglia-mediated neuroinflammation, which leads to the development of Parkinson's disease (PD). Recent studies have shown that bee venom (BV) has beneficial effects on PD symptoms in human patients or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin-induced PD mice. This study investigated whether treatment with BV-derived phospholipase A2 (bvPLA2) would improve the motor dysfunction and pathological features of PD in human A53T α-Syn mutant transgenic (A53T Tg) mice. The motor dysfunction of A53T Tg mice was assessed using the pole test. The levels of α-Syn, microglia and the M1/M2 phenotype in the spinal cord were evaluated by immunofluorescence. bvPLA2 treatment significantly ameliorated motor dysfunction in A53T Tg mice. In addition, bvPLA2 significantly reduced the expression of α-Syn, the activation and numbers of microglia, and the ratio of M1/M2 in A53T Tg mice. These results suggest that bvPLA2 could be a promising treatment option for PD. PMID:27388550

  19. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice

    PubMed Central

    Ye, Minsook; Chung, Hwan-Suck; Lee, Chanju; Hyun Song, Joo; Shim, Insop; Kim, Youn-Sub; Bae, Hyunsu

    2016-01-01

    α-Synuclein (α-Syn) has a critical role in microglia-mediated neuroinflammation, which leads to the development of Parkinson's disease (PD). Recent studies have shown that bee venom (BV) has beneficial effects on PD symptoms in human patients or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin-induced PD mice. This study investigated whether treatment with BV-derived phospholipase A2 (bvPLA2) would improve the motor dysfunction and pathological features of PD in human A53T α-Syn mutant transgenic (A53T Tg) mice. The motor dysfunction of A53T Tg mice was assessed using the pole test. The levels of α-Syn, microglia and the M1/M2 phenotype in the spinal cord were evaluated by immunofluorescence. bvPLA2 treatment significantly ameliorated motor dysfunction in A53T Tg mice. In addition, bvPLA2 significantly reduced the expression of α-Syn, the activation and numbers of microglia, and the ratio of M1/M2 in A53T Tg mice. These results suggest that bvPLA2 could be a promising treatment option for PD. PMID:27388550

  20. Matrix Metalloproteinase‐2 Negatively Regulates Cardiac Secreted Phospholipase A2 to Modulate Inflammation and Fever

    PubMed Central

    Berry, Evan; Hernandez‐Anzaldo, Samuel; Ghomashchi, Farideh; Lehner, Richard; Murakami, Makoto; Gelb, Michael H.; Kassiri, Zamaneh; Wang, Xiang; Fernandez‐Patron, Carlos

    2015-01-01

    Background Matrix metalloproteinase (MMP)‐2 deficiency makes humans and mice susceptible to inflammation. Here, we reveal an MMP‐2–mediated mechanism that modulates the inflammatory response via secretory phospholipase A2 (sPLA2), a phospholipid hydrolase that releases fatty acids, including precursors of eicosanoids. Methods and Results Mmp2−/− (and, to a lesser extent, Mmp7−/− and Mmp9−/−) mice had between 10‐ and 1000‐fold elevated sPLA2 activity in plasma and heart, increased eicosanoids and inflammatory markers (both in the liver and heart), and exacerbated lipopolysaccharide‐induced fever, all of which were blunted by adenovirus‐mediated MMP‐2 overexpression and varespladib (pharmacological sPLA2 inhibitor). Moreover, Mmp2 deficiency caused sPLA2‐mediated dysregulation of cardiac lipid metabolic gene expression. Compared with liver, kidney, and skeletal muscle, the heart was the single major source of the Ca2+‐dependent, ≈20‐kDa, varespladib‐inhibitable sPLA2 that circulates when MMP‐2 is deficient. PLA2G5, which is a major cardiac sPLA2 isoform, was proinflammatory when Mmp2 was deficient. Treatment of wild‐type (Mmp2+/+) mice with doxycycline (to inhibit MMP‐2) recapitulated the Mmp2−/− phenotype of increased cardiac sPLA2 activity, prostaglandin E2 levels, and inflammatory gene expression. Treatment with either indomethacin (to inhibit cyclooxygenase‐dependent eicosanoid production) or varespladib (which inhibited eicosanoid production) triggered acute hypertension in Mmp2−/− mice, revealing their reliance on eicosanoids for blood pressure homeostasis. Conclusions A heart‐centric MMP‐2/sPLA2 axis may modulate blood pressure homeostasis, inflammatory and metabolic gene expression, and the severity of fever. This discovery helps researchers to understand the cardiovascular and systemic effects of MMP‐2 inhibitors and suggests a disease mechanism for human MMP‐2 gene deficiency. PMID:25820137

  1. Increased phospholipase A2 and decreased lysophospholipase activity in the small intestinal mucosa after ischaemia and revascularisation.

    PubMed Central

    Otamiri, T; Franzén, L; Lindmark, D; Tagesson, C

    1987-01-01

    The influence of ischaemia and revascularisation on lipid peroxidation and phospholipid metabolism in the rat small intestinal mucosa was investigated. Two hours of total ischaemia followed by five minutes of revascularisation caused not only accumulation of malondialdehyde in the mucosa, but also increased activity of phospholipase A2, decreased activity of lysophospholipase, and increased ratio between lysophosphatidylcholine and phosphatidylcholine. Pretreatment with the phospholipase A2 inhibitor, quinacrine, prevented the increases in mucosal phospholipase A2 activity and lysophosphatidylcholine/phosphatidylcholine ratio after ischaemia and morphological examinations revealed that the mucosa was then also protected against ischaemic injury. These findings point to the possibility that activation of phospholipase A2 and accumulation of lysophosphoglycerides could be involved in mediating the mucosal injury caused by small intestinal ischaemia. Images Fig. 7 PMID:3428670

  2. Rapid isolation and partial characterization of two phospholipases from Kenyan Echis carinatus leakeyi (Leakey's saw-scaled viper) venom.

    PubMed

    Desmond, H P; Crampton, J M; Theakston, R D

    1991-01-01

    The purification and partial sequencing of two phospholipase A2 toxins from the venom of Kenyan E. carinatus leakeyi is described. The two proteins exhibit sequence homology with other toxic phospholipases. Both have a molecular weight in the region of 16,000 and are purified to homogeneity from crude venom by a single high performance liquid chromatography. The role of these proteins in the toxicity of the venom remains to be established. PMID:1862528

  3. Purification of an acidic phospholipase A2 from Bothrops lanceolatus (fer de lance) venom: molecular and enzymatic properties.

    PubMed

    de Araújo, A L; Radvanyi, F; Bon, C

    1994-09-01

    The acidic phospholipase A2 from Bothrops lanceolatus venom has been purified by gel filtration on Sephadex G-50 and ion exchange chromatography on CM-cellulose. Analysis by FPLC on Mono-Q column of the purified phospholipase A2 indicated that it is a mixture of several isoenzymes. The two major isoforms consist of a single polypeptide chain with mol. wts of 14,500 and 15,000, which slightly differ in their isoelectric point (4.9 and 5.3) and amino acid composition. However, enzymatic and pharmacological properties of the various isoenzymes are identical. The phospholipase from B. lanceolatus venom is characterized by a progressive increase in the rate of hydrolysis when enzymatic activity is determined with crude egg yolk as substrate in the absence of detergent. This phenomenon, which is not observed with mixed micelles of lecithin-detergent, is not due to the presence of a phospholipase A2 inhibitor in the venom, as previously suggested by several investigators in the case of other Bothrops and Cobra venoms. It is rather a catalytic characteristics of B. lanceolatus venom phospholipase, the enzymatic activity of which depends on the physical state of phospholipids. Bothrops lanceolatus acidic phospholipase A2 is non-toxic. PMID:7801343

  4. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.

    PubMed

    Parrish, Jason C; Nichols, David E

    2006-11-01

    To date, several studies have demonstrated that phospholipase C-coupled receptors stimulate the production of endocannabinoids, particularly 2-arachidonoylglycerol. There is now evidence that endocannabinoids are involved in phospholipase C-coupled serotonin 5-HT(2A) receptor-mediated behavioral effects in both rats and mice. The main objective of this study was to determine whether activation of the 5-HT(2A) receptor leads to the production and release of the endocannabinoid 2-arachidonoylglycerol. NIH3T3 cells stably expressing the rat 5-HT(2A) receptor were first incubated with [(3)H]-arachidonic acid for 24 h. Following stimulation with 10 mum serotonin, lipids were extracted from the assay medium, separated by thin layer chromatography, and analyzed by liquid scintillation counting. Our results indicate that 5-HT(2A) receptor activation stimulates the formation and release of 2-arachidonoylglycerol. The 5-HT(2A) receptor-dependent release of 2-arachidonoylglycerol was partially dependent on phosphatidylinositol-specific phospholipase C activation. Diacylglycerol produced downstream of 5-HT(2A) receptor-mediated phospholipase D or phosphatidylcholine-specific phospholipase C activation did not appear to contribute to 2-arachidonoylglycerol formation in NIH3T3-5HT(2A) cells. In conclusion, our results support a functional model where neuromodulatory neurotransmitters such as serotonin may act as regulators of endocannabinoid tone at excitatory synapses through the activation of phospholipase C-coupled G-protein coupled receptors. PMID:17010161

  5. Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics.

    PubMed

    Samy, Ramar Perumal; Thwin, Maung Maung; Stiles, Brad G; Satyanarayana-Jois, Seetharama; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Siveen, Kodappully Sivaraman; Sikka, Sakshi; Kumar, Alan Prem; Sethi, Gautam; Lim, Lina Hsiu Kim

    2015-04-01

    Antimicrobial peptides (AMPs) play a vital role in defense against resistant bacteria. In this study, eight different AMPs synthesized from Python reticulatus serum protein were tested for bactericidal activity against various Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Burkholderia pseudomallei (KHW and TES strains), and Proteus vulgaris) using a disc-diffusion method (20 μg/disc). Among the tested peptides, phospholipase A2 inhibitory peptide (PIP)-18[59-76], β-Asp65-PIP[59-67], D-Ala66-PNT.II, and D60,65E-PIP[59-67] displayed the most potent bactericidal activity against all tested pathogens in a dose-dependent manner (100-6.8 μg/ml), with a remarkable activity noted against S. aureus at 6.8 μg/ml dose within 6 h of incubation. Determination of minimum inhibitory concentrations (MICs) by a micro-broth dilution method at 100-3.125 μg/ml revealed that PIP-18[59-76], β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides exerted a potent inhibitory effect against S. aureus and B. pseudomallei (KHW) (MICs 3.125 μg/ml), while a much less inhibitory potency (MICs 12.5 μg/ml) was noted for β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides against B. pseudomallei (TES). Higher doses of peptides had no effect on the other two strains (i.e., Klebsiella pneumoniae and Streptococcus pneumoniae). Overall, PIP-18[59-76] possessed higher antimicrobial activity than that of chloramphenicol (CHL), ceftazidime (CF) and streptomycin (ST) (30 μg/disc). When the two most active peptides, PIP-18[59-76] and β-Asp65-PIP[59-67], were applied topically at a 150 mg/kg dose for testing wound healing activity in a mouse model of S. aureus infection, the former accelerates faster wound healing than the latter peptide at 14 days post-treatment. The western blot data suggest that the topical application of peptides (PIP-18[59-67] and β-Asp65-PIP[59-67]) modulates NF-kB mediated wound repair in mice with relatively little haemolytic (100-1.56 μg/ml) and cytotoxic (1000

  6. Heparin-enhanced plasma phospholipase A2 activity and prostacyclin synthesis in patients undergoing cardiac surgery.

    PubMed Central

    Nakamura, H; Kim, D K; Philbin, D M; Peterson, M B; Debros, F; Koski, G; Bonventre, J V

    1995-01-01

    Although eicosanoid production contributes to physiological and pathophysiological consequences of cardiopulmonary bypass (CPB), the mechanisms accounting for the enhanced eicosanoid production have not been defined. Plasma phospholipase A2 (PLA2) activity, 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), and thromboxane B2 (TXB2) levels were measured at various times during cardiac surgery. Plasma PLA2 activity increased after systemic heparinization, before CPB. This was highly correlated with concurrent increases in plasma 6-keto-PGF1 alpha, TXB2 concentrations did not increase with heparin administration but did increase significantly after initiation of CPB. High plasma PLA2 activity, 6-keto-PGF1 alpha, and TXB2 concentrations were measured throughout the CPB period. Protamine, administered to neutralize the heparin, caused an acute reduction of both plasma PLA2 activity and plasma 6-keto-PGF1 alpha, but no change in plasma TXB2 concentrations. Thus the ratio of TXB2 to 6-keto-PGF1 alpha increased significantly after protamine administration. Enhanced plasma PLA2 activity was also measured in patients with lower doses of heparin used clinically for nonsurgical applications. Human plasma PLA2 was identified as group II PLA2 by its sensitivity to deoxycholate and dithiothreitol, its substrate specificity, and its elution characteristics on heparin affinity chromatography. Heparin addition to PMNs in vitro resulted in dose-dependent increases in cellular PLA2 activity and release of PLA2. The PLA2 released from the PMN had characteristics similar to those of post-heparin plasma PLA2. In conclusion, plasma PLA2 activity and 6-keto-PGF1 alpha concentrations are markedly enhanced with systemic heparinization. Part of the anticoagulant and vasodilating effects of heparin may be due to increased plasma prostacyclin (PGI2) levels. In addition the pulmonary vasoconstriction sometimes associated with protamine infusion during cardiac surgery might be due to decreased

  7. Phospholipase A and the interaction of Rickettsia prowazekii and mouse fibroblasts (L-929 cells)

    SciTech Connect

    Winkler, H.H.; Miller, E.T.

    1982-10-01

    L-929 cells were killed when approximately 50 viable Rickettsia prowazekii organisms per L-cell were centrifuged onto a monolayer. The glycerophospholipids of the L-cell were hydrolyzed to lysophosphatides and free fatty acids. Concomitantly, there was a loss of membrane integrity as shown by release of lactate dehydrogenase and 86Rb and permeability to trypan blue dye. No glycerophospholipid hydrolysis or cytotoxicity occurred when the rickettsiae were inactivated by heat, UV irradiation, N-ethylmaleimide, or metabolic inhibitors before their addition to the L-929 cells. On the other hand, treatment of the L929 cells with the cytoskeleton agents colchicine or cytochalasin B or with N-ethylmaleimide inhibited neither the phospholipase A activity nor the loss of membrane integrity. Cytochalasin B-treated cells could be damaged by even small numbers of rickettsiae. We suggest that this phospholipase A activity is used by the rickettsiae to escape from the phagosomes into the cytoplasm of host cells.

  8. PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination.

    PubMed

    Kim, Jun-Dal; Park, Kyung-Eui; Ishida, Junji; Kako, Koichiro; Hamada, Juri; Kani, Shuichi; Takeuchi, Miki; Namiki, Kana; Fukui, Hajime; Fukuhara, Shigetomo; Hibi, Masahiko; Kobayashi, Makoto; Kanaho, Yasunori; Kasuya, Yoshitoshi; Mochizuki, Naoki; Fukamizu, Akiyoshi

    2015-12-01

    The development of vertebrate neurons requires a change in membrane phosphatidylcholine (PC) metabolism. Although PC hydrolysis is essential for enhanced axonal outgrowth mediated by phospholipase D (PLD), less is known about the determinants of PC metabolism on dendritic arborization. We show that protein arginine methyltransferase 8 (PRMT8) acts as a phospholipase that directly hydrolyzes PC, generating choline and phosphatidic acid. We found that PRMT8 knockout mice (prmt8 (-/-)) displayed abnormal motor behaviors, including hindlimb clasping and hyperactivity. Moreover, prmt8 (-/-) mice and TALEN-induced zebrafish prmt8 mutants and morphants showed abnormal phenotypes, including the development of dendritic trees in Purkinje cells and altered cerebellar structure. Choline and acetylcholine levels were significantly decreased, whereas PC levels were increased, in the cerebellum of prmt8 (-/-) mice. Our findings suggest that PRMT8 acts both as an arginine methyltransferase and as a PC-hydrolyzing PLD that is essential for proper neurological functions. PMID:26665171

  9. Biological and Biochemical Potential of Sea Snake Venom and Characterization of Phospholipase A2 and Anticoagulation Activity.

    PubMed

    Damotharan, Palani; Veeruraj, Anguchamy; Arumugam, Muthuvel; Balasubramanian, Thangavel

    2016-03-01

    This study is designed to isolate and purify a novel anti-clotting protein component from the venom of Enhydrina schistosa, and explore its biochemical and biological activities. The active protein was purified from the venom of E. schistosa by ion-exchange chromatography using DEAE-cellulose. The venom protein was tested by various parameters such as, proteolytic, haemolytic, phospholipase and anti-coagulant activities. 80 % purity was obtained in the final stage of purification and the purity level of venom was revealed as a single protein band of about 44 kDa in SDS-polyacrylamide electrophoresis under reducing conditions. The results showed that the Potent hemolytic activity was observed against cow, goat, chicken and human (A, B and O positive) erythrocytes. Furthermore, the clotting assays showed that the venom of E. schistosa significantly prolonged in activated partial thromboplastin time, thrombin time, and prothrombin time. Venomous enzymes which hydrolyzed casein and gelatin substrate were found in this venom protein. Gelatinolytic activity was optimal at pH 5-9 and (1)H NMR analysis of purified venom was the base line information for the structural determination. These results suggested that the E. schistosa venom holds good promise for the development of novel lead compounds for pharmacological applications in near future. PMID:26855489

  10. Antibacterial potential of a basic phospholipase A2 (VRV-PL-V) of Daboia russellii pulchella (Russell's Viper) venom.

    PubMed

    Sudarshan, S; Dhananjaya, B L

    2014-11-01

    Microbial/bacterial resistance against antibiotics is considered as a potentially serious threat to public health. Further, as these antibiotics elicit side effects, there is interest in developing new molecules with novel modes of action from diverse organisms. Along these lines, in this study the antibacterial potential of the basic protein VRV-PL-V (Vipera russellii venom phospholipase A2 fraction V) of Daboia russellii pulchella venom was evaluated. VRV-PL-V demonstrated a potent antibacterial activity against all the human pathogenic strains tested. It inhibited more effectively Gram-positive bacteria like Staphylococcus aureus and Bacillus subtilis when compared to Gram-negative bacteria like Escherichia coli, Vibrio cholerae, Klebsiella pneumoniae, and Salmonella paratyphi. It inhibited bacterial growth with MIC values ranging from 13 to 24 µg/ml. The antibacterial potential of VRV-PL-V was comparable to the standards used like gentamycin, chloramphenicol, and streptomycin. There was a strong correlation between PLA2 activities and hemolytic and antibacterial activity. It was found that even in the presence of p-bromophenacyl bromide (an inhibitor of PLA2 enzymatic activity), there was marked antibacterial activity, suggesting dissociation or partial overlapping of the bactericidal/antimicrobial domains. Therefore, this study shows that although there is a strong correlation between enzymatic and antimicrobial activities of VRV-PL-V, it may also possess other properties that mimic bactericidal/membrane permeability-increasing protein. PMID:25540009

  11. Trans-Serosal Leakage of Proinflammatory Mediators during Abdominal Aortic Aneurysm Repair: Role of Phospholipase A2 in Activating Leukocytes

    PubMed Central

    2010-01-01

    Gut barrier failure and the resultant translocation of luminal bacteria and bacterial products into the systemic circulation have been proposed as pathogenic mechanisms of multiorgan dysfunction syndrome (MODS) in open repair of abdominal aortic aneurysm (AAA). Our study aimed to demonstrate the direct release of gut-derived inflammatory mediators via the trans-serosal route in humans. Fifteen patients who underwent elective infrarenal open repair of AAA were randomized into two groups. In Group I patients (n = 10), the small intestine was exteriorized into a bowel bag. In Group II patients (n = 5), the small intestine was packed within the peritoneal cavity using large gauzes. We collected the bowel bag fluid in Group I and the ascites fluid, squeezed out from the gauzes at the end of surgery, in Group II. Leukocytes were collected from patients' blood samples. Incubation with the bowel bag fluid and ascites fluid caused a significant increase in both granulocyte pseudopod formation and CD11b expression compared to that with control fluid (p < 0.01). The addition of phospholipase A2 (PLA2) inhibitor quinacrine abolished leukocyte activation by the bowel bag fluid. Based on these results, we consider that trasns-serosal leakage of gut-derived mediators occurred during the open repair of AAA; further, sPLA2 may be the most potent mediator in the activation of leukocytes among such gut-derived mediators in AAA surgery. PMID:23555400

  12. Dimethyl ester of bilirubin exhibits anti-inflammatory activity through inhibition of secretory phospholipase A2, lipoxygenase and cyclooxygenase.

    PubMed

    Joshi, Vikram; Umashankara, M; Ramakrishnan, Chandrasekaran; Nanjaraj Urs, Ankanahalli N; Suvilesh, Kanve Nagaraj; Velmurugan, Devadasan; Rangappa, Kanchugarakoppal S; Vishwanath, Bannikuppe Sannanaik

    2016-05-15

    Overproduction of arachidonic acid (AA) mediated by secretory phospholipase A2 group IIA (sPLA2IIA) is a hallmark of many inflammatory disorders. AA is subsequently converted into pro-inflammatory eicosanoids through 5-lipoxygenase (5-LOX) and cyclooxygenase-1/2 (COX-1/2) activities. Hence, inhibition of sPLA2IIA, 5-LOX and COX-1/2 activities is critical in regulating inflammation. We have previously reported unconjugated bilirubin (UCB), an endogenous antioxidant, as sPLA2IIA inhibitor. However, lipophilic UCB gets conjugated in liver with glucuronic acid into hydrophilic conjugated bilirubin (CB). Since hydrophobicity is pre-requisite for sPLA2IIA inhibition, conjugation reduces the efficacy of UCB. In this regard, UCB was chemically modified and derivatives were evaluated for sPLA2IIA, 5-LOX and COX-1/2 inhibition. Among the derivatives, BD1 (dimethyl ester of bilirubin) exhibited ∼ 3 fold greater inhibitory potency towards sPLA2IIA compared to UCB. Both UCB and BD1 inhibited human 5-LOX and COX-2 activities; however only BD1 inhibited AA induced platelet aggregation. Molecular docking studies demonstrated BD1 as better inhibitor of aforesaid enzymes than UCB and other endogenous antioxidants. These data suggest that BD1 exhibits strong anti-inflammatory activity through inhibition of AA cascade enzymes which is of great therapeutic importance. PMID:27060751

  13. Membranes serve as allosteric activators of phospholipase A2, enabling it to extract, bind, and hydrolyze phospholipid substrates

    PubMed Central

    Mouchlis, Varnavas D.; Bucher, Denis; McCammon, J. Andrew; Dennis, Edward A.

    2015-01-01

    Defining the molecular details and consequences of the association of water-soluble proteins with membranes is fundamental to understanding protein–lipid interactions and membrane functioning. Phospholipase A2 (PLA2) enzymes, which catalyze the hydrolysis of phospholipid substrates that compose the membrane bilayers, provide the ideal system for studying protein–lipid interactions. Our study focuses on understanding the catalytic cycle of two different human PLA2s: the cytosolic Group IVA cPLA2 and calcium-independent Group VIA iPLA2. Computer-aided techniques guided by deuterium exchange mass spectrometry data, were used to create structural complexes of each enzyme with a single phospholipid substrate molecule, whereas the substrate extraction process was studied using steered molecular dynamics simulations. Molecular dynamic simulations of the enzyme–substrate–membrane systems revealed important information about the mechanisms by which these enzymes associate with the membrane and then extract and bind their phospholipid substrate. Our data support the hypothesis that the membrane acts as an allosteric ligand that binds at the allosteric site of the enzyme’s interfacial surface, shifting its conformation from a closed (inactive) state in water to an open (active) state at the membrane interface. PMID:25624474

  14. Design and synthesis of phospholipase C and A2-activatable near-infrared fluorescent smart probes.

    PubMed

    Popov, Anatoliy V; Mawn, Theresa M; Kim, Soungkyoo; Zheng, Gang; Delikatny, E James

    2010-10-20

    The primary focus of this work was to develop activatable probes suitable for in vivo detection of phospholipase activity. Phospholipases (PLs) are ubiquitous enzymes that perform a number of critical regulatory functions. They catalyze phospholipid breakdown and are categorized as A(1), A(2) (PLA(2)), C (PLC), and D (PLD) based on their site of action. Here, we report the design, synthesis, and characterization of self-quenching reporter probes that release fluorescent moieties upon cleavage with PLA(2) or PLC. A series of phospholipids were synthesized bearing the NIR fluorophore pyropheophorbide a (Pyro) at the sn-2 position. Fluorescence quenching was achieved by attachment of either a positively charged black hole quencher-3 (BHQ-3) to the phospholipid headgroup or another neutral Pyro moiety at the sn-1 position. The specificity to different phospholipases was modulated by insertion of spacers (C(6), C(12)) between Pyro and the lipid backbone. The specificity of the quenched fluorescent phospholipids was assayed on a plate reader against a number of phospholipases and compared with two commercial probes bearing the visible fluorophore BODIPY. While PyroC(6)-PyroC(6)-PtdCho revealed significant background fluorescence, and a 10% fluorescence increase under the action of PLA(2), Pyro-PtdEtn-BHQ demonstrated high selective sensitivity to PLC, particularly to the PC-PLC isoform, and its sensitivity to PLA(2) was negligible due to steric hindrance at the sn-2 position. In contrast, the C(12)-spacered PyroC(12)-PtdEtn-BHQ demonstrated a remarkable selectivity for PLA(2) and the best relative PLA(2)/PLC sensitivity, significantly outperforming previously known probes. These results open an avenue for future in vivo experiments and for new probes to detect PL activity. PMID:20882956

  15. Purification and renal effects of phospholipase A(2) isolated from Bothrops insularis venom.

    PubMed

    Machado Braga, Marcus Davis; Costa Martins, Alice Maria; Alves, Claudênio Diógenes; de Menezes, Dalgimar Beserra; Martins, René Duarte; Ferreira Barbosa, Paulo Sérgio; de Sousa Oliveira, Isadora Maria; Toyama, Marcos Hikari; Toyama, Daniela Oliveira; Dos Santos Diz Filho, Eduardo Brito; Ramos Fagundes, Fabio Henrique; Fonteles, Manassés Claudino; Azul Monteiro, Helena Serra

    2008-02-01

    Bothrops insularis venom contains a variety of substances presumably responsible for several pharmacological effects. We investigated the biochemical and biological effects of phospholipase A(2) protein isolated from B. insularis venom and the chromatographic profile showed 7 main fractions and the main phospholipase A(2) (PLA(2)) enzymatic activity was detected in fractions IV and V. Fraction IV was submitted to a new chromatographic procedure on ion exchange chromatography, which allowed the elution of 5 main fractions designated as IV-1 to IV-5, from which IV-4 constituted the main fraction. The molecular homogeneity of this fraction was characterized by high-performance liquid chromatography (HPLC) and demonstrated by mass spectrometry (MS), which showed a molecular mass of 13984.20 Da; its N-terminal sequence presented a high amino acid identity (up to 95%) with the PLA(2) of Bothrops jararaca and Bothrops asper. Phospholipase A(2) isolated from B. insularis (Bi PLA(2) ) venom (10 microg/mL) was also studied as to its effect on the renal function of isolated perfused kidneys of Wistar rats (n=6). Bi PLA(2) increased perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF) and glomerular filtration rate (GFR). Sodium (%TNa(+)) and chloride tubular reabsorption (%TCl(-)) decreased at 120 min, without alteration in potassium transport. In conclusion, PLA(2) isolated from B. insularis venom promoted renal alterations in the isolated perfused rat kidney. PMID:17953979

  16. Analysis of nociceptive effects of neurotoxic phospholipase A2 from Vipera nikolskii venom in mice

    PubMed Central

    Dyachenko, Igor A; Murashev, Arkadii N; Andreeva, Tatyana V; Tsetlin, Victor I; Utkin, Yuri N

    2013-01-01

    Phospholipases A2 are represented in snake venoms by several types and possess diverse biological activities including neurotoxicity. Previously, we isolated and characterized two neurotoxic phospholipases A2 (HDP-1 and HDP-2) from the venom of Nikolski's viper (Vipera nikolskii), which were heterodimers composed of two non-covalently bound subunits. Each heterodimer consisted of an enzymatically active basic subunit and an inactive acidic subunit. In this work, we studied the in vivo biological activity of HDP-2 in mice. The acute toxicity (LD50 = 0.38 μg/gm) and maximal tolerated dose (0.1 μg/gm) were determined. In the hot plate test, HDP-2 at the maximal tolerated dose, reliably prolonged the time of the mouse staying on the plate. However, taking into account the neurotoxicity of HDP-2, we believe that this effect may be explained by a general intoxication rather than specific decrease of pain sensitivity. In this respect HDP-2 differs from other heterodimeric phospholipases A2 like crotoxin, which possess analgesic activity. This difference can be explained by the dissimilarity in the structure of the acidic subunits, suggesting an important role of this subunit in analgesic activity. PMID:23577231

  17. Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress

    PubMed Central

    Krčková, Zuzana; Brouzdová, Jitka; Daněk, Michal; Kocourková, Daniela; Rainteau, Dominique; Ruelland, Eric; Valentová, Olga; Pejchar, Přemysl; Martinec, Jan

    2015-01-01

    The Arabidopsis non-specific phospholipase C1 (NPC) protein family is encoded by the genes NPC1 – NPC6. It has been shown that NPC4 and NPC5 possess phospholipase C activity; NPC3 has lysophosphatidic acid phosphatase activity. NPC3, 4 and 5 play roles in the responses to hormones and abiotic stresses. NPC1, 2 and 6 has not been studied functionally yet. We found that Arabidopsis NPC1 expressed in Escherichia coli possesses phospholipase C activity in vitro. This protein was able to hydrolyse phosphatidylcholine to diacylglycerol. NPC1-green fluorescent protein was localized to secretory pathway compartments in Arabidopsis roots. In the knock out T-DNA insertion line NPC1 (npc1) basal thermotolerance was impaired compared with wild-type (WT); npc1 exhibited significant decreases in survival rate and chlorophyll content at the seventh day after heat stress (HS). Conversely, plants overexpressing NPC1 (NPC1-OE) were more resistant to HS compared with WT. These findings suggest that NPC1 is involved in the plant response to heat. PMID:26581502

  18. Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress.

    PubMed

    Krčková, Zuzana; Brouzdová, Jitka; Daněk, Michal; Kocourková, Daniela; Rainteau, Dominique; Ruelland, Eric; Valentová, Olga; Pejchar, Přemysl; Martinec, Jan

    2015-01-01

    The Arabidopsis non-specific phospholipase C (NPC) protein family is encoded by the genes NPC1 - NPC6. It has been shown that NPC4 and NPC5 possess phospholipase C activity; NPC3 has lysophosphatidic acid phosphatase activity. NPC3, 4 and 5 play roles in the responses to hormones and abiotic stresses. NPC1, 2 and 6 has not been studied functionally yet. We found that Arabidopsis NPC1 expressed in Escherichia coli possesses phospholipase C activity in vitro. This protein was able to hydrolyse phosphatidylcholine to diacylglycerol. NPC1-green fluorescent protein was localized to secretory pathway compartments in Arabidopsis roots. In the knock out T-DNA insertion line NPC1 (npc1) basal thermotolerance was impaired compared with wild-type (WT); npc1 exhibited significant decreases in survival rate and chlorophyll content at the seventh day after heat stress (HS). Conversely, plants overexpressing NPC1 (NPC1-OE) were more resistant to HS compared with WT. These findings suggest that NPC1 is involved in the plant response to heat. PMID:26581502

  19. An autoinhibitory helix in the C-terminal region of phospholipase C-[beta] mediates G[alpaha subscript q] activation

    SciTech Connect

    Lyon, Angeline M.; Tesmer, Valerie M.; Dhamsania, Vishan D.; Thal, David M.; Gutierrez, Joanne; Chowdhury, Shoaib; Suddala, Krishna C.; Northup, John K.; Tesmer, John J.G.

    2012-03-16

    The enzyme phospholipase C-{beta} (PLC{beta}) is a crucial regulator of intracellular calcium levels whose activity is controlled by heptahelical receptors that couple to members of the G{sub q} family of heterotrimeric G proteins. We have determined atomic structures of two invertebrate homologs of PLC{beta} (PLC21) from cephalopod retina and identified a helix from the C-terminal regulatory region that interacts with a conserved surface of the catalytic core of the enzyme. Mutations designed to disrupt the analogous interaction in human PLC{beta}3 considerably increase basal activity and diminish stimulation by G{alpha}{sub q}. G{alpha}{sub q} binding requires displacement of the autoinhibitory helix from the catalytic core, thus providing an allosteric mechanism for activation of PLC{beta}.

  20. Purification and characterization of a platelet aggregation inhibitor acidic phospholipase A2 from Indian saw-scaled viper (Echis carinatus) venom.

    PubMed

    Kemparaju, K; Krishnakanth, T P; Veerabasappa Gowda, T

    1999-12-01

    An acidic phospholipase A2 (EC-I-PLA2) has been purified from the Indian saw-scaled viper (Echis carinatus) venom through a combination of column chromatography and electrophoresis. EC-I-PLA2 has a molecular weight of 16000 by SDS-PAGE. It was focussed between pH 4.2 and 4.8 by isoelectro focussing. EC-I-PLA2 was non-lethal to mice and devoid of neurotoxicity, myotoxicity, anticoagulant activity and cytotoxicity. It induced mild oedema in the foot pads of mice. The purified PLA2 inhibited ADP, collagen and epinephrine induced human platelet aggregation and the inhibition was both dose and time dependent. PMID:10519645

  1. Full-length Gα(q)-phospholipase C-β3 structure reveals interfaces of the C-terminal coiled-coil domain.

    PubMed

    Lyon, Angeline M; Dutta, Somnath; Boguth, Cassandra A; Skiniotis, Georgios; Tesmer, John J G

    2013-03-01

    Phospholipase C-β (PLCβ) is directly activated by Gαq, but the molecular basis for how its distal C-terminal domain (CTD) contributes to maximal activity is poorly understood. Herein we present both the crystal structure and cryo-EM three-dimensional reconstructions of human full-length PLCβ3 in complex with mouse Gαq. The distal CTD forms an extended monomeric helical bundle consisting of three antiparallel segments with structural similarity to membrane-binding bin-amphiphysin-Rvs (BAR) domains. Sequence conservation of the distal CTD suggests putative membrane and protein interaction sites, the latter of which bind the N-terminal helix of Gαq in both the crystal structure and cryo-EM reconstructions. Functional analysis suggests that the distal CTD has roles in membrane targeting and in optimizing the orientation of the catalytic core at the membrane for maximal rates of lipid hydrolysis. PMID:23377541

  2. Full-length Gαq-phospholipase C-β3 structure reveals interfaces of the C-terminal coiled-coil domain

    SciTech Connect

    Lyon, Angeline M.; Dutta, Somnath; Boguth, Cassandra A.; Skiniotis, Georgios; Tesmer, John J.G.

    2014-08-21

    Phospholipase C-β (PLCβ) is directly activated by Gαq, but the molecular basis for how its distal C-terminal domain (CTD) contributes to maximal activity is poorly understood. Herein we present both the crystal structure and cryo-EM three-dimensional reconstructions of human full-length PLCβ3 in complex with mouse Gαq. The distal CTD forms an extended monomeric helical bundle consisting of three antiparallel segments with structural similarity to membrane-binding bin-amphiphysin-Rvs (BAR) domains. Sequence conservation of the distal CTD suggests putative membrane and protein interaction sites, the latter of which bind the N-terminal helix of Gαq in both the crystal structure and cryo-EM reconstructions. Functional analysis suggests that the distal CTD has roles in membrane targeting and in optimizing the orientation of the catalytic core at the membrane for maximal rates of lipid hydrolysis.

  3. In vitro antiplasmodial activity of phospholipases A2 and a phospholipase homologue isolated from the venom of the snake Bothrops asper.

    PubMed

    Castillo, Juan Carlos Quintana; Vargas, Leidy Johana; Segura, Cesar; Gutiérrez, José María; Pérez, Juan Carlos Alarcón

    2012-12-01

    The antimicrobial and antiparasite activity of phospholipase A(2) (PLA(2)) from snakes and bees has been extensively explored. We studied the antiplasmodial effect of the whole venom of the snake Bothrops asper and of two fractions purified by ion-exchange chromatography: one containing catalytically-active phospholipases A(2) (PLA(2)) (fraction V) and another containing a PLA(2) homologue devoid of enzymatic activity (fraction VI). The antiplasmodial effect was assessed on in vitro cultures of Plasmodium falciparum. The whole venom of B. asper, as well as its fractions V and VI, were active against the parasite at 0.13 ± 0.01 µg/mL, 1.42 ± 0.56 µg/mL and 22.89 ± 1.22 µg/mL, respectively. Differences in the cytotoxic activity on peripheral blood mononuclear cells between the whole venom and fractions V and VI were observed, fraction V showing higher toxicity than total venom and fraction VI. Regarding toxicity in mice, the whole venom showed the highest lethal effect in comparison to fractions V and VI. These results suggest that B. asper PLA(2) and its homologue have antiplasmodial potential. PMID:23242318

  4. Secretory Phospholipases A2 Are Secreted From Ciliated Cells and Increase Mucin and Eicosanoid Secretion From Goblet Cells

    PubMed Central

    Shimokawaji, Tadasuke; Kanoh, Soichiro; Rubin, Bruce K.

    2015-01-01

    BACKGROUND: Secretory phospholipases A2 (sPLA2) initiate the biosynthesis of eicosanoids, are increased in the airways of people with severe asthma, and induce mucin hypersecretion. We used IL-13-transformed, highly enriched goblet cells and differentiated (ciliary cell-enriched) human bronchial epithelial cell culture to evaluate the relative contribution of ciliated and goblet cells to airway sPLA2 generation and response. We wished to determine the primary source(s) of sPLA2 and leukotrienes in human airway epithelial cells. METHODS: Human bronchial epithelial cells from subjects without lung disease were differentiated to a ciliated-enriched or goblet-enriched cell phenotype. Synthesis of sPLA2, cysteinyl leukotrienes (cysLTs), and airway mucin messenger RNA and protein was measured by real-time-polymerase chain reaction and an enzyme-linked immunosorbent assay, and the localization of mucin and sPLA2 to specific cells types was confirmed by confocal microscopy. RESULTS: sPLA2 group IIa, V, and X messenger RNA expression was increased in ciliated-enriched cells (P < .001) but not in goblet-enriched cells. sPLA2 were secreted from the apical (air) side of ciliated-enriched cells but not goblet-enriched cells (P < .001). Immunostaining of sPLA2 V was strongly positive in ciliated-enriched cells but not in goblet-enriched cells. sPLA2 released cysLTs from goblet-enriched cells but not from ciliated-enriched cells, and this result was greatest with sPLA2 V (P < .05). sPLA2 V increased goblet-enriched cell mucin secretion, which was inhibited by inhibitors of lipoxygenase or cyclooxygenase (P < .02). CONCLUSIONS: sPLA2 are secreted from ciliated cells and appear to induce mucin and cysLT secretion from goblet cells, strongly suggesting that airway goblet cells are proinflammatory effector cells. PMID:25429648

  5. Hemilipin, a novel Hemiscorpius lepturus venom heterodimeric phospholipase A2, which inhibits angiogenesis in vitro and in vivo.

    PubMed

    Jridi, Imen; Catacchio, Ivana; Majdoub, Hafed; Shahbazeddah, Delavar; El Ayeb, Mohamed; Frassanito, Maria Antonia; Ribatti, Domenico; Vacca, Angelo; Borchani, Lamia

    2015-10-01

    Phospholipases A2 (PLA2) are enzymes which specifically hydrolyze the sn-2 acyl ester bond of phospholipids producing free fatty acids and lysophospholipids. The secreted PLA2 (sPLA2) are the most common types of PLA2 purified from the snake venom, mammalian pancreatic juice and other sources. They display a variety of toxic actions and biological activities, including antitumoral and antiangiogenic effects. In this study, we report the isolation, characterization and the antiangiogenic activity of Hemilipin, a novel sPLA2 extracted from Hemiscorpius lepturus venom, the most dangerous scorpion in Iran. Hemilipin was purified by HPLC and analyzed by MALDI TOF/MS. The primary structure was determined by EDMAN degradation method and the PLA2 activity by titration of fatty acids released from the egg yolk phospholipids. Its antiangiogenic activity was studied in vitro by evaluating effects on apoptosis, Matrigel angiogenesis, migration and adhesion of human umbilical vein endothelial cells (HUVECs) and human pulmonary artery endothelial cells (HPAECs) and in vivo by the chorioallantoic membrane (CAM) assay. Mass spectrometry profile showed that Hemilipin is heterodimeric and the PLA2 test demonstrated its strong hydrolytic activity. N-terminal aminoacid sequence highlighted a significant homology of Hemilipin's small and large subunits with other sPLA2 group III. Hemilipin had no effect on apoptosis, but strongly impacted angiogenesis both in vitro and in vivo. Our results demonstrate that this novel non toxic sPLA2 could be a new tool to disrupt at different steps human angiogenesis. PMID:26335363

  6. Crystal structures of brain group-VIII phospholipase A2 in nonaged complexes with the organophosphorus nerve agents soman and sarin.

    PubMed

    Epstein, Todd M; Samanta, Uttamkumar; Kirby, Stephen D; Cerasoli, Douglas M; Bahnson, Brian J

    2009-04-21

    Insecticide and nerve agent organophosphorus (OP) compounds are potent inhibitors of the serine hydrolase superfamily of enzymes. Nerve agents, such as sarin, soman, tabun, and VX exert their toxicity by inhibiting human acetycholinesterase at nerve synapses. Following the initial phosphonylation of the active site serine, the enzyme may reactivate spontaneously or through reaction with an appropriate nucleophilic oxime. Alternatively, the enzyme-nerve agent complex can undergo a secondary process, called "aging", which dealkylates the nerve agent adduct and results in a product that is highly resistant to reactivation by any known means. Here we report the structures of paraoxon, soman, and sarin complexes of group-VIII phospholipase A2 from bovine brain. In each case, the crystal structures indicate a nonaged adduct; a stereoselective preference for binding of the P(S)C(S) isomer of soman and the P(S) isomer of sarin was also noted. The stability of the nonaged complexes was corroborated by trypsin digest and electrospray ionization mass spectrometry, which indicates nonaged complexes are formed with diisopropylfluorophosphate, soman, and sarin. The P(S) stereoselectivity for reaction with sarin was confirmed by reaction of racemic sarin, followed by gas chromatography/mass spectrometry using a chiral column to separate and quantitate each stereoisomer. The P(S) stereoisomers of soman and sarin are known to be the more toxic stereoisomers, as they react preferentially to inhibit human acetylcholinesterase. The results obtained for nonaged complexes of group-VIII phospholipase A2 are compared to those obtained for other serine hydrolases and discussed to partly explain determinants of OP aging. Furthermore, structural insights can now be exploited to engineer variant versions of this enzyme with enhanced nerve agent binding and hydrolysis functions. PMID:19271773

  7. Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment.

    PubMed

    Elortza, Felix; Mohammed, Shabaz; Bunkenborg, Jakob; Foster, Leonard J; Nühse, Thomas S; Brodbeck, Urs; Peck, Scott C; Jensen, Ole N

    2006-04-01

    Plasma membrane proteins are displayed through diverse mechanisms, including anchoring in the extracellular leaflet via glycosylphosphatidylinositol (GPI) molecules. GPI-anchored membrane proteins (GPI-APs) are a functionally and structurally diverse protein family, and their importance is well-recognized as they are candidate cell surface biomarker molecules with potential diagnostic and therapeutic applications in molecular medicine. GPI-APs have also attracted interest in plant biotechnology because of their role in root development and cell remodeling. Using a shave-and-conquer concept, we demonstrate that phospholipase D (PLD) treatment of human and plant plasma membrane fractions leads to the release of GPI-anchored proteins that were identified and characterized by capillary liquid chromatography and tandem mass spectrometry. In contrast to phospholipase C, the PLD enzyme is not affected by structural heterogeneity of the GPI moiety, making PLD a generally useful reagent for proteomic investigations of GPI-anchored proteins in a variety of cells, tissues, and organisms. A total of 11 human GPI-APs and 35 Arabidopsis thaliana GPI-APs were identified, representing a significant addition to the number of experimentally detected GPI-APs in both species. Computational GPI-AP sequence analysis tools were investigated for the characterization of the identified GPI-APs, and these demonstrated that there is some discrepancy in their efficiency in classification of GPI-APs and the exact assignment of omega-sites. This study highlights the efficiency of an integrative proteomics approach that combines experimental and computational methods to provide the selectivity, specificity, and sensitivity required for characterization of post-translationally modified membrane proteins. PMID:16602701

  8. The finding of a group IIE phospholipase A2 gene in a specified segment of Protobothrops flavoviridis genome and its possible evolutionary relationship to group IIA phospholipase A2 genes.

    PubMed

    Yamaguchi, Kazuaki; Chijiwa, Takahito; Ikeda, Naoki; Shibata, Hiroki; Fukumaki, Yasuyuki; Oda-Ueda, Naoko; Hattori, Shosaku; Ohno, Motonori

    2014-01-01

    The genes encoding group IIE phospholipase A2, abbreviated as IIE PLA2, and its 5' and 3' flanking regions of Crotalinae snakes such as Protobothrops flavoviridis, P. tokarensis, P. elegans, and Ovophis okinavensis, were found and sequenced. The genes consisted of four exons and three introns and coded for 22 or 24 amino acid residues of the signal peptides and 134 amino acid residues of the mature proteins. These IIE PLA2s show high similarity to those from mammals and Colubridae snakes. The high expression level of IIE PLA2s in Crotalinae venom glands suggests that they should work as venomous proteins. The blast analysis indicated that the gene encoding OTUD3, which is ovarian tumor domain-containing protein 3, is located in the 3' downstream of IIE PLA2 gene. Moreover, a group IIA PLA2 gene was found in the 5' upstream of IIE PLA2 gene linked to the OTUD3 gene (OTUD3) in the P. flavoviridis genome. It became evident that the specified arrangement of IIA PLA2 gene, IIE PLA2 gene, and OTUD3 in this order is common in the genomes of humans to snakes. The present finding that the genes encoding various secretory PLA2s form a cluster in the genomes of humans to birds is closely related to the previous finding that six venom PLA2 isozyme genes are densely clustered in the so-called NIS-1 fragment of the P. flavoviridis genome. It is also suggested that venom IIA PLA2 genes may be evolutionarily derived from the IIE PLA2 gene. PMID:25529307

  9. The Finding of a Group IIE Phospholipase A2 Gene in a Specified Segment of Protobothrops flavoviridis Genome and Its Possible Evolutionary Relationship to Group IIA Phospholipase A2 Genes

    PubMed Central

    Yamaguchi, Kazuaki; Chijiwa, Takahito; Ikeda, Naoki; Shibata, Hiroki; Fukumaki, Yasuyuki; Oda-Ueda, Naoko; Hattori, Shosaku; Ohno, Motonori

    2014-01-01

    The genes encoding group IIE phospholipase A2, abbreviated as IIE PLA2, and its 5' and 3' flanking regions of Crotalinae snakes such as Protobothrops flavoviridis, P. tokarensis, P. elegans, and Ovophis okinavensis, were found and sequenced. The genes consisted of four exons and three introns and coded for 22 or 24 amino acid residues of the signal peptides and 134 amino acid residues of the mature proteins. These IIE PLA2s show high similarity to those from mammals and Colubridae snakes. The high expression level of IIE PLA2s in Crotalinae venom glands suggests that they should work as venomous proteins. The blast analysis indicated that the gene encoding OTUD3, which is ovarian tumor domain-containing protein 3, is located in the 3' downstream of IIE PLA2 gene. Moreover, a group IIA PLA2 gene was found in the 5' upstream of IIE PLA2 gene linked to the OTUD3 gene (OTUD3) in the P. flavoviridis genome. It became evident that the specified arrangement of IIA PLA2 gene, IIE PLA2 gene, and OTUD3 in this order is common in the genomes of humans to snakes. The present finding that the genes encoding various secretory PLA2s form a cluster in the genomes of humans to birds is closely related to the previous finding that six venom PLA2 isozyme genes are densely clustered in the so-called NIS-1 fragment of the P. flavoviridis genome. It is also suggested that venom IIA PLA2 genes may be evolutionarily derived from the IIE PLA2 gene. PMID:25529307

  10. Cloning, Sequencing, and Role in Virulence of Two Phospholipases (A1 and C) from Mesophilic Aeromonas sp. Serogroup O:34

    PubMed Central

    Merino, Susana; Aguilar, Alicia; Nogueras, Maria Mercedes; Regue, Miguel; Swift, Simon; Tomás, Juan M.

    1999-01-01

    Two different representative recombinant clones encoding Aeromonas hydrophila lipases were found upon screening on tributyrin (phospholipase A1) and egg yolk agar (lecithinase-phospholipase C) plates of a cosmid-based genomic library of Aeromonas hydrophila AH-3 (serogroup O34) introduced into Escherichia coli DH5α. Subcloning, nucleotide sequencing, and in vitro-coupled transcription-translation experiments showed that the phospholipase A1 (pla) and C (plc) genes code for an 83-kDa putative lipoprotein and a 65-kDa protein, respectively. Defined insertion mutants of A. hydrophila AH-3 defective in either pla or plc genes were defective in phospholipase A1 and C activities, respectively. Lecithinase (phospholipase C) was shown to be cytotoxic but nonhemolytic or poorly hemolytic. A. hydrophila AH-3 plc mutants showed a more than 10-fold increase in their 50% lethal dose on fish and mice, and complementation of the plc single gene on these mutants abolished this effect, suggesting that Plc protein is a virulence factor in the mesophilic Aeromonas sp. serogroup O:34 infection process. PMID:10417167

  11. Description of Loxtox protein family and identification of a new group of Phospholipases D from Loxosceles similis venom gland.

    PubMed

    Dantas, Arthur Estanislau; Carmo, A O; Horta, Carolina Campolina Rebello; Leal, Hortênsia Gomes; Oliveira-Mendes, Bárbara Bruna Ribeiro; Martins, Ana Paula Vimieiro; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2016-09-15

    Envenoming resulting from Loxosceles spider bites (loxoscelism) is a recognized public health problem in Brazil. However, the pathophysiology of loxoscelism caused by L. similis bites, which is widespread in Brazil, remains poorly understood. In the present work, the RNA sequencing (RNA-Seq - Next Generation sequencing - NGS) of the L. similis venom gland was performed to identify and analyze the sequences of the key component phospholipase D. The sequences were aligned based on their classical domains, and a phylogenetic tree was constructed. In the bioinformatics analysis, 23 complete sequences of phospholipase D proteins were found and classified as Loxtox proteins, as they contained the characteristic domains of phospholipase D: the active site, the Mg(2+)-binding domain, and the catalytic loop. Three phospholipase D sequences with non-canonical domains were also found in this work. They were analyzed separately and named PLDs from L. similis (PLD-Ls). This study is the first to characterize phospholipase D sequences from Loxosceles spiders by RNA-Seq. These results contribute new knowledge about the composition of L. similis venom, revealing novel tools that could be used for pharmacological, immunological, and biotechnological applications. PMID:27496061

  12. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    SciTech Connect

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M. )

    1989-07-05

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of {sup 125}I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.

  13. Inhibition of Nicotinic Acetylcholine Receptors, a Novel Facet in the Pleiotropic Activities of Snake Venom Phospholipases A2

    PubMed Central

    Vulfius, Catherine A.; Kasheverov, Igor E.; Starkov, Vladislav G.; Osipov, Alexey V.; Andreeva, Tatyana V.; Filkin, Sergey Yu.; Gorbacheva, Elena V.; Astashev, Maxim E.; Tsetlin, Victor I.; Utkin, Yuri N.

    2014-01-01

    Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes. PMID:25522251

  14. Inhibition of carrageenin-induced rat paw oedema by crotapotin, a polypeptide complexed with phospholipase A2.

    PubMed Central

    Landucci, E C; Antunes, E; Donato, J L; Faro, R; Hyslop, S; Marangoni, S; Oliveira, B; Cirino, G; de Nucci, G

    1995-01-01

    1. The effect of purified crotapotin, a non-toxic non-enzymatic chaperon protein normally complexed to a phospholipase A2 (PLA2) in South America rattlesnake venom, was studied in the acute inflammatory response induced by carrageenin (1 mg/paw), compound 48/80 (3 micrograms/paw) and 5-hydroxytryptamine (5-HT) (3 micrograms/paw) in the rat hind-paw. The effects of crotapotin on platelet aggregation, mast cell degranulation and eicosanoid release from guinea-pig isolated lung were also investigated. 2. Subplantar co-injection of crotapotin (1 and 10 micrograms/paw) with carrageenin or injection of crotapotin (10 micrograms/paw) into the contralateral paw significantly inhibited the carrageenin-induced oedema. This inhibition was also observed when crotapotin (10-30 micrograms/paw) was administered either intraperitoneally or orally. Subplantar injection of heated crotapotin (15 min at 60 degrees C) failed to inhibit carrageenin-induced oedema. Subplantar injection of crotapotin (10 micrograms/paw) also significantly inhibited the rat paw oedema induced by compound 48/80, but it did not affect 5-HT-induced oedema. 3. In adrenalectomized animals, subplantar injection of crotapotin markedly inhibited the oedema induced by carrageenin. The inhibitory effect of crotapotin was also observed in rats depleted of histamine and 5-HT stores. 4. Crotapotin (30 micrograms/paw) had no effect on either the histamine release induced by compound 48/80 in vitro or on the platelet aggregation induced by both arachidonic acid (1 nM) and platelet activating factor (1 microM) in human platelet-rich plasma. The platelet aggregation and thromboxane B2 (TXB2) release induced by thrombin (100 mu ml-1) in washed human platelets were also not affected by crotapotin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7537590

  15. Gqalpha-linked phospholipase Cbeta1 and phospholipase Cgamma are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade.

    PubMed

    Hull, J J; Lee, J M; Matsumoto, S

    2010-08-01

    Sex pheromone production for most moths is regulated by pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori, PBAN binding triggers the opening of store-operated Ca(2+) channels, suggesting the involvement of a receptor-activated phospholipase C (PLC). In this study, we found that PLC inhibitors U73122 and compound 48/80 reduced sex pheromone production and that intracellular levels of (3)H-inositol phosphate species increased following PBAN stimulation. In addition, we amplified cDNAs from pheromone glands corresponding to PLCbeta1, PLCbeta4, PLCgamma and two G protein alpha subunits, Go and Gq. In vivo RNA interference-mediated knockdown analyses revealed that BmPLCbeta1, BmGq1, and unexpectedly, BmPLCgamma, are part of the PBAN signal transduction cascade. PMID:20546038

  16. Involvement of Protein cAMP-dependent Kinase, Phospholipase A2 and Phospholipase C in Sperm Acrosome Reaction of Chinchilla lanigera.

    PubMed

    Gramajo-Bühler, M C; Zelarayán, L; Sánchez-Toranzo, G

    2016-02-01

    The mechanisms involved in fertilization are the centre of attention in order to determine the conditions required to reproduce in vitro the events that take place in vivo, with special interest in endangered species. Previous data from mouse sperm, where acrosome reaction (AR) occurs more often in the interstitium of the cumulus oophorus, contribute to strengthen the use of progesterone as a physiological inducer of this process. We studied the participation of protein kinase A (PKA), phospholipases A2 and C (PLA2 , PLC) in the AR induced by progesterone from Chinchilla epididymal spermatozoa. The addition of db-cAMP to the incubation medium caused an increase of 58% in the AR, while the use of H89 (30 μm), a PKA inhibitor, reflected a decrease of 40% in the percentage of reacted gametes. The assays conducted with arachidonic acid showed a maximum increase of 23% in the AR. When gametes were pre-incubated with PLA2 inhibitors, a dose-dependent inhibitory effect was observed. The addition of phorbol12-myristate13-acetate (10 μm) revealed higher percentages of AR induction (60%). When PLC was inhibited with neomycin and U73122, a dose-dependent decrease in AR percentages was observed. Combined inhibition of PKA, PLA2 and PLC, AR values similar to control were obtained. This work shows evidence, for the first time in Chinchilla, that progesterone activates the AC/cAMP/PKA system as well as sperm phospholipases and that these signalling pathways participate jointly and cooperatively in AR. These results contribute to the understanding of the complex regulation that is triggered in sperm after the effect of progesterone. PMID:26699205

  17. The alpha 1-adrenergic transduction system in hamster brown adipocytes. Release of arachidonic acid accompanies activation of phospholipase C.

    PubMed Central

    Schimmel, R J

    1988-01-01

    Previous studies of brown adipocytes identified an increased breakdown of phosphoinositides after selective alpha 1-adrenergic-receptor activation. The present paper reports that this response, elicited with phenylephrine in the presence of propranolol and measured as the accumulation of [3H]inositol phosphates, is accompanied by increased release of [3H]arachidonic acid from cells prelabelled with [3H]arachidonic acid. Differences between stimulated arachidonic acid release and formation of inositol phosphates included a requirement for extracellular Ca2+ for stimulated release of arachidonic acid but not for the formation of inositol phosphates and the preferential inhibition of inositol phosphate formation by phorbol 12-myristate 13-acetate. The release of arachidonic acid in response to phenylephrine was associated with an accumulation of [3H]arachidonic acid-labelled diacylglycerol, and this response was not dependent on extracellular Ca2+ but was partially prevented by treatment with the phorbol ester. The release of arachidonic acid was also stimulated by melittin, which increases the activity of phospholipase A2, by ionophore A23187, by lipolytic stimulation with forskolin and by exogenous phospholipase C. The arachidonic acid response to phospholipase C was completely blocked by RHC 80267, an inhibitor of diacylglycerol lipase, but this inhibitor had no effect on release stimulated with melittin or A23187 and inhibited phenylephrine-stimulated release by only 40%. The arachidonate response to forskolin was additive with the responses to either phenylephrine or exogenous phospholipase C. These data indicate that brown adipocytes are capable of releasing arachidonic acid from neutral lipids via triacylglycerol lipolysis, and from phospholipids via phospholipase A2 or by the sequential activities of phospholipase C and diacylglycerol lipase. Our findings also suggest that the action of phenylephrine to promote the liberation of arachidonic acid utilizes both

  18. Krabbe disease: psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death.

    PubMed

    Giri, S; Khan, M; Rattan, R; Singh, I; Singh, A K

    2006-07-01

    Globoid cell leukodystrophy (Krabbe disease) is an inherited neurological disorder caused by the pathogenomic accumulation of psychosine (galactosylsphingosine), a substrate for the deficient enzyme galactocerebroside beta-galactosidase. This study underscores the mechanism of action of psychosine in the regulation of oligodendrocyte cell death via the generation of lysophosphatidylcholine (LPC) and arachidonic acid (AA) by the activation of secretory phospholipase A2 (sPLA2). There was a significant increase in the level of LPC, indicating a phospholipase A2 (PLA2)-dependent pathobiology, in the brains of Krabbe disease patients and those of twitcher mice, an animal model of Krabbe disease. In vitro studies of the treatment of primary oligodendrocytes and the oligodendrocyte MO3.13 cell line with psychosine also showed the generation of LPC and the release of AA in a dose- and time-dependent manner, indicating psychosine-induced activation of PLA2. Studies with various pharmacological inhibitors of cytosolic phospholipase A2 and sPLA2 and psychosine-mediated induction of sPLA2 enzymatic activity in media supernatant suggest that psychosine-induced release of AA and generation of LPC is mainly contributed by sPLA2. An inhibitor of sPLA2, 7,7-dimethyl eicosadienoic acid, completely attenuated the psychosine-mediated accumulation of LPC levels, release of AA, and generation of reactive oxygen species, and blocked oligodendroyte cell death, as evident from cell survival, DNA fragmentation, and caspase 3 activity assays. This study documents for the first time that psychosine-induced cell death is mediated via the sPLA2 signaling pathway and that inhibitors of sPLA2 may hold a therapeutic potential for protection against oligodendrocyte cell death and resulting demyelination in Krabbe disease. PMID:16645197

  19. Endometrial phospholipase A2 activity during the oestrous cycle and early pregnancy in mares.

    PubMed

    Ababneh, M M; Troedsson, M H T

    2013-02-01

    The aim of this study was to determine phospholipase A2 (PLA2) kinetics and activity in the mare's endometrium during the oestrous cycle and early pregnancy. Phospholipase A2 is responsible for the liberation of arachidonic acid from phospholipids, which is the first limiting step in prostaglandins synthesis. Phospholipase A2 activity was measured using an assay based on the liberation of oleic acid from 1-palmitoyl-2-[(14) C] oleoyl phosphatidylcholine. The enzyme was shown to be calcium dependent, to have an optimum pH of 8 and an apparent Michaelis constant of 127 μM. Enzyme activity was low in the endometrium of early luteal phase tissue but increased significantly (p < 0.001) during the late luteal phase (5.39 ± 0.16; 3.48 ± 0.33, 6.85 ± 0.59, and 9.96 ± 1.23 nmol oleic acid released/mg protein at oestrus, and Days 3, 8 and 14 after ovulation, respectively). The mean PLA2 activity in endometrial tissue from pregnant mares (4.23 ± 0.74) was significantly lower (p < 0.01) than from cyclic animals during late dioestrus (9.96 ± 1.23). The results indicate that PLA2 activity in equine endometrium changes with the stage of the oestrous cycle and thus may be influenced by systemic hormone concentrations. The inhibitory effects of conceptus products on secretion of prostaglandin during early pregnancy were associated with a competitive inhibitor that decreased endometrial PLA2 activity. PMID:22486770

  20. Phospholipase A2 induced airway hyperreactivity to cooling and acetylcholine in rat trachea: pharmacological modulation.

    PubMed Central

    Chand, N.; Diamantis, W.; Mahoney, T. P.; Sofia, R. D.

    1988-01-01

    1. Rat isolated tracheal smooth muscle preparations respond to phospholipase A2 (PLA2) and phospholipase C (PLC) with contractile responses of highly variable magnitudes. Rat tracheae exposed to PLA2 or PLC for a period of 10-30 min, exhibit airway hyperreactivity (AH) to cooling (10 degrees C), i.e., respond with strong contractile responses. Phospholipase D neither contracted rat tracheae nor induced AH to cooling. 2. PLA2-induced AH to cooling was dependent on the presence of extracellular Ca2+ in the physiological solution. 3. Verapamil, azelastine, diltiazem and TMB-8 (each 10 microM) significantly attenuated PLA2-induced AH. This effect was not shared by nifedipine (10 microM). 4. Bepridil (10 microM), a Ca2+ and calmodulin antagonist, also significantly attenuated AH induced by PLA2. 5. Indomethacin (a cyclo-oxygenase inhibitor), AA-861 (a selective 5-lipoxygenase inhibitor), FPL 55712 (a leukotriene receptor antagonist), methysergide (a 5-hydroxytryptamine D-receptor antagonist) and pyrilamine (a histamine H1-receptor antagonist) exerted little or no effect on PLA2-induced AH to cooling. 6. Atropine significantly attenuated PLA2-induced AH suggesting the participation of acetylcholine. 7. Nordihydroguaiaretic acid (an antioxidant; 5-lipoxygenase inhibitor) and BW 755C (an antioxidant; a dual inhibitor of cyclo-oxygenase and 5-lipoxygenase) significantly attenuated PLA2-induced AH to cooling. 8. In conclusion, these data show that PLA2 (an enzyme involved in the synthesis of Paf-acether, prostaglandins, thromboxanes, leukotrienes, diacylglycerol, superoxide free radicals and lipid peroxides, etc.) induces AH to cooling and acetylcholine in rat trachea. The induction of AH to cooling is dependent on the presence of extracellular Ca2+ and is significantly attenuated by verapamil, diltiazem, bepridil, atropine and azelastine (an antiallergic/antiasthmatic drug). PMID:3207972

  1. The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa.

    PubMed

    Lew, Roger R; Giblon, Rachel E; Lorenti, Miranda S H

    2015-09-01

    In the filamentous fungus Neurospora crassa, phospholipase C may play a role in hyphal extension at the growing tips as part of a growth-sensing mechanism that activates calcium release from internal stores to mediate continued expansion of the hyphal tip. One candidate for a tip-localized phospholipase C is PLC-1. We characterized morphology and growth characteristics of a knockout mutant (KO plc-1) and a RIP mutated strain (RIP plc-1) (missense mutations and a nonsense mutation render the gene product non-functional). Growth and hyphal cytology of wildtype and KO plc-1 were similar, but the RIP plc-1 mutant grew slower and exhibited abnormal membrane structures at the hyphal tip, imaged using the fluorescence dye FM4-64. To test for causes of the slower growth of the RIP plc-1 mutant, we examined its physiological poise compared to wildtype and the KO plc-1 mutant. The electrical properties of all three strains and the electrogenic contribution of the plasma membrane H(+)-ATPase (identified by cyanide inhibition) were the same. Responses to high osmolarity were also similar. However, the RIP plc-1 mutant had a significantly lower turgor, a possible cause of its slower growth. While growth of all three strains was inhibited by the phospholipase C inhibitor 3-nitrocoumarin, the RIP plc-1 mutant did not exhibit hyphal bursting after addition of the inhibitor, observed in both wildtype and the KO plc-1 mutant. Although the plc-1 gene is not obligatory for tip growth, the phenotype of the RIP plc-1 mutant - abnormal tip cytology, lower turgor and resistance to inhibitor-induced hyphal bursting - suggest it does play a role in tip growth. The expression of a dysfunctional plc-1 gene may cause a shift to alternative mechanism(s) of growth sensing in hyphal extension. PMID:26212074

  2. Calcium-independent phospholipases A2 and their roles in biological processes and diseases

    PubMed Central

    Ramanadham, Sasanka; Ali, Tomader; Ashley, Jason W.; Bone, Robert N.; Hancock, William D.; Lei, Xiaoyong

    2015-01-01

    Among the family of phospholipases A2 (PLA2s) are the Ca2+-independent PLA2s (iPLA2s) and they are designated group VI iPLA2s. In relation to secretory and cytosolic PLA2s, the iPLA2s are more recently described and details of their expression and roles in biological functions are rapidly emerging. The iPLA2s or patatin-like phospholipases (PNPLAs) are intracellular enzymes that do not require Ca2+ for activity, and contain lipase (GXSXG) and nucleotide-binding (GXGXXG) consensus sequences. Though nine PNPLAs have been recognized, PNPLA8 (membrane-associated iPLA2γ) and PNPLA9 (cytosol-associated iPLA2β) are the most widely studied and understood. The iPLA2s manifest a variety of activities in addition to phospholipase, are ubiquitously expressed, and participate in a multitude of biological processes, including fat catabolism, cell differentiation, maintenance of mitochondrial integrity, phospholipid remodeling, cell proliferation, signal transduction, and cell death. As might be expected, increased or decreased expression of iPLA2s can have profound effects on the metabolic state, CNS function, cardiovascular performance, and cell survival; therefore, dysregulation of iPLA2s can be a critical factor in the development of many diseases. This review is aimed at providing a general framework of the current understanding of the iPLA2s and discussion of the potential mechanisms of action of the iPLA2s and related involved lipid mediators. PMID:26023050

  3. Dimerization and activation of porcine pancreatic phospholipase A2 via substrate level acylation of lysine 56.

    PubMed

    Tomasselli, A G; Hui, J; Fisher, J; Zürcher-Neely, H; Reardon, I M; Oriaku, E; Kézdy, F J; Heinrikson, R L

    1989-06-15

    The porcine pancreatic phospholipase A2-catalyzed hydrolysis of the water-soluble chromogenic substrate 4-nitro-3-octanoyloxybenzoate shows an initial latency phase similar to the one observed in the hydrolysis of aggregated phospholipids by the same enzyme. We report here that during the latency phase the enzyme undergoes a slow, autocatalytic, substrate-level acylation whereby in a few of the catalytic events the scissile octanoyl group of the substrate, normally transferred to water, is transferred to the epsilon-amino group of lysine 56. The N epsilon 56-octanoylphospholipase shows a strong tendency to dimerize in solution and thus may be separated from the monomeric native enzyme by gel filtration. Octanoylation of Lys-56 activates the enzyme some 180-fold toward 4-nitro-3-octanoyloxybenzoate and more than 100-fold toward monolayers of 1,2-didecanoyl-sn-glycero-3-phosphocholine. Acylation also attends the enzymatic hydrolysis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine with the incorporation of 1 eq of palmitate. Kinetic analysis of the early phase of reaction with 4-nitro-3-octanoyloxybenzoate shows that in this initial step the rate of activation is first order with respect to enzyme and substrate. A much more rapid, autocatalytic activation occurs in the later phases of the reaction where the activation of the enzyme is catalyzed by the activated enzyme itself. These findings with porcine pancreatic phospholipase A2, together with those relative to a snake venom enzyme monomer (Cho, W., Tomasselli, A. G., Heinrikson, R. L., and Kézdy, F. J. (1988) J. Biol. Chem. 263, 11237-11241), strongly support the proposal that interfacial activation of monomeric phospholipases is due to substrate-level autoacylation resulting in fully potentiated dimeric enzymes. PMID:2498336

  4. Role of cardiotoxin and phospholipase A in the blockade of nerve conduction and depolarization of skeletal muscle induced by cobra venom

    PubMed Central

    Chang, C. C.; Chuang, Sing-Tai; Lee, C. Y.; Wei, J. W.

    1972-01-01

    1. The effects of phospholipase A (PhA), cardiotoxin (CTX) and neurotoxin (cobrotoxin) isolated from Formosan cobra (Naja naja atra) venom on conduction of the rat phrenic nerve and membrane potential of the rat diaphragm were studied. 2. Phospholipase A, lysolecithin and cobrotoxin were without effect on the axonal conduction. Cardiotoxin was the only active agent in cobra venom, but it was less potent than the crude venom. 3. The blocking action of cardiotoxin was markedly accelerated by the simultaneous administration of phospholipase A. However, the minimum effective concentration of cardiotoxin (100 μg/ml), was not decreased by phospholipase A. Pretreatment of the nerve with phospholipase A, followed by washout, did not alter the activity of cardiotoxin. 4. Cardiotoxin (3 μg/ml) completely depolarized the membrane of superficial muscle fibres within 60 min, being 3 times more potent than the crude venom. Phospholipase A, on the other hand, needed a dose 30 times higher and a prolonged period of incubation to induce depolarization of similar extent. Cobrotoxin was without effect on membrane potentials. 5. CaCl2 (10 mM) effectively antagonized the nerve blocking as well as the depolarizing effect of the crude venom, cardiotoxin or cardiotoxin plus phospholipase A. By contrast, the slow depolarizing effect of phospholipase A was enhanced by high concentrations of calcium. 6. Cardiotoxic fractions of Indian cobra venom affected both nerve conduction and diaphragm membrane potential in exactly the same way as cardiotoxin. Toxin A of the same venom was without effect. 7. It is concluded that the active agent in cobra venoms either on axonal conduction or on muscle membrane is cardiotoxin. The synergistic effect of phospholipase A on cardiotoxin appears to be due to acceleration rather than potentiation of its action. The mechanism of action of cardiotoxin and its synergism by phospholipase A are discussed. PMID:5041453

  5. phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development

    PubMed Central

    Lawson, Nathan D.; Mugford, Joshua W.; Diamond, Brigid A.; Weinstein, Brant M.

    2003-01-01

    In this study, we utilize transgenic zebrafish with fluorescently labeled blood vessels to identify and characterize a mutant (y10) that displays specific defects in the formation of arteries, but not veins. We find that y10 encodes phospholipase C gamma-1 (plcg1), a known effector of receptor tyrosine kinase signaling. We further show that plcg1y10 mutant embryos fail to respond to exogenous Vegf. Our results indicate that Plcg1 functions specifically downstream of the Vegf receptor during embryonic development to govern formation of the arterial system. PMID:12782653

  6. Clinical and biological role of secretory phospholipase A2 in acute respiratory distress syndrome infants

    PubMed Central

    2013-01-01

    Introduction Secretory phospholipase A2 is supposed to play a role in acute lung injury but no data are available for pediatric acute respiratory distress syndrome (ARDS). It is not clear which enzyme subtypes are secreted and what the relationships are between enzyme activity, biophysical and biochemical parameters, and clinical outcomes. We aimed to measure the enzyme and identify its subtypes and to study its biochemical and biophysical effect. The secondary aim was to correlate enzyme activity with clinical outcome. Methods Bronchoalveolar lavage was performed in 24 infants with ARDS and 14 controls with no lung disease. Samples were assayed for secretory phospholipase A2 and molecules related to its activity and expression. Western blotting and captive bubble surfactometry were also performed. Clinical data were real time downloaded. Results Tumor necrosis factor-α (814 (506-2,499) vs. 287 (111-1,315) pg/mL; P = 0.04), enzyme activity (430 (253-600) vs. 149 (61-387) IU/mL; P = 0.01), free fatty acids (4.3 (2.8-8.6) vs. 2 (0.8-4.6) mM; P = 0.026), and minimum surface tension (25.6 ± 6.1 vs. 18 ± 1.8 mN/m; P = 0.006) were higher in ARDS than in controls. Phospholipids are lower in ARDS than in controls (76.5 (54-100) vs. 1,094 (536-2,907) μg/mL; P = 0.0001). Three enzyme subtypes were identified (-IIA, -V, -X), although in lower quantities in controls; another subtype (-IB) was mainly detected in ARDS. Significant correlations exist between enzyme activity, free fatty acids (ρ = 0.823; P < 0.001), and surface tension (ρ = 0.55; P < 0.028). Correlations also exist with intensive care stay (ρ = 0.54; P = 0.001), PRISM-III24 (ρ = 0.79; P< 0.001), duration of ventilation (ρ = 0.53; P = 0.002), and oxygen therapy (ρ = 0.54; P = 0.001). Conclusions Secretory phospholipase A2 activity is raised in pediatric ARDS and constituted of four subtypes. Enzyme correlates with some inflammatory mediators, surface tension, and major clinical outcomes. Secretory

  7. Phytophthora infestans Has a Plethora of Phospholipase D Enzymes Including a Subclass That Has Extracellular Activity

    PubMed Central

    Meijer, Harold J. G.; Hassen, Hussen Harrun; Govers, Francine

    2011-01-01

    In eukaryotes phospholipase D (PLD) is involved in many cellular processes. Currently little is known about PLDs in oomycetes. Here we report that the oomycete plant pathogen Phytophthora infestans has a large repertoire of PLDs divided over six subfamilies: PXPH-PLD, PXTM-PLD, TM-PLD, PLD-likes, and type A and B sPLD-likes. Since the latter have signal peptides we developed a method using metabolically labelled phospholipids to monitor if P. infestans secretes PLD. In extracellular medium of ten P. infestans strains PLD activity was detected as demonstrated by the production of phosphatidic acid and the PLD specific marker phosphatidylalcohol. PMID:21423760

  8. Structure of a cardiotoxic phospholipase A(2) from Ophiophagus hannah with the "pancreatic loop".

    PubMed

    Zhang, Hai-Long; Xu, Su-Juan; Wang, Qiu-Yan; Song, Shi-Ying; Shu, Yu-Yan; Lin, Zheng-Jiong

    2002-06-01

    The crystal structure of an acidic phospholipase A(2) from Ophiophagus hannah (king cobra) has been determined by molecular replacement at 2.6-A resolution to a crystallographic R factor of 20.5% (R(free)=23.3%) with reasonable stereochemistry. The venom enzyme contains an unusual "pancreatic loop." The conformation of the loop is well defined and different from those in pancreas PLA(2), showing its structural variability. This analysis provides the first structure of a PLA(2)-type cardiotoxin. The sites related to the cardiotoxic and myotoxic activities are explored and the oligomer observed in the crystalline state is described. PMID:12217659

  9. Utilization of epidermal phospholipase A2 inhibition to monitor topical steroid action.

    PubMed

    Norris, J F; Ilderton, E; Yardley, H J; Summerly, R; Forster, S

    1984-07-01

    The effect of several steroid creams on epidermal phospholipase A2 (PLA2) activity in symptomless psoriatic and normal epidermis was studied. The magnitude of PLA2 inhibition produced by the steroids was directly proportional to the initial level of the enzyme activity. This differential inhibition resulted in PLA2 activity approaching or attaining the normal range regardless of its initial level. Clobetasol propionate 0.05% (Dermovate) produced more enzyme inhibition than betamethasone valerate 0.1% (Betnovate) but there was no difference in inhibition between this latter steroid and clobetasone butyrate 0.05% (Eumovate). All were more inhibitory than hydrocortisone I% (Efcortelan). PMID:6743552

  10. Proteinase, phospholipase, hyaluronidase and chondroitin-sulphatase production by Malassezia pachydermatis.

    PubMed

    Coutinho, S D; Paula, C R

    2000-02-01

    The production of four functional enzyme categories was investigated in 30 strains of Malassezia pachydermatis isolated from dogs with otitis or dermatitis. The most appropriate reading intervals for these assays were determined with the aid of statistical comparisons. All strains produced proteinase and chondroitin-sulphatase; hyaluronidase and phospholipase were produced by all skin isolates (15/15) and 14 out of 15 ear canal isolates. Strains from ear canals did not differ significantly as a group from skin strains in quantitative production of any of the four enzymes; production of proteinase and chondroitin-sulphatase in particular was markedly uniform. PMID:10746230

  11. Polymerized soluble venom--human serum albumin

    SciTech Connect

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-03-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. /sup 125/I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom.

  12. Modulated mechanism of phosphatidylserine on the catalytic activity of Naja naja atra phospholipase A2 and Notechis scutatus scutatus notexin.

    PubMed

    Chiou, Yi-Ling; Lin, Shinne-Ren; Hu, Wan-Ping; Chang, Long-Sen

    2014-12-15

    Phosphatidylserine (PS) externalization is a hallmark for apoptotic death of cells. Previous studies showed that Naja naja atra phospholipase A2 (NnaPLA2) and Notechis scutatus scutatus notexin induced apoptosis of human cancer cells. However, NnaPLA2 and notexin did not markedly disrupt the integrity of cellular membrane as evidenced by membrane permeability of propidium iodide. These findings reflected that the ability of NnaPLA2 and notexin to hydrolyze membrane phospholipids may be affected by PS externalization. To address that question, this study investigated the membrane-interacted mode and catalytic activity of NnaPLA2 and notexin toward outer leaflet (phosphatidylcholine/sphingomyelin/cholesterol, PC/SM/Chol) and inner leaflet (phosphatidylserine/phosphatidylethanolamine/cholesterol, PS/PE/Chol) of plasma membrane-mimicking vesicles. PS incorporation promoted enzymatic activity of NnaPLA2 and notexin on PC and PC/SM vesicles, but suppressed NnaPLA2 and notexin activity on PC/SM/Chol and PE/Chol vesicles. PS incorporation increased the membrane fluidity of PC vesicles but reduced membrane fluidity of PC/SM, PC/SM/Chol and PE/Chol vesicles. PS increased the phospholipid order of all the tested vesicles. Moreover, PS incorporation did not greatly alter the binding affinity of notexin and NnaPLA2 with phospholipid vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that membrane-bound mode of notexin and NnaPLA2 varied with the targeted membrane compositions. The fine structure of catalytic site in NnaPLA2 and notexin in all the tested vesicles showed different changes. Collectively, the present data suggest that membrane-inserted PS modulates PLA2 interfacial activity via its effects on membrane structure and membrane-bound mode of NnaPLA2 and notexin, and membrane compositions determine the effect of PS on PLA2 activity. PMID:25449100

  13. Interleukin-22-Induced Antimicrobial Phospholipase A2 Group IIA Mediates Protective Innate Immunity of Nonhematopoietic Cells against Listeria monocytogenes.

    PubMed

    Okita, Yamato; Shiono, Takeru; Yahagi, Ayano; Hamada, Satoru; Umemura, Masayuki; Matsuzaki, Goro

    2016-02-01

    Listeria monocytogenes is a bacterial pathogen which establishes intracellular parasitism in various cells, including macrophages and nonhematopoietic cells, such as hepatocytes. It has been reported that several proinflammatory cytokines have pivotal roles in innate protection against L. monocytogenes infection. We found that a proinflammatory cytokine, interleukin 22 (IL-22), was expressed by CD3(+) CD4(+) T cells at an early stage of L. monocytogenes infection in mice. To assess the influence of IL-22 on L. monocytogenes infection in hepatocytes, cells of a human hepatocellular carcinoma line, HepG2, were treated with IL-22 before L. monocytogenes infection in vitro. Gene expression analysis of the IL-22-treated HepG2 cells identified phospholipase A2 group IIA (PLA2G2A) as an upregulated antimicrobial molecule. Addition of recombinant PLA2G2A to the HepG2 culture significantly suppressed L. monocytogenes infection. Culture supernatant of the IL-22-treated HepG2 cells contained bactericidal activity against L. monocytogenes, and the activity was abrogated by a specific PLA2G2A inhibitor, demonstrating that HepG2 cells secreted PLA2G2A, which killed extracellular L. monocytogenes. Furthermore, colocalization of PLA2G2A and L. monocytogenes was detected in the IL-22-treated infected HepG2 cells, which suggests involvement of PLA2G2A in the mechanism of intracellular killing of L. monocytogenes by HepG2 cells. These results suggest that IL-22 induced at an early stage of L. monocytogenes infection enhances innate immunity against L. monocytogenes in the liver by stimulating hepatocytes to produce an antimicrobial molecule, PLA2G2A. PMID:26644377

  14. Crystal structure of vespid phospholipase A(1) reveals insights into the mechanism for cause of membrane dysfunction.

    PubMed

    Hou, Ming-Hon; Chuang, Chien-Ying; Ko, Tzu-Ping; Hu, Nien-Jen; Chou, Chia-Cheng; Shih, Yan-Ping; Ho, Chewn-Lang; Wang, Andrew H-J

    2016-01-01

    Vespid phospholipase A1 (vPLA1) from the black-bellied hornet (Vespa basalis) catalyzes the hydrolysis of emulsified phospholipids and shows potent hemolytic activity that is responsible for its lethal effect. To investigate the mechanism of vPLA1 towards its function such as hemolysis and emulsification, we isolated vPLA1 from V. basalis venom and determined its crystal structure at 2.5 Å resolution. vPLA1 belongs to the α/β hydrolase fold family. It contains a tightly packed β-sheet surrounded by ten α-helices and a Gly-X-Ser-X-Gly motif, characteristic of a serine hydrolyase active site. A bound phospholipid was modeled into the active site adjacent to the catalytic Ser-His-Asp triad indicating that Gln95 is located at hydrogen-bonding distance from the substrate's phosphate group. Moreover, a hydrophobic surface comprised by the side chains of Phe53, Phe62, Met91, Tyr99, Leu197, Ala167 and Pro169 may serve as the acyl chain-binding site. vPLA1 shows global similarity to the N-terminal domain of human pancreatic lipase (HPL), but with some local differences. The lid domain and the β9 loop responsible for substrate selectivity in vPLA1 are shorter than in HPL. Thus, solvent-exposed hydrophilic residues can easily accommodate the polar head groups of phospholipids, thereby accounting for the high activity level of vPLA1. Our result provides a potential explanation for the ability of vPLA1 to hydrolyze phospholipids of cell membrane. PMID:26603193

  15. Targeting cytosolic phospholipase A2 α in colorectal cancer cells inhibits constitutively activated protein kinase B (AKT) and cell proliferation

    PubMed Central

    Xie, Chanlu; Hua, Sheng; Li, Jianfang; Wang, Tingfeng; Yao, Mu; Vignarajan, Soma; Teng, Ying; Hejazi, Leila; Liu, Bingya; Dong, Qihan

    2014-01-01

    A constitutive activation of protein kinase B (AKT) in a hyper-phosphorylated status at Ser473 is one of the hallmarks of anti-EGFR therapy-resistant colorectal cancer (CRC). The aim of this study was to examine the role of cytosolic phospholipase A2α (cPLA2α) on AKT phosphorylation at Ser473 and cell proliferation in CRC cells with mutation in phosphoinositide 3-kinase (PI3K). AKT phosphorylation at Ser473 was resistant to EGF stimulation in CRC cell lines of DLD-1 (PIK3CAE545K mutation) and HT-29 (PIK3CAP499T mutation). Over-expression of cPLA2α by stable transfection increased basal and EGF-stimulated AKT phosphorylation and proliferation in DLD-1 cells. In contrast, silencing of cPLA2α with siRNA or inhibition with Efipladib decreased basal and EGF-stimulated AKT phosphorylation and proliferation in HT-29. Treating animals transplanted with DLD-1 with Efipladib (10 mg/kg, i.p. daily) over 14 days reduced xenograft growth by >90% with a concomitant decrease in AKT phosphorylation. In human CRC tissue, cPLA2α expression and phosphorylation were increased in 63% (77/120) compared with adjacent normal mucosa determined by immunohistochemistry. We conclude that cPLA2α is required for sustaining AKT phosphorylation at Ser473 and cell proliferation in CRC cells with PI3K mutation, and may serve as a potential therapeutic target for treatment of CRC resistant to anti-EGFR therapy. PMID:25365190

  16. Intercellular Odontoblast Communication via ATP Mediated by Pannexin-1 Channel and Phospholipase C-coupled Receptor Activation.

    PubMed

    Sato, Masaki; Furuya, Tadashi; Kimura, Maki; Kojima, Yuki; Tazaki, Masakazu; Sato, Toru; Shibukawa, Yoshiyuki

    2015-01-01

    Extracellular ATP released via pannexin-1 channels, in response to the activation of mechanosensitive-TRP channels during odontoblast mechanical stimulation, mediates intercellular communication among odontoblasts in dental pulp slice preparation dissected from rat incisor. Recently, odontoblast cell lines, such as mouse odontoblast lineage cells, have been widely used to investigate physiological/pathological cellular functions. To clarify whether the odontoblast cell lines also communicate with each other by diffusible chemical substance(s), we investigated the chemical intercellular communication among cells from mouse odontoblast cell lines following mechanical stimulation. A single cell was stimulated using a glass pipette filled with standard extracellular solution. We measured intracellular free Ca(2+) concentration ([Ca(2+)]i) by fura-2 in stimulated cells, as well as in cells located nearby. Direct mechanical stimulation to a single odontoblast increased [Ca(2+)]i, which showed sensitivity to capsazepine. In addition, we observed increases in [Ca(2+)]i not only in the mechanically stimulated odontoblast, but also in nearby odontoblasts. We could observe mechanical stimulation-induced increase in [Ca(2+)]i in a stimulated human embryo kidney (HEK) 293 cell, but not in nearby HEK293 cells. The increase in [Ca(2+)]i in nearby odontoblasts, but not in the stimulated odontoblast, was inhibited by adenosine triphosphate (ATP) release channel (pannexin-1) inhibitor in a concentration- and spatial-dependent manner. Moreover, in the presence of phospholipase C (PLC) inhibitor, the increase in [Ca(2+)]i in nearby odontoblasts, following mechanical stimulation of a single odontoblast, was abolished. We could record some inward currents evoked from odontoblasts near the stimulated odontoblast, but the currents were observed in only 4.8% of the recorded odontoblasts. The results of this study showed that ATP is released via pannexin-1, from a mechanically stimulated

  17. Interleukin-22-Induced Antimicrobial Phospholipase A2 Group IIA Mediates Protective Innate Immunity of Nonhematopoietic Cells against Listeria monocytogenes

    PubMed Central

    Okita, Yamato; Shiono, Takeru; Yahagi, Ayano; Hamada, Satoru; Umemura, Masayuki

    2015-01-01

    Listeria monocytogenes is a bacterial pathogen which establishes intracellular parasitism in various cells, including macrophages and nonhematopoietic cells, such as hepatocytes. It has been reported that several proinflammatory cytokines have pivotal roles in innate protection against L. monocytogenes infection. We found that a proinflammatory cytokine, interleukin 22 (IL-22), was expressed by CD3+ CD4+ T cells at an early stage of L. monocytogenes infection in mice. To assess the influence of IL-22 on L. monocytogenes infection in hepatocytes, cells of a human hepatocellular carcinoma line, HepG2, were treated with IL-22 before L. monocytogenes infection in vitro. Gene expression analysis of the IL-22-treated HepG2 cells identified phospholipase A2 group IIA (PLA2G2A) as an upregulated antimicrobial molecule. Addition of recombinant PLA2G2A to the HepG2 culture significantly suppressed L. monocytogenes infection. Culture supernatant of the IL-22-treated HepG2 cells contained bactericidal activity against L. monocytogenes, and the activity was abrogated by a specific PLA2G2A inhibitor, demonstrating that HepG2 cells secreted PLA2G2A, which killed extracellular L. monocytogenes. Furthermore, colocalization of PLA2G2A and L. monocytogenes was detected in the IL-22-treated infected HepG2 cells, which suggests involvement of PLA2G2A in the mechanism of intracellular killing of L. monocytogenes by HepG2 cells. These results suggest that IL-22 induced at an early stage of L. monocytogenes infection enhances innate immunity against L. monocytogenes in the liver by stimulating hepatocytes to produce an antimicrobial molecule, PLA2G2A. PMID:26644377

  18. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor

    PubMed Central

    2014-01-01

    Background Klebsiella pneumoniae strains are pathogenic to animals and humans, in which they are both a frequent cause of nosocomial infections and a re-emerging cause of severe community-acquired infections. K. pneumoniae isolates of the capsular serotype K2 are among the most virulent. In order to identify novel putative virulence factors that may account for the severity of K2 infections, the genome sequence of the K2 reference strain Kp52.145 was determined and compared to two K1 and K2 strains of low virulence and to the reference strains MGH 78578 and NTUH-K2044. Results In addition to diverse functions related to host colonization and virulence encoded in genomic regions common to the four strains, four genomic islands specific for Kp52.145 were identified. These regions encoded genes for the synthesis of colibactin toxin, a putative cytotoxin outer membrane protein, secretion systems, nucleases and eukaryotic-like proteins. In addition, an insertion within a type VI secretion system locus included sel1 domain containing proteins and a phospholipase D family protein (PLD1). The pld1 mutant was avirulent in a pneumonia model in mouse. The pld1 mRNA was expressed in vivo and the pld1 gene was associated with K. pneumoniae isolates from severe infections. Analysis of lipid composition of a defective E. coli strain complemented with pld1 suggests an involvement of PLD1 in cardiolipin metabolism. Conclusions Determination of the complete genome of the K2 reference strain identified several genomic islands comprising putative elements of pathogenicity. The role of PLD1 in pathogenesis was demonstrated for the first time and suggests that lipid metabolism is a novel virulence mechanism of K. pneumoniae. PMID:24885329

  19. Synthesis of Polyfluoro Ketones for Selective Inhibition of Human Phospholipase A2 Enzymes

    PubMed Central

    Baskakis, Constantinos; Magrioti, Victoria; Cotton, Naomi; Stephens, Daren; Constantinou-Kokotou, Violetta; Dennis, Edward A.; Kokotos, George

    2009-01-01

    The development of selective inhibitors for individual PLA2 enzymes is necessary in order to target PLA2-specific signaling pathways; but it is challenging due to the observed promiscuity of known PLA2 inhibitors. In the current work, we present the development and application of a variety of synthetic routes to produce pentafluoro, tetrafluoro and trifluoro derivatives of activated carbonyl groups in order to screen for selective inhibitors and characterize the chemical properties that can lead to selective inhibition. Our results demonstrate that the pentafluoroethyl ketone functionality favors selective inhibition of the GVIA iPLA2, a very important enzyme for which specific, potent reversible inhibitors are needed. We find that 1,1,1,2,2-pentafluoro-7-phenyl-heptan-3-one (FKGK11) is a selective inhibitor of GVIA iPLA2 (XI(50) = 0.0073). Furthermore, we conclude that the introduction of an additional fluorine atom at the α′ position of a trifluoromethyl ketone constitutes an important strategy for the development of new potent GVIA iPLA2 inhibitors. PMID:19053783

  20. OX1 orexin/hypocretin receptor activation of phospholipase D

    PubMed Central

    Jäntti, MH; Putula, J; Somerharju, P; Frohman, MA; Kukkonen, JP

    2012-01-01

    BACKGROUND AND PURPOSE Orexin receptors potently signal to lipid messenger systems, and our previous studies have suggested that PLD would be one of these. We thus wanted to verify this by direct measurements and clarify the molecular mechanism of the coupling. EXPERIMENTAL APPROACH Orexin receptor-mediated PLD activation was investigated in CHO cells stably expressing human OX1 orexin receptors using [14C]-oleic acid-prelabelling and the transphosphatidylation assay. KEY RESULTS Orexin stimulation strongly increased PLD activity – even more so than the phorbol ester TPA (12-O-tetradecanoyl-phorbol-13-acetate), a highly potent activator of PLD. Both orexin and TPA responses were mediated by PLD1. Orexin-A and -B showed approximately 10-fold difference in potency, and the concentration–response curves were biphasic. Using pharmacological inhibitors and activators, both orexin and TPA were shown to signal to PLD1 via the novel PKC isoform, PKCδ. In contrast, pharmacological or molecular biological inhibitors of Rho family proteins RhoA/B/C, cdc42 and Rac did not inhibit the orexin (or the TPA) response, nor did the molecular biological inhibitors of PKD. In addition, neither cAMP elevation, Gαi/o nor Gβγ seemed to play an important role in the orexin response. CONCLUSIONS AND IMPLICATIONS Stimulation of OX1 receptors potently activates PLD (probably PLD1) in CHO cells and this is mediated by PKCδ but not other PKC isoforms, PKDs or Rho family G-proteins. At present, the physiological significance of orexin-induced PLD activation is unknown, but this is not the first time we have identified PKCδ in orexin signalling, and thus some specific signalling cascade may exist between orexin receptors and PKCδ. PMID:21718304

  1. Lipoprotein-associated phospholipase A2 prognostic role in atherosclerotic complications.

    PubMed

    Maiolino, Giuseppe; Bisogni, Valeria; Rossitto, Giacomo; Rossi, Gian Paolo

    2015-10-26

    Atherosclerosis manifests itself clinically at advanced stages when plaques undergo hemorrhage and/or rupture with superimposed thrombosis, thus abruptly stopping blood supply. Identification of markers of plaque destabilization at a pre-clinical stage is, therefore, a major goal of cardiovascular research. Promising results along this line were provided by studies investigating the lipoprotein-associated phospholipase A2 (Lp-PLA2), a member of phospholipase A2 proteins family that plays a key role in the metabolism of pro-inflammatory phospholipids, as oxidized low-density lipoproteins, and in the generation of pro-atherogenic metabolites, including lysophosphatidylcholine and oxidized free fatty acids. We herein review the experimental and clinical studies supporting use of Lp-PLA2 activity for predicting cardiovascular events. To his end we considered not only Lp-PLA2 activity and mass, but also Lp-PLA2 gene variations and their association with incident coronary artery disease, stroke, and cardiovascular mortality. Based on these evidences the major scientific societies have included in their guidelines the measurement of Lp-PLA2 activity among the biomarkers that are useful in risk stratification of adult asymptomatic patients at intermediate cardiovascular risk. The results of two recently published major clinical trials with the Lp-PLA2 inhibitor darapladib, which seem to challenge the pathogenic role of Lp-PLA2, will also be discussed. PMID:26516415

  2. Phosphatidylinositol-Glycan-Phospholipase D Is Involved in Neurodegeneration in Prion Disease

    PubMed Central

    Jin, Jae-Kwang; Jang, Byungki; Jin, Hyoung Tae; Choi, Eun-Kyoung; Jung, Cha-Gyun; Akatsu, Hiroyasu; Kim, Jae-Il; Carp, Richard I.; Kim, Yong-Sun

    2015-01-01

    PrPSc is formed from a normal glycosylphosphatidylinositol (GPI)-anchored prion protein (PrPC) by a posttranslational modification. Most GPI-anchored proteins have been shown to be cleaved by GPI phospholipases. Recently, GPI-phospholipase D (GPI-PLD) was shown to be a strictly specific enzyme for GPI anchors. To investigate the involvement of GPI-PLD in the processes of neurodegeneration in prion diseases, we examined the mRNA and protein expression levels of GPI-PLD in the brains of a prion animal model (scrapie), and in both the brains and cerebrospinal fluids (CSF) of sporadic and familial Creutzfeldt-Jakob disease (CJD) patients. We found that compared with controls, the expression of GPI-PLD was dramatically down-regulated in the brains of scrapie-infected mice, especially in the caveolin-enriched membrane fractions. Interestingly, the observed decrease in GPI-PLD expression levels began at the same time that PrPSc began to accumulate in the infected brains and this decrease was also observed in both the brain and CSF of CJD patients; however, no differences in expression were observed in either the brains or CSF specimens from Alzheimer’s disease patients. Taken together, these results suggest that the down-regulation of GPI-PLD protein may be involved in prion propagation in the brains of prion diseases. PMID:25867459

  3. A New Phospholipase A₂ from Lachesis muta rhombeata: Purification, Biochemical and Comparative Characterization with Crotoxin B.

    PubMed

    Cordeiro, Francielle A; Perini, Tibério G K; Bregge-Silva, Cristiane; Cremonez, Caroline M; Rodrigues, Renata S; Boldrini-França, Johara; Bordon, Karla de C F; De Souza, Dayane L N; Ache, David C; de M Rodrigues, Veridiana; Dos Santos, Wagner F; Rosa, Jose C; Arantesa, Eliane C

    2015-01-01

    Phospholipases A2 (PLA2s) are enzymes responsible for inflammatory effects, edema formation, myotoxicity, neurotoxicity and other manifestations from envenoming. In this paper we report the isolation and biochemical characterization of Lmr-PLA2, the first acidic PLA2 found in Lachesis muta rhombeata venom. Furthermore, this study compared biological effects of Lmr-PLA2 and crotoxin B (CB), a PLA2 from Crotalus durissus terrificus venom. Lmr-PLA2 was isolated by molecular exclusion and reversed phase chromatography. The purified enzyme showed a molecular mass of 13,975 Da, pI of 5.46 and its partial amino acid sequence showed a high identity with PLA2s already described in the literature. In addition, this enzyme possesses the residue D49 in its amino acid sequence, indicating that it is a catalytically active PLA2. Lmr-PLA2 presented high phospholipase activity and was able to inhibit platelet aggregation. Studies of biochemical characterization of new PLA2s, as Lmr-PLA2, are relevant since they help to clarify the structure-function relationship of this important class of toxins. PMID:26145564

  4. Immobilized phospholipase A1-catalyzed modification of phosphatidylcholine with n-3 polyunsaturated fatty acid.

    PubMed

    Zhao, TingTing; No, Da Som; Kim, Byung Hee; Garcia, Hugo S; Kim, Yangha; Kim, In-Hwan

    2014-08-15

    n-3 Polyunsaturated fatty acids (n-3 PUFA)-enriched phosphatidylcholine (PC) was successfully produced with fatty acid from fish oil and PC from soybean by immobilized phospholipase A1-catalyzed acidolysis. Detailed studies of immobilization were carried out, and Lewatit VP OC 1600 was selected as a carrier for preparation of immobilized phospholipase A1, which was used for modification of PC by acidolysis. For acidolysis of PC with n-3 PUFA, the effects of several parameters, namely, water content, temperature, and enzyme loading on the reaction time course were investigated to determine optimum conditions. The optimum water content, temperature, and enzyme loading were 1.0%, 55 °C, and 20%, respectively. The highest incorporation (57.4 mol%) of n-3 PUFA into PC was obtained at 24h and the yield of PC was 16.7 mol%. The yield of PC increased significantly by application of vacuum, even though a slight decrease of n-3 PUFA incorporation was observed. PMID:24679762

  5. Dual Roles of Group IID Phospholipase A2 in Inflammation and Cancer.

    PubMed

    Miki, Yoshimi; Kidoguchi, Yuh; Sato, Mariko; Taketomi, Yoshitaka; Taya, Choji; Muramatsu, Kazuaki; Gelb, Michael H; Yamamoto, Kei; Murakami, Makoto

    2016-07-22

    Phospholipase A2 enzymes have long been implicated in the promotion of inflammation by mobilizing pro-inflammatory lipid mediators, yet recent evidence suggests that they also contribute to anti-inflammatory or pro-resolving programs. Group IID-secreted phospholipase A2 (sPLA2-IID) is abundantly expressed in dendritic cells in lymphoid tissues and resolves the Th1 immune response by controlling the steady-state levels of anti-inflammatory lipids such as docosahexaenoic acid and its metabolites. Here, we show that psoriasis and contact dermatitis were exacerbated in Pla2g2d-null mice, whereas they were ameliorated in Pla2g2d-overexpressing transgenic mice, relative to littermate wild-type mice. These phenotypes were associated with concomitant alterations in the tissue levels of ω3 polyunsaturated fatty acid (PUFA) metabolites, which had the capacity to reduce the expression of pro-inflammatory and Th1/Th17-type cytokines in dendritic cells or lymph node cells. In the context of cancer, however, Pla2g2d deficiency resulted in marked attenuation of skin carcinogenesis, likely because of the augmented anti-tumor immunity. Altogether, these results underscore a general role of sPLA2-IID as an immunosuppressive sPLA2 that allows the microenvironmental lipid balance toward an anti-inflammatory state, exerting beneficial or detrimental impact depending upon distinct pathophysiological contexts in inflammation and cancer. PMID:27226632

  6. PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination

    PubMed Central

    Kim, Jun-Dal; Park, Kyung-Eui; Ishida, Junji; Kako, Koichiro; Hamada, Juri; Kani, Shuichi; Takeuchi, Miki; Namiki, Kana; Fukui, Hajime; Fukuhara, Shigetomo; Hibi, Masahiko; Kobayashi, Makoto; Kanaho, Yasunori; Kasuya, Yoshitoshi; Mochizuki, Naoki; Fukamizu, Akiyoshi

    2015-01-01

    The development of vertebrate neurons requires a change in membrane phosphatidylcholine (PC) metabolism. Although PC hydrolysis is essential for enhanced axonal outgrowth mediated by phospholipase D (PLD), less is known about the determinants of PC metabolism on dendritic arborization. We show that protein arginine methyltransferase 8 (PRMT8) acts as a phospholipase that directly hydrolyzes PC, generating choline and phosphatidic acid. We found that PRMT8 knockout mice (prmt8−/−) displayed abnormal motor behaviors, including hindlimb clasping and hyperactivity. Moreover, prmt8−/− mice and TALEN-induced zebrafish prmt8 mutants and morphants showed abnormal phenotypes, including the development of dendritic trees in Purkinje cells and altered cerebellar structure. Choline and acetylcholine levels were significantly decreased, whereas PC levels were increased, in the cerebellum of prmt8−/− mice. Our findings suggest that PRMT8 acts both as an arginine methyltransferase and as a PC-hydrolyzing PLD that is essential for proper neurological functions. PMID:26665171

  7. Molecular Details of Membrane Fluidity Changes during Apoptosis and Relationship to Phospholipase A2 Activity

    PubMed Central

    Gibbons, Elizabeth; Pickett, Katalyn R.; Streeter, Michael C.; Warcup, Ashley O.; Nelson, Jennifer; Judd, Allan M.; Bell, John D.

    2012-01-01

    Summary Secretory phospholipase A2 exhibits much greater activity toward apoptotic versus healthy cells. Various plasma membrane changes responsible for this phenomenon have been proposed, including biophysical alterations described as “membrane fluidity” and “order.” Understanding of these membrane perturbations was refined by applying studies with model membranes to fluorescence measurements during thapsigargin-induced apoptosis of S49 cells using probes specific for the plasma membrane: Patman and trimethylammonium-diphenylhexatriene. Alterations in emission properties of these probes corresponded with enhanced susceptibility of the cells to hydrolysis by secretory phospholipase A2. By applying a quantitative model, additional information was extracted from the kinetics of Patman equilibration with the membrane. Taken together, these data suggested that the phospholipids of apoptotic membranes display greater spacing between adjacent headgroups, reduced interactions between neighboring lipid tails, and increased penetration of water among the heads. The phase transition of artificial bilayers was used to calibrate quantitatively the relationship between probe fluorescence and the energy of interlipid interactions. This analysis was applied to results from apoptotic cells to estimate the frequency with which phospholipids protrude sufficiently at the membrane surface to enter the enzyme’s active site. The data suggested that this frequency increases 50–100-fold as membranes become susceptible to hydrolysis during apoptosis. PMID:22967861

  8. Critical role for cytosolic group IVA phospholipase A2 in early adipocyte differentiation and obesity.

    PubMed

    Peña, Lucía; Meana, Clara; Astudillo, Alma M; Lordén, Gema; Valdearcos, Martín; Sato, Hiroyasu; Murakami, Makoto; Balsinde, Jesús; Balboa, María A

    2016-09-01

    Adipogenesis is the process of differentiation of immature mesenchymal stem cells into adipocytes. Elucidation of the mechanisms that regulate adipocyte differentiation is key for the development of novel therapies for the control of obesity and related comorbidities. Cytosolic group IVA phospholipase A2 (cPLA2α) is the pivotal enzyme in receptor-mediated arachidonic acid (AA) mobilization and attendant eicosanoid production. Using primary multipotent cells and cell lines predetermined to become adipocytes, we show here that cPLA2α displays a proadipogenic function that occurs very early in the adipogenic process. Interestingly, cPLA2α levels decrease during adipogenesis, but cPLA2α-deficient preadipocytes exhibit a reduced capacity to differentiate into adipocytes, which affects early and terminal adipogenic transcription factors. Additionally, the absence of the phospholipase alters proliferation and cell-cycle progression that takes place during adipogenesis. Preconditioning of preadipocytes with AA increases the adipogenic capacity of these cells. Moreover, animals deficient in cPLA2α show resistance to obesity when fed a high fat diet that parallels changes in the expression of adipogenic transcription factors of the adipose tissue. Collectively, these results show that preadipocyte cPLA2α activation is a hitherto unrecognized factor for adipogenesis in vitro and in vivo. PMID:27317983

  9. Cyclin A2 modulates EMT via β-catenin and phospholipase C pathways.

    PubMed

    Cheung, Caroline T; Bendris, Nawal; Paul, Conception; Hamieh, Abdallah; Anouar, Youssef; Hahne, Michael; Blanchard, Jean-Marie; Lemmers, Bénédicte

    2015-08-01

    We have previously demonstrated that Cyclin A2 is involved in cytoskeletal dynamics, epithelial-mesenchymal transition (EMT) and metastasis. This phenotype was potentiated by activated oncogenic H-Ras. However, the mechanisms governing EMT in these cells have not yet been elucidated. Here, we dissected the pathways that are responsible for EMT in cells deficient for Cyclin A2. In Cyclin A2-depleted normal murine mammary gland (NMuMG) cells expressing RasV12, we found that β-catenin was liberated from the cell membrane and cell-cell junctions and underwent nuclear translocation and activation. Components of the canonical wingless (WNT) pathway, including WNT8b, WNT10a, WNT10b, frizzled 1 and 2 and TCF4 were upregulated at the messenger RNA and protein levels following Cyclin A2 depletion. However, suppression of the WNT pathway using the acetyltransferase porcupine inhibitor C59 did not reverse EMT whereas a dominant negative form of TCF4 as well as inhibition of phospholipase C using U73122 were able to do so. This suggests that a WNT-independent mechanism of β-catenin activation via phospholipase C is involved in the EMT induced by Cyclin A2 depletion. Our findings will broaden our knowledge on how Cyclin A2 contributes to EMT and metastasis. PMID:25993989

  10. The combined effects of DEHP and PCBs on phospholipase in the livers of mice.

    PubMed

    Lin, Yi; Min, Lingli; Huang, Qiansheng; Chen, Yajie; Fang, Chao; Sun, Xia; Dong, Sijun

    2015-02-01

    Di(2-ethylhexyl) phthalate (DEHP) and polychlorinated biphenyls (PCBs) are two widely distributed pollutants that are of great concern due to their adverse health effects. However, few studies have investigated the combined effects of DEHP and PCBs. In this study, adult mice were continuously exposed to mixtures of DEHP (15 mg/kg bodyweight/day) and Aroclor 1254 (7.5 mg/kg bodyweight/day) for 12 days to investigate the combined effects of these compounds. The results showed that the ratio of the liver weight to the body weight was higher in the treated group than that in the control group. The effects of combined exposure on three important receptors, the proliferator-activated receptor (PPAR), estrogen receptor (ER), and aryl hydrocarbon receptor (AHR), were investigated. The mRNA level of PPARγ was significantly up-regulated after exposure. The expression level of ERα was decreased in the male treated group. In contrast, the expression levels of AHR and related genes (cyp1a1 and cyp1b1) were not markedly affected. The expression level of phospholipase A (PLA) was significantly down-regulated at both the mRNA and protein levels in male mice after combined treatment. In all, our study demonstrated the combined effects of DEHP and PCBs on the expression levels of key receptors in mice. The combined exposure led to a decrease in phospholipase in male mice. PMID:23804495

  11. Phospholipase D δ knock-out mutants are tolerant to severe drought stress

    PubMed Central

    Distéfano, Ayelen M; Valiñas, Matías A; Scuffi, Denise; Lamattina, Lorenzo; ten Have, Arjen; García-Mata, Carlos; Laxalt, Ana M

    2015-01-01

    Phospholipase D (PLD) is involved in different plant processes, ranging from responses to abiotic and biotic stress to plant development. Phospholipase Dδ (PLDδ) is activated in dehydration and salt stress, producing the lipid second messenger phosphatidic acid. In this work we show that pldδ Arabidopsis mutants were more tolerant to severe drought than wild-type plants. PLDδ has been shown to be required for ABA regulation of stomatal closure of isolated epidermal peels. However, there was no significant difference in stomatal conductance at the whole plant level between wild-type and pldδ mutants. Since PLD hydrolyses structural phospholipids, then we looked at membrane integrity. Ion leakage measurements showed that during dehydration of leaf discs pldδ mutant has less membrane degradation compared to the wild-type. We further analyzed the mutants and showed that pldδ have higher mRNA levels of RAB18 and RD29A compared to wild-type plants under normal growth conditions. Transient expression of AtPLDδ in Nicotiana benthamiana plants induced a wilting phenotype. These findings suggest that, in wt plants PLDδ disrupt membranes in severe drought stress and, in the absence of the protein (PLDδ knock-out) might drought-prime the plants, making them more tolerant to severe drought stress. The results are discussed in relation to PLDδ role in guard cell signaling and drought tolerance. PMID:26340512

  12. A continuous spectrophotometric assay that distinguishes between phospholipase A1 and A2 activities[S

    PubMed Central

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Popowycz, Florence; Khatib, Abdallah; Queneau, Yves; Abousalham, Abdelkarim

    2016-01-01

    A new spectrophotometric assay was developed to measure, continuously and specifically, phospholipase A1 (PLA1) or phospholipase A2 (PLA2) activities using synthetic glycerophosphatidylcholines (PCs) containing α-eleostearic acid, either at the sn-1 position [1-α-eleostearoyl-2-octadecyl-rac-glycero-3-phosphocholine (EOPC)] or at the sn-2 position [1-octadecyl-2-α-eleostearoyl-rac-glycero-3-phosphocholine (OEPC)]. The substrates were coated onto the wells of microtiter plates. A nonhydrolyzable ether bond, with a non-UV-absorbing alkyl chain, was introduced at the other sn position to prevent acyl chain migration during lipolysis. Upon enzyme action, α-eleostearic acid is liberated and then solubilized into the micellar phase. The PLA1 or PLA2 activity was measured by the increase in absorbance at 272 nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. EOPC and OEPC differentiate, with excellent accuracy, between PLA1 and PLA2 activity. Lecitase®, guinea pig pancreatic lipase-related protein 2 (known to be a PLA1 enzyme), bee venom PLA2, and porcine pancreatic PLA2 were all used to validate the assay. Compared with current assays used for continuously measuring PLA1 or PLA2 activities and/or their inhibitors, the development of this sensitive enzymatic method, using coated PC substrate analogs to natural lipids and based on the UV spectroscopic properties of α-eleostearic acid, is a significant improvement. PMID:27194811

  13. A continuous spectrophotometric assay that distinguishes between phospholipase A1 and A2 activities.

    PubMed

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Popowycz, Florence; Khatib, Abdallah; Queneau, Yves; Abousalham, Abdelkarim

    2016-08-01

    A new spectrophotometric assay was developed to measure, continuously and specifically, phospholipase A1 (PLA1) or phospholipase A2 (PLA2) activities using synthetic glycerophosphatidylcholines (PCs) containing α-eleostearic acid, either at the sn-1 position [1-α-eleostearoyl-2-octadecyl-rac-glycero-3-phosphocholine (EOPC)] or at the sn-2 position [1-octadecyl-2-α-eleostearoyl-rac-glycero-3-phosphocholine (OEPC)]. The substrates were coated onto the wells of microtiter plates. A nonhydrolyzable ether bond, with a non-UV-absorbing alkyl chain, was introduced at the other sn position to prevent acyl chain migration during lipolysis. Upon enzyme action, α-eleostearic acid is liberated and then solubilized into the micellar phase. The PLA1 or PLA2 activity was measured by the increase in absorbance at 272 nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. EOPC and OEPC differentiate, with excellent accuracy, between PLA1 and PLA2 activity. Lecitase(®), guinea pig pancreatic lipase-related protein 2 (known to be a PLA1 enzyme), bee venom PLA2, and porcine pancreatic PLA2 were all used to validate the assay. Compared with current assays used for continuously measuring PLA1 or PLA2 activities and/or their inhibitors, the development of this sensitive enzymatic method, using coated PC substrate analogs to natural lipids and based on the UV spectroscopic properties of α-eleostearic acid, is a significant improvement. PMID:27194811

  14. Phospholipase PlaB is a new virulence factor of Legionella pneumophila.

    PubMed

    Schunder, Eva; Adam, Patrick; Higa, Futoshi; Remer, Katharina A; Lorenz, Udo; Bender, Jennifer; Schulz, Tino; Flieger, Antje; Steinert, Michael; Heuner, Klaus

    2010-06-01

    We previously identified Legionella pneumophila PlaB as the major cell-associated phospholipase A/lysophospholipase A with contact-dependent hemolytic activity. In this study, we further characterized this protein and found it to be involved in the virulence of L. pneumophila. PlaB was mainly expressed and active during exponential growth. Active PlaB was outer membrane-associated and at least in parts surface-exposed. Transport to the outer membrane was not dependent on the type I (T1SS), II (T2SS), IVB (T4BSS) or Tat secretion pathways. Furthermore, PlaB activity was not dependent on the presence of the macrophage infectivity potentiator (Mip) or the major secreted zinc metalloproteinase A (MspA). Despite the fact that PlaB is not essential for replication in protozoa or macrophage cell lines, we found that plaB mutants were impaired for replication in the lungs and dissemination to the spleen in the guinea pig infection model. Histological sections monitored less inflammation and destruction of the lung tissue after infection with the plaB mutants compared to L. pneumophila wild type. Taken together, PlaB is the first phospholipase A/lysophospholipase A with a confirmed role in the establishment of Legionnaires' disease. PMID:20153694

  15. Molecular characterization of enterobacterial pldA genes encoding outer membrane phospholipase A.

    PubMed Central

    Brok, R G; Brinkman, E; van Boxtel, R; Bekkers, A C; Verheij, H M; Tommassen, J

    1994-01-01

    The pldA gene of Escherichia coli encodes an outer membrane phospholipase A. A strain carrying the most commonly used mutant pldA allele appeared to express a correctly assembled PldA protein in the outer membrane. Nucleotide sequence analysis revealed that the only difference between the wild type and the mutant is the replacement of the serine residue in position 152 by phenylalanine. Since mutants that lack the pldA gene were normally viable under laboratory conditions and had no apparent phenotype except for the lack of outer membrane phospholipase activity, the exact role of the enzyme remains unknown. Nevertheless, the enzyme seems to be important for the bacteria, since Western blotting (immunoblotting) and enzyme assays showed that it is widely spread among species of the family Enterobacteriaceae. To characterize the PldA protein further, the pldA genes of Salmonella typhimurium, Klebsiella pneumoniae, and Proteus vulgaris were cloned and sequenced. The cloned genes were expressed in E. coli, and their gene products were enzymatically active. Comparison of the predicted PldA primary structures with that of E. coli PldA revealed a high degree of homology, with 79% of the amino acid residues being identical in all four proteins. Implications of the sequence comparison for the structure and the structure-function relationship of PldA protein are discussed. Images PMID:8300539

  16. Phospholipase-catalyzed hydrolysis in an artificial cell membrane in the presence of melittin.

    PubMed

    Lee, Jinyoung; Lee, Joo-Kyung; Busnaina, Ahmed; Park, BaeHo; Lee, HeaYeon

    2013-01-01

    Biomimicry involves the use of the structure and function of biological systems as models for the design and engineering of materials and machines. An artificial cell membrane was developed using biomembrane components, and the membrane, formed by a lipid bilayer, was analyzed using surface plasmon resonance (SPR) to monitor hydrolysis by phospholipase (PL). The simultaneous atomic force microscope (AFM) images show that PL catalyzed the nanometer-scale hydrolysis of the artificial lipid biomembranes through enzymatic hydrolysis. In addition, it was confirmed that the combination of PL and melittin allowed the control of enzyme hydrolysis for the degradation of the lipid bilayer. Regarding the expected activating effect of melittin on hydrolysis, no difference with respect to the non-treated lipid membrane was observed in the AFM images. It is assumed that the partitioning of melittin into the membrane might prevent the binding or hydrolysis of Phospholipase A2 (PLA2). This study provides basic knowledge on a new approach for patterning biomimicking lipid membranes on a nano-scale. PMID:23646709

  17. Phospholipase A2 activation by hydrogen peroxide during in vitro capacitation of buffalo spermatozoa.

    PubMed

    Shit, Sanjoy; Atreja, S K

    2004-05-01

    Progressively motile, washed buffalo spermatozoa (50 x 10(6) cells in 0.5 ml) were in vitro capacitated in HEPES containing Bovine Gamete Medium 3 (BGM3) in presence of heparin (10 microg/ml), and different concentrations of hydrogen peroxide (10 to 100 microM). Spermatozoa (60%) were capacitated in presence of heparin compared to 56% in presence of 25 microM H2O2 (optimally found suitable for capacitation). The extent of capacitation was measured in terms of acrosome reaction (AR) induced by lysophosphatidyl choline (100 microg/ml). The acrosome reacted cells were counted after triple staining. Catalase (100 microg/ml) significantly reduced the sperm capacitation to 16-18% when added with H2O2, or alone in the capacitation medium. Phospholipase A2 activity of spermatozoa increased linearly up to 50 microM H2O2 concentration included in the assay system. Moreover, significant increase in phospholipase A2 activity was observed after capacitation by both, the heparin and 25 microM H2O2. The activity was always higher in acrosome reacted cells. PMID:15233473

  18. Lipoprotein-associated phospholipase A2 prognostic role in atherosclerotic complications

    PubMed Central

    Maiolino, Giuseppe; Bisogni, Valeria; Rossitto, Giacomo; Rossi, Gian Paolo

    2015-01-01

    Atherosclerosis manifests itself clinically at advanced stages when plaques undergo hemorrhage and/or rupture with superimposed thrombosis, thus abruptly stopping blood supply. Identification of markers of plaque destabilization at a pre-clinical stage is, therefore, a major goal of cardiovascular research. Promising results along this line were provided by studies investigating the lipoprotein-associated phospholipase A2 (Lp-PLA2), a member of phospholipase A2 proteins family that plays a key role in the metabolism of pro-inflammatory phospholipids, as oxidized low-density lipoproteins, and in the generation of pro-atherogenic metabolites, including lysophosphatidylcholine and oxidized free fatty acids. We herein review the experimental and clinical studies supporting use of Lp-PLA2 activity for predicting cardiovascular events. To his end we considered not only Lp-PLA2 activity and mass, but also Lp-PLA2 gene variations and their association with incident coronary artery disease, stroke, and cardiovascular mortality. Based on these evidences the major scientific societies have included in their guidelines the measurement of Lp-PLA2 activity among the biomarkers that are useful in risk stratification of adult asymptomatic patients at intermediate cardiovascular risk. The results of two recently published major clinical trials with the Lp-PLA2 inhibitor darapladib, which seem to challenge the pathogenic role of Lp-PLA2, will also be discussed. PMID:26516415

  19. Phospholipase D δ knock-out mutants are tolerant to severe drought stress.

    PubMed

    Distéfano, Ayelen M; Valiñas, Matías A; Scuffi, Denise; Lamattina, Lorenzo; Ten Have, Arjen; García-Mata, Carlos; Laxalt, Ana M

    2015-01-01

    Phospholipase D (PLD) is involved in different plant processes, ranging from responses to abiotic and biotic stress to plant development. Phospholipase Dδ (PLDδ) is activated in dehydration and salt stress, producing the lipid second messenger phosphatidic acid. In this work we show that pldδ Arabidopsis mutants were more tolerant to severe drought than wild-type plants. PLDδ has been shown to be required for ABA regulation of stomatal closure of isolated epidermal peels. However, there was no significant difference in stomatal conductance at the whole plant level between wild-type and pldδ mutants. Since PLD hydrolyses structural phospholipids, then we looked at membrane integrity. Ion leakage measurements showed that during dehydration of leaf discs pldδ mutant has less membrane degradation compared to the wild-type. We further analyzed the mutants and showed that pldδ have higher mRNA levels of RAB18 and RD29A compared to wild-type plants under normal growth conditions. Transient expression of AtPLDδ in Nicotiana benthamiana plants induced a wilting phenotype. These findings suggest that, in wt plants PLDδ disrupt membranes in severe drought stress and, in the absence of the protein (PLDδ knock-out) might drought-prime the plants, making them more tolerant to severe drought stress. The results are discussed in relation to PLDδ role in guard cell signaling and drought tolerance. PMID:26340512

  20. Cytotoxic activities of [Ser⁴⁹]phospholipase A₂ from the venom of the saw-scaled vipers Echis ocellatus, Echis pyramidum leakeyi, Echis carinatus sochureki, and Echis coloratus.

    PubMed

    Conlon, J Michael; Attoub, Samir; Arafat, Hama; Mechkarska, Milena; Casewell, Nicholas R; Harrison, Robert A; Calvete, Juan J

    2013-09-01

    Fractionation by reversed-phase HPLC of venom from four species of saw-scaled viper: Echis ocellatus, Echis pyramidum leakeyi, Echis carinatus sochureki, and Echis coloratus led to identification in each sample of an abundant protein with cytotoxic activity against human non-small cell lung adenocarcinoma A549 cells. The active component in each case was identified by MALDI-TOF mass fingerprinting of tryptic digests as [Ser⁴⁹]phospholipase A₂ ([Ser⁴⁹]PLA₂). An isoform of [Ser⁴⁹]PLA₂ containing the single Ala¹⁸→ Val substitution and a partially characterized [Asp⁴⁹]PLA₂ were also present in the E. coloratus venom. LC₅₀ values against A549 cells for the purified [Ser⁴⁹]PLA₂ proteins from the four species are in the range 2.9-8.5 μM. This range is not significantly different from the range of LC₅₀ values against human umbilical vein endothelial HUVEC cells (2.5-12.2 μM) indicating that the [Ser⁴⁹]PLA₂ proteins show no differential anti-tumor activity. The LC₅₀ value for [Ser⁴⁹]PLA₂ from E. ocellatus against human erythrocytes is >100 μM and the MIC values against Escherichia coli and Staphylococcus aureus are >100 μM. It is suggested that the [Ser⁴⁹]PLA₂ proteins play a major role in producing local tissue necrosis and hemorrhage at the site of envenomation. PMID:23747272

  1. A facile reproducible radioimmunoassay of the mixed metabolites of prostaglandins E, suitable for measurement of relative differences of phospholipase/prostaglandin synthetase activity in vivo.

    PubMed

    Fretland, D J; Cammarata, P S

    1984-04-01

    A relatively simple, reproducible, radioimmunoassay for the mixed metabolites of prostaglandins E (U-PGE-M) in rat and human urine is described. Results of the assay of treated versus control urine extracts correlate well with differences expected from treatments known to alter in vivo phospholipase/prostaglandin synthetase activity. Cross-reactivity of heterogeneous metabolite antiserum with 5 available endogenous prostaglandins and a single metabolite was determined and showed little or no cross reaction. Sensitivity, within-assay precision, interassay reproducibility, and parallelism were also determined and found acceptable. Excretion rates of U-PGE-M by rats and humans were determined, and statistically significant differences could be shown, although absolute values were smaller than estimated absolute values obtained from mass-spectrometric measurements of single, purified metabolites. Normal human male excretion rates differed significantly from those of females. Injection of prostaglandin E1 caused a significant rise in U-PGE-M excretion in rats whereas aspirin and indomethacin caused it to fall. U-PGE-M excretion rates of spontaneous hypertensive rats were significantly less than rates of normotensive controls. Adrenalectomy resulted in excretion of significantly larger amounts of U-PGE-M than in normal or sham-operated controls. A screen of clinically active pharmacological agents and hormones gave results consistent with previously published reports. PMID:6427792

  2. THE ROLE OF CCL4 BIOTRANSFORMATION IN THE ACTIVATION OF HEPATOCYTE PHOSPHOLIPASE C IN VIVO AND IN VITRO

    EPA Science Inventory

    The role of CC14 Biotransformation in the Activation of Hepatocyte Phospholipase C in ivo and in Vitro. Coleman, J. B., Condie, L.W. AND LAMB, R.G. (1988). Toxicol. Appl. Pharmacol. 95,208-219. Rats treated with a single 0.5 ml/kg dose (ip) of CCl4 exhibited a threefold increase ...

  3. A Cell-Permeable Phospholipase C[gamma]1-Binding Peptide Transduces Neurons and Impairs Long-Term Spatial Memory

    ERIC Educational Resources Information Center

    Blum, Sonja; Dash, Pramod K.

    2004-01-01

    Growth factor-mediated signaling has emerged as an essential component of memory formation. In this study, we used a phospholipase C gamma 1 (PLC[gamma]1) binding, cell-penetrating peptide to sequester PLC[gamma]1 away from its target, the phosphotyrosine residues within the activated growth factor receptor. Peptides appear to transduce neurons…

  4. The effect of centrally injected CDP-choline on respiratory system; involvement of phospholipase to thromboxane signaling pathway.

    PubMed

    Topuz, Bora B; Altinbas, Burcin; Yilmaz, Mustafa S; Saha, Sikha; Batten, Trevor F; Savci, Vahide; Yalcin, Murat

    2014-05-01

    CDP-choline is an endogenous metabolite in phosphatidylcholine biosynthesis. Exogenous administration of CDP-choline has been shown to affect brain metabolism and to exhibit cardiovascular, neuroendocrine neuroprotective actions. On the other hand, little is known regarding its respiratory actions and/or central mechanism of its respiratory effect. Therefore the current study was designed to investigate the possible effects of centrally injected CDP-choline on respiratory system and the mediation of the central cholinergic receptors and phospholipase to thromboxane signaling pathway on CDP-choline-induced respiratory effects in anaesthetized rats. Intracerebroventricularly (i.c.v.) administration of CDP-choline induced dose- and time-dependent increased respiratory rates, tidal volume and minute ventilation of male anaesthetized Spraque Dawley rats. İ.c.v. pretreatment with atropine failed to alter the hyperventilation responses to CDP-choline whereas mecamylamine, cholinergic nicotinic receptor antagonist, mepacrine, phospholipase A2 inhibitor, and neomycin phospholipase C inhibitor, blocked completely the hyperventilation induced by CDP-choline. In addition, central pretreatment with furegrelate, thromboxane A2 synthesis inhibitor, also partially blocked CDP-choline-evoked hyperventilation effects. These data show that centrally administered CDP-choline induces hyperventilation which is mediated by activation of central nicotinic receptors and phospholipase to thromboxane signaling pathway. PMID:24560778

  5. Effects of a phospholipase A/sub 2/ inhibitor on uptake and toxicity of liposomes containing plant phosphatidylinositol

    SciTech Connect

    Jett, M.; Alving, C.R.

    1986-05-01

    Plant phosphatidylinositol (PI) has been shown by us to have a direct cytotoxic effect on cultured tumor cells but not on normal cells. Synthetic PI containing /sup 14/C-linoleic acid in the sn-2 position, also showed the same pattern of selective cytotoxicity. When the metabolic fate of synthetic PI was examined with tumor cells, the radioactivity which no longer occurred as PI, was found as either products of phospholipase A/sub 2/ (93%, free fatty acids and phosphatidylcholine) or phospholipase C (7%, diglycerides). Uptake of liposomal PI was directly correlated with cytotoxicity. They tested a variety of inhibitors to see the effect on uptake and/or cytotoxicity of plant PI. General metabolic inhibitors such as metrizamide or sodium azide did not alter cellular uptake of the plant PI liposomes. Inhibitors of lipoxygenase formation, such as indomethacin, also did not alter the uptake or cytotoxicity induced by plant PI. Quinacrine, an inhibitor of phospholipase A/sub 2/, decreased the uptake of the PI containing liposomes to 50% of that seen in the presence or absence of any other inhibitor. Although quinacrine is itself toxic to cells, at low concentrations of quinacrine, plant PI did not show the same degree of cytotoxicity as in the absence of quinacrine. These data are compatible with the hypothesis that plant PI exerts cytotoxicity by serving as a substrate for phospholipase A/sub 2/.

  6. Phospholipase A{sub 2} is involved in the mechanism of activation of neutrophils by polychlorinated biphenyls

    SciTech Connect

    Tithof, P.K.; Schiamberg, E.; Ganey, P.E.; Peters-Golden, M.

    1996-01-01

    Aroclor 1242, a mixture of polychlorinated biphenyls (PCBs), activates neutrophils to produce superoxide anion (O{sub 2}{sup {minus}}) by a mechanism that involves phospholipase C-dependent hydrolysis of membrane phosphoinositides; however, subsequent signal transduction mechanisms are unknown. This study determines whether phospholipase A{sub 2}-dependent release of arachidonic acid is involved in PCB-induced O{sub 2}{sup {minus}} production. O{sub 2}{sup {minus}} production was measured in vitro in glycogen-elicited, rat neutrophils in the presence and absence of the inhibitors of phospholipase A{sub 2}: quinacrine, 4-bromophenacyl bromide (BPB), and manoalide. All three agents significantly decreased the amount of O{sub 2}{sup {minus}} detected during stimulation of neutrophils with Aroclor 1242. Similar inhibition occurred when neutrophils were activated with the classical stimuli, formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate. The effects of BPB and manoalide were not a result of cytotoxicity or other nonspecific effects. Significant release of {sup 3}H-arachidonic acid preceded O{sub 2}{sup {minus}} production in neutrophils stimulated with Aroclor 1242 or fMLP. Manoalide, at a concentration that abolished O{sub 2}{sup {minus}} production, also inhibited the release of {sup 3}H-arachidonate. Aspirin, zileuton, or WEB 2086 did not affect Aroclor 1242-induced O{sub 2}{sup {minus}} production, suggesting that eicosanoids and platelet-activating factor are not needed for neutrophil activation by PCBs. Activation of phos-pholipase A{sub 2} and O{sub 2}{sup {minus}} production do not appear to involve the Ah receptor. These data suggest that Aroclor 1242 stimulates neutrophils to produce O{sub 2}{sup {minus}} by a mechanism that involves phospholipase A{sub 2}-dependent release of arachiodonic acid. 49 refs., 6 figs., 2 tabs.

  7. Phospholipase C in Dictyostelium discoideum. Cyclic AMP surface receptor and G-protein-regulated activity in vitro.

    PubMed

    Bominaar, A A; Kesbeke, F; Van Haastert, P J

    1994-01-01

    The cellular slime mould Dictyostelium discoideum shows several responses after stimulation with the chemoattractant cAMP, including a transient rise in cyclic AMP (cAMP), cGMP and Ins(1,4,5)P3. In this paper the regulation of phospholipase C in vitro is described. Under our experimental conditions commercial PtdIns(4,5)P2 cannot be used to analyse phospholipase C activity in Dictyostelium lysates, because it is hydrolysed mainly to glycerophosphoinositol instead of Ins(1,4,5)P3. Enzyme activity was determined with endogenous unlabelled PtdInsP2 as a substrate. The product was measured by isotope-dilution assay and identified as authentic Ins(1,4,5)P3. Since phospholipase C is strictly Ca(2+)-dependent, with an optimal concentration range of 1-100 microM, cell lysates were prepared in EGTA and the enzyme reaction was started by adding 10 microM free Ca2+. Phospholipase C activity increased 2-fold during Dictyostelium development up to 8 h of starvation, after which the activity declined to less than 10% of the vegetative level. Enzyme activity in vitro increased up to 2-fold after stimulation of cells with the agonist cAMP in vivo. Addition of 10 microM guanosine 5'-[gamma-thio]triphosphate during lysis activated the enzyme to the same extent, and this effect was antagonized by guanosine 5'-[beta-thio]diphosphate. These results strongly suggest that surface cAMP receptors and G-proteins regulate phospholipase C during Dictyostelium development. PMID:8280097

  8. Eicosanoid production by mouse peritoneal macrophages during Toxoplasma gondii penetration: role of parasite and host cell phospholipases.

    PubMed Central

    Thardin, J F; M'Rini, C; Beraud, M; Vandaele, J; Frisach, M F; Bessieres, M H; Seguela, J P; Pipy, B

    1993-01-01

    The metabolism of endogenous arachidonic acid by mouse resident peritoneal macrophages infected in vitro with Toxoplasma gondii was studied. Prelabeling of macrophages with [5,6,8,9,11,12,14,15-3H]arachidonic acid and challenge with tachyzoites for 15 min resulted in a high mobilization of free labeled arachidonic acid (178%) in the culture medium. The parasites also triggered the synthesis of 6-keto-prostaglandin F1 alpha (47%), prostaglandin E2 (44%), leukotrienes C4 and D4 (33%) and 5-, 12-hydroxyeicosatetraenoic acids (155%). The study indicated that during the intracellular development phase of the parasites, 6-keto-prostaglandin F1 alpha (38%), prostaglandin E2 (31%) leukotrienes C4 and D4 (15%), hydroxyeicosatetraenoic acids (43%), and free arachidonic acid (110%) were secreted into the culture medium. Pretreatment of tachyzoites with phospholipase A2 inhibitors (4-p-bromophenacyl bromide and quinacrine) and no calcium in the culture medium resulted in inhibition of tachyzoite penetration into the macrophages and a decrease of the arachidonic acid metabolism. The triggering of the arachidonic acid cascade by T. gondii was dependent on the active penetration of the parasites into the macrophages, whereas preincubation of the macrophages with phospholipase A2 inhibitors did not affect penetration or free arachidonic acid release, thereby supporting a role for parasite phospholipase in the penetration process and in arachidonic acid mobilization from macrophage membrane phospholipids. Moreover, treatment of macrophages with phospholipase A2 inhibitors decreased the activities of the cyclooxygenase and lipoxygenase pathways, also suggesting an activation of host cell phospholipase A2 by the parasite. PMID:8454347

  9. The correlation between anti phospholipase A2 specific IgE and clinical symptoms after a bee sting in beekeepers

    PubMed Central

    Matysiak, Joanna; Bręborowicz, Anna; Dereziński, Paweł; Kokot, Zenon J.

    2016-01-01

    Introduction Beekeepers are a group of people with high exposure to honeybee stings and with a very high risk of allergy to bee venom. Therefore, they are a proper population to study the correlations between clinical symptoms and results of diagnostic tests. Aim The primary aim of our study was to assess the correlations between total IgE, venom- and phospholipase A2-specific IgE and clinical symptoms after a bee sting in beekeepers. The secondary aim was to compare the results of diagnostic tests in beekeepers and in individuals with standard exposure to bees. Material and methods Fifty-four individuals were divided into two groups: beekeepers and control group. The levels of total IgE (tIgE), venom-specific IgE (venom sIgE), and phospholipase A2-specific IgE (phospholipase A2 sIgE) were analyzed. Results Our study showed no statistically significant correlation between the clinical symptoms after a sting and tIgE in the entire analyzed group. There was also no correlation between venom sIgE level and clinical symptoms either in beekeepers or in the group with standard exposure to bees. We observed a statistically significant correlation between phospholipase A2 sIgE level and clinical signs after a sting in the group of beekeepers, whereas no such correlation was detected in the control group. Significantly higher venom-specific IgE levels in the beekeepers, as compared to control individuals were shown. Conclusions In beekeepers, the severity of clinical symptoms after a bee sting correlated better with phospholipase A2 sIgE than with venom sIgE levels. PMID:27512356

  10. Combining phospholipases and a liquid lipase for one-step biodiesel production using crude oils

    PubMed Central

    2014-01-01

    Background Enzymatic biodiesel is becoming an increasingly popular topic in bioenergy literature because of its potential to overcome the problems posed by chemical processes. However, the high cost of the enzymatic process still remains the main drawback for its industrial application, mostly because of the high price of refined oils. Unfortunately, low cost substrates, such as crude soybean oil, often release a product that hardly accomplishes the final required biodiesel specifications and need an additional pretreatment for gums removal. In order to reduce costs and to make the enzymatic process more efficient, we developed an innovative system for enzymatic biodiesel production involving a combination of a lipase and two phospholipases. This allows performing the enzymatic degumming and transesterification in a single step, using crude soybean oil as feedstock, and converting part of the phospholipids into biodiesel. Since the two processes have never been studied together, an accurate analysis of the different reaction components and conditions was carried out. Results Crude soybean oil, used as low cost feedstock, is characterized by a high content of phospholipids (900 ppm of phosphorus). However, after the combined activity of different phospholipases and liquid lipase Callera Trans L, a complete transformation into fatty acid methyl esters (FAMEs >95%) and a good reduction of phosphorus (P <5 ppm) was achieved. The combination of enzymes allowed avoidance of the acid treatment required for gums removal, the consequent caustic neutralization, and the high temperature commonly used in degumming systems, making the overall process more eco-friendly and with higher yield. Once the conditions were established, the process was also tested with different vegetable oils with variable phosphorus contents. Conclusions Use of liquid lipase Callera Trans L in biodiesel production can provide numerous and sustainable benefits. Besides reducing the costs derived from

  11. Synthesis of substrates for periodate-coupled assay of phospholipases C and sphingomyelinases.

    PubMed

    Larsen, Kira Løw; Andersen, Rokhsana J; Brask, Jesper

    2016-09-01

    A series of 4-nitrophenyl (pNP) and 4-methylumbelliferyl (4MU) substrate analogues of phosphatidyl choline (PC) and phosphatidic acid (PA) were synthesized from 4-bromo-1-butene by ether formation, olefin epoxidation and ring opening with the phosphate head group. The pNP PC analogue, 4-(4-nitrophenoxy)-2-hydroxy-butyl-1-phosphoryl choline (1) was evaluated in assays of fungal sphingomyelinases, also displaying phospholipase C activity. Reactions were terminated with a periodate-containing stop solution, leading to liberation of pNP, quantified spectrophotometrically in an end-point measurement. A kinetic evaluation of sphingomyelinases from Kionochaeta sp. and Penicillium emersonii showed relatively high KM and low kcat values for this substrate, limiting its practical applicability in assays with low sphingomyelinase concentrations. PMID:27444331

  12. Discovery of Desketoraloxifene Analogues as Inhibitors of Mammalian, Pseudomonas aeruginosa, and NAPE Phospholipase D Enzymes

    PubMed Central

    2015-01-01

    Phospholipase D (PLD) hydrolyses cellular lipids to produce the important lipid second messenger phosphatidic acid. A PLD enzyme expressed by Pseudomonas aeruginosa (PldA) has been shown to be important in bacterial infection, and NAPE-PLD has emerged as being key in the synthesis of endocannabinoids. In order to better understand the biology and therapeutic potential of these less explored PLD enzymes, small molecule tools are required. Selective estrogen receptor modulators (SERMs) have been previously shown to inhibit mammalian PLD (PLD1 and PLD2). By targeted screening of a library of SERM analogues, additional parallel synthesis, and evaluation in multiple PLD assays, we discovered a novel desketoraloxifene-based scaffold that inhibited not only the two mammalian PLDs but also structurally divergent PldA and NAPE-PLD. This finding represents an important first step toward the development of small molecules possessing universal inhibition of divergent PLD enzymes to advance the field. PMID:25384256

  13. Serum amyloid A protein enhances the activity of secretory non-pancreatic phospholipase A2.

    PubMed Central

    Pruzanski, W; de Beer, F C; de Beer, M C; Stefanski, E; Vadas, P

    1995-01-01

    The acute-phase proteins serum amyloid A protein (SAA) and secretory phospholipase A2 (sPLA2) are simultaneously expressed during inflammatory conditions. SAA associates with high-density lipoprotein (HDL) altering its physicochemical composition. We found that purified acute-phase SAA, but not the constitutive form, markedly enhances the lipolytic activity of sPLA2 in a dose-related manner with phosphatidylcholine/lysophosphatidylcholine or phosphatidylethanolamine/lysophosphatidylethanolamine liposomal substrates. Normal HDL was found to reduce activity of sPLA2 in a dose-dependent manner, but when acute-phase HDL containing 27% SAA was tested, it enhanced sPLA2 activity. Immunopurified monospecific antibodies against SAA completely abolished the enhancing activity of SAA and acute-phase HDL. Given the central role of HDL in lipoprotein metabolism, the interaction between HDL, SAA and sPLA2 may account for changes detected in lipoprotein metabolism during the acute phase. PMID:7542869

  14. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation

    PubMed Central

    Mouneimne, Ghassan; Soon, Lilian; DesMarais, Vera; Sidani, Mazen; Song, Xiaoyan; Yip, Shu-Chin; Ghosh, Mousumi; Eddy, Robert; Backer, Jonathan M.; Condeelis, John

    2004-01-01

    The epidermal growth factor (EGF)–induced increase in free barbed ends, resulting in actin polymerization at the leading edge of the lamellipodium in carcinoma cells, occurs as two transients: an early one at 1 min and a late one at 3 min. Our results reveal that phospholipase (PLC) is required for triggering the early barbed end transient. Phosphoinositide-3 kinase selectively regulates the late barbed end transient. Inhibition of PLC inhibits cofilin activity in cells during the early transient, delays the initiation of protrusions, and inhibits the ability of cells to sense a gradient of EGF. Suppression of cofilin, using either small interfering RNA silencing or function-blocking antibodies, selectively inhibits the early transient. Therefore, our results demonstrate that the early PLC and cofilin-dependent barbed end transient is required for the initiation of protrusions and is involved in setting the direction of cell movement in response to EGF. PMID:15337778

  15. Phospholipase A2 Receptor-Positive Idiopathic Membranous Glomerulonephritis with Onset at 95 Years: Case Report

    PubMed Central

    Kubota, Keiichi; Hoshino, Junichi; Ueno, Toshiharu; Mise, Koki; Hazue, Ryo; Sekine, Akinari; Yabuuchi, Junko; Yamanouchi, Masayuki; Suwabe, Tatsuya; Kikuchi, Koichi; Sumida, Keiichi; Hayami, Noriko; Sawa, Naoki; Takaichi, Kenmei; Fujii, Takeshi; Ohashi, Kenichi; Akiyama, Shinichi; Maruyama, Shoichi; Ubara, Yoshifumi

    2016-01-01

    A 95-year-old woman was admitted to our hospital for evaluation of bilateral lower-limb edema persisting for 3 months. Serum creatinine was 1.55 mg/dl, and urinary protein excretion was 9.1 g/day. Renal biopsy revealed stage 1 membranous glomerulonephritis (MGN) with immunoglobulin G4-dominant staining. This patient did not have any underlying disease such as infection with hepatitis B or C virus or malignancy, and anti-phospholipase A2 receptor (PLA2R) antibody was detected in the serum. Accordingly, idiopathic MGN was diagnosed. Corticosteroid therapy was avoided, but hemodialysis was required to treat generalized edema. The patient is currently doing well. This is the oldest reported case of idiopathic MGN with positivity for anti-PLA2R antibody. PMID:27390744

  16. Putative roles for phospholipase Cη enzymes in neuronal Ca2+ signal modulation.

    PubMed

    Popovics, Petra; Stewart, Alan J

    2012-02-01

    The most recently identified PLC (phospholipase C) enzymes belong to the PLCη family. Their unique Ca2+-sensitivity and their specific appearance in neurons have attracted great attention since their discovery; however, their physiological role(s) in neurons are still yet to be established. PLCη enzymes are expressed in the neocortex, hippocampus and cerebellum. PLCη2 is also expressed at high levels in pituitary gland, pineal gland and in the retina. Driven by the specific localization of PLCη enzymes in different brain areas, in the present paper, we discuss the roles that they may play in neural processes, including differentiation, memory formation, circadian rhythm regulation, neurotransmitter/hormone release and the pathogenesis of neurodegenerative disorders associated with aberrant Ca2+ signalling, such as Alzheimer's disease. PMID:22260706

  17. Pharmacophore-based discovery of a novel cytosolic phospholipase A2α inhibitor

    PubMed Central

    Noha, Stefan M.; Jazzar, Bianca; Kuehnl, Susanne; Rollinger, Judith M.; Stuppner, Hermann; Schaible, Anja M.; Werz, Oliver; Wolber, Gerhard; Schuster, Daniela

    2012-01-01

    The release of arachidonic acid, a precursor in the production of prostaglandins and leukotrienes, is achieved by activity of the cytosolic phospholipase A2α (cPLA2α). Signaling mediated by this class of bioactive lipids, which are collectively referred to as eicosanoids, has numerous effects in physiological and pathological processes. Herein, we report the development of a ligand-based pharmacophore model and pharmacophore-based virtual screening of the National Cancer Institute (NCI) database, leading to the identification of 4-(hexadecyloxy)-3-(2-(hydroxyimino)-3-oxobutanamido)benzoic acid (NSC 119957) as cPLA2α inhibitor in cell-free and cell-based in vitro assays. PMID:22192589

  18. Itraconazole-resistant Candida auris with phospholipase, proteinase and hemolysin activity from a case of vulvovaginitis.

    PubMed

    Kumar, Dharmendra; Banerjee, Tuhina; Pratap, Chandra Bhan; Tilak, Ragini

    2015-04-01

    Since the emergence of pathogenic non-albicans Candida species, a number of new isolates have been added to the list. One such unusual species is Candida auris (C. auris), recently isolated and studied in few reports. In this study, a case of vulvovaginitis caused by Candida auris incidentally identified by molecular methods using internal transcribed spacer polymerase chain reaction (ITS PCR) is described. Antifungal susceptibility testing revealed the isolate to be resistant to itraconazole (MIC ≥ 2 µg/ml) and expressed important virulence factors including phospholipase, proteinase and hemolysin activity. The patient was successfully treated with oral fluconazole and did not have any invasive fungemia. Very few cases of this emerging pathogen have been reported. However, its isolation from clinical specimens reveals the significance of non-albicans candida species over C. albicans and the diversity of Candida spp causing infections. PMID:25881537

  19. High-level production of Bacillus cereus phospholipase C in Corynebacterium glutamicum.

    PubMed

    Ravasi, Pablo; Braia, Mauricio; Eberhardt, Florencia; Elena, Claudia; Cerminati, Sebastián; Peirú, Salvador; Castelli, Maria Eugenia; Menzella, Hugo G

    2015-12-20

    Enzymatic oil degumming (removal of phospholipids) using phospholipase C (PLC) is a well-established and environmentally friendly process for vegetable oil refining. In this work, we report the production of recombinant Bacillus cereus PLC in Corynebacterium glutamicum ATCC 13869 in a high cell density fermentation process and its performance in soybean oil degumming. A final concentration of 5.5g/L of the recombinant enzyme was achieved when the respective gene was expressed from the tac promoter in a semi-defined medium. After treatment with trypsin to cleave the propeptide, the mature enzyme completely hydrolyzed phosphatidylcholine and phosphatidylethanolamine, which represent 70% of the phospholipids present in soybean oil. The results presented here show the feasibility of using B. cereus PLC for oil degumming and provide a manufacturing process for the cost effective production of this enzyme. PMID:26519562

  20. Cognitive Stimulation Modulates Platelet Total Phospholipases A2 Activity in Subjects with Mild Cognitive Impairment

    PubMed Central

    Balietti, Marta; Giuli, Cinzia; Fattoretti, Patrizia; Fabbietti, Paolo; Postacchini, Demetrio; Conti, Fiorenzo

    2016-01-01

    We evaluated the effect of cognitive stimulation (CS) on platelet total phospholipases A2 activity (tPLA2A) in patients with mild cognitive impairment (MCI_P). At baseline, tPLA2A negatively correlated with Mini-Mental State Examination score (MMSE_s): patients with MMSE_s <26 (Subgroup 1) had significantly higher activity than those with MMSE_s ≥26 (Subgroup 2), who had values similar to the healthy elderly. Regarding CS effect, Subgroup 1 had a significant tPLA2A reduction, whereas Subgroup 2 did not significantly changes after training. Our results showed for the first time that tPLA2A correlates with the cognitive conditions of MCI_P, and that CS acts selectively on subjects with a dysregulated tPLA2A. PMID:26836161

  1. Characterization of serum phospholipase a(2) activity in three diverse species of west african crocodiles.

    PubMed

    Merchant, Mark; Juneau, Kate; Gemillion, Jared; Falconi, Rodolfo; Doucet, Aaron; Shirley, Matthew H

    2011-01-01

    Secretory phospholipase A(2), an enzyme that exhibits substantial immunological activity, was measured in the serum of three species of diverse West African crocodiles. Incubation of different volumes of crocodile serum with bacteria labeled with a fluorescent fatty acid in the sn-2 position of membrane lipids resulted in a volume-dependent liberation of fluorescent probe. Serum from the Nile crocodile (Crocodylus niloticus) exhibited slightly higher activity than that of the slender-snouted crocodile (Mecistops cataphractus) and the African dwarf crocodile (Osteolaemus tetraspis). Product formation was inhibited by BPB, a specific PLA(2) inhibitor, confirming that the activity was a direct result of the presence of serum PLA(2). Kinetic analysis showed that C. niloticus serum produced product more rapidly than M. cataphractus or O. tetraspis. Serum from all three species exhibited temperature-dependent PLA(2) activities but with slightly different thermal profiles. All three crocodilian species showed high levels of activity against eight different species of bacteria. PMID:22110960

  2. Enhanced protein expression in mammalian cells using engineered SUMO fusions: secreted phospholipase A2.

    PubMed

    Peroutka, Raymond J; Elshourbagy, Nabil; Piech, Tara; Butt, Tauseef R

    2008-09-01

    SUMOylation, the covalent attachment of SUMO (small ubiquitin-like modifier), is a eukaryotic post-translational event that has been demonstrated to play a critical role in several biological processes. When used as an N-terminal tag or fusion partner, SUMO has been shown to enhance functional protein production significantly by improving folding, solubility, and stability. We have engineered several SUMOs and, through their fusion, developed a system for enhancing the expression and secretion of complex proteins. To demonstrate the fidelity of this fusion technology, secreted phospholipase A(2) proteins (sPLA(2)) were produced using HEK-293T and CHO-K1 cells. Five mouse sPLA(2) homologs were expressed and secreted in mammalian cell cultures using SUMO or SUMO-derived, N-terminal fusion partners. Mean and median increases of 43- and 18-fold, respectively, were obtained using novel SUMO mutants that are resistant to digestion by endogenous deSUMOylases. PMID:18539905

  3. Control of phospholipase A2 activities for the treatment of inflammatory conditions.

    PubMed

    Yedgar, Saul; Cohen, Yuval; Shoseyov, David

    2006-11-01

    Phospholipase-A2 (PLA2) enzymes hydrolyze cell membrane phospholipids to produce arachidonic acid (AA) and lyso-phospholipids (LysoPL), playing a key role in the production of inflammatory lipid mediators, mainly eicosanoids. They are therefore considered pro-inflammatory enzymes and their inhibition has long been recognized as a desirable therapeutic target. However, attempts to develop suitable PLA2 inhibitors for the treatment of inflammatory diseases have yet to succeed. This is due to their functional and structural diversity, and their homeostatic and even anti-inflammatory roles in certain circumstances. In the present review we outline the diversity and functions of PLA2 isoforms, and their interplay in the induction and inhibition of inflammatory processes, with emphasis on discussing approaches for therapeutic manipulation of PLA2 activities. PMID:16978919

  4. A Role for Phospholipase A2 Activity in Membrane Tubule Formation and TGN Trafficking

    PubMed Central

    Schmidt, John A.; Kalkofen, Danielle N.; Donovan, Kirk W.; Brown, William J.

    2015-01-01

    We have investigated the role of phospholipase A2 (PLA2) enzymes in generating membrane tubules at the trans-Golgi network (TGN). Constitutive TGN membrane tubules and those induced by over-expressing kinase dead protein kinase D were inhibited by the PLA2 inhibitors ONO-RS-082 (ONO) and bromoenol lactone. These antagonists also inhibited secretory delivery of both soluble and transmembrane cargoes. Finally, use of the reversible antagonist ONO and time-lapse imaging revealed for the first time that PLA2 antagonists inhibit the initiation of membrane tubule formation at the TGN. Thus, PLA2 enzymes appear to have an important role in the earliest steps of membrane tubule formation at the TGN, which are utilized for membrane trafficking. PMID:20874826

  5. Impaired brain development and reduced cognitive function in phospholipase D-deficient mice.

    PubMed

    Burkhardt, Ute; Stegner, David; Hattingen, Elke; Beyer, Sandra; Nieswandt, Bernhard; Klein, Jochen

    2014-06-20

    The phospholipases D (PLD1 and 2) are signaling enzymes that catalyze the hydrolysis of phosphatidylcholine to phosphatidic acid, a lipid second messenger involved in cell proliferation, and choline, a precursor of acetylcholine (ACh). In the present study, we investigated development and cognitive function in mice that were deficient for PLD1, or PLD2, or both. We found that PLD-deficient mice had reduced brain growth at 14-27 days post partum when compared to wild-type mice. In adult PLD-deficient mice, cognitive function was impaired in social and object recognition tasks. Using brain microdialysis, we found that wild-type mice responded with a 4-fold increase of hippocampal ACh release upon behavioral stimulation in the open field, while PLD-deficient mice released significantly less ACh. These results may be relevant for cognitive dysfunctions observed in fetal alcohol syndrome and in Alzheimer' disease. PMID:24813107

  6. Phospholipase A2 receptor positive membranous nephropathy long after living donor kidney transplantation between identical twins.

    PubMed

    Saito, Hisako; Hamasaki, Yoshifumi; Tojo, Akihiro; Shintani, Yukako; Shimizu, Akira; Nangaku, Masaomi

    2015-07-01

    Although membranous nephropathy (MN) is a commonly observed cause of post-transplant glomerulonephritis, distinguishing de novo from recurrent MN in kidney allograft is often difficult. Phospholipase A2 receptor (PLA2R) staining is useful for diagnosing recurrent MN in allografts similarly to idiopathic MN in native kidney. No specific treatment strategy has been established for MN, especially when accompanied with HCV infection in kidney transplant recipients. This report describes a 66-year-old man who was diagnosed as having PLA2R positive membranous nephropathy accompanied with already-known IgA nephropathy and HCV infection 26 years after kidney transplantation conducted between identical twins. PLA2R was detected along capillary loops, implying that this patient is affected by the same pathogenic mechanism as idiopathic MN, not secondary MN associated with other disorders such as HCV infection. The patient successfully achieved clinical remission after steroid therapy. PMID:26031599

  7. Point of care testing of phospholipase A2 group IIA for serological diagnosis of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Liu, Nathan J.; Chapman, Robert; Lin, Yiyang; Mmesi, Jonas; Bentham, Andrew; Tyreman, Matthew; Abraham, Sonya; Stevens, Molly M.

    2016-02-01

    Secretory phospholipase A2 group IIA (sPLA2-IIA) was examined as a point of care marker for determining disease activity in rheumatoid (RA) and psoriatic (PsA) arthritis. Serum concentration and activity of sPLA2-IIA were measured using in-house antibodies and a novel point of care lateral flow device assay in patients diagnosed with varying severities of RA (n = 30) and PsA (n = 25) and found to correlate strongly with C-reactive protein (CRP). Levels of all markers were elevated in patients with active RA over those with inactive RA as well as both active and inactive PsA, indicating that sPLA2-IIA can be used as an analogue to CRP for RA diagnosis at point of care.Secretory phospholipase A2 group IIA (sPLA2-IIA) was examined as a point of care marker for determining disease activity in rheumatoid (RA) and psoriatic (PsA) arthritis. Serum concentration and activity of sPLA2-IIA were measured using in-house antibodies and a novel point of care lateral flow device assay in patients diagnosed with varying severities of RA (n = 30) and PsA (n = 25) and found to correlate strongly with C-reactive protein (CRP). Levels of all markers were elevated in patients with active RA over those with inactive RA as well as both active and inactive PsA, indicating that sPLA2-IIA can be used as an analogue to CRP for RA diagnosis at point of care. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08423g

  8. Comparative structural studies on Lys49-phospholipases A(2) from Bothrops genus reveal their myotoxic site.

    PubMed

    dos Santos, Juliana I; Soares, Andreimar Martins; Fontes, Marcos R M

    2009-08-01

    Phospholipases A(2) (PLA(2)s) are membrane-associated enzymes that hydrolyze phospholipids at the sn-2 position, releasing lysophospholipids and free fatty acids. Phospholipase A(2) homologues (Lys49-PLA(2)s) are highly myotoxic and cause extensive tissue damage despite not showing measurable catalytic activity. They are found in different snake venoms and represent one third of bothropic venom composition. The importance of these toxins during envenomation is related to the pronounced local myotoxic effect they induce since this effect is not neutralized by serum therapy. We present herein three structures of Lys49-PLA(2)s from Bothrops genus snake venom crystallized under the same conditions, two of which were grown in the presence of alpha-tocopherol (vitamin E). Comparative structural analysis of these and other Lys49-PLA(2)s showed two different patterns of oligomeric conformation that are related to the presence or absence of ligands in the hydrophobic channel. This work also confirms the biological dimer indicated by recent studies in which both C-termini are in the dimeric interface. In this configuration, we propose that the myotoxic site of these toxins is composed by the Lys 20, Lys115 and Arg118 residues. For the first time, a residue from the short-helix (Lys20) is suggested as a member of this site and the importance of Tyr119 residue to myotoxicity of bothropic Lys49-PLA(2)s is also discussed. These results support a complete hypothesis for these PLA(2)s myotoxic activity consistent with all findings on bothropic Lys49-PLA(2)s studied up to this moment, including crystallographic, bioinformatics, biochemical and biophysical data. PMID:19401234

  9. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase

    PubMed Central

    Ruisanchez, Éva; Dancs, Péter; Kerék, Margit; Németh, Tamás; Faragó, Bernadett; Balogh, Andrea; Patil, Renukadevi; Jennings, Brett L.; Liliom, Károly; Malik, Kafait U.; Smrcka, Alan V.; Tigyi, Gabor; Benyó, Zoltán

    2014-01-01

    Lysophosphatidic acid (LPA) has been implicated as a mediator of several cardiovascular functions, but its potential involvement in the control of vascular tone is obscure. Here, we show that both LPA (18:1) and VPC31143 (a synthetic agonist of LPA1–3 receptors) relax intact mouse thoracic aorta with similar Emax values (53.9 and 51.9% of phenylephrine-induced precontraction), although the EC50 of LPA- and VPC31143-induced vasorelaxations were different (400 vs. 15 nM, respectively). Mechanical removal of the endothelium or genetic deletion of endothelial nitric oxide synthase (eNOS) not only diminished vasorelaxation by LPA or VPC31143 but converted it to vasoconstriction. Freshly isolated mouse aortic endothelial cells expressed LPA1, LPA2, LPA4 and LPA5 transcripts. The LPA1,3 antagonist Ki16425, the LPA1 antagonist AM095, and the genetic deletion of LPA1, but not that of LPA2, abolished LPA-induced vasorelaxation. Inhibition of the phosphoinositide 3 kinase–protein kinase B/Akt pathway by wortmannin or MK-2206 failed to influence the effect of LPA. However, pharmacological inhibition of phospholipase C (PLC) by U73122 or edelfosine, but not genetic deletion of PLCε, abolished LPA-induced vasorelaxation and indicated that a PLC enzyme, other than PLCε, mediates the response. In summary, the present study identifies LPA as an endothelium-dependent vasodilator substance acting via LPA1, PLC, and eNOS.—Ruisanchez, É., Dancs, P., Kerék, M., Németh, T., Faragó, B., Balogh, A., Patil, R., Jennings, B. L., Liliom, K., Malik, K. U., Smrcka, A. V., Tigyi, G., Benyó, Z. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase. PMID:24249637

  10. Importance of adenosine triphosphate in phospholipase A2-induced rabbit renal proximal tubule cell injury.

    PubMed Central

    Nguyen, V D; Cieslinski, D A; Humes, H D

    1988-01-01

    The pathogenesis of ischemic renal tubular cell injury involves a complex interaction of different processes, including membrane phospholipid alterations and depletion of high-energy phosphate stores. To assess the role of membrane phospholipid changes due to activation of phospholipases in renal tubule cell injury, suspensions enriched in rabbit renal proximal tubule segments were incubated with exogenous phospholipase A2 (PLA2). Exogenous PLA2 did not produce any significant change in various metabolic parameters reflective of cell injury in control nonhypoxic preparations despite a significant decrease in phosphatidylethanolamine (PE) and moderate increases in lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). In contrast, exogenous PLA2 treatment of hypoxic tubules resulted in a severe degree of cell injury, as demonstrated by marked declines in tubule K+ and ATP contents and significant decreases in tubule uncoupled respiratory rates, and was associated with significant phospholipid alterations, including marked declines in phosphatidylcholine (PC) and PE and significant rises in LPC, LPE, and free fatty acids (FFA). The injurious metabolic effects of exogenous PLA2 on hypoxic tubules were reversed by addition of ATP-MgCl2 to the tubules. The protective effect of ATP-MgCl2 was associated with increases in tubule PC and PE contents and declines in LPC, LPE, and FFA contents. These experiments thus indicate that an increase in exogenous PLA2 activity produces renal proximal tubule cell injury when cell ATP levels decline, at which point phospholipid resynthesis cannot keep pace with phospholipid degradation with resulting depletion of phospholipids and accumulation of lipid by-products. High-energy phosphate store depletion appears to be an important condition for exogenous PLA2 activity to induce renal tubule cell injury. PMID:3417866

  11. Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia.

    PubMed

    Adibhatla, Rao Muralikrishna; Hatcher, James F

    2003-08-01

    Neuroprotection by citicoline (CDP-choline) in transient cerebral ischemia has been demonstrated previously. Citicoline has undergone several Phase III clinical trials for stroke, and is being evaluated for treatment of Alzheimer's and Parkinson's diseases. Phospholipid degradation and generation of reactive oxygen species (ROS) are major factors causing neuronal injury in CNS trauma and neurodegenerative diseases. Oxidative metabolism of arachidonic acid (released by the action of phospholipases) contributes to ROS generation. We examined the effect of citicoline on phospholipase A(2) (PLA(2)) activity in relation to the attenuation of hydroxyl radical (OH.) generation after transient forebrain ischemia of gerbil. PLA(2) activity (requires mM Ca(2+)) increased significantly (P < 0.05) in both membrane (50.2 +/- 2.2 pmol/min/mg protein compared to sham 35.9 +/- 3.2) and mitochondrial fractions (77.0 +/- 1.2 pmol/min/mg protein compared to sham 33.9 +/- 1.2) after cerebral ischemia and 2 hr reperfusion in gerbil, which was significantly attenuated (P < 0.01) by citicoline (membrane, 39.9. +/- 2.2 and mitochondria, 41.9 +/- 3.2 pmol/min/mg protein). In vitro, citicoline and its components cytidine and choline had no effect on PLA(2) activity, and thus citicoline as such is not a PLA(2) inhibitor. Ischemia/reperfusion resulted in significant OH. generation (P < 0.01) and citicoline significantly (P < 0.01) attenuated their formation (expressed as 2,3-dihydroxybenzoic acid/salicylate ratio; ischemia/24 hr reperfusion, 6.30 +/- 0.23; sham, 2.56 +/- 0.27; ischemia/24 hr reperfusion + citicoline, 4.85 +/- 0.35). These results suggest that citicoline affects PLA(2) stimulation and decreases OH. generation after transient cerebral ischemia. PMID:12868064

  12. Identification of a secretory phospholipase A2 from Papaver somniferum L. that transforms membrane phospholipids.

    PubMed

    Jablonická, Veronika; Mansfeld, Johanna; Heilmann, Ingo; Obložinský, Marek; Heilmann, Mareike

    2016-09-01

    The full-length sequence of a new secretory phospholipase A2 was identified in opium poppy seedlings (Papaver somniferum L.). The cDNA of poppy phospholipase A2, denoted as pspla2, encodes a protein of 159 amino acids with a 31 amino acid long signal peptide at the N-terminus. PsPLA2 contains a PLA2 signature domain (PA2c), including the Ca(2+)-binding loop (YGKYCGxxxxGC) and the catalytic site motif (DACCxxHDxC) with the conserved catalytic histidine and the calcium-coordinating aspartate residues. The aspartate of the His/Asp dyad playing an important role in animal sPLA2 catalysis is substituted by a serine residue. Furthermore, the PsPLA2 sequence contains 12 conserved cysteine residues to form 6 structural disulfide bonds. The calculated molecular weight of the mature PsPLA2 is 14.0 kDa. Based on the primary structure PsPLA2 belongs to the XIB group of PLA2s. Untagged recombinant PsPLA2 obtained by expression in Escherichia coli, renaturation from inclusion bodies and purification by cation-exchange chromatography was characterized in vitro. The pH optimum for activity of PsPLA2 was found to be pH 7, when using mixed micelles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and Triton X-100. PsPLA2 specifically cleaves fatty acids from the sn-2 position of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and shows a pronounced preference for PC over phosphatidyl ethanolamine, -glycerol and -inositol. The active recombinant enzyme was tested in vitro against natural phospholipids isolated from poppy plants and preferably released the unsaturated fatty acids, linoleic acid and linolenic acid, from the naturally occurring mixture of substrate lipids. PMID:27473012

  13. Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation

    PubMed Central

    Zavaleta-Pastor, Maritza; Sohlenkamp, Christian; Gao, Jun-Lian; Guan, Ziqiang; Zaheer, Rahat; Finan, Turlough M.; Raetz, Christian R. H.; López-Lara, Isabel M.; Geiger, Otto

    2009-01-01

    Rhizobia are Gram-negative soil bacteria able to establish nitrogen-fixing root nodules with their respective legume host plants. Besides phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine, rhizobial membranes contain phosphatidylcholine (PC) as a major membrane lipid. Under phosphate-limiting conditions of growth, some bacteria replace their membrane phospholipids with lipids lacking phosphorus. In Sinorhizobium meliloti, these phosphorus-free lipids are sulfoquinovosyl diacylglycerol, ornithine-containing lipid, and diacylglyceryl trimethylhomoserine (DGTS). Pulse–chase experiments suggest that the zwitterionic phospholipids phosphatidylethanolamine and PC act as biosynthetic precursors of DGTS under phosphorus-limiting conditions. A S. meliloti mutant, deficient in the predicted phosphatase SMc00171 was unable to degrade PC or to form DGTS in a similar way as the wild type. Cell-free extracts of Escherichia coli, in which SMc00171 had been expressed, convert PC to phosphocholine and diacylglycerol, showing that SMc00171 functions as a phospholipase C. Diacylglycerol , in turn, is the lipid anchor from which biosynthesis is initiated during the formation of the phosphorus-free membrane lipid DGTS. Inorganic phosphate can be liberated from phosphocholine. These data suggest that, in S. meliloti under phosphate-limiting conditions, membrane phospholipids provide a pool for metabolizable inorganic phosphate, which can be used for the synthesis of other essential phosphorus-containing biomolecules. This is an example of an intracellular phospholipase C in a bacterial system; however, the ability to degrade endogenous preexisting membrane phospholipids as a source of phosphorus may be a general property of Gram-negative soil bacteria. PMID:20018679

  14. Secretory phospholipases A2 induce neurite outgrowth in PC12 cells.

    PubMed Central

    Nakashima, Satoru; Ikeno, Yutaka; Yokoyama, Tatsuya; Kuwana, Masakazu; Bolchi, Angelo; Ottonello, Simone; Kitamoto, Katsuhiko; Arioka, Manabu

    2003-01-01

    sPLA(2)s (secretory phospholipases A(2)) belong to a broad and structurally diverse family of enzymes that hydrolyse the sn -2 ester bond of glycerophospholipids. We previously showed that a secreted fungal 15 kDa protein, named p15, as well as its orthologue from Streptomyces coelicolor (named Scp15) induce neurite outgrowth in PC12 cells at nanomolar concentrations. We report here that both p15 and Scp15 are members of a newly identified group of fungal/bacterial sPLA(2)s. The phospholipid-hydrolysing activity of p15 is absolutely required for neurite outgrowth induction. Mutants with a reduced PLA(2) activity exhibited a comparable reduction in neurite-inducing activity, and the ability to induce neurites closely matched the capacity of various p15 forms to promote fatty acid release from live PC12 cells. A structurally divergent member of the sPLA(2) family, bee venom sPLA(2), also induced neurites in a phospholipase activity-dependent manner, and the same effect was elicited by mouse group V and X sPLA(2)s, but not by group IB and IIA sPLA(2)s. Lysophosphatidylcholine, but not other lysophospholipids, nor arachidonic acid, elicited neurite outgrowth in an L-type Ca(2+) channel activity-dependent manner. In addition, p15-induced neuritogenesis was unaffected by various inhibitors that block arachidonic acid conversion into bioactive eicosanoids. Altogether, these results delineate a novel, Ca(2+)- and lysophosphatidylcholine-dependent neurotrophin-like role of sPLA(2)s in the nervous system. PMID:12967323

  15. Brown recluse spider (Loxosceles reclusa) venom phospholipase D (PLD) generates lysophosphatidic acid (LPA)

    PubMed Central

    2005-01-01

    Envenomation by the brown recluse spider (Loxosceles reclusa) may cause local dermonecrosis and, rarely, coagulopathies, kidney failure and death. A venom phospholipase, SMaseD (sphingomyelinase D), is responsible for the pathological manifestations of envenomation. Recently, the recombinant SMaseD from Loxosceles laeta was demonstrated to hydrolyse LPC (lysophosphatidylcholine) to produce LPA (lysophosphatidic acid) and choline. Therefore activation of LPA signalling pathways may be involved in some manifestations of Loxosceles envenomation. To begin investigating this idea, we cloned a full-length cDNA encoding L. reclusa SMaseD. The 305 amino acid sequence of the L. reclusa enzyme is 87, 85 and 60% identical with those of L. arizonica, L. intermedia and L. laeta respectively. The recombinant enzyme expressed in bacteria had broad substrate specificity. The lysophospholipids LPC, LPI (18:1-1-oleyol lysophosphatidylinositol), LPS, LPG (18:1-1-oleoyl-lysophosphatidylglycerol), LBPA (18:1-1-oleoyl-lysobisphosphatidic acid) (all with various acyl chains), lyso-platelet-activating factor (C16:0), cyclic phosphatidic acid and sphingomyelin were hydrolysed, whereas sphingosylphosphorylcholine, PC (phosphatidylcholine; C22:6, C20:4 and C6:0), oxidized PCs and PAF (platelet-activating factor; C16:0) were not hydrolysed. The PAF analogue, edelfosine, inhibited enzyme activity. Recombinant enzyme plus LPC (C18:1) induced the migration of A2058 melanoma cells, and this activity was blocked by the LPA receptor antagonist, VPC32183. The recombinant spider enzyme was haemolytic, but this activity was absent from catalytically inactive H37N (His37→Asn) and H73N mutants. Our results demonstrate that Loxosceles phospholipase D hydrolyses a wider range of lysophospholipids than previously supposed, and thus the term ‘SMaseD’ is too limited in describing this enzyme. PMID:15926888

  16. Brown recluse spider (Loxosceles reclusa) venom phospholipase D (PLD) generates lysophosphatidic acid (LPA).

    PubMed

    Lee, Sangderk; Lynch, Kevin R

    2005-10-15

    Envenomation by the brown recluse spider (Loxosceles reclusa) may cause local dermonecrosis and, rarely, coagulopathies, kidney failure and death. A venom phospholipase, SMaseD (sphingomyelinase D), is responsible for the pathological manifestations of envenomation. Recently, the recombinant SMaseD from Loxosceles laeta was demonstrated to hydrolyse LPC (lysophosphatidylcholine) to produce LPA (lysophosphatidic acid) and choline. Therefore activation of LPA signalling pathways may be involved in some manifestations of Loxosceles envenomation. To begin investigating this idea, we cloned a full-length cDNA encoding L. reclusa SMaseD. The 305 amino acid sequence of the L. reclusa enzyme is 87, 85 and 60% identical with those of L. arizonica, L. intermedia and L. laeta respectively. The recombinant enzyme expressed in bacteria had broad substrate specificity. The lysophospholipids LPC, LPI (18:1-1-oleyol lysophosphatidylinositol), LPS, LPG (18:1-1-oleoyl-lysophosphatidylglycerol), LBPA (18:1-1-oleoyl-lysobisphosphatidic acid) (all with various acyl chains), lyso-platelet-activating factor (C16:0), cyclic phosphatidic acid and sphingomyelin were hydrolysed, whereas sphingosylphosphorylcholine, PC (phosphatidylcholine; C22:6, C20:4 and C6:0), oxidized PCs and PAF (platelet-activating factor; C16:0) were not hydrolysed. The PAF analogue, edelfosine, inhibited enzyme activity. Recombinant enzyme plus LPC (C18:1) induced the migration of A2058 melanoma cells, and this activity was blocked by the LPA receptor antagonist, VPC32183. The recombinant spider enzyme was haemolytic, but this activity was absent from catalytically inactive H37N (His37-->Asn) and H73N mutants. Our results demonstrate that Loxosceles phospholipase D hydrolyses a wider range of lysophospholipids than previously supposed, and thus the term 'SMaseD' is too limited in describing this enzyme. PMID:15926888

  17. Prognostic Utility of Secretory Phospholipase A2 in Patients with Stable Coronary Artery Disease

    PubMed Central

    O’Donoghue, Michelle; Mallat, Ziad; Morrow, David A; Benessiano, Joelle; Sloan, Sarah; Omland, Torbjørn; Solomon, Scott D.; Braunwald, Eugene; Tedgui, Alain; Sabatine, Marc S

    2011-01-01

    Background Secretory phospholipase A2 (sPLA2) may contribute to atherogenesis. To date, few prospective studies have examined the utility of sPLA2 for risk stratification in coronary artery disease (CAD). Methods Plasma sPLA2 activity was measured at baseline in 3708 subjects in the PEACE randomized trial of trandolapril versus placebo in stable CAD. Median follow-up was 4.8 years. Cox regression was used to adjust for demographics, clinical risk factors, apolipoprotein B, apolipoprotein A1, and medications. Results After multivariable adjustment, sPLA2 was associated with an increased risk of cardiovascular death, myocardial infarction or stroke (adjusted hazard ratio quartile 4:quartile 1 1.55, 95% CI 1.13–2.14) and cardiovascular death or heart failure (adjusted hazard ratio quartile 4:quartile 1 1.91, 95% CI 1.20–3.03). In further multivariable assessment, increased activities of sPLA2 were associated with the risk of cardiovascular death, myocardial infarction or stroke (adjusted hazard ratio 1.47, 95% CI 1.06–2.04) independent of lipoprotein-associated phospholipase A2 mass and C-reactive protein, and modestly improved the area under the curve (AUC) beyond established clinical risk factors (AUC 0.668 to 0.675, P=0.01). sPLA2, NT-pro B-type natriuretic peptide and high-sensitivity cardiac troponin T were all independently associated with cardiovascular death or heart failure and each improved risk discrimination (P=0.02, P<0.001, P<0.001, respectively). Conclusion sPLA2 activity provides independent prognostic information beyond established risk markers in patients with stable CAD. These data are encouraging for studies designed to evaluate the role of sPLA2 as a therapeutic target. PMID:21784767

  18. Phospholipase cleavage of D- and L-chiro-glycosylphosphoinositides asymmetrically incorporated into liposomal membranes.

    PubMed

    Bonilla, Julia B; Cid, M Belén; Contreras, F-Xabier; Goñi, Félix M; Martín-Lomas, Manuel

    2006-02-01

    The nature of chiro-inositol-containing inositolphosphoglycans (IPGs), reported to be putative insulin mediators, was studied by examination of the substrate specificities of the phosphatidylinositol-specific phospholipase C (PI-PLC) and the glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) by using a series of synthetic D- and L-chiro-glycosylphosphoinositides. 3-O-alpha-D-Glucosaminyl- (3) and -galactosaminyl-2-phosphatidyl-L-chiro-inositol (4), which show the maximum stereochemical similarity to the 6-O-alpha-D-glucosaminylphosphatidylinositol pseudodisaccharide motifs of GPI anchors, were synthesized and asymmetrically incorporated into phospholipid bilayers in the form of large unilamellar vesicles (LUVs). Similarly, 2-O-alpha-D-glucosaminyl- (5) and -galactosaminyl-1-phosphatidyl-D-chiro-inositol (6), which differ from the corresponding pseudodisaccharide motif of the GPI anchors only in the axial orientation of the phosphatidyl moiety, were also synthesized and asymmetrically inserted into LUVs. The cleavage of these synthetic molecules in the liposomal constructs by PI-PLC from Bacillus cereus and by GPI-PLD from bovine serum was studied with the use of 6-O-alpha-D-glucosaminylphosphatidylinositol (7) and the conserved GPI anchor structure (8) as positive controls. Although PI-PLC cleaved 3 and 4 with about the same efficiency as 7 and 8, this enzyme did not accept 5 or 6. GPI-PLD accepted both the L-chiro- (3 and 4) and the D-chiro- (5 and 6) glycosylinositolphosphoinositides. Therefore, IPGs containing L-chiro-inositol only are expected to be released from chiro-inositol-containing GPIs if the cleavage is effected by a PI-PLC, whereas GPI-PLD cleavage could result in both L-chiro- and D-chiro-inositol-containing IPGs. PMID:16315198

  19. Influence of (phospho)lipases on properties of mica supported phospholipid layers

    NASA Astrophysics Data System (ADS)

    Jurak, Malgorzata; Chibowski, Emil

    2010-08-01

    The effect of enzymes: lipase from Candida cylindracea (L Cc), phospholipase A 2 from hog pancreas (PLA 2) and phospholipase C from Bacillus cereus (PLC) to modulate wetting properties of solid supported phospholipid bilayers was studied via advancing and receding contact angle measurements of water, formamide and diiodomethane, and calculation of the surface free energy and its components from van Oss et al. (LWAB) and contact angle hysteresis (CAH) approaches. Simultaneously, topography of the studied layers was determined by Atomic Force Microscopy (AFM). The investigated lipid bilayers were transferred on mica plates from subphase of pure water by means of Langmuir-Blodgett and Langmuir-Schaefer techniques. The investigated phospolipid layers were: saturated DPPC (1,2-dipalmitoyl- sn-glycero-3-phosphocholine), unsaturated DOPC (1,2-dioleoyl- sn-glycero-3-phosphocholine), and their mixture DPPC/DOPC. The obtained results revealed that the lipid membrane degradation by the enzymes caused increase in its surface free energy due to the amphiphilic hydrolysis products, which may accumulate in the lipid bilayer. In result activity of the enzymes may increase and then break down the bilayer structure takes place. It is likely that after dissolution of the hydrolysis reaction products in the bulk phase, patches of bare mica surface are accessible, which contribute to the apparent surface free energy changes. Comparison of AFM images and the free energy changes of the layers gives better insight into changes of their properties. The observed gradual increase in the layer surface free energy allows controlling of the hydrolysis process to obtain the surfaces of defined properties.

  20. Phospholipase A2 Activity Triggers the Wound-Activated Chemical Defense in the Diatom Thalassiosira rotula

    PubMed Central

    Pohnert, Georg

    2002-01-01

    The activation of oxylipin-based chemical defense in the diatom Thalassiosira rotula is initiated by phospholipases that act immediately after cell damage. This lipase activity is responsible for the preferential release of free mono- and polyunsaturated fatty acids. Among these, eicosatetraenoic- and eicosapentaenoic acid are further converted by lipoxygenases to reactive defensive metabolites such as the antiproliferative α,β,γ,δ-unsaturated aldehydes 2,4-decadienal and 2,4,7-decatrienal. We show that mainly saturated free fatty acids are present in the intact diatom T. rotula, whereas the amount of free polyunsaturated eicosanoids is drastically increased in the first minutes after wounding. Using fluorescent probes, the main enzyme activity responsible for initiation of the aldehyde-generating lipase/lipoxygenase/hydroperoxide lyase cascade was characterized as a phospholipase A2. All enzymes involved in this specific defensive reaction are active in seawater over several minutes. Thus, the mechanism allows the unicellular algae to overcome restrictions arising out of potential dilution of defensive metabolites. Only upon predation are high local concentrations of aldehydes formed in the vicinity of the herbivores, whereas in times of low stress, cellular resources can be invested in the formation of eicosanoid-rich phospholipids. In contrast to higher plants, which use lipases acting on galactolipids to release C18 fatty acids for production of leaf-volatile aldehydes, diatoms rely on phospholipids and the transformation of C20 fatty acids to form 2,4-decadienal and 2,4,7-decatrienal as an activated defense. PMID:12011342

  1. Cell-Associated Hemolysis Induced by Helicobacter pylori Is Mediated by Phospholipases with Mitogen-Activated Protein Kinase-Activating Properties

    PubMed Central

    Sitaraman, Ramakrishnan; Israel, Dawn A.; Romero-Gallo, Judith

    2012-01-01

    Pathogenic Helicobacter pylori strains can selectively activate epithelial mitogen-activated protein kinase (MAPK) signaling pathways linked with disease. We now demonstrate that H. pylori-induced hemolysis is strain specific and is mediated by phospholipases PldA1 and PldD. Inactivation of PldD inhibited activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), indicating that H. pylori hemolytic phospholipases also harbor MAPK-activating properties. PMID:22205825

  2. Cell-associated hemolysis induced by Helicobacter pylori is mediated by phospholipases with mitogen-activated protein kinase-activating properties.

    PubMed

    Sitaraman, Ramakrishnan; Israel, Dawn A; Romero-Gallo, Judith; Peek, Richard M

    2012-03-01

    Pathogenic Helicobacter pylori strains can selectively activate epithelial mitogen-activated protein kinase (MAPK) signaling pathways linked with disease. We now demonstrate that H. pylori-induced hemolysis is strain specific and is mediated by phospholipases PldA1 and PldD. Inactivation of PldD inhibited activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), indicating that H. pylori hemolytic phospholipases also harbor MAPK-activating properties. PMID:22205825

  3. Phospholipase D activation mediates cobalamin-induced downregulation of Multidrug Resistance-1 gene and increase in sensitivity to vinblastine in HepG2 cells.

    PubMed

    Marguerite, Véronique; Gkikopoulou, Effrosyni; Alberto, Jean-Marc; Guéant, Jean-Louis; Merten, Marc

    2013-02-01

    Failure of cancer chemotherapy due to multidrug resistance is often associated with altered Multidrug Resistance-1 gene expression. Cobalamin is the cofactor of methionine synthase, a key enzyme of the methionine cycle which synthesizes methionine, the precursor of cell S-adenosyl-methionine synthesis. We previously showed that cobalamin was able to down-regulate Multidrug Resistance-1 gene expression. Herein we report that this effect occurs through cobalamin-activation of phospholipase D activity in HepG2 cells. Cobalamin-induced down-regulation of Multidrug Resistance-1 gene expression was similar to that induced by the phospholipase D activator oleic acid and was negatively modulated by the phospholipase D inhibitor n-butanol. Cobalamin increased cell S-adenosyl-methionine content, which is the substrate for phosphatidylethanolamine-methyltransferase-dependent phosphatidylcholine production. We showed that cobalamin-induced increase in cell phosphatidylcholine production was phosphatidylethanolamine-methyltransferase-dependent. Oleic acid-dependent activation of phospholipase D was accompanied by an increased sensitivity to vinblastine of HepG2 cells while n-butanol enhanced the resistance of the cells to vinblastine. These data indicate that cobalamin mediates down-regulation of Multidrug Resistance-1 gene expression through increased S-adenosyl-methionine and phosphatidylcholine productions and phospholipase D activation. This points out phospholipase D as a potential target to down-regulate Multidrug Resistance-1 gene expression for improving chemotherapy efficacy. PMID:23032700

  4. The stimulation by transmitter substances and putative transmitter substances of the net activity of phospholipase A2 of synaptic membranes of cortex of guinea-pig brain.

    PubMed Central

    Gullis, R J; Rowe, C E

    1975-01-01

    1. The distribution of the hydrolyses of phosphatidylcholine by phospholipase A2 and phospholipase A1, and the hydrolysis of lysophosphatidylcholine by lysophospholipase, in subcellular and subsynaptosomal fractions of cerebral cortices of guinea-pig brain, was determined. 2. Noradrenaline stimulated hydrolysis by phospholipase A2 in whole synaptosomes, synaptic membranes and fractions containing synaptic vesicles. 3. Stimulation of hydrolysis by phospholipase A2 in synaptic membranes by noradrenaline was enhanced by CaCl2, and by a mixture of ATP and MgCl2. The optimum concentration of CaCl2, in the presence of ATP and MgCl2, for stimulation by 10 muM-noradrenaline was in the range 1-10muM. The optimum concentration for ATP-2MgCl2 in the presence of 1 muM-CaCl2 was in the range 0.1-1mM. 4. Hydrolysis by phospholipase A2 of synaptic membranes was also stimulated by acetylcholine, carbamoylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine), histamine, psi-aminobutyric acid, glutamic acid and aspartic acid. With appropriate concentrations of cofactors, sigmoidal dose-response curves were obtained, half-maximum stimulations being obtained with concentrations of stimulant in the range 0.1-1muM. 5. Taurine also stimulated hydrolysis of phosphatidylcholine by phospholipase A2. There were only slight stimulations with methylamine, ethylenediamine or spermidine. No stimulation was obtained with glucagon. PMID:239707

  5. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs.

    PubMed

    Andresen, Thomas L; Davidsen, Jesper; Begtrup, Mikael; Mouritsen, Ole G; Jørgensen, Kent

    2004-03-25

    An enzymatically activated liposome-based drug-delivery concept involving masked antitumor ether lipids (AELs) has been investigated. This concept takes advantage of the cytotoxic properties of AEL drugs as well as the membrane permeability enhancing properties of these molecules, which can lead to enhanced drug diffusion into cells. Three prodrugs of AELs (proAELs) have been synthesized and four liposome systems, consisting of these proAELs, were investigated for enzymatic degradation by secretory phospholipase A(2) (sPLA(2)), resulting in the release of AELs. The three synthesized proAELs were (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phosphocholine (1-O-DPPC), (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phosphoethanolamine poly(ethylene glycol)(350) (1-O-DPPE-PEG(350)), and 1-O-DPPE-PEG(2000) of which 1-O-DPPC was the main liposome component. All three phospholipids were synthesized from the versatile starting material (R)-O-benzyl glycidol. A phosphorylation method, employing methyl dichlorophosphate, was developed and applied in the synthesis of two analogues of (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phosphoethanolamine poly(ethylene glycol). Differential scanning calorimetry has been used to investigate the phase behavior of the lipid bilayers. A release study, employing calcein encapsulated in non-hydrolyzable 1,2-bis-O-octadecyl-sn-glycero-3-phosphocholine (D-O-SPC) liposomes, showed that proAELs, activated by sPLA(2), perturb membranes because of the detergent-like properties of the released hydrolysis products. A hemolysis investigation was conducted on human red blood cells, and the results demonstrate that proAEL liposomes display a very low hemotoxicity, which has been a major obstacle for using AELs in cancer therapy. The results suggest a possible way of combining a drug-delivery and prodrug concept in a single liposome system. Our investigation of the permeability-enhancing properties of the AEL molecules imply that by encapsulating conventional

  6. On the Role of Protein Disulfide Isomerase in the Retrograde Cell Transport of Secreted Phospholipases A2

    PubMed Central

    Leonardi, Adrijana; Dolinar, Klemen; Pucer Janež, Anja; Križaj, Igor

    2015-01-01

    Following the finding that ammodytoxin (Atx), a neurotoxic secreted phospholipase A2 (sPLA2) in snake venom, binds specifically to protein disulfide isomerase (PDI) in vitro we show that these proteins also interact in living rat PC12 cells that are able to internalize this group IIA (GIIA) sPLA2. Atx and PDI co-localize in both differentiated and non-differentiated PC12 cells, as shown by fluorescence microscopy. Based on a model of the complex between Atx and yeast PDI (yPDI), a three-dimensional model of the complex between Atx and human PDI (hPDI) was constructed. The Atx binding site on hPDI is situated between domains b and b’. Atx interacts hPDI with an extensive area on its interfacial binding surface. The mammalian GIB, GIIA, GV and GX sPLA2s have the same fold as Atx. The first three sPLA2s have been detected intracellularly but not the last one. The models of their complexes with hPDI were constructed by replacement of Atx with the respective mammalian sPLA2 in the Atx—hPDI complex and molecular docking of the structures. According to the generated models, mammalian GIB, GIIA and GV sPLA2s form complexes with hPDI very similar to that with Atx. The contact area between GX sPLA2 and hPDI is however different from that of the other sPLA2s. Heterologous competition of Atx binding to hPDI with GV and GX sPLA2s confirmed the model-based expectation that GV sPLA2 was a more effective inhibitor than GX sPLA2, thus validating our model. The results suggest a role of hPDI in the (patho)physiology of some snake venom and mammalian sPLA2s by assisting the retrograde transport of these molecules from the cell surface. The sPLA2–hPDI model constitutes a valuable tool to facilitate further insights into this process and into the (patho)physiology of sPLA2s in relation to their action intracellularly. PMID:25763817

  7. Purification, characterization and bactericidal activities of basic phospholipase A2 from the venom of Agkistrodon halys (Chinese pallas).

    PubMed

    Perumal Samy, R; Gopalakrishnakone, P; Ho, Bow; Chow, Vincent T K

    2008-09-01

    Agkistrodon snake venoms contain a variety of phospholipases (PLA2), some of which are myotoxic. In this study, we used reverse-phase HPLC to purify PLA2 from the venom of Agkistrodon halys. The enzyme named as AgkTx-II, a basic Asp49 PLA2, has a molecular masses of 13,869.05. The amino acid sequence and molecular mass of AgkTx-II was identical to those of an Asp49 basic myotoxic PLA2 previously isolated from this venom. Antibacterial activities were tested by susceptibility and broth-dilution assays. AgkTx-II exerted a potent antibacterial activity against Staphylococcus aureus, Proteus vulgaris, Proteus mirabilis, and Burkholderia pseudomallei. The MIC values of AgkTx-II ranged between 85 and 2.76microM and was most effective against S. aureus, P. vulgaris, P. mirabilis (MIC of 21.25microM) and B. pseudomallei (MIC of 10.25microM). This AgkTx-II rapidly killed S. aureus, P. vulgaris and B. pseudomallei in a dose-dependent manner. The effect of the AgkTx-II on bacterial membranes was evaluated by scanning and transmission electron microscopy. AgkTx-II caused morphological alterations apparent on their cellular surfaces, suggesting a killing mechanism based on membrane permeabilization and damage. Cytotoxicity was measured by XTT tetrazolium (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) and lactate dehydrogenase (LDH) assays using U-937 cells (monocytes). The AgkTx-II did not affect cell viability up to 500microM concentrations but cell death was evident at 1000microM concentration after 24 and 48h. Furthermore, the repeated exposure of AgkTx-II (2-14microM) treated mice showed different tissue alterations, mainly at the brain and kidney; the toxicological potential of AgkTx-II remains to be elucidated. The AgkTx-II exhibits no hemolytic action even at high doses (10-100microM) in human erythrocytes. However, the AgkTx-II is believed to exert its bactericidal effect by permeabilizing the bacterial membrane by forming pores. In addition

  8. Phospholipase C-delta extends intercellular signalling range and responses to injury-released growth factors in non-excitable cells

    PubMed Central

    Mi, L. Y.; Ettenson, D. S.; Edelman, E. R.

    2010-01-01

    Objectives Intercellular communication in non-excitable cells is restricted to a limited range close to the signal source. Here, we have examined whether modification of the intracellular microenvironment could prolong the spatial proposition of signal generation and could increase cell proliferation. Material and methods Mathematical models and experimental studies of endothelial repair after controlled mechanical injury were used. The models predict the diffusion range of injury-released growth factors and identify important parameters involved in a signalling regenerative mode. Transfected human umbilical vein endothelial cells (HUVECs) were used to validate model results, by examining intercellular calcium signalling range, cell proliferation and wound healing rate. Results The models predict that growth factors have a limited capacity of extracellular diffusion and that intercellular signals are specially sensitive to cell phospholipase C-delta (PLCδ) levels. As basal PLCδ levels are increased by transfection, a significantly increased intercellular calcium range, enhanced cell proliferation, and faster wound healing rate were observed. Conclusion Our in silico and in vitro studies demonstrated that non-excitable endothelial cells respond to stimuli in a complex manner, in which intercellular communication is controlled by physicochemical properties of the stimulus and by the cell microenvironment. Such findings may have profound implications for our understanding of the tight nature of autocrine cell growth control, compensation to stress states and response to altered microenvironment, under pathological conditions. PMID:18616695

  9. A Single Nucleotide Polymorphism in the Phospholipase D1 Gene is Associated with Risk of Non-Small Cell Lung Cancer

    PubMed Central

    Ahn, Myung-Ju; Park, Shin-Young; Kim, Won Kyu; Cho, Ju Hwan; Chang, Brian Junho; Kim, Dong Jo; Ahn, Jin Seok; Park, Keunchil; Han, Joong-Soo

    2012-01-01

    Phospholipase D (PLD) has an important role in various biological functions including vesicular transport, endocytosis, exocytosis, cell migration, and mitosis. These cellular biological processes are deregulated in the development of various human tumors. In order to explore the relationship between the PLD1 gene and risk of non-small cell lung cancer (NSCLC), single nucleotide polymorphisms (SNP) in the PLD1 exon region were surveyed in 211 NSCLC patients and 205 normal controls. In this study, we identified six SNPs at exon 23 in the PLD1 gene. Among the six SNPs, the most notable was a heterozygous A to C transition at nucleotide 2698 (A2698C, p<0.001). In addition, the genotype frequencies of A2744C (AC+CC) and A2756C (AC+CC) were associated with gender (female, A2744C and A2756C: p=0.071) in NSCLC patients. Interestingly, although the SNP A2698C did not cause change in amino acid, correlation between odd ratio of NSCLC patients and the SNP A2698C was observed to be statistically significant. PMID:23675264

  10. Binding and inhibition studies on lipocortins using phosphatidylcholine vesicles and phospholipase A2 from snake venom, pancreas, and a macrophage-like cell line.

    PubMed

    Davidson, F F; Lister, M D; Dennis, E A

    1990-04-01

    Studies are reported on the inhibition of phospholipase A2 (PLA2) from porcine pancreas, cobra (Naja naja) venom, and the P388D1 macrophage-like cell line by human recombinant lipocortin I and bovine lung calpactin I. Membrane vesicles prepared from 1-stearoyl,2-arachidonoyl phosphatidylcholine (PC) and other PCs were utilized as substrate. Binding studies using sucrose flotation gradients showed that both lipocortin I and calpactin I bind to these vesicles although less tightly than to vesicles prepared from anionic phospholipids or fatty acids. Binding to PC was somewhat enhanced by Ca2+. Inhibition of cobra venom PLA2 was not observed when PC vesicles were used as substrate but was when dipalmitoyl phosphatidylethanolamine was used. Both the pancreatic and macrophage enzymes were inhibited when acting on PC. Interestingly, the inhibition of the macrophage enzyme toward PC depended on the fatty acid attached to the sn-2 position of PC with arachidonate greater than oleate greater than palmitate. Inhibition was also highest at low [PC]; these inhibition results can be explained by the "substrate depletion model" (Davidson, F. F., Dennis, E. A., Powell, M., and Glenney, J. (1987) J. Biol. Chem. 262, 1698-1705). Experimental and theoretical considerations suggest that the in vitro inhibition by lipocortins of this macrophage PLA2 from a cell that makes lipocortin and is active in prostaglandin production is due to effects on substrate availability rather than direct inhibition. PMID:2138608

  11. A Single Nucleotide Polymorphism in the Phospholipase D1 Gene is Associated with Risk of Non-Small Cell Lung Cancer.

    PubMed

    Ahn, Myung-Ju; Park, Shin-Young; Kim, Won Kyu; Cho, Ju Hwan; Chang, Brian Junho; Kim, Dong Jo; Ahn, Jin Seok; Park, Keunchil; Han, Joong-Soo

    2012-06-01

    Phospholipase D (PLD) has an important role in various biological functions including vesicular transport, endocytosis, exocytosis, cell migration, and mitosis. These cellular biological processes are deregulated in the development of various human tumors. In order to explore the relationship between the PLD1 gene and risk of non-small cell lung cancer (NSCLC), single nucleotide polymorphisms (SNP) in the PLD1 exon region were surveyed in 211 NSCLC patients and 205 normal controls. In this study, we identified six SNPs at exon 23 in the PLD1 gene. Among the six SNPs, the most notable was a heterozygous A to C transition at nucleotide 2698 (A2698C, p<0.001). In addition, the genotype frequencies of A2744C (AC+CC) and A2756C (AC+CC) were associated with gender (female, A2744C and A2756C: p=0.071) in NSCLC patients. Interestingly, although the SNP A2698C did not cause change in amino acid, correlation between odd ratio of NSCLC patients and the SNP A2698C was observed to be statistically significant. PMID:23675264

  12. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity.

    PubMed

    Palm, Noah W; Rosenstein, Rachel K; Yu, Shuang; Schenten, Dominik D; Florsheim, Esther; Medzhitov, Ruslan

    2013-11-14

    Venoms consist of toxic components that are delivered to their victims via bites or stings. Venoms also represent a major class of allergens in humans. Phospholipase A2 (PLA2) is a conserved component of venoms from multiple species and is the major allergen in bee venom. Here we examined how bee venom PLA2 is sensed by the innate immune system and induces a type 2 immune response in mice. We found that bee venom PLA2 induced a T helper type 2 (Th2) cell-type response and group 2 innate lymphoid cell activation via the enzymatic cleavage of membrane phospholipids and release of interleukin-33. Furthermore, we showed that the IgE response to PLA2 could protect mice from future challenge with a near-lethal dose of PLA2. These data suggest that the innate immune system can detect the activity of a conserved component of venoms and induce a protective immune response against a venom toxin. PMID:24210353

  13. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity

    PubMed Central

    Palm, Noah W.; Rosenstein, Rachel K.; Yu, Shuang; Schenten, Dominik; Florsheim, Esther; Medzhitov, Ruslan

    2013-01-01

    SUMMARY Venoms consist of toxic components that are delivered to their victims via bites or stings. Venoms also represent a major class of allergens in humans. Phospholipase A2 (PLA2) is a conserved component of venoms from multiple species and is the major allergen in bee venom. Here we examined how bee venom PLA2 is sensed by the innate immune system and induces a type 2 immune response in mice. We found that bee venom PLA2 induced a T helper type 2 (Th2) cell-type response and group 2 innate lymphoid cell activation via the enzymatic cleavage of membrane phospholipids and release of interleukin-33. Furthermore, we showed that the IgE response to PLA2 could protect mice from future challenge with a near-lethal dose of PLA2. These data suggest that the innate immune system can detect the activity of a conserved component of venoms and induce a protective immune response against a venom toxin. PMID:24210353

  14. Detection and Quantification of Microparticles from Different Cellular Lineages Using Flow Cytometry. Evaluation of the Impact of Secreted Phospholipase A2 on Microparticle Assessment

    PubMed Central

    Rousseau, Matthieu; Belleannee, Clemence; Duchez, Anne-Claire; Cloutier, Nathalie; Levesque, Tania; Jacques, Frederic; Perron, Jean; Nigrovic, Peter A.; Dieude, Melanie; Hebert, Marie-Josee; Gelb, Michael H.; Boilard, Eric

    2015-01-01

    Microparticles, also called microvesicles, are submicron extracellular vesicles produced by plasma membrane budding and shedding recognized as key actors in numerous physio(patho)logical processes. Since they can be released by virtually any cell lineages and are retrieved in biological fluids, microparticles appear as potent biomarkers. However, the small dimensions of microparticles and soluble factors present in body fluids can considerably impede their quantification. Here, flow cytometry with improved methodology for microparticle resolution was used to detect microparticles of human and mouse species generated from platelets, red blood cells, endothelial cells, apoptotic thymocytes and cells from the male reproductive tract. A family of soluble proteins, the secreted phospholipases A2 (sPLA2), comprises enzymes concomitantly expressed with microparticles in biological fluids and that catalyze the hydrolysis of membrane phospholipids. As sPLA2 can hydrolyze phosphatidylserine, a phospholipid frequently used to assess microparticles, and might even clear microparticles, we further considered the impact of relevant sPLA2 enzymes, sPLA2 group IIA, V and X, on microparticle quantification. We observed that if enriched in fluids, certain sPLA2 enzymes impair the quantification of microparticles depending on the species studied, the source of microparticles and the means of detection employed (surface phosphatidylserine or protein antigen detection). This study provides analytical considerations for appropriate interpretation of microparticle cytofluorometric measurements in biological samples containing sPLA2 enzymes. PMID:25587983

  15. α-Synuclein-induced synapse damage in cultured neurons is mediated by cholesterol-sensitive activation of cytoplasmic phospholipase A2.

    PubMed

    Bate, Clive; Williams, Alun

    2015-01-01

    The accumulation of aggregated forms of the α-synuclein (αSN) is associated with the pathogenesis of Parkinson's disease (PD) and Dementia with Lewy Bodies. The loss of synapses is an important event in the pathogenesis of these diseases. Here we show that aggregated recombinant human αSN, but not βSN, triggered synapse damage in cultured neurons as measured by the loss of synaptic proteins. Pre-treatment with the selective cytoplasmic phospholipase A2 (cPLA2) inhibitors AACOCF3 and MAFP protected neurons against αSN-induced synapse damage. Synapse damage was associated with the αSN-induced activation of synaptic cPLA2 and the production of prostaglandin E2. The activation of cPLA2 is the first step in the generation of platelet-activating factor (PAF) and PAF receptor antagonists (ginkgolide B or Hexa-PAF) also protect neurons against αSN-induced synapse damage. αSN-induced synapse damage was also reduced in neurons pre-treated with the cholesterol synthesis inhibitor (squalestatin). These results are consistent with the hypothesis that αSN triggered synapse damage via hyperactivation of cPLA2. They also indicate that αSN-induced activation of cPLA2 is influenced by the cholesterol content of membranes. Inhibitors of this pathway that can cross the blood brain barrier may protect against the synapse damage seen during PD. PMID:25761116

  16. Deletion of the cardiolipin-specific phospholipase Cld1 rescues growth and life span defects in the tafazzin mutant: implications for Barth syndrome.

    PubMed

    Ye, Cunqi; Lou, Wenjia; Li, Yiran; Chatzispyrou, Iliana A; Hüttemann, Maik; Lee, Icksoo; Houtkooper, Riekelt H; Vaz, Frédéric M; Chen, Shuliang; Greenberg, Miriam L

    2014-02-01

    Cardiolipin (CL) that is synthesized de novo is deacylated to monolysocardiolipin (MLCL), which is reacylated by tafazzin. Remodeled CL contains mostly unsaturated fatty acids. In eukaryotes, loss of tafazzin leads to growth and respiration defects, and in humans, this results in the life-threatening disorder Barth syndrome. Tafazzin deficiency causes a decrease in the CL/MLCL ratio and decreased unsaturated CL species. Which of these biochemical outcomes contributes to the physiological defects is not known. Yeast cells have a single CL-specific phospholipase, Cld1, that can be exploited to distinguish between these outcomes. The cld1Δ mutant has decreased unsaturated CL, but the CL/MLCL ratio is similar to that of wild type cells. We show that cld1Δ rescues growth, life span, and respiratory defects of the taz1Δ mutant. This suggests that defective growth and respiration in tafazzin-deficient cells are caused by the decreased CL/MLCL ratio and not by a deficiency in unsaturated CL. CLD1 expression is increased during respiratory growth and regulated by the heme activator protein transcriptional activation complex. Overexpression of CLD1 leads to decreased mitochondrial respiration and growth and instability of mitochondrial DNA. However, ATP concentrations are maintained by increasing glycolysis. We conclude that transcriptional regulation of Cld1-mediated deacylation of CL influences energy metabolism by modulating the relative contribution of glycolysis and respiration. PMID:24318983

  17. Comparison Between Biofilm Production, Phospholipase and Haemolytic Activity of Different Species of Candida Isolated from Dental Caries Lesions in Children

    PubMed Central

    Shenoy, Neetha

    2016-01-01

    Introduction C.albicans is the most commonly isolated fungal pathogen in the oral cavity, but isolation of non-albicans Candida is increasing in recent years. We wish to demonstrate the virulence factors of Candida spp. isolated from the dental caries lesion of the children as presence of virulence factors determines the pathogenic potential of any microorganism. Aim To compare biofilm production, phospholipase and haemolytic activity of C.albicans with that of non-albicans species of Candida isolated from dental caries lesions of children to evaluate the role of non- albicans species of Candida in formation of dental caries. Materials and Methods Oral swabs were collected from caries lesion of 100 school children of age 5-10 years with dental caries. Candida isolates were tested for biofilm production, phospholipase and haemolytic activity. Statistical analysis was done by Chi-Square test and Mann-Whitney U test wherever applicable using SPSS version 11.5. Results Out of the 100 children with dental caries 37 were positive for Candida by smear or culture and 31 by culture. C.albicans was the most prevalent isolate followed by C.krusei, C.tropicalis and C.albicans. Out of 21 C.albicans isolates, 10 (47.6%) showed phospholipase activity and 18 (85.71%) produced biofilm. Of the 10 non-albicans strains, 5 (50%) showed phospholipase activity and 6 (60%) produced biofilm. All isolates of Candida produced haemolysin (100%). Conclusion There was no statistically relevant difference between the virulence factor production by C.albicans and non-albicans species of Candida. In other words, our study shows that both C.albicans and non-albicans species of Candida isolated from caries lesions of the children, produce these virulence factors. So we can say that non-albicans species of Candida also are involved in caries formation. PMID:27190803

  18. Development of a Direct and Continuous Phospholipase D Assay Based on the Chelation-Enhanced Fluorescence Property of 8-Hydroxyquinoline.

    PubMed

    Rahier, Renaud; Noiriel, Alexandre; Abousalham, Abdelkarim

    2016-01-01

    Through its production of phosphatidic acid (PA), phospholipase D (PLD) is strongly involved in vesicular trafficking and cell signaling, making this enzyme an important therapeutic target. However, most PLD assays developed so far are either discontinuous or based on the indirect determination of choline released during PLD-catalyzed phosphatidylcholine hydrolysis, making its kinetic characterization difficult. We present here the development of a direct, specific, and continuous PLD assay that is based on the chelation-enhanced fluorescence property of 8-hydroxyquinoline (8HQ) following Ca(2+) complexation with PLD-generated PA. The real-time fluorescence intensity from 8HQ/Ca(2+)/PA complexes can be converted to concentrations of product using a calibration curve, with a detection limit of 1.2 μM of PA on a microplate scale, thus allowing measurement of the PLD-catalyzed reaction rate parameters. Hence, this assay is well adapted for studying the substrate specificity of PLD, together with its kinetic parameters, using natural phospholipids with various headgroups. In addition, the assay was found to be effective in monitoring the competitive inhibition of PA formation in the production of phosphatidylalcohols following the addition of primary alcohols, such as ethanol, propan-1-ol, or butan-1-ol. Finally, this assay was validated using the purified recombinant Vigna unguiculata PLD, as well as the PLD from Streptomyces chromofuscus, cabbage, or peanuts, and no PA production could be detected using phospholipase A1, phospholipase A2, or phospholipase C, allowing for a reliable determination of PLD activity in crude protein extract samples. This easy to handle PLD assay constitutes, to our knowledge, the first direct and continuous PA determination method on a microplate scale. PMID:26636829

  19. Lysophosphatidylcholine metabolism to 1,2-diacylglycerol in lymphoblasts: Involvement of a phosphatidylcholine-hydrolyzing phospholipase C

    SciTech Connect

    Nishijima, J.; Wright, T.M.; Hoffman, R.D.; Liao, F.; Symer, D.E.; Shin, H.S. )

    1989-04-04

    The authors have previously described the chemoattraction of lymphoblasts by lysophosphatidylcholine. In studying the mechanism of chemoattraction it was found that lysophosphatidylcholine was metabolized to 1,2-diacylglycerol by the lymphoblastic cell line 6C3HED. One route of metabolism involves the acylation of lysophosphatidylcholine to phosphatidylcholine with subsequent hydrolysis to 1,2-diacylglycerol and phosphocholine by the action of phospholipase C. The increase in cellular 1,2-diacylglycerol was established by metabolic experiments using ({sup 14}C)glycerol-labeled lysophosphatidylcholine and by mass measurements of 1,2-diacylglycerol. The presence of a phosphatidylcholine-hydrolyzing phospholipase C was confirmed in 6C3HED cell homogenates. In intact cells, lysophosphatidylcholine induced a pattern of protein phosphorylation similar to those of 1,2-dioctanoylglycerol and phorbol 12-myristate 13-acetate, two known activators of protein kinase C. This pathway of lysophosphatidylcholine metabolism, which involves a phosphatidylcholine-hydrolyzing phospholipase C, may be important in the activation of protein kinase C independent of inositol phospholipid hydrolysis.

  20. Role of Inositol Phosphosphingolipid Phospholipase C1, the Yeast Homolog of Neutral Sphingomyelinases in DNA Damage Response and Diseases.

    PubMed

    Tripathi, Kaushlendra

    2015-01-01

    Sphingolipids play a very crucial role in many diseases and are well-known as signaling mediators in many pathways. Sphingolipids are produced during the de novo process in the ER (endoplasmic reticulum) from the nonsphingolipid precursor and comprise both structural and bioactive lipids. Ceramide is the central core of the sphingolipid pathway, and its production has been observed following various treatments that can induce several different cellular effects including growth arrest, DNA damage, apoptosis, differentiation, and senescence. Ceramides are generally produced through the sphingomyelin hydrolysis and catalyzed by the enzyme sphingomyelinase (SMase) in mammals. Presently, there are many known SMases and they are categorized into three groups acid SMases (aSMases), alkaline SMases (alk-SMASES), and neutral SMases (nSMases). The yeast homolog of mammalians neutral SMases is inositol phosphosphingolipid phospholipase C. Yeasts generally have inositol phosphosphingolipids instead of sphingomyelin, which may act as a homolog of mammalian sphingomyelin. In this review, we shall explain the structure and function of inositol phosphosphingolipid phospholipase C1, its localization inside the cells, mechanisms, and its roles in various cell responses during replication stresses and diseases. This review will also give a new basis for our understanding for the mechanisms and nature of the inositol phosphosphingolipid phospholipase C1/nSMase. PMID:26346287

  1. Antimicrobial activity of apitoxin, melittin and phospholipase A₂ of honey bee (Apis mellifera) venom against oral pathogens.

    PubMed

    Leandro, Luís F; Mendes, Carlos A; Casemiro, Luciana A; Vinholis, Adriana H C; Cunha, Wilson R; de Almeida, Rosana; Martins, Carlos H G

    2015-03-01

    In this work, we used the Minimum Inhibitory Concentration (MIC) technique to evaluate the antibacterial potential of the apitoxin produced by Apis mellifera bees against the causative agents of tooth decay. Apitoxin was assayed in natura and in the commercially available form. The antibacterial actions of the main components of this apitoxin, phospholipase A2, and melittin were also assessed, alone and in combination. The following bacteria were tested: Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis, Lactobacillus casei, and Enterococcus faecalis. The MIC results obtained for the commercially available apitoxin and for the apitoxin in natura were close and lay between 20 and 40 µg / mL, which indicated good antibacterial activity. Melittin was the most active component in apitoxin; it displayed very promising MIC values, from 4 to 40 µg / mL. Phospholipase A2 presented MIC values higher than 400 µg / mL. Association of mellitin with phospholipase A2 yielded MIC values ranging between 6 and 80 µg / mL. Considering that tooth decay affects people's health, apitoxin and its component melittin have potential application against oral pathogens. PMID:25806982

  2. Phospholipase A2 as a point of care alternative to serum amylase and pancreatic lipase

    NASA Astrophysics Data System (ADS)

    Liu, Nathan J.; Chapman, Robert; Lin, Yiyang; Bentham, Andrew; Tyreman, Matthew; Philips, Natalie; Khan, Shahid A.; Stevens, Molly M.

    2016-06-01

    Acute pancreatitis is a relatively common and potentially fatal condition, but the presenting symptoms are non-specific and diagnosis relies largely on the measurement of amylase activity by the hospital clinical laboratory. In this work we develop a point of care test for pancreatitis measuring concentration of secretory phospholipase A2 group IB (sPLA2-IB). Novel antibodies for sPLA2-IB were raised and used to design an ELISA and a lateral flow device (LFD) for the point of care measurement of sPLA2-IB concentration, which was compared to pancreatic amylase activity, lipase activity, and sPLA2-IB activity in 153 serum samples. 98 of these samples were obtained from the pathology unit of a major hospital and classified retrospectively according to presence or absence of pancreatitis, and the remaining 55 were obtained from commercial sources to serve as high lipase (n = 20), CA19-9 positive (n = 15), and healthy (n = 20) controls. sPLA2-IB concentration correlated well with the serum activity of both amylase and lipase, and performed at least as well as either markers in the differentiation of pancreatitis from controls.Acute pancreatitis is a relatively common and potentially fatal condition, but the presenting symptoms are non-specific and diagnosis relies largely on the measurement of amylase activity by the hospital clinical laboratory. In this work we develop a point of care test for pancreatitis measuring concentration of secretory phospholipase A2 group IB (sPLA2-IB). Novel antibodies for sPLA2-IB were raised and used to design an ELISA and a lateral flow device (LFD) for the point of care measurement of sPLA2-IB concentration, which was compared to pancreatic amylase activity, lipase activity, and sPLA2-IB activity in 153 serum samples. 98 of these samples were obtained from the pathology unit of a major hospital and classified retrospectively according to presence or absence of pancreatitis, and the remaining 55 were obtained from commercial sources to

  3. Rare coding variants in Phospholipase D3 (PLD3) confer risk for Alzheimer's disease

    PubMed Central

    Cruchaga, Carlos; Benitez, Bruno A.; Cai, Yefei; Guerreiro, Rita; Harari, Oscar; Norton, Joanne; Budde, John; Bertelsen, Sarah; Jeng, Amanda T.; Cooper, Breanna; Skorupa, Tara; Carrell, David; Levitch, Denise; Hsu, Simon; Choi, Jiyoon; Ryten, Mina; Sassi, Celeste; Bras, Jose; Gibbs, Raphael J.; Hernandez, Dena G.; Lupton, Michelle K.; Powell, John; Forabosco, Paola; Ridge, Perry G.; Corcoran, Christopher D.; Tschanz, JoAnn T.; Norton, Maria C.; Munger, Ronald G.; Schmutz, Cameron; Leary, Maegan; Demirci, F. Yesim; Bamne, Mikhil N.; Wang, Xingbin; Lopez, Oscar L.; Ganguli, Mary; Medway, Christopher; Turton, James; Lord, Jenny; Braae, Anne; Barber, Imelda; Brown, Kristelle; Pastor, Pau; Lorenzo-Betancor, Oswaldo; Brkanac, Zoran; Scott, Erick; Topol, Eric; Morgan, Kevin; Rogaeva, Ekaterina; Singleton, Andy; Hardy, John; Kamboh, M. Ilyas; George-Hyslop, Peter St; Cairns, Nigel; Morris, John C.; Kauwe, John S.K.; Goate, Alison M.

    2014-01-01

    Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1,2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low frequency coding variants with large effects on LOAD risk, we performed whole exome-sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large case-control datasets. A rare variant in PLD3 (phospholipase-D family, member 3, rs145999145; V232M) segregated with disease status in two independent families and doubled risk for AD in seven independent case-control series (V232M meta-analysis; OR= 2.10, CI=1.47-2.99; p= 2.93×10-5, 11,354 cases and controls of European-descent). Gene-based burden analyses in 4,387 cases and controls of European-descent and 302 African American cases and controls, with complete sequence data for PLD3, indicate that several variants in this gene increase risk for AD in both populations (EA: OR= 2.75, CI=2.05-3.68; p=1.44×10-11, AA: OR= 5.48, CI=1.77-16.92; p=1.40×10-3). PLD3 is highly expressed in brain regions vulnerable to AD pathology, including hippocampus and cortex, and is expressed at lower levels in neurons from AD brains compared to control brains (p=8.10×10-10). Over-expression of PLD3 leads to a significant decrease in intracellular APP and extracellular Aβ42 and Aβ40, while knock-down of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a two-fold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may be used to identify rare variants with large effects on risk for disease or other complex traits. PMID

  4. [Effect of elastin peptides on the production of matrix metalloproteinase 2 by human skin fibroblasts in culture].

    PubMed

    Huet, E; Brassart, B; Wallach, J; Debelle, L; Haye, B; Emonard, H; Hornebeck, W

    2001-01-01

    Soluble elastin-derived peptides from alkaline or elastase hydrolysis of insoluble elastin, as well as tropoelastin, increase matrix metalloproteinase-2 (MMP-2) production by human skin fibroblasts in culture as determined by gelatin zymography and ELISA. Such an effect is time and concentration dependent; it can be reproduced by synthetic elastin: VGVAPG, PGAIPG, and laminin: LGTIPG, hexapeptides and inhibited by lactose and is therefore elastin receptor-mediated. The steady state levels of MMP-2 mRNAs are invariant following elastin-fibroblasts interaction. Inhibition of phospholipase C (D-609), ADP-ribosylation factor (brefeldin), protein kinase C (RO-318220) and phospholipase D (1-propanol) totally abolished the elastin-mediated increase of MMP-2 production. It suggested that the post-transcriptional mechanism controlling the elastin-mediated overproduction of MMP-2 involved a cascade leading to phospholipase D activation. PMID:11723829

  5. Differing roles for members of the phospholipase A2 superfamily in experimental autoimmune encephalomyelitis

    PubMed Central

    Kalyvas, Athena; Baskakis, Constantinos; Magrioti, Victoria; Constantinou-Kokotou, Violetta; Stephens, Daren; López-Vales, Rubèn; Lu, Jian-Qiang; Yong, V. Wee; Dennis, Edward A.; Kokotos, George

    2009-01-01

    The phospholipase A2 (PLA2) superfamily hydrolyzes phospholipids to release free fatty acids and lysophospholipids, some of which can mediate inflammation and demyelination, hallmarks of the CNS autoimmune disease multiple sclerosis. The expression of two of the intracellular PLA2s (cPLA2 GIVA and iPLA2 GVIA) and two of the secreted PLA2s (sPLA2 GIIA and sPLA2 GV) are increased in different stages of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We show using small molecule inhibitors, that cPLA2 GIVA plays a role in the onset, and iPLA2 GVIA in the onset and progression of EAE. We also show a potential role for sPLA2 in the later remission phase. These studies demonstrate that selective inhibition of iPLA2 can ameliorate disease progression when treatment is started before or after the onset of symptoms. The effects of these inhibitors on lesion burden, chemokine and cytokine expression as well as on the lipid profile provide insights into their potential modes of action. iPLA2 is also expressed by macrophages and other immune cells in multiple sclerosis lesions. Our results therefore suggest that iPLA2 might be an excellent target to block for the treatment of CNS autoimmune diseases, such as multiple sclerosis. PMID:19218359

  6. A Model for the Interfacial Kinetics of Phospholipase D Activity on Long-Chain Lipids

    PubMed Central

    Majd, Sheereen; Yusko, Erik C.; Yang, Jerry; Sept, David; Mayer, Michael

    2013-01-01

    The membrane-active enzyme phospholipase D (PLD) catalyzes the hydrolysis of the phosphodiester bond in phospholipids and plays a critical role in cell signaling. This catalytic reaction proceeds on lipid-water interfaces and is an example of heterogeneous catalysis in biology. Recently we showed that planar lipid bilayers, a previously unexplored model membrane for these kinetic studies, can be used for monitoring interfacial catalytic reactions under well-defined experimental conditions with chemical and electrical access to both sides of the lipid membrane. Employing an assay that relies on the conductance of the pore-forming peptide gramicidin A to monitor PLD activity, the work presented here reveals the kinetics of hydrolysis of long-chain phosphatidylcholine lipids in situ. We have developed an extension of a basic kinetic model for interfacial catalysis that includes product activation and substrate depletion. This model describes the kinetic behavior very well and reveals two kinetic parameters, the specificity constant and the interfacial quality constant. This approach results in a simple and general model to account for product accumulation in interfacial enzyme kinetics. PMID:23823233

  7. Phospholipase Dε enhances Braasca napus growth and seed production in response to nitrogen availability.

    PubMed

    Lu, Shaoping; Yao, Shuaibing; Wang, Geliang; Guo, Liang; Zhou, Yongming; Hong, Yueyun; Wang, Xuemin

    2016-03-01

    Phospholipase D (PLD), which hydrolyses phospholipids to produce phosphatidic acid, has been implicated in plant response to macronutrient availability in Arabidopsis. This study investigated the effect of increased PLDε expression on nitrogen utilization in Brassica napus to explore the application of PLDε manipulation to crop improvement. In addition, changes in membrane lipid species in response to nitrogen availability were determined in the oil seed crop. Multiple PLDε over expression (PLDε-OE) lines displayed enhanced biomass accumulation under nitrogen-deficient and nitrogen-replete conditions. PLDε-OE plants in the field produced more seeds than wild-type plants but have no impact on seed oil content. Compared with wild-type plants, PLDε-OE plants were enhanced in nitrate transporter expression, uptake and reduction, whereas the activity of nitrite reductase was higher under nitrogen-depleted, but not at nitrogen-replete conditions. The level of nitrogen altered membrane glycerolipid metabolism, with greater impacts on young than mature leaves. The data indicate increased expression of PLDε has the potential to improve crop plant growth and production under nitrogen-depleted and nitrogen-replete conditions. PMID:26260942

  8. Plant phospholipase C family: Regulation and functional role in lipid signaling.

    PubMed

    Singh, Amarjeet; Bhatnagar, Nikita; Pandey, Amita; Pandey, Girdhar K

    2015-08-01

    Phospholipase C (PLC), a major membrane phospholipid hydrolyzing enzyme generates signaling messengers such as diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) in animals, and their phosphorylated forms such as phosphatidic acid (PA) and inositol hexakisphosphate (IP6) are thought to regulate various cellular processes in plants. Based on substrate specificity, plant PLC family is sub-divided into phosphatidylinositol-PLC (PI-PLC) and phosphatidylcholine-PLC (PC-PLC) groups. The activity of plant PLCs is regulated by various factors and the major ones include, Ca(2+) concentration, phospholipid substrate, post-translational modifications and interacting proteins. Most of the PLC members have been localized at the plasma membrane, suited for their function of membrane lipid hydrolysis. Several PLC members have been implicated in various cellular processes and signaling networks, triggered in response to a number of environmental cues and developmental events in different plant species, which makes them potential candidates for genetically engineering the crop plants for stress tolerance and enhancing the crop productivity. In this review article, we are focusing mainly on the plant PLC signaling and regulation, potential cellular and physiological role in different abiotic and biotic stresses, nutrient deficiency, growth and development. PMID:25933832

  9. [DIACYLGLYCEROL ACCUMULATION IMPAIRS SHORT-TERM ACTIVATION OF PHOSPHOLIPASE D BY THYROXINE IN THE LIVER CELLS].

    PubMed

    Hassouneh, Loay Kh M

    2015-01-01

    Thyroid hormones (TG) are known modulators of signal transduction. Phospholipase D (PLD) is one of the targets of TG in the stimulated cells. Response of cells to the short-term TG action significantly reduces at old age. Taking into account that diacylglycerol (DAG) accumulation induces the resistance of cells to some of regulatory factors in the target cells the aim of the present study was to determine if DAG content increase in hepatocytes impairs the L-thyroxine (L-T4) short-term action. The experiments were performed in either the [14C]palmitic acid- labeled hepatocytes or [14C]oleic acid-pre-labeled liver cells of 3- and 24-month-old rats. To study the short-term L-T4 action on cells the PLD activation was determined. The DAG production and content in hepatocytes significantly increased at old age and in the young cells pre-treated with palmitic acid. The reduction of DAG level in cells by means of DAG-kinase activator, alfa-tocoferol acetate, or long-term L-T4 treatment improved the short-term hormone action. The above data have indicated that DAG play important role in the L-T4 PLD regulation. The cross-talk between classic and non-genomic pathways of TG regulation of lipid metabolism has been determined. PMID:26387163

  10. Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight.

    PubMed

    Trujillo Viera, Jonathan; El-Merahbi, Rabih; Nieswandt, Bernhard; Stegner, David; Sumara, Grzegorz

    2016-01-01

    Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1-/- and Pld2-/- mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes. PMID:27299737

  11. Phospholipase D-mediated autophagic regulation is a potential target for cancer therapy

    PubMed Central

    Jang, Y H; Choi, K Y; Min, D S

    2014-01-01

    Autophagy is a catabolic process in which cell components are degraded to maintain cellular homeostasis by nutrient limitations. Defects of autophagy are involved in numerous diseases, including cancer. Here, we demonstrate a new role of phospholipase D (PLD) as a regulator of autophagy. PLD inhibition enhances autophagic flux via ATG1 (ULK1), ATG5 and ATG7, which are essential autophagy gene products critical for autophagosome formation. Moreover, PLD suppresses autophagy by differentially modulating phosphorylation of ULK1 mediated by mTOR and adenosine monophosphate-activated protein kinase (AMPK), and by suppressing the interaction of Beclin 1 with vacuolar-sorting protein 34 (Vps34), indicating that PLD coordinates major players of the autophagic pathway, AMPK-mTOR-ULK1 and Vps34/Beclin 1. Ultimately, PLD inhibition significantly sensitized in vitro and in vivo cancer regression via genetic and pharmacological inhibition of autophagy, providing rationale for a new therapeutic approach to enhancing the anticancer efficacy of PLD inhibition. Collectively, we show a novel role for PLD in the molecular machinery regulating autophagy. PMID:24317201

  12. Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C.

    PubMed

    Seo, Jong Bae; Jung, Seung-Ryoung; Huang, Weigang; Zhang, Qisheng; Koh, Duk-Su

    2015-01-01

    Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically. PMID:26658739

  13. Molecular cloning and characterization of a venom phospholipase A2 from the bumblebee Bombus ignitus.

    PubMed

    Xin, Yu; Choo, Young Moo; Hu, Zhigang; Lee, Kwang Sik; Yoon, Hyung Joo; Cui, Zheng; Sohn, Hung Dae; Jin, Byung Rae

    2009-10-01

    Phospholipase A(2) (PLA(2)) is one of the main components of bee venom. Here, we identify a venom PLA(2) from the bumblebee, Bombus ignitus. Bumblebee venom PLA(2) (Bi-PLA(2)) cDNA, which was identified by searching B. ignitus venom gland expressed sequence tags, encodes a 180 amino acid protein. Comparison of the genomic sequence with the cDNA sequence revealed the presence of four exons and three introns in the Bi-PLA(2) gene. Bi-PLA(2) is an 18-kDa glycoprotein. It is expressed in the venom gland, cleaved between the residues Arg44 and Ile45, and then stored in the venom sac. Comparative analysis revealed that the mature Bi-PLA(2) (136 amino acids) possesses features consistent with other bee PLA(2)s, including ten conserved cysteine residues, as well as a highly conserved Ca(2+)-binding site and active site. Phylogenetic analysis of bee PLA(2)s separated the bumblebee and honeybee PLA(2) proteins into two groups. The mature Bi-PLA(2) purified from the venom of B. ignitus worker bees hydrolyzed DBPC, a known substrate of PLA(2). Immunofluorescence staining of Bi-PLA(2)-treated insect Sf9 cells revealed that Bi-PLA(2) binds at the cell membrane and induces apoptotic cell death. PMID:19539776

  14. Gβ1γ2 activates phospholipase A2-dependent Golgi membrane tubule formation

    PubMed Central

    Bechler, Marie E.; Brown, William J.

    2014-01-01

    Heterotrimeric G proteins transduce the ligand binding of transmembrane G protein coupled receptors into a variety of intracellular signaling pathways. Recently, heterotrimeric Gβγ subunit signaling at the Golgi complex has been shown to regulate the formation of vesicular transport carriers that deliver cargo from the Golgi to the plasma membrane. In addition to vesicles, membrane tubules have also been shown to mediate export from the Golgi complex, which requires the activity of cytoplasmic phospholipase A2 (PLA2) enzyme activity. Through the use of an in vitro reconstitution assay with isolated Golgi complexes, we provide evidence that Gβ1γ2 signaling also stimulates Golgi membrane tubule formation. In addition, we show that an inhibitor of Gβγ activation of PLA2 enzymes inhibits in vitro Golgi membrane tubule formation. Additionally, purified Gβγ protein stimulates membrane tubules in the presence of low (sub-threshold) cytosol concentrations. Importantly, this Gβγ stimulation of Golgi membrane tubule formation was inhibited by treatment with the PLA2 antagonist ONO-RS-082. These studies indicate that Gβ1γ2 signaling activates PLA2 enzymes required for Golgi membrane tubule formation, thus establishing a new layer of regulation for this process. PMID:25019068

  15. Identification of hyaluronidase and phospholipase B in Lachesis muta rhombeata venom.

    PubMed

    Wiezel, Gisele A; dos Santos, Patty K; Cordeiro, Francielle A; Bordon, Karla C F; Selistre-de-Araújo, Heloisa S; Ueberheide, Beatrix; Arantes, Eliane C

    2015-12-01

    Hyaluronidases contribute to local and systemic damages after envenoming, since they act as spreading factors cleaving the hyaluronan presents in the connective tissues of the victim, facilitating the diffusion of venom components. Although hyaluronidases are ubiquitous in snake venoms, they still have not been detected in transcriptomic analysis of the Lachesis venom gland and neither in the proteome of its venom performed previously. This work purified a hyaluronidase from Lachesis muta rhombeata venom whose molecular mass was estimated by SDS-PAGE to be 60 kDa. The hyaluronidase was more active at pH 6 and 37 °C when salt concentration was kept constant and more active in the presence of 0.15 M monovalent ions when the pH was kept at 6. Venom was fractionated by reversed-phase liquid chromatography (RPLC). Edman sequencing after RPLC failed to detect hyaluronidase, but identified a new serine proteinase isoform. The hyaluronidase was identified by mass spectrometry analysis of the protein bands in SDS-PAGE. Additionally, phospholipase B was identified for the first time in Lachesis genus venom. The discovery of new bioactive molecules might contribute to the design of novel drugs and biotechnology products as well as to development of more effective treatments against the envenoming. PMID:26335358

  16. Novel Translocation Responses of Cytosolic Phospholipase A2α Fluorescent Proteins

    PubMed Central

    Wooten, Rhonda E.; Willingham, Mark C.; Daniel, Larry W.; Leslie, Christina C.; Rogers, LeAnn C.; Sergeant, Susan; O’Flaherty, Joseph T.

    2008-01-01

    Cytosolic phospholipase A2 (cPLA2)α responds to the rise in cytosolic Ca2+ ([Ca2+]i) attending cell stimulation by moving to intracellular membranes, releasing arachidonic acid (AA) from these membranes, and thereby initiating the synthesis of various lipid mediators. Under some conditions, however, cPLA2α translocation occurs without any corresponding changes in [Ca2+]i. The signal for such responses has not been identified. Using confocal microscopy to track fluorescent proteins fused to cPLA2α or cPLA2α’s C2 domain, we find that AA mimics Ca2+ ionophores in stimulating cPLA2α translocations to the perinuclear ER and to a novel site, the lipid body. Unlike the ionophores, AA acted independently of [Ca2+]i rises and did not translocate the proteins to the Golgi. AA’s action did not involve its metabolism to eicosanoids or acylation into cellular lipids. Receptor agonists also stimulated translocations targeting lipid bodies. We propose that AA is a signal for Ca2+-independent cPLA2α translocation and that lipid bodies are common targets of cPLA2α and contributors to stimulus-induced lipid mediator synthesis. PMID:18406359

  17. Novel translocation responses of cytosolic phospholipase A2alpha fluorescent proteins.

    PubMed

    Wooten, Rhonda E; Willingham, Mark C; Daniel, Larry W; Leslie, Christina C; Rogers, LeAnn C; Sergeant, Susan; O'Flaherty, Joseph T

    2008-08-01

    Cytosolic phospholipase A2 (cPLA2)alpha responds to the rise in cytosolic Ca2+ ([Ca2+]i) attending cell stimulation by moving to intracellular membranes, releasing arachidonic acid (AA) from these membranes, and thereby initiating the synthesis of various lipid mediators. Under some conditions, however, cPLA2alpha translocation occurs without any corresponding changes in [Ca2+]i. The signal for such responses has not been identified. Using confocal microscopy to track fluorescent proteins fused to cPLA2alpha or cPLA2alpha's C2 domain, we find that AA mimics Ca2+ ionophores in stimulating cPLA(2)alpha translocations to the perinuclear ER and to a novel site, the lipid body. Unlike the ionophores, AA acted independently of [Ca2+](i) rises and did not translocate the proteins to the Golgi. AA's action did not involve its metabolism to eicosanoids or acylation into cellular lipids. Receptor agonists also stimulated translocations targeting lipid bodies. We propose that AA is a signal for Ca2+-independent cPLA2alpha translocation and that lipid bodies are common targets of cPLA2alpha and contributors to stimulus-induced lipid mediator synthesis. PMID:18406359

  18. Oxidative stress and redox regulation of phospholipase D in myocardial disease.

    PubMed

    Tappia, Paramjit S; Dent, Melissa R; Dhalla, Naranjan S

    2006-08-01

    Oxidative stress may be viewed as an imbalance between reactive oxygen species (ROS) and oxidant production and the state of glutathione redox buffer and antioxidant defense system. Recently, a new paradigm of redox signaling has emerged whereby ROS and oxidants can function as intracellular signaling molecules, where ROS- and oxidant-induced death signal is converted into a survival signal. It is now known that oxidative stress is involved in cardiac hypertrophy and in the pathogenesis of cardiomyopathies, ischemic heart disease and congestive heart failure. Phospholipase D (PLD) is an important signaling enzyme in mammalian cells, including cardiomyocytes. PLD catalyzes the hydrolysis of phosphatidylcholine to produce phosphatidic acid (PA). Two mammalian PLD isozymes, PLD1 and PLD2 have been identified, characterized and cloned. The importance of PA in heart function is evident from its ability to stimulate cardiac sarcolemmal membrane and sarcoplasmic reticular Ca2+-related transport systems and to increase the intracellular concentration of free Ca2+ in adult cardiomyocytes and augment cardiac contractile activity of the normal heart. In addition, PA is also considered an important signal transducer in cardiac hypertrophy. Accordingly, this review discusses a role for redox signaling mediated via PLD in ischemic preconditioning and examines how oxidative stress affects PLD in normal hearts and during different myocardial diseases. In addition, the review provides a comparative account on the regulation of PLD activities in vascular smooth muscle cells under conditions of oxidative stress. PMID:16843818

  19. Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight

    PubMed Central

    Nieswandt, Bernhard; Stegner, David; Sumara, Grzegorz

    2016-01-01

    Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1-/- and Pld2-/- mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes. PMID:27299737

  20. Differential changes in phospholipase D and phosphatidate phosphohydrolase activities in ischemia-reperfusion of rat heart.

    PubMed

    Asemu, Girma; Dent, Melissa R; Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2005-04-01

    Phospholipase D (PLD2) produces phosphatidic acid (PA), which is converted to 1,2 diacylglycerol (DAG) by phosphatidate phosphohydrolase (PAP2). Since PA and DAG regulate Ca(2+) movements, we examined PLD2 and PAP2 in the sarcolemma (SL) and sarcoplasmic reticular (SR) membranes from hearts subjected to ischemia and reperfusion (I-R). Although SL and SR PLD2 activities were unaltered after 30 min ischemia, 5 min reperfusion resulted in a 36% increase in SL PLD2 activity, whereas 30 min reperfusion resulted in a 30% decrease in SL PLD2 activity, as compared to the control value. SR PLD2 activity was decreased (39%) after 5 min reperfusion, but returned to control levels after 30 min reperfusion. Ischemia for 60 min resulted in depressed SL and SR PLD2 activities, characterized with reduced V(max) and increased K(m) values, which were not reversed during reperfusion. Although the SL PAP2 activity was decreased (31%) during ischemia and at 30 min reperfusion (28%), the SR PAP2 activity was unchanged after 30 min ischemia, but was decreased after 5 min reperfusion (25%) and almost completely recovered after 30 min reperfusion. A 60 min period of ischemia followed by reperfusion caused an irreversible depression of SL and SR PAP2 activities. Our results indicate that I-R induced cardiac dysfunction is associated with subcellular changes in PLD2 and PAP2 activities. PMID:15752718

  1. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration.

    PubMed

    Teng, Shuzhi; Stegner, David; Chen, Qin; Hongu, Tsunaki; Hasegawa, Hiroshi; Chen, Li; Kanaho, Yasunori; Nieswandt, Bernhard; Frohman, Michael A; Huang, Ping

    2015-02-01

    Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes. PMID:25428992

  2. Phospholipase D is involved in myogenic differentiation through remodeling of actin cytoskeleton.

    PubMed

    Komati, Hiba; Naro, Fabio; Mebarek, Saida; De Arcangelis, Vania; Adamo, Sergio; Lagarde, Michel; Prigent, Annie-France; Némoz, Georges

    2005-03-01

    We investigated the role of phospholipase D (PLD) and its product phosphatidic acid (PA) in myogenic differentiation of cultured L6 rat skeletal myoblasts. Arginine-vasopressin (AVP), a differentiation inducer, rapidly activated PLD in a Rho-dependent way, as shown by almost total suppression of activation by C3 exotoxin pretreatment. Addition of 1-butanol, which selectively inhibits PA production by PLD, markedly decreased AVP-induced myogenesis. Conversely, myogenesis was potentiated by PLD1b isoform overexpression but not by PLD2 overexpression, establishing that PLD1 is involved in this process. The expression of the PLD isoforms was differentially regulated during differentiation. AVP stimulation of myoblasts induced the rapid formation of stress fiber-like actin structures (SFLSs). 1-Butanol selectively inhibited this response, whereas PLD1b overexpression induced SFLS formation, showing that it was PLD dependent. Endogenous PLD1 was located at the level of SFLSs, and by means of an intracellularly expressed fluorescent probe, PA was shown to be accumulated along these structures in response to AVP. In addition, AVP induced a PLD-dependent neosynthesis of phosphatidylinositol 4,5-bisphosphate (PIP2), which also was accumulated along actin fibers. These data support the hypothesis that PLD participates in myogenesis through PA- and PIP2-dependent actin fiber formation. PMID:15616193

  3. Purification and characterization of an anticoagulant phospholipase A(2) from Indian monocled cobra (Naja kaouthia) venom.

    PubMed

    Doley, Robin; Mukherjee, Ashis Kumar

    2003-01-01

    An anticoagulant, non-toxic phospholipase A(2) was isolated from the venom of Indian monocled cobra (Naja kaouthia) by a combination of ion-exchange chromatography on CM-Sephadex C-50 and gel filtration on Sephadex G-50. This purified protein named NK-PLA(2)-I, had a subunit molecular mass of 13.6 kDa and migrated as a dimer under non-reduced condition in SDS-PAGE. NK-PLA(2)-I was a highly thermostable protein requiring basic pH optima for its catalytic activity and showed preferential hydrolysis of phosphotidylcholine. This protein exhibited higher anticoagulant, indirect hemolysis, liver and heart tissue damaging activity but exerted less toxicity, direct hemolysis, edema and lung tissue damaging activity as compared to whole venom. Treatment of NK-PLA(2)-I with rho-BPB, TPCK, PMSF, antivenom and heating had almost equal effect on PLA(2), and other pharmacological properties except in vitro tissue damaging activity. Current investigation provides a fairly good indication that NK-PLA(2)-I induces various pharmacological effects by mechanisms, which are either dependent or independent of its catalytic activity. PMID:12467665

  4. Kinetic Scaffolding Mediated by a Phospholipase C–β and Gq Signaling Complex

    PubMed Central

    Waldo, Gary L.; Ricks, Tiffany K.; Hicks, Stephanie N.; Cheever, Matthew L.; Kawano, Takeharu; Tsuboi, Kazuhito; Wang, Xiaoyue; Montell, Craig; Kozasa, Tohru; Sondek, John; Harden, T. Kendall

    2011-01-01

    Transmembrane signals initiated by a broad range of extracellular stimuli converge on nodes that regulate phospholipase C (PLC)–dependent inositol lipid hydrolysis for signal propagation. We describe how heterotrimeric guanine nucleotide–binding proteins (G proteins) activate PLC-βs and in turn are deactivated by these downstream effectors. The 2.7-angstrom structure of PLC-β3 bound to activated Gαq reveals a conserved module found within PLC-βs and other effectors optimized for rapid engagement of activated G proteins. The active site of PLC-β3 in the complex is occluded by an intramolecular plug that is likely removed upon G protein–dependent anchoring and orientation of the lipase at membrane surfaces. A second domain of PLC-β3 subsequently accelerates guanosine triphosphate hydrolysis by Gαq, causing the complex to dissociate and terminate signal propagation. Mutations within this domain dramatically delay signal termination in vitro and in vivo. Consequently, this work suggests a dynamic catch-and-release mechanism used to sharpen spatiotemporal signals mediated by diverse sensory inputs. PMID:20966218

  5. Promoter analysis and expression of a phospholipase D gene from castor bean.

    PubMed Central

    Xu, L; Zheng, S; Zheng, L; Wang, X

    1997-01-01

    The expression of a castor bean (Ricinus communis L.) phospholipase D (PLD; EC 3.1.4.4) gene has been studied by examining its promoter activity in transgenic tobacco (Nicotiana tabacum) carrying a PLD promoter-glucuronidase transgene and by monitoring the levels of PLD mRNA in castor bean. Sequence and the 5' truncation analyses revealed that the 5' flanking region from nucleotide -1200 to -730 is required for the regulation and basal function of the PLD promoter. The PLD promoter in vegetative tissues is highly active in the rapidly growing regions such as the shoot apex and the secondary meristem producing axillary buds and vascular tissues of young leaves and stems. The PLD promoter activity in floral tissues was high in stigma, ovary, and pollen grains, but low in petals, sepals, the epidermis of anthers, styles, and filaments. The PLD promoter activity was enhanced by abscisic acid. Northern-blot analysis of PLD in castor bean showed that the PLD mRNA levels were high in young and metabolically more active tissues such as expanding leaves, hypocotyl hooks, developing seeds, and young seedlings, and they decreased in mature tissues such as fully expanded leaves and developed seeds. These patterns of expression suggest a role of PLD in rapid cell growth, proliferation, and reproduction. PMID:9342861

  6. Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C

    PubMed Central

    Seo, Jong Bae; Jung, Seung-Ryoung; Huang, Weigang; Zhang, Qisheng; Koh, Duk-Su

    2015-01-01

    Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically. PMID:26658739

  7. MALDI-TOF MS to monitor the kinetics of phospholipase A2-digestion of oxidized phospholipids.

    PubMed

    Schröter, Jenny; Süß, Rosmarie; Schiller, Jürgen

    2016-07-15

    Free fatty acids (FFA) are released through phospholipase A2 (PLA2), which cleaves the fatty acyl residue at the sn-2 position of phospholipids (PL). During inflammatory diseases, reactive oxygen species (such as HOCl) lead to the formation of oxidatively modified PL (e.g., chlorohydrin generation). It is still widely unknown to which extent the oxidation of PL influences their digestibility by PLA2. Additionally, investigations on the impact of the position of the unsaturated fatty acyl residue (sn-1 versus sn-2 position) and modifications of the headgroup (for instance phosphatidylcholine (PC) versus phosphatidylethanolamine (PE)) are also lacking. Therefore, the aim of this study is the investigation of these aspects using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to elucidate the PL/lysophospholipid (LPL) ratios as measures of the PLA2 digestibility. We will show that oxidative modifications of PL by HOCl have a considerable impact on the PLA2 digestibility, i.e., oxidation of the unsaturated fatty acyl residues leads to a reduced digestibility of both PC and PE. Besides, it will be shown that MALDI MS is a convenient and reliable tool to investigate the related changes. PMID:26721598

  8. Phosphatidylcholine enrichment with medium chain fatty acids by immobilized phospholipase A(1) -catalyzed acidolysis.

    PubMed

    Ochoa, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; García, Hugo S; Vernon-Carter, Eduardo J

    2013-01-01

    Phospholipids are a biologically and industrially important class of compounds whose physical properties can be improved for diverse applications by substitution of medium-chain fatty acids for their native fatty acid chains. In this study, phosphatidylcholine (PC) was enriched with medium-chain fatty acids (MCFAs) by acidolysis with phospholipase A(1) (PLA(1) ) immobilized on Duolite A568. Response surface methodology was employed to evaluate the effects of the molar ratio of substrates (PC to free MCFAs), enzyme loading, and reaction temperature on the incorporation of free MCFAs into PC and on PC recovery. Enzyme loading and molar ratio of substrates contributed positively, but temperature negatively, to the incorporation of free MCFAs into PC. Increases in enzyme loading and the molar ratio of PC to free MCFAs led to increased incorporation of the latter into the former, but increased temperature had the opposite effect. By contrast, an increase in enzyme loading led to decreased PC recovery. Increased temperature had also a negative effect on PC recovery. Optimal conditions for maximum incorporation and PC recovery were molar ratio of PC to free MCFAs of 1:16, enzyme loading of 16%, and 50°C. Under these conditions, the incorporation of free MCFAs was 41% and the PC recovery was 53%. PMID:23074091

  9. Distinction in vitro between rat liver phosphatidate phosphatase and phospholipase C

    SciTech Connect

    Lamb, R.; Foster, K.; McGuffin, M.

    1986-03-05

    Hepatocellular membranes (1000 x g) were incubated with sn-(1,3-/sup 14/C) glycerol-3-P, ATP, Ca/sup 2 +/, NaF and palmitate to form labeled, membrane-associated phosphatidate(PA). Membranes incubated with 2mM oleate or 5mM bromobenzene showed rapid (5-10 min) and significant (2-6 fold) increases in the dephosphorylation of PA. However, oleate and bromobenzene activated the dephosphorylation of PA by phosphatidate phosphatase (PAP) and phospholipase C (PLC), respectively. This conclusion is supported by the observation that the PAP stimulated by oleate is: 1) Mg/sup 2 +/-dependent; 2) inhibited by Ca/sup 2 +/ and NaF; 3) specific for PA; 4) associated with a rise in liver cell triacylglycerol (TG) formation. Bromobenzene, however, activated a PLC that is: 1) stimulated by various metals; 2) enhanced by NaF; 3) is associated with a rise in the degradation of membrane phospholipids and liver cell injury. These results suggest that under the appropriate conditions in vitro the dephosphorylation of PA can be used to assess chemical-dependent changes in PAP and/or PLC activity.

  10. Varespladib inhibits secretory phospholipase A2 in bronchoalveolar lavage of different types of neonatal lung injury.

    PubMed

    De Luca, Daniele; Minucci, Angelo; Trias, Joaquim; Tripodi, Domenico; Conti, Giorgio; Zuppi, Cecilia; Capoluongo, Ettore

    2012-05-01

    Secretory phospholipase A2 (sPLA2), which links surfactant catabolism and lung inflammation, is associated with lung stiffness, surfactant dysfunction, and degree of respiratory support in acute respiratory distress syndrome and in some forms of neonatal lung injury. Varespladib potently inhibits sPLA2 in animal models. The authors investigate varespladib ex vivo efficacy in different forms of neonatal lung injury. Bronchoalveolar lavage fluid was obtained from 40 neonates affected by hyaline membrane disease, infections, or meconium aspiration and divided in 4 aliquots added with increasing varespladib or saline. sPLA2 activity, proteins, and albumin were measured. Dilution was corrected with the urea ratio. Varespladib was also tested in vitro against pancreatic sPLA2 mixed with different albumin concentration. Varespladib was able to inhibit sPLA2 in the types of neonatal lung injury investigated. sPLA2 activity was reduced in hyaline membrane disease (P < .0001), infections (P = .003), and meconium aspiration (P = .04) using 40 µM varespladib; 10 µM was able to lower enzyme activity (P = .001), with an IC(50) of 87 µM. An inverse relationship existed between protein level and activity reduction (r = 0.5; P = .029). The activity reduction/protein ratio tended to be higher in hyaline membrane disease. Varespladib efficacy was higher in vitro than in lavage fluids obtained from neonates (P < .001). PMID:21602519

  11. The Molecular Basis of Leukocyte Adhesion Involving Phosphatidic Acid and Phospholipase D*

    PubMed Central

    Speranza, Francis; Mahankali, Madhu; Henkels, Karen M.; Gomez-Cambronero, Julian

    2014-01-01

    Defining how leukocytes adhere to solid surfaces, such as capillary beds, and the subsequent migration through the extracellular matrix, is a central biological issue. We show here that phospholipase D (PLD) and its enzymatic reaction product, phosphatidic acid (PA), regulate cell adhesion of immune cells (macrophages and neutrophils) to collagen and have defined the underlying molecular mechanism in a spatio-temporal manner that coincides with PLD activity timing. A rapid (t½ = 4 min) and transient activation of the PLD1 isoform occurs upon adhesion, and a slower (t½ = 7.5 min) but prolonged (>30 min) activation occurs for PLD2. Importantly, PA directly binds to actin-related protein 3 (Arp3) at EC50 = 22 nm, whereas control phosphatidylcholine did not bind. PA-activated Arp3 hastens actin nucleation with a kinetics of t½ = 3 min at 300 nm (compared with controls of no PA, t½ = 5 min). Thus, PLD and PA are intrinsic components of cell adhesion, which reinforce each other in a positive feedback loop and react from cues from their respective solid substrates. In nascent adhesion, PLD1 is key, whereas a sustained adhesion in mature or established focal points is dependent upon PLD2, PA, and Arp3. A prolonged adhesion could effectively counteract the reversible intrinsic nature of this cellular process and constitute a key player in chronic inflammation. PMID:25187519

  12. Revealing Transient Interactions between Phosphatidylinositol-specific Phospholipase C and Phosphatidylcholine--Rich Lipid Vesicles

    NASA Astrophysics Data System (ADS)

    Yang, Boqian; He, Tao; Grauffel, Cédric; Reuter, Nathalie; Roberts, Mary; Gershenson, Anne

    2013-03-01

    Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes transiently interact with target membranes. Previous fluorescence correlation spectroscopy (FCS) experiments showed that Bacillus thuringiensis PI-PLC specifically binds to phosphatidylcholine (PC)-rich membranes and preferentially interacts with unilamellar vesicles that show larger curvature. Mutagenesis studies combined with FCS measurements of binding affinity highlighted the importance of interfacial PI-PLC tyrosines in the PC specificity. All-atom molecular dynamics simulations of PI-PLC performed in the presence of a PC membrane indicate these tyrosines are involved in specific cation-pi interactions with choline headgroups. To further understand those transient interactions between PI-PLC and PC-rich vesicles, we monitor single fluorescently labeled PI-PLC proteins as they cycle on and off surface-tethered small unilamellar vesicles using total internal reflection fluorescent microscopy. The residence times on vesicles along with vesicle size information, based on vesicle fluorescence intensity, reveal the time scales of PI-PLC membrane interactions as well as the curvature dependence. The PC specificity and the vesicle curvature dependence of this PI-PLC/membrane interaction provide insight into how the interface modulates protein-membrane interactions. This work was supported by the National Institute of General Medical Science of the National Institutes of Health (R01GM060418).

  13. A facile assay to monitor secretory phospholipase A₂ using 8-anilino-1-naphthalenesulfonic acid.

    PubMed

    Vivek, Hamse K; Swamy, Supritha G; Priya, Babu S; Sethi, Gautam; Rangappa, Kanchugarakoppal S; Swamy, S Nanjunda

    2014-09-15

    Secretory phospholipases A2 (sPLA2s) are present in snake venoms, serum, and biological fluids of patients with various inflammatory, autoimmune and allergic disorders. Lipid mediators in the inflammatory processes have potential value for controlling phospholipid metabolism through sPLA2 inhibition. Thus, it demands the need for screening of potential leads for sPLA2 inhibition. To date, sPLA2 activity has been assayed using expensive radioactive or chromogenic substrates, thereby limiting a large number of assays. In this study, a simple and sensitive NanoDrop assay was developed using non-fluorogenic and non-chromogenic phospholipid substrate 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 8-anilino-1-naphthalenesulfonic acid (ANS) as interfacial hydrophobic probe. The modified assay required a 10ng concentration of sPLA2. ANS, as a strong anion, binds predominantly to cationic group of choline head of DMPC through ion pair formation, imparting hydrophobicity and lipophilicity and resulting in an increase in fluorescence. Triton X-100 imparts correct geometrical space during sPLA2 catalyzing DMPC, releasing lysophospholipid and acidic myristoyl acid, which in turn alters the hydrophobic environment prevailing around ANS-DMPC, which leads to weakening of the electrostatic ion pair interaction between DMPC and ANS ensuing decrease in fluorescence. These characteristic fluorescence changes between DMPC and ANS in response to sPLA2 catalysis are well documented and validated in this study. PMID:24915638

  14. Phospholipase A2 up-regulation during mycorrhiza formation in Tuber borchii.

    PubMed

    Miozzi, Laura; Balestrini, Raffaella; Bolchi, Angelo; Novero, Mara; Ottonello, Simone; Bonfante, Paola

    2005-07-01

    TbSP1 is a secreted and surface-associated phospholipase A(2) previously found to be up-regulated in C- or N-deprived free-living mycelia from the ectomycorrhizal ascomycete Tuber borchii. As nutrient limitation is considered an important environmental factor favouring the transition to symbiotic status, TbSP1 was suggested to be involved in the formation of mycorrhizas. An in vitro symbiosis system between Cistus incanus and T. borchii was set up: TbSP1 mRNA levels in free-living mycelia and in mycorrhizas sampled in different districts of the plant-fungus interaction were examined. In the same samples, TbSP1 protein expression was analysed by immunoelectron microscopy. A substantially enhanced TbSP1 mRNA expression, compared with nutrient-limited but free-living mycelia, was detected in the presence of the plant and reached maximal levels in fully developed mycorrhizas. A similar expression trend was revealed by immunolocalization experiments. We have shown that TbSP1 appears to respond to two partially overlapping yet distinct stimuli: nutrient starvation and mycorrhiza formation. PMID:15948845

  15. Tumor suppressor role of phospholipase Cε in Ras-triggered cancers

    PubMed Central

    Martins, Marta; McCarthy, Afshan; Baxendale, Rhona; Guichard, Sabrina; Magno, Lorenza; Kessaris, Nicoletta; El-Bahrawy, Mona; Yu, Philipp; Katan, Matilda

    2014-01-01

    Phospholipase Cε (PLCε) has been characterized as a direct effector of Ras in vitro and in cellular systems; however, the role of PLCε in tumorigenesis and its link to Ras in this context remain unclear. To assess the role of PLCε in Ras-driven cancers, we generated two new mouse strains: one carrying a targeted deletion of Plce (Plce−/−) and the other carrying mutant alleles of Plce unable to bind to Ras (PlceRAm/RAm). The Plce−/− and, to a lesser degree, PlceRAm/RAm transgenic mice exhibited increased susceptibility to tumor formation in the two-stage skin carcinogenesis protocol, revealing a tumor suppressor function for this PLC. This result also suggests that in this context Ras binding in part regulates functions of PLCε. Although significant differences were not seen in the LSL-KrasG12D nonsmall cell lung carcinoma model, down-regulation of PLCε was found in animal tumors and in cellular systems following expression of the oncogenic Ras. An inhibitory impact of PLCε on cell growth requires intact lipase activity and is likely mediated by protein kinase C enzymes. Further cellular studies suggest involvement of histone deacetylase in the mechanism of PLCε down-regulation. Taken together, our results show a previously unidentified tumor suppressor role for this PLC in animal models and, together with observations of marked down-regulation in colorectal, lung, and skin tumors, suggest its use as a biological marker in cancer. PMID:24591640

  16. The expression of phospholipase A2 group X is inversely associated with metastasis in colorectal cancer

    PubMed Central

    HIYOSHI, MASAYA; KITAYAMA, JOJI; KAZAMA, SHINSUKE; TAKETOMI, YOSHITAKA; MURAKAMI, MAKOTO; TSUNO, NELSON H.; HONGO, KUMIKO; KANEKO, MANABU; SUNAMI, EIJI; WATANABE, TOSHIAKI

    2013-01-01

    Among the secretory phospholipase A2s (sPLA2), sPLA2 group X (PLA2GX) has the most potent hydrolyzing activity toward phosphatidylcholine, and has recently been shown to be implicated in chronic inflammatory diseases. The aim of the present study was to investigate PLA2GX expression in colorectal cancer (CRC) and its correlation with patient clinicopathological features. The present study comprises a series of 158 patients who underwent surgical resection for primary CRC. PLA2GX expression in CRC tissues was examined by immunohistochemistry and compared with patient clinicopathological findings and survival. A total of 64% of the tumors expressed PLA2GX at high levels. Statistical analysis revealed that PLA2GX expression was inversely correlated with hematogenous metastasis (P=0.005). In the subgroup analysis, left-sided tumors with high PLA2GX expression showed an inverse correlation with lymph node metastasis (P=0.018) and hematogenous metastasis (P=0.017). Patients with high PLA2GX expression tended to have a longer disease-specific survival compared with those with low PLA2GX expression in left-sided, but not right-sided, CRC (P=0.08). In light of the present results, we suggest that PLA2GX has an inhibitory effect on the progression of CRC. PMID:23420493

  17. Expression and Function of Group IIE Phospholipase A2 in Mouse Skin.

    PubMed

    Yamamoto, Kei; Miki, Yoshimi; Sato, Hiroyasu; Nishito, Yasumasa; Gelb, Michael H; Taketomi, Yoshitaka; Murakami, Makoto

    2016-07-22

    Recent studies using knock-out mice for various secreted phospholipase A2 (sPLA2) isoforms have revealed their non-redundant roles in diverse biological events. In the skin, group IIF sPLA2 (sPLA2-IIF), an "epidermal sPLA2" expressed in the suprabasal keratinocytes, plays a fundamental role in epidermal-hyperplasic diseases such as psoriasis and skin cancer. In this study, we found that group IIE sPLA2 (sPLA2-IIE) was expressed abundantly in hair follicles and to a lesser extent in basal epidermal keratinocytes in mouse skin. Mice lacking sPLA2-IIE exhibited skin abnormalities distinct from those in mice lacking sPLA2-IIF, with perturbation of hair follicle ultrastructure, modest changes in the steady-state expression of a subset of skin genes, and no changes in the features of psoriasis or contact dermatitis. Lipidomics analysis revealed that sPLA2-IIE and -IIF were coupled with distinct lipid pathways in the skin. Overall, two skin sPLA2s, hair follicular sPLA2-IIE and epidermal sPLA2-IIF, play non-redundant roles in distinct compartments of mouse skin, underscoring the functional diversity of multiple sPLA2s in the coordinated regulation of skin homeostasis and diseases. PMID:27226633

  18. On-Tissue Phospholipase C Digestion for Enhanced MALDI-MS Imaging of Neutral Glycosphingolipids.

    PubMed

    Vens-Cappell, Simeon; Kouzel, Ivan U; Kettling, Hans; Soltwisch, Jens; Bauwens, Andreas; Porubsky, Stefan; Müthing, Johannes; Dreisewerd, Klaus

    2016-06-01

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can be used to simultaneously visualize the lateral distribution of different lipid classes in tissue sections, but the applicability of the method to real-life samples is often limited by ion suppression effects. In particular, the presence of abundant phosphatidylcholines (PCs) can reduce the ion yields for all other lipid species in positive ion mode measurements. Here, we used on-tissue treatment with buffer-free phospholipase C (PLC) to near-quantitatively degrade PCs in fresh-frozen tissue sections. The ion signal intensities of mono-, di-, and oligohexosylceramides were enhanced by up to 10-fold. In addition, visualization of Shiga toxin receptor globotriaosylceramide (Gb3Cer) in the kidneys of wild-type and α-galactosidase A-knockout (Fabry) mice was possible at about ten micrometer resolution. Importantly, the PLC treatment did not decrease the high lateral resolution of the MS imaging analysis. PMID:27212679

  19. Kinetic Analysis of Phospholipase C from Catharanthus roseus Transformed Roots Using Different Assays1

    PubMed Central

    Hernández-Sotomayor, S.M. Teresa; De Los Santos-Briones, César; Muñoz-Sánchez, J. Armando; Loyola-Vargas, Victor M.

    1999-01-01

    The properties of phospholipase C (PLC) partially purified from Catharanthus roseus transformed roots were analyzed using substrate lipids dispersed in phospholipid vesicles, phospholipid-detergent mixed micelles, and phospholipid monolayers spread at an air-water interface. Using [33P]phosphatidylinositol 4,5-bisphosphate (PIP2) of high specific radioactivity, PLC activity was monitored directly by measuring the loss of radioactivity from monolayers as a result of the release of inositol phosphate and its subsequent dissolution on quenching in the subphase. PLC activity was markedly affected by the surface pressure of the monolayer, with reduced activity at extremes of initial pressure. The optimum surface pressure for PIP2 hydrolysis was 20 mN/m. Depletion of PLC from solution by incubation with sucrose-loaded PIP2 vesicles followed by ultracentrifugation demonstrated stable attachment of PLC to the vesicles. A mixed micellar system was established to assay PLC activity using deoxycholate. Kinetic analyses were performed to determine whether PLC activity was dependent on both bulk PIP2 and PIP2 surface concentrations in the micelles. The interfacial Michaelis constant was calculated to be 0.0518 mol fraction, and the equilibrium dissociation constant of PLC for the lipid was 45.5 μm. These findings will add to our understanding of the mechanisms of regulation of plant PLC. PMID:10444091

  20. Investigating interactions between phospholipase B-Like 2 and antibodies during Protein A chromatography.

    PubMed

    Tran, Benjamin; Grosskopf, Vanessa; Wang, Xiangdan; Yang, Jihong; Walker, Don; Yu, Christopher; McDonald, Paul

    2016-03-18

    Purification processes for therapeutic antibodies typically exploit multiple and orthogonal chromatography steps in order to remove impurities, such as host-cell proteins. While the majority of host-cell proteins are cleared through purification processes, individual host-cell proteins such as Phospholipase B-like 2 (PLBL2) are more challenging to remove and can persist into the final purification pool even after multiple chromatography steps. With packed-bed chromatography runs using host-cell protein ELISAs and mass spectrometry analysis, we demonstrated that different therapeutic antibodies interact to varying degrees with host-cell proteins in general, and PLBL2 specifically. We then used a high-throughput Protein A chromatography method to further examine the interaction between our antibodies and PLBL2. Our results showed that the co-elution of PLBL2 during Protein A chromatography is highly dependent on the individual antibody and PLBL2 concentration in the chromatographic load. Process parameters such as antibody resin load density and pre-elution wash conditions also influence the levels of PLBL2 in the Protein A eluate. Furthermore, using surface plasmon resonance, we demonstrated that there is a preference for PLBL2 to interact with IgG4 subclass antibodies compared to IgG1 antibodies. PMID:26896920

  1. The role of group IIF-secreted phospholipase A2 in epidermal homeostasis and hyperplasia

    PubMed Central

    Yamamoto, Kei; Miki, Yoshimi; Sato, Mariko; Taketomi, Yoshitaka; Nishito, Yasumasa; Taya, Choji; Muramatsu, Kazuaki; Ikeda, Kazutaka; Nakanishi, Hiroki; Taguchi, Ryo; Kambe, Naotomo; Kabashima, Kenji; Lambeau, Gérard; Gelb, Michael H.

    2015-01-01

    Epidermal lipids are important for skin homeostasis. However, the entire picture of the roles of lipids, particularly nonceramide lipid species, in epidermal biology still remains obscure. Here, we report that PLA2G2F, a functionally orphan-secreted phospholipase A2 expressed in the suprabasal epidermis, regulates skin homeostasis and hyperplasic disorders. Pla2g2f−/− mice had a fragile stratum corneum and were strikingly protected from psoriasis, contact dermatitis, and skin cancer. Conversely, Pla2g2f-overexpressing transgenic mice displayed psoriasis-like epidermal hyperplasia. Primary keratinocytes from Pla2g2f−/− mice showed defective differentiation and activation. PLA2G2F was induced by calcium or IL-22 in keratinocytes and preferentially hydrolyzed ethanolamine plasmalogen-bearing docosahexaenoic acid secreted from keratinocytes to give rise to unique bioactive lipids (i.e., protectin D1 and 9S-hydroxyoctadecadienoic acid) that were distinct from canonical arachidonate metabolites (prostaglandins and leukotrienes). Ethanolamine lysoplasmalogen, a PLA2G2F-derived marker product, rescued defective activation of Pla2g2f−/− keratinocytes both in vitro and in vivo. Our results highlight PLA2G2F as a previously unrecognized regulator of skin pathophysiology and point to this enzyme as a novel drug target for epidermal-hyperplasic diseases. PMID:26438362

  2. Immunohistochemical localization of hepatopancreatic phospholipase A2 in Hexaplex Trunculus digestive cells

    PubMed Central

    2011-01-01

    Background Mammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food. Results The marine snail digestive phospholipase A2 (mSDPLA2) has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used for immunohistochimical and immunofluorescence analysis in order to determine the cellular location of mSDPLA2. Our results showed essentially that mSDPLA2 was detected inside in specific vesicles tentatively named (mSDPLA2+) granules of the digestive cells. No immunolabelling was observed in secretory zymogene-like cells. This immunocytolocalization indicates that lipid digestion in the snail might occur in specific granules inside the digestive cells. Conclusion The cellular location of mSDPLA2 suggests that intracellular phospholipids digestion, like other food components digestion of snail diet, occurs in these digestive cells. The hepatopancreas of H. trunculus has been pointed out as the main region for digestion, absorption and storage of lipids. PMID:21631952

  3. Knockout of phospholipase Cε attenuates N-butyl-N-(4-hydroxybutyl) nitrosamine-induced bladder tumorigenesis

    PubMed Central

    JIANG, TAIMAO; LIU, TAO; LI, LIN; YANG, ZHIJUN; BAI, YUNFENG; LIU, DONGYE; KONG, CHUIZE

    2016-01-01

    Bladder cancer frequently shows mutational activation of the oncogene Ras, which is associated with bladder carcinogenesis. However, the signaling pathway downstream of Ras remains to be fully elucidated. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) is able to induce bladder cancer by driving the clonal expansion of initiated cells carrying the activated form of Ras. Phospholipase Cε (PLCε) is the main target of BBN, while the tumor promoting role of PLCε remains controversial. The present study examined the role of PLCε in BBN-induced bladder carcinogenesis of mice with genetically inactivated PLCε. Using light and electron microscopy, the present study demonstrated that PLCε−/− mice were resistant to BBN-induced bladder carcinogenesis. Furthermore, it was demonstrated that cyclooxygenase 2 and vascular endothelial growth factor-A were affected by the PLCε background of the mice, suggesting that the role of PLCε in tumor promotion may be ascribed to augmentation of inflammatory responses and angiogenesis. These results indicated that PLCε is crucial for BBN-induced bladder carcinogenesis as well as signaling downstream of Ras, and that PLCε is a candidate molecular target for the development of anti-cancer drugs. PMID:26782701

  4. Phospholipase D is a target for inhibition of astroglial proliferation by ethanol.

    PubMed

    Burkhardt, Ute; Wojcik, Bartosch; Zimmermann, Martina; Klein, Jochen

    2014-04-01

    The proliferation of astrocytes during early brain development is driven by growth factors and is accompanied by the activation of phospholipase D (PLD). Ethanol disrupts PLD signaling in astrocytes, a process which may contribute to delayed brain growth of fetuses exposed to alcohol during pregnancy. We here report that insulin-like growth factor 1 (IGF-1) is a strong mitogen for rat astrocytes (EC50 0.2 μg/ml) and a strong stimulator of astroglial PLD activity; both effects are inhibited by ethanol and 1-butanol, but not t-butanol, suggesting participation of PLD. Downregulation of PLD1 and exposure to the PLD1 inhibitor VU0359595 attenuated PLD activity and strongly reduced the mitogenic activity of serum and IGF-1. The PLD2 inhibitor VU0285655-1 also reduced PLD activity but had lesser effects on IGF-1-driven proliferation. PLD2 down-regulation affected serum - but not IGF-1-induced proliferation. In separate experiments, alcohol treatment of murine astrocytes taken from PLD-deficient animals revealed an insensitivity of PLD1(-/-) cells to 1-butanol whereas PLD2(-/-) cells were not affected. We conclude that astroglial proliferation induced by IGF-1 is critically dependent on the PLD signaling pathway, with a stronger contribution from PLD1 than PLD2. The teratogenic effects of ethanol may be explained, at least in part, by disruption of the IGF1-PLD signaling pathway. PMID:24262632

  5. Characterization of opiate receptor heterogeneity using affinity ligands and phospholipase A/sub 2/

    SciTech Connect

    Reichman, M.

    1985-01-01

    The primary aim of the dissertation was to study the heterogeneity of opiate receptors by utilizing affinity ligands, and by modification of the receptor lipid-microenvironment with phospholipase A/sub 2/ (PLA/sub 2/). The affinity ligands, 14-bromacetamidomorphine (BAM) and 14-chloroacetylnaltrexone (CAN), selectively inactivated high affinity dihydromorphine binding sites in an apparently irreversible manner (the inhibition was resistant to extensive washes of treated neural membrane homogenates). The inhibitory effect of PLA/sub 2/ (10 ng/ml) on opiate receptor subtypes was determined using (/sup 3/H)-dihydromorphine (..mu..-type agonist), (/sup 3/H)-enkephalin (delta agonist) and (/sup 3/H)-naloxone (..mu.. antagonist). PLA/sub 2/ abolished the high affinity antagonist binding site, whereas it inhibited high and low affinity agonist binding sites similarly. The results suggest that high affinity antagonist binding sites are different from high affinity agonist binding sites. Indirect binding assays demonstrated that the selectivities of ..mu..- and delta receptors are not affected significantly by PLA/sub 2/ treatment.

  6. An Effector Domain Mutant of Arf6 Implicates Phospholipase D in Endosomal Membrane RecyclingD⃞

    PubMed Central

    Jovanovic, Olivera A.; Brown, Fraser D.; Donaldson, Julie G.

    2006-01-01

    In this study, we investigated the role of phospholipase D (PLD) in mediating Arf6 function in cells. Expression of Arf6 mutants that are defective in activating PLD, Arf6N48R and Arf6N48I, inhibited membrane recycling to the plasma membrane (PM), resulting in an accumulation of tubular endosomal membranes. Additionally, unlike wild-type Arf6, neither Arf6 mutant could generate protrusions or recruit the Arf6 GTPase activating protein (GAP) ACAP1 onto the endosome in the presence of aluminum fluoride. Remarkably, all of these phenotypes, including accumulated tubular endosomes, blocked recycling, and failure to make protrusions and recruit ACAP effectively, could be recreated in either untransfected cells or cells expressing wild-type Arf6 by treatment with 1-butanol to inhibit the formation of phosphatidic acid (PA), the product of PLD. Moreover, most of the defects present in cells expressing Arf6N48R or N48I could be reversed by treatment with agents expected to elevate PA levels in cells. Together, these observations provide compelling evidence that Arf6 stimulation of PLD is required for endosomal membrane recycling and GAP recruitment. PMID:16280360

  7. Action of two phospholipases A2 purified from Bothrops alternatus snake venom on macrophages.

    PubMed

    Setúbal, S S; Pontes, A S; Furtado, J L; Xavier, C V; Silva, F L; Kayano, A M; Izidoro, L F M; Soares, A M; Calderon, L A; Stábeli, R G; Zuliani, J P

    2013-02-01

    The in vitro effects of BaltTX-I, a catalytically inactive Lys49 variant of phospholipase A2 (PLA2), and BaltTX-II, an Asp49 catalytically active PLA2 isolated from Bothrops alternatus snake venom, on thioglycollate-elicited macrophages (TG-macrophages) were investigated. At non-cytotoxic concentrations, the secretory PLA2 BaltTX-I but not BaltTX-II stimulated complement receptor-mediated phagocytosis. Pharmacological treatment of TG-macrophages with staurosporine, a protein kinase C (PKC) inhibitor, showed that this kinase is involved in the increase of serum-opsonized zymosan phagocytosis induced by BaltTX-I but not BaltTX-II secretory PLA2, suggesting that PKC may be involved in the stimulatory effect of this toxin in serum-opsonized zymosan phagocytosis. Moreover, BaltTX-I and -II induced superoxide production by TG-macrophages. This superoxide production stimulated by both PLA2s was abolished after treatment of cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Our experiments showed that, at non-cytotoxic concentrations, BaltTX-I may upregulate phagocytosis via complement receptors, and that both toxins upregulated the respiratory burst in TG-macrophages. PMID:23581990

  8. Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana

    PubMed Central

    Janda, Martin; Šašek, Vladimír; Chmelařová, Hana; Andrejch, Jan; Nováková, Miroslava; Hajšlová, Jana; Burketová, Lenka; Valentová, Olga

    2015-01-01

    Phytohormone salicylic acid (SA) is a crucial component of plant-induced defense against biotrophic pathogens. Although the key players of the SA pathway are known, there are still gaps in the understanding of the molecular mechanism and the regulation of particular steps. In our previous research, we showed in Arabidopsis suspension cells that n-butanol, which specifically modulates phospholipase D activity, significantly suppresses the transcription of the pathogenesis related (PR-1) gene, which is generally accepted as the SA pathway marker. In the presented study, we have investigated the site of n-butanol action in the SA pathway. We were able to show in Arabidopsis plants treated with SA that n-butanol inhibits the transcription of defense genes (PR-1, WRKY38). Fluorescence microscopy of Arabidopsis thaliana mutants expressing 35S::NPR1-GFP (nonexpressor pathogenesis related 1) revealed significantly decreased nuclear localization of NPR1 in the presence of n-butanol. On the other hand, n-butanol did not decrease the nuclear localization of NPR1 in 35S::npr1C82A-GFP and 35S::npr1C216A-GFP mutants constitutively expressing NPR1 monomers. Mass spectrometric analysis of plant extracts showed that n-butanol significantly changes the metabolic fingerprinting while t-butanol had no effect. We found groups of the plant metabolites, influenced differently by SA and n-butanol treatment. Thus, we proposed several metabolites as markers for n-butanol action. PMID:25741350

  9. Structural and phylogenetic basis for the classification of group III phospholipase A2.

    PubMed

    Hariprasad, Gururao; Srinivasan, Alagiri; Singh, Reema

    2013-09-01

    Secretory phospholipase A2 (PLA2) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to liberate arachidonic acid, a precursor of eicosanoids, that are known mediators of inflammation. The group III PLA2 enzymes are present in a wide array of organisms across many species with completely different functions. A detailed understanding of the structure and evolutionary proximity amongst the enzymes was carried out for a meaningful classification of this group. Fifty protein sequences from different species of the group were considered for a detailed sequence, structural and phylogenetic studies. In addition to the conservation of calcium binding motif and the catalytic histidine, the sequences exhibit specific 'amino acid signatures'. Structural analysis reveals that these enzymes have a conserved globular structure with species specific variations seen at the active site, calcium binding loop, hydrophobic channel, the C-terminal domain and the quaternary conformational state. Character and distance based phylogenetic analysis of these sequences are in accordance with the structural features. The outcomes of the structural and phylogenetic analysis lays a convincing platform for the classification the group III PLA2s into (1A) venomous insects; (IB) non-venomous insects; (II) mammals; (IIIA) gila monsters; (IIIB) reptiles, amphibians, fishes, sea anemones and liver fluke, and (IV) scorpions. This classification also helps to understand structure-function relationship, enzyme-substrate specificity and designing of potent inhibitors against the drug target isoforms. PMID:23793742

  10. Modulation of Insulin Sensitivity of Hepatocytes by the Pharmacological Downregulation of Phospholipase D

    PubMed Central

    Babenko, Nataliya A.; Kharchenko, Vitalina S.

    2015-01-01

    Background. The role of phospholipase D (PLD) as a positive modulator of glucose uptake activation by insulin in muscle and adipose cells has been demonstrated. The role of PLD in the regulation of glucose metabolism by insulin in the primary hepatocytes has been determined in this study. Methods. For this purpose, we studied effects of inhibitors of PLD on glucose uptake and glycogen synthesis stimulation by insulin. To determine the PLD activity, the method based on determination of products of transphosphatidylation reaction, phosphatidylethanol or phosphatidylbutanol, was used. Results. Inhibition of PLD by a general antagonist (1-butanol) or specific inhibitor, halopemide, or N-hexanoylsphingosine, or by cellular ceramides accumulated in doxorubicin-treated hepatocytes decreased insulin-stimulated glucose metabolism. Doxorubicin-induced hepatocytes resistance to insulin action could be abolished by inhibition of ceramide production. Halopemide could nullify this effect. Addition of propranolol, as well as inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) (wortmannin, LY294002) or suppressors of Akt phosphorylation/activity, luteolin-7-O-glucoside or apigenin-7-O-glucoside, to the culture media could block cell response to insulin action. Conclusion. PLD plays an important role in the insulin signaling in the hepatocytes. PLD is activated downstream of PI3-kinase and Akt and is highly sensitive to ceramide content in the liver cells. PMID:26089893

  11. The role of group IIF-secreted phospholipase A2 in epidermal homeostasis and hyperplasia.

    PubMed

    Yamamoto, Kei; Miki, Yoshimi; Sato, Mariko; Taketomi, Yoshitaka; Nishito, Yasumasa; Taya, Choji; Muramatsu, Kazuaki; Ikeda, Kazutaka; Nakanishi, Hiroki; Taguchi, Ryo; Kambe, Naotomo; Kabashima, Kenji; Lambeau, Gérard; Gelb, Michael H; Murakami, Makoto

    2015-10-19

    Epidermal lipids are important for skin homeostasis. However, the entire picture of the roles of lipids, particularly nonceramide lipid species, in epidermal biology still remains obscure. Here, we report that PLA2G2F, a functionally orphan-secreted phospholipase A2 expressed in the suprabasal epidermis, regulates skin homeostasis and hyperplasic disorders. Pla2g2f(-/-) mice had a fragile stratum corneum and were strikingly protected from psoriasis, contact dermatitis, and skin cancer. Conversely, Pla2g2f-overexpressing transgenic mice displayed psoriasis-like epidermal hyperplasia. Primary keratinocytes from Pla2g2f(-) (/-) mice showed defective differentiation and activation. PLA2G2F was induced by calcium or IL-22 in keratinocytes and preferentially hydrolyzed ethanolamine plasmalogen-bearing docosahexaenoic acid secreted from keratinocytes to give rise to unique bioactive lipids (i.e., protectin D1 and 9S-hydroxyoctadecadienoic acid) that were distinct from canonical arachidonate metabolites (prostaglandins and leukotrienes). Ethanolamine lysoplasmalogen, a PLA2G2F-derived marker product, rescued defective activation of Pla2g2f(-/-) keratinocytes both in vitro and in vivo. Our results highlight PLA2G2F as a previously unrecognized regulator of skin pathophysiology and point to this enzyme as a novel drug target for epidermal-hyperplasic diseases. PMID:26438362

  12. Structure of a king cobra phospholipase A2 determined from a hemihedrally twinned crystal.

    PubMed

    Xu, Sujuan; Gu, Lichuan; Wang, Qiuyan; Shu, Yuyan; Song, Shiying; Lin, Zhengjiong

    2003-09-01

    An acidic PLA(2) (OH APLA(2)-II) from the venom of Ophiophagus hannah (king cobra) shows greater phospholipase A(2) activity and weaker cardiotoxic and myotoxic activity than a homologous acidic PLA(2) from the same venom. The crystal of the enzyme belongs to space group P6(3). The crystals are invariably hemihedrally twinned, exhibiting perfect 622 Laue symmetry. The structure was determined by molecular replacement and refined using a hemihedral twinning program at 2.1 A resolution. The final model has reasonable stereochemistry and a crystallographic R factor of 19.5% (R(free) = 21.5%). The structure reveals the molecular arrangement and the mode of twinning. There are six independent molecules in the asymmetric unit. Owing to the presence of a non-crystallographic twofold parallel to the hemihedral twinning twofold, the molecular packing in the twinned crystal is extremely similar to that in an untwinned crystal for four of the molecules. This unique molecular arrangement may be related to the difficulty in recognizing the twinning. The structure was compared with the previously determined structure of a homologous acidic PLA(2) from the same source. The comparison shows structural changes that might be implicated in the increased catalytic activity and weakened toxicity. PMID:12925787

  13. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling.

    PubMed

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I; Nienhaus, G Ulrich; Gierschik, Peter

    2015-07-10

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca(2+). The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca(2+) and regulation of Ca(2+)-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca(2+) release from intracellular stores; (iii) Ca(2+) entry from the extracellular compartment; and (iv) nuclear translocation of the Ca(2+)-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca(2+) signaling. PMID:25903139

  14. Potent and selective fluoroketone inhibitors of group VIA calcium-independent phospholipase A2.

    PubMed

    Kokotos, George; Hsu, Yuan-Hao; Burke, John E; Baskakis, Constantinos; Kokotos, Christoforos G; Magrioti, Victoria; Dennis, Edward A

    2010-05-13

    Group VIA calcium-independent phospholipase A(2) (GVIA iPLA(2)) has recently emerged as a novel pharmaceutical target. We have now explored the structure-activity relationship between fluoroketones and GVIA iPLA(2) inhibition. The presence of a naphthyl group proved to be of paramount importance. 1,1,1-Trifluoro-6-(naphthalen-2-yl)hexan-2-one (FKGK18) is the most potent inhibitor of GVIA iPLA(2) (X(I)(50) = 0.0002) ever reported. Being 195 and >455 times more potent for GVIA iPLA(2) than for GIVA cPLA(2) and GV sPLA(2), respectively, makes it a valuable tool to explore the role of GVIA iPLA(2) in cells and in vivo models. 1,1,1,2,2,3,3-Heptafluoro-8-(naphthalene-2-yl)octan-4-one inhibited GVIA iPLA(2) with a X(I)(50) value of 0.001 while inhibiting the other intracellular GIVA cPLA(2) and GV sPLA(2) at least 90 times less potently. Hexa- and octafluoro ketones were also found to be potent inhibitors of GVIA iPLA(2); however, they are not selective. PMID:20369880

  15. Potent and Selective Fluoroketone Inhibitors of Group VIA Calcium-Independent Phospholipase A2

    PubMed Central

    Kokotos, George; Hsu, Yuan-Hao; Burke, John E.; Baskakis, Constantinos; Kokotos, Christoforos G.; Magrioti, Victoria; Dennis, Edward A.

    2010-01-01

    Group VIA calcium-independent phospholipase A2 (GVIA iPLA2) has recently emerged as a novel pharmaceutical target. We have now explored the structure-activity relationship between fluoroketones and GVIA iPLA2 inhibition. The presence of a naphthyl group proved to be of paramount importance. 1,1,1-Trifluoro-6-(naphthalen-2-yl)hexan-2-one (FKGK18) is the most potent inhibitor of GVIA iPLA2 (XI(50) 0.0002) ever reported. Being 195 and >455 times more potent for GVIA iPLA2 than for GIVA cPLA2 and GV sPLA2, respectively, makes it a valuable tool to explore the role of GVIA iPLA2 in cells and in vivo models. 1,1,1,2,2,3,3-Heptafluoro-8-(naphthalene-2-yl) octan-4-one inhibited GVIA iPLA2 with a XI(50) value of 0.001, while inhibiting the other intracellular GIVA cPLA2 and GV sPLA2 at least 90-times less potently. Hexa- and octa-fluoro ketones were also found to be potent inhibitors of GVIA iPLA2; however they are not selective. PMID:20369880

  16. Cytosolic Phospholipase A2 Protein as a Novel Therapeutic Target for Spinal Cord Injury

    PubMed Central

    Liu, Nai-Kui; Deng, Ling-Xiao; Zhang, Yi Ping; Lu, Qing-Bo; Wang, Xiao-Fei; Hu, Jian-Guo; Oakes, Eddie; Bonventre, Joseph V; Shields, Christopher B; Xu, Xiao-Ming

    2014-01-01

    Objective The objective of this study was to investigate whether cytosolic phospholipase A2 (cPLA2), an important isoform of PLA2 that mediates the release of arachidonic acid, plays a role in the pathogenesis of spinal cord injury (SCI). Methods A combination of molecular, histological, immunohistochemical, and behavioral assessments were used to test whether blocking cPLA2 activation pharmacologically or genetically reduced cell death, protected spinal cord tissue, and improved behavioral recovery after a contusive SCI performed at the 10th thoracic level in adult mice. Results SCI significantly increased cPLA2 expression and activation. Activated cPLA2 was localized mainly in neurons and oligodendrocytes. Notably, the SCI-induced cPLA2 activation was mediated by the extracellular signal-regulated kinase signaling pathway. In vitro, activation of cPLA2 by ceramide-1-phosphate or A23187 induced spinal neuronal death, which was substantially reversed by arachidonyl trifluoromethyl ketone, a cPLA2 inhibitor. Remarkably, blocking cPLA2 pharmacologically at 30 minutes postinjury or genetically deleting cPLA2 in mice ameliorated motor deficits, and reduced cell loss and tissue damage after SCI. Interpretation cPLA2 may play a key role in the pathogenesis of SCI, at least in the C