Sample records for human physiological body

  1. Earthing the human body influences physiologic processes.

    PubMed

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  2. Earthing the Human Body Influences Physiologic Processes

    PubMed Central

    Sokal, Karol

    2011-01-01

    Abstract Objectives This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments Five (5) experiments are presented: experiment 1—effect of earthing on calcium–phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2—effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3—effect of earthing on thyroid function (N = 12); experiment 4—effect of earthing on glucose concentration (N = 12); experiment 5—effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Results Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Conclusions Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium–phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems. PMID:21469913

  3. Modeling Physiological Systems in the Human Body as Networks of Quasi-1D Fluid Flows

    NASA Astrophysics Data System (ADS)

    Staples, Anne

    2008-11-01

    Extensive research has been done on modeling human physiology. Most of this work has been aimed at developing detailed, three-dimensional models of specific components of physiological systems, such as a cell, a vein, a molecule, or a heart valve. While efforts such as these are invaluable to our understanding of human biology, if we were to construct a global model of human physiology with this level of detail, computing even a nanosecond in this computational being's life would certainly be prohibitively expensive. With this in mind, we derive the Pulsed Flow Equations, a set of coupled one-dimensional partial differential equations, specifically designed to capture two-dimensional viscous, transport, and other effects, and aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. Our goal is to be able to perform faster-than-real time simulations of global processes in the human body on desktop computers.

  4. Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body.

    PubMed

    Psikuta, Agnes; Kuklane, Kalev; Bogdan, Anna; Havenith, George; Annaheim, Simon; Rossi, René M

    2016-03-01

    Combining the strengths of an advanced mathematical model of human physiology and a thermal manikin is a new paradigm for simulating thermal behaviour of humans. However, the forerunners of such adaptive manikins showed some substantial limitations. This project aimed to determine the opportunities and constraints of the existing thermal manikins when dynamically controlled by a mathematical model of human thermal physiology. Four thermal manikins were selected and evaluated for their heat flux measurement uncertainty including lateral heat flows between manikin body parts and the response of each sector to the frequent change of the set-point temperature typical when using a physiological model for control. In general, all evaluated manikins are suitable for coupling with a physiological model with some recommendations for further improvement of manikin dynamic performance. The proposed methodology is useful to improve the performance of the adaptive manikins and help to provide a reliable and versatile tool for the broad research and development domain of clothing, automotive and building engineering.

  5. The Virtual Physiological Human

    PubMed Central

    Coveney, Peter V.; Diaz, Vanessa; Hunter, Peter; Kohl, Peter; Viceconti, Marco

    2011-01-01

    The Virtual Physiological Human is synonymous with a programme in computational biomedicine that aims to develop a framework of methods and technologies to investigate the human body as a whole. It is predicated on the transformational character of information technology, brought to bear on that most crucial of human concerns, our own health and well-being.

  6. Building an experimental model of the human body with non-physiological parameters.

    PubMed

    Labuz, Joseph M; Moraes, Christopher; Mertz, David R; Leung, Brendan M; Takayama, Shuichi

    2017-03-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform - commonly called a 'human-on-a-chip (HOC)' - requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo -like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O 2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10 -6 ) microfluidic model of the human body.

  7. Building an experimental model of the human body with non-physiological parameters

    PubMed Central

    Labuz, Joseph M.; Moraes, Christopher; Mertz, David R.; Leung, Brendan M.; Takayama, Shuichi

    2017-01-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform — commonly called a ‘human-on-a-chip (HOC)’ — requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo-like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10−6) microfluidic model of the human body. PMID:28713851

  8. Human physiology in space

    NASA Technical Reports Server (NTRS)

    Vernikos, J.

    1996-01-01

    The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.

  9. Human Physiological Responses to Acute and Chronic Cold Exposure

    NASA Technical Reports Server (NTRS)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  10. Research on human physiological parameters intelligent clothing based on distributed Fiber Bragg Grating

    NASA Astrophysics Data System (ADS)

    Miao, Changyun; Shi, Boya; Li, Hongqiang

    2008-12-01

    A human physiological parameters intelligent clothing is researched with FBG sensor technology. In this paper, the principles and methods of measuring human physiological parameters including body temperature and heart rate in intelligent clothing with distributed FBG are studied, the mathematical models of human physiological parameters measurement are built; the processing method of body temperature and heart rate detection signals is presented; human physiological parameters detection module is designed, the interference signals are filtered out, and the measurement accuracy is improved; the integration of the intelligent clothing is given. The intelligent clothing can implement real-time measurement, processing, storage and output of body temperature and heart rate. It has accurate measurement, portability, low cost, real-time monitoring, and other advantages. The intelligent clothing can realize the non-contact monitoring between doctors and patients, timely find the diseases such as cancer and infectious diseases, and make patients get timely treatment. It has great significance and value for ensuring the health of the elders and the children with language dysfunction.

  11. Molecular physiology of weight regulation in mice and humans

    PubMed Central

    Leibel, RL

    2009-01-01

    Evolutionary considerations relating to efficiency in reproduction, and survival in hostile environments, suggest that body energy stores are sensed and actively regulated, with stronger physiological and behavioral responses to loss than gain of stored energy. Many physiological studies support this inference, and suggest that a critical axis runs between body fat and the hypothalamus. The molecular cloning of leptin and its receptor—projects based explicitly on the search for elements in this axis—confirmed the existence of this axis and provided important tools with which to understand its molecular physiology. Demonstration of the importance of this soma-brain reciprocal connection in body weight regulation in humans has been pursued using both classical genetic approaches and studies of physiological responses to experimental weight perturbation. This paper reviews the history of the rationale and methodology of the cloning of leptin (Lep) and the leptin receptor (Lepr), and describes some of the clinical investigation characterizing this axis. PMID:19136999

  12. Human Physiology and the Environment in Health and Disease: Readings from Scientific American.

    ERIC Educational Resources Information Center

    1976

    This anthology of articles is designed to supplement standard texts for courses in human physiology, environmental physiology, anatomy and physiology, pathobiology, general biology, and environmental medicine. It focuses on the influences of the external environment on the body, the physiological responses to environmental challenges, and the ways…

  13. Authorized Course of Instruction for the Quinmester Program. Science: Introduction to Anatomy and Physiology; Human Reproduction; Man and Disease; Man's Senses; and Introduction to the Human Body.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Performance objectives are stated for each of the five secondary school units included in this package of instructional guides prepared for the Dade County Florida Quinmester Program. All five units are concerned with aspects of physiology; three require no prerequisite study of biology ("Introduction to the Human Body,""Man and…

  14. Advancements in remote physiological measurement and applications in human-computer interaction

    NASA Astrophysics Data System (ADS)

    McDuff, Daniel

    2017-04-01

    Physiological signals are important for tracking health and emotional states. Imaging photoplethysmography (iPPG) is a set of techniques for remotely recovering cardio-pulmonary signals from video of the human body. Advances in iPPG methods over the past decade combined with the ubiquity of digital cameras presents the possibility for many new, lowcost applications of physiological monitoring. This talk will highlight methods for recovering physiological signals, work characterizing the impact of video parameters and hardware on these measurements, and applications of this technology in human-computer interfaces.

  15. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  16. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  17. A long term model of circulation. [human body

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    A quantitative approach to modeling human physiological function, with a view toward ultimate application to long duration space flight experiments, was undertaken. Data was obtained on the effect of weightlessness on certain aspects of human physiological function during 1-3 month periods. Modifications in the Guyton model are reviewed. Design considerations for bilateral interface models are discussed. Construction of a functioning whole body model was studied, as well as the testing of the model versus available data.

  18. Towards an Understanding of Physiological Body Mass Regulation: Seasonal Animal Models.

    PubMed

    Mercer, J G; Adam, C L; Morgan, P J

    2000-01-01

    This review is based around a number of interlinked hypotheses that can be summarised as follows: (i) mammalian body mass is regulated, (ii) the mechanisms that effect this regulation are common to all mammalian species, including humans, (iii) the neurochemical substrates involved in long term body mass regulation and in determining the level of body mass that will be defended may not be the same as those involved in short term energy homeostasis, or body mass defence, or may be differentially engaged, and (iv) "appropriate" body mass is encoded somewhere within the mammalian brain and acts as a comparator to influence both nutritional and reproductive physiology. These issues are of direct relevance to the epidemic of obesity in the Westernised human population and the poor success rate of conventional weight loss strategies. It is our contention that seasonal rodent models, and the Siberian hamster in particular, represent extremely valuable tools for the study of the mechanistic basis of body mass regulation. The Siberian hamster model is often perceived as an unusual mammalian variant that has evolved an almost counter-intuitive strategy for surviving periods of anticipated seasonal food shortage. However, there is compelling evidence that these animals are able to adjust their body mass continually and progressively according to their photoperiodic history, i.e. a seasonally-appropriate body mass. These adjustments to appropriate body mass are memorised even after the animals have been driven away from their normal body mass trajectory by imposed food restriction. Thus, photoperiod, acting through the pineal hormone, melatonin, is able to reset the desired body mass for a given time in the seasonal cycle. Importantly, daylength provides a tool to manipulate the body mass control system in an entirely physiological and stress-free manner. While resetting of body mass by photoperiod represents a level of control apparently confined to seasonal mammals, it has

  19. Bayesian inference of physiologically meaningful parameters from body sway measurements.

    PubMed

    Tietäväinen, A; Gutmann, M U; Keski-Vakkuri, E; Corander, J; Hæggström, E

    2017-06-19

    The control of the human body sway by the central nervous system, muscles, and conscious brain is of interest since body sway carries information about the physiological status of a person. Several models have been proposed to describe body sway in an upright standing position, however, due to the statistical intractability of the more realistic models, no formal parameter inference has previously been conducted and the expressive power of such models for real human subjects remains unknown. Using the latest advances in Bayesian statistical inference for intractable models, we fitted a nonlinear control model to posturographic measurements, and we showed that it can accurately predict the sway characteristics of both simulated and real subjects. Our method provides a full statistical characterization of the uncertainty related to all model parameters as quantified by posterior probability density functions, which is useful for comparisons across subjects and test settings. The ability to infer intractable control models from sensor data opens new possibilities for monitoring and predicting body status in health applications.

  20. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology.

    PubMed

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.

  1. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology

    PubMed Central

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology. PMID:27227066

  2. Physiologically based pharmacokinetic modeling for predicting irinotecan exposure in human body.

    PubMed

    Fan, Yingfang; Mansoor, Najia; Ahmad, Tasneem; Khan, Rafeeq Alam; Czejka, Martin; Sharib, Syed; Yang, Dong-Hua; Ahmed, Mansoor

    2017-07-18

    Colorectal cancer is the third leading cause of cancer-related deaths in the United States. Treatment of colorectal cancer remains a challenge to clinicians as well as drug developers. Irinotecan, a Camptothecin derivative, is successfully used for the treatment of this rapidly progressing malignancy and finds its place in the first line of therapeutic agents. Irinotecan is also effective in treating SCLC, malignant glioma and pancreatic adenocarcinoma. However, its adverse effects limit its clinical application. Mainly metabolized by hepatic route, and excreted through biliary tract, this dug has been found to possess high variation in patients in its pharmacokinetic (PK) profile. Physiologically based pharmacokinetic (PBPK) models using compartmental approach have attained their position to foresee the possible PK behavior of different drugs before their administration to patients and such models have been proposed for several anticancer agents. In this work, we used WB-PBPK technology to develop a model in a population of tumor patients who used IV irinotecan therapy. This model depicted the concentration of drug and its pharmacologically active metabolite in human body over a specific period of time. Knowledge about pharmacokinetic parameters is extracted from this profile and the model is evaluated by the observed results of clinical study presented in literature. The predicted behavior of the drug by this approach is in good agreement with the observed results and can aid in further exploration of PK of irinotecan in cancer patients, especially in those concomitantly suffer from other morbidity.

  3. Physiologically based pharmacokinetic modeling for predicting irinotecan exposure in human body

    PubMed Central

    Ahmad, Tasneem; Khan, Rafeeq Alam; Czejka, Martin; Sharib, Syed; Yang, Dong-Hua; Ahmed, Mansoor

    2017-01-01

    Colorectal cancer is the third leading cause of cancer-related deaths in the United States. Treatment of colorectal cancer remains a challenge to clinicians as well as drug developers. Irinotecan, a Camptothecin derivative, is successfully used for the treatment of this rapidly progressing malignancy and finds its place in the first line of therapeutic agents. Irinotecan is also effective in treating SCLC, malignant glioma and pancreatic adenocarcinoma. However, its adverse effects limit its clinical application. Mainly metabolized by hepatic route, and excreted through biliary tract, this dug has been found to possess high variation in patients in its pharmacokinetic (PK) profile. Physiologically based pharmacokinetic (PBPK) models using compartmental approach have attained their position to foresee the possible PK behavior of different drugs before their administration to patients and such models have been proposed for several anticancer agents. In this work, we used WB-PBPK technology to develop a model in a population of tumor patients who used IV irinotecan therapy. This model depicted the concentration of drug and its pharmacologically active metabolite in human body over a specific period of time. Knowledge about pharmacokinetic parameters is extracted from this profile and the model is evaluated by the observed results of clinical study presented in literature. The predicted behavior of the drug by this approach is in good agreement with the observed results and can aid in further exploration of PK of irinotecan in cancer patients, especially in those concomitantly suffer from other morbidity. PMID:28636998

  4. The cooperative economy of food: Implications for human life history and physiology.

    PubMed

    Kramer, Karen L

    2018-04-06

    The human diet has undergone substantial modifications since the emergence of modern humans and varies considerably in today's traditional societies. Despite these changes and cross-cultural differences, the human diet can be characterized by several common elements. These include diverse, high quality foods, technological complexity to acquire and process food, and the establishment of home bases for storage, processing and consumption. Together these aspects of the human diet challenge any one individual to independently meet all of his or her daily caloric needs. Humans solve this challenge through food sharing, labor exchange and the division of labor. The cooperative nature of the human diet is associated with many downstream effects on our life history and physiology. This paper overviews the constellation of traits that likely led to a cooperative economy of food, and draws on ethnographic examples to illustrate its effects on human life history and physiology. Two detailed examples using body composition, time allocation and food acquisition data show how cooperation among Savanna Pumé hunter-gatherers affects activity levels, sexual dimorphism in body fat, maturational pace and age at first birth. Copyright © 2018. Published by Elsevier Inc.

  5. Wearable health monitoring using capacitive voltage-mode Human Body Communication.

    PubMed

    Maity, Shovan; Das, Debayan; Sen, Shreyas

    2017-07-01

    Rapid miniaturization and cost reduction of computing, along with the availability of wearable and implantable physiological sensors have led to the growth of human Body Area Network (BAN) formed by a network of such sensors and computing devices. One promising application of such a network is wearable health monitoring where the collected data from the sensors would be transmitted and analyzed to assess the health of a person. Typically, the devices in a BAN are connected through wireless (WBAN), which suffers from energy inefficiency due to the high-energy consumption of wireless transmission. Human Body Communication (HBC) uses the relatively low loss human body as the communication medium to connect these devices, promising order(s) of magnitude better energy-efficiency and built-in security compared to WBAN. In this paper, we demonstrate a health monitoring device and system built using Commercial-Off-The-Shelf (COTS) sensors and components, that can collect data from physiological sensors and transmit it through a) intra-body HBC to another device (hub) worn on the body or b) upload health data through HBC-based human-machine interaction to an HBC capable machine. The system design constraints and signal transfer characteristics for the implemented HBC-based wearable health monitoring system are measured and analyzed, showing reliable connectivity with >8× power savings compared to Bluetooth low-energy (BTLE).

  6. The Virtual Physiological Human - a European initiative for in silico human modelling -.

    PubMed

    Viceconti, Marco; Clapworthy, Gordon; Van Sint Jan, Serge

    2008-12-01

    The Virtual Physiological Human (VPH) is an initiative, strongly supported by the European Commission (EC), that seeks to develop an integrated model of human physiology at multiple scales from the whole body through the organ, tissue, cell and molecular levels to the genomic level. VPH had its beginnings in 2005 with informal discussions amongst like-minded scientists which led to the STEP project, a Coordination Action funded by the EC that began in early 2006. The STEP project greatly accelerated the progress of the VPH and proved to be a catalyst for wide-ranging discussions within Europe and for outreach activities designed to develop a broad international approach to the huge scientific and technological challenges involved in this area. This paper provides an overview of the VPH and the developments it has engendered in the rapidly expanding worldwide activities associated with the physiome. It then uses one particular project, the Living Human Project, to illustrate the type of advances that are taking place to further the aims of the VPH and similar initiatives worldwide.

  7. The Effects Of An Exercise Physiology Program on Physical Fitness Variables, Body Satisfaction, and Physiology Knowledge.

    ERIC Educational Resources Information Center

    Perry, Arlette C.; Rosenblatt, Evelyn S.; Kempner, Lani; Feldman, Brandon B.; Paolercio, Maria A.; Van Bemden, Angie L.

    2002-01-01

    Examined the effects of an exercise physiology program on high school students' physical fitness, body satisfaction, and physiology knowledge. Intervention students received exercise physiology theory and active aerobic and resistance exercise within their biology course. Data from student surveys and measurements indicated that the integrated…

  8. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response

    NASA Astrophysics Data System (ADS)

    Psikuta, Agnes; Mert, Emel; Annaheim, Simon; Rossi, René M.

    2018-02-01

    To evaluate the quality of new energy-saving and performance-supporting building and urban settings, the thermal sensation and comfort models are often used. The accuracy of these models is related to accurate prediction of the human thermo-physiological response that, in turn, is highly sensitive to the local effect of clothing. This study aimed at the development of an empirical regression model of the air gap thickness and the contact area in clothing to accurately simulate human thermal and perceptual response. The statistical model predicted reliably both parameters for 14 body regions based on the clothing ease allowances. The effect of the standard error in air gap prediction on the thermo-physiological response was lower than the differences between healthy humans. It was demonstrated that currently used assumptions and methods for determination of the air gap thickness can produce a substantial error for all global, mean, and local physiological parameters, and hence, lead to false estimation of the resultant physiological state of the human body, thermal sensation, and comfort. Thus, this model may help researchers to strive for improvement of human thermal comfort, health, productivity, safety, and overall sense of well-being with simultaneous reduction of energy consumption and costs in built environment.

  9. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    NASA Technical Reports Server (NTRS)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  10. Columbus payload requirements in human physiology

    NASA Astrophysics Data System (ADS)

    Stegemann, Juergen

    1993-03-01

    Most of the biological feedback loops in the human body are interrelated. This means that several different parameters have to be recorded simultaneously to understand the interrelationship of different subsystems within the body when fast and slow adaptation processes are to be studied. This determines the requirements for the payload in the Columbus module. In 1988 ESA asked some European scientists in different fields of physiology to provide a 'science study' for the Columbus payload requirements. Their report was the basis of a phase A study completed in December 1991, concerning the 'ANTHROLAB', a laboratory that covers all presently known research challenges in this area. Anthrolab is more or less an improvement of the Anthrorack to be flown on the German Spacelab mission D-2 and on the Columbus precursor flight E-1. Beside the present Anthrorack design, Anthrolab will also provide subelements for vestibular, neurophysiological, and biomechanical research.

  11. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    PubMed

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration. Published by Elsevier B.V.

  12. Effect of clothing material on thermal responses of the human body

    NASA Astrophysics Data System (ADS)

    Fengzhi, Li; Yi, Li

    2005-09-01

    The influence of clothing material on thermal responses of the human body are investigated by using an integrated model of a clothed thermoregulatory human body. A modified 25-nodes model considering the sweat accumulation on the skin surface is applied to simulate the human physiological regulatory responses. The heat and moisture coupled transfer mechanisms, including water vapour diffusion, the moisture evaporation/condensation, the moisture sorbtion/desorption by fibres, liquid sweat transfer under capillary pressure, and latent heat absorption/release due to phase change, are considered in the clothing model. On comparing prediction results with the experimental data in the literature, the proposed model seems able to predict dynamic heat and moisture transfer between the human body and the clothing system. The human body's thermal responses and clothing temperature and moisture variations are compared for different clothing materials during transient periods. We concluded that the hygroscopicity of clothing materials influences the human thermoregulation process significantly during environmental transients.

  13. HUMAN--A Comprehensive Physiological Model.

    ERIC Educational Resources Information Center

    Coleman, Thomas G.; Randall, James E.

    1983-01-01

    Describes computer program (HUMAN) used to simulate physiological experiments on patient pathology. Program (available from authors, including versions for microcomputers) consists of dynamic interactions of over 150 physiological variables and integrating approximations of cardiovascular, renal, lung, temperature regulation, and some hormone…

  14. An Investigative Laboratory Course in Human Physiology Using Computer Technology and Collaborative Writing

    ERIC Educational Resources Information Center

    FitzPatrick, Kathleen A.

    2004-01-01

    Active investigative student-directed experiences in laboratory science are being encouraged by national science organizations. A growing body of evidence from classroom assessment supports their effectiveness. This study describes four years of implementation and assessment of an investigative laboratory course in human physiology for 65…

  15. Design Projects in Human Anatomy & Physiology

    ERIC Educational Resources Information Center

    Polizzotto, Kristin; Ortiz, Mary T.

    2008-01-01

    Very often, some type of writing assignment is required in college entry-level Human Anatomy and Physiology courses. This assignment can be anything from an essay to a research paper on the literature, focusing on a faculty-approved topic of interest to the student. As educators who teach Human Anatomy and Physiology at an urban community college,…

  16. The defence of body weight: a physiological basis for weight regain after weight loss.

    PubMed

    Sumithran, Priya; Proietto, Joseph

    2013-02-01

    Although weight loss can usually be achieved by restricting food intake, the majority of dieters regain weight over the long-term. In the hypothalamus, hormonal signals from the gastrointestinal tract, adipose tissue and other peripheral sites are integrated to influence appetite and energy expenditure. Diet-induced weight loss is accompanied by several physiological changes which encourage weight regain, including alterations in energy expenditure, substrate metabolism and hormone pathways involved in appetite regulation, many of which persist beyond the initial weight loss period. Safe effective long-term strategies to overcome these physiological changes are needed to help facilitate maintenance of weight loss. The present review, which focuses on data from human studies, begins with an outline of body weight regulation to provide the context for the subsequent discussion of short- and long-term physiological changes which accompany diet-induced weight loss.

  17. Physiological aspects of human milk lipids.

    PubMed

    Koletzko, B; Rodriguez-Palmero, M; Demmelmair, H; Fidler, N; Jensen, R; Sauerwald, T

    2001-11-01

    Human milk from healthy and well-nourished mothers is the preferred form of feeding for all healthy newborn infants. The nutrient supply with human milk supports normal growth and development of the infant. Here the general characteristics of human milk lipids and recent knowledge on lactational physiology, composition and functional aspects of human milk lipids are discussed. Lipids in human milk represent the main source of energy for the breastfed baby and supply essential nutrients such as fat-soluble vitamins and polyunsaturated fatty acids (PUFA). The essential fatty acids linoleic and alpha-linolenic acids (LA and ALA) are precursors of long-chain polyunsaturated fatty acids (LC-PUFA), including arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acids (AA and DHA). LC-PUFA serve as indispensable structural components of cellular membranes and are deposited to a considerable extent in the growing brain and the retina during perinatal development. The supply of preformed LC-PUFA with human milk lipids has been related to functional outcomes of the recipient infants such as visual acuity and development of cognitive functions during the first year of life. Recent stable isotope studies indicate that the major portion of milk PUFA is not derived directly from the maternal diet, but stems from endogenous body stores. Thus, not only the woman's current but also her long-term dietary intake is of marked relevance for milk fat composition.

  18. Inclusion bodies in loggerhead erythrocytes are associated with unstable hemoglobin and resemble human Heinz bodies.

    PubMed

    Basile, Filomena; Di Santi, Annalisa; Caldora, Mercedes; Ferretti, Luigi; Bentivegna, Flegra; Pica, Alessandra

    2011-08-01

    The aim of this study was to clarify the role of the erythrocyte inclusions found during the hematological screening of loggerhead population of the Mediterranean Sea. We studied the erythrocyte inclusions in blood specimens collected from six juvenile and nine adult specimens of the loggerhead turtle, Caretta caretta, from the Adriatic and Tyrrhenian Seas. Our study indicates that the percentage of mature erythrocytes containing inclusions ranged from 3 to 82%. Each erythrocyte contained only one round inclusion body. Inclusion bodies stained with May Grünwald-Giemsa show that their cytochemical and ultrastructure characteristics are identical to those of human Heinz bodies. Because Heinz bodies originate from the precipitation of unstable hemoglobin (Hb) and cause globular osmotic resistance to increase, we analyzed loggerhead Hb using electrophoresis and high-performance liquid chromatography to detect and quantitate Hb fractions. We also tested the resistance of Hb to alkaline pH, heat, isopropanol denaturation, and globular osmosis. Our hemogram results excluded the occurrence of any infection, which could be associated with an inclusion body, in all the specimens. Negative Feulgen staining indicated that the inclusion bodies are not derived from DNA fragmentation. We hypothesize that amino acid substitutions could explain why loggerhead Hb precipitates under normal physiologic conditions, forming Heinz bodies. The identification of inclusion bodies in loggerhead erythrocytes allow us to better understand the haematological characteristics and the physiology of these ancient reptiles, thus aiding efforts to conserve such an endangered species. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  19. Environmental and biological context modulates the physiological stress response of bats to human disturbance.

    PubMed

    Phelps, Kendra L; Kingston, Tigga

    2018-06-01

    Environmental and biological context play significant roles in modulating physiological stress responses of individuals in wildlife populations yet are often overlooked when evaluating consequences of human disturbance on individual health and fitness. Furthermore, most studies gauge individual stress responses based on a single physiological biomarker, typically circulating glucocorticoid concentrations, which limits interpretation of the complex, multifaceted responses of individuals to stressors. We selected four physiological biomarkers to capture short-term and prolonged stress responses in a widespread cave-roosting bat, Hipposideros diadema, across multiple gradients of human disturbance in and around caves in the Philippines. We used conditional inference trees and random forest analysis to determine the role of environmental quality (cave complexity, available roosting area), assemblage composition (intra- and interspecific associations and species richness), and intrinsic characteristics of individuals (sex and reproductive status) in modulating responses to disturbance. Direct cave disturbance (hunting pressure and human visitation) was the primary driver of neutrophil-to-lymphocyte ratios, with lower ratios associated with increased disturbance, while context-specific factors were more important in explaining total leukocyte count, body condition, and ectoparasite load. Moreover, conditional inference trees revealed complex interactions among human disturbance and modulating factors. Cave complexity often ameliorated individual responses to human disturbance, whereas conspecific abundance often compounded responses. Our study demonstrates the importance of an integrated approach that incorporates environmental and biological context when identifying drivers of physiological responses, and that assesses responses to gradients of direct and indirect disturbance using multiple complementary biomarkers.

  20. Sleep and bodily functions: the physiological interplay between body homeostasis and sleep homeostasis.

    PubMed

    Amici, R; Bastianini, S; Berteotti, C; Cerri, M; Del Vecchio, F; Lo Martire, V; Luppi, M; Perez, E; Silvani, A; Zamboni, G; Zoccoli, G

    2014-01-01

    Body homeostasis and sleep homeostasis may both rely on the complex integrative activity carried out by the hypothalamus. Thus, the three main wake-sleep (WS) states (i.e. wakefulness, NREM sleep, and REM sleep) may be better understood if the different cardio-respiratory and metabolic parameters, which are under the integrated control of the autonomic and the endocrine systems, are studied during sleep monitoring. According to this view, many physiological events can be considered as an expression of the activity that physiological regulations should perform in order to cope with the need to fulfill body and sleep homeostasis. This review is aimed at making an assessment of data showing the existence of a physiological interplay between body homeostasis and sleep homeostasis, starting from the spontaneous changes observed in the somatic and autonomic activity during sleep, through evidence showing the deep changes occurring in the central integration of bodily functions during the different WS states, to the changes in the WS states observed when body homeostasis is challenged by the external environment and when the return to normal ambient conditions allows sleep homeo- stasis to run without apparent physiological restrictions. The data summarized in this review suggest that an approach to the dichotomy between NREM and REM sleep based on physiological regulations may offer a framework within which observations that a traditional behavioral approach may overlook can be interpreted. The study of the interplay between body and sleep homeostasis appears, therefore, to be a way to understand the function of complex organisms beyond that of the specific regulations.

  1. A stochastic whole-body physiologically based pharmacokinetic model to assess the impact of inter-individual variability on tissue dosimetry over the human lifespan.

    PubMed

    Beaudouin, Rémy; Micallef, Sandrine; Brochot, Céline

    2010-06-01

    Physiologically based pharmacokinetic (PBPK) models have proven to be successful in integrating and evaluating the influence of age- or gender-dependent changes with respect to the pharmacokinetics of xenobiotics throughout entire lifetimes. Nevertheless, for an effective application of toxicokinetic modelling to chemical risk assessment, a PBPK model has to be detailed enough to include all the multiple tissues that could be targeted by the various xenobiotics present in the environment. For this reason, we developed a PBPK model based on a detailed compartmentalization of the human body and parameterized with new relationships describing the time evolution of physiological and anatomical parameters. To take into account the impact of human variability on the predicted toxicokinetics, we defined probability distributions for key parameters related to the xenobiotics absorption, distribution, metabolism and excretion. The model predictability was evaluated by a direct comparison between computational predictions and experimental data for the internal concentrations of two chemicals (1,3-butadiene and 2,3,7,8-tetrachlorodibenzo-p-dioxin). A good agreement between predictions and observed data was achieved for different scenarios of exposure (e.g., acute or chronic exposure and different populations). Our results support that the general stochastic PBPK model can be a valuable computational support in the area of chemical risk analysis. (c)2010 Elsevier Inc. All rights reserved.

  2. MRI-based three-dimensional thermal physiological characterization of thyroid gland of human body.

    PubMed

    Jin, Chao; He, Zhi Zhu; Yang, Yang; Liu, Jing

    2014-01-01

    This article is dedicated to present a MRI (magnetic resonance imaging) based three-dimensional finite element modeling on the thermal manifestations relating to the pathophysiology of thyroid gland. An efficient approach for identifying the metabolic dysfunctions of thyroid has also been demonstrated through tracking the localized non-uniform thermal distribution or enhanced dynamic imaging. The temperature features over the skin surface and thyroid domain have been characterized using the numerical simulation and experimental measurement which will help better interpret the thermal physiological mechanisms of the thyroid under steady-state or water-cooling condition. Further, parametric simulations on the hypermetabolism symptoms of hyperthyroidism and thermal effects within thyroid domain caused by varying breathing airflow in the trachea and blood-flow in artery and vein were performed. It was disclosed that among all the parameters, the airflow volume has the largest effect on the total heat flux of thyroid surface. However, thermal contributions caused by varying the breathing frequency and blood-flow velocity are negligibly small. The present study suggests a generalized way for simulating the close to reality physiological behavior or process of human thyroid, which is of significance for disease diagnosis and treatment planning. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. [Multifaceted body. I. The bodies of medicine].

    PubMed

    Saraga, M; Bourquin, C; Wykretowicz, H; Stiefel, F

    2015-02-11

    The human body is the object upon which medicine is acting, but also lived reality, image, symbol, representation and the object of elaboration and theory. All these elements which constitute the body influence the way medicine is treating it. In this series of three articles, we address the human body from various perspectives: medical (1), phenomenological (2), psychosomatic and socio-anthropological (3). This first article discusses four distinct types of representation of the body within medicine, each related to a specific epistemology and shaping a distinct kind of clinical legitimacy: the body-object of anatomy, the body-machine of physiology, the cybernetic body of biology, the statistical body of epidemiology.

  4. Population Physiologically-Based Pharmacokinetic Modeling for the Human Lactational Transfer of PCB 153 with Consideration of Worldwide Human Biomonitoring Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redding, Laurel E.; Sohn, Michael D.; McKone, Thomas E.

    2008-03-01

    We developed a physiologically based pharmacokinetic model of PCB 153 in women, and predict its transfer via lactation to infants. The model is the first human, population-scale lactational model for PCB 153. Data in the literature provided estimates for model development and for performance assessment. Physiological parameters were taken from a cohort in Taiwan and from reference values in the literature. We estimated partition coefficients based on chemical structure and the lipid content in various body tissues. Using exposure data in Japan, we predicted acquired body burden of PCB 153 at an average childbearing age of 25 years and comparemore » predictions to measurements from studies in multiple countries. Forward-model predictions agree well with human biomonitoring measurements, as represented by summary statistics and uncertainty estimates. The model successfully describes the range of possible PCB 153 dispositions in maternal milk, suggesting a promising option for back estimating doses for various populations. One example of reverse dosimetry modeling was attempted using our PBPK model for possible exposure scenarios in Canadian Inuits who had the highest level of PCB 153 in their milk in the world.« less

  5. Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and Insulin Sensitivity in Humans

    PubMed Central

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Annamalai, Palam; Enerbäck, Sven; Lidell, Martin E.; Saraf, Manish K.; Labbe, Sebastien M.; Hurren, Nicholas M.; Yfanti, Christina; Chao, Tony; Andersen, Clark R.; Cesani, Fernando; Hawkins, Hal

    2014-01-01

    Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT+) men and five BAT-negative (BAT−) men under thermoneutral conditions and after prolonged (5–8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT+ group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans. PMID:25056438

  6. Hypoxia regulates microRNA expression in the human carotid body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkrtchian, Souren, E-mail: souren.mkrtchian@ki.se; Lee, Kian Leong, E-mail: csilkl@nus.edu.sg; Kåhlin, Jessica

    The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentiallymore » regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins. - Highlights: • Hypoxia triggers differential expression of many miRNAs in the human carotid body. • This can lead to the upregulation of proliferation and immune response functions. • CB expression profile in the carotid body resembles the miRNA expression pattern in the brain. • miRNAs are involved in the regulation of carotid body functions including oxygen sensing.« less

  7. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health.

    PubMed

    Leulier, François; MacNeil, Lesley T; Lee, Won-Jae; Rawls, John F; Cani, Patrice D; Schwarzer, Martin; Zhao, Liping; Simpson, Stephen J

    2017-03-07

    Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Aging human body: changes in bone, muscle and body fat with consequent changes in nutrient intake.

    PubMed

    JafariNasabian, Pegah; Inglis, Julia E; Reilly, Wendimere; Kelly, Owen J; Ilich, Jasminka Z

    2017-07-01

    Aging affects almost all physiological processes, but changes in body composition and body phenotype are most observable. In this review, we focus on these changes, including loss of bone and muscle and increase in body fat or redistribution of the latter, possibly leading to osteosarcopenic obesity syndrome. We also address low-grade chronic inflammation, prevalent in aging adults and a cause of many disorders including those associated with body composition. Changes in dietary intake and nutritional requirements of older individuals, that all may lead to some disturbances on tissue and organ levels, are discussed as well. Finally, we discuss the hormonal changes in the aging body, considering each of the tissues, bone, muscle and fat as separate endocrine organs, but yet in the continuous interface and communication with each other. Although there are still many unanswered questions in this field, this review will enable the readers to better understand the aging human body and measures needing to be implemented toward reducing impaired health and disability in older individuals. © 2017 Society for Endocrinology.

  9. Design of wearable hybrid generator for harvesting heat energy from human body depending on physiological activity

    NASA Astrophysics Data System (ADS)

    Kim, Myoung-Soo; Kim, Min-Ki; Kim, Kyongtae; Kim, Yong-Jun

    2017-09-01

    We developed a prototype of a wearable hybrid generator (WHG) that is used for harvesting the heat energy of the human body. This WHG is constructed by integrating a thermoelectric generator (TEG) in a circular mesh polyester knit fabric, circular-shaped pyroelectric generator (PEG), and quick sweat-pickup/dry-fabric. The fabric packaging enables the TEG part of the WHG to generate energy steadily while maintaining a temperature difference in extreme temperature environments. Moreover, when the body sweats, the evaporation heat of the sweat leads to thermal fluctuations in the WHG. This phenomenon further leads to an increase in the output power of the WHG. These characteristics of the WHG make it possible to produce electrical energy steadily without reduction in the conversion efficiency, as both TEG and PEG use the same energy source of the human skin and the ambient temperature. Under a temperature difference of ˜6.5 °C and temperature change rate of ˜0.62 °C s-1, the output power and output power density of the WHG, respectively, are ˜4.5 nW and ˜1.5 μW m-2. Our hybrid approach will provide a framework to enhance the output power of the wearable generators that harvest heat energy from human body in various environments.

  10. Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.

    PubMed

    Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej

    2016-11-01

    The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  11. An integrated approach to develop, validate and operate thermo-physiological human simulator for the development of protective clothing.

    PubMed

    Psikuta, Agnes; Koelblen, Barbara; Mert, Emel; Fontana, Piero; Annaheim, Simon

    2017-12-07

    Following the growing interest in the further development of manikins to simulate human thermal behaviour more adequately, thermo-physiological human simulators have been developed by coupling a thermal sweating manikin with a thermo-physiology model. Despite their availability and obvious advantages, the number of studies involving these devices is only marginal, which plausibly results from the high complexity of the development and evaluation process and need of multi-disciplinary expertise. The aim of this paper is to present an integrated approach to develop, validate and operate such devices including technical challenges and limitations of thermo-physiological human simulators, their application and measurement protocol, strategy for setting test scenarios, and the comparison to standard methods and human studies including details which have not been published so far. A physical manikin controlled by a human thermoregulation model overcame the limitations of mathematical clothing models and provided a complementary method to investigate thermal interactions between the human body, protective clothing, and its environment. The opportunities of these devices include not only realistic assessment of protective clothing assemblies and equipment but also potential application in many research fields ranging from biometeorology, automotive industry, environmental engineering, and urban climate to clinical and safety applications.

  12. Physiologically Based Pharmacokinetic Model for Terbinafine in Rats and Humans

    PubMed Central

    Hosseini-Yeganeh, Mahboubeh; McLachlan, Andrew J.

    2002-01-01

    The aim of this study was to develop a physiologically based pharmacokinetic (PB-PK) model capable of describing and predicting terbinafine concentrations in plasma and tissues in rats and humans. A PB-PK model consisting of 12 tissue and 2 blood compartments was developed using concentration-time data for tissues from rats (n = 33) after intravenous bolus administration of terbinafine (6 mg/kg of body weight). It was assumed that all tissues except skin and testis tissues were well-stirred compartments with perfusion rate limitations. The uptake of terbinafine into skin and testis tissues was described by a PB-PK model which incorporates a membrane permeability rate limitation. The concentration-time data for terbinafine in human plasma and tissues were predicted by use of a scaled-up PB-PK model, which took oral absorption into consideration. The predictions obtained from the global PB-PK model for the concentration-time profile of terbinafine in human plasma and tissues were in close agreement with the observed concentration data for rats. The scaled-up PB-PK model provided an excellent prediction of published terbinafine concentration-time data obtained after the administration of single and multiple oral doses in humans. The estimated volume of distribution at steady state (Vss) obtained from the PB-PK model agreed with the reported value of 11 liters/kg. The apparent volume of distribution of terbinafine in skin and adipose tissues accounted for 41 and 52%, respectively, of the Vss for humans, indicating that uptake into and redistribution from these tissues dominate the pharmacokinetic profile of terbinafine. The PB-PK model developed in this study was capable of accurately predicting the plasma and tissue terbinafine concentrations in both rats and humans and provides insight into the physiological factors that determine terbinafine disposition. PMID:12069977

  13. Impact of human emotions on physiological characteristics

    NASA Astrophysics Data System (ADS)

    Partila, P.; Voznak, M.; Peterek, T.; Penhaker, M.; Novak, V.; Tovarek, J.; Mehic, Miralem; Vojtech, L.

    2014-05-01

    Emotional states of humans and their impact on physiological and neurological characteristics are discussed in this paper. This problem is the goal of many teams who have dealt with this topic. Nowadays, it is necessary to increase the accuracy of methods for obtaining information about correlations between emotional state and physiological changes. To be able to record these changes, we focused on two majority emotional states. Studied subjects were psychologically stimulated to neutral - calm and then to the stress state. Electrocardiography, Electroencephalography and blood pressure represented neurological and physiological samples that were collected during patient's stimulated conditions. Speech activity was recording during the patient was reading selected text. Feature extraction was calculated by speech processing operations. Classifier based on Gaussian Mixture Model was trained and tested using Mel-Frequency Cepstral Coefficients extracted from the patient's speech. All measurements were performed in a chamber with electromagnetic compatibility. The article discusses a method for determining the influence of stress emotional state on the human and his physiological and neurological changes.

  14. Physiologic Responses of Able-Bodied and Paraplegic Males to Maximal Arm Ergometry.

    ERIC Educational Resources Information Center

    Israel, Richard G.; And Others

    A study compared physiologic responses of healthy paraplegic males to those of healthy, able-bodied males during maximal arm ergometry. Fifteen able-bodied, healthy adult males and 13 healthy adult male paraplegics followed an exercise program involving heart rate, increased exercise loads, and oxygen uptake. Results from an analysis of the data…

  15. Wearable carbon nanotube-based fabric sensors for monitoring human physiological performance

    NASA Astrophysics Data System (ADS)

    Wang, Long; Loh, Kenneth J.

    2017-05-01

    A target application of wearable sensors is to detect human motion and to monitor physical activity for improving athletic performance and for delivering better physical therapy. In addition, measuring human vital signals (e.g., respiration rate and body temperature) provides rich information that can be used to assess a subject’s physiological or psychological condition. This study aims to design a multifunctional, wearable, fabric-based sensing system. First, carbon nanotube (CNT)-based thin films were fabricated by spraying. Second, the thin films were integrated with stretchable fabrics to form the fabric sensors. Third, the strain and temperature sensing properties of sensors fabricated using different CNT concentrations were characterized. Furthermore, the sensors were demonstrated to detect human finger bending motions, so as to validate their practical strain sensing performance. Finally, to monitor human respiration, the fabric sensors were integrated with a chest band, which was directly worn by a human subject. Quantification of respiration rates were successfully achieved. Overall, the fabric sensors were characterized by advantages such as flexibility, ease of fabrication, lightweight, low-cost, noninvasiveness, and user comfort.

  16. Review on modeling heat transfer and thermoregulatory responses in human body.

    PubMed

    Fu, Ming; Weng, Wenguo; Chen, Weiwang; Luo, Na

    2016-12-01

    Several mathematical models of human thermoregulation have been developed, contributing to a deep understanding of thermal responses in different thermal conditions and applications. In these models, the human body is represented by two interacting systems of thermoregulation: the controlling active system and the controlled passive system. This paper reviews the recent research of human thermoregulation models. The accuracy and scope of the thermal models are improved, for the consideration of individual differences, integration to clothing models, exposure to cold and hot conditions, and the changes of physiological responses for the elders. The experimental validated methods for human subjects and manikin are compared. The coupled method is provided for the manikin, controlled by the thermal model as an active system. Computational Fluid Dynamics (CFD) is also used along with the manikin or/and the thermal model, to evaluate the thermal responses of human body in various applications, such as evaluation of thermal comfort to increase the energy efficiency, prediction of tolerance limits and thermal acceptability exposed to hostile environments, indoor air quality assessment in the car and aerospace industry, and design protective equipment to improve function of the human activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design

    NASA Astrophysics Data System (ADS)

    Vanos, Jennifer K.; Warland, Jon S.; Gillespie, Terry J.; Kenny, Natasha A.

    2010-07-01

    This review comprehensively examines scientific literature pertaining to human physiology during exercise, including mechanisms of heat formation and dissipation, heat stress on the body, the importance of skin temperature monitoring, the effects of clothing, and microclimatic measurements. This provides a critical foundation for microclimatologists and biometeorologists in the understanding of experiments involving human physiology. The importance of the psychological aspects of how an individual perceives an outdoor environment are also reviewed, emphasizing many factors that can indirectly affect thermal comfort (TC). Past and current efforts to develop accurate human comfort models are described, as well as how these models can be used to develop resilient and comfortable outdoor spaces for physical activity. Lack of suitable spaces plays a large role in the deterioration of human health due to physical inactivity, leading to higher rates of illness, heart disease, obesity and heat-related casualties. This trend will continue if urban designers do not make use of current knowledge of bioclimatic urban design, which must be synthesized with physiology, psychology and microclimatology. Increased research is required for furthering our knowledge on the outdoor human energy balance concept and bioclimatic design for health and well-being in urban areas.

  18. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design.

    PubMed

    Vanos, Jennifer K; Warland, Jon S; Gillespie, Terry J; Kenny, Natasha A

    2010-07-01

    This review comprehensively examines scientific literature pertaining to human physiology during exercise, including mechanisms of heat formation and dissipation, heat stress on the body, the importance of skin temperature monitoring, the effects of clothing, and microclimatic measurements. This provides a critical foundation for microclimatologists and biometeorologists in the understanding of experiments involving human physiology. The importance of the psychological aspects of how an individual perceives an outdoor environment are also reviewed, emphasizing many factors that can indirectly affect thermal comfort (TC). Past and current efforts to develop accurate human comfort models are described, as well as how these models can be used to develop resilient and comfortable outdoor spaces for physical activity. Lack of suitable spaces plays a large role in the deterioration of human health due to physical inactivity, leading to higher rates of illness, heart disease, obesity and heat-related casualties. This trend will continue if urban designers do not make use of current knowledge of bioclimatic urban design, which must be synthesized with physiology, psychology and microclimatology. Increased research is required for furthering our knowledge on the outdoor human energy balance concept and bioclimatic design for health and well-being in urban areas.

  19. THE REGULATION ROLE OF CAROTID BODY PERIPHERAL CHEMORECEPTORS IN PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL CONDITIONS.

    PubMed

    Lazovic, Biljana; Zlatkovic Svenda, Mirjana; Durmic, Tijana; Stajic, Zoran; Duric, Vesna; Zugic, Vladimir

    2016-11-01

    The major oxygen sensors in the human body are peripheral chemoreceptors. also known as interoreceptors- as connected with internal organs, located in the aortic arch and in the body of the common carotid artery. Chemoreceptor function under physiological conditions. Stimulation of peripheral chemoreceptors during enviromental hypoxia causes a reflex-mediated increased ventilation, followed by the increase of the muscle sympatic activity, aiming to maintain tissue oxygen homeostatis, as well as glucosae, homeostatis. Besides that, peripheral chemoreceptors interact with central chemoreceptors. responsible for carbon dioxide changes . and they are able to modulate each other. Chemoreceptor function in pathophysiological conditions. Investigations of respiratory function in many pathological processes, such as hypertension, obstructive sleep apnea, congestive heart failure and many other diseases that are presented with enhanced peripheral chemosensitivity and impaired functional sy mpatholysis ultimately determine the peripheral chemorcceptor role and significance of peripheral chemoreceptors in the process of those pathological conditions development. Considering this, the presumed influence of peripheral chemoreceptors is important in patients having the above mentioned pathology. The importance and the role of peripheral chemoreceptors in the course of the breathing control is still controversial, despite many scientific attempts to solve this problem. The main objective of this review is to give the latest data on the peripheral chemoreceptor role and to highlight the importance of peripheral chemoreceptors for maintaining of oxygen homeostasis in pateints with hypoxia caused by either physiological or pathological conditions.

  20. Prediction of human core body temperature using non-invasive measurement methods.

    PubMed

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  1. Physiologic Basis for Understanding Quantitative Dehydration Assessment

    DTIC Science & Technology

    2012-01-01

    Perspective Physiologic basis for understanding quantitative dehydration assessment1–4 Samuel N Cheuvront, Robert W Kenefick, Nisha Charkoudian, and...Michael N Sawka ABSTRACT Dehydration (body water deficit) is a physiologic state that can have profound implications for human health and performance...review the physiologic basis for understanding quantitative dehydration as- sessment. We highlight how phenomenologic interpretations of de- hydration

  2. An integrated approach to develop, validate and operate thermo-physiological human simulator for the development of protective clothing

    PubMed Central

    PSIKUTA, Agnes; KOELBLEN, Barbara; MERT, Emel; FONTANA, Piero; ANNAHEIM, Simon

    2017-01-01

    Following the growing interest in the further development of manikins to simulate human thermal behaviour more adequately, thermo-physiological human simulators have been developed by coupling a thermal sweating manikin with a thermo-physiology model. Despite their availability and obvious advantages, the number of studies involving these devices is only marginal, which plausibly results from the high complexity of the development and evaluation process and need of multi-disciplinary expertise. The aim of this paper is to present an integrated approach to develop, validate and operate such devices including technical challenges and limitations of thermo-physiological human simulators, their application and measurement protocol, strategy for setting test scenarios, and the comparison to standard methods and human studies including details which have not been published so far. A physical manikin controlled by a human thermoregulation model overcame the limitations of mathematical clothing models and provided a complementary method to investigate thermal interactions between the human body, protective clothing, and its environment. The opportunities of these devices include not only realistic assessment of protective clothing assemblies and equipment but also potential application in many research fields ranging from biometeorology, automotive industry, environmental engineering, and urban climate to clinical and safety applications. PMID:28966294

  3. Sensing human physiological response using wearable carbon nanotube-based fabrics

    NASA Astrophysics Data System (ADS)

    Wang, Long; Loh, Kenneth J.; Koo, Helen S.

    2016-04-01

    Flexible and wearable sensors for human monitoring have received increased attention. Besides detecting motion and physical activity, measuring human vital signals (e.g., respiration rate and body temperature) provide rich data for assessing subjects' physiological or psychological condition. Instead of using conventional, bulky, sensing transducers, the objective of this study was to design and test a wearable, fabric-like sensing system. In particular, multi-walled carbon nanotube (MWCNT)-latex thin films of different MWCNT concentrations were first fabricated using spray coating. Freestanding MWCNT-latex films were then sandwiched between two layers of flexible fabric using iron-on adhesive to form the wearable sensor. Second, to characterize its strain sensing properties, the fabric sensors were subjected to uniaxial and cyclic tensile load tests, and they exhibited relatively stable electromechanical responses. Finally, the wearable sensors were placed on a human subject for monitoring simple motions and for validating their practical strain sensing performance. Overall, the wearable fabric sensor design exhibited advances such as flexibility, ease of fabrication, light weight, low cost, noninvasiveness, and user comfort.

  4. Human Adaptation to Space: Space Physiology and Countermeasures

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer

    2009-01-01

    This viewgraph presentation reviews human physiological responses to spaceflight, and the countermeasures taken to prevent adverse effects of manned space flight. The topics include: 1) Human Spaceflight Experience; 2) Human Response to Spaceflight; 3) ISS Expeditions 1-16; 4) Countermeasure; and 5) Biomedical Data;

  5. Cardiovascular function and basics of physiology in microgravity.

    PubMed

    Aubert, André E; Beckers, Frank; Verheyden, Bart

    2005-04-01

    Space exploration is a dream of mankind. However, this intriguing environment is not without risks. Life, and the human body, has developed all over evolution in the constant presence of gravity, especially from the moment on when living creatures left the ocean. When this gravitational force is no longer acting on the body, drastic changes occur. Some of these changes occur immediately, others progress only slowly. In the past 40 years of human space flight (first orbital flight by Yuri Gagarin on 12 April, 1961) several hazards for the human body have been identified. Bone mineral density is lost, muscle atrophy and cardiovascular deconditioning occur; pulmonary function, fluid regulating systems of the body, the sensory and the balance system are all disturbed by the lack of gravity. These changes in human physiology have to be reversed again when astronauts return to earth. This can cause adaptation problems, especially after long-duration space flights. Also the reaction of human physiology to radiation in space poses a huge risk at this moment. In this review the accent will be on cardiovascular function in space: how normal function is modified to reach a new equilibrium in space after short- and long-duration exposure to microgravity. In order to make long-duration space flight possible the mechanisms of this physiological adaptation must be understood to full extent. Only with this knowledge, effective countermeasures can be developed.

  6. The effects of gender on circadian rhythm of human physiological indexes in high temperature environment

    NASA Astrophysics Data System (ADS)

    Zheng, G. Z.; Li, K.; Bu, W. T.; Lu, Y. Z.; Wang, Y. J.

    2018-03-01

    In the context of frequent high temperature weather in recent years, peoples’ physical health is seriously threatened by the indoor high temperature. The physiological activities of human body show a certain changes of circadian rhythm. In this paper, the circadian rhythms of the physiological indexes in indoor high temperature environment were quantified and compared between the male subjects and female subjects. Ten subjects (five males and five females) were selected. The temperature conditions were set at 28°C, 32°C, 36°C and 38°C, respectively. The blood pressure, heart rate, rectal temperature, eardrum temperature, forehead temperature and mean skin temperature were measured for 24 hours continuously. The medians, amplitudes and acrophases of the circadian rhythms were obtained by the cosinor analysis method. Then the effects of gender on the circadian rhythm of the human body in high temperature environment were analyzed. The results indicate that, compared with the female subjects, the male medians of the systolic pressure and diastolic pressure were higher, and the male medians of heart rate and rectal temperature were lower, however, no significant differences were found between eardrum temperature, forehead temperature and mean skin temperature. This study can provide scientific basis for the health protection of the indoor relevant personnel.

  7. Three-dimensional cryoEM reconstruction of native LDL particles to 16Å resolution at physiological body temperature.

    PubMed

    Kumar, Vibhor; Butcher, Sarah J; Öörni, Katariina; Engelhardt, Peter; Heikkonen, Jukka; Kaski, Kimmo; Ala-Korpela, Mika; Kovanen, Petri T

    2011-05-09

    Low-density lipoprotein (LDL) particles, the major carriers of cholesterol in the human circulation, have a key role in cholesterol physiology and in the development of atherosclerosis. The most prominent structural components in LDL are the core-forming cholesteryl esters (CE) and the particle-encircling single copy of a huge, non-exchangeable protein, the apolipoprotein B-100 (apoB-100). The shape of native LDL particles and the conformation of native apoB-100 on the particles remain incompletely characterized at the physiological human body temperature (37 °C). To study native LDL particles, we applied cryo-electron microscopy to calculate 3D reconstructions of LDL particles in their hydrated state. Images of the particles vitrified at 6 °C and 37 °C resulted in reconstructions at ~16 Å resolution at both temperatures. 3D variance map analysis revealed rigid and flexible domains of lipids and apoB-100 at both temperatures. The reconstructions showed less variability at 6 °C than at 37 °C, which reflected increased order of the core CE molecules, rather than decreased mobility of the apoB-100. Compact molecular packing of the core and order in a lipid-binding domain of apoB-100 were observed at 6 °C, but not at 37 °C. At 37 °C we were able to highlight features in the LDL particles that are not clearly separable in 3D maps at 6 °C. Segmentation of apoB-100 density, fitting of lipovitellin X-ray structure, and antibody mapping, jointly revealed the approximate locations of the individual domains of apoB-100 on the surface of native LDL particles. Our study provides molecular background for further understanding of the link between structure and function of native LDL particles at physiological body temperature.

  8. Female perception of male body odor.

    PubMed

    Sergeant, Mark J T

    2010-01-01

    Olfaction is one of the most crucial forms of communication among nonhuman animals. Historically, olfaction has been perceived as being of limited importance for humans, but recent research has documented that not only do humans have sensitive olfactory abilities, but also odors have the potential to influence our physiology and behavior. This chapter reviews research on olfactory communication among humans, focusing on the effects of male bodily odors on female physiology and behavior. The process of body odor production and the detection of olfactory signals are reviewed, focusing on potential sex differences in these abilities. The effects of male body odors on female physiological and behavioral effects of body odors are considered. Finally, with specific regard to female mate choice, evidence regarding the influence of the major histocompatibility complex and fluctuating asymmetry on male olfactory cues is reviewed. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Organ-specific physiological responses to acute physical exercise and long-term training in humans.

    PubMed

    Heinonen, Ilkka; Kalliokoski, Kari K; Hannukainen, Jarna C; Duncker, Dirk J; Nuutila, Pirjo; Knuuti, Juhani

    2014-11-01

    Virtually all tissues in the human body rely on aerobic metabolism for energy production and are therefore critically dependent on continuous supply of oxygen. Oxygen is provided by blood flow, and, in essence, changes in organ perfusion are also closely associated with alterations in tissue metabolism. In response to acute exercise, blood flow is markedly increased in contracting skeletal muscles and myocardium, but perfusion in other organs (brain and bone) is only slightly enhanced or is even reduced (visceral organs). Despite largely unchanged metabolism and perfusion, repeated exposures to altered hemodynamics and hormonal milieu produced by acute exercise, long-term exercise training appears to be capable of inducing effects also in tissues other than muscles that may yield health benefits. However, the physiological adaptations and driving-force mechanisms in organs such as brain, liver, pancreas, gut, bone, and adipose tissue, remain largely obscure in humans. Along these lines, this review integrates current information on physiological responses to acute exercise and to long-term physical training in major metabolically active human organs. Knowledge is mostly provided based on the state-of-the-art, noninvasive human imaging studies, and directions for future novel research are proposed throughout the review. ©2014 Int. Union Physiol. Sci./Am. Physiol. Soc.

  10. Human age and skin physiology shape diversity and abundance of Archaea on skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moissl-Eichinger, Christine; Probst, Alexander J.; Birarda, Giovanni

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or youngermore » than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. In conclusion, amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.« less

  11. Human age and skin physiology shape diversity and abundance of Archaea on skin

    DOE PAGES

    Moissl-Eichinger, Christine; Probst, Alexander J.; Birarda, Giovanni; ...

    2017-06-22

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or youngermore » than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. In conclusion, amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.« less

  12. Anatomy and Physiology. Module Set I: Introduction to Anatomy and Physiology. Teacher Edition [and] Student Edition. Surgical Technology.

    ERIC Educational Resources Information Center

    Hilley, Robert

    This document, which is the first part in a two-part set of modules on anatomy and physiology for future surgical technicians, contains the teacher and student editions of an introduction to anatomy and physiology that consists of modules on the following topics: (1) organization of the human body; (2) biochemistry and microbiology; (3) infection,…

  13. Physiological Health Challenges for Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Norsk, Peter

    2015-01-01

    During the next decades, manned space missions are expected to be aiming at the Lagrange points, near Earth asteroids, and Mars flyby and/or landing. The question is therefore: Are we ready to go? To answer this with a yes, we are currently using the International Space Station to develop an integrated human physiological countermeasure suite. The integrated countermeasure suite will most likely encounter: 1) Exercise devices for aerobic, dynamic and resistive exercise training; 2) sensory-motor computer training programs and anti-motion sickness medication for preparing EVAs and G-transitions; 3) lower limb bracelets for preventing and/or treating the VIIP (vision impairment and intracranial pressure) syndrome; 4) nutritional components for maintenance of bone, muscle, the cardiovascular system and preventing oxidative stress and damage and immune deficiencies (e. g. omega-3 fatty acids, PRO/K, anti-oxidants and less salt and iron); 5) bisphosphonates for preventing bone degradation.; 6) lower body compression garment and oral salt and fluid loading for landing on a planetary surface to combat orthostatic intolerance; 7) laboratory analysis equipment for individualized monitoring of biomarkers in blood, urine and saliva for estimation of health status in; 8) advanced ultrasound techniques for monitoring bone and cardiovascular health; and 9) computer modeling programs for individual health status assessments of efficiency and subsequent adjustments of countermeasures. In particular for future missions into deep space, we are concerned with the synergistic effects of weightlessness, radiation, operational constraints and other spaceflight environmental factors. Therefore, increased collaboration between physiological, behavioral, radiation and space vehicle design disciplines are strongly warranted. Another venue we are exploring in NASA's Human Research Program is the usefulness of artificial gravity for mitigating the health risks of long duration weightlessness.

  14. Physiologic regulation of body energy storage

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1978-01-01

    Both new and published data (rats, mice, and human beings) on three parameters - fat mass, fat-free body mass (FFBM), and total body mass in some cases - are evaluated. Steady state values of the parameters are analyzed for changes in response to specific perturbing agents and for their frequency distributions. Temporal sequences of values on individuals are examined for evidence of regulatory responses. The results lead to the hypothesis that the FFBM is regulated, but probably not as a unit, and that mass of fat is regulated with a high priority near the range extremes but with a much lower priority in the mid-range. Properties and advantages of such a mechanism are discussed.

  15. An Individualized, Perception-Based Protocol to Investigate Human Physiological Responses to Cooling

    PubMed Central

    Coolbaugh, Crystal L.; Bush, Emily C.; Galenti, Elizabeth S.; Welch, E. Brian; Towse, Theodore F.

    2018-01-01

    Cold exposure, a known stimulant of the thermogenic effects of brown adipose tissue (BAT), is the most widely used method to study BAT physiology in adult humans. Recently, individualized cooling has been recommended to standardize the physiological cold stress applied across participants, but critical experimental details remain unclear. The purpose of this work was to develop a detailed methodology for an individualized, perception-based protocol to investigate human physiological responses to cooling. Participants were wrapped in two water-circulating blankets and fitted with skin temperature probes to estimate BAT activity and peripheral vasoconstriction. We created a thermoesthesia graphical user interface (tGUI) to continuously record the subject's perception of cooling and shivering status during the cooling protocol. The protocol began with a 15 min thermoneutral phase followed by a series of 10 min cooling phases and concluded when sustained shivering (>1 min duration) occurred. Researchers used perception of cooling feedback (tGUI ratings) to manually adjust and personalize the water temperature at each cooling phase. Blanket water temperatures were recorded continuously during the protocol. Twelve volunteers (ages: 26.2 ± 1.4 years; 25% female) completed a feasibility study to evaluate the proposed protocol. Water temperature, perception of cooling, and shivering varied considerably across participants in response to cooling. Mean clavicle skin temperature, a surrogate measure of BAT activity, decreased (−0.99°C, 95% CI: −1.7 to −0.25°C, P = 0.16) after the cooling protocol, but an increase in supraclavicular skin temperature was observed in 4 participants. A strong positive correlation was also found between thermoesthesia and peripheral vasoconstriction (ρ = 0.84, P < 0.001). The proposed individualized, perception-based protocol therefore has potential to investigate the physiological responses to cold stress applied across populations with

  16. Origins and early development of human body knowledge.

    PubMed

    Slaughter, Virginia; Heron, Michelle

    2004-01-01

    As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensorimotor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuo-spatial body knowledge in infancy. Our technique is to compare infants'responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body picture sat 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial

  17. Neural correlates of human body perception.

    PubMed

    Aleong, Rosanne; Paus, Tomás

    2010-03-01

    The objective of this study was to investigate potential sex differences in the neural response to human bodies using fMRI carried out in healthy young adults. We presented human bodies in a block-design experiment to identify body-responsive regions of the brain, namely, extrastriate body area (EBA) and fusiform body area (FBA). In a separate event-related "adaptation" experiment, carried out in the same group of subjects, we presented sets of four human bodies of varying body size and shape. Varying levels of body morphing were introduced to assess the degree of morphing required for adaptation release. Analysis of BOLD signal in the block-design experiment revealed significant Sex x Hemisphere interactions in the EBA and the FBA responses to human bodies. Only women showed greater BOLD response to bodies in the right hemisphere compared with the left hemisphere for both EBA and FBA. The BOLD response in right EBA was higher in women compared with men. In the adaptation experiment, greater right versus left hemisphere response for EBA and FBA was also identified among women but not men. These findings are particularly novel in that they address potential sex differences in the lateralization of EBA and FBA responses to human body images. Although previous studies have found some degree of right hemisphere dominance in body perception, our results suggest that such a functional lateralization may differ between men and women.

  18. Measurements, modeling, control and simulation - as applied to the human left ventricle for purposeful physiological monitoring.

    NASA Technical Reports Server (NTRS)

    Ghista, D. N.; Rasmussen, D. N.; Linebarger, R. N.; Sandler, H.

    1971-01-01

    Interdisciplinary engineering research effort in studying the intact human left ventricle has been employed to physiologically monitor the heart and to obtain its 'state-of-health' characteristics. The left ventricle was selected for this purpose because it plays a key role in supplying energy to the body cells. The techniques for measurement of the left ventricular geometry are described; the geometry is effectively displayed to bring out the abnormalities in cardiac function. Methods of mathematical modeling, which make it possible to determine the performance of the intact left ventricular muscle, are also described. Finally, features of a control system for the left ventricle for predicting the effect of certain physiological stress situations on the ventricle performance are discussed.

  19. The EuroPhysiome, STEP and a roadmap for the virtual physiological human.

    PubMed

    Fenner, J W; Brook, B; Clapworthy, G; Coveney, P V; Feipel, V; Gregersen, H; Hose, D R; Kohl, P; Lawford, P; McCormack, K M; Pinney, D; Thomas, S R; Van Sint Jan, S; Waters, S; Viceconti, M

    2008-09-13

    Biomedical science and its allied disciplines are entering a new era in which computational methods and technologies are poised to play a prevalent role in supporting collaborative investigation of the human body. Within Europe, this has its focus in the virtual physiological human (VPH), which is an evolving entity that has emerged from the EuroPhysiome initiative and the strategy for the EuroPhysiome (STEP) consortium. The VPH is intended to be a solution to common infrastructure needs for physiome projects across the globe, providing a unifying architecture that facilitates integration and prediction, ultimately creating a framework capable of describing Homo sapiens in silico. The routine reliance of the biomedical industry, biomedical research and clinical practice on information technology (IT) highlights the importance of a tailor-made and robust IT infrastructure, but numerous challenges need to be addressed if the VPH is to become a mature technological reality. Appropriate investment will reap considerable rewards, since it is anticipated that the VPH will influence all sectors of society, with implications predominantly for improved healthcare, improved competitiveness in industry and greater understanding of (patho)physiological processes. This paper considers issues pertinent to the development of the VPH, highlighted by the work of the STEP consortium.

  20. Phages in the Human Body.

    PubMed

    Navarro, Ferran; Muniesa, Maite

    2017-01-01

    Bacteriophages, viruses that infect bacteria, have re-emerged as powerful regulators of bacterial populations in natural ecosystems. Phages invade the human body, just as they do other natural environments, to such an extent that they are the most numerous group in the human virome. This was only revealed in recent metagenomic studies, despite the fact that the presence of phages in the human body was reported decades ago. The influence of the presence of phages in humans has yet to be evaluated; but as in marine environments, a clear role in the regulation of bacterial populations could be envisaged, that might have an impact on human health. Moreover, phages are excellent vehicles of genetic transfer, and they contribute to the evolution of bacterial cells in the human body by spreading and acquiring DNA horizontally. The abundance of phages in the human body does not pass unnoticed and the immune system reacts to them, although it is not clear to what extent. Finally, the presence of phages in human samples, which most of the time is not considered, can influence and bias microbiological and molecular results; and, in view of the evidences, some studies suggest that more attention needs to be paid to their interference.

  1. Lower core body temperature and greater body fat are components of a human thrifty phenotype.

    PubMed

    Reinhardt, M; Schlögl, M; Bonfiglio, S; Votruba, S B; Krakoff, J; Thearle, M S

    2016-05-01

    In small studies, a thrifty human phenotype, defined by a greater 24-hour energy expenditure (EE) decrease with fasting, is associated with less weight loss during caloric restriction. In rodents, models of diet-induced obesity often have a phenotype including a reduced EE and decreased core body temperature. We assessed whether a thrifty human phenotype associates with differences in core body temperature or body composition. Data for this cross-sectional analysis were obtained from 77 individuals participating in one of two normal physiology studies while housed on our clinical research unit. Twenty-four-hour EE using a whole-room indirect calorimeter and 24-h core body temperature were measured during 24 h each of fasting and 200% overfeeding with a diet consisting of 50% carbohydrates, 20% protein and 30% fat. Body composition was measured by dual X-ray absorptiometry. To account for the effects of body size on EE, changes in EE were expressed as a percentage change from 24-hour EE (%EE) during energy balance. A greater %EE decrease with fasting correlated with a smaller %EE increase with overfeeding (r=0.27, P=0.02). The %EE decrease with fasting was associated with both fat mass and abdominal fat mass, even after accounting for covariates (β=-0.16 (95% CI: -0.26, -0.06) %EE per kg fat mass, P=0.003; β=-0.0004 (-0.0007, -0.00004) %EE kg(-1) abdominal fat mass, P=0.03). In men, a greater %EE decrease in response to fasting was associated with a lower 24- h core body temperature, even after adjusting for covariates (β=1.43 (0.72, 2.15) %EE per 0.1 °C, P=0.0003). Thrifty individuals, as defined by a larger EE decrease with fasting, were more likely to have greater overall and abdominal adiposity as well as lower core body temperature consistent with a more efficient metabolism.

  2. Earthing: health implications of reconnecting the human body to the Earth's surface electrons.

    PubMed

    Chevalier, Gaétan; Sinatra, Stephen T; Oschman, James L; Sokal, Karol; Sokal, Pawel

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits-including better sleep and reduced pain-from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance.

  3. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    PubMed Central

    Chevalier, Gaétan; Sinatra, Stephen T.; Oschman, James L.; Sokal, Karol; Sokal, Pawel

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits—including better sleep and reduced pain—from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance. PMID:22291721

  4. Hair and Physiological Baldness

    PubMed Central

    Mercantini, Edward S.

    1965-01-01

    Human hair is one of the structures of the body about which little is generally known. Disease affecting the hair is often minimized or ignored by physicians because of lack of knowledge of this rudimentary organ. However, the patient's attitude toward hair loss is very different from the doctor's and he feels great concern about such loss. The development, growth and morphology of human hair are briefly presented. Experimental work which will increase our knowledge of hair growth and loss is reviewed. The various forms of physiological alopecia from birth onward are discussed, with special emphasis on the least-known type of physiological baldness, “male-pattern baldness” in the adult female. PMID:14312445

  5. The physiological effects of slow breathing in the healthy human

    PubMed Central

    Russo, Marc A.; Santarelli, Danielle M.; O’Rourke, Dean

    2017-01-01

    Slow breathing practices have been adopted in the modern world across the globe due to their claimed health benefits. This has piqued the interest of researchers and clinicians who have initiated investigations into the physiological (and psychological) effects of slow breathing techniques and attempted to uncover the underlying mechanisms. The aim of this article is to provide a comprehensive overview of normal respiratory physiology and the documented physiological effects of slow breathing techniques according to research in healthy humans. The review focuses on the physiological implications to the respiratory, cardiovascular, cardiorespiratory and autonomic nervous systems, with particular focus on diaphragm activity, ventilation efficiency, haemodynamics, heart rate variability, cardiorespiratory coupling, respiratory sinus arrhythmia and sympathovagal balance. The review ends with a brief discussion of the potential clinical implications of slow breathing techniques. This is a topic that warrants further research, understanding and discussion. Key points Slow breathing practices have gained popularity in the western world due to their claimed health benefits, yet remain relatively untouched by the medical community. Investigations into the physiological effects of slow breathing have uncovered significant effects on the respiratory, cardiovascular, cardiorespiratory and autonomic nervous systems. Key findings include effects on respiratory muscle activity, ventilation efficiency, chemoreflex and baroreflex sensitivity, heart rate variability, blood flow dynamics, respiratory sinus arrhythmia, cardiorespiratory coupling, and sympathovagal balance. There appears to be potential for use of controlled slow breathing techniques as a means of optimising physiological parameters that appear to be associated with health and longevity, and that may extend to disease states; however, there is a dire need for further research into the area. Educational aims To provide

  6. Human physiological models of insomnia.

    PubMed

    Richardson, Gary S

    2007-12-01

    Despite the wide prevalence and important consequences of insomnia, remarkably little is known about its pathophysiology. Available models exist primarily in the psychological domain and derive from the demonstrated efficacy of behavioral treatment approaches to insomnia management. However, these models offer little specific prediction about the anatomic or physiological foundation of chronic primary insomnia. On the other hand, a growing body of data on the physiology of sleep supports a reasonably circumscribed overview of possible pathophysiological mechanisms, as well as the development of physiological models of insomnia to guide future research. As a pragmatic step, these models focus on primary insomnia, as opposed to comorbid insomnias, because the latter is by its nature a much more heterogeneous presentation, reflecting the effects of the distinct comorbid condition. Current understanding of the regulation of sleep and wakefulness in mammalian brain supports four broad candidate areas: 1) disruption of the sleep homeostat; 2) disruption of the circadian clock; 3) disruption of intrinsic systems responsible for the expression of sleep states; or 4) disruption (hyperactivity) of extrinsic systems capable of over-riding normal sleep-wake regulation. This review examines each of the four candidate pathophysiological mechanisms and the available data in support of each. While studies that directly test the viability of each model are not yet available, descriptive data on primary insomnia favor the involvement of dysfunctional extrinsic stress-response systems in the pathology of primary chronic insomnia.

  7. Physiological and psychological correlates of attention-related body sensations (tingling and warmth).

    PubMed

    Tihanyi, B T; Köteles, F

    2017-09-01

    Body sensations play an essential role in the subjective evaluation of our physical health, illness, and healing. They are impacted by peripheral somatic and external processes, but they are also heavily modulated by mental processes, e.g., attention, motor control, and emotion. Body sensations, such as tingling, numbness, pulse, and warmth, can emerge due to simply focusing attention on a body part. It is however an open question, if these sensations are connected with actual peripheral changes or happen "only in the mind." Here, we first tested whether the intensity of such attention-related body sensations is related to autonomic and somatomotor physiological processes and to psychological traits. In this study, attention-related body sensations were not significantly connected to changes in physiology, except warmth sensation, which was linked to decrease in muscle tension. Overall intensity of tingling significantly correlated with body awareness and tendentiously with body-mind practice. This strengthened the hypothesis that attention-related body sensations are more the result of top-down functions, and the connection with peripheral processes is weak. Here, we suggested a novel protocol to examine the effect of manipulating attention on body sensations, which together with our results and discussion can inspire future researches.

  8. Method and System for Physiologically Modulating Videogames and Simulations which Use Gesture and Body Image Sensing Control Input Devices

    NASA Technical Reports Server (NTRS)

    Pope, Alan T. (Inventor); Stephens, Chad L. (Inventor); Habowski, Tyler (Inventor)

    2017-01-01

    Method for physiologically modulating videogames and simulations includes utilizing input from a motion-sensing video game system and input from a physiological signal acquisition device. The inputs from the physiological signal sensors are utilized to change the response of a user's avatar to inputs from the motion-sensing sensors. The motion-sensing system comprises a 3D sensor system having full-body 3D motion capture of a user's body. This arrangement encourages health-enhancing physiological self-regulation skills or therapeutic amplification of healthful physiological characteristics. The system provides increased motivation for users to utilize biofeedback as may be desired for treatment of various conditions.

  9. Human body fluid proteome analysis

    PubMed Central

    Hu, Shen; Loo, Joseph A.; Wong, David T.

    2010-01-01

    The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future. PMID:17083142

  10. Human body fluid proteome analysis.

    PubMed

    Hu, Shen; Loo, Joseph A; Wong, David T

    2006-12-01

    The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future.

  11. [Survival Strategies of Aspergillus in the Human Body].

    PubMed

    Tashiro, Masato; Izumikawa, Koichi

    2017-01-01

     The human body is a hostile environment for Aspergillus species, which originally live outside the human body. There are lots of elimination mechanisms against Aspergillus inhaled into the human body, such as high body temperature, soluble lung components, mucociliary clearance mechanism, or responses of phagocytes. Aspergillus fumigatus, which is the primary causative agent of human infections among the human pathogenic species of Aspergillus, defend itself from the hostile human body environment by various mechanisms, such as thermotolerance, mycotoxin production, and characteristic morphological features. Here we review mechanisms of defense in Aspergillus against elimination from the human body.

  12. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment.

    PubMed

    Choudhary, Lokesh; Raman, R K Singh

    2012-02-01

    It is essential that a metallic implant material possesses adequate resistance to cracking/fracture under the synergistic action of a corrosive physiological environment and mechanical loading (i.e. stress corrosion cracking (SCC)), before the implant can be put to actual use. This paper presents a critique of the fundamental issues with an assessment of SCC of a rapidly corroding material such as magnesium alloys, and describes an investigation into the mechanism of SCC of a magnesium alloy in a physiological environment. The SCC susceptibility of the alloy in a simulated human body fluid was established by slow strain rate tensile (SSRT) testing using smooth specimens under different electrochemical conditions for understanding the mechanism of SCC. However, to assess the life of the implant devices that often possess fine micro-cracks, SCC susceptibility of notched specimens was investigated by circumferential notch tensile (CNT) testing. CNT tests also produced important design data, i.e. threshold stress intensity for SCC (KISCC) and SCC crack growth rate. Fractographic features of SCC were examined using scanning electron microscopy. The SSRT and CNT results, together with fractographic evidence, confirmed the SCC susceptibility of both smooth and notched specimens of a magnesium alloy in the physiological environment. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Human body frequency modulation by 0.9% sodium chloride solutions: a new paradigm and perspective for human health.

    PubMed

    Sudan, B J

    2000-08-01

    This case study demonstrates that the normal human body frequency, which can be disturbed by electromagnetic influences of the environment, can be modulated by 0.9% sodium chloride solutions (physiological saline) and that occurrence of allergic reactions have subsequently been suppressed as a result of this modulation. The use of distilled water as control showed no effect on occurrence of allergic reactions. Further observations on the growth of various plants in a greenhouse exposed to various geomagnetic fields support the previous observations on humans. The neutralization of electromagnetic influences on humans using 0.9% sodium chloride solution or by enclosure of plants within a copper wire Faraday cage resulting in a normal and uniform growth of plants as compared with disturbed and irregular growth in unenclosed controls, is demonstrated. These original observations propose a new strategy to suppress or prevent allergic reactions and possibly other effects observed in various human pathologies in relation to a disturbance of human body frequencies. It is hypothesized that the double helix structure of desoxyribonucleic acid (DNA) could be modified by environmental electromagnetic fields and that disresonance between the two chains of DNA could lead to the expression of specific pathology. Copyright 2000 Harcourt Publishers Ltd.

  14. Major Findings from The Changing Body: Health, Nutrition, and Human Development in the Western World since 1700.

    PubMed

    Fogel, Robert W; Grotte, Nathaniel

    2011-12-01

    This paper discusses findings from The Changing Body: Health, Nutrition, and Human Development in the Western World since 1700 (Cambridge University Press) The book is built on the authors' work with 300 years of height and nutrition data and discusses their findings in the context of technophysio evolution, a uniquely modern form of rapid physiological development, the result of humanity's ability to control its environment and create technological innovations to adapt to it.

  15. Using Stimulation of the Diving Reflex in Humans to Teach Integrative Physiology

    ERIC Educational Resources Information Center

    Choate, Julia K.; Denton, Kate M.; Evans, Roger G.; Hodgson, Yvonne

    2014-01-01

    During underwater submersion, the body responds by conserving O[subscript 2] and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be…

  16. Sunspot Dynamics Are Reflected in Human Physiology and Pathophysiology

    NASA Astrophysics Data System (ADS)

    Hrushesky, William J. M.; Sothern, Robert B.; Du-Quiton, Jovelyn; Quiton, Dinah Faith T.; Rietveld, Wop; Boon, Mathilde E.

    2011-03-01

    Periodic episodes of increased sunspot activity (solar electromagnetic storms) occur with 10-11 and 5-6 year periodicities and may be associated with measurable biological events. We investigated whether this sunspot periodicity characterized the incidence of Pap smear-determined cervical epithelial histopathologies and human physiologic functions. From January 1983 through December 2003, monthly averages were obtained for solar flux and sunspot numbers; six infectious, premalignant and malignant changes in the cervical epithelium from 1,182,421 consecutive, serially independent, screening Pap smears (59°9"N, 4°29"E); and six human physiologic functions of a healthy man (oral temperature, pulse, systolic and diastolic blood pressure, respiration, and peak expiratory flow), which were measured ∼5 times daily during ∼34,500 self-measurement sessions (44°56"N, 93°8"W). After determining that sunspot numbers and solar flux, which were not annually rhythmic, occurred with a prominent 10-year and a less-prominent 5.75-year periodicity during this 21-year study span, each biological data set was analyzed with the same curve-fitting procedures. All six annually rhythmic Pap smear-detected infectious, premalignant and malignant cervical epithelial pathologies showed strong 10-year and weaker 5.75-year cycles, as did all six self-measured, annually rhythmic, physiologic functions. The phases (maxima) for the six histopathologic findings and five of six physiologic measurements were very near, or within, the first two quarters following the 10-year solar maxima. These findings add to the growing evidence that solar magnetic storm periodicities are mirrored by cyclic phase-locked rhythms of similar period length or lengths in human physiology and pathophysiology.

  17. Drawing on student knowledge in human anatomy and physiology

    NASA Astrophysics Data System (ADS)

    Slominski, Tara Nicole

    Prior to instruction, students may have developed alternative conceptions about the mechanics behind human physiology. To help students re-shape these ideas into correct reasoning, the faulty characteristics reinforcing the alternative conceptions need to made explicit. This study used student-generated drawings to expose alternative conceptions Human Anatomy and Physiology students had prior to instruction on neuron physiology. Specifically, we investigated how students thought about neuron communication across a synapse (n=355) and how neuron activity can be modified (n=311). When asked to depict basic communication between two neurons, at least 80% of students demonstrated incorrect ideas about synaptic transmission. When targeting spatial and temporal summation, only eleven students (3.5%) were able to accurately depict at least one form of summation. In response to both drawing questions, student drawings revealed multiple alternative conceptions that resulted in a deeper analysis and characterization of the wide variation of student ideas.

  18. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation

    PubMed Central

    Evans, Mark; Cogan, Karl E.

    2016-01-01

    Abstract Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β‐hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post‐exercise recovery period, and the ability to utilise ketone bodies is higher in exercise‐trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti‐lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. PMID:27861911

  19. Human body segmentation via data-driven graph cut.

    PubMed

    Li, Shifeng; Lu, Huchuan; Shao, Xingqing

    2014-11-01

    Human body segmentation is a challenging and important problem in computer vision. Existing methods usually entail a time-consuming training phase for prior knowledge learning with complex shape matching for body segmentation. In this paper, we propose a data-driven method that integrates top-down body pose information and bottom-up low-level visual cues for segmenting humans in static images within the graph cut framework. The key idea of our approach is first to exploit human kinematics to search for body part candidates via dynamic programming for high-level evidence. Then, by using the body parts classifiers, obtaining bottom-up cues of human body distribution for low-level evidence. All the evidence collected from top-down and bottom-up procedures are integrated in a graph cut framework for human body segmentation. Qualitative and quantitative experiment results demonstrate the merits of the proposed method in segmenting human bodies with arbitrary poses from cluttered backgrounds.

  20. Impact of nesting material on mouse body temperature and physiology.

    PubMed

    Gaskill, Brianna N; Gordon, Christopher J; Pajor, Edmond A; Lucas, Jeffrey R; Davis, Jerry K; Garner, Joseph P

    2013-02-17

    In laboratories, mice are housed at 20-24 °C, which is below their lower critical temperature (≈30 °C). Thus, mice are potentially cold stressed, which can alter metabolism, immune function, and reproduction. These physiological changes reflect impaired wellbeing, and affect scientific outcomes. We hypothesized that nesting material would allow mice to alleviate cold stress by controlling their thermal microenvironment, thus insulating them, reducing heat loss and thermogenic processes. Naïve C57BL/6, CD-1, and BALB/c mice (24 male and 24 female/strain in groups of 3) were housed in standard cages at 20 °C either with or without 8 g nesting material for 4 weeks. Core body temperature was followed using intraperitoneal radio telemetry. The thermal properties of the nests were assessed using a thermal imaging camera, and related to nest quality. Higher scoring nests were negatively correlated with the mean radiated temperature and were thus more insulating. No effects of nesting material on body temperature were found. CD-1 mice with nesting material had higher end body weights than controls. No effect was seen in the other two strains. Mice with the telemetry implant had larger spleens than controls, possibly indicating an immune response to the implant or low level infection from the surgery. BALB/c mice express less mRNA for the UCP1 protein than mice without nesting material. This indicates that BALB/c's with nesting material do not utilize their brown fat to create heat as readily as controls. Nests can alleviate thermal discomfort by decreasing the amount of radiated heat and reduce the need for non-shivering thermogenesis. However, different strains appear to use different behavioral (through different primary modes of behavioral thermoregulation) and physiological strategies (utilizing thermogenesis to different degrees) to maintain a constant body temperature under cool standard laboratory ambient temperatures. Copyright © 2013 Elsevier Inc. All

  1. Normative aspects of the human body.

    PubMed

    Siep, Ludwig

    2003-04-01

    In cultural history the human body has been the object of a great variety of opposing valuations, ranging from "imago dei" to "the devil's tool". At present, the body is commonly regarded as a mere means to fulfill the wishes of its "owner". According to these wishes it can be technically improved in an unlimited way. Against this view the text argues for a conception of the human body as a valuable "common heritage". The "normal" human body as the result of natural and cultural history is an essential condition of the modern social and legal order. The consequences of its technical alteration should be the subject of public debates and common decisions.

  2. Anatomy and Physiology. Module Set II: Major Body Systems. Teacher Edition [and] Student Edition. Surgical Technology.

    ERIC Educational Resources Information Center

    Hilley, Robert

    This document, which is the second part of a two-part set of modules on anatomy and physiology for future surgical technicians, contains the teacher and student editions of an introduction to anatomy and physiology that consists of modules on the following body systems: integumentary system; skeletal system; muscular system; nervous system;…

  3. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    PubMed

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  4. Singularity now: using the ventricular assist device as a model for future human-robotic physiology

    PubMed Central

    Martin, Archer K.

    2016-01-01

    In our 21st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today’s world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named “IshBot”) can best be studied in ventricular assist devices – VAD. PMID:28913480

  5. Knowledge on the subject of human physiology among Polish high school students--a cross-sectional study.

    PubMed

    Zwinczewska, Helena; Rozwadowska, Joanna; Traczyk, Anna; Majda, Szymon; Wysocki, Michał; Grabowski, Kamil; Kopeć, Sylwia; Głowacki, Roman; Węgrzyn, Katarzyna; Tomaszewski, Krzysztof A; Walocha, Jerzy A

    2014-01-01

    In most cases the only knowledge an individual will receive with regards to their own body and its proper functioning is during their high school education. The aim of this study was to evaluate high school students' knowledge about basic physiology. The research was carried out in five, randomly chosen high schools in Krakow, Poland. Young people in the age of 17-19 years were asked to fill in the questionnaire designed by the authors. The first part of the survey included personal data. The second part contained 20 close-ended questions assessing students' knowledge about the basics of human physiology. Question difficulty varied from easy through average, and up to difficult. The maximum number of points to achieve was 20. One-thousand-and eighty-three (out of 1179 invited--91.86%) Polish high school students (63.25% female) filled in a 20-item questionnaire constructed by the authors regarding basic human physiology. The mean age of the group was 17.66 ± 0.80 years. The mean score among the surveyed was 10.15 ± 3.48 (range 0-20). Only 26.04% of students achieved a grade of 60% or more, and only one person obtained the highest possible score. Females achieved significantly better scores than males (10.49 ± 3.38 vs. 9.56 ± 3.56; p < 0.0001). Pupils in their second year who were in the process of studying physiology, obtained better results than those in their third year who had already finished the biology course (10.70 ± 3.27 vs. 9.81 ± 3.74 respectively; p < 0.0001) and those in their first year who did not yet study human physiology (10.70 ± 3.27 vs. 9.63 ± 2.74 respectively; p = 0.003). Over 23% of students did not know that mature red blood cells do not have cell nuclei and a similar number of them answered that humans have 500,000 erythrocytes in 1 mm3 of blood. Over 32% believed that plasma does not participate in the transport of respiratory gases, and 31% believed that endocrine glands secrete hormones within their immediate vicinity and into the

  6. Brief communication: Hair density and body mass in mammals and the evolution of human hairlessness.

    PubMed

    Sandel, Aaron A

    2013-09-01

    Humans are unusual among mammals in appearing hairless. Several hypotheses propose explanations for this phenotype, but few data are available to test these hypotheses. To elucidate the evolutionary history of human "hairlessness," a comparative approach is needed. One previous study on primate hair density concluded that great apes have systematically less dense hair than smaller primates. While there is a negative correlation between body size and hair density, it remains unclear whether great apes have less dense hair than is expected for their body size. To revisit the scaling relationship between hair density and body size in mammals, I compiled data from the literature on 23 primates and 29 nonprimate mammals and conducted Phylogenetic Generalized Least Squares regressions. Among anthropoids, there is a significant negative correlation between hair density and body mass. Chimpanzees display the largest residuals, exhibiting less dense hair than is expected for their body size. There is a negative correlation between hair density and body mass among the broader mammalian sample, although the functional significance of this scaling relationship remains to be tested. Results indicate that all primates, and chimpanzees in particular, are relatively hairless compared to other mammals. This suggests that there may have been selective pressures acting on the ancestor of humans and chimpanzees that led to an initial reduction in hair density. To further understand the evolution of human hairlessness, a systematic study of hair density and physiology in a wide range of species is necessary. Copyright © 2013 Wiley Periodicals, Inc.

  7. Biophoton emission of human body.

    PubMed

    Cohen, S; Popp, F A

    2003-05-01

    For the first time systematic measurements of the "ultraweak" photon emission of the human body (biophotons) have been performed by means of a photon detector device set up in darkness. About 200 persons have been investigated. In a particular case one person has been examined daily over several months. It turned out that this biophoton emission reflects, (i) the left-right symmetry of the human body; (ii) biological rhythms such as 14 days, 1 month, 3 months and 9 months; (iii) disease in terms of broken symmetry between left and right side; and (iv) light channels in the body, which regulate energy and information transfer between different parts. The results show that besides a deeper understanding of health, disease and body field, this method provides a new powerful tool of non-invasive medical diagnosis in terms of basic regulatory functions of the body.

  8. Human body may produce bacteria.

    PubMed

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Space Physiology and Operational Space Medicine

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  10. Sunspot Dynamics Are Reflected in Human Physiology and Pathophysiology

    PubMed Central

    Sothern, Robert B.; Du-Quiton, Jovelyn; Quiton, Dinah Faith T.; Rietveld, Wop; Boon, Mathilde E.

    2011-01-01

    Abstract Periodic episodes of increased sunspot activity (solar electromagnetic storms) occur with 10–11 and 5–6 year periodicities and may be associated with measurable biological events. We investigated whether this sunspot periodicity characterized the incidence of Pap smear-determined cervical epithelial histopathologies and human physiologic functions. From January 1983 through December 2003, monthly averages were obtained for solar flux and sunspot numbers; six infectious, premalignant and malignant changes in the cervical epithelium from 1,182,421 consecutive, serially independent, screening Pap smears (59°9″N, 4°29″E); and six human physiologic functions of a healthy man (oral temperature, pulse, systolic and diastolic blood pressure, respiration, and peak expiratory flow), which were measured ∼5 times daily during ∼34,500 self-measurement sessions (44°56″N, 93°8″W). After determining that sunspot numbers and solar flux, which were not annually rhythmic, occurred with a prominent 10-year and a less-prominent 5.75-year periodicity during this 21-year study span, each biological data set was analyzed with the same curve-fitting procedures. All six annually rhythmic Pap smear-detected infectious, premalignant and malignant cervical epithelial pathologies showed strong 10-year and weaker 5.75-year cycles, as did all six self-measured, annually rhythmic, physiologic functions. The phases (maxima) for the six histopathologic findings and five of six physiologic measurements were very near, or within, the first two quarters following the 10-year solar maxima. These findings add to the growing evidence that solar magnetic storm periodicities are mirrored by cyclic phase-locked rhythms of similar period length or lengths in human physiology and pathophysiology. Key Words: Cervical infections—Cervical premalignancy—Geo-solar magnetic interactions—Pap smear—Schwabe cycle—10-year rhythm. Astrobiology 11, 93–103. PMID:21391821

  11. Physiological responses to prolonged bed rest and fluid immersion in humans

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1984-01-01

    For many centuries, physicians have used prolonged rest in bed and immersion in water in the treatment of ailments and disease. Both treatments have positive remedial effects. However, adverse physiological responses become evident when patients return to their normal daily activities. The present investigation is concerned with an analysis of the physiological changes during bed rest and the effects produced by water immersion. It is found that abrupt changes in body position related to bed rest cause acute changes in fluid compartment volumes. Attention is given to fluid shifts and body composition, renal function and diuresis, calcium and phosphorus metabolism, and orthostatic tolerance. In a discussion of water immersion, fluid shifts are considered along with cardiovascular-respiratory responses, renal function, and natriuretic and diuretic factors.

  12. The Graphical Representation of the Digital Astronaut Physiology Backbone

    NASA Technical Reports Server (NTRS)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  13. How dieting makes some fatter: from a perspective of human body composition autoregulation.

    PubMed

    Dulloo, Abdul G; Jacquet, Jean; Montani, Jean-Pierre

    2012-08-01

    Dieting makes you fat - the title of a book published in 1983 - embodies the notion that dieting to control body weight predisposes the individual to acquire even more body fat. While this notion is controversial, its debate underscores the large gap that exists in our understanding of basic physiological laws that govern the regulation of human body composition. A striking example is the key role attributed to adipokines as feedback signals between adipose tissue depletion and compensatory increases in food intake. Yet, the relative importance of fat depletion per se as a determinant of post-dieting hyperphagia is unknown. On the other hand, the question of whether the depletion of lean tissues can provide feedback signals on the hunger-appetite drive is rarely invoked, despite evidence that food intake during growth is dominated by the impetus for lean tissue deposition, amidst proposals for the existence of protein-static mechanisms for the regulation of growth and maintenance of lean body mass. In fact, a feedback loop between fat depletion and food intake cannot explain why human subjects recovering from starvation continue to overeat well after body fat has been restored to pre-starvation values, thereby contributing to 'fat overshooting'. In addressing the plausibility and mechanistic basis by which dieting may predispose to increased fatness, this paper integrates the results derived from re-analysis of classic longitudinal studies of human starvation and refeeding. These suggest that feedback signals from both fat and lean tissues contribute to recovering body weight through effects on energy intake and thermogenesis, and that a faster rate of fat recovery relative to lean tissue recovery is a central outcome of body composition autoregulation that drives fat overshooting. A main implication of these findings is that the risk of becoming fatter in response to dieting is greater in lean than in obese individuals.

  14. Human body and head characteristics as a communication medium for Body Area Network.

    PubMed

    Kifle, Yonatan; Hun-Seok Kim; Yoo, Jerald

    2015-01-01

    An in-depth investigation of the Body Channel Communication (BCC) under the environment set according to the IEEE 802.15.6 Body Area Network (BAN) standard is conducted to observe and characterize the human body as a communication medium. A thorough measurement of the human head as part of the human channel is also carried out. Human forehead, head to limb, and ear to ear channel is characterized. The channel gain of the human head follows the same bandpass profile of the human torso and limbs with the maximum channel gain occurring at 35MHz. The human body channel gain distribution histogram at given frequencies, while all the other parameters are held constant, exhibits a maximum variation of 2.2dB in the channel gain at the center frequency of the bandpass channel gain profile.

  15. Molecular and physiological manifestations and measurement of aging in humans.

    PubMed

    Khan, Sadiya S; Singer, Benjamin D; Vaughan, Douglas E

    2017-08-01

    Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Evolutionary change in physiological phenotypes along the human lineage

    PubMed Central

    Vining, Alexander Q.; Nunn, Charles L.

    2016-01-01

    Background and Objectives: Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. Methodology: We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. Results: We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Conclusions and Implications: Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. PMID:27615376

  17. [Research progress on free radicals in human body].

    PubMed

    Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D

    2016-08-10

    Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.

  18. [Anatomical discoveries and concept of human body structure in Nan-jing (Classic of Questioning)].

    PubMed

    Yang, Shi-zhe

    2006-04-01

    What Nan-jing (Classic of Questioning) contributes to the anatomical discoveries and concepts of human body structure in TCM is that it clarifies the concept, function and anatomical essence of viscera and bowels. It is the first. book that clearly defines the triple jiao as a "qi bowel", This statement is a typical example of Chinese dualistic system of its view on the human body, consisting of physical and spiritual components. This has stirred up confusion for modern interpretation and, as a result, some thought the visceral theory in the book is not based on substantial basis of anatomy. However, the Forty-second Question in Nan-jing not only carries the contents about Wei (stomach), Xiaochang (small intestine), Huichang (large intestine) and Guangchang (anus) in the chapter of "Intestine and Stomach" in Lingshu Jing (Miraculous Pivot), but also changes these names to those we actually use today in the latter chapters; and it also records the gross anatomical shape and size of gall bladder, urinary bladder and all the five viscerae. So, Nan-jing discusses the structure of human body in ancient times, and is equivalent to an integrated science of modern physiology and anatomy, and establishes a solid basis for the fundamental theory of TCM.

  19. Pelvic dimorphism in relation to body size and body size dimorphism in humans.

    PubMed

    Kurki, Helen K

    2011-12-01

    Many mammalian species display sexual dimorphism in the pelvis, where females possess larger dimensions of the obstetric (pelvic) canal than males. This is contrary to the general pattern of body size dimorphism, where males are larger than females. Pelvic dimorphism is often attributed to selection relating to parturition, or as a developmental consequence of secondary sexual differentiation (different allometric growth trajectories of each sex). Among anthropoid primates, species with higher body size dimorphism have higher pelvic dimorphism (in converse directions), which is consistent with an explanation of differential growth trajectories for pelvic dimorphism. This study investigates whether the pattern holds intraspecifically in humans by asking: Do human populations with high body size dimorphism also display high pelvic dimorphism? Previous research demonstrated that in some small-bodied populations, relative pelvic canal size can be larger than in large-bodied populations, while others have suggested that larger-bodied human populations display greater body size dimorphism. Eleven human skeletal samples (total N: male = 229, female = 208) were utilized, representing a range of body sizes and geographical regions. Skeletal measurements of the pelvis and femur were collected and indices of sexual dimorphism for the pelvis and femur were calculated for each sample [ln(M/F)]. Linear regression was used to examine the relationships between indices of pelvic and femoral size dimorphism, and between pelvic dimorphism and female femoral size. Contrary to expectations, the results suggest that pelvic dimorphism in humans is generally not correlated with body size dimorphism or female body size. These results indicate that divergent patterns of dimorphism exist for the pelvis and body size in humans. Implications for the evaluation of the evolution of pelvic dimorphism and rotational childbirth in Homo are considered. Copyright © 2011 Elsevier Ltd. All rights

  20. Moving human full body and body parts detection, tracking, and applications on human activity estimation, walking pattern and face recognition

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2016-05-01

    We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance

  1. Mind and body: concepts of human cognition, physiology and false belief in children with autism or typical development.

    PubMed

    Peterson, Candida C

    2005-08-01

    This study examined theory of mind (ToM) and concepts of human biology (eyes, heart, brain, lungs and mind) in a sample of 67 children, including 25 high functioning children with autism (age 6-13), plus age-matched and preschool comparison groups. Contrary to Baron-Cohen [1989, Journal of Autism and Developmental Disorders, 19(4), 579-600], most children with autism correctly understood the functions of the brain (84%) and the mind (64%). Their explanations were predominantly mentalistic. They outperformed typically developing preschoolers in understanding inner physiological (heart, lungs) and cognitive (brain, mind) systems, and scored as high as age-matched typical children. Yet, in line with much previous ToM research, most children with autism (60%) failed false belief, and their ToM performance was unrelated to their understanding of. human biology. Results were discussed in relation to neurobiological and social-experiential accounts of the ToM deficit in autism.

  2. Physiological Motion Axis for the Seat of a Dynamic Office Chair.

    PubMed

    Kuster, Roman Peter; Bauer, Christoph Markus; Oetiker, Sarah; Kool, Jan

    2016-09-01

    The aim of this study was to determine and verify the optimal location of the motion axis (MA) for the seat of a dynamic office chair. A dynamic seat that supports pelvic motion may improve physical well-being and decrease the risk of sitting-associated disorders. However, office work requires an undisturbed view on the work task, which means a stable position of the upper trunk and head. Current dynamic office chairs do not fulfill this need. Consequently, a dynamic seat was adapted to the physiological kinematics of the human spine. Three-dimensional motion tracking in free sitting helped determine the physiological MA of the spine in the frontal plane. Three dynamic seats with physiological, lower, and higher MA were compared in stable upper body posture (thorax inclination) and seat support of pelvic motion (dynamic fitting accuracy). Spinal kinematics during sitting and walking were compared. The physiological MA was at the level of the 11th thoracic vertebra, causing minimal thorax inclination and high dynamic fitting accuracy. Spinal motion in active sitting and walking was similar. The physiological MA of the seat allows considerable lateral flexion of the spine similar to walking with a stable upper body posture and a high seat support of pelvic motion. The physiological MA enables lateral flexion of the spine, similar to walking, without affecting stable upper body posture, thus allowing active sitting while focusing on work. © 2016, Human Factors and Ergonomics Society.

  3. A bacteriophages journey through the human body.

    PubMed

    Barr, Jeremy J

    2017-09-01

    The human body is colonized by a diverse collective of microorganisms, including bacteria, fungi, protozoa and viruses. The smallest entity of this microbial conglomerate are the bacterial viruses. Bacteriophages, or phages for short, exert significant selective pressure on their bacterial hosts, undoubtedly influencing the human microbiome and its impact on our health and well-being. Phages colonize all niches of the body, including the skin, oral cavity, lungs, gut, and urinary tract. As such our bodies are frequently and continuously exposed to diverse collections of phages. Despite the prevalence of phages throughout our bodies, the extent of their interactions with human cells, organs, and immune system is still largely unknown. Phages physically interact with our mucosal surfaces, are capable of bypassing epithelial cell layers, disseminate throughout the body and may manipulate our immune system. Here, I establish the novel concept of an "intra-body phageome," which encompasses the collection of phages residing within the classically "sterile" regions of the body. This review will take a phage-centric view of the microbiota, human body, and immune system with the ultimate goal of inspiring a greater appreciation for both the indirect and direct interactions between bacteriophages and their mammalian hosts. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Functional neuronal processing of human body odors.

    PubMed

    Lundström, Johan N; Olsson, Mats J

    2010-01-01

    Body odors carry informational cues of great importance for individuals across a wide range of species, and signals hidden within the body odor cocktail are known to regulate several key behaviors in animals. For a long time, the notion that humans may be among these species has been dismissed. We now know, however, that each human has a unique odor signature that carries information related to his or her genetic makeup, as well as information about personal environmental variables, such as diet and hygiene. Although a substantial number of studies have investigated the behavioral effects of body odors, only a handful have studied central processing. Recent studies have, however, demonstrated that the human brain responds to fear signals hidden within the body odor cocktail, is able to extract kin specific signals, and processes body odors differently than other perceptually similar odors. In this chapter, we provide an overview of the current knowledge of how the human brain processes body odors and the potential importance these signals have for us in everyday life. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Functional Neuronal Processing of Human Body Odors

    PubMed Central

    Lundström, Johan N.; Olsson, Mats J.

    2013-01-01

    Body odors carry informational cues of great importance for individuals across a wide range of species, and signals hidden within the body odor cocktail are known to regulate several key behaviors in animals. For a long time, the notion that humans may be among these species has been dismissed. We now know, however, that each human has a unique odor signature that carries information related to his or her genetic makeup, as well as information about personal environmental variables, such as diet and hygiene. Although a substantial number of studies have investigated the behavioral effects of body odors, only a handful have studied central processing. Recent studies have, however, demonstrated that the human brain responds to fear signals hidden within the body odor cocktail, is able to extract kin specific signals, and processes body odors differently than other perceptually similar odors. In this chapter, we provide an overview of the current knowledge of how the human brain processes body odors and the potential importance these signals have for us in everyday life. PMID:20831940

  6. Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology

    PubMed Central

    Moss, Robert; Grosse, Thibault; Marchant, Ivanny; Lassau, Nathalie; Gueyffier, François; Thomas, S. Randall

    2012-01-01

    Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. PMID:22761561

  7. Decoding the language of the heart: developing a physiology of inclusion.

    PubMed

    Lynch, J J

    1998-01-01

    Constructs such as homeostasis and fight/flight have supported a scientific approach to physiology that has yielded a vast database of obvious heuristic value. Yet in spite of its value, these constructs have tended to create a mind-set that unwittingly supports what this article has labeled a "physiology of exclusion." Reinforced by the philosophy of René Descartes, this perspective has led investigators to focus on isolated or separate animal organisms that are reflexively wired for self-preservation. It has created a mind-set in which both research investigators and the public at large tend to view the human body as either in a steady state of vigilance, maximally prepared for fight/flight, or in a state of quiescence. Assumptions of the solitary body, and solitary man wired to react for "self" preservation, has made it difficult to incorporate a growing body of evidence that indicates that social support and loving relationships are conducive to good health. It also has made it difficult for investigators to fully understand why human loneliness is a major cause of premature death. This article delineates these trends and offers a new construct, one that suggests that a "physiology of inclusion" be added to the prevailing view of a "physiology of exclusion." Recent cardiovascular research is cited to help underscore the potential heuristic value of this new physiological construct.

  8. Differences between the physiologic and psychologic effects of aromatherapy body treatment.

    PubMed

    Takeda, Hitomi; Tsujita, Junzo; Kaya, Mitsuharu; Takemura, Masanori; Oku, Yoshitaka

    2008-07-01

    The wide use of herbal plants and essential oils for the prevention and treatment of diseases dates back to ancient times. However, the scientific basis for the beneficial effects of such plants and oils has not been precisely clarified. The purpose of this study was to evaluate the effects of aromatherapy body treatment on healthy subjects. We compared the physiologic and psychologic effects of aromatherapy body treatment (E), massage treatment with carrier oil alone (C), and rest in healthy adults. Seven (7) female and 6 male volunteers participated as subjects. Each subject underwent 3 trials, in which the Advanced Trail Making Test (ATMT) was given as a stress-inducing task before and after 1 of 3 treatments. The State Anxiety Inventory (SAI), the Visual Analog Scale, and the Face Scale were used to assess anxiety, feelings, and mood, respectively. After the treatments, the SAI score and the feelings of fatigue were decreased, the positive and comfortable feelings were increased, and mood improved significantly in C and E. Furthermore, significant declines in the feelings of mental and total fatigue were maintained even after the second ATMT in E. On the other hand, the cortisol concentration in the saliva did not show significant changes in any of the trials. Secretory immunoglobulin A levels in the saliva increased significantly after all treatments. We conclude that massage treatments, irrespective of the presence of essential oils, are more advantageous than rest in terms of psychologic or subjective evaluations but not in terms of physiologic or objective evaluations. Furthermore, as compared to massage alone, the aromatherapy body treatment provides a stronger and continuous relief from fatigue, especially fatigue of mental origin.

  9. Evolutionary change in physiological phenotypes along the human lineage.

    PubMed

    Vining, Alexander Q; Nunn, Charles L

    2016-01-01

    Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  10. Human physiological adaptation to extended Space Flight and its implications for Space Station

    NASA Technical Reports Server (NTRS)

    Kutyna, F. A.; Shumate, W. H.

    1985-01-01

    Current work evaluating short-term space flight physiological data on the homeostatic changes due to weightlessness is presented as a means of anticipating Space Station long-term effects. An integrated systems analysis of current data shows a vestibulo-sensory adaptation within days; a loss of body mass, fluids, and electrolytes, stabilizing in a month; and a loss in red cell mass over a month. But bone demineralization which did not level off is seen as the biggest concern. Computer algorithms have been developed to simulate the human adaptation to weightlessness. So far these paradigms have been backed up by flight data and it is hoped that they will provide valuable information for future Space Station design. A series of explanatory schematics is attached.

  11. Biodynamics of deformable human body motion

    NASA Technical Reports Server (NTRS)

    Strauss, A. M.; Huston, R. L.

    1976-01-01

    The objective is to construct a framework wherein the various models of human biomaterials fit in order to describe the biodynamic response of the human body. The behavior of the human body in various situations, from low frequency, low amplitude vibrations to impact loadings in automobile and aircraft crashes, is very complicated with respect to all aspects of the problem: materials, geometry and dynamics. The materials problem is the primary concern, but the materials problem is intimately connected with geometry and dynamics.

  12. Differences in the thermal physiology of adult Yarrow's spiny lizards (Sceloporus jarrovii) in relation to sex and body size.

    PubMed

    Beal, Martin S; Lattanzio, Matthew S; Miles, Donald B

    2014-11-01

    Sexual size dimorphism (SSD) is often assumed to reflect the phenotypic consequences of differential selection operating on each sex. Species that exhibit SSD may also show intersexual differences in other traits, including field-active body temperatures, preferred temperatures, and locomotor performance. For these traits, differences may be correlated with differences in body size or reflect sex-specific trait optima. Male and female Yarrow's spiny lizards, Sceloporus jarrovii, in a population in southeastern Arizona exhibit a difference in body temperature that is unrelated to variation in body size. The observed sexual variation in body temperature may reflect divergence in thermal physiology between the sexes. To test this hypothesis, we measured the preferred body temperatures of male and female lizards when recently fed and fasted. We also estimated the thermal sensitivity of stamina at seven body temperatures. Variation in these traits provided an opportunity to determine whether body size or sex-specific variation unrelated to size shaped their thermal physiology. Female lizards, but not males, preferred a lower body temperature when fasted, and this pattern was unrelated to body size. Larger individuals exhibited greater stamina, but we detected no significant effect of sex on the shape or height of the thermal performance curves. The thermal preference of males and females in a thermal gradient exceeded the optimal temperature for performance in both sexes. Our findings suggest that differences in thermal physiology are both sex- and size-based and that peak performance at low body temperatures may be adaptive given the reproductive cycles of this viviparous species. We consider the implications of our findings for the persistence of S. jarrovii and other montane ectotherms in the face of climate warming.

  13. Differences in the thermal physiology of adult Yarrow's spiny lizards (Sceloporus jarrovii) in relation to sex and body size

    PubMed Central

    Beal, Martin S; Lattanzio, Matthew S; Miles, Donald B

    2014-01-01

    Sexual size dimorphism (SSD) is often assumed to reflect the phenotypic consequences of differential selection operating on each sex. Species that exhibit SSD may also show intersexual differences in other traits, including field-active body temperatures, preferred temperatures, and locomotor performance. For these traits, differences may be correlated with differences in body size or reflect sex-specific trait optima. Male and female Yarrow's spiny lizards, Sceloporus jarrovii, in a population in southeastern Arizona exhibit a difference in body temperature that is unrelated to variation in body size. The observed sexual variation in body temperature may reflect divergence in thermal physiology between the sexes. To test this hypothesis, we measured the preferred body temperatures of male and female lizards when recently fed and fasted. We also estimated the thermal sensitivity of stamina at seven body temperatures. Variation in these traits provided an opportunity to determine whether body size or sex-specific variation unrelated to size shaped their thermal physiology. Female lizards, but not males, preferred a lower body temperature when fasted, and this pattern was unrelated to body size. Larger individuals exhibited greater stamina, but we detected no significant effect of sex on the shape or height of the thermal performance curves. The thermal preference of males and females in a thermal gradient exceeded the optimal temperature for performance in both sexes. Our findings suggest that differences in thermal physiology are both sex- and size-based and that peak performance at low body temperatures may be adaptive given the reproductive cycles of this viviparous species. We consider the implications of our findings for the persistence of S. jarrovii and other montane ectotherms in the face of climate warming. PMID:25540684

  14. Heat remains unaccounted for in thermal physiology and climate change research.

    PubMed

    Flouris, Andreas D; Kenny, Glen P

    2017-01-01

    In the aftermath of the Paris Agreement, there is a crucial need for scientists in both thermal physiology and climate change research to develop the integrated approaches necessary to evaluate the health, economic, technological, social, and cultural impacts of 1.5°C warming. Our aim was to explore the fidelity of remote temperature measurements for quantitatively identifying the continuous redistribution of heat within both the Earth and the human body. Not accounting for the regional distribution of warming and heat storage patterns can undermine the results of thermal physiology and climate change research. These concepts are discussed herein using two parallel examples: the so-called slowdown of the Earth's surface temperature warming in the period 1998-2013; and the controversial results in thermal physiology, arising from relying heavily on core temperature measurements. In total, the concept of heat is of major importance for the integrity of systems, such as the Earth and human body. At present, our understanding about the interplay of key factors modulating the heat distribution on the surface of the Earth and in the human body remains incomplete. Identifying and accounting for the interconnections among these factors will be instrumental in improving the accuracy of both climate models and health guidelines.

  15. A tracer analysis study on the redistribution and oxidization of endogenous carbon monoxide in the human body.

    PubMed

    Sawano, Makoto; Shimouchi, Akito

    2010-09-01

    Past studies have suggested that some carbon monoxide (CO) moves from blood haemoglobin to tissue cells and that mitochondrial cytochrome c oxidase oxidizes CO to carbon dioxide (CO(2)). However, no study has demonstrated this redistribution and oxidization of CO under physiological conditions. The objective of this study was to trace the redistribution and oxidization of CO in the human body by detecting (13)CO(2) production after the inhalation of (13)CO. In Experiment 1, we asked a healthy subject to inhale 50 ppm (13)CO gas. In Experiment 2, we circulated heparinized human blood in a cardio-pulmonary bypass circuit and supplied 50 ppm (13)CO gas to the oxygenator. We sequentially sampled exhaled and output gases and measured the (13)CO(2)/(12)CO(2) ratios. In Experiment 1, the exhaled (13)CO(2)/(12)CO(2) ratio increased significantly between 4 to 31 h of (13)CO inhalation. In Experiment 2, the output (13)CO(2)/(12)CO(2) ratio showed no significant increase within 36 h of (13)CO input. Experiment 1 demonstrated the oxidization of CO in the human body under physiological conditions. Experiment 2 confirmed that oxidization does not occur in the circulating blood and indicated the redistribution of CO from blood carboxyhaemoglobin to tissue cells.

  16. How consumer physical activity monitors could transform human physiology research.

    PubMed

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.

  17. Physiological correlates and emotional specificity of human piloerection

    PubMed Central

    Benedek, Mathias; Kaernbach, Christian

    2011-01-01

    Piloerection is known as an indicator of strong emotional experiences. However, little is known about the physiological and emotional specificity of this psychophysiological response. In the presented study, piloerection was elicited by audio stimuli taken from music and film episodes. The physiological response accompanying the incidence of piloerection was recorded with respect to electrodermal, cardiovascular and respiratory measures and compared to a matched control condition. The employment of an optical recording system allowed for a direct and objective assessment of visible piloerection. The occurrence of piloerection was primarily accompanied by an increase of phasic electrodermal activity and increased respiration depth as compared to a matched control condition. This physiological response pattern is discussed in the context of dominant theories of human piloerection. Consideration of all available evidence suggests that emotional piloerection represents a valuable indicator of the state of being moved or touched. PMID:21276827

  18. Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging.

    PubMed

    Zaharchuk, Greg; Busse, Reed F; Rosenthal, Guy; Manley, Geoffery T; Glenn, Orit A; Dillon, William P

    2006-08-01

    The oxygen partial pressure (pO2) of human body fluids reflects the oxygenation status of surrounding tissues. All existing fluid pO2 measurements are invasive, requiring either microelectrode/optode placement or fluid removal. The purpose of this study is to develop a noninvasive magnetic resonance imaging method to measure the pO2 of human body fluids. We developed an imaging paradigm that exploits the paramagnetism of molecular oxygen to create quantitative images of fluid oxygenation. A single-shot fast spin echo pulse sequence was modified to minimize artifacts from motion, fluid flow, and partial volume. Longitudinal relaxation rate (R1 = 1/T1) was measured with a time-efficient nonequilibrium saturation recovery method and correlated with pO2 measured in phantoms. pO2 images of human and fetal cerebrospinal fluid, bladder urine, and vitreous humor are presented and quantitative oxygenation levels are compared with prior literature estimates, where available. Significant pO2 increases are shown in cerebrospinal fluid and vitreous following 100% oxygen inhalation. Potential errors due to temperature, fluid flow, and partial volume are discussed. Noninvasive measurements of human body fluid pO2 in vivo are presented, which yield reasonable values based on prior literature estimates. This rapid imaging-based measurement of fluid oxygenation may provide insight into normal physiology as well as changes due to disease or during treatment.

  19. Human body surface area: a theoretical approach.

    PubMed

    Wang, Jianfeng; Hihara, Eiji

    2004-04-01

    Knowledge of the human body surface area has important applications in medical practice, garment design, and other engineering sizing. Therefore, it is not surprising that several expressions correlating body surface area with direct measurements of body mass and length have been reported in the literature. In the present study, based on the assumption that the exterior shape of the human body is the result of convex and concave deformations from a basic cylinder, we derive a theoretical equation minimizing body surface area (BSA) at a fixed volume (V): BSA=(9pi VL)(0.5), where L is the reference length of the body. Assuming a body density value of 1,000 kg.m(-3), the equation becomes BSA=(BM.BH/35.37)(0.5), where BSA is in square meters, BM is the body mass in kilograms, and BH is the body height in meters. BSA values calculated by means of this equation fall within +/-7% of the values obtained by means of the equations available in the literature, in the range of BSA from children to adults. It is also suggested that the above equation, which is obtained by minimizing the outer body surface at a fixed volume, implies a fundamental relation set by the geometrical constraints governing the growth and the development of the human body.

  20. Upper Body Venous Compliance Exceeds Lower Body Venous Compliance in Humans

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.

    1996-01-01

    Human venous compliance hypothetically decreases from upper to lower body as a mechanism for maintenance of the hydrostatic indifference level 'headward' in the body, near the heart. This maintains cardiac filling pressure, and thus cardiac output and cerebral perfusion, during orthostasis. This project entailed four steps. First, acute whole-body tilting was employed to alter human calf and neck venous volumes. Subjects were tilted on a tilt table equipped with a footplate as follows: 90 deg, 53 deg, 30 deg, 12 deg, O deg, -6 deg, -12 deg, -6 deg, O deg, 12 deg, 30 deg, 53 deg, and 90 deg. Tilt angles were held for 30 sec each, with 10 sec transitions between angles. Neck volume increased and calf volume decreased during head-down tilting, and the opposite occurred during head-up tilt. Second, I sought to cross-validate Katkov and Chestukhin's (1980) measurements of human leg and neck venous pressures during whole-body tilting, so that those data could be used with volume data from the present study to calculate calf and neck venous compliance (compliance = (Delta)volume/(Delta)pressure). Direct measurements of venous pressures during postural chances and whole-body tilting confirmed that the local changes in venous pressures seen by Katkov and Chestukhin (1980) are valid. The present data also confirmed that gravitational changes in calf venous pressure substantially exceed those changes in upper body venous pressure. Third, the volume and pressure data above were used to find that human neck venous compliance exceeds calf venous compliance by a factor of 6, thereby upholding the primary hypothesis. Also, calf and neck venous compliance correlated significantly with each other (r(exp 2) = 0.56). Fourth, I wished to determine whether human calf muscle activation during head-up tilt reduces calf venous compliance. Findings from tilting and from supine assessments of relaxed calf venous compliance were similar, indicating that tilt-induced muscle activation is

  1. [Wireless human body communication technology].

    PubMed

    Sun, Lei; Zhang, Xiaojuan

    2014-12-01

    The Wireless Body Area Network (WBAN) is a key part of the wearable monitoring technologies, which has many communication technologies to choose from, like Bluetooth, ZigBee, Ultra Wideband, and Wireless Human Body Communication (WHBC). As for the WHBC developed in recent years, it is worthy to be further studied. The WHBC has a strong momentum of growth and a natural advantage in the formation of WBAN. In this paper, we first briefly describe the technical background of WHBC, then introduce theoretical model of human-channel communication and digital transmission machine based on human channel. And finally we analyze various of the interference of the WHBC and show the AFH (Adaptive Frequency Hopping) technology which can effectively deal with the interference.

  2. Human thermoregulation and measurement of body temperature in exercise and clinical settings.

    PubMed

    Lim, Chin Leong; Byrne, Chris; Lee, Jason Kw

    2008-04-01

    This review discusses human thermoregulation during exercise and the measurement of body temperature in clinical and exercise settings. The thermoregulatory mechanisms play important roles in maintaining physiological homeostasis during rest and physical exercise. Physical exertion poses a challenge to thermoregulation by causing a substantial increase in metabolic heat production. However, within a non-thermolytic range, the thermoregulatory mechanisms are capable of adapting to sustain physiological functions under these conditions. The central nervous system may also rely on hyperthermia to protect the body from "overheating." Hyperthermia may serve as a self-limiting signal that triggers central inhibition of exercise performance when a temperature threshold is achieved. Exposure to sub-lethal heat stress may also confer tolerance against higher doses of heat stress by inducing the production of heat shock proteins, which protect cells against the thermolytic effects of heat. Advances in body temperature measurement also contribute to research in thermoregulation. Current evidence supports the use of oral temperature measurement in the clinical setting, although it may not be as convenient as tympanic temperature measurement using the infrared temperature scanner. Rectal and oesophagus temperatures are widely accepted surrogate measurements of core temperature (Tc), but they cause discomfort and are less likely to be accepted by users. Gastrointestinal temperature measurement using the ingestible temperature sensor provides an acceptable level of accuracy as a surrogate measure of Tc without causing discomfort to the user. This form of Tc measurement also allows Tc to be measured continuously in the field and has gained wider acceptance in the last decade.

  3. Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats.

    PubMed

    Kletkiewicz, H; Rogalska, J; Nowakowska, A; Wozniak, A; Mila-Kierzenkowska, C; Caputa, M

    2016-04-01

    It is well known that decrease in body temperature provides protection to newborns subjected to anoxia/ischemia. We hypothesized that the normal body temperature of 33°C in neonatal rats (4°C below normal body temperature in adults) is in fact a preadaptation to protect CNS from anoxia and further reductions as well as elevations in temperature may be counterproductive. Our experiments aimed to examine the effect of changes in body temperature on oxidative stress development in newborn rats exposed to anoxia. Two-day-old Wistar rats were divided into 4 temperature groups: i. hypothermic at body temperature of 31°C, ii. maintaining physiological neonatal body temperature of 33°C, iii. forced to maintain hyperthermic temperature of 37°C, and i.v. forced to maintain hyperthermic temperature of 39°C. The temperature was controlled starting 15 minutes before and afterword during 10 minutes of anoxia as well as for 2 hours post-anoxia. Cerebral concentrations of lipid peroxidation products malondialdehyde (MDA) and conjugated dienes (CD) and the activities of antioxidant enzymes had been determined post mortem: immediately after anoxia was finished and 3, 7, and 14 days later. There were no post-anoxic changes in the concentration of MDA, CD and in antioxidant enzymes activity in newborn rats kept at their physiological body temperature of 33°C. In contrast, perinatal anoxia at body temperature elevated to 37°C or 39°C as well as under hypothermic conditions (31°C) intensified post-anoxic oxidative stress and depleted the antioxidant pool. Overall, these findings suggest that elevated body temperature (hyperthermia or fever), as well as exceeding cooling beyond the physiological level of body temperature of newborn rats, may extend perinatal anoxia-induced brain lesions. Our findings provide new insights into the role of body temperature in anoxic insult in vivo.

  4. Automated fudicial labeling on human body data

    NASA Astrophysics Data System (ADS)

    Lewark, Erick A.; Nurre, Joseph H.

    1998-03-01

    The Cyberware WB4 whole body scanner generates a high- resolution data set of the outer surface of the human body. The acquisition of anthropometric data from this data set is important for the development of custom sizing for the apparel industry. Software for locating anthropometric landmarks from a cloud of more than 200,000 three-dimensional data points, captured from a human subject, is presented. The first phase of identification is to locate externally placed fudicials on the human body using luminance information captured at scan time. The fudicials are then autonomously labeled and categorized according to their general position and anthropometric significance in the scan. Once registration of the landmarks is complete, body measurements may be extracted for apparel sizing.

  5. Physiological Importance of Hydrogen Sulfide: Emerging Potent Neuroprotector and Neuromodulator

    PubMed Central

    Chung, Hyung-Joo

    2016-01-01

    Hydrogen sulfide (H2S) is an emerging neuromodulator that is considered to be a gasotransmitter similar to nitrogen oxide (NO) and carbon monoxide (CO). H2S exerts universal cytoprotective effects and acts as a defense mechanism in organisms ranging from bacteria to mammals. It is produced by the enzymes cystathionine β-synthase (CBS), cystathionine ϒ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (MST), and D-amino acid oxidase (DAO), which are also involved in tissue-specific biochemical pathways for H2S production in the human body. H2S exerts a wide range of pathological and physiological functions in the human body, from endocrine system and cellular longevity to hepatic protection and kidney function. Previous studies have shown that H2S plays important roles in peripheral nerve regeneration and degeneration and has significant value during Schwann cell dedifferentiation and proliferation but it is also associated with axonal degradation and the remyelination of Schwann cells. To date, physiological and toxic levels of H2S in the human body remain unclear and most of the mechanisms of action underlying the effects of H2S have yet to be fully elucidated. The primary purpose of this review was to provide an overview of the role of H2S in the human body and to describe its beneficial effects. PMID:27413423

  6. Human body region enhancement method based on Kinect infrared imaging

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing

    2016-10-01

    To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.

  7. [An interactive three-dimensional model of the human body].

    PubMed

    Liem, S L

    2009-01-01

    Driven by advanced computer technology, it is now possible to show the human anatomy on a computer. On the internet, the Visible Body programme makes it possible to navigate in all directions through the anatomical structures of the human body, using mouse and keyboard. Visible Body is a wonderful tool to give insight in the human structures, body functions and organs.

  8. Leptin in human physiology and pathophysiology

    PubMed Central

    Magkos, Faidon; Brinkoetter, Mary; Sienkiewicz, Elizabeth; Dardeno, Tina A.; Kim, Sang-Yong; Hamnvik, Ole-Petter R.; Koniaris, Anastasia

    2011-01-01

    Leptin, discovered through positional cloning 15 years ago, is an adipocyte-secreted hormone with pleiotropic effects in the physiology and pathophysiology of energy homeostasis, endocrinology, and metabolism. Studies in vitro and in animal models highlight the potential for leptin to regulate a number of physiological functions. Available evidence from human studies indicates that leptin has a mainly permissive role, with leptin administration being effective in states of leptin deficiency, less effective in states of leptin adequacy, and largely ineffective in states of leptin excess. Results from interventional studies in humans demonstrate that leptin administration in subjects with congenital complete leptin deficiency or subjects with partial leptin deficiency (subjects with lipoatrophy, congenital or related to HIV infection, and women with hypothalamic amenorrhea) reverses the energy homeostasis and neuroendocrine and metabolic abnormalities associated with these conditions. More specifically, in women with hypothalamic amenorrhea, leptin helps restore abnormalities in hypothalamic-pituitary-peripheral axes including the gonadal, thyroid, growth hormone, and to a lesser extent adrenal axes. Furthermore, leptin results in resumption of menses in the majority of these subjects and, in the long term, may increase bone mineral content and density, especially at the lumbar spine. In patients with congenital or HIV-related lipoatrophy, leptin treatment is also associated with improvements in insulin sensitivity and lipid profile, concomitant with reduced visceral and ectopic fat deposition. In contrast, leptin's effects are largely absent in the obese hyperleptinemic state, probably due to leptin resistance or tolerance. Hence, another emerging area of research pertains to the discovery and/or usefulness of leptin sensitizers. Results from ongoing studies are expected to further increase our understanding of the role of leptin and the potential clinical

  9. A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology

    PubMed Central

    2011-01-01

    Background Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain, and alveolar macrophage. These models have shown utility in the study of systems medicine. However, no integrated analysis between human tissues has been done. Results To describe tissue-specific functions, Recon 1 was tailored to describe metabolism in three human cells: adipocytes, hepatocytes, and myocytes. These cell-specific networks were manually curated and validated based on known cellular metabolic functions. To study intercellular interactions, a novel multi-tissue type modeling approach was developed to integrate the metabolic functions for the three cell types, and subsequently used to simulate known integrated metabolic cycles. In addition, the multi-tissue model was used to study diabetes: a pathology with systemic properties. High-throughput data was integrated with the network to determine differential metabolic activity between obese and type II obese gastric bypass patients in a whole-body context. Conclusion The multi-tissue type modeling approach presented provides a platform to study integrated metabolic states. As more cell and tissue-specific models are released, it is critical to develop a framework in which to study their interdependencies. PMID:22041191

  10. Physiological correlates and emotional specificity of human piloerection.

    PubMed

    Benedek, Mathias; Kaernbach, Christian

    2011-03-01

    Piloerection is known as an indicator of strong emotional experiences. However, little is known about the physiological and emotional specificity of this psychophysiological response. In the presented study, piloerection was elicited by audio stimuli taken from music and film episodes. The physiological response accompanying the incidence of piloerection was recorded with respect to electrodermal, cardiovascular and respiratory measures and compared to a matched control condition. The employment of an optical recording system allowed for a direct and objective assessment of visible piloerection. The occurrence of piloerection was primarily accompanied by an increase of phasic electrodermal activity and increased respiration depth as compared to a matched control condition. This physiological response pattern is discussed in the context of dominant theories of human piloerection. Consideration of all available evidence suggests that emotional piloerection represents a valuable indicator of the state of being moved or touched. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Translating dosages from animal models to human clinical trials--revisiting body surface area scaling.

    PubMed

    Blanchard, Otis L; Smoliga, James M

    2015-05-01

    Body surface area (BSA) scaling has been used for prescribing individualized dosages of various drugs and has also been recommended by the U.S. Food and Drug Administration as one method for using data from animal model species to establish safe starting dosages for first-in-human clinical trials. Although BSA conversion equations have been used in certain clinical applications for decades, recent recommendations to use BSA to derive interspecies equivalents for therapeutic dosages of drug and natural products are inappropriate. A thorough review of the literature reveals that BSA conversions are based on antiquated science and have little justification in current translational medicine compared to more advanced allometric and physiologically based pharmacokinetic modeling. Misunderstood and misinterpreted use of BSA conversions may have disastrous consequences, including underdosing leading to abandonment of potentially efficacious investigational drugs, and unexpected deadly adverse events. We aim to demonstrate that recent recommendations for BSA are not appropriate for animal-to-human dosage conversions and use pharmacokinetic data from resveratrol studies to demonstrate how confusion between the "human equivalent dose" and "pharmacologically active dose" can lead to inappropriate dose recommendations. To optimize drug development, future recommendations for interspecies scaling must be scientifically justified using physiologic, pharmacokinetic, and toxicology data rather than simple BSA conversion. © FASEB.

  12. Integrating Cellular Metabolism into a Multiscale Whole-Body Model

    PubMed Central

    Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars

    2012-01-01

    Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351

  13. Magnetic human body communication.

    PubMed

    Park, Jiwoong; Mercier, Patrick P

    2015-01-01

    This paper presents a new human body communication (HBC) technique that employs magnetic resonance for data transfer in wireless body-area networks (BANs). Unlike electric field HBC (eHBC) links, which do not necessarily travel well through many biological tissues, the proposed magnetic HBC (mHBC) link easily travels through tissue, offering significantly reduced path loss and, as a result, reduced transceiver power consumption. In this paper the proposed mHBC concept is validated via finite element method simulations and measurements. It is demonstrated that path loss across the body under various postures varies from 10-20 dB, which is significantly lower than alternative BAN techniques.

  14. The ownership of human body: an islamic perspective.

    PubMed

    Aramesh, Kiarash

    2009-01-01

    Using human dead body for medical purposes is a common practice in medical schools and hospitals throughout the world. Iran, as an Islamic country is not an exception. According to the Islamic view, the body, like the soul, is a "gift" from God; therefore, human being does not possess absolute ownership on his or her body. But, the ownership of human beings on their bodies can be described as a kind of "stewardship". Accordingly, any kind of dissection or mutilation of the corpse is forbidden, even with the informed consent of the dead or his/her relatives. The exception of this principle is when such procedures are necessary for saving lives of other persons. In this article using the human dead body for medical education, research and treatment is discussed and the perspective of Iranian Shiite religious scholars in this regard is explained.

  15. Oxygen and differentiation status modulate the effect of X-ray irradiation on physiology and mitochondrial proteome of human neuroblastoma cells.

    PubMed

    Džinić, Tamara; Hartwig, Sonja; Lehr, Stefan; Dencher, Norbert A

    2016-12-01

    Cytotoxic effects, including oxidative stress, of low linear energy transfer (LET)-ionizing radiation are often underestimated and studies of their mechanisms using cell culture models are widely conducted with cells cultivated at atmospheric oxygen that does not match its physiological levels in body tissues. Also, cell differentiation status plays a role in the outcome of experiments. We compared effects of 2 Gy X-ray irradiation on the physiology and mitochondrial proteome of nondifferentiated and human neuroblastoma (SH-SY5Y) cells treated with retinoic acid cultivated at 21% and 5% O 2 . Irradiation did not affect the amount of subunits of OxPhos complexes and other non-OxPhos mitochondrial proteins, except for heat shock protein 70, which was increased depending on oxygen level and differentiation status. These two factors were proven to modulate mitochondrial membrane potential and the bioenergetic status of cells. We suggest, moreover, that oxygen plays a role in the differentiation of human SH-SY5Y cells.

  16. Human body odour, symmetry and attractiveness.

    PubMed Central

    Rikowski, A; Grammer, K

    1999-01-01

    Several studies have found body and facial symmetry as well as attractiveness to be human mate choice criteria. These characteristics are presumed to signal developmental stability. Human body odour has been shown to influence female mate choice depending on the immune system, but the question of whether smell could signal general mate quality, as do other cues, was not addressed in previous studies. We compared ratings of body odour, attractiveness, and measurements of facial and body asymmetry of 16 male and 19 female subjects. Subjects wore a T-shirt for three consecutive nights under controlled conditions. Opposite-sex raters judged the odour of the T-shirts and another group evaluated portraits of the subjects for attractiveness. We measured seven bilateral traits of the subject's body to assess body asymmetry. Facial asymmetry was examined by distance measurements of portrait photographs. The results showed a significant positive correlation between facial attractiveness and sexiness of body odour for female subjects. We found positive relationships between body odour and attractiveness and negative ones between smell and body asymmetry for males only if female odour raters were in the most fertile phase of their menstrual cycle. The outcomes are discussed in the light of different male and female reproductive strategies. PMID:10380676

  17. Combined effect of whole-body vibration and ambient lighting on human discomfort, heart rate, and reaction time.

    PubMed

    Monazzam, Mohammad Reza; Shoja, Esmaeil; Zakerian, Seyed Abolfazl; Foroushani, Abbas Rahimi; Shoja, Mohsen; Gharaee, Masoumeh; Asgari, Amin

    2018-07-01

    This study aimed to investigate the effect of whole-body vibration and ambient lighting, as well as their combined effect on human discomfort, heart rate, and reaction time in laboratory conditions. 44 men were recruited with an average age of 25.4 ± 1.9 years. Each participant was subjected to 12 experimental steps, each step lasting five minutes for four different vibration accelerations in X, Y, and Z axes at a fixed frequency; three different lighting intensities of 50, 500, and 1000 lx were also considered. At each step, a visual computerized reaction test was taken from subjects and their heart rate recorded by pulse oximeter. In addition, the discomfort rate of subjects was measured using Borg scale. Increasing vibration acceleration significantly increased the discomfort rate and heart beat but not the reaction time. Lack of lighting caused more discomfort in the subjects, but there was no significant correlation between lighting intensity with heart rate and reaction time. The results also showed that the combined effect of vibration and lighting had no significant effect on any of the discomfort, heart rate, and reaction time variables. Whole-body vibration is an important factor in the development of human subjective and physiological reactions compared to lighting. Therefore, consideration of the level of vibration to which an individual is exposed in workplaces subject to vibration plays an important role in reducing the level of human discomfort, but its interaction with ambient lighting does not have a significant effect on human subjective and physiological responses.

  18. Vernacularizing the Body: Informational Egalitarianism, Hindu Divine Design, and Race in Physiology Schoolbooks, Bengal 1859-1877.

    PubMed

    Mukharji, Projit Bihari

    2017-01-01

    Government-aided vernacular schools introduced "human physiology" as a subject in 1859. I use the first couple of schoolbooks and the debate running up to the introduction of the subject to open up the particular and specific histories through which modern anatomo-physiological knowledge was vernacularized in colonial Bengal. In so doing I have two interconnected goals in this article. My first goal is to analyze the precocious decision to teach human physiology to colonial schoolboys, at a time when this was the norm neither in Great Britain nor indeed in traditional Bengali schools. My second goal is to use this case to further develop "vernacularization" as a conceptual tool. In pursuing these twin objectives, I simultaneously hope to move the debate on modern anatomo-physiological knowledge in South Asia away from the level of epistemic superiority and onto-politics to the level of concrete historical particularities.

  19. The Ownership of Human Body: An Islamic Perspective

    PubMed Central

    Aramesh, Kiarash

    2009-01-01

    Using human dead body for medical purposes is a common practice in medical schools and hospitals throughout the world. Iran, as an Islamic country is not an exception. According to the Islamic view, the body, like the soul, is a “gift” from God; therefore, human being does not possess absolute ownership on his or her body. But, the ownership of human beings on their bodies can be described as a kind of “stewardship”. Accordingly, any kind of dissection or mutilation of the corpse is forbidden, even with the informed consent of the dead or his/her relatives. The exception of this principle is when such procedures are necessary for saving lives of other persons. In this article using the human dead body for medical education, research and treatment is discussed and the perspective of Iranian Shiite religious scholars in this regard is explained. PMID:23908718

  20. The human physiological impact of global deoxygenation.

    PubMed

    Martin, Daniel; McKenna, Helen; Livina, Valerie

    2017-01-01

    There has been a clear decline in the volume of oxygen in Earth's atmosphere over the past 20 years. Although the magnitude of this decrease appears small compared to the amount of oxygen in the atmosphere, it is difficult to predict how this process may evolve, due to the brevity of the collected records. A recently proposed model predicts a non-linear decay, which would result in an increasingly rapid fall-off in atmospheric oxygen concentration, with potentially devastating consequences for human health. We discuss the impact that global deoxygenation, over hundreds of generations, might have on human physiology. Exploring the changes between different native high-altitude populations provides a paradigm of how humans might tolerate worsening hypoxia over time. Using this model of atmospheric change, we predict that humans may continue to survive in an unprotected atmosphere for ~3600 years. Accordingly, without dramatic changes to the way in which we interact with our planet, humans may lose their dominance on Earth during the next few millennia.

  1. Dunbar's number: group size and brain physiology in humans reexamined.

    PubMed

    de Ruiter, Jan; Weston, Gavin; Lyon, Stephen M

    2011-01-01

    Popular academic ideas linking physiological adaptations to social behaviors are spreading disconcertingly into wider societal contexts. In this article, we note our skepticism with one particularly popular—in our view, problematic—supposed causal correlation between neocortex size and social group size. The resulting Dunbar's Number, as it has come to be called, has been statistically tested against observed group size in different primate species. Although there may be reason to doubt the Dunbar's Number hypothesis among nonhuman primate species, we restrict ourselves here to the application of such an explanatory hypothesis to human, culture-manipulating populations. Human information process management, we argue, cannot be understood as a simple product of brain physiology. Cross-cultural comparison of not only group size but also relationship-reckoning systems like kinship terminologies suggests that although neocortices are undoubtedly crucial to human behavior, they cannot be given such primacy in explaining complex group composition, formation, or management.

  2. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  3. Lower body negative pressure as a tool for research in aerospace physiology and military medicine

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    2001-01-01

    Lower body negative pressure (LBNP) has been extensively used for decades in aerospace physiological research as a tool to investigate cardiovascular mechanisms that are associated with or underlie performance in aerospace and military environments. In comparison with clinical stand and tilt tests, LBNP represents a relatively safe methodology for inducing highly reproducible hemodynamic responses during exposure to footward fluid shifts similar to those experienced under orthostatic challenge. By maintaining an orthostatic challenge in a supine posture, removal of leg support (muscle pump) and head motion (vestibular stimuli) during LBNP provides the capability to isolate cardiovascular mechanisms that regulate blood pressure. LBNP can be used for physiological measurements, clinical diagnoses and investigational research comparisons of subject populations and alterations in physiological status. The applications of LBNP to the study of blood pressure regulation in spaceflight, groundbased simulations of low gravity, and hemorrhage have provided unique insights and understanding for development of countermeasures based on physiological mechanisms underlying the operational problems.

  4. Warming reinforces nonconsumptive predator effects on prey growth, physiology, and body stoichiometry.

    PubMed

    Janssens, Lizanne; Van Dievel, Marie; Stoks, Robby

    2015-12-01

    While nonconsumptive effects of predators may strongly affect prey populations, little is known how future warming will modulate these effects. Such information would be especially relevant with regard to prey physiology and resulting changes in prey stoichiometry. We investigated in Enallagma cyathigerum damselfly larvae the effects of a 4°C warming (20°C vs. 24°C) and predation risk on growth rate, physiology and body stoichiometry, for the first time including all key mechanisms suggested by the general stress paradigm (GSP) on how stressors shape changes in body stoichiometry. Growth rate and energy storage were higher at 24°C. Based on thermodynamic principles and the growth rate hypothesis, we could demonstrate predictable reductions in body C:P under warming and link these to the increase in P-rich RNA; the associated warming-induced decrease in C:N may be explained by the increased synthesis of N-rich proteins. Yet, under predation risk, growth rate instead decreased with warming and the warming-induced decreases in C:N and C:P disappeared. As predicted by the GSP, larvae increased body C:N and C:P at 24°C under predation risk. Notably, we did not detect the assumed GSP-mechanisms driving these changes: despite an increased metabolic rate there was neither an increase of C-rich biomolecules (instead fat and sugar contents decreased under predation risk), nor a decrease of N-rich proteins. We hypothesize that the higher C:N and N:P under predation risk are caused by a higher investment in morphological defense. This may also explain the stronger predator-induced increase in C:N under warming. The expected higher C:P under predation risk was only present under warming and matched the observed growth reduction and associated reduction in P-rich RNA. Our integrated mechanistic approach unraveled novel pathways of how warming and predation risk shape body stoichiometry. Key findings that (1) warming effects on elemental stoichiometry were predictable and

  5. Microwave non-contact imaging of subcutaneous human body tissues.

    PubMed

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  6. Physiological correlates of stress-induced decrements in human perceptual performance.

    DOT National Transportation Integrated Search

    1993-11-01

    Stress-induced changes in human performance have been thought to result from alterations in the "multidimensional arousal state" of the individual, as indexed by alterations in the physiological and psychological mechanisms controlling performance. I...

  7. Stretch sensors for human body motion

    NASA Astrophysics Data System (ADS)

    O'Brien, Ben; Gisby, Todd; Anderson, Iain A.

    2014-03-01

    Sensing motion of the human body is a difficult task. From an engineers' perspective people are soft highly mobile objects that move in and out of complex environments. As well as the technical challenge of sensing, concepts such as comfort, social intrusion, usability, and aesthetics are paramount in determining whether someone will adopt a sensing solution or not. At the same time the demands for human body motion sensing are growing fast. Athletes want feedback on posture and technique, consumers need new ways to interact with augmented reality devices, and healthcare providers wish to track recovery of a patient. Dielectric elastomer stretch sensors are ideal for bridging this gap. They are soft, flexible, and precise. They are low power, lightweight, and can be easily mounted on the body or embedded into clothing. From a commercialisation point of view stretch sensing is easier than actuation or generation - such sensors can be low voltage and integrated with conventional microelectronics. This paper takes a birds-eye view of the use of these sensors to measure human body motion. A holistic description of sensor operation and guidelines for sensor design will be presented to help technologists and developers in the space.

  8. Human gut microbiome: the second genome of human body.

    PubMed

    Zhu, Baoli; Wang, Xin; Li, Lanjuan

    2010-08-01

    The human body is actually a super-organism that is composed of 10 times more microbial cells than our body cells. Metagenomic study of the human microbiome has demonstrated that there are 3.3 million unique genes in human gut, 150 times more genes than our own genome, and the bacterial diversity analysis showed that about 1000 bacterial species are living in our gut and a majority of them belongs to the divisions of Firmicutes and Bacteriodetes. In addition, most people share a core microbiota that comprises 50-100 bacterial species when the frequency of abundance at phylotype level is not considered, and a core microbiome harboring more than 6000 functional gene groups is present in the majority of human gut surveyed till now. Gut bacteria are not only critical for regulating gut metabolism, but also important for host immune system as revealed by animal studies.

  9. Study of physiological responses to acute carbon monoxide exposure with a human patient simulator.

    PubMed

    Cesari, Whitney A; Caruso, Dominique M; Zyka, Enela L; Schroff, Stuart T; Evans, Charles H; Hyatt, Jon-Philippe K

    2006-12-01

    Human patient simulators are widely used to train health professionals and students in a clinical setting, but they also can be used to enhance physiology education in a laboratory setting. Our course incorporates the human patient simulator for experiential learning in which undergraduate university juniors and seniors are instructed to design, conduct, and present (orally and in written form) their project testing physiological adaptation to an extreme environment. This article is a student report on the physiological response to acute carbon monoxide exposure in a simulated healthy adult male and a coal miner and represents how 1) human patient simulators can be used in a nonclinical way for experiential hypothesis testing; 2) students can transition from traditional textbook learning to practical application of their knowledge; and 3) student-initiated group investigation drives critical thought. While the course instructors remain available for consultation throughout the project, the relatively unstructured framework of the assignment drives the students to create an experiment independently, troubleshoot problems, and interpret the results. The only stipulation of the project is that the students must generate an experiment that is physiologically realistic and that requires them to search out and incorporate appropriate data from primary scientific literature. In this context, the human patient simulator is a viable educational tool for teaching integrative physiology in a laboratory environment by bridging textual information with experiential investigation.

  10. Post-human body and beauty.

    PubMed

    Russo, Maria Teresa; Di Stefano, Nicola

    2014-01-01

    The article calls into question the very possibility of a post-human aesthetics, starting from the following premise: rather than post-human, it is more correct to speak of post-natural, indicating by this expression a reality produced through a new type of evolution, which does not simply change human nature, but de-natures it, radically transforming it into an artefact. This post-nature which aspires to be perfect, immortal, invulnerable, is entirely devoid of beauty. In fact, while there may be an aesthetic of the artificial and of the artefact if it is in relation to objects, there is, however, no aesthetic of the post-human body. This is because is configured as a non-body and does not have the characteristics for what is commonly intended as beauty (harmony between matter and form, a reflection of inner life, uniqueness). Also in this case, it is more correct to speak of post-beauty, which in its properties appears to be the mirror image of beauty and ultimately, represents its complete dissolution.

  11. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    PubMed

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Electronic imaging of the human body

    NASA Astrophysics Data System (ADS)

    Vannier, Michael W.; Yates, Randall E.; Whitestone, Jennifer J.

    1992-09-01

    The Human Engineering Division of the Armstrong Laboratory (USAF); the Mallinckrodt Institute of Radiology; the Washington University School of Medicine; and the Lister-Hill National Center for Biomedical Communication, National Library of Medicine are sponsoring a working group on electronic imaging of the human body. Electronic imaging of the surface of the human body has been pursued and developed by a number of disciplines including radiology, forensics, surgery, engineering, medical education, and anthropometry. The applications range from reconstructive surgery to computer-aided design (CAD) of protective equipment. Although these areas appear unrelated, they have a great deal of commonality. All the organizations working in this area are faced with the challenges of collecting, reducing, and formatting the data in an efficient and standard manner; storing this data in a computerized database to make it readily accessible; and developing software applications that can visualize, manipulate, and analyze the data. This working group is being established to encourage effective use of the resources of all the various groups and disciplines involved in electronic imaging of the human body surface by providing a forum for discussing progress and challenges with these types of data.

  13. Microwave non-contact imaging of subcutaneous human body tissues

    PubMed Central

    Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-01-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated. PMID:26609415

  14. HUMAN BODY SHAPE INDEX BASED ON AN EXPERIMENTALLY DERIVED MODEL OF HUMAN GROWTH

    PubMed Central

    Lebiedowska, Maria K.; Alter, Katharine E.; Stanhope, Steven J.

    2009-01-01

    Objectives To test the assumption of geometrically similar growth by developing experimentally derived models of human body growth during the age interval of 5–18 years; to use the derived growth models to establish a new Human Body Shape Index (HBSI) based on natural age related changes in HBS; and to compare various metrics of relative body weight (body mass index, ponderal index, HBSI) in a sample of 5–18 year old children. Study design Non-disabled Polish children (N=847) participated in this descriptive study. To model growth, the best fit between body height (H) and body mass (M) was calculated for each sex with the allometric equation M= miHχ. HBSI and HBSI were calculated separately for girls and boys, using sex-specific values for χ and a general HBSI from combined data. The customary body mass and ponderal indices were calculated and compared to HBSI values. Results The models of growth were M=13.11H2.84 (R2=.90) and M=13.64H2.68 (R2=.91) for girls and boys respectively. HBSI values contained less inherent variability and were influenced least by growth (age and height) than customary indices. Conclusion Age-related growth during childhood is sex-specific and not geometrically similar. Therefore, indices of human body shape formulated from experimentally derived models of human growth are superior to customary geometric similarity-based indices for the characterization of human body shape in children during the formative growth years. PMID:18154897

  15. Multi-body dynamics modelling of seated human body under exposure to whole-body vibration.

    PubMed

    Yoshimura, Takuya; Nakai, Kazuma; Tamaoki, Gen

    2005-07-01

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spine such as chronic lumbago or low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column and to make up appropriate guidelines or counter plans. In ISO2631-1 or ISO2631-5 assessment of vibration effects to human in the view of adverse-health effect was already presented. However, it is necessary to carry out further research to understand the effect of vibration to human body to examine their validity and to prepare for the future revision. This paper shows the detail measurement of human response to vibration, and the modelling of the seated human body for the assessment of the vibration risk. The vibration transmissibilities from the seat surface to the spinal column and to the head are measured during the exposure to vertical excitation. The modal paramters of seated subject are extracted in order to understand the dominant natural modes. For the evaluation of adverse-health effect the multi-body modelling of the spinal column is introduced. A simplified model having 10 DOFs is counstructed so that the transmissibilities of the model fit to those of experiment. The transient response analysis is illustrated when a half-sine input is applied. The relative displacements of vertebrae are evaluated, which can be a basis for the assessment of vibration risk. It is suggested that the multi-body dynamic model is used to evaluate the vibration effect to the spinal column for seated subjects.

  16. Construction of a Lower Body Negative Pressure Chamber

    ERIC Educational Resources Information Center

    Esch, Ben T. A; Scott, Jessica M.; Warburton, Darren E. R.

    2007-01-01

    Lower body negative pressure (LBNP) is an established and important technique used to physiologically stress the human body, particularly the cardiovascular system. LBNP is most often used to simulate gravitational stress, but it has also been used to simulate hemorrhage, alter preload, and manipulate baroreceptors. During experimentation, the…

  17. Electric Shock and the Human Body.

    ERIC Educational Resources Information Center

    Brown, Colin

    1986-01-01

    Discusses electricity's documented effects on the human body, including both the dangers to human health and the medical application of electrical stimulation to heart problems. Discusses the teaching of such physics topics to potential medical students. (TW)

  18. Body Composition and Physiological Responses of Masters Female Swimmers 20 to 70 Years of Age.

    ERIC Educational Resources Information Center

    Vaccaro, Paul; And Others

    1984-01-01

    Female masters swimmers ranging in age from 20 to 69 were chosen for a study of their body composition and physiological responses at rest and during exercise. Two training groups were formed that differed on the basis of frequency, duration, and intensity of swimming workouts. Results are discussed. (Author/DF)

  19. Colonic Fermentation: A Neglected Topic in Human Physiology Education

    ERIC Educational Resources Information Center

    Valeur, Jorgen; Berstad, Arnold

    2010-01-01

    Human physiology textbooks tend to limit their discussion of colonic functions to those of absorbing water and electrolytes and storing waste material. However, the colon is a highly active metabolic organ, containing an exceedingly complex society of microbes. By means of fermentation, gastrointestinal microbes break down nutrients that cannot be…

  20. In-to-out body path loss for wireless radio frequency capsule endoscopy in a human body.

    PubMed

    Vermeeren, G; Tanghe, E; Thielens, A; Martens, L; Joseph, W

    2016-08-01

    Physical-layer characterization is important for design of in-to-out body communication for wireless body area networks (WBANs). This paper numerically investigates the path loss of an in-to-out body radio frequency (RF) wireless link between an endoscopy capsule and a receiver outside the body using a 3D electromagnetic solver. A spiral antenna in the endoscopy capsule is tuned to operate in the Medical Implant Communication Service (MICS) band at 402 MHz, accounting for the properties of the human body. The influence of misalignment, rotation of the capsule, and human body model are investigated. Semi-empirical path loss models for various homogeneous tissues and 3D realistic human body models are provided for manufacturers to evaluate the performance of in-to-out-body WBAN systems.

  1. PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURES TO METHYL TERTIARY-BUTYL ETHER

    EPA Science Inventory

    Humans can be exposed by inhalation, ingestion, or dermal absorption to methyl tertiary-butyl ether (MTBE), an oxygenated fuel additive, from contaminated water sources. The purpose of this research was to develop a physiologically based pharmacokinetic model describing in human...

  2. EPM - The European Facility for human physiology research on ISS.

    PubMed

    Rieschel, Mats; Nasca, Rosario; Junk, Peter; Gerhard, Ingo

    2002-07-01

    The European Physiology Modules (EPM) Facility is one of the four major Space Station facilities being developed within the framework of ESA's Microgravity Facilities for Columbus (MFC) programme. In order to allow a wide spectrum of physiological studies in weightlessness conditions, the facility provides the infrastructure to accommodate a variable set of scientific equipment. The initial EPM configuration supports experiments in the fields of neuroscience, bone & muscle research, cardiovascular research and metabolism. The International Space Life Science Working Group (ISLSWG) has recommended co-locating EPM with the 2 NASA Human Research Facility racks.

  3. Globalization and the trade in human body parts.

    PubMed

    Harrison, T

    1999-02-01

    Since the early 1980s, the number and variety of organ transplantations has increased enormously worldwide. Accompanying this increase has been the emergence of a market for human body parts. This paper argues that, while the trade in human body parts is conditioned by technological advances, it must be understood in the broader context of globalization, specifically the extension and intensification of a capitalist mode of exchange. In this regard, it is argued that the trade in human body parts mirrors the "normal" system of unequal exchanges that mark other forms of trade between the developed and undeveloped regions of the world.

  4. What determines human body odour?

    PubMed

    Hamada, Kaoru; Haruyama, Sanehito; Yamaguchi, Takashi; Yamamoto, Kayo; Hiromasa, Kana; Yoshioka, Manabu; Nishio, Daisuke; Nakamura, Motonobu

    2014-05-01

    Human body odour and earwax type are genetically dependent on a single-nucleotide polymorphism (SNP) located in the ABCC11 gene. So far, it still remains to be clear how SNP in the ABCC11 gene is associated with human malodour. In a recent issue of Experimental Dermatology, Baumann et al. propose one of the underlying molecular pathways. Although one of the amino acid conjugated of the odorants, Cys-Gly-3-methyl-3-sulfanylhexanol (3M3SH), was not taken up by the transporter ABCC11, glutathione conjugate of 3MSH (SG-3MSH) was transported by ABCC11. Moreover, SG-3MSH was processed to 3M3SH by γ-glutamyl-transferase 1 (GGT1), which was abundantly expressed in apocrine sweat glands. These findings may pave a way for the pharmacogenetics of human body odour and the development of innovative deodorant products. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Three-dimensional surface anthropometry: Applications to the human body

    NASA Astrophysics Data System (ADS)

    Jones, Peter R. M.; Rioux, Marc

    1997-09-01

    Anthropometry is the study of the measurement of the human body. By tradition this has been carried out taking the measurements from body surface landmarks, such as circumferences and breadths, using simple instruments like tape measures and calipers. Three-dimensional (3D) surface anthropometry enables us to extend the study to 3D geometry and morphology of mainly external human body tissues. It includes the acquisition, indexing, transmission, archiving, retrieval, interrogation and analysis of body size, shape, and surface together with their variability throughout growth and development to adulthood. While 3D surface anthropometry surveying is relatively new, anthropometric surveying using traditional tools, such as calipers and tape measures, is not. Recorded studies of the human form date back to ancient times. Since at least the 17th century 1 investigators have made attempts to measure the human body for physical properties such as weight, size, and centre of mass. Martin documented 'standard' body measurement methods in a handbook in 1928. 2 This paper reviews the past and current literature devoted to the applications of 3D anthropometry because true 3D scanning of the complete human body is fast becoming a reality. We attempt to take readers through different forms of technology which deal with simple forms of projected light to the more complex advanced forms of laser and video technology giving low and/or high resolution 3D data. Information is also given about image capture of size and shape of the whole as well as most component parts of the human body. In particular, the review describes with explanations a multitude of applications, for example, medical, product design, human engineering, anthropometry and ergonomics etc.

  6. Body size, body proportions, and encephalization in a Middle Pleistocene archaic human from northern China.

    PubMed

    Rosenberg, Karen R; Zuné, Lü; Ruff, Christopher B

    2006-03-07

    The unusual discovery of associated cranial and postcranial elements from a single Middle Pleistocene fossil human allows us to calculate body proportions and relative cranial capacity (encephalization quotient) for that individual rather than rely on estimates based on sample means from unassociated specimens. The individual analyzed here (Jinniushan) from northeastern China at 260,000 years ago is the largest female specimen yet known in the human fossil record and has body proportions (body height relative to body breadth and relative limb length) typical of cold-adapted populations elsewhere in the world. Her encephalization quotient of 4.15 is similar to estimates for late Middle Pleistocene humans that are based on mean body size and mean brain size from unassociated specimens.

  7. Facilitated early cortical processing of nude human bodies.

    PubMed

    Alho, Jussi; Salminen, Nelli; Sams, Mikko; Hietanen, Jari K; Nummenmaa, Lauri

    2015-07-01

    Functional brain imaging has identified specialized neural systems supporting human body perception. Responses to nude vs. clothed bodies within this system are amplified. However, it remains unresolved whether nude and clothed bodies are processed by same cerebral networks or whether processing of nude bodies recruits additional affective and arousal processing areas. We recorded simultaneous MEG and EEG while participants viewed photographs of clothed and nude bodies. Global field power revealed a peak ∼145ms after stimulus onset to both clothed and nude bodies, and ∼205ms exclusively to nude bodies. Nude-body-sensitive responses were centered first (100-200ms) in the extrastriate and fusiform body areas, and subsequently (200-300ms) in affective-motivational areas including insula and anterior cingulate cortex. We conclude that visibility of sexual features facilitates early cortical processing of human bodies, the purpose of which is presumably to trigger sexual behavior and ultimately ensure reproduction. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment

    NASA Astrophysics Data System (ADS)

    Höppe, P.

    With considerably increased coverage of weather information in the news media in recent years in many countries, there is also more demand for data that are applicable and useful for everyday life. Both the perception of the thermal component of weather as well as the appropriate clothing for thermal comfort result from the integral effects of all meteorological parameters relevant for heat exchange between the body and its environment. Regulatory physiological processes can affect the relative importance of meteorological parameters, e.g. wind velocity becomes more important when the body is sweating. In order to take into account all these factors, it is necessary to use a heat-balance model of the human body. The physiological equivalent temperature (PET) is based on the Munich Energy-balance Model for Individuals (MEMI), which models the thermal conditions of the human body in a physiologically relevant way. PET is defined as the air temperature at which, in a typical indoor setting (without wind and solar radiation), the heat budget of the human body is balanced with the same core and skin temperature as under the complex outdoor conditions to be assessed. This way PET enables a layperson to compare the integral effects of complex thermal conditions outside with his or her own experience indoors. On hot summer days, for example, with direct solar irradiation the PET value may be more than 20 K higher than the air temperature, on a windy day in winter up to 15 K lower.

  9. A Circuit Model of Real Time Human Body Hydration.

    PubMed

    Asogwa, Clement Ogugua; Teshome, Assefa K; Collins, Stephen F; Lai, Daniel T H

    2016-06-01

    Changes in human body hydration leading to excess fluid losses or overload affects the body fluid's ability to provide the necessary support for healthy living. We propose a time-dependent circuit model of real-time human body hydration, which models the human body tissue as a signal transmission medium. The circuit model predicts the attenuation of a propagating electrical signal. Hydration rates are modeled by a time constant τ, which characterizes the individual specific metabolic function of the body part measured. We define a surrogate human body anthropometric parameter θ by the muscle-fat ratio and comparing it with the body mass index (BMI), we find theoretically, the rate of hydration varying from 1.73 dB/min, for high θ and low τ to 0.05 dB/min for low θ and high τ. We compare these theoretical values with empirical measurements and show that real-time changes in human body hydration can be observed by measuring signal attenuation. We took empirical measurements using a vector network analyzer and obtained different hydration rates for various BMI, ranging from 0.6 dB/min for 22.7 [Formula: see text] down to 0.04 dB/min for 41.2 [Formula: see text]. We conclude that the galvanic coupling circuit model can predict changes in the volume of the body fluid, which are essential in diagnosing and monitoring treatment of body fluid disorder. Individuals with high BMI would have higher time-dependent biological characteristic, lower metabolic rate, and lower rate of hydration.

  10. "Sebocytes' makeup": novel mechanisms and concepts in the physiology of the human sebaceous glands.

    PubMed

    Tóth, Balázs I; Oláh, Attila; Szöllosi, Attila G; Czifra, Gabriella; Bíró, Tamás

    2011-06-01

    The pilosebaceous unit of the human skin consists of the hair follicle and the sebaceous gland. Within this "mini-organ", the sebaceous gland has been neglected by the researchers of the field for several decades. Actually, it was labeled as a reminiscence of human development ("a living fossil with a past but no future"), and was thought to solely act as a producer of sebum, a lipid-enriched oily substance which protects our skin (and hence the body) against various insults. However, due to emerging research activities of the past two decades, it has now become evident that the sebaceous gland is not only a "passive" cutaneous "relic" to establish the physico-chemical barrier function of the skin against constant environmental challenges, but it rather functions as an "active" neuro-immuno-endocrine cutaneous organ. This review summarizes recent findings of sebaceous gland research by mainly focusing on newly discovered physiological functions, novel regulatory mechanisms, key events in the pathology of the gland, and future directions in both experimental and clinical dermatology.

  11. The development of a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Kay, F. J.

    1973-01-01

    The whole-body algorithm is envisioned as a mathematical model that utilizes human physiology to simulate the behavior of vital body systems. The objective of this model is to determine the response of selected body parameters within these systems to various input perturbations, or stresses. Perturbations of interest are exercise, chemical unbalances, gravitational changes and other abnormal environmental conditions. This model provides for a study of man's physiological response in various space applications, underwater applications, normal and abnormal workloads and environments, and the functioning of the system with physical impairments or decay of functioning components. Many methods or approaches to the development of a whole-body algorithm are considered. Of foremost concern is the determination of the subsystems to be included, the detail of the subsystems and the interaction between the subsystems.

  12. Fat body remodeling and homeostasis control in Drosophila.

    PubMed

    Zheng, Huimei; Yang, Xiaohang; Xi, Yongmei

    2016-12-15

    Remarkable advances have been made in recent years in our understanding of the Drosophila fat body and its functions in energy storage, immune response and nutrient sensing. The fat body interplays with other tissues to respond to the physiological needs of the body's growth and coordinates various metabolic processes at different developmental stages and under different environmental conditions. The identification of various conserved genetic functions and signaling pathways relating to the Drosophila fat body may provide clues to lipometabolic disease and other aspects of tissue remodeling in humans. Here, we discuss recent insights into how regulation of fat body remodeling contributes to hemostasis with a special focus on how signaling networks and internal physiological states shape different aspects of the lipid metabolism in Drosophila. Copyright © 2016. Published by Elsevier Inc.

  13. Applications of minimal physiologically-based pharmacokinetic models

    PubMed Central

    Cao, Yanguang

    2012-01-01

    Conventional mammillary models are frequently used for pharmacokinetic (PK) analysis when only blood or plasma data are available. Such models depend on the quality of the drug disposition data and have vague biological features. An alternative minimal-physiologically-based PK (minimal-PBPK) modeling approach is proposed which inherits and lumps major physiologic attributes from whole-body PBPK models. The body and model are represented as actual blood and tissue usually total body weight) volumes, fractions (fd) of cardiac output with Fick’s Law of Perfusion, tissue/blood partitioning (Kp), and systemic or intrinsic clearance. Analyzing only blood or plasma concentrations versus time, the minimal-PBPK models parsimoniously generate physiologically-relevant PK parameters which are more easily interpreted than those from mam-millary models. The minimal-PBPK models were applied to four types of therapeutic agents and conditions. The models well captured the human PK profiles of 22 selected beta-lactam antibiotics allowing comparison of fitted and calculated Kp values. Adding a classical hepatic compartment with hepatic blood flow allowed joint fitting of oral and intravenous (IV) data for four hepatic elimination drugs (dihydrocodeine, verapamil, repaglinide, midazolam) providing separate estimates of hepatic intrinsic clearance, non-hepatic clearance, and pre-hepatic bioavailability. The basic model was integrated with allometric scaling principles to simultaneously describe moxifloxacin PK in five species with common Kp and fd values. A basic model assigning clearance to the tissue compartment well characterized plasma concentrations of six monoclonal antibodies in human subjects, providing good concordance of predictions with expected tissue kinetics. The proposed minimal-PBPK modeling approach offers an alternative and more rational basis for assessing PK than compartmental models. PMID:23179857

  14. Human blood metabolite timetable indicates internal body time

    PubMed Central

    Kasukawa, Takeya; Sugimoto, Masahiro; Hida, Akiko; Minami, Yoichi; Mori, Masayo; Honma, Sato; Honma, Ken-ichi; Mishima, Kazuo; Soga, Tomoyoshi; Ueda, Hiroki R.

    2012-01-01

    A convenient way to estimate internal body time (BT) is essential for chronotherapy and time-restricted feeding, both of which use body-time information to maximize potency and minimize toxicity during drug administration and feeding, respectively. Previously, we proposed a molecular timetable based on circadian-oscillating substances in multiple mouse organs or blood to estimate internal body time from samples taken at only a few time points. Here we applied this molecular-timetable concept to estimate and evaluate internal body time in humans. We constructed a 1.5-d reference timetable of oscillating metabolites in human blood samples with 2-h sampling frequency while simultaneously controlling for the confounding effects of activity level, light, temperature, sleep, and food intake. By using this metabolite timetable as a reference, we accurately determined internal body time within 3 h from just two anti-phase blood samples. Our minimally invasive, molecular-timetable method with human blood enables highly optimized and personalized medicine. PMID:22927403

  15. An Evaluation of Gestational Exposure to Perfluorooctanoic Acid (PFOA): Effects on Body Composition and Physiological Factors

    EPA Science Inventory

    Exposure to environmental pollutants can be a factor for induction of metabolic disorders. This study examined if exposure to PFOA during development could alter body composition and other physiological outcomes. Study 1: Pregnant CD-1 mice were gavaged with PFOA at 0,0.001,0.01,...

  16. Alliances in Human Biology: The Harvard Committee on Industrial Physiology, 1929-1939.

    PubMed

    Oakes, Jason

    2015-08-01

    In 1929 the newly-reorganized Rockefeller Foundation funded the work of a cross-disciplinary group at Harvard University called the Committee on Industrial Physiology (CIP). The committee's research and pedagogical work was oriented towards different things for different members of the alliance. The CIP program included a research component in the Harvard Fatigue Laboratory and Elton May's interpretation of the Hawthorne Studies; a pedagogical aspect as part of Wallace Donham's curriculum for Harvard Business School; and Lawrence Henderson's work with the Harvard Pareto Circle, his course Sociology 23, and the Harvard Society of Fellows. The key actors within the CIP alliance shared a concern with training men for elite careers in government service, business leadership, and academic prominence. But the first communications between the CIP and the Rockefeller Foundation did not emphasize training in human biology. Instead, the CIP presented itself as a coordinating body that would be able to organize all the varied work going on at Harvard that did not fit easily into one department, and it was on this basis that the CIP became legible to the President of Harvard, A. Lawrence Lowell, and to Rockefeller's Division of Social Sciences. The members of the CIP alliance used the term human biology for this project of research, training and institutional coordination.

  17. [Microbiota and representations of the human body].

    PubMed

    Dodet, Betty

    2016-11-01

    Although the presence of an intestinal flora has been known for a long time, the discovery of the role of gut microbiota in human health and disease has been widely recognized as one of the most important advances in the recent years. Chronic diseases may result from dysbiosis, i.e. a disruption of the balance within the bacterial population hosted by the human body. These developments open new prospects in terms of prevention and treatment, including the design of adapted diets, the development of functional foods and fecal transplantation. These discoveries have profoundly altered our view of microbes, of health and disease, of self and non-self, as well as our representations of the body and its relationship with its ecosystem. Gut microbiota is now generally considered as an organ in its own right. A model of the "microbiotic person" thus arises, in which the human organism is defined as an ecosystem, a chimeric superorganism with a double genome, both human and microbial. Thought should be given to the way in which these new paradigms modify lay perceptions of the human body. © 2016 médecine/sciences – Inserm.

  18. Macro And Microcosmus: Moon Influence On The Human Body

    NASA Astrophysics Data System (ADS)

    Zanchin, Giorgio

    Belief in the action of the macrocosmus, i.e., celestial bodies, on the microcosmus, i.e., on man, goes back to the dawn of human thinking. More specifically, lunar phases have been considered to act on behaviour and on physiological functions. This possible relationship has not only been taken for granted for many centuries in ancient medicine but also investigated in a number of modern published works, mainly on the issues of emergency activity; violent behaviour; car accidents; drug overdose; menses and birth; and mood disorders. Indeed, if the idea that the stars and planets may influence human health and behaviour can be traced so far in the past, it seems that not only the laymen but a high proportion of health professionals continue to hold this credence: recently, in New Orleans a questionnaire sent to 325 people indicated that 140 individuals (43%) held the opinion that lunar phenomena alter personal behaviour. Specifically, it came out that mental health professionals (social workers, clinical psychologists, nurses' aides) held this belief more strongly than other occupational groups (Vance, 1995). A short historical outline of some old beliefs and the results of contemporary research on this fascinating, time-honoured field, will be presented.

  19. [The gift of human body's products: philosophical and ethical aspects].

    PubMed

    Baertschi, B

    2014-09-01

    In continental Europe, there is a very strong moral condemnation against putting parts or products of the human body on sale-and, consequently, against putting sperms and oocytes on sale. Only a gift is morally permissible. The situation is different in Anglo-Saxon countries. Who is right? Above all, it must be noticed that two views of the human body are facing each other here: for the first, the human body is a part of the person (so, it partakes of the person's dignity), whereas for the second, the human body is a possession of the person (the person is the owner of his/her body). In my opinion, the argument of dignity comes up against serious objections, and the property argument is more consistent. However, it does not follow that it would be judicious to put parts and products of the human body for sale on a market. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Acinetobacter baumannii in Human Body Louse

    PubMed Central

    Raoult, Didier

    2004-01-01

    While we were isolating Bartonella quintana from body lice, 40 Acinetobacter baumannii strains were also isolated and genotyped. One clone was unique and the other was ampicillin susceptible. A. baumannii DNA was later detected in 21% of 622 lice collected worldwide. These findings show an A. baumannii epidemic in human body lice. PMID:15498175

  1. Transcriptome identification of putative genes involved in protein catabolism and innate immune response in human body louse (Pediculicidae: Pediculus humanus).

    PubMed

    Pedra, Joao H F; Brandt, Amanda; Li, Hong-Mei; Westerman, Rick; Romero-Severson, Jeanne; Pollack, Richard J; Murdock, Larry L; Pittendrigh, Barry R

    2003-11-01

    Genomics information relating to human body lice is surprisingly scarce, and this has constrained studies of their physiology, immunology and vector biology. To identify novel body louse genes, we used engorged adult lice to generate a cDNA library. Initially, 1152 clones were screened for inserts, edited for removal of vector sequences and base pairs of poor quality, and viewed for splicing variations, gene families and polymorphism. Computational methods identified 506 inferred open reading frames including the first predicted louse defensin. The inferred defensin aligns well with other insect defensins and has highly conserved cysteine residues, as are known for other defensin sequences. Two cysteine and five serine proteinases were categorized according to their inferred catalytic sites. We also discovered seven putative ubiquitin-pathway genes and four iron metabolizing deduced enzymes. Finally, glutathione-S-transferases and cytochrome P450 genes were among the detoxification enzymes found. Results from this first systematic effort to discover human body louse genes should promote further studies in Phthiraptera and lice.

  2. Physiological Responses to Thermal Stress and Exercise

    NASA Astrophysics Data System (ADS)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  3. Body mass estimates of hominin fossils and the evolution of human body size.

    PubMed

    Grabowski, Mark; Hatala, Kevin G; Jungers, William L; Richmond, Brian G

    2015-08-01

    Body size directly influences an animal's place in the natural world, including its energy requirements, home range size, relative brain size, locomotion, diet, life history, and behavior. Thus, an understanding of the biology of extinct organisms, including species in our own lineage, requires accurate estimates of body size. Since the last major review of hominin body size based on postcranial morphology over 20 years ago, new fossils have been discovered, species attributions have been clarified, and methods improved. Here, we present the most comprehensive and thoroughly vetted set of individual fossil hominin body mass predictions to date, and estimation equations based on a large (n = 220) sample of modern humans of known body masses. We also present species averages based exclusively on fossils with reliable taxonomic attributions, estimates of species averages by sex, and a metric for levels of sexual dimorphism. Finally, we identify individual traits that appear to be the most reliable for mass estimation for each fossil species, for use when only one measurement is available for a fossil. Our results show that many early hominins were generally smaller-bodied than previously thought, an outcome likely due to larger estimates in previous studies resulting from the use of large-bodied modern human reference samples. Current evidence indicates that modern human-like large size first appeared by at least 3-3.5 Ma in some Australopithecus afarensis individuals. Our results challenge an evolutionary model arguing that body size increased from Australopithecus to early Homo. Instead, we show that there is no reliable evidence that the body size of non-erectus early Homo differed from that of australopiths, and confirm that Homo erectus evolved larger average body size than earlier hominins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [Functional state of various physiological systems of the human body during respiration of neon-oxygen mixture at depth up to 400 meters].

    PubMed

    Poleshuk, I P; Genin, A M; Unku, R D; Mikhnenko, A E; Sementsov, V N; Suvorov, A V

    1991-01-01

    Hyperbaric neon-oxygen mixture has been studied for the effect of its high density under pressure of 41 ata on basic physiological functions of human organism. Typical changes of the cardiorespiratory system and tissue respiration parameters are revealed. Changes in physical working capacity are shown. Exposure to gaseous medium of high pressure and density is accompanied by the development of some compensatory-adaptive reactions. The possibility to perform mid-hard physical work is attained with overstrain of respiration and circulation function.

  5. Evaluation of Propagation Characteristics Using the Human Body as an Antenna

    PubMed Central

    Li, Jingzhen; Liu, Yuhang; Hao, Yang

    2017-01-01

    In this paper, an inhomogeneous human body model was presented to investigate the propagation characteristics when the human body was used as an antenna to achieve signal transmission. Specifically, the channel gain of four scenarios, namely, (1) both TX electrode and RX electrode were placed in the air, (2) TX electrode was attached on the human body, and RX electrode was placed in the air, (3) TX electrode was placed in the air, and RX electrode was attached on the human body, (4) both the TX electrode and RX electrode were attached on the human body, were studied through numerical simulation in the frequency range 1 MHz to 90 MHz. Furthermore, the comparisons of input efficiency, accepted efficiency, total efficiency, absorption power of human body, and electric field distribution of different distances of four aforementioned scenarios were explored when the frequency was at 44 MHz. In addition, the influences of different human tissues, electrode position, and the distance between electrode and human body on the propagation characteristics were investigated respectively at 44 MHz. The results showed that the channel gain of Scenario 4 was the maximum when the frequency was from 1 MHz to 90 MHz. The propagation characteristics were almost independent of electrode position when the human body was using as an antenna. However, as the distance between TX electrode and human body increased, the channel gain decreased rapidly. The simulations were verified by experimental measurements. The results showed that the simulations were in agreement with the measurements. PMID:29232905

  6. Evaluation of Propagation Characteristics Using the Human Body as an Antenna.

    PubMed

    Li, Jingzhen; Nie, Zedong; Liu, Yuhang; Wang, Lei; Hao, Yang

    2017-12-11

    In this paper, an inhomogeneous human body model was presented to investigate the propagation characteristics when the human body was used as an antenna to achieve signal transmission. Specifically, the channel gain of four scenarios, namely, (1) both TX electrode and RX electrode were placed in the air, (2) TX electrode was attached on the human body, and RX electrode was placed in the air, (3) TX electrode was placed in the air, and RX electrode was attached on the human body, (4) both the TX electrode and RX electrode were attached on the human body, were studied through numerical simulation in the frequency range 1 MHz to 90 MHz. Furthermore, the comparisons of input efficiency, accepted efficiency, total efficiency, absorption power of human body, and electric field distribution of different distances of four aforementioned scenarios were explored when the frequency was at 44 MHz. In addition, the influences of different human tissues, electrode position, and the distance between electrode and human body on the propagation characteristics were investigated respectively at 44 MHz. The results showed that the channel gain of Scenario 4 was the maximum when the frequency was from 1 MHz to 90 MHz. The propagation characteristics were almost independent of electrode position when the human body was using as an antenna. However, as the distance between TX electrode and human body increased, the channel gain decreased rapidly. The simulations were verified by experimental measurements. The results showed that the simulations were in agreement with the measurements.

  7. Physiological effects of light on the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Shanahan, T. L.; Czeisler, C. A.

    2000-01-01

    The physiology of the human circadian pacemaker and its influence and on the daily organization of sleep, endocrine and behavioral processes is an emerging interest in science and medicine. Understanding the development, organization and fundamental properties underlying the circadian timing system may provide insight for the application of circadian principles to the practice of clinical medicine, both diagnostically (interpretation of certain clinical tests are dependent on time of day) and therapeutically (certain pharmacological responses vary with the time of day). The light-dark cycle is the most powerful external influence acting upon the human circadian pacemaker. It has been shown that timed exposure to light can both synchronize and reset the phase of the circadian pacemaker in a predictable manner. The emergence of detectable circadian rhythmicity in the neonatal period is under investigation (as described elsewhere in this issue). Therefore, the pattern of light exposure provided in the neonatal intensive care setting has implications. One recent study identified differences in both amount of sleep time and weight gain in infants maintained in a neonatal intensive care environment that controlled the light-dark cycle. Unfortunately, neither circadian phase nor the time of day has been considered in most clinical investigations. Further studies with knowledge of principles characterizing the human circadian timing system, which governs a wide array of physiological processes, are required to integrate these findings with the practice of clinical medicine.

  8. Knowledge environments representing molecular entities for the virtual physiological human.

    PubMed

    Hofmann-Apitius, Martin; Fluck, Juliane; Furlong, Laura; Fornes, Oriol; Kolárik, Corinna; Hanser, Susanne; Boeker, Martin; Schulz, Stefan; Sanz, Ferran; Klinger, Roman; Mevissen, Theo; Gattermayer, Tobias; Oliva, Baldo; Friedrich, Christoph M

    2008-09-13

    In essence, the virtual physiological human (VPH) is a multiscale representation of human physiology spanning from the molecular level via cellular processes and multicellular organization of tissues to complex organ function. The different scales of the VPH deal with different entities, relationships and processes, and in consequence the models used to describe and simulate biological functions vary significantly. Here, we describe methods and strategies to generate knowledge environments representing molecular entities that can be used for modelling the molecular scale of the VPH. Our strategy to generate knowledge environments representing molecular entities is based on the combination of information extraction from scientific text and the integration of information from biomolecular databases. We introduce @neuLink, a first prototype of an automatically generated, disease-specific knowledge environment combining biomolecular, chemical, genetic and medical information. Finally, we provide a perspective for the future implementation and use of knowledge environments representing molecular entities for the VPH.

  9. Analysis of Long-Term Temperature Variations in the Human Body.

    PubMed

    Dakappa, Pradeepa Hoskeri; Mahabala, Chakrapani

    2015-01-01

    Body temperature is a continuous physiological variable. In normal healthy adults, oral temperature is estimated to vary between 36.1°C and 37.2°C. Fever is a complex host response to many external and internal agents and is a potential contributor to many clinical conditions. Despite being one of the foremost vital signs, temperature and its analysis and variations during many pathological conditions has yet to be examined in detail using mathematical techniques. Classical fever patterns based on recordings obtained every 8-12 h have been developed. However, such patterns do not provide meaningful information in diagnosing diseases. Because fever is a host response, it is likely that there could be a unique response to specific etiologies. Continuous long-term temperature monitoring and pattern analysis using specific analytical methods developed in engineering and physics could aid in revealing unique fever responses of hosts and in different clinical conditions. Furthermore, such analysis can potentially be used as a novel diagnostic tool and to study the effect of pharmaceutical agents and other therapeutic protocols. Thus, the goal of our article is to present a comprehensive review of the recent relevant literature and analyze the current state of research regarding temperature variations in the human body.

  10. Dynamic Human Body Modeling Using a Single RGB Camera.

    PubMed

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-03-18

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  11. SCALING THE PHYSIOLOGICAL EFFECTS OF EXPOSURE TO RADIOFREQUENCY ELECTROMAGNETIC RADIATION: CONSEQUENCES OF BODY SIZE

    EPA Science Inventory

    The authors have demonstrated that a comparative analysis of the physiological effects of exposure of laboratory mammals to radiofrequency electromagnetic radiation (RFR) may be useful in predicting exposure thresholds for humans if the effect is assumed to be due only to heating...

  12. Human bipedalism and body-mass index.

    PubMed

    Yi, Su Do; Noh, Jae Dong; Minnhagen, Petter; Song, Mi-Young; Chon, Tae-Soo; Kim, Beom Jun

    2017-06-16

    Body-mass index, abbreviated as BMI and given by M/H 2 with the mass M and the height H, has been widely used as a useful proxy to measure a general health status of a human individual. We generalise BMI in the form of M/H p and pursue to answer the question of the value of p for populations of animal species including human. We compare values of p for several different datasets for human populations with the ones obtained for other animal populations of fish, whales, and land mammals. All animal populations but humans analyzed in our work are shown to have p ≈ 3 unanimously. In contrast, human populations are different: As young infants grow to become toddlers and keep growing, the sudden change of p is observed at about one year after birth. Infants younger than one year old exhibit significantly larger value of p than two, while children between one and five years old show p ≈ 2, sharply different from other animal species. The observation implies the importance of the upright posture of human individuals. We also propose a simple mechanical model for a human body and suggest that standing and walking upright should put a clear division between bipedal human (p ≈ 2) and other animals (p ≈ 3).

  13. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs.

    PubMed

    De Buck, Stefan S; Sinha, Vikash K; Fenu, Luca A; Nijsen, Marjoleen J; Mackie, Claire E; Gilissen, Ron A H J

    2007-10-01

    The aim of this study was to evaluate different physiologically based modeling strategies for the prediction of human pharmacokinetics. Plasma profiles after intravenous and oral dosing were simulated for 26 clinically tested drugs. Two mechanism-based predictions of human tissue-to-plasma partitioning (P(tp)) from physicochemical input (method Vd1) were evaluated for their ability to describe human volume of distribution at steady state (V(ss)). This method was compared with a strategy that combined predicted and experimentally determined in vivo rat P(tp) data (method Vd2). Best V(ss) predictions were obtained using method Vd2, providing that rat P(tp) input was corrected for interspecies differences in plasma protein binding (84% within 2-fold). V(ss) predictions from physicochemical input alone were poor (32% within 2-fold). Total body clearance (CL) was predicted as the sum of scaled rat renal clearance and hepatic clearance projected from in vitro metabolism data. Best CL predictions were obtained by disregarding both blood and microsomal or hepatocyte binding (method CL2, 74% within 2-fold), whereas strong bias was seen using both blood and microsomal or hepatocyte binding (method CL1, 53% within 2-fold). The physiologically based pharmacokinetics (PBPK) model, which combined methods Vd2 and CL2 yielded the most accurate predictions of in vivo terminal half-life (69% within 2-fold). The Gastroplus advanced compartmental absorption and transit model was used to construct an absorption-disposition model and provided accurate predictions of area under the plasma concentration-time profile, oral apparent volume of distribution, and maximum plasma concentration after oral dosing, with 74%, 70%, and 65% within 2-fold, respectively. This evaluation demonstrates that PBPK models can lead to reasonable predictions of human pharmacokinetics.

  14. Delineating the Impact of Weightlessness on Human Physiology Using Computational Models

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad

    2015-01-01

    Microgravity environment has profound effects on several important human physiological systems. The impact of weightlessness is usually indirect as mediated by changes in the biological fluid flow and transport and alterations in the deformation and stress fields of the compliant tissues. In this context, Fluid-Structural and Fluid-Solid Interaction models provide a valuable tool in delineating the physical origins of the physiological changes so that systematic countermeasures can be devised to reduce their adverse effects. In this presentation, impact of gravity on three human physiological systems will be considered. The first case involves prediction of cardiac shape change and altered stress distributions in weightlessness. The second, presents a fluid-structural-interaction (FSI) analysis and assessment of the vestibular system and explores the reasons behind the unexpected microgravity caloric stimulation test results performed aboard the Skylab. The last case investigates renal stone development in microgravity and the possible impact of re-entry into partial gravity on the development and transport of nucleating, growing, and agglomerating renal calculi in the nephron. Finally, the need for model validation and verification and application of the FSI models to assess the effects of Artificial Gravity (AG) are also briefly discussed.

  15. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body.

    PubMed

    van der Zwaard, Stephan; van der Laarse, Willem J; Weide, Guido; Bloemers, Frank W; Hofmijster, Mathijs J; Levels, Koen; Noordhof, Dionne A; de Koning, Jos J; de Ruiter, Cornelis J; Jaspers, Richard T

    2018-04-01

    Optimizing physical performance is a major goal in current physiology. However, basic understanding of combining high sprint and endurance performance is currently lacking. This study identifies critical determinants of combined sprint and endurance performance using multiple regression analyses of physiologic determinants at different biologic levels. Cyclists, including 6 international sprint, 8 team pursuit, and 14 road cyclists, completed a Wingate test and 15-km time trial to obtain sprint and endurance performance results, respectively. Performance was normalized to lean body mass 2/3 to eliminate the influence of body size. Performance determinants were obtained from whole-body oxygen consumption, blood sampling, knee-extensor maximal force, muscle oxygenation, whole-muscle morphology, and muscle fiber histochemistry of musculus vastus lateralis. Normalized sprint performance was explained by percentage of fast-type fibers and muscle volume ( R 2 = 0.65; P < 0.001) and normalized endurance performance by performance oxygen consumption ( V̇o 2 ), mean corpuscular hemoglobin concentration, and muscle oxygenation ( R 2 = 0.92; P < 0.001). Combined sprint and endurance performance was explained by gross efficiency, performance V̇o 2 , and likely by muscle volume and fascicle length ( P = 0.056; P = 0.059). High performance V̇o 2 related to a high oxidative capacity, high capillarization × myoglobin, and small physiologic cross-sectional area ( R 2 = 0.67; P < 0.001). Results suggest that fascicle length and capillarization are important targets for training to optimize sprint and endurance performance simultaneously.-Van der Zwaard, S., van der Laarse, W. J., Weide, G., Bloemers, F. W., Hofmijster, M. J., Levels, K., Noordhof, D. A., de Koning, J. J., de Ruiter, C. J., Jaspers, R. T. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body.

  16. Physiological and Biomechanical Responses of Highly Trained Distance Runners to Lower-Body Positive Pressure Treadmill Running.

    PubMed

    Barnes, Kyle R; Janecke, Jessica N

    2017-11-21

    As a way to train at faster running speeds, add training volume, prevent injury, or rehabilitate after an injury, lower-body positive pressure treadmills (LBPPT) have become increasingly commonplace among athletes. However, there are conflicting evidence and a paucity of data describing the physiological and biomechanical responses to LBPPT running in highly trained or elite caliber runners at the running speeds they habitually train at, which are considerably faster than those of recreational runners. Furthermore, data is lacking regarding female runners' responses to LBPPT running. Therefore, this study was designed to evaluate the physiological and biomechanical responses to LBPPT running in highly trained male and female distance runners. Fifteen highly trained distance runners (seven male; eight female) completed a single running test composed of 4 × 9-min interval series at fixed percentages of body weight ranging from 0 to 30% body weight support (BWS) in 10% increments on LBPPT. The first interval was always conducted at 0% BWS; thereafter, intervals at 10, 20, and 30% BWS were conducted in random order. Each interval consisted of three stages of 3 min each, at velocities of 14.5, 16.1, and 17.7 km·h -1 for men and 12.9, 14.5, and 16.1 km·h -1 for women. Expired gases, ventilation, breathing frequency, heart rate (HR), rating of perceived exertion (RPE), and stride characteristics were measured during each running speed and BWS. Male and female runners had similar physiological and biomechanical responses to running on LBPPT. Increasing BWS increased stride length (p < 0.02) and flight duration (p < 0.01) and decreased stride rate (p < 0.01) and contact time (p < 0.01) in small-large magnitudes. There was a large attenuation of oxygen consumption (VO 2 ) relative to BWS (p < 0.001), while there were trivial-moderate reductions in respiratory exchange ratio, minute ventilation, and respiratory frequency (p > 0.05), and small-large effects

  17. Human body shape index based on an experimentally derived model of human growth.

    PubMed

    Lebiedowska, Maria K; Alter, Katharine E; Stanhope, Steven J

    2008-01-01

    To test the assumption of geometrically similar growth by developing experimentally derived models of human body growth during the age interval of 5 to 18 years; to use these derived growth models to establish a new human body shape index (HBSI) based on natural age-related changes in human body shape (HBS); and to compare various metrics of relative body weight (body mass index [BMI], ponderal index [PI], and HBSI) in a sample of 5- to 18-year-old children. Nondisabled Polish children (n = 847) participated in this descriptive study. To model growth, the best fit between body height (H) and body mass (M) was calculated for each sex using the allometric equation M = m(i) H(chi). HBSI was calculated separately for girls and boys, using sex-specific values for chi and a general HBSI from combined data. The customary BMI and PI were calculated and compared with HBSI values. The models of growth were M = 13.11H(2.84) (R2 = 0.90) for girls and M = 13.64H(2.68) (R2 = 0.91) for boys. HBSI values contained less inherent variability and were less influenced by growth (age and height) compared with BMI and PI. Age-related growth during childhood is sex-specific and not geometrically similar. Therefore, indices of HBS formulated from experimentally derived models of human growth are superior to customary geometric similarity-based indices for characterizing HBS in children during the formative growth years.

  18. Natural User Interface Sensors for Human Body Measurement

    NASA Astrophysics Data System (ADS)

    Boehm, J.

    2012-08-01

    The recent push for natural user interfaces (NUI) in the entertainment and gaming industry has ushered in a new era of low cost three-dimensional sensors. While the basic idea of using a three-dimensional sensor for human gesture recognition dates some years back it is not until recently that such sensors became available on the mass market. The current market leader is PrimeSense who provide their technology for the Microsoft Xbox Kinect. Since these sensors are developed to detect and observe human users they should be ideally suited to measure the human body. We describe the technology of a line of NUI sensors and assess their performance in terms of repeatability and accuracy. We demonstrate the implementation of a prototype scanner integrating several NUI sensors to achieve full body coverage. We present the results of the obtained surface model of a human body.

  19. Dynamic Human Body Modeling Using a Single RGB Camera

    PubMed Central

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-01-01

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones. PMID:26999159

  20. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men's and Women's Bodies.

    PubMed

    Brierley, Mary-Ellen; Brooks, Kevin R; Mond, Jonathan; Stevenson, Richard J; Stephen, Ian D

    2016-01-01

    The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men's bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women.

  1. Contribution of garment fit and style to thermal comfort at the lower body

    NASA Astrophysics Data System (ADS)

    Mert, Emel; Böhnisch, Sonja; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2016-12-01

    The heat and mass transfer between the human body and the environment is not only affected by the properties of the fabric, but also by the size of the air gap thickness and the magnitude of the contact area between the body and garment. In this clothing-human-environment system, there is also an interaction between the clothing and the physiological response of the wearer. Therefore, the aim of this study was to evaluate the distribution of the air gap thickness and the contact area for the male lower body in relation to the garment fit and style using a three-dimensional (3D) body scanning method with a manikin. Moreover, their relation with the physiological response of the lower body was analysed using the physiological modelling. The presented study showed that the change in the air gap thickness and the contact area due to garment fit was greater for legs than the pelvis area due to regional differences of the body. Furthermore, the garment style did not have any effect on the core temperature or total water loss of the lower body, whereas the effect of garment fit on the core temperature and total water loss of lower body was observed only for 40 °C of ambient temperature. The skin temperatures were higher for especially loose garments at thigh than the tight garments. Consequently, the results of this study indicated that the comfort level of the human body for a given purpose can be adjusted by selection of fabric type and the design of ease allowances in the garment depending on the body region.

  2. Contribution of garment fit and style to thermal comfort at the lower body.

    PubMed

    Mert, Emel; Böhnisch, Sonja; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M

    2016-12-01

    The heat and mass transfer between the human body and the environment is not only affected by the properties of the fabric, but also by the size of the air gap thickness and the magnitude of the contact area between the body and garment. In this clothing-human-environment system, there is also an interaction between the clothing and the physiological response of the wearer. Therefore, the aim of this study was to evaluate the distribution of the air gap thickness and the contact area for the male lower body in relation to the garment fit and style using a three-dimensional (3D) body scanning method with a manikin. Moreover, their relation with the physiological response of the lower body was analysed using the physiological modelling. The presented study showed that the change in the air gap thickness and the contact area due to garment fit was greater for legs than the pelvis area due to regional differences of the body. Furthermore, the garment style did not have any effect on the core temperature or total water loss of the lower body, whereas the effect of garment fit on the core temperature and total water loss of lower body was observed only for 40 °C of ambient temperature. The skin temperatures were higher for especially loose garments at thigh than the tight garments. Consequently, the results of this study indicated that the comfort level of the human body for a given purpose can be adjusted by selection of fabric type and the design of ease allowances in the garment depending on the body region.

  3. Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating.

    PubMed

    Li, Hongqiang; Yang, Haijing; Li, Enbang; Liu, Zhihui; Wei, Kejia

    2012-05-21

    Measuring body temperature is considerably important to physiological studies as well as clinical investigations. In recent years, numerous observations have been reported and various methods of measurement have been employed. The present paper introduces a novel wearable sensor in intelligent clothing for human body temperature measurement. The objective is the integration of optical fiber Bragg grating (FBG)-based sensors into functional textiles to extend the capabilities of wearable solutions for body temperature monitoring. In addition, the temperature sensitivity is 150 pm/°C, which is almost 15 times higher than that of a bare FBG. This study combines large and small pipes during fabrication to implant FBG sensors into the fabric. The law of energy conservation of the human body is considered in determining heat transfer between the body and its clothing. The mathematical model of heat transmission between the body and clothed FBG sensors is studied, and the steady-state thermal analysis is presented. The simulation results show the capability of the material to correct the actual body temperature. Based on the skin temperature obtained by the weighted average method, this paper presents the five points weighted coefficients model using both sides of the chest, armpits, and the upper back for the intelligent clothing. The weighted coefficients of 0.0826 for the left chest, 0.3706 for the left armpit, 0.3706 for the right armpit, 0.0936 for the upper back, and 0.0826 for the right chest were obtained using Cramer's Rule. Using the weighting coefficient, the deviation of the experimental result was ± 0.18 °C, which favors the use for clinical armpit temperature monitoring. Moreover, in special cases when several FBG sensors are broken, the weighted coefficients of the other sensors could be changed to obtain accurate body temperature.

  4. New Window into the Human Body

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Michael Vannier, MD, a former NASA engineer, recognized the similarity between NASA's computerized image processing technology and nuclear magnetic resonance. With technical assistance from Kennedy Space Center, he developed a computer program for Mallinckrodt Institute of Radiology enabling Nuclear Magnetic Resonance (NMR) to scan body tissue for earlier diagnoses. Dr. Vannier feels that "satellite imaging" has opened a new window into the human body.

  5. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    PubMed

    Clauss, Marcus; Steuer, Patrick; Müller, Dennis W H; Codron, Daryl; Hummel, Jürgen

    2013-01-01

    Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM) with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively) allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  6. Herbivory and Body Size: Allometries of Diet Quality and Gastrointestinal Physiology, and Implications for Herbivore Ecology and Dinosaur Gigantism

    PubMed Central

    Clauss, Marcus; Steuer, Patrick; Müller, Dennis W. H.; Codron, Daryl; Hummel, Jürgen

    2013-01-01

    Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM) with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively) allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM. PMID:24204552

  7. Filtration of human EEG recordings from physiological artifacts with empirical mode method

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Khramova, Marina V.

    2017-03-01

    In the paper we propose the new method for dealing with noise and physiological artifacts in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We consider noises and physiological artifacts on EEG as specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from eye-moving artifacts and show high efficiency of the method.

  8. Human vocal attractiveness as signaled by body size projection.

    PubMed

    Xu, Yi; Lee, Albert; Wu, Wing-Li; Liu, Xuan; Birkholz, Peter

    2013-01-01

    Voice, as a secondary sexual characteristic, is known to affect the perceived attractiveness of human individuals. But the underlying mechanism of vocal attractiveness has remained unclear. Here, we presented human listeners with acoustically altered natural sentences and fully synthetic sentences with systematically manipulated pitch, formants and voice quality based on a principle of body size projection reported for animal calls and emotional human vocal expressions. The results show that male listeners preferred a female voice that signals a small body size, with relatively high pitch, wide formant dispersion and breathy voice, while female listeners preferred a male voice that signals a large body size with low pitch and narrow formant dispersion. Interestingly, however, male vocal attractiveness was also enhanced by breathiness, which presumably softened the aggressiveness associated with a large body size. These results, together with the additional finding that the same vocal dimensions also affect emotion judgment, indicate that humans still employ a vocal interaction strategy used in animal calls despite the development of complex language.

  9. Towards an IMU Evaluation Framework for Human Body Tracking.

    PubMed

    Venek, Verena; Kremser, Wolfgang; Schneider, Cornelia

    2018-01-01

    Existing full-body tracking systems, which use Inertial Measurement Units (IMUs) as sensing unit, require expert knowledge for setup and data collection. Thus, the daily application for human body tracking is difficult. In particular, in the field of active and assisted living (AAL), tracking human movements would enable novel insights not only into the quantity but also into the quality of human movement, for example by monitoring functional training. While the current market offers a wide range of products with vastly different properties, literature lacks guidelines for choosing IMUs for body tracking applications. Therefore, this paper introduces developments towards an IMU evaluation framework for human body tracking which compares IMUs against five requirement areas that consider device features and data quality. The data quality is assessed by conducting a static and a dynamic error analysis. In a first application to four IMUs of different component consumption, the IMU evaluation framework convinced as promising tool for IMU selection.

  10. The physiology of altered eating behaviour after Roux-en-Y gastric bypass.

    PubMed

    le Roux, Carel W; Bueter, Marco

    2014-09-01

    Obesity and its related comorbidities can be detrimental for the affected individual, as well as constituting a major challenge to public health systems worldwide. Currently, the most effective treatment option leading to clinically significant and maintained body weight loss and reduction in obesity-related morbidity and mortality is obesity surgery, which is recommended for patients with a body mass index of >40 kg m(-2), or >35 kg m(-2) if obesity-associated comorbidities, such as type 2 diabetes mellitus, are present. This report focuses on the altered eating behaviour after the most common of these operations, the Roux-en-Y gastric bypass. Animal and human experiments designed to understand the underlying physiological mechanisms of altered taste and appetite are discussed. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  11. Emotion-on-a-chip (EOC): evolution of biochip technology to measure human emotion using body fluids.

    PubMed

    Lee, Jung-Hyun; Hwang, Yoosun; Cheon, Keun-Ah; Jung, Hyo-Il

    2012-12-01

    Recent developments in nano/micro technology have made it possible to construct small-scale sensing chips for the analysis of biological markers such as nucleic acids, proteins, small molecules, and cells. Although biochip technology for the diagnosis of severe physiological diseases (e.g., cancer, diabetes, and cardiovascular disease) has been extensively studied, biochips for the monitoring of human emotions such as stress, fear, depression, and sorrow have not yet been introduced, and the development of such a biochip is in its infancy. Emotion science (or affective engineering) is a rapidly expanding engineering/scientific discipline that has a major impact on human society. The growing interest in the integration of emotion science and engineering is a result of the recent trend of merging various academic fields. In this paper we discuss the potential importance of biochip technology in which human emotion can be precisely measured in real time using body fluids such as blood, saliva, urine, or sweat. We call these biochips emotion-on-a-chip (EOC). The EOC system consists of four parts: (1) collection of body fluids, (2) separation of emotional markers, (3) detection of optical or electrical signals, and (4) display of results. These techniques provide new opportunities to precisely investigate human emotion. Future developments in EOC techniques will combine social and natural sciences to expand their scope of study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Customized Body Mapping to Facilitate the Ergonomic Design of Sportswear.

    PubMed

    Cao, Mingliang; Li, Yi; Guo, Yueping; Yao, Lei; Pan, Zhigeng

    2016-01-01

    A successful high-performance sportswear design that considers human factors should result in a significant increase in thermal comfort and reduce energy loss. The authors describe a body-mapping approach that facilitates the effective ergonomic design of sportswear. Their general framework can be customized based on the functional requirements of various sports and sportswear, the desired combination and selection of mapping areas for the human body, and customized quantitative data distribution of target physiological indicators.

  13. Adaptive Filtration of Physiological Artifacts in EEG Signals in Humans Using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Grubov, V. V.; Runnova, A. E.; Hramov, A. E.

    2018-05-01

    A new method for adaptive filtration of experimental EEG signals in humans and for removal of different physiological artifacts has been proposed. The algorithm of the method includes empirical mode decomposition of EEG, determination of the number of empirical modes that are considered, analysis of the empirical modes and search for modes that contains artifacts, removal of these modes, and reconstruction of the EEG signal. The method was tested on experimental human EEG signals and demonstrated high efficiency in the removal of different types of physiological EEG artifacts.

  14. Dealing with noise and physiological artifacts in human EEG recordings: empirical mode methods

    NASA Astrophysics Data System (ADS)

    Runnova, Anastasiya E.; Grubov, Vadim V.; Khramova, Marina V.; Hramov, Alexander E.

    2017-04-01

    In the paper we propose the new method for removing noise and physiological artifacts in human EEG recordings based on empirical mode decomposition (Hilbert-Huang transform). As physiological artifacts we consider specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the proposed method with steps including empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing these empirical modes and reconstructing of initial EEG signal. We show the efficiency of the method on the example of filtration of human EEG signal from eye-moving artifacts.

  15. Relationship among serum taurine, serum adipokines, and body composition during 8-week human body weight control program.

    PubMed

    You, Jeong Soon; Park, Ji Yeon; Zhao, Xu; Jeong, Jin Seok; Choi, Mi Ja; Chang, Kyung Ja

    2013-01-01

    Human adipose tissue is not only a storage organ but also an active endocrine organ to release adipokines. This study was conducted to investigate the relationship among serum taurine and adipokine levels, and body composition during 8-week human body weight control program in obese female college students. The program consisted of diet therapy, exercise, and behavior modification. After the program, body weight, body fat mass, percent body fat, and body mass index (BMI) were significantly decreased. Serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased. Also serum adiponectin level was significantly increased and serum leptin level was significantly decreased. There were no differences in serum taurine and homocysteine levels. The change of serum adiponectin level was positively correlated with change of body fat mass and percent body fat. These results may suggest that body fat loss by human body weight control program is associated with an increase in serum adiponectin in obese female college students. Therefore, further study such as taurine intervention study is needed to know more exact correlation between dietary taurine intake and serum adipokines or body composition.

  16. Physiological activity of irradiated green tea polyphenol on the human skin.

    PubMed

    An, Bong-Jeun; Kwak, Jae-Hoon; Son, Jun-Ho; Park, Jung-Mi; Lee, Jin-Young; Park, Tae Soon; Kim, So-Yeun; Kim, Yeoung-Sun; Jo, Cheorun; Byun, Myung-Woo

    2005-01-01

    Physiological activity of irradiated green tea polyphenol on the human skin was investigated for further industrial application. The green tea polyphenol was separated and irradiated at 40 kGy by y-ray. For an anti-wrinkle effect, the collagenase inhibition effect was higher in the irradiated sample (65.3%) than that of the non-irradiated control (56.8%) at 200 ppm of the concentration (p < 0.05). Collagen biosynthesis rates using a human fibroblast were 19.4% and 16.3% in the irradiated and the non-irradiated polyphenols, respectively. The tyrosinase inhibition effect, which is related to the skin-whitening effect, showed a 45.2% and 42.9% in the irradiated and the non-irradiated polyphenols, respectively, at a 100 ppm level. A higher than 90% growth inhibition on skin cancer cells (SK-MEL-2 and G361) was demonstrated in both the irradiated and the non-irradiated polyphenols. Thus, the irradiation of green tea polyphenol did not change and even increased its anti-wrinkle, skin-whitening and anticancer effects on the human skin. The results indicated that irradiated green tea polyphenol can be used as a natural ingredient with excellent physiological functions for the human skin through cosmetic or food composition.

  17. Scanpath-based analysis of objects conspicuity in context of human vision physiology.

    PubMed

    Augustyniak, Piotr

    2007-01-01

    This paper discusses principal aspects of objects conspicuity investigated with use of an eye tracker and interpreted on the background of human vision physiology. Proper management of objects conspicuity is fundamental in several leading edge applications in the information society like advertisement, web design, man-machine interfacing and ergonomics. Although some common rules of human perception are applied since centuries in the art, the interest of human perception process is motivated today by the need of gather and maintain the recipient attention by putting selected messages in front of the others. Our research uses the visual tasks methodology and series of progressively modified natural images. The modifying details were attributed by their size, color and position while the scanpath-derived gaze points confirmed or not the act of perception. The statistical analysis yielded the probability of detail perception and correlations with the attributes. This probability conforms to the knowledge about the retina anatomy and perception physiology, although we use noninvasive methods only.

  18. Digitization of the human body in the present-day economy

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2004-12-01

    In this paper we report on the historic development of human body digitization and on the actual state of commercially available technology. Complete systems for the digitization of the human body exist since more than ten years. One of the main users of this technology was the entertainment industry. Every new movie excited with attractive visual effects, but only few people knew that the most thrilling cuts were realized by using virtual persons. The faces and bodies of actors were digitized and the "virtual twin" replaced the actor in the movie. Nowadays, the state of the human body digitization is so high that it is not possible any more to distinguish the real actor from the virtual one. Indeed, for the rush technical development has to be thanked the movie industry, which was one of the strong economic motors for this technology. Today, with the possibility of a massive cost reduction given by new technologies, methods for digitization of the human body are used also in other fields of application, such as ergonomics, medical applications, computer games, biometry and anthropometrics. With the time, this technology becomes interesting also for sport, fitness, fashion and beauty. A large expansion of human body digitization is expected in the near future. To date, different technologies are used commercially for the measurement of the human body. They can be divided into three distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their differences and characteristics and expresses clues for the selection of the adequate method. Practical examples of commercial exploitation of human body digitization are also presented and new interesting perspectives are introduced.

  19. Digitization of the human body in the present-day economy

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2005-01-01

    In this paper we report on the historic development of human body digitization and on the actual state of commercially available technology. Complete systems for the digitization of the human body exist since more than ten years. One of the main users of this technology was the entertainment industry. Every new movie excited with attractive visual effects, but only few people knew that the most thrilling cuts were realized by using virtual persons. The faces and bodies of actors were digitized and the "virtual twin" replaced the actor in the movie. Nowadays, the state of the human body digitization is so high that it is not possible any more to distinguish the real actor from the virtual one. Indeed, for the rush technical development has to be thanked the movie industry, which was one of the strong economic motors for this technology. Today, with the possibility of a massive cost reduction given by new technologies, methods for digitization of the human body are used also in other fields of application, such as ergonomics, medical applications, computer games, biometry and anthropometrics. With the time, this technology becomes interesting also for sport, fitness, fashion and beauty. A large expansion of human body digitization is expected in the near future. To date, different technologies are used commercially for the measurement of the human body. They can be divided into three distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their differences and characteristics and expresses clues for the selection of the adequate method. Practical examples of commercial exploitation of human body digitization are also presented and new interesting perspectives are introduced.

  20. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    PubMed

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation. Copyright © 2015, American Association for the Advancement of Science.

  1. Tensor body: real-time reconstruction of the human body and avatar synthesis from RGB-D.

    PubMed

    Barmpoutis, Angelos

    2013-10-01

    Real-time 3-D reconstruction of the human body has many applications in anthropometry, telecommunications, gaming, fashion, and other areas of human-computer interaction. In this paper, a novel framework is presented for reconstructing the 3-D model of the human body from a sequence of RGB-D frames. The reconstruction is performed in real time while the human subject moves arbitrarily in front of the camera. The method employs a novel parameterization of cylindrical-type objects using Cartesian tensor and b-spline bases along the radial and longitudinal dimension respectively. The proposed model, dubbed tensor body, is fitted to the input data using a multistep framework that involves segmentation of the different body regions, robust filtering of the data via a dynamic histogram, and energy-based optimization with positive-definite constraints. A Riemannian metric on the space of positive-definite tensor splines is analytically defined and employed in this framework. The efficacy of the presented methods is demonstrated in several real-data experiments using the Microsoft Kinect sensor.

  2. Reconstructing the human body using biomaterials

    NASA Astrophysics Data System (ADS)

    Agrawal, C. Mauli

    1998-01-01

    The use of metals and other materials to repair the human body has been recorded for centuries, dating back several millenia. Advances in biomaterials have enabled doctors and scientists to replace diseased body parts with natural or synthetic materials such as metals, ceramics, or polymers. In addition, recent advances in tissue engineering may soon enable the development of organs and tissues to replace those damaged by disease or trauma.

  3. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses

    NASA Astrophysics Data System (ADS)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-01

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s-1, the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  4. Evaluating morphometric body mass prediction equations with a juvenile human test sample: accuracy and applicability to small-bodied hominins.

    PubMed

    Walker, Christopher S; Yapuncich, Gabriel S; Sridhar, Shilpa; Cameron, Noël; Churchill, Steven E

    2018-02-01

    Body mass is an ecologically and biomechanically important variable in the study of hominin biology. Regression equations derived from recent human samples allow for the reasonable prediction of body mass of later, more human-like, and generally larger hominins from hip joint dimensions, but potential differences in hip biomechanics across hominin taxa render their use questionable with some earlier taxa (i.e., Australopithecus spp.). Morphometric prediction equations using stature and bi-iliac breadth avoid this problem, but their applicability to early hominins, some of which differ in both size and proportions from modern adult humans, has not been demonstrated. Here we use mean stature, bi-iliac breadth, and body mass from a global sample of human juveniles ranging in age from 6 to 12 years (n = 530 age- and sex-specific group annual means from 33 countries/regions) to evaluate the accuracy of several published morphometric prediction equations when applied to small humans. Though the body proportions of modern human juveniles likely differ from those of small-bodied early hominins, human juveniles (like fossil hominins) often differ in size and proportions from adult human reference samples and, accordingly, serve as a useful model for assessing the robustness of morphometric prediction equations. Morphometric equations based on adults systematically underpredict body mass in the youngest age groups and moderately overpredict body mass in the older groups, which fall in the body size range of adult Australopithecus (∼26-46 kg). Differences in body proportions, notably the ratio of lower limb length to stature, influence predictive accuracy. Ontogenetic changes in these body proportions likely influence the shift in prediction error (from under- to overprediction). However, because morphometric equations are reasonably accurate when applied to this juvenile test sample, we argue these equations may be used to predict body mass in small-bodied hominins

  5. Aspects of human biometeorology in past, present and future.

    PubMed

    Höppe, P

    1997-02-01

    Human biometeorology is quite an old science: during the times of Hippokrates in ancient Greece the influence of weather changes on physiological processes in the human body were considered to exist. However, not until the progress in modern statistics, physics and physiology in the course of this century provided quantitative methods did human-biometeorology become an acknowledged natural science. In the first half of this century primarily the explanation of the phenomena of reactions of the body to weather changes was the general objective. In the second half of this century quantitative descriptions of thermal interchanges between the human body and the environment by means of energy balance models of the human body have gained increasing importance. The methods of modern human biometeorology increasingly are acknowledged by workers in disciplines of potential application, such as urban or regional planners or air conditioning engineers. Human biometeorology tries to assess all atmospheric influences in its entirety, including the air pollution pattern. The discipline considers itself as branch of science which is tied closely to environmental meteorology and environmental medicine.

  6. Experimental investigation of biodynamic human body models subjected to whole-body vibration during a vehicle ride.

    PubMed

    Taskin, Yener; Hacioglu, Yuksel; Ortes, Faruk; Karabulut, Derya; Arslan, Yunus Ziya

    2018-02-06

    In this study, responses of biodynamic human body models to whole-body vibration during a vehicle ride were investigated. Accelerations were acquired from three different body parts, such as the head, upper torso and lower torso, of 10 seated passengers during a car ride while two different road conditions were considered. The same multipurpose vehicle was used during all experiments. Additionally, by two widely used biodynamic models in the literature, a set of simulations were run to obtain theoretical accelerations of the models and were compared with those obtained experimentally. To sustain a quantified comparison between experimental and theoretical approaches, the root mean square acceleration and acceleration spectral density were calculated. Time and frequency responses of the models demonstrated that neither of the models showed the best prediction performance of the human body behaviour in all cases, indicating that further models are required for better prediction of the human body responses.

  7. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain largemore » amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for

  8. Changing undergraduate human anatomy and physiology laboratories: perspectives from a large-enrollment course.

    PubMed

    Griff, Edwin R

    2016-09-01

    In the present article, a veteran lecturer of human anatomy and physiology taught several sections of the laboratory component for the first time and shares his observations and analysis from this unique perspective. The article discusses a large-enrollment, content-heavy anatomy and physiology course in relationship to published studies on learning and student self-efficacy. Changes in the laboratory component that could increase student learning are proposed. The author also points out the need for research to assess whether selective curricular changes could increase the depth of understanding and retention of learned material. Copyright © 2016 The American Physiological Society.

  9. The physiology and biochemistry of total body immobilization in animals: A compendium of research. [bibliographies

    NASA Technical Reports Server (NTRS)

    Dorchak, K. J.; Greenleaf, J. E.

    1976-01-01

    Major studies that describe the physiological and biochemical mechanisms which operate during total body restraint (confinement in cages for example) are presented. The metabolism and behavior of various animals used in medical research (dogs, monkeys, rats, fowl) was investigated and wherever possible a detailed annotation for each study is provided under the subheadings: (a) purposes, (b) procedures and methods, (c) results, and (d) conclusions. Selected references are also included.

  10. "Scientific peep show": the human body in contemporary science museums.

    PubMed

    Canadelli, Elena

    2011-01-01

    The essay focuses on the discourse about the human body developed by contemporary science museums with educational and instructive purposes directed at the general public. These museums aim mostly at mediating concepts such as health and prevention. The current scenario is linked with two examples of past museums: the popular anatomical museums which emerged during the 19th century and the health museums thrived between 1910 and 1940. On the museological path about the human body self-care we went from the emotionally involving anatomical Venuses to the inexpressive Transparent Man, from anatomical specimens of ill organs and deformed subjects to the mechanical and electronic models of the healthy body. Today the body is made transparent by the new medical diagnostics and by the latest discoveries of endoscopy. The way museums and science centers presently display the human body involves computers, 3D animation, digital technologies, hands-on models of large size human parts.

  11. A functional-based segmentation of human body scans in arbitrary postures.

    PubMed

    Werghi, Naoufel; Xiao, Yijun; Siebert, Jan Paul

    2006-02-01

    This paper presents a general framework that aims to address the task of segmenting three-dimensional (3-D) scan data representing the human form into subsets which correspond to functional human body parts. Such a task is challenging due to the articulated and deformable nature of the human body. A salient feature of this framework is that it is able to cope with various body postures and is in addition robust to noise, holes, irregular sampling and rigid transformations. Although whole human body scanners are now capable of routinely capturing the shape of the whole body in machine readable format, they have not yet realized their potential to provide automatic extraction of key body measurements. Automated production of anthropometric databases is a prerequisite to satisfying the needs of certain industrial sectors (e.g., the clothing industry). This implies that in order to extract specific measurements of interest, whole body 3-D scan data must be segmented by machine into subsets corresponding to functional human body parts. However, previously reported attempts at automating the segmentation process suffer from various limitations, such as being restricted to a standard specific posture and being vulnerable to scan data artifacts. Our human body segmentation algorithm advances the state of the art to overcome the above limitations and we present experimental results obtained using both real and synthetic data that confirm the validity, effectiveness, and robustness of our approach.

  12. Use of Physiologically Based Pharmacokinetic (PBPK) Models to Quantify the Impact of Human Age and Interindividual Differences in Physiology and Biochemistry Pertinent to Risk (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report, Use of Physiologically Based Pharmacokinetic (PBPK) Models to Quantify the Impact of Human Age and Interindividual Differences in Physiology and Biochemistry Pertinent to Risk Final Report for Cooperative Agreement. Th...

  13. Physiological concentrations of anabolic steroids in human hair.

    PubMed

    Shen, Min; Xiang, Ping; Shen, Baohua; Bu, Jun; Wang, Mengye

    2009-01-30

    Doping with endogenous anabolic steroids is one of the most serious issues in sports today. The measurement of anabolic steroid levels in human hair is necessary in order to distinguish between pharmaceutical steroids and natural steroids. This is the first investigation into the physiological concentrations of anabolic steroids in human hair in Chinese subjects. A gas chromatography-tandem mass spectrometry (GC/MS/MS) method was developed for the simultaneous identification and quantitation of five endogenous anabolic steroids (testosterone, epitestosterone, androsterone, etiocholanolone and dehydroepiandrosterone) in hair. After basic hydrolysis, hair samples were extracted with diethyl ether, derivatized and then detected using GC/MS/MS in the multiple-reaction monitoring mode (MRM). The one precursor/two product ion transitions for each anabolic steroid were monitored. The limits of detection for the five endogenous anabolic steroids were in the 0.1-0.2 pg/mg range. All analytes showed good linearity and the extraction recoveries were 74.6-104.5%. Within-day and between-day precisions were less than 20%. This method was applied to the analysis of testosterone, epitestosterone, androsterone, etiocholanolone, and dehydroepiandrosterone in human hair. Full-length hair samples were taken at the skin surface from the vertex of 39 males, 30 females and 11 children from China. None of the subjects were professional athletes. Testosterone and dehydroepiandrosterone were detected in all the hair segments. The physiological concentrations of testosterone were in the range 0.8-24.2 pg/mg, 0.1-16.8 pg/mg and 0.2-11.5 pg/mg in males, females and children, respectively, however, the mean values of dehydroepiandrosterone were much higher than the concentrations of testosterone. These data are suitable reference values and are the basis for the interpretation of results from investigations into the abuse of endogenous anabolic steroids.

  14. Determination of torque-limits for human and cat lumbar spine specimens during displacement-controlled physiological motions.

    PubMed

    Ianuzzi, Allyson; Pickar, Joel G; Khalsa, Partap S

    2009-01-01

    Quadruped animal models have been validated and used as biomechanical models for the lumbar spine. The biomechanics of the cat lumbar spine has not been well characterized, even though it is a common model used in neuromechanical studies. Compare the physiological ranges of motion and determine torque-limits for cat and human lumbar spine specimens during physiological motions. Biomechanics study. Cat and human lumbar spine specimens. Intervertebral angle (IVA), joint moment, yield point, torque-limit, and correlation coefficients. Cat (L2-sacrum) and human (T12-sacrum) lumbar spine specimens were mechanically tested to failure during displacement-controlled extension (E), lateral bending (LB), and axial rotation (AR). Single trials consisted of 10 cycles (10mm/s or 5 degrees /s) to a target displacement where the magnitude of the target displacement was increased for subsequent trials until failure occurred. Whole-lumbar stiffness, torque at yield point, and joint stiffness were determined. Scaling relationships were established using equations analogous to those that describe the load response of elliptically shaped beams. IVA magnitudes for cat and human lumbar spines were similar during physiological motions. Human whole-lumbar and joint stiffness magnitudes were significantly greater than those for cat spine specimens (p<.05). Torque-limits were also greater for humans compared with cats. Scaling relationships with high correlation (R(2) greater than 0.77) were established during later LB and AR. The current study defined "physiological ranges of movement" for human and cat lumbar spine specimens during displacement-controlled testing, and should be observed in future biomechanical studies conducted under displacement control.

  15. Observation of the human body thermoregulation and extraction of its vein signature using NIR and MWIR imaging

    NASA Astrophysics Data System (ADS)

    Bouzida, Nabila; Bendada, Abdelhakim; Maldague, Xavier P.

    2009-05-01

    The article aims first to present a new study on the thermal regulatory response of the human skin surface while exposed to a cold environment. Our work has shown that when a cold stress is applied to the left hand, thermal infrared imaging (MWIR spectral band: 3-5 μm) allows a clear observation of a temperature rise on the right hand. Moreover, a frequency analysis was also carried out upon selected vein pixels of the images monitored during the same cold stress experiment. The objective was to identify the specific frequencies that could be linked to some physiological mechanisms of the human body. This kind of study could be very useful for the characterization of possible thermo-physiological pathologies. Besides thermoregulation, we also present in this article some results on the extraction of the hand vein pattern. Firstly, we show some vein extraction results obtained after image processing of the thermal images recorded in the thermal band (MWIR), then we compare this vein pattern to the signature obtained with a camera operating in the NIR spectral band (0.85-1.7 μm). This method could be used as a complementary means for finger print signatures in biometrics.

  16. Modeling the human body/seat system in a vibration environment.

    PubMed

    Rosen, Jacob; Arcan, Mircea

    2003-04-01

    The vibration environment is a common man-made artificial surrounding with which humans have a limited tolerance to cope due to their body dynamics. This research studied the dynamic characteristics of a seated human body/seat system in a vibration environment. The main result is a multi degrees of freedom lumped parameter model that synthesizes two basic dynamics: (i) global human dynamics, the apparent mass phenomenon, including a systematic set of the model parameters for simulating various conditions like body posture, backrest, footrest, muscle tension, and vibration directions, and (ii) the local human dynamics, represented by the human pelvis/vibrating seat contact, using a cushioning interface. The model and its selected parameters successfully described the main effects of the apparent mass phenomenon compared to experimental data documented in the literature. The model provided an analytical tool for human body dynamics research. It also enabled a primary tool for seat and cushioning design. The model was further used to develop design guidelines for a composite cushion using the principle of quasi-uniform body/seat contact force distribution. In terms of evenly distributing the contact forces, the best result for the different materials and cushion geometries simulated in the current study was achieved using a two layer shaped geometry cushion built from three materials. Combining the geometry and the mechanical characteristics of a structure under large deformation into a lumped parameter model enables successful analysis of the human/seat interface system and provides practical results for body protection in dynamic environment.

  17. High School Students' Understanding of the Human Body System

    ERIC Educational Resources Information Center

    Assaraf, Orit Ben-Zvi; Dodick, Jeff; Tripto, Jaklin

    2013-01-01

    In this study, 120 tenth-grade students from 8 schools were examined to determine the extent of their ability to perceive the human body as a system after completing the first stage in their biology curriculum--"The human body, emphasizing homeostasis". The students' systems thinking was analyzed according to the STH thinking model, which roughly…

  18. Clinical, Biomechanical, and Physiological Translational Interpretations of Human Resting Myofascial Tone or Tension

    PubMed Central

    Masi, Alfonse T.; Nair, Kalyani; Evans, Tyler; Ghandour, Yousef

    2010-01-01

    Background Myofascial tissues generate integrated webs and networks of passive and active tensional forces that provide stabilizing support and that control movement in the body. Passive [central nervous system (CNS)–independent] resting myofascial tension is present in the body and provides a low-level stabilizing component to help maintain balanced postures. This property was recently called “human resting myofascial tone” (HRMT). The HRMT model evolved from electromyography (EMG) research in the 1950s that showed lumbar muscles usually to be EMG-silent in relaxed gravity-neutral upright postures. Methods Biomechanical, clinical, and physiological studies were reviewed to interpret the passive stiffness properties of HRMT that help to stabilize various relaxed functions such as quiet balanced standing. Biomechanical analyses and experimental studies of the lumbar multifidus were reviewed to interpret its passive stiffness properties. The lumbar multifidus was illustrated as the major core stabilizing muscle of the spine, serving an important passive biomechanical role in the body. Results Research into muscle physiology suggests that passive resting tension (CNS-independent) is generated in sarcomeres by the molecular elasticity of low-level cycling cross-bridges between the actomyosin filaments. In turn, tension is complexly transmitted to intimately enveloping fascial matrix fibrils and other molecular elements in connective tissue, which, collectively, constitute the myofascial unit. Postural myofascial tonus varies with age and sex. Also, individuals in the population are proposed to vary in a polymorphism of postural HRMT. A few people are expected to have outlier degrees of innate postural hypotonicity or hypertonicity. Such biomechanical variations likely predispose to greater risk of related musculoskeletal disorders, a situation that deserves greater attention in clinical practice and research. Axial myofascial hypertonicity was hypothesized to

  19. Sex differences in chronometric mental rotation with human bodies.

    PubMed

    Voyer, Daniel; Jansen, Petra

    2016-11-01

    The present experiment investigated sex differences across stimulus types in a chronometric mental rotation task. The working hypothesis was that human bodies as stimuli would reduce the magnitude of sex differences compared to cubes as stimuli, from the embodied cognition perspective. One hundred and twenty participants, 60 men and 60 women solved chronometric mental rotation items with Shepard-Metzler cube figures, head-cubes, and human bodies, all designed so that they were similar in shape. Two figures of a given stimulus type were presented on the screen and participants had to judge if both items were mirrored or non-mirrored. Results showed better mental rotation performance with human bodies than with other types of stimuli for both sexes, although the effect of stimulus type was more pronounced in men than in women. Furthermore, regardless of stimulus type, men were more accurate than women. Altogether, the results suggest that sex differences are not reduced when human bodies are used as stimuli in a chronometric task. Implications for accounts of sex differences in mental rotations are discussed.

  20. Nutrition and human physiological adaptations to space flight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; LeBlanc, A. D.; Putcha, L.; Whitson, P. A.

    1993-01-01

    Space flight provides a model for the study of healthy individuals undergoing unique stresses. This review focuses on how physiological adaptations to weightlessness may affect nutrient and food requirements in space. These adaptations include reductions in body water and plasma volume, which affect the renal and cardiovascular systems and thereby fluid and electrolyte requirements. Changes in muscle mass and function may affect requirements for energy, protein and amino acids. Changes in bone mass lead to increased urinary calcium concentrations, which may increase the risk of forming renal stones. Space motion sickness may influence putative changes in gastro-intestinal-hepatic function; neurosensory alterations may affect smell and taste. Some or all of these effects may be ameliorated through the use of specially designed dietary countermeasures.

  1. Physiology of transgenic mice with brown fat ablation: obesity is due to lowered body temperature.

    PubMed

    Klaus, S; Münzberg, H; Trüloff, C; Heldmaier, G

    1998-02-01

    We investigated the physiological basis for development of obesity in uncoupling protein-diphtheria toxin A chain (UCP-DTA) transgenic mice. In these mice the promoter of the brown adipose tissue (BAT)-specific UCP was used to drive expression of DTA, resulting in decreased BAT function and development of obesity and insulin resistance (Lowell, B. B., S. V. Susulic, A. Hamann, J. A. Lawitts, J. Himms-Hagen, B. B. Boyer, L. Kozak, and J. S. Flier. Nature 366: 740-742, 1994). In adult UCP-DTA mice, we measured food intake and food assimilation, locomotor activity, metabolic rate, and body temperature in comparison to control animals. No differences could be observed in food intake or assimilation and locomotor activity. Weight-specific metabolic rates at temperatures between 20 and 37 degrees C, however, were consistently lower in transgenic mice. Continuous telemetric recording of core body temperature showed that transgenic mice displayed a downshift in body temperature levels of approximately 0.9 degree C. In summary, we provide evidence that attenuated body temperature levels alone can be responsible for development of obesity and that BAT thermogenesis is a major determinant of body temperature levels in rodents.

  2. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men’s and Women’s Bodies

    PubMed Central

    Brierley, Mary-Ellen; Brooks, Kevin R.; Mond, Jonathan; Stevenson, Richard J.

    2016-01-01

    The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men’s bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women. PMID:27257677

  3. Sys-BodyFluid: a systematical database for human body fluid proteome research

    PubMed Central

    Li, Su-Jun; Peng, Mao; Li, Hong; Liu, Bo-Shu; Wang, Chuan; Wu, Jia-Rui; Li, Yi-Xue; Zeng, Rong

    2009-01-01

    Recently, body fluids have widely become an important target for proteomic research and proteomic study has produced more and more body fluid related protein data. A database is needed to collect and analyze these proteome data. Thus, we developed this web-based body fluid proteome database Sys-BodyFluid. It contains eleven kinds of body fluid proteomes, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, seminal fluid, human milk and amniotic fluid. Over 10 000 proteins are presented in the Sys-BodyFluid. Sys-BodyFluid provides the detailed protein annotations, including protein description, Gene Ontology, domain information, protein sequence and involved pathways. These proteome data can be retrieved by using protein name, protein accession number and sequence similarity. In addition, users can query between these different body fluids to get the different proteins identification information. Sys-BodyFluid database can facilitate the body fluid proteomics and disease proteomics research as a reference database. It is available at http://www.biosino.org/bodyfluid/. PMID:18978022

  4. Sys-BodyFluid: a systematical database for human body fluid proteome research.

    PubMed

    Li, Su-Jun; Peng, Mao; Li, Hong; Liu, Bo-Shu; Wang, Chuan; Wu, Jia-Rui; Li, Yi-Xue; Zeng, Rong

    2009-01-01

    Recently, body fluids have widely become an important target for proteomic research and proteomic study has produced more and more body fluid related protein data. A database is needed to collect and analyze these proteome data. Thus, we developed this web-based body fluid proteome database Sys-BodyFluid. It contains eleven kinds of body fluid proteomes, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, seminal fluid, human milk and amniotic fluid. Over 10,000 proteins are presented in the Sys-BodyFluid. Sys-BodyFluid provides the detailed protein annotations, including protein description, Gene Ontology, domain information, protein sequence and involved pathways. These proteome data can be retrieved by using protein name, protein accession number and sequence similarity. In addition, users can query between these different body fluids to get the different proteins identification information. Sys-BodyFluid database can facilitate the body fluid proteomics and disease proteomics research as a reference database. It is available at http://www.biosino.org/bodyfluid/.

  5. Categorical discrimination of human body parts by magnetoencephalography

    PubMed Central

    Nakamura, Misaki; Yanagisawa, Takufumi; Okamura, Yumiko; Fukuma, Ryohei; Hirata, Masayuki; Araki, Toshihiko; Kamitani, Yukiyasu; Yorifuji, Shiro

    2015-01-01

    Humans recognize body parts in categories. Previous studies have shown that responses in the fusiform body area (FBA) and extrastriate body area (EBA) are evoked by the perception of the human body, when presented either as whole or as isolated parts. These responses occur approximately 190 ms after body images are visualized. The extent to which body-sensitive responses show specificity for different body part categories remains to be largely clarified. We used a decoding method to quantify neural responses associated with the perception of different categories of body parts. Nine subjects underwent measurements of their brain activities by magnetoencephalography (MEG) while viewing 14 images of feet, hands, mouths, and objects. We decoded categories of the presented images from the MEG signals using a support vector machine (SVM) and calculated their accuracy by 10-fold cross-validation. For each subject, a response that appeared to be a body-sensitive response was observed and the MEG signals corresponding to the three types of body categories were classified based on the signals in the occipitotemporal cortex. The accuracy in decoding body-part categories (with a peak at approximately 48%) was above chance (33.3%) and significantly higher than that for random categories. According to the time course and location, the responses are suggested to be body-sensitive and to include information regarding the body-part category. Finally, this non-invasive method can decode category information of a visual object with high temporal and spatial resolution and this result may have a significant impact in the field of brain–machine interface research. PMID:26582986

  6. Categorical discrimination of human body parts by magnetoencephalography.

    PubMed

    Nakamura, Misaki; Yanagisawa, Takufumi; Okamura, Yumiko; Fukuma, Ryohei; Hirata, Masayuki; Araki, Toshihiko; Kamitani, Yukiyasu; Yorifuji, Shiro

    2015-01-01

    Humans recognize body parts in categories. Previous studies have shown that responses in the fusiform body area (FBA) and extrastriate body area (EBA) are evoked by the perception of the human body, when presented either as whole or as isolated parts. These responses occur approximately 190 ms after body images are visualized. The extent to which body-sensitive responses show specificity for different body part categories remains to be largely clarified. We used a decoding method to quantify neural responses associated with the perception of different categories of body parts. Nine subjects underwent measurements of their brain activities by magnetoencephalography (MEG) while viewing 14 images of feet, hands, mouths, and objects. We decoded categories of the presented images from the MEG signals using a support vector machine (SVM) and calculated their accuracy by 10-fold cross-validation. For each subject, a response that appeared to be a body-sensitive response was observed and the MEG signals corresponding to the three types of body categories were classified based on the signals in the occipitotemporal cortex. The accuracy in decoding body-part categories (with a peak at approximately 48%) was above chance (33.3%) and significantly higher than that for random categories. According to the time course and location, the responses are suggested to be body-sensitive and to include information regarding the body-part category. Finally, this non-invasive method can decode category information of a visual object with high temporal and spatial resolution and this result may have a significant impact in the field of brain-machine interface research.

  7. Long-term exercise in mice has sex-dependent benefits on body composition and metabolism during aging.

    PubMed

    McMullan, Rachel C; Kelly, Scott A; Hua, Kunjie; Buckley, Brian K; Faber, James E; Pardo-Manuel de Villena, Fernando; Pomp, Daniel

    2016-11-01

    Aging is associated with declining exercise and unhealthy changes in body composition. Exercise ameliorates certain adverse age-related physiological changes and protects against many chronic diseases. Despite these benefits, willingness to exercise and physiological responses to exercise vary widely, and long-term exercise and its benefits are difficult and costly to measure in humans. Furthermore, physiological effects of aging in humans are confounded with changes in lifestyle and environment. We used C57BL/6J mice to examine long-term patterns of exercise during aging and its physiological effects in a well-controlled environment. One-year-old male (n = 30) and female (n = 30) mice were divided into equal size cohorts and aged for an additional year. One cohort was given access to voluntary running wheels while another was denied exercise other than home cage movement. Body mass, composition, and metabolic traits were measured before, throughout, and after 1 year of treatment. Long-term exercise significantly prevented gains in body mass and body fat, while preventing loss of lean mass. We observed sex-dependent differences in body mass and composition trajectories during aging. Wheel running (distance, speed, duration) was greater in females than males and declined with age. We conclude that long-term exercise may serve as a preventive measure against age-related weight gain and body composition changes, and that mouse inbred strains can be used to characterize effects of long-term exercise and factors (e.g. sex, age) modulating these effects. These findings will facilitate studies on relationships between exercise and health in aging populations, including genetic predisposition and genotype-by-environment interactions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. Relationship between alertness, performance, and body temperature in humans.

    PubMed

    Wright, Kenneth P; Hull, Joseph T; Czeisler, Charles A

    2002-12-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  9. Relationship between alertness, performance, and body temperature in humans

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.

    2002-01-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  10. Polybrominated diphenyl ethers in human placenta associated with neonatal physiological development at a typical e-waste recycling area in China.

    PubMed

    Xu, Long; Huo, Xia; Zhang, Yuling; Li, Weiqiu; Zhang, Jianqing; Xu, Xijin

    2015-01-01

    Our aim of this study was to characterize the exposure pattern of polybrominated diphenyl ethers(PBDEs) in human placenta and assess their potential effects on neonates. Placenta samples were obtained from a typical e-waste area in Guiyu and a reference area in Haojiang, China. The median ΣPBDE concentration was 32.25 ng/g lipid weight (lw) in placenta samples from Guiyu, and 5.13 ng/g lw from Haojiang. BDE-209 predominated in placenta samples, followed by BDE-28, -47, -99 -153, -183. Residence in Guiyu contributed the most to elevated PDBE levels. Neonatal physiological indices, including bodymass index (BMI), Apgar 1 score and head circumference, were reduced in Guiyu group. No significant difference was found in neonatal weight between the two groups, but neonatal body length in Guiyu was increased. Our data suggest prenatal exposure to PBDEs is high at the e-waste recycling area, and may lead to adverse physiological development in the fetus.

  11. Physiologic basis for understanding quantitative dehydration assessment.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Charkoudian, Nisha; Sawka, Michael N

    2013-03-01

    Dehydration (body water deficit) is a physiologic state that can have profound implications for human health and performance. Unfortunately, dehydration can be difficult to assess, and there is no single, universal gold standard for decision making. In this article, we review the physiologic basis for understanding quantitative dehydration assessment. We highlight how phenomenologic interpretations of dehydration depend critically on the type (dehydration compared with volume depletion) and magnitude (moderate compared with severe) of dehydration, which in turn influence the osmotic (plasma osmolality) and blood volume-dependent compensatory thresholds for antidiuretic and thirst responses. In particular, we review new findings regarding the biological variation in osmotic responses to dehydration and discuss how this variation can help provide a quantitative and clinically relevant link between the physiology and phenomenology of dehydration. Practical measures with empirical thresholds are provided as a starting point for improving the practice of dehydration assessment.

  12. Estructura y Funcionamiento del Cuerpo Humano. Prontuario. Guia del Maestro. Documento de Trabajo (Structure and Function of the Human Body. Handbook and Teacher's Guide. Working Document).

    ERIC Educational Resources Information Center

    Puerto Rico State Dept. of Education, Hato Rey. Area for Vocational and Technical Education.

    This handbook and teacher's guide are for a 37-week course on the human body, intended for secondary or postsecondary students in allied health occupations. The syllabus lists general objectives and the number of hours and weeks devoted to each unit. A course outline is provided for five units: anatomy and physiology terminology; general…

  13. Human and animal sounds influence recognition of body language.

    PubMed

    Van den Stock, Jan; Grèzes, Julie; de Gelder, Beatrice

    2008-11-25

    In naturalistic settings emotional events have multiple correlates and are simultaneously perceived by several sensory systems. Recent studies have shown that recognition of facial expressions is biased towards the emotion expressed by a simultaneously presented emotional expression in the voice even if attention is directed to the face only. So far, no study examined whether this phenomenon also applies to whole body expressions, although there is no obvious reason why this crossmodal influence would be specific for faces. Here we investigated whether perception of emotions expressed in whole body movements is influenced by affective information provided by human and by animal vocalizations. Participants were instructed to attend to the action displayed by the body and to categorize the expressed emotion. The results indicate that recognition of body language is biased towards the emotion expressed by the simultaneously presented auditory information, whether it consist of human or of animal sounds. Our results show that a crossmodal influence from auditory to visual emotional information obtains for whole body video images with the facial expression blanked and includes human as well as animal sounds.

  14. Serum osteopontin concentration is decreased by exercise-induced fat loss but is not correlated with body fat percentage in obese humans.

    PubMed

    You, Jeong Soon; Ji, Hye-In; Chang, Kyung Ja; Yoo, Myung Chul; Yang, Hyung-In; Jeong, In-Kyung; Kim, Kyoung Soo

    2013-08-01

    To evaluate the extent to which fat mass contributes to serum osteopontin (OPN) concentration, we investigated whether serum OPN levels are decreased by exercise-induced fat mass loss and whether they are associated with body fat percentage in obese humans. Twenty‑three female college students were recruited to participate in an 8‑week body weight control program. Body composition [body weight, soft lean mass, body fat mass, body fat percentage, waist-hip ratio and body mass index (BMI)] were assessed prior to and following the program. Serum lipid profiles and serum adiponectin, leptin and osteopontin levels were measured from serum collected prior to and following the program. To understand the effect of fat mass loss on the serum levels of adipokine, which is mainly produced in adipose tissue, the leptin and adiponectin levels were also measured prior to and following the program. Serum leptin levels (mean ± standard error of the mean) decreased significantly following the program (from 9.82±0.98 to 7.23±0.67 ng/ml) and were closely correlated with body fat percentage. In addition, serum adiponectin levels were negatively correlated with body fat percentage, while serum adiponectin levels were not significantly altered. By contrast, serum OPN levels decreased significantly following the program (from 16.03±2.34 to 10.65±1.22 ng/ml). However, serum OPN levels were not correlated with body fat percentage, suggesting that serum OPN levels are controlled by several other factors in humans. In conclusion, a high expression of OPN in adipose tissues may not be correlated with serum OPN levels in obese humans. Thus, tissues or physiological factors other than fat mass may have a greater contribution to the serum OPN levels.

  15. Is Lutein a Physiologically Important Ligand for Transthyretin in Humans?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liwei

    Lutein and zeaxanthin are the only carotenoids accumulated in the macula of the human retina and are known as the macular pigments (MP). These pigments account for the yellow color of the macula and appear to play an important role in protecting against age-related macular degeneration (AMD). The uptake of lutein and zeaxanthin in human eyes is remarkably specific. It is likely that specific transport or binding proteins are involved. The objective is to determine whether transthyretin (TTR) is a transport protein in human plasma and could thus deliver lutein from the blood to the retina. In this study, theymore » used a biosynthetic 13C-lutein tracer and gas chromatography-combustion interfaced-isotope ratio mass spectrometry (GCC-IRMS) to gain the requisite sensitivity to detect the minute amounts of lutein expected as a physiological ligand for human transthyretin. The biosynthetic 13C-labeled lutein tracer was purified from algae. Healthy women (n = 4) each ingested 1 mg of 13C-labeled lutein daily for 3 days and a blood sample was collected 24 hours after the final dose. Plasma TTR was isolated by retinol-binding protein (RBP)-sepharose affinity chromatography and extracted with chloroform. The 13C/ 12C ratio in the TTR extract was measured by GCC-IRMS. There was no 13C-lutein enrichment in the pure TTR extract. This result indicated that lutein is not associated with TTR in human plasma after ingestion in physiological amounts. Some hydrophobic compounds with yellow color may bind to human TTR in the plasma. However, this association needs to be further proved by showing specificity. The study provides a new approach for carotenoid-binding protein studies using a stable isotope tracer method combined with the high precision of GCC-IRMS. The mechanism of selective transport, uptake, and accumulation of lutein in human macula remain to be determined.« less

  16. Electric field prediction for a human body-electric machine system.

    PubMed

    Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia

    2004-01-01

    A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.

  17. Observation of temperature trace, induced by changing of temperature inside the human body, on the human body skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-05-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. In previous papers, we demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. For proof of validity of our statement we make the similar physical experiment using the IR camera. We show a possibility of temperature trace on human body skin, caused by changing of temperature inside the human body due to water drinking. We use as a computer code that is available for treatment of images captured by commercially available IR camera, manufactured by Flir Corp., as well as our developed computer code for computer processing of these images. Using both codes we demonstrate clearly changing of human body skin temperature induced by water drinking. Shown phenomena are very important for the detection of forbidden samples and substances concealed inside the human body using non-destructive control without X-rays using. Early we have demonstrated such possibility using THz radiation. Carried out experiments can be used for counter-terrorism problem solving. We developed original filters for computer processing of images captured by IR cameras. Their applications for computer processing of images results in a temperature resolution enhancing of cameras.

  18. The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic.

    PubMed

    Krause, Jesse S; Pérez, Jonathan H; Chmura, Helen E; Sweet, Shannan K; Meddle, Simone L; Hunt, Kathleen E; Gough, Laura; Boelman, Natalie; Wingfield, John C

    2016-10-01

    Climate change is causing rapid shifts in temperature while also increasing the frequency, duration, and intensity of extreme weather. In the northern hemisphere, the spring of 2013 was characterized as extreme due to record high snow cover and low temperatures. Studies that describe the effects of extreme weather on phenology across taxa are limited while morphological and physiological responses remain poorly understood. Stress physiology, as measured through baseline and stress-induced concentrations of cortisol or corticosterone, has often been studied to understand how organisms respond to environmental stressors. We compared body condition and stress physiology of two long-distance migrants breeding in low arctic Alaska - the white-crowned sparrow (Zonotrichia leucophrys) and Lapland longspur (Calcarius lapponicus) - in 2013, an extreme weather year, with three more typical years (2011, 2012, and 2014). The extended snow cover in spring 2013 caused measureable changes in phenology, body condition and physiology. Arrival timing for both species was delayed 4-5days compared to the other three years. Lapland longspurs had reduced fat stores, pectoralis muscle profiles, body mass, and hematocrit levels, while stress-induced concentrations of corticosterone were increased. Similarly, white-crowned sparrows had reduced pectoralis muscle profiles and hematocrit levels, but in contrast to Lapland longspurs, had elevated fat stores and no difference in mass or stress physiology relative to other study years. An understanding of physiological mechanisms that regulate coping strategies is of critical importance for predicting how species will respond to the occurrence of extreme events in the future due to global climate change. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Neurotrophic Properties, Chemosensory Responses and Neurogenic Niche of the Human Carotid Body.

    PubMed

    Ortega-Sáenz, Patricia; Villadiego, Javier; Pardal, Ricardo; Toledo-Aral, Juan José; López-Barneo, José

    2015-01-01

    The carotid body (CB) is a polymodal chemoreceptor that triggers the hyperventilatory response to hypoxia necessary for the maintenance of O(2) homeostasis essential for the survival of organs such as the brain or heart. Glomus cells, the sensory elements in the CB, are also sensitive to hypercapnia, acidosis and, although less generally accepted, hypoglycemia. Current knowledge on CB function is mainly based on studies performed on lower mammals, but the information on the human CB is scant. Here we describe the structure, neurotrophic properties, and cellular responses to hypoxia and hypoglycemia of CBs dissected from human cadavers. The adult CB parenchyma contains clusters of chemosensitive glomus (type I) and sustentacular (type II) cells as well as nestin-positive progenitor cells. This organ also expresses high levels of the dopaminotrophic glial cell line-derived neurotrophic factor (GDNF). GDNF production and the number of progenitor and glomus cells were preserved in the CBs of human subjects of advanced age. As reported for other mammalian species, glomus cells responded to hypoxia by external Ca(2+)-dependent increase of cytosolic [Ca(2+)] and quantal catecholamine release. Human glomus cells are also responsive to hypoglycemia and together the two stimuli, hypoxia and hypoglycemia, can potentiate each other's effects. The chemo-sensory responses of glomus cells are also preserved at an advanced age. Interestingly, a neurogenic niche similar to that recently described in rodents is also preserved in the adult human CB. These new data on the cellular and molecular physiology of the CB pave the way for future pathophysiological studies involving this organ in humans.

  20. Effects of weightlessness on human fluid and electrolyte physiology

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Johnson, Philip C., Jr.

    1991-01-01

    Skylab and Spacelab data on changes occurring in human fluid and electrolyte physiology during the acute and adaptive phases of adaptation to spaceflight are summarized. The combined results for all three Spacelab studies show that hyponatremia developed within 20 h after the onset of weightlessness and continued throughout the flights, and hypokalemia developed by 40 h. Antidiuretic hormone was increased in plasma throughout the flights. Aldosterone decreased by 40 h, but after 7 days it had reached preflight levels.

  1. Bodily illusions in health and disease: physiological and clinical perspectives and the concept of a cortical 'body matrix'.

    PubMed

    Moseley, G Lorimer; Gallace, Alberto; Spence, Charles

    2012-01-01

    Illusions that induce a feeling of ownership over an artificial body or body-part have been used to explore the complex relationships that exist between the brain's representation of the body and the integrity of the body itself. Here we discuss recent findings in both healthy volunteers and clinical populations that highlight the robust relationship that exists between a person's sense of ownership over a body part, cortical processing of tactile input from that body part, and its physiological regulation. We propose that a network of multisensory and homeostatic brain areas may be responsible for maintaining a 'body-matrix'. That is, a dynamic neural representation that not only extends beyond the body surface to integrate both somatotopic and peripersonal sensory data, but also integrates body-centred spatial sensory data. The existence of such a 'body-matrix' allows our brain to adapt to even profound anatomical and configurational changes to our body. It also plays an important role in maintaining homeostatic control over the body. Its alteration can be seen to have both deleterious and beneficial effects in various clinical populations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Form Factor Evaluation of Open Body Area Network (OBAN) Physiological Status Monitoring (PSM) System Prototype Designs

    DTIC Science & Technology

    2018-05-11

    SYSTEM PROTOTYPE DESIGNS DISCLAIMERS The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as...FORM FACTOR EVALUATION OF OPEN BODY AREA NETWORK (OBAN) PHYSIOLOGICAL STATUS MONITORING (PSM) SYSTEM PROTOTYPE DESIGNS William J...security; and is designed to function for 72 hours or more. The test described in this report assesses proposed form-factor designs . Feedback using

  3. Flexible and wearable electronic silk fabrics for human physiological monitoring

    NASA Astrophysics Data System (ADS)

    Mao, Cuiping; Zhang, Huihui; Lu, Zhisong

    2017-09-01

    The development of textile-based devices for human physiological monitoring has attracted tremendous interest in recent years. However, flexible physiological sensing elements based on silk fabrics have not been realized. In this paper, ZnO nanorod arrays are grown in situ on reduced graphene oxide-coated silk fabrics via a facile electro-deposition method for the fabrication of silk-fabric-based mechanical sensing devices. The data show that well-aligned ZnO nanorods with hexagonal wurtzite crystalline structures are synthesized on the conductive silk fabric surface. After magnetron sputtering of gold electrodes, silk-fabric-based devices are produced and applied to detect periodic bending and twisting. Based on the electric signals, the deformation and release processes can be easily differentiated. Human arterial pulse and respiration can also be real-time monitored to calculate the pulse rate and respiration frequency, respectively. Throat vibrations during coughing and singing are detected to demonstrate the voice recognition capability. This work may not only help develop silk-fabric-based mechanical sensing elements for potential applications in clinical diagnosis, daily healthcare monitoring and voice recognition, but also provide a versatile method for fabricating textile-based flexible electronic devices.

  4. Physiological tolerance to uncompensated heat stress in soldiers: effects of various types of body cooling systems.

    PubMed

    Jovanović, Dalibor; Karkalić, Radovan; Zeba, Snjezana; Pavlović, Miroslav; Radaković, Sonja S

    2014-03-01

    In military services, emergency situations when soldiers are exposed to a combination of nuclear, biological and chemical (NBC) contamination combined with heat stress, are frequent and complex. In these specific conditions, usage of personal body cooling systems may be effective in reducing heat stress. The present study was conducted in order to evaluate the efficiency of four various types of contemporary personal body cooling systems based on the "Phase Change Material" (PCM), and its effects on soldiers' subjective comfort and physiological performance during exertional heat stress in hot environments. Ten male soldiers were voluntarily subjected to exertional heat stress tests (EHSTs) consisted of walking on a treadmill (5.5 km/h) in hot conditions (40 degreesC) in climatic chamber, wearing NBC isolating impermeable protective suits. One of the tests was performed without any additional cooling solution (NOCOOL), and four tests were performed while using different types of cooling systems: three in a form of vests and one as underwear. Physiological strain was determined by the mean skin temperature (Tsk), tympanic temperature (Tty), and heart rate values (HR), while sweat rates (SwR) indicated changes in hydration status. In all the cases EHST induced physiological response manifested through increasing Tty, HR and SwR. Compared to NOCOOL tests, when using cooling vests, Tty and Tsk were significantly lower (on 35th min, for 0.44 +/- 0.03 and 0.49 +/- 0.05 degrees C, respectively; p < 0.05), as well as the average SwR (0.17 +/- 0.03 L/m2/h). When using underwear, the values of given parameters were not significantly different compared to NOCOOL tests. Using a body cooling system based on PCM in the form of vest under NBC protective clothes during physical activity in hot conditions, reduces sweating and alleviates heat stress manifested by increased core and skin temperatures and heart rate values. These effects directly improve heat tolerance, hydration

  5. Virtual physiological human: training challenges.

    PubMed

    Lawford, Patricia V; Narracott, Andrew V; McCormack, Keith; Bisbal, Jesus; Martin, Carlos; Bijnens, Bart; Brook, Bindi; Zachariou, Margarita; Freixa, Jordi Villà I; Kohl, Peter; Fletcher, Katherine; Diaz-Zuccarini, Vanessa

    2010-06-28

    The virtual physiological human (VPH) initiative encompasses a wide range of activities, including structural and functional imaging, data mining, knowledge discovery tool and database development, biomedical modelling, simulation and visualization. The VPH community is developing from a multitude of relatively focused, but disparate, research endeavours into an integrated effort to bring together, develop and translate emerging technologies for application, from academia to industry and medicine. This process initially builds on the evolution of multi-disciplinary interactions and abilities, but addressing the challenges associated with the implementation of the VPH will require, in the very near future, a translation of quantitative changes into a new quality of highly trained multi-disciplinary personnel. Current strategies for undergraduate and on-the-job training may soon prove insufficient for this. The European Commission seventh framework VPH network of excellence is exploring this emerging need, and is developing a framework of novel training initiatives to address the predicted shortfall in suitably skilled VPH-aware professionals. This paper reports first steps in the implementation of a coherent VPH training portfolio.

  6. Using stimulation of the diving reflex in humans to teach integrative physiology.

    PubMed

    Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne

    2014-12-01

    During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.

  7. Study of electrical properties of meridian on human body surface

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Uematsu, Haruyuki; Otani, Nobuo

    2007-12-01

    This paper presents the study of the subcutaneous electrical impedance on the human body surface. Measurements of the electrical impedance on five adult male subjects were carried out and analyzed for the possible detection of the acupuncture meridian lines of ancient Chinese medicine on the human body. The distribution of electrical impedance measured at 40 points over the volar side of the right upper limb of the subjects. The results show that electrical impedance varies at different locations of the human body surface, and the locations with lower electrical impedance coincide with the locations where the meridian is believed to exist.

  8. Body Mapping to Explore Reproductive Ethno-Physiological Beliefs and Knowledge of Contraception in Timor-Leste.

    PubMed

    Wallace, Heather Julie; McDonald, Susan; Belton, Suzanne; Miranda, Agueda Isolina; da Costa, Eurico; da Conceicao Matos, Livio; Henderson, Helen; Taft, Angela

    2018-06-01

    Maternal mortality remains a significant public health challenge for Timor-Leste. Although access to quality family planning measures may greatly reduce such deaths, consideration of indigenous perceptions, and how they influence reproductive health decision-making and behavior, is crucial if health services are to provide initiatives that are accepted and helpful in improving reproductive health outcomes. We aimed to demonstrate that body mapping is an effective method to traverse language and culture to gain emic insights and indigenous worldviews. The authors' two qualitative research projects (2013 and 2015) used a decolonizing methodology in four districts of Timor-Leste, body mapping with 67 men and 40 women to illuminate ethno-physiology and indigenous beliefs about conception, reproduction, and contraception. Body mapping provided a beneficial conduit for identifying established indigenous reproductive perceptions, understandings, and vocabulary, plus fears surrounding contraception. This may inform health service provision and engagement, ultimately improving the reproductive health of community members.

  9. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses.

    PubMed

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-30

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s -1 , the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  10. Physiology and culture of the human blastocyst.

    PubMed

    Gardner, David K; Lane, Michelle; Schoolcraft, William B

    2002-01-01

    The human embryo undergoes many changes in physiology during the first 4 days of life as it develops and differentiates from a fertilized oocyte to the blastocyst stage. Concomitantly, the embryo is exposed to gradients of nutrients within the female reproductive tract and exhibits changes in its own nutrient requirements and utilization. Determining the nature of such nutrient gradients in the female tract and the changing requirements of the embryo has facilitated the formulation of stage-specific culture media designed to support embryo development throughout the preimplantation period. Resultant implantation rates attained with the culture and transfer of human blastocysts are higher than those associated with the transfer of cleavage stage embryos to the uterus. Such increases in implantation rates have facilitated the establishment of high pregnancy rates while reducing the number of embryos transferred. With the introduction of new scoring systems for the blastocyst and the non-invasive assessment of metabolic activity of individual embryos, it should be possible to move to single blastocyst transfer for the majority of patients.

  11. Animal models and their importance to human physiological responses in microgravity

    NASA Technical Reports Server (NTRS)

    Tipton, C. M.

    1996-01-01

    Two prominent theories to explain the physiological effects of microgravity relate to the cascade of changes associated with the cephalic shifts of fluids and the absence of tissue deformation forces. One-g experiments for humans used bed rest and the head-down tilt (HDT) method, while animal experiments have been conducted using the tail-suspended, head-down, and hindlimbs non-weightbearing model. Because of the success of the HDT approach with rats to simulate the gravitational effects on the musculoskeletal system exhibited by humans, the same model has been used to study the effects of gravity on the cardiopulmonary systems of humans and other vertebrates. Results to date indicate the model is effective in producing comparable changes associated with blood volume, erythropoiesis, cardiac mass, baroreceptor responsiveness, carbohydrate metabolism, post-flight VO2max, and post-flight cardiac output during exercise. Inherent with these results is the potential of the model to be useful in investigating responsible mechanisms. The suspension model has promise in understanding the capillary blood PO2 changes in space as well as the arterial PO2 changes in subjects participating in a HDT experiment. However, whether the model can provide insights on the up-or-down regulation of adrenoreceptors remains to be determined, and many investigators believe the HDT approach should not be followed to study gravitational influences on pulmonary function in either humans or animals. It was concluded that the tail-suspended animal model had sufficient merit to study in-flight and post-flight human physiological responses and mechanisms.

  12. RADIOISOTOPES IN MEDICINE AND HUMAN PHYSIOLOGY. A Selected List of References

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, J.A. comp.

    1958-08-01

    This bibliography contains 2862 references on uses of radioisotopes in diagnostic medicine, therapeutic medicine, clinical research, human physiology, general medical research, and immunology. The references were taken from the 1948 to 1956 open literature. A list of the journals from which the references were selected and an author index are included. (auth)'

  13. Heat Exchange in “Human body - Thermal protection - Environment” System

    NASA Astrophysics Data System (ADS)

    Khromova, I. V.

    2017-11-01

    This article is devoted to the issues of simulation and calculation of thermal processes in the system called “Human body - Thermal protection - Environment” under low temperature conditions. It considers internal heat sources and convective heat transfer between calculated elements. Overall this is important for the Heat Transfer Theory. The article introduces complex heat transfer calculation method and local thermophysical parameters calculation method in the system called «Human body - Thermal protection - Environment», considering passive and active thermal protections, thermophysical and geometric properties of calculated elements in a wide range of environmental parameters (water, air). It also includes research on the influence that thermal resistance of modern materials, used in special protective clothes development, has on heat transfer in the system “Human body - Thermal protection - Environment”. Analysis of the obtained results allows adding of the computer research data to experiments and optimizing of individual life-support system elements, which are intended to protect human body from exposure to external factors.

  14. Singular value decomposition based feature extraction technique for physiological signal analysis.

    PubMed

    Chang, Cheng-Ding; Wang, Chien-Chih; Jiang, Bernard C

    2012-06-01

    Multiscale entropy (MSE) is one of the popular techniques to calculate and describe the complexity of the physiological signal. Many studies use this approach to detect changes in the physiological conditions in the human body. However, MSE results are easily affected by noise and trends, leading to incorrect estimation of MSE values. In this paper, singular value decomposition (SVD) is adopted to replace MSE to extract the features of physiological signals, and adopt the support vector machine (SVM) to classify the different physiological states. A test data set based on the PhysioNet website was used, and the classification results showed that using SVD to extract features of the physiological signal could attain a classification accuracy rate of 89.157%, which is higher than that using the MSE value (71.084%). The results show the proposed analysis procedure is effective and appropriate for distinguishing different physiological states. This promising result could be used as a reference for doctors in diagnosis of congestive heart failure (CHF) disease.

  15. Scanning 3D full human bodies using Kinects.

    PubMed

    Tong, Jing; Zhou, Jin; Liu, Ligang; Pan, Zhigeng; Yan, Hao

    2012-04-01

    Depth camera such as Microsoft Kinect, is much cheaper than conventional 3D scanning devices, and thus it can be acquired for everyday users easily. However, the depth data captured by Kinect over a certain distance is of extreme low quality. In this paper, we present a novel scanning system for capturing 3D full human body models by using multiple Kinects. To avoid the interference phenomena, we use two Kinects to capture the upper part and lower part of a human body respectively without overlapping region. A third Kinect is used to capture the middle part of the human body from the opposite direction. We propose a practical approach for registering the various body parts of different views under non-rigid deformation. First, a rough mesh template is constructed and used to deform successive frames pairwisely. Second, global alignment is performed to distribute errors in the deformation space, which can solve the loop closure problem efficiently. Misalignment caused by complex occlusion can also be handled reasonably by our global alignment algorithm. The experimental results have shown the efficiency and applicability of our system. Our system obtains impressive results in a few minutes with low price devices, thus is practically useful for generating personalized avatars for everyday users. Our system has been used for 3D human animation and virtual try on, and can further facilitate a range of home–oriented virtual reality (VR) applications.

  16. Molecular clocks and the human condition: approaching their characterization in human physiology and disease.

    PubMed

    Fitzgerald, G A; Yang, G; Paschos, G K; Liang, X; Skarke, C

    2015-09-01

    Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing, affords a new opportunity for deep phenotyping, including the characterization of diurnal behaviour and the assessment of the impact of the clock on approved drug function. © 2015 John Wiley & Sons Ltd.

  17. Investigation of human body potential measured by a non-contact measuring system.

    PubMed

    Ichikawa, Norimitsu

    2016-12-07

    A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body's voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not.

  18. Physiologically based pharmacokinetic modeling of tea catechin mixture in rats and humans.

    PubMed

    Law, Francis C P; Yao, Meicun; Bi, Hui-Chang; Lam, Stephen

    2017-06-01

    Although green tea ( Camellia sinensis) (GT) contains a large number of polyphenolic compounds with anti-oxidative and anti-proliferative activities, little is known of the pharmacokinetics and tissue dose of tea catechins (TCs) as a chemical mixture in humans. The objectives of this study were to develop and validate a physiologically based pharmacokinetic (PBPK) model of tea catechin mixture (TCM) in rats and humans, and to predict an integrated or total concentration of TCM in the plasma of humans after consuming GT or Polyphenon E (PE). To this end, a PBPK model of epigallocatechin gallate (EGCg) consisting of 13 first-order, blood flow-limited tissue compartments was first developed in rats. The rat model was scaled up to humans by replacing its physiological parameters, pharmacokinetic parameters and tissue/blood partition coefficients (PCs) with human-specific values. Both rat and human EGCg models were then extrapolated to other TCs by substituting its physicochemical parameters, pharmacokinetic parameters, and PCs with catechin-specific values. Finally, a PBPK model of TCM was constructed by linking three rat (or human) tea catechin models together without including a description for pharmacokinetic interaction between the TCs. The mixture PBPK model accurately predicted the pharmacokinetic behaviors of three individual TCs in the plasma of rats and humans after GT or PE consumption. Model-predicted total TCM concentration in the plasma was linearly related to the dose consumed by humans. The mixture PBPK model is able to translate an external dose of TCM into internal target tissue doses for future safety assessment and dose-response analysis studies in humans. The modeling framework as described in this paper is also applicable to the bioactive chemical in other plant-based health products.

  19. Widespread seasonal gene expression reveals annual differences in human immunity and physiology

    PubMed Central

    Dopico, Xaquin Castro; Evangelou, Marina; Ferreira, Ricardo C.; Guo, Hui; Pekalski, Marcin L.; Smyth, Deborah J.; Cooper, Nicholas; Burren, Oliver S.; Fulford, Anthony J.; Hennig, Branwen J.; Prentice, Andrew M.; Ziegler, Anette-G.; Bonifacio, Ezio; Wallace, Chris; Todd, John A.

    2015-01-01

    Seasonal variations are rarely considered a contributing component to human tissue function or health, although many diseases and physiological process display annual periodicities. Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue to have seasonal expression profiles, with inverted patterns observed between Europe and Oceania. We also find the cellular composition of blood to vary by season, and these changes, which differ between the United Kingdom and The Gambia, could explain the gene expression periodicity. With regards to tissue function, the immune system has a profound pro-inflammatory transcriptomic profile during European winter, with increased levels of soluble IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require further exploration as contributors to various aspects of human physiology and disease. PMID:25965853

  20. Mountaineering, Masculinity, and the Male Body in Mid-Victorian Britain.

    PubMed

    Reidy, Michael S

    2015-01-01

    Golden-age mountaineers attempted to codify gender, like flora and fauna, by altitude. They zoned the high Alps masculine. As women also reached into the highest regions, male alpinists increasingly turned to their bodies, and the bodies of their guides, to give scientific validity to their all-male preserve. Edward Whymper traveled to the Andes in 1879, where he transformed Chimborazo into a laboratory and his own body and those of his guides into scientific objects. His work helped spearhead a field-based, vertical approach to human physiology that proliferated after the turn of the century. By viewing gender through a spatial lens and using the sides of mountains to map it, this essay highlights the gendered notions that directed early research in high-altitude physiology.

  1. The evolution of body size and shape in the human career

    PubMed Central

    Grabowski, Mark; Hatala, Kevin G.; Richmond, Brian G.

    2016-01-01

    Body size is a fundamental biological property of organisms, and documenting body size variation in hominin evolution is an important goal of palaeoanthropology. Estimating body mass appears deceptively simple but is laden with theoretical and pragmatic assumptions about best predictors and the most appropriate reference samples. Modern human training samples with known masses are arguably the ‘best’ for estimating size in early bipedal hominins such as the australopiths and all members of the genus Homo, but it is not clear if they are the most appropriate priors for reconstructing the size of the earliest putative hominins such as Orrorin and Ardipithecus. The trajectory of body size evolution in the early part of the human career is reviewed here and found to be complex and nonlinear. Australopith body size varies enormously across both space and time. The pre-erectus early Homo fossil record from Africa is poor and dominated by relatively small-bodied individuals, implying that the emergence of the genus Homo is probably not linked to an increase in body size or unprecedented increases in size variation. Body size differences alone cannot explain the observed variation in hominin body shape, especially when examined in the context of small fossil hominins and pygmy modern humans. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298459

  2. The evolution of body size and shape in the human career.

    PubMed

    Jungers, William L; Grabowski, Mark; Hatala, Kevin G; Richmond, Brian G

    2016-07-05

    Body size is a fundamental biological property of organisms, and documenting body size variation in hominin evolution is an important goal of palaeoanthropology. Estimating body mass appears deceptively simple but is laden with theoretical and pragmatic assumptions about best predictors and the most appropriate reference samples. Modern human training samples with known masses are arguably the 'best' for estimating size in early bipedal hominins such as the australopiths and all members of the genus Homo, but it is not clear if they are the most appropriate priors for reconstructing the size of the earliest putative hominins such as Orrorin and Ardipithecus The trajectory of body size evolution in the early part of the human career is reviewed here and found to be complex and nonlinear. Australopith body size varies enormously across both space and time. The pre-erectus early Homo fossil record from Africa is poor and dominated by relatively small-bodied individuals, implying that the emergence of the genus Homo is probably not linked to an increase in body size or unprecedented increases in size variation. Body size differences alone cannot explain the observed variation in hominin body shape, especially when examined in the context of small fossil hominins and pygmy modern humans.This article is part of the themed issue 'Major transitions in human evolution'. © 2016 The Author(s).

  3. The physiology and biomechanics of competitive swimming.

    PubMed

    Troup, J P

    1999-04-01

    Fast swimming, either in the pool, in open water swimming, or in water polo and synchronized swimming, requires maximizing the efficiencies with which the human body can move through a liquid medium. A multitude of factors can affect the ability to swim fast as well as the final outcome. Physiology and biomechanics are the present tools used by sports scientists to determine which factors are important to fast swimming and, subsequently, to determine how the swimmer may maximize these factors to improve performance.

  4. [The solidarity of the human body].

    PubMed

    Bioy, Xavier

    2014-06-01

    The legal and bioethical regulation of the uses of the elements of the human body can be described by means of the concept of solidarity. From the French example, we can so show that the State tries to frame solidarities which already exist, for example between people who share the same genome, in the family, or, on the contrary, tent to impose or to direct the sharing of the human biological resources (organs, tissues, gametes, stem cell...).

  5. Statistical multi-path exposure method for assessing the whole-body SAR in a heterogeneous human body model in a realistic environment.

    PubMed

    Vermeeren, Günter; Joseph, Wout; Martens, Luc

    2013-04-01

    Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Copyright © 2012 Wiley Periodicals, Inc.

  6. Variability in human body size

    NASA Technical Reports Server (NTRS)

    Annis, J. F.

    1978-01-01

    The range of variability found among homogeneous groups is described and illustrated. Those trends that show significantly marked differences between sexes and among a number of racial/ethnic groups are also presented. Causes of human-body size variability discussed include genetic endowment, aging, nutrition, protective garments, and occupation. The information is presented to aid design engineers of space flight hardware and equipment.

  7. Pulpal status of human primary teeth with physiological root resorption.

    PubMed

    Monteiro, Joana; Day, Peter; Duggal, Monty; Morgan, Claire; Rodd, Helen

    2009-01-01

    The overall aim of this study was to determine whether any changes occur in the pulpal structure of human primary teeth in association with physiological root resorption. The experimental material comprised 64 sound primary molars, obtained from children requiring routine dental extractions under general anaesthesia. Pulp sections were processed for indirect immunofluorescence using combinations of: (i) protein gene product 9.5 (a general neuronal marker); (ii) leucocyte common antigen CD45 (a general immune cell marker); and (iii) Ulex europaeus I lectin (a marker of vascular endothelium). Image analysis was then used to determine the percentage area of staining for each label within both the pulp horn and mid-coronal region. Following measurement of the greatest degree of root resorption in each sample, teeth were subdivided into three groups: those with physiological resorption involving less than one-third, one-third to two-thirds, and more than two-thirds of their root length. Wide variation was evident between different tooth samples with some resorbed teeth showing marked changes in pulpal histology. Decreased innervation density, increased immune cell accumulation, and increased vascularity were evident in some teeth with advanced root resorption. Analysis of pooled data, however, did not reveal any significant differences in mean percentage area of staining for any of these variables according to the three root resorption subgroups (P > 0.05, analysis of variance on transformed data). This investigation has revealed some changes in pulpal status of human primary teeth with physiological root resorption. These were not, however, as profound as one may have anticipated. It is therefore speculated that teeth could retain the potential for sensation, healing, and repair until advanced stages of root resorption.

  8. Human body motion tracking based on quantum-inspired immune cloning algorithm

    NASA Astrophysics Data System (ADS)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  9. Physiological responses of juvenile rainbow trout to fasting and swimming activity: Effects on body composition and condition indices

    USGS Publications Warehouse

    Simpkins, D.G.; Hubert, W.A.; Del Rio, C.M.; Rule, D.C.

    2003-01-01

    The physiological traits that allow fish to survive periods of limited food resources are poorly understood. We assessed changes in proximate body composition, relative organ mass, blood metabolites, and relative weight (Wr) of sedentary and actively swimming (15 cm/s) juvenile rainbow trout (154-182 mm total length) over 147 d of fasting. Fasting caused measurable responses that were augmented when fish were swimming. Lipids and plasma triacylglycerides declined over time. Proteins were catabolized simultaneously with lipid reserves, but ammonia concentrations in plasma did not increase. The liver somatic index (LSI) did not change substantially over 105 d, suggesting that gluconeogenesis maintained blood glucose concentrations and hepatic glycogen reserves for a substantial period of fasting. The gut somatic index (GSI) and Wr declined linearly during fasting, but the LSI did not decline until after 105 d of fasting. Consequently, the use of different body condition indices could lead to different conclusions about the condition of juvenile rainbow trout. Swimming activity caused fish to have lower lipid and protein reserves than those of sedentary fish. No mortalities were observed among sedentary fish, but mortalities occurred among actively swimming fish after 97 d of fasting when 3.2% or less lipid remained in their bodies. Body condition indices did not account for differences in proximate body composition between sedentary and actively swimming fish and were relatively poor predictors of lipid content and risk of mortality. The probability of mortality was most accurately predicted by percent lipid content. Therefore, we suggest that fisheries scientists consider using percent lipid content when evaluating the physiological status and risk of mortality due to starvation among juvenile rainbow trout.

  10. Towards Whole-Body Fluorescence Imaging in Humans

    PubMed Central

    Piper, Sophie K.; Habermehl, Christina; Schmitz, Christoph H.; Kuebler, Wolfgang M.; Obrig, Hellmuth; Steinbrink, Jens; Mehnert, Jan

    2013-01-01

    Dynamic near-infrared fluorescence (DNIF) whole-body imaging of small animals has become a popular tool in experimental biomedical research. In humans, however, the field of view has been limited to body parts, such as rheumatoid hands, diabetic feet or sentinel lymph nodes. Here we present a new whole-body DNIF-system suitable for adult subjects. We explored whether this system (i) allows dynamic whole-body fluorescence imaging and (ii) can detect modulations in skin perfusion. The non-specific fluorescent probe indocyanine green (ICG) was injected intravenously into two subjects, and fluorescence images were obtained at 5 Hz. The in- and out-flow kinetics of ICG have been shown to correlate with tissue perfusion. To validate the system, skin perfusion was modulated by warming and cooling distinct areas on the chest and the abdomen. Movies of fluorescence images show a bolus passage first in the face, then in the chest, abdomen and finally in the periphery (∼10, 15, 20 and 30 seconds, respectively). When skin perfusion is augmented by warming, bolus arrives about 5 seconds earlier than when the skin is cooled and perfusion decreased. Calculating bolus arrival times and spatial fitting of basis time courses extracted from different regions of interest allowed a mapping of local differences in subcutaneous skin perfusion. This experiment is the first to demonstrate the feasibility of whole-body dynamic fluorescence imaging in humans. Since the whole-body approach demonstrates sensitivity to circumscribed alterations in skinperfusion, it may be used to target autonomous changes in polyneuropathy and to screen for peripheral vascular diseases. PMID:24391820

  11. Human plasma kallikrein-kinin system: Physiological and biochemical parameters

    PubMed Central

    Bryant, J.W.; Shariat-Madar, z

    2016-01-01

    The plasma kallikrein-kinin system (KKS) plays a critical role in human physiology. The KKS encompasses coagulation factor XII (FXII), the complex of prekallikrein (PK) and high molecular weight kininogen (HK). The conversion of plasma to kallikrein by the activated FXII and in response to numerous different stimuli leads to the generation of bradykinin (BK) and activated HK (HKa, an antiangiogenic peptide). BK is a proinflammatory peptide, a pain mediator and potent vasodilator, leading to robust accumulation of fluid in the interstitium. Systemic production of BK, HKa with the interplay between BK bound-BK receptors and the soluble form of HKa are key to angiogenesis and hemodynamics. KKS has been implicated in the pathogenesis of inflammation, hypertension, endotoxemia, and coagulopathy. In all these cases increased BK levels is the hallmark. In some cases, the persistent production of BK due to the deficiency of the blood protein C1-inhibitor, which controls FXII, is detrimental to the survival of the patients with hereditary angioedema (HAE). In others, the inability of angiotensin converting enzyme (ACE) to degrade BK leads to elevated BK levels and edema in patients on ACE inhibitors. Thus, the mechanisms that interfere with BK liberation or degradation would lead to blood pressure dysfunction. In contrast, anti-kallikrein treatment could have adverse effects in hemodynamic changes induced by vasoconstrictor agents. Genetic models of kallikrein deficiency are needed to evaluate the quantitative role of kallikrein and to validate whether strategies designed to activate or inhibit kallikrein may be important for regulating whole-body BK sensitivity. PMID:19689262

  12. Biogeography of the ecosystems of the healthy human body.

    PubMed

    Zhou, Yanjiao; Gao, Hongyu; Mihindukulasuriya, Kathie A; La Rosa, Patricio S; Wylie, Kristine M; Vishnivetskaya, Tatiana; Podar, Mircea; Warner, Barb; Tarr, Phillip I; Nelson, David E; Fortenberry, J Dennis; Holland, Martin J; Burr, Sarah E; Shannon, William D; Sodergren, Erica; Weinstock, George M

    2013-01-14

    Characterizing the biogeography of the microbiome of healthy humans is essential for understanding microbial associated diseases. Previous studies mainly focused on a single body habitat from a limited set of subjects. Here, we analyzed one of the largest microbiome datasets to date and generated a biogeographical map that annotates the biodiversity, spatial relationships, and temporal stability of 22 habitats from 279 healthy humans. We identified 929 genera from more than 24 million 16S rRNA gene sequences of 22 habitats, and we provide a baseline of inter-subject variation for healthy adults. The oral habitat has the most stable microbiota with the highest alpha diversity, while the skin and vaginal microbiota are less stable and show lower alpha diversity. The level of biodiversity in one habitat is independent of the biodiversity of other habitats in the same individual. The abundances of a given genus at a body site in which it dominates do not correlate with the abundances at body sites where it is not dominant. Additionally, we observed the human microbiota exhibit both cosmopolitan and endemic features. Finally, comparing datasets of different projects revealed a project-based clustering pattern, emphasizing the significance of standardization of metagenomic studies. The data presented here extend the definition of the human microbiome by providing a more complete and accurate picture of human microbiome biogeography, addressing questions best answered by a large dataset of subjects and body sites that are deeply sampled by sequencing.

  13. Biogeography of the ecosystems of the healthy human body

    PubMed Central

    2013-01-01

    Background Characterizing the biogeography of the microbiome of healthy humans is essential for understanding microbial associated diseases. Previous studies mainly focused on a single body habitat from a limited set of subjects. Here, we analyzed one of the largest microbiome datasets to date and generated a biogeographical map that annotates the biodiversity, spatial relationships, and temporal stability of 22 habitats from 279 healthy humans. Results We identified 929 genera from more than 24 million 16S rRNA gene sequences of 22 habitats, and we provide a baseline of inter-subject variation for healthy adults. The oral habitat has the most stable microbiota with the highest alpha diversity, while the skin and vaginal microbiota are less stable and show lower alpha diversity. The level of biodiversity in one habitat is independent of the biodiversity of other habitats in the same individual. The abundances of a given genus at a body site in which it dominates do not correlate with the abundances at body sites where it is not dominant. Additionally, we observed the human microbiota exhibit both cosmopolitan and endemic features. Finally, comparing datasets of different projects revealed a project-based clustering pattern, emphasizing the significance of standardization of metagenomic studies. Conclusions The data presented here extend the definition of the human microbiome by providing a more complete and accurate picture of human microbiome biogeography, addressing questions best answered by a large dataset of subjects and body sites that are deeply sampled by sequencing. PMID:23316946

  14. Steady-state visually evoked potential correlates of human body perception.

    PubMed

    Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja

    2016-11-01

    In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.

  15. Study of Physiological Responses to Acute Carbon Monoxide Exposure with a Human Patient Simulator

    ERIC Educational Resources Information Center

    Cesari, Whitney A.; Caruso, Dominique M.; Zyka, Enela L.; Schroff, Stuart T.; Evans, Charles H., Jr.; Hyatt, Jon-Philippe K.

    2006-01-01

    Human patient simulators are widely used to train health professionals and students in a clinical setting, but they also can be used to enhance physiology education in a laboratory setting. Our course incorporates the human patient simulator for experiential learning in which undergraduate university juniors and seniors are instructed to design,…

  16. Coupling of the Models of Human Physiology and Thermal Comfort

    NASA Astrophysics Data System (ADS)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  17. Ethyl nitrite is produced in the human stomach from dietary nitrate and ethanol, releasing nitric oxide at physiological pH: potential impact on gastric motility.

    PubMed

    Rocha, Bárbara S; Gago, Bruno; Barbosa, Rui M; Cavaleiro, Carlos; Laranjinha, João

    2015-05-01

    Nitric oxide ((∙)NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate-nitrite-NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC-MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases (∙)NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a (∙)NO carrier throughout the body. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Estimating psycho-physiological state of a human by speech analysis

    NASA Astrophysics Data System (ADS)

    Ronzhin, A. L.

    2005-05-01

    Adverse effects of intoxication, fatigue and boredom could degrade performance of highly trained operators of complex technical systems with potentially catastrophic consequences. Existing physiological fitness for duty tests are time consuming, costly, invasive, and highly unpopular. Known non-physiological tests constitute a secondary task and interfere with the busy workload of the tested operator. Various attempts to assess the current status of the operator by processing of "normal operational data" often lead to excessive amount of computations, poorly justified metrics, and ambiguity of results. At the same time, speech analysis presents a natural, non-invasive approach based upon well-established efficient data processing. In addition, it supports both behavioral and physiological biometric. This paper presents an approach facilitating robust speech analysis/understanding process in spite of natural speech variability and background noise. Automatic speech recognition is suggested as a technique for the detection of changes in the psycho-physiological state of a human that typically manifest themselves by changes of characteristics of voice tract and semantic-syntactic connectivity of conversation. Preliminary tests have confirmed that the statistically significant correlation between the error rate of automatic speech recognition and the extent of alcohol intoxication does exist. In addition, the obtained data allowed exploring some interesting correlations and establishing some quantitative models. It is proposed to utilize this approach as a part of fitness for duty test and compare its efficiency with analyses of iris, face geometry, thermography and other popular non-invasive biometric techniques.

  19. [The physiological classification of human thermal states under high environmental temperatures].

    PubMed

    Bobrov, A F; Kuznets, E I

    1995-01-01

    The paper deals with the physiological classification of human thermal states in a hot environment. A review of the basic systems of classifications of thermal states is given, their main drawbacks are discussed. On the basis of human functional state research in a broad range of environmental temperatures the system of evaluation and classification of human thermal states is proposed. New integral one-dimensional multi-parametric criteria for evaluation are used. For the development of these criteria methods of factor, cluster and canonical correlation analyses are applied. Stochastic nomograms capable of identification of human thermal state for different intensity of influence are given. In this case evaluation of intensity is estimated according to one-dimensional criteria taking into account environmental temperature, physical load and time of man's staying in overheating conditions.

  20. Representational Similarity of Body Parts in Human Occipitotemporal Cortex.

    PubMed

    Bracci, Stefania; Caramazza, Alfonso; Peelen, Marius V

    2015-09-23

    Regions in human lateral and ventral occipitotemporal cortices (OTC) respond selectively to pictures of the human body and its parts. What are the organizational principles underlying body part responses in these regions? Here we used representational similarity analysis (RSA) of fMRI data to test multiple possible organizational principles: shape similarity, physical proximity, cortical homunculus proximity, and semantic similarity. Participants viewed pictures of whole persons, chairs, and eight body parts (hands, arms, legs, feet, chests, waists, upper faces, and lower faces). The similarity of multivoxel activity patterns for all body part pairs was established in whole person-selective OTC regions. The resulting neural similarity matrices were then compared with similarity matrices capturing the hypothesized organizational principles. Results showed that the semantic similarity model best captured the neural similarity of body parts in lateral and ventral OTC, which followed an organization in three clusters: (1) body parts used as action effectors (hands, feet, arms, and legs), (2) noneffector body parts (chests and waists), and (3) face parts (upper and lower faces). Whole-brain RSA revealed, in addition to OTC, regions in parietal and frontal cortex in which neural similarity was related to semantic similarity. In contrast, neural similarity in occipital cortex was best predicted by shape similarity models. We suggest that the semantic organization of body parts in high-level visual cortex relates to the different functions associated with the three body part clusters, reflecting the unique processing and connectivity demands associated with the different types of information (e.g., action, social) different body parts (e.g., limbs, faces) convey. Significance statement: While the organization of body part representations in motor and somatosensory cortices has been well characterized, the principles underlying body part representations in visual cortex

  1. An Investigation of Three Extremity Armor Systems: Determination of Physiological, Biomechanical, and Physical Performance Effects and Quantification of Body Area Coverage

    DTIC Science & Technology

    2012-03-19

    THREE EXTREMITY ARMOR SYSTEMS: DETERMINATION OF PHYSIOLOGICAL, BIOMECHANICAL, AND PHYSICAL PERFORMANCE EFFECTS AND QUANTIFICATION OF BODY AREA...PHYSICAL PERFORMANCE EFFECTS AND QUANTIFICATION OF BODY AREA COVERAGE 5a. CONTRACT NUMBER MIPR #M9545006MPR6CC7 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER NATICK/TR-12/014 9

  2. Investigation of human body potential measured by a non-contact measuring system

    PubMed Central

    ICHIKAWA, Norimitsu

    2016-01-01

    A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body’s voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not. PMID:27319403

  3. Integrating multi-scale data to create a virtual physiological mouse heart.

    PubMed

    Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P

    2013-04-06

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.

  4. Integrating multi-scale data to create a virtual physiological mouse heart

    PubMed Central

    Land, Sander; Niederer, Steven A.; Louch, William E.; Sejersted, Ole M.; Smith, Nicolas P.

    2013-01-01

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle. PMID:24427525

  5. Ketone bodies as epigenetic modifiers.

    PubMed

    Ruan, Hai-Bin; Crawford, Peter A

    2018-07-01

    Ketone body metabolism is a dynamic and integrated metabolic node in human physiology, whose roles include but extend beyond alternative fuel provision during carbohydrate restriction. Here we discuss the most recent observations suggesting that ketosis coordinates cellular function via epigenomic regulation. Ketosis has been linked to covalent modifications, including lysine acetylation, methylation, and hydroxybutyrylation, to key histones that serve as dynamic regulators of chromatin architecture and gene transcription. Although it remains to be fully established whether these changes to the epigenome are attributable to ketone bodies themselves or other aspects of ketotic states, the regulated genes mediate classical responses to carbohydrate restriction. Direct regulation of gene expression may occur in-vivo via through ketone body-mediated histone modifications during adherence to low-carbohydrate diets, fasting ketosis, exogenous ketone body therapy, and diabetic ketoacidosis. Additional convergent functional genomics, metabolomics, and proteomics studies are required in both animal models and in humans to identify the molecular mechanisms through which ketosis regulates nuclear signaling events in a myriad of conditions relevant to disease, and the contexts in which the benefits of ketosis might outweigh the risks.

  6. Skin blotting: a noninvasive technique for evaluating physiological skin status.

    PubMed

    Minematsu, Takeo; Horii, Motoko; Oe, Makoto; Sugama, Junko; Mugita, Yuko; Huang, Lijuan; Nakagami, Gojiro; Sanada, Hiromi

    2014-06-01

    The skin performs important structural and physiological functions, and skin assessment represents an important step in identifying skin problems. Although noninvasive techniques for assessing skin status exist, no such techniques for monitoring its physiological status are available. This study aimed to develop a novel skin-assessment technique known as skin blotting, based on the leakage of secreted proteins from inside the skin following overhydration in mice. The applicability of this technique was further investigated in a clinical setting. Skin blotting involves 2 steps: collecting proteins by attaching a damp nitrocellulose membrane to the surface of the skin, and immunostaining the collected proteins. The authors implanted fluorescein-conjugated dextran (F-DEX)-containing agarose gels into mice and detected the tissue distribution of F-DEX under different blotting conditions. They also analyzed the correlations between inflammatory cytokine secretion and leakage following ultraviolet irradiation in mice and in relation to body mass index in humans. The F-DEX in mice was distributed in the deeper and shallower layers of skin and leaked through the transfollicular and transepidermal routes, respectively. Ultraviolet irradiation induced tumor necrosis factor secretion in the epidermis in mice, which was detected by skin blotting, whereas follicular tumor necrosis factor was associated with body mass index in obese human subjects. These results support the applicability of skin blotting for skin assessment. Skin blotting represents a noninvasive technique for assessing skin physiology and has potential as a predictive and diagnostic tool for skin disorders.

  7. New haystacks reveal new needles: using Caenorhabditis elegans to identify novel targets for ameliorating body composition changes during human aging.

    PubMed

    Wolkow, Catherine A

    2010-01-01

    Dramatic changes in body composition accompany aging in humans, particularly with respect to adiposity and the musculature. People accumulate fat as they age and lose muscle mass and strength. Caenorhabditis elegans nematodes are small, hermaphroditic soil nematodes that offer a flexible model for studying genetic pathways regulating body composition in humans. While there are significant physiological differences between worms and people, many of the genetic pathways relevant to human lipid and muscle homeostasis are present in worms. Initial studies indicate that adiposity increases in C. elegans during aging, as occurs in humans. Furthermore, substantial evidence demonstrates age-related loss of muscle mass in worms. Possible mechanisms for these changes in C. elegans are presented. Recent studies have highlighted neuroendocrine and environmental signals regulating C. elegans fat metabolism. Potential dysfunction of these pathways during aging could affect overall fat accumulation. By contrast, muscle decline in aging worms results from accumulated damage and 'wear-and-tear' over life span. However, neuroendocrine pathways also regulate muscle mass in response to food availability. Such pathways might provide useful therapeutic approaches for combating muscle loss during aging. From this chapter, readers will develop a deeper understanding of the ways that C.elegans can be used for mechanistic gerontological studies. Copyright © 2010 S. Karger AG, Basel.

  8. Micro-patterned graphene-based sensing skins for human physiological monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik

    2018-03-01

    Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.

  9. Physiological response of wild rainbow trout to angling: Impact of angling duration, fish size, body condition, and temperature

    USGS Publications Warehouse

    Meka, Julie M.; McCormick, S.D.

    2005-01-01

    This study evaluated the immediate physiological response of wild rainbow trout to catch-and-release angling in the Alagnak River, southwest Alaska. Information was recorded on individual rainbow trout (n = 415) captured by angling including landing time and the time required to remove hooks (angling duration), the time to anesthetize fish in clove oil and withdraw blood, fish length and weight, and water temperature at capture locations. Plasma cortisol, glucose, ions (sodium, potassium, chloride), and lactate were analyzed to determine the effects of angling duration, fish size, body condition, and temperature. Levels of plasma ions did not change significantly during the observed physiological response and levels of plasma glucose were sometimes influenced by length (2000, 2001), body condition (2001), or temperature (2001). Levels of plasma cortisol and lactate in extended capture fish (angling duration greater than 2 min) were significantly higher than levels in rapid capture fish (angling duration less than 2 min). Rapid capture fish were significantly smaller than extended capture fish, reflecting that fish size influenced landing and handling times. Fish size was related to cortisol and lactate in 2002, which corresponded to the year when larger fish were captured and there were longer landing times. Body condition (i.e., weight/length regression residuals index), was significantly related to lactate in 2000 and 2001. Water temperatures were higher in 2001 (mean temperature ± S.E., 13 ± 2oC) than in 2002 (10 ± 2oC), and fish captured in 2001 had significantly higher cortisol and lactate concentrations than fish captured in 2002. The pattern of increase in plasma cortisol and lactate was due to the amount of time fish were angled, and the upper limit of the response was due to water temperature. The results of this study indicate the importance of minimizing the duration of angling in order to reduce the sublethal physiological disturbances in wild

  10. Applying systems biology methods to the study of human physiology in extreme environments

    PubMed Central

    2013-01-01

    Systems biology is defined in this review as ‘an iterative process of computational model building and experimental model revision with the aim of understanding or simulating complex biological systems’. We propose that, in practice, systems biology rests on three pillars: computation, the omics disciplines and repeated experimental perturbation of the system of interest. The number of ethical and physiologically relevant perturbations that can be used in experiments on healthy humans is extremely limited and principally comprises exercise, nutrition, infusions (e.g. Intralipid), some drugs and altered environment. Thus, we argue that systems biology and environmental physiology are natural symbionts for those interested in a system-level understanding of human biology. However, despite excellent progress in high-altitude genetics and several proteomics studies, systems biology research into human adaptation to extreme environments is in its infancy. A brief description and overview of systems biology in its current guise is given, followed by a mini review of computational methods used for modelling biological systems. Special attention is given to high-altitude research, metabolic network reconstruction and constraint-based modelling. PMID:23849719

  11. How consumer physical activity monitors could transform human physiology research

    PubMed Central

    Hall Brown, Tyish S.; Collier, Scott R.; Sandberg, Kathryn

    2017-01-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. PMID:28052867

  12. Microbial community pattern detection in human body habitats via ensemble clustering framework.

    PubMed

    Yang, Peng; Su, Xiaoquan; Ou-Yang, Le; Chua, Hon-Nian; Li, Xiao-Li; Ning, Kang

    2014-01-01

    The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. Recent studies on healthy human microbiome focus on particular body habitats, assuming that microbiome develop similar structural patterns to perform similar ecosystem function under same environmental conditions. However, current studies usually overlook a complex and interconnected landscape of human microbiome and limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods could not capture the real-world underlying microbial patterns effectively. To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our model on deriving microbial community with respect to body habitat and host gender. From clustering results, we observed that body habitat exhibits a strong bound but non-unique microbial structural pattern. Meanwhile, human microbiome reveals different degree of structural variations over body habitat and host gender. In summary, our ensemble clustering framework could efficiently explore integrated clustering results to accurately identify microbial communities, and provide a comprehensive view for a set of microbial communities. The clustering results indicate that structure of human microbiome is varied systematically across body

  13. Microbial community pattern detection in human body habitats via ensemble clustering framework

    PubMed Central

    2014-01-01

    Background The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. Recent studies on healthy human microbiome focus on particular body habitats, assuming that microbiome develop similar structural patterns to perform similar ecosystem function under same environmental conditions. However, current studies usually overlook a complex and interconnected landscape of human microbiome and limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods could not capture the real-world underlying microbial patterns effectively. Results To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our model on deriving microbial community with respect to body habitat and host gender. From clustering results, we observed that body habitat exhibits a strong bound but non-unique microbial structural pattern. Meanwhile, human microbiome reveals different degree of structural variations over body habitat and host gender. Conclusions In summary, our ensemble clustering framework could efficiently explore integrated clustering results to accurately identify microbial communities, and provide a comprehensive view for a set of microbial communities. The clustering results indicate that structure of human microbiome is

  14. An attempt to model the human body as a communication channel.

    PubMed

    Wegmueller, Marc Simon; Kuhn, Andreas; Froehlich, Juerg; Oberle, Michael; Felber, Norbert; Kuster, Niels; Fichtner, Wolfgang

    2007-10-01

    Using the human body as a transmission medium for electrical signals offers novel data communication in biomedical monitoring systems. In this paper, galvanic coupling is presented as a promising approach for wireless intra-body communication between on-body sensors. The human body is characterized as a transmission medium for electrical current by means of numerical simulations and measurements. Properties of dedicated tissue layers and geometrical body variations are investigated, and different electrodes are compared. The new intra-body communication technology has shown its feasibility in clinical trials. Excellent transmission was achieved between locations on the thorax with a typical signal-to-noise ratio (SNR) of 20 dB while the attenuation increased along the extremities.

  15. Thermometry, calorimetry, and mean body temperature during heat stress.

    PubMed

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  16. Physiological Feedback Method and System

    NASA Technical Reports Server (NTRS)

    Pope, Alan T. (Inventor); Severance, Kurt E. (Inventor)

    2002-01-01

    A method and system provide physiological feedback for a patient and/or physician. At least one physiological effect experienced by a body part of a patient is measured noninvasively. A three-dimensional graphics model serving as an analogous representation of the body part is altered in accordance with the measurements. A binocular image signal representative of the three-dimensional graphics model so-altered is displayed for the patient and/or physician in a virtual reality environment.

  17. Experimental and numerical study of physiological responses in hot environments.

    PubMed

    Yang, Jie; Weng, Wenguo; Zhang, Baoting

    2014-10-01

    This paper proposed a multi-node human thermal model to predict human thermal responses in hot environments. The model was extended based on the Tanabe's work by considering the effects of high temperature on heat production, blood flow rate, and heat exchange coefficients. Five healthy men dressed in shorts were exposed in thermal neutral (29 °C) and high temperature (45 °C) environments. The rectal temperatures and skin temperatures of seven human body segments were continuously measured during the experiment. Validation of this model was conducted with experimental data. The results showed that the current model could accurately predict the skin and core temperatures in terms of the tendency and absolute values. In the human body segments expect calf and trunk, the temperature differences between the experimental data and the predicted results in high temperature environment were smaller than those in the thermally neutral environment conditions. The extended model was proved to be capable of predicting accurately human physiological responses in hot environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mutation of von Hippel–Lindau Tumour Suppressor and Human Cardiopulmonary Physiology

    PubMed Central

    Smith, Thomas G; Brooks, Jerome T; Balanos, George M; Lappin, Terence R; Layton, D. Mark; Leedham, Dawn L; Liu, Chun; Maxwell, Patrick H; McMullin, Mary F; McNamara, Christopher J; Percy, Melanie J; Pugh, Christopher W; Ratcliffe, Peter J; Talbot, Nick P; Treacy, Marilyn; Robbins, Peter A

    2006-01-01

    Background The von Hippel–Lindau tumour suppressor protein–hypoxia-inducible factor (VHL–HIF) pathway has attracted widespread medical interest as a transcriptional system controlling cellular responses to hypoxia, yet insights into its role in systemic human physiology remain limited. Chuvash polycythaemia has recently been defined as a new form of VHL-associated disease, distinct from the classical VHL-associated inherited cancer syndrome, in which germline homozygosity for a hypomorphic VHL allele causes a generalised abnormality in VHL–HIF signalling. Affected individuals thus provide a unique opportunity to explore the integrative physiology of this signalling pathway. This study investigated patients with Chuvash polycythaemia in order to analyse the role of the VHL–HIF pathway in systemic human cardiopulmonary physiology. Methods and Findings Twelve participants, three with Chuvash polycythaemia and nine controls, were studied at baseline and during hypoxia. Participants breathed through a mouthpiece, and pulmonary ventilation was measured while pulmonary vascular tone was assessed echocardiographically. Individuals with Chuvash polycythaemia were found to have striking abnormalities in respiratory and pulmonary vascular regulation. Basal ventilation and pulmonary vascular tone were elevated, and ventilatory, pulmonary vasoconstrictive, and heart rate responses to acute hypoxia were greatly increased. Conclusions The features observed in this small group of patients with Chuvash polycythaemia are highly characteristic of those associated with acclimatisation to the hypoxia of high altitude. More generally, the phenotype associated with Chuvash polycythaemia demonstrates that VHL plays a major role in the underlying calibration and homeostasis of the respiratory and cardiovascular systems, most likely through its central role in the regulation of HIF. PMID:16768548

  19. [The human body, subject or object of rights?

    PubMed

    Rachet-Darfeuille, Véronique

    While the protection of the body is the primary vocation of law, legislation also aims to regulate any actions which may cause it harm. Such actions include care procedures. It is in this contradiction that the legal status of the human body lies, not without a certain amount of ambiguity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.

    PubMed

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-10-09

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.

  1. A Finite-Element Simulation of Galvanic Coupling Intra-Body Communication Based on the Whole Human Body

    PubMed Central

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-01-01

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz–5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication. PMID:23202010

  2. Effects of MDMA on body temperature in humans

    PubMed Central

    Liechti, Matthias E

    2014-01-01

    Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation. PMID:27626046

  3. The construction of human body--from model to reality.

    PubMed

    Motoc, A; Motoc, Marilena; Bolintineanu, S; Muşuroi, Corina; Munteanu, M

    2005-01-01

    The human body building represented a complex research topic for the scientist in the most diverse domains. Although their interests and reasons were different, the goal was always the same: establishing a relation to verify the ratio between the dimensions of the constituent segments It appears that the mystery was solved out in the XIX-th century by Adolf Zeising, a German, who, using the statistic calculus, defined the division of a segment by the gold section. This purely mathematic logic confirms the human body's integration in proportion to the finest segments, thus providing the technical instrument of building a fully harmonious human body. The present study aims to compare the ideal, the calculated perfection to the reality, namely the theoretically obtained values to the average values of an 18-year-old male. It appears that the differences refer especially to the limbs; both the superior ones and the inferior ones being longer comparing to the ideal pattern while the bust is shorter and broader.

  4. Persons and their bodies: how we should think about human embryos.

    PubMed

    McLachlan, Hugh V

    2002-01-01

    The status of human embryos is discussed particularly in the light of the claim by Fox, in Health Care Analysis 8 that it would be useful to think of them in terms of cyborg metaphors. It is argued that we should consider human embryos for what they are--partially formed human bodies--rather than for what they are like in some respects (and unlike in others)--cyborgs. However to settle the issue of the status of the embryo is not to answer the moral questions which arise concerning how embryos should be treated. Since persons rather than bodies have rights, embryos do not have rights. However, whether or not embryos have rights, people can have duties concerning them. Furthermore, the persons whose fully developed bodies embryos will, might (or might have) become can have rights. Contrary to what is often assumed, it is not merely persons who have (or have had) living, developed human bodies who have moral rights: so it is argued in this paper.

  5. Signal transmission in a human body medium-based body sensor network using a Mach-Zehnder electro-optical sensor.

    PubMed

    Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He

    2012-11-30

    The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.

  6. Signal Transmission in a Human Body Medium-Based Body Sensor Network Using a Mach-Zehnder Electro-Optical Sensor

    PubMed Central

    Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He

    2012-01-01

    The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium. PMID:23443393

  7. Entropy flow and entropy production in the human body in basal conditions.

    PubMed

    Aoki, I

    1989-11-08

    Entropy inflow and outflow for the naked human body in basal conditions in the respiration calorimeter due to infrared radiation, convection, evaporation of water and mass-flow are calculated by use of the energetic data obtained by Hardy & Du Bois. Also, the change of entropy content in the body is estimated. The entropy production in the human body is obtained as the change of entropy content minus the net entropy flow into the body. The entropy production thus calculated becomes positive. The magnitude of entropy production per effective radiating surface area does not show any significant variation with subjects. The entropy production is nearly constant at the calorimeter temperatures of 26-32 degrees C; the average in this temperature range is 0.172 J m-2 sec-1 K-1. The forced air currents around the human body and also clothing have almost no effect in changing the entropy production. Thus, the entropy production of the naked human body in basal conditions does not depend on its environmental factors.

  8. Selectivity for the human body in the fusiform gyrus.

    PubMed

    Peelen, Marius V; Downing, Paul E

    2005-01-01

    Functional neuroimaging studies have revealed human brain regions, notably in the fusiform gyrus, that respond selectively to images of faces as opposed to other kinds of objects. Here we use fMRI to show that the mid-fusiform gyrus responds with nearly the same level of selectivity to images of human bodies without faces, relative to tools and scenes. In a group-average analysis (n = 22), the fusiform activations identified by contrasting faces versus tools and bodies versus tools are very similar. Analyses of within-subjects regions of interest, however, show that the peaks of the two activations occupy close but distinct locations. In a second experiment, we find that the body-selective fusiform region, but not the face-selective region, responds more to stick figure depictions of bodies than to scrambled controls. This result further distinguishes the two foci and confirms that the body-selective response generalizes to abstract image formats. These results challenge accounts of the mid-fusiform gyrus that focus solely on faces and suggest that this region contains multiple distinct category-selective neural representations.

  9. The Dynamics of Human Body Weight Change

    PubMed Central

    Chow, Carson C.; Hall, Kevin D.

    2008-01-01

    An imbalance between energy intake and energy expenditure will lead to a change in body weight (mass) and body composition (fat and lean masses). A quantitative understanding of the processes involved, which currently remains lacking, will be useful in determining the etiology and treatment of obesity and other conditions resulting from prolonged energy imbalance. Here, we show that a mathematical model of the macronutrient flux balances can capture the long-term dynamics of human weight change; all previous models are special cases of this model. We show that the generic dynamic behavior of body composition for a clamped diet can be divided into two classes. In the first class, the body composition and mass are determined uniquely. In the second class, the body composition can exist at an infinite number of possible states. Surprisingly, perturbations of dietary energy intake or energy expenditure can give identical responses in both model classes, and existing data are insufficient to distinguish between these two possibilities. Nevertheless, this distinction has important implications for the efficacy of clinical interventions that alter body composition and mass. PMID:18369435

  10. From physiology to feminism. Reconfiguring body, gender and expertise in natural fertility control.

    PubMed

    Denora, T

    1996-09-01

    This paper uses the phenomenon of natural fertility control (NFC) to explore the ways in which concepts and artifacts influence and circumscribe everyday beliefs. Specifically, the paper examines how NFC configures the physiological "reality" of the female body and, thus, gender relations, physiological expertise, and knowledge claims. The research for this study was based on a literature review which included approximately 200 articles published since 1966 on ovulation detection and prediction. Additional information was gained from interviews. After describing the research in the introductory section, the first part of the paper introduces NFC and describes its marginalization and how that marginalization contributes to the marginalization of the female reproductive system. In the second section, language and imagery used to describe the "activity" of sperm are contrasted with that which portrays the egg as "passive." Such terminology would have to be rethought if the active nature of female mucus (which is crucial for guiding the sperm to the egg) were acknowledged. By examining accounts of reproduction as cultural constructions and as constructions articulated with reference to gender relations, this section allows consideration of the ways in which a marginalized "fact" (the action of the mucus) provides a "natural resource" which can be used to reconfigure gender/physiology (and is, therefore, culturally subversive). The third section shows how current NFC innovations (such as the urinary dipstick) reconfigure the instruments of knowledge production (with detection transferred from the woman's "untrustworthy" manual assessment to a "superior" technology). This section illustrates how modes of knowledge discipline both "natural" phenomenon and "social" relations by redistributing expertise along clinically hierarchial lines. Thus, the new ovulation prediction technologies serve to strengthen traditional gender imageries and roles.

  11. Physiological basis for human autonomic rhythms

    NASA Technical Reports Server (NTRS)

    Eckberg, D. L.

    2000-01-01

    Oscillations of arterial pressures, heart periods, and muscle sympathetic nerve activity have been studied intensively in recent years to explore otherwise obscure human neurophysiological mechanisms. The best-studied rhythms are those occurring at breathing frequencies. Published evidence indicates that respiratory fluctuations of muscle sympathetic nerve activity and electrocardiographic R-R intervals result primarily from the action of a central 'gate' that opens during expiration and closes during inspiration. Parallel respiratory fluctuations of arterial pressures and R-R intervals are thought to be secondary to arterial baroreflex physiology: changes in systolic pressure provoke changes in the R-R interval. However, growing evidence suggests that these parallel oscillations result from the influence of respiration on sympathetic and vagal-cardiac motoneurones rather than from baroreflex physiology. There is a rapidly growing literature on the use of mathematical models of low- and high-frequency (respiratory) R-R interval fluctuations in characterizing instantaneous 'sympathovagal balance'. The case for this approach is based primarily on measurements made with patients in upright tilt. However, the strong linear relation between such measures as the ratio of low- to high-frequency R-R interval oscillations and the angle of the tilt reflects exclusively the reductions of the vagal (high-frequency) component. As the sympathetic component does not change in tilt, the low- to high-frequency R-R interval ratio provides no proof that sympathetic activity increases. Moreover, the validity of extrapolating from measurements performed during upright tilt to measurements during supine rest has not been established. Nonetheless, it is clear that measures of heart rate variability provide important prognostic information in patients with cardiovascular diseases. It is not known whether reduced heart rate variability is merely a marker for the severity of disease or a

  12. The conservation physiology of seed dispersal

    PubMed Central

    Ruxton, Graeme D.; Schaefer, H. Martin

    2012-01-01

    At a time when plant species are experiencing increasing challenges from climate change, land-use change, harvesting and invasive species, dispersal has become a very important aspect of plant conservation. Seed dispersal by animals is particularly important because some animals disperse seeds to suitable sites in a directed fashion. Our review has two aims: (i) to highlight the various ways plant dispersal by animals can be affected by current anthropogenic change and (ii) to show the important role of plant and (particularly) animal physiology in shaping seed–dispersal interactions. We argue that large-bodied seed dispersers may be particularly important for plant conservation because seed dispersal of large-seeded plants is often more specialized and because large-bodied animals are targeted by human exploitation and have smaller population sizes. We further argue that more specialized seed-dispersal systems on island ecosystems might be particularly at risk from climate change both owing to small population sizes involved but also owing to the likely thermal specialization, particularly on tropical islands. More generally, the inherent vulnerability of seed-dispersal mutualisms to disruption driven by environmental change (as well as their ubiquity) demands that we continue to improve our understanding of their conservation physiology. PMID:22566677

  13. The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds.

    PubMed

    Schiefner, André; Skerra, Arne

    2015-04-21

    all higher organisms, physiologically important members of this family have long been known in the human body, for example with the plasma retinol-binding protein that serves for the transport of vitamin A. This prototypic human lipocalin was the first for which a crystal structure was solved. Notably, several other lipocalins were discovered and assigned to this protein class before the term itself became familiar, which explains their diverse names in the scientific literature. To date, up to 15 distinct members of the lipocalin family have been characterized in humans, and during the last two decades the three-dimensional structures of a dozen major subtypes have been elucidated. This Account presents a comprehensive overview of the human lipocalins, revealing common structural principles but also deviations that explain individual functional features. Taking advantage of modern methods for combinatorial protein design, lipocalins have also been employed as scaffolds for the construction of artifical binding proteins with novel ligand specificities, so-called Anticalins, hence opening perspectives as a new class of biopharmaceuticals for medical therapy.

  14. Selenoproteins in human body: focus on thyroid pathophysiology.

    PubMed

    Valea, Ana; Georgescu, Carmen Emanuela

    2018-06-05

    Selenium (Se) has a multilevel, complex and dynamic effect on the human body as a major component of selenocysteine, incorporated into selenoproteins, which include the selenocysteine-containing enzymes iodothyronine deiodinases. At the thyroid level, these proteins play an essential role in antioxidant protection and hormone metabolism. This is a narrative review based on PubMed/Medline database research regarding thyroid physiology and conditions with Se and Se-protein interferences. In humans, Se-dependent enzyme functions are best expressed through optimal Se intake, although there is gap in our knowledge concerning the precise mechanisms underlying the interrelation. There is a good level of evidence linking low serum Se to autoimmune thyroid diseases and, to a lesser extent, differentiated thyroid cancer. However, when it comes to routine supplementation, the results are heterogeneous, except in the case of mild Graves' orbitopathy. Autoimmune hypothyroidism is associated with a state of higher oxidative stress, but not all studies found an improvement of thyroid function after Se was introduced as antioxidant support. Meanwhile, no routine supplementation is recommended. Low Se intake is correlated with an increased risk of developing antithyroid antibodies, its supplementation decreasing their titres; there is also a potential reduction in levothyroxine replacement dose required for hypothyroidism and/or the possibility that it prevents progression of subclinical hypothyroidism, although not all studies agree. In thyroid-associated orbitopathy, euthyroidism is more rapidly achieved if the micronutrient is added to traditional drugs, while controls appear to benefit from the microelement only if they are deficient; thus, a basal assay of Se appears advisable to better select patients who need substitution. Clearly, further Se status biomarkers are required. Future introduction of individual supplementation algorithms based on baseline micronutrient levels

  15. Simple electrical model and initial experiments for intra-body communications.

    PubMed

    Gao, Y M; Pun, S H; Du, M; Mak, P U; Vai, M I

    2009-01-01

    Intra-Body Communication(IBC) is a short range "wireless" communication technique appeared in recent years. This technique relies on the conductive property of human tissue to transmit the electric signal among human body. This is beneficial for devices networking and sensors among human body, and especially suitable for wearable sensors, telemedicine system and home health care system as in general the data rates of physiologic parameters are low. In this article, galvanic coupling type IBC application on human limb was investigated in both its mathematical model and related experiments. The experimental results showed that the proposed mathematical model was capable in describing the galvanic coupling type IBC under low frequency. Additionally, the calculated result and experimental result also indicated that the electric signal induced by the transmitters of IBC can penetrate deep into human muscle and thus, provide an evident that IBC is capable of acting as networking technique for implantable devices.

  16. [Physiological features of skin ageing in human].

    PubMed

    Tikhonova, I V; Tankanag, A V; Chemeris, N K

    2013-01-01

    The issue deals with the actual problem of gerontology, notably physiological features of human skin ageing. In the present review the authors have considered the kinds of ageing, central factors, affected on the ageing process (ultraviolet radiation and oxidation stress), as well as the research guidelines of the ageing changes in the skin structure and fuctions: study of mechanical properties, microcirculation, pH and skin thickness. The special attention has been payed to the methods of assessment of skin blood flow, and to results of investigations of age features of peripheral microhemodynamics. The laser Doppler flowmetry technique - one of the modern, noninvasive and extensively used methods for the assessmant of skin blood flow microcirculation system has been expanded in the review. The main results of the study of the ageing changes of skin blood perfusion using this method has been also presented.

  17. Toward Scalable Trustworthy Computing Using the Human-Physiology-Immunity Metaphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, Lee M; Sheldon, Frederick T

    The cybersecurity landscape consists of an ad hoc patchwork of solutions. Optimal cybersecurity is difficult for various reasons: complexity, immense data and processing requirements, resource-agnostic cloud computing, practical time-space-energy constraints, inherent flaws in 'Maginot Line' defenses, and the growing number and sophistication of cyberattacks. This article defines the high-priority problems and examines the potential solution space. In that space, achieving scalable trustworthy computing and communications is possible through real-time knowledge-based decisions about cyber trust. This vision is based on the human-physiology-immunity metaphor and the human brain's ability to extract knowledge from data and information. The article outlines future steps towardmore » scalable trustworthy systems requiring a long-term commitment to solve the well-known challenges.« less

  18. Physiologic mechanisms of circulatory and body fluid losses in weightlessness identified by mathematical modeling

    NASA Technical Reports Server (NTRS)

    Simanonok, K. E.; Srinivasan, R. S.; Charles, J. B.

    1993-01-01

    Central volume expansion due to fluid shifts in weightlessness is believed to activate adaptive reflexes which ultimately result in a reduction of the total circulating blood volume. However, the flight data suggests that a central volume overdistention does not persist, in which case some other factor or factors must be responsible for body fluid losses. We used a computer simulation to test the hypothesis that factors other than central volume overdistention are involved in the loss of blood volume and other body fluid volumes observed in weightlessness and in weightless simulations. Additionally, the simulation was used to identify these factors. The results predict that atrial volumes and pressures return to their prebedrest baseline values within the first day of exposure to head down tilt (HDT) as the blood volume is reduced by an elevated urine formation. They indicate that the mechanisms for large and prolonged body fluid losses in weightlessness is red cell hemoconcentration that elevates blood viscosity and peripheral resistance, thereby lowering capillary pressure. This causes a prolonged alteration of the balance of Starling forces, depressing the extracellular fluid volume until the hematocrit is returned to normal through a reduction of the red cell mass, which also allows some restoration of the plasma volume. We conclude that the red cell mass becomes the physiologic driver for a large 'undershoot' of the body fluid volumes after the normalization of atrial volumes and pressures.

  19. Proton magnetic resonance spectroscopy for assessment of human body composition.

    PubMed

    Kamba, M; Kimura, K; Koda, M; Ogawa, T

    2001-02-01

    The usefulness of magnetic resonance spectroscopy (MRS)-based techniques for assessment of human body composition has not been established. We compared a proton MRS-based technique with the total body water (TBW) method to determine the usefulness of the former technique for assessment of human body composition. Proton magnetic resonance spectra of the chest to abdomen, abdomen to pelvis, and pelvis to thigh regions were obtained from 16 volunteers by using single, free induction decay measurement with a clinical magnetic resonance system operating at 1.5 T. The MRS-derived metabolite ratio was determined as the ratio of fat methyl and methylene proton resonance to water proton resonance. The peak areas for the chest to abdomen and the pelvis to thigh regions were normalized to an external reference (approximately 2200 g benzene) and a weighted average of the MRS-derived metabolite ratios for the 2 positions was calculated. TBW for each subject was determined by the deuterium oxide dilution technique. The MRS-derived metabolite ratios were significantly correlated with the ratio of body fat to lean body mass estimated by TBW. The MRS-derived metabolite ratio for the abdomen to pelvis region correlated best with the ratio of body fat to lean body mass on simple regression analyses (r = 0.918). The MRS-derived metabolite ratio for the abdomen to pelvis region and that for the pelvis to thigh region were selected for a multivariate regression model (R = 0.947, adjusted R(2) = 0.881). This MRS-based technique is sufficiently accurate for assessment of human body composition.

  20. Height and body mass influence on human body outlines: a quantitative approach using an elliptic Fourier analysis.

    PubMed

    Courtiol, Alexandre; Ferdy, Jean Baptiste; Godelle, Bernard; Raymond, Michel; Claude, Julien

    2010-05-01

    Many studies use representations of human body outlines to study how individual characteristics, such as height and body mass, affect perception of body shape. These typically involve reality-based stimuli (e.g., pictures) or manipulated stimuli (e.g., drawings). These two classes of stimuli have important drawbacks that limit result interpretations. Realistic stimuli vary in terms of traits that are correlated, which makes it impossible to assess the effect of a single trait independently. In addition, manipulated stimuli usually do not represent realistic morphologies. We describe and examine a method based on elliptic Fourier descriptors to automatically predict and represent body outlines for a given set of predicted variables (e.g., sex, height, and body mass). We first estimate whether these predictive variables are significantly related to human outlines. We find that height and body mass significantly influence body shape. Unlike height, the effect of body mass on shape differs between sexes. Then, we show that we can easily build a regression model that creates hypothetical outlines for an arbitrary set of covariates. These statistically computed outlines are quite realistic and may be used as stimuli in future studies.

  1. More-Realistic Digital Modeling of a Human Body

    NASA Technical Reports Server (NTRS)

    Rogge, Renee

    2010-01-01

    A MATLAB computer program has been written to enable improved (relative to an older program) modeling of a human body for purposes of designing space suits and other hardware with which an astronaut must interact. The older program implements a kinematic model based on traditional anthropometric measurements that do provide important volume and surface information. The present program generates a three-dimensional (3D) whole-body model from 3D body-scan data. The program utilizes thin-plate spline theory to reposition the model without need for additional scans.

  2. Intellectual property rights and detached human body parts.

    PubMed

    Pila, Justine

    2014-01-01

    This paper responds to an invitation by the editors to consider whether the intellectual property (IP) regime suggests an appropriate model for protecting interests in detached human body parts. It begins by outlining the extent of existing IP protection for body parts in Europe, and the relevant strengths and weaknesses of the patent system in that regard. It then considers two further species of IP right of less obvious relevance. The first are the statutory rights of ownership conferred by domestic UK law in respect of employee inventions, and the second are the economic and moral rights recognised by European and international law in respect of authorial works. In the argument made, both of these species of IP right may suggest more appropriate models of sui generis protection for detached human body parts than patent rights because of their capacity better to accommodate the relevant public and private interests in respect of the same.

  3. [Human, transhuman, posthuman. Representations of the body between incompleteness and enhancement].

    PubMed

    Maestrutti, Marina

    2011-01-01

    "Posthuman" is often used to indicate some position, practice, perspective and vision concerning the future of human beings closely related to the use of contemporary technologies. This contribution would like to analyze some conceptions of the notion of posthuman and to present it as a possible form of "non-anthropocentric" thought which considers technological changes as non-human realities strictly involved in the construction and the definition of what constitutes a human being (and his body) and its predicates. Contrary to anthropocentrism which has characterized Western thought from humanism up to the extreme outcomes of transhumanism, non-anthropocentric posthumanism shows how the human being, who has always been the product of hybridization with the non-human (environment, animals and techniques), is built not only by his own strength but always through his partnership and his environment. The idea of enhancement of the body by technology to reach another stage of human evolution is one of the constant elements characterizing transhumanism. Posthumanism suggests no longer considering the interface with technology as an ergonomic relationship with an external tool that just extends the human body, but as a hybrid, or interpenetration that questions the separation of the body and its centrality. In this perspective, the question is not of simply establishing which is a good use of a technology but, every time, of redefining ourselves in our perspectives and our predicates with regard to what a technology allows and opens up to us.

  4. Spectral radiative properties of a living human body

    NASA Astrophysics Data System (ADS)

    Terada, N.; Ohnishi, K.; Kobayashi, M.; Kunitomo, T.

    1986-09-01

    Spectral radiative properties of the human body were studied experimentally in the region from the ultraviolet to the far-infrared to know the thermal response of the human body exposed to solar radiation and infrared radiation. The measuring equipment for reflectance and transmittance of a semitransparent scattering medium was developed and measurement on a living human skin was performed in vivo. The measured parts are forearm, cheek, dorsum hand, hip, and hair. The values obtained by the present study are much different from those of previous in vitro measurements. Fairly large values for hemispherical reflectances are observed in the visible and near-infrared regions but very small values for hemispherical reflectances are observed in the infrared region, below 0.05. By applying the four-flux treatment of radiative transfer, the absorption coefficient and scattering coefficient in the human skin are determined. The scattering coefficient is large in the visible region but negligible in the infrared region. The absorption coefficient is very close to that of water and large in the infrared region.

  5. Perspective of the human body in sasang constitutional medicine.

    PubMed

    Lee, Junhee; Jung, Yongjae; Yoo, Junghee; Lee, Euiju; Koh, Byunghee

    2009-09-01

    The Sasang constitutional medicine (SCM), a medical tradition originating from Korea, is distinguished from the traditional Chinese medicine in its philosophical background, theoretical development and especially, the fundamental rationale that analyzes the structure and function of the human body within a quadrifocal scheme. In SCM, the structure of the body is comprehended within the Sasang quadrifocal scheme, and the function of the body is understood within the context of the energy-fluid metabolism and the water-food metabolism controlled by the four main organs (lung, spleen, liver and kidney). Also, the concept of Seong-Jeong is used to explain the structural and functional variations between different constitutional types that arise from the constitutional variations in organ system scheme, which are in turn caused by deviations in the constitutional Seong-Jeong. Therefore, understanding the SCM perspective of the human body is essential in order to fully appreciate the advantages of the constitutional typological system (which focuses on individual idiosyncrasies) found in SCM.

  6. Perspective of the Human Body in Sasang Constitutional Medicine

    PubMed Central

    Lee, Junhee; Jung, Yongjae; Yoo, Junghee; Lee, Euiju

    2009-01-01

    The Sasang constitutional medicine (SCM), a medical tradition originating from Korea, is distinguished from the traditional Chinese medicine in its philosophical background, theoretical development and especially, the fundamental rationale that analyzes the structure and function of the human body within a quadrifocal scheme. In SCM, the structure of the body is comprehended within the Sasang quadrifocal scheme, and the function of the body is understood within the context of the energy–fluid metabolism and the water–food metabolism controlled by the four main organs (lung, spleen, liver and kidney). Also, the concept of Seong–Jeong is used to explain the structural and functional variations between different constitutional types that arise from the constitutional variations in organ system scheme, which are in turn caused by deviations in the constitutional Seong–Jeong. Therefore, understanding the SCM perspective of the human body is essential in order to fully appreciate the advantages of the constitutional typological system (which focuses on individual idiosyncrasies) found in SCM. PMID:19745009

  7. Resourcifying human bodies--Kant and bioethics.

    PubMed

    Miyasaka, Michio

    2005-01-01

    This essay roughly sketches two major conceptions of autonomy in contemporary bioethics that promote the resourcification of human body parts: (1) a narrow conception of autonomy as self-determination; and (2) the conception of autonomy as dissociated from human dignity. In this paper I will argue that, on the one hand, these two conceptions are very different from that found in the modern European tradition of philosophical inquiry, because bioethics has concentrated on an external account of patient's self-determination and on dissociating dignity from internal human nature. However, on the other hand, they are consistent with more recent European philosophy. In this more recent tradition, human dignity has gradually been dissociated from contextual values, and human subjectivity has been dissociated from objectivity and absolutized as never to be objectified. In the concluding part, I will give a speculative sketch in which Kant's internal inquiry of maxim of ends, causality and end, and dignity as iirreplaceability is recombined with bioethics' externalized one and used to support an extended human resourcification.

  8. Body Parts Removed during Surgery: A Useful Training Source

    ERIC Educational Resources Information Center

    Macchi, Veronica; Porzionato, Andrea; Stecco, Carla; Tiengo, Cesare; Parenti, Anna; Cestrone, Adriano; De Caro, Raffaele

    2011-01-01

    Current undergraduate medical curricula provides relatively little time for cadaver dissection. The Department of Human Anatomy and Physiology at the University of Padova has organized a pilot project with the University Hospital for the donation of body parts that are surgically removed for therapeutic purposes and destined under Italian law for…

  9. Ghrelin-induced hypothermia: A Physiological basis but no clinical risk

    PubMed Central

    Wiedmer, Petra; Strasser, Florian; Horvath, Tamas L.; Blum, David; DiMarchi, Richard; Lutz, Thomas; Schürmann, Annette; Joost, Hans-Georg; Tschöp, Matthias H.; Tong, Jenny

    2011-01-01

    Ghrelin increases food intake and decreases energy expenditure, promoting a positive energy balance. We observed a single case of serious hypothermia during sustained ghrelin treatment in a male subject, suggesting that ghrelin may play a role in the regulation of body temperature. We therefore investigated the effect of ghrelin treatment on body temperature in rodents and humans under controlled conditions. Intriguingly, we could demonstrate ghrelin binding in axon terminals of the medial preoptic area of the hypothalamus located in the vicinity of cold-sensitive neurons. This localization of ghrelin receptors provides a potential anatomical basis for the regulation of body temperature by ghrelin. However, our follow-up studies also indicated that neither a chronic i.c.v. application of ghrelin in rats, nor a single s.c. injection under cold exposure in mice resulted in a relevant decrease in body core temperature. In addition, a four-hour intravenous ghrelin infusion did not decrease body surface temperature in healthy humans. We concluded that while there is a theoretical molecular basis for ghrelin to modify body temperature in mammals, its magnitude is irrelevant under physiologic circumstances. Hypothermia is not likely to represent a serious risk associated with this agent and pathway. PMID:21513721

  10. The Central Endocrine Glands: Intertwining Physiology and Pharmacy

    PubMed Central

    2007-01-01

    The initial courses in didactic pharmacy curriculum are designed to provide core scientific knowledge and develop learning skills that are the basis for highly competent application and practice of pharmacy. Commonly, students interpret this scientific base as ancillary to the practice of pharmacy. Physiology courses present a natural opportunity for the instructor to introduce basic pharmaceutical principles that form the foundation of pharmacological application early in the professional curriculum. Human Physiology I is the first of a 2-course physiology sequence that pharmacy students take upon matriculating into Midwestern University College of Pharmacy-Glendale. The endocrine physiology section of this course is designed to emphasize the regulatory and compensatory nature of this system in maintaining homeostasis, but also includes aspects of basic pharmaceutical principles. In this way the dependency of physiology and pharmacy upon one another is accentuated. The lecture format and content described in this manuscript focus on the central endocrine glands and illustrates their vital role in normal body function, compensatory responses to disease states, and their components as pharmacotherapy targets. The integration of these pharmaceutical principles at the introductory level supports an environment that can alleviate any perceived disparity between science foundation and practical application in the profession of pharmacy. PMID:17998993

  11. Audio-Tutorial Project: An Audio-Tutorial Approach to Human Anatomy and Physiology.

    ERIC Educational Resources Information Center

    Muzio, Joseph N.; And Others

    A two course sequence on human anatomy and physiology using the audiotutorial method of instruction was developed for use by nursing students and other students in the health or medical fields at the Kingsborough Community College in New York. The project was motivated by the problems of often underprepared students coming to learn a new field and…

  12. Human Activity Recognition from Body Sensor Data using Deep Learning.

    PubMed

    Hassan, Mohammad Mehedi; Huda, Shamsul; Uddin, Md Zia; Almogren, Ahmad; Alrubaian, Majed

    2018-04-16

    In recent years, human activity recognition from body sensor data or wearable sensor data has become a considerable research attention from academia and health industry. This research can be useful for various e-health applications such as monitoring elderly and physical impaired people at Smart home to improve their rehabilitation processes. However, it is not easy to accurately and automatically recognize physical human activity through wearable sensors due to the complexity and variety of body activities. In this paper, we address the human activity recognition problem as a classification problem using wearable body sensor data. In particular, we propose to utilize a Deep Belief Network (DBN) model for successful human activity recognition. First, we extract the important initial features from the raw body sensor data. Then, a kernel principal component analysis (KPCA) and linear discriminant analysis (LDA) are performed to further process the features and make them more robust to be useful for fast activity recognition. Finally, the DBN is trained by these features. Various experiments were performed on a real-world wearable sensor dataset to verify the effectiveness of the deep learning algorithm. The results show that the proposed DBN outperformed other algorithms and achieves satisfactory activity recognition performance.

  13. Medical, Psychophysiological, and Human Performance Problems During Extended EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP1, the discussion focuses on the following topics: New Developments in the Assessment of the Risk of Decompression Sickness in Null Gravity During Extravehicular Activity; The Dynamic of Physiological Reactions of Cosmonauts Under the Influence of Repeated EVA Workouts, The Russian Experience; Medical Emergencies in Space; The Evolution from 'Physiological Adequacy' to 'Physiological Tuning'; Five Zones of Symmetrical and Asymmetrical Conflicting Temperatures on the Human Body, Physiological Consequences; Human Performance and Subjective Perception in Nonuniform Thermal Conditions; The Hand as a Control System, Implications for Hand-Finger Dexterity During Extended EVA; and Understanding the Skill of Extravehicular Mass Handling.

  14. Quasi-static modeling of human limb for intra-body communications with experiments.

    PubMed

    Pun, Sio Hang; Gao, Yue Ming; Mak, PengUn; Vai, Mang I; Du, Min

    2011-11-01

    In recent years, the increasing number of wearable devices on human has been witnessed as a trend. These devices can serve for many purposes: personal entertainment, communication, emergency mission, health care supervision, delivery, etc. Sharing information among the devices scattered across the human body requires a body area network (BAN) and body sensor network (BSN). However, implementation of the BAN/BSN with the conventional wireless technologies cannot give optimal result. It is mainly because the high requirements of light weight, miniature, energy efficiency, security, and less electromagnetic interference greatly limit the resources available for the communication modules. The newly developed intra-body communication (IBC) can alleviate most of the mentioned problems. This technique, which employs the human body as a communication channel, could be an innovative networking method for sensors and devices on the human body. In order to encourage the research and development of the IBC, the authors are favorable to lay a better and more formal theoretical foundation on IBC. They propose a multilayer mathematical model using volume conductor theory for galvanic coupling IBC on a human limb with consideration on the inhomogeneous properties of human tissue. By introducing and checking with quasi-static approximation criteria, Maxwell's equations are decoupled and capacitance effect is included to the governing equation for further improvement. Finally, the accuracy and potential of the model are examined from both in vitro and in vivo experimental results.

  15. Gender recognition from unconstrained and articulated human body.

    PubMed

    Wu, Qin; Guo, Guodong

    2014-01-01

    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition.

  16. Gender Recognition from Unconstrained and Articulated Human Body

    PubMed Central

    Wu, Qin; Guo, Guodong

    2014-01-01

    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition. PMID:24977203

  17. A low power wearable transceiver for human body communication.

    PubMed

    Huang, Jin; Chen, Lian-Kang; Zhang, Yuan-Ting

    2009-01-01

    This paper reports a low power transceiver designed for wearable medical healthcare system. Based on a novel energy-efficient wideband wireless communication scheme that uses human body as a transmission medium, the transceiver can achieve a maximum 15 Mbps data rate with total receiver sensitivity of -30 dBm. The chip measures only 0.56 mm(2) and was fabricated in the SMIC 0.18um 1P6M RF CMOS process. The RX consumes 5mW and TX dissipates 1mW with delivering power up to 10uW, which is suitable for the body area network short range application. Real-time medical information collecting through the human body is fully simulated. Architecture of the chip together with the detail characterizes from its wireless analog front-end are presented.

  18. Human physiological responses to wooden indoor environment.

    PubMed

    Zhang, Xi; Lian, Zhiwei; Wu, Yong

    2017-05-15

    Previous studies are mainly focused on non-wooden environments, whereas few are concerned with wooden ones. How wooden indoor environments impact the physiology of the occupants is still unclear. The purpose of this study was to explore the distinct physiological responses to wooden and non-wooden indoor environments, assessed by physiological parameters tests including blood pressure, electrocardiogram measurements, electro-dermal activity, oxyhemoglobin saturation, skin temperature, and near distance vision. Twenty healthy adults participated in this experiment, and their physiological responses were evaluated in a 90minute investigation. The results illustrated that; less tension and fatigue were generated in the wooden rooms than in the non-wooden rooms when the participants did their work. In addition, the study also found that the wooden environments benefit the autonomic nervous system, respiratory system, and visual system. Moreover, wooden rooms play a valuable role in physiological regulation and ease function especially after a consecutive period of work. These results provide an experimental basis to support that wooden environment is beneficial to indoor occupants than the non-wooden indoor environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A portable meter for measuring low frequency currents in the human body.

    PubMed

    Niple, J C; Daigle, J P; Zaffanella, L E; Sullivan, T; Kavet, R

    2004-07-01

    A portable meter has been developed for measuring low frequency currents that flow in the human body. Although the present version of the meter was specifically designed to measure 50/60 Hz "contact currents," the principles involved can be used with other low frequency body currents. Contact currents flow when the human body provides a conductive path between objects in the environment with different electrical potentials. The range of currents the meter detects is approximately 0.4-800 microA. This provides measurements of currents from the threshold of human perception (approximately 500 microA(RMS)) down to single microampere levels. The meter has a unique design, which utilizes the human subject's body impedance as the sensing element. Some of the advantages of this approach are high sensitivity, the ability to measure current flow in the majority of the body, and relative insensitivity to the current path connection points. Current measurement accuracy varies with the accuracy of the body impedance (resistance) measurement and different techniques can be used to obtain a desired level of accuracy. Techniques are available to achieve an estimated +/-20% accuracy. Copyright 2004 Wiley-Liss, Inc.

  20. Modeling and characterization of different channels based on human body communication.

    PubMed

    Jingzhen Li; Zedong Nie; Yuhang Liu; Lei Wang

    2017-07-01

    Human body communication (HBC), which uses the human body as a transmission medium for electrical signals, provides a prospective communication solution for body sensor networks (BSNs). In this paper, an inhomogeneous model which includes the tissue layers of skin, fat, and muscle is proposed to study the propagation characteristics of different HBC channels. Specifically, the HBC channels, namely, the on-body to on-body (OB-OB)channel, on-body to in-body (OB-IB) channel, in-body to on-body (IB-OB) channel, and in-body to in-body (IB-IB)channel, are studied over different frequencies (from 1MHz to 100MHz) through numerical simulations with finite-difference time-domain (FDTD) method. The results show that the gain of OB-IB channel and IB-OB channel is almost the same. The gain of IB-IB channel is greater than other channels in the frequency range 1MHz to 70MHz. In addition, the gain of all channels is associated with the channel length and communication frequency. The simulations are verified by experimental measurements in a porcine tissue sample. The results show that the simulations are in agreement with the measurements.

  1. Physiological markers of motor inhibition during human behavior

    PubMed Central

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B.

    2017-01-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. PMID:28341235

  2. [The human body in Michelangelo's Moses].

    PubMed

    Figueroa, Gustavo

    2013-10-01

    What grips us so powerfully to a work of art is the artist's intention, if he succeeds to express it in his work and we are able to understand it. Michelangelo's Moses established the essential structures of an animate organism and the embodiment of consciousness in the world. Since the body is an expressive unit, it is possible to reconstruct a highly feasible sequence of movements that might have preceded the moment caught in the statue. It is an expression of the highest ideal of mental and spiritual achievement through the controlled tension between action and restraint. The phenomenon of embodiment and feeling the body as own is the basis of concrete human existence.

  3. Dynamics of food availability, body condition and physiological stress response in breeding Black-legged Kittiwakes

    USGS Publications Warehouse

    Kitaysky, A.S.; Wingfield, J.C.; Piatt, John F.

    1999-01-01

    1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla, breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions. 2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island. 3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.

  4. Examination of Duct Physiology in the Human Mammary Gland

    PubMed Central

    Mills, Dixie; Gomberawalla, Ameer; Gordon, Eva J.; Tondre, Julie; Nejad, Mitra; Nguyen, Tinh; Pogoda, Janice M.; Rao, Jianyu; Chatterton, Robert; Henning, Susanne; Love, Susan M.

    2016-01-01

    Background The human breast comprise several ductal systems, or lobes, which contain a small amount of fluid containing cells, hormones, proteins and metabolites. The complex physiology of these ducts is likely a contributing factor to the development of breast cancer, especially given that the vast majority of breast cancers begin in a single lobular unit. Methods We examined the levels of total protein, progesterone, estradiol, estrone sulfate, dehydroepiandrosterone sulfate, and macrophages in ductal fluid samples obtained from 3 ducts each in 78 women, sampled twice over a 6 month period. Samples were processed for both cytological and molecular analysis. Intraclass correlation coefficients and mixed models were utilized to identify significant data. Results We found that the levels of these ductal fluid components were generally uncorrelated among ducts within a single breast and over time, suggesting that each lobe within the breast has a distinct physiology. However, we also found that estradiol was more correlated in women who were nulliparous or produced nipple aspirate fluid. Conclusions Our results provide evidence that the microenvironment of any given lobular unit is unique to that individual unit, findings that may provide clues about the initiation and development of ductal carcinomas. PMID:27073976

  5. ['Anatomia actuosa et apta'. The mechanist 'proto'-physiology of B.S. Albinus].

    PubMed

    van der Korst, J K

    1993-01-01

    Already during his tenure as professor of anatomy and surgery (1721-1746) and before he became a professor of physiology and medicine at the University of Leiden, Bernard Siegfried Albinus held private lecture courses on physiology. In these lectures he pleaded for a separation of physiology from theoretical medicine, which was still its customary place in the medical curriculum of the first half of the eighteenth century. According to Albinus, physiology was a science in its own right and should be solely based on the careful observation of forms and structures of the human body. From the 'fabrica', the function ('aptitudo') could be derived by careful reasoning. As shown by a set of lecture notes, which recently came to light, Albinus adhered, initially, to a strictly mechanistic explanatory model, which was almost completely based on the physiological concepts of Herman Boerhaave. However, in contrast to the latter, he even rejected the involvement of chemical processes in digestion. Although his lectures were highly acclaimed as demonstrations of minute anatomy, Albinus met with little or no direct response in regard to his concept of physiology.

  6. Physiological determinants of human acute hypoxia tolerance.

    DOT National Transportation Integrated Search

    2013-11-01

    AbstractIntroduction. We investigated possible physiological determinants of variability in hypoxia tolerance in subjects given a 5-minute normobaric exposure to 25,000 ft equivalent. Physiological tolerance to hypoxia was defined as the magnitude of...

  7. Genetic variability of environmental sensitivity revealed by phenotypic variation in body weight and (its) correlations to physiological and behavioral traits

    PubMed Central

    Quillet, Edwige; Bégout, Marie-Laure; Aupérin, Benoit; Khaw, Hooi Ling; Millot, Sandie; Valotaire, Claudiane; Kernéis, Thierry; Labbé, Laurent; Prunet, Patrick; Dupont-Nivet, Mathilde

    2017-01-01

    Adaptive phenotypic plasticity is a key component of the ability of organisms to cope with changing environmental conditions. Fish have been shown to exhibit a substantial level of phenotypic plasticity in response to abiotic and biotic factors. In the present study, we investigate the link between environmental sensitivity assessed globally (revealed by phenotypic variation in body weight) and more targeted physiological and behavioral indicators that are generally used to assess the sensitivity of a fish to environmental stressors. We took advantage of original biological material, the rainbow trout isogenic lines, which allowed the disentangling of the genetic and environmental parts of the phenotypic variance. Ten lines were characterized for the changes of body weight variability (weight measurements taken every month during 18 months), the plasma cortisol response to confinement stress (3 challenges) and a set of selected behavioral indicators. This study unambiguously demonstrated the existence of genetic determinism of environmental sensitivity, with some lines being particularly sensitive to environmental fluctuations and others rather insensitive. Correlations between coefficient of variation (CV) for body weight and behavioral and physiological traits were observed. This confirmed that CV for body weight could be used as an indicator of environmental sensitivity. As the relationship between indicators (CV weight, risk-taking, exploration and cortisol) was shown to be likely depending on the nature and intensity of the stressor, the joint use of several indicators should help to investigate the biological complexity of environmental sensitivity. PMID:29253015

  8. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks

    PubMed Central

    Peter, Steffen; Pratap Reddy, Bhanu; Momtaz, Farshad; Givargis, Tony

    2016-01-01

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system. PMID:27110785

  9. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks.

    PubMed

    Peter, Steffen; Reddy, Bhanu Pratap; Momtaz, Farshad; Givargis, Tony

    2016-04-22

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.

  10. Outdoor thermal physiology along human pathways: a study using a wearable measurement system

    NASA Astrophysics Data System (ADS)

    Nakayoshi, Makoto; Kanda, Manabu; Shi, Rui; de Dear, Richard

    2015-05-01

    An outdoor summer study on thermal physiology along subjects' pathways was conducted in a Japanese city using a unique wearable measurement system that measures all the relevant thermal variables: ambient temperature, humidity, wind speed ( U) and short/long-wave radiation ( S and L), along with some physio-psychological parameters: skin temperature ( T skin), pulse rate, subjective thermal sensation and state of body motion. U, S and L were measured using a globe anemo-radiometer adapted use with pedestrian subjects. The subjects were 26 healthy Japanese adults (14 males, 12 females) ranging from 23 to 74 years in age. Each subject wore a set of instruments that recorded individual microclimate and physiological responses along a designated pedestrian route that traversed various urban textures. The subjects experienced varying thermal environments that could not be represented by fixed-point routine observational data. S fluctuated significantly reflecting the mixture of sunlit/shade distributions within complex urban morphology. U was generally low within urban canyons due to drag by urban obstacles such as buildings but the subjects' movements enhanced convective heat exchanges with the atmosphere, leading to a drop in T skin. The amount of sweating increased as standard effective temperature (SET*) increased. A clear dependence of sweating on gender and body size was found; males sweated more than females; overweight subjects sweated more than standard/underweight subjects. T skin had a linear relationship with SET* and a similarly clear dependence on gender and body size differences. T skin of the higher-sweating groups was lower than that of the lower-sweating groups, reflecting differences in evaporative cooling by perspiration.

  11. Phage Therapy: Eco-Physiological Pharmacology

    PubMed Central

    Abedon, Stephen T.

    2014-01-01

    Bacterial virus use as antibacterial agents, in the guise of what is commonly known as phage therapy, is an inherently physiological, ecological, and also pharmacological process. Physiologically we can consider metabolic properties of phage infections of bacteria and variation in those properties as a function of preexisting bacterial states. In addition, there are patient responses to pathogenesis, patient responses to phage infections of pathogens, and also patient responses to phage virions alone. Ecologically, we can consider phage propagation, densities, distribution (within bodies), impact on body-associated microbiota (as ecological communities), and modification of the functioning of body “ecosystems” more generally. These ecological and physiological components in many ways represent different perspectives on otherwise equivalent phenomena. Comparable to drugs, one also can view phages during phage therapy in pharmacological terms. The relatively unique status of phages within the context of phage therapy as essentially replicating antimicrobials can therefore result in a confluence of perspectives, many of which can be useful towards gaining a better mechanistic appreciation of phage therapy, as I consider here. Pharmacology more generally may be viewed as a discipline that lies at an interface between organism-associated phenomena, as considered by physiology, and environmental interactions as considered by ecology. PMID:25031881

  12. Physiologically relevant organs on chips

    PubMed Central

    Yum, Kyungsuk; Hong, Soon Gweon; Lee, Luke P.

    2015-01-01

    Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or organs on chips, that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue–tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. PMID:24357624

  13. Comparative Physiology of Fatigue.

    PubMed

    Jones, James H

    2016-11-01

    This review attempts to provide insights into factors associated with fatigue in human and nonhuman animals by using the two fundamental approaches of comparative physiology: determining common principles that govern structure and function in animals that are relatively invariant between animals and evaluating animals that have been highly adapted by natural selection to demonstrate extreme performance. In this review, I approach the topic of fatigue by considering factors that are associated with its reciprocal or inverse or duration of sustained performance before fatigue sets in to end the performance. The two general factors that I consider that affect endurance time more than any other are body temperature and body mass. The former affects endurance time because of thermodynamic effects on chemical reaction rates and metabolism; the latter acts through the mechanism of allometry or scaling. The examples of extreme animal performance that I discuss are two examples of bird migration, the diving performance of marine mammals, and the unique relationship that governs energy cost of locomotion in hopping kangaroos.

  14. The commerce of human body parts: an Eastern Orthodox response.

    PubMed

    Reardon, P H

    2000-08-01

    The Orthodox Church teaches that the bodies of those in Christ are to be regarded as sanctified by the hearing of the Word and faithful participation in the Sacraments, most particularly the Holy Eucharist; because of the indwelling of the Holy Spirit the consecrated bodies of Christians do not belong to them but to Christ; with respect to the indwelling Holy Spirit there is no difference between the bodies of Christians before and after death; whether before or after death, the Christian body is also to receive the same veneration; and notwithstanding the physical corruptions that the body endures by reason of death, there remains a strict continuity between the body in which the Christian dies and the body in which the Christian will rise again. That is to say, it is the very same reality that is sown in corruption and will be raised in incorruption. Given such consideration, the notion of "selling" and integral part of a human being is simply outside the realm of rational comprehension. Indeed, it is profoundly repugnant to those Orthodox Christian sentiments that are formed and nourished by the Church's sacramental teaching and liturgical worship. One does not sell or purchase that which has been consecrated in those solemn ways that the Church consecrates the human body.

  15. Multi-site recording and spectral analysis of spontaneous photon emission from human body.

    PubMed

    Wijk, Eduard P A Van; Wijk, Roeland Van

    2005-04-01

    In the past years, research on ultraweak photon emission (UPE) from human body has increased for isolated cells and tissues. However, there are only limited data on UPE from the whole body, in particular from the hands. To describe a protocol for the management of subjects that (1) avoids interference with light-induced longterm delayed luminescence, and (2) includes the time slots for recording photon emission. The protocol was utilised for multi-site recording of 4 subjects at different times of the day and different seasons, and for one subject to complete spectral analysis of emission from different body locations. An especially selected low-noise end-window photomultiplier was utilised for the detection of ultraviolet / visible light (200-650 nm) photon emission. For multi-site recording it was manipulated in three directions in a darkroom with a very low count rate. A series of cut-off filters was used for spectral analysis of UPE. 29 body sites were selected such that the distribution in UPE could be studied as right-left symmetry, dorsal-ventral symmetry, and the ratio between the central body part and extremities. Generally, the fluctuation in photon counts over the body was lower in the morning than in the afternoon. The thorax-abdomen region emitted lowest and most constantly. The upper extremities and the head region emitted most and increasingly over the day. Spectral analysis of low, intermediate and high emission from the superior frontal part of the right leg, the forehead and the palms in the sensitivity range of the photomultiplier showed the major spontaneous emission at 470-570 nm. The central palm area of hand emission showed a larger contribution of the 420-470 nm range in the spectrum of spontaneous emission from the hand in autumn/winter. The spectrum of delayed luminescence from the hand showed major emission in the same range as spontaneous emission. Examples of multi-site UPE recordings and spectral analysis revealed individual patterns

  16. A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks.

    PubMed

    Lim, Hooi Been; Baumann, Dirk; Li, Er-Ping

    2011-03-01

    Wireless body area network (WBAN) is a new enabling system with promising applications in areas such as remote health monitoring and interpersonal communication. Reliable and optimum design of a WBAN system relies on a good understanding and in-depth studies of the wave propagation around a human body. However, the human body is a very complex structure and is computationally demanding to model. This paper aims to investigate the effects of the numerical model's structure complexity and feature details on the simulation results. Depending on the application, a simplified numerical model that meets desired simulation accuracy can be employed for efficient simulations. Measurements of ultra wideband (UWB) signal propagation along a human arm are performed and compared to the simulation results obtained with numerical arm models of different complexity levels. The influence of the arm shape and size, as well as tissue composition and complexity is investigated.

  17. On the presence and role of human gene-body DNA methylation

    PubMed Central

    Jjingo, Daudi; Conley, Andrew B.; Yi, Soojin V.; Lunyak, Victoria V.; Jordan, I. King

    2012-01-01

    DNA methylation of promoter sequences is a repressive epigenetic mark that down-regulates gene expression. However, DNA methylation is more prevalent within gene-bodies than seen for promoters, and gene-body methylation has been observed to be positively correlated with gene expression levels. This paradox remains unexplained, and accordingly the role of DNA methylation in gene-bodies is poorly understood. We addressed the presence and role of human gene-body DNA methylation using a meta-analysis of human genome-wide methylation, expression and chromatin data sets. Methylation is associated with transcribed regions as genic sequences have higher levels of methylation than intergenic or promoter sequences. We also find that the relationship between gene-body DNA methylation and expression levels is non-monotonic and bell-shaped. Mid-level expressed genes have the highest levels of gene-body methylation, whereas the most lowly and highly expressed sets of genes both have low levels of methylation. While gene-body methylation can be seen to efficiently repress the initiation of intragenic transcription, the vast majority of methylated sites within genes are not associated with intragenic promoters. In fact, highly expressed genes initiate the most intragenic transcription, which is inconsistent with the previously held notion that gene-body methylation serves to repress spurious intragenic transcription to allow for efficient transcriptional elongation. These observations lead us to propose a model to explain the presence of human gene-body methylation. This model holds that the repression of intragenic transcription by gene-body methylation is largely epiphenomenal, and suggests that gene-body methylation levels are predominantly shaped via the accessibility of the DNA to methylating enzyme complexes. PMID:22577155

  18. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere

  19. Conformational ensemble of human α-synuclein physiological form predicted by molecular simulations.

    PubMed

    Rossetti, G; Musiani, F; Abad, E; Dibenedetto, D; Mouhib, H; Fernandez, C O; Carloni, P

    2016-02-17

    We perform here enhanced sampling simulations of N-terminally acetylated human α-synuclein, an intrinsically disordered protein involved in Parkinson's disease. The calculations, consistent with experiments, suggest that the post-translational modification leads to the formation of a transient amphipathic α-helix. The latter, absent in the non-physiological form, alters protein dynamics at the N-terminal and intramolecular interactions.

  20. A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences

    PubMed Central

    Zhu, Youding; Fujimura, Kikuo

    2010-01-01

    This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach. PMID:22399933

  1. Physiological effects of intermittent hypoxia.

    PubMed

    Powell, F L; Garcia, N

    2000-01-01

    Intermittent hypoxia (IH), or periodic exposure to hypoxia interrupted by return to normoxia or less hypoxic conditions, occurs in many circumstances. In high altitude mountaineering, IH is used to optimize acclimatization although laboratory studies have not generally revealed physiologically significant benefits. IH enhances athletic performance at sea level if blood oxygen capacity increases and the usual level of training is not decreased significantly. IH for high altitude workers who commute from low altitude homes is of considerable practical interest and the ideal commuting schedule for physical and mental performance is being studied. The effect of oxygen enrichment at altitude (i.e., intermittent normoxia on a background of chronic hypoxia) on human performance is under study also. Physiological mechanisms of IH, and specifically the differences between effects of IH and acute or chronic continuous hypoxia remains to be determined. Biomedical researchers are defining the molecular and cellular mechanisms for effects of hypoxia on the body in health and disease. A comparative approach may provide additional insight about the biological significance of these effects.

  2. Deciphering the iron isotope message of the human body

    NASA Astrophysics Data System (ADS)

    Walczyk, Thomas; von Blanckenburg, Friedhelm

    2005-04-01

    Mass-dependent variations in isotopic composition are known since decades for the light elements such as hydrogen, carbon or oxygen. Multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) and double-spike thermal ionization mass spectrometry (TIMS) permit us now to resolve small variations in isotopic composition even for the heavier elements such as iron. Recent studies on the iron isotopic composition of human blood and dietary iron sources have shown that lighter iron isotopes are enriched along the food chain and that each individual bears a certain iron isotopic signature in blood. To make use of this finding in biomedical research, underlying mechanisms of isotope fractionation by the human body need to be understood. In this paper available iron isotope data for biological samples are discussed within the context of isotope fractionation concepts and fundamental aspects of human iron metabolism. This includes evaluation of new data for body tissues which show that blood and muscle tissue have a similar iron isotopic composition while heavier iron isotopes are concentrated in the liver. This new observation is in agreement with our earlier hypothesis of a preferential absorption of lighter iron isotopes by the human body. Possible mechanisms for inducing an iron isotope effect at the cellular and molecular level during iron uptake are presented and the potential of iron isotope effects in human blood as a long-term measure of dietary iron absorption is discussed.

  3. Applications of physiologically based pharmacokinetic modeling for the optimization of anti-infective therapies.

    PubMed

    Moss, Darren Michael; Marzolini, Catia; Rajoli, Rajith K R; Siccardi, Marco

    2015-01-01

    The pharmacokinetic properties of anti-infective drugs are a determinant part of treatment success. Pathogen replication is inhibited if adequate drug levels are achieved in target sites, whereas excessive drug concentrations linked to toxicity are to be avoided. Anti-infective distribution can be predicted by integrating in vitro drug properties and mathematical descriptions of human anatomy in physiologically based pharmacokinetic models. This method reduces the need for animal and human studies and is used increasingly in drug development and simulation of clinical scenario such as, for instance, drug-drug interactions, dose optimization, novel formulations and pharmacokinetics in special populations. We have assessed the relevance of physiologically based pharmacokinetic modeling in the anti-infective research field, giving an overview of mechanisms involved in model design and have suggested strategies for future applications of physiologically based pharmacokinetic models. Physiologically based pharmacokinetic modeling provides a powerful tool in anti-infective optimization, and there is now no doubt that both industry and regulatory bodies have recognized the importance of this technology. It should be acknowledged, however, that major challenges remain to be addressed and that information detailing disease group physiology and anti-infective pharmacodynamics is required if a personalized medicine approach is to be achieved.

  4. The venality of human body parts and products in French law and common law.

    PubMed

    Haoulia, Naima

    2012-03-01

    The successive bioethics laws in France have constantly argued that the human body is not for sale and consecrated an absolute principle of free and anonymous donations, whether of semen, ova, blood, tissues or organs. Nonetheless, this position is not shared by all countries. These legal divergences upset today our moral principles and the development of these practices leads us to question the legal status of human biological material and its gradual commodification. This paper outlines the current law principles that protect people's interests in their bodies, excised body parts and tissues without conferring the rights of full legal ownership in French law and in Common law. Contrary to what many people believe, people do not legally 'own' their bodies, body parts or tissues. However, they do have some legal rights in relation to their bodies and excised body material. For lawyers, the exact relationship people have with their bodies has raised a host of complex questions and long debates about the status we should grant to human body parts. The significance of this issue is due to two reasons:first, because of the imperative protection we have to assure to human dignity and then, because of the economic value which is attached to human products.

  5. Combined Volatolomics for Monitoring of Human Body Chemistry

    PubMed Central

    Broza, Yoav Y.; Zuri, Liat; Haick, Hossam

    2014-01-01

    Analysis of volatile organic compounds (VOCs) is a promising approach for non-invasive, fast and potentially inexpensive diagnostics. Here, we present a new methodology for profiling the body chemistry by using the volatile fraction of molecules in various body fluids. Using mass spectrometry and cross-reactive nanomaterial-based sensors array, we demonstrate that simultaneous VOC detection from breath and skin would provide complementary, non-correlated information of the body's volatile metabolites profile. Eventually with further wide population validation studies, such a methodology could provide more accurate monitoring of pathological changes compared to the information provided by a single body fluid. The qualitative and quantitative methods presented here offers a variety of options for novel mapping of the metabolic properties of complex organisms, including humans. PMID:24714440

  6. Combined volatolomics for monitoring of human body chemistry.

    PubMed

    Broza, Yoav Y; Zuri, Liat; Haick, Hossam

    2014-04-09

    Analysis of volatile organic compounds (VOCs) is a promising approach for non-invasive, fast and potentially inexpensive diagnostics. Here, we present a new methodology for profiling the body chemistry by using the volatile fraction of molecules in various body fluids. Using mass spectrometry and cross-reactive nanomaterial-based sensors array, we demonstrate that simultaneous VOC detection from breath and skin would provide complementary, non-correlated information of the body's volatile metabolites profile. Eventually with further wide population validation studies, such a methodology could provide more accurate monitoring of pathological changes compared to the information provided by a single body fluid. The qualitative and quantitative methods presented here offers a variety of options for novel mapping of the metabolic properties of complex organisms, including humans.

  7. Assessment methods in human body composition.

    PubMed

    Lee, Seon Yeong; Gallagher, Dympna

    2008-09-01

    The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth.

  8. Assessment methods in human body composition

    PubMed Central

    Lee, Seon Yeong; Gallagher, Dympna

    2009-01-01

    Purpose of review The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Recent findings Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. Summary There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth. PMID:18685451

  9. On making nursing undergraduate human reproductive physiology content meaningful and relevant: discussion of human pleasure in its biological context.

    PubMed

    McClusky, Leon Mendel

    2012-01-01

    The traditional presentation of the Reproductive Physiology component in an Anatomy and Physiology course to nursing undergraduates focuses on the broad aspects of hormonal regulation of reproduction and gonadal anatomy, with the role of the higher centres of the brain omitted. An introductory discussion is proposed which could precede the lectures on the reproductive organs. The discussion gives an overview of the biological significance of human pleasure, the involvement of the neurotransmitter dopamine, and the role of pleasure in the survival of the individual and even species. Pleasure stimuli (positive and negative) and the biological significance of naturally-induced pleasurable experiences are briefly discussed in the context of reproduction and the preservation of genetic material with an aim to foster relevancy between subject material and human behaviour in any type of society. The tenderness of this aspect of the human existence is well-understood because of its invariable association with soul-revealing human expressions such as love, infatuation, sexual flirtations, all of which are underpinned by arousal, desire and/or pleasure. Assuming that increased knowledge correlates with increased confidence, the proposed approach may provide the nurse with an adequate knowledge base to overcome well-known barriers in communicating with their patients about matters of sexual health and intimacy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Centralized Networks to Generate Human Body Motions

    PubMed Central

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan

    2017-01-01

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons’ states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers’ trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings. PMID:29240694

  11. Centralized Networks to Generate Human Body Motions.

    PubMed

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres

    2017-12-14

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.

  12. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; <-0.010 g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (<0.05%) for lean and fat; -23 and -5 g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good

  13. ATHENA, the Desktop Human "Body"

    ScienceCinema

    Iyer, Rashi; Harris, Jennifer

    2018-05-18

    Creating surrogate human organs, coupled with insights from highly sensitive mass spectrometry technologies, a new project is on the brink of revolutionizing the way we screen new drugs and toxic agents. ATHENA, the Advanced Tissue-engineered Human Ectypal Network Analyzer project team, is developing four human organ constructs - liver, heart, lung and kidney - that are based on a significantly miniaturized platform. Each organ component will be about the size of a smartphone screen, and the whole ATHENA "body" of interconnected organs would fit neatly on a desk. "By developing this 'homo minutus,' we are stepping beyond the need for animal or Petri dish testing: There are huge benefits in developing drug and toxicity analysis systems that can mimic the response of actual human organs," said Rashi Iyer, a senior scientist at Los Alamos National Laboratory, the lead laboratory on the five-year, $19 million multi-institutional effort. The project is supported by the Defense Threat Reduction Agency (DTRA). Some 40 percent of pharmaceuticals fail their clinical trials, Iyer noted, and there are thousands of chemicals whose effects on humans are simply unknown. Providing a realistic, cost-effective and rapid screening system such as ATHENA with high-throughput capabilities could provide major benefits to the medical field, screening more accurately and offering a greater chance of clinical trial success.

  14. ATHENA, the Desktop Human "Body"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Rashi; Harris, Jennifer

    2014-09-29

    Creating surrogate human organs, coupled with insights from highly sensitive mass spectrometry technologies, a new project is on the brink of revolutionizing the way we screen new drugs and toxic agents. ATHENA, the Advanced Tissue-engineered Human Ectypal Network Analyzer project team, is developing four human organ constructs - liver, heart, lung and kidney - that are based on a significantly miniaturized platform. Each organ component will be about the size of a smartphone screen, and the whole ATHENA "body" of interconnected organs would fit neatly on a desk. "By developing this 'homo minutus,' we are stepping beyond the need formore » animal or Petri dish testing: There are huge benefits in developing drug and toxicity analysis systems that can mimic the response of actual human organs," said Rashi Iyer, a senior scientist at Los Alamos National Laboratory, the lead laboratory on the five-year, $19 million multi-institutional effort. The project is supported by the Defense Threat Reduction Agency (DTRA). Some 40 percent of pharmaceuticals fail their clinical trials, Iyer noted, and there are thousands of chemicals whose effects on humans are simply unknown. Providing a realistic, cost-effective and rapid screening system such as ATHENA with high-throughput capabilities could provide major benefits to the medical field, screening more accurately and offering a greater chance of clinical trial success.« less

  15. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology

    PubMed Central

    Nilsen, Kari-Anne; Ihle, Kate E.; Frederick, Katy; Fondrk, M. Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V.

    2011-01-01

    SUMMARY Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain. PMID:21490257

  16. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology.

    PubMed

    Nilsen, Kari-Anne; Ihle, Kate E; Frederick, Katy; Fondrk, M Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V

    2011-05-01

    Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.

  17. Physiology Of Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  18. Physiological and hypoxic oxygen concentration differentially regulates human c-Kit+ cardiac stem cell proliferation and migration.

    PubMed

    Bellio, Michael A; Rodrigues, Claudia O; Landin, Ana Marie; Hatzistergos, Konstantinos E; Kuznetsov, Jeffim; Florea, Victoria; Valasaki, Krystalenia; Khan, Aisha; Hare, Joshua M; Schulman, Ivonne Hernandez

    2016-12-01

    Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis that hypoxia impairs cell proliferation, survival, and migration of human CSCs relative to physiological and room air oxygen concentrations. Human endomyocardial biopsy-derived CSCs were isolated, selected for c-Kit expression, and expanded in vitro at room air (21% O 2 ). To assess the effect on proliferation, survival, and migration, CSCs were transferred to physiological (5%) or hypoxic (0.5%) O 2 concentrations. Physiological O 2 levels increased proliferation (P < 0.05) but did not affect survival of CSCs. Although similar growth rates were observed in room air and hypoxia, a significant reduction of β-galactosidase activity (-4,203 fluorescent units, P < 0.05), p16 protein expression (0.58-fold, P < 0.001), and mitochondrial content (0.18-fold, P < 0.001) in hypoxia suggests that transition from high (21%) to low (0.5%) O 2 reduces senescence and promotes quiescence. Furthermore, physiological O 2 levels increased migration (P < 0.05) compared with room air and hypoxia, and treatment with mesenchymal stem cell-conditioned media rescued CSC migration under hypoxia to levels comparable to physiological O 2 migration (2-fold, P < 0.05 relative to CSC media control). Our finding that physiological O 2 concentration is optimal for in vitro parameters of CSC biology suggests that standard room air may diminish cell regenerative potential. This study provides novel insights into the modulatory effects of O 2 concentration on CSC biology and has important implications for refining stem cell therapies. Copyright © 2016 the American Physiological Society.

  19. Review-Research on the physical training model of human body based on HQ.

    PubMed

    Junjie, Liu

    2016-11-01

    Health quotient (HQ) is the newest health culture and concept in the 21st century, and the analysis of the human body sports model is not enough mature at present, what's more, the purpose of this paper is to study the integration of the two subjects the health quotient and the sport model. This paper draws the conclusion that physical training and education in colleges and universities can improve the health quotient, and it will make students possess a more healthy body and mind. Then through a new rigid body model of sports to simulate the human physical exercise. After that this paper has an in-depth study on the dynamic model of the human body movement on the basis of establishing the matrix and equation. The simulation results of the human body bicycle riding and pole throwing show that the human body joint movement simulation can be realized and it has a certain operability as well. By means of such simulated calculation, we can come to a conclusion that the movement of the ankle joint, knee joint and hip joint's motion law and real motion are basically the same. So it further verify the accuracy of the motion model, which lay the foundation of other research movement model, also, the study of the movement model is an important method in the study of human health in the future.

  20. Regulation of body fluid and salt homeostasis--from observations in space to new concepts on Earth.

    PubMed

    Gerzer, R; Heer, M

    2005-08-01

    The present manuscript summarizes recent discoveries that were made by studying salt and fluid homeostasis in weightlessness. These data indicate that 1. atrial natriuretic peptide appears not to play an important role in natriuresis in physiology, 2. the distribution of body fluids appears to be tightly coupled with hunger and thirst regulation, 3. intrathoracic pressure may be an important co-regulator of body fluid homeostasis, 4. a so far unknown low-affinity, high capacity osmotically inactive sodium storage mechanism appears to be present in humans that is acting through sodium/hydrogen exchange on glycosaminoglycans and might explain the pathophysiology, e.g., of salt sensitive hypertension. The surprising and unexpected data underline that weightlessness is an excellent tool to investigate the physiology of our human body: If we knew it, we should be able to predict changes that occur when gravity is absent. But, as data from space demonstrate, we do not.

  1. Physiological role of urothelial cancer-associated one long noncoding RNA in human skeletogenic cell differentiation.

    PubMed

    Ishikawa, Takanori; Nishida, Takashi; Ono, Mitsuaki; Takarada, Takeshi; Nguyen, Ha Thi; Kurihara, Shinnosuke; Furumatsu, Takayuki; Murase, Yurika; Takigawa, Masaharu; Oohashi, Toshitaka; Kamioka, Hiroshi; Kubota, Satoshi

    2018-06-01

    A vast number of long-noncoding RNAs (lncRNA) are found expressed in human cells, which RNAs have been developed along with human evolution. However, the physiological functions of these lncRNAs remain mostly unknown. In the present study, we for the first time uncovered the fact that one of such lncRNAs plays a significant role in the differentiation of chondrocytes and, possibly, of osteoblasts differentiated from mesenchymal stem cells, which cells eventually construct the human skeleton. The urothelial cancer-associated 1 (UCA1) lncRNA is known to be associated with several human malignancies. Firstly, we confirmed that UCA1 was expressed in normal human chondrocytes, as well as in a human chondrocytic cell line; whereas it was not detected in human bone marrow mesenchymal stem cells (hBMSCs). Of note, although UCA1 expression was undetectable in hBMSCs, it was markedly induced along with the differentiation toward chondrocytes, suggesting its critical role in chondrogenesis. Consistent with this finding, silencing of the UCA1 gene significantly repressed the expression of chondrogenic genes in human chondrocytic cells. UCA1 gene silencing and hyper-expression also had a significant impact on the osteoblastic phenotype in a human cell line. Finally, forced expression of UCA1 in a murine chondrocyte precursor, which did not possess a UCA1 gene, overdrove its differentiation into chondrocytes. These results indicate a physiological and important role of this lncRNA in the skeletal development of humans, who require more sustained endochondral ossification and osteogenesis than do smaller vertebrates. © 2017 Wiley Periodicals, Inc.

  2. [Human body structure in Su Wen].

    PubMed

    Yang, Shizhe

    2011-05-01

    The ancient medical book Su Wen states that the human is a dual composition of physical and spiritual bodies. Thus, if only physical perspectives were applied to interpret its medical terms, confusion would result because of the misunderstanding of spiritual terms. The descriptions in Su Wen didn't show a complete anatomy system or at least at organ levels. The fragments of its context revealed proofs of gross anatomical studies with measurement in ancient China. Su Wen was not a special work for the circulatory route of the channels, so the anatomy terms used was simple. The anatomy position of the body couldn't be judged. The elementary superficial anatomy system formed, which can be traced from the superficial anatomy locations expounded in the book.

  3. [Measurement of human body fat by means of gravimetry. Application of Archimedes' principle].

    PubMed

    Dettwiler, W; Ribordy, M; Donath, A; Scherrer, J R

    1978-12-02

    The weighing of the human body under water is an application of Archimedes' law. Fat being lighter than water or than the structures of lean body mass, body fat can be measured by determining the specific gravity of the human body; that is, by underwater weighing. Body fat has been determined in an "ideal" sample of 14 men and 23 women, all aged 20 years. Testing against a reference measure of body fat makes it possible to test the validity of some anthropometric measurements and of some indices of obesity. These indices offer no advantages over anthropometric measurements.

  4. Association between Human Body Composition and Periodontal Disease.

    PubMed

    Salekzamani, Yagoub; Shirmohammadi, Adileh; Rahbar, Mohammad; Shakouri, Seyed-Kazem; Nayebi, Farough

    2011-01-01

    Obesity in humans might increase the risk of periodontitis. The aim of the present study was to examine the relationship between body composition of males and their periodontal status. AS total of 150 males (aged 30-60) were selected: 31 were periodontally healthy, 45 had gingivitis, 39 had initial periodontitis, and 35 suffered from established periodontitis. BMI (body mass index), WC (waist circumference), and body composition parameters (consisting of body water, body fat, and skeletal muscle and bone mass) were measured. After adjusting for age, history of diabetes, smoking, physical activity status, and socioeconomic status, statistically significant correlations were found between periodontitis and BMI, WC, and body composition. There was only a statistically significant difference between the periodontal health and established periodontitis; that is, periodontal disease in mild forms (gingivitis) and initial periodontitis do not influence these variables (BMI, WC, and body composition parameters) and only the severe form of the disease influences the variables. These data suggest that there is a considerable association between severe forms of periodontal disease in males and their body composition, but this preliminary finding needs to be confirmed in more extensive studies.

  5. Human urine and plasma concentrations of bisphenol A extrapolated from pharmacokinetics established in in vivo experiments with chimeric mice with humanized liver and semi-physiological pharmacokinetic modeling.

    PubMed

    Miyaguchi, Takamori; Suemizu, Hiroshi; Shimizu, Makiko; Shida, Satomi; Nishiyama, Sayako; Takano, Ryohji; Murayama, Norie; Yamazaki, Hiroshi

    2015-06-01

    The aim of this study was to extrapolate to humans the pharmacokinetics of estrogen analog bisphenol A determined in chimeric mice transplanted with human hepatocytes. Higher plasma concentrations and urinary excretions of bisphenol A glucuronide (a primary metabolite of bisphenol A) were observed in chimeric mice than in control mice after oral administrations, presumably because of enterohepatic circulation of bisphenol A glucuronide in control mice. Bisphenol A glucuronidation was faster in mouse liver microsomes than in human liver microsomes. These findings suggest a predominantly urinary excretion route of bisphenol A glucuronide in chimeric mice with humanized liver. Reported human plasma and urine data for bisphenol A glucuronide after single oral administration of 0.1mg/kg bisphenol A were reasonably estimated using the current semi-physiological pharmacokinetic model extrapolated from humanized mice data using algometric scaling. The reported geometric mean urinary bisphenol A concentration in the U.S. population of 2.64μg/L underwent reverse dosimetry modeling with the current human semi-physiological pharmacokinetic model. This yielded an estimated exposure of 0.024μg/kg/day, which was less than the daily tolerable intake of bisphenol A (50μg/kg/day), implying little risk to humans. Semi-physiological pharmacokinetic modeling will likely prove useful for determining the species-dependent toxicological risk of bisphenol A. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A topological multilayer model of the human body.

    PubMed

    Barbeito, Antonio; Painho, Marco; Cabral, Pedro; O'Neill, João

    2015-11-04

    Geographical information systems deal with spatial databases in which topological models are described with alphanumeric information. Its graphical interfaces implement the multilayer concept and provide powerful interaction tools. In this study, we apply these concepts to the human body creating a representation that would allow an interactive, precise, and detailed anatomical study. A vector surface component of the human body is built using a three-dimensional (3-D) reconstruction methodology. This multilayer concept is implemented by associating raster components with the corresponding vector surfaces, which include neighbourhood topology enabling spatial analysis. A root mean square error of 0.18 mm validated the three-dimensional reconstruction technique of internal anatomical structures. The expansion of the identification and the development of a neighbourhood analysis function are the new tools provided in this model.

  7. Physiological Markers of Motor Inhibition during Human Behavior.

    PubMed

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B

    2017-04-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Insights into the role of heat shock protein 72 to whole-body heat acclimation in humans

    PubMed Central

    Amorim, Fabiano Trigueiro; Fonseca, Ivana T; Machado-Moreira, Christiano A; Magalhães, Flávio de Castro

    2015-01-01

    Abstract Heat acclimation results in systemic and cellular adaptions that reduce the negative effect of heat and, consequently, the risk of heat illness. Although the classical changes observed with heat acclimation lead to increased tolerance to exercise in the heat by reducing heat storage (reflected in reduced core and skin temperatures) and increasing whole-body capacity for heat dissipation (greater plasma volume, sweat output, and skin blood flow), it appears that heat acclimation also induces changes at the cellular level that might increase tolerance of the whole organism to a higher core temperature for the development of fatigue. Thermotolerance is a process that involves increased resilience to an otherwise lethal heat stress that follows a sublethal exposure to heat. Thermotolerance is believed to be the result of increased content of heat shock proteins (Hsp), specially a member of the 70 kDa family, Hsp72 kDa. In humans, we and others have reported that heat acclimation increases intracellular Hsp72 levels. This increase in intracellular Hsp72 could improve whole-body organism thermotolerance by maintaining intestinal epithelial tight junction barriers, by increasing resistance to gut-associated endotoxin translocation, or by reducing the inflammatory response. In this review, we will initially provide an overview of the physiological adaptations induced by heat acclimation and emphasize the main cellular changes that occur with heat acclimation associated with intracellular accumulation of Hsp72. Finally, we will present an argument for a role of whole-body heat acclimation in augmenting cellular thermotolerance, which may protect vital organs from deleterious effects of heat stress in humans. PMID:27227070

  9. Human body perception and higher-level person perception are dissociated in early development.

    PubMed

    Slaughter, Virginia

    2011-01-01

    Abstract Developmental data support the proposal that human body perceptual processing is distinct from other aspects of person perception. Infants are sensitive to human bodily motion and attribute goals to human arm movements before they demonstrate recognition of human body structure. The developmental data suggest the possibility of bidirectional linkages between EBA- and FBA-mediated representations and these higher-level elements of person perception.

  10. Analysis of Human Body Bipedal Stability for Neuromotor Disabilities

    NASA Astrophysics Data System (ADS)

    Baritz, Mihaela; Cristea, Luciana; Rogozea, Liliana; Cotoros, Diana; Repanovici, Angela

    2009-04-01

    The analysis of different biomechanical aspects of balance and equilibrium is presented in the first part of the paper. We analyzed the posture, balance and stability of human body for a normal person and for a person with loco-motor or neuro-motor disabilities (in the second part). In the third part of the paper we presented the methodology and the experimental setup used to record the human body behavior in postural stability for persons with neuro-motors disabilities. The results and the conclusions are presented in the final part of the paper and also in the future work meant to establish the computer analysis for rehabilitation neuromotor disabilities.

  11. Current perspective on assessment of human body proportions of relevance to amputees.

    PubMed

    Osterkamp, L K

    1995-02-01

    Weights of segmental components of the human body are important when evaluating the nutritional status of an amputee. Original standards for components were compiled in 1889 using three male cadavers. Since that time, studies of living subjects have shown men and women to be similar in percentage weight of body components. Cadaver data from 1955 and 1969, which were based on 21 male subjects, showed that human bodies carry greater weight in the head and torso and less weight in legs and arms than indicated by the earlier data. Some differences in component weight may be attributable to ethnicity and aging, but further research is needed to define these differences. The 1955 and 1969 data--whether the result of larger sample size, ethnic differences, or actual change in human body proportions over a 60-year period--are different from the standards for body proportions in the 1889 data, which are presently used, and should be incorporated into the assessment of weight status of amputees.

  12. Body size and lower limb posture during walking in humans.

    PubMed

    Hora, Martin; Soumar, Libor; Pontzer, Herman; Sládek, Vladimír

    2017-01-01

    We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints.

  13. Body size and lower limb posture during walking in humans

    PubMed Central

    Hora, Martin; Soumar, Libor; Pontzer, Herman; Sládek, Vladimír

    2017-01-01

    We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints. PMID:28192522

  14. Sex Differences in Human Fatigability: Mechanisms and Insight to Physiological Responses

    PubMed Central

    Hunter, Sandra K.

    2014-01-01

    Sex-related differences in physiology and anatomy are responsible for profound differences in neuromuscular performance and fatigability between men and women. Women are usually less fatigable than men for similar intensity isometric fatiguing contractions. This sex difference in fatigability, however, is task specific because different neuromuscular sites will be stressed when the requirements of the task are altered, and the stress on these sites can differ for men and women. Task variables that can alter the sex difference in fatigue include the type, intensity and speed of contraction, the muscle group assessed, and the environmental conditions. Physiological mechanisms that are responsible for sex-based differences in fatigability may include activation of the motor neuron pool from cortical and subcortical regions, synaptic inputs to the motor neuron pool via activation of metabolically-sensitive small afferent fibres in the muscle, muscle perfusion, and skeletal muscle metabolism and fibre type properties. Non-physiological factors such as the sex bias of studying more males than females in human and animal experiments can also mask a true understanding of the magnitude and mechanisms of sex-based differences in physiology and fatigability. Despite recent developments, there is a tremendous lack of understanding of sex differences in neuromuscular function and fatigability, the prevailing mechanisms and the functional consequences. This review emphasises the need to understand sex-based differences in fatigability in order to shed light on the benefits and limitations that fatigability can exert for men and women during daily tasks, exercise performance, training and rehabilitation in both health and disease. PMID:24433272

  15. Relationship between human physiological parameters and geomagnetic variations of solar origin

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    Results presented concern influence of increased geomagnetic activity on some human physiological parameters. The blood pressure and heart rate of 86 volunteers were measured on working days in autumn 2001 (01/10 09/11) and in spring 2002 (08/04 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether 2799 recordings were obtained and analysed. Questionnaire information about subjective psycho-physiological complaints was also gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The factors were the following: (1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; (2) gender males and females; (3) blood pressure degree persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors’ levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure of the group examined reached 9%. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase and the highest sensitivity was revealed for the hypertensive females.

  16. Back to the future! Revisiting the physiological cost of negative work as a team-based activity for exercise physiology students.

    PubMed

    Kilgas, Matthew A; Elmer, Steven J

    2017-03-01

    We implemented a team-based activity in our exercise physiology teaching laboratory that was inspired from Abbott et al.'s classic 1952 Journal of Physiology paper titled "The physiological cost of negative work." Abbott et al. connected two bicycles via one chain. One person cycled forward (muscle shortening contractions, positive work) while the other resisted the reverse moving pedals (muscle lengthening contractions, negative work), and the cost of work was compared. This study was the first to link human whole body energetics with isolated muscle force-velocity characteristics. The laboratory activity for our students ( n = 35) was designed to reenact Abbott et al.'s experiment, integrate previously learned techniques, and illustrate differences in physiological responses to muscle shortening and lengthening contractions. Students (11-12 students/laboratory section) were split into two teams (positive work vs. negative work). One student from each team volunteered to cycle against the other for ~10 min. The remaining students in each team were tasked with measuring: 1 ) O 2 consumption, 2 ) heart rate, 3 ) blood lactate, and 4 ) perceived exertion. Students discovered that O 2 consumption during negative work was about one-half that of positive work and all other physiological parameters were also substantially lower. Muscle lengthening contractions were discussed and applied to rehabilitation and sport training. The majority of students (>90%) agreed or strongly agreed that they stayed engaged during the activity and it improved their understanding of exercise physiology. All students recommended the activity be performed again. This activity was engaging, emphasized teamwork, yielded clear results, was well received, and preserved the history of classic physiological experiments. Copyright © 2017 the American Physiological Society.

  17. Low physiological levels of prostaglandins E2 and F2α improve human sperm functions.

    PubMed

    Rios, Mariana; Carreño, Daniela V; Oses, Carolina; Barrera, Nelson; Kerr, Bredford; Villalón, Manuel

    2016-03-01

    Prostaglandins (PGs) have been reported to be present in the seminal fluid and cervical mucus, affecting different stages of sperm maturation from spermatogenesis to the acrosome reaction. This study assessed the effects of low physiological PGE2 and PGF2α concentrations on human sperm motility and on the ability of the spermatozoa to bind to the zona pellucida (ZP). Human spermatozoa were isolated from seminal samples with normal concentration and motility parameters and incubated with 1μM PGE2, 1μM PGF2α or control solution to determine sperm motility and the ability to bind to human ZP. The effects of both PGs on intracellular calcium levels were determined. Incubation for 2 or 18h with PGE2 or PGF2α resulted in a significant (P<0.05) increase in the percentage of spermatozoa with progressive motility. In contrast with PGF2α, PGE2 alone induced an increase in sperm intracellular calcium levels; however, the percentage of sperm bound to the human ZP was doubled for both PGs. These results indicate that incubation of human spermatozoa with low physiological levels of PGE2 or PGF2α increases sperm functions and could improve conditions for assisted reproduction protocols.

  18. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival

    PubMed Central

    2009-01-01

    Introduction The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Methods Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. Results In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Conclusions Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation

  19. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    PubMed

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs

  20. Physiologically relevant organs on chips.

    PubMed

    Yum, Kyungsuk; Hong, Soon Gweon; Healy, Kevin E; Lee, Luke P

    2014-01-01

    Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electromagnetic Modeling of Human Body Using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada

    Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.

  2. Smart sensors and virtual physiology human approach as a basis of personalized therapies in diabetes mellitus.

    PubMed

    Fernández Peruchena, Carlos M; Prado-Velasco, Manuel

    2010-01-01

    Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient's information to the models.A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.

  3. Smart Sensors and Virtual Physiology Human Approach as a Basis of Personalized Therapies in Diabetes Mellitus

    PubMed Central

    Fernández Peruchena, Carlos M; Prado-Velasco, Manuel

    2010-01-01

    Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient’s information to the models. A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies. PMID:21625646

  4. The Effect of Body Mass on Outdoor Adult Human Decomposition.

    PubMed

    Roberts, Lindsey G; Spencer, Jessica R; Dabbs, Gretchen R

    2017-09-01

    Forensic taphonomy explores factors impacting human decomposition. This study investigated the effect of body mass on the rate and pattern of adult human decomposition. Nine males and three females aged 49-95 years ranging in mass from 73 to 159 kg who were donated to the Complex for Forensic Anthropology Research between December 2012 and September 2015 were included in this study. Kelvin accumulated degree days (KADD) were used to assess the thermal energy required for subjects to reach several total body score (TBS) thresholds: early decomposition (TBS ≥6.0), TBS ≥12.5, advanced decomposition (TBS ≥19.0), TBS ≥23.0, and skeletonization (TBS ≥27.0). Results indicate no significant correlation between body mass and KADD at any TBS threshold. Body mass accounted for up to 24.0% of variation in decomposition rate depending on stage, and minor differences in decomposition pattern were observed. Body mass likely has a minimal impact on postmortem interval estimation. © 2017 American Academy of Forensic Sciences.

  5. Scaling a Human Body Finite Element Model with Radial Basis Function Interpolation

    DTIC Science & Technology

    Human body models are currently used to evaluate the body’s response to a variety of threats to the Soldier. The ability to adjust the size of human...body models is currently limited because of the complex shape changes that are required. Here, a radial basis function interpolation method is used to...morph the shape on an existing finite element mesh. Tools are developed and integrated into the Blender computer graphics software to assist with

  6. Analysis of body form using biostereometrics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The general objective of the research was to provide the space and life sciences directorate with an improved biostereometric measurement capability. This objective was determined from the usefulness of stereophotogrametric techniques developed during the Apollo and Skylab Missions to measure body conformation, surface area, volume and relative density of astronauts. These noninvasive anthropometric measurements provided invaluable data concerning the physiological, biochemical and nutritional effects of the space environment upon the human body. The indirect nature of the technique has many advantages over other methods, and has a potential for many other applications. The stereophotographs contain an enormous amount of data which can be later reexamined should the need arise.

  7. Visuals and Visualisation of Human Body Systems

    ERIC Educational Resources Information Center

    Mathai, Sindhu; Ramadas, Jayashree

    2009-01-01

    This paper explores the role of diagrams and text in middle school students' understanding and visualisation of human body systems. We develop a common framework based on structure and function to assess students' responses across diagram and verbal modes. Visualisation is defined in terms of understanding transformations on structure and relating…

  8. Differences between perception of human faces and body shapes: evidence from the composite illusion.

    PubMed

    Soria Bauser, Denise A; Suchan, Boris; Daum, Irene

    2011-01-01

    The present study aimed to investigate whether human body forms--like human faces--undergo holistic processing. Evidence for holistic face processing comes from the face composite effect: two identical top halves of a face are perceived as being different if they are presented with different bottom parts. This effect disappears if both bottom halves are shifted laterally (misaligned) or if the stimulus is rotated by 180°. We investigated whether comparable composite effects are observed for human faces and human body forms. Matching of upright faces was more accurate and faster for misaligned compared to aligned presentations. By contrast, there were no processing differences between aligned and misaligned bodies. An inversion effect emerged, with better recognition performance for upright compared to inverted bodies but not faces. The present findings provide evidence for the assumption that holistic processing--investigated with the composite illusion--is not involved in the perception of human body forms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Representational Momentum for the Human Body: Awkwardness Matters, Experience Does Not

    ERIC Educational Resources Information Center

    Wilson, Margaret; Lancaster, Jessy; Emmorey, Karen

    2010-01-01

    Perception of the human body appears to involve predictive simulations that project forward to track unfolding body-motion events. Here we use representational momentum (RM) to investigate whether implicit knowledge of a learned arbitrary system of body movement such as sign language influences this prediction process, and how this compares to…

  10. Biostereometric Data Processing In ERGODATA: Choice Of Human Body Models

    NASA Astrophysics Data System (ADS)

    Pineau, J. C.; Mollard, R.; Sauvignon, M.; Amphoux, M.

    1983-07-01

    The definition of human body models was elaborated with anthropometric data from ERGODATA. The first model reduces the human body into a series of points and lines. The second model is well adapted to represent volumes of each segmentary element. The third is an original model built from the conventional anatomical points. Each segment is defined in space by a tri-angular plane located with its 3-D coordinates. This new model can answer all the processing possibilities in the field of computer-aided design (C.A.D.) in ergonomy but also biomechanics and orthopaedics.

  11. Governing the postmortem procurement of human body material for research.

    PubMed

    Van Assche, Kristof; Capitaine, Laura; Pennings, Guido; Sterckx, Sigrid

    2015-03-01

    Human body material removed post mortem is a particularly valuable resource for research. Considering the efforts that are currently being made to study the biochemical processes and possible genetic causes that underlie cancer and cardiovascular and neurodegenerative diseases, it is likely that this type of research will continue to gain in importance. However, post mortem procurement of human body material for research raises specific ethical concerns, more in particular with regard to the consent of the research participant. In this paper, we attempt to determine which consent regime should govern the post mortem procurement of body material for research. In order to do so, we assess the various arguments that could be put forward in support of a duty to make body material available for research purposes after death. We argue that this duty does in practice not support conscription but is sufficiently strong to defend a policy of presumed rather than explicit consent.

  12. Physiological mechanisms of thermoregulation in reptiles: a review.

    PubMed

    Seebacher, Frank; Franklin, Craig E

    2005-11-01

    The thermal dependence of biochemical reaction rates means that many animals regulate their body temperature so that fluctuations in body temperature are small compared to environmental temperature fluctuations. Thermoregulation is a complex process that involves sensing of the environment, and subsequent processing of the environmental information. We suggest that the physiological mechanisms that facilitate thermoregulation transcend phylogenetic boundaries. Reptiles are primarily used as model organisms for ecological and evolutionary research and, unlike in mammals, the physiological basis of many aspects in thermoregulation remains obscure. Here, we review recent research on regulation of body temperature, thermoreception, body temperature set-points, and cardiovascular control of heating and cooling in reptiles. The aim of this review is to place physiological thermoregulation of reptiles in a wider phylogenetic context. Future research on reptilian thermoregulation should focus on the pathways that connect peripheral sensing to central processing which will ultimately lead to the thermoregulatory response.

  13. The Effects of an Olive Fruit Polyphenol-Enriched Yogurt on Body Composition, Blood Redox Status, Physiological and Metabolic Parameters and Yogurt Microflora.

    PubMed

    Georgakouli, Kalliopi; Mpesios, Anastasios; Kouretas, Demetrios; Petrotos, Konstantinos; Mitsagga, Chrysanthi; Giavasis, Ioannis; Jamurtas, Athanasios Z

    2016-06-03

    In the present study we investigated the effects of an olive polyphenol-enriched yogurt on yogurt microflora, as well as hematological, physiological and metabolic parameters, blood redox status and body composition. In a randomized double-blind, crossover design, 16 (6 men, 10 women) nonsmoking volunteers with non-declared pathology consumed either 400 g of olive fruit polyphenol-enriched yogurt with 50 mg of encapsulated olive polyphenols (experimental condition-EC) or 400 g of plain yogurt (control condition-CC) every day for two weeks. Physiological measurements and blood collection were performed before and after two weeks of each condition. The results showed that body weight, body mass index, hip circumference and systolic blood pressure decreased significantly (p < 0.05) following the two-week consumption of yogurt regardless of condition. A tendency towards significance for decreased levels of low density lipoprotein (LDL) cholesterol (p = 0.06) and thiobarbituric acid reactive substances (p < 0.05) following two weeks of polyphenol-enriched yogurt consumption was observed. The population of lactic acid bacteria (LAB) and production of lactate in yogurt were significantly enhanced after addition of olive polyphenols, contrary to the population of yeasts and molds. The results indicate that consumption of the polyphenol-enriched yogurt may help individuals with non-declared pathology reduce body weight, blood pressure, LDL cholesterol levels and lipid peroxidation, and promote growth of beneficial LAB.

  14. The Effects of an Olive Fruit Polyphenol-Enriched Yogurt on Body Composition, Blood Redox Status, Physiological and Metabolic Parameters and Yogurt Microflora

    PubMed Central

    Georgakouli, Kalliopi; Mpesios, Anastasios; Kouretas, Demetrios; Petrotos, Konstantinos; Mitsagga, Chrysanthi; Giavasis, Ioannis; Jamurtas, Athanasios Z.

    2016-01-01

    In the present study we investigated the effects of an olive polyphenol-enriched yogurt on yogurt microflora, as well as hematological, physiological and metabolic parameters, blood redox status and body composition. In a randomized double-blind, crossover design, 16 (6 men, 10 women) nonsmoking volunteers with non-declared pathology consumed either 400 g of olive fruit polyphenol-enriched yogurt with 50 mg of encapsulated olive polyphenols (experimental condition—EC) or 400 g of plain yogurt (control condition—CC) every day for two weeks. Physiological measurements and blood collection were performed before and after two weeks of each condition. The results showed that body weight, body mass index, hip circumference and systolic blood pressure decreased significantly (p < 0.05) following the two-week consumption of yogurt regardless of condition. A tendency towards significance for decreased levels of low density lipoprotein (LDL) cholesterol (p = 0.06) and thiobarbituric acid reactive substances (p < 0.05) following two weeks of polyphenol-enriched yogurt consumption was observed. The population of lactic acid bacteria (LAB) and production of lactate in yogurt were significantly enhanced after addition of olive polyphenols, contrary to the population of yeasts and molds. The results indicate that consumption of the polyphenol-enriched yogurt may help individuals with non-declared pathology reduce body weight, blood pressure, LDL cholesterol levels and lipid peroxidation, and promote growth of beneficial LAB. PMID:27271664

  15. Medical Sequencing at the extremes of Human Body Mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahituv, Nadav; Kavaslar, Nihan; Schackwitz, Wendy

    2006-09-01

    Body weight is a quantitative trait with significantheritability in humans. To identify potential genetic contributors tothis phenotype, we resequenced the coding exons and splice junctions of58 genes in 379 obese and 378 lean individuals. Our 96Mb survey included21 genes associated with monogenic forms of obesity in humans or mice, aswell as 37 genes that function in body weight-related pathways. We foundthat the monogenic obesity-associated gene group was enriched for rarenonsynonymous variants unique to the obese (n=46) versus lean (n=26)populations. Computational analysis further predicted a significantlygreater fraction of deleterious variants within the obese cohort.Consistent with the complex inheritance of body weight,more » we did notobserve obvious familial segregation in the majority of the 28 availablekindreds. Taken together, these data suggest that multiple rare alleleswith variable penetrance contribute to obesity in the population andprovide a deep medical sequencing based approach to detectthem.« less

  16. Investigation and Modeling of Capacitive Human Body Communication.

    PubMed

    Zhu, Xiao-Qi; Guo, Yong-Xin; Wu, Wen

    2017-04-01

    This paper presents a systematic investigation of the capacitive human body communication (HBC). The measurement of HBC channels is performed using a novel battery-powered system to eliminate the effects of baluns, cables and instruments. To verify the measured results, a numerical model incorporating the entire HBC system is established. Besides, it is demonstrated that both the impedance and path gain bandwidths of HBC channels is affected by the electrode configuration. Based on the analysis of the simulated electric field distribution, an equivalent circuit model is proposed and the circuit parameters are extracted using the finite element method. The transmission capability along the human body is also studied. The simulated results using the numerical and circuit models coincide very well with the measurement, which demonstrates that the proposed circuit model can effectively interpret the operation mechanism of the capacitive HBC.

  17. Real-time stylistic prediction for whole-body human motions.

    PubMed

    Matsubara, Takamitsu; Hyon, Sang-Ho; Morimoto, Jun

    2012-01-01

    The ability to predict human motion is crucial in several contexts such as human tracking by computer vision and the synthesis of human-like computer graphics. Previous work has focused on off-line processes with well-segmented data; however, many applications such as robotics require real-time control with efficient computation. In this paper, we propose a novel approach called real-time stylistic prediction for whole-body human motions to satisfy these requirements. This approach uses a novel generative model to represent a whole-body human motion including rhythmic motion (e.g., walking) and discrete motion (e.g., jumping). The generative model is composed of a low-dimensional state (phase) dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles in humans. A real-time adaptation algorithm was derived to estimate both state variables and style parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple modification, the algorithm allows real-time adaptation even from incomplete (partial) observations. Based on the estimated state and style, a future motion sequence can be accurately predicted. In our implementation, it takes less than 15 ms for both adaptation and prediction at each observation. Our real-time stylistic prediction was evaluated for human walking, running, and jumping behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    PubMed

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  19. Single-friction-surface triboelectric generator with human body conduit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Bo; Cheng, Xiaoliang; Zhang, Xiaosheng

    2014-03-10

    We present a transparent single-friction-surface triboelectric generator (STEG) employing human body as the conduit, making the applications of STEG in portable electronics much more practical and leading to a significant output improvement. The STEG with micro-patterned polydimethylsiloxane surface achieved an output voltage of over 200 V with a current density of 4.7 μA/cm{sup 2}. With human body conduit, the output current increased by 39% and the amount of charge that transferred increased by 34% compared to the results with grounded electrode. A larger increment of 210% and 81% was obtained in the case of STEG with a large-size flat polyethylenemore » terephthalate surface.« less

  20. Clinical physiology of bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1993-01-01

    Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.

  1. Sensing power transfer between the human body and the environment.

    PubMed

    Veltink, Peter H; Kortier, Henk; Schepers, H Martin

    2009-06-01

    The power transferred between the human body and the environment at any time and the work performed are important quantities to be estimated when evaluating and optimizing the physical interaction between the human body and the environment in sports, physical labor, and rehabilitation. It is the objective of the current paper to present a concept for estimating power transfer between the human body and the environment during free motions and using sensors at the interface, not requiring measurement systems in the environment, and to experimentally demonstrate this principle. Mass and spring loads were moved by hand over a fixed height difference via varying free movement trajectories. Kinematic and kinetic quantities were measured in the handle between the hand and the load. 3-D force and moments were measured using a 6 DOF force/moment sensor module, 3-D movement was measured using 3-D accelerometers and angular velocity sensors. The orientation was estimated from the angular velocity, using the initial orientation as a begin condition. The accelerometer signals were expressed in global coordinates using this orientation information. Velocity was estimated by integrating acceleration in global coordinates, obtained by adding gravitational acceleration to the accelerometer signals. Zero start and end velocities were used as begin and end conditions. Power was calculated as the sum of the inner products of velocity and force and of angular velocity and moment, and work was estimated by integrating power over time. The estimated performed work was compared to the potential energy difference corresponding to the change in height of the loads and appeared to be accurate within 4% for varying movements with net displacements and varying loads (mass and spring). The principle of estimating power transfer demonstrated in this paper can be used in future interfaces between the human body and the environment instrumented with body-mounted miniature 3-D force and

  2. Optimization of wearable microwave antenna with simplified electromagnetic model of the human body

    NASA Astrophysics Data System (ADS)

    Januszkiewicz, Łukasz; Barba, Paolo Di; Hausman, Sławomir

    2017-12-01

    In this paper the problem of optimization design of a microwave wearable antenna is investigated. Reference is made to a specific antenna design that is a wideband Vee antenna the geometry of which is characterized by 6 parameters. These parameters were automatically adjusted with an evolution strategy based algorithm EStra to obtain the impedance matching of the antenna located in the proximity of the human body. The antenna was designed to operate in the ISM (industrial, scientific, medical) band which covers the frequency range of 2.4 GHz up to 2.5 GHz. The optimization procedure used the finite-difference time-domain method based full-wave simulator with a simplified human body model. In the optimization procedure small movements of antenna towards or away of the human body that are likely to happen during real use were considered. The stability of the antenna parameters irrespective of the movements of the user's body is an important factor in wearable antenna design. The optimization procedure allowed obtaining good impedance matching for a given range of antenna distances with respect to the human body.

  3. In Vivo measurement of human body composition. [during continuous bed rest

    NASA Technical Reports Server (NTRS)

    Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Price, D. C.

    1975-01-01

    Physiological changes in human beings were studied during a 21 day bed rest regime. Results of blood analyses indicated clearly that major metabolic adjustments occurred during prolonged bed rest. However, urinary metabolic analyses showed variances attributed to specimen collection inaccuracies and the small number of test subjects.

  4. Modelling accidental hypothermia effects on a human body under different pathophysiological conditions.

    PubMed

    Coccarelli, Alberto; Boileau, Etienne; Parthimos, Dimitris; Nithiarasu, Perumal

    2017-12-01

    Accidental exposure to cold water environment is one of the most challenging situations in which hypothermia occurs. In the present work, we aim to characterise the energy balance of a human body subjected to such extreme environmental conditions. This study is carried out using a recently developed computational model and by setting boundary conditions needed to simulate the effect of cold surrounding environment. A major finding is the capacity of the body core regions to maintain their temperature high for a substantial amount of time, even under the most extreme environmental conditions. We also considered two disease states that highlight the spectrum of possible pathologies implicated in thermal regulation of the human body. These states are (i) cardiomyopathy, which affects the operating capacity of the heart, and (ii) malnutrition, which directly impairs the body's ability to regulate heat exchange with the environment. We have found that cardiomyopathy has little influence on the thermal balance of the human body, whereas malnutrition has a profound negative effect on the thermal balance and leads to dramatic reduction in core temperature.

  5. Investigation of the transmission of fore and aft vibration through the human body.

    PubMed

    Demić, Miroslav; Lukić, Jovanka

    2009-07-01

    Understanding the behavior of human body under the influence of vibration is of great importance for the optimal motor vehicle system design. Therefore, great efforts are being done in order to discover as many information about the influence of vibration on human body as possible. So far the references show that the major scientific attention has been paid to vertical vibration, although intensive research has been performed lately on the other sorts of excitation. In this paper, the results of the investigation of behavior of human body, in seated position, under the influence of random fore and aft vibration are shown. The investigation is performed by the use of an electro-hydraulic simulator, on a group of 30 healthy male occupants. Experiments are performed in order to give results to improve human body modeling in driving conditions. Excitation amplitudes (1.75 and 2.25 m/s(2) rms) and seat backrest conditions (with and without inclination) were varied. Data results are analyzed by partial coherence and transfer functions. Analyses have been performed and results are given in detail. The results obtained have shown that the human body under the influence of random excitations behaves as a non-linear system and its response depends on spatial position. Obtained results give necessary data to define structure and parameters of human biodynamic model with respect to different excitation and seat backrest position.

  6. Physiologic control. Anatomy and physiology of the airway circulation.

    PubMed

    Widdicombe, J

    1992-11-01

    Both for the nose and the lower airways there is an extensive subepithelial capillary network. That for the nose is fenestrated, and this is true for the tracheobronchial tree of rats, guinea pigs, and hamsters, and for that of human asthmatics. However, healthy humans, dogs, and sheep have capillaries without fenestrations except for those close to neuroepithelial bodies and submucosal glands. Deeper in the mucosa there is a capacitance system of vessels, conspicuous in the nose but present also in the lower airways of rabbits and sheep and, to a lesser extent, in those of dogs and humans. Both for the nose and the lower airways, parasympathetic nerves are vasodilator, sympathetic nerves are vasoconstrictor, and sensory nerves are able to release dilator neuropeptides. Most inflammatory and immunologic mediators are vasodilator. A conspicuous difference between the nasal and lower airway vasculatures is the presence of arteriovenous anastomoses only in the former. Countercurrent mechanisms also exist in the nose to increase its efficiency in air conditioning, but they have not been established for the trachea. The pulmonary vasculature could be part of such a system for the bronchi. Distension of the airway vasculature thickens the mucosa, probably both by vascular distension and by edema formation. The latter can lead to exudation into the airway lumen. These processes have not been well quantitated, and the balance sheet of capillary and capacitance vessel volumes, interstitial liquid volume, and exudate volume needs to be worked out in physiologic and pathologic conditions.

  7. Body-mass dependence of age-related deterioration in human muscular function.

    PubMed

    Meltzer, D E

    1996-04-01

    Maximal anaerobic power of human muscles declines with increasing chronological age and is correlated with body mass. This study investigated whether the rate of deterioration in human muscular function among trained weight lifters is also correlated with body mass. Cross-sectional analysis of performance data of over 1,100 Masters competitors in Olympic-style weight lifting was carried out; eight body-weight classes and six age groups were represented. Two-lift total data (sum of snatch and clean and jerk lifts) were analyzed. Mean deterioration rates in the performance of athletes of widely diverse body masses were compared over the following age ranges: 42-57, 42-62, and 42-67 yr. No statistically significant correlation (P < 0.05) was found between rate of performance decline and body mass. The relationship between body mass and the magnitude of age-related variation of deterioration rate was also studied; no significant correlation was found. Previous studies have demonstrated that performance in Olympic-style weight lifting is correlated with maximal anaerobic muscular power. This leads us to suggest that the age-related deterioration rate of anaerobic power in trained subjects may not be correlated with the body mass of the individual.

  8. Optimal frequency range for medical radar measurements of human heartbeats using body-contact radar.

    PubMed

    Brovoll, Sverre; Aardal, Øyvind; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-01-01

    In this paper the optimal frequency range for heartbeat measurements using body-contact radar is experimentally evaluated. A Body-contact radar senses electromagnetic waves that have penetrated the human body, but the range of frequencies that can be used are limited by the electric properties of the human tissue. The optimal frequency range is an important property needed for the design of body-contact radar systems for heartbeat measurements. In this study heartbeats are measured using three different antennas at discrete frequencies from 0.1 - 10 GHz, and the strength of the received heartbeat signal is calculated. To characterize the antennas, when in contact with the body, two port S-parameters(†) are measured for the antennas using a pork rib as a phantom for the human body. The results shows that frequencies up to 2.5 GHz can be used for heartbeat measurements with body-contact radar.

  9. Modal analysis of human body vibration model for Indian subjects under sitting posture.

    PubMed

    Singh, Ishbir; Nigam, S P; Saran, V H

    2015-01-01

    Need and importance of modelling in human body vibration research studies are well established. The study of biodynamic responses of human beings can be classified into experimental and analytical methods. In the past few decades, plenty of mathematical models have been developed based on the diverse field measurements to describe the biodynamic responses of human beings. In this paper, a complete study on lumped parameter model derived from 50th percentile anthropometric data for a seated 54- kg Indian male subject without backrest support under free un-damped conditions has been carried out considering human body segments to be of ellipsoidal shape. Conventional lumped parameter modelling considers the human body as several rigid masses interconnected by springs and dampers. In this study, concept of mass of interconnecting springs has been incorporated and eigenvalues thus obtained are found to be closer to the values reported in the literature. Results obtained clearly establish decoupling of vertical and fore-and-aft oscillations. The mathematical modelling of human body vibration studies help in validating the experimental investigations for ride comfort of a sitting subject. This study clearly establishes the decoupling of vertical and fore-and-aft vibrations and helps in better understanding of possible human response to single and multi-axial excitations.

  10. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm.

    PubMed

    Kobayashi, Masaki; Kikuchi, Daisuke; Okamura, Hitoshi

    2009-07-16

    The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.

  11. In vitro dynamic swelling behaviors of radiation synthesized polyacrylamide with crosslinkers in the simulated physiological body fluids

    NASA Astrophysics Data System (ADS)

    Saraydın, Dursun; Işıkver, Yasemin; Karadağ, Erdener; Sahiner, Nurettin; Güven, Olgun

    2002-03-01

    Acrylamide hydrogels, containing different amounts and types of crosslinkers, were synthesized via γ-irradiation technique. Their swellings in simulated body fluids, such as physiological saline (0.89% NaCl) isoosmotic phosphate buffer at pH 7.4, gastric fluid at pH 1.1 (glycine-HCl), protein (aqueous solution of bovine serum albumin), urine (aqueous solution of urea), glucose and distilled water, were studied. Equilibrium swellings of the hydrogels were changed in the range 27-85 depending upon the fluids, type and amount of crosslinkers. The diffusion exponents were found over half for all hydrogels.

  12. Physiological Information Database (PID)

    EPA Science Inventory

    EPA has developed a physiological information database (created using Microsoft ACCESS) intended to be used in PBPK modeling. The database contains physiological parameter values for humans from early childhood through senescence as well as similar data for laboratory animal spec...

  13. Coping with thermal challenges: physiological adaptations to environmental temperatures.

    PubMed

    Tattersall, Glenn J; Sinclair, Brent J; Withers, Philip C; Fields, Peter A; Seebacher, Frank; Cooper, Christine E; Maloney, Shane K

    2012-07-01

    Temperature profoundly influences physiological responses in animals, primarily due to the effects on biochemical reaction rates. Since physiological responses are often exemplified by their rate dependency (e.g., rate of blood flow, rate of metabolism, rate of heat production, and rate of ion pumping), the study of temperature adaptations has a long history in comparative and evolutionary physiology. Animals may either defend a fairly constant temperature by recruiting biochemical mechanisms of heat production and utilizing physiological responses geared toward modifying heat loss and heat gain from the environment, or utilize biochemical modifications to allow for physiological adjustments to temperature. Biochemical adaptations to temperature involve alterations in protein structure that compromise the effects of increased temperatures on improving catalytic enzyme function with the detrimental influences of higher temperature on protein stability. Temperature has acted to shape the responses of animal proteins in manners that generally preserve turnover rates at animals' normal, or optimal, body temperatures. Physiological responses to cold and warmth differ depending on whether animals maintain elevated body temperatures (endothermic) or exhibit minimal internal heat production (ectothermic). In both cases, however, these mechanisms involve regulated neural and hormonal over heat flow to the body or heat flow within the body. Examples of biochemical responses to temperature in endotherms involve metabolic uncoupling mechanisms that decrease metabolic efficiency with the outcome of producing heat, whereas ectothermic adaptations to temperature are best exemplified by the numerous mechanisms that allow for the tolerance or avoidance of ice crystal formation at temperatures below 0°C. 2012 American Physiological Society. Compr Physiol 2:2037-2061, 2012.

  14. Evaluation of physiological strain in hot work areas using thermal imagery.

    PubMed

    Holm, Clint A; Pahler, Leon; Thiese, Matthew S; Handy, Rodney

    2016-10-01

    Monitoring core body temperature to identify heat strain in workers engaged in hot work in heat stress environments is intrusive and expensive. Nonintrusive, inexpensive methods are needed to calculate individual Physiological Strain Index (PSI). Thermal imaging and heart rate monitoring were used in this study to calculate Physiological Strain Index (PSI) from thermal imaging temperatures of human subjects wearing thermal protective garments during recovery from hot work. Ten male subjects were evaluated for physiological strain while participating in hot work. Thermal images of the head and neck were captured with a high-resolution thermal imaging camera concomitant with measures of gastrointestinal and skin temperature. Lin's concordance correlation coefficient (rho_c), Pearson's coefficient (r) and bias correction factor (C-b) were calculated to compare thermal imaging based temperatures to gastrointestinal temperatures. Calculations of PSI based thermal imaging recorded temperatures were compared to gastrointestinal based PSI. Participants reached a peak PSI of 5.2, indicating moderate heat strain. Sagittal measurements showed low correlation (rho_c=0.133), moderate precision (r=0.496) and low accuracy (C_b=0.269) with gastrointestinal temperature. Bland-Altman plots of imaging measurements showed increasing agreement as gastrointestinal temperature rose; however, the Limits of Agreement (LoA) fell outside the ±0.25C range of clinical significance. Bland-Altman plots of PSI calculated from imaging measurements showed increasing agreement as gastrointestinal temperature rose; however, the LoA fell outside the ±0.5 range of clinical significance. Results of this study confirmed previous research showing thermal imagery is not highly correlated to body core temperature during recovery from moderate heat strain in mild ambient conditions. Measurements display a trend toward increasing correlation at higher body core temperatures. Accuracy was not sufficient at

  15. Robotic Reconnaissance Missions to Small Bodies and Their Potential Contributions to Human Exploration

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Rivkin, A. S.

    2015-01-01

    Introduction: Robotic reconnaissance missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near- Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations [1]. The action team

  16. Evaluation of chest ultrasound integrated teaching of respiratory system physiology to medical students.

    PubMed

    Paganini, Matteo; Bondì, Michela; Rubini, Alessandro

    2017-12-01

    Ultrasound imaging is a widely used diagnostic technique, whose integration in medical education is constantly growing. The aim of this study was to evaluate chest ultrasound usefulness in teaching respiratory system physiology, students' perception of chest ultrasound integration into a traditional lecture in human physiology, and short-term concept retention. A lecture about respiratory physiology was integrated with ultrasound and delivered to third-year medical students. It included basic concepts of ultrasound imaging and the physiology of four anatomic sectors of the body of a male volunteer, shown with a portable ultrasound device (pleural sliding, diaphragmatic movement, inferior vena cava diameter variations, cardiac movements). Students' perceptions of the integrated lecture were assessed, and attendance recorded. After 4 mo, four multiple-choice questions about respiratory physiology were administered during the normal human physiology examinations, and the results of students who attended the lesson and those of who did not were compared. One hundred thirty-four students attended the lecture. Most of them showed encouragement for the study of the subject and considered the ultrasound integrated lecture more interesting than a traditional one and pertinent to the syllabus. Exposed students achieved a better score at the examination and committed less errors than did nonexposed students. The chest ultrasound integrated lecture was appreciated by students. A possible association between the exposure to the lecture and short-term concept retention is shown by better performances of the exposed cohort at the examination. A systematic introduction of ultrasound into physiology traditional teaching will be promoted by the Ultrasound-Based Medical Education movement. Copyright © 2017 the American Physiological Society.

  17. Preference for human body odors is influenced by gender and sexual orientation.

    PubMed

    Martins, Yolanda; Preti, George; Crabtree, Christina R; Runyan, Tamar; Vainius, Aldona A; Wysocki, Charles J

    2005-09-01

    Human body odor may contribute to selection of partners. If so, sexual orientation may influence preference for and perhaps production of human body odors. In a test of these hypotheses, heterosexual and homosexual males and females made two-alternative forced-choice preference judgments for body odors obtained from other heterosexual and homosexual males and females. Subjects chose between odors from (a) heterosexual males and gay males, (b) heterosexual males and heterosexual females, (c) heterosexual females and lesbians, and (d) gay males and lesbians. Results indicate that differences in body odor are detected and responded to on the basis of, in part, an individual's gender and sexual orientation. Possible mechanisms underlying these findings are discussed.

  18. Body Topography Parcellates Human Sensory and Motor Cortex.

    PubMed

    Kuehn, Esther; Dinse, Juliane; Jakobsen, Estrid; Long, Xiangyu; Schäfer, Andreas; Bazin, Pierre-Louis; Villringer, Arno; Sereno, Martin I; Margulies, Daniel S

    2017-07-01

    The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing. © The Author 2017. Published by Oxford University Press.

  19. Building "Bob": A Project Exploring the Human Body at Western Illinois University Preschool Center

    ERIC Educational Resources Information Center

    Brouette, Scott

    2008-01-01

    When the children at Western Illinois University Preschool Center embarked on a study of human bodies, they decided to build a life-size model of a body, organ by organ from the inside out, to represent some of the things they were learning. This article describes the building of "Bob," the human body model, highlighting the children's…

  20. Reversal of Physiological Deficits Caused by Diminished Levels of Peptidylglycine α-Amidating Monooxygenase by Dietary Copper

    PubMed Central

    Bousquet-Moore, D.; Ma, X. M.; Nillni, E. A.; Czyzyk, T. A.; Pintar, J. E.; Eipper, B. A.; Mains, R. E.

    2009-01-01

    Amidated peptides are critically involved in many physiological functions. Genetic deletion of peptidylglycine α-amidating monooxygenase (PAM), the only enzyme that can synthesize these peptides, is embryonically lethal. The goal of the present study was the identification of physiological functions impaired by haploinsufficiency of PAM. Regulation of the hypothalamic-pituitary-thyroid axis and body temperature, functions requiring contributions from multiple amidated peptides, were selected for evaluation. Based on serum T4 and pituitary TSH-β mRNA levels, mice heterozygous for PAM (PAM+/−) were euthyroid at baseline. Feedback within the hypothalamic-pituitary-thyroid axis was impaired in PAM+/− mice made hypothyroid using a low iodine/propylthiouracil diet. Despite their normal endocrine response to cold, PAM+/− mice were unable to maintain body temperature as well as wild-type littermates when kept in a 4 C environment. When provided with additional dietary copper, PAM+/− mice maintained body temperature as well as wild-type mice. Pharmacological activation of vasoconstriction or shivering also allowed PAM+/− mice to maintain body temperature. Cold-induced vasoconstriction was deficient in PAM+/− mice. This deficit was eliminated in PAM+/− mice receiving a diet with supplemental copper. These results suggest that dietary deficiency of copper, coupled with genetic deficits in PAM, could result in physiological deficits in humans. PMID:19022883

  1. Robot and Human Surface Operations on Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  2. Physiological responses to prolonged bed rest in humans: A compendium of research, 1981-1988

    NASA Technical Reports Server (NTRS)

    Luu, Phuong B.; Ortiz, Vanessa; Barnes, Paul R.; Greenleaf, John E.

    1990-01-01

    Clinical observations and results form more basic studies that help to elucidate the physiological mechanisms of the adaptation of humans to prolonged bed rest. If the authors' abstract or summary was appropriate, it was included. In some cases a more detailed synopsis was provided under the subheadings of purpose, methods, results, and conclusions.

  3. The Impact of Protein Phosphorylation on Chlamydial Physiology

    PubMed Central

    Claywell, Ja E.; Matschke, Lea M.; Fisher, Derek J.

    2016-01-01

    Chlamydia are Gram negative bacterial pathogens responsible for disease in humans and economically important domesticated animals. As obligate intracellular bacteria, they must gain entry into a host cell where they propagate within a parasitophorous organelle that serves as an interactive interface between the bacterium and the host. Nutrient acquisition, growth, and evasion of host defense mechanisms occur from this location. In addition to these cellular and bacterial dynamics, Chlamydia differentiate between two morphologically distinct forms, the elementary body and reticulate body, that are optimized for either extracellular or intracellular survival, respectively. The mechanisms regulating and mediating these diverse physiological events remain largely unknown. Reversible phosphorylation, including classical two-component signaling systems, partner switching mechanisms, and the more recently appreciated bacterial Ser/Thr/Tyr kinases and phosphatases, has gained increasing attention for its role in regulating important physiological processes in bacteria including metabolism, development, and virulence. Phosphorylation modulates these events via rapid and reversible modification of protein substrates leading to changes in enzyme activity, protein oligomerization, cell signaling, and protein localization. The characterization of several conserved chlamydial protein kinases and phosphatases along with phosphoproteome analysis suggest that Chlamydia are capable of global and growth stage-specific protein phosphorylation. This mini review will highlight the current knowledge of protein phosphorylation in Chlamydia and its potential role in chlamydial physiology and, consequently, virulence. Comparisons with other minimal genome intracellular bacterial pathogens also will be addressed with the aim of illustrating the importance of this understudied regulatory mechanism on pathogenesis and the principle questions that remain unanswered. PMID:28066729

  4. Evidence for multiple, distinct representations of the human body.

    PubMed

    Schwoebel, John; Coslett, H Branch

    2005-04-01

    Previous data from single-case and small group studies have suggested distinctions among structural, conceptual, and online sensorimotor representations of the human body. We developed a battery of tasks to further examine the prevalence and anatomic substrates of these body representations. The battery was administered to 70 stroke patients. Fifty-one percent of the patients were impaired relative to controls on at least one body representation measure. Further, principal components analysis of the patient data as well as direct comparisons of patient and control performance suggested a triple dissociation between measures of the 3 putative body representations. Consistent with previous distinctions between the "what" and "how" pathways, lesions of the left temporal lobe were most consistently associated with impaired performance on tasks assessing knowledge of the shape or lexical-semantic information about the body, whereas lesions of the dorsolateral frontal and parietal regions resulted in impaired performance on tasks requiring on-line coding of body posture.

  5. Central respiratory chemosensitivity and cerebrovascular CO2 reactivity: a rebreathing demonstration illustrating integrative human physiology.

    PubMed

    MacKay, Christina M; Skow, Rachel J; Tymko, Michael M; Boulet, Lindsey M; Davenport, Margie H; Steinback, Craig D; Ainslie, Philip N; Lemieux, Chantelle C M; Day, Trevor A

    2016-03-01

    One of the most effective ways of engaging students of physiology and medicine is through laboratory demonstrations and case studies that combine 1) the use of equipment, 2) problem solving, 3) visual representations, and 4) manipulation and interpretation of data. Depending on the measurements made and the type of test, laboratory demonstrations have the added benefit of being able to show multiple organ system integration. Many research techniques can also serve as effective demonstrations of integrative human physiology. The "Duffin" hyperoxic rebreathing test is often used in research settings as a test of central respiratory chemosensitivity and cerebrovascular reactivity to CO2. We aimed to demonstrate the utility of the hyperoxic rebreathing test for both respiratory and cerebrovascular responses to increases in CO2 and illustrate the integration of the respiratory and cerebrovascular systems. In the present article, methods such as spirometry, respiratory gas analysis, and transcranial Doppler ultrasound are described, and raw data traces can be adopted for discussion in a tutorial setting. If educators have these instruments available, instructions on how to carry out the test are provided so students can collect their own data. In either case, data analysis and quantification are discussed, including principles of linear regression, calculation of slope, the coefficient of determination (R(2)), and differences between plotting absolute versus normalized data. Using the hyperoxic rebreathing test as a demonstration of the complex interaction and integration between the respiratory and cerebrovascular systems provides senior undergraduate, graduate, and medical students with an advanced understanding of the integrative nature of human physiology. Copyright © 2016 The American Physiological Society.

  6. Brazilian legal and bioethical approach about donation for research and patents of human body parts.

    PubMed

    Fernandes, Márcia Santana; Silla, Lúcia; Goldim, José Roberto; Martins-Costa, Judith

    2017-07-01

    The aim of this paper is to explain why the Brazilian legal system does not accept commercialization or commodification of human body parts, including genes or cells. As a consequence, in Brazil, the donation of human body parts for research-including basic or translational-must be made altruistically. For the same reason, the Brazilian patent system cannot be applied to human parts, cells or genes. Here, we present a qualitative analysis of juridical, bioethical, and social reasoning related to the legal status of human body parts especially in biobanks, as well as a description of the Brazilian legal system for clarification. Our aim is to discuss the responsibility of researchers for making available the scientific information resulting from scientific research and biobank storage of human body parts and to ensure the free utilization of knowledge in human health research.

  7. Physiological and Biomechanical Considerations for a Human Mars Mission

    NASA Astrophysics Data System (ADS)

    Hawkey, A.

    Evolving on Earth has made humans perfectly adapted, both physiologically and biomechanically, to its gravity and atmospheric conditions. Leaving the Earth and its protective environment, therefore, results in the degradation of a number of human systems. Long-duration stays on the International Space Station (ISS) are accompanied by significant effects on crew's cardiovascular, vestibular and musculoskeletal systems. Bone loss and muscle atrophy are experienced at a rate of 1-3% and 5% per month respectively, while VO2 (oxygen consumption) measurements are reduced by approximately 25% after a few weeks in space. If these figures are simply extrapolated, a future human mission to Mars will be seriously jeopardised and crews may find they cross the threshold of bone and muscle loss and aerobic fitness - ultimately with them being unable to return to Earth. When arriving on Mars, considerable biomechanical alterations will also occur. Optimum walking speeds will be approximately 30% lower and transitioning from a walk to a run will occur at a speed 25% slower. Peak vertical forces will be reduced by as much as 50%, while stride length, stride time and airborne time will all increase. On Mars, half as much energy will be required to travel the equivalent distance on Earth and it will be 65% more economical to run rather than to walk.

  8. Possible psycho-physiological consequences of human long-term space missions

    NASA Astrophysics Data System (ADS)

    Belisheva, N. K.; Lammer, H.; Biernat, H. K.; Kachanova, T. L.; Kalashnikova, I. V.

    Experiments carried out on the Earth s surface during different years and under contrast periods of solar activity have shown that the functional state of biosystems including the human organisms are controlled by global and local geocosmical agents Our finding have a close relation to space research because they demonstrate the reactions of biosystems on variations of global and local geocosmical agents and the mechanisms of modulations of biosystems state by geocosmical agents We revealed the role of variations of the geomagnetic field for the stimulation of immune systems functional state of peripheral blood human brain growth of microflora skin covers and pathogenic microorganisms The study of the psycho-physiological state of the human organism has demonstrated that an increase of the neutron intensity near the Earth s surface is associated with anxiety decrease of normal and increase of paradox reactions of examinees The analysis of the human brain functional state in dependent on the geomagnetic variation structure dose under exposure to the variations of geomagnetic field in a certain amplitude-frequency range and also the intensity of the nucleon component of secondary cosmic rays showed that the stable and unstable states of the human brain are determined by geomagnetic field variations and the intensity of the nucleon component The stable state of the brain manifested under the periodic oscillations of the geomagnetic field in a certain amplitude-frequency range The low level of geomagnetic activity associated with an

  9. Modeling the human body shape in bioimpedance vector measurements.

    PubMed

    Kim, Chul-Hyun; Park, Jae-Hyeon; Kim, Hyeoijin; Chung, Sochung; Park, Seung-Hun

    2010-01-01

    Human body shape, called somatotype, has described physique of humans in health and sports applications, relating anthropometric measurements to fatness, muscularity and linearity in a structured way. Here we propose a new method based on bioelectric impedance vector analysis (BIVA) of R/H and Xc/H to represent the cross-sectional area and the body cell mass in a given surface area (m(2)) respectively. Data from six gymnasts, ten dancers, and five fashion models, groups whose physiques and BMI ranges were distinct from one another, were measured for somatotype and BIVA. The models had highest values of the R/H and gymnasts the lowest. Xc/H was lower in models than in the dancers and gymnasts (p < 0.05). Phase angle was lowest in the models and highest in gymnasts significantly (p < 0.05). Pattern analysis from BIVA corresponded to the calculated anthropometric somatotype supporting the hypothesis that BIA's resistance (R) and reactance (Xc) are meaningful discriminates of body size and function which relate to physique in a purposive way.

  10. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease.

    PubMed

    Seabolt, Lynn A; Welch, E Brian; Silver, Heidi J

    2015-09-01

    Advances in the technological qualities of imaging modalities for assessing human body composition have been stimulated by accumulating evidence that individual components of body composition have significant influences on chronic disease onset, disease progression, treatment response, and health outcomes. Importantly, imaging modalities have provided a systematic method for differentiating phenotypes of body composition that diverge from what is considered normal, that is, having low bone mass (osteopenia/osteoporosis), low muscle mass (sarcopenia), high fat mass (obesity), or high fat with low muscle mass (sarcopenic obesity). Moreover, advances over the past three decades in the sensitivity and quality of imaging not just to discern the amount and distribution of adipose and lean tissue but also to differentiate layers or depots within tissues and cells is enhancing our understanding of distinct mechanistic, metabolic, and functional roles of body composition within human phenotypes. In this review, we focus on advances in imaging technologies that show great promise for future investigation of human body composition and how they are being used to address the pandemic of obesity, metabolic syndrome, and diabetes. © 2015 New York Academy of Sciences.

  11. Influence of the model's degree of freedom on human body dynamics identification.

    PubMed

    Maita, Daichi; Venture, Gentiane

    2013-01-01

    In fields of sports and rehabilitation, opportunities of using motion analysis of the human body have dramatically increased. To analyze the motion dynamics, a number of subject specific parameters and measurements are required. For example the contact forces measurement and the inertial parameters of each segment of the human body are necessary to compute the joint torques. In this study, in order to perform accurate dynamic analysis we propose to identify the inertial parameters of the human body and to evaluate the influence of the model's number of degrees of freedom (DoF) on the results. We use a method to estimate the inertial parameters without torque sensor, using generalized coordinates of the base link, joint angles and external forces information. We consider a 34DoF model, a 58DoF model, as well as the case when the human is manipulating a tool (here a tennis racket). We compare the obtained in results in terms of contact force estimation.

  12. Performance of human body communication-based wearable ECG with capacitive coupling electrodes

    PubMed Central

    Sakuma, Jun; Anzai, Daisuke

    2016-01-01

    Wearable electrocardiogram (ECG) is attracting much attention in daily healthcare applications, and human body communication (HBC) technology provides an evident advantage in making the sensing electrodes of ECG also working for transmission through the human body. In view of actual usage in daily life, however, non-contact electrodes to the human body are desirable. In this Letter, the authors discussed the ECG circuit structure in the HBC-based wearable ECG for removing the common mode noise when employing non-contact capacitive coupling electrodes. Through the comparison of experimental results, they have shown that the authors’ proposed circuit structure with the third electrode directly connected to signal ground can provide an effect on common mode noise reduction similar to the usual drive-right-leg circuit, and a sufficiently good acquisition performance of ECG signals. PMID:27733931

  13. Performance of human body communication-based wearable ECG with capacitive coupling electrodes.

    PubMed

    Sakuma, Jun; Anzai, Daisuke; Wang, Jianqing

    2016-09-01

    Wearable electrocardiogram (ECG) is attracting much attention in daily healthcare applications, and human body communication (HBC) technology provides an evident advantage in making the sensing electrodes of ECG also working for transmission through the human body. In view of actual usage in daily life, however, non-contact electrodes to the human body are desirable. In this Letter, the authors discussed the ECG circuit structure in the HBC-based wearable ECG for removing the common mode noise when employing non-contact capacitive coupling electrodes. Through the comparison of experimental results, they have shown that the authors' proposed circuit structure with the third electrode directly connected to signal ground can provide an effect on common mode noise reduction similar to the usual drive-right-leg circuit, and a sufficiently good acquisition performance of ECG signals.

  14. A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010.

    PubMed

    Zhang, Yuan; Zhou, Wei-E; Yan, Jia-Qing; Liu, Min; Zhou, Yu; Shen, Xin; Ma, Ying-Lin; Feng, Xue-Song; Yang, Jun; Li, Guo-Hui

    2018-06-19

    Vitamins are a class of essential nutrients in the body; thus, they play important roles in human health. The chemicals are involved in many physiological functions and both their lack and excess can put health at risk. Therefore, the establishment of methods for monitoring vitamin concentrations in different matrices is necessary. In this review, an updated overview of the main pretreatments and determination methods that have been used since 2010 is given. Ultrasonic assisted extraction, liquid⁻liquid extraction, solid phase extraction and dispersive liquid⁻liquid microextraction are the most common pretreatment methods, while the determination methods involve chromatography methods, electrophoretic methods, microbiological assays, immunoassays, biosensors and several other methods. Different pretreatments and determination methods are discussed.

  15. Knowledge of the human body: a distinct semantic domain.

    PubMed

    Coslett, H Branch; Saffran, Eleanor M; Schwoebel, John

    2002-08-13

    Patients with selective deficits in the naming and comprehension of animals, plants, and artifacts have been reported. These descriptions of specific semantic category deficits have contributed substantially to the understanding of the architecture of semantic representations. This study sought to further understanding of the organization of the semantic system by demonstrating that another semantic category, knowledge of the human body, may be selectively preserved. The performance of a patient with semantic dementia was compared with the performance of healthy controls on a variety of tasks assessing distinct types of body representations, including the body schema, body image, and body structural description. Despite substantial deficits on tasks involving language and knowledge of the world generally, the patient performed normally on all tests of body knowledge except body part naming; even in this naming task, however, her performance with body parts was significantly better than on artifacts. The demonstration that body knowledge may be preserved despite substantial semantic deficits involving other types of semantic information argues that body knowledge is a distinct and dissociable semantic category. These data are interpreted as support for a model of semantics that proposes that knowledge is distributed across different cortical regions reflecting the manner in which the information was acquired.

  16. Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions

    NASA Astrophysics Data System (ADS)

    Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul

    2009-12-01

    Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.

  17. Human thermal physiological and psychological responses under different heating environments.

    PubMed

    Wang, Zhaojun; Ning, Haoran; Ji, Yuchen; Hou, Juan; He, Yanan

    2015-08-01

    Anecdotal evidence suggests that many residents of severely cold areas of China who use floor heating (FH) systems feel warmer but drier compared to those using radiant heating (RH) systems. However, this phenomenon has not been verified experimentally. In order to validate the empirical hypothesis, and research the differences of human physiological and psychological responses in these two asymmetrical heating environments, an experiment was designed to mimic FH and RH systems. The subjects participating in the experiment were volunteer college-students. During the experiment, the indoor air temperature, air speed, relative humidity, globe temperature, and inner surface temperatures were measured, and subjects' heart rate, blood pressure and skin temperatures were recorded. The subjects were required to fill in questionnaires about their thermal responses during testing. The results showed that the subjects' skin temperatures, heart rate and blood pressure were significantly affected by the type of heating environment. Ankle temperature had greatest impact on overall thermal comfort relative to other body parts, and a slightly cool FH condition was the most pleasurable environment for sedentary subjects. The overall thermal sensation, comfort and acceptability of FH were higher than that of RH. However, the subjects of FH felt drier than that of RH, although the relative humidity in FH environments was higher than that of the RH environment. In future environmental design, the thermal comfort of the ankles should be scrutinized, and a FH cool condition is recommended as the most comfortable thermal environment for office workers. Consequently, large amounts of heating energy could be saved in this area in the winter. The results of this study may lead to more efficient energy use for office or home heating systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Accurate estimation of human body orientation from RGB-D sensors.

    PubMed

    Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao

    2013-10-01

    Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.

  19. Localization of activities in the human body with a whole-body counter.

    PubMed

    Fischer, H; Schlagbauer, M

    2007-01-01

    The whole-body counter of the Radiation Protection Unit at the ARC Seibersdorf research GmbH has two HP Ge-detectors for measuring radionuclides, which are internally deposited in the human body. The detector system has a scanning geometry, where one detector is placed below the bed and the other detector above the bed. The body counter is placed in a massive shielded chamber. This device is especially used for measuring radioactive exposed workers with the possibility of intake by inhalation and ingestion. In the most cases whole-body counters are calibrated with anthropomorphic phantoms where activity is homogenously distributed. However, in some cases radioactivity can be located as a 'Hot Spot' in an organ. The localisation of 'Hot spots' at least in one dimension was the topic of this work. Experiments were done by means of a water-filled bottle phantom where three point sources (137Cs, 133Ba and 60Co) were placed at different positions. Measurements show that these radionuclides can be located within 1.5 cm along the longitudinal axis of the phantom with activities for 137Cs of at least 240 Bq, 133Ba of at least 670 Bq and 60Co of at least 140 Bq.

  20. Estimation of skeletal movement of human locomotion from body surface shapes using dynamic spatial video camera (DSVC) and 4D human model.

    PubMed

    Saito, Toshikuni; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Hayashibe, Mitsuhiro; Otake, Yoshito

    2006-01-01

    We have been developing a DSVC (Dynamic Spatial Video Camera) system to measure and observe human locomotion quantitatively and freely. A 4D (four-dimensional) human model with detailed skeletal structure, joint, muscle, and motor functionality has been built. The purpose of our research was to estimate skeletal movements from body surface shapes using DSVC and the 4D human model. For this purpose, we constructed a body surface model of a subject and resized the standard 4D human model to match with geometrical features of the subject's body surface model. Software that integrates the DSVC system and the 4D human model, and allows dynamic skeletal state analysis from body surface movement data was also developed. We practically applied the developed system in dynamic skeletal state analysis of a lower limb in motion and were able to visualize the motion using geometrically resized standard 4D human model.